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Abstract

The thesis describes the application of Multivariate Statistical Process Control

(MSPC) to chemical processes for the task of process performance monitoring and

fault detection and diagnosis. The applications considered are based upon

polymerisation systems. The first part of the work establishes the appropriateness of

MSPC methodologies for application to modern industrial chemical processes. The

statistical projection techniques of Principal Component Analysis and Projection to

Latent Structures are considered to be suitable for analysing the multivariate data sets

obtained from chemical processes and are coupled with methods and techniques for

implementing MSPC. A comprehensive derivation of these techniques are presented.

The second part introduces the procedures that require to be followed for the

appropriate implementation of MSPC-based schemes for process monitoring, fault

detection and diagnosis. Extensions of the available projection techniques that can

handle specific types of chemical processes, such as those that exhibit non-linear

characteristics or comprise many distinct units are also presented. Moreover, the

novel technique of Inverse Projection to Latent Structures that extends the

application of MSPC-based schemes to processes where minimal process data is

available is introduced. Finally, the proposed techniques and methodologies are

illustrated by applications to a batch and a continuous polymerisation process.

Copyright © 1998 by University of Newcastle upon Tyne.
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Chapter I

Introduction

1.1 General Overview

In today's competitive atmosphere, the chemical and process industries are being

required to increase plant flexibility and to adapt to highly demanding situations

where processes are subject to varying raw materials properties, changing technology

and market conditions and fluctuating operating conditions. The expectation for

improved product quality and the requirement to operate safely according to health,

safety and environmental protection regulations have become imperative due to

market and public demand. Successful operation in terms of high yield, better

product quality and more consistent production at reduced operational costs and

increased health and safety standards, can only be achieved when processes or plants

are operated under well controlled conditions.

Efforts to manufacture a higher proportion of within specification product and to

reduce the variability in the product quality, i.e. to produce more consistent product,

has lead to an increase in the use of Statistical Process Control (SPC). SPC refers to a

collection of statistical techniques and charting methods that have been found to be

useful in ensuring consistent production and, consequently, in obtaining significant

economic advantages. Traditional SPC can effectively detect or provide early

warning of unusual events that can lead to off-specification production, process

disturbances and faults, related to measurements of individual quality characteristics.
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However, most modern industrial processes have available frequent on-line

measurements on many process variables and, in some instances, on several

properties of raw materials and final product. Furthermore, there are measurements

of characteristics related to product quality that are usually measured infrequently

off-line. Therefore, industrial quality problems are multivariate, since they involve

measurements on a number of characteristics, rather than one single characteristic.

As a result, univariate SPC methods and techniques provide little information about

the interactions between characteristics and, therefore, it is not appropriate for

modern day processes. Most of the limitations of univariate SPC can be addressed

through the application of Multivariate Statistical Process Control (MSPC), which

considers all the characteristics of interest simultaneously and can extract information•

on the behaviour of each characteristic relative to the others.

The major difficulty with multivariate data is that the variables being measured are

almost never independent, but rather, they are highly correlated with one another at

any given time. In trying to overcome these difficulties, a number of multivariate

statistical projection methods can be applied, such as Principal Component Analysis

(PCA) and Project to Latent Structures (PLS) or Partial Least Squares. These

methods are particularly suited for the analysis of correlated data. They effectively

project the data down onto low dimensional subspaces, that then contain all the

relevant information relating to the process. Principal Component Analysis is one

procedure that can be used to explain the variability in a single data set by defining a

set of latent vectors that describe the direction of greatest variability. Projection to

Latent Structures is similar to PCA, except that, PLS simultaneously reduces the

dimensionality of both the process and quality variables spaces to calculate these
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latent vectors. In both PCA and PLS, the calculated latent vectors are uncorrelated

and are a linear combination of the original correlated variables.

The key to successful process operation is efficient on-line performance monitoring.

The primary aims of process monitoring are a reduction in off-specification

production, the identification of important process disturbances and the early warning

of process or plant faults. Where the early detection of process faults is followed by

the location of their source, the efficiency and consistency of production and

process/plant safety can be significantly improved. Consequently, on-line monitoring

of process performance has become an extremely important part of any processing

operation. Schemes for process monitoring, fault detection and diagnosis can then be

used as intelligent supervisory process systems, which can support plant operators

and process engineers in dealing with process deviations and help them in identifying

the root cause of these deviations.

An MSPC monitoring scheme utilises a multivariate statistical model or

representation that is constructed using either the statistical projection techniques of

PCA or PLS. These techniques are only suitable for continuous processes that

operate at steady state and, furthermore, they investigate the relationships between

all the variables in the process in one single block. Moreover, all statistical projection

techniques are data-oriented and, as a result, models for robust MSPC-based schemes

can only be developed for processes where there is a wealth of data. Extensions of

the projection techniques of PCA and PLS, namely Multi-Way and Multi-Block, can

be used to construct statistical models for batch and semi-batch processes, and for

complex processes comprising a number of distinct units. Additionally, a novel
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approach based upon the inversion of a PLS regression process model, which has the

ability to generate the additional process data when there is only minimal plant data

available for the development of a preliminary MSPC-based scheme, is also

presented.

1.2 Outline of Thesis

Chapter 1 presents the motivation for the research work carried out, a general

overview of the scientific areas covered and, finally, an outline of the main results

obtained and innovations proposed.

Statistical Process Control (SPC) and its limitations, Multivariate Statistical Process

Control (MSPC) and its advantages over SPC, when applied to industrial quality

control problems are surveyed in Chapter 2. The charting techniques used by the

methodologies of SPC and MSPC along with the approaches for constructing the

appropriate control chart limits are also described.

The theoretical background underpinning the statistical projection methods of

Principal Component Analysis (PCA) and Projection to Latent Structures (PLS) is

presented in Chapter 3 and the derivation of these methods using geometrical,

mathematical and statistical considerations is also given. Finally, the relationship of

the statistical projection methods of PCA and PLS with MSPC procedures is also

presented.

Chapter 4 introduces the procedures that should be followed for the implementation

of MSPC schemes for process monitoring, fault detection and diagnosis. Extensions

to the projection techniques of PCA and PLS, namely Multi-Way and Multi-Block,
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are presented. Finally, a novel approach, Inverse Projection to Latent Structures

(IPLS), for generating additional process data for the development of a MSPC

monitoring scheme when minimal process data is available is presented. All issues

associated with the implementation of MSPC monitoring schemes that utilise these

statistical techniques are addressed.

Chapter 5 presents the application of MSPC-based schemes for process monitoring,

fault detection and diagnosis to two example processes. Specifically, the

polymerisation processes of Methyl-Methacrylate in a batch reactor and of Ethylene

in a two-zone tubular reactor for the production of Low Density Poly-Ethylene, are

considered. Comprehensive mathematical simulation programmes are utilised to

represent the two processes and to generate the required process data sets for

illustration of the proposed techniques. Inferential statistical models for the

prediction of the final polymer properties and the estimation of the initial process

conditions of the batch polymerisation process are developed. These models can be

used in the general framework of MSPC-based schemes and address problems that

are frequently encountered in industrial batch polymerisation processes. Additionally,

the IPLS approach is illustrated by an example application to the batch reactor for an

MSPC-based scheme. Finally, MSPC-based schemes for complex processes utilising

Muti-Block projection techniques are illustrated with an application to the two-zone

tubular reactor.

Conclusions and suggestions for further work are presented in Chapter 6 to complete

the thesis.
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Chapter II

Multivariate Statistical Process Control

2.1 Introduction

Maintaining product quality at a high level and ensuring product consistency is of

widespread concern in the process and manufacturing industries. Efforts to

manufacture a higher proportion of within specification product and to reduce the

variability in the quality of a product has lead to an increase in the use of Statistical

Quality Control (SQC) and Statistical Process Control (SPC). However, traditional

SQC/SPC techniques cannot be applied effectively in multivariate quality control

problems, which involve a vector of measurements of several characteristics rather

than a single characteristic, typical of that encountered in industry today. Multivariate

Statistical Process Control (MSPC), the multivariate extension of SPC, has been

found to be particularly suited for many of the multivariate problems found in

industrial quality control. MSPC is receiving significant attention because it is now

recognised to have an important role to play in industry. It provides a diagnostic tool

for the comprehensive on-line statistical monitoring of a process and the on-line

detection and diagnosis of process malfunctions and it is applicable to both

continuous and batch processes. This Chapter presents an extended overview of the

univariate and multivariate Statistical Process Control methods and techniques that

are currently found in industry today.
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2.2 Traditional Statistical Process Control

Statistical Process Control (SPC) refers to a collection of statistical techniques and

methods that have been found to be particularly useful in ensuring the consistent

production of high quality products and, consequently, in obtaining significant

economic advantages. These have been the major motivations for the extensive use

and development of SPC methods during the past decades.

Statistical techniques for quality control, process improvement and sampling

inspection trace their origins back to the early 1920's. In May 1924, Walter A.

Shewhart of Bell Telephone Laboratories introduced the concept of the control chart,

whilst seven years later in 1931, the initial theory of statistical quality control was

developed (Shewhart, 1931). Work by him and others, including W. E. Deming, G.

Tagushi, K. Ishikawa, J.M. Juran, G. E. P. Box, E.S. Page, S. Roberts, D. C.

Montgomery, further refined and advanced the use of statistical quality and process

control over the next seventy years. Traditional statistical quality and process control

techniques reflect the nature of the discrete-event type of operations of the

manufacturing industries, for which the techniques were initially developed.

However, examination of these methods has shown that they can also be successfully

applied to operations found in the process industries.

The primary objective of SPC is to control a process in a desired state with respect to

a particular product specification (Chen, 1996). As a result, SPC tries to maintain the

quality characteristics of products generated by a process, as close as possible to their

desired target values by controlling and monitoring the performance of the process

over time.
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2.2.1 Statistical Quality Control and Statistical Process Control

Statistical Process Control (SPC) makes use of Statistical Quality Control (SQC)

charting techniques, which have been well documented in traditional quality control

textbooks (Juran, 1979; Ishikawa, 1986; Oakland and Followell, 1990; Banks, 1989;

Wetherill and Brown, 1991; Montgomery, 1996). In the past, Statistical Quality

Control encompassed both SQC and SPC, however, today there is a difference in the

definition of these two terms, as a consequence of their underlying assumptions and

philosophies (Alsup and Watson, 1993). In SQC, the quality of the product is assured

by ensuring that the process is operating properly. On the other hand, SPC works

under the assumption that if a process is operating properly, it will produce

consistently high quality products. As a result, deviations from intended process

operation will be responsible for products of poor quality. It can be seen that, both

SPC and SQC act indirectly on the process, share the same tools and have the same

objective, namely, quality improvement. However, SQC involves the application of a

statistical methodology to the end product and it is associated with the product and its

variations in quality, whilst SPC involves the application of a statistical methodology

to the process parameters and it is associated with the process and focuses on process

variability.

2.2.2 Sources of Process Variability

Process variability can be classified into two general types, based upon their source

(Shewhart, 1931; Montgomery, 1996). In any process, there are many small,

essentially unavoidable sources of variability that are inherent to the system itself.

These are typically termed chance variation, random cause variation or common
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cause variation by many authors. Chance variation is predictable over time due to its

randomness, but, it cannot be easily reduced or eliminated from the process.

Examples of chance variation include variation due to temperature changes, raw

materials variations, thermal and electrochemical noise, weather conditions, etc. A

process that exhibits only chance variation is said to be in statistical control.

In addition, there are other sources of variation that may occasionally be present in a

process. This type of variation forces an otherwise stable process to become unstable

and unpredictable. Furthermore, it usually represents an unacceptable level of process

performance and is termed special cause variation or assignable cause variation due

to the fact that it can be readily assigned to an identifiable, particular cause or causes.

Although, assignable cause variation is relatively large when compared to chance

variation and is not predictable over time, it can typically be mitigated by applying

appropriate corrective actions to the process. Example sources of assignable variation

include different machine set-up conditions, change in shifts, different suppliers of

raw materials, joining of different sub-assemblies etc. When a process exhibits only

assignable cause variation, it is said to be out-of-statistical-control.

2.2.3 SPC Methodology

The behaviour of a process in a state of statistical control can be described by a

statistical model by means of process average level and process spread. The model is

built from data obtained when the process was operating well and only chance

variation was present. SPC techniques monitor the performance of a process over

time in order to verify that it remains in a state of statistical control. The occurrence

of unusual events or disturbances can then be detected through the statistical analysis
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of the process variation, which involves the use of a statistical hypothesis testing

procedure. This procedure is implemented by referencing the measured process

behaviour, as described by data regularly collected during process operation, against

the in-control model and its statistical properties. Having detected unusual events,

SPC methods can then assist process operators in finding the assignable causes by

investigating the process. Consequently, improvements in both the process and the

quality of the products can be achieved by undertaking appropriate corrective

action(s) that eliminate the causes before non-conforming product is produced. It can

be seen that, the eventual goal of SPC is the elimination of all assignable causes of

variation in the process, as stated by Montgomery (1996).

SPC can be considered as an activity designed to bring about process control and

stability through the appropriate collection, analysis, interpretation and charting of

numerical data. Furthermore, it is a philosophy of never ending quality improvement

rather than a simple collection of statistical techniques and methods (Caulcutt, 1995).

2.3 Hypothesis-Testing in SQC and SPC

The occurrence of unusual events in a process can be detected by carrying out

hypothesis-testing procedures based upon observed process data. A hypothesis is a

statement about the state of a system (current or future, desirable or undesirable).

Hypothesis-testing involves the evaluation of two hypotheses, namely, the null

hypothesis, which is denoted as H 0 and expresses the current or assumed state of a

system, and the alternative hypothesis, which is denoted as H 1 and expresses a future

or desirable state. Having quantified the hypotheses, using knowledge about the

system under study, one can reject or fail to reject the null hypothesis in favour of the
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alternative hypothesis and, therefore, can draw conclusions on the current the state of

the system.

In statistics, a hypothesis is normally expressed in terms of the values of the

parameters of a probability distribution. The value of the parameter specified in the

null hypothesis is determined from past information or knowledge. The alternative

hypothesis is interrogated by taking a random sample from the population under

study and computing an appropriate test statistic. Depending upon the value of the

test statistic, one can reject or fail to reject the null hypothesis in favour of the

alternative hypothesis. The set of values that lead to the rejection of the null

hypothesis is called the rejection region. In SQC/SPC, the hypothesis-testing

problem may be summarised as follows:

H0 : the process is operating under common cause variation

H 1 : the process is not operating under common cause variation

Thus, the null hypothesis (Ho) assumes that an unusual event is not present whilst the

alternative hypothesis (H 1 ) constitutes a signal of the occurrence of an unusual event.

The value of the parameter involved in H0 is specified by past information that

corresponds to a state of control, by a model of the process or by design

considerations. The hypothesis-testing procedure involves periodic testing to

investigate whether the value of the parameter has changed.

Chance variation is inherent to the process and, consequently, it is inherent to the

sampling procedures. As a result, process average levels and variation, as calculated

from random process samples may vary from sample to sample, even though the true
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process average level and spread remains constant. This results in the possibility of

making one of two kind of errors when testing hypothesis:

type I error: reject the null hypothesis H0 when it is true

type II error: fail to reject the null hypothesis H0 when it is false

The probability of these two types of errors is denoted by:

cx: P{type I error} = P{reject H0 I H0 is true}	 (2.1)

13: P{type Ii error} = P{fail to reject H 0 I H0 is false}	 (2.2)

Alternatively, it is more convenient to calculate the probability of correctly rejecting

the null hypothesis as:

1— [3 = P{reject H 0 I H 0 is false}
	

(2.3)

The main role of statistical hypothesis-testing in SQC and SPC is to check the

conformity of the process parameters or quality characteristics to their specified

values and to assist in modifying the process until the desired values are achieved.

2.4 Control Charts

Control charts are the basic statistical tools used to monitor and control processes and

systems. They can be easily constructed, visualised and interpreted. Furthermore,

they have been shown to be very effective in practice. This is the main reason why

they have been widely adopted and applied as a technique for effectively monitoring

and controlling a process. Control charts were initially developed by Shewhart (1931)
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to help distinguish between variation exhibited in manufacturing processes that was

inherent to the production system (common cause) and variation due to external

factors (assignable cause).

The objective of a control chart is to monitor the performance of a process over time

in order to verify that it remains in a state of statistical control. Typically, a control

chart comprises a plot of a statistic over time, along with lines called control limits.

The statistic is calculated using random process data. The control limits are selected

so that if the process is in control, nearly all the calculated sample statistics will lie

between them. However, when one or more of the sample statistics lies outside of the

control limits or inside them in a systematic or non-random manner, then this event is

interpreted as evidence that the process is out of control. A typical Shewhart-type

control chart is shown in Figure 2.1.
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Figure 2.1. A Shewhart-type control chart
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There are two distinct phases in constructing control charts, (Alt, 1985). The first

stage (Phase I) involves testing whether the process was in control when the initial

individual data were collected, and establishing appropriate control limits for

monitoring purposes in the second stage (Phase II), in order to identify departures

from the process standards, when future data is collected and monitored.

There is a close connection between control charts and hypothesis-testing. The

hypothesis-testing procedure involved in traditional statistical quality and process

control, is carried out on control charts on a constant basis, i.e. every sample. A

sample statistic that lies within the control limits is equivalent to failing to reject the

hypothesis of statistical control, whilst a sample statistic lying outside the control

limits is equivalent to rejecting the hypothesis of statistical control. However, control

charts go further than the hypothesis-testing framework. Control charts are usually

used (a) to monitor a process, that is to detect the occurrence of unusual events that

are departures from an assumed state of statistical control, (b) to assess process

stability, that is to determine whether the process is still in control, and (c) to solve

occurring problems by helping the investigator to identify the assignable causes of

the problems. Control charts can be classified into two general types, namely,

variable and attribute charts. The classification is based on whether the sample

statistic is measured on a continuous scale (variable) or on a quantitative scale

(attribute). In the design and construction of a control chart, there are many important

issues including both the sensitivity and the ability of the control charts to perform

their tasks. The most important issues are these of sample size and frequency of

sampling. One approach to making a decision on these two issues is through the

average run length (ARL) of the control chart. The ARL is the average number of
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points of the sample statistic that must be plotted before a point indicates the

occurrence of an out-of control signal.

Description of the various types of control charts and their applications, along with a

number of issues associated with them, can be found in standard statistical quality

and process control textbooks (e.g. Banks, 1989; Wetherill, 1991; Montgomery,

1996). In the subsequent sections, the concepts and theory of the three most

commonly applied control charts for the process mean, namely, the Shewhart, the

Exponentially Weighted Moving Average and the Cumulative Sum control charts,

are described. Information for control charts for the process variability and other

statistics can be found in Wetherill and Brown (1991) and in Lowry et al. (1995).

2.4.1 Calculation of Control Limits

The specification of the control limits is the most critical decision that has to be made

at the design stage (Phase I) of a control chart. Control limits are usually determined

for the statistic being monitored and they define the boundary between the acceptance

and the rejection region.

The fundamental assumption that underlies the calculation of control limits is that the

process which generated the required data, was in a state of statistical control, i.e. the

process data is independent and identically distributed. Violation of this assumption

can lead to the misplacement of control limits and, therefore, to the misuse of the

control charts (Aiwan and Roberts, 1995). Another issue of importance is whether

the calculation of the control limits should rely upon a distributional assumption.

Exponents of the probabilistic approach argue that control limits are determined
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mathematically and the fonnulae used for their calculation is a direct application of

Normal probability theory. On the other hand, exponents of the empirical approach

argue that it is not necessary to assume a distribution or make any assumptions about

the process or its data, since control charts are not based upon a distinct probability

model. A description of these contrasting approaches can be found in Aiwan and

Roberts (1995) and in the discussion that follows their paper. It can be concluded

that, although, the mathematical model that is used to calculate the control limits, is

based mainly upon empirical evidence, however, the underlying assumption of

normality should hold, that is the mathematical model should satisfy the underlying

assumption of normality. The final conclusion is that, regardless of the approach one

uses to calculate control limits, the control charts should work for the process under

study.

The region on the control chart that the control limits mark out is called the control

region. As the control region becomes wider, the risk of type I error decreases, but

the risk of a type II error increases. Control limits are usually calculated by selecting

the desired level of type I error probability. Usually, there are two control limits,

namely, the warning and the action limits. Warning limits correspond to a 0.05

probability of type I error and provide an indication that the process may not be

operating properly. Action limits corresponding to 0.01 probability of type I error,

detect the occurrence of an unusual event, which may require corrective action to be

taken.
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2.4.2 Shewhart-type Control Charts

The most common type of control chart is that proposed by W.S. Shewhart in 1926.

All control charts that are developed according to the general theory and principles

proposed by Shewhart, are called Shewhart-type charts. They have been found to be

appropriate for detecting large process shifts, but, are usually less sensitive in cases

of small or slow shifts.

Suppose that, a statistic, which measures a characteristic of interest, is calculated for

individual groups of samples randomly collected from a process, and that p. and a

denote the population mean and the population standard deviation of the statistic,

respectively. A group of random process samples is called a rational subgroup. The

values of the statistic of each rational subgroup can then be plotted against the

subgroup number i. The control limits are then located at a distance from the

population mean of the statistic (p.) that is L times the population standard deviation

of the statistic (a). This can be expressed mathematically as:

CL=p.±La
	

(2.4)

The value of factor L is selected so that 100(1- a)% of the values of the statistic lie

within the control region for a specific value of a, the probability of type I error. A

typical example of a Shewhart-type control chart is illustrated in Figure 2.1.

2.4.3 Cumulative Sum Control Charts

The Cumulative Sum (Cusum) control chart is an alternative to the Shewhart-type

chart, which can be used in the same context. It was first introduced by E.S. Page in
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1954 and has been studied by a number of authors (Page, 1954; Page, 1961; Ewan,

1991; Gan, 1991; Woodall and Adams, 1993; Hawkins, 1993).

Cusum charts are generally used to detect small process shifts. Since they combine

information from several samples, they are more effective than Shewhart-type charts,

even in the case of subgroups of size n= 1. They can detect process shifts of 0.5 a to

2 a in about half the time of a Shewhart chart with the same sample size, but they are

slower in detecting large shifts (Montgomery, 1996).

A Cusum chart uses all the information in a sequence of values of a statistic by

plotting the cumulative sums of their deviations from a target value. Suppose that

rational subgroups of size n^1 are collected from a process and that the average 5 of

each rational subgroup is calculated. If p denotes the target for the process mean,

then the Cusum control chart is formed by plotting the statistic:

C 1	(2.5)

against the rational subgroup number i. A typical Cusum control chart is presented in

Figure 2.2.

The control limits are usually calculated using the V-mask procedure (Barnard, 1959;

Johnson, 1961). The out-of-control signal in a Cusum control scheme is given when

the sample statistic C 1 exceeds the control limits. Note that, re-initialisation of the

Cusum statistic to target value is required after taking corrective action. A detailed

discussion of the calculation of the ARL in Cusum control charts can be found in

Montgomery (1996).
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Figure 2.2. A Cumulative Sum control chart

2.4.3 Exponentially Weighted Moving Average Control Charts

An alternative to the Shewhart-type control chart, especially when one wants to

detect small and moderately-sized sustained process shifts, is the Exponentially

Weighted Moving Average (EWMA) control chart. It was introduced by S.W.

Roberts in 1959. Comprehensive descriptions of EWMA are provided by many

authors (Roberts, 1959; Crowder, 1989; Lucas and Saccussi, 1990; Davis and

Woodall, 1994; Montgomery, 1996). The EWMA statistic is defined as:

z1 =?1+(i—A)z1_1
	 (2.6)

or by recursive substitution as:

z 1	 +(i—?)z0
	 (2.7)
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where 5 denotes the average of the i-th rational subgroup, A. is a weighting factor

(0 < A. ^ 1) and z0 is the starting value of the statistic under study (first sample at

i=l), which is usually taken to be equal to the population mean of the statistic (p0):

zo = 1.L o 	(2.8)

The control limits for the EWMA control chart can be calculated based upon the

assumption that the observations x. that comprise the collected rational subgroup,

are independent random variables:

CLEA = 1.t o ±	 - ;) {l —(i -
	 (2.9)

where L is a factor defining the width of the control limits and	 is the standard

deviation of the sample under study.

EWMA can be viewed as a weighted average of all past and current observations.

Specifically, a new moving average is formed each time a new sample is collected by

calculating a weighted average of the new value and the previous moving average. A

typical example of an EWMA control chart is illustrated in Figure 2.3. The

performance of the EWMA control chart is approximately equivalent to that of the

Cusum chart, although an EWMA chart is easier to set-up and operate. Furthermore,

EWMA charts can be used to smooth the effects of known but uncontrollable noise

in the data by appropriate choice of the weighting factor A.. Many chemical process

with day-to-day fluctuations, fit into this category. Moreover, a modified EWMA

control chart can be used for autocorrelated processes with a slowly drifting process
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mean (Mastrangelo and Montgomery, 1995). Issues including the ARL in EWMA

control charts are discussed in Montgomery (1996).

c

Figure 2.3. An EWMA control chart

2.5 Multivariate Statistical Process Control

Statistical Process Control (SPC) and control charts have evolved considerably since

the first application of Shewhart charts. Over the past seventy years, SPC has grown

and now can handle attribute data, moving averages and moving ranges, short-run

applications and a variety of other exciting developments. However, the challenges in

quality and process control continue to grow. As challenges grow, so procedures,

methods and tools must also improve. The traditional SPC approach is not

appropriate for modern day processes. Univariate SPC systems effectively only detect

or provide early warning of unusual events that can lead to off-specification

production, process disturbances and malfunctions, related to measurements of

individual quality characteristics. However, most modern industrial processes are
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multivariate in nature. Consequently, industrial quality problems involve a vector of

measurements on process and/or quality characteristics, rather than one single

characteristic. As a result, univariate SPC methods and techniques provide little

information about the interactions between characteristics, which are very important

in complex processes, such as those found in the process and manufacturing

industries. Most of the limitations of univariate SPC can be addressed through the

application of Multivariate Statistical Process Control (MSPC), which considers all

the characteristics of interest simultaneously and can extract information on the

behaviour of each characteristic relative to the others. Therefore, companies willing

to excel in the future should go beyond univariate SPC and focus upon MSPC.

Multivariate Statistical Quality Control (MSQC) and Multivariate Statistical Process

Control (MSPC) was originally developed by Harold Hotelling in 1947. His work has

been progressed by a number of researchers dealing with control procedures for more

than one related variables (Jackson, 1956,1959,1985; Alt, 1985; Alt and Smith,

1988). However, in recent years MSPC has been recognised as having an important

role to play in modern industry and a number of papers that extend traditional

SQC/SPC techniques to the multivariate case, have been written.

There are four conditions that require to be satisfied by a multivariate statistical

quality control or multivariate statistical process control procedure (Jackson, 1991).

1. The multivariate procedure should provide a single answer to the question of

whether the process is in statistical control or not.

2. The overall type I error probability for the multivariate control procedure should

be clearly specified.
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3. The procedure to be followed should take into account all the relationships among

the variables.

4. Procedures for finding assignable causes of unusual events occurring when the

process is out of statistical control, should be available.

In the next section, the limitations of univariate SQC/SPC methods and the way

which the multivariate approach addresses and handles these limitations and how it

satisfies the above conditions is discussed.

2.5.1 The Limitations of Univariate SQC/SPC Methods

Two limitations are imposed when applying univariate SQC/SPC methods and

techniques to multivariate control problems, that is the specification of the overall

type I error probability and the construction of the control limits. These limitations

originate from the conceptual underlying assumptions upon which the univariate

control charting techniques are based and which are reflected in the approach used by

these techniques to handle multivariate quality problems.

2.5.1.1 The Univariate Approach

In situations where more than one characteristics of interest, quality or process, is

involved in a quality control problem, a separate univariate control chart for each

characteristic, can be used to monitor the process. Although this approach readily

provides a solution to the problem if the characteristics of interest are mutually

uncorrelated, it can be misleading. Several authors (e.g. Alt, 1985 and 1988; Jackson,

1991; Montgomery, 1996) give clear examples illustrating that by using two separate
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control charts for two quality characteristics of a product, incorrect conclusion can be

drawn. Consider that the quality of a product is described by two characteristics,

namely, x 1 and x2 . Suppose now that, these characteristics are independent and

normally distributed and, in addition, they are uncorrelated. The average level of the

process can be monitored using two separate control charts for the means of the

characteristics, 5 (j=1,2). The process is then considered to be in statistical control

if and only if the means 3 and 2 of the two characteristics of interest for the rational

subgroups collected from the process lie within their respective control limits. The

use of separate control charts is equivalent to plotting the pair of means (;2) on a

single chart, formed by superimposing one chart over the other, as shown in Figure

2.4.
UCL

1

•X2

:LCL2
a.....

- LCL1	"1	 UCL1 -

H

Figure 2.4. Rectangular univariate control chart
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If the means of the two characteristics lie within the rectangular region of Figure 2.4,

the process is considered to be in a state of statistical control. Suppose that for both

characteristics, a type I error probability of 0.05 is specified. The joint probability

that both of them would be in control is (1— 0.05) (1— 0.05) = 0.9025, since these

characteristics are uncorrelated. The overall type I error will be 0.0975. Therefore,

the use of two independent control charts has distorted the joint control procedure in

that the overall type I error is not equal to that described by the individual control

charts. This distortion in the joint control procedure increases as the number of

characteristics increases. In general (Montgomery, 1996), when the quality of a

product is determined by m statistically independent characteristics and if m

individual control charts for the mean values i (j=1,. . .,m) are used, with type I

error probability of level a, then the overall type I error probability, denoted by a',

for the joint control procedure is given by:

P{type I error} = a' = 1— (1— a) tm	(2.10)

On the other hand, the probability that all means 5 (j=1,. . .,m) will simultaneously

lie within their control limits when the process is in statistical control is

P{all 5 (j = 1,..., m) within limits} = P{process in control} = (1 - a) tm (2.11)

As an example, consider that one wants to simultaneously monitor nine statistically

independent characteristics (m=9), with a type I error probability of 0.05 (Jackson,

1991). The overall type I error probability will be 0.37, that is at least more than one

of these characteristics will indicate an out-of-control signal over one third of the

time.
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It was assumed that the two characteristics under study were uncorrelated. However,

rarely are the process or the quality variables independent of one another. Usually,

they are highly correlated, since only a few underlying events are driving the process

at anyone time. As a result, measurements of different variables, process or quality,

can be viewed as different reflections of the same underlying events. The problem

previously described becomes more complicated when the characteristics are

correlated. In the case they are perfectly correlated (p = i), the overall type I error

would remain at a. Any kind of correlation less than perfect, involves a number of

complex computations. It was shown that, when more than one characteristic

determines the quality of a product, the overall type I error in a joint control

procedure, can be incorrectly specified.

2.5.1.2 The Multivariate Approach

Consider now that, the two characteristics, x 1 and x 2 , are jointly distributed

according to the bivariate normal distribution and that rational subgroups of size n=1,

for simplicity, are collected from the process. According to the Multivariate Normal

Distribution Theory, when a (mx 1) vector x of observations on rn variables, follows

an rn-variate normal distribution with population mean (mx 1) vector .t and square

positive semi-definite (mxm) variance-covariance matrix :

XN m (.L,), II>o
	

(2.12)

then, the statistic

x =(x—R)Tz'(x—.t)
	

(2.13)
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is distributed as a chi-squared variate with m degrees of freedom ():

x =(x_,i)T_1(x_i) 
-.xn
	 (2.14)

and is called the generalised distance of x from p.. Furthermore, a probability of

(1— a) is assigned to the constant probability density contour that is defined as:

{x:(x_ p.)T	
(x p.) ^}
	

(2.15)

The contour of constant probability density is the surface of an ellipsoid centred at p.

and with axes ± m,a1Jij' where (x , e) is the j-th eigenvalue-eigenvector pair of

(j=1,...,m).

For the quality characteristics x 1 and x2 , that are jointly distributed as a normal

bivariate, suppose that Pi ' J2 are the mean values and a', a' 22 are the variances of

their population, respectively. The covariance between x 1 and x2 is denoted by a'12.

All these statistics are assumed to be known:

In,	 la'11	 'I2'
p.= frt 1 p.21	 and	 =1	 I	 (a'1	 a'21)

I a'21 a'22!

Since, it was assumed that the rational subgroups collected from the process are of

size n=1 then, the means of the characteristics ( and x 2 ) are equal to the values of

the characteristics (x 1 and x2 , respectively) for each subgroup, and they consist of a

(2 x 1) vector	 (for each subgroup). The previous result is based upon the

multivariate normal theory and can be reduced in the bivariate case to:

x	
(p.)T1(p.)2	

(2.16)
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a12
P12- ______

a22
(2.19)

or

i'T
1	 i1x11	 Ij_L 1 i)	 Ic11

a 1 1a22 - a12 1jX2 - kL2L)

a121 (IxI	 Ij.t1r

a22	 b.L2U -
(2.17)

The statistic x can then be written as:

XO 
= 

____ [(_p.)2 

+(12_p.2)2 —2 P12 
(1l_i)(12_2)] (2.18)

1Pl2 [
	

a22	 a11

where P12 denotes the correlation coefficient between x 1 and x2 that is defined as:

According to the multivariate normal probability theory and for a given probability of

(1 - a), equation (2.18) expresses an ellipse centred at (p. 1 ,p. 2 ), whose surface can

be given by:

1 [1i-
)2 

( _ _p.2) —2_P12 	
—p. 1 Xi2 — p.2)] ^ X,a+

1P2 L 
a2,	 a11

(2.20)

This expression can be used as the basis of a control chart for the process average

level, as it is expressed by the mean values p. 1 , p. .Thus, for the two quality

characteristics, a control region, whose boundary is an ellipse, can be constructed.

This control region is often called a control ellipse. The degree of correlation

between the characteristics affects the size and the shape of the contrdl ellipse. The

half length of the axes is given by %2a .s.Ja ii ± a 12 , whilst their direction cosines are
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given by the eigenvectors of the variance-covariance matrix. In the case where the

two characteristics are uncorrelated (a 12 = 0 or p12 o), the axes of the ellipse are

parallel to the j and 2 axes. In the special case where both characteristics have the

same variance (a 11 = a22 ), the ellipse is reduced to a circle centred at	 ,.t2), as

shown in Figure 2.5. However, in most cases, the characteristics under study are

correlated (a 12 ^ o) and, therefore, the control ellipses take the form shown in

Figure 2.6. It can be seen in Figure 2.6 that, if one uses the univariate rectangular

control region, pairs of mean values ( ,) that lie within region A, can lead to the

wrong conclusion that the process is in a state of statistical control, whilst the process

in practice is out of control.

Figure 2.5. Control region for independent variables
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Figure 2.6. Control region for correlated variables.

Furthermore, pairs that lie within regions B and C, lead to the conclusion that the

process is out-of-statistical-control, since one or both of the mean values violated

their univariate control limits, whilst the process is in control.

A monitoring procedure for the multivariate case can be carried out as follows.

Having defined a control region by the control ellipse, rational subgroups of the two

characteristics can be collected from the process. If the pairs of the mean values

(, ,x) of the subgroups, lie within the control region (Figure 2.6), then the process

is considered to be in a state of statistical control. Two disadvantages are associated
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with the elliptic control region. The first is that the time sequence of the plotted

points is lost. The second disadvantage is that it is difficult to construct the ellipse for

more than two characteristics (Montgomery, 1996). Alternatively, the pairs (

can be used to calculate values of the 	 according to equation (2.18) and to plot

them on a Shewhart-type control chart, termed a f-chart. A typical f-chart is

presented in Figure 2.7 along with its control limit, which can be calculated for a

given level of type I error probability, a. The concept of the x 2 -chart, provides the

foundation for extending the univariate case to the multivariate situation.

LJCL=

123456789

Number of Subgroup

Figure 2.7. X2 - control chart

In the above multivariate examples, the population mean vector (p.) and variance-

covariance matrix () were assumed to be known. In practice, however, they are

unknown and, therefore, they need to be estimated from a preliminary sample of

rational subgroups that were collected from the process when it was in control.

Furthermore, when the size of the preliminary sample of rational subgroups is small

then, instead of the x2 statistic, Hotelling's T2 can be used (Hotelling, 1947). This

is presented in the following section. Discussion about the case where the size n of

2
Xo
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the rational subgroups collected from a process is greater than one, can be found in

the literature (Montgomery, 1996).

2.5.2 Hotelling's T2 Statistic

If x1,x2,...,x is a random sample of n vectors with observations on m variables,

from a normal rn-variate population with mean vector j.t and covariance matrix ,

then the maximum likelihood estimators of jt and are:

(2.21)

= n - l 
= -1-(x1 -	

- jT	
(2.22)

where	 and S are the sample mean vector and covariance matrix, respectively,

which are statistically independent. According to the Central Limit Theorem,	 is

distributed as a multivariate normal variate with mean p. and covariance SIn, and

(n-1)S is distributed as a Wishart variate with n-i degrees of freedom:

- N(p.,/n)
	

(2.23)

(n-1)S Wm(fl1,)
	

(2.24)

The problem now is : "Is a specific vector p a plausible value for the population

mean vector? ". From the hypothesis-testing perspective, this problem can be stated

as:

versus	 H1:p.^p.0
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The appropriate statistic is Hotelling's T 2 (Hotelling, 1947), which is analogous to

the Student's t-test in univariate statistical analysis

T2	 (_)Ts_1(...)	 (2.25)

In cases where n-rn is large (typically, greater than 30), T 2 is distributed as a chi-

squared variate with m degrees of freedom (see section 2.5.1.2):

T2	
()T5_i(.) 

__xn	 (2.26)

or

T =(—I.L0)Ts'(—j.t0) ---x, 	 (2.27)

where T is the squared generalised distance from the sample mean to the test value

and is also called the Mahalanobis Distance (Mahalanobis, 1936). The null

hypothesis H0 is rejected in favour of H 1 for a significance level a (out-of-control

signal) if:

T2 >2	 (2.28)

The 100(1-a)% joint confidence region of p, in the space of x, is an ellipsoid:

T2 ^X
	

(2.29)

The centre of the ellipsoid is , and the lengths and directions of the axes are given

by:

±	 e	 (2.30)
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(n-1)m
0 (n - m)n m,n—m,cX (2.34)

or

where	 and e (j=1,. . .,m) are the eigenvalues and eigenvectors of the sample

covariance matrix S, respectively.

In situations when the sample is small (n^30), the T 2 is distributed as an F variate

with m, and n-rn degrees of freedom:

(n—l)mT2=n(_pof'S_1(_J.L0)_ n—rn F n_m	 (2.31)

or

T=(_L0)TS_1(_J.I0)_ (n—l)m

(n - m)n F
n_m	(2.32)

The null hypothesis H 0 is rejected in favour of H 1 for a significance level a (out-of-

control signal) if:

2 (n-1)m
T > n—rn Fip.,n_m,a (2.33)

The 100(1-a)% joint confidence region of p, in the space of x, is again an ellipsoid

(n-1)m
T2 <	 F

- n - rn m,n-m,a

with centre , and the lengths and directions of the axes are given by:

± J(n_i)m
n—rn Fm,n_m,aej

(2.35)

(2.36)

A new approach to constructing T 2 - based control limits has been presented by Tracy

et al., (1992). In the start-up stage (Phase I), it is assumed that there is a sample of n
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(n - 
1)2 B2,(n_m_l)/2n

(2.39)

vectors x 1 with observations on m variables. A multivariate control chart can then be

constructed, based upon Hotelling's T 2 , using the statistic T 1 for each observation

vector x 1 , which is the Mahalanobis Distance from the observation vector x 1 to the

mean vector of the sample of x 1 vectors,

T 1 =(x 1 —)Ts—'(x1 _)
	

(2.38)

However, Tracy et al., (1992), suggested that, the assumption that 5 and S are the

estimates of the population values j.t and Z, does not hold true and, therefore, the T

statistic cannot be approximated by a chi-squared variate with m degrees of freedom.

Furthermore, they proposed that the T 1 statistic is distributed as a Beta variate with

m/2 and (n-m-l)/2 degrees of freedom (Gnanadesikan and Kettenring, 1972):

This distribution is applicable when the individual x 1 vectors, collected during the

start-up stage, lie within the control limits, e.g. the process was in statistical control.

The control limit for a level of significance cx (in-control signal) is given by:

T 1 ^ (n 
1)2 

B 2 (nm l )/2 a/2
	 (2.40)

Consider that a future individual observation vector Xf is collected in the second

stage (Phase II), where one wants to test if the process is still in control. Assuming

that X f , 3 and S are statistically independent, then

( n+1
Xf—X—N4O, 

n
	 (2.41)
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T	
(n+l)(n-1)m

(n—m)n 
Fm,n_m (2.45)

or

or

In
Il	 (Xf)Nm(O,)
Vn+1

Hotelling's T 2 statistic for the X f vector now becomes:

T2 = "_'' 
')(xf_4Ts_I(xf_)

n+1}

and is distributed as an F variate with m and (n-rn) degrees of freedom:

(2.42)

(2.43)

(n-1)m
T2 - 

n - m 
Fm,n_m	 (2.44)

The out-of-control signal at a significant level a is:

2 (n+1)(n—l)m
T0>

(n—m)n 
Fm,n_m,a (2.46)

Similarly the joint confidence ellipsoid can be defined.

The approach to constructing control limits for Hotelling's T 2 statistic, proposed by

Tracy et al., (1992), is statistically more correct and appropriate for the

implementation of MSPC, since it discriminates between the two Phases of

constructing control limits.
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2.5.3 Important Issues In The Implementation of MSPC

As stated by Jackson (1991), there are four conditions that should be satisfied for the

successful implementation of Multivariate Statistical Quality Control (MSQC) or

Multivariate Statistical Process Control (MSPC) (section 2.5). In the previous

sections, it was shown that the first two conditions, namely, the provision of a single

answer to the question whether the process is in statistical control and the

specification of the overall type I error probability, are satisfied by MSQCIMSPC.

The third condition is partially satisfied. MSPCIMSQC takes into account the

relationships between the characteristics of interest, but these relationships are not

always clear, due to the fact that a large amount of correlated data can be collected

from modern industrial processes and are, therefore, available to be used for

statistical modelling. An extensively applied solution to this particular problem is the

use of multivariate statistical projection methods.

The fourth condition, namely, the availability of procedures for the identification of

assignable causes of unusual events, still constitutes a growing field of research in

MSPC. The diagnosis of a multivariate control chart signal, that determines which of

the monitored characteristics is responsible for the out-of-control signal, is not easy.

Several diagnostic techniques that mainly involve the identification of the major

contributors to the out-of-control signal, have been proposed in the literature.

However, all of them have disadvantages and, as a result, the full implementation of

MSPC schemes in industrial processes is still limited.
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2.5.3.1 The Use of Multivariate Statistical Projection Methods

Every process has available frequent observations on many process variables, such as

temperatures, pressures and concentrations and on several properties of raw materials

and final products. Process observations are usually measured on-line while quality

observations are typically measured off-line. Furthermore, there is available a history

of past successful and some unsuccessful operation of the process. The major

difficulty with this amount of multivariate data is that the variables being measured

are almost never independent, but rather, they are autocorrelated in time and highly

correlated with one another at any given time (collinear). This is due to the

underlying relationships between the variables or to the place where the

measurements were taken or due to the nature of the process. Therefore, there are

only a few underlying events that drive the process at any time and measurements on

all these variables are simply different reflections of the same underlying events.

Finally, it is important to note that, not only are the relationships between the

variables at any time, important, but, so is the entire past history. In trying to

overcome these difficulties, the multivariate statistical methods of Principal

Component Analysis (PCA) and Project to Latent Structures (PLS) or Partial Least

Squares, have been applied. These methods are particularly suited to the analysis of

correlated data by projecting the data down onto low dimensional subspaces, that

contain all the relevant information about the process. Principal Component Analysis

is a procedure used to explain the variability in a single data set by defining a set of

latent vectors that describe the direction of greatest variability and that are

uncorrelated. Projection to Latent Structures is similar to PCA, except that, PLS

simultaneously reduces the dimensionality of both the process and quality variables
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spaces to find these latent vectors. In both PCA and PLS, the calculated latent vectors

are uncorrelated and represent the original correlated variables. Therefore, when

statistical projection methods are combined with the multivariate statistical process

control, the overall type I error in the control charts can be directly computed. The

statistical projection methods of PCA and PLS are described in Chapter ifi.

2.5.3.2 Interpretation of Multivariate Out-of-Control Signals

A practical disadvantage of most multivariate control charting techniques is that it is

not possible to directly determine which of the characteristics being monitored, is

responsible for the out-of-control signal. A number of methods have been proposed

to address this problem for Hotelling's T2 and x2 charts. In the case where a

multivariate control chart indicates that the process is out of statistical control, the

most obvious approach to use is to interrogate all the univariate control charts and to

apply individual t-test on each characteristic in order to determine which variables

are responsible for the out-of-control signal (Alt, 1985; Doganaksoy et al., 1991;

Hayter and Tsui, 1994; Fuchs and Benjamini, 1994). However, two issues discussed

in the previous sections, must be considered. First, it is difficult to determine the.

overall type I error probability when one uses simultaneous confidence intervals, and,

secondly, univariate control charts can only detect an individual characteristic as

responsible for an out-of-control signal and not a combination of them, since the

correlation structure between the characteristics is not used in the construction of the

univariate control charts.
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(2.47)

An alternative is the decomposition of the T 2 statistic into two or more parts, based

upon subsets of the characteristic of interest. Murphy, (1987), suggested partitioning

Hotelling's T 2 into two parts. One part is then associated with the group of variables

that are intuitively suspected (through engineering knowledge) to have caused the

out-of-control signal (T2). The test statistic is the difference:

which is distributed as a chi-squared or F statistic, depending upon whether the

population mean and variance-covariance are known or estimated, respectively. A

hypothesis-test can then be used to select which possible combination of

characteristics is responsible for the out-of-control signal. However, the number of

possible combinations of characteristics increases as more characteristics are

involved in the calculation of the T 2 values and, therefore, it is essential to use

engineering knowledge.

A new unified approach on the interpretation of the T 2 decomposition proposed by

kencher, (1993), has been proposed by Mason et al., (1995 and 1997). When a future

observation vector Xf on the m characteristics is collected, there are rn! different

possible ways to decompose the corresponding T2 value or (rn-i)! different possible

ways to decompose it for each one of the m characteristics. In each case, T 2 is

decomposed as the sum of the unconditional term T for the p-th characteristic and

the rn-i conditional terms for the remaining rn-i variables as:

T2 =T
	

(2.48)
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where T is the square of the univariate t statistic for the initial variable and 'l 	 is

the conditional term of the (j+1)-th variable, which is the square of the (j^1)-th

component of the vector X f adjusted by the estimates of the mean and the standard

deviation of the conditional distribution of the (j+1)-th variable given the first j

variables. Each of the terms can be compared to an. F distribution. However, this

approach involves heavy computational effort as more characteristics are involved in

the calculation of the T 2 values.

Finally, Healy (1987), Pignatiello and Runger (1990), and Hawkins (1993b),

recommended a similar control statistic to detect a shift of the process mean in the

direction of one of the process variables. Runger et al. (1996), proposed an approach

to relate a shift of the process mean to the importance of a variable to it.

2.6 Multivariate Control Charts

Separate control charts for individual characteristics of interest are more asily

interpretable, but are substantially less powerful, particularly in the presence of

appreciable correlation between the characteristics under study. Therefore, the use of

multivariate control charts is essential. However, multivariate control charts should

retain the simplicity of the univariate charts concerning the graphical representation

and the interpretation of results. Multivariate control charts can be constructed using

the same concepts and under the same assumptions as univariate charts and,

furthermore, are appropriate for multivariate data sets that exhibit less than full

statistical rank, such as PCA and PLS (Palm et a!., 1997). A review of multivariate
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control charts can be found in Lowry and Montgomery, (1995), while a comparison

of them is presented by Harris and Ross, (1991), and Sparks, (1992).

2.6.1 Multivariate Shewhart-type Control Chart

In situations where a vector of characteristics are observed at each time period,

Shewhart-type control charts are typically used. As in the univariate case, Shewhart-

type control charts only use information from the current sample. Consequently, they

are sensitive to large shifts in the value of the statistic that is being plotted.

Hotelling's T2 and 2 are the most common statistics used to construct multivariate

Shewhart-type control charts.

2.6.2 Multivariate Cumulative Sum Control Chart

The Cumulative Sum (CUSUM) control chart is similar in principle to the univariate

CUSUM chart and, consequently, it is used to detect shifts in the process mean

(Healy, 1987; Crosier, 1988; Pignatiello and Runger, 1990). The CUSUM control

chart is based upon a sequence of sequential probability tatio tests. Consider a vector

of observations x 1 on m variables obtained from a process that is distributed as

N m(I.L ,) . A Hotelling's T2 value can be calculated at each point where a vector x1

is collected. The CUSUM of the scalar distance T 2 or its square root can be

computed as:

C1 = Max{O,C11 +T1 - k}
	

(2.49)

with initial condition C0 ^ 0. This CUSUM scheme signals an out-of-control

situation when C. > h.
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Crosier (1988) considered replacing the scalar quantities of the univariate CUSUM

by their vector counterparts so that:

1/2
=	 + x - 

)T	
(r_1 + x 1 - r)} (2.50)

10
	

if C 1 ^k
r =	

+x1 —'r).(1—k/C1) if C 1 >k
	 (2.51)

where 'r is the target for the process mean vector, Z is the population variance-

covariance matrix for the process vectors x 1 , r0 =0 and for some chosen value of

k>0. The out-of-control signal is given whenever:

,jrjTr1r1 >h
	

(2.52)

These CUSUM charts use all the observations since the detection of the last special

event rather than only the last observation vector as in the Shewhart-type charts.

Their advantage over the latter charts is that their average run length is smaller for

small shifts in the process mean. However, they have not been applied in MSPC

schemes on chemical processes.

2.6.3 Multivariate Exponential Weighted Moving Average Control Chart

Multivariate EWMA (MEWMA) charts compute the exponentially weighted moving

average of a vector of process observations x 1 on m variables (Lowry et al., 1992;

Prabhu and Runger, 1997). The MEWMA is a logical extension to the univariate

EWMA and, consequently, they can be used to detect small and moderate shifts. It is

defined as

z 1 =Ax 1 +(i—A)z1_1	 (2.53)
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x
Zj 2_X[1(1J (2.55)

where z0 is a rn-dimensional zero vector and A = diagonal{2 i ? 2 ,...,A.} with

0 <	 ^ 1;j = 1,...,m is a parameter that controls the magnitude of smoothing. Large

values of	 result in greater smoothing and better detection of small shift. The

quantity that is plotted on the control charts is:

Q =z'z	 (2.54)

where	 is the covariance matrix of the z1 statistics. In case all ? are equal and

Z denotes the variance-covariance matrix of the population of x 1 , it is defined as:

The MEWMA gives an out-of control signal when:

Q>H
	

(2.56)

where the control limits H is chosen to achieve a specified in-control ARL.

The properties of the MEWMA chart are similar to those of the multivariate

Cumulative Sum Charts. Lowry et al., (1992) gives guidance on the choice of the

upper control limit for the MEWMA control chart. A design procedure for MBWMA

charts that gives recommendations for parameter settings analogous to the results

provided for univariate EWMA by Lucas and Saccucci (1990), can be found in

Prabhou and Runger (1997).
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2.7 Applications of MSPC

A number of applications of Multivariate Statistical Process Control can be found in

the literature. Most of them include the application of multivariate statistical

projection methods, such as PCA and PLS. Applications of MSPC of particular

interest are those for on-line process monitoring, fault detection and fault diagnosis.

MSPC applications generally involve a procedure where process data are analysed

and statistical models of the process are developed. Historical data sets collected

from past successful process operations and operations under specific disturbances

can be found in most industrial processes. The data sets from normal operation are

used to construct a statistical model, which represents the situation where only

common cause variation is present in the process. Multivariate Statistical process

monitoring and control involves three activities

1. Detection of abnormal behaviour (unusual event, out-of-control signals)

2. Identification of the variable(s) indicative of this unusual event

3. Diagnosis of the source responsible for this abnormal behaviour

Monitoring focuses on the detection and identification activities, whilst diagnosis

provides the information for the intervention or control stage. The statistical model

describing process behaviour under normal operating conditions (NOC) is used with

new collected process data to decide whether the current operation is in control. In

case of an out-of-control signal, further procedures are used to interpret this abnormal

behaviour and to find the assignable cause(s) responsible for it. Overviews of SPC
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for multivariate processes and applications are presented by MacGregor, (1994), and

MacGregor and Kourti, (1995).

A significant amount of work has been carried out in the field of MSPC of

continuous processes. Industrial applications include catalytic cracking in petroleum

refining (Slama, 1991), mineral processing (Tano et at, 1993), photographic paper

manufacturing (Miller et al., 1995), a pulp digestion process (Dayal et al., 1994), a

polymer solution and a chemical separation processes (Kosanovich and Piovoso,

1995), a ceramic melting process (Wise and Gallagher, 1996) and many others as

summarised by Kourti and MacGregor, (1996). Furthermore, a number of simulation

studies have been performed on an extractive distillation column and a fluidised bed

reactor (Kresta et al., 1991), a LDPE tubular reactor (Skagerberg et a!., 1992; Kourti

and MacGregor, 1996; MacGregor et al., 1994), a CSTR (Thang et a!., 1996) and on

the Tennessee Eastman process (Raich and Cinar, 1996).

In recent years, the application of MSPC has been extended from continuous to batch

processes (Nomikos and MacGregor, 1995; Kourti et al., 1995). Examples

application have been illustrated using simulated processes mainly on batch

polymerisation processes (Nomikos and MacGregor, 1994; Nomikos and

MacGregor, 1994b). Industrial applications include batch polymerisation reactors

(Nomikos and MacGregor, 1995; Kosanovich et al., 1996) as well as a nuclear waste

storage tank (Gallagher et al., 1996).
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2.8 Summary

This Chapter has presented the concepts, the philosophy and the techniques for

Multivariate Statistical Process Control (MSPC). Traditional Statistical Quality

Control (SQC) and Statistical Process Control (SPC) methods and techniques have

been successfully applied in industry. However, they. are univariate and, therefore,

their application to modern industrial control problems is limited by the nature of the

modern industrial processes that comprise highly correlated variables. The

introduction of Multivariate Statistical Process Control (MSPC) has successfully

addressed most of these problems. Univariate SQC\SPC methods and control

charting techniques, which form the basis of MSPC, along with the problems

occurring in their application to multivariate control problems have been extensively

discussed. The approach used by MSPC to address these problems along with the

associated important issues and multivariate control charting techniques are also

described in depth.
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Chapter III

Multivariate Statistical Projection Techniques

3.1 Introduction

Multivariate statistical analysis is the visualisation and interpretation of a set of

observations that describe a natural or physical phenomenon. Typically, the observed

phenomena are complex and the resulting set of observations large. A particular set

of techniques which effectively enable such a problem to be analysed are the

multivariate statistical projection techniques. The objective of these techniques is to

compress the data and, in doing so, summarise the information they contain. The

most well known techniques are those of Factor Analysis (FA), Principal Component

Analysis (PCA), Canonical Correlation Analysis (CCA), Canonical Variation

Analysis (CVA), Principal Component Regression (PCR) and Projection to Latent

Structures (PLS). Recently, PCA and PLS have been applied to engineering

problems, in the area of Multivariate Statistical Process Control (MSPC), since they

are able to compress the large volumes of highly correlated data collected on a

process and, furthermore, they satisfy the conditions imposed by MSPC problems

(section 2.5, Jackson (1991)).

3.2 Multivariate Statistical Analysis of Data

All types of scientific data analysis have the collection of observations on a social or

physical phenomenon as a common basis. Traditional statistical analysis is based
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upon the collection of observations on one characteristic or variable at a time. There

is usually assumed to be no relationship between individual observations in time

(autocorrelation). Furthermore, the statistical principle of random sampling ensures

that different observations are uncorrelated, if not independent of one another.

However, the complexities of most phenomena require observations on more than

one variable to be collected and, therefore, most data bodies can be characterised as

exhibiting multivariate behaviour. When more than one variable is observed, some

form of correlation will exist between individual variables. Multivariate analysis

simultaneously investigates all the variables to reveal the relationships between them,

in order to interpret the data appropriately and to achieve the objectives of the

analysis.

Multivariate data analysis consists of methods and techniques that represent the

conjunction of concepts from linear and matrix algebra, multidimensional geometry

and calculus with statistics. This is the main reason why it is called multivariate

statistical analysis. Multivariate statistical analysis originated from the work of

mathematicians of the last century. Nowadays, there are a number of books

describing the various techniques (Mardia, et al., 1974; Kendall, 1980; Green, 1978;

Anderson, 1984; Seber, 1984; Krzanowski, 1988; Everitt and Dunn, 1991; Johnson

and Wichern, 1992; Krzanowski and Marriott, 1996; Gnanadesikan, 1997). Most

authors have used a technique-oriented approach based upon mathematics and

statistics to present the subject of multivariate statistical analysis. More recently, a

number of authors have adopted a problem-oriented approach, which has enabled the

use of these techniques by researchers with minimal mathematical and statistical

knowledge.
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The computational effort required to implement the various multivariate methods and

techniques, rendered their application, during the early part of the century, to small

data sets. However, the last twenty years has seen an explosion in computer power

and, as a result, the use of multivariate techniques has become widespread and

applications have extended to large data sets. It is difficult to establish a classification

scheme for multivariate techniques, since they encompass a wide assortment of

descriptive and inferential scientific tools. However, they are useful for two main

scientific pursuits, namely:

1. Explanatory research, which includes the following objectives:

a. Analysis of variable dependence. The data set is partitioned into two subsets.

Relationships between variables of these sets must be determined in order to

examine their dependence on one another. Techniques include Multivariate

Analysis of Variance (MANOVA) and Multiple Linear Regression (MLR).

b. Analysis of variable interdependence. The nature of the relationships between

variables is of interest. Relationships can range from independence to

collinearity. Techniques include Factor Analysis (FA), Principal Components

Analysis (PCA) and other dimensionality-reduction or structural simplification

methodologies.

c. Analysis of interobject similarity. The nature of the relationships between

objects is of interest. Relationships that force subsets of objects to fall into

groups or clusters must be determined. Techniques include Cluster Analysis

(CA) and other types of object-grouping techniques.

2. Confirmatory research. This is the testing of several alternative models of

association between two or more variables or groups of objects. This may done to
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validate assumptions or to reinforce previous convictions. Techniques include the

F-test, the t-test and other statistical testing procedures.

It can be seen that the techniques of multivariate statistical analysis form a unified set

of procedures that can be organised around a few original problems. However, they

are not confined to a single discipline, but rather, .they span a diverse range of

scientific fields. Application areas can be drawn from the social, medical and

physical sciences, engineering, applied economics and business management.

Many univariate statistical methods generalise quite naturally to higher dimensions,

e.g. the Multivariate Analysis of Variance (MANOVA) is the multivariate

generalisation of the univariate Analysis of Variance (ANOVA). Furthermore, most

of the univariate continuous distributions have multivariate analogues with the

property that all of their univariate marginal distributions belong to the same family,

e.g. univariate and multivariate normal distributions. The heart of the univariate

statistical analysis is the sample, which is a set of measurements for n objects on a

single variable. Similarly, the heart of the multivariate statistical analysis is the

multivariate sample. A multivariate sample arises whenever one takes random

measurements on n objects for m variables that theoretically represent the process

under study. The measurements on n objects for each variable of interest comprise a

vector of dimension n. The vectors for all the variables of interest may or may not

come from the same probability distribution but they are merged into a single

common matrix, called the multivariate data matrix or multivariate data set.

The main problem in any multivariate statistical analysis of data is that of data

visualisation. Any multivariate sample can be described in terms of two geometrical
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configurations. In the case where the objects are the focus of attention, each of the m

variables can be associated with an axis in rn-dimensional space, which are assumed

to be mutually orthogonal. The m values of a particular object can then be taken as

the co-ordinates of a point representing the particular object along the axes.

Therefore, all the objects of a multivariate sample can be geometrically modelled as n

points in an rn-dimensional space, object space. On the other hand, variable space is

defined by associating each of the n objects with an orthogonal axis in an n-

dimension space. Similar to the previous configuration, the n values attached to a

particular variable can be taken as the co-ordinates of a point in this space. The

multivariate sample in this case is represented by a geometrical model of m points in

an n-dimensional space. Most times, the object-oriented geometrical configuration is

preferred. However, neither of the previous configurations allow an m- or an n-

dimensional space to be transformed, to a two- or three-dimensional subspace

without losing important information about the process. However, dimensionality-

reduction techniques have the potential to transform high-dimensional space to a

lower-dimensional subspace, without affecting the relative positions of the points

that represent the multivariate sample and, furthermore, without losing the important

information.

3.3 Reduction of Dimensionality

In addition to visualisation, a further problem associated with the statistical analysis

of multivariate samples, is that of interpretation. Reducing the dimensionality of a

problem by removing some of the variables, can lead to a reduction in the useful

information and, thus, to the erroneous or deficient interpretation of the data.
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Therefore, the issue when reducing the dimensionality in the multivariate statistical

analysis of data is to ensure simplicity for visualisation, whilst retaining sufficient

information for appropriate and relevant interpretation (Gnanadesikan, 1997).

Most of the techniques used to reduce the dimensionality of multivariate space use

the concept of latent variables. A latent variable is a hypothetical variable

constructed for the purpose of understanding a characteristic of interest that cannot be

measured directly. The term was introduced in the social and behavioural sciences in

order to describe particular concepts that are not directly observable, e.g. intelligence

in psychology, economic expectation in economics. Although latent variables are not

observable, they have a certain impact on the measured variables and, therefore, are

subject to analysis. Latent variables are usually defined to be a linear combination of

the measured variables.

In the following section, the two most commonly applied in MSPC latent variable

techniques, Principal Component Analysis (PCA) and Projection to Latent Structures

(PLS) are described in detail. Furthermore, a number of other techniques, e.g. Factor

Analysis, Canonical Correlation Analysis and Canonical Variation Analysis are

discussed.

3.4 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is amongst the oldest and most widely used

multivariate statistical technique for dimensionality reduction. The method of

Principal Component Analysis dates back to Karl Pearson in 1901, who introduced it

as a technique for fitting planes by orthogonal least squares. However, the general
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procedure, as it is known today, was developed by Harold Hotelling in 1933, who

proposed PCA for analysing the covariance and correlation structures between a

number of random variables. The development of the method was rather uneven in

the ensuing years due to computational difficulties. The wider application of PCA

occurred in the 1960s, during the "Quantitative Revolution" of the physical and

social sciences, when the development of computers made it possible to apply

multivariate statistical techniques to reasonably large-sized problems.

The objective of PCA is the explanation of the variance-covariance structure of a

multivariate data sample containing significant redundancies, in terms of a set of

uncorrelated latent variables, each of which is a particular linear combination of the

original variables. The mathematical and statistical aspects underpinning PCA are

well defined. Theoretical introductions to PCA can be found in a number of books on

multivariate statistical analysis (Mardia, et al., 1974; Kendall, 1980; Anderson, 1984;

Seber, 1984; Muirhead, 1982), while application-oriented introductions are presented

by Krzanowski, (1988), and Johnson and Wichern, (1992). Books devoted to PCA

include Jolliffe, (1986), and Jackson (1991). Furthermore, overviews on some of the

concepts and properties that comprise the theoretical background of PCA are

described in a number of papers (Wold, 1987; Geladi and Kowaiski, 1986;

Mackiewicz and Ratajczak, 1993).

As in any multivariate statistical technique, the starting point in Principal Component

Analysis (PCA) is a multivariate sample of observations, which characterises n

objects with respect to m random variables X!,X2,...,Xm, and which is represented

by a data matrix X of dimension (nx m). Each column vector x in matrix X contains
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observations on n objects for the j-th variable x (j=1,. . .,m), while each row vector

x (i=1,.. .,n) contains observations on the i-th object for all the m variables.

Furthermore, each row vector can be geometrically modelled as a point in the m-

dimensional object space. PCA decomposes the muhivariate data set X into a series

of R principal components. Each principal component is characterised by a score

vector (tr) and a loading vector (Pr) . Using this decomposition, the data set X can

be written as a linear combination of the principal components:

XtrP	 (3.4.1)

or

X=T.PT
	

(3.4.2)

where T denotes the matrix of scores, whose columns are the score vectors (tr), and

pT denotes the matrix of loadings, whose rows are the loading vectors (Pr). This

procedure is illustrated in Figure 3.1.
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=E' + n1
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Figure 3.1. Decomposition of a data set X by PCA (Geladi and Kowalski, 1986).
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3.4.1 Geometrical Interpretation and Mathematical Derivations of PCA

Within this section, the derivation of principal components using mathematical,

geometrical and statistical considerations and the interpretation of the principal

components is presented. Although mainly based upon the work of Krzanowski

(1988), it summarises various topics described in a number of multivariate statistical

analysis textbooks.

Consider an rn-variate data sample of n objects. The sample can be graphically

modelled as a swarm of n points in an rn-dimensional object space by assigning each

measured variable ) to the unit vector (u i ), which defines the j-th axis of the space

(j=1,. . . ,rn). The co-ordinates of the n objects in the space are given by the data matrix

X and, therefore, the corresponding n points are represented by a set of vectors x1

(i=1,...,n), the rows of X. Suppose that one wants to reduce the dimensionality of the

rn-dimensional object space, without losing important information about the process

under study. One can consider a one-dimensional subspace formed by a new axis,

whose one-dimensional unit vector v 1 is defined as

v 1 =a 11 u 1 +a12u2+...+almum	 (3.4.3)

where a 1 is the direction cosine of v 1 relative to u. Note that, the sum of the

square direction cosines of a vector, originating at the centre of a space in jm is

equal to unity:

a 1 =1=aa 1 =1
	

(3.4.4)

where a is an rn-dimensional vector, whose elements are the direction cosines. The

rn-variate data sample can be approximated by the orthogonal projections of its n
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of n objects in

/2— 8)

points onto the new axis, which are represented by a set of one-dimensional vectors

' (i=l,. . .,n) defined as:

' =a11 x 11 +aj 2 x,j+...+a lmx =a 1 x
	

(3.4.5)

The set of y (i=1,.. .,n) can be represented by an n-dimensional vector y 1 . Since

the projection of an object x 1 onto the one-dimensional subspace is y, then it can

be seen that, the projection of the rn-variate data set X is the vector y 1 . However, the

projection leads to a displacement of these points from their original locations onto

the new axis. The smaller the displacement of all the point, the better the m-variate

data sample is approximated by its projections onto the new axis and, therefore, the

better the rn-dimensional space is compressed down onto the new one-dimensional

subspace. Thus, a measure of goodness-of-fit for this compression can be defined as

the sum of the squared perpendicular distances of the objects x 1 (i=l,. . . ,n) from the

one-dimensional subspace. This procedure is illustrated for a bivariate sample (m=2)

Figure 3.2. Geometrical derivation of principal components
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The centre of the two-dimensional space is denoted as 0, the axes OX 1 and OX2

correspond to the two variables x 1 and x2 , and 0Y 1 is the new defined axis. For a

particular point A 1 , its orthogonal projection onto 0Y 1 is A. Applying the

Pythagorean Theorem to the triangle OA 1 A, it can be seen that:

(oA 1 )2 = (oA)2 +(A1A)2
	

(3.4.6)

Summing over all n points, it follows that:

(oA 1 ) 2 = (oA) 2 +±(AIAc)2
	

(3.4.7)

Axis 0Y1 can be optimally defined only when the sum of squares of the

perpendicular displacements of all n points is minimised.

Similarly, in the rn-dimensional object space, by applying the Pythagorean Theorem

and summing over all the points representing the rn-variate data sample, equation

(3.4.7) can be written as:

=f12 +e
	

(3.4.8)

where d 1 denotes the Euclidean distance of the i-th point (x 1 ) from the centre of the

rn-dimensional space, f1 denotes the Euclidean distance of y, which is the

projection of x 1 onto the new axis, from the centre of the one-dimensional subspace

and, finally, e 1 is the displacement of the i-th point caused by the orthogonal

projection (see Figure 3.3). The placement of the new axis that minimises the sum of

the squared displacements of all points can be found by optimally determining its
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2	 _T	 -
d 1 =(x 1 —x) (x1—x) (3.4.10)

direction cosines (a). The objective function can be formed by examining the

individual terms of equation (3.4.8).

Figure 3.3. Projection of an object onto the new axis

Suppose now that, the centre of the rn-dimensional object space is located at ,

which is the mean vector of the data matrix X or the mean of the object vectors x 1 . It

is an rn-dimensional vector that contains the mean values of all objects,, for all the

variables:

_i,X2,,(m) =XTl	 (3.4.9)

Therefore, each object in the rn-dimensional space is represented by a vector x1,

whose squared length is the squared Euclidean distance (d) of the corresponding

point from the centre of the space:

The sum of the squared Euclidean distances for the n points is

=(x1 _)T(xi _)	

_)2

i=1	 i=1	 i=1 j=1	 i=1

(3.4.11)
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On dividing by (n-i), the summation of equation (3.4.11) is equal to the total sample

variance, Var(X), the sum of the diagonal elements, s, or the trace of the sample

variance-covariance matrix S, which is constant for a given sample (Johnson and

Wichern, 1992):

diag{(X - 1T)(X - iT)T] 
= diag(S) =	 = tr(S) = Var(X)

(3.4.12)

The projection of each object vector x 1 onto the new axis is the one-dimensional

vector y as defined by equation (3.4.5). Similarly, as in the rn-dimensional space,

suppose that the centre of the one-dimensional subspace, is located at	 , the mean

of the vector y 1 . The squared length of y is the squared Euclidean distance of each

projected point from the centre of the one-dimensional subspace:

= (yi _371)2
	

(3.4.13)

which can be written as (equation 3.4.5):

f =(yi -y1 ) 2 = (a Tx —a)(aTx1 _a)T =aT(x1 —)(x1 
1T	

(3.4.14)

Summing over all the objects and dividing by (n-i) it follows that, the term on the

left-hand side is the total variance, Var(y 1 ), of the vector y 1 , which is the projection

of the rn-variate data set X, onto the one-dimensional space:

I	 fl	 2

n_if12 = n—i" 
_5i) =Var(y 1 )	 (3.4.15)

i ±{a(xj_)(xj_)TaiJ
- n—i
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=a[hi±(xi —)(x1 _)T] 
=aTSa 1
	 (3.4.16)

where S is the sample variance-covariance matrix. Note that vector a 1 is constant.

Finally, the displacement of each object, e 1 , is the residual of the projection of the i-

th point from rn-dimensional space (x 1 ) onto the one-dimensional subspace (y1).

Dividing equation (3.4.8) by (n-i) and replacing the corresponding terms of the sum

of squared Euclidean distances by equations (3.4.12), (3.4.15) or (3.4.16), it follows

that:

= 1f2 +	 (3.4.17)

or

=aSa1 +
	 (3.4.18)

that is

Var(X) = Var(y1)+ in
	

(3.4.19)
- 

i=1

It can be seen that, for the purpose of determining the direction cosines 	 and,

therefore, the placement of the new axis, the minimisation of the sum of squared

displacements of the n objects is equivalent to the maximisation of the sum of

squared lengths of their projections 	 since the total sample variance of X is

constant. This problem can be stated as the maximisation of aSa 1 with respect to

a 1 and subject to aa = 1. It is a constrained optimisation problem and can be

solved by applying the Lagrange multiplier technique (Krzanowski, 1988; Jolliffe,

1986; Basilevsky, 1994).
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The Lagrangean expression can be written as:

=aSa —X i (aTa j —ii)
	

(3.4.20)

where ? denotes the undetermined Langrange multiplier. Differentiating with

respect to a 1 and setting the resultant equation to zero, it follows that:

--=2Sa 1 —2? 1 a 1 =0=Sa 1 =X 1 a 1 =(S—? iIm )a i =0	 (3.4.21)

where 'm is an (mx m) identity matrix. Equation (3.4.2 1) is a set of m

homogeneous equations with m unknowns According to the theory of equations, a

non-trivial solution (a 1 ^ o) can be obtained when:

Is—xlInI=0
	

(3.4.22)

It therefore follows that X is an eigenvalue of the sample variance-covariance

matrix S and the solution a 1 is its corresponding normalised eigenvectOr (aa 1 = 1).

There are m eigenvalues that provide the solution to the system of equations (3.4.22).

However, by pre-multiplying equation (3.4.2 1) by aT, it follows that:

(3.4.15)

Sa 1 =X1a1 =aTSa i =2.iaTai =X	 Var(y1)=A1	 (3.4.23)
(3.4.16)

that is, the eigenvalue X 1 equals the total variance of the projections, which has to be

maximised. Therefore, X must be chosen to be the largest eigenvalue of S.

Consequently, the eigenvector a 1 that contain the direction cosines of the new axis,
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can be determined and the one-dimensional subspace, upon which the multivariate

sample is projected, can be defined.

Suppose now that, the compression of the rn-dimensional space onto one dimension

is not satisfactory due to the residuals, e, being large. One can then project the

multivariate sample onto a two-dimensional subspace, that defines a new axis v2,

which is orthogonal to v1

'2 =a21 u 1 +a22 u 2 +...+a 2mu m	 (3.4.24)

where a 2 is the direction cosine of v2 relatively to u and which satisfies the

following conditions:

a2 = 1 = aa = 1
	

(3.4.25)

4a 1 =0
	

(3.4.26)

since the two axes are mutually orthogonal.

The rn-variate data sample can the be approximated by the orthogonal projection of

the n points onto vj,, which are represented by a set of one-dimensional vectors Y2j

(i=1,...,n):

=a21 x 11 +a22x,+...+a2x =ax
	

(3.4.27)

Using a similar reasoning to that used when defining the first axis, one wants to

determine the direction cosines a 2 of the new axis, so that the displacement caused

by the projection of the objects upon the new axis is minimised. This can be achieved
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by maximising the total variance of the vector y2 , which contains the projections

Y2i (i=1,. . .,n) of the objects x points onto the new one-dimensional space. The

problem can be stated as the maximisation of a 'Sa 2 with respect to a 2 , subject to

aa 2 = 1 and aa 1 = 0. The Lagrangean expression under consideration is:

=aSa —X 2 (a 'a 2 —1)—K(a'a1)
	

(3.4.28)

where A. 2 , K are the two unknown Lagrange multipliers. Differentiating with respect

to a 2 and setting the resultant equation to zero, it follows that:

1
—2A. 2 a 2 —Ka 1 =O=(S—X 2 I m )a 2 = jKa	 (3.4.29)

aa2

Pre-multiplying (3.4.29) by aT, it can be seen that:

a TSa 2 —aT2 1 ma 2 =KaTa1	 aSa, =K	 (3.4.30)

Furthermore, pre-multiplying (3.4.2 1) by a, it follows that:

aSa 1 =X 1 aa 1 =aSa 1 =0
	

(3.4.31)

Since S is a square symmetric matrix, then

aSa 1 = aTSa2 =0
	

(3.4.32)

As a result, the second Lagrange multiplier in equations (3.4.30) and (3.4.29) is equal

to zero (K = 0), whilst the first Lagrange multiplier, X, is again an eigenvalue of
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the sample variance-covariance matrix S and the solution a 2 is its corresponding

normalised eigenvector:

IS-A2II=0
	

(3.4.33)

Furthermore, X 2 accounts for the maximum variation of y,

Var(y 2 ) =	 (3.4.34)

and it corresponds to the second largest eigenvalue of S, since 2 accounts for the

maximum variation of y 1 and is the largest eigenvalue of S. The direction cosines

a 2 can consequently be calculated. The above procedure can be continued, up to the

rank of the data matrix X. In the case when X is a full-rank matrix, m new axes can

be defined and, thus, this procedure can be viewed as an orthogonal rotation of the

original axes.

The procedure previously described is Principal Component Analysis (PCA). The

new axes are termed principal components. The direction cosines a r (r=1,. . .,R) are

the loading vectors (Pr), while the vectors of projections Yr of the rn-variate data set

X onto the new defined axes are the score vectors (tr). Usually a small number of

principal components are extracted, since the primary objective of PCA is to

compress the multivariate data set by projecting the rn-dimensional space down onto

a low-dimensional subspace.

A generalised model for Principal Component Analysis, can be described as follows.

Consider that the mean of the object vectors x 1 is equal to zero, since X has been

mean-centred beforehand. Furthermore, the scalar quantity (n-i) defines the number
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of degrees of freedom of the multivariate sample and it can be omitted. Therefore the

analysis can be based upon XTX instead of the sample variance-covariance matrix

S. PCA can, thus, be considered as the orthonormal projection of the rn-dimensional

space onto a low-dimensional subspace and each principal component can be

considered a linear combination of the original variables:

T=XP
	

(3.4.35)

where T is an (n x R) matrix whose columns are the score vectors tr and P is an

(mx R) matrix whose columns are the loading (direction cosines) vectors Pr A

solution to the system of linear equations (3.4.35) must be found so that the variation

of principal components is maximised:

Var(T) = Var(XP) = E(PTXTXP) P TE(X TX)P = P TXTXP	 (3.4.36)

Thus, the problem can be stated as the maximisation of PTXTXP with respect to P

and subject to the constraint of orthonormality, i.e. pTp = I. This is equivalent to

maximising the Lagrangean expression:

= pTXTXp_A(pTp_I)
	

(3.4.37)

where A is a diagonal matrix of Lagrange multipliers. From the maximisation it

follows that the Lagrange multipliers are the eigenvalues of XTX and P is a matrix,

whose columns are the corresponding eigenvectors:

(XTX_A)P=O	 (3.4.38)
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(3.4.39)

It can be stated that the eigenvalues of XTX are ordered in strictly decreasing order

when XTX is non-singular (JXTx ^ o) (Basilevsky, 1994):

Having obtained the principal components, the multivariate data set X can be

reconstructed by means of equation (3.4.2):

X=TPT

The previous reconstruction holds only when all the principal components have been

extracted (R=m). In any other case (R<m), the reconstruction leads to an estimate of

the multivariate data set, denoted as X:

X=TPT
	

(3.4.40)

which is linked to the original X by the reconstruction error or residual E as:

X=X+E
	

(3.4.41)

or
E = X_X=X_TPT = X_XPPT X(J_ppT)	 (3.4.42)

Principal Components Analysis (PCA) has also been related to the Spectral

Decomposition of the variance-covariance matrix S or XTX (Jolliffe, 1986; Flury,

1988). According to the spectral decomposition theorem, a square symmetric and

positive definite matrix I can be decomposed as:

F=BABT
	

(3.4.43)
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where A is a diagonal square matrix that contains the eigenvalues of F and B is an

orthogonal matrix containing the associated normalised eigenvectors of F. Since

PCA calculates the eigenvalues of S or X TX and the associated eigenvectors P that

are orthonormal (pTp = 'R) then from equation (3.4.3 8) it follows that PCA is the

spectral decomposition of XTX (or S):

(n_l)S = XTX = PAP T	(3.4.44)

Furthermore, PCA has been associated with the Singular Value Decomposition

(SVD) of the data matrix X (Krzanowski, 1988; Jolliffe, 1986; Basilevsky, 1994).

The SVD of a real matrix as the multivariate data set X is given by:

X=UV
	

(3.4.45)

where U is an (n x R) matrix, which has the normalised eigenvectors of XXT as its

columns, V is an (R x n) matrix, which has the normalised eigenvectors of XTX as

its columns and is an (R x R) diagonal matrix having the positive square roots of

the ordered eigenvalues of XTX as its diagonal elements (Sr =	 Therefore, it

can seen that both methods are related by matching equations (3.4.2) and (3.4.45).

The loadings are the columns of the matrix V and the scores are the columns of the

matrix U (Wold, 1987). Therefore, equation (3.4.45) can be written element by

element as:

X j =UirSrVij
	 (3.4.46)

where u g and vd are elements of V and U matrices respectively
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- r=1

tr(S)
(3.4.50)

3.4.2. Properties of PCA and Other Considerations

A number of important properties of principal components can be extracted from

their derivation. These properties can be summarised as follows

1. The total variance which accounts for r-th principal component is the eigenvalue

of the covariance matrix (3.4.23 and 3.4.34):

Var(t)= Xr	 (3.4.47)

2. In the case of full decomposition of the multivariate data set X to principal

components, the total variance of the R principal components is equal to the total

variance of the original variables. When X is fully decomposed, the reconstruction

error is equal to zero (E=O). Therefore, equation (3.4.19) can be rewritten as:

	

(3412)	 R

Var(X) = Var(T) + Var(E) 	 tr(S) =
	

(3.4.48)

	

(3.4.47)	 r=1

Consequently, the r-th principal components accounts for a proportion of the total

variation of the original data set:

lt= 
tr(S)
	 (3.4.49)

Furthermore, the first r1 components account for a proportion of the total

variation:
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fo, i^j
pipj= ll, (3.4.52)

4. The score vectors of the principal components are orthogonal and measure

different underlying latent structures in the data, whilst the loading vectors are

orthonormal and define the directions of maximum variability:

tTt. =0I J	
'	 (3.4.51)

5. No standardised linear combination of x has a greater variance than t 1 (3.4.39):

Var(t 1 ) ^ Var(t 2 ) ^...^ Var(tR)
	

(3.4.53)

6. The principal components may vary depending upon the term of scaling.

Property (6) is of practical importance. Inappropriate scaling can affect the apparent

relationships between the variables. The loading vectors provide the direction of

maximum variability, which represents the variation that is common to all the

objects. Therefore, by mean-centring the data, basic underlying variation is removed

before the data has even been analysed using PCA. Furthermore, in the case where

the original variables are measured in different units, the structure of the principal

components depend upon the essentially arbitrary choice of measurements units and,

therefore, variables with a large variance will tend to dominate the first principal

component. The application of variance-scaling (normalisation to unit variance) in

addition to mean-centring overcomes this difficulty. In this case, the principal

components are extracted from the sample correlation matrix R, rather that the

variance-covariance matrix S.
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An important issue in Principal Components Analysis is the interpretation of the

derived principal components, since this can help to determine the variables that have

the greatest impact upon the variance of a particular component (Mardia, et al.,

1974). The coefficient of correlation between the r-th principal component and the j-

th variable is defined as:

- Pr,j
Pr,j -

and the coefficient of determination is given by:

Prj

(3.4.54)

(3.4.55)

where Pr,j is the element of the eigenvector Pr for the j-th original variable and sjj

is the variance of the j-th variable. The coefficient of determination is the ratio of the

estimated variance of the j-th variable to its actual variation.

The major advantage of modelling a multivariate data set in terms of principal

components is the ease of visualisation of the multivariate data set. Specifically, the

information contained in the original data set can be described in terms of two plots:

1. Loading plot. The loading vectors (Pr) provide a picture of the relationships

between the variables. One can infer the relative importance and influence of the

original variables by observing the absolute values of the elements of the loadings.

Furthermore, similarities between variables are evaluated in terms of the angle

between the loadings and the sign of the co-ordinates on each component.
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2. Principal Component Scores plot. These describe the relationships between the

objects and the principal components. One can infer which variables are indicative

of changes in the data set by observing the changes in the scores and knowing the

relationships defined by the loadings. Furthermore, similarities in the scores plot

are evaluated in terms of the angle between their object vectors (x 1 ) and the

distances between objects.

A further issue associated with the interpretation of the principal components is that

of the approximation of each principal component (PC) as a linear combination of a

subset of the original variables. The traditional practise is to select such subsets from

their corresponding loading vectors and, therefore, from their correlation coefficients.

For each PC, variables that have low loadings are discarded and the remaining subset

is used to provide a linear combination, called a truncated principal component that

approximates the original PC:

t t r Xp	 (3.4.56)

where t is the truncated PC that corresponds to the r-th original PC, X is the

subset of the multivariate data set X that contains only observations for the retained

variables and Pt the truncated vector of loadings that contains the loadings of the

retained variables. Truncated principal components can be used to assess whether all

variables or some subset of them provide meaning to a principal component, relevant

to the problem under study. Truncated PCA can be usually applied to data sets

comprising measurements on a great number of variables. Cadima and Jolliffe (1995)

suggested that the loadings are not reliable for determining whether a subset of the m

original variables are acceptable for defining a truncated principal component. The
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- __

- .J(pkTSpk)
(3.4.58)

main reason for this is that it is both the loadings and the standard deviation of each

variable, which determines the importance of a variable in the linear combination. As

an alternative, they suggested regressing the principal components on the subsets of

variables and using the multiple correlation coefficients as a criterion to whether or

not to retain a particular variable. The multiple correlation coefficient rm between the

j-th principal component and a subset of k original variables is given by:

rm
	 (3.4.57)

where	 is the eigenvalue of the j-th PC, p is a vector containing only those

elements of the loading vector of the j-th PC that are associated with the k retained

variables and Sk is a sub-matrix of the variance-covariance matrix of X which can be

obtained by retaining only those columns of S that correspond to the retained

variables. Furthermore, the correlation coefficient r between the j-th original PC and

a truncated PC based on a subset k of original variables is given by:

The ratio r /rm is the correlation between the truncated PC and the projection of the

original PC onto the subset k of original variables. When rt /rm = 1 the truncated and

the original principal components coincide and, therefore, the subset of variables may

be retained while the remaining variables should be discarded in an approximation

procedure.
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From the analysis presented in the previous paragraphs, it can be seen that, Principal

Components Analysis can be considered from three different perspectives as:

1. A technique to determine the principal axes that defines the direction of maximum

variation, using the classical statistical approach (Hotelling, 1933).

2. A specific type of factor analysis (Harrnan, 1976; Cattell, 1978).

3. A technique for describing a data set under certain optimised algebraic and

geometric criteria and, therefore, as a technique for data reduction (Pearson,

1901).

3.4.3 Calculation of Principal Components From a Multivariate Sample

The most popular method to calculate the principal components from a multivariate

data set is the Non-linear Iterative Partial Least Squares algorithm (NIPALS) (Wold,

1987; Geladi and Kowalski, 1986; Martens and Naes, 1989)

The NIPALS algorithm does not simultaneously calculate all the principal

components. It calculates the first principal component and then, it subtracts the outer

product of its score and loading vectors from the data matrix X. The residual matrix

is then used to calculate the second principal component and so on. The NIPALS

algorithm is a fast and effective algorithm to extract the principal components in a

sequential manner. It is also a variant of the power method for calculating the

eigenvectors of a matrix (Goldberg, 1991). Using the NIPALS algorithm the score

and the loading vectors are the eigenvectors of the X• XT and XT . X matrices,

respectively (Geladi and Kowalski, 1986).
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The NIPALS algorithm is as follows:

(1) h=O, th =0, p; ' =0, E,_1 X.

(2) h=h+l.

(3) The column vector x with the maximum variance is selected from the Ehi

matrix and defined to be by th (for the first iteration it does not matter which

column vector is selected since every column has variance equal to unity).

(4) Ph=thh_1/(th.th)

(5) Normalise p ' to length 1: p; = p ; / IIpII

(6) thnew =iEh_lPh/(PhPh)

(7) If the score th of step (3) converges with that of step (6), then go to step (8),

else go to step (4).

(8) Eh=Eh_l—th.p'

(9) Go to step 2.

As a convergence criterion, in step (7), the sum of squared differences is frequently

used:

n
	 2

(t iieWj - th) ^ e
	

(3.4.59)
h=1

3.4.3 Selection of the Optimal Number of Principal Components

An important issue associated with the application of Principal Component Analysis

for the purpose of reducing the dimensionality in a multivariate data set, is to

determine the optimal number of principal components (R) that are required to

adequately account for the variation in the data set. With highly correlated variables,

the first few principal components explain most of the variability present in the data.
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The remaining principal components are not significant and typically explain the

noise in the data. A number of criteria have been proposed in the literature to select

the number of principal components, e.g. Jolliffe, (1986), Jackson, (1993), Ferre,

(1995). A few of these approaches are based upon statistics, however, most of them

are based upon heuristic approaches.

Heuristic Approaches

1. Cumulative Percentage of Total Variation. The simplest criterion is to retain only

those principal components (R) that account for an arbitrary selected proportion (a)

or a cumulative percentage (100 a % ) of the total variation in the multivariate data

set. This is an ad hoc procedure and is unreliable. It is not recommended by many

statisticians (Jolliffe, 1986; Jackson, 1991). Usually, a cumulative percentage of

between 80% and 90% (i.e. 0.8 ^ a ^ 0.9) is defined as being optimal:

0.8^ r=1	 ^0.9
	

(3.4.60)

j=!

2. Amount of Variance Explained by an Individual Principal Component. If all

original variables x are independent, then the principal components are the same as

the original variables (e.g. PC 1 =variable 1 , PC2=variable2,...). Thus, principal

components with variation (associated eigenvalue) less than or equal to one should

be excluded, since they contain less information than one of the original variables.

This is also an ad-hoc criterion and it is called Kaiser's criterion (Kaiser, 1960):

^ 1
	

(3.4.6 1)
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An extension of Kaiser's criterion is the Kaiser-Gutt,nan criterion, which suggests

that a principal component should be retained only if its variation (?) is greater than

or equal to the average variation (X) of the principal components or a proportion (a)

of it (Guttman, 1954; Cliff, 1988)

X R ^ a?	 ; 0.8^a^0.9	 (3.4.62)

Recently, a modified Kaiser-Guttman criterion that does not ignore the error

associated with the individual eigenvalues due to sampling has been proposed

(Lambert, et a!., 1990). This criterion involves the use of the bootstrap (Efron, 1979)

to determine the confidence limits of the eigenvalues and testing whether the Kaiser-

Guttman criterion lies within these limits, the Bootstrap Kaiser-Guttinan criterion.

An alternative approach is the Broken Stick criterion (Frontier, 1976; Legendre,

1983). The idea behind is that, if one has a line of unit length, which is randomly

divided into R segments then, it can be shown that, the expected length of the r-th

longest segment is:

g =
	

(3.4.63)

Thus, considering the line to be the total variation in the data set, the Broken Stick

criterion suggests that the r-th principal component should only be retained if:

g ^X
	

(3.4.64)

This is a crude criterion and it must only be applied to unit variance-scaled matrices.

Finally, another common method is the Scree method. This is where the value or the
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logarithm of the value of successive eigenvalues are plotted in rank order. The

smallest eigenvalues typically represent random noise and tend to lie in a straight

line, whilst the large eigenvalues move away from this line. Principal components up

to those whose eigenvalue lie to the right of the point where the largest eigenvalue

departs from the straight line, should be retained (Cattell, 1966; Cattell and

Vogelmann, 1977).

Statistical Approaches

3. Test of sphericity. Bartlett's test of sphericity (Cooley and Lohnes, 1971) evaluates

whether each consecutive eigenvalue is significantly different from the remaining

eigenvalues. This test reveals the point where PCA summarises a spherical principal

distribution of points. The test statistic follows a x 2 distribution and the number of

components R is selected so that:

r m	 I(m— R)lnI	 -	 X3(m-R-1)(m-R+2)
[r=R+1m	

=	 r - (n—R)

where m is the number of original variables, n is the number of objects.

4. Tests for equality of the eigenvalues. There are two tests that evaluate whether the

first eigenvalue (Bartlett, 1954) or the second eigenvalue (Lawly, 1956 and 1963) of

the correlation matrix is equal to the remaining set of eigenvalues. Both tests have

limited application, since they only examine the significance of the first and the

second eigenvalues. However, they do provide an assessment of the overall PCA.

5. Partial Correlation. Velicer (1976) suggested that the average of the squared

partial correlations between the variables, given the values of the first r principal
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i	 2
r	 r	 I	 F.

Vr = )_ _

i=I m m
i^j

(3.4.66)

components, may be used to determine the number of principal components that

should be retained. It can only be applied when the sample correlation matrix has

been used. The criterion is given by:

where m is the number of variables, p is the partial correlation between the i-th and

the j-th variable given the first r principal components, and is defined as the

correlation between the residuals from the regression of the i-th variable on the first r

principal components and the residuals from the regression of the j-th variable on the

first r principal components. This criterion measures the strength of the linear

relationship between the i-th and the j-th variable after removing the common effect

of the first r principal components (Jolliffe, 1986). The optimum number of principal

components R corresponds to the minimum	 This criterion has been applied

successfully to select the number of factors to be retained in Factor Analysis, but it is

inappropriate in PCA whenever a principal component is dominated by a single

variable that is uncorrelated with the other variables.

6. Cross-Validation. The concept in cross-validation is that a subset of the

multivariate data sample can be predicted satisfactorily by a statistical model that was

built with it not included. Cross-validation methods have been suggested for PCA by

Wold (1978) and Eastman and Krzanowski (1982). Both methods utilise the

Prediction Sum of Squares (PRESS) proposed in regression by Allen (1974), which

is the sum of squared differences between the predicted and the observed values of
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the subset, but they differ in how a subset is chosen and how the PRESS is used for

choosing the optimum number of principal components.

Wold (1978) suggested that an m-variate data sample of n objects can be divided into

G subsets, X g (g=1,.. .,G). Each individual subset X g is then excluded:

X=Xg UX
	

(3.4.67)

and a PCA is performed on the remaining subset X. The resulting loadings P can

then be used to calculate the scores (Tg ) of the excluded subset, X g . according to

PCA:

Tg =Xg P
	

(3.4.68)

Predictions of X g can then be obtained by retaining an increasing number (r=1,2,...)

of principal components in the PCA model each time:

Xg,r =	 tg,kPg,k
	 (3.4.69)

where tg,k is the k-th column vector of the estimated matrix of scores Tg of the

subset X g and	 is the k-th column vector of the matrix of loadings P of the

subset X. The Squared Prediction Error (SPE) can be calculated for each number

(r) of retained principal components in the model

m
SPEg,r	 (3.4.70)

i=1 j=1
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where fl g is the number of objects included in the subset X g and x, 5 denote the

observed and predicted value of an element of the subset X g respectively. When the

calculations for all the subsets are completed, the Prediction Sum of Squares can be

calculated for each of number of retained principal components:

PRESS r = SPEg,r	(3.4.71)

To decide whether the r-th principal component should be retained, Wold suggested

examining the ratio:

PRESS
R = RSSr_i	

(3.4.72)

where RSS (Residual Sum of Squares) is the difference between the observed and

predicted values of the complete data set, X, and can be calculated for each principal

component (r) as:

RSSr = ::[x _tihPhJJ
i=1 j=1	 h=1

(3.4.73)

where tth denotes the score of the i-th object on the h-th principal component and

Phj the loading of the j-th variable for the h-th principal component (h^r). The ratio

R compares the predictive power of a model based upon r principal components

with the squared difference between the observed and predicted data using (r-1)

principal components. An R value greater than unity suggests that the predictive

power of the model has not been improved by adding the r-th principal component

90



and its better to retain (r-l) principal components. Wold suggested that the original

data set should be divided into between 4 and 7 subsets, i.e. G=4 or 7 and that G

must not be a divisor of the number of variables (m).

Eastman and Krzanowski, (1982), proposed that as much of the original data set X as

possible should be used to predict each of the subsets, .e.g, the size of the subset must

be as small as possible. The smallest subset that can be excluded from an rn-variate

data sample is a single observation x and, according to Eastman and Krzanowski, it

should be predicted from all the data except the i-th object (row) and the j-th variable

(column) of X. Suppose now that X' denotes the subset where the i-th row has be

excluded, and X denotes the data set where the j-th variable has been excluded.

Applying a PCA to each of these data set and using the SVD method, it follows that:

X I = UIIV I
	

(3.4.74)

(3.4.75)

Using SVD of the complete data set X, prediction for an element is given by means

of equation (3.4.46):

i	 UjSV	 (3.4.76)

However, Eastman and Krzanowski suggested that the prediction of the part arising

from U requires information on the i-th row and, therefore, U' must be used, whilst

prediction of the part arising from V requires information on the j-th column and,

therefore, V must be used. For the central part , it was suggested that information
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from both the i-th row and j-th columns is required and, therefore, a composite of the

two should be used. Hence, the prediction of an element is given by:

5 =±(Uk)(/TvJ)

	

(3.4.77)

where the sign of (u[)(Jvj) is equal to the sign of USk V kj from the

decomposition of the complete data set for each principal component. The Prediction

Sum of Squares can be calculated for each principal component as:

PRESS r =	 -
	

(3.4.78)
i=1 j=1

The optimal number of principal components that should be retained is then

determined by the statistic:

(PRESS r-i - PRESS r )/Dm
w=

PRESSr/Dr
(3.4.79)

where Dm is a number indicating the degrees of freedom required to fit the r-th

principal component and Dr is a number indicating the degrees of freedom remaining

after fitting the r-th principal component:

Dm =n+m-2r
	

(3.4.80)

Dr =m.(n-1)—i+m-2r
	

(3.4.8 1)
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The value of W gives the ratio between the improvement in the predictive power of

the model achieved by adding the r-th principal component, to the predictive power

of the model based upon r principal components. A value of W greater than unity

suggests that the r-th principal component should be included in the model. This test

is similar to an F-test for the inclusion of an additional variable in a linear regression

model.

None of the criteria presented above provide a unique solution to the problem of

selecting the optimal number of components that should be retained in a PCA model.

Some of them are rules of thumb with no theoretical basis, some of them are more

statistically acceptable and some of them are computationally intensive. Depending

on the situation (i.e. size of data set, computational power and available time for

analysis) the most appropriate criterion should be selected. Cross-validation is

statistically more acceptable and, therefore, it should be performed in all situations.

However, it is time-consuming and computationally intensive. On the other hand,

Kaiser-Guttman criterion and Scree method are heuristic approaches but can quickly

provide an assessment of the number of principal components to retain. However, the

selection of the optimal number of principal components to retain into a PCA model,

should be based upon the overall picture given by these criteria.

3.5 Projection to Latent Structures (PLS)

Projection to Latent Structures (PLS) or Partial Least Squares, has become a popular

regression technique with a wide range of application for multivariate calibration

problems. The power of PLS mainly comes from its ability to define independent

latent variables from the covariance structure of given groups of highly correlated or
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collinear, real or observable variables. Thus, PLS can be viewed as a technique which

can be used for both dimensionality reduction and modelling. PLS has its origins in

the Non-linear Iterative Partial Least Squares (NIPALS) algorithm for general

system-analysis models. It was proposed by Herman Wold (Wold, 1966; Wold,

1975). The basic mathematical and statistical background underpinning the method,

has been described in a number of papers (Geladi and Kowaiski, 1986; Martens and

Naes, 1989; Wold, et a!., 1984; Lorber, et al., 1987; Manne, 1987; Geladi, 1988;

Helland, 1988; Hoskuldsson, 1988; Stone and Brooks, 1990; Garthwaite, 1994).

The objective of Projection to Latent Structures is to construct a linear relationship

between two sets of data that contain observations from highly correlated variables.

This is conceptually similar to Canonical Correlation Analysis (CCA). However, PLS

selects linear combinations of the original variables in a way that eliminates

redundancies in the data sets and defines a new set of variables, which are

independent. PLS is, thus, similar to Principal Components Analysis (PCA), except

that, PLS maximises the covariance of the two data sets, whilst PCA only maximises

the variance of a single data set. PLS is based upon projecting the information

contained in the high-dimensional space of the two data sets down onto low-

dimensional subspaces, defined by the independent and latent variables. Therefore,

the useful and relevant information contained in the large number of observable

variables is summarised in terms of a small number of latent variables. The two data

sets are typically denoted as the predictor (X) and the response (Y) or independent

and dependent data sets, respectively.
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PLS builds the regression relationship in a stepwise and sequential manner. There are

several ways for achieving this, but the most common approach is the Non-linear

Iterative Partial Least Squares (NIPALS) algorithm of Wold (1966). For each latent

variable or dimension, the NIPALS algorithm calculates two latent vectors, t1 and

u 1 , which are a linear combination of the predictor (X) and response (Y) data sets,

respectively. These vectors define the latent dimension in each data set and are

chosen such that the covariance between them is maximised. The NIPALS algorithm

to perform PLS is as follows:

(1) Mean-centre and optionally variance scale the X and Y data sets.

(2) Set u equal to any column of the Y data set

(3) Regress the columns of X on U: wT = uTXIuTu

(4) Normalise the w vector to unit length

(5) Calculate the scores of X: t = Xw/wwT

(6) Regress the columns of Y on t: qT = tTY/tTt

(7) Calculate the new scores of Y: u = yq/qTq

(8) If score u of step (7) converges with that of step (2), then go to step (9), else

go to step (3)

(9) Calculate the loadings of X by regressing columns of X on t:	 = tTX/tTt

(10) Calculate the residual matrices E and F: E = X - tpT ; F = Y - tqT

(11) To calculate an additional latent dimension, replace X and Y by E and F and

repeat steps (2) - (10)
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The sum of squared differences of the u vectors (equation 3.4.59) can be used as a

convergence criterion.

As an alternative to the NIPALS algorithm, the maximum eigenvalue of the residual

sample covariance matrix (EFrFE r ) or the successive Singular Value

Decompositions of the cross-covariance matrix (FE r ) of the residual data sets, can

be used to perform the calculations of the latent dimensions (Hoskuldsson, 1988;

Kaspar and Ray, 1993; Lindgren, et al., 1993; Wang, et al., 1994). Note that, in the

beginning (r=O), residuals E 0 and F0 do not exist and, therefore, are replaced by the

original data sets X and Y, respectively. Using any of these methods, the predictor

and the response data sets are decomposed as a series of latent variables, which can

be written as a linear combination of the scores and loadings:

X = t r •p ' +E
	

(3.5.1)

YUr •q+F or Y = br • t r •q+F	 (3.5.2)

Note that, each time the two data sets are decomposed in the score and loading

vectors (t r ' Pr and Ur qr respectively) an inner relationship between the latent score

vectors is built, whose coefficients are defined as:

br =UF.t.	 (3.5.4)

The final PLS regression model can then be written in terms of the latent vectors:

Y=TQT	(3.5.5)
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(3.5.6)

or alternatively, in terms of the original variables of the predictor data set:

where, çr are the estimated values of the response data set, T is a matrix whose

columns are the score vectors (tr) of the predictor data set, P and Q are matrices

whose columns are the loading vectors (Pr and q) of the predictor and response

data sets, respectively, W is a matrix whose columns are the weight vectors (w i ) of

the predictor data set, and 3 is the matrix of the linear regression coefficients

= w . (p . w)' .	 (3.5.7)

Once a PLS regression model has been constructed and a new vector (x) of predictor

data is available, predicted values () of the response variables can be obtained:

= xT .	 (3.5.8)

3.5.1 Geometrical Interpretation and Mathematical Derivation of PLS

This section includes the derivation of the iterative procedure of the PLS technique,

using mathematical, geometrical and statistical considerations and it describes the

interpretation of the latent variables. Consider a multivariate data sample which

contains n observations on (mi-k) variables, which can partitioned into a predictor

(n x m) data set X arid a response (n x k) data set Y. The rn-variate and k-variate

data sets can be graphically modelled as swarms of n points in rn-dimensional and k-

dimensional object space, respectively. The co-ordinates of the n objects in these

spaces are given by the data matrices X and Y, and the n corresponding points are
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represented by two sets of vectors x 1 and y1 (i=1,. . .,n), which are the rows of X and

Y, respectively.

Suppose now that, one wants to find a relationship between the objects of the two

data sets, that is to construct a regression model between the data set X and the data

set Y. The statistical model can then be used both as a descriptive statistic and as a

model for predicting future values of the response variables (5), when only values of

the predictor variables are available ( X new) . The predictive relationships are assumed

• to be linear and, therefore, the regression model between the predictor and response

data sets can be defined to be:

Y=X13+E
	

(3.5.9)

where 3 is an (m x k) matrix of regression coefficients. The predicted values of the

future response vector , given the corresponding predictor vector Xnew, are given

by:

=
	 (3.5.10)

The most well known multivariate technique for calculating the matrix of regression

coefficients is Multiple Linear Regression (MLR). However, a number of problems

can be encountered when MLR is applied to data sets comprising highly correlated

measurements. The derived regression coefficients 1 will typically have large

variances and, hence, they will be unstable when small changes in the data occur. An

extensive discussion of these problems can be found in Searle, (1977), Seber, (1977),

Montgomery and Peck, (1992).

However, these problems can be overcome by eliminating the correlations, which

exist between the original variables. This can be achieved by projecting the high-
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dimensional object spaces onto low-dimensional object subspace and retaining that

part that is useful in identifying the relationships between the original variables.

Assume initially that each high-dimensional space is projected down onto a one-

dimensional subspace by the orthogonal transformation of their axes. The rn-variate

data set X can be approximated by the orthogonal projection of its n objects x1

(i=1,.. .,n) onto the one-dimensional subspace. Each object is then represented as a

one-dimensional vector t1

= w 11 x 11 + w I2 x2j+...+w lmw = xw 1 	(3.5.11)

The set of t 11 (i=l,.. .,n) comprises an n-dimensional vector t 1 that is defined as

t 1 =Xw 1	(3.5.12)

where w 1 is an rn-dimensional vector of the weights of the orthogonal

transformation in X that are the direction cosines of t 1 with respect to the orthogonal

base of X. Similarly, the k-variate data set Y can be approximated by the orthogonal

projections u 1 of its n objects onto the one-dimensional subspace:

u 1 = c 11 y 1 +c J2 y ij +...+c 1 y = yc 1 	 (3.5.13)

and, consequently, the vector u 1 that contains the set of uli (i=1,. . .,n) is defined as:

U 1 =Yc 1 	 (3.5.14)

where c 1 is a k-dimensional vector containing the weights of the orthogonal

transformation in Y that are the direction cosines of u 1 with respect to the orthogonal

base of Y. This procedure is illustrated in Figure 3.3, where a tn-variate data set X

and a bivariate data set Y are projected down onto a one-dimensional subspace. For a

particular object i, the corresponding one-dimensional projection vectors are t 1 and

u 11 . In the case where the two vectors are parallel, they are linearly dependent and,
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ii
b 11 =-j—j-^O

ii
(3.5.16)

uL__.
•

therefore, each of them can be considered as a linear expansion or contraction of the

other, such that:

u 11 =b 11 t 11	 (3.5.15)

On the other hand, when these vectors are not parallel then, a projection angle e is

identified between t 1 and u 1 , so that each vector is linearly dependent with the

projection of the other vector:

u =b 11 t 11	 (3.5.17)

where u denotes the projection of u 1 onto t1

u =u 1 cosO	 (3.5.18)

(a)
	

(b)

-

(c)

Figure 3.3. Geometrical interpretation of PLS
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112	 'I	 112

1J t 1	 ^IiII = e (3.5.19)

tTuicos0=11
t1!l liuii

(3.5.2 1)

Equation (3.5.18) reduces to equation (3.5.15) when the cosine of the projection

angle 0 is equal to 1 or -1 or equivalently when 8 is air (a = 0,1,...). Applying the

Pythagorean Theorem on triangle 0A 1 A, in Figure 3.3, it follows that:

where	 denotes the length of a vector, and e 1 is the distance between t1 and u11.

Therefore, it can be concluded that, the best linear relationship between t 11 and u11

can be obtained when the squared distance e is minimised. Using trigonometric

rules, it can be seen that, the squared distance e is minimised when the squared

cosine of projection angle 8 is maximised:

e i -
2	 112	 ______

e1 = t 11j1 sin s 0	 1— cos 2 0
'2 -

lit ii ii

(3.5.20)

Since the projection angle is the same between all pairs of one-dimensional vectors

(t 
ii , 

u j) the previous conclusion can be generalised to the predictive relationship

between the latent vectors t1 and u 1 . Furthermore, it can be seen that, equation

(3.5.20) is invariant of the length of the latent vector. Since the latent vectors are

orthogonal transformations of the original data sets then, one can select the set of

weights w 1 and c 1 of the orthogonal transformations (3.5.12) and (3.5.14),

respectively, so that the squared cosine of the projection angle is maximised. This is

equivalent to rotating one of the latent vectors at an angle 8 related to the other latent

vector. The direction cosine of the projection angle is given by:
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It can be seen that, cos8 is equal to the correlation between the latent vectors t 1 and

u 1 , since the inner product of these vectors is equal to their covariance and their

lengths are equal to the square roots of their variances

tTui	 Cov(t1,u1)	
(3.5.22)corr(t, ,u 1 ) = CO5 0 

= lit1 IIui II = var(t 1 )Var(u1)

or equivalently:

wTXTYC1	 Cov(Xw1 ,Yc1)	
(3.5.23)corr(Xw 1 ,Yc 1 ) = cosO = 

IIXwiII Ilyc il!	 Var(Xw1)Var(Yc1)

The correlation between t 1 and u 1 is a measure of the linear relationship between

t1 and u 1 (Everitt and Dunn, 1991). Equation (3.5.22) is the Ordinary Least Squares

(OLS) or Multiple Linear Regression (MLR) criterion for the predictive relationship

between t 1 and u 1 . Furthermore, equation (3.5.23) is the Canonical Correlation

Analysis (CCA) criterion, which produces a sequence of uncorrelated linear

combinations of the predictor variables (Xw) that maximally predict the

corresponding linear combinations of the response variables (Yc ' ). It is known that,

these criteria provide unbiased estimates of the regression coefficients and,

furthermore, they are invariant to the scales of Xw and Yc. However, Frank and

Friedman (1993) have shown that the criterion to be used should be biased away

from orthogonal transformations of low data-spread directions in both X and Y

spaces. This can be achieved by multiplying equation (3.5.22) and (3.5.23) by the

variance of the orthogonal transformations:

Var(Xw 1 ) corr2(Xw1 ,Yc 1 ) Var(Yc i ) = Cov 2 (Xw 1 ,Yc 1 )	 (3.5.24)
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or equivalently:

var(t 1 ) corr2(ti ,u 1 ) Var(u 1 ) = Cov2(tj ,u 1 )
	

(3.5.25)

The problem can be stated as maximising the squared covariance of the orthogonal

transformations of the two spaces, Cov 2 (t 1 ,u 1 ), with respect to w 1 and c 1 subject to

the constraints w 'w 1 = 1 and cc 1 = 1. This is a constrained optimisation problem,

which can be solved by applying Lagrange Multipliers. The equivalent Lagrangean

expression to be maximised is:

= (tu1 
)2 -
	 - i)— K(CTC1 - i)

= (wTxTYci )2 -
	 - i) - K(cTc1 - i)

	
(3.5.26)

where X, K are the undetermined Lagrange multipliers. Differentiating with respect

to and w 1 and c 1 , and setting the resultant equation to zero, it follows:

=(w?xTYc 1 )XTyc i —Xw 1 =o=(wTx TYc i )XTYc i =Xw1	 (3.5.27)

=(w?'X TYc i )Y TXw j —KC 1 =o=(w?'XT Yc 1 )YTXw 1 =icc1	 (3.5.28)

Pre-multiplying equations (3.5.27) and (3.5.28) by wT and cT, it follows that:

(wTx TYc j )wTx TYc i = x
	

(3.5.29)

(wxTYc i )cTYTXw i = K
	

(3.5.30)
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and, thus, X = ic, since the left-hand side quantities are scalar products and are the

transpose of one another. Furthermore, the scalar quantity (wTx TYc i ), which is the

covariance of the orthogonal transformations of the two spaces, Cov(t 1 , ti ), is equal

to the square root of the Lagrange multiplier X or K that will be denoted as

onwards:

Cov(t 1 ,u 1 )= Cov(Xw 1 ,Yc 1 )= (wTxT Yc j )= .,J17
	

(3.5.3 1)

Solving equation (3.5.28) with respect to c 1 and replacing c1 in equation (3.5.27), it

follows that:

(3.3) 1
C l = x1(w?XTYc1)YTXwi = 	 YTXW (3.5.32)

and

i 7X TY ,,_YTXw 1 =X 1 w 1 =XTYYTXw1 =Aqw1	 (3.5.33)

Therefore,	 is an eigenvalue of the covariance of the cross-covariance matrix

YTX and the weight w 1 corresponds to its normalised eigenvector (ww 1 = 1).

Furthermore, it can be concluded from equation (3.5.3 1) that, 2 is the maximum

eigenvalue, since it is equal to the squared covariance that has to be maximised.

Similarly, solving equation (3.5.27) with respect to w 1 and replacing it in equation

(3.5.28), it follows that:

YT)Q(TYC =
	

(3.5.34)
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XTt1
Pl = Tt i ti

(3.5.37)'

yT

IU 1 U1
(3.5.38)

Therefore,	 is an eigenvalue of the covariance of the cross-covariance matrix

XTY and the weight c 1 corresponds to its normalised eigenvector c ?'c i = 1.

Furthermore, it can be seen that, t1 and u 1 are eigenvectors of the matrices

XX TYYT and YYTXXT. By multiplying equations (3.5.33) and (3.5.34) by X and

Y, respectively, it follows that:

XXTYYT t =A1t1	 (3.5.35)

YYTO(TU =X1u1	 (3.5.36)

Having defined t1 and u 1 , one can calculate the corresponding coefficients

(direction cosines) of the transformations of the high-dimensional predictor and

response spaces X and Y, by regressing X and Y onto the one-dimensional

subspaces:

where p 1 and q 1 denote the vectors of coefficients of the transformations and are

called loading vectors of the predictor and the response data sets, respectively. Note

that, Pi and q 1 have been calculated by regressing the high-dimensional spaces onto

the one-dimensional subspaces, while the normalised weights w 1 and c 1 have been

calculated by regressing the high-dimensional spaces X and Y one to another.

In order to strengthen the relationship between the predictor and response data sets, a

second set of orthogonal transformations (t2 and u 2 ) of high-dimensional spaces X
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and Y are calculated. However, it can be shown that the covariance of the second set

of latent variables is less than the maximum covariance of the response-predictor

cross-covariance matrix of the residuals X 1 and Y1 that result from the application

of the relationship between the first pair of orthogonal transformations (Hoskuldsson,

1988):

X 1 =X—t1p1	 (3.5.39)

Y1 =Y—u1c1	 (3.5.40)

Therefore, one pair of orthogonal transformations (tr+i , U r+i) should be calculated at

each iteration (r+1) by the residual matrices resulting from the previous iteration (r):

XYr Y ' X r W r+i -
	 (3.5.41)

YX r X 'Yr C r+i = r^ICr+I
	 (3.5.42)

X r XYrYtr+i = Xr+itr+i
	 (3.5.43)

YrYXrXUr+i = ?r+1h1r+I
	 (3.5A4)

This procedure is continued until a satisfactory predictive relationship between the

predictor and response data sets is obtained. The number of latent dimensions (R)

required to provide satisfactory prediction, without overfitting the data, is usually

determined by cross-validation (Wold, 1978). The corresponding pairs of Pr and q

can be calculated by equivalent equations to those of (3.5.37) and (3.5.38). It can be

seen that, due to the rotation of the latent vectors tr, the orthogonality of the loading

vectors Pr of the predictor (X) data set is lost. However, the loadings qr of the
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v"r+1 r+1 (3.5.46)

T_ W'X'Yr

q - WX;XrWr
(3.5.48)

response space (Y) are orthogonal and, therefore, are equal to the weights c of the

orthogonal transformation in Y. The procedure described above is termed Projection

to Latent Structures (PLS), and it defines the orthogonal transformation in high-

dimensional predictor and response space in an iterative way, so that both the

covariance of these transformations and the predictive relationship between the

predictor and response data sets are simultaneously maximised.

3.5.2 Properties of PLS

The technique of Projection to Latent Structures (PLS) has been associated with

Singular Value Decomposition (SVD) (Hoskuldsson, 1988):

XYr = waq +(less significant terms)	 (3.5.45)

where Wr q are the first left and right singular vectors and ar is the largest

singular value. Kaspar and Ray (1993) proposed an iterative procedure for PLS that

considers the technique as a successive SVD of the residual cross-covariance matrix:

where

- X'XrWr

Pr - WXXrWr
(3.5.47)
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b - wXYq

- WXXrWr (3.5.49)

X +1 X+ 1 = (1—prwflX'Xr
	 (3.5.49)

and latent vectors t and u. are calculated according to NIPALS equations.

The basic properties of the latent vectors can be summarised as follows

(Hoskuldsson, 1988):

a. The latent score vectors as well as the coefficients of the orthogonal

transformation of the predictor data are mutually orthogonal:

trt =0

ww=0 Vi^j

b. The weights w are orthogonal to the loading vectors p:

w"p=0 Vi^j

c. The loadings p are orthogonal in the kernel space of X:

p(xTx)p=o Vi^j

(3.5.50)

(3.5.5 1)

(3.5.52)

Another interesting property of PLS is its ability to handle missing data in the

predictor data set X (Kresta, Ct al., 1994). If any measurements, x, are missing from

a variable j then neither the weight nor the score, whose calculation involved them

can be computed. However, since the NIPALS algorithm, in steps (3) and (5), can be
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XUr
Pr = T

U r Ur
(3.5.55)

viewed as the regression of the j-th variable on the latent score, then the weight and

the score can be calculated as

=
	

(3.5.53)

tr,j =
	

(3.5.54)

where	 = 0 for a missing observation x and	 = 1 otherwise. After

convergence, the loadings of the predictor data set are calculated as:

3.5.3 Selection of the Optimal Number of Latent Dimensions

An important issue associated with the application of Projection to Latent Structures,

is to determine the optimal number of latent dimensions (R) that are required to

provide a satisfactory predictive relationship between the predictor and response data

sets, without overfitting. Usually, with highly correlated variables, the first few latent

dimensions are significant, since the predictive relationship cannot be improved by

retaining more latent dimensions. The most commonly used technique is Cross-

Validation (Wold, 1978; Stone, 1974). The concept of cross-validation is that a

subset of the response data set can be predicted by a PLS model that was built with it

not included. A similar procedure to that for PCA is adopted (section 3.4.3).
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Specifically, the rn-variate predictor and the k-variate response data sets can be

divided into G subsets X g and Yg , respectively (g1,. . .,G). Each of pair of subsets

(Xg and Yg ) is then excluded and a PLS model is built upon the remaining subsets

X and Y. The resulting loadings P can be used to calculate the scores (Tg ) of

the excluded subset X g according to the NIPALS algorithm:

Tg Xg P
	

(3.5.56)

Predictions of Yg can then be obtained by retaining an increasing number (r=1,2,...)

of latent dimensions in the PLS model each time:

(3.5.57)

where bg,j is the regression coefficient, tg,j is the j-th column vector of the matrix of

scores, Tg , of the excluded subset, X g , and q is the j-th column vector of the

matrix of loadings, Q, of the subset, X. For the excluded subset, Yg , the Squared

Prediction Error (SPE) can be calculated for each number (r) of retained latent

variables in the model:

m
SPEg,r	 (3.5.58)

i=1 j=!

where ri g is the number of objects included in the subset X g or Yg , and y ' 5

denote the observed predicted value of an element of the subset Yg respectively.
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IPREss
RMSECVri

V	 n
(3.5.60)

When the calculations for all the subsets are finished, the Prediction Sum of Squares

(PRESS) can be calculated for each number of retained latent dimension:

PRESS = j SPEg,r	 (3.5.59)

An alternative to PRESS is the Root-Mean-Square-Error of Cross-Validation

(RMSECV), which measures the ability of the model to predict the response values

from new values. The RMSECV is related to PRESS as:

where n is the number of objects. The optimum number of latent dimensions that

have to be retained corresponds to a minimum in the overall PRESS or RMSECV.

Equivalently, a normalised form of the PRESS (NPRESS) that is divided by the sum

of squares of the response data set, can be used (Kresta et al., 1991). This can be

calculated for each response variable separately

PRESSr
NPRESSrj =

(bhtjhqJ)2
h=1 i=1

and for the overall model:

PRESSr
NPRESSr r n k

tq
h=1 i=1 j=1

(3.5.6 1)

(3.5.62)

Other cross-validation methods are discussed by Hoskuldsson (1996).
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3.6 Other Multivariate Projection Methods

Apart from PCA and PLS, there are a number of other multivariate projection

methods that can reduce the dimensionality of one or two data sets, but from a

different perspective.

3.6.1. Factor Analysis

Factor Analysis (FA) was developed initially by Charles Spearman in 1904 and its

main field of application is the behavioural sciences and in particular psychology.

Factor Analysis is concerned with whether the covariances or correlations between a

set of observed variables (x i , j=1,...,m) can be explained by a smaller number of

latent variables (fi , i=1,...,k) as

x = A. 1 f +2..J2f2+...+Jkfk	 (3.6.1)

or using matrix notation by:

x=Af+u
	 (3.6.2)

where A is a matrix of fixed coefficients and u is a vector of random errors. Factor

analysis is similar to PCA. PCA is an orthogonal transformation of the original

variables, which does not depend upon an underlying model. On the other hand, FA

is based upon a statistical model and it is more concerned with explaining the

covariance structure of the variables, rather than with explaining the variances.

Moreover, there are a number of assumptions made that are not always realistic but

which have to be satisfied while setting up a FA model.
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3.6.2 Principal Component Regression

Principal Component Regression (PCR) (Massy, 1965) is an extension of PCA that

can be applied to model a response data set (Y) from a predictor data set (X). PCR

comprises two steps:

1. A PCA is performed on the predictor data set and a set of principal components

scores is obtained:

X=TPT
	

(3.6.3)

where T and P are the matrices of scores and loadings, respectively.

2. The response data set is then regressed on the scores of the predictor data set:

Y=TQ T +F
	

(3.6.4)

where Q are the loadings of the response data set and F is the reconstruction error of

Y. The matrix of principal component regression coefficients is defined as:

B=PQT	(3.6.5)

It can be seen that, PCR defines a new set of uncorrelated latent vectors in the space

of X that minimises only variance-covariance matrix XTX but which does not

account for the relationship between X and Y.

3.6.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) can be viewed as a generalisation of PCA
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(Hotelling, 1936). CCA seeks to account for the correlation structure between two

sets of variables generated from the same multivariate data sample. Consider that a

multivariate sample data set X is partitioned into two subsets X 1 and X2 , each

containing measurements on n objects for Pi and P2 variables, respectively. The

problem of canonical correlation is to find a linear combination in each subset:

u=a 1 x 11 +a2x12+...+a x. =aTX1
Pi	 '.Pi

v=b 1 x21 +b2x22+...+b2x22 =bTX2

(3.6.6)

(3.6.7)

so that the correlation between the two linear combinations, corr(u,v), is

maximised, when they are standardised to unit variance, Var(u) = Var(v) = 1.

Several modifications of CCA, such as Redundancy Analysis can be found in the

literature (Basilevsky, 1994; Van den Wallenberg, 1977).

3.6.4 Canonical Variate Analysis

Canonical Variate Analysis (CVA) is a time series modification of Canonical

Correlation Analysis (Akaike, 1976) that has been found to be suited for analysing

sets of autocorrelated data. Applications to-date, have been restricted to the

identification of complex systems that are typical of providing autocorrelated data

(Larimore, 1983; Schaper, et al., 1994). Consider the identification of a dynamic

process model given data comprising the inputs and outputs of a multivariate process.

At any sample time, vectors containing past inputs and outputs and future inputs and

outputs of the process can be formed. CVA seeks to find the optimal linear

combination of the past vectors that allow for the prediction of future vectors. CVA
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is a very promising technique that can handle sets of autocorrelated data and,

therefore, it may address the problems of applying MSPC to autocorrelated data,

where PCA and PLS are inappropriate.

3.7 Multivariate Statistical Analysis of Data Using PCA and PLS

Multivariate statistical projection techniques, such as PCA and PLS, decompose data

sets in an optimal way into two parts:

Z =	 =	 +	 Yr	 = Systenatic part + Residual part	 (3.7.1)
r=1	 r=I	 r=R+1

The systematic part represents the contribution to the data set due to the principal

components or latent variables whilst the residual part represents the part which is

unexplained by the statistical model and usually describes the noise associated with

the data. According to Gnanadesikan and Kettenring (1972), multivariate analysis

can be divided into:

A) The analysis of internal structure

B) The analysis of superimposed or extraneous structure

Therefore, the systematic part of the decomposition of the data sets expresses the

internal structure, whilst the residual part expresses the superimposed structure.
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3.8 Summary

Projection techniques comprise a set of multivariate statistical techniques that can be

used for the purpose of efficiently analysing data sets containing highly correlated

variables. Principal Components Analysis (PCA) can be used for the explanatory

analysis of a data set. The dependencies between the original variables can be

analysed. Furthermore, a new set of uncorrelated variables can be defined in terms of

a linear combination of the original variables. This often leads to a significant

reduction in the dimensionality of the problem and, thus, both visualisation and

interpretation of the data can be more easily achieved. Projection to Latent Structures

(PLS) optimises the relationship between two data sets. Both methods have been

presented and derived using geometrical, mathematical and statistical approaches.

Other techniques that can be used to reduce the dimensionality of a data set, have

also been briefly described.
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Chapter IV

Process Monitoring and Diagnostic Schemes Based

on Multivariate Statistical Process Control

4.1 Introduction

The major aims of process monitoring are the reduction of off-specification

production, the identification of important process disturbances and the early warning

of process or plant faults. The early detection of process faults, followed by the

location of their source, can lead to significant improvements in product quality and

process/plant safety. Consequently, on-line monitoring of process performance has

become an extremely important part of any processing operation, and a very fertile

ground for the theoretical development and industrial deployment of intelligent

process supervisory systems.

This chapter describes the procedures that require to be followed for the successful

implementation of an MSPC-based scheme for process monitoring, fault detection

and diagnosis. MSPC scheme utilises a multivariate statistical model or

representation that is constructed using the statistical projection techniques of PCA

or PLS. However, these techniques are only suitable for continuous processes that

operate at steady state. Furthermore, these techniques investigate the relationships of

all the variables simultaneously and, therefore, they do not take into account the

topology of a complex process that comprises distinct units. Extensions of the

projection techniques of PCA and PLS, namely Multi-Way and Multi-Block, that can
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be used to construct statistical models for processes exhibiting non-linear

characteristics, such as batch and semi-batch processes, and for complex processes

comprising a number of several distinct units, are described. Moreover, all statistical

projection techniques are data-oriented and, as a result, models for robust MSPC-

based schemes can be developed only for processes where there is a wealth of data. A

novel approach for the generation of additional data is also presented. This approach

is based on the inversion of a PLS regression process model, which has the ability to

generate additional process data that is consistent with the minimal process plant

data. Finally, all issues associated with the implementation of MSPC-based schemes

that utilise the presented statistical techniques, are described.

4.2 On-Line Process Monitoring, Fault Detection and Diagnosis

In today's chemical and process industries, plants are becoming larger, more complex

and heavily instrumented. Consequently, it is more difficult to locate the source of a

fault. The requirements to manufacture product with minimal variation around a

desired quality target and to operate safely according to health, safety and

environmental protection regulations, has become essential due to market and public

demand. As a result, consistent and safe production has been proven to be

economically beneficial, whilst plant/process down time and the emission of

pollutants have become even more expensive. Successful operation in terms of high

yield, better product quality and more consistent production at reduced operational

costs and improved health and safety standards, can only be achieved when processes

or plants are operated under well controlled conditions.
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The key to successful operation is efficient on-line process monitoring, which

enables the early warning of process disturbances, process malfunctions or faults.

Where early detection of such problems is followed by the location of their source,

the efficiency and consistency of production can be significantly improved. Schemes

for process monitoring, fault detection and diagnosis can then be used as intelligent

supervisory process systems, which can support process operators and engineers in

dealing with process deviations and identifying the root cause of these deviations.

These schemes are based upon process models built from plant data.

Process models for on-line process performance monitoring and fault diagnosis can

be divided into three general types, according to a number of authors (Himmelblau,

1978; Patton et al., 1989; Nomikos and MacGregor, 1994; Thang et al., 1996),

namely, heuristic models, deterministic models and statistical models.

A heuristic model is based upon the behavioural and casual description of certain

specific phenomena in the process, using probability theory, fuzzy logic and neural

networks. Faults can be detected and diagnosed by causally tracing symptoms back

along their propagation paths or by comparing the predicted behaviour with the

actual behaviour. Systems developed using this kind of models are known as

knowledge-based or expert systems and their development, generally, demands

considerable time and effort.

A deterministic model is based upon the underlying fundamental physical and

chemical model of the process. Faults can possibly be detected and diagnosed under

the assumption that they will cause changes to certain physical parameters, which, in

turn, will lead to changes to some model parameters or states. Systems developed
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using deterministic models are known as model-based systems. Detailed

deterministic models for complex process are difficult to develop. Furthermore, they

have to be complemented with heuristic knowledge or models in order to efficiently

implement the task of fault detection and diagnosis.

A statistical model is based upon the philosophy of Statistical Process Control

(SPC), under which the behaviour of a process can be characterised using data

obtained when the process is in a state of statistical control, that is, when the process

is operating well. Faults can be detected and diagnosed by comparing the actual

process behaviour to the in-statistical-control behaviour and its statistical properties.

Systems developed using statistical models are called MSP C-based systems or

schemes. A statistical model is not as powerful in detecting built-in faults as a

heuristic or deterministic model. However, the only information needed to develop

an MSPC-based scheme for on-line process monitoring and fault detection and

diagnosis is a historical database of past successful process operations.

Approaches to develop on-line process monitoring and faults detection and diagnosis

schemes using heuristic or deterministic models are directional in nature, that is, the

reasons for deviations from the normal behaviour and for faults are built in the

models. Although, they are very powerful approaches, their implementation is limited

by the considerable amount of time and effort required to develop the models. On the

other hand, the statistical approach is in-directional and, most of times, the diagnosis

is left to the process operators and plant engineers, who diagnose the fault and take

appropriate corrective actions, using their process knowledge. However, a statistical

model can be easily developed.
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Having developed a representative model of a process, a monitoring and diagnostic

scheme can be defined, in its most abstract form, as a two-step model-based task

(Stephanopoulos and Han, 1996):

1. Compare the actual behaviour of the process, as given by the values of the process

variables, against the behaviour predicted by the model and generate "residuals",

which reflect the impact of the deviation or fault.

2. Evaluate these "residuals", identify the deviation or fault, that caused the observed

behaviour, through a model-based inversion procedure and, furthermore, identify

the process variables responsible for these faults.

4.3 MSPC-Based Schemes for On-Line Process Monitoring

There are three main steps involved in the development of an MSPC-based process

monitoring scheme, namely, the analysis of the historical process database, the

development of the statistical model/representation and the testing/validation of the

MSP C-based scheme. Having developed the scheme, subsequent process

performance is evaluated using the developed monitoring charts.

4.3.1 Analysis of the Historical Process Database

In any process, computers and data-acquisition systems are assigned the task of

collecting on-line measurements on a number of process variables, on a frequent

basis, process data. On the other hand, measurements that characterise the quality of

the manufactured product may only be recorded infrequently after a laboratory

analysis, quality data. Process data along with the corresponding quality data
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comprises the historical database. The historical database is first analysed, prior to

model development, to check whether the data contains sufficient information to

develop a model and also to detect the presence of non-conforming (abnormal)

operation, i.e. data pre-screening. A number of important issues have to be taken into

consideration in the pre-processing or pre-screening stage of the analysis of the

historical database (Martin et al., 1997):

Missing Data. In the majority of data sets, some measurements on variables will be

unrecorded for some reason. The most common reason is the malfunction of the data-

acquisition system. However, the standard statistical techniques require that the data

matrix is complete prior to performing the analysis. Data can either be missing at

random, for example due to a dropped test-tube, or not-missing at random, for

example due to instrument failure. In situations where measurements are missing at

random (MAR), the data matrix can be modified either by deleting partially observed

objects or variables, or by in-filling with plausible values for the missing

measurements, such as means, medians, last recorded value or, alternatively, a

combination of them. In cases where measurements are missing in a non-random

manner, the data matrix can be modified by estimating the missing values using time

series reconstruction, multiple linear regression, principal component analysis, factor

analysis, etc. (Martin et al. 1997).

Outliers. These are defined as measurements on variables that appear to be

inconsistent with the rest of the data. Outliers can have a major effect on the

statistical analysis. In particular, they can affect the direction of greatest variation and

can impact the performance of the statistical modellrepresentation. Robust statistical
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modelling requires the data to be free of outliers and, thus, the tasks of outlier

identification and removal are of great importance.

Multivariate statistical projection techniques decompose data sets in an optimal way

into a systematic and a residual part, which express the internal and the superimposed

structure of the data, respectively (section 3.7). Outliers may be associated with each

of these structures and it is important to keep their identities as distinct as possible.

Hawkins (1980) refers to these as Type A and Type B outliers, respectively.

• An outlier of Type A refers to an outlier from the assumed distributional form of the

data. It will only be detected when the variation in the variables, in the reduced space

of the retained principal components or latent variables, is greater than that which can

be explained by common cause variation. A measure of common cause variation is

given by Hotelling's T2 statistic, which measures the squared distance of a point

(process observation vector) from the centre of the reduced space (point of "zero"

variation). The important consideration with Type A outliers is that they will be

identified whether or not a projection technique is applied. However, the use of

multivariate statistical projection methods usually enhances the chance of detecting

them.

On the other hand, a Type B outlier refers to a point which differs from the internal

structure of the data characterised by the statistical model. It will be detected when a

totally new type of event occurs, which was not present in the internal structure, and

it is an indication that a particular vector of observations cannot be characterised by

the principal components or latent variables that define the reduced subspace. This

result may occur because too few components were retained to produce a good
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statistical model or because the underlying covariance structure and its associated

vector space, has changed with time, leading to a general lack-of-fit. The appropriate

statistic for identifying this type of outliers is the squared perpendicular distance of

the observation vector from the reduced space usually referred to as the Q-statistic

(Jackson, 1991).

In general, outliers can be identified using the Mahalanobis Distance (MD), a

measure of the distance of a point from the centre of the reduced space, coupled with

the Squared Prediction Error (SPE) or Soft Independent Modelling of Class Analogy

(SIMCA), measures of the squared perpendicular distance of a point from the

reduced space. MD and SIMCA (or SPE) are complementary, since they measure the

goodness-of-fit within and outside the model space, respectively. Alternatively one

can look at the first principal component (Gnanadesikan and Kettenring, 1972) or at

the minor principal component (Hawkins, 1974). A full description of the methods

that can be used for outliers identification is given by Hawkins (1980).

Noise. The presence of noise in the data may obscure what is really happening within

a process and, therefore, the removal of noise is an important task. Small amounts of

noise usually can be removed by application of the statistical techniques of PCA and

PLS. Significant amounts of noise, however, require the application of filtering

techniques. A summary of suitable filtering techniques for process data are presented

by Martin et al. (1997).

Data Transformation. Process data may need to be modified by applying a

mathematical transformation, i.e. the substitution of the values of a variable with the

values of a function of that variable. Typical examples of such mathematical
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functions include the square, the squared root, the inverse, the logarithm or the

exponential function. There are two main reasons for applying mathematical

transformations. The first is that transformations can reduce the non-linearity

inherent within a system. The second reason is that sometimes transformed process

data can produce a more suitable statistical model than the raw process data (Martin

etal. 1997).

Scaling. Two main types of scaling can be applied to process data, namely, mean-

centring and variance scaling. By mean-centring the data, the inherent common

variation is removed prior to data analysis. Furthermore, in the situation where the

original variables are measured in different units, the structure of the statistical model

is dependent upon the essentially arbitrary choice of units of measurements and,

therefore, the model will be biased to variables with large variance. The application

of variance-scaling and mean-centring overcomes these kind of problems (section

3.4.2).

Variable Selection. The data should be checked for constant variables prior to model

development, since variability is required in the data (Sharaf et a!., 1986). Variables

that do not exhibit variability can be detected by examining their standard deviation

or the correlation matrix. They can be deleted from the data set or modified by

adding to them an appropriate amount of noise, in order to ensure that they exhibit

some kind of variability (Morris and Martin, 1997).

The outcome of the previous analysis is a data set of normal operation, where only

common cause process variation is exhibited and observations exhibiting abnormal

operation are clearly identified.

125



4.3.2 Development of Model and MSPC-based Scheme

Principal Component Analysis (PCA) and Projection to Latent Structures (PLS) have

been found to be particularly useful for analysing multivariate sets of highly

correlated data, such as those found in historical databases of chemical processes, and

for developing MSPC-based process monitoring and diagnosing schemes for two

reasons:

1. PCA and PLS are dimensionality reduction techniques and, therefore, process data

can be compressed, so that only the important and relevant information about the

process is retained, while the rest, which usually explains the noise, can be

discarded.

2. PCA and PLS define new latent vectors, which are uncorrelated linear

combinations of the highly correlated original variables. Therefore, when these

uncorrelated vectors are used to apply MSPC, then the overall type I error in the

control charts can be directly computed.

A statistical model/representation of the process can be used as a basis of an on-line

MSPC monitoring scheme. When new process data is collected, it can be evaluated

against the nominal statistical representation and characterised as either nonnal or

abnonnal. Specifically, each time period when new data is collected, scores and

quadratic residuals can be calculated by utilising the statistical process model. The

monitoring procedure can then be implemented by constructing Shewhart-type

control charts (Chapter II) in terms of time series plots of scores and residuals. This

kind of control chart is called process peifonnance evaluation charts, since they are

used to continuously monitor and evaluate the performance of the process. Any

126



efficient and flexible MSPC-based scheme should include plots of scores, which

summarise the internal structure of the process and represent the common cause

process variation, and plots of quadratic residuals, which depict new types of special

event occurring and which are not present in the internal structure. When an unusual

event is detected by these charts, it is possible to analyse it using the contribution of

each variable to a high value of score or quadratic residual and, therefore, it is

possible to find an assignable cause to it. The most commonly used monitoring charts

are those of:

1. Plots of time series of individual process scores

2. Bivariate plots of time series of individual process scores (t 1 vs t , V i ^

3. Plots of the T 2 of the process scores or plots of the D-statistic time series

(Nomikos and MacGregor, 1995):

D = tS't
	

(4.3.1)

where tR is a vector containing the scores of the R retained principal components

or latent variables and S is the covariance matrix of the scores of the historical

process data:

S=TTT
	

(4.3.2)

where T is a matrix (n x R) whose columns are the scores of the historical data on

the R retained components or latent variables.
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4. Time series plot of quadratic residuals, in terms of the Squared Prediction Error

(SPE)

SPE =	 - j)2

	
(4.3.3)

where x and	 are the actual and the model estimate of the value of the j-th

variable, respectively.

The control limits for the previous charts are discussed in a following section.

According to MSPC philosophy, when the quantities are plotted within their control

limits, the process operates normally and exhibits only common cause variation.

4.3.3 Testing of the MSPC-based Scheme

Having developed the MSPC-based scheme, it should be tested in order to ensure

that it can efficiently perform its task. Testing usually involves two steps. In the first

step, the performance of the scheme is evaluated against the data contained in the

historical database, whilst in the second the performance is evaluated against data

sets that are known to belong to periods where unusual process events were detected.

An effective scheme should be able to clearly identify data belonging to both normal

and abnormal operations.

4.3.4 Control Limits for Process Performance Evaluation Charts

The control limits for the process performance evaluation charts are calculated based

upon distributional assumptions. Control limits for individual process scores charts

are constructed based upon the assumption of normality. The scores of the principal
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components or latent variables were found to follow a multivariate normal

distribution (Horswell and Looney, 1992). This result arises from the fact that they

are linear combinations of the process variables and according to the Central Limit

Theorem, they should be approximately normally distributed. Under the assumption

of normality, the control limits for the values of the r-th process score, at a level for

significance cx, can be calculated (Chew, 1968; Hahn and Meeker, 1991; Nomikos

and MacGregor, 1995):

± t fl_1c;/2 S f r

 I	 i'	
(4.3.4)

where n is the number of objects included in the nominal data set, Srefr is the

estimated standard deviation of the values of the r-th process score of the nominal

data set (note that the mean is always 0) and t_ 1 ,2 is the critical value of the student

t-distribution with (n-i) degrees of freedom at a level of significance a/2.

In cases where more than two principal components or latent variables are retained,

then multiple plots of individual process scores make the monitoring procedure more

complicated. However, a few bivariate plots of individual process scores (e.g. t 1 vs

t 2 , t 3 vs t) or process Hotelling's T2 statistic or D statistic based upon all

retained components or latent variables can simplify the procedure:

R 2	 Rt2
T2 = D = tS't =	 =

r=1 S t	 r=1 r
(4.3.5)

where tr and Xr are the score and the variance of the i-th component or latent

variable, respectively, tR is a vector containing the scores on the R retained
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(n_1)2
D ^	 BR/2,(n_R_l)/2.an

(4.3.7)

components or latent variables, S is the covariance matrix of the scores of the

historical process data. It can be seen that, each term in equation (4.3.5) plays an

equal role in the computation of T 2 , irrespective of the amount of variance it

explains, since each t has been scaled by the reciprocal of its variance. This

illustrates one of the problems associated with T 2 when a large number of

components or latent variables are retained and the original variables are highly

correlated or when Z is ill-conditioned. The lower order latent components explain

very little of the variance and, generally, represent random noise. However, dividing

tr scores by their very small variances, even slight deviations, which have almost no

effect on the data sets, will lead to an out-of-control signal in T 2 . Under the

assumption that the scores follow a multivariate distribution with population mean

vector 0 and estimated covariance matrix S (RXR), which is diagonal due to the

orthogonality of the scores, one can derive the D-statistic for Phase I of the

construction of the control charts (Tracy et al., 1992), based upon Hotelling's T

I	 \2

= tS'tR	
n
	 B R/2,(n-R-1)/2
	

(4.3.6)

It can be shown that, the D statistic is distributed as a beta variate. Usually, one

calculates the D statistic after having selected the optimum number of principal

components or latent variables to be retained in the statistical model. The control

limit, at a level of significance a , is given by:
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A joint confidence ellipsoid can, therefore, be defined. The centre of the ellipsoid is

located at 0 and the length of each of its axes, along the direction of the r-th principal

component or latent variable, is given by:

[(n - 1)2	
-1112

±'	 S(r, r)BR/2,(fl_R_l)/2a]
Ln

(4.3.8)

Note that, the eigenvalues of the diagonal covariance matrix S are its diagonal

elements.

In Phase II, a D-statistic value for the score vectors of new process data can be

calculated to test whether the process is still in control. The estimated covariance

matrix is the one calculated in Phase I(S). According to Tracy et al. (1992), the D-

statistic now is distributed as an F variate, as:

(n + 1)(n - 1)R
DS=tS'tR - (n—R)n FR,fl_R

The control limit, for a level of significance a , is given by:

(n + 1)(n -1)R
(n - R)n FR,n_R,a

(4.3.9)

(4.3.10)

Similarly, a joint confidence ellipsoid can be defined. The centre of the ellipsoid is

located at 0 and the length of each of its axes, along the direction of the r-th principal

component or latent variable, is given by:

+[s(r,r) (n + 1)(n - 1)R FRn_Ra]
-	 (n—R)n

(4.3.11)
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The decomposition of T proposed by Mason et al. (1995) is not useful in the case of

the D-statistic since the covariance matrix S is diagonal. The D-statistic can be

decomposed as:

D, =Dsr	
r=i2r
	 (4.3.12)

where Dsr is the unconditional term, which accounts for the r-th principal component

or latent variable. This result is similar to the decomposition already presented in

equation (4.3.5). The unconditional term of the r-th principal component or latent

variable is the squared value of its score, scaled by the reciprocal of its variance.

The residual term, in the decomposition of a data set, can be calculated as follows

(3.7.1):

Z=7r6+	 r=EE=Z	 (4.3.13)
r=1	 r=R+!

where 2 is the estimate of the model or the systematic part of the data set Z and E is

the residual part. The residual term can be tested by means of the quadratic

residuals. For the data contained in the historical database, the quadratic residual is

measured by the Sum of Squares of Residuals (SSR) or Errors (S SE):

SSR 1 =SSE1 =(xj_j)T(xj_j)
	

(4.3.14)

where x1 and	 are the actual and the model estimates of the i-th process object

vector, respectively. The quadratic residual for a new process vector Xflew S

measured by the Squared Prediction Error (SPE), as defined by equation (4.3.3):

m

SPE = (Xnew - new)T(ynew - 
knew)	 ('new,j - new,j)2	 (4.3.15)

j=1

132



Since the process data are mean-centred, the previous expressions represent the sum

of squares of the perpendicular distance of a process object from the R-dimensional

subspace that the statistical model defines and it can be viewed as a measure of the

unstructured fluctuations (noise) that cannot be accounted for the model. The SSR or

SSE are known as the Q statistic and it has been proposed mainly by J.E. Jackson

(Jackson and Mudholkar, 1979; Jackson, 1991).

The confidence region for the quadratic residuals can be constructed by looking at

their underlying distribution (Nomikos and MacGregor, 1995). Let x be an object

vector from an m-variate normal population, m (o, ), and	 be the eigenvalues of

the population variance-covariance matrix . Assume that 	 has full rank. Once the

statistical model has been developed, the quadratic residual for each process vector

will produce an overall fit of this vector to the model. Approximate control limits for

a level of significance a for the quadratic residual are given by:

Qa
	 (Box, 1954)	 (4.3.16)

[ca /2O 2 h	 o2h0(h0_1)
Q = 9 •
	

+	 + ij (Jackson and Mudholkar, 1979) (4.3.17)

where Xa is a chi-squared variate with v degrees of freedom, and ca is normal

variate with the same sign as ho. The remaining quantities are defined as follows:

0 1 = tx1
	 (4.3.18)

j=r+1
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0 2 =
i=r+1

0 3 =
i=r+I

g=02/01

v=0/02

208
0 = - r2

(4.3.19)

(4.3.20)

(4.3.2 1)

(4.3.22)

(4.3.23)

The relationship between the two proposed approximate control limits becomes

clearer if one uses the Wilson-Hilferty approximation for the chi-squared variable

(Evans et a!., 1993) and rewrites Box's equation as follows:

V'3

Qa	 v[i__+ca(_) 2J (4.3.24)

Every term, apart from the second one, approximates the corresponding terms in

equation (4.3.17) and thus:

88•O3	 (4.3.25)

A more convenient way to calculate the parameters O. instead of calculating the

eigenvalues X of the unused or non-significant components, is to estimate them

from the estimated residual covariance matrix (Nomikos and MacGregor, 1995):

E.ET

n—i
	 (4.3.2 6)
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as

0 =trace()
	

(4.3.27)

2 =trace(q2)	
(4.3.28)

0 3 = trace()
	

(4.3.29)

4.4 Fault Detection and Diagnosis Using MSPC Process

Representations

The essential requirement of any fault detection and diagnosis system is to readily

detect abnormal events, to present possible root causes of these events, along with

their possible consequences and recommended actions. However, all these

requirements cannot be fulfilled completely by an empirical model. A wide variety of

techniques and tools, such as pattern recognition, knowledge and rule-based expert

systems, fuzzy logic, hypothesis testing and system identification techniques, usually

have to be combined for an effective system.

There are two important questions that should be answered by any model used for

monitoring and detection purposes. The first question is when is an event a fault. For

statistical models, the answer is given by the MSPC philosophy: an event is a fault

when it is statistically significant, that is, when the value of one or more of its

statistics exceeds its confidence limits. The second question can be stated as whether

the model is able to identify all possible faults. The philosophy of MSPC implies that

a fault that cannot be observed with R components or latent variables, can be

observed using at least (R+l) components or latent variables.
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There are two ways in which a process operation can exhibit deviation from the

statistical model. In the first case, the values of its scores can move outside the

acceptable range of variation, which is defined by the control region. This type of

deviation can be observed in any control chart associated with the scores and

correspond to a Type A outlier. In this case, the model is still valid, but the

magnitude of the process variation is too large. In the second case, the residuals can

increase and the operation can be placed well outside, perpendicular to the reduced

space. This type of deviation corresponds to Type B outlier and can be detected by

the plots of the quadratic residuals. In this case, the model is no longer valid, because

a new event not included in the reference set has occurred and the new process

operation does not project onto the reduced space adequately. Although the

multivariate monitoring procedures and their charts are very powerful ways for

detecting deviations from normal operation, they do not indicate reasons for such

deviations. Therefore, the development of diagnostic tools to identify the most likely

combination of process variables responsible for abnonnal operation is essential.

4.4.1 Fault Diagnosis : Isolating the Responsible Variables

A simple approach to diagnosis might be to develop an expert system based on the

behaviour of the data projections in the principal components or latent variables

space (Zhang et al., 1996). Certain types of faults can be characterised by the

movement of the data projections into specific regions of the latent variable space,

with or without specific directions. This would imply that an expert system could be

developed from the behaviour of the latent variables from past faults.
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More detailed information about possible causes can be obtained by closer

interrogation of the underlying statistical model. Procedures have been proposed by

MacGregor et al. (1994) and Miller et al. (1995). A review of procedures for the

isolation of variables responsible for an out-of-control signal has been presented by

Kourti and MacGregor (1996).

In the case where the unusual event is detected in the D-statistic (T 2 ) plot, the

principal component(s) or latent variable(s) indicative of the out-of-control T 2 signal

can be isolated by examining the normalised scores contributing to T 2 (Kourti and

MacGregor, 1996). Since T 2 , is a summation of the squared normalised process

scores (4.3.5):

T2=

and scores are independent, then the normalised values (trJXr) or their scjuares

(Jackson, 1991) can be plotted. Those principal components or latent variables whose

scores significantly contribute to the out-of control T 2 signal, can be isolated using

Bonferroni-type control limits, as a rough guideline (Kourti and MacGregor, 1996).

In the case when physical interpretation can be assigned to principal components or

latent variables, it is possible to translate an unusual high value of a score into an

assignable cause and, therefore, into corrective action. An alternative approach is to

investigate which of the principal components or latent variables have unusual high

values and to plot the contribution of each variable to them. Using this approach, the

physical interpretation of the identified group of responsible variables is of interest
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rather than the physical interpretation of each principal component or latent variable

(Miller, et al., 1995; MacGregor, 1994; Kourti and MacGregor, 1996).

Having detected an unusual event from a quadratic residual plot or process score(s)

plot, the contributions of the individual variables can be examined and the variables

indicative of the problem can be found by using contribution plots. The quadratic

residual calculated for the purpose of detecting faults, is expressed in terms of the

Squared Prediction Error (SPE). Consider the case where an unusual event is

detected at time point k on an SPE plot. The Square Prediction Error of a particular

process vector Xk is the sum of the squared prediction errors of all the m individual

variables:

SPEk	 j,k)

	
(4.4.1)

where XJk and	 are the observed and predicted value of the j-th variable at the

time point k. Therefore, the individual contribution of the j-th variable to the SPE

value is its prediction error:

PE J,k	 X Jk - X j , k	 - (4.4.2)

The predictions of each variable at any point in time, are given by either the PCA or

PLS model:

X jk =	 t rkPrjk
	

(4.4.3)
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where trk is the predicted score of the r-th principal component or latent variable at

time point k, and Pr.j,k is an element of the loading vector of the r-th principal

component or latent variable, corresponding to the j-th variable at time point k.

In the case where an unusual event is detected at a particular time point k on a

process score plot, then the variable or group of variables that have a significant

contribution, must be identified. Let the importance of a process variable (j) at a time

point (k), to the r-th principal component or latent variable, be 	 In PCA, r.k.j

is the element of the loading vector Pr of the r-th principal component for the j-th

variable at time point k. Similarly, in PLS, Wr,jcj is the element of the loading vector

W r of the r-th latent variable for the j-th variable at time point k. In ordinary PCA

and PLS, the prediction of the scores of each principal component or latent variable,

respectively, at each time point k, is the sum of the product of the current value of the

process variables times their importance to the principal component or latent variable

under consideration:

trk = X kl CO rkI + • . +
	

(4.4.4)

The individual contribution of the j-th variable to the score value is given by:

VC r,j,k = X k,j 0r,k,j
	 (4.4.5)

and, therefore, the scores can be written as the sum of the contributions of each

individual variable:

t rk = VCflk + VCr2k	 .. + VCrmk	 (4.4.6)
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In the previous summation, it can be seen that, only the individual variables

contributions that have the same sign as the score are significant in driving the value

of the score high and, therefore, only these contributions should be investigated

(Kourti and MacGregor, 1996). However, in the case where the value of the score is

squared, as in the interpretation of an out-of-control T 2 signal, then contributions

from all the variables have to be taken into account. In the case where more than one

score exhibits high values, it has been suggested by Kourti and MacGregor (1996) to

calculate the total contribution of an individual variable, over all scores (G) with

significant high values:

TVCJk = VCgj,	 (4.4.7)

Furthermore, the contribution of the j-th process variable to the change in the value

of the r-th process score between two time points k 1 and k2 can be computed as the

difference between the individual variables contributions in those particular time

points:

VCrjk2 - VCrjk	 (4.4.8)

Variables contributions to Prediction Errors (PE) or scores can be represented

graphically, providing in this way diagnostic charts (Figures 4.1 and 4.2,

respectively). Specifically, whenever an event is detected in an on-line monitoring

chart, one can plot the contribution to Prediction Error or scores of the individual

process variables to locate which variable or which group of variables are no longer

consistent with normal operating conditions and have a significant contribution to the

out-of-control signal and, therefore, are indicative of the event. This can be
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implemented by plotting the instantaneous contributions at the time point where the

unusual event was detected (Figure 4.1), or differential contributions between two

time points where the process deviated from normal operation (Figure 4.2).

Differential contribution plots are more informative, since they reveal the driving

force of the deviation.

It can be seen that, the diagnostic charts are qualitative diagnostic tools, since the

statistical model used by the MSPC-based scheme, is not a cause and effect model.

Although diagnostic charts do not clearly reveal the cause of the event, they can

interrogate the underlying statistical model for possible reasons of faults and allow

for corrective actions, that is to allow operators or engineers to response accordingly,

using their process knowledge or even an expert system, to deduce possible

assignable causes.

Prediction Errors In Individual Process Vars Contributing to SPEx at Time Point 2

1	 2	 3	 4	 5
No. of Process Variables

Figure 4.1. Typical instantaneous contributions plot
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Figure 4.2. Typical differential contributions plot

4.5 Extensions of PCA and PLS Techniques

PCA and PLS techniques are more suitable for continuous processes that operate at

steady state. In today's competitive atmosphere, the chemical and process industries

are being forced to adapt to frequently changing technology and market conditions.

This trend has lead to industry moving away from continuous operations into flexible

batch and semi-batch modes of operation which focus on high quality, low volume

production. Batch and semi-batch modes of operation cover a wide range of

important chemical processes. Examples of batch processes include the production of

polymers, separation and transformation processes such as distillation and

crystallisation, fermentation, injection-molding processes and the manufacture of

various specialty chemicals, biochemicals and pharmaceuticals. The main features,
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which characterise batch processes, are:

- Finite duration

- Highly non-linear behaviour and dynamic state operation

- Time variability (within batch variation)

- Inaccurate repeatability (batch to batch variation)

- Frequently changing process technology

- Flexibility in producing a variety of low volume and higher-added value products

Extensions of the projection techniques of PCA and PLS, namely, Multi-Way PCA

(MPCA) and Multi-Way PLS (MPLS) have been proposed to construct statistical

models for processes exhibiting non-linear characteristics, such as these found in

batch and semi-batch processes (Nomikos and MacGregor, 1994; 1994b; 1995).

Additionally, industrial plants consist of a number of processes that are inter-

connected. PCA and PLS provide a working approach to the modelling of these high-

dimensional data sets, but the interpretation of the results is not always

straightforward, since each latent variable contains contributions from many

variables from different units and sections. Furthermore, these techniques investigate

the relationships of all the variables simultaneously and, therefore, they do not take

into account the topology of a complex process that comprises distinct units, which

are not necessary related. In situations where there are many variables there is always

a strong temptation to reduce the number of process variables. However, a reduction

in the number of variables often removes information, makes the interpretation

misleading and increases the risk of developing spurious statistical models.

Alternatively, one can divide the variables into conceptually meaningful blocks and

the appropriate extensions of the statistical projection techniques, namely, Multi-

143



Block PCA and Multi-Block PLS techniques can be applied. These are capable of

analysing and modelling this kind of blocked data (MacGregor et al., 1994; Wangen

and Kowaiski, 1988; WoId et a!., 1996).

MSPC-based schemes have typically been applied to industrial processes where large

amounts of historical data have been collected, since the statistical projection

techniques are data-oriented. However, difficulties can arise during the development

of a robust monitoring scheme when there is only minimal plant data. There are many

industrial situations where only a few data points are available from either an

experimental design or initial product commissioning tests, which can be used to

establish appropriate plant operating conditions. A major strategic challenge is

therefore to build effective MSPC-based schemes based upon minimal 'design'

process data. By utilising this 'design' data, sufficient new pseudo process data can

be generated to establish an MSPC-based process monitoring scheme through Inverse

Projection to Latent Structures (IPLS).

4.5.1 Multi-Way Extension of PCA and PLS

Data sets that form greater than two-way arrays are commonly encountered in

experimental studies. Several multi-dimensional statistical techniques have been

proposed for decomposing these multi-way arrays, such as canonical correlation,

three-mode factor analysis, tensor rank and PARAFAC model, e.g. Zeng and Hopke

(1990) Smilde and Doornbos (1991) Sanchez and Kowaiski (1990), Smilde (1992).

These techniques have been successfully applied in image analysis (Geladi et al.,

1989) and in a few cases in the field of chemometrics (Smilde and Doornbos, 1991).

Both Multi-Way Principal Components Analysis (MPCA) and Multi-Way Projection
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to Latent Structures (MPLS) were introduced by Wold et al. (1987) and they have

been shown to be particularly useful for monitoring batch processes (Nomikos and

MacGregor, 1994; 1994b). Multi-Way PCA (MPCA) and Multi-Way PLS (MPLS)

are consistent in concept and algorithms to PCA and PLS, respectively, and,

therefore, have the same goals and benefits. The relation between MPCA and PCA is

that MPCA is equivalent to performing PCA on a large two-way array formed by

unfolding the three-way data array. Similarly, a simple way to view MPLS is to

consider unfolding the three-dimensional arrays X and Y into two dimensional arrays

and performing PLS.

Data sets from batch processes form three-way arrays. Consider the case when there

is available a historical database of I batches, where J process variables and L quality

variables were measured over K and M time intervals, respectively, throughout the

batch duration. All this information can be arranged into two three-way data sets X

(Ix J x K) and Y (Ix Lx M). Usually, the quality data set Y is two-dimensional, since

quality measurements are available only at the end of the batch operation. There are

three possible ways to unfold the three-way arrays. Usually, the array is unfolded in

such a way as to put each of its vertical slices (Ix J) side by side to the right, starting

with the one corresponding to the first time interval (Nomikos and MacGregor,

1994). This is the most meaningful approach since it allows the analysis of the

variability between batches, i.e. summarising the information in the data with respect

to both the variables and their time variation. Concerning the previous arrangement,

it can be seen that different batches are organised along the vertical axis, variables

along the horizontal axis and finally their time evolution occupies the third
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dimension of the arrays. Figure 4.3 illustrates the procedure of unfolding the three-

way data sets in MPCA and MPLS.

MPCA

Ti/

•	 '
Batches

'I_
Variables J

MPLS

I, j
Ii I
I,
Ii I
III

Batches
III
I, i

Variables

PCA

k=1	 k=2	 k=K

I

PLS i

V

1=1	 I	 1=2	 I	 I	 l=L

I

Figure 4.3 The procedure of unfolding three-way arrays

The objective of MPCA is to decompose the three-way array X into a series of

principal components comprising score vectors (ti) and loading matrices	 or

unfolded as vectors (Pr), plus a residual E, which is as small as possible, in a least
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squares sense:

R	 R

X = tr®Pr+E or X=trP;T'+E	 (4.5.1)
r=I	 r=1

This decomposition is in accordance with the principles of PCA. It separates the data

block in an optimal way into two parts. The residual part (E) describes the noise

added to the data and the systematic part ( trP), which expresses the data set as

one fraction (tr) related only to batches and a second fraction (Pr) related to

variables and their time variation. In Multiway PLS (PLS), X and Y arrays are

decomposed into a series of latent variables comprising score vectors and loading

matrices, plus residual matrices E and F:

Xtr ®1 r +E or XtrP +E
	

(4.5.2)

Y = tr ®Qr +F or Y=tq ^F
	

(4.5.3)

Again, these decompositions are in accordance with the principles of PLS. The score

vectors (t i ) are orthogonal in both methods, whilst the loading (P) and weight (W)

matrices or unfolded vectors (Pr and Wr, respectively) are orthonormal. Each

element of a score vector, corresponds to a single batch and describes the overall

variability of this batch with respect to the other batches in the database, throughout

the batch duration. Each loading vector or weight matrix, summarises the time

variation of the measurement variables about their average trajectories and provides

the direction of maximum variability and give a simpler description of the covariance
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structure of the data. The decomposition of data sets that is performed by PCA and

PLS, are shown in Figure 4.4.

Figure 4.4 Arrangement and decomposition of the three-way arrays by MPCA and

MPLS (Nomikos and MacGregor, 1994).

4.5.1.1 MSP C-based Schemes Using Multiway- PCA and PLS

In this section, MSPC-based procedures for the on-line process monitoring, fault

detection and diagnosis of batch processes in real-time, using statistical models of

MPCA and MPLS are presented. The philosophy is very similar to that of traditional

SPC methods, where the future behaviour of the process is compared against a

reference distribution based on past process history. The reference distribution is the

history of past successful batches that have produced good quality product. The

MPCA or MPLS model is built from the reference batches which characterise normal
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operation of the process and extracts all the information needed to monitor the

behaviour of a new batch.

Mean-centring is usually applied to the data prior to performing a MPCA or MPLS

analysis. The mean of each column of the X and Y data set is subtracted from each

data element of this column. The way in which the X. and Y matrices are unfolded

combined with mean-centring is very important since it results in the subtraction of

the mean trajectory of each variable and, thereby, in the removal of the main non-

linear component in the data. A PCA performed on this mean corrected data is,

therefore, a study of the variation in the time trajectories of all the variables in all the

batches about their mean trajectories (Nomikos and MacGregor, 1995). Furthermore,

by scaling the variables in each column of X and Y to unit variance, one can handle

differences in the measurement units between variables and give equal weight to each

variable at each time interval.

The loading matrix Pr (JxK) in MPCA or the loading matrices Pr and Qr (LXM) and

weight matrix Wr (JxK) in MPLS contain most of the structural information about

how the variable measurements deviate from their average trajectories under normal

operation. If a new batch is to be tested for unusual behaviour, one can use these

matrices (or the resulting unfolded vectors) to check the hypothesis by obtaining the

predicted scores and residuals for this batch. Consider that two data sets Xnew (<j)

and new (LxM), containing measurements on the process variables and quality

variables, respectively, from a new batch are obtained.
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- XnewW

(pTW)
(4.5.5)

The procedure is as follows

1. Unfold the Xnew data matrix to a row vector X new of dimension JK and the Y

data matrix to a row vector Ynew of dimension ML.

2. Mean-centre and scale the X new and flew data sets to unit variance, using the

means and standard deviations of the reference database.

3. Predict the vector of scores for all the retained principal components (R) of the

MPCA model as:

jT XP
	

(4.5.4)

or the vector of scores for all the retained latent dimensions (R) of the MPLS

model as (section 4.5.3.1, equation (4.5.34)):

where P and W are (J . KxR) matrices, whose columns are the loading Pr arid

weight Wr vectors, respectively.

4. Calculate the row vector (lxJ . K) of the residuals of the new batch:

e = Xnew - 
jTpT	

(4.5.6).

5. In the case where an MPLS model is used, the row vector 5 (lxM•L) of

predictions of the M quality variables at each time point 1 (I=1,..,L) and the row

vector of residuals (f) can be obtained as:

Ynew
	 (4.5.7)

= Ynew - Sinew
	 (4.5.8)

where Q is a (M•LXR) matrix, whose columns are the loading q vectors.
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If the scores of this new batch lie inside the normal operational region and the

residuals are small, then it can be concluded that, its operation is similar to that of the

reference database of normal batch operation.

A problem arises when one wants to perform the test sequentially in time, as the new

batch evolves, that is to on-line monitor the batch .operation (steps 1-5). In this

situation, the data set X ew is not complete until the end of the batch. At each time

interval (k) during the batch, the matrix X new only has the measurements up to that

time interval. The rest of the X new block from the current time interval (k) to the end

of the batch (K) is still undefined. Several ways to overcome this problem have been

proposed by Nomikos and MacGregor (1995):

1. Zero Deviations Method: This method assumes that the future measurements are

in perfect accordance with their mean trajectories as calculated from the reference

database. The assumption behind this method is that the batch will continue normally

for the rest of its duration with no deviations. Recalling that the X new data set after

scaling contains the deviations of the measurements from their mean trajectories, one

has to fill the unknown measurements with zeros.

2. Current Deviations Method: This method assumes that the future deviations from

the mean trajectories will remain constant at the currently exhibited deviations at

time interval k, for the rest of the duration of the batch. The assumption behind this

method is that the same errors will persist for the rest of the batch. One, therefore,

has to fill the unknown measurements at time intervals k+1,. . .K, with the values that

the variables have at the time interval k.
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3. Projection Method: The projection method does not fill in the unknown part of the

data set Xnew, but rather, uses the ability of PCA or PLS to handle missing data.

Considering the unknown future measurements as missing values from an object in

MPCA or MPLS, one can use the principal components of the MPCA model or the

latent variables of the MPLS model to predict these missing values. However, the

estimates of the missing values have to be consistent with the already observed

values up to the time interval k and with the correlation structure of the measured

variables in the database, as defined by the loading matrix (P) of the MPCA model or

the matrix of weights (W) of the MPLS model. This can be done by projecting the

already known measurements down onto the reduced space and calculating the scores

at each time interval k using the MPCA model as:

tk = (PPk )' Pj[Xflew
	

(4.5.9)

or using the MPLS model as:

t k = (WlWk)'W[Xnewk
	 (4.5.10)

where tk is a vector containing the scores of the retained principal components or

latent variables at time interval k, X newk is a vector containing the measurements that

are known up to the time interval k, k (k .MxR) and Wk (k.MxR) are matrices

having as columns all the elements of the loading vectors (Pr) and weight vectors

( Wr), respectively, up to the time interval k, from all the retained principal

components or latent variables, respectively (r=1,. . .,R). The matrices 	 and
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WWk are always well-conditioned because of the orthogonality property of the

loading and weight vectors, respectively.

4. Multi-Model Method : This last method is the most valid way to address the

previously defined problem. One can build different MPCA or MPLS models, each

one up to the time interval k, using only the information available up to that time.

The loading vectors (Prk) for each principal component r and the weight vectors

( W rk) for latent variable, respectively, at each time interval k, should be stored. The

scores at each time interval k can then be calculated by applying the corresponding

loading or weight vectors in equations (4.5.4) or (4.5.5), respectively. This approach

supposes that the appropriate number of principal components or latent variables of

the overall MPCA or MPLS model, respectively, is also sufficient for each of these

local-in-time and individual models.

To monitor the progress of a new batch, as new measurements become available, the

t-scores can be calculated using any of the methods described above. The scores

describe the overall performance of the batch. For the three first methods, the best

way to track the particular instant that something behaves differently is to use the

Squared Prediction Error associated with the latest on-line measurements at time

interval k from the process:

SPEk =	 e(c)2
	

(4.5.11)
c=(k-1)m+1

The Sum of Squared Residuals (or Q-Residuals) over all time periods is not a good

indicator since it does not represent the instantaneous perpendicular distance of a
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batch from the reduced space as does the SPE, and it is affected by errors associated

with the in-filling or projection of the future unknown measurements in the data

block X new • However, sometimes, in order to avoid repetitive time consuming

computations involved in the calculation of the control limit of the SPE at each time

point of a process monitoring procedure, it is better to use Box's equation (4.3.16)

and to try to approximate g and h by matching the moments of the g distribution

(Nomikos and MacGregor, 1995). Let m and u be the estimated mean and variance of

the quadratic residuals at a particular interval k, then g and v are approximated by:

g= 
U	

(4.5.12)

v= 2m	
(4.5.13)

U

and, therefore, the control limit of the quadratic residuals (SPE) at a level of

significance and for each time interval k are given by:

SPEa	 X2m2/ucx
	 (4.5.14)

The matching moments method is susceptible to error when there are outliers in the

data or the number of quadratic residual values is small. However, outliers will have

been removed during the pre-treatment of the historical process data and,

furthermore, quadratic residual values used to estimate the control limit at each time

point, can be fairly large, in this case a smoothing moving window procedure can

then be applied (Nomikos and MacGregor, 1995).
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If the Multi-Model method is used, then the Q-Residual is the k-th instantaneous

perpendicular distance of the batch from the reduced space and, therefore, the SPE at

the time interval k, should be based upon the Sum of Squares Residuals:

SPE k =SSR k = e(c) 2	(4.5.15)

where SSR k is the Sum of Squared Residuals for the MPCA or MPLS model that

corresponds to the k-th time point, e is the vector of residuals for the batch currently

being monitored and M is the number of the process variables. Any unusual

behaviour can be detected by the deviation of the process scores or the SPE from the -

normal operation as defined by its confidence limits.

Nomikos and MacGregor (1995) have discussed in detail the four methods. The Zero

Deviations method has the advantage of a simple graphical representation of the

operation of the batch in the score plots and rapid detection of an abnormality in the

SPE plots. For a new batch, operation always starts from the origin of the scores in

the reduced space, that is zero, and progressively moves out. The drawback of this

method is that the scores are not very sensitive, especially at the start of the batch run

to detect abnormal operation. Under the assumptions of the Current Deviations

method, the SPE chart is not as sensitive as in the Zero Deviations method, but the

scores identify the occurrence of an abnormality more quickly. The Projection

method has the greatest advantage of giving scores very close to their actual final

values if at least 10% of the history of a new batch is known, especially for normal

operation. Caution must be used at the beginning of a new batch, where this method

may give large and unexplained scores values, since there is little information to

work with. The Multi-Model method is the most valid approach, but the
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computational efforts and storage requirements are extremely large except in

situations where the data blocks are small, due to short duration of the batch process,

relatively small numbers of process variables or relatively small numbers of batches

included in the reference database. The shapes of the control limits for the process

scores and the SPE, are presented in Figure 4.5, for the four methods. The method

that should be used depends upon the specific characteristics of the process under

consideration. It can be seen that, if the given batch process does not exhibit

persistent disturbances or variables with discontinuities in their trajectories, then it is

better to use the Zero Deviation method. If there is a prior knowledge that the

disturbances in the given process are persistent, then it is better to use the Current

Deviations method. The projection method should be used whenever the trajectories

of the process measurements do not exhibit frequent discontinuities or early

deviations, whilst the Multi-Model method should be used when excessive

computations and storage requirements are not an issue. In general, as has been

proposed by Nomikos and MacGregor (1995), one can use a combination of the

above methods, switching after some time to another one method, and, in this way, to

build in some engineering knowledge into the monitoring scheme.

Fault detection and diagnosis in MSPC-based monitoring schemes are similar to

those implemented for PCA and PLS models The only difference is that prediction of

the scores is based upon the overall process operation duration. Therefore, the scores

are calculated as the sum of the contribution of each process variable on a cumulative

basis up to the time point of interest (k):

t r ,k 	 Xcj 0r,c,j
	

(4.5.16)
j=1 c=1
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Figure 4.5 Control limits of scores and SPE for the four approaches (from top to

bottom: zero deviations, current deviations, projection, multi-model)
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The contribution of each variable is, therefore, given by:

VCJk	 r,c,j
	 (4.5.17)

where Wrcj is the importance of the j-the variable on the r-th principal component or

latent vector at time point c (c^k).

MPCA and MPLS techniques can be used to construct statistical models for any

process or stage of a process where process data sets can take the form of a three-way

arrays, such as batch and semi-batch processes.

4.5.2 Multi-Block Extensions of PCA and PLS

In the case where there is a large number of data items (objects or variables) to

interpret or analyse, there are two commonly used approaches (Wold et al., 1996).

The first approach, sampling, is where only a few data items are selected and looked

at in detail, the remainders are neglected. The second approach is to divide data items

into groups, blocks, categories or clusters and then to consider these groups as super-

items. This approach is called grouping or blocking. Sampling is usually applied to

cases when there are many variables, while blocking is applied when there are many

objects.

Multiple Linear Regression (MLR) is the most commonly applied method for the

statistical modelling of data. MLR requires more objects than variables in order to

provide a well-conditioned matrix of input data. This has created the tendency to

drastically reduce the number of predictor variables in a model. The reduction of

variables in regression (sampling) is usually made by deleting those that have small
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blocked data set can be uniquely designated as a predictor or response set. On the

other hand, Interconnected Multi-Block PLS (IMB-PLS) considers that there is more

than one predictive relationships between different groups of predictor and response

blocked data sets and, furthermore, that a blocked data set can be both a predictor and

a response. However, in both approaches the variables are grouped according to their

similarity or according to their origin or location in the process.

Multi-Block PCA (MBPCA) is an extension of PCA that can be derived in a similar

way to that of Hierarchical Multi-Block PLS (HMB-PLS) (Cheng and McAvoy,

1996). It was originally proposed by Wold et al. (1987b). Using M.BPCA, a data set

X can be broken down into a set of A subsets Xa (a=1,. . .,A) by grouping the

original process variables in a meaningful way. For each subset Xa, a score vector

(tar) and a loading vector (P a,r) can be calculated for each principal component (r),

according to the NTPALS algorithm. The scores from all the subsets are then

collected into a composite matrix Tr and a consensus score vector (t r ) and loading

vector (Pr) can be calculated by applying standard PCA to Tr. This procedure is

repeated for the maximum number of principal components that can be extracted

from the subsets Xa, that is equal to the minimum rank of the subsets X a . Similarly,

in the Hierarchical Multi-Block PLS (HMB-PLS), the two data sets X and Y are

broken down into A Xa (a=1,. . .,A) subsets and B	 b (b=1,. ..,B) subsets,

respectively. For each latent dimension (r), the loading and score vectors of each

subsets can be calculated. The scores tar and Ubr of the Xa and b subsets,

respectively, are collected into two composites matrices Tr and Ur. Consensus

vectors of scores tr and Ur can then be calculated by performing a NIPALS-PLS
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T
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I

loop between these composite matrices. This procedure is illustrated for A=3 and

B=2 in Figure 4.6 and it can be repeated for the maximum number of latent variables

that can be extracted from the subsets Xa and b' that is equal to the minimum of

the ranks of the subsets Xa and b•

t ir	 t2r
	 t3r
	 Ui,r	 U2,r

Xi 

H_ 
X3

	

H' H 
Y2

Pi,	 P2,r
	 P3,r
	 q i,r	 q2,r

Figure 4.6 Hierarchical Multi-Block PLS (Wold et al., 1996).

Interconnected Multi-Block PLS (IMB-PLS) is especially suited for large complex

systems, which consist of many distinct sections that are connected by a few

variables (Wangen and Kowalski, 1988). In complex systems, the system can be

broken into several blocks, each one corresponding to a distinct section of the

system. Using the IMB-PLS technique, the data sets X and Y are pooled together in a

data set Z, which is broken up into A subsets Za (a=1,. . .,A). Having calculated the

loading and score vectors of each subset Za, a predictive relationship is defined

every time a subset Z g predicts or is predicted by one or more other subsets Zh
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(1^g^A; 1^h^A; g ^ h) and, therefore, more than one composite matrix T and U and

sets of consensus score and loading vectors are defined. The advantage of IMIB-PLS

is mainly to allow easier interpretation of the data by looking at smaller more

meaningful blocks and at predictive relationship between blocks. Figure 4.7

illustrates a typical structure of interconnected data blocks.

Figure 4.7 A typical Interconnected Multi-Block PLS structure

4.5.2.1 Interconnected Multi-Block PLS

Interconnected Multi-Block PLS (IMIB-PLS) is similar to PLS. However, there are

two main differences between the two techniques:

a. PLS models the predictive relationship between two blocks of data, whilst the

IMB-PLS models the predictive relationship(s) between more than two data

blocks.

b. In IMB-PLS, a block can predict more than one block and can be predicted by

more than one block. In PLS, a block can only predict one block or can only be

predicted by one block.
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The second difference is of great importance and differentiates the NIPALS

algorithm used in PLS, from the algorithm used in IMB-PLS. Having described the

basic concepts of PLS in Chapter ifi, it is, now, possible to focus upon the structure

of the NIPALS algorithm and, specifically, on those aspects of it which allow it to be

extended to handle more than two blocks of data.

PLS - NIPALS algorithm

The objective of PLS is to build a linear relationship between a block (Y), which

comprises measurements of the dependent variables, and a block (X), which contains

measurements of the independent variables. The words predictor and predictee are

used to define X and Y blocks, respectively. The basic steps of the NIPALS

algorithm (section 3.5) for the calculation of each latent variable can be summarised

as follows (NIPALS variation adopted from Hoskuldsson, 1988):

1. Initialisation

2. Backward phase - Calculation of scores (t) of the predictor block (X)

2a. Regression of predictee's score (u) on predictor. Predictor's weight (w) is

calculated to be:

WT=UTX

2b. Regression of predictor's weight on predictor. Predictor's score (t) is calculated

to be:

t=Xw

3. Forward phase - Calculation of scores (u) of the predictee block (Y)
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3a. Regression of predictor's score (t) on predictee. Predictee's weight (c) is

calculated as:

cT=tTY

3b. Regression of predictee's weight on predictee. Predictee's score (u) is calculated

as

u=Yc

4. Convergence check

5. Calculation of loadings for both blocks

6. Calculation of regression coefficients

7. Calculation of residual matrices

In the previous algorithm the most important steps are the backward and the forward

phase where the scores are calculated (steps 2 and 3). In these steps:

the original high-dimensional space is projected down onto new low-dimensional

subspace by orthogonal projection

the orthogonal properties of the latent vectors are derived.

The scores of each block are the projections of the block down onto the latent

dimensions. Therefore, scores represent their corresponding blocks in the reduced

subspace. Furthermore, it can be seen that:

• in the backward phase (step 2a), the u-scores, which are the representation of the

predictee block (Y) in the subspace are regressed upon the predictor block (X)

• in the forward phase (step 3a), the t-scores, which are the representation of the

predictor block (X) in the subspace are regressed upon the predictee block (Y)
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Moreover, the NIPALS algorithm iterates from the right-end (predictee) block to the

left-end (predictor) block during the backward phase and vice versa during the

forward phase. The dimension of the vectors in the algorithm can be depicted as

follows:

t

x

wT

Figure 4.8 Dimension of vectors calculated by NIPALS (Hoskuldsson, 1988).

IMB-PLS - NIPALS algorithm

The most important difference between the IMB-PLS and the PLS methods, as

previously stated, is that a block in IMB-PLS can predict or be predicted by more

than one of the other blocks. The iterative algorithm used to calculate the latent

variables in IMB-PLS is an extension of the NIPALS algorithm. The algorithm

iterates through all the blocks from right to left and then from left to right, during the

backward and the forward phases, respectively. Analogous to the PLS-NIPALS, the

words predictor and predictee will indicate blocks that predict and blocks that are

predicted, respectively. Furthermore, a "X" with the appropriate subscript, will

denote any predictor or predictee data block.

The NIPALS algorithm models the relationship between two blocks. As a result,

when a block is a predictor or a predictee of more than one block, then the algorithm
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needs to include additional steps to account for these additional blocks. In the case

where a block is the predictor of only one block in the backward phase or the

predictee of one block only in the forward case, then the algorithm proceeds as in

PLS (steps 2a, 2b and 3a, 3b, respectively). In the case of a multiple predictor or

predictee block (X 0 ), the NIPALS algorithm used in PLS is not applicable. In order

to overcome this difficulty, all predictees or predictors blocks are compressed into

one block. The most meaningful way to compress them is to utilise their scores, since

they are representative of the blocks in the reduced space, and to combine them into a

new composite block. This block is then used as the predictee or the predictor in the

calculations. However, in order to apply NIPALS at this stage, a representation of the

composite block in the reduced space needs to be calculated. Therefore, in the case of

a multiple predictor or predictee block (X 0 ), the backward phase of the NIPALS

algorithm has to be modified as follows:

2. Backward phase - Calculation of the scores (t) of a multiple predictor block XG

(predicts more than one block)

2a. Combine all the u-scores of the blocks that X0 predicts into a new composite

matrix U. Define U as the predictee block.

2b. Calculate the scores of the predictee block - (i). Regress the predictor scores (t)

on the predictee (U). The predictee weights (ce) can then be calculated by:

= tTU

2c. Calculate the scores of the predictee block - (ii). Regress the predictee weights

(ce) on the predictee (U). The predictee scores (u 0 ) can be calculated as:

u = Uc
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2d. Regress the predictee scores (un) on the predictor. Calculate the predictor

weights (w) as

WI UX0

2e. Regress the predictor weights on the predictor. Calculate the predictor scores (t)

as:

t=XGW

An example of a backward phase, where block XG predicts blocks XK and X L , is

illustrated in Figure 4.9.

V
XG

U
XK

Li

XL

____	 U
t	 Uj	 UKUL

X0 

wT

Figure 4.9 Adapted backward phase in NIPALS algorithm used in IIMB-PLS.

Similarly, the forward phase of NIPALS algorithm has accordingly to be modified:

3. Forward phase - Calculation of scores (u) of a multiple predictee block (X0)

3a. Combine all the scores (t) of the blocks that predict X 0 into a new consensus

matrix T. Now, define T as the predictor block.
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3b. Calculate the scores of the predictor block - (i). Regress the predictee scores (u)

on the predictor (T) and calculate the predictor weights (WT) as:

= UTT

3c. Calculate the scores of the predictor block - (ii). Regress the predictor weights

(wT ) on the predictor (T) and calculate the predictor scores ( tT) as:

tT = TWT

3d. Regress the predictor scores (tT) on predictee. Calculate the predictee weights (c)

as follows:

CI = tTX0

3e. Regress the predictee weights on the predictee. Calculate the predictee's scores

(u) as follows:

u = XGC

An example of a backward phase, where block X G is predicted by blocks XK and

X L, is illustrated in Figure 4.10.

XKJ

tK

XL	

XG

tL

3

T
tT

tK tL	 I	 I lu
____	 XG

cT

Figure 4.10 Adapted forward phase in NIPALS algorithm used in JMB-PLS.
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4.5.2.1 Issues Concerning the Multi-Block Techniques

The major problem arising in the implementation of Multi-Block techniques is the

selection of the structure of the system, that is the selection of variables to be

included in the same block, since it is not something for which specific rules can

easily be defined. The choice of blocks will, generally, depend upon engineering

judgement, prior knowledge and the objectives of the study. There are two practical

approaches to grouping variables. Using the first approach, blocks should correspond

as closely as possible to distinct sections of the system, where there is maximum

coupling between all variables within a block and minimum coupling between

variables in different blocks. Variables associated with streams connecting two or

more blocks, such as feed and recycle streams, should be included in all these blocks.

Using the second approach, variables of the same type that measure the same

physical quantity, such as temperatures or pressures, should be included in the same

block. However, all possible blockings should be compared in order to select the

most efficient, since poor blocking can lead to spurious models that are unable to

perform their task.

Another important issue is the number of control charts that process operators have to

monitor. Using an MSPC-based scheme that utilises a statistical model of the

ordinary PLS technique, one should at least monitor 2-3 control charts (latent

variables plots and SPE plot). In the case of an inter-connected process comprising

several distinct processing units, an efficient approach is to build a PLS model for

each separate unit. As a result, this increases the number of control charts that

operators are required to monitor. However, by applying IMB-PLS the number of

control charts is reduced. Specifically, the blocks that predict a multiple predictee
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block can be replaced by their composite matrix, since as will be shown in the

subsequent chapter, abnormal events can possibly be detected in the scores plots of

consensus matrices. This can drastically reduce the number of control charts

depending upon the type of blocking that was applied to the process.

4.5.3 Inverse Projection to Latent Structures

MSPC-based schemes for process monitoring, fault detection and diagnosis have

typically been applied to industrial processes where large amounts of historical data

have been collected. However, difficulties can arise in the development of a robust

MSPC-based scheme if only minimal plant data is available. There are many

industrial situations where only small data sets are available from either an

experimental design or initial product commissioning tests, which have been used to

establish appropriate plant operating conditions. The IPLS methodology provides a

novel approach based upon the inversion of a PLS regression model built upon a few

process data. New process data are then constructed by interpolating from within a

nominal region which is defined by the 'design' process data. The Inverse Projection

to Latent Structures (IPLS) method proposed requires the derivation of a well-defined

PLS model to estimate a predictor set of data X, which is consistent, in a statistical

sense, with an "a priori" specified desired response set of data Y. The methodology

developed is primarily based upon the Multiple Linear Regression (MLR) or

Ordinary Least Squares (OLS) approaches, as presented by Seber, (1977).

Multiple Linear Regression (MLR) is the most commonly applied method for

developing multivariate statistical regression models. However, a number of

problems can be encountered when large data sets comprising highly correlated
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(4.5.19)

measurements, are presented to the technique. Typically, the derived coefficients will

have large variances and, hence, they will be unstable when small changes in the data

occur. This can result in major changes in the regression coefficients. On the other

hand, the power of PLS lies in its ability to handle data of this type. Both MLR and

PLS deal with the same generalised regression problem and, therefore, it is important

to identify and understand the similarities and dissimilarities between the two

approaches in order to obtain an appreciation of the mechanisms of the inverse PLS

approach.

4.5.3.1 Derivation of Inverse PLS

The derivation of the statistical properties used in the methodological development

paper are based upon the work of Searle (1984) for the generalised inverse approach

to regression and upon the work of Nomikos and Macregor (1994) for the

multivariate regression modelling and PLS approaches. Assume that a statistical

regression model between a predictor data set (X) and a response data set (Y) of the

following form exists:

Y = X13
	

(4.5.18)

The linear regression coefficients (f3) can then be estimated from the predictor and

response data sets, X and Y, respectively:

171



XT
x+

XTX
(4.5.20)

(4.5.22)

where X is the generalised inverse of X. There are several approaches to

determining the generalised inverse. The most frequently applied solution is based

upon least squares estimation:

This approach can be mathematically inappropriate due to two of the most common

problems associated with MLR. The theory requires that the number of objects (N)

is greater than, or equal to, the number of predictor variables (M), i.e. N ^ M. In

industrial situations this scenario is frequently not realisable. Furthermore, the input

block matrix X can be ill-conditioned due to collinearity between the variables, i.e.

one variable is approximately a linear combination of a number of the other process

variables. This results in a problem with the inversion of XT X, since it will have a

determinant equal or close to zero and will therefore be singular. Alternatively, the

generalised inverse X can be calculated using the properties and relationships

arising from PLS:

WTT

- (pT W)(TT T)
	 (4.5.2 1)

In practice the PLS method only gives a right weak generalised inverse X of the

PLS approximation to the original predictor data set X, that is X = T pT The

definition of a right weak generalised inverse X of k implies that:
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X=TP =T=-pTp (4.5.28)

XTT
TTT

(4.5.29)

xw
T= WTW

(4.5.3 1)

x kx =x
	

(4.5.23)

kx =(kx+)T	 (4.5.24)

According to Rao (1971), a right weak generalised inverse such as X can be termed

the least squares generalised inverse, since it gives the least squares solution

X 1- YI^JX Y- YI	 VT
	

(4.5.25)

• For the modified regression problem:

y=5
	

(4.5.2 6)

The linear regression coefficients estimates, , can then be calculated using the PLS

relationship:

WTT	WQT

= (pT W)(T T T)	
P = (pT w)

Proof:

(4.5.27)

Y=TQT
	

(4.5.30)
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(43.28) XPQ T (45.26)	 pQT	
(4.5.32)

Y = TQT = 
pTp = Xf3 = t =

PQ T (4.5.29)TQ T (4331)	 WQT

pTp = PTT =	 pTW (4.5.33)

Therefore, it follows (4.5.27):

WQT (43.30) WTT

= pTT = (pTW)TTT Y

Furthermore:

	

= WQ'	 XWQT (43.26)	 XW
pT	 T=

	

w	 PTW (45.30)	 PTW	
(4.5.34)

Although PLS gives the least squares solution for the regression problem, equation

(4.5.26), it does not uniquely define X and hence f3. However, for any choice of

the generalised inverse X, the regression model, given by equation (4.5.26),

generates a unique projection 	 on the space spanned by the linearly independent

columns of	 (Seber,1977). Furthermore, X can also be a left weak, or a

minimum norm, generalised inverse of X, and if the matrix X X is symmetric, X

becomes the Moore-Penrose generalised inverse. It is known that PLS does not

provide the minimum norm solution for the regression problem, equation (4.5.26)

which is unique. However, its solution is as close as the PLS approximation X is to

the original input matrix X, since it can be shown that X 	 is symmetric when X
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has full column rank. That is, if X = , then:

WTT
x+.x=	

(TPT)=T=TwPT
(pT w) (TI T)	 pT w	 x w = =

	 (4.5.35)

Having developed a linear regression model, equation (4.5.18), with regression

coefficients 13 , suppose that interest is now focused upon predicting a new predictor

data vector x0 from a vector of predefined values of the response variables, y0

y=x13	 (4.5.36)

By inverting the regression model, equation (4.5.27), and solving for x 0 , an equation

system with three possible solutions, depending on the number of predictor (M) and

response (K) variables, is obtained:

a) K> M	 Model inversion corresponds to a projection from a high

to a lower dimensional space. This is a standard least

squares projection.

b) K = M	 An exact inversion between the two dimensional spaces is

possible.

c) K < M	 A projection from a lower to higher dimensional space

results. This is the most difficult but the most common

outcome. In this situation the equation system is

undetermined.

In the first two cases (a and b) there exists a unique least squares solution, whilst in

the third case there are an infinite number of solutions. However, for the last case
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(4.5.37)

(K < M), a natural estimate, which is also the maximum likelihood estimate, k 0 , can

be obtained through a least squares generalised inverse of 1, (Seber, 1977):

This equation is termed the classical estimator. However, the estimate x, obtained is

a biased estimator of x0 , since:

E(k ' ) ^ E(y ' ) E[T 
J 

= E(xfl
	

(4.5.38)

Although x is a biased and, thus, not a unique estimate of x0 , in a least squares

sense, it gives the unique solution of y 0 to the regression problem, i.e. equation

(4.5.27). The regression coefficients 13 in equation (4.5.27) have been calculated

based upon the underlying PLS relationship. Consequently, they model the internal

structure of the predictor data set (X) and response data set (Y) by maximising the

covariance between the two data sets and, hence, summarising the internal

relationship.

The inverse estimate x obtained from equation (4.5.37), i.e. the Inverse PLS

estimate (IPLS), is not unique but it is a justifiable least squares estimate of the PLS

approximation L of the new predictor data vector x 0 , given the desired response

data vector y 0 . Therefore, depending upon how close the PLS approximation L is

to the original data vector x 0 , the classical estimator equation, equation (4.5.28),

gives a realistic estimate of x0 in terms of x,. The IPLS estimate lies in K-
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dimensional space, whereas the true dimensionality of the input variables space, M,

is higher. Jaeckle and MacGregor, (1996), in a similar problem, but using principal

components regression (PCR), proposed that a new component z 0 , lying in a space

orthogonal to the generalised inverse of f3 and which spans the remaining (M - K)

dimensions of the X space, should be added to I. Regardless of this, however, the

IPLS estimate *0 proposed here is theoretically justifiable. In practice, providing the

initial PLS model is satisfactory, IPLS is capable of predicting values for its output

variables close to their true values. The only requirement of this approach is the

establishment of a good regression model using the PLS method. Inferential PLS

models can then be built from process and quality measurements, initial process

conditions etc., depending upon the availability of the data and the nature of the

process and the problem.

4.5.3.2 Methodology For the Application of IPLS

In manufacturing processes where there is only a limited amount of process data

available or a small number of completely recorded operations, techniques to

generate more process data would be particularly advantageous in order to set up an

initial MSPC-based monitoring scheme. In order to examine this, let us consider the

situation either where a new process is being set up, or an existing process is being

expanded into a new operating region. As a consequence, there are only a few

process data measurements available from designed experiments to identify the

nominal product quality and the associated operational conditions. The assumption is

made that this data represents past successful operation and, therefore, it can be

assumed to define the nominal operating range of desired production and, hence, the
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regression model. Having identified the set of data to be used to build the empirical

representation, a PLS regression model is calculated to model the features of interest

such as the initial process conditions and/or the final product quality from the process

measurements (4.5.18):

Y=xp

Having derived the underlying PLS model based upon minimal process data, an

unknown new process measurement vector (x 0 ) can be predicted from the

corresponding predefined values of the features (y 0 ), by inverting the PLS regression

model to obtain the classical estimator, equation (4.5.37):

=

In this way, using the process measurements computed from the IPLS model, a large

number of process data within the nominal region of the regression model can be

computed. These IPLS estimates, along with the existing plant measurements, can

then be used to develop an initial MSPC-based monitoring scheme. As new process

measurements become available from the production plant, itself, new and improved

PLS and IPLS models can be built from the updated historical process database.

Finally, when sufficient data from the actual manufacturing process becomes

available, a robust MSPC scheme follows naturally based purely upon the plant data

as is the current approach.

The above methodology offers an attractive and effective way to implement MSPC-

based monitoring schemes, even in cases where there is initially limited process data
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from the plant. One of the key requirements of this approach is that a satisfactory

PLS regression model can be built from the initial 'design' data. An additional

assumption is that the process 'design' data define the nominal region of the PLS and

IPLS models and that they are representative of the desired operating region for

acceptable production. Thus, process data deemed to be outside the operating region

needs to be excluded from the analysis.

Furthermore, quadratic residuals are unreliable measures of operating performance

when 1PLS-estimated process measurements have been used to develop a statistical

representation/model. In general, the Sum of Squared Residuals (SSR or Q-statistic)

of the IPLS estimated process data exhibit unusually large value. This result can be

explained by looking at the composition of the residual sum of squares, Q, more

closely:

Objects Variables

Q=
	

(4.5.39)
i=1	 j=1

The Q-statistic is a metric based upon a measure of the deviation of the process

measurements from the centre of the reduced space that the statistical model define,

given by the residual, E. This is calculated for each individual object vector x1 as

e1 =x _x1PPT	 (4.5.40)

where x 1 is the data block containing the process measurements of the i-th object

vector of process data and P is the matrix of the loadings. The calculation of the

control limits for the Q-statistic requires the calculation of the residuals for each
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object vector of the nominal database which in the case of the IPLS-based model can

be written as

e• =x —x i EPT
	

(4.5.41)

where F denotes the loadings array for the MPCA representation based upon the

IPLS estimated process data and x 1 denotes the IPLS estimates of the process

measurements for each object vector. These estimates contain an error associated

with the approximation of the real process measurements by their IPLS estimates.

This error cannot be calculated since the real measurements of the operations will in

practice be unavailable and, therefore, it will be inherited to the control limits.

However, when calculating the Q-statistic for a new object vector comprising real

measurements, this error is not present (in the measurements)

e new = new - new T

	
(4.5.42)

where X new is the vector of the new real measurements. This results in the calculated

values for the Q-statistic and the Squared Prediction Error (SPE) for each new real

process data to potentially exceed the nominal control limits. As a result the residual

sum of squares and the squared prediction error are unreliable measures of operating

performance as they will contain an error which is not quantifiable and which will

inflate the two metrics.

180



4.6 Applications

A number of applications of MSPC-based monitoring schemes has been presented in

the literature. A 'process-oriented' literature survey has been presented in Chapter II.

In this chapter a more 'technique-oriented' survey is presented.

Multi-Way PCA and Multi-Way PLS techniques have been introduced and

successfully applied in batch processes mainly by the group of Professor J.F.

MacGregor at McMaster University in Canada. Nomikos and MacGregor (1994 and

1995) have applied an MSPC-based scheme for a semi-batch emulsion styrene-

butadiene rubber (SBR) polymerisation reactor and for an industrial polymerisation

reactor, respectively, using the Multi-Way PCA technique. A similar scheme for the

same SBR polymerisation reactor, but using the Multi-Way PLS technique has also

been developed (Nomikos and MacGregor, 1994b). Other MSPC-based schemes that

utilise Multi-Way PCA have been presented by Dong and McAvoy (1995) for a two-

stage jacketed exothermic batch chemical reactor, by Gallagher et al. (1996) for a

nuclear waste storage tank and by Kosanovich et al. (1996) for an industrial

polymerisation reactor.

MSPC-based schemes for a two-zone LDPE tubular reactor has been developed

using the Multi-Block PLS technique by MacGregor et al. (1994). Wold et al. (1996)

applied the Hierarchical Multi-Block PLS technique to an industrial Residue

Catalytic Cracker unit (RCCU). Finally, MSPC-based schemes that utilise a

combined Multi-Way Multi-Block PLS technique, for an industrial polymerisation

batch reactor has been presented by Kourti et al. (1995). Cheng and McAvoy (1996)
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have recently proposed the same combined Multi-Way Multi-Block approach for

continuous dynamic processes.

4.7 Summary

Multivariate statistical projection methods, such as PCA and PLS, are known to be

capable of establishing MSPC-based schemes for process monitoring, fault detection

and diagnosis. The typical procedures that have to be followed and the issues

associated with the implementation of an efficient MSPC scheme have been

described. However, sometimes, these techniques fail to perform their task

efficiently, since the techniques are only appropriate for continuous processes which

do not exhibit non-linear behaviour and which only involve data from simple

processing unit. These limitations can be resolved by applying more suitable

statistical techniques. Specifically, Multi-Way PCA and PLS have been proposed to

analyse data obtained from processes that exhibit dynamic character, such as batch

and semi-batch processes. Furthermore, Multi-Block PCA and PLS have been

proposed to handle industrial processes comprising interconnected sections and units.

Finally, a novel approach for generating process data for MSPC schemes where there

is only minimal process data, is proposed. The approach is based upon the inversion

of a PLS regression model.
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Chapter V

MSPC-Based Applications to Chemical Processes

5.1 Introduction

This chapter describes the application of multivariate statistical projection techniques

for the development of MSPC-based monitoring schemes for two general types of

processes that are commonly found in chemical industries, namely batch and

continuous. Techniques and schemes for batch processes are illustrated through

applications to a batch polymerisation reactor, whilst for continuous processes, to a

continuous tubular polymerisation reactor.

5.2 MSPC-Based Applications to Batch Processes

The batch process considered was a pilot-scale batch polymerisation reactor for the

production of polymer Methyl-Methacrylate (PMMA). The statistical projection

techniques discussed in the previous chapter, were used to develop MSPC-based

schemes to provide early warning of problems associated with product quality.

Specifically, the first problem considered was the prediction of the final properties of

the polymer product as early as possible in the batch, since in practise they are not

known until the end of the operation. The second problem considered was the

estimation of the initial conditions of the process, which can be typically related to a

number of faults and malfunctions and which are of great importance for the

successful operation of batch polymerisation reactors and for consistent polymer
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production (Kiparissides, 1995 and 1996). Finally, the application of the Inverse

Projection to Latent Structures (IPLS) methodology to processes where minimal

process data is available is presented. It is shown that, by applying the IPLS

technique, the application of MSPC-based schemes can be extended to processes

where there is minimal data for building a robust process representation.

5.2.1 Methyl-Methacrylate (MMA) Polymerisation Batch Reactor

The batch polymerisation reactor studied is a pilot-scak free-radical methyl-

methacrylate (MMA) polymerisation reactor, developed and installed in the

Laboratory of Polymer Reaction Engineering (LPRE), Department of Chemical

Engineering, Aristotle University of Thessaloniki, Greece. The batch pilot-scale

reactor is jacketed and provided with a stirrer for the thorough mixing of the

reactants. Heating and cooling of the reaction mixture is achieved by circulating

water at an appropriate temperature through the reactor jacket. The reactor

temperature is controlled by a cascade control system consisting of a primary PlO

and two secondary PT controllers. The reactor temperature is fed back to the primary

controller whose output is taken as the set-point of the two secondary controllers.

The manipulated variables for the two secondary controllers are hot and cold water

flow rates. The hot and cold water streams are mixed before entering the reactor

jacket and provide heating or cooling for the reactor. The jacket output temperature is

fed back to the secondary controllers. Figure 5.1 illustrates the pilot-scale batch

reactor and its control system.

A detailed process simulation model, covering reaction kinetics, heat and mass

balances, and automatic control, has been developed by LPRE and validated against
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Figure 5.1 Flow diagram of the pilot-scale batch reactor (Kiparissides et a!., 1997)

The initial process conditions of the polymer reactor studied here, include the reactor

operating temperature (defined by the reactor temperature set-point, 	 the initial

initiator weight (Is) and the initial overall heat transfer coefficient (U 0 ). Other

initial process parameters, such as environmental temperature and reaction mixture

volume, are of less importance, since it has been found that, they do not affect the

final polymer quality. The initial process conditions are listed in Table 5.1.
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Initial Process Conditions

(°K)	 Reactor Temperature Set-Point

I	 (gr)	 Initial Initiator Weight

U0 (Kcal/m2minbK)	 Initial Overall Heat Transfer Coefficient

Final Polymer Properties

X fA	 Final Conversion of MMA

M N	Number Average M.W

Weight Average M.W

Initial Condition	 Nominal Design Level	 Level Variation

345	 ±0.5

J o 	 0.9	 1.1	 1.4	 ±0.1

U0	 0.05	 0.08	 0.10	 ±0.01

Table 5.1 Initial conditions, design levels and properties

The productivity variable of interest is the final conversion of monomei MMA

(XMMA). The molecular properties of interest are the weight average molecular

weight (Mw) and number average molecular weight (M N ), Table 5.1. None of these

properties are available on-line and are only measured infrequently, off-line, in the

laboratory. During the polymerisation process, on-line measurements of conversion

are available through the measurement of the density of the reaction mixture. Process

measurements are collected on a one minute basis on the reactor temperature (T r ), Ofl

the inlet and outlet temperature of the coolant	 and	 respectively), on the

flow-rate of the coolant (F) and the conversion of monomer (Cony).
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A number of polymer PMMA grades can be produced by an industrial reactor. The

nominal experimental initial conditions were selected to represent realistic conditions

of polymer PMMA production and are given in Table 5.1. These conditions

correspond to the production of nine different grades of polymer product

(Kiparissides, 1995). A set of seven batch simulations, for each polymer grade was

generated through Monte Carlo variation of the selected initial conditions

corresponding to a particular grade (Table 5.1). As a result, nine sets (e.g. 32 factorial

design) of seven batch simulations were obtained, i.e. a total of 63 simulated batches

were generated. Each set represents normal process operation when only common

cause process variations are present and when only acceptable product quality was

achieved. Five batch simulations from each grade were included in the training set

(i.e. historical process database) from which the nominal statistical models were

built. The remaining two batches formed the data sets upon which the models were

validated. The training data set comprises process measurements from 45 batch

simulations, whilst the validation set comprises measurements from 18 batch

simulations. The trajectories of some of the process variables for a typical batch, that

is included in the training set, are presented in Figures 5.2 and 5.3. From this point

and on, a batch simulation will be called "batch" and the data produced by the batch

reactor simulation program will be considered as "real" or "actual" data.

5.2.2 Prediction of Final Polymer Properties

Product quality is very important in polymerisation processes, since it affects the

behaviour of the product in its final applications. Quality control in batch processes

presents a challenging problem, since final product quality is not known until the end
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of the batch. Furthermore, due to the lack of on-line instrumentation, quality

variables are unmeasurable or only measured infrequently in the laboratory. In an

attempt to overcome these difficulties, software sensors based upon statistical

methods and neural networks, can be developed to infer the final quality from the

available process data (Kiparissides and Morris, 1996). An empirical model based on

the Projection to Latent Structures (PLS) technique, can be used to infer the polymer

quality of PMMA using the initial process conditions of the batch (Papazoglou, et al.,

1998). The reason for performing this study is to investigate whether an empirical

model can provide reliable predictions of the final properties.

Model Development and Validation: The final polymer properties of interest for

the batch MMA polymerisation reactor are final conversion of monomer MMA

( XMMA), number average molecular weight (M N ) and weight average molecular

weight (Mw). These are captured in the Y data matrix of the PLS model, whilst the

initial conditions of the polymer process form the X data matrix. Therefore, the initial

process conditions need to be measured or estimated. These are the reactor

temperature set-point (T), the initial initiator weight () and the initial overall

heat transfer coefficient (U 0 ). A linear PLS model of the structure shown in Figure

5.4, can then be developed based upon X and Y data sets. The initial process

conditions are supposed to be measured. The model was assessed through cross-

validation procedures which showed that all three latent variables should be retained.

Table 5.2 summarises the amount of variability explained by the PLS model in each

latent variable block and for each predicted variable. It can be seen that, the first

latent variable describes the largest amount of variability in all the quality variables.
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Figure 5.4 PLS model to infer final polymer properties

LV	 % Variability Explained

X Block	 Y Block	 Quality Variables

Cumulative	 Cumulative	 X1MA	 MN	 M\v

1	 33.97	 33.97	 89.21	 89.21	 60.20	 87.34	 91.38

2	 32.83	 66.80	 10.66	 99.87	 99.77	 97.57	 97.83

3	 33.20	 100.00	 0.05	 99.92	 —100.00	 —100.00	 —100.00

Table 5.2 Initial conditions, design levels and properties

Figure 5.5 shows the prediction of the final conversion, number and weight average

molecular weights for the 45 batches included in the training set. The next aspect

investigated was the ability of the model to provide satisfactory predictions of the

final polymer properties for the batches included in the validation set. These

eighteen, previously "unseen", batches of the validation set were drawn from the

same population and their predictions are shown in Figure 5.6. These predictions are

also quite satisfactory. It can be concluded that, PLS is able to model the strong

relationship between the initial process conditions and the final properties of the

polymer product.
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A problem associated with the above procedure is related to fact that the PLS model

has as its inputs the initial process conditions. The more accurate the initial

conditions are, the more reliable the final properties predictions. However, in most

situations, the initial conditions of the batch are not exactly known (Kiparissides,

1996), since some of them cannot be accurately measured or were unrecorded. Thus,

estimates of them will be required. In the next section, a procedure to estimate the

initial conditions using a statistical inferential model is presented.

5.2.3 Estimation of Initial Process Conditions

Initial process conditions in batch polymerisation reactors are known to influence the

final properties of the polymer product. For the batch reactor of interest, the initial

conditions (e.g. initiator concentration and overall heat transfer coefficient) are

related to two commonly occurring problems, reactive impurities and reactor

fouling. Both problems affect the polymerisation process and product quality. The

presence of impurities is equivalent to a reduction in the initiator efficiency, whilst

reactor fouling reduces the heat transfer capabilities of the reactor and, as a result, the

reactor temperature control system becomes less effective. The detection and

estimation of reactive impurities and reactor fouling are, therefore, of profound

importance. Furthermore, detection should take place at an early stage of the

polymerisation process, in order to allow for any possible corrective actions that will

ensure the normal operation. Reactive impurities can be simulated by a decrease in

the initial initiator weight and reactor fouling by a decrease in the initial overall heat

transfer coefficient of the reactor. The amount of reactive impurities and the extent of

reactor fouling can be determined by estimating the initial initiator weight and the

192



initial overall heat transfer coefficient. In the next section, a linear multivariate

statistical model is developed using Multi-Way Projection to Latent Structures

(MPLS) to predict the initial process conditions.

Model Development: The analysis of the 45 batches of the training data set was

performed using Projection to Latent Structures (PLS) and its multiway extension,

MPLS. The predictor (X) data set contains the on-line process measurements, whilst

the response (Y) data set comprises the initial process conditions, as presented in

Table 5.1. The reactor temperature set-point (T) has been included, since, as it will

be shown in a subsequent section, it was found to improve the model predictions (see

Figure 5.20). Nominal batch operation is usually achieved in two hours. However,

since the objective is to estimate the initial process conditions at an early stage of

polymerisation, only the part of the database covering the first sixty minutes of each

batch was used in the analysis.

A number of other issues need to be addressed, including the identification of the

sample time points in the batch which encapsulate sufficient information to enable a

satisfactory model to be built. Specifically, this includes the selection of the time

point at which data sampling starts, the selection of the sampling time interval and

the identification of the minimum number of on-line process measurements

(samples) to be included in the model. From a number of previous studies of the

reactor data and its information content, the sampling time intervals, considered for

model development, were selected as 1, 5 and 10 minutes. Linear PLS models were

developed where on-line process samples at only one time point (k 1 ) formed the basis

of the X block. For situations where on-line process samples at more than one time
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developed, Figure 5.7.
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k1

Batches

T-I0-U0

MPLS

Y

Batches

point (k 1 to k2) were used to construct the X block, Multi-Way PLS models were

Figure 5.7 Structure of Multi-Way PLS Models

Concerning the construction of the Y block, two alternative scenarios were

considered (Kiparissides, 1996). The first represents the ideal case, where the initial

process conditions are accurately measured (called actual values). The second, and

more realistic case, is where accurate initial process conditions are not available. In

order to represent this later situation, the Y-block is in-filled with the initial condition

values which correspond to that particular polymer grade being modelled (called

theoretical values). For example consider a particular batch whose product can be

classified as belonging to a polymer grade with initial conditions as defined by the set

of theoretical values Set 1, Table 5.3. A set of seven batch simulations, for each

polymer grade, was generated through Monte Carlo variation of the selected initial

conditions corresponding to a particular grade (section 5.2.1). For the seven batch

simulations belonging to the polymer grade of Set 1, the actual initial conditions are

defined by the sets MC1-MC7, Table 5.3, whilst the theoretical initial conditions are
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Jo	 U0

Seti	 345	 1.1	 0.100

MCi	 345.04	 1.078	 0.094

MC2	 345.13	 1.132	 0.104

MC3	 344.78	 1.163	 0.097

MC4	 344.81	 1.002	 0.092

MC5	 345.27	 1.044	 0.091

MC6	 344.66	 1.145	 0.096

MC7	 344.98	 1.091	 0.102

Table 5.3 Actual (MC1-MC7)and Theoretical (Set 1) values

those of Set 1. In the analysis, it was assumed that actual plant initial conditions (e.g.

MC1-MC7) were not available, thus, the initial conditions (Y data set) were defined

by Set 1 (i.e. theoretical values).

Model Selection: On-line process measurements (samples) over the first sixty

minutes of each batch are included in a training set, which forms the basis of the X

data sets. The Y data set comprises the theoretical values for the initial process

conditions of the corresponding batches included in the X data sets. It is now

necessary to locate the most appropriate time point to start collecting measurements

on the process variables and to determine the appropriate minimum number of

samples required to develop a realistic model of the initial conditions. A

comprehensive set of models was then developed, spanning a wide range of different

operating scenarios. In each operating scenario, a starting tine of sampling (k 1 ) is

selected and samples are collected with a given sampling interval (i.e. 1,5,10
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minutes) up to a sampling end time (k2 ). For scenarios that include process models

built upon more than one samples (k 1 ^ k 2 ), the MPLS technique was used (Figure

5.7). When the process model was built upon one sample (k 1 k2 ), the PLS

technique was used. For each of the PLS and MPLS models, the number of latent

variables required was determined through cross-validation. In order to select the

most appropriate starting time point for sampling and the number of process samples

required to estimate the initial conditions, the Sum of Square Errors of Calibration

(SSEC), which is a measure of the fit of the model to the calibration (training) data,

was employed:

SSEC =	 -
	

(5.1)

1=1 j=1

where n is the number of batches included in the training set (45), m is the number

of initial process conditions, y1 and 9ij are the actual and estimated value of the j-th

initial condition of the i-th batch, respectively. The better the model, the lower the

SSEC value.

Figures 5.8 - 5.11 illustrate the effect of altering the starting time of sampling (k1)

and the ending time of sampling (k2) on the SSEC for fixed sampling intervals (e.g.

1, 5 and 10 minutes). It can be seen that, models built from samples that include the

first ten minutes of batch operation, exhibit a high value of SSEC (Figures 5.8 and

5.9). By inspecting the process temperature trajectories during the first few minutes

of polymerisation (Figure 5.2), the trajectories are seen to exhibit a highly non-linear

behaviour, since this time period is the heat-up stage. Models covering this stage

cannot estimate the initial process conditions, since no reaction has actually taken
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Starting Point (k1 ) = 5th mm

place at this time. As a result, the first nine minutes of batch operation have to be

discarded, since they contained very little information on the process. It can be

concluded that, starting at later time points, the information content increases and, as

a result, the predictive capabilities of the model are improved (i.e. the value of SSE

decreases). Figures 5.12-5.15 show the effect of including additional samples to the

model for a specific value of the starting point of sampling (k 1 ). It can be concluded

that, as the number of samples increases, the information content increases and, as a

result, the predictive capabilities of the model are improved. By recalling that the

overall objective is to estimate the initial process conditions, at an early stage of the

polymerisation, it was concluded that the optimal scenario was to build a MPLS

model from on on-line samples collected at the 15th, 20th and 25th minute (Figure
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Number of Samples

Figure 5.12 Effect of number of samples (starting point 5th mm)
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Figure 5.15 Effect of number of samples (starting point 20th mm)

An MPLS analysis was carried out on the selected part of the process data (45

batches) of the training set. Six latent variables were selected to be included in the

model using cross-validation. Table 5.4, summarises the variability explained in each

block by the MPLS model. The projection of the batches included in the training set

onto the reduced space of the first two latent variables does not exhibit any usual

behaviour, since all process scores are lying inside the 95% confidence ellipsoid

(Figure 5.16). Figure 5.17 illustrates the plot of the process scores (t 1 ) versus the

quality scores (u 1 ) for the first latent variable, where it can be seen that, the

assumption of a linear relationship between the predictor (X) and the response (Y)

data sets is valid.
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LV#2

-1
-15 -10	 -5	 0	 5	 10	 15

LV# 1

LV	 X % Variability Explained 	 Y % Variability Explained

	Cumulative	 Cumulative

	

1	 51.63	 51.63	 32.06	 32.06

	

2	 22.49	 74.12	 30.49	 62.55

	3	 7.88	 82.00	 28.82	 91.37

	

4	 5.16	 87.16	 3.35	 94.72

	

5	 7.35	 94.51	 0.35	 95.06

	6	 4.26	 98.76	 0.13	 95.19

Table 5.4 Explained Variability by the MPLS model

Figure 5.16 Process scores for the first versus the second latent dimensions
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Figure 5.17 Process versus quality scores for the first latent dimension

Figures 5.18 and 5.19 show the estimated values of the initial initiator weight

obtained from the PLS model and the initial heat transfer coefficient, respectively, for

the 45 batches included in the training set, along with their theoretical and actual

values. Similarly, Figure 5.20 present the estimated values for previously 'unseen',

18 batches of the validation set, along with their theoretical and actual values. It can

be seen that, although the model has been trained with theoretical initial conditions, it

is capable of providing satisfactory estimates of the 'unseen' initial conditions, very

close to their actual values.

Other Issues. The data used to illustrate the estimation of initial process conditions

was not pre-processed; it was used in its raw form and also the temperature set-point

(T) was included in the response (Y) data set, since it was found that it improves

the predictive capabilities of the models. This is reasonable, since temperatures
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Figure 5.18 Estimated values of initial initiator weight for the training set
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Figure 5.20 Estimated values of the initial conditions of the validation set

included in the predictor (X) data set depend upon the operating temperature and,

therefore, are correlated. The performance of the model for a study of four cases

presented in Table 5.5, in terms of the ratio of the Mean Square Residual (MSR) to

the Mean of Square Error (MSE) for the two initial conditions of interest, is

illustrated in Figure 5.21.

Noise -, T+	 Process Data filtered, Temperature set-point included

Noise +, T-1-	 Process Data not filtered, Temperature set-point included

Noise -,	 -	 Process Data filtered, Temperature set-point not included

Noise +, T -	 Process Data not filtered, Temperature set-point not included

Table 5.5 Notation used in the study of the effect of filtering and temperature set-

point.
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Figure 5.21 Effect of filtering and inclusion of the temperature set-point

The ratio MSR to MSE describes how well the process data account for the

variability in each of the response variables (Nomikos and MacGregor, 1994b). It is

distributed as an F variate with R and (n-R-1) degrees of freedom and it is defined as

follows:

n
(n— R-1)5

(MSR -	
2

MSE)J - R(y1,-91,)

where R is the number of latent variables retained in the model, n is the number of

batch included in the training set (45) and	 and	 are the actual and estimated

value of the j-th initial condition of the i-th batch, respectively. The better the

predictor (X) set accounts for the response set (Y), the higher the value of the

MSRJMSE ratio. It can be seen that, filtering of process data improves the predictive

capability of the model, i.e. the MSRJMSE value increases. The fact that the

(5.2)
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MSRMSE value for the heat transfer coefficient decreases with filtering, when the

temperature is not included in the model, can be explained by chance, since the

amount of data upon which the model was built is very small. Furthermore, it can be

concluded that, the inclusion of temperature set-point is necessary, since the

predictive capability of the model is significantly improved when the temperature set-

point is included in the Y block.

Another important issue that was considered, is the number of batches that should be

included in the training set in order to develop a statistical model to infer the initial

process conditions. The original training set comprises 45 batches (i.e. nine sets of

five batches). Three additional training sets were created by extracting selected

batches from the original training set. Specifically, they included 36, 27 and 18

batches (i.e. nine sets of four, three and two operations, respectively) were created.

Figures 5.22 shows the effect of the number of batches included in the training data
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set on the predictive ability of the model, in terms of MSR/MSIE ratio for the actual

initial conditions. It can be concluded that, as the number of batches included

increases, the information content increases and, as it was expected, the predictive

capability of the model improves, since PLS is a data-oriented technique.

5.2.4 Inferring The Quality of A Polymer Product Using Statistical Models

The final product quality of a batch polymerisation reactor can be predicted before or

at an early stage of the operation by using a PLS model (section 5.2.2), which infers

the final polymer properties from the initial process conditions. However, the initial

conditions of a batch are not always known precisely and, furthermore, sometimes

they are not even available. A solution to this problem is to use estimates of the

initial conditions as model inputs. The Multi-Way PLS model, developed in section

5.2.3, was shown to provide reliable estimates of the initial conditions using only a

few on-line measurements and, therefore, it can be used in conjunction with the PLS

model to infer the final product quality. However, several other approaches that

utilise statistical models to infer the quality of the polymer product can be used.

Consider the situation where the final polymer properties have to be predicted at an

early stage of the polymerisation process. The entire database comprising on-line

process measurements collected on a five minutes basis (X data set) and the final

polymer properties (Y data set) using a Multi-Way PLS model could then be

modelled (Figure 5.23). Note that, the process data set (X) comprises the on-line

measurements of conversion of MMA, while the response (Y) data set comprises the
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Figure 5.23 MPLS model built upon the entire process database

final value MMA conversion, measured in the laboratory. This approach provides a

model with excellent predictions, since it utilises all the on-line process data.

However, it has some serious disadvantages. It is time consuming and it can only be

applied at the end of the batch and, consequently, it is not practically applicable.

Hence, it is presented as a reference point of a Multi-Way model's ultimate

predictive ability.

A similar approach is that of Nomikos and MacGregor, (1994b). A Multi-Way PLS

model for on-line monitoring, fault detection and diagnosis of the batch process, is

based upon the entire process database. Although for each new batch all

measurements are not available, at each time point, any of the four methods

described in section 4.5.1.1, to in-fill the unknown process measurements can be

used and predictions of the final polymer properties can be obtained. However,

predictions of the polymer properties obtained at the 25th minute using any of these

methods, are not satisfactory, since the unknown part of the vector of the process

measurements (30th - 120th minute) is relatively large.
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A more promising route is to build a MPLS from the on-line process samples

collected at the same time points used in the estimation of the initial process

conditions (section 5.3.2), i.e. the 15th, 20th and 25th minute (Figure 5.24). This

selection, however, is arbitrary.
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Figure 5.24 MPLS model based on the 15th, 20th and 25th minute

A more appropriate selection can be made using a similar approach to that applied in

section 5.3.3. Figure 5.25 shows the effect of altering the starting time of sampling

(k 1 ) and the ending time of sampling (k2) on the SSEC at a fixed sampling interval of

5 minutes. It can be seen that, (i) collecting samples at later time points, fewer

samples are required to build a satisfactory model; (ii) as the information content

increases, the predictive capabilities of the model improve; (iii) the model built upon

the pre-selected process samples (15th, 20th and 25th minute) performs quite well. In

order to improve the predictions obtained, the block of the initial process conditions

can also be included, not as an interface between the process measurements (X data

set) and the final polymer properties (Y data set), but as a block in a parallel branch.

In this way, a Multi-Way - Multi-Block PLS model can be formed (Kourti et al.,

1995). For the polymer process studied, however, structural limitations restrict the
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predictive ability of the model. Specifically, the small number of initial process

conditions restricts the number of latent variables that can be retained in the model

and, as a result, poor predictions obtained. The two approaches most suited are the

proposed inferential approach that utilises the PLS model developed in section 5.2.2

and the Multi-Way PLS model built upon the pre-selected time points.

The different approaches presented can be compared in terms of the Root Mean

Square Error of Calibration (RMSEC) and Root Mean Square Error of Prediction

(RMSEP), respectively. These two quantities are defined as:

m
RMSEC =	 (5.3)

j=1

and
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m-
RMSEP =	 i=I	

(5.4)

j=1

where n is the number of batches included in the training set (45), k is the number of

batches included in the validation set (18), m is the number of final polymer

properties (variables of Y data set, 3) and 	 'ij are the actual and the predicted

value of the j-th polymer property of the i-th batch. These measures estimate the

average deviation of the model from the data and provide information about the fit of

the model to the training and validation sets, respectively (Wise and Gallagher,

1996). The better the model fits the data, the lower the RMSEC and RMSEP values.

Figure 5.26 illustrates the RMSEC values for the MPLS model built upon the entire

process database (denoted as MPLS-A), the MPLS model built upon the process

samples collected at the 15th, 20th, and 25th minute (denoted as MPLS-B), and the

inferential PLS proposed in section 5.2.2. The PLS model outperforms the other

models, including the MPLS model of the entire process database. This is reasonable,

since the PLS model has been trained upon the actual values of the initial process

conditions and does not use any process measurements, as MPLS-A and MPLS-B

models do. However, as has been stated, the initial process conditions are not always

known exactly. The proposed PLS model was validated against the actual values of

initial conditions of the validation set and against the estimates of the initial

conditions of both the training and validation set (Figure 5.27). The estimates were

obtained by the MPLS model described in section 5.2.3. Predictions obtained from

the estimated initial conditions of the training and the validation set are denoted as

PLS(45) and PLS(18), respectively, while the prediction obtained from the actual
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initial conditions of the validation set is denoted as PLS. The rest of the models were

validated against the validation set only. It can be seen, Figure 5.27, that, the

inferential PLS model performs better when actual initial process conditions are

available. However, in the case where estimates of initial conditions are utilised, the

predictive power of the PLS model is decreased. This is an indication that the

predictive power of the PLS model strongly depends on quality of the predictor (X)

data set.

The selection of the most efficient inferential statistical technique to use is difficult,

since many factors, such as the nature of the process, the predictive power of the

statistical models, and the availability of the data, have to be taken under

consideration. When precise initial process conditions are available, the PLS model

provides the best approach because of its predictive power and simplicity. This ideal

situation is not always realisable under industrial conditions. Alternatively, estimates

of the initial conditions can be used as inputs to the model.

5.2.5 Generating Additional Process Data For The Application of MSPC-Based

Schemes

Robust MSPC-based monitoring schemes have been applied to chemical and

manufacturing processes where large amounts of historical data is readily available.

However, difficulties are encountered in situations where only minimal data is

available from an experimental design or initial product commissioning. A major

challenge is, therefore, to provide a technique that will allow the setting up of an

effective monitoring scheme based upon minimal 'design' process data. In Chapter

IV, the novel approach of Inverse Projection to Latent Structure (IPLS) was proposed
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to generate the additional process data for the development of MSPC-based schemes.

The most important requirement for the application of the IPLS approach is that a

satisfactory PLS regression model can be built from the initial "design" data. The

JPLS methodology is illustrated by application to the pilot-scale batch methyl

methacrylate polymerisation reactor. Two MSPC-based schemes are developed upon

process data generated by the IPLS algorithm, (i) an inferential MPLS model for the

estimation of initial process conditions and (ii) an MPCA-based scheme for on-line

monitoring, fault detection and diagnosis. The performance of these schemes is

compared with the usual approaches of building representations from large amounts

of monitored process data.

5.2.5.1 Inverse PLS Model Development

Although a total of forty-five batches were originally generated from the pilot plant

simulation, only a sub-set of these were used since the objective is to demonstrate the

IPLS methodology for the development of MSPC-based schemes from limited

process data. Six sets of training data, comprising five, seven, nine, eleven, thirteen

and fifteen batches (N), were generated to investigate the effect of the number of

batches on the IPLS model and to identify the minimum number of batches required

for the development of an IPLS-based model. An initial set of five randomly selected

batches formed the basis of all six data sets. For the set comprising seven batches, an

additional two batches were selected from the remaining forty batches; for the set

comprising nine, the previous seven formed the basis and an additional two batches

were randomly selected; and so on. The complementary set of (45-N) batches were

used for validation.

215



A Multi-Way PLS (MPLS) regression model (Nomikos and MacGregor, 1994b) was

first built for each set of N experimental batches, i.e. the "design" process data. The

predictor data set X (Nx5x120) is defined by the measurements of the five process

variables at each of the 120 time points (minutes) of the operation, whilst the

corresponding three initial conditions define the response data set Y (Nx3). The

MPLS models were compared in terms of the Root Mean Square Error of Calibration

(RMSEC) on the N batches included in the training data set. Figure 5.28 presents the

RMSEC for the six MPLS models. As the number of batches included in the training

data was increased, the performance of the MPLS model in fitting the calibration data

improved, as expected. However, there was no significant improvement if more than
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Figure 5.28 Effect of the number of batches included in the MPLS model
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eleven batches were used to develop the model. The next step in selecting the number

of batches to include in the noriinal model, was to invert each of the six individual

MPLS models to obtain an Inverted MPLS model. Now the initial conditions define

the predictor data set X (Nx3), whilst the measured process variables define the

response data set Y (Nx5x 120). The initial process conditions of the remaining (45-

N) batches were then used as the inputs in the IMPLS model and estimates of the

corresponding process measurements were calculated. The Inverted MPLS models

were then compared in terms of Root Mean Square Error of Prediction (RMSEP) of

the remaining (45-N) batches. Figure 5.29 illustrates the RMSEP for the six inverted

models. It can be seen that, the predictive power of the inverted model increases as

60C
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35C

30C
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Number of Batches Included into the Model

Figure 5.29 Effect of the number of batches included in the MPLS model to the

predictive power of the Inverse MPLS model
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the number of batches included in the training data set increases. However, no

significant improvement in the inverted MPLS model is achieved if more than nine

batches are included in the original MPLS model. Moreover, the RMSEP values

converge to a minimum as more batches are included in the model. The error that is

always be associated with any PLS-based model, is enhanced by an error associated

with the IPLS estimates, since the IPLS-estimates are not unique nor the minimum

norm, but they are the least squares estimates of the process trajectories.

The final selection of the number of batches that should be included in the MPLS

regression model and, therefore, in the Inverted MPLS model, is based upon both the

performance of the original and the inverted MPLS models. The number of batches

finally selected was a balance between keeping the amount of available process data

as small as possible and the performance of the IMPLS model as optimal as possible.

Nine batches were selected to form the initial 'design' process data in the subsequent

analysis of the methodology.

Having defined the desired number of batches to form the basis of the ensuing

analysis, the corresponding Multi-Way PLS (MPLS) regression model based upon

the nine 'design' batches, was selected. The number of latent variables required to

provide a good prediction of the response Y data set was identified through cross-

validation to be seven. A summary of the model is presented in Table 5.6. It can be

seen that, the first latent variable primarily describes the variability in the temperature

set point (T), the second latent variable is dominated by initial initiator weight ()

and the initial fouling factor (U0 ) is the focus of the third latent variable.
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LV	 % Variability Explained

X Block	 Y Block	 Quality Variables

Cumulative	 Cumulative	 U0

	

1	 46.60	 44.14	 52.03	 33.35	 35.47

	2	 70.29	 71.51	 67.38	 92.39	 37.19

	

3	 81.93	 98.58	 93.69	 94.72	 85.06

	

4	 86.74	 99.82	 95.12	 96.12	 96.62

	

5	 90.95	 99.95	 97.51	 98.99	 97.96

	

6	 94.38	 99.99	 99.31	 99.65	 98.90

	

7	 97.17	 -100.00	 99.78	 99.84	 99.98

Table 5.6 Explained variability by the MPLS model

The MPLS regression model was then inverted. To investigate the ability of the IPLS

methodology to predict the trajectories of the process measurements, the set of initial

conditions resulting from the nine 'design' batches were presented as the inputs to

the generated IMPLS model and IMPLS estimates, *, of the corresponding process

measurements were then calculated.

Two typical process trajectories for the coolant inlet temperature and the monomer

MMA conversion were selected from the nine 'design' batches, and examined more

closely in Figure 5.30. Specifically, trajectories were selected from a batch with

initial conditions lying in the middle of the operating region and a batch with initial

conditions lying in the edge. These trajectories were compared with the

corresponding IMPLS estimates. The IMPLS estimates exhibited greater oscillatory

behaviour than the original trajectories. This may be a consequence of overfitting the
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Figure 5.30 Process trajectories of batches with initial conditions lying in the middle

(Batch No.6) and in the edge (Batch No.8) of the operating region. Seven

latent variables have been retained in the MPLS model.

the IMPLS model and/or failing to sufficiently linearise the data. Batch processes are

known to exhibit non-linear behaviour. This issue is typically addressed by

subtracting the mean trajectory from the actual process trajectory and this should

theoretically linearise the data. Figure 5.31 presents the mean trajectories of the

coolant inlet temperature and the monomer MMA conversion calculated from the

nine 'design' batches (9 REAL), their IMPLS estimates (9 JMPLS) and the training
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Figure 5.32 Deviations of process trajectories from their mean trajectory
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set of 45 batches (45 REAL). It can be seen that, the mean trajectories coincide.

Figure 5.32 presents the trajectories of the coolant inlet temperature and the

monomer MMA conversion for the nine 'design' batches and their IMPLS estimates

after having subtracting the corresponding mean trajectories. It can be seen that, the

actual process trajectories are still non-linear and, as a result, there is an inherited

non-linearity in the IMPLS estimates. One possible solution to this problem is to

partition the batch into sections where the process trajectories are more linear in their

behaviour and then develop a separate PLS regression model for each model.

The second issue examined was that of overfitting the IMPLS model by retaining

seven latent variables in the MPLS regression model, as it was concluded by cross-

validation. The possibility of overfitting was investigated by examining the

predictive ability of the IMPLS model when different number of latent variables were

retained in the MPLS model. The effect of retaining different number of latent

variables in the MPLS regression model to the RMSE of Calibration and Prediction

of the IMPLS model is presented in Figure 5.33. The RMSE of. Calibration and

Prediction for the IMPLS model were calculated in terms of equations (5.3) and

(5.4), respectively

m

RMSEC =	 i=1

j=1	 n

and

m	 - YLJ)
RMSEP =	 i=1

j=1
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Figure 5.33 Effect of retaining different number of latent variables in the MPLS

model to the RMSE of Calibration and Prediction of the IMPLS model

where n is the number of batches included in the training set (9), k is the number of

batches included in the complementary set (45-n=9) which was used for validation,

m is the number of process measurements that each batch comprises (600), which is

equal to the product of the number of process variables (5) by the number of samples

collected during the batches (120). It can be seen that, by retaining seven latent

variables in the MPLS model, the predictions of IMPLS are overfitted for both the

training and validation set. The minimum RMSEC value occurs when three latent

variables were retained in the MPLS model, whilst the minimum RMSEP value

occurs when four latent variables were retained. However, when applying the IPLS

methodology in real processes, a validation set is not available. Therefore, it is
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preferable to retain in the MPLS model the number of latent variables that is

suggested by the RMSEC (3) rather than that suggested by cross-validation (7), in

order to minimise overfitting. Figure 5.34 presents the process trajectories illustrated

in Figure 5.30, compared with the corresponding IMPLS estimates when three latent

variables were retained in the MPLS model. It can be seen that, the oscillations have

been reduced and the IMPLS estimates fit better the actual process trajectories.

However, greater oscillatory behaviour is still exhibited by IMPLS estimates when

the initial conditions of the batch lie in the edge of the operating region, since for

extreme values of initial conditions the IMPLS model extrapolates.

The ability of the estimates of the process measurements calculated using the Inverse

PLS methodology, to simulate the real process behaviour, was investigated through

two application studies. The first application relates to the development of an

inferential Multi-Way PLS model to estimate the initial process conditions at an early

stage in the polymerisation process. The second application relates to the

development of an MSPC-based scheme for monitoring, fault detection and

diagnosis, based upon a Multi-Way Principal Component Analysis (MPCA) model.

Both applications were implemented using both the estimates of the process

measurements derived from the IMPLS model when three latent variables were

retained in the MPLS model, and the corresponding process measurements obtained

from the pilot plant simulation, which act as surrogate process data.
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Figure 5.34 Process trajectories of batches with initial conditions lying in the middle

(Batch No.6) and in the edge (Batch No.8) of the operating region. Three

latent variables have been retained in the MPLS model

5.2.5.2 Application 1 - Estimation of Initial Process Conditions

The estimation of initial conditions for batch polymerisation reactors at an early stage

of the polymerisation process using an MPLS regression model was considered in

section 5.2.3. It was concluded that the optimal scenario for the process under
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consideration was to build a Multi-Way PLS model from data collected at the 15th,

20th and 25th minute. Based upon this philosophy, an MPLS regression model was

built upon the training data set that comprises the inverted MPLS-estimated process

measurements for the thirty-six nominal batches (36E) and the process measurements

for the nine 'design' nominal batches (9R), i.e. forty five batches in total. This model

is termed the mixed model (9R+36E) and it relates the process measurements at the

15th, 20th and 25th minute of the polymerisation process to the initial conditions of

interest, namely, the initial initiator weight	 the initial heat transfer coefficient

(U0 ) and the reactor temperature set-point (1,). Concerning the construction of the

response (Y) data set, two scenarios are possible. The first represents the ideal

situation where the actual initial process conditions are known. The second, and more

realistic case is where accurate initial process condition records are unavailable. In

order to represent this latter situation, the Y data set, in the analysis of the mixed

model, was in-filled with the theoretical values of the initial process conditions,

which correspond to that particular polymer grade being modelled (Set 1, Table 5.3).

The reactor temperature set-point is included since it has been found that it improves

the predictive capabilities of the model.

Table 5.7 shows the amount of variability explained by the MPLS model for each

block and for each of the initial conditions. The initial process conditions are fairly

well estimated by four latent variables with 98.5% and 95% of the total variability

being explained in the X and Y data sets, respectively. The number of latent variables

to retained in the model (4) was selected using cross-validation. The first principal

component primarily describes the variability in the temperature set point (T), the
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LV	 % Variability Explained

X Block	 Y Block	 Quality Variables

Cumulative	 Cumulative	 U0

1	 54.14	 32.59	 49.19	 6.65	 21.57

2	 84.00	 65.48	 66.89	 47.48	 47.77

3	 95.04	 94.72	 88.88	 80.19	 75.57

4	 98.52	 95.52	 94.20	 83.58	 80.42

Table 5.7 Explained variability by the mixed model

second principal component is dominated by initial initiator weight () and the

initial fouling factor (U0 ) is the focus of the third principal component.

The second Multi-Way PLS model considered is that of section 5.2.3, which was

built from the original forty-five batches of the training data set obtained from the

pilot plant simulation. This model is termed the original model (45R) and, again, its

objective was to estimate the initial process conditions. The model used the process

measurements at the 15th, 20th and 25th minute of the polymerisation process to

infer the actual, but seldom realisable values of the initial conditions (MC1-MC7,

Table 5.3). The original model is presented as reference to the best possible

predictions attainable by MPLS models.

Figure 5.35 shows the estimates of the initial conditions for the initiator weight and

the heat transfer coefficient for an additional twelve previously "unseen" batches

(Kiparissides, 1996), using both the mixed MPLS model (*) and the original MPLS

model (+). The actual values of the initial conditions used in the simulation model to

produce the trajectories are indicated by (o). As can be seen, the twelve batches
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simulate a sequence of operations where the reactor is subjected to fouling, cleaned

and again subjected to fouling. The mixed MPLS model is seen to provide

satisfactory estimates of the initial conditions, which are close to the actual values.

This has been achieved in spite of the model being built from the less precise, but

more realistic, set of initial conditions.
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Figure 5.35 Estimated initial conditions for flew batches using the mixed MPLS

model (*) and the original MPLS model (+)

The performance of the mixed MPLS model (9R+36E) was then compared with three

MPLS models built from different historical databases. For all approaches only those

measurements recorded at the 15th, 20th and 25th minutes of the polymerisation

process were used in the model development. The first model was built from the

actual process measurements of the nine 'design' batches (9R), whilst the second

MPLS model was based upon IMPLS-estimated process measurements of the thirty

six complementary batches (36E). The final model was the original model, which
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was been built using the process measurements from the forty-five batches (45R)

from the pilot plant simulation. Figure 5.36 illustrates the RMSE of Calibration for

the N batches included in the training data set and the RMSE of Prediction on twelve

"unseen" batches with respect to the theoretical initial conditions (Set 1, Table 5.3).

Figure 5.37 shows the RMSE of Calibration for the N batches included in the training

data set and the RMSE of Prediction on twelve "unseen" batches with respect to the

actual initial conditions (MC1-MC7, Table 5.3). The temperature set-point (T) has

now been excluded from the RMSE calculations, since it is estimated fairly well by

all the models and its contribution to RMSE values can be neglected. It can be seen

in Figures 5.36 and 5.37 that, the performance of the mixed MPLS model in fitting

both the training and the validation data sets, is quite similar to the optimal

performance of the original MPLS model. The potential power of the mixed model

(9R+36E) arises from the fact that it is a combination of a model built upon a few

actual process measurements (9R) which provides sufficient "quality" of information

about the process, with a model built upon IMPLS-estimated process measurements

(36E), which provides sufficient "quantity" of information about the process. As can

be seen from the performance of the (9R) and (36E) models, both sufficient "quality"

and "quantity" are not enough to develop a robust model. Therefore, it was concluded

that the mixed model can be used as an alternative to the original model when

enough process data is not available to construct it.
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section, the ability of the Inverse MPLS approach to establish a reliable MPCA

monitoring scheme is investigated.

An MPCA model was built from a training data set comprising the inverted MPLS-

estimated process measurements for the thirty-six nominal batches and the process

measurements from the nine 'design' batches, i.e. forty five batches in total, i.e. the

mixed MPCA model. A monitoring scheme based upon this set of process

measurements was then developed. This approach was evaluated by comparing its

performance to the performance of the MSPC scheme based upon an MPCA model

built from the corresponding process measurements obtained from the pilot plant

simulation for the forty-five batches, i.e. the original MPCA model.

Table 5.8 summarises the percentage of variability explained for the mixed MPCA

model. Cross-validation showed that only three principal components were required

to explain the majority of the variability in the X data set. Two additional batches

were generated from the pilot plant MMA polymerisation simulation. The first batch

(number 46) represents normal operation, since the initial conditions lying within the

nominal ranges as defined in Table 5.1. The second batch (number 47) represents an

Principal
	 % Variability Explained

Component	 Cumulative

1	 48.90	 48.90

2	 27.67	 76.57

3	 15.52	 92.09

Table 5.8 Variability explained by the mixed MPCA model
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example of a batch where there was an initiator problem. Although, the initial

initiator weight is 25% below that of the nominal range, the resultant product quality

only just lies outside the specification limits.

Figures 5.38 and 5.39 show the projection of the two new batches onto the reduced

space of the first two principal components of the mixed calculated from the mixed

and the original MPCA models, respectively. It can be seen that, both models clearly

classify the first batch as normal and the second batch as abnormal. The abnormal

behaviour was also identifiable in Figure 5.40 from the Residual Sum of Squares

(RSS) or Q-statistic plot, since the resultant value was larger than the 99% control

limit for the original MPCA model. However, for the mixed model both batches

exceeded the 99% control limit (Figure 5.41). This latter result can be explained by

looking at the composition of the Residual Sun of Squares (Q) for the MPCA model,

more closely:

Batches Time Variab!es

Q-
	

(5.5)

i=1	 k=1	 j=1

The Q-statistic is a metric based upon a measure of the deviation of the process

measurements from the MPCA representation, given by the residual matrix, E. This

is calculated for each individual batch X1

E1 = x, - x, p pT	
(5.6)

where X 1 is a matrix containing the process measurements of the i-th batch and P is

the three-dimensional array of the loadings. The calculation of the control limits for
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the Q-statistic requires the calculation of the residuals for each batch included in the

nominal database, which in the case of the IMPLS-estimates, can be written as:

E, =k1	 ppT	
(5.7)

where P denotes the loadings array for the mixed MPCA model and X 1 denotes the

IMPLS estimates of the process measurements for each batch. These estimates

contain an error associated with the approximation of the real process measurements

by their IMPLS estimates, which cannot be calculated since the real measurements of

the batches will in practice be unavailable and which is inherited to the control limits.

When calculating the Q-statistic for a new batch, this error will not be present in the

process measurements:

E new = X new - X new
	

(5.8)

where Xnew is the unfolded vector of the new real measurements and p is the

unfolded array of the mixed MPCA loadings. This results in the calculated values for

the Q-statistic and the Squared Prediction Error (SPE) for each new real batch

potentially exceeding the nominal control limits. As a result, the Residual Sum of

Squares or Q-statistic and the Squared Prediction Error are unreliable measures of

operating performance, since they will contain an error, which is not quantifiable and

which will inflate these two metrics.

Following on from the development of the mixed MPCA model, the next question of

interest is whether the MSPC monitoring scheme based upon the mixed MPCA

model is able to identify abnormal operation and to differentiate between different

assignable causes. The major problem associated with this approach is that the
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vector of process measurements ( X new) is not complete until the end of the batch.

The projection method as described in section 4.5.1.1, is adopted. This method

considers the unknown future observations as missing values and uses the principal

components of the MPCA model to predict these missing values by restricting them

to be consistent with those values already observed up to time interval, k, and with

correlation structure of the measurement variables in the database as defined by the

loading matrices (P) of the MPCA model. MPCA does this by projecting the already

known observations down onto the reduced space and calculating the scores at each

time interval as

t rk = (p1 Pk) ' P Xflewk	 k = l,2,...,K	 r = 1,2,...,R	 (5.9)

where trk is a vector containing the scores of all the retained principal components

up to time point k and k is a matrix whose columns are defined to be the elements

of the unfolded three dimensional array of the MPCA loadings (P). This method has

been found to be superior to the others proposed if at least ten percent of the

measurements of a new batch are known (Nomikos and MacGregor, 1995).

Figures 5.42 and 5.43 and illustrate the on-line monitoring for the first score and SPE

for batch number 46 using the mixed MPCA model, whilst Figures 5.44 and 5.45

present the on-line monitoring for the first score and SPE for the batch number 46

using the original MPCA model. It can be seen that, both MPCA models can

successfully monitor the evolution of a normal batch in the score plots. However,

only the original model can monitor successfully the batch in the SPE plot, since

using the mixed model the SPE continuously exceeds its control limits, as it can be

237



w

I

Outof95%C.L:1 - 99%C.L:1
50

40

30

20

olO
a-

8 -10
CI)

-20

-30

-40

-50
0	 20	 40	 60	 80	 100	 120

Time (mm)

Figure 5.42 Monitoring of the first score of the mixed model for batch number 46

0	 20	 40	 60	 80	 100	 120

fln (nm)

Figure 5.43 Monitoring of SPE of the mixed model for batch number 46

238



80

60

40

20

2
0

-20

-40

-60

-80

1

2
w10
0

0

2
.
2

C/)

Outof95%C.L:0 - 99%C.L:0

0	 20	 40	 60	 80	 100	 120
Time (mm)

Figure 5.44 Monitoring of the first score of the original model for batch number 46

Outof95%C.L:13 - 99%C.L:6
1

I	 I	 1
0	 20	 40	 60	 80	 100	 120

Time (mm)

Figure 5.45 Monitoring of SPE of the original model for batch number 46

239



seen in Figure 5.43.

Figures 5.46 and 5.47 show the on-line monitoring score and SPE charts,

respectively, for the abnormal batch number 47, using the original MPCA model. It

can be seen that, the unusual event can be detected in both plots. The next task is to

identify the cause of the problem by interrogating the underlying MPCA model. This

is achievable by examining the contribution of the individual process variables to the

SPE and to the scores value for the first principal component, at the time point where

the fault occurred (MacGregor et al., 1994).

The SPE at each time point (k=1,... 120) is the sum of the squared prediction errors

for all the process variables (j=l,...,m) (equation 4.4.1)

SPE k = (xkJ - XkJ)

where the predictions XkJ are calculated from the original MPCA model. Each of the

terms (xkJ - xk ,J) account for the contribution of the corresponding j-th process

variable to the SPE at the k-th time point and it is denoted the Prediction Error.

Similarly, the score of the r-th principal component at each time point k is the sum of

the product of the current value of the process variable (xkJ) times their contribution

to the principal component under consideration (WrkJ) (equation 4.4.4):

t r , k = Xkl W r , k ,1 + . . . + XkJ Wr,k,m

However, the scores have been calculated by an MPCA projection (equation 5.9) and,

therefore, each time point is the sum of the contributions of each individual process
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variables on a cumulative basis up to the time point of interest, k,:

k	 k	 k

t r ,k	 Pr,nxi	 Pr,nx2 +•+Xnm Pr,nxm	 (5.10)
n=1	 n=I	 n=I

Pr,nxj is the element of the matrix ( 1 Pk ) ' P of dimension (R x k m) at each time

point k (m is the number of process variables). The contribution of the individual

process variables to the change in the value of the score between time point k 1 and

time point k 2 can be calculated as

t rk =	 Pr,nxi +	 Pr,nx2	 Pr,nxm	 (5.11)
n=k 1	n=k,	 n=k1

Closer examination of the differential contribution of each variable to the score for

the first principal component at the point where the score lies outside the 99% control

limits i.e. between the 90th and 96th time points, indicates that the variables

contributing primarily to the problem are the jacket temperatures and the conversion

of monomer MMA (Figure 5.48). However, at the 82nd time point, where the SPE

initially moves outside the 99% control limit (Figure 5.49), the major instantaneous

contribution comes from conversion of monomer (note that the reactor temperature is

denoted as Treac, while the conversion of monomer MMA is denoted as Con y). From

a priori knowledge of the process (Kiparissides, 1996), it was concluded that, the

main cause of the fault is a low amount of initiator. The increased value in the jacket

temperatures can be explained by the underlying relationship between them and

conversion of monomer MMA. However, the situation becomes clearer if we look at
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the continuous contributions plots of the first score and the SPE (Figure 5.50 and

5.51, respectively). These plots, which are differential contributions plots between

the current time point k (k 2 = k) and the beginning of the batch (k 1 = 1st mm),

clearly show that conversion of monomer MMA is mainly responsible for the

deviations both in the scores for the first principal component and in the SPE plots,

since its contribution rises before the contributions of the temperatures.

The monitoring procedure for the abnormal batch number 47 using the mixed MPCA

model is illustrated in Figure 5.52. The unusual event, again, is detected by the model

in the first score. The SPE plot is not utilised, since it was shown that it is an

unreliable measure. The contributions of the process variables to the movement of

the first score between the 85th and the 95th time points (Figure 5.53), again, show

that conversion of monomer MMA is mainly responsible and, therefore, the amount

of initiator injected into the reactor is identified as the main cause of the problem.

The plot of the continuous contributions to the first score (Figure 5.54) confirms that

conversion is clearly indicative of the fault and indicates that the fault started to be

observed on both charts at the same time points (80th minute).

It is concluded that an MSPC scheme based upon an MPCA model, which has been

built upon the IMPLS estimates of the real process measurements, is able to

successfully monitor new batch and to identify faults. Although, it is not as reliable

as the scheme based upon a model of the real process measurements, it can be

improved as more new real process measurements, from completed normal batches,

become available.
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Figure 5.54 Continuous contributions to the first score for batch number 47

5.2.6 MSPC for Batches of Uneven Duration

In most MSPC applications found in the literature, it is assumed that, all batches

included in the historical process database, are of the same duration. However, this is

unrealistic, since consistent product quality using different initial conditions can be

achieved at different operational times, 'the prescribed recipe is not identically tracked

from operation to operation and there are several events that can drive the process

away the normal operation, force the control systems to compensate for them and,

therefore, delay the termination of process. As a result, batches found in a typical

historical database, are of uneven duration.

There are two approaches to overcome this difficulty (Nomikos and MacGregor,

1994). The first approach proposed is to retain only those measurements belonging to

the time period that is common for all batches. However, this can leave significantly
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important information about the process out of the statistical model and, therefore,

can lead to the development of spurious models. Alternatively, it was suggested that,

batches can be scaled using another process variable, instead of the process time

(Rothwell, 1998).

For the case of the batch polymerisation reactor, the process variable used to scale the

operation, was the on-line conversion (Con y). For the purposes of illustrating the

previous approach, 24 batches were additionally simulated, with initial process

conditions randomly selected from the nominal design levels (Table 5.1.). All the 24

batches were allowed to continue up to the time point where a value of conversion of

98% was achieved. Measurements on the remaining process variables were collected

at each time point where the conversion was increased at 1%. Figure 5.55 presents

the trajectories of the inlet temperature of the coolant (T) for the 24 additional

batches, whilst Figure 5.56 presents the transformation achieved on these process

trajectories when this kind scaling is applied. It can be seen that, the 24 uneven

batches have been transformed to equal length.

An MSPC scheme for process monitoring that utilises an MPCA model, such as

those described in section 5.2.5.3 can be developed using the transformed historical

database of the 24 additional batches. Note that, the conversion (Con y) has been

excluded from the process variables, and, operational time was included as the fifth

variable. Figures 5.57 and 5.58 illustrate the monitoring procedure for another

additionally simulated batch with initiator below its nominal design level. It can be

seen that, the model is able to detect the occurrence of an abnormal event.
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However, the fault cannot be identified, since all the process variables contributed to

the out-of-control signals of the second principal component score, between the 9%

and 44% of conversion.

5.3 MSPC-Based Applications to Continuous Processes

In order to illustrate the advantages of the Multi-Block PLS method in the

implementation of MSPC schemes for inter-connected processes, three different

statistical models were developed for a two-zone Low Density Poly-Ethylene (LDPE)

tubular reactor, using PLS and Multi-Block PLS. Specifically, the first model was

developed using the classical PLS method, while the two other models were

developed using the Interconnected Multi-Block PLS method, but applying different

variable blocking procedures.

The application of Multi-Block PLS to the LDPE reactor has been already presented

in MacGregor et al., 1994. However, the LDPE data have been analysed in order to

illustrate both the proposed concepts and technique to inter-connected continuous

processes.

5.3.1 Two-Zone LDPE Tubular Reactor

Low-density polyethylene (LDPE) is produced at high pressures in tubular and

autoclave reactors. A detailed review of the literature, the reaction kinetics and the

fundamental modelling of these LDPE processes is presented in Kiparissides et al.

(1993). Based on this fundamental study, a steady-state process simulation

programme has been developed by the Laboratory of Polymer Reaction Engineering

(LPRE), Department of Chemical Engineering, Aristotle University of Thessaloniki,
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Greece. The simulation programme has been adjusted to match typical data produced

by industrial processes. In this thesis only the first two-zones of an industrial tubular

LDPE reactor, as depicted in Figure 5.59, are considered. These steady-state data

might reasonably represent measurements collected from an industrial process at time

intervals longer than the process time constants or averages of measurements taken

over some time periods.

Figure 5.59 Two-zone LDPE tubular reactor

The major productivity variable of interest is the conversion per pass (CONV). The

molecular properties of interest include the weight average molecular weight

(MW,), the number average molecular weights (MWN), and the long-chain

branching frequency (LCB) and short-chain branching frequency (SCB). None of

these properties are available on-line and many of them are either not measured at all

or are only measured infrequently. However, many on-line measurements such as the

temperature profile down the reactor, the coolant temperature, and the solvent and
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initiator flow rates are available on a frequent basis. Although the entire temperature

profile is available for each reactor section, the common industrial practice of

summarising the profile in each section by its inlet (Tin), maximum (Tmax) and

outlet temperatures (Tout), together with the position of the maximum (z) is adopted

(MacGregor et al., 1994). Process and quality measurements assumed to be available

are listed in Tables 5.9 and 5.10, respectively.

A number of grades of LDPE product can be produced by an industrial reactor,

however, the production of only one grade was considered here. The nominal

experimental initial conditions for this grade were selected to represent realistic

Process	 Definition
Variables

T	 Inlet temperature of the reaction mixture (K)

TMAXI	 Maximum temperature of the reaction mixture in the first zone (K)

TOUT!	 Outlet temperature of the reaction mixture in the first zone (K)

TMAX2	 Maximum temperature of the reaction mixture in the second zone
________ (K)

Tou	 Outlet temperature of the reaction mixture in the second zone (K)

TCINI	 Inlet temperature of the coolant in the first zone (K)

TCJN2	 Inlet temperature of the coolant in the second zone (K)

ZMAX1	 Position of the reactor where Tmax 1 appears (% of reactor length)

zMAx2	 Position of the reactor where Tmax2 appears (% of reactor length)

F11	 Total inlet flow-rate of the initiators to the reactor (gls)

F12	 Total inlet flow-rate of the initiators in the intermediate feed-
stream (g/s)

F1	 Inlet flow of the solvent in the reactor (% of ethylene)

F2	 Flow of the solvent in the intermediate feed (% of ethylene)

Press	 Pressure of the reactor (atm)

Table 5.9 Process variables of the LDPE reactor (MacGregor et al., 1994)
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Quality Variables	 Definition

CONY	 Cumulative conversion of monomer

MWN	Number average molecular weight

MWw	 Weight average molecular weight

LCB	 Long Chain Branching I 1000 atom C

SCB	 Short Chain Branching / 1000 atom C

Table 5.10 Quality variables of the LDPE reactor (MacGregor et al., 1994)

conditions of polymer LDPE production and are given in Table 5.11. The training

data set comprises 50 steady-state operations generated through Monte Carlo

variation of the selected initial conditions and represents normal production of LDPE

when only common causes variations were present and acceptable product quality

was achieved. Additionally, two operations were simulated to represent two different

Variables	 Range of Variation

F 51	 5.95-6.05%

F 52	 5.95-6.05%

Press	 2,965 - 3,035 atm

T	 477-483K

Fouling	 15-25 cal/cm2/s/K'
Factor
Coefficient

Impurities	 15 - 35 % of initiator flow rates

Initiator	 0.408 - 0.5 10 g/s
flow-rate

Table 5.11 Process conditions for the reference set (MacGregor et a!., 1994)
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types of abnormal behaviour that can occur, namely, reactor fouling and changes in

the amount of chain transfer agents entering with the solvent. More specifically, the

first operation represented a reactor fouling problem occurring in the second zone,

whilst the second operation described a problem relative to impurities entering with

the feed of solvent in the first zone of the reactor (Kiparissides, 1997).

5.3.2 Description of PLS-based Models

Three statistical models were developed using Projection to Latent Structures (PLS)

and the Interconnected Multi-Block PLS techniques, in order to establish MSPC-

based schemes for the monitoring of the LDPE process.

The first model was build using the ordinary or classical PLS technique. All process

variables (Table 5.9), were included in the predictor (X) data set, while the response

(Y) data set consisted of the quality variables of interest (Table 5.10). The second

model was build using the Interconnected Multi-Block PLS technique (MBPLS-A).

Process variables were grouped according to their origin and location in the process

and two different process data sets (X 1 and X2) were created. Variables associated

with the first zone and the second zone of the reactor were included in X 1 and X2,

respectively. Process variables common to both zones were included into both data

sets (Pressure (Press) and temperature of reaction mixture leaving first zone (TOUTI),

which enters the second zone). Finally, the third statistical model was build using the

Interconnected Multi-Block PLS method (MBPLS-B), but based upon another

grouping approach. Variables were grouped according to their similarity and nature.

Process variables relating to temperature were included in X 1 , while the rest of the

variables were placed in X2.
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Figure 5.60 summarises the three developed models and the variability explained by

each of these models is presented in Table 5.12. It can be seen that, the first

dimensions in each model need to summarise the variability of the process.

Furthermore, PLS and MBPLS-B models explain the same amount of variability in Y

block, this is an indication that poor blocking can lead to insufficient statistical

modelling. It has to be stated that, the number of latent dimensions extracted in each

model depends on the rank of the matrices involved in the development of the model.

In all models, three latent dimensions, explaining almost 99% of the variability in Y

block, were kept. Finally, only the plots indicative of the issues investigated are

presented.

Classical PLS	 Multi-Block PLS A	 Multi-Block PLS B

Xi	 -

_ _

	

	
I

X2

- No blocking is applied - Blocking based on	 - Blocking based on

- All process variables	 distinct parts of the	 the nature of the

are included into the	 process	 variables

same block	 - Process variables of 	 - Temperature related
each zone together in	 variables together in
the same block	 the same block

Figure 5.60 Statistical models developed for the LDPE process
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5.3.2.1 Classical PLS Model

The statistical representation of the process by the PLS model is presented in Figures

5.61 - 5.64. Figures 5.61 and 5.62 present the projection of the scores of the process

to the reduced space defined by the first versus the second and the first versus the

third latent dimension, respectively. Figure 5.63 shows the Square Prediction Error of

the process variables and, finally, Figure 5.64 shows the linear internal relationship

between the two blocks of variables. It can be seen that, the assumption of linear

relationship between the X and Y blocks is valid.

The developed PLS model is now used to establish an MSPC-based scheme for

process performance monitoring. The scheme is validated against the data sets that

represent a reactor fouling problem occurring in the second reactor zone and a

problem with the solvent feed in the first reaction zone. The fouling problem is

detected in the latent subspace of first and the third latent variables (Figure 5.65) and

specifically in the third latent variable. The differential contribution of the process

variables to the third latent variable (Figure 5.66), at the particular time points where

the fault was detected, indicate that the major contributing variables are related to

temperature, exactly what one might expect in a fouled reactor (MacGregor et aL,

1994; Kiparissides, 1997). However, the location of the fault cannot be identified,

since the contributing variables belong to both reactor zones and, as a result, it can be

concluded that, both reactor zones are subject to fouling. The solvent problem is

detected in the SPE plot (Figure 5.67). It can be seen that, variables contributing in

the increased prediction error are the solvent feed flow rates in both reactor zones

(Figure 5.68) and, therefore, one may conclude that impurities have entered both

reactor zones. As it was shown, an MSPC-based scheme developed using the PLS
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model, is able to monitor the process and to detect and diagnose faults. However, the

PLS model of the LDPE process is not able to isolate the origin of the occurring

faults. The variables responsible for the faults, identified in the contribution plots,

belong to both reactor zones.

5.3.2.2 MBPLS model (A) - Zone blocking

The statistical representation of the process by the MBPLS-A model is presented in

Figures 5.69 - 5.72. Figures 5.69 and 5.70 present the projection of the process onto

the reduced space defined by the first and the second latent dimension for the two

process blocks, respectively. Figure 5.71 shows the projection of the scores of the

composite matrix (1) created by the two process blocks, onto the reduced space

defined by the first two latent dimensions. Figure 5.72 presents the internal

relationship between the scores of variables included in the two process blocks, as

represented by the composite matrix (T), and the scores of the quality block (U). It

can be seen that, the assumption of linear internal relationship is valid. Finally,

Figures 5.73 and 5.74 illustrate the Square Prediction Error for each process block.

The developed MBPLS model was used to establish an MSPC-based monitoring

scheme which was then validated against the two data sets comprising process faults.

Figures 5.75 and 5.76 present the scores for the data set where a fouling problem is

known to have occurred in the second zone. Figure 5.75 presents the scores plot of

the process variables included in the first block, which corresponds to the first reactor

zone. It can be seen that, although there is a trend in the plot of scores, the process is

still well in-control in the first block. The fouling problem is only detected in the

latent subspace of first and the third latent variables of the second block, which
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corresponds to the second reactor zone (Figure 5.76). The differential contribution of

the process variables of the second zone identify the variables which are indicative of

the problem, i.e. TMAXI,	 ZMAX2 (Figure 5.77). Finally, Figure 5.78 illustrates

the scores plot of the composite matrix T. The fault is identified in this plot as well,

since the composite matrix is the combined representation of the two process blocks.

However, it is not so sensitive as the score plot of the second block, since the

consensus scores are averages of the scores of the individual process blocks.

Figures 5.79 and 5.80 present the scores for the data set where the solvent problem

occurred. The solvent problem is detected in the latent subspace of the first and the

second latent dimension of the first block, which corresponds to the first reactor zone

(Figure 5.79). Figure 5.80 presents the scores plot of the process variables included in

the second block, which corresponds to the second reactor zone. It can be seen that,

the process is still well in-control. The differential contribution of the process

variables identify that the variable indicative of the problem is the inlet flow rate of

the solvent in the first zone (Figure 5.81). Finally, Figure 5.82 illustrates the scores

plot of the composite matrix. The fault cannot be clearly identified but there is a

strong trend that will eventually force the process to move outside the in-control

region of operation.

As it was shown, an MSPC-based scheme developed using the MBPLS-A model is

able to assist process operators in detecting a fault and, furthermore, in identifying

the origin and location of the problem.
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5.3.2.3 MBPLS model (B) - Similarity blocking

The statistical representation of the process using the MBPLS-B model is presented

in Figures 5.83 - 5.88. Figures 5.83 and 5.84 present the projection of the process

down onto the reduced space defined by the first two latent dimensions for the two

process blocks, respectively. Figure 5.85 shows the projection of the scores of the

composite matrix, created by the two process blocks, to the reduced space defined by

the first and the second latent dimensions. Figure 5.86 presents the linear internal

relationship between the two blocks of process variables as they represented by the

scores of the composite matrix (T) and the scores of the quality variables (U). The

assumption of linear internal relationship is valid. Finally, Figures 5.87 and 5.88

illustrate the Square Prediction Error included in the first and the second block,

respectively.

The developed MBPLS model was used to establish an MSPC-based scheme, which

was validated against the two data sets comprising process faults. The fouling

problem in the second zone is detected in the score plot of the first dimension of the

first process block (Figure 5.89), which corresponds to all temperature related

process variables in both reactor zones. Figure 5.90 presents the scores plot of the

process variables included in the second block, which corresponds to the rest of the

process variables. It can be seen that the process is in-control. The location of the

problem cannot be isolated, since the variables which exhibited greater changes than

expected, belong in both reactor zones (Figure 5.91). Therefore, it can erroneously

concluded that both reactor zones are subjected to fouling. Finally, Figure 5.92

illustrates the scores plot of the composite matrix (1). The fault is identified in this
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plot as well, but again the consensus scores plot is less sensitive than the scores plot

of the first block.

The solvent problem in the first zone is detected in the SPE plot of the first block

(Figure 5.93). The scores plot of the composite matrix for the first and the second

latent dimension cannot detected the problem (Figure 5.94), as well as the scores plot

of the individual blocks. The contributing process variables to the increased

prediction error are the inlet flow rates of the solvent in the first and the second zones

(Figure 5.95) and, as a result, the location of the fault cannot be correctly identified.

As it was shown, an MSPC-based scheme based on an MBPLS model developed

using this particular variable blocking approach is able to monitor the process and to

detect and diagnose faults. However, this model of the LDPE process is not able to

isolate the origin of the occurring faults. The variables responsible for the faults,

identified in the contribution plots, belong to both reactor zones. As a result,

similarly to the PLS model, although the process operators will able to understand

that the reactor is fouled or that impurities have entered the reactor, they will not able

to isolate the fault and locate the zone where it occurred.
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5.4 Summary

This chapter presented applications of the proposed multivariate statistical projection

techniques to the development of MSPC-based schemes for process monitoring, fault

detection and diagnosis. Schemes were developed for a batch and , a continuous

polymerisation process. Additionally, statistical models, that can be used in the

general framework of MSPC schemes for these processes, have been presented and

related issues were discussed.
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Chapter VI

Discussion and Further Work

6.1 Summary and Discussion

The work presented in this thesis forms part of two on-going projects of the

European Community: Intelligent Manufacturing of Polymers - BR1TE EURAM CT

93 0523 (1NTELPOL) and Process Diagnostics for Plant Peiformance Enhancement

- ESPR1T PROJECT 22281 (PROGNOSIS). These projects are conducted by the

Centre for Process Analytics and Control Technology (C.P.A.C.T), University of

Newcastle, the Laboratory of Polymer Reaction Engineering (LP.R.E), Chemical

Process Engineering Research Institute (C.P.E.R.I) and Aristotle University of

Thessaloniki, Greece, and a number of end-user companies from several European

countries.

Chapter 2 introduced the methodologies of Statistical Process Control (SPC) and

Statistical Quality Control (SQC). Specifically, the use of SPC and SQC in industrial

quality control problems, the charting methods they use, their advantages and

limitations. The chapter continued by introducing Multivariate Statistical Process

Control (MSPC) and its advantages of MSPC over univariate SPC and SQC. The

applicability of MSPC for modern industrial processes and the multivariate statistical

and charting techniques applied in MSPC were also presented.

Chapter 3 introduced to the multivariate statistical analysis of data, the statistical

projection techniques used for dimensionality reduction, Principal Component
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Analysis (PCA) and Projection to Latent Structures (PLS) and their application in

MSPC. Specifically, most bodies of data collected from modem industrial processes,

are multivariate in nature and significant relationships exist between the

measurements of several process variables. Statistical projection techniques compress

the data down onto lower dimensional subspaces defined by latent variables which

can then be used as the basis of MSPC schemes. The derivation of PCA and PLS

using geometrical, mathematical and statistical interpretations was presented.

Chapter 4 is dedicated to the implementation of MSPC schemes for process

monitoring, fault detection and diagnosis and includes the theoretical developments

achieved in this thesis. The main steps that have to be followed for the appropriate

implementation of an MSPC schemes are described. Furthermore, extensions of PCA

and PLS that allow the implementation of MSPC to special types of process are

presented along with the specific features of the corresponding MSPC schemes.

Specifically, Multi-Way PCA and Multi-Way PLS are applicable to processes that

exhibit non-linear characteristics, such as batch and semi-batch processes, whilst

Multi-Block PCA and Multi-Block PLS techniques are appropriate for processes

comprising many distinct units. Finally, the novel approach of Inverse Projection to

Latent Structures (IPLS) for the generation of pseudo data required for implementing

an MSPC scheme when minimal process data sets is available, was presented.

Finally, Chapter 5 presented applications of the proposed techniques and

methodologies. Specifically, two example processes were considered : a batch

polymerisation reactor of Methyl-Methacrylate and a two-zone tubular reactor for the

production of Low Density Poly-Ethylane (LDPE). Two inferential statistical models
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were developed for the batch polymerisation reactor: a PLS regression model for the

prediction of the final polymer properties from the initial process conditions of the

batch reactor and a Multi-Way PLS regression model for the estimation of the initial

process conditions at an early stage of the polymerisation process. The models can be

used to handle problems concerning the operation of batch reactors and in the general

framework of an MSPC schemes. All issues related to these models were discussed

in detail. The IPLS methodology was also applied to the batch reactor. Specifically,

having developed a robust Multi-Way PLS model from minimal process data, the

IPLS methodology is then applied to generate the required amount of data to

establish an MSPC scheme. The Multi-Block PLS technique is illustrated by

application to a two-zone LDPE tubular reactor.

In conclusion, the theoretical aspects in this work include the derivation of Projection

to Latent Structures using geometrical, mathematical and statistical interpretations, a

detailed review of the NIPALS algorithm used to perform Multi-Block PLS and the

derivation of the Inverse PLS approach to generate process data. On the other hand,

the applications presented in this work, illustrated the proposed techniques and the

effectiveness of the statistical approach for solving typical problems found in

industrial processes. Both theoretical developments and applications contributed to

several aims and tasks of the two projects (INTELPOL and PROGNOSIS).

However, there are some issues that have not been addressed in this thesis.

Specifically, the topics of SPC and MSPC for the process standard deviation has not

been considered, since most of the methods and techniques are dedicated to the

process mean. Alternative statistical projection techniques, such as Factor Analysis
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(FA), Principal Components Regression (PCR) have not been considered, since it has

been found that PCA and PLS are currently the most effective techniques for the

development and application of MSPC-based schemes in chemical processes.

Finally, although not included, the Multi-Block PCA technique has not been

illustrated in this thesis, however, preliminary work has shown that it performs for

the two-zone LDPE tubular reactor similarly to Multi-Block PLS.

6.2 Suggestions for Future Work

During this work a number of topics have been covered and many issues and

questions raised. Some of these have been answered, other remain as challenges for

the future.

The proposed methodology of IPLS has been successfully applied to generate

pseudo process data and establish an MSPC scheme for the batch reactor

simulation. However, the potential strength of this approach cannot be proven

without testing it on a real process, where it is not always possible to develop a

robust PLS regression model that has to be inverted according to the methodology

proposed.

• The Multi-Block techniques have been proposed in this thesis as suitable for

developing statistical representations of complex processes comprising several

distinct units. However, the Multi-Block PLS technique have only been

investigated and applied to a process of simple structure, a two-zone tubular

LDPE reactor. Research has to be conducted on the theoretical aspects of the

Multi-Block PCA and PLS technique and, furthermore, on the application of

Multi-Block techniques to processes with more complex structure, comprising
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more than two blocks, in order to investigate the ability of the proposed

techniques to be used in plant-wide MSPC schemes.

a The statistical projection techniques of PCA and PLS that are used to develop the

statistical representation of a process suffer from a significant disadvantage.

Specifically, they are known to fail to provide sufficient statistical process models

when autocorrelation is presented in the process variables. Alternatively, other

techniques and methodologies have been proposed (Mastrangelo and

Montgomery, 1995; Faltin et al., 1995; Larimore, 1983; Schaper, et al., 1994).

More detail research has to be undertaken in this particular topic, since

autocorrelated characteristics exist in many industrial processes. In this way,

MSPC schemes suitable for processes with autocorrelated observations could be

developed and implemented.

MSPC is a powerful methodology for process performance enhancement. Research is

currently being undertaken in a number of research centres around world and the

results from MSPC implementation in industrial processes appear very promising.

However, the challenges will never stop to grow, since every process has its own

characteristics that differentiates it from others, and companies requirements that are

needing to be fulfilled by MSPC schemes, continuously increase due to frequently

changing technology and market conditions.
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