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Abstract 

 

Understanding the role of different neuronal populations in the evolution of 

epileptic activity remains a major goal for epilepsy research. Physiological neuronal 

networks may become hyperexcitable if they tip over some apparent threshold level of 

excitation, or below some threshold level of inhibition, although this process, termed 

ictogenesis is not understood. This hyperexcitable state of the network underlies the 

pathological condition of epilepsy. Clinical evidence suggests strongly that different 

regions in the brain have different epileptic-activity patterns and seizure susceptibility. 

The reasons for this differential susceptibility, however, are also not known. 

In this thesis, two widely used in vitro models of epilepsy were used – zero-

magnesium, and 4-aminopyridine (4AP) models – to characterise the evolution of 

epileptiform activity in naïve cortical networks in different regions of brain slices taken 

from wild-type mice. Various metrics were then used to develop assays for measuring 

(1) the action of disease-modifying drugs and (2) the effects of genetic mutations on 

seizure susceptibility. Lastly, the firing properties of neocortical parvalbumin-positive 

(PV+) interneurons in 4AP were characterised. 

Different cortical areas showed notable differences in seizure susceptibility and 

activity patterns in the two models. In zero-magnesium, development of epileptiform 

activity in hippocampal regions facilitated transformation of early-stage epileptiform 

activity to late-stage in the neocortex. Furthermore, activity in the hippocampus 

entrained neocortical events, and this phenomenon was mediated, at least in part, by 

non-synaptic mechanisms, providing strong evidence for propagation through non-

synaptic pathways.   

The effects of diazepam and baclofen were also examined. They showed 

distinct effects on different cortical areas. Pharmacological suppression of glial 

functions induced spontaneous activity patterns, and also affected the development of 

epileptiform activity in the neocortex. Lastly, 4AP was found to alter the firing capability 

of PV+ interneurons in an input intensity-dependent manner, and induced spontaneous 

membrane potential oscillations.  
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1 

 

Chapter 1 Introduction 

 

Epilepsy is a chronic condition of the brain, characterized by stereotyped and 

recurrent alterations in behaviour or conscious state, termed seizures, and by the 

psychological, and cognitive consequences of these episodes. Seizures are 

considered to arise from paroxysmal episodes of intense neuronal activity. 

 

Epilepsy affects an estimated 50 million individuals, that is, around 1% of the 

world population (World Health Organisation, 2017). Epilepsy affects people of both 

genders and of all ages. Epilepsy patients experience seizures that typically lasts 

between a few seconds to minutes. ‘A seizure is a transient occurrence of signs and/or 

symptoms due to abnormal excessive or synchronous neuronal activity in the brain’ 

(Fisher et al., 2005).  The intervals between seizures are known as interictal periods. 

When a seizure happens continuously for more than 30 minutes, it is known as status 

epilepticus (SE).  This state is considered a neurological emergency, and is associated 

with significant mortality, that increases with the duration of the episode (Neligan and 

Shorvon, 2011).  

There are various causes for the development of epilepsy such as traumatic 

brain injuries, stroke, and abnormal development of the brain, gene mutations, brain 

tumours, and central nervous system infections (Lancman et al., 1993; Vespa et al., 

1999; Singh et al., 2008; Ruda et al., 2010; Poduri and Lowenstein, 2011; Lerche et 

al., 2013; Aronica and Crino, 2014). Nearly 30 different types of clinical epilepsies have 

been identified (Berg et al., 2010; Scheffer et al., 2017), and depending on the type, 

an epilepsy may be associated with other comorbidities such as anxiety (Mazarati et 

al., 2009; Inostroza et al., 2012), cognitive impairments (Inostroza et al., 2011) or 

increased mortality (Sillanpaa and Shinnar, 2010). The classification of epilepsies is a 

necessary tool for clinicians to evaluate a patient with seizures, and also to enable 

communication between different groups of people namely clinicians, researches, 

patients, and patient’s caretakers. Classification of epilepsies enable clinicians to 

recognise the type of seizures that the patient is showing, and their likely triggers, and 

to choose a course for the anti-epileptic therapy. It also gives an idea about the 
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prognosis of the condition, comorbidities patient may develop such as cognitive 

impairment, anxiety, and mortality risks. This information is essential for both the 

clinicians and the caretakers. Classification continues to be a difficult task as it is mainly 

based on the personal or eye-witness descriptions of the seizures, and electrographic 

patterns recorded in the clinic. Furthermore, interpretation of the electrographic clinical 

data is itself extraordinarily difficult for the following reasons: abnormal electric activity 

in the brain of patients is assessed by using EEG electrodes that are placed on their 

scalp; firstly, they yield poor quality recordings as the EEG electrodes are not in direct 

contact with the brain; secondly, since they record the activity occurring over a large 

area of the brain, one cannot pinpoint the source (location) of the activity; thirdly, 

clinical recordings are often only of interictal periods and fail to capture seizures; and 

lastly, we do not know what exactly do recordings reflect? There is a long way for 

proper classification and AEDs, making it hard for scientific basis of treatment options. 

 

1.1 Current issues in treating epilepsy 

A major issue in the treatment of epilepsy is that 30% of the patients are 

refractory to anti-epileptic drug (AED) treatments (World Health Organisation, 2017). 

Many patients on AEDs continue to develop seizures, and none of the AEDs can 

prevent the progression of the disease. Furthermore, AEDs present side effects that 

may require adjunct medications and worsens patients’ quality of life. Currently, there 

are no anti-epileptogenic drugs available to treat patients at risk of developing epilepsy. 

Epileptogenesis generally has three stages: (1) the precipitating event, e.g., traumatic 

brain injury, stroke, (2) the latent period, the time between the brain injury and the onset 

of seizures, and (3) the final development of epilepsy, defined by the occurrence of 

spontaneous seizures. In cases of brain injury (precipitating event), during the latent 

period, the non-epileptic brain undergoes active changes and become epileptic. 

Administration of AEDs failed to prevent epileptogenesis after the brain injury (Herman, 

2002; Loscher, 2002; Walker et al., 2002; Pitkanen, 2010).  There are many 

documented changes in cortical circuits that appear to occur during the latent period 

(see sections 1.2.1) (Cronin and Dudek, 1988; Schwarzer et al., 1995; Bragin et al., 

2000; White et al., 2010; Chauviere et al., 2012), but we continue to have a very poor 

understanding of the functional relevance of these to the epileptogenic process. 
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Clinically, the importance of the latent period is that it is a window of opportunity for 

preventing the development of seizures. Identifying the active processes such as 

structural, functional changes, gene mutations, will enable us firstly, to identify 

biomarkers of such processes, secondly, recognise patients with risk of developing 

epilepsies, and thirdly, to pharmacologically intervene during the latent period to 

minimise the chances or prevent the development of epilepsy (Walker et al., 2002; 

Dichter, 2009; Jacobs et al., 2009; Pitkanen, 2010). It is necessary to understand 

various mechanisms of epilepsies to identify new drug targets that not just alleviates 

the symptoms, but prevents its development and cure the disease. Understanding the 

mechanisms of epileptogenesis and refractory epilepsy is the way to go forward for the 

development of anti-epileptogenic drugs, disease-modifying drugs, treatment 

strategies that will improve patient’s epilepsy condition and associated comorbidities, 

and for our better understanding of epilepsy. These are some of many reasons for 

which we need experimental models, both in vitro and in vivo, that recapitulates various 

facets of human epilepsies.  

 

1.2 In vivo models 

Studies on animal models have enhanced our understanding about the various 

aspects of epilepsy. Different animal models that capture different features of human 

epilepsy were used extensively to understand the pathophysiology of epilepsy, to 

screen anti-epileptic drugs, to design new therapies for epilepsies not responding to 

currently available anti-epileptic drugs and improve comorbidities (Brooks-Kayal et al., 

2013). However, there are some limitations in using in vivo models such as the 

experimenters do not have a complete handle on the experiments, they are labour 

intensive, high animal mortality, animal welfare issues, usually large group sizes are 

required, and high financial costs. 

Chemoconvulsants allow investigations of epileptogenic mechanisms and 

screening of AEDs. Chemoconvulsants-induced epilepsies in animal models 

reproduce the phenotypes and symptoms associated with human epilepsies, but they 

are not entirely clinically validated. Therefore, a model should be chosen based on 

which specific aspect of epilepsy is the researcher aiming to investigate. Several 

chemoconvulsants, such as kainate, pilocarpine, tetanus toxin are used for inducing 
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epileptic activity in animals (rodents are more commonly used as experimental 

animals). The following are two examples of in vivo models with distinctive features 

that are used for understanding the pathophysiology of one of the most common type 

of epilepsy – temporal lobe epilepsy (TLE).  

1.2.1 Kainic acid model 

Temporal lobe epilepsy (TLE) in humans is characterised by the presence of 

seizures, hippocampal sclerosis, mossy fibre sprouting (synaptic reorganisation), 

dispersion of granule cells in dentate gyrus, and extra-hippocampal pathology (Sutula 

et al., 1989; Bonilha et al., 2006; Bonilha et al., 2010). Kainic acid-treated rats are used 

as an animal model for temporal lobe epilepsy. Ben-Ari and Lagowska (1978) 

developed the kainic acid model of TLE. They showed, in rats, that injecting kainic acid 

(KA) into amygdala induced lesions and behavioural seizures. KA-induced behavioural 

seizures and pathological lesions in rats show similarity with those observed in patients 

with temporal lobe epilepsy (Ben-Ari, 1985; Ben-Ari and Cossart, 2000). Along with 

amygdala, KA also causes an extensive damage in hippocampus, entorhinal cortex 

and piriform cortex (Schwob et al., 1980). 

Kainic acid is an agonist for kainate receptors (KAR), a subclass of ionotropic 

glutamate receptors. It enhances the excitatory responses in cortical neurons. KAR 

are differentially expressed throughout the brain, and their expression patterns play a 

key role in balancing the excitability of the networks. There are five different types of 

KAR subunits, namely, KA1, KA2, GluR5, GluR6, and GluR7. The pharmacology, 

location, and kinetics of KARs are dictated by their subunit composition (Bahn et al., 

1994). In the hippocampus, CA3 pyramidal neurons express high levels of KA1 and 

KA2 subunits, whereas CA1 pyramidal neurons express high levels of KA2 subunits 

(Werner et al., 1991; Wisden and Seeburg, 1993; Bahn et al., 1994). This differential 

expression levels of the subunits on the pyramidal neurons make CA3 more 

susceptible to the damage caused by KA (Ben-Ari and Cossart, 2000). Furthermore, 

GABAergic interneurons in CA3 and CA1 express high levels of GluR5 subunits (Bloss 

and Hunter, 2010), while CA3 pyramidal neurons express high levels of GluR6 

subunits (Bahn et al., 1994). It has been shown that GluR5 knock-out mice are more 

susceptible to KA-induced seizures, whereas GluR6 knockout mice are less 

susceptible to developing seizures (Mulle et al., 1998; Fisahn et al., 2004). Related to 
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these animal findings, there was a downregulation of GluR5 and GluR6 mRNA levels 

in tissue from patients with TLE (Mathern et al., 1998), suggesting, over time, the 

expression profile of the subunits could be altered in response to epileptiform activity. 

Intracerebral or systemic administration of KA leads to the development of 

spontaneous recurrent seizures with a latent period of one week to one month after an 

early episode of status epilepticus (Bragin et al., 1999; Riban et al., 2002; Raedt et al., 

2009; Van Nieuwenhuyse et al., 2015). During the latent period, the network 

undergoes changes both functionally and structurally, and is characterised by interictal 

events (White et al., 2010; Chauviere et al., 2012). The rate of interictal events is higher 

and lower in animals that develop and do not develop spontaneous seizures, 

respectively (White et al., 2010). Chauviere et al. reported the occurrence of two 

different types of interictal events during the latent period. These interictal events 

showed different development profiles and waveforms: 1) the first type has a spike and 

wave form and its occurs at a progressively lower rate, and 2) the second type has 

only the spike component and its occurrence increased during the latent period until 

the onset of the first spontaneous seizure event (Chauviere et al., 2012). Hippocampal 

lesions and mossy fibre sprouting are characteristic features of TLE.  Hippocampal 

lesions are characterised by pyramidal cell loss in CA3, CA1, loss of neurons in the 

hilus, and loss of parvalbumin-positive interneuron in subiculum (Drexel et al., 2012). 

Best et al. reported the existence of two groups of parvalbumin-positive interneuron in 

CA1: 1) KA-sensitive, soma-targeting PV+ interneurons, and 2) KA-resistant, axon 

initial segment targeting PV+ interneurons (Best et al., 1994). Damage to dentate gyrus 

is characterised by mossy fibre sprouting, granule cell layer dispersion and astrogliosis 

(Bouilleret et al., 2000; Van Nieuwenhuyse et al., 2015). 

This model is also used for assessing the effects of AEDs on spontaneous 

seizures (Riban et al., 2002; Grabenstatter et al., 2005; Grabenstatter et al., 2007; 

Grabenstatter and Dudek, 2008). KA-induced epileptiform activity is pharmaco-

resistant to valproate, phenytoin, and carbamazepine, but are suppressed by 

diazepam in Swiss male mice (Riban et al., 2002). However, Grabenstatter et al. 

reported strong suppressive actions of carbamazepine on motor seizures induced by 

KA in male Sprague Dawley rats (Grabenstatter et al., 2007). This highlights one of the 
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limitations of the model that rodents of different species show different sensitivity to 

AEDs. 

1.2.2 Tetanus toxin model 

Tetanus toxin (TeTx) has been used as a proconvulsant, inducing chronic 

epilepsies in rats. Depending on the site of injection in the brain, it has been used for 

modelling temporal lobe epilepsy when injected into hippocampus or focal neocortical 

epilepsy when injected into neocortex (Mellanby et al., 1977; Empson and Jefferys, 

1993; Jefferys et al., 1995).  

TeTx is a zinc protease that cleaves vesicle associated membrane protein 

(VAMP) in the neuronal terminals and reduces the release of neurotransmitters 

(Mellanby and Green, 1981; Schiavo et al., 1992). VAMP1 and VAMP2 are two TeTx-

sensitive isoforms present in both excitatory and inhibitory neurons. Inhibitory terminals 

express higher levels of VAMP1 while excitatory neurons express higher levels of 

VAMP2 (Ferecsko et al., 2015).  

Injecting TeTx into the hippocampus produced epileptiform activity with 

intermittent spontaneous seizures that are sensitive to carbamazepine (Mellanby et al., 

1977; Jefferys et al., 1995). Histological studies on tissue from these rats show no 

detectable cell loss (Mellanby et al., 1977). However, TeTx at higher concentrations 

induce cell death and high mortality (Bagetta et al., 1990). Early after intra-cortical 

injections of TeTx, inhibitory and excitatory synaptic transmissions are completely and 

partially blocked, respectively (Jordan and Jefferys, 1992; Whittington and Jefferys, 

1994; Ferecsko et al., 2015). This has a disinhibitory effect on the network, thus making 

it hyperexcitable and causing epilepsy. A few weeks to months after being injected with 

TeTx, rats start to show fewer seizures and eventually gain remission, but they 

continue to show cognitive impairment (Jefferys et al., 1992). Examining tissue taken 

from these rats, Vreugdenhil et al. reported changes in intrinsic properties of neurons, 

reduced synaptic excitation of interneurons, and the connectivity patterns (Vreugdenhil 

et al., 2002). Some of these changes may be protective homeostatic responses to 

epileptic triggers that aid the networks to regain a balance that reduce the rate of 

development of seizures (Vreugdenhil et al., 2002). An interesting feature of this model 

is that the epileptiform activity does not develop into status epilepticus (Finnerty and 

Jefferys, 2002; Barkmeier and Loeb, 2009). Minimal mortality rate at low doses and 
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the occurrence of spontaneous seizures makes it a good model for in vivo screening 

of antiepileptic drugs (Doheny et al., 2002). 

 

1.3 In vitro models 

In vitro models have been an important research tool in epilepsy research for 

many years (see recent review – (Avoli and Jefferys, 2016)). They reliably produce 

electrographic features of seizure events observed in vivo. However, they do not have 

the long-range anatomical connections or the behavioural component as in in vivo. 

They are suitable for studying network interactions, mechanisms of ictogenesis, and 

various aspects of it. The most widely used in vitro models involve preparing brain 

slices acutely from wild-type animals, and epileptiform activity from these slices is 

recorded in a recording chamber after perfusing with a proepileptic medium to induce 

epileptiform activity.  

1.3.1 Zero-magnesium model 

In zero magnesium models (0Mg2+), acute brain slices are perfused with 

magnesium-free ACSF. In normal conditions, NMDA channels are blocked by Mg2+ 

ions in a voltage-dependent manner. In 0Mg2+ models, however, the activity of 

pyramidal cells is increased as the NMDA channels are free of Mg2+ block, thus making 

the tissue hyperexcitable. Although synaptic inhibition is intact initially, it may 

eventually fail (Whittington et al., 1995); it enables us to study the activity and 

interactions of different cellular components during the evolution, progression, and late 

stage events of ictal discharges.  

However, as the pathological activity builds-up, every neuron in the network 

participates, which is the defining feature of the full ictal, tonic-clonic-like patterns 

(Mody et al., 1987; Dreier and Heinemann, 1991), which propagate with increasingly 

high velocities (Trevelyan et al., 2006; Trevelyan et al., 2007). An in vitro model of 

status epilepticus – intractable continuous bursts of relatively short duration ictal events 

- is studied by bathing the slices for a prolonged period in a solution with low/zero 

extracellular magnesium ion concentration. It was shown that these late epileptiform 

events were not suppressed by commonly used anticonvulsant drugs (Anderson et al., 
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1986; Zhang et al., 1995; Pfeiffer et al., 1996). This model can be used as tool to further 

investigate the factors influencing refractoriness of late events.  

1.3.2 4-Aminopyridine model 

In 4-Aminopyridine (4AP) model, acute brain slices are perfused with ACSF 

supplemented with 4-aminopyridine (Avoli and Jefferys, 2016). 4AP is a voltage-gated 

potassium channel blocker with high efficacy, particularly for Kv3.1 channels. These 

channels are expressed on all neurons, but they are expressed at a particularly high 

density on parvalbumin-positive (PV+) fast-spiking basket cells (Du et al., 1996; 

Martina et al., 1998). Hence, 4AP affects all cells, but primarily PV+ interneurons in the 

network. This blockade by 4AP causes depolarisation of membrane potential and an 

increase in input resistance of the cells making them more susceptible to increase their 

firing rate. Consequently, it changes the activity pattern of the network and makes it 

hyperexcitable. 

In an interface local field potential (LFP) recording setup, 4AP induces different 

patterns of epileptiform in different regions of the slice. In hippocampal territory, 4AP 

normally induces recurrent short discharges, and long polyburst events (Watts and 

Jefferys, 1993). Rate of occurrence of these discharges is lowered by application of 

baclofen, whereas the polyburst events were enhanced (Watts and Jefferys, 1993). In 

the parahippocampal structures such as, temporal neocortex, entorhinal cortex, and 

subiculum it elicits ictal discharges characterised by tonic-clonic like pattern (Avoli et 

al., 1996). 4AP-induced ictal discharges, but not the recurrent discharges in 

hippocampal area (CA), are sensitive to standard AEDs (Bruckner and Heinemann, 

2000).  

 

1.4 Genetic epilepsies – causes, models, and interpretations 

Gene mutations can cause epilepsy as a primary or secondary syndrome.  

There is a growing list of epileptic gene mutations that affect ion channels and 

neurotransmitters, and also cortical formation (e.g., microencephaly genes), 

interneuronopathies (e.g., ARX gene), tubulinopathies (e.g., TUBA1A gene) and many 

more (Poduri and Lowenstein, 2011; Lerche et al., 2013). Identifying such gene 

mutations (Epi et al., 2013), and creating genetically-modified animal models (Smart 
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et al., 1998; Yu et al., 2006), will present opportunities to study the mechanisms of 

epileptogenesis, their role in brain development, and the physiology of the brain. Such 

models also provide a better screening platform for assessing clinically used AEDs as 

they develop spontaneous seizures without any external stimuli such as a 

chemoconvulsant or electric shock (Hawkins et al., 2017). 

 Genetic mutations causing loss-of-functions or deletion of ion channels cause 

many different types of epilepsies. Loss-of-function mutation in scn1a gene, encoding 

for Nav1.1 channels, underlies the development of severe myoclonic epilepsy in 

infancy (SMEI) (Yu et al., 2006). Such mutations are expected to lower the network 

excitability, but it results in increased network excitability due to reduced inhibition. 

Nav1.1 channels are selectively expressed on GABAergic interneurons and the 

mutation in scn1a gene causes reduced excitability of inhibitory interneurons, thus 

causing this epilepsy syndrome (Yu et al., 2006).  

Pathogenic gene mutations can be protective or deleterious and this depends 

on the genomic setting of the organism. Kcna1 gene encodes for a subunit of voltage-

gated potassium channel (Kv1.1) expressed on the axonal and presynaptic domains of 

neurons. Kv1.1 channel regulates the firing properties and neurotransmitter release 

from neurons. Deletion of these channels in mice (kcna1-/-) cause tonic-clonic seizures 

(Smart et al., 1998). Cacna1a gene encodes for a subunit of the presynaptic P/Q-

calcium channels. These channels mediate neurotransmitter release from nerve 

terminals. Partial loss-of-function mutation in cacna1a gene (Cacna1a tg /tg) causes 

absence seizures in a mouse model (Noebels and Sidman, 1979; Fletcher et al., 1996). 

Similar mutation in kcna1 and cacna1 were identified in human patients diagnosed for 

temporal lobe epilepsy and childhood absence epilepsy, respectively (Zuberi et al., 

1999; Imbrici et al., 2004). However, mice carrying both the epileptic mutations show 

improved survival rate, absence of spike-wave seizures and nearly 60% drop in the 

occurrence of tonic-clonic seizures (Glasscock et al., 2007). In cacna1a tg /tg mice, the 

reduced excitability due to loss of function of calcium channels is compensated by 

increased excitability caused due to kcna1-/- mutation, and vice versa (Glasscock et 

al., 2007). But in another double mutant mice, carrying a mutation in scan2a gene 

resulting in enhanced persistent sodium current, and kcnq2 gene resulting in impaired 

voltage-gated potassium current (IK.M), the severity of epilepsy was increased with an 
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early onset (Kearney et al., 2006). These demonstrate that the severity of epilepsy can 

be either improved or worsened by the interactions between of two epileptic variants 

of ion channels. Epilepsy genetics is complicated - it is hard to predict the outcomes of 

mutations, and the cause of genetic epilepsy based on the EEGs and clinical 

symptoms. 

 

1.5 Characteristics of epileptiform events: pro-epileptic, epileptic, and anti-

epileptic activity 

Cortical epilepsy is characterized by propagating neuronal discharges. These 

are pathological transient high activity events during which neurons show modified 

firing patterns. There is growing evidence that cortical activity is regulated by inhibitory 

restraints (Prince and Wilder, 1967; Dichter and Spencer, 1969; Schwartz and 

Bonhoeffer, 2001; Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et al., 

2013; Trevelyan and Schevon, 2013). Surges in cortical activity trigger a pattern of 

intense inhibitory discharges that appears to be a key defence against the initial surge 

in activity developing into full ictal events. During the spread of ictal activity, PV+ 

interneurons provide a powerful feedforward inhibition ahead of ictal wavefront, to 

control or slowdown the spread of the ictal wavefront and recruitment of surrounding 

territories (Cammarota et al., 2013). These surrounding territories thus experience 

huge feedforward, synaptic bombardment, a defining feature of what has been termed 

the ictal penumbra. This phenomenon of restraint observed in vitro (Trevelyan et al., 

2006; Trevelyan et al., 2007; Cammarota et al., 2013; Trevelyan and Schevon, 2013) 

and in vivo models (Schwartz and Bonhoeffer, 2001; Schevon et al., 2012), further 

strengthened the concept of protective ‘surround inhibition’, and arises from the cellular 

connectivity pattern in cortex. 

 Prior to the occurrence of paroxysmal depolarising shifts (recruitment into ictal 

activity), neurons in the penumbra show very low level of firing despite experiencing 

large rhythmic depolarisations. This may last for a few seconds and is the signature of 

invading ictal wavefront termed as restrained depolarising shift (pre-ictal inhibitory 

barrages) (Trevelyan and Schevon, 2013). Sometimes, the activity can return to 

baseline quiescence, constituting a successful restraint of epileptic discharges 
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(Schevon et al., 2012). In other cases, after repeated restrained depolarisation shifts, 

the inhibitory restraint fails, leading to paroxysmal depolarisation shifts bursts.  

  Ictal discharges propagated in modular fashion by recruiting clusters of 

pyramidal cells (Trevelyan et al., 2006). This group of pyramidal cells have a common 

source of inhibition or restraint that opposes and delays their recruitment (Trevelyan et 

al., 2006). PV+ interneurons in tandem with other classes of interneurons were 

identified to be the source of this inhibition that plays a pivotal role in providing 

restraining action against recruitment and propagation. In 4AP model, along with PV+ 

interneurons , somatostatin-positive interneurons display intense firing activity before 

recruitment of excitatory cells into ictal activity, but poorly correlated with the inhibitory 

currents in pyramidal neurons (Cammarota et al., 2013). To summarize, the latency for 

recruitment into ictal events is directly proportional and propagation speed of ictal 

events is inversely proportional to the number of pre-ictal inhibitory barrages 

experienced by neurons in ictal penumbra. 

 

1.6 Aims of this thesis 

Understanding the how epileptiform activity develops in different cortical networks 

remains a major goal for epilepsy research. Clinical evidence suggests strongly that 

different regions of the brain have different epileptic activity patterns and seizure 

susceptibility. The reasons for this susceptibility, however, are also not known. 

Investigating the proneness of cortical networks to develop epileptiform activity and 

their responsiveness to disease-modifying drugs will enable us to better understand 

epileptiform activity, to develop new anti-epileptic drugs and novel strategies for 

epilepsy treatment. Following are the aims of this thesis to provide important insights 

into understanding various features of epileptiform activity: 

 

 To characterise the evolution of epileptiform activity in different cortical networks 

induced by using zero-magnesium in vitro model of epilepsy, and the 

interactions between these networks in brain slices.  
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 To investigate the actions of disease-modifying drugs (diazepam, baclofen, and 

fluorocitrate), and the effect of genetic mutations on various facets of the 

development of in vitro epileptiform activity in different cortical networks. 

 To study the effects of 4-aminopyridine, a chemoconvulsant, on intrinsic 

properties of neocortical parvalbumin-positive interneuron.    
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Chapter 2 Materials and Methods 

 

In this chapter I provide information about materials and methods that apply 

across the whole thesis.  Subsequent chapters will include short additional 

methodology sections to provide further detail that are specific to those studies. 

2.1 Animal husbandry 

All animal handling and experiments were done according to the guidelines laid 

by the UK Home Office, Animals (Scientific Procedures) Act 1986, and Animal Welfare 

Ethical Review Board at Newcastle University. All mice used in this study were housed 

in individually ventilated cages in a 12 hours light (7 a.m. to 7 p.m.), 12 hours dark (7 

p.m. to 7 a.m.) lightning regime. All cages were cleaned weekly and provided with 

ASPEN wood chip bedding (sizes: 2HK and 4HK) and sizzle-nest.   All mice were 

provided with food and water ad libitum.  

 

2.2 Mouse lines 

Following mouse lines were used for different experiments mentioned in this 

thesis: C57BL/6J mice (Stock # 000664, The Jackson Laboratory, USA), PV-Cre mice, 

(Stock # 008069, The Jackson Laboratory, USA), Calsyntenin-3 transgenic mice (MRC 

Harwell, U.K.), and Neuroplastin-65 transgenic mice (MRC Harwell, U.K.).  

 

2.3 Viral injections 

Parvalbumin (PV)-positive interneurons were labelled in PV-Cre mice 

(heterozygous or homozygous) by injecting AAV9.hEF1a.lox.mCherry.lox.mTFP1 

virus, purchased from the UPENN Vector Core (PA, USA). Following procedures were 

conducted in aseptic conditions. Viral injections were done in post-natal day 0-1 pups. 

First, EMLA, a local anaesthetic cream containing lidocaine and prilocaine, was applied 

on the left-dorsal side of their head. They were later anaesthetised for the duration of 

the procedure using volatile isoflurane. Hamilton syringe (10 μl) fitted with a bevelled 

36-gauge needle (World Precision Instruments) was used for doing injections. 
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Injections were made at four different depths at a single site (50 nL per depth) in the 

left hemisphere, approximately 1 mm anterior to lambda and 1mm lateral to the midline. 

The first injection was the deepest at 1.7 mm from the pia and the subsequent 

injections were made at 0.3 mm dorsal to the previous. In total, approximately 200 nL 

of virus was injected in a single pup. The body temperature of the pups was maintained 

throughout the procedure and immediate recovery period by heating pads. Post 

injections, pups were returned to home cages and maintained in the incubator 

overnight.  

 

2.4 Brain slices preparation 

Young adult mice (2-3 months; male and female) were sacrificed either by 

schedule-1 method of cervical dislocation or nonschedule-1 method (transcardial 

perfusion, see below). Slices were prepared in three different methods for different 

experiments. All the solutions used were being bubbled continuously to saturate with 

carboxygen (95% O2 and 5% CO2). Brain tissue was obtained from C57BL/J6 (wild-

type) mice, unless otherwise mentioned.  At different stages of the thesis work, I used 

different methods for preparing brain slices. In following sections, I will describe 

different slice preparation methods used and the rationale for each method. 

2.4.1 Slice preparation method 1 

Slice preparation method 1 was used to preserve the health of slices during their 

transportation from slicing area to experimentation area that were in separate rooms. 

In this method, following cervical dislocation, the brains were removed and immersed 

in ice-cold artificial cerebrospinal fluid containing (mM): 126, NaCl; 26, NaHCO3; 3, 

MgCl2; 3.5 KCl; 1.26 NaH2PO4; 10, glucose; 1, Kynurenic acid sodium salt; 0.3, 

ascorbate sodium. Using Leica vibratome (Nussloch, Germany), horizontal slices, 

each of 400µm thickness, were cut in above mentioned artificial cerebrospinal fluid. 

Slices were immediately transferred to an interface tissue holding chamber and 

incubated for 1-1.5 hours at room temperature in artificial cerebrospinal fluid containing 

(mM): 126 NaCl; 26 NaHCO3; 2, CaCl2; 1 MgCl2; 3.5 KCl; 1.26 NaH2PO4; 10 glucose; 

1 Kynurenic acid sodium salt; 0.3, ascorbate sodium. Slices were then washed two 

times, 10 minutes each, with artificial cerebrospinal fluid (ACSF) containing (mM): 126, 
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NaCl; 26, NaHCO3; 2, CaCl2; 1, MgCl2; 3.5, KCl; 1.26, NaH2PO4; 10, glucose, and 

transferred to and stored in an interface tissue holding chamber containing ACSF at 

room temperature (Note on ACSF terminology: throughout this thesis, I used slight 

variants of this ACSF, and will make this clear when I do so; but wherever I refer simply 

to “ACSF”, it is this formulation that I describe). 

2.4.2 Slice preparation method 2  

Slice preparation method 2 was used when both the slicing and experimentation 

areas are in the same room. In this method, following cervical dislocation, the brains 

were removed and immersed in ice-cold artificial cerebrospinal fluid containing (mM): 

126, NaCl; 26, NaHCO3; 3, MgCl2; 3.5 KCl; 1.26 NaH2PO4; 10 glucose. Using Leica 

vibratome (Nussloch, Germany), for different experiments, coronal or horizontal slices, 

each of 400µm thickness, were cut in the aforementioned artificial cerebrospinal fluid. 

Slices were immediately transferred to an interface tissue holding chamber containing 

ACSF and incubated for 1-1.5 hours at room temperature.  

2.4.3 Slice preparation method 3 

Slice preparation method 3 was used for experiments involving targeted-patch 

of PV+ interneurons. In slices prepared by this method, fluorescently labelled PV+ 

interneurons appeared to be easier to patch compared to slices prepared by other 

methods. In this method, young adult mice were sacrificed through a nonschedule-1 

method. Mice were anaesthetised by intraperitoneal injection of 

ketamine/meditomidate and the unconscious state was maintained by using isoflurane. 

After loss of consciousness, transcardial perfusion was then performed using ice-cold 

sucrose-based artificial cerebrospinal fluid (sucrose-ACSF) containing (mM): 227.87 

sucrose; 24 NaHCO3; 1.26 NaH2PO4; 3 KCl; 4 MgCl2; 10 glucose. Animals were 

decapitated, the brains were removed and immersed in ice-cold in sucrose-aCSF. 

Using Leica vibratome (Nussloch, Germany), coronal slices, each of 350µm thickness, 

were cut in above mentioned sucrose-ACSF. Slices were immediately transferred to a 

submerged tissue holding chamber containing ACSF and incubated for 1-1.5 hours at 

room temperature.  
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2.5 Electrophysiology  

2.5.1 Local field potential recordings  

Local field potential (LFP) recordings were performed in interface recording 

chambers. Slices were placed in the recording chamber perfused with aCSF. 

Recordings were obtained using 1-3 MΩ borosilicate glass microelectrodes 

(GC120TF-10; Harvard apparatus, Kent) filled with ACSF. In other experiments, the 

microelectrodes were placed in deep layers of neocortex, layer 2/3 of entorhinal cortex 

(EC), and CA3/CA1 of the hippocampus. Microelectrodes were pulled using Narishige 

electrode puller (Narishige Scientific Instruments, Tokyo, Japan). The temperature of 

the chamber, perfusate, and slices were maintained at 33-36 ◦C using a closed 

circulating heater Grant FH16D (Grant instruments, Cambridge, UK). The solutions 

were perfused at the rate of 2-3 ml/min by a peristaltic pump Watson Marlow 501U 

(Watson-Marlow Pumps Limited, Cornwall UK). Waveform signals were acquired using 

in-house built headstages (gain: 10x) that were connected to BMA-931 biopotential 

amplifier (Dataq instruments, Akron, USA). Signals from the amplifier were fed into 

Micro 1401-3 data acquisition unit (Cambridge Electronic Design, UK), that was in turn 

connected to a computer. Data was acquired using Spike2 software ver. 7.10 

(Cambridge Electronic Design, UK). Signals were sampled at 10 kHz, amplified (gain: 

200 - 500) and bandpass filtered (1-3000 Hz). A CED4001-16 Mains Pulser 

(Cambridge Electronic Design, UK) was connected to the events input of CED micro 

1401-3 unit and was used for removing 50Hz hum offline using an in-built tool in Spike2 

software.  

2.5.2 Patch clamp recordings 

Patch clamp recordings were made in a recording chamber mounted with a 

heater plate (Warner Instruments, Hamden, CT), with temperatures set to 33-34 °C, 

and micromanipulators (Scientifica, UK) on a movable top plate (Scientifica, UK) fitted 

to an upright spinning disc-confocal microscope (Olympus, UK). Slices were bathed in 

the incoming carboxygenated solution perfused at 3-5 mls/min by a peristaltic pump 

(501U, Watson-Marlow Pumps Limited, Cornwall, UK) and heated to 33-34 °C by a 

sleeve heater element (Warner Instruments, Hamden, CT). Patch clamp data was 

acquired using pClamp software v10.3, Multiclamp 700B, and Digidata acquisition 

board (Molecular Devices, CA, USA). Signals were recorded with a sampling 
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frequency of 10 kHz. These recordings were made using 4-7 MΩ microelectrodes 

(GC150F-10, Harvard apparatus, Kent) pulled using micropipette puller (Model-P87, 

Sutter Instruments, CA, USA).  

Two types of electrode filling solutions were used to fill the microelectrodes used 

for patching: (1) KMeSO4-based electrode filling solution containing (mM): 125 

KMeSO4, 6 NaCl, 10 HEPES, 2.5 Mg-ATP, 0.3 Na2-GTP, 0.5% (W/V) biocytin; (2) 

KMeSO4/BAPTA-based electrode filling solution containing (mM): 115 KMeSO4, 10 

BAPTA, 6 NaCl, 10 HEPES, 2.5 Mg-ATP, 0.3 Na2-GTP. pH and osmolarity of the 

electrode filling solutions used were adjusted to 7.4 and 284 mOsms, respectively. All 

patch experiments were performed using KMeSO4-based electrode filling solution, 

unless otherwise mentioned. 

Neocortical parvalbumin-positive (PV+) fast-spiking interneurons expressing 

mCherry or YFP fluorescent tags were targeted for whole-cell recordings.  Fluorescent 

neurons were visualised using x40 water-immersion objective, and either rhodamine 

(535-585 nm) filter that was fitted to the microscope. SimplePCI software (Hamamatsu 

Corporation, USA) was used for visualising fluorescent-positive neurons. Selected 

fluorescent PVINs were then identified in differential interference contrast, and 

recorded by patch-clamp techniques.  

 

2.6 In vitro models 

2.6.1 0 Mg2+ model 

Slices were placed in an interface chamber for extracellular field recordings and 

perfused with ACSF. After placing the electrodes in the tissue, perfusate was changed 

to 0Mg2+-ACSF containing: (in mM): 2, CaCl2; 126, NaCl; 26, NaHCO3; 3.5, KCl; 1.26, 

NaH2PO4; 10, glucose to induce ictal events. 

2.6.2 4AP model 

Slices were placed in an interface chamber for extracellular field recordings and 

perfused with ACSF. After placing the electrodes in the tissue, 4-aminopyridine (100 

µM) was added to the perfusate.  
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2.7 Data analysis  

2.7.1 Band-pass filtering 

Data were analysed offline using Clampfit (Molecular Devices, CA, USA), Igor 

(WaveMetrics, Lake Oswego, OR), Spike2 (CED, UK) and custom-written scripts in 

Matlab R2015b (MathWorks, USA). To isolate multiunit activity, raw data (sampling 

frequency of 10 kHz) were band-pass filtered for frequencies greater than 300 Hz and 

lower than 3000 Hz (Schevon et al., 2012; Weiss et al., 2013). Band-pass filtering was 

performed in Matlab software using ‘fir1’ and ‘filtfilt’ in-built functions (Matlab code: fd 

= fir1(1000, [low_pass high_pass]); signal = filtfilt(fd, 1, raw_signal); ). In Figure 2.1, I 

show an example using an epileptiform event recorded in CA3 (Figure 2.1, black trace) 

that was processed for 300-3000 Hz frequencies (Figure 2.1, red trace). Signatures of 

multiunit activity involved in the event can clearly be seen in the raw trace as well as 

in the band-pass filtered trace (Figure 2.1, right), thus demonstrating that these signals 

are not filtering artefacts, but genuine signals reflecting multiunit activity. This analysis 

of band-pass filtered data enables us to identify and isolate epileptiform events 

involving local neuronal firing from false-positives.  

 

Figure 2.1 Identification of multiunit activity involved in an event by band-pass filtering 
for frequencies between 300Hz to 3000Hz. Raw data, black trace; band-pass filtered 
data, red trace. Green highlight is shown expanded in right column. 
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2.7.2 Boxplots 

Boxplots were plotted using a web-tool: BoxPlotsR (http://boxplot.tyerslab.com/), 

or Matlab 2015b (Figure 2.2). In boxplots, the top and bottom edges of the box indicate 

75th and 25th percentiles, respectively. Median is indicated by central mark, mean is 

represented by either filled square or ‘+’ sign and individual data points as filled circles. 

Whiskers are plotted by Tukey’s method; whiskers extend to data points that are 1.5 

times the inter-quartile range (difference between 75th and 25th percentile) away from 

25th and 75th percentile. 

 

           

Figure 2.2 Boxplot description; labels explaining the notations in boxplot. 

 

Data in this thesis is represented as mean ± s.e.m., and ‘n’ value is the number 

of brain slices, unless otherwise stated. Any additional data analysis performed are 

mentioned under ‘data analysis’ section in respective chapters.  

 

http://boxplot.tyerslab.com/
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2.8 Statistics 

Statistical tests were performed using Matlab 2015b or Graphpad Prism Software 

(CA, USA). For data sets which showed normal distributions, statistical tests were 

made using 2-tailed paired or unpaired Student’s t-tests for pairs of experimental 

groups, or using one-way ANOVA and Tukey’s multiple comparisons test for group 

sizes three or more (specified for each case in the text). Differences between groups 

were considered significant if p ≤ 0.05. Bonferroni correction was conducted for 

multiple pairwise comparisons. Bonferroni corrected critical value was calculated using 

the formula (α/n), where ‘α’ is the critical value (0.05) and ‘n’ is the number of 

comparisons. To determine if any of the multiple pairwise comparisons are statistically 

significant, Bonferroni corrected p-value should be: p ≤ (α/n). To calculate normalised 

percentage changes, measures taken for treatment group were normalised to pre-

treatment (controls). A power analysis of the 2-tailed t-test was made, where 

mentioned, to compute required sample size to see a significant effect (α = 0.05). It 

was calculated using G*power v3.1.9.2 software (Germany). 

 

2.7 Terminology 

In this thesis, I reserve specific nomenclature for particular types of epileptiform 

events in these recordings. The term ‘ictal event’ is used to describe tonic-clonic like 

events associated with intense local neuronal firing (Figure 3.2 A, green highlight; 

Figure 3.3 A). When the activity showed a second transition, from intermittent ictal 

events to sustained recurrent discharges, then the latter events are termed “late-stage 

events” (LSEs) (Figure 3.2A, yellow highlight; Figure 3.4A). The recurrent discharges 

recorded in CA3 with a typical waveform of single large fast-spike followed by a slow-

wave are referred to as spike-wave discharges (SWDs) (Figure 3.2 C, yellow highlight; 

Figure 3.4 C). The term ‘epileptiform’ activity is used as an umbrella term, to refer to 

all types of pathological activity – ictal events, late-stage events, and spike-wave 

discharges, field events – that are induced by epileptogenic media with or without any 

additional drug treatments.   
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Chapter 3 Non-synaptic interactions between hippocampal and 
neocortical networks in brain slices 

 

3.1 Introduction 

The intrinsic excitability of cortical networks is of fundamental importance for our 

understanding of epilepsy (Traub and Wong, 1982; Miles and Wong, 1983; Prince and 

Connors, 1984; Dichter and Ayala, 1987; Timofeev and Steriade, 2004; Trevelyan and 

Schevon, 2013).  Most epileptic seizures are thought to arise from pathology located 

either in hippocampal or neocortical circuits, but identifying exactly where and what is 

the underlying pathology in particular cases remains a major challenge, both for 

research and clinical practice.   The chief difficulty lies in the sheer complexity of the 

systems involved and the multifaceted nature of the condition.  Brain slice preparations 

have been a mainstay of our experimental armoury, providing many insights into a 

wide range of topics from cellular excitability and synaptic interactions, up to network 

dynamics.  This preparation has proved particularly helpful for studying epilepsy, for 

instance, by providing a framework to understand human recordings where the 

potential for invasive investigation is greatly limited (Schevon et al., 2012; Smith et al., 

2016). An important series of studies using rat brain slices (Anderson et al., 1986; 

Mody et al., 1987; Dreier and Heinemann, 1990; Dreier and Heinemann, 1991; Zhang 

et al., 1995; Dreier et al., 1998), characterised a notable transition, from early tonic-

clonic patterns of epileptiform discharges that were suppressed by many different 

pharmacological agents, into a different, recurrent pattern of discharge which was 

refractory to most pharmacological intervention.  The authors likened this late stage 

activity to pharmaco-resistant status epilepticus (Heinemann et al., 1994; Zhang et al., 

1995), but the nature of this critical transition remained elusive.   

I now show that the same evolution of activity is also seen in mouse brain slices.  

I further identify an important correlate of the transition, which is the surprisingly late 

involvement of hippocampal activation in this model, and which subsequently acts as 

a pacemaker, entraining activity in other cortical networks.  Interestingly, the 

entrainment of overlying neocortex does not require intact synaptic pathways, but 

instead can arise from field effects secondary to focal discharges (Jefferys, 1995; 

Frohlich and McCormick, 2010; Anastassiou et al., 2011).  These results show that the 
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transition, from pharmaco-sensitive to pharmaco-resistant activity in this model, 

reflects a change in which cortical territories are involved and how the activity spreads 

to other networks.  These models can provide a wealth of metrics for comparing drug 

or genetic effects on network excitability in different cortical territories.  
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3.2 Materials and methods 

3.2.1 Slice preparation and electrophysiology 

For all the experiments described below, combined neocortical-hippocampal 

horizontal slices were used, that were prepared and stored as described in slice 

preparation method 2 (chapter 2, sub-heading 2.4.2). Local field potentials (LFPs) were 

recorded simultaneously from both the pyramidal cell layer of CA subfield (CA1 or CA3) 

of hippocampus and infragranular layers of neocortex (temporal association areas; 

Figure 3.1). The recording setup and the equipment used were as described in chapter 

2 (sub-heading 2.5.1). 

                  

Figure 3.1 Recording setup showing an intact hippocampal-entorhinal cortex-
neocortical horizontal slice in the interface recording chamber with electrodes placed 
in the pyramidal cell layer of CA1 (left), and infragranular layers of neocortex (NCtx, 
top-right), and entorhinal cortex (EC, bottom-right). 

 

3.2.2 Protocols 

Brain slices were placed in the interface recording chamber, which were 

perfused initially with ACSF. Electrodes were placed in the regions of interest and the 

baseline activity was recorded in ACSF. After 10-15 minutes, the perfusate was 

switched from ACSF to epileptogenic medium (0Mg2+-ACSF). Experiments were 

performed in three types of brain slice preparations: 1) intact horizontal brain slices 

with hippocampal (CA), entorhinal, and neocortical regions (NCtx) (intact slice), 2) 

horizontal brain slices with only the hippocampal and neocortical regions 

(disconnected slices); entorhinal cortex (EC) was dissected out to remove any 

polysynaptic connectivity between neocortical and hippocampal regions, and 3) 

cortical subfields, NCtx, EC, and CA, were all physically separated, so that there are 
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no anatomical connections between all the three regions. From here on, slices 

prepared by this method will be referred to as ‘isolated slices’. Dissections in the slices 

were made using a scalpel blade of size 10 (Fine Scientific Tools, U.K). 

First, in intact slices, the evolution of 0 Mg2+-ACSF induced epileptiform activity 

was characterised simultaneously in neocortex, EC, and CA territories. EC was 

dissected out after the development of spike-and-wave discharges (SWDs) in CA and 

late-stage recurrent discharges in the neocortex. In the next set of experiments, the 

evolution and entrainment of epileptiform activity was investigated in disconnected 

slices.  A second cut was made along the axis of the white matter and the two regions 

were physically separated (≥ 3 mm apart) after the development of SWDs in CA and 

late-stage recurrent discharges in the neocortex. I then examined the effect of making 

only a cut along the white matter without physically moving the regions apart on the 

entrainment and activity patterns in neocortex and CA of the hippocampus. In the final 

set of experiments, epileptiform activity was induced by 0Mg2+-ACSF in isolated 

entorhinal cortex, CA, and neocortex. 

 

3.2.3 Data analysis 

Data was analysed as describes in chapter 2 (sub-heading 2.7). Additionally, 

the analysis of entrainment of epileptiform events was performed on “template-filtered” 

traces (Figure 3.7Bii) of the recordings from different brain locations.   This was done 

to remove the confounding effects of higher frequency components of these 

discharges which can lead to aliasing issues in analyses using cross-correlations. I first 

created a template of an average discharge (6-10 events), aligned by the time point at 

which they exceeded a threshold set at between 25-40% of the peak deflection.  The 

templates were then used as a normalising filter on their respective raw traces, by 

deriving peak cross-correlation coefficients for the time-shifted template relative to the 

trace. This “template-filtered” trace (Figure 3.7Bii) removed most of the fine structure 

of the individual discharges, but preserved their timing.  Since the individual events in 

the late-stage activity are extremely reproducible, the peaks in this filtered trace tend 

towards 1.  I used the cross-correlation between these template-filtered recordings as 

a measure of the entrainment of the two recording locations. 
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3.3 Results 

3.3.1 Characteristics of evolving epileptiform activity in neocortical, entorhinal, 

and hippocampal networks in brain slices 

Following wash-out of Mg2+ ions, there was a gradual build-up of epileptiform 

discharges, evolving in a highly characteristic way (Figure 3.2).  The earliest large field 

deflections in the raw traces were seen at all recording sites, although the events 

appeared far larger in the neocortex and entorhinal cortex.  This early activity involved 

episodes of sustained rhythmic bursts suggestive of the temporal dynamics of clinical 

tonic-clonic discharges (Figure 3.3Ai, Bi).  The mean number of tonic-clonic like events 

in the neocortical was 9.35 ± 0.73 per slice (n = 17; range 4-17), before a second 

transition to regular epileptiform bursts (“late-stage activity pattern”), with individual 

bursts lasting a few hundred milliseconds, and occurring every 3.32 ± 0.38 s (n = 10; 

Figure 3.4Ai, Bi).  This pattern of evolution has been described previously in rat brain 

slices (Mody et al., 1987; Dreier and Heinemann, 1990; Dreier and Heinemann, 1991), 

noting also an important pharmacological difference between the early and late 

epileptiform discharges: several different anti-epileptic drugs can suppress the early 

discharges, whereas the late regular bursts are resistant to these drugs (Dreier and 

Heinemann, 1990; Dreier et al., 1998).  This transition therefore represents a 

potentially valuable tool for investigating pharmaco-resistant epilepsy (Heinemann et 

al., 1994).   
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Figure 3.2 Typical pattern of evolving epileptiform activity following wash-out of Mg2+ 
ions from the bathing media (0 Mg2+ model), showing delayed recruitment of 
hippocampal circuits relative to neocortex.  Extracellular recordings (broad band) from 
neocortex (A, black; NCtx), entorhinal cortex (B, blue; EC), and hippocampus (C, red; 
CA) showing typical pattern of evolving epileptiform activity following washing out of 
Mg2+. The arrows indicate the first full ictal events, as indicated by intense multiunit 
(high frequency) activity, in all three recordings. Areas shaded in green and yellow are 
shown expanded in Figure 3.3 and 3.4, respectively. Note, the time scale at the bottom 
of the figure applies to all the traces in the figure. 
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Figure 3.3 Absence of multiunit activity in CA. Broad band signals show small 
deflections in the hippocampal field (Ci) at the time of large neocortical (Ai) and 
entorhinal discharges (Bi), but high pass filtering shows that, unlike neocortical (Aii) 
and entorhinal (Bii) signals, these hippocampal signals (Cii) are not associated with 
any significant unit activity. Expanded from Figure 3.2, green shaded area. Time scale 
at the bottom of the figure applies to all the traces in the figure. 
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Figure 3.4 Late-stage events in neocortex (Ai) and entorhinal cortex (Bi), and the later 
hippocampal events characterised by large field deflections (ci) all show multiunit 
activity upon band pass filtering the broad band signal (NCtx, Aii; EC, Bii; CA, Cii). 
Expanded from Figure 3.2, yellow shaded area. Time scale at the bottom of the figure 
applies to all the traces in the figure. 

 

Recent studies of human extracellular recordings of epileptic discharges in 

humans have highlighted the importance of examining the high frequency component 

of epileptiform discharges to determine whether an event involves locally active 

neurons (Schevon et al., 2012; Weiss et al., 2013).   In this regard, there appeared a 

striking difference between activity recorded in the hippocampus and the neocortical 

signals: the early events, including the tonic-clonic ictal events, were associated with 

only small field events in the hippocampus, and notably, with no measurable high 

frequency component, indicating there is little local neuronal firing (Figure 3.2C, 3.3Ci, 

Cii, red trace).  It is therefore considered that these early events did not invade the 

local hippocampal networks.  Using this high frequency component as the critical 
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marker of ictal involvement, the first hippocampal ictal discharges occurred significantly 

later than the first neocortical discharges (Figure 3.2 arrows; Figure 3.5; Neocortex 

latency, 671 ± 41 s; Entorhinal cortex, 699 ± 69s: Hippocampus, 2238 ± 284 s; post-

hoc Tukey test, p < 0.01).  Epileptiform discharges in entorhinal cortex evolved in 

tandem with the neocortical discharges (Neocortex v Entorhinal, not significant; 

Entorhinal v Hippocampal, p < 0.01). 

 

 

Figure 3.5 Ictal discharges are induced earlier in neocortical and entorhinal cortical 
networks than in hippocampus. Boxplot illustrating a significant delay of the earliest 
hippocampal epileptiform discharges relative to the first neocortical or entorhinal 
discharges (ANOVA F[2,28] = 25.76, p < 0.001).  The results of individual comparisons 
(post-hoc Tukey tests) are shown above the data distributions.  

 

When finally, the hippocampal epileptiform discharges began, they showed a 

fundamentally different pattern, generally being a single large spike and wave 

discharge lasting up to 1.26 ± 0.11 s (n = 10), or a short burst of discharges, and the 

protracted tonic-clonic patterns, as seen in neocortex or entorhinal cortex, occur only 

extremely rarely (1 in 13 slices).  In a further contrast to the prior neocortical activity, 

the inter-event intervals were very short (2.98 ± 0.78 s, n = 10), compared with the 

intervals between neocortical tonic-clonic ictal events (1st – 2nd event interval = 126.2 
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± 17.2 s; 2nd – 3rd interval = 117.1 ± 15.1 s; 3rd – 4th interval = 68.9 ± 10.6 s).   Notably, 

once the hippocampal discharges started, the pattern of neocortical discharges also 

changed to the same pattern of transient, but regular, spike and wave discharges.  

Discharges in the two structures, from this time forward, were tightly coordinated 

(Figure 3.4Ai, Aii, Ci, Cii), but with the hippocampal discharges occurring fractionally 

earlier than the neocortical unit activity. Latency of onset of neocortical activity after 

hippocampal activity = 87.1 ± 25.5 ms (n = 8).   

 

3.3.2 Hippocampal entrainment of neocortical activity is independent of synaptic 

connectivity 

I hypothesized that events propagated to the neocortex through a polysynaptic 

pathway involving the entorhinal cortex.  To test this, I dissected out the caudal pole of 

the brain slice, thereby entirely removing any potential synaptic pathway.  Surprisingly, 

following the removal of the entorhinal pole, the hippocampal entrainment of 

neocortical discharges persisted unchanged (Figure 3.6; Neocortex, pre-cut rate = 

0.47 ± 0.08 Hz, post-cut = 0.47 ± 0.09 Hz, n = 5, paired t-test, p = 0.96; Hippocampus, 

pre-cut rate = 0.48 ± 0.09 Hz, post-cut = 0.49 ± 0.11 Hz, n = 5, paired t-test, p = 0.83), 

and latency of onset of neocortical activity after hippocampal activity also remained 

unaltered (pre-cut = 71.1 ± 7.7 ms, post-cut = 62.4 ±3.6 ms, n = 5, paired t-test, p = 

0.13).  
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Figure 3.6 Hippocampal entrainment of neocortical LSEs persisted after dissecting out 
the entorhinal cortex. The rate of events in both the regions were unaltered following 
removal of EC.  

 

I then investigated the evolution and entrainment of epileptiform activity in 

horizontal brain slices in which I dissected out the entorhinal cortex to remove any 

polysynaptic connectivity between hippocampal and neocortical regions (Figure 3.7A). 

Hereafter, I will refer to this preparation to as disconnected slices. Following wash-out 

of Mg2+ ions, epileptiform discharges, in both neocortex and hippocampal territories, 

developed in a similar pattern as observed in intact slices except in that the latency to 

first tonic-clonic discharges in neocortex is longer in disconnected slices (Neocortex 

latency, 1035.7 ± 77.8 s, n = 14; intact v disconnected, unpaired t-test, p = 0.0006). In 

contrast to tonic-clonic discharges in neocortex, as observed in intact slices, the early 

small field events of tonic-clonic discharges in hippocampus show no measurable high 

frequency component (Figure 3.7A, inset). The first hippocampal ictal discharge 

occurred significantly later than the first neocortical discharge (hippocampus latency, 

2356.10 ± 189.10 s, n = 14; latency: hippocampus v neocortex, paired t-test, p = 

0.0004; hippocampus latency, intact v disconnected, unpaired t-test, p = 0.79). Once 

the activity began in hippocampus, the neocortical activity pattern changed from tonic-

clonic to late-stage events. Despite lacking polysynaptic connectivity between the two 

regions, hippocampal activity entrained (Figure 3.7A, B) and preceded neocortical 
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activity (Figure 3.7Ci, Cii; Figure 3.8; latency, 57.8 ± 9.1 ms; intact v dissected, 

unpaired t-test, p = 0.27). 

 

          

Figure 3.7 The late-stage epileptiform discharges are coordinated in hippocampal and 
neocortical networks through a non-synaptic pathway. (A) Extended recording of 
extracellular field potentials in CA1 (red) and neocortex (black, NC), following wash-
out of Mg2+, in a disconnected slice i.e., with entorhinal cortex removed, thereby 
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disconnecting the two regions via any conventional multi-synaptic path.  As in intact 
slices, the early discharges showed pronounced unit activity in neocortex, but not in 
the CA1 pyramidal layer (inset, green box).  (Bi) Expanded view of late stage activity 
in the same slice, and (Bii) the same traces filtered by a moving template of an average 
discharge.  Note the synchronous occurrence of discharges in the two, synaptically-
disconnected territories.  (Ci) Further expansion of a single discharge, and (Cii) a high-
pass filtered view of the same event, showing prominent levels of unit activity in both 
territories. 

     

           

Figure 3.8 Hippocampal discharges precedes neocortical discharges during late-stage 
events. In synaptically-disconnected, hippocampal-neocortical slices, late-stage 
discharges in neocortex (NC) follow hippocampal (CA) discharges with a mean lag of 
57.8 ± 9.1 ms (One-sample t-test: p < 0.05, n = 9).   

 

I next made a second cut along the axis of the white matter bundle deep to the 

neocortical layer 6, and physically separated the neocortical and hippocampal 

networks, after which, the earlier observed entrainment phenomenon in these slices 

was lost (Figures 3.9 and 3.10) and the hippocampal discharge rate increased 

significantly (pre-cut, 0.35 ± 0.07 Hz; post-cut, 0.49 ± 0.13 Hz; n = 9, p = 0.0451; 

Figures 3.9Ci, Cii, 3.10A), whereas the neocortical discharge rate dropped significantly 

(pre-cut, 0.31 ± 0.05 Hz; post-cut, 0.12 ± 0.02 Hz; n = 9, p = 0.0099; Figures 3.9Ci, Cii, 

3.10A).  In tandem with the reduced rate of discharges in the neocortical networks, the 

duration of events showed a significant increase (pre-cut = 1.78 ± 0.22 s, post-cut = 

6.86 ± 2.30 s, n = 9, p = 0.048; Figure 3.10A).  This result suggests that the interactions 
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between hippocampal and neocortical networks are in both directions in this late stage 

activity pattern: the hippocampal-to-neocortical influence is reflected in the pacing of 

neocortex by hippocampus; whereas the opposite influence is manifest as a mild brake 

on the hippocampal pacing. Consistent with these opposite changes in rates, there 

was a highly significant drop in the correlation of events in the two networks (Figure 

3.10B, C; p = 4.1 x 10-7).  I concluded from these experiments that the late stage 

epileptiform discharges arise in hippocampus, and these act as a pacemaker, driving 

discharges also in juxtaposed neocortical territories, but that this entrainment was 

mediated, at least in part, by a non-synaptic path. 
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Figure 3.9 Entrainment of discharges is lost following physical separation of 
hippocampal and neocortical networks (A) Photomicrograph showing the electrode 
placements in physically separated CA1 and neocortical areas, derived from a single 
horizontal brain slice, together with a period of late stage epileptiform discharges.  Note 
the desynchronised discharges in the two territories, with a far slower rate of 
discharges in the neocortical tissue.  (Bi) Further expansions show the broadband 
signal of the de-synchronised hippocampal and neocortical discharges. (Bii) Prominent 
unit activity is seen in both territories.  (Ci) The relative rates of epileptiform discharges 
in the two territories before (blue) and after (green) physically separated.  In 
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disconnected slices (“pre-separation”), the rates were equivalent (“pre-separation”, red 
squares; CA: 0.35 ± 0.07 Hz, NCtx: 0.31 ± 0.05 Hz; n.s., n=9), but following physical 
separation of the tissues, the rates are significantly different (“post-separation”, black 
squares; CA: 0.49 ± 0.13 Hz, NCtx: 0.12 ± 0.02 Hz; p < 0.05, n=9).  (Cii) Comparisons 
of discharge rates before and after physical separation of the hippocampal and 
neocortical tissues.  Note how the neocortical data all fall below the line of unity, 
indicating a consistent slowing of the rate of discharges there (black stars; pre-
separation: 0.31 ± 0.05 Hz, post-separation: 0.12 ± 0.02 Hz, p < 0.05, n = 9).  In 
contrast, the hippocampal data tend to lie above the line, indicative of an increase in 
hippocampal rate after the separation (red stars; pre-separation: 0.35 ± 0.07 Hz, post-
separation: 0.49 ± 0.13 Hz, p < 0.05, n = 9). 

 

 

 

Figure 3.10 Separation of hippocampal and neocortical territories alters the timing and 
structure of the activity patterns in the two territories.  (A) The duration and inter-event 
intervals in the physically separated hippocampal and neocortical tissues, normalised 
to the values in the pre-cut brain slice.  (B) An example of the change in cross-
correlogram between hippocampal and neocortical activity from the disconnected slice 
(“pre-cut”, black) to the physically separated tissues (“post-cut”, blue).  (C) Pooled data 
showing a highly significant difference in the degree of correlated activity in these two 
regions in disconnected versus the physically separated slices. 

 

 

3.3.3 Hippocampal entrainment of neocortical activity requires anatomical 

contiguity 

I next examined whether observed entrainment phenomenon persists after 

making only an incision along the white matter without physically separating the two 

regions. In disconnected slices, hippocampal entrainment of neocortical activity that 

developed in 0 Mg2+-ACSF was lost after making only an incision along the white 
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matter (Figure 3.11 A, B). Furthermore, prior to making the cut, the discharge rates 

were equivalent in both the regions, but after the cut, the neocortical discharge rate 

significantly dropped (pre-cut: 0.18 ± 0.03 Hz, post-cut: 0.06 ± 0.01 Hz; n = 6; p < 0.01), 

whereas the hippocampal discharge rate increased significantly (pre-cut: 0.2 ± 0.03 

Hz, post-cut: 0.27 ± 0.04 Hz; n = 6; p = 0.02) (Figure 3.11C). 

 

 

Figure 3.11 Hippocampal entrainment of neocortical activity in a disconnected slice 
(A) is lost after making a cut along the white matter (B; pink dotted line indicates the 
line of cut). (C) Relative rates of discharges before (blue squares) and after (green 
squares) making the cut along the white matter. 
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3.3.4 Epileptiform activity evolve with similar latencies in the same regions in 

intact and isolated slices  

Finally, I examined whether the latency to the first ictal events in the different 

cortical subfields was altered if these networks were kept separate from the first 

exposure to 0 Mg2+ ACSF.  I measured the time to first ictal events in slices that were 

dissected to isolate the neocortex, entorhinal cortex and hippocampal subfields.  In all 

three territories was unaltered, relative to recordings from intact slices (isolated 

neocortex, 607.3 ± 107.3 s, n = 6, unpaired t-test; vs intact: p = 0.5; Entorhinal cortex, 

1057.2 ± 200.1, n = 5, unpaired t-test; vs intact: p = 0.08; Hippocampus, 1595.4 ± 

186.3, n = 6, unpaired t-test; vs intact: p = 0.14; Figure 3.12). 

 

      

Figure 3.12 Latencies to the first ictal events in isolated NCtx and EC, and SWDs in 
isolated CA were similar to that measured in intact slices. 
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3.4 Discussion 

These results illustrate several important features of the 0 Mg2+ model.  First, I 

found that the earliest ictal activity in the 0 Mg2+ model is in the neocortex.  

Hippocampal ictal activity, in contrast, develops late, but then acts as a pacemaker for 

rapidly generalised spike and wave events that are coordinated in all cortical areas.  

There is thus a characteristic shift from neocortical to hippocampal epileptic activation, 

which is also mirrored in the transition from tonic-clonic ictal events to more transient 

spike and wave discharges, reflecting that the two territories also differ with respect to 

the dominant forms of ictal discharge in each.  Although ictal activity only arises later 

in hippocampal networks, once this happens, this quickly becomes the dominant 

network, entraining activity elsewhere from that time.  Of added interest is that this 

transition had previously been associated with a change in sensitivity of the discharges 

to anti-epileptic drugs (Mody et al., 1987; Dreier and Heinemann, 1990; Dreier and 

Heinemann, 1991; Zhang et al., 1995; Dreier et al., 1998). 

I further present a demonstration of epileptiform discharges propagating through 

a non-synaptic mechanism in mouse brain slices.  I thereby provide a proof of principle 

that very large discharges of neuronal populations can show non-conventional 

neuronal entrainment at a distance.  Note however, that this does not downgrade the 

clear importance of conventional, synaptically mediated spread.   An important feature 

of this pattern of spread is that we only see it in a very particular situation, spreading 

into tissue that is already hyperexcitable, with a history of repeated epileptiform 

discharges.   Thus, the specific instances of non-synaptic spread occur only in what I 

have termed “late-stage” epileptiform activity in the 0 Mg2+ model.  The earliest 

discharges, which occur in neocortex, cause a field potential deflection at recording 

sites in the hippocampus, but fail to elicit local firing there.  In contrast, the late stage 

hippocampal discharges appear to entrain the neocortical discharges.  The fact that 

separating the neocortex and hippocampus influences this late stage activity in both 

directions (the neocortex shows a significant slowing of the rate of discharges, whereas 

the hippocampal rate increases significantly) indicates that the interactions are indeed 

bilateral in hyperexcitable networks.  This suggests first, that the neocortical 

discharges, which tend to last longer than the hippocampal ones, may impose 

additional refractoriness, and second, that the critical determinant of spread is that the 

follower network is “primed” for activation.  
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There are several puzzles still to be resolved.  Firstly, the precise mechanism 

by which any of the discharges in any region are actually initiated remains mysterious.  

These need not even be the same (e.g. a postulated, pro-epileptic role for excessive 

interneuronal activation in the 4-aminopyridine model (Avoli and de Curtis, 2011) 

versus glial involvement in a mixed low Mg2+ / 4-aminopyridine model (Gomez-Gonzalo 

et al., 2010).   Consequently, it is also unclear what changes in the hippocampus to 

initiate discharges there, thereby causing the transition from the early to the late pattern 

of epileptiform activity.  One possible mechanism is that repeated synaptic 

bombardment can gradually cause a shift in the balance of power between inhibition 

and excitation.  For instance, previous work has shown that continual perforant 

pathway stimulation can, over time, give rise to spontaneous epileptiform discharges 

occurring in hippocampal networks (Scharfman and Schwartzkroin, 1990a; Scharfman 

and Schwartzkroin, 1990b), and associated with changes in excitability occurring 

preferentially in cell classes lacking Ca2+ buffering properties (Scharfman and 

Schwartzkroin, 1989).   

The precise mechanism of hippocampal entrainment of neocortex also remains 

unclear.  I follow Jefferys’ nomenclature (Jefferys, 1995) in not referring to this as 

“ephaptic spread”; he reserves this term for activation of juxtaposing cells (it derives 

from the Greek word “to touch”), whereas the effect I describe clearly occurs at a 

distance, either through direct field effects or by transiently raised K+. There is, 

however, an important precedent of this result, whereby epileptiform discharges can 

be entrained by minimal activation in an already hyperexcitable network: this is the 

demonstration that bursts of action potentials of a single pyramidal cell can entrain 

these discharges in disinhibited hippocampal networks (Miles and Wong, 1983). Future 

work involves examination of the involvement of extracellular potassium ions levels on 

the entrainment phenomenon. It can be examined by (a) measuring their extracellular 

potassium ion levels simultaneously in both hippocampal and neocortical regions, and 

(b) examining the effect of having different concentrations of potassium ions in ACSF 

on the entrained activity pattern. 

Finally, our results obtained using zero-magnesium in vitro model run rather 

counter to the prevailing view that hippocampal circuits are inherently more “pro-

epileptic” than neocortical networks.  This notion has its origin, perhaps, from clinical 
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observations, where temporal lobe epilepsy (TLE) is recognised as a leading cause of 

medically refractory epilepsy.   In this particular in vitro model, hippocampal networks 

are surprisingly refractory to the change in bathing medium, but notably, once the 

hippocampal territories start to show epileptiform discharges, these become the 

dominant, pacemaker activity pattern. It is important to note that this refractoriness of 

hippocampal networks is also dependent on the in vitro model used in the studies (see 

Chapter 4, Figure 4.12). Previous work has shown that the late stage activity pattern 

is resistant to commonly used anti-epileptic drugs.  This last observation is perhaps 

the most relevant to the clinical feature, pharmaco-resistance, of TLE. Here, I predict 

that the pharmaco-sensitivity of the cortical networks may have been altered following 

the de-entrainment and change in activity patterns observed post-separation of regions 

in brain slices. This can be examined in future studies, using the in vitro model and 

experimental procedures described in chapter, by assessing the effects of anti-

epileptic drugs on the post-separated activity pattern. The highly characteristic pattern 

of evolution of activity, with key transitions representative of shifts in interactions 

between the various networks, offers a wealth of metrics for analysing drug actions 

and the effects of genetic mutations in transgenic mouse models, suggesting that these 

simple acute in vitro models still offer great utility for epilepsy research.   
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Chapter 4 The effect of diazepam on evolving epileptiform activity in the 
cortical networks 

 

4.1 Introduction  

Status epilepticus (SE) is a neurological emergency that is characterised by 

self-sustaining generalised-convulsive or non-convulsive seizures that could alter the 

structure and functions of the cellular (neuronal and glial) networks, and which clinically 

is associated with high rates of morbidity and mortality (Shorvon et al., 2008). Since 

the time of discovery of benzodiazepines (e.g., diazepam, lorazepam, etc.), clinicians 

have been using them as the first-line treatment for controlling status epilepticus. 

Benzodiazepines have the advantages of rapid onset of action, low toxicity, and high 

efficacy (Kapur, 2002).  

Benzodiazepines are positive allosteric modulators at GABAA receptors 

(GABAAR). GABAARs are ligand-gated pentameric channels, which are permeable to 

chloride and bicarbonate ions (Kaila et al., 1997). There are 19 different types of 

subunits of GABAARs, and the pharmacology, localisation, and kinetics of GABAARs 

are dictated by their subunit composition. GABAARs containing a γ-subunit, but not a 

δ-subunit, are sensitive to benzodiazepines. The binding site for benzodiazepines is 

on the extracellular site of the receptors, at the interface between a γ2 and α1-3 

subunits or γ2 and α5 subunits. Benzodiazepine-sensitive GABAARs composed of α1-

3, and α5 subunits are localised at synaptic- and extra/perisynaptic-regions, 

respectively, and their expression varies, both, in different cell populations and regions 

of the brain (Bai et al., 2001; Hamann et al., 2002; Nusser and Mody, 2002). This 

subunit dependent localisation of GABAARs renders benzodiazepines with the ability 

to differentially modulate phasic and tonic inhibition in different regions of the brain. 

Benzodiazepines enhances the GABAergic synaptic currents by increasing the 

frequency of GABAAR channel opening, while not by altering the mean channel open 

times (Study and Barker, 1981; Otis and Mody, 1992; Rogers et al., 1994). Use of 

benzodiazepines for controlling status epilepticus have limitations. Benzodiazepines 

can become ineffective in patients with increasing duration of status epilepticus, and 

the status epilepticus in such patients can eventually become refractory to any line of 

drug treatment (Treiman et al., 1998).  
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The antiepileptic property and reduced potency of benzodiazepines when 

administered at an early stage (discrete electrographic seizures) and late stage (SE; 

recurrent epileptiform discharges), respectively, were studied in vivo in rats that were 

injected with pilocarpine and lithium to induce seizures (Walton and Treiman, 1988; 

Kapur and Macdonald, 1997). These effects of benzodiazepines on early (tonic-clonic 

like ictal events) and late (status epilepticus like events) stages of epileptiform activity 

were also demonstrated in vitro in brain slices using low-magnesium model (Dreier and 

Heinemann, 1990; Zhang et al., 1995; Dreier et al., 1998). These in vitro studies 

assessed benzodiazepines on their ability to affect only the tonic-clonic like discharges 

and late-stage recurrent discharges.  

I show here that having diazepam, a commonly used clinical benzodiazepine, 

in the proepileptic media do not block the development of neither early-stage nor late-

stage epileptiform activity in neocortex in two in vitro models examined, zero-

magnesium and 4-aminopyridine models. Interestingly, in zero-magnesium model, 

diazepam delayed the development of early tonic-clonic like activity in neocortex but 

had no effect on its latency in 4-aminopyridine model. These results show that the 

same drug can have different effects on the epileptiform activity induced by different 

mechanisms in the same type of neuronal tissue, and highlights the need for 

understanding the underlying mechanisms of epileptiform activity for better treatment.  
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4.2 Materials and Methods  

4.2.1 Slice preparation and electrophysiology 

For all the experiments described below, combined neocortical-hippocampal 

horizontal slices were used, that were prepared and stored as described in slice 

preparation method 2 (chapter 2, sub-heading 2.4.2). For experiments in zero-

magnesium model, local field potentials (LFPs) were recorded only from infragranular 

layers of neocortex. For experiments in 4-aminopyridine model, LFPs were recorded 

simultaneously from the pyramidal cell layer of CA3 subfield of hippocampus and 

infragranular layers of neocortex (Figure 4.1). The recording setup and the equipment 

used were as described in chapter 2 (sub-heading 2.5.1). 

       

Figure 4.1 Recording setup showing a slice in the interface recording chamber with 
electrodes placed in the pyramidal cell layer of CA3 (top-left) and infragranular layers 
of neocortex (NCtx, right).  

 

4.2.2 Protocols and drugs 

The acute effects of diazepam (DZP), a benzodiazepine, on the evolution of 

epileptiform activity were studied in two different in vitro models of epilepsy: zero-

magnesium (0 Mg2+-ACSF) and 4AP (4AP-ACSF). The protocol was as follows: brain 

slices were placed in the interface recording chamber, which was perfused initially with 

ACSF. Electrodes were placed in the regions of interest and the baseline activity was 

recorded in ACSF. After 10-15 minutes, the perfusate was switched from ACSF to 

epileptogenic medium (0 Mg2+-ACSF or 4AP-ACSF). Measures taken from this set of 

experiments were considered as controls for comparisons with similarly treated brain 

slices that were additionally exposed to diazepam. For the treatment group, after 



 

61 

 

baseline recordings, the solutions were switched to 0 Mg2+-ACSF containing diazepam 

(0Mg2+/DZP-ACSF) and 4AP-ACSF containing diazepam (4AP/DZP-ACSF), in 

respective experiments. To study the effects of DZP on late-stage events, slices were 

superfused with epileptogenic solution until the development of late-stage recurrent 

discharges, and only at this stage were the epileptogenic solutions supplemented with 

diazepam. 

Diazepam was purchased from Sigma-Aldrich (USA). DZP stock solution 

(10mM) was prepared and stored in -20 ◦C.  Diazepam was added to the perfusate just 

before the start of the experiment. 1-3 µM DZP was shown to be effective in maximally 

increasing GABAergic currents that were measured in neurons of naïve animals 

(Kapur and Macdonald, 1997). Hence, I chose to use 3 µM of diazepam as final 

concentration, unless otherwise mentioned. 100 µM 4AP (Sigma-Aldrich) was added 

to ACSF for experiments in 4AP model. 

 

4.2.3 Terminology 

 ‘Pre-ictal period’ is defined as the period starting from the occurrence of the 

first pre-ictal discharge (individual pre-ictal event; Figure 4.4Bi) until the precipitation 

of the ictal event (Figure 4.2, green bars; Figure 4.4A).  

 

4.2.4 Data analysis 

Data was analysed as described in chapter 2 (sub-heading 2.7). Additionally, 

estimates of power-spectral density (PSD) for different frequency bandwidths was 

analysed on hum-removed traces each of 25 seconds length. It was calculated using 

‘pwelch’, a built-in function in Matlab 2015b, with window length of 1638 ms, 25% 

overlap, and for frequency ranges of 1-10 Hz, 10-40 Hz, and 60-100 Hz (>> [p, f] = 

pwelch(trace, b, b/4, b, Fs);   where p is the power spectrum for the frequency range, 

f; b is the epoch length and Fs is the sampling frequency 

(https://uk.mathworks.com/help/signal/ref/pwelch.html)). PSD ratios were calculated 

for each frequency bandwidth separately, by measuring PSDs for events in diazepam 

(post-DZP) and dividing it by PSD measured for events in control (pre-DZP).  
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4.3 Results 

4.3.1 Positive allosteric modulation of GABAARs delays epileptiform evolution in 

0 Mg2+ in vitro model 

Enhancing GABAAR activity by diazepam from start of washing out Mg2+ ions 

slowed the development of early epileptiform activity, but did not alter the pattern of its 

evolution nor the latency for its progression to late-stage events (Figure 4.2A). 

Diazepam increased the latency to the first tonic-clonic like ictal event (IE) (Figure 4.3A, 

Table 4.1), and the duration of ictal events (Figure 4.3B, Table 4.2). 

 

Figure 4.2 0 Mg2+-ACSF induced evolution of epileptiform activity in neocortex (NCtx) 
(A) with diazepam (blue trace) and (B) without diazepam. Latency to first tonic-clonic 
like ictal events in 0 Mg2+/DZP and 0Mg2+-ACSF was 2471 s and 1386 s, respectively, 
after washing out Mg2+ ions. Note: traces in panels A and B were plotted on different 
time scales. Green bars, pre-ictal discharges; red bars, tonic-clonic like discharges; 
purple bars, late-stage recurrent discharges. 
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Figure 4.3 A. In 0 Mg2+/DZP treated slices, latency for the development of first IE was 
longer and the subsequent IEs precipitated at a faster rate (see Table 4.1). B. Tonic-
clonic like ictal events lasted longer in slices treated with DZP (see Table 4.2). *p-
values less than or equal to Bonferroni corrected critical value (α = 0.01).   

 

Ictal event 

intervals (s) 

0 Mg2+-ACSF 

(n) 

0 Mg2+/DZP-ACSF 

(n) 

p-values 

^(α = 0.01) 

0-IE1* 1001.77 ± 113.34 

(8) 

2445.5 ± 383.54 (8) *0.003 

IE1-IE2* 187.83 ± 30.4 (8) 444.25 ± 94.9 (8) 0.02 

IE2-IE3 175.65 ± 26.8 (8) 322.22 ± 73.4 (8) 0.08 

IE3-IE4* 124.35 ± 29.39 (7) 272.37 ± 44.94 (7) 0.02 

IE4-IE5 139.42 ± 28.78 (7) 232.45 ± 77.73 (7) 0.28 

Table 4.1 Times to first ictal event and inter-event intervals. Latency (in secs) for the 
development of the first tonic-clonic like ictal event (IE), and the interval between 
subsequent IEs were longer in slices treated with DZP compared to the controls (0 
Mg2+/DZP-ACSF). *p-values less than or equal to ^Bonferroni corrected critical value 
(α). 
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Duration (s) of 

ictal events 

0 Mg2+ ACSF  

(n) 

0 Mg2+/DZP-ACSF  

(n) 

p-values 

^(α = 0.01) 

IE1* 44.14 ± 8.17 (8) 77.49 ± 10.94 (8) 0.02 

IE2 49.39 ± 10.93 (8) 85.32 ± 17.58 (8) 0.10 

IE3* 47.37 ± 9.48 (8) 98.32 ± 14.44 (8) *0.01 

IE4 41.63 ± 9.47 (7) 90.8 ± 19.65 (7) 0.05 

IE5 53.79 ± 11.01 (7) 105.03 ± 28.11 (7) 0.11 

Table 4.2 Duration of tonic-clonic like ictal events in 0 Mg2+-ACSF and 0 Mg2+/DZP-
ACSF. *p-values less than or equal to ^Bonferroni corrected critical value (α). 

 

A notable feature in the evolution of epileptiform events is the occurrence pre-

ictal events (PreIEs) (Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et al., 

2013). In all the experiments with diazepam, there was a substantial enhancement of 

the pre-ictal activity. PreIEs in a pre-ictal period started off at a lower rate with few 

events, and their rate and number of events progressively increased until the 

precipitation of tonic-clonic like ictal event (Figure 4.4A, Bi, Bii). Diazepam increased 

the rate and number of PreIEs, and the duration of pre-ictal periods (Figure 4.5, Table 

4.3). Latency to the first IE increased in parallel with an increase in the duration of the 

pre-ictal period (Figure 4.6; times to first IE: 0 Mg2+, 986.9 ± 129.7 s, n = 7; 0 Mg2+/DZP, 

2428.3 ± 442.4s, n = 7; duration of first pre-ictal periods: 0 Mg2+, 471.5 ± 64.5 s, n = 7 

0 Mg2+/DZP, 1460.7 ± 210.5 s). 
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Figure 4.4 A. An example trace recorded in 0 Mg2+/DZP ACSF, displaying pre-ictal 
events developed prior to the first tonic-clonic like ictal event. Bi and Bii are expanded 
views of the green yellow boxed areas, respectively, in panel A. Individual pre-ictal 
events (PreIEs) initially occurred at a lower rate (Bi) that progressively increased until 
the precipitation of the ictal event (Bii). In A, Bi, and Bii, black horizontal line indicates 
the threshold level used to identify the PreIEs (red asterisk).  
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Figure 4.5 Diazepam enhanced the rate and number of pre-ictal events and the 
duration of pre-ictal period in 0 Mg2+-ACSF. Filled stars in the figure are represented 
in the text as ‘*’. *p-values less than the Bonferroni corrected critical value (α): 0.01; 
See table 4.3 for mean ± s.e.m and p-values.  

 

 

Pre-ictal period – 1 

(prior to the first IE) 

0 Mg2+ 0 Mg2+/DZP p-values 

(α = 0.01) 

Duration (s) 471.5 ± 64.5 1460.7 ± 210.5 *< 0.001 

Rate of PreIE (Hz) 0.21 ± 0.05 0.52 ± 0.05 *0.001 

Number of PreIEs 104.0 ± 26.5 762.3 ± 130.9 *< 0.001 

Table 4.3 Measures of the pre-ictal events that developed prior to the first ictal event 
(IE). For all measures, n = 7. *p-values less than the ̂ Bonferroni corrected critical value 
(α). 
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Figure 4.6 Time taken for the development of first tonic-clonic like ictal event is 
increased in parallel with an increase in the duration of pre-ictal periods.  

 

Although DZP had a clear effect on various facets of early epileptiform 

discharges, it did not affect the latency for the development of late-stage activity (Figure 

4.7A; 0 Mg2+, 3018.1 ± 397.8 s; 0 Mg2+/DZP, 3945.6 ± 492.9; unpaired t-test, p > 0.05). 

To examine whether in DZP-treated slices there was a delay in transition of activity 

from early IE to late-stage, the latency to LSEs was measured from the start of the first 

IE. DZP did not delay the activity transition from early to late stage (Figure 4.7B; 0 

Mg2+, 2016.4 ± 318.4 s; 0 Mg2+/DZP, 2015.4 ± 321.8 s; unpaired t-test, p > 0.05). The 

rate of late-stage events was also not affected by diazepam (Figure 4.7C 0 Mg2+, 0.18 

± 0.03 Hz; 0 Mg2+/DZP, 0.18 ± 0.02 Hz; unpaired t-test, p > 0.05). 
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Figure 4.7 Diazepam neither influenced the latency for the development of late-stage 
events (LSEs) nor the rate of occurrence of LSEs. A. Latency to LSEs measured from 
the start of washing in the epileptogenic media. B. Latency to LSEs measured from the 
start of first IE. C. Rate of LSEs was similar in both the groups.  

 

4.3.2 Zero-Mg2+ induced IEs and LSEs in neocortex were not suppressed by 

diazepam 

Previous studies have shown that midazolam and carbamazepine, 

benzodiazepine, suppressed 0 Mg2+-ACSF induced early tonic-clonic like ictal events, 

but not LSEs in entorhinal cortical networks in slices prepared from Wistar rats (Zhang 

et al., 1995; Dreier et al., 1998). I tested whether diazepam shows similar anti-epileptic 

properties, in neocortical networks in slices prepared from wild-type mice (C57BL6). In 

all three recordings, diazepam failed to suppress the on-going 0 Mg2+-ACSF induced 

tonic-clonic like ictal events even after increasing the concentration of DZP to 30µM 

(Figure 4.8).  
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Figure 4.8 In neocortex, diazepam did not suppress the on-going 0 Mg2+-ACSF 
induced tonic-clonic like ictal events. Black, 0 Mg2+-ACSF; blue, 0 Mg2+/DZP-ACSF. 

 

However, similar to the results of previous studies that used different 

benzodiazepines (Zhang et al., 1995), diazepam did not suppress the on-going 0 Mg2+-

ACSF induced LSEs (Figure 4.9; n = 7). The effect of diazepam on the rate, maximal 

amplitude, and duration of LSEs was inconsistent in different experiments; that is, in a 

few experiments DZP increased these parameters and decreased in other experiments 

(Figure 4.10; Table 4.4).  
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Figure 4.9 Diazepam failed to suppress the on-going 0 Mg2+-ACSF induced LSEs in 
neocortical networks. A. Pre-DZP: 0Mg2+-ACSF induced LSEs. B. Post-DZP: LSEs in 
0 Mg2++DZP-ACSF. Although diazepam did not suppress the LSEs, it mediated an 
increase in the amplitude of the first spike (large downward deflection; orange arrow) 
and following spikelets (green arrow head) of an event. In A and B, horizontal blue line 
indicates the threshold level used event detection (red asterisks). 

 

Figure 4.10 Effects of diazepam on LSEs were varying in different experiments. Data 
represented for rates (A), duration (B), and maximal amplitudes (C), is normalised to 
controls. For mean ± s.e.m and p-values, see table 4.4. 
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  0 Mg2+ model 

                                    Neocortical LSE 

Pre-DZP Post-DZP Norm. % change p = 

Rate (Hz) 0.18 ± 0.03 0.23 ± 0.03 141.8 ± 28.3 0.19 

Duration (s) 2.49 ± 0.35 2.37 ± 0.23 101.4 ± 9.6 0.88 

Max. Amp. (µV) 933.6 ± 116.9 1017.9 ± 129.8 109.7 ± 5.0 0.10 

Table 4.4 Rate, duration, and maximal amplitude (Max. Amp.) measures of LSEs taken 
before (pre-DZP) and after adding DZP (post-DZP) to 0 Mg2+-ACSF. For all measures, 
n = 7. p-values were calculated using paired Student’s t-test.  

 

Power-spectral density (PSD) analysis was carried out to test whether 

diazepam influenced the frequency components of 0 Mg2+-ACSF induced late-stage 

events (Figure 4.11Ai, Aii). Diazepam did not affect frequency components in 1-10 Hz 

nor 60-100 Hz bandwidths, but increased PSDs for frequencies in 10-40 Hz bandwidth 

(Figure 4.11 Aiii, B; post-DZP/pre-DZP PSD ratios (n = 7; Bonferroni corrected critical 

value (α) is 0.016): 1-10 Hz: 1.21 ± 0.09, p = 0.069; 10-40 Hz: 2.36 ± 0.39, p = 0.01; 

60-100 Hz: 1.58 ± 0.22, p = 0.03)  
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Figure 4.11 Diazepam increased the power-spectral densities (PSD) of frequency 
components of 0 Mg2+-ACSF induced neocortical LSEs in10-40 Hz bandwidth. 
Example traces displaying 0Mg2+-ACSF induced LSEs (pre-DZP; Ai) and LSEs after 
diazepam treatment (post-DZP; Aii) in the same slice. Aiii. Power-spectral density 
(PSD) analysis of the data shown in Ai and Aii. B. Bar graphs of PSD ratios (post-
DZP/pre-DZP) for different frequency bandwidths. *p = 0.01; Bonferroni corrected 
critical value (α) = 0.016.  

 

4.3.3 Positive allosteric modulation of GABAARs delayed the onset of 

epileptiform activity in CA3, but not in neocortex in 4-aminopyridine in vitro 

model 

In the next series of in vitro experiments, I studied the effect of diazepam on the 

evolution of epileptiform activity simultaneously in neocortex (NCtx) and hippocampal 

CA3 subfield (CA3) using 4-aminopyridine (4AP) in vitro model. Control group consists 

of experiments carried out only in 4AP-ACSF. In the control group, following wash-in 

of 4AP-ACSF, there was a gradual build-up of epileptiform activity in the neocortex, 
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pre-ictal events were followed by tonic-clonic like ictal events (IE) and a second 

transition into late-stage recurrent discharges (LSEs) (Figure 4.12A, black trace). In 

CA3, on the other hand, epileptiform discharges were of different pattern having 

recurrent large spike-and-wave discharges (SWDs) (Figure 4.12A, red trace) and, 

furthermore, these events began with similar latency as the development of the first IE 

in neocortex as can be seen with multiunit activity associated with the events in both 

the regions (Figure 4.12A inset; Table 4.5).  

In the presence of diazepam, epileptiform activity appeared to evolve 

simultaneously, in both the neocortex and CA3 (Figure 4.12B). Diazepam appeared to 

delay the development of epileptiform activity in CA3, but not in neocortex (Figure 4.13; 

Table 4.5). Furthermore, unlike in 0Mg2+, diazepam did not mediate any long-lasting 

pre-ictal discharges in the neocortex. 
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Figure 4.12 A. 4AP induced different pattern of evolution of epileptiform activity in 
neocortex (NCtx; black trace) and CA3 (red trace). Epileptiform discharges developed 
earlier in CA3 than in the neocortex. These were the simultaneous recordings from 
neocortex and CA3 in the slice. Insets: multiunit activity (300 – 3000 Hz) of the boxed 
areas. B. Diazepam in 4AP-ACSF delayed the development of epileptiform activity in 
CA3 (orange trace), but did not affect neocortex (blue trace). Insets: multiunit activity 
(300 – 3000 Hz) of the boxed areas. 
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Figure 4.13 In control group (4AP-ACSF), epileptiform activity associated with local 
neuronal firing developed earlier in CA3 than in the neocortex, whereas, in diazepam 
treated group, the first IE in neocortex occurred earlier than the first SWD in CA3. 
*Unpaired Student’s t-test with p-values less than or equal to the Bonferroni corrected 
critical value (α): 0.01. For mean ± s.e.m, see Table 4.5. 

 

 

Latency (s) Neocortex (n) CA3 (n) Paired t-test,  

p-values (^α = 0.01) 

4AP 605 ± 21.8 (9) 487.4 ± 17.1 (9) 0.04 

4AP/DZP 559.6 ± 75.4 (3) 766.6 ± 48.3 (3) 0.13 

Unpaired t-test,  

p-values (^α = 0.01) 

0.71 *0.01  

Table 4.5 Times to the first IE in neocortex and SWD in CA3 in 4AP- and 4AP/DZP-
ACSF. *p-values less than or equal to the ^Bonferroni corrected critical value (α). 
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4.3.4 4AP-induced neocortical LSEs, and SWDs in CA3 were not suppressed by 

diazepam 

I next examined whether diazepam has any effect on 4AP-ACSF induced late-

stage events and SWDs in neocortex and CA3, respectively. Diazepam had minimal 

influence on the rates, durations, and maximal amplitudes of SWDs in CA3 (Figure 

4.14, Table 4.6), and neocortical LSEs (Figure 4.15, Table 4.7). There was a small 

trend towards an increase in maximal amplitude of LSEs in neocortex after diazepam-

treatment (post-DZP) compared to 4AP-ACSF (pre-DZP) in the same slices.  

Power-spectral density (PSD) analysis was carried out to test whether 

diazepam influenced the frequency components of the LSEs (Figure 4.16 A) and 

SWDs (Figure 4.17 A). Diazepam did not greatly influence the PSDs of frequencies in 

any of the three frequency bandwidths tested, neither in the neocortex (Figure 4.16B; 

Table 4.8) nor in CA3 (Figure 4.17 B; Table 4.8). However, in CA3 SWDs, there is a 

small trend towards a higher PSD ratio for the frequencies in 10-40 Hz bandwidth. 

Since, the sample size was small, power analysis was performed to validate the 

statistical test, and to yield an approximate sample size that will be required to see a 

significant difference (p < 0.05) in the reported results. Our ability to find significant 

difference in 10-40 Hz bandwidth, but not in 1-10 Hz or 60-100 Hz bandwidths, was 

limited by the sample size (Table 4.9). 
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Figure 4.14 Diazepam had variable effect on the rate (B), duration (C), and maximal 
amplitude (D) of the on-going 4AP-ACSF induced SWDs in CA3 hippocampal 
networks. Data represented in B, C, and D is normalised to controls. Ai. Pre-DZP: 4AP-
ACSF induced SWDs. Aii. Post-DZP: SWDs in 4AP+DZP-ACSF. For mean ± s.e.m., 
see Table 4.6. 
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4-AP model 

CA3 SWDs 

Pre-DZP (n) Post-DZP (n) Norm. % change p = 

Rate (Hz) 0.63 ± 0.08 (4) 0.62 ± 0.12 (4) 98.6 ± 17.6 0.94 

Duration (s) 0.92 ± 0.05 (4) 1.09 ± 0.14 (4) 118.7 ± 11.9 0.22 

Max. Amp. 

(µV) 

1429.8 ± 261.3 

(4) 

1468.2 ± 336.3 (4) 101.4 ± 9.2 0.77 

Table 4.6 Rate, duration, and maximal amplitude (Max. Amp.) measures of SWDs in 
CA3 taken before (pre-DZP) and after (post-DZP) adding DZP to 4AP-ACSF. p-values 
were calculated using paired Student’s t-test.  
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Figure 4.15 Diazepam had variable effect on the rate (B), duration (C), and a small 
trend towards an increase in maximal amplitude (D) of the on-going 4AP-ACSF 
induced LSEs in neocortex. Data represented in B, C, and D is normalised to controls. 
Ai. Pre-DZP: 4AP-ACSF induced LSEs. Aii. Post-DZP: LSEs in 4AP+DZP-ACSF. For 
mean ± s.e.m., see Table 4.7. 
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4-AP model 

Neocortical LSE 

Pre-DZP (n) Post-DZP (n) Norm. % change p = 

Rate (Hz) 0.63 ± 0.08 (4) 0.62 ± 0.12 (4) 98.6 ± 17.6 0.94 

Duration (s) 1.12 ± 0.02 (4) 1.19 ± 0.16 (4) 105.6 ± 12.1 0.67 

Max. Amp. (µV) 757.9 ± 201 (4) 972.6 ± 332.8 (4) 123.3 ± 9.2 0.08 

Table 4.7 Rate, duration, and maximal amplitude (Max. Amp.) measures of neocortical 
LSEs taken before (pre-DZP) and after (post-DZP) adding DZP to 4AP-ACSF. p-values 
were calculated using paired Student’s t-test.  
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Figure 4.16 Diazepam did not affect the frequency components of 4AP-induced 
neocortical LSEs. Example traces displaying 4AP-ACSF induced LSEs (pre-DZP; Ai) 
and LSEs after diazepam treatment (post-DZP; Aii) in the same slice. Aiii. Power-
spectral density (PSD) analysis of the data shown in Ai and Aii. B. Bar graphs of PSD 
ratios (post-DZP/pre-DZP) for different frequency bandwidths examined (1-10 Hz, 10-
40 Hz, and 60-100 Hz). For mean ± s.e.m., see Table 4.8  
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Figure 4.17 Diazepam did not affect the frequency components of 4AP-induced 
hippocampal SWDs. Example traces displaying 4AP-ACSF induced SWDs (pre-DZP; 
Ai) and SWDs after diazepam treatment (post-DZP; Aii) in the same slice. Aiii. Power-
spectral density (PSD) analysis of the data shown in Ai and Aii. B. Bar graphs of PSD 
ratios (post-DZP/pre-DZP) for different frequency bandwidths examined (1-10 Hz, 10-
40 Hz, and 60-100 Hz. For mean ± s.e.m., see Table 4.8  
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Frequency 

Bandwidths 

Neocortical LSEs CA3 SWDs 

Effect size Required total 

Sample size 

Effect size Required total 

Sample size 

1-10 Hz  0.232 149 0.528 31 

10-40 Hz  0.309  85 1.095  9 

60-100 Hz 0.261 118 0.680 19 

Table 4.9 Required total sample sizes to achieve a significant difference (p<0.05) in 
the effect of diazepam on PSD ratios of the frequency components of neocortical LSEs, 
and SWDs in CA3. 

  

PSD ratio: Post-DZP / Pre-DZP in 4AP model 

Frequency 

bandwidths 

Neocortical 

LSEs (n) 

p-value 

^(α = 0.016) 

CA3 SWDs (n) p-value 

^(α = 0.016) 

1-10 Hz 1.19 ± 0.41 (4) 0.65 1.19 ± 0.18 (4) 0.36 

10-40 Hz  1.13 ± 0.21 (4) 0.57 1.46 ± 0.21 (4) 0.11 

60-100 Hz 1.12 ± 0.23 (4) 0.65 1.34 ± 0.25 (4) 0.2 

Table 4.8 Power-spectral density ratios of frequency components of events measured 
before and after adding diazepam in 4AP model. ^Bonferroni corrected critical value 
(α). 
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4.4   Discussion 

Benzodiazepines are used as a first-line therapy for status epilepticus. 

However, they have a variable effect on the management of status epilepticus (Chin 

et al., 2008). It is not known why few patients respond to benzodiazepines and others 

do not. One of the factors is the time of treatment; that is, treatment early-on after the 

onset of status epilepticus was reported to have better treatment outcomes (Chin et 

al., 2008). To understand this variable effect of benzodiazepines better, it is important 

to explore which facets of the evolving epileptiform activity pattern is influenced by a 

clinically used modulator of GABAAR activity, namely, diazepam. 

Results of this chapter illustrate several distinct effects of diazepam on the 

evolution of epileptiform activity in different cortical networks in brain slices, using 

different in vitro models of epilepsy. Firstly, in 0 Mg2+-model, diazepam enhanced pre-

ictal discharges and delayed the development of tonic-clonic like ictal events (ictal 

events) in neocortex. Pre-ictal and inter-ictal events are transient events that occur 

prior to and in between ictal events, respectively, and the relationship between these 

transient events and ictal events remains unclear (Avoli et al., 2002; Dzhala and 

Staley, 2003; Khalilov et al., 2003; Staley et al., 2005; Avoli et al., 2006; White et al., 

2010; Chauviere et al., 2012). These events were demonstrated to be anti-epileptic 

as well as pro-epileptic in nature (Swartzwelder et al., 1987; Bragdon et al., 1992; de 

Curtis et al., 1998; de Curtis and Avanzini, 2001; Avoli et al., 2002; Librizzi and de 

Curtis, 2003; Staley et al., 2005; Avoli et al., 2006; Trevelyan et al., 2006; Trevelyan 

et al., 2007; White et al., 2010; Huberfeld et al., 2011; Chauviere et al., 2012; 

Cammarota et al., 2013). Previous studies identified and confirmed two types of 

interictal events (Voskuyl and Albus, 1985; Michelson and Wong, 1991; Perreault and 

Avoli, 1992; Watts and Jefferys, 1993; Huberfeld et al., 2011). Type one events were 

sensitive to glutamatergic antagonism resembling events in disinhibited tissues. Type 

two events were not sensitive to glutamatergic antagonism, but are sensitive to 

GABAA-receptors antagonism. An in vivo study also demonstrated the presence of 

two types of inter-ictal events, of which the rate of one type reduced and the other 

increased as the activity developed into a seizure event. This increase is not observed 

in animals that did not develop spontaneous seizures (Chauviere et al., 2012). 
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Other sets of studies suggested that pre-ictal events are protective (anti-

epileptic) in nature and are dominated by GABA mediated inhibitory currents 

(Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et al., 2013). The inhibitory 

signalling during pre-ictal events was provided largely by parvalbumin-positive 

interneurons (Cammarota et al., 2013), and when this functional inhibition collapses, 

activity shows a transition from pre-ictal to ictal events (Trevelyan et al., 2006; 

Trevelyan et al., 2007; Cammarota et al., 2013). Based on the results presented in 

this chapter and literature, I hypothesise that pre-ictal events developed in presence 

of diazepam are protective in nature as their enhancement by diazepam appeared to 

delay the onset of ictal events. If they were pro-epileptic, ictal events would have 

developed much earlier. The nature of synaptic currents underlying diazepam-

induced pre-ictal events needs to be investigated at a cellular level to identify whether 

they are protective events involving functional inhibitory currents or causative events 

involving compromised inhibitory currents (absence and/or depolarising GABA 

mediated currents). 

In 0 Mg2+ model, as diazepam delayed the development of ictal events, I 

hypothesised that it would increase the latency for the development of late-stage 

events in neocortex. But, surprisingly, diazepam did not affect the time taken for the 

early activity to evolve into late-stage activity. This suggests that increasing the 

frequency of channel opening do not play a direct role in the transition of activity from 

ictal to late-stage, but may work together with other mechanisms such as altered 

surface expression and turnover of GABAARs and their subunits (Brooks-Kayal et al., 

1998; Peng et al., 2004; Terunuma et al., 2008), deficits in the activity of potassium-

chloride cotransporters (KCC2) (Silayeva et al., 2015), cellular fatigue, reduced 

availability of synaptically released GABA, (Schousboe et al., 1983; Pfeiffer et al., 

1996). It has been shown that, after intense activation of GABAergic interneurons, 

particularly the parvalbumin-positive fast-spiking basket cells, the reversal potential 

of GABAA currents (EGABA) is shifted from hyperpolarising to depolarising potentials 

and thus, diminishing the effective inhibitory currents (Isomura et al., 2003), and the 

EGABA in pyramidal neurons were at depolarising levels in pilocarpine induced-status 

epilepticus (Barmashenko et al., 2011). However, it is not known whether the 

transition into late-stage activity is due to this shift in EGABA, and what role do positive 

modulators of GABAA-receptors play, if any, during this activity transition. This could 
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be one of the mechanisms that work at GABAARs that underlie the second transition 

to late-stage activity. This can be examined by performing perforated-patch recording 

from pyramidal neurons and periodically assessing EGABA as the epileptiform activity 

evolves from early to late-stage activity.  

Late-stage events developed in slices exposed to zero-magnesium ACSF 

were shown to be not suppressed by midazolam (a benzodiazepine) (Zhang et al., 

1995). In agreement with these previous studies, diazepam neither suppressed 

neocortical late-stage events nor had any substantial effect on duration, amplitude, 

or the rates of these events. Previous studies reported a decrease in the surface 

expression of γ2 and β2/3 subunits of GABAARs in epileptic rats, suggesting the 

reduced availability of benzodiazepine-sensitive GABAARs (Naylor et al., 2005; 

Goodkin et al., 2008). This downregulation of benzodiazepine-sensitive GABAAR 

subunits could be one of the explanations for the insensitivity of epileptiform activity 

to diazepam. 

Earlier studies have researched the sensitivity of different types of 4-

aminopyridine (4AP)-induced epileptiform activity to the standard anti-epileptic drugs, 

but not the evolution of activity (Watts and Jefferys, 1993; Yonekawa et al., 1995; 

Bruckner et al., 1999; Bruckner and Heinemann, 2000). Current results reveal the 

contrasting effects of diazepam on evolving epileptiform activity in 4AP- and 0 Mg2+-

models. In 4AP model, diazepam did not affect the latency for the development of 

early-stage epileptiform activity in the neocortex, but in CA3. In the neocortex, unlike 

in 0Mg2+-model, diazepam failed, both, to produce long-lasting pre-ictal events, and 

to increase the latency to the first tonic-clonic like ictal event. Early activity evolved 

into late-stage in two of three slices and the latency for this transition is similar to 

control group. In CA3, the onset of spike-wave discharges was delayed by diazepam 

compared to controls. 

4AP-induced neocortical late-stage events and spike-wave discharges in CA3 

are resistant to standard anti-epileptic drugs (Yonekawa et al., 1995; Bruckner et al., 

1999; Bruckner and Heinemann, 2000). In accordance with these findings, diazepam 

neither suppressed nor altered any characteristics of the neocortical late-stage 

events and spike-wave discharges in CA3. However, there was a trend towards an 

increase in the PSDs of frequencies in 10-40 Hz bandwidth of diazepam modulated 
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SWDs.  Power analyses suggest that the ability to see a significant increase was 

limited by the small sample size.  

Future studies examining the effects of diazepam on epileptiform activity 

induced by different in vitro models, how EGABA changes during the progression of 

epileptiform activity, and how might diazepam affect these changes will further 

strengthen our understanding about the effects of anti-epileptic drugs on different 

stages and types of epileptiform activity and provide a scope for developing new 

multidrug therapies for controlling epilepsy.  
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Chapter 5 The effects of baclofen on evolving epileptiform activity in the 
cortical networks 

 

5.1 Introduction 

GABA is the major inhibitory neurotransmitter in the brain acting at ionotropic 

GABAA- and metabotropic GABAB-receptors. Since many years, the role of GABAA-

receptors (GABAARs) mediated fast inhibition has been extensively investigated in 

various in vitro and in vivo models of epilepsy. However, the significant role of GABAB-

receptor (GABABR) mediated slow inhibition in physiological cortical function (Ulrich 

and Huguenard, 1996; Sanchez-Vives and McCormick, 2000; Perez-Garci et al., 2006; 

Rigas and Castro-Alamancos, 2007), and pathological states such as epilepsy, has 

only recently been recognized (Hosford et al., 1992; Empson and Jefferys, 1993; 

Sanchez-Vives and McCormick, 1997; Prosser et al., 2001).  

GABABRs are G-protein coupled receptors that occur as heterodimers made up 

of GABAB1a/b and GABAB2 subunits. It is necessary to have both the subunits to form 

functional GABABRs (Galvez et al., 2001; Robbins et al., 2001). GABAB1a-GABAB2 and 

GABAB1b-GABAB2 heterodimers are localised at presynaptic terminals and 

postsynaptic elements, respectively, at both excitatory and inhibitory synapses (Lopez-

Bendito et al., 2002; Lopez-Bendito et al., 2004). At postsynaptic sites, activated 

GABABRs mediate hyperpolarisation by activating G-protein coupled-potassium 

channels, and/or modulate the generation of dendritic calcium spikes by inhibiting 

calcium channels (Gahwiler and Brown, 1985; Inoue et al., 1985; Sodickson and Bean, 

1996; Perez-Garci et al., 2006). Excess of synaptically released GABA spills over to 

peri- and extra-synaptic regions to activate GABABRs on the postsynaptic membrane. 

Spill-over GABA also mediates heterosynaptic depression at neighbouring excitatory 

synapses by activating presynaptic GABABRs on excitatory neurons (Isaacson et al., 

1993). At inhibitory synapses, GABA reduces the neurotransmitter release by 

activating presynaptic GABAB autoreceptors (Davies et al., 1990). A requirement for 

the activation of GABABRs is the accumulation of sufficient amounts of synaptically-

released GABA, and such conditions arise during synchronous network activity during 

network oscillations (Scanziani, 2000). 
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GABABRs modulate the cortical slow network oscillations, comprising UP and 

Down states. GABABRs activation was shown to contribute to the termination of Up-

states (Mann et al., 2009). Modulatory actions of GABABRs on the slow oscillations 

can be attributed to their slow kinetics and the mediated longer lasting inhibitory 

potentials. In thalamocortical–thalamic reticular nuclear (nRt) and nRt-nRt circuits, 

reciprocal and recurrent inhibition mediated by GABABRs underlies the generation of 

rebound low-threshold calcium spikes in both nRt and thalamocortical (TC) neurons. 

These bursts of action potentials underlie the physiological thalamocortical rhythm 

(Ulrich and Huguenard, 1996). GABABRs mediated longer-lasting inhibitory 

postsynaptic potentials in TC neurons are generated by intense activity of 

perigeniculate and nRt cells triggering pathological rhythmic slow oscillations during 

generalised absence seizures (Crunelli and Leresche, 1991; Sanchez-Vives and 

McCormick, 1997).  

The causative role of GABABRs in inducing absence seizures was 

demonstrated in lethargic mice, an animal model of absence seizures (Hosford et al., 

1992). Likewise, in rats with genetic absence seizures, the epileptic activity was further 

aggravated by administering GABABR agonist and suppressed by GABABR antagonist 

(Liu et al., 1992; Vergnes et al., 1997). However, unlike in absence seizures, GABABR 

antagonists and positive modulators facilitate audiogenic tonic seizures (Vergnes et 

al., 1997) and suppressed tonic-clonic seizures (Mares, 2012). Moreover, in mice, 

knocking out GABAB1R subunits rendered all the pre- and post-synaptic GABABRs 

non-functional, and although these mice appeared normal at birth, within four post-

natal weeks they developed generalised convulsive epilepsy followed by premature 

death (Prosser et al., 2001).   

Research groups have carried out in vitro studies in the CA3 subfield of the 

hippocampus and entorhinal cortex (EC) to evaluate the effects of baclofen, a GABABR 

agonist, on epileptiform activity induced by zero-magnesium ACSF (0 Mg2+-ACSF) 

(Swartzwelder et al., 1987; Jones, 1989). Clinically, baclofen is used as an anti-spastic 

agent and muscle relaxant. Following wash-out of magnesium ions, tonic-clonic like 

ictal events (IE) developed in CA3 and EC and the activity later transitioned into 

recurrent short-duration events that Swartzwelder et al., referred to as interictal-like 

spikes (Swartzwelder et al., 1987). For the sake of consistency in this thesis, I refer to 
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these latter events to as late-stage events (LSEs). When the hippocampal slices were 

superfused with 0 Mg2+-ACSF supplemented with baclofen right from the beginning of 

the experiment, the hippocampal neuronal network started discharging tonic-clonic like 

events and this activity continued for the duration of the recordings, and addition of 

baclofen during the LSEs transformed the activity into tonic-clonic like discharges 

(Swartzwelder et al., 1987). In neocortex, the rate of LSEs was reduced by brief 

application of baclofen and this reduction in network activity was due to its 

hyperpolarising effect (Horne et al., 1986). It was also reported that baclofen abolished 

the spontaneous and stimulation evoked ictal events in entorhinal cortex (Jones, 

1989).  

I showed in the earlier chapter (chapter 3) that different regions of the brain 

show heterogeneous responses to the same pathological insults, that is, hippocampal, 

entorhinal cortex, and the neocortical networks differ in their sensitivity to pro- and anti-

epileptic agents and hence differ in their activity patterns. I now show here that 

challenging brain slices with zero-magnesium ACSF (0 Mg2+-ACSF) supplemented 

with baclofen, a GABAB-receptors agonist, induces tonic-clonic like ictal events in 

neocortex and locks the activity pattern in this stage for the duration of recording, but 

fails to develop any activity in CA3. Washing out baclofen with 0 Mg2+-ACSF 

transformed the activity pattern in both the regions. Interestingly, in neocortex, adding 

baclofen during 0 Mg2+-ACSF induced late-stage events reversibly reverted activity to 

tonic-clonic like ictal events. In CA3, baclofen suppressed 0 Mg2+-induced spike-wave 

discharges. These results show protective effects of baclofen that can be translated to 

control certain types of clinical epilepsies. 
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5.2 Materials and methods 

5.2.1 Slice preparation and electrophysiology 

For all the experiments described below, combined neocortical-hippocampal 

horizontal slices were used, that were prepared and stored as described in slice 

preparation method 2 (chapter 2, sub-heading 2.4.2). Local field potentials (LFPs) were 

recorded simultaneously from both the pyramidal cell layer of CA3 subfield of 

hippocampus and infragranular layers of neocortex (Figure 5.1). The recording setup 

and the equipment used were as described in chapter 2 (sub-heading 2.5.1). 

 

Figure 5.1 Recording setup showing a slice in the interface recording chamber with 
electrodes placed in the pyramidal cell layer of CA3 (bottom-right) and infragranular 
layers of neocortex (NCtx, top-right).  

 

5.2.2 Protocols and drugs 

The effects of GABAB receptors activation on the evolution of epileptiform 

activity in neocortex and CA3 subfield of hippocampus was studied using (RS)-

baclofen and zero-magnesium model (0 Mg2+ model). From here on, (RS)-baclofen will 

be mentioned either as ‘baclofen’ or ‘Bac’. The protocol is as follows: brain slices were 

placed in the interface recording chamber, which were perfused initially with ACSF. 

Electrodes were placed in the regions of interest and the baseline activity was recorded 

in ACSF. After 10-15 minutes, the perfusate was switched from ACSF to epileptogenic 

medium (0Mg2+-ACSF). Measures taken from this set of experiments were considered 

as controls. For the treatment group, after baseline recordings, the solutions were 

switched to 0 Mg2+-ACSF containing baclofen (0 Mg2+/Bac-ACSF). To study the effects 

of baclofen on late-stage events, slices were superfused with 0 Mg2+-ACSF until the 
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development of late-stage recurrent discharges, and only at this stage was the 0 Mg2+-

ACSF supplemented with baclofen. From here on, 0 Mg2+-ACSF with baclofen will be 

represented as ‘0 Mg2+/Bac-ACSF’. 

 (RS)-Baclofen was purchased from Tocris (U.K). Baclofen stock solution (100 

mM) was prepared and stored in -20 ◦C. Baclofen at 10µM was effective in producing 

outward hyperpolarising membrane current (Gahwiler and Brown, 1985). Hence, I 

chose to use 10 µM of baclofen as final concentration, unless otherwise stated.  

 

5.2.3 Data analysis 

Data was analysed as described in chapter 2 (sub-heading 2.7). Additionally, 

estimates of power-spectral density (PSD) for different frequency bandwidths was 

analysed on hum-removed traces each of 25 seconds length. It was calculated using 

‘pwelch’, a built-in function in Matlab 2015b for frequency ranges of 1-10 Hz, 10-40 Hz, 

and 60-100 Hz (for details see Chapter 4, section 4.2.4). PSD ratios were calculated 

for each frequency bandwidth separately, by measuring PSDs for events in baclofen 

(0Mg2++Bac) and dividing it by PSDs measured for events in control (0 Mg2+). 

 

5.2.4 Terminology 

I reserve specific nomenclature for particular type of epileptiform events in these 

recordings. Baclofen-induced tonic-clonic like ictal event is used to describe the tonic-

clonic like ictal events developed in the neocortex after adding baclofen to the 

perfusate during 0 Mg2+-induced late-stage events. 
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5.3 Results 

5.3.1 GABABR activation delays epileptiform evolution in vitro 

In neocortex, GABABR activation did not alter the pattern early evolution of 

epileptiform activity in 0 Mg2+ model, but significantly slowed this process (Figure 5.2 

A, B – black trace; Figure 5.3 A, Table 5.1).  In all four experiments, there were 

repeated tonic-clonic like ictal events (IE) for the entire duration of the recordings. The 

latency to the first event, and the intervals between all successive events were 

increased (Figure 5.3 A; Table 5.1). The rate of IEs in 0 Mg2+/Bac-ACSF continued to 

progressively increase for the duration of the recordings (Figure 5.3 B; first 30 mins, 

0.21 ± 0.03 min-1, n = 4; 30-60 mins, 0.37 ± 0.03 min-1, n = 4; 60-90 mins, 0.46 ± 0.07 

min-1, n = 3). The duration of these events was shorter, and every event had episodes 

of sustained rhythmic bursts like the tonic-clonic discharges as observed in zero-

magnesium ACSF (Figure 5.3 C, durations of IE: 0 Mg2+, 53.56 ± 17.2 s, n = 5; 0 

Mg2+/Bac, 26.57 ± 1.47 s, n = 4; unpaired Student’s t-test, p > 0.05).  These neocortical 

tonic-clonic events showed a prominent multi-unit activity, as evidenced by the large 

deflections in the 300-3000 Hz band-pass filtered signal (Figure 5.2 Cii), whereas, 

multi-unit activity was not seen in CA3 (Figure 5.2 Dii). In addition to the marked 

slowing of the evolution of neocortical activity, in none of the experiments did the 

activity show a second transition into late-stage events (Figure 5.2 B).  
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Figure 5.2 Effect of GABABR activation by baclofen from the start of washing-out Mg2+ 
ions from ACSF. Simultaneous recordings from neocortex and CA3. Washing in 0 
Mg2+-ACSF (A), and 0Mg2+/Bac-ACSF (B) at start of the trace. Note the presence of 
multi-unit activity in the high-pass filtered trace of an ictal event in neocortex (Cii), but 
the almost complete absence of multi-unit activity in the CA3 recording (Dii). Note: 
traces in panels A and B were plotted on different time scales 
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Figure 5.3 A. The early evolution of epileptiform activity had similar features in both 0 
Mg2+-ACSF and 0 Mg2+/Bac-ACSF: in both, there was a steep decline in the latency 
for the occurrence of subsequent ictal events. Unpaired Student’s t-test, *p-values less 
than or equal to Bonferroni corrected critical value (α = 0.005).  See table 5.1 for mean 
± s.e.m. B. The rate of IE was progressively increasing in 0 Mg2+/Bac-ACSF. C. 
Duration of IEs was reduced in 0 Mg2+/Bac-ACSF. 
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Inter event 

intervals (s) 

Neocortex p-values 

^(α = 0.005) 
0 Mg2+ (n) 0 Mg2+/Bac (n) 

0-IE1 609.24 ± 31.13 (5) 1573.12 ± 175.65 (4) *0.0005 

IE1-IE2 95.04 ± 21.13 (5) 287.78 ± 99.28 (4) 0.07 

IE2-IE3 96.57 ± 22.1 (5) 422.53 ± 39.26 (4) 0.06 

IE3-IE4 55.13 ± 8.59 (5) 250.03 ± 72.56 (4) 0.01 

IE4-IE5 94 ± 9.26 (5) 267.7 ± 39.73 (4) *0.002 

IE5-IE6 69.06 ± 8.48 (4) 191.21 ± 17.41 (4) *0.0007 

IE6-IE7 47.69 ± 15.15 (4) 171.73 ± 21.72 (4) *0.003 

IE7-IE8 58.69 ± 14.2 (4) 170.07 ± 52.92 (4) 0.08 

IE8-IE9 63.69 ± 19.54 (4) 247.49 ± 61.95 (4) 0.03 

Table 5.1 Times taken for the development of first tonic-clonic like ictal event (IE) and 
the subsequent inter-event intervals in neocortex in 0 Mg2+-ACSF and 0 Mg2+/Bac-
ACSF. *p-values less than or equal to ^Bonferroni corrected critical value (α). 

 

5.3.2 Different patterns of epileptiform activity in neocortex and CA3 after 

washing out baclofen  

After washing out baclofen for nearly 30-40 minutes with 0 Mg2+-ACSF, 

population discharges started to develop in CA3 (Figure 5.4 B). One notable feature of 

this activity, which distinguished it from previous recordings (no baclofen, chapter 3), 

was that in CA3 region, along with single large spike-and-wave discharges (SWD, type 

1) lasting up to 1.26 ± 0.11 s (n = 3) (Figure 5.5 Bi, Bii), an additional type of 

synchronous population discharges with polyspike waveforms lasting up to 3.41 ± 0.35 
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s (n = 3) were observed (type 2; figure 5.6 Bi, Bii). In neocortex, activity showed a 

transition to late-stage events (Figure 5.4 A) that were occurring regularly and lasted 

up to 3.29 ± 0.23 s (n = 3). In contrast to the earlier 0 Mg2+/Bac-ACSF induced IEs, 

late-stage events that developed after washing out baclofen with 0 Mg2+-ACSF 

occurred with reduced amplitude (Figure 5.4 A, 5.5 A, 5.6 A). 

 

 

Figure 5.4 Further evolution of epileptiform activity after washout of Baclofen. This 
figure only shows the recordings after the washout, and for space reasons, do not show 
the prior 3768 s of recording in 0 Mg2+ with baclofen. Two different spiking patterns 
were noted: spike-wave discharges (black box – expanded in Figure 5.5b) and 
polyspike discharges (blue box – expanded in Figure 5.5d). 
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Figure 5.5 Examples of neocortical LSE (panels a, c), type 1 discharge (spike and 
wave discharge; panel b), and type 2 discharge (polyspike; panel d) that occurred in 
CA3 after washing out Baclofen with 0 Mg2+-ACSF (expanded from Figure 5.4). Wide-
band is raw data, band-passed is filtered for 300-3000 Hz. 
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5.3.3 Transformation of late-stage epileptiform activity to tonic-clonic like ictal 

events in neocortex by baclofen  

In the previous section, I showed that the late-stage activity failed to develop in 

neocortex if the slices were bathed in baclofen from the start of the perfusion with 0 

Mg2+-ACSF.  This raised the question of whether the late-stage activity could be 

reversed by baclofen, after they have already developed (Figure 5.6, aqua bar – far 

left, box b). Addition of baclofen transformed the late-stage activity pattern in neocortex 

(Figure 5.6, yellow bar).  In all 7 recordings, the late-stage activity reverted to a pattern 

of intermittent ictal events, tonic-clonic like patterns (Figure 5.6, box c). These 

baclofen-induced tonic-clonic like ictal events (Bac-IEs), when compared to the early 

0Mg2+-IEs measured in the same slice, were significantly shorter (Figure 5.7 A; 0 Mg2+-

IE, 60.51 ± 7.12 s, n = 7; Bac-IE, 29.86 ± 10.8 s, n = 7; normalised percentage change, 

47.62 ± 13.07 %, paired Student’s t-test, p < 0.05), and, had lower and higher power 

spectral densities for frequencies in 1-15 Hz and 15-40 Hz bandwidths, respectively 

(Figure 5.7 B; Table 5.2). After washing out baclofen with 0 Mg2+-ACSF, recurrent late-

stage events reappeared (Figure 5.6, aqua bar – far right, box d). 
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Figure 5.6 Addition of baclofen to 0 Mg2+-ACSF during the late-stage (yellow bar) 
transformed the activity pattern in the neocortex. Late recurrent discharges in the 
neocortex (box b) were replaced with 0 Mg2+/Bac-ACSF induced tonic-clonic like ictal 
events (box c). Late recurrent discharges reappeared after washing-out baclofen (to 0 
Mg2+-ACSF – aqua bar, far right; box d). 
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Figure 5.7 A. Baclofen-induced tonic-clonic like ictal events were shorter compared to 
the ictal events developed prior in 0Mg2+-ACSF. B. Baclofen-induced tonic-clonic like 
ictal events had lower and higher PSDs for frequencies in LF and HF bands, 
respectively (see Table 5.2).  

 

Frequency 

bandwidths 

0Mg2+-IE 

(µV2/Hz) 

Bac-IE 

(µV2/Hz) 

Norm. % change  

p= 

1-15 Hz 2017.1 ± 691.4 1164.9 ± 200.2 57.8 ± 9.9 0.008 

15-40 Hz 55.7 ± 11.0 197.9 ± 66.5 354.7 ± 119.2 0.084 

Table 5.2 Power-spectral density measures for early 0 Mg2+-induced IEs and baclofen-
induced IEs (Bac-IE) in same slices (n = 7). p-values were calculated using paired 
Student’s t-test. 

 

5.3.4 GABABR activation suppressed SWDs in CA3  

In CA3, baclofen suppressed the on-going 0 Mg2+-ACSF induced SWDs (figure 

5.8, yellow bar). Few discharges appeared in 0 Mg2+/Bac-ACSF that had different 

pattern, spike followed by bursts (spike-burst discharges) (figure 5.8, box b). In six 

slices, the effects of washing out baclofen was examined. Slices showed different 

responses; there was no activity in two slices, spike-burst discharges appeared in two 
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slices (Figure 5.8, box c), and tonic-clonic like discharges developed in another two 

slices (Figure 5.8, box d). 

 

Figure 5.8 Addition of baclofen to 0 Mg2+-ACSF suppressed (yellow bar) 0 Mg2+-ACSF 
induced SWDs (aqua bar, far left), and there were few spike-bursts like discharges 
(yellow box, box b) in 0 Mg2+/Bac-ACSF. Activity reappeared after washing-out 
baclofen with 0 Mg2+-ACSF (aqua bar, far right; box c, d). Note, trace illustrated in box 
d is taken from a different experiment. 
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5.3.5 Baclofen-induced ictal events were insensitive to diazepam   

In earlier sections, I showed that baclofen suppressed 0 Mg2+-ACSF induced 

SWDs in CA3 and transformed LSEs into tonic-clonic like events (Bac-IEs) in the 

neocortex. It is not known whether enhancing the activity of GABAARs at this stage will 

have any effect on Bac-IEs in neocortex. In two slices examined, Bac-IEs were neither 

suppressed nor aggravated by diazepam (Figure 5.9, red, yellow and green bars; 

Figure 5.10 A, B, C), but all the activity was abolished by a NMDA receptor antagonist, 

D-AP5 (Figure 5.9, orange bar; Figure 5.10 D).  

 

 

Figure 5.9 Bac-IEs (red bar) were insensitive to DZP at both 3 µM (yellow bar) 30 µM 
(green bar) concentrations. These events were abolished after blocking NMDARs with 
D-AP5 (orange bar). The boxed areas are shown expanded in Figure 5.10. 
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Figure 5.10 Bac-IEs (A) were insensitive to diazepam (B and C), but are abolished by 
NMDAR antagonist (D). Expanded from Figure 5.10. 
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5.4 Discussion 

These results show the differential epileptic responses in hippocampal and 

neocortical networks to baclofen. Neocortical and hippocampal networks have different 

cellular connectivity patterns although they are both made up of similar inhibitory and 

excitatory components.  

When naïve tissues were acutely challenged with 0 Mg2+/baclofen-ACSF, the 

development of the early tonic-clonic like ictal events (IEs) was delayed in the 

neocortex. Once the IEs were initiated in the neocortex, they continued to appear for 

the duration of the recordings without showing the second transition to late-stage 

events. This pattern of activity was earlier reported to occur in CA3, but not in the 

neocortex (Swartzwelder et al., 1987). In contrast, current results show that the 

presence of baclofen in 0 Mg2+-ACSF from the beginning of the experiments prevented 

the development of any type of epileptiform discharges in the hippocampal CA3 region. 

Furthermore, following the wash-out of baclofen, SWDs of varied patterns and LSEs 

were developed in CA3 and neocortex, respectively. These results suggest the two 

cortical networks examined have different mechanisms for the development of 

epileptiform activity and baclofen interferes these mechanisms preventing and 

delaying their early development in CA3 and neocortex, respectively. It needs to be 

further tested whether baclofen can abolish the on-going 0 Mg2+-ACSF induced tonic-

clonic like events in the neocortex as in the entorhinal cortex (Jones, 1989). It was 

reported that elevating extracellular potassium levels in 0 Mg2+/Bac-ACSF after the 

development of tonic-clonic like ictal events in CA3 reversibly altered the activity 

pattern to recurrent late-stage like events (Swartzwelder et al., 1987). In our 

experiments, as mentioned earlier, 0 Mg2+/Bac-ACSF induced no epileptiform activity 

in CA3 and it was delayed in the neocortex. It needs to be further examined whether 

this resistance to develop epileptiform activity in 0 Mg2+/Bac-ACSF will be altered by 

altering extracellular potassium levels. 

In CA3, 0 Mg2+-ACSF induced SWDs were suppressed by baclofen, and if there 

was any epileptiform activity it was of a different pattern having single large spike 

followed by relatively small amplitude bursts (spike-burst discharges). Furthermore, 

spike-burst discharges started to occur at a progressively faster rate following wash-

out of baclofen and tonic-clonic like ictal events were developed in two of six slices 
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examined. One of the explanations could be that, in CA3, baclofen reduces the 

neurotransmitters release by acting at presynaptic sites of both inhibitory and 

excitatory neurons (Scanziani et al., 1992; Thompson and Gahwiler, 1992). The 

cellular mechanisms might be different at terminals of inhibitory and excitatory neurons 

though. This effect at the presynaptic sites may prepare the network to fire in synchrony 

when the inhibitory effects of baclofen wane off and thus developing polyspike, spike-

burst, and or tonic-clonic like discharges in CA3. 

Application of baclofen for a brief time (~2 mins) only reduced the rate of 

neocortical late-stage events (LSEs), and it neither changed their amplitudes nor the 

waveform of the events (Horne et al., 1986).  I show here that washing-in baclofen for 

longer periods has reversibly replaced LSEs with tonic-clonic like ictal events. These 

events were found to be insensitive to diazepam but were completely abolished by an 

NMDAR antagonist (D-AP5). The maximal amplitude baclofen-induced tonic-clonic like 

events was larger than the amplitude of the late-stage events occurring before the 

addition of baclofen and after its washout. This suggests that, in 0 Mg2+/Bac-ACSF, 

along with the enhancement of ionic currents, there might have also been an additional 

recruitment and synchronisation of neuronal activity. Enhancing the activity at 

GABABRs (a) from the beginning of wash-out of magnesium ions has suppressed the 

development of LSEs, and (b) during LSEs, it has transformed the tonic-clonic like ictal 

events. In all the experiments, LSEs re-appeared after washing-out baclofen. These 

observations present the ideas that GABAB-receptors play a key role in maintaining 

tonic-clonic like activity patterns, and reduced levels of ambient/spill-over GABA and/or 

failure of GABABR activity could be some of many factors involved in the transition of 

early activity to the recurrent late stage in the neocortex. Reasons for the failure of 

GABABR activity are manifold such as reduced availability of GABA, increased activity 

of GABA-transporters, increased GABABR phosphorylation by protein kinase C, 

altered expression levels of functional GABABR subunits, failure of GABABR-potassium 

channel coupling. 

In vivo and in vitro studies have demonstrated that modulating GABABR activity 

can have either epileptogenic or anti-epileptic actions. This depends primarily on the 

brain region where its activity is enhanced or reduced, and on the epileptic model used 

(Horne et al., 1986; Swartzwelder et al., 1987; Jones, 1989; Hosford et al., 1992; Liu 
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et al., 1992; Watts and Jefferys, 1993; Vergnes et al., 1997; Prosser et al., 2001; 

Mares, 2012). These different roles of GABAB-Rs in different regions of the brain and 

in different models of epilepsy stresses their importance and the need to study their 

role in detail in different stages and types of epilepsies.  

In conclusion, the anti-epileptic effect of baclofen appears to be profound in the 

CA3 networks than in neocortex. These results indicate that, in 0 Mg2+-model, the 

mechanisms for the development of SWDs in CA3 and neocortical LSEs are 

dependent on the nature of activity at GABABRs. In the neocortex, baclofen did not 

suppress the development of the early epileptiform activity, but it locked the network to 

a pattern of epileptiform activity. It suppressed the transition of early ictal into late-stage 

activity patterns suggesting a key role of GABAB-receptors in the progression of 

activity. Future studies are needed to examine at the cellular level using whole-cell 

patch-clamp technique and network level using calcium imaging technique to 

understand the role of GABABRs in the development of late-stage activity. It is 

necessary to understand the ionic mechanisms underlying the development of 

baclofen-induced tonic-clonic like ictal events from late-stage events and to assess the 

similarities and dissimilarities between these events and early 0 Mg2+-induced tonic-

clonic like ictal events. These results and above mentioned future studies will help us 

to better understand the mechanisms underlying transition of epileptiform activity 

pattern from early to late-stage, types of epileptiform activity that are sensitive to 

baclofen, and enable us to translate the findings into clinics to aid in developing of new 

combination therapies to treat epilepsy. 
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Chapter 6 The effects of fluorocitrate, a gliotoxin, on evolving 
epileptiform activity in the neocortical networks 

 

6.1 Introduction 

Astrocytes play a key role in maintaining physiological activity of the cellular 

networks in the brain. Extracellular levels of potassium and neurotransmitters are 

rapidly increased following intense neuronal firing activity. Astrocytic uptake of excess 

potassium from the extracellular space and spatial buffering of potassium ions is 

through inwardly rectifying potassium channels and gap junctions, respectively (Kofuji 

and Newman, 2004; Wallraff et al., 2006). Impaired functions of astrocytes increase 

extracellular concentrations of both potassium and glutamate, and make the network 

hyperexcitable eventually leading to the development of seizures. The causative link 

between the reduced ability of astrocytes to clear extracellular potassium and the 

development of seizures was demonstrated in Kir4.1 knockout mouse model (Chever 

et al., 2010; Haj-Yasein et al., 2011). 

Synaptically released glutamate can trigger calcium elevations in astrocytes 

(Dani et al., 1992). Activated astrocytes can cause calcium-dependent release of 

glutamate (gliotransmission) that signals to neighbouring neurons. This signalling 

leads to glutamate-dependent calcium responses in neurons, and facilitates neuronal 

synchronisation (Parpura et al., 1994; Fellin et al., 2004). Furthermore, astrocytes 

regulate the levels of ambient glutamate by their uptake via excitatory amino acid 

transporters expressed on them. The dynamic interactions between neurons and 

astrocytes were suggested to have important physiological functions (Halassa et al., 

2009; Henneberger et al., 2010). If the interactions are perturbed, then excessive 

neuronal activity followed by gliotransmission can cause pathological hypersynchrony 

of neuronal activity (Gomez-Gonzalo et al., 2010).  

Astrocytic glutamate transporters are bidirectional, and the direction is 

dependent on the concentration gradients of ions across the membrane. An increase 

in extracellular levels of potassium ions reverses the direction of glutamate uptake and 

mediates glutamate release (Szatkowski et al., 1990). Excessive glutamate 

accumulation in the synapse leads to deleterious effects on the neuronal network such 

as excitotoxicity, seizures. Inhibiting glutamate transporters leads to an increase in 
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ambient glutamate levels and this was reported to lower the threshold for the 

development of epileptiform activity (Campbell and Hablitz, 2008; Nyitrai et al., 2010).  

Hence, astrocytic uptake of extracellular glutamate and it metabolism in astrocytes is 

essential for the maintenance of ambient glutamate levels, and maintaining 

physiological conditions in the brain.  

Astrocytic glutamate is metabolised to glutamine by the enzyme glutamine 

synthetase, which is localised in astrocytes. Glutamine is then shuttled back to neurons 

for the synthesis of glutamate and GABA in excitatory neurons and inhibitory neurons, 

respectively (Tani et al., 2014). Glutamine synthetase expression and function was 

found to be down regulated in tissue samples resected from patients with temporal 

lobe epilepsy (Eid et al., 2004; van der Hel et al., 2005). The causative role of down 

regulation of glutamine synthetase in the pathogenesis of epilepsy was demonstrated 

by pharmacologically inhibiting glutamine synthetase in vivo in the hippocampus of rats 

(Eid et al., 2008; Wang et al., 2009). Furthermore, inhibiting the activity of glutamine 

transporters and glutamine synthetase rapidly reduced GABA release from synapses 

(Liang et al., 2006; Yang and Cox, 2011). In rats, induced-astrocytic gliosis caused 

down regulation of glutamine synthetase, and a reduction in inhibitory, but not 

excitatory postsynaptic currents. This reduction of inhibitory postsynaptic currents was 

rescued by applying exogenous glutamine (Ortinski et al., 2010). 

A similar effect on postsynaptic inhibitory currents was reported by treating 

slices taken from wildtype mice with a gliotoxin, fluorocitrate (FC) (Christian and 

Huguenard, 2013). Fluorocitrate disrupts astrocytic metabolism by inhibiting aconitase, 

an enzyme that catalyses the conversion of citrate to isocitrate, a crucial step in 

tricarboxylic cycle (TCA) (Hassel et al., 1992). FC poisoning of astrocytes leads to 

build-up of intracellular levels of citrate ions, inhibits mitochondrial citrate carrier, 

depletes cellular ATP (Hassel et al., 1994), and downstream, FC poisoning also inhibits 

the formation of glutamine, a key amino acid required for replenishing GABA and 

glutamate in neurons (Cheng et al., 1972; Kun et al., 1977). Accumulated citrate ions 

are readily exported to the extracellular space, where they may chelate the available 

free calcium ions, thus reducing extracellular calcium ion concentration. Lowering 

extracellular calcium ion concentrations could make the neural network and cause ictal 

discharges (Jefferys and Haas, 1982; Hornfeldt and Larson, 1990).  
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It has been shown that injecting FC into cortical regions leads to the 

development of epileptiform activity (Willoughby et al., 2003; Mirsattari et al., 2008). 

But various features of the evolution of astrocyte-poisoning induced epileptiform 

activity has not been investigated. I now show here that poisoning astrocytes in naïve 

neocortical brain slices with fluorocitrate induces recurrent short-duration discharges 

that are sensitive to glutamatergic channel blockers. In 4-aminopyridine model, 

fluorocitrate blocks the development of tonic-clonic like ictal events and instead 

induces glutamatergic channel blockers-sensitive recurrent short-duration discharges. 

Furthermore, fluorocitrate also transformed 4-aminopyridine-induced tonic-clonic like 

activity into recurrent short-duration discharges. These results show that fluorocitrate 

has a strong effect on slices that overrides 4-aminopyridine effect. Characterisation of 

various features of this paradigm can provide important insights into the role of 

astrocytes in epilepsy, and can also produce new targets for drug development to treat 

epilepsy in clinics.  
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6.2 Materials and methods 

6.2.1 Slice preparation and electrophysiology 

For all the experiments described below, coronal slices of visual cortex 

(neocortex, NCtx) were used, that were prepared and stored as described in slice 

preparation method 2 (see chapter 2, sub-heading 2.4.2). Slices were then incubated 

in ACSF containing fluorocitrate (100µM; FC-ACSF) for 2-4 hours before starting the 

experiments. In all experiments, LFPs were recorded from infragranular layers of 

neocortex in slices (Figure 6.1). The recording setup and the equipment used were as 

described in chapter 2 (sub-heading 2.5.1).  

    

Figure 6.1 Recording setup showing a slice in the interface recording chamber with 
electrode placed infragranular layers of neocortex (NCtx, bottom-right).  

 

6.2.2 Protocols and drugs 

In all experiments, LFPs were recorded from infragranular layers of neocortex 

in slices that were pre-incubated in FC-ACSF. Three sets of experiments were 

performed to characterise the effects of fluorocitrate in vitro on naïve neocortical 

networks and on the evolution of epileptiform activity in 4AP model. First, recordings 

were performed in pre-incubated slices bathed in FC-ACSF to investigate the effects 

of fluorocitrate on the neocortical networks.  Second, recordings were performed in 

pre-incubated slices bathed in FC-ACSF supplemented with 4AP (FC/4AP-ACSF) to 

investigate the effects of FC on the evolution of epileptiform activity. Third, recordings 

were performed in neocortical slices incubated in ACSF to investigate the ability of FC 

to alter the on-going 4AP induced epileptiform activity. These slices were perfused 

initially with ACSF and the baseline activity was recorded in ACSF. After 10-15 
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minutes, the perfusate was switched from ACSF to epileptogenic medium (4AP-

ACSF). After the development of tonic-clonic like ictal discharges, fluorocitrate was 

added to 4AP-ACSF.  

DL-Fluorocitric acid barium salt (FC, fluorocitrate) was purchased from Sigma-

Aldrich (USA). FC stock solution (50 mM) was prepared and stored in -20 ◦C. FC was 

used at 100 µM concentration for incubations and in all the experiments described 

below (Hassel et al., 1995). 4AP (100 µM; Sigma-Aldich, USA) was added to ACSF for 

experiments in 4AP model. NMDA-receptors blocker (D-AP5; 50 µM), and AMPA-

receptors blocker (NBQX; 20 µM) were purchased from Tocris (U.K). 
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6.3 Results 

6.3.1 Fluorocitrate induced recurrent short-duration discharges in neocortical 

networks 

Fluorocitrate in ACSF induced the development of recurrent population 

discharges that largely had a waveform of a spike followed by buzz like activity (Figure 

6.2 A, Bi). These events were associated with multiunit activity (MUA) suggestive of 

neuronal participation in these events (Figure 6.2 Bii).  FC-induced events were short-

duration discharges lasting for a few hundreds of milliseconds (0.83 ± 0.02 s; n = 4) 

with maximal amplitude of 2.46 ± 0.60 mV (n = 4). They occurred at a rate of 0.05 ± 

0.01 Hz (n = 4). This was the only pattern of activity that developed and continued to 

occur for the duration of the recordings. 

     

Figure 6.2 Fluorocitrate (FC) induced recurrent population discharges in slices pre-
incubated in fluorocitrate-ACSF (A). These events had a spike-and-wave like 
waveform (Bi) that were associated with neuronal firing activity (Bii, band-pass filtered 
trace; MUA associated with the event in Bi)  
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6.3.2 Recurrent short-duration discharges, but not tonic-clonic like ictal events 

were developed in fluorocitrate/4AP-ACSF 

In slices incubated in ACSF, 4AP induced the development of epileptiform 

activity with a characteristic pattern of early tonic-clonic like ictal events that lasted for 

tens of seconds (Figure 6.3 A). In contrast, in neocortical slices incubated in FC-ACSF, 

tonic-clonic like ictal events did not develop in response to 4AP in FC-ACSF (FC/4AP-

ACSF), but developed population discharges that were similar to the events that 

developed in FC-ACSF (Figure 6.3 B). FC- and FC/4AP-induced discharges were 

similar in that they had similar waveforms (Figure 6.2 Bi, 6.3 Di), and were associated 

with multiunit activity (Figure 6.2 Bii, 6.3 Dii). Both, FC- and FC/4AP-induced events 

lasted only for a few hundreds of milliseconds (Figure 6.4 A; Table 6.1). However, 

FC/4AP-induced events occurred at a higher rate and had smaller peak amplitudes 

(Figure 6.4 B, C; Table 6.1) 
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Figure 6.3 Representative traces displaying (A) 4AP-ACSF induced tonic-clonic like 
IE, and (B) FC/4AP-induced recurrent short-duration events. Traces in panel A, and B 
are both 1800 s long, displaying activity from 200s after switching solutions to 4AP-
ACSF and FC/4AP-ACSF, respectively. C. 4AP-induced tonic-clonic like ictal event 
(boxed area in panel A), wide-band (Ci) and multiunit activity (300 - 3000 Hz, Cii). D. 
FC/4AP–induced recurrent discharges (boxed area in panel B), wide-band (Di) and 
multiunit activity (300 – 3000 Hz, Dii).   



 

126 

 

 

Figure 6.4 FC- and FC/4AP-induced events both lasted for a few hundreds of 
milliseconds (A), but differed in event amplitudes (B), and rates (C). Unpaired Student’s 
t-test, *p = 0.04, **p = 0.002. For mean ± s.e.m, see Table 6.1. 

 

Neocortex FC (n) FC/4AP (n) p = 

Duration (s) 0.83 ± 0.02 (4) 0.81 ± 0.01 (4) 0.51 

Max. Amp (mV) 2.46 ± 0.60 (4) 0.88 ± 0.09 (4) 0.04 

Rate (Hz) 0.05 ± 0.01 (4) 0.15 ± 0.02 (4) 0.002 

Table 6.1 Rate, duration, and maximal amplitude (Max. Amp.) measures of FC- and 
FC/4AP-induced events. p-values were calculated using unpaired Student’s t-test.  
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6.3.3 Fluorocitrate-mediated events in ACSF, and 4AP were sensitive to 

ionotropic glutamate receptors antagonists 

The sensitivity of FC-induced and FC/4AP-induced events to ionotropic 

glutamate receptors antagonists was examined in preliminary experiments described 

here. Both, FC- and FC/4AP-induced events were sensitive to D-AP5, a NMDA-

receptor antagonist. Blocking NMDA-receptors increased the amplitude of the events 

in both FC-ACSF and FC/4AP-ACSF groups (Figure 6.5 A, red bar; Figure 6.6 A, red 

bar). However, it had different effects on the rate of events in both groups. In FC-ACSF, 

blocking NMDA receptors lowered the rate of events (Figure 6.5 A, red bar), whereas, 

FC/4AP-induced events occurred at a higher rate (Figure 6.6 A, red bar). Additional 

blocking of AMPA and kainate receptors by NBQX abolished all the population 

discharges in both FC-ACSF and FC/4AP-ACSF groups (Figure 6.5 B, blue bar; Figure 

6.6 B, blue bar).  
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Figure 6.5 Fluorocitrate (FC)-induced events were sensitive to ionotropic glutamate 
receptor antagonists. Traces in A and B were taken from the same experiment.        A. 
Blocking NMDA receptors (D-AP5, red bar) had a suppressive effect on FC-induced 
events (green bar). It reduced the rate of events, but increased the amplitude of the 
events. B. Additional blockade of AMPA- and kainate-receptors (NBQX, blue bar) 
abolished all population discharges. 
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Figure 6.6 Fluorocitrate (FC)/4AP-induced events were sensitive to ionotropic 
glutamate receptor antagonists. Traces in A and B were taken from the same 
experiment. A. Blocking NMDA receptors (D-AP5, red bar) enhanced the activity of 
FC-induced events (green bar). It increased both the rate and amplitudes of FC-
induced events. B. Additional blockade of AMPA- and kainate-receptors (NBQX, blue 
bar) abolished all population discharges. 
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6.3.4 Fluorocitrate transformed 4AP-induced tonic-clonic like ictal events to 

recurrent short-duration events 

In section 6.3.2, I showed that tonic-clonic like activity failed to appear at all if 

the slices were bathed in FC from the start of the perfusion with 4AP-ACSF. This raised 

the question whether FC could suppress the 4AP-induced tonic-clonic like ictal events, 

after they have already developed (Figure 6.7 A, orange bar). Addition of FC 

transformed the activity pattern of 4AP-induced tonic-clonic like ictal events (Figure 6.7 

A, green bar). FC replaced 4AP-induced tonic-clonic like ictal events (Figure 6.7 Bi, 

Bii) with short-duration recurrent discharges that are associated with multiunit activity 

(Figure 6.7 Ci, Cii). 
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Figure 6.7 Addition of FC to 4AP-ACSF during early tonic-clonic like ictal events 
transformed the activity pattern in the neocortex. Tonic-clonic like ictal events (A, 
orange bar, B) were replaced with FC/4AP-induced recurrent short-duration events (A, 
green bar, C). FC/4AP-induced events (Ci) were associated with multiunit activity (Cii). 
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6.4 Discussion 

These results demonstrate that having dysfunctional astrocytes in neocortical 

circuits alter the pattern of evolution of epileptiform activity. Inhibiting the functions of 

astrocytes led to the development of spontaneous recurrent discharges, each lasting 

for a few hundreds of milliseconds. These events had a spike-and-wave like 

waveforms, with an intense high-frequency component suggestive of neuronal firing 

activity, and were sensitive to ionotropic glutamate receptors antagonists. However, it 

was not clear whether these events were induced due to increased extracellular 

glutamate resulting from synchronised neuronal activity (Dani et al., 1992; Gomez-

Gonzalo et al., 2010)  and impaired clearance of glutamate from the synaptic region 

(Campbell and Hablitz, 2008; Nyitrai et al., 2010), astrocyte-mediated glutamate 

release (Parpura et al., 1994; Fellin et al., 2004), reduced GABA transmission 

(disinhibition) due to astrocyte poisoning (Liang et al., 2006; Yang and Cox, 2011), 

increased extracellular potassium ion concentrations (Largo et al., 1996) or in 

combination of any of these. 

When ACSF was supplemented with both 4AP and FC, neocortical networks 

developed spike-and-wave like recurrent discharges lasting for a few hundreds of 

milliseconds that were similar to FC-induced events but failed to develop tonic-clonic 

like ictal events. Furthermore, the on-going 4AP-induced tonic-clonic like discharges 

were also transformed by FC, to this same pattern. Gomez-Gonzalo et al. (2010) 

proposed a neuron-astrocyte excitatory loop in an in vitro model of focal seizures. 

In their model, prior to an ictal discharge, neuronal hyperactivity activity initially triggers 

calcium elevations in astrocytes. These activated astrocytes in turn recruit, via 

gliotransmission, more neurons and precipitate an ictal discharge. FC treatment 

reduced the intracellular calcium elevations and calcium-dependent glutamate release 

from astrocytes (Bonansco et al., 2011), and hence, prevented astrocyte-mediated 

neuronal recruitment and pathological hypersynchronisation. These may be plausible 

explanations for the aforementioned results, that is, the inability of the FC/4AP treated 

network to develop tonic-clonic like discharges. However, previous studies show that 

FC injected into cortical areas in vivo induced convulsions (Willoughby et al., 2003; 

Mirsattari et al., 2008). It is not clear what mechanisms underlie FC-induced convulsive 

seizures in vivo. Does the same cortical network show different responses to FC in 

different models/preparations? It will be necessary to further characterise effects of FC 
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in different models of epilepsy to better understand the role of astrocytes in 

epileptogenesis. 

Blocking GABAARs during 4AP-induced tonic-clonic like IEs transformed the 

activity pattern into recurrent short-discharges that were blocked by NBQX, but 

enhanced by NMDA receptor antagonist (Bruckner et al., 1999). FC/4AP-induced 

events also showed similar responses to glutamate receptors antagonists. Blockade 

of all the activity in FC and FC/4AP-treated slices by NBQX suggests that they depend 

on glutamatergic transmission. However, it remains unclear whether the FC mediated 

events were due to neurotransmission or gliotransmission, and if there were any 

inhibitory currents associated with these events. 

Based on the results mentioned in this chapter and literature, I hypothesise that 

fluorocitrate overrides the effect of 4AP by disinhibiting the network. In future studies, 

this can be examined by measuring the excitatory and inhibitory currents from a 

pyramidal neuron while bathing the slice in FC/4AP-ACSF, and assessing the effects 

of the GABAA-receptors antagonist on this activity. It will also be necessary to examine 

the effect of fluorocitrate on the concentration of extracellular potassium ions and how 

it influences the epileptiform activity. This can be examined in a brain slice by using a 

combination of extracellular field potential recordings and ion-sensitive microelectrode 

technique. Fluorocitrate can be used as a pharmacological tool to suppress the 

physiological activity of astrocytes in the network and tease apart various roles played 

by astrocytes in the evolution of epileptiform activity, and enable us to identify novel 

drug targets for treating epilepsy. 
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Chapter 7 In vitro investigation of seizure susceptibility in transgenic 
mice 

 

7.1   Introduction 

Epilepsy could be the primary syndrome of a gene mutation or secondary 

presenting feature of gene-related developmental disorders of brain. In the past, 

epilepsy genetics was more focussed on channelopathies – identifying genes encoding 

neurotransmitter receptors, and ion channel subunits (Ludwig et al., 2003; Yu et al., 

2006). Recent studies are moving epilepsy genetics beyond channelopathies, 

identifying mutation in new categories of genes. Functional studies in transgenic 

animals and in vitro characterisation of activity patterns in brain tissue from transgenic 

animals provide insights regarding new mechanisms of ictogenesis and 

epileptogenesis, compensatory mechanisms for gene mutation-mediated deficits, if 

any, and even anti-epileptic adaptations in the brain (Poduri and Lowenstein, 2011; 

Lerche et al., 2013).  

To identify novel epileptogenic gene mutations, Neuromouse consortium, a 

breeding program at MRC (Harwell, U.K), created various genetic strains of mice, and 

allocated us two of these strains, calsyntenin-3 and neuroplastin-65, to assess the 

proneness of their neuronal networks to develop epileptiform activity. This chapter is a 

report on experiments carried out on tissue taken from aforementioned two transgenic 

mouse lines. 

7.1.1 Calsyntenin-3 (Cst-3) 

Calsyntenins are synapse-organising proteins present primarily in the 

postsynaptic membrane of both pyramidal cells and interneurons (Hintsch et al., 2002; 

Pettem et al., 2013; Um et al., 2014). This family of proteins comprise three structurally 

similar proteins: calsyntenin-1, calsyntenin-2, and calsyntenin-3, encoded by clstn-1, 

clstn-2 and clstn-3 genes, respectively (Hintsch et al., 2002). Calsyntenin-3 is also 

known as alcadein-β (Alzheimer-related cadherin-like protein β). It is implicated in the 

pathophysiology of Alzheimer’s disease (Uchida et al., 2011; Uchida et al., 2013).  

In mice, calsyntenin-3 is expressed exclusively in the brain, whereas in humans 

it is expressed in kidneys as well as, at lower levels, in heart, skeletal muscles, liver, 
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placenta, pancreas, and lungs (Hintsch et al., 2002). It shows a differential expression 

pattern between distinct neuronal cell types. In neocortex, it is found in cells of all 

layers, with high immunoreactivity in layer 5 cells. In cerebellum, it is found in few 

interneurons present in the granule cell layer and in purkinje cells. Pyramidal neurons 

and interneurons express calsyntenin-3 at lower and higher levels, respectively, 

throughout the cortex (Hintsch et al., 2002; Pettem et al., 2013; Um et al., 2014) 

Calsyntenin-3, but not calsyntenin-2 and calsyntenin -1, has synaptogenic 

function. It promotes adhesion of postsynaptic cell membrane to axons, and induces 

differentiation of GABAergic and glutamatergic presynaptic terminals. Calsyntenin-3 

interacts with its presynaptic partner – α-neurexin and it is calcium dependent (Pettem 

et al., 2013; Um et al., 2014). In calsyntenin-3 gene knockout animals (clstn3-/-), the 

density of both asymmetric and symmetric synapses was significantly reduced in 

stratum radiatum and stratum pyramidale of CA1 region in hippocampus (Pettem et 

al., 2013). It was reported that miniature currents recorded from CA1 pyramidal 

neurons in clstn3-/- mice show no change in the amplitude, but a decrease in frequency 

of the mIPSCs and mEPSCs, compared to wild type (WT) mice. Using paired-pulse 

field EPSP (fEPSP) recordings, Pettem et al. (2013) reported that excitatory 

neurotransmitter release probabilities were unaltered in clstn3-/- mice.  

7.1.2 Neuroplastin-65 (NP-65) 

Neuroplastins are one of the major cell adhesion molecules (CAM) found in the 

synaptic membrane encoded by the gene NPTN. They are glycoproteins that belong 

to Ig-superfamily of CAMs. Neuroplastin-55 (NP-55) and -65 (NP-65) are the two 

isoforms of neuroplastin. They are expressed widely in the brain tissue and were found 

in the neuropil of all layers of neocortex (Bernstein et al., 2007). NP-65 is specific to 

brain tissue whereas NP-55 is present in other tissues of the body as well. In the 

hippocampus of rat brain, region-specific staining of NP-65 was observed; it is 

prominently stained in the neuropil of dentate gyrus and CA1 region of hippocampus, 

and moderately in CA3 region (Bernstein et al., 2007).  

NP-65 was shown to have a strong association with the postsynaptic density 

(PSD) domain of neuron. This association is regulated by the activity of the synapse 

and is involved in plasticity-dependent restructuring of synapses (Smalla et al., 2000). 

NP-65 levels were found to be increased in tissue taken from rats with Kainate-induced 
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generalised tonic-clonic seizures. NP-65 levels in PSD were also found to be higher 

after tetanisation (Smalla et al., 2000). LTP can be induced, but its maintenance in 

CA1 is prevented by antibodies against NP-65, demonstrating the role of NP-65 in 

synaptic plasticity (Smalla et al., 2000). On the other hand, in CA3, Empson et al. 

(2006) showed that both induction and maintenance of LTP are inhibited by homophilic 

binding of NP-65 protein (Empson et al., 2006). 

The neuritogenic effect of NP-65 is mediated through activation of fibroblast 

growth factor receptor-1 (FGFR1), MAP kinases, and CaMKII. However, this effect of 

NP-65 is reduced by interfering with established neuroplastin65 homophilic interaction 

(Owczarek et al., 2011; Owczarek and Berezin, 2012). Another study showed the 

putative gephyrin-independent GABAA receptor-anchoring functions of NP-65, at both 

synaptic and extrasynaptic sites in a receptor subunit-selective fashion. NP-65 was 

found to co-localise with α1- and α2-subunits, and α5-subunits of GABAA receptors at 

postsynaptic and extrasynaptic membrane regions of neurons, respectively. Such an 

association of NP-65 with GABAA receptors, intracellular messengers and many other 

synaptic proteins suggest that perturbation of NP-65 expression may be involved in 

learning and memory deficits, and pathological conditions such as epilepsy, anxiety, 

schizophrenia (Sarto-Jackson et al., 2012). 
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7.2   Materials and methods 

7.2.1 Transgenic mice 

Two strains of transgenic mice, calsyntenin-3 gene knockouts and neuroplastin-

65 gene knockouts, were supplied by the Neuromouse Consortium, a breeding 

program at the MRC at Harwell. From here on, they will be referred to as calsyntenin-

3 (Cst-3) and neuroplastin-65 (NP-65). 

 

7.2.1 Slice preparation and electrophysiology 

Combined neocortical-hippocampal horizontal slices were used in all the 

experiments described below. Slice preparation method 1 (chapter 2, sub-heading 

2.4.1) was used for preparing brain slices from the tissue taken from calsyntenin-3 and 

neuroplastin-65. For experiments in brain slices taken from calsyntenin-3 and 

neuroplastin-65, local field potentials (LFPs) were recorded from infragranular layers 

of neocortex (Figure 7.1). The recording setup and the equipment used were as 

described in chapter 2 (sub-heading 2.5.1). 

 

Figure 7.1 Recording setup showing a horizontal slice in the interface recording 
chamber with an electrode placed in the infragranular layers of neocortex.  

 

7.2.2 Protocols  

For experiments in brain slices taken from both calsyntenin-3 and neuroplastin-

65, slices were placed in the interface recording chamber, which were perfused initially 

with normal-ACSF. Electrodes were placed in the regions of interest and the baseline 

activity was recorded in normal-ACSF. After 10-15 minutes, the perfusate was 
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switched from normal-ACSF to epileptogenic media (0 Mg2+-ACSF or 4AP-ACSF). 

Experiments in the brain slices taken from wild-type mice were used as controls.  
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7.3   Results 

7.3.1 Calsyntenin-3: 0 Mg2+ model 

Following wash out of magnesium ions from ACSF, early tonic-clonic like ictal 

events (IE) were developed and later this activity pattern was transformed into late-

stage activity. The latency for the development of the first IE was higher in Cst-3 than 

in the controls (Figure 7.2, Table 7.1). Similar to the controls, there was a steep decline 

in the time taken for the development of the second IE. However, the inter-ictal events 

after the second IE were relatively stable and longer than in the controls (Figure 7.3A, 

Table 7.1). IEs in Cst-3 continued to appear for a long period and eventually 

transitioned to late-stage events. The latency for this transition was significantly higher 

in Cst-3 (Figure 7.3B, Table 7.1). These results show that calsyntenin-3 gene knockout 

delayed the development of tonic-clonic like ictal events, but did not prevent their 

development. 

 

 

Figure 7.2 Evolution of epileptiform activity following wash out of magnesium ions from 
ACSF at the start of the recording. These are the raw traces of recordings from Cst-3 
(A) and controls (B).  Note, the time scale at the bottom of the figure applies to all the 
traces. 
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Figure 7.3 A. In Cst-3 slices,  latency for the development of the first IE was longer 
and after the second IE, the inter-event intervals were relatively stable compared to 
the controls. B. Latency for the second transition to late-stage events (LSEs) was 
higher in Cst-3 slices.  *,**,***p-values less than or equal to Bonferroni corrected critical 
value (α = 0.01). 

 

 

0 Mg2+ model 

Inter-event 

intervals (s) 

Control (n) Cst-3 (n) p-values 

^(α = 0.01) 

0-IE1 670.1 ± 71.1 (6) 1045.4 ± 75.2 (4) 0.008 * 

IE1-IE2 206.0 ± 15.2 (6) 244.2 ± 38.9 (4) 0.324 

IE2-IE3 132.7 ± 29.9 (6) 188.4 ± 17.9 (4) 0.202 

IE3-IE4 94.2 ± 7.2 (6) 208.6 ± 35.1 (4) 0.004 ** 

Latency to LSE 1689.7 ± 140.7 (6) 4750 ± 918.2 (3) 0.002 *** 

Table 7.1 Times taken for the development of first tonic-clonic like ictal event (IE) and 
the subsequent inter-event intervals, and the latency to LSEs in Cst-3 and controls in 
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0 Mg2+-ACSF. *, **, ***p-values less than or equal to ^Bonferroni corrected critical 
value (α). See Figure 7.3. 

 

7.3.2 Calsyntenin-3: 4AP model 

Activity patterns in 4AP model were different to those observed in 0 Mg2+ model 

(Figure 7.4). However, the activity patterns were not consistent between different slices 

(Figure 7.4Ai, Aii). Nevertheless, the general trend of activity i.e. longer latency for the 

first ictal-event and shorter IEIs for successive ictal events was observed in a few slices 

(figure 7.5A).  

In 4AP model, the latency to the first IE in Cst-3 was similar to that measured in 

controls (Figure 7.5A, Table 7.2). Subsequent IEs were occurring at relatively similar 

intervals in both the groups (Figure 7.5A). The early activity transitioned to late-stage 

at similar latencies. 

   

Figure 7.4 Evolution of epileptiform activity in 4AP model. Activity patterns in Cst-3 
slices showed some variability. There were IE followed by brief quiescent period, after 
which activity began to reappear (Ai). In another slice (Aii), the evolution of activity 
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showed characteristic patterns as in the controls (B). The time scale at the bottom of 
the figure applies to all the traces. 

 

 

Figure 7.5 In 4AP model, evolution of epileptiform activity pattern in Cst-3 slices was 
not different from controls. B. Latency for the second transition of activity to late-stage 
events (LSEs) was similar in both the groups. 

 

 

4AP model 

Inter-event 

intervals (s) 

Control (n) Cst-3 (n) p-values 

^(α = 0.01) 

0-IE1 851.2 ± 51.0 (4) 1155.9± 173.5 (6) 0.20 

IE1-IE2 203.5 ± 17.7 (4) 162.9 ± 23.8 (6) 0.25 

IE2-IE3 221.6 ± 36.9 (4) 279.5 ± 131.4 (6) 0.74 

IE3-IE4 172.3 ± 38.4 (4) 233.18 ± 78.4 (6) 0.57 

Latency to LSE 2747.4 ± 387.9 (3) 3163.8 ± 386.5 (4) 0.49 

Table 7.2 Times taken for the development of first tonic-clonic like ictal event (IE) and 
the subsequent inter-event intervals, and the latency to LSEs in Cst-3 and controls in 
4AP-ACSF. ^Bonferroni corrected critical value (α = 0.01).  
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7.3.3 Neuroplastin-65: Inconsistent activity patterns in both 0 Mg2+ and 4AP 

models 

Neuroplastin-65 (NP-65) has shown activity in varying degrees – from no ictal-

events being developed to one to two ictal events or development of characteristic 

ictal-events in both 0 Mg2+ and 4AP models (Figure 7.6, 7.7). Slices that did not develop 

tonic-clonic like ictal events (IE) were not considered for analysis of latencies to first 

IEs. Latencies to the first IE NP-65 were similar to controls in both the models tested 

(Figure 7.8; 0 Mg2+ model: NP-65, 1394.08 ± 857.1 s, n = 3; control, 985.3 ± 148.6 s, 

n = 4; unpaired Student’s t-test, p = 0.6; 4AP model: NP-65, 1360.7 ± 241.8 s, n = 5; 

control, 1414.1 ± 158.31 s, n = 4; unpaired Student’s t-test, p = 0.86). The high 

variability in the recorded activity patterns limited our ability to make any conclusions 

on the seizure susceptibility of the cortical networks tested from tissues taken from NP-

65 mice. 
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Figure 7.6 NP-65 slices have shown varying degrees of responses to 0 Mg2+-ACSF. 
Traces displayed in this figure were recorded from slices prepared from three different 
NP-65 mice. Ai. Slice was resistant to developing ictal events. B. slice developed only 
two ictal events, and then progressed to late stage-like events. C. Slice developed full 
ictal events in a short time. Note, the time scale at the bottom of the figure applies to 
all the traces. 



 

149 

 

 

Figure 7.7 NP-65 slices have shown varying degrees of responses to 4AP-ACSF. 
Traces displayed in this figure were recorded from slices prepared from three different 
NP-65 mice. Note, the time scale at the bottom of the figure applies to all the traces. 

 

 

Figure 7.8 Latency to the first tonic-clonic like ictal events in NP-65 slices were not 
different from controls both in 0 Mg2+-model (A), or 4AP-model (B)  
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7.4   Discussion 

I performed a simple set of in vitro experiments and analyses to assess the 

susceptibility of cortical networks prepared from transgenic mouse lines, calsyntenin-

3 and neuroplastin-65, to develop ictal events, and the responses to acute 

pharmacological manipulations to increase excitability in the network. The results show 

subtle differences in the responses, but most comparisons with wild-type animals did 

not reach significance. Based on a limited number of experimental data points, neither 

calsyntenin-3, nor neuroplastin-65 knockouts, showed marked difference from the wild-

type animals.  

Post hoc analysis of different measures during the evolution of epileptic activity 

has been performed on the data sets obtained from these animals. I first looked at the 

times for the development of ictal events, inter ictal-event intervals, and to late stage 

events. The results from this analysis would provide with the information of how 

susceptible the transgenic animals are to develop epilepsy. These results show that in 

calsyntenin-3 brain slices, different kinds of responses are recorded in 0 Mg2+ model 

and 4AP model. In 0 Mg2+ model, Cst-3 take a longer time to develop the first ictal 

event, and the subsequent IEs occur at relatively constant intervals. This was the only 

difference that was significant. However, there was great variability in the 4AP model 

and it was not clear what the relevance of this finding is.   

In neuroplastin-65 brain slices, varying responses were seen in both 0 Mg2+ and 

4AP models. Previous studies have shown neuroplastin-65 to play a role in GluR1 

receptor trafficking (Empson et al., 2006), and anchoring protein for GABAA receptors 

in a subunit specific manner (Sarto-Jackson et al., 2012). Thus, the anticipation was 

for NP-65 to develop ictal-events sooner than in wild type. But the results obtained 

were not in line with predicted activity patterns. Again, the small sample size and high 

variance in recordings from these animals could be influencing the confidence in the 

results. 

Our ability to find significant differences between experimental groups was 

limited by the high variance and the small sample size. If we consider these data as 

preliminary investigations, we can perform power analyses to estimate the appropriate 

sample size for a proper test of whether these mutations affect network excitability. 
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Table 7.3 shows examples of the calculated power, and an estimate of required total 

sample size to achieve p≤0.05. 

 

Animals and 

model 

Total sample 

size (expt.) 

Calculated 

power 

Required total 

sample size to 

achieve p < 0.05 

Stipulated 

power  

Cst-3 vs 

control; 0 Mg2+ 

model 

 

10 

 

0.87 

 

10 

 

0.8 

Cst-3 vs 

control; 4AP 

model 

 

10 

 

0.27 

 

36  

 

0.8 

NP-65 vs 

control; 0 Mg2+ 

model 

 

7 

 

0.07 

 

222 

 

0.8 

NP-65 vs 

control; 4AP 

model 

 

9 

 

0.05 

 

2184 

 

0.8 

Table 7.3 Achieved power and required total sample size calculated for times to first 
IE in different experiments. Here, ‘expt.’ is an abbreviation of ‘experimented’. 

 

These Calsyntenin-3 and neuroplastin-65 were amongst the first to be 

generated by the Neuromouse Consortium, and available information indicates that 

they are not thought to have an epilepsy phenotype. Reports from Neuromouse 

Consortium at Harwell say the animals display some “twitching”; our results suggest 

that these two mouse strains are, most likely, not epileptic, but may have some cortical 

pathology. 
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Chapter 8 Effects of 4-aminopyridine on intrinsic properties of 
neocortical parvalbumin-positive interneurons 

 

8.1 Introduction 

Parvalbumin-positive (PV+) fast-spiking interneurons target the somatic, initial 

axonic, and proximal dendritic domain of pyramidal neurons and regulate the output of 

postsynaptic neurons (Cobb et al., 1995; Freund and Buzsaki, 1996; Atallah et al., 

2012; Hu et al., 2014). Population of PV+ interneurons are mutually interconnected via 

chemical synapses and gap-junctions forming a syncytium of PV+ interneurons 

(Galarreta and Hestrin, 1999; Galarreta and Hestrin, 2002; Hormuzdi et al., 2004). The 

fast spiking phenotype of PV+ interneurons is attributed to the presence of Kv3.1 and 

Kv3.2 subtypes of voltage-gated potassium channels (Erisir et al., 1999). During an 

action potential, Kv3.1-3.2 channels facilitate de-inactivation of voltage-gated sodium 

channels, and reduce the duration of after-hyperpolarisation (Erisir et al., 1999). This 

enables PV+ interneurons to fire action potentials at a higher frequency. Another 

feature of PV+ interneurons is the presence of membrane potential oscillations at 

depolarised membrane potentials. Injecting steady depolarising current into striatal fast 

spiking interneurons was reported to evoke bursts of action potentials interspersed with 

subthreshold membrane potential oscillations (MPO) (Bracci et al., 2003). MPOs were 

voltage-dependent and were absent at relatively hyperpolarised membrane potentials.  

At depolarised levels, MPOs triggered and maintained rhythmic bursts of action 

potentials (Bracci et al., 2003). 

In cortical epilepsy, the onset of ictal events was also shown to be associated 

with synchronised activity of GABAergic networks (Lopantsev and Avoli, 1998; Yekhlef 

et al., 2015; de Curtis and Avoli, 2016). Synchronised GABAergic activity leads to 

increased extracellular potassium levels that in turn, cause hyperexcitability of the 

network and leads to initiation of ictal events (Barolet and Morris, 1991; Yekhlef et al., 

2015). Synchronised GABAergic activity mediated increases in extracellular potassium 

levels could be because of increased firing of GABAergic interneurons, and increased 

activity of potassium-chloride cotransporters in the postsynaptic neurons (Viitanen et 

al., 2010; Hamidi and Avoli, 2015; de Curtis and Avoli, 2016). However, PV+ 

interneurons were also shown to provide a powerful feedforward inhibition ahead of 
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the ictal wavefront to check or slowdown the spread of ictal activity and recruitment of 

surrounding territories (Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et 

al., 2013). When this inhibitory restraint fails, the ictal wavefront recruit neurons in the 

surrounding territories and the activity begins to spread across the tissue. One of the 

reasons for the collapse of the inhibitory restraint is the failure of the interneurons to 

fire action potentials after receiving sustained high-frequency depolarising inputs 

(Cammarota et al., 2013; Losi et al., 2016). To further understand the behaviour of PV+ 

interneurons in epileptic networks, it is necessary to study how the intrinsic properties 

of PV+ interneurons are altered in proepileptic media. 

In the present study, I show that PV+ interneurons show increased followed by 

decreased firing activity in response to increasing levels of depolarising current 

injections in 4-aminopyridine. At higher depolarising current injections, PV+ 

interneurons in 4-aminopyridine fired lower number of action potentials compared to 

controls, suggesting the firing potential of PV+ interneurons is reduced in epileptic 

conditions. I then showed the development and the nature of membrane potential 

oscillation in PV+ interneurons in presence of 4-aminopyridine that may play a role in 

synchronisation in epileptic networks. Studying these aspects of PV+ interneurons in 

different conditions will advance our knowledge of the intrinsic properties of PV+ 

interneurons, how they are modified and their role in epileptic conditions. 
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8.2 Materials and methods 

8.2.1 Slice preparation  

Patch-clamp experiments described below were performed in coronal slices 

containing visual cortex that were prepared and stored as described in slice 

preparation method 3 (chapter 2, sub-heading 2.4.3). 

 

8.2.2 Electrophysiology, protocols, and drugs 

Selective fluorescent labelling of PV+ interneurons was achieved by doing intra-

cortical injections of AAV9.hEF1a.lox.mCherry.lox.mTFP1 virus (UPENN Vector Core, 

USA) in PV-Cre mice (Stock # 008069, The Jackson Laboratory, USA). Details of this 

procedure was mentioned in Chapter 2, section 2.3. Fluorescently labelled PV+ 

interneurons in visual cortex (layers 4-6) were targeted for whole-cell recordings. PV+ 

interneurons were patched in voltage-clamp mode (Vhold at -70 mV) and later switched 

to current clamp (without injecting current) for the rest of the experiments. Patched 

neurons were confirmed as PV+ interneurons based on the fluorescent tag and on the 

fast-spiking properties of the neurons. Input resistance was calculated by injecting 

hyperpolarising current (-100 pA, 100 ms) in current-clamp or by giving a depolarising 

step (10 mV, 500 ms) in voltage-clamp mode.  

All experiments were performed in the presence of ionotropic glutamate 

receptors antagonists, 50 µM D-AP5 (NMDAR antagonist), 20 µM NBQX 

(AMPA/kainate receptor antagonist), and GABA receptors antagonists, 10 µM 

gabazine (GABAAR antagonist) and 5 µM CGP-55845 (GABABR antagonist). From 

here on, ACSF with glutamatergic and GABAergic antagonists will be referred to as 

‘synaptic blockers’. 

The firing properties of PV+ interneurons were assessed in 4AP with synaptic 

blockers (4AP+synaptic blockers) model. Experiments in ACSF+synaptic blockers 

were considered as controls. The protocol to assess the firing properties was as 

follows: 10 s sweeps each with 3 seconds hyperpolarisation/depolarisation step (first 

level: -100 pA, with increments of 100 pA, 8-10 steps) at the beginning of the sweep, 

and a hyperpolarisation step (-100 pA, 100 ms) towards the end of the sweep. In each 
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patched neuron, this protocol was first executed in ACSF+synaptic blockers followed 

by 4AP+synaptic blockers.  

To examine the membrane potential oscillations (MPO), PV+ interneurons were 

patched followed by bathing in 4AP+synaptic blockers, and after MPOs developed, 

different drugs were added to the perfusate. The following drugs were used in separate 

experiments in 4AP/blockers ACSF: 50 µM ZD7822 (HCN-channel blocker), 100 µM 

quinine (gap-junction blocker), and 1 µM tetrodotoxin (TTX; voltage-gated sodium 

channel blocker). In almost all the patching experiments, KMeSO4-based electrode 

filling solution was used. To chelate intracellular calcium ions, electrode filling solution 

was supplemented also with BAPTA, a fast Ca2+ chelator. 

 

8.2.3 Data analysis 

Data was analysed as described in chapter 2 (sub-heading 2.7). Inter-spike 

interval is the time interval between the peaks of two consecutive action potentials. 

Firing rate (in Hz) was calculated by using the formula: 1/average (inter-spike interval), 

that is as the inverse of average inter-spike interval. Frequency (in Hz) of membrane 

potential oscillations was calculated by the inverse of the time interval between two 

consecutive peaks (Figure 8.3C, red line).  
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8.3 Results 

8.3.1 Effect of 4AP on the number of action potentials and firing rate properties 

of PV+ interneurons  

In presence of 4AP+synaptic blockers, membrane potentials (MP) and input 

resistance of PV+ interneurons were increased compared with controls (MP: controls, 

-62.7 ± 2.8 mV, n = 8; 4AP+synaptic blockers, -60.3 ± 3.3 mV, n = 8; paired Student’s 

t-test, p = 0.03; input resistance: control, 120.5 ± 9.9 MΩ, n = 8; 4AP+synaptic blockers, 

142.3 ± 9.4 MΩ, n = 8; paired Student’s t-test, p < 0.01). 

In controls, PV+ interneurons fired action potentials for the entire duration of 

depolarisation steps at both relatively low (100-400 pA) (Figure 8.1 Ai) and high 

intensities (400-800 pA) (Figure 8.1 Aii; Table 1). In 4AP+synaptic blockers, at low 

intensity depolarisation steps, PV+ interneurons fired for the entire durations and with 

an increased number of action potentials (Figure 8.1 Bi). But with further increases in 

the intensity, PV+ interneurons failed to sustain the firing activity (Figure 8.1 Bii; 8.2 Ai, 

Aii; Table 8.1).  A similar trend was observed in the average firing rate (Figure 8.2 Bi, 

Bii; Table 8.2) and maximal firing rate of PV+ interneurons (Figure 8.2 Ci, Cii, Table 

8.3). 

One notable feature of PV+ interneurons in 4AP+synaptic blockers was the 

development of membrane potential oscillations (MPO) after depolarisation steps. 

Immediately after the 3 seconds depolarisation step, the membrane potential 

undershoots to hyperpolarising potentials, and as the membrane recovers to baseline 

membrane potentials, brief MPOs were developed in the range of 3-5 Hz (3.90 ± 0.27 

Hz; n = 4), and in two cells, they facilitated firing of action potentials (Figure 8.1B).  

 



 

159 

 

 

Figure 8.1 Representative traces showing a PV+ interneurons response to 
depolarising current injections (I-inj) in (A) ACSF+synaptic blockers (control) and (B) 
4AP+synaptic blockers. In control conditions, PV+ interneurons successfully fired 
action potentials throughout the duration of depolarising steps at both lower (Ai, 300 
pA) and higher (Aii, 800 pA) intensities. In 4AP+synaptic blockers, the same PV+ 
interneurons fired action potentials throughout the duration of lower intensity 
depolarising step (Bi, 300 pA), but failed to sustain the action potentials at higher 
intensity (Bii, 800 pA). In 4AP+synaptic blockers, at both intensities, MPOs were 
developed during the membrane potential recovery period after the depolarisation step 
(Bi, Bii). Note: scale bars at the bottom in panel Aii and Bii are applicable to Ai and Bi, 
respectively.  
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Figure 8.2 Graphs displaying pooled data for the number of action potentials (Ai), 
average firing rate (Bi), and maximal firing rate (Ci) of the same PV+ interneurons in 
control and 4AP+synaptic blockers. The difference in number of action potentials, 
average firing rate, and maximal firing rate between 4AP+synaptic blockers and 
controls were charted in Aii, Bii, and Cii, respectively. *Paired Student’s t-test with p-
values less than the Bonferroni corrected critical value (α): 0.006. See Table 8.1, 8.2, 
and 8.3 for mean ± s.e.m and p-values. 
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Number of action potentials 

Depolarisation 

current 

injection (pA) 

Control 4AP+Synaptic 

blockers 

Difference (n) p-values 

^(α = 0.006) 

100 20.3 ± 20.3 85.1 ± 22.4 64.8 ± 19.1 (9) 0.009 

200 51.7 ± 50.7 198.2 ± 43.5 146.5 ± 23.3 (9) *0.0002 

300 169.9 ± 74.3 270.2 ± 55.0  100.3 ± 35.1 (9) 0.021 

400 331.7 ± 78.9 303.4 ± 64.5 -28.2 ± 48.1 (9) 0.57 

500 337.5 ± 62.1 275.8 ± 63.7 -61.8 ± 30.7 (8) 0.08 

600 374.1 ± 73.5 284.0 ± 72.2 -90.1 ± 19.9 (8) 0.002 

700 402.1 ± 95.8 298.3 ± 88.2 -103.9 ± 25.9 (7) 0.007 

800 419.0 ± 124.1 300.5 ± 99.1 -118.5 ± 46.8 (6) 0.052 

Table 8.1 Number of action potentials fired by PV+ interneurons at different 
depolarising current injections in control and 4AP+synaptic blockers. *p-values less 
than the ^Bonferroni corrected critical value (α). 
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Firing rate (Hz) 

Depolarisation 

current 

injection (pA) 

Control 4AP+Synaptic 

blockers 

Difference (n) p-values 

^(α = 0.006) 

100 6.8 ± 6.8  34.6 ± 6.9 27.8 ± 6.5 (9) 0.016 

200 43.2 ± 18.7 68.9 ± 14.4 25.8 ± 12.2 (9) 0.536 

300 101.8 ± 23.2 98.4 ± 18.1 -3.3 ± 15.6 (9) 0.836 

400 138.9 ± 19.9 127.2 ± 18.6 -11.8 ± 7.9 (9) 0.176 

500 152.1 ± 15.1 143.9 ± 14.1 -8.1 ± 8.9 (8) 0.395 

600 177.2 ±15.4 169.2 ± 16.7 -8.0 ± 10.8 (8) 0.482 

700 202.4 ± 17.1 192.6 ± 18.8 -9.9 ± 11.5 (7) 0.426 

800 217.9 ± 20.7 219.6 ± 24.8 1.6 ± 14.2 (6)  0.913 

Table 8.2 Firing rate of action potentials by PV+ interneurons at different depolarising 
current injections in control and 4AP+synaptic blockers. *p-values less than the 
^Bonferroni corrected critical value (α). 
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Maximal firing rate (Hz) 

Depolarisation 

current 

injection (pA) 

Control 4AP+Synaptic 

blockers 

Difference (n) p-values 

^(α = 0.006) 

100 7.7 ± 7.7 57.9 ± 9.1 50.3 ± 10.3 (9) 0.008 

200 20.9 ± 20.9 112.3 ± 15.2 91.3 ± 13.8 (9) *0.001 

300 133.7 ± 27.7 155.2 ± 19.9 21.4 ± 14.6 (9) 0.180 

400 196.1 ± 22.5 189.7 ± 20.5 -6.4 ± 7.28 (9) 0.405 

500 219.2 ± 21.3 201.4 ± 17.1 -17.7 ± 6.4 (8) 0.216 

600 251.7 ± 22.1 227.9 ± 19.9 -23.8 ± 5.2 (8) 0.001 

700 282.8 ± 22.7  267.8 ± 21.7 -14.9 ± 5.7 (7) 0.304 

800 296.5 ± 22.7 282.3 ± 24.8 -14.3 ± 9.2 (6) 0.181 

Table 8.3 Maximal firing rate of action potentials by PV+ interneurons at different 
depolarising current injections in control and 4AP+synaptic blockers. *p-values less 
than the ^Bonferroni corrected critical value (α). 

 

8.3.2 4AP induced sustained firing activity and MPOs in PV+ interneurons  

In the absence of glutamatergic and GABAergic transmission, washing in 

4AP+synaptic blockers induced the development of recurrent bursts of action 

potentials in PV+ interneurons (Figure 8.3 A). Following burst of action potentials, 

spontaneous MPOs developed that were occurring at a frequency of 5.17 ± 0.10 Hz (n 

= 5) at membrane potentials of -60.90 ± 2.12 mV (n=5) (Figure 8.3 B, C). In four of five 

experiments, MPOs appeared to sustain and facilitate the firing of action potential 

(Figure 8.3 B), whereas in other recordings membrane potential oscillations dissipated.  
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Figure 8.3 A. In 4AP+synaptic blockers, PV+ interneurons developed rhythmic bursts 
of action potentials and membrane potential oscillations (MPOs). B. Bursts of action 
potentials interspersed with MPOs. Enlarged view of the highlighted area (red) in panel 
A. C. Membrane potential oscillations developed at nearly -77.8 mV membrane 
potential in 4AP+synaptic blockers. Red line – peak to peak time used for calculating 
frequencies of MPOs. Enlarged view of the highlighted area (yellow) in panel B. 
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8.3.3 Intracellular calcium ions were not necessary for the development of 4AP-

induced MPOs in PV+ interneurons  

To examine if intracellular calcium ions and calcium-activated potassium 

currents were required for the generation of 4AP-induced MPOs, PV+ interneurons 

were patched with KMeSO4/BAPTA-based EFS. BAPTA was used in the EFS to 

chelate the intracellular calcium ions. In all three experiments, washing in 

4AP+synaptic blockers induced firing of action potentials and the development of 

MPOs (Figure 8.4). However, MPOs occurred at a higher rate in calcium ions-chelated 

PV+ interneurons than in the non-chelated PV+ interneurons (MPOs: non-chelated 

PV+ interneurons, 5.17 ± 0.10 Hz, n = 5; calcium-chelated PV+ interneurons, 6.59 ± 

0.42 Hz, n = 3; unpaired Student’s t-test, p = 0.017). This suggested neither 

intracellular calcium ions nor calcium-activated potassium currents were required for 

the generation of MPOs in PV+ interneurons but they may have a modulatory role.  

 

Figure 8.4 PV+ interneurons patched with KMeSO4/BAPTA-based EFS, to chelate 
intracellular calcium ions, developed action potentials and MPOs in 4AP+synaptic 
blockers. 
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8.3.4 Inhibition of HCN-channels altered 4AP-induced firing pattern and 

abolished MPOs in PV+ interneurons  

In 4AP+synaptic blockers, inhibiting HCN-channels transformed the firing 

pattern of PV+ interneurons from rhythmic bursts of action potentials (Figure 8.5 A) to 

the development of large membrane depolarisations superimposed with action 

potentials (Figure 8.5 B). Furthermore, spontaneously occurring 4AP+synaptic 

blockers-induced MPOs were completely abolished (Figure 8.5 B).  Tonic excitatory 

drive mediated by HCN channels shaped the firing pattern of PV+ interneurons, and 

was necessary for maintenance and generation of MPOs. 

 

Figure 8.5 Blocking HCN channels modified the pattern of action potentials firing and 
suppressed MPOs in PV+ interneurons that were already developed in 4AP+synaptic 
blockers.  

 

8.3.5 Quinine reduced 4AP-induced bursts of action potentials and modulated 

MPOs 

PV+ interneurons communicate with other PV+ interneurons via chemical 

synapses and electrical synapses (gap-junctions). In these experiments, I used 

quinine, a gap-junction blocker, to examine the role of gap-junctions in sustaining 
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MPOs (Srinivas et al., 2001). Quinine was added to the perfusate after the 

development of 4AP+synaptic blockers-induced MPOs. Quinine reduced the number 

of bursts of action potentials, but generally did not abolish MPOs (Figure 8.6). In three 

of four experiments, the frequencies of MPOs were significantly reduced (without 

quinine, 3.87 ± 0.13 Hz; with quinine, 2.21 ± 0.28 Hz; paired Student’s t-test, p = 0.008; 

n = 3), and in one other experiment, action potentials and MPOs were completely 

abolished. 

 

Figure 8.6 Quinine reduced the number of action potentials bursts and the frequency 
of MPOs in PV+ interneuron bathed in 4AP+synaptic blockers. Top trace: green bar, 
4AP+synaptic blockers; red bar, quinine in 4AP+synaptic blockers. Bottom left, 
4AP+synaptic blockers induced activity (enlarged view of the green highlighted area in 
top trace). Bottom right, activity recorded in 4AP+synaptic blockers+quinine (enlarged 
view of the red highlighted area in top trace). 
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8.3.6 Tetrodotoxin blocked both 4AP-induced action potentials and MPOs 

Addition of voltage-gated sodium channels (VGSC) blocker, tetrodotoxin, to the 

perfusate suppressed the already developed 4AP+synaptic blockers-induced bursts of 

action potentials and MPOs in PV+ interneurons, suggesting a strong dependency of 

MPOs on VGSCs (Figure 8.7). 

 

Figure 8.7 Inhibiting voltage-gated sodium channels with tetrodotoxin (TTX) abolished 
both 4AP+synaptic blockers induced action potential bursts and MPOs.  Top trace: 
blue bar, 4AP+synaptic blockers; red bar, TTX in 4AP+synaptic blockers. Bottom left, 
4AP+synaptic blockers induced activity (enlarged view of the blue highlighted area in 
top trace). Bottom right, PV+ interneurons responses recorded in 4AP+synaptic 
blockers+TTX (enlarged view of the red highlighted area in top trace). 
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8.4 Discussion 

These results show that the firing capability of PV+ interneurons was altered by 

4AP. In both, 4AP+synaptic blockers and control conditions, the number of action 

potentials fired by PV+ interneurons steeply increased with increasing intensity of 

depolarising current injections (I-inj) until 400 pA. At lower intensities of current 

injections (I-inj < 400 pA), the excitability of PV+ interneurons was enhanced in 

4AP+synaptic blockers compared with control conditions; that is, they fired at a higher 

mean rate and also had a greater maximal firing rate. This pattern in 4AP+synaptic 

blockers was flipped with further increasing I-inj. In 4AP+synaptic blockers, for I-inj > 

400 pA, the number of action potentials fired plateaued, whereas, in controls, PV+ 

interneurons continued to fire increasing number of action potentials. This plateauing 

effect observed in 4AP+synaptic blockers could have been due to the depolarisation 

block of the neurons (Losi et al., 2016). Although there was no further increase in the 

number of action potentials in 4AP+synaptic blockers, the firing rate continued to rise 

with increasing current injection. The average firing rate was similar in both the 

conditions, but PV+ interneurons in controls had greater maximal firing rates. 

Membrane potential oscillations (MPO) have previously been reported in striatal 

fast-spiking interneurons (Bracci et al., 2003), stellate cells in the entorhinal cortex 

(Alonso and Llinas, 1989), and regular spiking neurons in the somatosensory cortex 

(Amitai, 1994). MPOs were shown to develop in ACSF at depolarised potentials after 

somatic current injections. In this study, I showed that in the absence of transmitter 

mediated currents, 4AP induced action potentials and MPOs, and these MPOs 

developed spontaneously relatively hyperpolarised membrane potentials (-60.90 ± 

2.12 mV; n = 5). 4AP+synaptic blockers-induced MPOs were abolished in the presence 

of either HCN-channels blocker (ZD7822) or voltage-gated sodium ion channels 

blocker (TTX), suggesting these two channels were required for the development of 

MPOs. This was similar to the MPOs described in different cell types (Alonso and 

Llinas, 1989; Amitai, 1994; Bracci et al., 2003). Dickson et al. (2000) reported MPOs 

at depolarised membrane potentials in stellate cells of the entorhinal cortex, and 

proposed an interplay between persistent sodium currents and HCN mediated currents 

as a requirement for the generation of MPOs at depolarised levels (Dickson et al., 

2000). Adding to it, my results indicate a role of 4AP-sensitive voltage-gated potassium 

channels in setting the threshold of the membrane potential oscillations.  
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In earlier studies, it was demonstrated that the membrane oscillations triggered 

the first action potential firing after a quiescent period at depolarised potentials (Bracci 

et al., 2003).  In the current study though, at relatively hyperpolarised membrane 

potentials, MPOs developed following a burst of action potentials and were then 

sustained for a period by an intrinsic mechanism (see Figure 8.6, lower left trace). 

However, action potentials triggered by MPOs were also observed, but during the 

recovery of the membrane potential from hyperpolarisation potentials after the 

depolarisation step (see Figure 8.1 B). Furthermore, chelating intracellular calcium ions 

increased the frequency of 4AP+synaptic blockers-induced MPOs. It needs to be 

tested whether this effect was because of blockade of the calcium-activated potassium 

currents. 

Cortical PV+ interneurons are highly interconnected via chemical synapses and 

gap-junctions (electrical synapses) forming a syncytium of PV+ interneurons 

(Galarreta and Hestrin, 1999; Galarreta and Hestrin, 2002; Hormuzdi et al., 2004). 

Gap-junctions enable PV+ interneurons to synchronise and enhance their spiking 

activity and coordinate the activity of the network (Galarreta and Hestrin, 1999; Deans 

et al., 2001; Hjorth et al., 2009). Blocking gap-junctions with quinine modulated the 

firing pattern and MPOs recorded in PV+ interneurons in 4AP+synaptic blockers. Both, 

the number of bursts of action potentials and frequency of MPOs were reduced after 

blocking gap-junctions. Along with blocking gap-junctions, quinine also has other 

effects; it reduces the firing of neurons in a voltage-dependent manner and thereby 

reducing the accumulation of extracellular potassium ion concentrations (Bikson et al., 

2002). Kinetics of certain voltage-dependent potassium channels was also reported to 

be altered by quinine (Kotani et al., 2001). Hence, it is important to confirm the role of 

gap-junctions on membrane potential oscillations in PV+ interneuron with a more 

specific gap-junction blocker. 

PV+ interneurons were shown to be involved in maintaining epileptiform activity 

by firing during synchronous after-discharges (Ellender et al., 2014). Membrane 

potential oscillations in PV+ interneurons could be involved in maintaining this pattern 

of activity during an ictal event and enhance their firing synchronicity via gap-junctions. 

These can be examined by recording simultaneously from synaptically coupled PV+ 

interneuron and pyramidal neurons, and gap-junction coupled PV+ interneurons, 



 

171 

 

respectively, in brain slices acutely challenged with pro-epileptic media.  Results 

described in this chapter and aforementioned future studies will help us to better 

understand the role of membrane potential oscillations in regulating the activity of 

interconnected PV+ interneurons and their involvement in epileptic network activity. 
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Chapter 9 Discussion 

 

Epilepsy is a complex neurological disorder that is characterised by recurrent 

seizures and psychological consequences of seizures. For a better understanding of 

the pathology of seizures, it is important to consider not just what triggers a seizure, 

but also how the normal-functioning neuronal circuits react to potential seizure threats. 

In this thesis, these issues were investigated using in vitro models.   

Brain slices (in vitro models) have been widely used to study epileptic activity, 

but still we lack a full understanding of how the pathological activity arises in these 

models, and whether the activity is equivalent in each, and if not, how the models differ.  

While the literature covering these different models is large, many studies involve only 

field recordings, which can be difficult to interpret if not put in the context of other types 

of recording.  Moreover, typically only one pharmacological model has been studied 

and there has been virtually no systematic attempt to compare and contrast the 

different models.  This is made worse by a poverty of terminology, where frequently 

the same terms are used for what is likely to be rather different patterns of discharge. 

This is best exemplified by the term “interictal event”, referring to short events, lasting 

a few hundred milliseconds, but which has been used to describe what are clearly very 

different types of discharge, occurring in different parts of the brain and provoked by 

different triggers (for example (Voskuyl and Albus, 1985; Dreier and Heinemann, 1991; 

Avoli et al., 1993; Chauviere et al., 2012)).  This lumping of different activity patterns 

under the same term is very problematic for the field.  It is reasonable to suggest that 

a clearer understanding of these differences will eventually provide insights into the 

fundamental pathophysiology of spontaneously occurring seizures in vivo, leading to 

better facilities for preventing the pathological discharges without compromising 

normal brain function.  This was the motivation for the work described in this thesis, 

although there remains much more to discover.  

In these studies, I showed that there are, in fact, striking differences between 

the models: in the way activity evolves, which cortical territories are acting as the 

source of the discharges, and how epileptiform activity spreads.  I will first collate the 

key findings for the different models, and then attempt to draw some conclusions about 
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how these relate to the clinical condition of epilepsy, and how this work might inform 

future studies. 

9.1 Characteristics of activity patterns induced by 0 Mg2+ ACSF in brain slices 

In the 0 Mg2+ model, epileptiform activity developed initially in neocortex and 

entorhinal cortex, and only later, in hippocampal CA.  The neocortical activity showed 

two distinct stages; the early activity is characterised by intermittent, transient (<1s), 

“interictal” events, interspersed with tonic-clonic-like ictal events.  After a period of this 

pattern of activity, lasting between 10 minutes to sometimes well over an hour, there 

was a marked transition in the neocortical activity, into the second stage, a pattern of 

regular discharges, each lasting several hundred milliseconds, and repeating every 

few seconds.  This second stage, we termed “late-stage activity”.  One of our main 

insights was that the transition from the early to the late stages coincided with the 

development of discharges in the hippocampal CA territories.   

Our second novel finding regarding the 0 Mg2+ model is that these late-stage 

discharges appeared to have a hippocampal pacemaker, which entrained also the 

neocortical discharges.  Furthermore, this entrainment could propagate via a non-

canonical pathway, which persisted even after the potential axonal connections 

through entorhinal cortex had been severed (although, of course, activity may still 

spread also through any intact synaptic paths – see discussion in Chapter 3, section 

3.4). These distinctive electrographic features are broadly consistent with earlier 

descriptions of this model (Mody et al., 1987; Dreier and Heinemann, 1991), although 

these earlier studies did not appear to make the explicit connection between the late-

stage neocortical transition and the onset of hippocampal activity, nor recognise the 

non-canonical propagation patterns.  These researchers did, however, note that the 

early activity was sensitive to several, commonly used anti-epileptic medications 

(phenytoin, carbamazepine, phenobarbital, and midazolam), and whereas the late 

stage activity was not (Heinemann et al., 1994; Zhang et al., 1995).  

Another important feature of 0 Mg2+ model is that the early tonic-clonic like ictal 

events in neocortex propagate across the network in a modular fashion (Trevelyan et 

al., 2006). The delays in propagation are influenced by powerful feed-forward inhibitory 

barrages, manifested as pre-ictal discharges, ahead of the propagating ictal wavefront, 

and which are suggested to be protective against the spread of epileptic activity. When 
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the inhibitory restraint is intact, early ictal events spread at low velocities 

(~0.1mm/second) (Wong and Prince, 1990; Trevelyan et al., 2007).  

The inhibitory restraint is largely provided by parvalbumin-positive fast-spiking 

interneuron (Cammarota et al., 2013). When the inhibitory restraint collapses, pre-ictal 

discharges transition into ictal events and the ictal wavefront begins to spread 

(Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et al., 2013).  This fast 

collapse of inhibitory restraint could be of many reasons such as depolarisation block 

of interneurons (Cammarota et al., 2013), increase in postsynaptic chloride 

concentration due to intense GABAergic activation, thereby shifting EGABA to 

depolarising potentials (Thompson and Gahwiler, 1989; Thompson and Gahwiler, 

1992; Staley et al., 1995; Cohen et al., 2002; Fujiwara-Tsukamoto et al., 2010; Ellender 

et al., 2014; Pallud et al., 2014; Alfonsa et al., 2015). The chloride loading effect may 

further be amplified by a rise in extracellular potassium ion levels due to intense 

neuronal firing, and can also, in turn, contribute to the K+ rise (Viitanen et al., 2010). 

Intracellular chloride is cleared by potassium gradient driven potassium-chloride 

cotransporter (KCC2). Therefore, any substantial increase extracellular potassium 

levels may hinder chloride clearance from the postsynaptic neuron, thus maintaining 

depolarised EGABA (Lillis et al., 2012) 

Later tonic-clonic-like events tend to be preceded by far fewer, or even no pre-

ictal discharges (progressive loss of inhibitory restraint) (Trevelyan et al., 2007). These 

late events propagate across the tissue almost instantly without any delay at relatively 

higher velocities (~10 mm/second) (Trevelyan et al., 2007), suggesting an inverse 

correlation between the number of pre-ictal discharges and propagation of events.  

This progressive deterioration in inhibition has been attributed to various mechanisms 

including chloride loading (Dzhala et al., 2010), and also a partial de-phosphorylation 

of GABAA-receptors secondary to reduced intracellular Mg2+ (Whittington et al., 1995).  

 

9.2 Characteristics of activity patterns induced by 4-aminopyridine in brain 

slices 

In this model, in contrast to zero-magnesium model, I showed that epileptiform 

activity developed early in hippocampal CA and later in the neocortex. In the 
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hippocampus, 4AP led to the generation of transient spike-wave synchronous field 

discharges that each last for 1.5-3 seconds, while tonic-clonic like ictal discharges are 

rarely observed. Note, though, that tonic-clonic like discharges have been observed in 

hippocampal slices prepared from younger mice (2-3 weeks old) (Chesnut and Swann, 

1988; Avoli, 1990). Neocortical activity showed early tonic-clonic like ictal events, each 

lasting for tens of seconds, that later transitioned to a pattern of transient recurrent 

discharges (lasting hundred milliseconds to few seconds), referred to as late-stage 

events.  

Previous studies demonstrated the sensitivity of ictal events to anti-epileptic 

drugs (phenytoin, carbamazepine, valproic acid, and phenobarbital), but the inter-ictal 

discharges continued to occur, and different types of inter-ictal events were identified 

in 4AP model that had different pharmaco-sensitivities to carbamazepine (Fueta and 

Avoli, 1992; Watts and Jefferys, 1993; Bruckner and Heinemann, 2000). This pattern 

of evolution of activity in the neocortex is electrographically similar to that observed in 

the zero-magnesium model. However, the key difference is that the transition of early 

to late stage activity in neocortex was not associated with the development of 

discharges in the hippocampus. Furthermore, there are stark differences in responses 

to pharmacological manipulations that I will discuss later in the discussion; see section 

9.4).  GABAA-receptors signalling is involved in 4AP induced inter-ictal events as they 

persisted even in the presence of glutamatergic antagonists and were abolished by 

application of GABAA-receptor blockers (Perreault and Avoli, 1992). A notable 

difference in the nature of interictal events in 4AP and 0Mg2+ models is illustrated in 

Figure 9.1 (unpublished data, Andrew Trevelyan), showing that in 4AP, interictal 

events appears to lack any significant pyramidal cell activity, but the pyramidal neurons 

experience pronounced GABAergic signalling (Figure 9.1 B). In contrast, in 0 Mg2+ 

model, during interictal events, pyramidal neurons show both GABAergic as well as 

excitatory currents (Figure 9.1 A).  
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Figure 9.1 Paired pyramidal whole cell recordings of interictal events developed in (A) 
0Mg2+ and (B) 4AP models. Pyramidal neurons are voltage clamped at -30mV (P1; 
halfway between glutamatergic and GABAergic reversal potentials), and at -60mV (P2; 
near GABAergic reversal potential). A. Interictal event in 0 Mg2+ model involves, both 
GABAergic (upper trace, upward deflection) and glutamatergic currents (upper trace, 
downward deflection). B. Interictal event in 4AP model involves largely GABAergic 
(upper trace, upward deflection) and almost no glutamatergic signalling (upper and 
lower traces, lack of downward deflections). 

 

In the 4AP model, the functional implication of enhanced and synchronous 

GABAergic signalling prior to ictal events has been interpreted as pro-ictogenic (Ives 

and Jefferys, 1990; Gnatkovsky et al., 2008; de Curtis and Gnatkovsky, 2009; Avoli 

and de Curtis, 2011; Sessolo et al., 2015; de Curtis and Avoli, 2016; Librizzi et al., 

2017). In line with this interpretation, optogenetic stimulation of interneurons was 

shown to trigger epileptiform discharges (Sessolo et al., 2015; Shiri et al., 2015; 

Yekhlef et al., 2015; Shiri et al., 2016), and drugs that interfere with GABAergic 

signalling suppressed 4AP-induced ictal events (Avoli et al., 1993; Avoli et al., 1996; 

Lopantsev and Avoli, 1998; Benini et al., 2003; Sudbury and Avoli, 2007). It is 

hypothesised that the increase in extracellular potassium levels due to an excessive 

or intense activity of inhibitory interneurons, largely PV+ interneurons, underlies the 

onset of ictal events (Barolet and Morris, 1991; de Curtis and Avoli, 2016). However, 

in both, 4AP and 0 Mg2+ models, activity subsequently evolves to develop ictal events 

which involve both pyramidal and interneuronal cell activity (Galvan et al., 1982; Avoli 

et al., 2002; Trevelyan et al., 2006; Trevelyan et al., 2007). 

Another interesting feature of the 4AP model (Chapter 8), spontaneous 

subthreshold membrane potential oscillations developed in PV+ interneurons at 
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relatively hyperpolarised membrane potentials in presence of synaptic blockers 

(glutamatergic and GABAergic channel blockers). Previous studies demonstrated such 

membrane potential oscillations in striatal fast-spiking interneurons, stellate cells, and 

regular spiking neurons, but at depolarised membrane potentials (Bracci et al., 2003; 

Alonso and Llinas, 1989; Amitai, 1994). Furthermore, the oscillations observed in 4AP-

synaptic blockers appeared to facilitate and sustain rhythmic bursts of action potential 

firing. Coordination and spike timing of PV+ interneurons in a network are, in part, 

synchronised by gap-junction coupling (Galarreta and Hestrin, 1999; Deans et al., 

2001; Hjorth et al., 2009). Propagation of membrane potential oscillations through gap-

junction coupled PV+ interneurons may be involved in enhancing synchronous firing 

activity of the cells. PV+ interneurons appear to underlie the clonic structure (after-

discharges) of tonic-clonic like ictal events (Ellender et al., 2014). The network 

mechanisms underlying these after-discharges may involve such synchronous firing of 

PV+ interneurons. These hypotheses remain to be tested in future studies using similar 

protocols as mentioned in this thesis and paired whole-cell patch clamp recording from 

gap-junction coupled PV+ interneurons.  

 

9.3 Characteristics of activity patterns induced by blockade of fast GABAergic 

transmission in brain slices 

Blocking GABAA-receptors produced short-lasting synchronised epileptiform 

discharges that appeared electrographically similar to interictal events or prolonged 

events with after-discharges after high-frequency stimulation (Gutnick et al., 1982; 

Miles and Wong, 1983; de Curtis and Avanzini, 2001; Librizzi and de Curtis, 2003). In 

some cases, repetitive stimulation induced tonic-clonic like ictal events (Matsumoto 

and Marsan, 1964; Prince, 1968; Ayala et al., 1973). In an intact whole brain in vitro 

preparation, tonic-clonic like ictal events involving different limbic structures developed 

following the application of bicuculline (Uva et al., 2005; Gnatkovsky et al., 2008). 

Intracellularly, short-lasting discharges are associated with large depolarisations with 

sustained firing activity (Avoli and Olivier, 1989; McCormick, 1989; Hwa et al., 1991; 

Tasker et al., 1992). The synchronous discharges induced by GABAA-receptor 

antagonists show differential sensitivity to anti-epileptic drugs ((Schneiderman and 
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Schwartzkroin, 1982; Piredda et al., 1986; Kohr and Heinemann, 1990; Armand et al., 

1998).  

In this model, for discharges to propagate, disinhibition requires to be above a 

certain threshold and, above which, the discharges propagate with high velocities (20-

80 mm/s) (Chervin et al., 1988; Wadman and Gutnick, 1993; Pinto et al., 2005). This 

contrasts with the propagation velocities of early ictal wavefront observed in 0 Mg2+ 

model which is nearly two orders of magnitude slower, but similar with that of after-

discharges and fast events observed in 0 Mg2+ model (Wong and Prince, 1990; 

Trevelyan et al., 2007). 

In disinhibited tissue, the behaviour of the network can be influenced by the 

activity on a single neuron. Miles and Wong (1983) showed that in a network that is 

sort of primed to have epileptic discharges, then it can be entrained by the action of a 

single neuron (Miles and Wong, 1983). This observation serves as an important 

precedent to our novel finding – the entrainment phenomenon (Chapter 3, section 

3.3.2) – in that this was another demonstration of how epileptiform discharges may be 

entrained by very weak electrophysiological triggers: either by the stimulation of a 

single pyramidal cell (Miles and Wong, 1983), or by a weak extracellular field effect 

(Chapter 3). We demonstrated that the epileptiform events occurring in a 

hyperexcitable neocortical network (primed tissue) can be entrained by the effects of 

hippocampal discharges. 

 

9.4 Model-dependent effects of further pharmacological manipulations 

The diversity of activity patterns in these in vitro models is further illustrated by 

the effects of other drugs on the epileptiform activity.  There is much potential for future 

work on this topic, for drug development and validation, and I will come to this in section 

9.6.  My studies were limited to an exploration of three drugs which target different 

parts of the network: diazepam, baclofen and fluorocitrate.   
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9.4.1 Diazepam 

Diazepam, a benzodiazepine, is used as one of the first-line drugs for controlling 

status epilepticus (Chin et al., 2008). Diazepam is a positive allosteric modulator at 

GABAA-receptors that increases the frequency of GABAA-channel opening (Study and 

Barker, 1981; Otis and Mody, 1992; Rogers et al., 1994). Here, I will discuss the key 

findings of the effects of diazepam on epileptiform activity induced by two models, 0 

Mg2+ and 4-aminopyridine (4AP). 

Diazepam showed distinctive effects on 0 Mg2+ and 4AP induced early 

epileptiform activity. In the neocortex, diazepam enhanced the development of 0 Mg2+ 

induced pre-ictal events and delayed the onset of tonic-clonic like ictal events, but had 

no such effects on 4AP induced epileptiform activity. Diazepam was also shown to be 

ineffective in in vivo for suppressing 4AP-induced seizures (Yamaguchi and Rogawski, 

1992). In both in vitro models (0Mg2+ and 4AP), diazepam neither suppressed nor 

delayed the transition of early tonic-clonic like ictal events into late-stage events. 

Furthermore, if activity was allowed to progress to the late-stage events before the 

application of diazepam, it did not suppress or show any significant effects on these 

on-going discharges.  This was consistent with previous studies, which showed that 

benzodiazepine (midazolam) did not suppress the on-going late-stage events (Zhang 

et al., 1995; Richter et al., 2010), although my studies have extended these findings, 

by examining differences in the effects on early activity in the two different 

pharmacological models.  In summary, my studies suggest that the model dependent 

effects of diazepam rests, at least in part, on the mechanisms underlying the 

epileptiform activity, and highlights the importance of identifying these underlying 

mechanisms for effective treatment. 

 

9.4.2 Baclofen   

Baclofen, a GABAB-receptor agonist, is commonly used in clinics to treat muscle 

spasms.  It has also been used, in conjunction with other medicines, to treat epilepsy 

(Terrence et al., 1983; Kofler et al., 1994; Becker et al., 1997). However, baclofen has 

been shown to have pro-epileptic and well as anti-epileptic effects, and this may 

depend on factors such as the type of epilepsy and other associated neurological 
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conditions, as well as the brain region (Terrence et al., 1983; Rush and Gibberd, 1990; 

Kofler et al., 1994; Vergnes et al., 1997; Buonaguro et al., 2005; Mares, 2012). To get 

a better understanding of how baclofen affects epileptiform activity, I examined its 

effects on 0 Mg2+-ACSF induced epileptiform activity.  

Previous studies showed that baclofen abolished spontaneous and stimulus-

evoked ictal events in the entorhinal cortex, and suggested that it interfered with the 

ictogenesis (Jones, 1989).  In my studies, baclofen delayed the onset of tonic-clonic-

like ictal events in the neocortex, and also prevented the transition to late-stage activity.  

Interestingly, baclofen also prevented the development of any type of epileptiform 

activity in hippocampal CA3.  Furthermore, when baclofen was applied only after the 

development late-stage activity, it completely suppressed the hippocampal activity, 

and reversed the neocortical late-stage transition, allowing the reappearance of tonic-

clonic like ictal events.  These baclofen experiments thus provide strong further support 

for the link between hippocampal epileptiform discharges and the late-stage transition 

in neocortex.  

 

9.4.3 Fluorocitrate 

Astrocytes play an important role in maintaining a physiological environment in 

the brain. They are essential in recycling neurotransmitters, and buffering extracellular 

potassium ions (Kofuji and Newman, 2004; Wallraff et al., 2006; Tani et al., 2014). 

Hence, it is not surprising to see that dysfunctional astrocytes are implicated in various 

neurological conditions such as multiple sclerosis, Alzheimer’s disease, epilepsy 

(Seifert et al., 2006; John Lin and Deneen, 2013; Scuderi et al., 2013). Previous 

research suggested that astrocytes along with neuronal populations are involved in 

generating and sustaining ictal discharges (Gomez-Gonzalo et al., 2010). I used 

fluorocitrate, a gliotoxin, to study how having dysfunctional astrocytes in neocortical 

networks influence the network activity and characterise its effects on the evolution of 

epileptiform activity induced by 4-aminopyridine (4AP).  

Fluorocitrate, in the absence of proepileptic media, caused the development of 

glutamate-dependent spontaneous recurring transient events that appear 

electrographically similar to late-stage events. When used in tandem with 4AP, 
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fluorocitrate prevented the occurrence of tonic-clonic-like events in neocortical tissue, 

but instead, activity appeared to progress directly to the late stage pattern, with 

transient recurrent discharges. Furthermore, fluorocitrate transformed 4AP induced 

ictal events to recurrent short duration discharges. The exact mechanism of how 

fluorocitrate is interfering with the network mechanisms to generate and maintain ictal 

events is not known. Fluorocitrate was shown to reduce inhibitory post-synaptic 

currents (Ortinski et al., 2010), suggesting that one plausible mechanism is that 

fluorocitrate creates a disinhibited network (see descriptions earlier in this chapter). 

Bruckner et al. (1999) reported similar changes in activity patterns when GABAA 

signalling was blocked in 4AP treated slices (Bruckner et al., 1999). Altered astrocytic 

clearance of potassium ions and glutamate from extracellular space could also be 

involved in fluorocitrate-mediated changes in activity patterns. These findings 

demonstrate that the development and maintenance of 4-aminopyridine induced ictal 

events are dependent on functional astrocytes.  

There are many more features of fluorocitrate-mediated events that need to be 

characterised, such as measuring extracellular potassium ion levels, post-synaptic 

glutamatergic and GABAergic currents, both in the presence, and absence, of different 

pro-epileptic agents, in different cortical areas.  I suggest that these studies will help 

refine our understanding of the role of astrocytes in inducing and maintaining 

epileptiform activity, and possibly provide new targets for developing drugs to treat 

epilepsy. 

 

9.5 The utility of in vitro models 

In vitro models have been a mainstay of epileptic research for many years. They 

have been used to understand cellular (Traub et al., 1987; Traub et al., 1989; von 

Krosigk et al., 1993), and network activity patterns (Traub et al., 1999), including the 

pattern of propagation (Wadman and Gutnick, 1993; Telfeian and Connors, 1999; Pinto 

et al., 2005; Trevelyan et al., 2006; Trevelyan et al., 2007).  They have also been used 

to explore the effects of anti-epileptic drugs on different patterns of epileptiform 

discharges that led to the identification of 2 categories of epileptiform discharges: 

pharmaco-sensitive and pharmaco-resistant (Zhang et al., 1995; Dreier et al., 1998). 

Validation of some features of epileptiform activity has only recently been provided 
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from recordings of spontaneous seizures in vivo in the human brain (Schevon et al., 

2012). That study demonstrated in humans the presence of characteristic features of 

seizures; the hyper-synchronous discharges which was termed the “ictal core”, and the 

effects on the surrounding tissue, which was termed the “ictal penumbra”, relating 

these findings to what had been described previously in experimental in vitro models 

(Trevelyan et al., 2006; Trevelyan et al., 2007).   

Of course, in vitro models cannot capture all features of the in vivo state; many 

long-range connections are severed in vitro, and it is likely that the extracellular ionic 

concentrations, which can change dramatically during seizures (Somjen, 2004), may 

be subtly different in vitro because of the way the tissue is perfused. It is pertinent, 

therefore, to ask why and how are in vitro models helpful? In vitro models should be 

viewed as a platform to tease apart various aspects of the epilepsy pathology and 

ultimately translate the findings towards improved treatment options for human 

patients.  The biggest benefit of in vitro preparations is that they allow hugely better 

access to the tissue and control over the experimental conditions, and so facilitate the 

study of the pathological processes. Other benefits are that they are simple to use, 

cost-effective, and importantly, animals suffering is minimised prior to being sacrificed. 

There are certain key points the experimenter needs to consider, such as the effects 

of the brain slice preparation method and the potential for introducing unnecessary 

experimental variability. 

In this thesis, the susceptibility of different cortical areas to develop epileptiform 

activity was investigated in brain slices using two in vitro models; zero-magnesium 

(0Mg2+), and 4-aminopyridine (4AP) models. The cortical areas examined showed 

differences in their susceptibility to develop epileptiform activity. Activity developing in 

the hippocampal CA regions and neocortex had distinctive electrographic features that 

are broadly consistent with earlier findings (Mody et al., 1987; Dreier and Heinemann, 

1991). One surprising finding was that in the 0Mg2+ model, the first epileptiform 

discharge associated with multiunit activity in CA only developed much later compared 

with the neocortex.  This appears at odds with the general view that hippocampal 

circuits are the most epileptogenic, arising perhaps from the relatively high incidence 

of temporal lobe epilepsy (Falconer et al., 1964; Wiebe, 2000; Curia et al., 2014) and 

also from the large body of literature focussed on hippocampal changes in certain 
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widely used animal models (Cronin and Dudek, 1988; Cavalheiro et al., 1991; Ben-Ari 

and Cossart, 2000; Bortel et al., 2010; White et al., 2010; Suarez et al., 2012).  

Interestingly, in 4AP model, it was the other way around; that is, CA subfields of 

the hippocampus developed epileptiform activity much earlier than the neocortex.  The 

reasons for these model-dependent differences in regional susceptibility remain to be 

established.  In hippocampal CA regions, the form of the individual discharges was 

similar in both 4AP- and 0Mg2+-models, that is, recurrent short duration discharges with 

a characteristic large spike followed by a wave (SWD). An important issue here regards 

how we interpret these recordings: when electrographic recordings look the same, are 

they indeed arising by the same mechanisms? 

 

9.5.1 Benefits of in vitro preparations: experimental access 

One of the great strengths of in vitro preparations is that the pathophysiological 

mechanisms can be studied in great detail. Furthermore, they facilitate many valuable 

recording formulations that are not feasible for in vivo preparations. These include, but 

are not limited to: paired patch recordings of synaptically connected cells (Markram et 

al., 1997), gap-junction coupled cells (Galarreta and Hestrin, 1999; Galarreta and 

Hestrin, 2002), combined whole-cell electrophysiological recording with calcium 

imaging of network activity (Tian et al., 2005; Trevelyan et al., 2006; Trevelyan et al., 

2007; Cammarota et al., 2013); simultaneous measurements of local field potentials 

and extracellular ion concentrations (Jefferys and Haas, 1982; Dreier and Heinemann, 

1991); and recordings of cells and/or local field potentials while manipulating the local 

environment with bath applied drugs – that remain at best difficult, and often impossible 

to do in vivo.  Furthermore, the ethical considerations mean that these types of 

recordings will almost certainly never be done in humans even if the technical 

considerations could be overcome.   

Within this thesis, the versatility of in vitro preparations enabled the rapid 

switching of solutions while maintaining patch clamp recordings of parvalbumin-

positive fast-spiking interneurons (PVIN). The development of membrane potential 

oscillations (MPO) in PVINs in response to 4AP, and the underlying ionic mechanisms 

were examined, for example, changing perfusate to one containing tetrodotoxin 
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abolished MPOs in PVINs indicating that voltage-gated sodium channels were 

necessary for the development of MPOs. 

LFP recordings also allowed the study of the contribution of astrocytes to the 

development of epileptiform activity in brain slices. Bath application of a gliotoxin, and 

later glutamate receptor blockers induced rapid changes in the pattern of 4AP-induced 

epileptiform activity. This demonstrated that the development and maintenance of ictal 

events in the 4AP model were dependent on functional astrocytes. 

Combining different techniques is a powerful approach to studying various 

aspects of the epileptiform activity. For example, Miles and Wong (1983) made 

simultaneous in vitro patch-clamp recordings from single neurons in combination with 

LFPs. They consequently showed that in a disinhibited network, a single cell may 

trigger epileptiform bursts (Miles and Wong, 1983). Another powerful combination is 

the pairing of patch-clamp technique with imaging of network activity achieved by 

loading neurons and/or astrocytes with calcium-sensitive dyes. For example, in vitro 

studies have identified astrocytic involvement in the initiation of ictal discharges (Tian 

et al., 2005; Gomez-Gonzalo et al., 2010), and the pattern of seizure propagation 

(Trevelyan et al., 2006; Trevelyan et al., 2007; Cammarota et al., 2013). 

Acute brain slices are only viable for approximately 6 hours post-slicing, making 

them unsuitable for studying chronic changes due to epileptiform activity. Organotypic 

brain slices are an alternative type of in vitro preparation that can be maintained for 

days to weeks, whilst preserving much of the connectivity as observed in acute brain 

slices (Gahwiler et al., 1997). A key difference is that organotypic slices can develop 

spontaneous epileptiform activity (Malouf et al., 1990; Dyhrfjeld-Johnsen et al., 2010). 

These features coupled with the ease of electrophysiological recordings in organotypic 

brain slices, make them suitable for studying epileptogenesis (Dyhrfjeld-Johnsen et al., 

2010; Koyama, 2013), chronic spontaneous epileptiform activity (McBain et al., 1989),  

epileptiform activity induced plasticity (Abegg et al., 2004), mossy fibre sprouting 

(Routbort et al., 1999), and neuronal degeneration (Thompson et al., 1996). 

Furthermore, organotypic brain slices preparations provide easy access to drugs and 

other treatments (Albus et al., 2008). 
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9.5.2 Benefits of in vitro preparations: experimental control 

A further advantage of in vitro preparations is the level of control that they offer.  

For instance, in horizontal hippocampal-neocortical brain slices, the occurrence of non-

synaptic interactions between hippocampal regions (CA1/CA3) and neocortex was 

demonstrated by progressive sectioning of all potential synaptic connections.  Briefly, 

late-stage epileptiform activity was found to develop in both territories, and during this 

stage, hippocampal activity entrained patterns of activity in the neocortex. This 

entrainment persisted even after the entorhinal cortex was dissected out, thereby 

removing all potential synaptic pathways between the two regions. Furthermore, 

physical isolation of the hippocampal region and neocortex abolished the entrainment 

phenomenon. This indicated that the synaptic connectivity between the two territories 

was not an essential criterion for the entrainment phenomenon and that it could arise 

from field effects due to focal discharges that occurred elsewhere in the tissue 

(Jefferys, 1995; Frohlich and McCormick, 2010; Anastassiou et al., 2011).  

 

9.6 The use of in vitro models for future work 

There are many cellular interactions that we still have little understanding about, 

and while this remains so, there will be a continued utility for in vitro preparations to 

understand various facets of epilepsy, identifying new drug targets, screening of AEDs, 

and for epileptic transgenic mouse lines. In vitro preparations are simple assays that 

can be used effectively and efficiently, but it is essential to optimise various aspects of 

in vitro the prior to starting the experiments. 

 

9.6.1 Optimising in vitro preparations 

Mouse strain: 

The first thing to consider is which mouse strain will be used for the experiments. 

One should not pool data collected from ‘wild-types’ of different strains, for example, 

data acquired from experiments performed on brain slices collected from C57BL/6J 

mouse line should not be pooled with that collected from ‘129/SV’ mouse line. 
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Slice preparation method: 

The output of experiments mainly depends on the quality of slices prepared. For 

different experiments, different brain slice preparation methods were used. 

Method 1 (see section 2.4.1, chapter 2): this method was used for reducing the 

excitotoxicity induced damage caused during slicing of the brain tissue and 

transportation of slices to from one location to another. In this method, kynurenic acid, 

a wide spectrum blocker of excitatory amino acid receptors, and ascorbic acid in were 

used in calcium ion-free slicing medium. Good quality local field potentials (LFP) 

recorded from these slices proved the quality of slices.  

Method 2 (see section 2.4.2, chapter 2): Ice-cold calcium ion-free slicing 

medium was used for preparing brain slices. These slices were then used in the same 

room where they were prepared. Based on LFP recordings, the quality of slices was 

proved to be good. 

Method 3 (see section 2.4.3, chapter 2): in this method, transcardial perfusion 

was performed on anaesthetised mice. In the solution used for transcardial perfusion 

and slicing, sodium chloride ions were replaced with sucrose to reduce the 

inflammatory responses and overall activity in the brain. Slices prepared by this 

method were used for targeted cell-patching experiments. In this thesis, fluorescently 

labelled PV+ interneurons were targeted for patching. PV+ interneurons in slices 

prepared by this method were observed to be easier to patch, compared with slices 

prepared using method 2. 

 

Setting up an interface recording chamber: 

There are multiple types of interface recording chambers and the settings vary 

for the individual type. Haas type interface recording chamber was used for all local 

field potential recordings described in this thesis. There are 4 key settings that will 

affect the recordings: the rate of perfusion, the temperature of perfusate and the 

chamber, oxygenation within the chamber, and solution levels in the chamber. The rate 

of perfusion should be maintained constant for all the experiments to minimise 

variability, for example, different perfusion rates may vary the latency to the first ictal 

event in neocortex. The temperature of both perfusate and the interface recording 
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chamber should be maintained at the physiological range. If only one of the two is 

heated, then the tissue will experience different temperatures leading to variable 

activity patterns. In the type of interface chamber, I used, oxygenation inside the 

chamber was necessary to prevent slice from dying and keep alive. Finally, regarding 

solution levels, too much solution in the chamber is more likely to make the slice 

unstable and drift away. 

 

9.6.2 Assessing drug effects on epileptiform activity in different brain regions  

Trevelyan et al. demonstrated that the features of the inhibitory restraint – the 

numbers of pre-ictal bursts prior to transition to PDS bursts; recruitment of pyramidal 

cells in a spatially clustered population; modular propagation (Trevelyan et al., 2006; 

Cammarota et al., 2013); and the concomitant increase in ictal propagation speed – 

become progressively weaker with each full ictal event (Trevelyan et al., 2007).  There 

is thus a highly characteristic evolution in the brain slice preparations, from an early 

pattern, characterised by periods of interictal events interspersed with more intense 

full ictal events lasting for tens of seconds, to a late-stage pattern, which is 

characterised by repeated large amplitude, but relatively short lasting (<5s) events.  

This late stage has been likened to the clinical condition, status epilepticus (Zhang et 

al., 1995).  

Clinically, benzodiazepines (BDZ) are used as first-line drugs in therapies for 

status epilepticus, (Chin et al., 2008). However, not all patients respond to BDZs. There 

may be a number factors influencing the patients’ response to BDZs; mechanism 

underlying the epileptic seizures is an important factor. My results show that diazepam 

(DZP), a benzodiazepine, has differential effects on epileptiform activity in neocortex 

induced by 0Mg2+, and 4AP. DZP enhanced the preictal activity and delayed the 

development of the first tonic-clonic like ictal event in the neocortex in 0Mg2+ model, 

but not in 4AP. This model-dependent difference in the effects of diazepam suggests 

that even though the presenting feature is electrographically similar in both the models, 

its anti-epileptic actions depend, to a certain extent, on the underlying mechanism. This 

underscores the importance of knowing the mechanism of seizures for choosing an 

AED. Furthermore, DZP did not suppress the ongoing 0Mg2+-induced ictal events. This 

result is in contradiction with the earlier study in rat brain slices (Dreier et al., 1998). 
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This could potentially be explained by two key differences in the design of the two 

studies: the animal species and the drug used. Dreier et al. used rat brain slices and 

midazolam as a benzodiazepine. However, if the discrepancy between their and our 

results arises from inter-species variability, this would need to be addressed in the 

screening of AEDs. In the 4AP model, DZP was effective in delaying the onset of 

activity in CA3, but had no effect on the neocortex, as mentioned earlier. Further 

investigations are necessary to characterise its effect on hippocampal regions in the 

0Mg2+ model. 

 

9.6.3 Screening of transgenic mouse lines 

Along with the aforementioned applications, another important utility of in vitro 

models is to assess the seizure susceptibility of the cortical networks and other 

features of the epileptiform activity in brain slices taken from transgenic mouse lines. 

The starting point for studying transgenic animals is often just two things: (1) the 

knowledge of a very specific molecular deficit, and (2) a vaguely formulated recognition 

that the animal has a reduced susceptibility to induced seizures, or may even suffer 

spontaneous seizures.  There then remains a large absence of understanding 

regarding how that molecular deficit gives rise to the clinical phenotype, through the 

altered cellular and network interactions, or even which part of the brain is the critical 

location of these pathophysiological changes. These simple in vitro experiments 

provide a rapid way to screen transgenic mouse lines, to find other molecular 

associations (e.g. mouse strain differences), how the mutation affects the network 

excitability, various facets of epileptiform activity evolution, and the mechanisms of 

epileptogenesis. It will also provide insights into the functional role of the protein 

encoded by the gene in the network under physiological conditions. 

 

9.7 The limitations of in vitro models 

Despite their many advantages, acute in vitro models have several limitations. 

They are not suitable for investigating mechanisms involved in chronic epileptogenesis 

(although note my comments regarding organotypic cultures for more chronic studies), 

long-range axonal connections are severed, they lack the behavioural components of 
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in vivo seizures, and are uninformative about comorbidities. A further consideration is 

that an intermediate step for translating in vitro observations into clinically significant 

findings is generally required. 

There are many other aspects of biology that are lost in in vitro preparations, 

such as inflammatory responses, functions of the blood-brain barrier, and vascular 

behaviour. Epilepsy is associated with inflammatory reactions, and emerging evidence 

indicates that inflammation might be both a cause and consequence of epilepsy 

(Vezzani and Granata, 2005). Recent advances in the field showed that modulation of 

inflammatory responses can be an effective epilepsy therapy (Yu et al., 2013). 

Studying such inflammatory responses in epilepsy, and seizure-induced changes in 

the synthesis and expression of proteins such as BDNF, neuropeptide Y is not possible 

in acute in vitro preparations (Vezzani et al., 1999a; Vezzani et al., 1999b) 

As a final example, changes in the function of the blood-brain barrier (BBB) 

during epilepsy are not possible to study using in vitro preparations. The permeability 

of BBB has been shown to be increased during chronic spontaneous seizures in 

different in vivo models of epilepsy (van Vliet et al., 2015). However, it is not 

established whether BBB dysfunction is a cause or an effect of seizures. This 

increased permeability leads to accumulation of albumin, a serum protein, in the brain. 

Albumin is taken up by astrocytes resulting in down-regulation of inward-rectifying 

potassium channels, leading to impaired buffering of potassium and causing neuronal 

hyperexcitability (Ivens et al., 2007). In summary, some biological processes involved 

in epilepsy can only be studied in vivo. 

 

9.8 The relevance of the in vitro epileptiform patterns for clinical work 

Over past few decades, different types of acute in vitro models, techniques, and 

preparations that included brain slices of isolated or interconnected areas were 

developed to replicate and study the epileptiform activity resembling that observed in 

epileptic patients. The in vitro preparations, of course, do not capture the behavioural 

aspects or the effects of long-range connections but are helpful in that they have 

reasonably intact inhibitory and excitatory components that can be provoked to 

develop the epileptiform activity to study various facets of its initiation, propagation, 
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and termination. It is ethically impossible to use patch-clamp recordings or calcium 

imaging techniques to understand epileptiform activity in patients with epilepsy, and 

possibilities are limited to recording electroencephalography (EEG) and/or 

electrocorticography signals. Moreover, the quality of these signals is poor, and the 

probability of recording a seizure event is low.  

Previous studies have examined inhibitory restraint, a key feature of the normal 

functioning cortex, and its nature in the epileptic cortex in in vitro preparations. These 

studies suggested the co-existence of dysfunctional GABAergic inhibition at the core 

of epileptiform activity and functional GABAergic inhibition in the surrounding areas of 

the cortex, and this inhibition is, in large part, mediated by PV+ interneurons 

(Cammarota et al., 2013; Trevelyan et al., 2013). Similar observations were made in 

in vitro and in vivo animal models, and also in epileptic patients (Prince and Wilder, 

1967; Dichter and Spencer, 1969; Schwartz and Bonhoeffer, 2001; Timofeev et al., 

2002; Trevelyan et al., 2006; Schevon et al., 2012). This approach can be used for 

mapping of epileptic activity in the brain and will be valuable in clinics, particularly 

during tissue resection, to distinguish the pathological core from the surrounding 

tissue. 

In another in vitro model, acute pharmacological manipulation with bicuculline 

led to the development of ictal events, that showed, at their onset, either, 

hypersynchronous activity or fast activity (Uva et al., 2005; Gnatkovsky et al., 2008; 

Boido et al., 2014; de Curtis et al., 2016). Similar, patterns of seizures were also 

reported to occur in in vivo rat models and patients with temporal lobe epilepsy (Bragin 

et al., 1999; Velasco et al., 2000; Bartolomei et al., 2001; Wendling et al., 2003; Ogren 

et al., 2009). 
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9.9 Conclusions 

With the current state of technology and our advancement in the understanding 

of epilepsy, one may argue that experiments using in vivo models are appropriate and 

more feasible. But, the problem is that we do not have a clear and detailed 

understanding of structure and functions of the network activity or all the properties of 

the different type of cells forming the network. Furthermore, there are many new 

findings coming out of the work on in vitro models; to give two examples from this 

thesis, the entrainment phenomenon and non-synaptic propagation of activity. There 

is much more to understand and explore at the cellular and small network level itself, 

for which in vitro preparations are ideal on many fronts. 

In vitro slice preparations should be viewed as reduced models of normal 

functioning in vivo state. In these models, different pharmacological manipulations 

acutely challenge normal-functioning brain slices to evoke surges of activity. Analysing 

propagation of the evoked ictal events and many other aspects can provide insights 

into cellular mechanisms and network interactions underlying its evolution and the 

restraint mechanisms engaged by normal tissue. There are thus, many possible 

measures that can be taken during this evolution of epileptic activity in these in vitro 

models, which can potentially be used to examine the effect of drugs on epileptiform 

activity, and differences between different genetic strains with different epilepsy 

susceptibilities.   

In vitro models of epilepsy remain valuable tools for advancing our knowledge 

about epilepsy, and still offer great utility for epilepsy research going forward. They can 

be used for studying physiology and pathophysiology at both cellular and networks 

level.  A wealth of information can be extracted from simple experiments using in vitro 

models. However, key tasks will be examining, analysing, understanding, and 

interpreting this information, and extrapolating it to the clinical issues. This will provide 

insights into the pathophysiology of epilepsy, and physiology of the brain. 
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