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Abstract 

Translation Machinery Association 20 (Tma20) and Tma22 function as interacting 

partners and are highly conserved. TMA20 and TMA22 are among a diverse range of 

yeast genes, which have been shown to decrease fitness of cells with cdc13-1 

induced telomere defects. Deletions of nonsense mediated decay genes (NMD) also 

increase fitness of cdc13-1 and it is thought that this is partially due to the higher 

levels of Stn1 in NMD null strains.  

Genetic interaction studies show that TMA20 and TMA22 function in the same 

pathway as NMD genes, but in parallel pathways to DNA damage genes, to affect 

fitness of cdc13-1. This led us to hypothesise that TMA20 and TMA22 also affect 

fitness of cdc13-1 by increasing levels of Stn1. Consistent with this, we found that 

tma20∆ strains do indeed have increased levels of Stn1. In Drosophila Tma20 and 

Tma20 regulate the expression of genes that contain upstream ORFs (uORFs) by 

promoting translation re-initiation. However we found no evidence that Tma20 and 

Tma22 promote translation re-initiation in yeast, as they do in Drosophila. 

Interestingly though, we observed that STN1 has a uORF and also an ORF that 

overlaps with the main coding sequence of STN1 which we refer to as an oORF. We 

demonstrate that the increase in expression of STN1 that occurs upon deletion of 

TMA20 is dependant on the ORF that overlaps with the main coding sequence of 

STN1, rather than the uORF. We show that the oORF of STN1 serves as an 

important regulatory element, which dramatically reduces levels of Stn1. Fitness of 

cdc13-1 is substantially increased in strains that contain a point mutation in the 

initiation codon of the oORF. The human homolog of STN1 also has an oORF, 

suggesting this mechanism of regulating levels of crucial telomere proteins may be 

conserved.  
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Chapter 1. Introduction 

1.1 Telomeres protect the linear ends of chromosomes 

Telomeres are repetitive sequences at the end of chromosomes which function to 

protect the genetic information contained within linear chromosomes. Telomere 

capping proteins are vital to the integrity of telomeres since an uncapped telomere 

resembles one half of a double strand break (DSB), which is a potent inducer of the 

DNA damage response. The DNA damage response arrests cell cycle to allow for 

repair and if damage is too severe to be repaired, apoptosis is induced.  

1.1.1 Organisation	  of	  telomere	  DNA	  sequences	  

The termini of chromosomes in both mammals and yeast are composed of single 

stranded G-rich overhangs which are approximately 12–14 nucleotides in yeast 

(Figure 2), extending to 50-100 nucleotides in S-phase and 100-280 nucleotides in 

mammals (Larrivée et al., 2004, Wellinger et al., 1993, Webb et al., 2013). The 

double stranded component of telomeres consists of tandem repeats which are TG1–3 

in yeast and TTAGGG in humans (McEachern and Blackburn, 1994). Yeast 

telomeres also contain middle repetitive sub-telomeric elements known as X repeats 

and Y’ elements, with X repeats residing closer to the centromere than Y’ elements. 

X elements are heterogeneous and present in all chromosomes whereas Y’ elements 

are found in approximately half of all chromosomes and exist in 1-4 tandem repeats 

(Mondoux and Zakian, 2007, Kupiec, 2014). Mammalian telomeres are considerably 

longer than yeast telomeres (5,000-15,000 base pairs in humans compared with 225-

375 base pairs in yeast), however the majority of mammalian telomeres in somatic 

cells progressively shorten with each cell division whereas yeast telomere length is 

stably maintained (Larrivée et al., 2004).  

1.1.2 Telomere	  replication	  and	  elongation	  

DNA replication machinery is unable to completely replicate the linear ends of DNA 

leading to progressive shortening of the chromosome termini that occurs with every 

cell division (Watson, 1972) (Olovnikov, 1973). DNA replication on the G-strand 

(lagging strand) occurs discontinuously by short Okazaki fragments that are ligated 
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together to form a continuous strand whereas synthesis of the C-strand (leading 

strand) occurs continuously (Figure 1a). Loss of DNA occurs on the G-rich lagging 

strand as a result of the so called ‘end replication problem’ where removal of the 

RNA primer on the most terminal Okazaki fragment results in a ssDNA overhang 

(Figure 1a). Loss of DNA is more profound on the C-rich leading strand and occurs 

because the blunt ends that result from leading strand replication must again be 

resected to provide the ssDNA required for both CST binding and telomerase 

mediated elongation (Figure 1a).  

The progressive shortening of telomeres is counteracted by telomerase, a reverse 

transcriptase with an integral RNA component that adds DNA sequence repeats to 

the 3’ end of the chromosome. Telomeres of germ and stem cells, as well as the 

majority of cancerous cells, are maintained by telomerase, allowing these cells to 

avoid senescence, which would normally occur when telomeres become critically 

short. Telomerase in yeast is comprised of 3 protein subunits (Est1, Est2 and Est3) 

and TLC1, the RNA template (Lingner et al., 1997b, Lingner et al., 1997a). Est2 is 

the reverse transcriptase subunit whereas Est1 and Est3 are accessory factors 

(Lingner et al., 1997b, Lingner et al., 1997a). In a 5’ to 3’ direction telomerase adds 

repeat sequences to the G-strand, using the integral RNA template, TLC1, as a 

primer (Figure 1b) (Singer and Gottschling, 1994). Primase-Pol α (PP) complex then 

synthesises the C-strand by copying the extended G-tail produced by telomerase 

(Figure 1b)(Qi and Zakian, 2000) (Adams Martin et al., 2000).  
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Figure 1. Telomere replication and elongation. Replication of the G-strand occurs 

discontinuously by Okazaki fragments and results in double stranded DNA that has a 

g-overhang. Replication of the C-strand occurs continuously and results in blunt

ended double stranded DNA that is resected by MRX to produce a g-overhang.

Telomerase adds DNA repeats to the g-strand and Pol α/primase (PP) complex

synthesises the C strand using the g strand as a template.
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1.2 Protein component of the telomere 

1.2.1 CST	  binds	  single	  stranded	  DNA	  at	  telomeres	  

Cdc13, Stn1, Ten1 together comprise the conserved CST complex that protects the 

chromosome ends, regulates telomerase activity and has structural homology to the 

RPA complex (Kupiec, 2014).  RPA is involved in replication and repair and 

promiscuously binds ssDNA (Kupiec, 2014). The CST complex, on the other hand 

has high affinity for the G rich telomeric ssDNA  (Gelinas et al., 2009). The CST 

complex is an essential capping component of telomeres, required to prevent the 

accumulation of ssDNA, activation of the checkpoint response and eventual cell cycle 

arrest at G2/M (Lei et al., 2004) (Grandin et al., 2001a). Although said to be part of a 

complex and shown to bind to one another, members of CST also have some 

independent functions, with Stn1 and Ten1 able to perform some capping functions 

in the absence of Cdc13 (Holstein et al., 2014). Cdc13 recruits telomerase through 

binding to its Est1 subunit, whereas Stn1 inhibits telomerase, by competitive 

interaction with Cdc13 (Puglisi et al., 2008, Nugent et al., 1996a). CST also facilitates 

C-strand fill-in synthesis by the Primase-Pol α (PP) complex, as demonstrated in

Candida glabrata and humans (Lue et al., 2014) (Ganduri and Lue, 2017). C-strand

fill-in synthesis is mediated interactions between Stn1 and Pol12, the regulatory

subunit of PP (Lue et al., 2014). A more general role for CST, particularly Stn1 in

DNA replication has also been proposed (Chastain et al., 2016). In human cells Stn1

is thought to facilitate restart of stalled replication forks after replication stress, by

promoting recruitment of Rad51 (Chastain et al., 2016). Stn1 also affects replication

fork progression in yeast as cells overexpressing Stn1 fail to inhibit replication fork

progression when treated with DNA damaging agents (Gasparyan et al., 2009).

The mammalian CST complex is comprised of Ctc1, Stn1 and Ten1 and also binds 

ssDNA at telomeres, function in chromosome end protection and telomerase 

recruitment (Price et al., 2010). However unlike yeast telomeres, mammalian 

telomeres are also protected by the Sheltrin complex (Chen et al., 2012, Chen et al., 

2013). Sheltrin is composed of TRF1, TRF2, TIN2, RAP1, POT1 and TPP1 and binds 

to DNA through TRF1, TRF2 and POT1 where TRF1 and TRF2 bind double stranded 

DNA while POT1 binds to the ssDNA G-strand. Pot1 was originally described as an 

orthalog of Cdc13, however Cdc13 and Pot1 do not share homology and bind DNA 

by different mechanisms (Lei et al., 2004). 
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1.2.2 Telomere	  proteins	  associated	  with	  double	  stranded	  DNA	  

yKu complex is a conserved DNA binding heterodimer which is comprised of 

subunits yKu70 and yKu80, both mediators of non-homologous end joining (NHEJ) 

(Kupiec, 2014). Since one of the functions of telomeres is to protect the ends of the 

DNA from being targeted for ‘repair’ by NHEJ it is surprising that yKu also binds to 

the double stranded component of telomeres (Figure 2). Similarly to the CST 

complex yKu also protects chromosome ends from exonuclease degradation, which 

is demonstrated by the fact that cells defective in yKu70 accumulate ssDNA which 

results in a cell cycle arrest (Maringele and Lydall, 2002b). The yKu complex also 

promotes telomerase recruitment to the telomeres via an interaction with TLC1 

(Peterson et al., 2001). The double stranded TG1-3 repeats are bound by Rap1, which 

regulates telomere length by a feedback mechanism through its association with Rif1 

and Rif2  (Figure 2). 

(Marcand et al., 1997). Long telomeres bind more Rap1 that in turn bind more Rif1 

and Rif2, which negatively regulate telomere length. Short telomeres bind less Rap1 

and thus are preferentially elongated by telomerase (Marcand et al., 1997). Rap1 and 

Rif2 protect the chromosome ends from degradation by nucleases and NHEJ 

(Marcand et al., 2008) whereas Rif1 is thought to assist the telomere protection 

function of the CST complex (Anbalagan et al., 2011). The SIR complex is comprised 

of Sir2, Sir3 and Sir4 and forms a silencing complex through interaction with histones 

(Kupiec, 2014). 
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Figure 2. Structure of a yeast telomere. Schematic representation of a yeast 

telomere, showing the X and Y′ sequences and the internal and terminal TG 

overhangs. Rap1 binds the telomeric repeats; and Rif1, Rif2, and the SIR proteins 

bind to Rap1. The Ku heterodimer binds to telomeric double strand DNA, and the 

CST complex binds the terminal ssDNA G-tails. Telomerase is recruited to telomeres. 

Figure and text taken from (Kupiec, 2014) 
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1.3 Telomere uncapping leads to cell cycle arrest 

Telomere uncapping can occur as a consequence of the disruption in protein level of 

any of the capping proteins, or in human cells as a consequence of telomere repeats 

becoming critically short (Wellinger, 2010). When telomeres become uncapped they 

are targeted by DSB repair machinery in a manner comparable to the targeting of 

actual DSBs by DSB repair machinery (Figure 3). One of the initial responses to 

DSBs and uncapped telomeres is resection. At DSBs this is mediated by MRX 

(Rad50, Mre11 and Xrs2), which surprisingly inhibit high levels of resection at 

telomeres (Foster et al., 2006). Resection at uncapped telomeres in is carried out by 

Exo1 and Dna2 nucleases, the latter of which functions in combination with the 

helicase Sgs1 (Ngo et al., 2014). YKu complex binds to DSBs, promoting NHEJ as 

an alternative repair pathway to HR by inhibiting resection. Resection creates 

ssDNA, a target of RPA which recruits Rad51 recombinase and Rad52, both 

mediators of HR repair (Wellinger, 2010). RPA is also important in the promotion of 

cell cycle arrest since it activates checkpoint kinase Mec1, Mec1 binding partner 

Ddc2 and the 9-1-1 complex (Ellison and Stillman, 2003). The 9-1-1 complex, 

comprised of Mec3, Ddc1 and Rad17 is loaded to sites of damage by the so called 

clamp loader Rad24/RFC and is critical for full cell cycle arrest, enhancing the activity 

of Mec1 (Majka et al., 2006). Mec1 phosphorylation targets include Rad53 (ATR in 

mammalian cells), Rad9 (53BP1 in mammalian cells) and Chk1 (Vialard et al., 

1998b) (Chen et al., 2009). Rad9, an essential mediator of cell cycle arrest, which is 

also phosphorylated by Tel1, binds DNA and stimulates the activation of Rad53 and 

Chk1 by Mec1 (Vialard et al., 1998b).  
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Figure 3 - Telomere uncapping leads to cell cycle arrest. When telomeres become 

uncapped ssDNA is produced by resection by Exo1 and Dna2/Sgs1. RPA binds to 

resected ssDNA and activates Rad51 and Rad52, both mediators of Homologous 

recombination (HR) in addition to Mec1, Mec1 binding partner Ddc2 and the 9-1-1 

complex, which is loaded onto DNA by Rad24. Mec1 phosphorylation targets include 

Rad53, Chk1 and Rad9. Rad9 strengthens the checkpoint response by further 

activating Mec1, Rad53 and Chk1. Phosphorylation of Chk1 and Rad53 induce cell 

cycle arrest and activation of DNA damage response genes.  
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1.4 High throughput screens uncover genes involved in telomere biology 

Much has been learnt about the cellular responses to telomere uncapping from 

conditional mutations in telomere capping proteins such as Cdc13 and Stn1 (Addinall 

et al., 2008) (Holstein et al., 2017). cdc13-1 is a well studied conditional allele of 

CDC13 that causes Rad9 dependant cell cycle arrest at non permissive 

temperatures due to an accumulation of ssDNA at the telomeres (Garvik et al., 

1995). The temperature at which cdc13-1 can survive (maximum permissive 

temperature) is therefore increased by deletion of RAD9 or EXO1. High throughput 

studies using quantitative fitness analysis (QFA) have uncovered many other genes 

whose deletion suppresses the temperature sensitive phenotype of cdc13-1 (Addinall 

et al., 2008). During QFA cdc13-1 or another gene mutation is cross with a library of 

gene deletions. Many of these genes identified to increase fitness of cdc13-1 

unsurprisingly function in the DNA damage response but others have less obvious 

roles in telomere biology, such as the nonsense mediated decay factors (Addinall et 

al., 2008). High throughput studies yield large amounts of data, however reductionist 

experiments are often required to understand many of these novel interactions.  

1.5 Tma20, Tma22 and Tam64 

Deletion of TMA20 and TMA22 were shown by QFA to strongly supress the 

temperature-sensitive phenotype of cdc13-1 (Addinall et al., 2008). Tma20 and 

Tma22 are highly conserved genes and the homolog of Tma20 is an oncogene 

therefore gaining an understanding their role in telomere biology is of relevance to 

human health. Tma20 and Tma22 were originally identified in yeast as interacting 

proteins that co-purified with the 40S ribosomal subunit (Fleischer et al., 2006b). The 

domain organisation of Tma20 and Tma22 is depicted in Figure 4, which illustrates 

the similarity between yeast, mammalian and Drosophila homologs. The mammalian 

homolog of Tma20 is Multiple copies in T-cell lymphoma-1 (MCT-1) and the homolog 

of Tma22 is Density regulated protein 1 (DENR). The N-terminus of Tma20 has an 

eIF2D_N domain of unknown function and the C-terminus has a pseudouridine 

synthase and archaeosine transglycosylase (PUA) domain (Skabkin et al., 2010b). 

PUA domains have been described as highly conserved RNA binding domains found 

in a range of proteins in archaea, bacteria and eukaryotes (Cerrudo et al., 2014). 

Interestingly the PUA domain is also found in Ctf5 and its mammalian homolog 
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Dyskerin, and mutations in the PUA domain of Dyskerin causes dyskeratosis 

congenita in humans, a condition characterised by short telomeres (Heiss et al., 

1998). The N-terminus of Tma22, and mammalian DENR contains a SUI1/eIF1 

domain (also found in eIF1) and the C-terminus contains a SWIB/MDM2 domain 

(Skabkin et al., 2010b). Tma64 and its mammalian homolog eIF2D (formally called 

Ligatin) contains in its N terminus eIF2D_N and PUA of Tma20 and in its C-terminus 

SUI1/eIF1 and SWIB/MDM2 domains of Tma22. eIF2D has been shown to be 

functionally homologous to MCT-1 and DENR complex, although deletion of Tma64 

does not appear to affect the fitness of cdc13-1 strains (Skabkin et al., 2010b) 

(Addinall et al., 2008). The fact that Tma20 contains a PUA domain involved in RNA 

binding and Tma22 contains a SUI1/eIF1 also found in eIF1 strongly suggests that 

Tma20 and Tma22 function in translation.  
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Figure 4: Domain organisation of Tma20, Tma22 and Tma64 in yeast, humans and 

Drosophila. Reproduced from figure in (Skabkin et al., 2010b). Tma20 and homologs 

in humans and Drosophila contain a PseudoUridine synthase and Archaeosine 

transglycosylase domain (PUA). Tma22 and homologs in humans and Drosophila 

contain a SUI1 domain. 
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1.6 MCT-1 and DENR function in translation 

Recently solved structures of MCT-1 and DENR have shown that they function as a 

heterodimer (Lomakin et al., 2017). MCT-1 functions in tumorigenesis and various 

knockdown and overexpression studies have revealed that the disruption of MCT-1 

activity affects various cellular functions, including apoptosis, cell cycle progression 

and DNA damage response (Hsu et al., 2005, Hsu et al., 2007, Herbert et al., 2001). 

The various phenotypes that have been observed upon overexpression or 

knockdown of MCT-1 are likely a consequence of altered translation profiles due to 

the biochemical function of MCT-1 and DENR in translation. Although the role of 

MCT-1 and DENR in translation is not completely understood current evidence 

implicate them in and recruitment of Met-tRNAi
Met to the initiation complex, recycling 

of the post termination ribosomes and translation re-initiation. Indeed recent 

structural studies that confirm their interaction with the 40S ribosomal subunit provide 

further evidence of their role in translation.  

1.7 Translation is the synthesis is proteins from mRNAs 

Translation of proteins from mRNA is a tightly regulated process and it has been 

argued that the dysregulation of translational control can lead to cancer (Ruggero 

and Pandolfi, 2003). Translation is a cyclical process that involves initiation, 

elongation, termination and ribosome recycling with translation initiation being the 

rate limiting stage. Translation initiation involves the assembly of the 80S ribosome 

onto the initiator methionine. Translation elongation involves the movement of the 

ribosome along the mRNA, creating a newly synthesised polypeptide chain. An 

aminoacyl tRNA binds to the A site of a ribosome, and the growing polypeptide chain 

which is attached to the tRNA positioned in the P site moves to bind to the amino 

acid attached to the tRNA in the A site. The ribosome then translocates so that the 

tRNA attached to the polypeptide chain is once again in the P site, leaving the A site 

empty and the E site occupied by the empty tRNA molecule, where it is subsequently 

released. Translation termination is the process where a stop codon is encountered 

by the ribosomal A site and since there is no corresponding aminoacyl tRNA the A 

site is bound by eukaryotic release factors, which results in the peptide chain being 

cleaved from the tRNA. During ribosome recycling the tRNA and mRNA are released 

from the ribosome and the 80S ribosome is dissociated into 40S and 60S subunits. 
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The 5’cap of mRNA, denoted m7GpppN, where N is any nucleotide, is found only on 

mature mRNAs in which a 7-methylguanosine has been added to the most 5’ 

nucleotide of the transcript leader (TL) by a 5’ to 5’ triphosphate linkage. The 3’ 

terminus of an mRNA, referred to as the PolyA tail, is comprised of a stretch of 

adenoside bases and functions in RNA stability.  
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Figure 5. Translation includes initiation, elongation termination and ribosome 

recycling. During translation initiation the 40S ribosomal subunit scans the TL, in a 5’-

3’ direction, until it reaches an initiation codon. At this point the 60S joins resulting in 

an 80S that is poised for translation elongation. During translation elongation the 80S 

moves along the creating a newly synthesised polypeptide chain. Translation 

termination occurs when the 80S encounters an in-frame termination codon and 

results in the release of the polypeptide chain. The mRNA then dissociates from the 

ribosomal subunits, which split into a 60S and 40S during ribosome recycling. 
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1.8 Translation Initiation 

The steps of translation initiation, depicted in Figure 5, are highly conserved in 

eukaryotes and mediated by eukaryotic translation initiation factors (eIFs). The first 

step in translation is the formation of the pre-initiation complex (PIC) by the binding of 

a free 40S ribosomal subunit to the ternary complex (TC), a process facilitated by 

eIF1, eIF1A and eIF3 (Algire et al., 2002). The TC is comprised of a methionine 

charged initiator tRNA (Met-tRNAi
Met) and a GTP bound eIF2. eIF2 transports Met-

tRNAi
Met to the AUG of an mRNA and is comprised of 3 subunits, α (encoded by 

SUI2), γ (encoded by GCD11) and β (encoded by SUI3). Upon binding of the TC to 

the 40S, the newly formed complex becomes the 43S PIC complex and is recruited 

to an mRNA. eIF2 exists in an ‘active’ GTP bound state or an ‘inactive’ GDP bound 

state. eIF2B is the guanine exchange factor (GEF) that displaced GDP and replaces 

it with GTP (Hinnebusch et al., 2007). eIF2B thus regulates the assembly of active 

PIC. eIF2B contains 5 subunits which are conserved from yeast to mammals, є 

(encoded by GCD6), δ (encoded by GCD2), ƴ(encoded by GCD1), β (encoded by 

GCD7) and α (encoded by GCD3).  

mRNA recruitment to 43S PIC is mediated by a protein complex, eIF4F, which binds 

the m7G cap of the TL. Binding of eIF4F to the 43S and attachment to m7G cap forms 

the 48S PIC. eIF4F is comprised of the cap binding factor eIF4E (encoded by 

CDC33), the scaffold protein eIF4G (encoded by TIF4631) and the RNA helicase 

eIF4A (encoded by both TIF1 and TIF2). The scaffold protein eIF4G interacts with 

poly(A)-binding protein (PABP) and promotes binding of eIF4E to m7G cap (Tarun Jr 

and Sachs, 1996) (Ptushkina et al., 1998). eIF4A is a DEAD-box RNA helicase with 

bi-directional RNA helicase activity and is thought to unwind TL secondary structure 

(Tanner and Linder, 2001, Rajagopal et al., 2012). The binding of eIF4E to eIF4G is 

essential for translation initiation and inhibited in mammalian cells by eIF4E binding 

proteins (4E-BP’s). In yeast Caf20 and Eap1 regulate translation by competitively 

binding to eIF4E (Ptushkina et al., 1998) (Cosentino et al., 2000). In addition to 

eIF4F, eIF4B and PABP are thought to aid the recruitment of 43S PIC to the 5’ end of 

the TL. eIF4B (encoded by TIF3) binds to 40S ribosomal subunit, inducing a 

conformational change which is thought to allow the TL of the mRNA to pass though 

the 43S PIC (Walker et al., 2013).  
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Upon binding of the 43S PIC to TL m7G cap and assembly of the 48S, the ribosome 

scans until an AUG is within the P site of the ribosome. AUG recognition by the 

ribosome is aided by the presence of a consensus Kozak sequence (Kozak, 1986a). 

Although the 43S PIC can bind to 5’ cap, scan the TL and, providing eIF1 is present, 

correctly locate the start codon, helicases eIF4A, eIF4B and eIF4F are required if the 

TL contains any secondary structure (Pestova and Kolupaeva, 2002). It has however 

been suggested that, in yeast, Ded and Dpb1 are more important helicases required 

to resolve TL secondary structure (Berthelot et al., 2004). eIF1, eIF1A, eIF2 and eIF5 

are involved in the ‘recognition’ of the AUG codon, ensuring that the Met-tRNAi
Met

does not base pair with a non-cognate codon (Hinnebusch et al., 2007). eIF1A is 

thought to stimulate an open conformation of the ribosome, which returns to a closed 

conformation when eIF1 is released, following an AUG entering the P site (Maag et 

al., 2005). Upon codon-anticodon base pairing between the Met-tRNAi
Met and the 

start codon, the GTP bound to eIF2 of the TC is hydrolysed, promoting the 

dissociation of the TC from the ribosome. TC dissociation from the ribosome allows 

the binding of a 60S ribosomal subunit, which together with the 40S subunit forms an 

80S complex poised for elongation. eIF5 is required for the hydrolyses of GTP by 

eIF2 which stimulates eIF2 release from the PIC (Jivotovskaya et al., 2006). After 

joining of the 60S to the 48S PIC a second hydrolysis reaction is required in addition 

to the release of eIF5 to allow for the 80S to be converted into a state ready for 

elongation (Hinnebusch et al., 2007). eIF5B, encoded by FUN12, has been 

demonstrated to catalyse the second hydrolysis reaction (Lee et al., 2002).  
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Figure 6: Translation initiation. Taken from (Hinnebusch et al., 2007) The pathway is 

depicted in a series of discrete steps commencing with the recycling of 80S ribosome 

into 40S and 60S subunits. The binding of TC to 40S, aided by eIF1A, eIF1, eIF5 and 

eIF3, forms the 43S PIC. 43S PIC association with the m7G cap forms the 48S 

complex poised for scanning. The ribosome scans the TL in a 5’ to 3’ direction until 

an AUG is encountered which triggers GTP hydrolysis of eIF2·GTP and release of 

eIF2·GDP. eIF2·GDP is converted back into an active TC by GEF eIF2B, a reaction 

inhibited by phosphorylation of eIF2α. eIF5B promotes binding of the 60S to the 40S 

to form an elongation poised 80S subunit.  
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In mammalian cells MCT-1 has been shown to interact with the mRNA 5’ cap, in a 

reaction dependant on eIF4E, and to recruit DENR (Reinert et al., 2006). Luciferase 

reporter constructs revealed that in vitro full length MCT-1, but not MCT-1 lacking the 

PUA domain, enhance translation, suggesting that MCT-1 promotes translation 

through binding to RNA via its PUA domain (Reinert et al., 2006). MCT-1 

overexpression was shown, by microarray of the mRNAs purified from the polysome 

fraction, to up-regulate around 25% of the genes which were tested (Reinert et al., 

2006). 

1.9 Some transcripts contain uORFs 

An estimated 50% of human genes and 14% of yeast genes contain upstream open 

reading frames (uORFs) within their TLs. A uORF is defined as an AUG with an in-

frame stop codon within the TL although some definitions include uORFs that have 

stop codons within the main ORF, termed overlapping ORFs (oORFs) (Figure 7a and 

b)(Calvo et al., 2009). uORFs generally repress gene expression and this idea is 

supported by published studies of mRNA and protein abundances in mammalian 

cells showing that there is a significant decrease in the protein levels of those genes 

that have uORFs (Calvo et al., 2009). uORFs have also been show to act as 

negative regulators of translation in yeast, as demonstrated by ribosome profiling 

experiments (Brar et al., 2012). 

1.9.1 uORF	  mediated	  translational	  control	  

uORFs generally exert negative effect on the expression of the main coding 

sequence (CDS) since they reduce the number of scanning ribosomes that reach the 

main initiation codon (Figure 7). This usually occurs as a consequence of the 

ribosome translating the uORF and dissociating from the mRNA following translation 

termination at the uORF stop codon (Figure 7c). The ribosome can also stall during 

elongation of the uORF (Figure 7d). Ribosomal stalling blocks translation of the main 

ORF by acting as a barrier on the TL, preventing the scanning of other ribosomes 

(Figure 7d). Further, stalling of the ribosome during elongation or termination of the 

uORF may induce degradation of the transcript by NMD  (Figure 7e). There are two 

main pathways, which permit the translation of a transcript containing a uORF. The 

PIC can fail to recognise the uAUG, scan through the uORF and initiate translation at 

the main ORF, a process known as ‘leaky scanning’  (Figure 7f). Leaky scanning is 
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more likely to occur if there is a weak Kozak sequence surrounding the uAUG of the 

uORF. Secondly following translation the uORF, the 40S ribosome can remain 

attached to the TL, re-acquire a Met-tRNAi
Met and then resume translation at the main 

ORF in a process known as re-initiation  (Figure 7g).  
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Figure 7: uORF mediated translational control. Reproduced from (Barbosa et al., 

2013b) A) Diagram of a transcript with a uORF. B) Diagram of a transcript with an 

oORF. C) The ribosome dissociates following translation of the uORF. D) The 

ribosome stalls during translation of the uORF creating a barrier to translation by 

blocking the progression of other ribosomes. E) The ribosome stalls during 

translation of the uORF and NMD is activated F) “Leaky scanning” occurs at the 

uAUG of the uORF and translation of the uORF is bypassed allowing for translation 

to occur on the main ORF. G) Re-initation at the main ORF occurs following 

translation of the uORF.  
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1.9.2 uORFs	  facilitate	  expression	  of	  some	  genes	  in	  response	  to	  stress	  

Although uORFs are only found in an estimated 50% of human mRNAs, two-thirds of 

oncogenes contain uORFs suggesting they may function in ontogenesis (Calvo et al., 

2009). This is supported by examples showing that polymorphisms identified in 

uORFs have been associated with human disease, for example mutations that 

introduce a uORF into the TL of CDKN2A have been shown to cause familial 

predisposition to melanoma (Barbosa et al., 2013b) (Bisio et al., 2010). In addition a 

polymorphism introducing a uORF into the TL of ERCC5 is associated with 

resistance to platinum based chemotherapy (Somers et al., 2015).  

uORFs have been suggested to facilitate the change in expression of a large number 

of genes in response to changes in cellular activity or stress. Experiments in yeast 

have indicated that uORFs may change protein expression of a large number of 

genes to facilitate a switch into meiosis (Brar et al., 2012). uORFs have been 

suggested to mediate preferential expression of specific mRNAs in response to 

stress through the integrated stress response (ISR) (Young and Wek, 2016). During 

the ISR there is a down-regulation in protein production mediated by eIF2ɑ 

phosphorylation but curiously a parallel up-regulation in expression of selected 

genes, which presumably function to ameliorate stress (Young and Wek, 2016). In 

mammalian cells treated with sodium arsenite there is a global repression of 

translation but among the 10 genes whose expression was not repressed, 9 of these 

contain one or more uORFs (Andreev et al., 2015). Further, it has also been 

suggested that uORFs mediate the preferential translation of some DNA damage 

response genes when mammalian cells are treated with UVB (Powley et al., 2009). 

The mechanism that facilitates preferential translation of genes that contain uORFs 

under conditions of stress is currently unknown. However reductionist experiments 

have been used to show on specific genes how uORFs facilitate expression in 

conditions of stress. 

1.9.3 Specific	  examples	  of	  translation	  regulation	  by	  uORFs	  

Delayed translation re-initiation, depicted in Figure 8 has been described where eIF2 

phosphorylation results in a change in the start site selection during translation re-

initiation. GCN4 contains 4 uORFs, each within the TL. Following termination and 

dissociation of 60S subunit and TC after translation of uORF 1 or 2 around 50% of 



28 

the time the 40S subunit remains attached to the mRNA and continues to scan along 

the TL (Figure 8) (Gunišová and Valášek, 2014). Under normal conditions 40S 

subunit re-acquires a TC before reaching the next uAUG and therefore re-initiates 

translation at uORF3 or 4, subsequently terminating and dissociating from the mRNA 

without reaching the main initiation codon of GCN4. However in conditions eIF2α 

phosphorylation there is reduced TC availability meaning the 40S does not re-acquire 

the TC until reaching the main ORF, thereby bypassing translation of uORF3 and 

uORF4 and permitting GCN4 translation (Gunišová and Valášek, 2014). The fact that 

this model is gene specific is highlighted by the fact that it requires cis acting features 

within the TL of GCN4. Translation re-initiation is permitted following translation of 

uORF1 and uORF2 by re-initiation permissive elements (RPE) which are positioned 

within the TL in close proximity to the uORFs (Gunišová and Valášek, 2014). In 

contrast uORF3 and uORF4 do not efficiently permit translation re-initiation, with 

uORF4 being considerably less permissive to re-initiation (Gunišová and Valášek, 

2014). The delayed translation re-initiation model is conserved and controls 

expression of the mammalian gene ATF4 in a mechanism analogous to GCN4.  

eIF2α phosphorylation has been shown to result in a change in the start site selection 

causing ribosomes to begin translation at different ATGs. In mammalian cells 

translation of GADD34 and CHOP are inhibited by uORFs but when eIF2α becomes 

phosphorylated bypass of the uORF occurs, allowing initiation at the main coding 

sequences. The mechanism of different start site selection under conditions of eIF2 

however is not yet understood (Young and Wek, 2016). 

CPA1 expression in response to levels of arginine is regulated by a uORF. Under 

normal conditions the uORF is translated, but translation of CPA1 is maintained by 

leaky scanning at the uORF initiation codon (Gaba et al., 2005b). High levels of 

arginine prevent dissociation of the uORF peptide product, resulting in ribosome 

stalling (Gaba et al., 2005b). The stalled ribosomes repress translation of the CPA1 

by creating a physically barrier to ribosomes that otherwise would have reached the 

main ORF by leaky scanning. Additionally the stalled ribosomes further reduce 

expression since they increase degradation of the transcript by NMD (Gaba et al., 

2005b). The amino acid sequence of the uORF is critical to the translational control 

of CPA1 and the stop codon has been shown to be dispensable as ribosomes can 

also stall during elongation (Wang et al., 1998).  
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Although uORFs generally inhibit downstream translation there are specific examples 

where uORFs actually promote expression of a corresponding main ORF. For 

example translation of the uORF of CAT1, a mammalian gene, is thought to unfold 

repressive TL secondary structure and reveal an IRES, which in turn promotes CAT1 

expression (Yaman et al., 2003). Additionally it has been shown that upon exposure 

to DNA damage, expression of ERCC5 is facilitated by a uORF but inhibited by the 

same uORF under normal conditions (Somers et al., 2015). The molecular 

mechanism by which the uORFs promote expression of ERCC5 however is unclear 

although attributed to the depletion of active eIF2 (Somers et al., 2015). 
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Figure 8. Translation re-initiation controls the expression of GCN4. Figure and legend 

taken from (Gunišová and Valášek, 2014). Schematic of the GCN4 TL showing 

distribution of all four short uORFs, locations of the uORF1-specific and uORF2-

specific RPEs, 40S-bound eIF3, and the description of the of the GCN4 translational 

control. Upper panel models the events on the GCN4 TL, which occur under non-

starvation conditions with abundant TC levels. The lower panel illustrates the steps 

that take place under starvation condition with limited supply of the TC. 
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1.9.4 Tma20	  and	  Tma22	  promote	  translation	  of	  genes	  that	  contain	  uORFs	  

The homologs of Tma20 and Tma22, in Drosophila were described to regulate the 

expression of genes that contain uORFs by promoting translation re-initiation 

(Schleich et al., 2014a). Unlike translation re-initiation described on GCN4 the 

regulation of re-initiation by DENR is not dependant on regulatory elements within the 

TL and is not induced in response to low eIF2α phosphorylation (Schleich et al., 

2014a). DENR and MCT-1 are thought to globally regulate the translation of genes 

that contain uORFs whereas the mechanism of translation re-initiation described on 

GCN4 transcript is unique to GCN4. DENR (Tma22) and MCT-1 (Tma20) were 

recently also shown to be required for the optimal translation of genes that contain 

uORFs in human cells although, in contrast with Drosophila mammalian homologs of 

Tma20 and Tma22 only promote translation of transcripts that contain uORFs that 

are 1 amino acid in length (Schleich et al., 2017). Further the mechanism by which 

they promote expression after translation of a uORF was not explored, although it 

could be by translation re-initiation (Schleich et al., 2017). Regulation of translation 

by DENR (Tma22) and MCT-1 (Tma20) in Drosophila and human cells is dependant 

on the uORF being in a strong initiation context, presumably because the 40S 

ribosomal complex bypasses uORFs that are in weak initiation contexts (Schleich et 

al., 2014a) (Schleich et al., 2017).   

1.10 Translation termination and ribosome recycling 

Translation termination occurs when a stop codon enters the ribosomal A site and is 

mediated by eukaryotic release factors, eRF1 (encoded by SUP45) and eRF3 

(encoded by SUP35) which form a ternary complex with GTP binding to eRF3. Upon 

encountering a UAA, UAG or UGA triplet there is no complementary anticodon so the 

ternary complex is recruited with eRF1 instead entering the A site in place of an 

acetylated-tRNA (Shoemaker and Green, 2011). Stop codon recognition induces 

GTP hydrolysis and subsequent eRF3/GDP dissociation (Shoemaker and Green, 

2011). eRF1 activates the peptidyl transferase centre of the ribosome which releases 

the polypeptide by hydrolysing its covalent bond to P-site tRNA (Shoemaker and 

Green, 2011). The release of polypeptide is promoted by the binding of the recycling 

factor ABCE1 (Rli1 in yeast) linking termination with recycling (Dever and Green, 

2012). ABCE1 mediates the dissociation of 60S from the post termination complex 
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(post-TC) leaving the 40S subunit bound to mRNA and deacetylated tRNA (Becker et 

al., 2012) (Pisarev et al., 2010). This reaction is promoted by eIF3 and its loosely 

associated subunit eIF3j (Hcr1 in yeast) in addition to eIF1 and eIF1A (Pisarev et al., 

2007) (Pisarev et al., 2010). The next step involves the release of deacetylated tRNA 

from the 40S bound to mRNA and is also promoted by eIF1, eIF1A and eIF3 (Pisarev 

et al., 2007). eIF3j has been suggested to be required for efficient dissociation of 

mRNA and 40S (Pisarev et al., 2007). Interestingly either eIF2D or MCT-1/DENR 

have also been shown to substitute for eIF1, eIF1A, and eIF3 to stimulate release of 

deacylated tRNA and mRNA from the 40S in vitro (Skabkin et al., 2010a). 

Interestingly the NMD has been linked to translation termination and ribosome 

recycling with nam7 resulting in an increased stop codon read-though phenotype 

(Fleischer et al., 2006a) and reduced recycling of post termination ribosomes (Ghosh 

et al., 2010).  
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Figure 9. Translation termination and ribosome recycling. Upon stop codon entry into 

the ribosomal A-site, eRF1 eRF3 are recruited to the ribosome as a ternary complex 

with GTP. Stop codon recognition induces GTP hydrolysis and eRF3/GDP 

dissociates. Hcr1 is proposed to promote eRF3·GDP dissociation to allow the 

recruitment of Rli1. eRF1 then induces release of nascent polypeptide chain and this 

is also promoted by Rli1. Rli1, Hcr1, eIF1, eIF1A and eIF3 promotes the splitting of 

the 60S ribosomal subunit. Dissociation of 40S from de-acetylated tRNA and mRNA 

then occurs, promoted by Hcr1, eIF1, eIF1A and eIF3, Tma20/Tma22 and Tma64. 
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1.11 Translation in conditions of stress 

A critical step in translation initiation is the delivery of the Met-tRNAi
Met as part of a 

ternary complex with eIF2 and GTP, to the initiation codon. eIF2 is therefore a critical 

regulator of translation initiation and depletion of the abundance of active eIF2 (in the 

GTP bound state) results in a global down regulation in protein synthesis. As a 

response to a variety of stresses, such as amino acid availability, oxidative stress or 

heat shock the α subunit of eIF2 becomes phosphorylated, rendering eIF2 in the 

inactive state unable to exchange GDP for GTP. The translation of some transcripts 

can be maintained in low levels of active eIF2 by eIF2 independent recruitment of 

tRNAi
Met to 40S/mRNA binary complex. eIF2 independent translation initiation was 

originally described on vial transcripts that contain internal ribosome entry sites 

(IRES) as a mechanism to enable translation while host machinery has been shut 

down. However since then eIF2 independent translation has been shown in yeast 

and mammalian cells to allow translation of certain genes in conditions of stress 

(Gilbert et al., 2007) (Paz et al., 1999).  

Evidence suggests that mammalian homologues of MCT-1 (Tma20) and DENR 

(Tma22) as a complex and eIF2D (Tma64) by itself, promote a type of IRES 

mediated translation initiation that is independent of eIF2 and also eIF3 (Skabkin et 

al., 2010b). This mechanism however has only so far been described on viral 

transcripts where AUG start site must be placed directly in the P-site since. MCT-1 

(Tma20) and DENR (Tma22) as a complex or eIF2D (Tma64) alone have more 

recently shown to promote translation re-initiation on some viral bicistronic transcripts 

(Zinoviev et al., 2015).  

1.12 Nonsense mediated Decay 

The RNA decay pathway, nonsense mediated decay (NMD) was originally described 

to target mRNAs which contain premature termination codons (PTC) although the list 

of NMD targets has since grown to include mRNAs which contain uORFs, long 

3’UTRs, frameshifts, unspliced introns and aberrant transcript isoforms generated by 

different transcription start sites or leaky scanning (Gaba et al., 2005b) (Zaborske et 

al., 2013) (Celik et al., 2017b). Core NMD factors Upf1 (Nam7), Upf2 (Nmd2) and 

Upf3 are responsible for targeting an mRNA for NMD with interaction between eRF3 

and Nam7 is thought to recruit other factors (Kervestin and Jacobson, 2012). Nam7 
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is a 5’ to 3’ RNA helicase central to NMD while Nmd2 and Upf2 are thought to 

regulate Nam7. Nam7 promotes mRNA decapping via interactions with decapping 

factors, Edc2, Pat1 and Dcp2 which allows 5’-3’ exonucleoic degradation performed 

by Xrn1 (Swisher and Parker, 2011). NMD also stimulates 3’-5’ RNA degradation 

mediated by the exosome and Ski complex and occurs following deadenylation of the 

polyA tail (Mitchell and Tollervey, 2003). In addition to inducing mRNA degradation 

which occurs following mRNA uncapping and deadenylation NMD induces translation 

termination and ribosome dissociation (Kervestin and Jacobson, 2012) .  

There is some debate about the mechanism by which translation is terminated and 

an mRNA is targeted for NMD in yeast and the overlap between these two 

processes. The core factors of NMD have for example been shown to be involved in 

normal translation termination.  
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Figure 10: Nonsense mediated mRNA decay. Core NMD factors (Nam7, Nmd2 and 

Upf3) are recruited to a transcript via interaction of Nam7 with eRF3. This activated 

decapping factors (Dcp2, Edc1 and Pat1) as well as nucleases 5’-3’ and 3’-5’ 

exonucleases. 
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1.13 Aims 

The goal of this project is to determine how deletion of TMA20 and TMA22 affect the 

fitness of cdc13-1 temperature sensitive strains. This will be accomplished by 

investigating the role of Tma20 and Tma22 in translation and identifying which 

genes, if any, they regulate the translation of in addition to the mechanism of 

regulation. An initial aim is to use bioinformatics approaches and published datasets 

to identify which genes, in yeast, contain uORFs. Molecular genetic techniques will 

then be used to experimentally test weather candidate genes are under the 

regulation of Tma20 and Tma22. Yeast genetics will be used to investigate which 

pathways are affected by the deletion of TMA20 and TMA22.  
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Chapter 2. Materials and Methods 

2.1 Recipes for yeast and bacterial media 

2.1.1 Yeast	  

Yeast were grown on either YPD, selective dropout media or YDP plus the addition 

of selective drug. YPD was made using 1% yeast extract, 2% peptone, 2% dextrose 

and 0.0075% adenine) and selective dropout media 0.13% amino acid dropout 

powder, 0.17% yeast nitogen base, 0.5% ammonium sulphate and 2% dextrose. 2% 

agar was added to make solid plates. 

2.1.2 E-‐coli	  

E-coli was grown in Lysogeny Broth (LB) which was made up of 0.5% yeast extract,

1% peptone, 1% NaCL. 2% agar was added to make solid plates. To select cells

carrying Ampicillin resistant plasmids 100 mg/ml of Ampicillin was added.

2.2 Yeast genetic methods 

2.2.1 Mating	  

MATa and MATalpha parental strains were mixed on solid YPD and incubated 

overnight. Diploids were selected on dropout plates that allow growth of only the 

diploids.  

2.2.2 Sporulation	  

Diploid cells were inoculated in 2ml of YPD and grown to saturation on a wheel at 23 

°C. 500µL of saturated culture was washed in water and resuspended in ESM media 

(0.1% yeast extract, 0.05% dextrose, 1% potassium acetate, 0.1% amino acid mix 

(2g histidine, 10g leucine, 2g uracil). Cultures were incubated on a wheel at 23°C for 

3 days or until tetrads were visible. 
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2.2.3 Tetrad	  analysis	  

Sporulated cultures were washed twice in water and resuspended in 500µL of water. 

20µL of culture was incubated at 30˚C for 10 minutes with 1.2µL of glucolase (Perkin 

Elmer) to digest cell walls. Cells were resuspended in 500µL of water and 80µL of 

tetrads were spread in a line onto YPD plates. Spores were separated using tetrad 

dissector and allowed to grow for 5 days before being patched out on YPD and 

replica plated onto appropriate media to determine genotypes. 

2.2.4 Gene	  deletion	  and	  epitope	  tagging	  

Gene deletions and epitode tagging were carried out using methods detailed in 

(Longtine et al., 1998). Selective markers or epitope tags were amplified from 

plasmids detailed in Appendix B, using primers designed with regions of homology 

flanking the gene that was to be deleted or flanking the stop codon if an epitope tag 

was being introduced. PCR product was transformed into appropriate strain using the 

high efficiency lithium acetate transformation protocol.  

2.2.5 High	  efficiency	  Lithium	  acetate	  transformation	  

1ml of stationary phase culture was inoculated in 50ml of YPD with shaking until log 

phase (2x107cells/mL). Cells were washed twice with water and resuspended in 100 

mM Lithium acetate (LiAc). 50µL of the cell suspension was spud down used for 

transformation. In the following order 240µL 50% PEG, 36µL of 1M LiAc mM, 50µL 

2mg/ml salmon sperm DNA and 50µL DNA which is to be transformed were added to 

the cells and mixed by vortexing. Cells were incubated at 23°C for 30 minutes before 

heat shock at 42°C for 20 minutes. Cells were resuspended in 200µL of water and 

plated onto appropriated media at 23°C or 30°C until colonies were visible. 

2.2.6 Transformation	  of	  plasmids	  into	  yeast	  (One-‐step	  transformation)	  

Freshly grown cells were re-suspended in 100 µl of one-step buffer (0.2 M Lithium 

Acetate, 40% PEG, 100 mM DTT). 1µl of plasmid DNA and 5.3 µl of 10 mg/ml 

salmon sperm DNA was added and mixed by vortexing. Cells were incubated at 

45°C for 30 minutes before being plated on appropriate solid selective media.  
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2.2.7 Isolation	  of	  plasmids	  from	  yeast	  

Plasmids were recovered from yeast cells using QIAprep Spin Miniprep Kit, with 

small adjustments made to the manufacturer’s protocol: 50 µl glass beads were 

added to cells after re-suspension in Buffer P1 and cells were vortexed for 5 minutes. 

Additionally cells were allowed to incubate at room temperature for 5 minutes after 

addition of Buffer P2.  

2.2.8 Growth	  assays	  

2mL cultures were inoculated in YPD overnight on a wheel at 23°C until saturation. 

The desired dilution series was made in a 96-well plate using water and spotted onto 

appropriate media using a sterilised replica-plating device. 

2.2.9 Microscopy	  

8 µl of liquid culture was dropped onto a glass slide. Cells were counted/scored and 

images were photographed under a fluorescence microscope (Nikon eclipse 50i). 

2.3 Molecular biology methods 

2.3.1 Extraction	  of	  Genomic	  DNA	  from	  yeast	  (for	  PCR)	  

When preparing genomic DNA for PCR genomic DNA was extracted from yeast 

using’ Extraction of Genomic DNA’ (Epigenetics) kit according to manufacturer’s 

protocol.   

2.3.2 Extraction	  of	  Genomic	  DNA	  from	  yeast	  (for	  Southern	  Blot)	  

For Southern blotting, genomic DNA was prepared using the Yale method. 2 mL 

saturated cultures, resuspended in 250 µL of buffer (0.1M EDTA (pH7.5), 1:1000 β-

mercaptoethanol and 2.5 mg/mL zymolyase 20T (Sigma Aldrich)) and incubated at 

37°C for one hour. 55µL of miniprep mix (0.25M EDTA (pH 8.5), 0.5M Tris, 2.5% 

SDS) was added and suspensions incubated at 65°C for 30 minutes. 68µL of 

potassium acetate (5M) was added and samples incubated on ice for 30 minutes. 

Samples were spun down for 20 minutes at 13,000 rpm and the supernatant 
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transferred to a clean tube. Samples were mixed with 1ml of ethanol and spun down 

for 10 minutes at 13, 000 rpm for 10 minutes. Pellets were dried and incubated at 

37°C for 1 hour in 130µL TE buffer with 1mg/ul RNAase A. 150µL isopropanol was 

added and samples spun down for 20 minutes at 13, 000 rpm. Pellets were washed 

with 100µL 70% ethanol. DNA was resuspended in 40 µL TE buffer.  

2.3.3 Plasmid	  digestions	  

Plasmid digestions were set up using 0.5µL of enzyme, 1x digestion buffer. 0.5µL 

plasmid was used for diagnostic digests and 3µL plasmid was used for cloning 

reactions. Reactions were incubated at 37° for 2-4 hours. 

2.3.4 Polymerase	  chain	  reaction	  (PCR)	  

PCR reactions were set up using the quantities of reagents detailed in the tables 

below. PCR conditions are also shown. Hot start PCR was used for genotyping 

whereas ExTaq PCR was used to amplify DNA for cloning, or integrating DNA into 

the genome.    

Hot start 

F primer (30µM) 0.2µl 

       R primer (30µM) 0.2µl 

MgCl2 (25mM) 2µl 

Hot start polymerase 

(5u/ul) 0.1µl 

dNTPs (2.5mM) 2µl 

5x green buffer 4µl 

Cells 2µl 

water 9.5µl 

95°C 15 minutes 1 cycle 

94°C 1 minute 

30 cycles 55°C 1 minute 

72°C 1 minute per kb 

72°C 10 minutes 1 cycle 
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ExTaq 

F primer (30µM) 0.4µl 

R primer (30µM) 0.4µl 

Taq polymerase (5u/ul) 0.2µl 

dNTPs (2.5mM) 1.6µl 

10x ExTaq Buffer 2µl 

DNA (20µg/µl) 2µl 

water 13.4µl 

2.3.5 Gel	  electrophoresis	  

Agarose gels were made up to appropriate concentration with agarose in 0.5x TBE 

and 1µL per 10µL of SYBR SAFE.  

2.3.6 In	  vivo	  cloning	  

3µL of plasmid was digested in a 10µL reaction. The insert was amplified using either 

genomic DNA (extracted using ‘Extraction of Genomic DNA from yeast’ kit) or 

plasmid miniprep DNA as template. 10µL vector and 20µL insert were transformed 

into yeast using ‘High efficiency Lithium acetate transformation’ protocol. Plasmids 

were extracted from colonies using ‘Isolation of plasmids from yeast’ described 

above.  

2.3.7 One	  step	  Isothermal	  DNA	  assembly	  (Gibson	  Assembly)	  

Plasmids were assembled as described in (Gibson et al., 2009).  20µL samples were 

prepared with 5x isothermal reaction buffer (25% PEG, 500mM Tris-HCl pH 7.5, 

50mM MgCl2, 50mM DTT, 1mM each dNTPs and 5 mM NAD), 0.8µL 0.2U T5 

exonuclease, 4µL 40U taq DNA ligase, 0.5 µL 2U phusion polymerase and 100ng of 

6kb fragments of DNA were added in equimolar amounts. Samples were incubated 

at 50°C for 1 hour and entire reaction was transformed into E-coli.  

95°C 1 minutes 1 cycle 

94°C 1 minute 

35 cycles 55°C 1 minute 

72°C 1 minute per kb 

72°C 10 minutes 1 cycle 
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2.3.8 Plasmid	  transformation	  into	  E-‐coli	  

One Shot® TOP10 Competent Cells (ThermoFisher) were transformed with 1 µL of 

plasmid DNA as per the manufacturer’s instructions, then plated onto LB + Ampicillin 

and grown overnight hours at 36°C. 

2.3.9 Plasmid	  isolation	  from	  E-‐coli	  

Plasmids were isolated from E-coli using QIAprep Spin Miniprep Kit (Quiagen) 

according to manufacturers protocol. 

2.3.10 Luciferase	  assays	  

2ml yeast cultures were grown to exponential phase on a wheel at 30°C and re-

suspended in 90µL of Lysis buffer from Dual-Luciferase® Reporter Assay System 

(Promega). 10µL of cells suspended in Lysis buffer were then added to the well of a 

96-well white plate. A PolarStar (Omega) plate reader was used to dispense 50µL of

LAR II (Promega), shake for 5 seconds, record the luminescent signal (4 readings

with 0.5 second interval times), dispense 50µL Stop & Glo® Reagent (Promega),

shake for 5 seconds, and again record the luminescent signal (4 readings with 0.5

second interval times). The mean of the 4 readings that were recorded was used as

the final measurement.

2.3.11 TCA	  protein	  extraction	  

25ml mid log phase cells were washed twice with 2ml of 20% TCA and resuspended 

in 100µL of 20% trichloroacetic acid (TCA). Cells were frozen for a minimum of 2 

hours. Once thawed 50µL glass beads were added to samples and cells lysed using 

a ribolyser (2x 15s of 6500rpm). 200µL of 5% TCA was added and samples were 

lysed again using the ribolyser (2x 15s of 6500rpm). Samples were centrifuged at 13, 

000 rpm for 10 minute and pellets resuspended in 100µL µL Laemmli loading 

bufferwith 5% β-mercaptoethanol (Bio-Rad). 1M Tris was added to neutralise the pH. 

Samples were boiled for 3 minutes, centrifuged at 13, 000rpm for 10 minutes and the 

supernatant transferred to a clean tube.  
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2.3.12 Western	  Blotting	  

10µL of protein extracts were loaded onto a gradient (4-15%) precast gel (Bio-Rad 

Mini-Protean TGX) and run for 90 minutes at 100V in Tris/Glycine/SDS running buffer 

(Bio-Rad). Proteins were blotted, for 30 minutes, onto nitrocellulose membranes 

using the Trans-Blot® Turbo™ Transfer System (Bio-Rad) according to manufactures 

protocol. The membrane was washed in 50mL milk (5% (w/v) skimmed milk powder 

dissolved in PBST) for 30 minutes on a rocking stage at room temperature. The 

membrane was then incubated in the primary antibody solution (1 in 200 antibody in 

1% milk) overnight at 4°C on a rocking stage. The membrane was washed 3 x 10 

minutes at the in PBST (PBS with 0.1% Tween20) on a rocking stage before 

incubation with the secondary antibody solution (1% milk 1 in 2000 HRP conjugated 

secondary antibody) for 2 hours. The membrane was washed again (3 x 10 minutes 

in PBST).  The protein was detected using Thermo Scientific SuperSignal West Pico 

Chemiluminescent Substrate according to the manufacturers instructions and imaged 

on a G box imager (Syngene). 

2.3.13 RNA	  isolation	  

RNA was isolated from yeast using RNeasy Mini Kit (Qiagen) and RNase-Free 

DNase Set (Qiagen). 15ml cultures of cells were grown to exponential phase, spun 

down and washed twice in 1 mL ice-cold DEPC-treated water. The water was 

removed and cell pellets were incubated at -80°C for at least 2 hours. Pellets were 

thawed on ice. 100 µL glass beads and 600 µL RLT buffer was added to the samples 

and cells lysed using a ribolyser (2x 30s of 6500rpm with a 15 second pause). The 

lysate is transferred to a new eppendorf tube and spud down at 13, 000 rpm for 2 

minutes at room temperature. The supernatant was transferred to a clean tube and 

mixed with 1 volume 70% ethanol. 700µl of the sample was transferred to an RNeasy 

mini column and spud down for 15 seconds at 12,000rpm. The flow-through was 

discarded, 350 µl Buffer RW1 was added to the column before being spud down for 

15 seconds at 12,000rpm. The flow-through was discarded. 80 µl of DNase I 

incubation mix (10 µl DNase I stock solution and 70 µl Buffer RDD) was added 

directly to the column and incubated for 15 minutes at 23°C. Column was spun down 

with 350 µl Buffer RW1 for 15 seconds at 12,000rpm. 500 µl Buffer RPE was added 

to the column, spun down for 15 seconds at 12,000rpm then another 500 µl Buffer 

RPE was added and the column spud down for 2 minutes at 12,000rpm. A final 
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centrifugation at 13, 000 for 1 minute is carried out with the column in a clean tube. 

The column is placed into another clean tube, 40µl RNase-free water is added 

directly to the spin column membrane and spud down for 1 minute at 12, 000 rpm to 

elute the RNA.  

2.3.14 qPCR	  

RNA transcript levels are analysed by quantitative reverse-trancriptase PCR (qRT-

PCR), using the Superscript III Platinum SYBR green one-step qRT-PCR kit 

(Invitrogen). 8µl of the reaction mix indicated below was added to 2µl RNA sample 

(80 ng/µL) in a 96 well plate. An ABI Systems StepOnePlus thermal cycler was used, 

with the conditions stated in table below.  
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F primer (10µM) 0.2µl 

R primer (10µM) 0.2µl 

Superscript III Platinum 

Taq Mix 0.2µl 

2x SYBR Green 

Reaction Mix 5µl 

ROX reference dye 0.2µl 

DNA (20µg/µl) 2µl 

DEPC-treated water 2.2µl 

2.3.15 Southern	  Blotting	  

A probe that annealed to the y’ elements and TG telomere repeats was constructed 

using DNA from a plasmid (pDL 987) that contained 120bp of TG repeats and 752bp 

of the upstream Y' element from telomere VIII-R. The fragment was excised by 

digestion with BamHI and Xho1 for 3 hours at 37°C (10 µL pDL987 miniprep DNA, 10 

units BamHI and 10 units XhoI, 2 µL 10x NEB Cutsmart Buffer, 7µL sterile water). 

Digested fragment was excised from a gel and purified using using a Qiaprep Gel 

Extraction Kit (Qiagen) according to manufacturers protocol. The probe was 

Digoxygenin-dUTP (DIG) labelled using random oligonucleotide primers following 

manufacturers guidelines in the DIG High Prime Labelling and Detection Starter Kit II 

(Roche). 

DNA was extracted as described in 2.3.2 and samples were equalised to the same 

concentration by running 2 µL on a 1% gel and measuring band intensity using 

GeneSys (Syngene). 2.5 µL of equalised DNA was run on a 1% agarose gel at 22 

volts for 16 hours. The gel was imaged on a G-box (Syngene) to indicate the relative 

amount of DNA in each sample. The gel was incubated in 0.25M hydrochloric acid for 

15 minutes, rinsed twice in water and incubated for 30 minutes in 0.5M sodium 

hydroxide for 30 minutes. The gel was blotted to a nylon membrane (Roche) using a 

vacuum blotter (Model 785, BioRad) at 5 inches Hg in 10x saline-sodium citrate 

50°C 3 minutes 1 cycle 

95°C 5 minute 1 cycle 

95°C 15 seconds 
40 cycles 

60°C 30 seconds 

40°C 1 minute 1 cycle 
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(SSC; 0.15M sodium citrate; 1.5M NaCl) for 90 minutes. The DNA was cross-linked 

to the membrane using auto UV-crosslinking (Stratalinker), rinsed in water and then 

air-dried for 30 minutes. The probe was hybridized according to manufacturers 

instructions using the labelled probe and DIG High Prime Labelling and Detection 

Starter Kit II (Roche). The membrane was imaged using G-box (Syngene).  

2.4 Bioinformatics 

2.4.1 Obtaining	  TL	  sequences	  

Gene specific TL lengths were obtained from Arribere et al (2013) and Nagalakshmi 

et al (2008). Sequences were retrieved using SGD API.  

2.4.2 Scoring	  initiation	  contexts	  

A Kozak matrix was constructed using frequency of occurrence of each nucleotide in 

positions -1, -2, -3, -4 , +1 and +2 relative to the ATG of the main translation start site 

of each gene in the yeast genome. Sequences were downloaded from Biomart 

(http://www.biomart.org; Ensembl Genes 79, Accessed: Feb 2015). The Kozak Score 

of a given uORF was generated using a multiplicative model whereby the ‘frequency 

of occurrence of nucleotides’ in Figure 20a, from position minus 4 to plus 2 relative to 

the ATG were multiplied together. For example the consensus Kozak sequence of 

AAAAatgAC would yield a Kozak Score of 

[0.42902*0.576061*0.397639*0.439928*0.317693*0.366557] which is 0.005035. 

2.4.3 Analysis	  of	  TLs	  

The uAUGs in every TL was identified along with a Kozak score describing its 

initiation context, weather it was part of a uORF, the length and position of uORF 

from the main ORF. The reading frame of the uORF was also identified.  
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Chapter 3. TMA20 and TMA22 act in the same pathway as NMD 
genes to increase fitness of cdc13-1 cells 

3.1 Tma20 and Tma22 act as interacting partners to decrease fitness of 
cdc13-1 and stn1-13.  

TMA20 and TMA22 are two genes identified by QFA to be very strong suppressors, 

when deleted, of the temperature sensitive growth defect of cdc13-1 (Addinall et al., 

2011). To confirm that deletion of TMA20 and TMA22 increase fitness of cdc13-1, 

tma20Δ and tma22Δ were introduced into an independent genetic background 

(W303) and fitness of cdc13-1 was compared with fitness of cdc13-1 tma20Δ and 

cdc13-1 tma22Δ using a growth assay (spot test). A moderate increase in growth 

was observed when tma20Δ or tma22Δ were combined with cdc13-1 and grown at 

semi permissive temperatures of 27°C and 28°C (Figure 11a). Compared with some 

gene deletions, such as RAD24, which permit growth of cdc13-1 at 29°C TMA20 and 

TMA22 can be described as moderate suppressors of cdc13-1 thermo-sensitivity 

(Addinall et al., 2011). At temperatures above 29°C cdc13-1 tma20Δ and cdc13-1 

tma22Δ growth resembles that of cdc13-1 indicating that Tma20 and Tma22 do not 

contribute to the decrease in fitness of cdc13-1 mutation at higher temperatures 

(Figure 11a). Tma64 resembles a fusion of Tma20 and Tma22 where the N-terminus 

of Tma64 shares homology with Tma20 and the C-terminus shares homology with 

Tma22 (Figure 4). Additionally Tma20 and Tma22 have been suggested to be 

functional homologues of Tma64 (Skabkin et al., 2010a). We therefore hypothesised 

that Tma64 may play a similar role to Tma20 and Tma22 at telomeres and to test this 

TMA64 was deleted in a cdc13-1 background. Interestingly tma64Δ has no effect on 

the fitness of cdc13-1, as demonstrated by the comparable fitness of cdc13-1 and 

cdc13-1 tma64Δ, suggesting that in yeast Tma64 has a distinct function from 

Tma20/Tma22 complex (Figure 11a). It has been previously demonstrated that 

Tma20 and Tma22 physically interact and knockdown of the mammalian and 

Drosophila homolog of Tma20, MCT-1, both lead to a drastic reduction in DENR and 

vice versa (Fleischer et al., 2006a) (Skabkin et al., 2010a, Schleich et al., 2017). To 

explore if there is genetic redundancy between TMA20 and TMA22 we combined 

deletion of both genes in cdc13-1 background and observed no difference in the 

fitness of cdc13-1 tma20Δ tma22Δ compared with cdc13-1 tma20Δ and cdc13-1 
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tma22Δ. This supports a model that Tma20 and Tma22 function as a complex in 

yeast (Figure 11a).  

To further explore the role of Tma20 and Tma22 at telomeres we tested if they also 

contribute to the loss of fitness of cells harbouring different telomere defects. We 

used stn1-13, a temperature sensitive allele of STN1 which results in loss of fitness 

at temperatures higher than 30°C. Although Stn1 and Cdc13 are both members of 

the CST complex it is thought that they also perform distinct functions, therefore it is 

possible that Tma20 and Tma22 may specifically affect cells with defective Cdc13 

but not defective Stn1 (Holstein et al., 2014). tma20Δ and tma22Δ were combined 

with stn1-13 and fitness of cells was assessed using a spot test (Figure 11b). We 

found that while stn1-13 grew worse than wild type at 32°C - 37°C, growth of stn1-13 

tma20Δ, stn1-13 tma22Δ and stn1-13 tma22Δ tma22Δ were moderately improved 

(Figure 11b). This indicates that Tma20 and Tma22 contribute to the lethality of cells 

with defective CST via a function that is common to both Cdc13 and Stn1, most likely 

telomere capping rather than for example regulating telomerase. Telomerase 

recruitment is promoted by Cdc13 and inhibited by Stn1 (Puglisi et al., 2008, Nugent 

et al., 1996b).  

To examine if Tma20 and Tma20 specifically affect fitness of cells with telomere 

damage in the form of defective CST complex we measured the effect of tma20Δ on 

fitness of yku70Δ. yKu70 and yKu80 form a heterodimer essential to NHEJ DNA 

repair pathway. yKu70/yKu80 also bind the telomeres, and function in chromosome 

end protection, (Maringele and Lydall, 2002a) telomerase recruitment (Fisher et al., 

2004, Stellwagen et al., 2003) and silencing of nearby genes (Boulton and Jackson, 

1998). Strains carrying yku70Δ exhibit a temperature sensitive growth defect above 

36°C, which is attributed to telomere defect (Maringele and Lydall, 2002a). In 

contrast with the effect of TMA20 deletion on fitness of cells with cdc13-1 and stn1-

13, tma20Δ has no effect on the fitness of yku70Δ since growth of yku70Δ resembled 

yku70Δ tma20Δ at all temperatures tested (Figure 11c). We can therefore conclude 

that Tma20 and Tma22 contribute to the loss of fitness of cells lacking a functional 

CST complex but do not affect fitness of cells with all telomere defects, such as 

yku70Δ. 

Although ssDNA accumulation occurs as a result of telomere uncapping in both 

yku70Δ and cells with defective CST (cdc13-1), cells respond slightly differently to 
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damage induced by yku70Δ and cdc13-1 (Maringele and Lydall, 2002a). The 9-1-1 

complex (Rad17, Ddc1 and Mec3) and Rad24, which loads the 9-1-1 complex onto 

damaged DNA, is required for cell cycle arrest in cdc13-1 but not yku70Δ (Maringele 

and Lydall, 2002a). This suggests that Tma20 and Tma22 may modulate levels of 

some DNA damage response proteins, such as Rad17, Ddc1, Mec3 or Rad24 that 

respond to cdc13-1 and not yku70Δ. 
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Figure 11: Tma20 and Tma22 act as interacting partners to decrease fitness of 

cdc13-1 and stn1-13. Yeast strains of the indicated genotypes were grown to 

saturation in liquid YEPD, serially diluted, 5-fold, in water, and spotted onto YPD solid 

media.  Plates were incubated for two days at the indicated temperatures before 

being photographed. Genotypes and strain numbers are listed on either side of the 

spot tests. 
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3.2 Tma20 does not affect telomere length 

Some gene deletions that improve fitness of cdc13-1, such as deletions in the NMD 

pathway also affect telomere length and mutations that allow growth in the absence 

of CDC13 have been shown do so by rearranging their telomeres (Larrivee and 

Wellinger, 2006). To test weather deletion of TMA20 and TMA22 affect the integrity 

of the telomere DNA telomeres were examined using Southern blot with a Y’ and TG 

repeat probe to detect terminal y’ elements  (probe is indicated in Figure 12a). For 

comparison we also measured the length of telomeres in nmd2Δ.  

Consistent with previous observations we saw that telomeres in nmd2Δ were shorter 

than telomeres in WT strains (Dahlseid et al., 2003). In contrast with this tma20Δ has 

no effect on telomere length (Figure 12b). Telomeres of tma20Δ appear completely 

normal and indistinguishable from telomeres in WT cells (Figure 12b). The 

observation that tma20Δ does not induce any telomere re-arrangements is in line 

with the observation that tma20Δ is a weak suppressor of cdc13-1. Further the lack 

of phenotype observed in the telomeres of tma20Δ supports the idea that the function 

of Tma20 at telomeres is indirect.  
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Figure 12. Tma20 does not affect telomere length. A) Diagram indicating the 

positions of Xho1 sites where the Y’ and TG1-3 repeat probe binds. B) Genomic DNA 

was isolated from yeast strains that are indicated Telomere structures were analyzed 

by Southern blotting (see methods) using the Y’ and TG probe indicated. Digested 

DNA stained with SyBr Green was used as a loading control.  



59 

3.3 HCR1 strongly reduces fitness of cdc13-1 cells and acts in a different 
pathway as TMA20 and TMA22. 

Since Tma20 homologs in mammalian cells have been implicated in ribosome 

recycling (illustrated in Figure 9) and translation re-initiation we decided to explore 

the possibility that other genes proposed to be involved in recycling and translation 

re-initiation may also affect fitness of cdc13-1. HCR1 is a non-essential gene 

suggested to promote ribosome recycling and forms a complex with eIF3, an 

initiation factor thought to facilitate translation re-initiation (Beznoskova et al., 2013) 

(Munzarova et al., 2011) (Roy et al., 2010). Although the role of Hcr1 in ribosome 

recycling in yeast is unclear the mammalian homolog, eIF3j, has been proposed to 

promote release of 60S as well as subsequent dissociation of 40S with mRNA and 

tRNA (Figure 9) (Pisarev et al., 2007) (Pisarev et al., 2010). hcr1Δ and tma20Δ have 

also both been reported to increase stop codon read-through, further supporting the 

hypothesis that they may have similar roles (Fleischer et al., 2006a, Beznoskova et 

al., 2013).  

To examine if HCR1 also affects fitness of cells with cdc13-1 telomere defect hcr1Δ 

was combined with cdc13-1 and growth of resulting strains were measured by spot 

test. A moderate increase in growth is observed in cdc13-1 hcr1Δ compared with 

cdc13-1 at 26°C, 27°C, 28°C and there is even a slight increase in growth observed 

at 29°C (Figure 13). Interestingly at 28°C and 29°C cdc13-1 hcr1Δ grows better than 

cdc13-1 tma20Δ demonstrating that HCR1 is a stronger suppresser of cdc13-1 

temperature sensitivity than TMA20 (Figure 13). In order test whether HCR1 acts 

independently of TMA20 and TMA22 to suppress cdc13-1 we combined hcr1Δ with 

cdc13-1 tma20Δ and cdc13-1 tma22Δ and compared growth of resulting strains by 

spot test. At 27°C-29°C hcr1Δ improves the growth of cdc13-1 tma20Δ and cdc13-1 

tma22Δ suggesting that TMA20 and TMA22 act in a different pathway to HCR1 

(Figure 13). At all temperatures fitness of cdc13-1 hcr1Δ tma20Δ tma22Δ was 

comparable to fitness of cdc13-1 hcr1Δ tma20Δ and cdc13-1 hcr1Δ tma22Δ 

consistent with a model of Tma20 and Tma22 being interacting partners (Figure 13). 

Our data indicate general defects in ribosome recycling may facilitate growth of cells 

with cdc13-1 since deletion of either HCR1 or TMA20/TMA22 both improve fitness of 

cdc13-1. We also found that HCR1 and TMA20/TMA22 act independently to affect 

fitness of cdc13-1 supporting the idea that they have distinct functions in translation. 
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It is unclear if Hcr1 or Tma20/Tma22 impact fitness of cdc13-1 by affecting the 

efficiency of ribosome recycling or through a different mechanism such as translation 

initiation.  
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Figure 13. HCR1 strongly improves fitness of cdc13-1 cells and acts in a different 

pathway as TMA20 and TMA22. Yeast strains of the indicated genotypes were grown 

to saturation in liquid YEPD, serially diluted, 5-fold, in water, and spotted onto YPD 

solid media.  Plates were incubated for two days at the indicated temperatures before 

being photographed. Genotypes and strain numbers and listed on either side of the 

spot tests 
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3.4 cdc13-1 hcr1∆, but not cdc13-1 tma20∆, is supressed by overexpression 
of RLI1 

To further explore the relationship between a possible role of Tma20/Tma22 or Hcr1 

in ribosome recycling and their function in decreasing fitness of cdc13-1 we decided 

to test if cdc13-1 hcr1∆ or cdc13-1 tma20∆ was suppressed by overexpression of the 

ribosome-recycling factor Rli1. Rli1 is required for efficient ribosome recycling, 

promoting 60S subunit dissociation (Shoemaker and Green, 2011). Overexpression 

of Rli1 in yeast has been described to suppress the slow growth and increased stop 

codon read-through phenotype of hcr1∆ further supporting the idea that hcr1∆ 

promotes ribosome recycling (Beznoskova et al., 2013). We speculated that 

overexpression of Rli1 would also suppress ability of hcr1∆ to increase fitness of 

cdc13-1. The observation that mammalian homologs of Tma20 and Tma22 also 

promote ribosome recycling made us hypothesise that overexpression of Rli1 may 

decrease the fitness of cdc13-1 tma20∆ by restoring efficient ribosome recycling. 

To explore the role of ribosome recycling in contributing to the lethality of cdc13-1, 

Rli1 was cloned into a 2µ expression vector and transformed into hcr1∆, cdc13-1 

hcr1∆ and cdc13-1 tma20∆. Consistent with published observations the growth rate 

of hcr1∆ is improved by overexpression of Rli1- indicated by better growth after 1 

day, but equal growth after 3 days, of hcr1∆ RLI1 compared with hcr1∆, between 

27°C and 36°C (Figure 14a and b). hcr1∆ and hcr1∆ RLI1 were comparable at 23°C, 

presumably because all strains grow slowly at low temperatures. After 1 day, growth 

of all strains harbouring cdc13-1 allele was similar, however differences in growth 

could be observed after 3 days (Figure 14 and b). Growth of cdc13-1 and cdc13-1 

pRLI1 was similar at all temperatures tested showing that overexpression of 

ribosome recycling factor, Rli1 does improve fitness in cdc13-1 which indicates 

cdc13-1 are not defective in ribosome recycling. Interestingly however, while cdc13-1 

hcr1∆ grew considerably better than cdc13-1 at 26°C- 29°C, growth of cdc13-1 hcr1∆ 

transformed with pRLI1 and cdc13-1 are similar showing that Rli1 overexpression 

decreases fitness of cdc13-1 hcr1∆ (Figure 14b). At 26°C- 28°C cdc13-1 tma20∆ 

grew better than cdc13-1 but similar to cdc13-1 tma20∆ pRLI1 showing that, in 

contrast with the effect of Rli1 overexpression in cdc13-1 hcr1∆, overexpression of 

Rli1 does not suppress tma20∆ (Figure 14b).  
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The finding that cdc13-1 hcr1∆ is supressed by overexpression of Rli1 supports the 

idea that Hcr1 decreases fitness of cdc13-1 by promoting ribosome recycling. Rli1 

promotes peptide release and 60S dissociation (Shoemaker and Green, 2011) 

suggesting the increase in fitness of cdc13-1 that occurs upon deletion of HCR1 is a 

consequence of defective peptide release or 60S dissociation induced by hcr1∆. It is 

also possible that the decrease in growth rate that occurs upon deletion of HCR1 

improves fitness of cdc13-1. In contrast Rli1 does not affect fitness of cdc13-1 

tma20∆, which is consistent with the idea that Tma20 promotes subsequent 

dissociation of tRNA/mRNA/40S (Skabkin et al., 2010a). It is unclear if the increase 

in fitness of cdc13-1 by tma20∆ is a result of defective dissociation of 

tRNA/mRNA/40S. 
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Figure 14: cdc13-1 hcr1∆, but not cdc13-1 tma20∆, is supressed by overexpression 

of RLI1. RLI1 was cloned into a high copy vector and transformed into the indicated 

yeast strains. Cells were grown to saturation in media lacking leucine, serially diluted, 

5-fold, in water, and spotted onto solid media lacking leucine.  Plates were incubated

for two days at the indicated temperatures before being photographed. Genotypes

and strain numbers and listed on either side of the spot tests.
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3.5 TMA20 and TMA22 act in the same pathway an NMD to affect fitness of 
cdc13-1 

Since Tma20/Tma22 were shown to act independently of recycling factors Hcr1 and 

Rli1 to suppress cdc13-1 we wondered if they function in the same pathway as other 

known suppressors of cdc13-1 temperature sensitivity that also associate with 

translation termination. Deletion of Nonsense mediated decay (NMD) genes NAM7, 

NMD2, UPF3 and EBS1 strongly increase fitness of cdc13-1 (Addinall et al., 2011) 

and have also been shown to associate with the translation machinery and to 

promote ribosome recycling and increase stop codon read-through (Fleischer et al., 

2006a) (Ghosh et al., 2010).  

To investigate if deletion of TMA20 and TMA22 may therefore supress the 

temperature sensitive phenotype of cdc13-1 strains through the same pathway as 

NMD deletions nmd2∆ and ebs1∆ were combined with tma20∆ and tma22∆ in a 

cdc13-1 background and fitness assessed by spot test.  There was no observable 

difference in growth of cdc13-1 nmd2Δ tma20Δ, cdc13-1 nmd2Δ tma22Δ and cdc13-

1 nmd2Δ in any of the temperatures that were tested indicating that TMA20 and 

TMA22 act in the same pathway as NMD2 to suppress cdc13-1 (Figure 15). cdc13-1 

ebs1Δ tma20Δ and cdc13-1 ebs1Δ tma22Δ grew slightly better than cdc13-1 ebs1Δ 

at 28˚C however neither of ebs1Δ tma20Δ, ebs1Δ tma22Δ or ebs1Δ suppressed the 

temperature sensitive phenotype of cdc13-1 at 29˚C or above (Figure 15). The fact 

that the increased fitness observed in cdc13-1 ebs1Δ tma20Δ and cdc13-1 ebs1Δ 

tma22Δ compared with cdc13-1 ebs1Δ was only small suggests that Ebs1 and 

Tma20 or Ebs1 and Tma22 are not epistatic. Although Ebs1 has been shown to be 

involved in NMD it is not a core factor which may explain why deletion of TMA20 or 

TMA22 in a cdc13-1 ebs1Δ background increases fitness, in contrast to deletion of 

TMA20 or TMA22 in cdc13-1 nmd2Δ (Luke et al., 2007). 

Deletion of NMD genes suppresses the cdc13-1 temperature sensitive phenotype, in 

part, by up-regulating Stn1 and Ten1 levels (Holstein et al., 2014). One possible 

explanation, therefore, to explain how TMA20 and TMA22 act in the same pathway 

as NMD to affect fitness of cdc13-1 is that tma20Δ and tma22Δ also increase levels 

of Stn1 and Ten1. It would be of interest to determine if Tma20/Tma22 affect levels 

of Stn1 and Ten1 and if they do, the mechanism by which they inhibit Stn1 and Ten1. 

It would also be interesting to further explore the relationship between Tma20/Tma22 
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and NMD to test if their biochemical functions overlapped. NMD has been shown to 

promote ribosome recycling on premature termination codons so it is possible that 

both Tma20/Tma22 affect levels of the same transcripts by promoting ribosome 

splitting following translation termination (Ghosh et al., 2010). Additionally deletion of 

TMA20 and NMD factors both result in an increase in stop codon read-through 

suggesting that increase in stop codon read-through may promote fitness of cdc13-1 

(Fleischer et al., 2006a). 
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Figure 15: TMA20 and TMA22 act in the same pathway an NMD to affect fitness of 

cdc13-1. Yeast strains of the indicated genotypes were grown to saturation in liquid 

YEPD, serially diluted, 5-fold, in water, and spotted onto YPD solid media. Plates 

were incubated for two days at the indicated temperatures before being 

photographed. Genotypes and strain numbers and listed on either side of the spot 

tests. 
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3.6 Evidence that increase in levels of stop codon read-through does not 
supress cdc13-1 

It has been shown that tma20∆ has a 20-fold increase in the level of stop codon 

read-through compared with wild type strains (Fleischer et al., 2006a). To examine if 

an increase in the level of stop codon read-through might contribute to the loss of 

fitness of cdc13-1 we took advantage of the PSI+ prion status of W303 strains. Prions 

are infectious isoforms of normal proteins, which exist in yeast and mammals and 

cause diseases such as Bovine spongiform encephalopathy (BSE) (Lloyd et al., 

2013). eRF3, encoded by SUP35, can exist in a prion state known as PSI+ which 

compromises the normal function of eRF3 as a termination factor (Serio and 

Lindquist, 1999). Therefore PSI+ have increased stop codon read-through compared 

with PSI- (Keeling et al., 2004). PSI+ can be converted to PSI- by growing cells in low 

level of guanidine hydrochloride (Eaglestone et al., 2000) and the PSI+ status of 

strains can be determined using a GFP labelled version of eRF3 expressed from a 

plasmid (Greene et al., 2009). Since the amino (N) and highly charged middle (M) 

domains of eRF3 were fused with GFP to create the labelled version of eRF3 the 

fusion protein is referred to as SUP35NM (Greene et al., 2009). In PSI+ cells 

transformed with the SUP35NM reporter plasmid, discrete GFP foci can be observed 

due to the eRF3-GFP fusion protein binding eRF3 prion aggregates (Greene et al., 

2009).  

To convert PSI+ strains to PSI- WT strains were grown on YPD solid media 

containing 3mM GuHCl at 23°C for 3 days. To confirm PSI+ strains were converted to 

PSI- WT, cdc13-1, cdc13-1 tma22Δ and cdc13-1 tma20Δ rad9Δ grown in the 

presence or absence of GuHCl were transformed with SUP35NM reporter plasmid 

and 2- 4 of the resulting colonies were checked for the presence of GFP foci. There 

were no GFP foci detected in any of the strains grown on GuHCl whereas there was 

about 1 focus per 100 cells detected in cells not exposed to GuHCl (Figure 16a).  

To check if cdc13-1 lethality was affected by the PSI status fitness of cdc13-1 [PSI+] 

and cdc13-1 [PSI-] were compared by spot test. There was no difference in the 

growth of cdc13-1 [PSI+] compared with cdc13-1 [PSI-] at any of the temperatures 

tested suggesting that the PSI status of cells does not affect fitness of cdc13-1  

(Figure 16b). Similarly there was no difference in the fitness of cdc13-1 tma22Δ 

[PSI+] and cdc13-1 tma20Δ rad9Δ [PSI+] compared with cdc13-1 tma22Δ [PSI-] and 
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cdc13-1 tma20Δ rad9Δ [PSI-] respectively, providing further evidence that the PSI 

status of W303 does not affect fitness of cdc13-1 (Figure 16b).  

The finding that PSI status does not affect fitness of cdc13-1 strongly suggests that 

inefficient translation termination, which leads to increased stop codon read-through, 

does affect fitness of cdc13-1. Further tma20Δ, hcr1Δ and nam7Δ, each of which has 

been shown to result in increased stop codon read-through phenotype, are unlikely to 

promote fitness of cdc13-1 by increasing levels of stop codon read-through (Fleischer 

et al., 2006a, Beznoskova et al., 2013).  
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Figure 16: Evidence that increase in levels of stop codon read-through does not 

supress cdc13-1. A) PSI status of strains was determined before and after growth on 

3mM guanidine hydrochloride by detection of fluorescent aggregates. B) Yeast 

strains of the indicated genotypes were grown to saturation in liquid YEPD, serially 

diluted, 5-fold, in water, and spotted onto YPD solid media.  Plates were incubated 

for two days at the indicated temperatures before being photographed. Genotypes 

and strain numbers and listed on either side of the spot tests. 
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3.7 TMA20 and TMA22 act in parallel pathways to DNA damage genes 

In mammalian cells TMA20 (MCT-1) overexpression or knockdown has been shown 

to affect the level of many DNA damage genes (Nandi et al., 2007). Many of the gene 

deletions which allow cdc13-1 strains to evade cell cycle arrest are those involved in 

DNA damage response, since they evade cell cycle checkpoint (Addinall et al., 

2008). We therefore hypothesised that TMA20 and TMA22 may decreases fitness of 

cdc13-1 by affecting levels of some DNA damage response proteins. Rad9, Exo1 

and Rad24 are all essential for cell cycle arrest following telomere uncapping 

whereas cell cycle arrest is partially dependant on Chk1 (depicted in Figure 

3)(Gardner et al., 1999). Exo1 is a nuclease, which activates cell cycle arrest by 

generating ssDNA in cdc13-1 (Zubko et al., 2004), whereas Rad24, Rad9 and Chk1 

are checkpoint protein. Rad24 stimulates cell cycle arrest by loading of the 

checkpoint complex 9-1-1 (Rad17, Mec3, and Ddc1) onto damaged telomeres. Rad9 

is important for activation of effector kinases Rad53 and Chk1, which ultimately leads 

to G2/M arrest (Vialard et al., 1998a). Phosphorylation targets of Chk1, include Pds1 

(Securin) and DNA damage signal transducer Mec1.  

To test the hypothesis that Tma20 and Tma22 affect the fitness of cdc13-1 by 

regulating levels of DNA damage response proteins tma20Δ and tma22Δ were 

crossed with cdc13-1 rad9Δ rad24Δ exo1Δ strain, diploids were sporulated and all 

possible combinations of haploids were created. In addition cdc13-1 tma20Δ and 

cdc13-1 tma22Δ were combined with chk1Δ. TMA20 and TMA22 were found to act in 

a parallel pathway to CHK1 since, in a cdc13-1 background, tma20Δ chk1Δ and 

tma22Δ chk1Δ grew better than any of the respective single deletions at 27˚C, 28˚C 

and 29˚C (Figure 17). A similar effect is observed when cdc13-1 tma20Δ and cdc13-

1 tma22Δ are combined with rad9Δ, exo1Δ and rad24Δ (Figure 17). In a cdc13-1 

background tma20Δ and tma22Δ enhance the growth of rad9Δ at 28˚C and 29˚C, 

exo1Δ 28˚C and 29˚C and rad24Δ at 29˚C and 30˚C, suggesting that TMA20 and 

TMA22 act in parallel pathways to RAD9, EXO1 and RAD24 to decrease fitness of 

cdc13-1 (Figure 17). In agreement with a model where TMA20 and TMA22 act in a 

parallel pathway to RAD24 and RAD9 and EXO1 to supress cdc13-1, tma20Δ and 

tma22Δ improves growth of cdc13-1 rad24Δ rad9Δ at 28˚C, 29˚C and 30˚C, cdc13-1 

rad24Δ exo1Δ at 29˚C and 30˚C, cdc13-1 rad9Δ exo1Δ at 30˚C and cdc13-1 rad9Δ 

rad24Δ exo1Δ at 29˚C and 30˚C.  
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The finding that Tma20 and Tma22 act in parallel pathways to RAD9, RAD24, EXO1 

and CHK1 to decrease fitness of cdc13-1 implies that Tma20 and Tma22 do not 

contribute to the loss fitness of cdc13-1 by influencing levels of DNA damage 

response proteins. It also indicates that in yeast TMA20 may not function in the DNA 

damage response as MCT-1 does (Hsu et al., 2007). This is consistent with our 

hypothesis that Tma20 and Tma22 affect cdc13-1 by modulating levels of other 

telomere capping proteins, such as Stn1 and Ten1.  
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Figure 17: TMA20 and TMA22 act in parallel pathways to DNA damage genes. Yeast 

strains of the indicated genotypes were grown to saturation in liquid YEPD, serially 

diluted, 10-fold, in water, and spotted onto YPD solid media. Plates were incubated 

for two days at the indicated temperatures before being photographed. Genotypes 

and strain numbers and listed on either side of the spot tests. 
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3.8 Mutations in conserved phosphorylation sites affect function of the 
Tma20 

The level of MCT-1 increases in response to γ-irradiation, implying that it functions to 

mediate the cellular response to DNA damage (Herbert et al., 2001). The induction of 

MCT-1 upon DNA damage was subsequently shown to be dependent on 

phosphorylation by p44/p42 MAPK (ERK) (Nandi et al., 2007). We hypothesised that 

phosphorylation sites are conserved and since Tma20 decreases fitness of cdc13-1 

we predict that levels of Tma20 might increase as a response to telomeres becoming 

damaged.   

To examine the conservation of amino acids between yeast, Drosophila and humans 

TMA20 was aligned to its’ human and Drosophila homologs, MCT-1 (Figure 18a). 

The phosphorylation site required for cell growth in mammalian cells (T81) and a 

phosphorylation site important for proper function of the Drosophila homolog of MCT-

1 (T118/S119) are both present in yeast TMA20 suggesting that either could perform 

an important role in yeast (Figure 18a).  

To explore the importance of phosphorylation sites to the function of Tma20, two new 

alleles of TMA20 were created where phosphorylation sites were abolished by point 

mutation. TMA20 T118A S119A contains two point mutations in the proposed Cdk1 

(CDC28) phosphorylation site whereas TMA20 S81A harbours a point mutation in the 

proposed MAPK phosphorylation site. Tma20 was expressed from a centromeric 

plasmid, transformed into TMA20 null strains. Since tma20Δ increases fitness of 

cdc13-1 we reasoned that an allele of TMA20 resulting in loss of Tma20 function 

would also increase fitness of cdc13-1.  

While cdc13-1 tma20Δ grew better than cdc13-1 at 26°C and 27°C, growth of cdc13-

1 tma20Δ cells transformed with the plasmid expressing TMA20 was 

indistinguishable from growth of cdc13-1 demonstrating that expression of TMA20 

from a plasmid is sufficient rescue the deletion phenotype of tma20Δ in cdc13-1 and 

also confirms that the suppression of cdc13-1 by tma20Δ is not a result of a 

neighbouring gene effect (Figure 18b and c).  

cdc13-1 tma20Δ transformed with the plasmid expressing TMA20 S79A grew better 

than cdc13-1 tma20Δ transformed with the plasmid expressing TMA20 but not as 

well as cdc13-1 tma20Δ transformed with vector only suggesting that S79A partially 
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disrupts the activity of TMA20 (Figure 18b). cdc13-1 tma20Δ transformed with the 

plasmid expressing TMA20 T118A S119A also grew better, at 26°C, than cdc13-1 

tma20Δ transformed with the plasmid expressing TMA20 but not as well as cdc13-1 

tma20Δ transformed with vector only suggesting that T118 S119 phosphorylation 

sites are also required for proper function of TMA20 but TMA20 retains some of its 

activity without this phosphorylation site (Figure 18c).  

The finding that Tma20 phosphorylation sites are important for its proper function is 

consistent with our hypothesis that Tma20 is phosphorylated and stabilised in 

response to DNA damage. However, it is also possible that mutations introduced into 

the proposed phosphorylation sites disrupt Tma20 function simply by preventing 

proper folding of Tma20 or disrupting Tma20 interactions with other proteins or RNA. 

It would be of interest therefore to observe phosphorylation or change in the level of 

Tma20 following DNA damage. 



20°

WT
cdc13-1

 tma20Δ cdc13-1

INCUBATION FOR 5 DAYS

26° 27° 28° 29°

3001 + pDL1277

1108 + pDL1277

7026 + pDL1277

7026 + pDL1277

7026  + pDL1665

7026  + pDL1665

7026  + pDL1676

7026  + pDL1676

WT
cdc13-1

 tma20Δ  cdc13-1
 pTMA20  tma20Δ  cdc13-1 

tma20Δ cdc13-1

INCUBATION FOR 4 DAYS

 tma20Δ cdc13-1
 p TMA20 tma20Δ cdc13-1
 p TMA20 tma20Δ cdc13-1

 p tma20 T79A tma20Δ cdc13-1
 p tma20 T79A tma20Δ cdc13-1

3001 + pDL1250
1108 + pDL1250

7028 + pDL1250
7026 + pDL1798
7028 + pDL1798
7026 + pDL1799
7028 + pDL1799

7026 + pDL1250

 pTMA20  tma20Δ  cdc13-1 
 pTtma20  T118A S119A  tma20Δ  cdc13-1 

 ptma20  T118A S119A  tma20Δ  cdc13-1 

20° 26° 27° 28° 29°

MFKKFTRED-VHSRSKVKSSIQRTLKAKLVKQYPKIEDVIDELIPKKSQIELIKCEDKIQ
MFKKFDEKENVSNCIQLKTSVIKGIKNQLIEQFPGIEPWLNQIMPKKDPVKIVRCHEHIE
MFKKFEEKDSISSIQQLKSSVQKGIRAKLLEAYPKLESHIDLILPKKDSYRIAKCHDHIE
***** .:: : .  ::*:*: : :: :*:: :* :*  :: ::***.  .: :*.::*:

LYS-VDGEVLFFQK-FDELIPSLKLVHKFPEAYPTVQVDRGAIKFVLSGANIMCPGLTSA
ILT-VNGELLFFRQREGPFYPTLRLLHKYPFILPHQQVDKGAIKFVLSGANIMCPGLTSP
LLLNGAGDQVFFRHRDGPWMPTLRLLHKFPYFVTMQQVDKGAIRFVLSGANVMCPGLTSP
:     *: :**::      *:*:*:**:*    ***:***:*******:**********

GADLPPAPGYEKGTIVVINAENKENALAIGELMMGTEEIKSVNKGHSIELIHHLGDPLWN
GAKLYPAA---VDTIVAIMAEGKQHALCVGVMKMSAEDIEKVNKGIGIENIHYLNDGLWH
GACMTPAD---KDTVVAIMAEGKEHALAVGLLTLSTQEILAKNKGIGIETYHFLNDGLWK
** : **      *:*.* ** *:.**.:* : :.:::*   *** .**  *.* * **.

FSVE- 
MKTYK
SKPVK

MCT-1 (Human)
MCT-1 (Drosophila)

Tma20 (Yeast)

MCT-1 (Human)
MCT-1 (Drosophila)

Tma20 (Yeast)

MCT-1 (Human)
MCT-1 (Drosophila)

Tma20 (Yeast)

MCT-1 (Human)
MCT-1 (Drosophila)

Tma20 (Yeast)

MAPK phosphorylation site CDK1 phosphorylation site

A

B

C

881



82 

Figure 18: Mutations in conserved phosphorylation sites affect function of the Tma20. 

A) Sequence alignment of TMA20 from Saccharomyces cerevisiae with MCT-1 from

human and Drosophila. B and C) TMA20, tma20 T79A and tma20 T118A T119A

were expressed from a centromeric plasmid which was transformed into the indicated

yeast strains. Cells were grown to saturation in liquid SD media, serially diluted, 5-

fold, in water, and spotted onto solid SD media. Plates were incubated for 5 (B) and 3

(C) days at the indicated temperatures before being photographed
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3.9 No evidence that Tma20 is up regulated or phosphorylated following 
telomere uncapping 

Since we found that both conserved phosphorylation sites (T81A and T118A S119A) 

are important for the proper function of Tma20 we decided to test if we could detect a 

change in the phosphorylation status of Tma20 following telomere uncapping. We 

hypothesised that Tma20 is phosphorylated following telomere uncapping, which 

would lead to an increase in protein level, due to it being stabilised. To test this we 

sought to measure levels of Tma20 in cells before and after cdc13-1 induced 

telomere damage. If Tma20 is phosphorylated this may by visible as a change in the 

molecular weight or the appearance of a second band running slightly above Tma20.  

To measure the abundance of Tma20 a FLAG epitope tag was fused to the C-

terminus of Tma20. To verify that the FLAG epitode tag does not affect the function 

of Tma20 we compared growth of cdc13-1 tma20Δ with cdc13-1 TMA20-3FLAG. 

While at 26°C-28°C cdc13-1 tma20Δ grew better than cdc13-1, growth of cdc13-1 

TMA20-3FLAG was indistinguishable from growth of cdc13-1 indicating that the 

function of Tma20 is intact when fused with FLAG (Figure 19a).  

To test if the level of Tma20 increased following exposure to telomere damage, 

levels of Tma20 were measured in cdc13-1 and WT cells grown to exponential phase 

at 23°C and then shifted to 36°C for 0, 2 or 4 hours. There was a general trend to a 

decrease in the level of Tma20 when cells were shifted to 36°C however because 

this was observed in both cdc13-1 and WT cells it was not attributed to telomere 

uncapping (Figure 19b). There was also no change in the molecular weight of Tma20 

detected, which would indicate a post-translational modification such as 

phosphorylation (Figure 19b). A phosphate-affinity polyacrylamide gel 

electrophoresis would be required to confirm that Tma20 is not phosphorylated in 

response to telomere uncapping.  

Our data indicate Tma20 does not play an active role in responding to DNA damage, 

induced by cdc13-1. It is unclear however if levels of Tma20 increase following other 

types of DNA damage.  
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Figure 19 - No evidence that Tma20 is upregulated or phosphorylated following 
telomere uncapping 

Figure 19: No evidence that Tma20 is upregulated or phosphorylated following 

telomere uncapping. A) Yeast strains of the indicated genotypes were grown to 

saturation in liquid YEPD, serially diluted, 5-fold, in water, and spotted onto YPD solid 

media.  Plates were incubated for two days at the indicated temperatures before 

being photographed. Genotypes and strain numbers are listed on either side of the 

spot tests. B) Cells were cultured at 23°C until mid log phase (0.6OD) was achieved 

and then incubated at 36°C for indicated time. Whole cell extracts were ran on a gel, 

which was probed using anti-Flag to detect Tma20 and anti-tubulin as a loading 

control  (C) Quantification of B using Image J to quantify band intensities.  
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3.10 Discussion 

In this chapter we confirm that TMA20 and TMA22 null alleles increase fitness of 

cells with mutations in CST complex members, cdc13-1 and stn1-13. We also 

showed that defects in recycling of post termination ribosomes induced by hcr1Δ also 

decreases the fitness of cdc13-1, in a manner that is rescued by overexpression of 

the ribosome-recycling factor, Rli1. Our results indicate that TMA20 and TMA22 

function in the same pathway as NMD, but different pathways to HCR1 and DNA 

damage response genes RAD24, RAD9, EXO1 or CHK1 to increase the fitness of 

cdc13-1. We also show that conserved phosphorylation sites on Tma20 are required 

for Tma20 to decrease fitness of cdc13-1 but found no evidence that Tma20 is 

phosphorylated or up-regulated in response to telomere uncapping.  

3.10.1 Interacting	  partners,	  Tma20	  and	  Tma22	  have	  a	  novel	  role	  in	  telomere	  biology	  

We confirm high throughput QFA data showing that TMA20 and TMA22 null alleles 

increase fitness of cells with cdc13-1 (Addinall et al., 2011) and stn1-13 (Holstein et 

al., 2017) induced damage (Figure 11a and b). In every experiment that we 

conducted TMA20 deletion phenotypes were indistinguishable from tma20Δ and 

tma20Δ tma22Δ in agreement with the idea Tma20 and Tma22 function as a 

complex (Figure 11, Figure 13, Figure 15 and Figure 17) (Fleischer et al., 2006a). 

This idea is further supported by recent structural analysis showing that mammalian 

homologs of Tma20 and Tma22 function as a heterodimer (Lomakin et al., 2017). We 

also confirmed QFA data showing that, in contrast with some genes such as 

checkpoint genes RAD9 and nucleases EXO1, deletion of TMA20 does not also 

reduce fitness of cells with ku70Δ telomere defects (Figure 11c) (Addinall et al., 

2011). This indicates that Tma20 and Tma22 may have a specific rather than general 

role in telomere biology, for example by regulating levels of a specific capping protein 

rather inducing a checkpoint response. In support of the idea that Tma20 and Tma20 

do not have a major role in telomere biology, the telomeres of tma20Δ are 

indistinguishable from wild type (Figure 12).  

3.10.2 Decreased	  recycling	  of	  post	  termination	  ribosomes	  improves	  cdc13-‐1	  fitness	  

Interestingly we showed that hcr1Δ is stronger suppressor of cdc13-1 thermo 

sensitivity than deletion of tma20Δ or tma22Δ (Figure 13). The homologs of both 
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Tma20/Tma22 and Hcr1 promote release of ribosome subunits following translation 

termination (Figure 9) (Skabkin et al., 2010a, Pisarev et al., 2007). Surprisingly 

however we discovered that Tma20 and Hcr1 function in different pathways to 

decrease fitness of cdc13-1 suggesting that their functions in translation are distinct 

(Figure 13). Consistent with this we showed that overexpression of recycling factor 

Rli1, in the context of cdc13-1, suppresses hcr1Δ but not tma20Δ (Figure 14). This 

suggests the increase in fitness of cdc13-1 observed upon deletion of HCR1 is 

explained by a decrease in ribosome recycling but that Tma20 decreases fitness of 

cdc13-1 by a different mechanism. Alternatively overexpression of Rli1, which 

promotes 60S dissociation form the mRNA following translation termination (Figure 

9) (Becker et al., 2012) (Shoemaker and Green, 2011), may compensate for the

specific ribosome-recycling defect of hcr1Δ but not tma20Δ. In agreement with this,

Hcr1 is implicated in promoting 60S dissociation from the mRNA in addition to the

release of de-acetylated tRNA and 40s from mRNA (Beznoskova et al., 2013),

whereas homologs of Tma20/Tma22 have only been shown to promote the release

of de-acetylated tRNA and 40S from mRNA (Figure 9) (Skabkin et al., 2010a). It is

unclear if Tma20 decreases fitness of cdc13-1 by promoting the release of de-

acetylated tRNA and 40s from mRNA or via a different function.

Hcr1, Tma20/Tma22 and Nmd2, all associate with termination machinery and have 

been shown to promote the release of ribosomal subunits from the transcript 

(Beznoskova et al., 2013) (Skabkin et al., 2010a, Ghosh et al., 2010). The 

observation therefore that hcr1Δ, tma20Δ and nmd2Δ each improve fitness of cdc13-

1 highlights the importance of ribosome recycling as a mechanism of regulating gene 

expression. We speculate that some mRNAs will be particularly susceptible to 

decreases in ribosome recycling efficiency. Transcripts that contain uORFs may be 

among the mRNAs that decrease in abundance when ribosomes are inefficiently 

recycled. This is because ribosomes that do not dissociate from the TL after 

translation of a uORF will block the path of other scanning 40S complexes and can 

result in the transcript being degraded by NMD (Figure 7d) (Gaba et al., 2005a).  

3.10.3 Tma20	  and	  Tma22	  function	  in	  the	  same	  pathway	  as	  NMD	  to	  decrease	  fitness	  of	  

cdc13-‐1	  

We discovered that TMA20 and TMA22 function in the same pathway as NMD2 and 

parallel pathways to DNA damage response genes RAD24, RAD9, EXO1 and CHK1 
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to decrease fitness of cdc13-1 (Figure 15 & Figure 17). NMD is thought to decrease 

the fitness of cdc13-1, at least in part, by decreasing the levels of other telomere 

capping proteins, Stn1 and Ten1 (Addinall et al., 2011). RAD24, RAD9, EXO1 and 

CHK1 on the other hand decrease the fitness of cdc13-1 since they contribute to the 

DNA damage response pathways that cause cell cycle arrest in cdc13-1 (Figure 3) 

(Lydall, 2009). This led us to hypothesis that Tma20 and Tma22 modulate levels of 

telomere capping proteins such as Stn1 and Ten1, rather than DNA damage 

response or checkpoint proteins to affect fitness of cdc13-1.  

Some of our data however, is in conflict with the idea that NMD and TMA20 act in the 

same pathway to affect general telomere fitness. nmd2Δ is an enhancer of yku70Δ 

temperature sensitivity whereas deletion of TMA20 has no effect on growth of ku70Δ 

at any temperature (Addinall et al., 2011). Additionally nmd2Δ have short telomeres 

(Dahlseid et al., 2003) whereas tma20Δ telomeres are normal (Figure 12). One 

explanation for these observations could be that the roles of TMA20 and NMD2 at 

telomeres only partially overlap. Alternatively TMA20 may only slightly increase the 

levels of telomere capping proteins such as Ten1 and Stn1 whereas nmd2Δ results 

in a large increase in the level of Ten1 and Stn1.  

3.10.4 Increased	  stop	  codon	  read-‐through	  reported	  in	  tma20Δ,	  nmd2Δ	  and	  hcr1Δ	  does	  not	  

explain	  the	  increase	  in	  cdc13-‐1	  fitness	  observed	  in	  these	  strains	  

Interestingly tma20Δ, nmd2Δ and hcr1Δ have each been shown to increase stop 

codon read-through (Fleischer et al., 2006a, Beznoskova et al., 2013) (Keeling et al., 

2004, Altamura et al., 2016), which made us speculate that they may improve fitness 

of cdc13-1 by increasing stop codon read-through. Several heritable cancers have 

been associated with mutations that create premature termination codons and 

therapies that promote stop codon read-through have been developed to restore 

normal expression of PTC containing transcripts (Bordeira-Carrico et al., 2012). It is 

of relevance therefore to gain more knowledge about both the proteins involved in 

stop codon read-through and the consequences of defective stop codon read-

through (Bordeira-Carrico et al., 2012). W303 yeast strains used in this study contain 

a prion form of eRF3, which interferes with normal translation termination and is 

referred to as [PSI+] (Serio and Lindquist, 1999). We took advantage of this, and the 

fact that [PSI+] strains can be converted to [PSI-] but found no difference in the fitness 
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of cdc13-1 strains with higher [PSI+] or lower [PSI-] levels of stop codon read-through 

(Figure 16).  

3.10.5 No	  evidence	  to	  suggest	  that	  Tma20	  actively	  responds	  to	  cdc13-‐1	  induced	  DNA	  

damage	  

We explored the possibility that Tma20 might actively respond to telomere damage 

induced by cdc13-1. In response to irradiation treatment the mammalian homolog of 

Tma20 has been shown to become more stable by phosphorylation of conserved 

sites (Herbert et al., 2001). In contrast with this we did not observe any 

phosphorylation or increase in abundance of Tma20 upon telomere uncapping 

(Figure 19). This is surprising since irradiation induces DSBs and the DNA damage 

response to a DSB is similar to that of uncapped telomeres, (Lydall, 2009) 

highlighting the different functions of Tma20 and MCT-1. However it would be 

necessary to conduct further experiments to confirm that Tma20 is not 

phosphorylated such as running a phosphorylation gel that would be more sensitive 

to detecting phosphorylation.  

Interestingly however we did find that the conserved phosphorylation sites of Tma20 

are partially required for Tma20 to decrease the fitness of cdc13-1 (Figure 18). It is 

unclear if this is a result of these particular amino acids being important for proper 

protein folding. We could test this by treating cells with phosphorylation inhibitors and 

measuring the ability of Tma20 to decrease fitness of cdc13-1.  
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Chapter 4. No Evidence that Tma20 and Tma22 promote translation 
re-initiation as in Drosophila and mammalian cells 

4.1 Identification of genes with uORFs 

In Drosophila the homologues of Tma20 (MCT-1) and Tma22 (DENR) are required 

for optimal translation of genes that contain upstream open reading frames (uORFs) 

by promoting translation re-initiation (Schleich et al., 2014b). In this study the 

dependence of a gene on MCT-1 and DENR for optimal translation correlated with 

the strength of the uORF initiation context (the Kozak score) and inversely correlated 

with the uORF length (Schleich et al., 2014b). A more recent publication showed that 

mammalian homologs of Tma20 and Tma22 are also required for the optimal 

translation of genes that contain uORFs in strong initiation contexts. In contrast with 

Drosophila however, the mammalian homologs of Tma20 and Tma22 only promote 

translation of genes that have uORFs of a single amino acid in length (Schleich et al., 

2017).  

To test the hypothesis that Tma20 and Tma22 promote translation of yeast genes 

that contain uORFs a bioinformatics analysis of yeast TL sequences was conducted 

using recently available yeast TL length predictions (Nagalakshmi et al., 2008) 

(Arribere and Gilbert, 2013). All uORFs, including those with a stop codon located in 

the main ORF, termed overlapping ORFs, were identified. To predict the likelihood 

that a uORF initiation codon would be recognised by a 43S ribosome scanning the 

TL, the similarity of the sequence flanking initiation codons and the consensus Kozak 

sequence was determined and expressed as a ‘Kozak score’. This was 

accomplished using a position weight matrix of the consensus Kozak sequence, 

created by counting the occurrences of each nucleotide at positions -4, -3, -2, -1, +1 

and +2 relative to the ATG of the main translation start site of each gene in the yeast 

genome (Figure 20a). The Kozak score of a given uORF was then generated as in 

(Schleich et al., 2014b), using a multiplicative model whereby the frequency of 

occurrences of each nucleotide (obtained from the Kozak position weight matrix) 

from position minus 4 to plus 2 relative to the ATG were multiplied together. For 

example the consensus Kozak sequence of AAAAatgAC would yield a Kozak Score 

of [0.42902*0.576061*0.397639*0.439928*0.317693*0.366557] which is 0.005035.  

A high ‘Kozak score’ reflects an initiation context similar to the Kozak consensus 
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sequence. The number of uORFs per gene was also counted and a ‘total Kozak 

score’ calculated as the sum of all the Kozak scores from each of the uORFs.  

The sequences of 6600 genes were retrieved from SGD. TL sequences of 5164 

genes were obtained from TL length estimates previously published (Nagalakshmi et 

al., 2008) (Arribere and Gilbert, 2013). From this the locations of all uORF and 

oORFs were determined and their ‘Kozak scores’ calculated. In total 1663 and 464 

uORF and oORFs were identified respectively (Figure 20b). 565 genes contain one 

or more uORFs and 374 genes contain one or more oORFs (Figure 20b). The 

proportion of uORFs identified (12.75%) is in agreement with previous estimates of 

13% (Lawless et al., 2009). oORFs were found to be less common that uORFs, only 

occurring in 7.36% of genes. Data from the bioinformatics analysis is summarised in 

Figure 20b and a screenshot of the results are displayed in Figure 20c. 



Systema�cName GeneName uAUG Kozak score frame length of uORF TL_Length ORF Kozak score length of oORF Transla�onRate
YAL008W FUN14 0 0 0 49 24.86245063 0 0.66
YBR255W MTC4 2.281615149 OUT 0 24 23.20025119 24 0.1
YGR164W 0 0 0 unknown 11.13464007 0 0.94
YGR131W FHN1 0.515898558 IN 12 180 7.471118567 0 0.41
YGR131W FHN1 0.192696189 OUT 0 180 7.471118567 111 0.41
YGR131W FHN1 1.57669464 IN 15 180 7.471118567 0 0.41
YPL144W POC4 0 0 0 27 0.369833358 0 0.49
YBR135W CKS1 0 0 0 105 1.270021089 0 0.84
YBR160W CDC28 0 0 0 79 3.603764904 0 0.57
YJL082W IML2 0 0 0 119 3.186460693 0 0
YJL142C IRC9 0 0 0 unknown 23.20025119 0 0.96
YPL191C 8.485595644 OUT 42 101 1.104699674 0 0.06
YGL215W CLG1 0 0 0 464 16.53163589 0 0.16
YKL074C MUD2 0 0 0 29 2.150882908 0 0.31
YLR467C-A 0 0 0 unknown 2.411318319 0 0
YJL077C ICS3 7.926617413 OUT 15 28 1.493194493 0 0.88
YKL096W-A CWP2 0 0 0 49 15.15656124 0 0.95
YIL124W AYR1 0 0 0 32 2.671013028 0 0.65

A

B

C

-4 -3 -2 -1 0 0 0 1 2

A 0.42902 0.576061 0.397639 0.439928 1 0 0 0.317693 0.265093

C 0.197699 0.094441 0.21832 0.178123 0 0 0 0.132247 0.366557

G 0.148984 0.189331 0.143903 0.164824 0 0 1 0.288255 0.151973

T 0.224298 0.140167 0.240137 0.217125 0 1 0 0.261805 0.216378
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Figure 20: Identification of genes with uORFs. A) Graphical representation of 

frequency distribution of nucleotides, which are found, at indicated positions relative 

to the ATG of 6692 main ORF translation start sites (sequences downloaded from 

Biomart. B) Screenshot of TL analysis where each row contains details about a 

uAUG identified in yeast. Columns from left to right are: Systematic Name, Gene 

Name, uORF Kozak score, frame (uAUGs that are in the same reading frame are 

labeled as ‘IN’ and those in a different reading frame are labeled as ‘OUT’), length of 

uORF (if 0 then there is no uORF associated with the TL), TL_length (the length of 

the TL), ORF Kozak score (the Kozak score associated with the initiation codon from 

the main ORF), length of oORF (if 0 then there is no oORF associated with the TL). 

The data displayed here is generated from sequences retrieved form SGD  

(http://yeastmine.yeastgenome.org/yeastmine/service) on 26.06.2017. Python scripts 

used to generate data can be found at (https://github.com/vickytorrance/uAUGs) C) 

Summary of B showing total uAUGs, uORFs and oORFs that were identified.  

http://yeastmine.yeastgenome.org/yeastmine/service
https://github.com/vickytorrance/uAUGs
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4.2 Genes with uORFs have lower translation rates and uORFs are 
underrepresented in the genome. 

Since uORFs and oORFs are generally regarded as elements that inhibit translation 

we hypothesised that their occurrence would be lower than predicted by chance, 

reflecting negative selection. If oORFs inhibit expression more than uORFs we would 

expect selection against oORFs to be stronger than selection against uORFs. To 

examine the selective pressure on uORFs, random DNA sequences were generated 

to replace actual TL sequences and the percentage of those TLs that contained 

uORFs and oORFs were calculated. 1000 trials were performed, each trial 

generating a new random gene-specific TL sequence and calculating the percentage 

of those TLs that contained uORFs and oORFs. While 12.75% of genes contain 

uORFs and 7.36% contain oORFs the average number of uORFs and oORFs 

observed in randomly generated sequences is about 35% demonstrating strong 

selective pressure against uORFs and oORF (Figure 21a). The selective pressure 

against oORFs is greater than that against uORFs indicating that they may be 

stronger repressors of translation. The observation that there are less uORFs and 

oORFs than expected from random sequences is in agreement with published data 

showing that there are less uAUGs than expected (Arribere and Gilbert, 2013). 

To further explore the effect of uORFs and oORFs on gene expression we compared 

estimated translation rates of genes containing either uORFs or oORFs with 

translation rates from all genes using a published dataset of estimated translation 

rates (Arava et al., 2003). As expected, the genes that contain uORFs or oORFs 

have reduced translation rates when compared with the full set of genes (Figure 

21b). Interestingly genes with oORFs have slightly lower translation rates than the 

genes with uORFs supporting the hypothesis that oORFs inhibit translation to a 

greater degree than uORFs (Figure 21b).  

There are several explanations as to why oORFs may be more repressive than 

uORFs. The out of frame translation events that may occur on transcripts that have 

oORFs may result in these being degraded by NMD (Celik et al., 2017a). Another 

explanation would be that uORFs permit translation re-initiation, which is not possible 

after translation of an oORF. oORFs in the same reading frame as the main ORF 

result in the synthesis of proteins with N terminal extensions that may negatively 

affect function. It is unsurprising therefore that of the genes that contain 464 oORFs, 
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only 46 have oORFs in the same reading frame as the main ORF, much lower than 

the expected 1 third that would occur if the oORFs were evenly distributed in each 

reading frame.     
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Figure 21:  Genes with uORFs have lower translation rates and uORFs are 

underrepresented in the genome. A) The percentage of genes, which contain either 

uORFs or oORFs, and histogram of the percentage of uORF and oORF containing 

genes calculated from 1000 randomizations of gene specific TL sequences. B) 

Boxplot of the translation rates of all genes, genes with uORFs and genes with 

oORFs. Estimates of the translation rates are taken from (Arava et al., 2003).  

Authors estimated translation rate by multiplication of the fraction of transcripts 

engaged in translation with the density of ribosomes on a transcript. The box 

indicates location of the 25th and 75th percentiles, with the difference between these 

two percentiles being the interquartile range (IQR). The upper whisker indicates the 

largest data point less than 1.5 * IQR. Similarly the lower whisker indicates the 

smallest data point greater than 1.5 * IQR. Any data points outside of this range are 

considered to be outliers (not indicated). P values are calculated using unpaired t-

test. 
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4.3 uORFs have weaker initiation contexts than main ORFs 

The fact that uORFs and oORFs are heavily selected against and are associated 

with lower translation rates suggests that those uORFs that are present may play 

important regulatory roles, such as the GCN4 uORFs discussed in the introduction 

(Figure 8). The nucleotide sequence flanking an ATG determines the likelihood of it 

being ‘recognized’ as an initiation codon (Kozak, 1986b), therefore if uORFs and 

oORFs do play an important regulatory role one might expect them to be in favorable 

initiation contexts. On the other hand if uORFs and oORFs do not play important 

regulatory roles we might expect unfavorable initiation contexts to be common.  

To explore the biological relevance of uORF and oORF initiation contexts uORF and 

oORF Kozak scores were compared with main ORF Kozak scores and Kozak scores 

generated from random TL specific sequences, termed ‘scrambled sequence’. The 

‘scrambled’ TL sequences were constructed as described in 4.2. As expected Kozak 

scores from the main ORFs are higher than those generated from random 

sequences however Kozak scores from uORFs and oORFs were not statistically 

different from Kozak scores of randomly generated sequences suggesting that there 

is no general selective pressure acting on uORF initiation contexts (Figure 22). This 

is consistent with data from the Chlamydomonas genome where the Kozak scores of 

uORFs and randomly generated sequences are similar (Cross, 2015) and a study of 

mouse uORFs, which found no distinct sequence motif around the uORF initiation 

codon (Chew et al., 2016).   

The finding that there is no selective pressure acting on uORF initiation contexts 

suggests that uORF initiation contexts do not play a major role in regulation of 

translation.  
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Figure 22: uORFs have weaker initiation contexts than the main ORFs. Boxplots of 

the all Kozak scores from uORFs, oORFs, main ORF as well as main ORFs 

generated form randomized DNA sequences (scrambled DNA). ‘Kozak score’ 

describe the initiation context surrounding initiation codon, by comparing likeliness to 

the consensus Kozak sequence. Description of how Kozak scores were calculated is 

in methods. Each boxplot represents the ‘Kozak scores’ calculated form each 

individual uORF, oORF or main ORF within the genome. As a comparison the ‘Kozak 

scores’ of initiation codons generated from a randomised DNA sequence are also 

presented. The box indicates location of the 25th and 75th percentiles, with the 

difference between these two percentiles being the interquartile range (IQR). The 

upper whisker indicates the largest data point less than 1.5 * IQR. Similarly the lower 

whisker indicates the smallest data point greater than 1.5 * IQR. Any data points 

outside of this range are considered to be outliers (not indicated). P values are 

calculated using unpaired t-test. 
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4.4 uORFs are longer and terminate further from main ORFs than expected. 

Since there seems to be no general selective pressure acting on the uORF initiation 

contexts we wondered if there is selection for other uORF features that may explain 

how they affect gene expression. The likelihood of translation re-initiation occurring is 

negatively correlated with uORF length and proximity to the main ORF (Rajkowitsch 

et al., 2004) (Hinnebusch, 2005). If translation re-initiation plays a major role in 

permitting downstream translation after a uORF then there may be selection for 

uORFs that are shorter and reside further from the main coding sequence. 

Actual uORFs from the genome and uORFs generated from random TL specific 

sequences were compared in length and proximity to the main coding sequence. 

Distances between uORFs and corresponding coding sequences are significantly 

longer than expected from random sequences, indicating selection for uORFs that 

reside far from the main ORF (Figure 23a). This indicates that there may be selection 

for uORFs that facilitate translation re-initiation (Hinnebusch, 2005).  However we 

also found that uORFs are significantly longer than expected from random 

sequences. Since longer uORFs reduce the likelihood of translation re-initiation 

occurring (Rajkowitsch et al., 2004) this conflicts with the idea that there is selective 

pressure acting on uORF features that facilitate translation re-initiation (Figure 23b).   

One explanation for why there is selection in favour of uORFs that reside further from 

the main coding sequence is that these uORFs are more likely to be missing from 

some mRNA isoforms than uORFs that are in close proximity to the main coding 

sequence. The finding that there is not selection against longer uORFs, the products 

of which are presumably more energetically costly to synthesise compared shorter 

uORFs, might suggest that some uORFs encode functional peptides. A simpler 

explanation however is that shorter uORFs repress translation more than longer 

uORFs, possibly by recruiting NMD factors more efficiently or resulting in a greater 

number of stalled ribosomes that act as a ‘roadblock’ to translation as illustrated in 

Figure 7.  

In summary, there is more selection against short uORFs and uORFs positioned 

close to the main ORF start codon leading to the hypothesis that these uORF 

features are more repressive to translation than longer uORFs or uORFs close to the 

m7G cap.  
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Figure 23: uORFs are longer and further from main ORFs than expected. A) Boxplots 

of uORF lengths (A) or distances between the uORF stop and main ORF (B) from 

uORFs found in actual TL sequences and uORFs generated from randomized gene 

specific TL sequences (scrambled DNA). The box indicates location of the 25th and 

75th percentiles, with the difference between these two percentiles being the 

interquartile range (IQR). The upper whisker indicates the largest data point less than 

1.5 * IQR. Similarly the lower whisker indicates the smallest data point greater than 

1.5 * IQR. Any data points outside of this range are considered to be outliers (not 

indicated). P values are calculated using unpaired t-test. 
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4.5 New luciferase reporters created to measure translation in vivo. 

TMA20 and TMA22 homologs in Drosophila have been shown to promote expression 

of genes that contain uORFs, particularly those that contain short uORFs in strong 

initiation contexts, therefore we identified all of the genes in yeast that contain 

uORFs. If the function of Tma20 and Tma22 is conserved in yeast then such genes 

will be indicative of those regulated by Tma20 and Tma22. We therefore sought to 

develop an assay to test if Tma20 and Tma22 regulate gene expression and 

investigate the hypothesis that Tma20 and Tma22 promote translation re-initiation.  

Plasmids were designed to quantify gene expression in vivo using two different 

reporter genes, Renilla luciferase and Firefly luciferase (Figure 24a). The gene 

encoding Firefly luciferase is fused to a constitutive promoter, pPGK1, to act as a 

‘loading control’. The gene encoding Renilla luciferase is fused with the test upstream 

regulatory sequence (URS), which encompasses the promoter and TL. To ensure 

that expression of the test URS is independent from the expression of the loading 

control, pPGK1, genes encoding Renilla luciferase and Firefly luciferase were fused 

to terminator sequences from ADH1 and CYC1 respectively and positioned in 

opposite orientations to each other. A dual luciferase assay (Promega) was used to 

measure Firefly luciferase (FLuc) and Renilla luciferase (RLuc) activity from a single 

sample and the ratio of Rluc/Fluc represents the ‘normalised’ expression of a test 

promoter.  

For any given gene of interest the URS is amplified from genomic DNA using primers 

containing homology regions with the empty vector, to allow the promoter to be fused 

with Renilla luciferase. This plasmid could then be transformed into WT and tma20Δ 

strains to measure if indeed TMA20 regulates expression of the URS. 

To confirm that the regulation of the URS, by TMA20, is due to the uORF the effect of 

TMA20 on expression of a control URS can also be measured using a control 

plasmid. The control plasmid is identical apart from a point mutation in the uORF/s 

initiation codon.  Point mutations are introduced using a PCR based strategy (see 

Figure 24a).  

To test the efficiency of a test promoter, Firefly luciferase and Renilla luciferase 

activity were measured in cells transformed with a plasmid with or without (empty 

vector) an ALD3 promoter fused to the Renilla luciferase gene. Although, as 
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expected, Firefly luciferase activity is detected from the empty vector and the vector 

with ALD3 fused to Renilla luciferase , Renilla luciferase activity is only detected from 

the latter vector (Figure 24B).  

To test the dynamic range of the assay a 2 fold dilution series of cells transformed 

with reporter plasmid was made. Renilla luciferase was expressed under HDA3 or 

HDA3-M1V (a variant that contains a point mutation in the USR of HDA3). As 

anticipated Firefly luciferase and Renilla luciferase activities increased linearly with 

increasing concentrations of cells, in both samples, despite the difference in Renilla 

luciferase expression detected from HDA3 or HDA3-M1V (Figure 24c). We repeated 

the test in tma20Δ, also finding Firefly luciferase and Renilla luciferase activities to 

increase linearly with increasing concentrations of cells. 
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Figure 24: New luciferase reporters created to measure translation in vivo. A) 

Diagram illustrating design and method of assembly of reporter plasmids used in this 

study. YFG promoter drives Renilla luciferase and PGK1 promoter drives Firefly 

luciferase, which is used as a loading control. Briefly, promoter of YGF is amplified 

from genomic DNA and cloned into ‘empty’ reporter plasmid. Point mutations are 

introduced onto primers, which amplify part of YFG promoter and a region of the 

plasmid. Two or more primer pairs are used to amplify two or more fragments of the 

promoter/plasmid DNA, which are subsequently cloned into the ‘empty’ reporter 

plasmid. B) Luminescence signals detected from cells transformed with plasmid with 

(pDL1843) and plasmid without (pDL1728) an ALD3 promoter fused to Renilla 

luciferase. Cells were grown and luminescence detected according to the protocol 

detailed in ‘Luciferase assay’ section of the methods. C) Luminescence from Firefly 

luciferase and Renilla luciferase measured from varying concentrations of cells. Cells 

were grown to exponential phase and  
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4.6 uORFs, as expected, inhibit the expression of main ORFs to varying 
extents. 

To explore the role of Tma20 and Tma22 in translation, 22 genes were selected 

based on the criteria that they contain uORFs in strong initiation contexts (thus have 

higher Kozak scores) and have TL length predictions published in (Arribere and 

Gilbert, 2013) and (Nagalakshmi et al., 2008) that are roughly in agreement with 

each other (Figure 25).  

The TL and promoter regions of the 22 genes that we selected were each fused to a 

test reporter gene (Renilla luciferase). The initiation codons of each of the uORFs 

were subsequently eliminated by point mutation, thereby creating pairs of identical 

plasmids, one containing a promoter and TL with native uORF/s and one containing 

a promoter and TL with disrupted uORF/s (Figure 24a). To visualise the uORFs and 

TLs of each of these genes, the promoter, TL and uORFs are drawn, to scale (Figure 

25).  

Before investigating the regulation of expression of these 22 genes by TMA20 and 

TMA22 we first considered the impact that uORFs have on expression of these 22 

genes. The effect that uORFs have on expression is quantified using the ratio of 

normalised Renilla luciferase activity when uORFs have been eliminated relative to 

when uORFs have not been eliminated.  

In summary of the 22 genes we examined, 13 have uORFs that repress expression, 

7 have uORFs that do not affect expression and 2 have uORFs that seemingly 

promote expression. We grouped the 22 selected genes according how much 

expression changes upon elimination of the uORFs (Figure 27a). The first group 

(CTF3, BRE4, HDA3, ATG5, NTR2, NDJ1, PSG1 and FRE6) have uORFs that 

greatly reduce expression, as demonstrated by a greater than 2 fold increase in 

normalised reporter activity upon elimination of uORF/s. Elimination of CTF3 and 

BRE4 uORFs results in the most dramatic increase in expression that is remarkably 

16 fold and 12 fold respectively. The second group (RRG1, PUS9, MOD5, ATG20 

and SMY1) have uORFs that slightly reduce expression. We observed a less than 2 

fold increase in normalised reporter activity that is statistically significant upon 

elimination of the uORFs within the second group. The third group of genes (DUS3, 

MBP1, RBS1, SFG1, CDC13, IST2 and RAI) have uORF/s that do not have a 
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statistically significant impact on expression of the reporter gene. Finally eliminating 

the uORFs of the fourth group CMK1 and ALD3 unexpectedly resulted in a decrease 

in expression, suggesting that these uORFs may actually promote expression (Figure 

26U-V).  

We observed great variation in the influence that uORFs have on expression, 

therefore wondered if these variations might be attributed to particular uORF 

features. Since we observed that uORFs tend to be longer and reside further from 

the main coding sequence than expected from random TL sequences (Figure 23) we 

speculated that these uORFs would repress translation less than shorter uORFs that 

are in close proximity to the main ORF.  

As anticipated we found that, of the 8 genes whose expression increases by more 

than 2 fold upon elimination of the uORFs (group 1), 7 of them have a uORF that 

terminates close to the main coding sequence (Figure 27b). In contrast, of the 7 

genes that have uORFs that do not influence gene expression (group 3), only 1 has a 

uORF that terminates close to the main coding sequence (Figure 27b). However, in 

contrast with our observation that short uORFs are less common than expected by 

random sequences (Figure 23a) we found no obvious connection between the 

degree to which a gene is repressed by a uORF/s the presence of a short uORF 

(Figure 27c). We also found no evidence to suggest that long uORFs correlate with 

strong suppression of gene expression (Figure 27d). There is no correlation between 

the initiation context of the uORFs within a TL and the change in gene expression 

observed upon elimination of the uORFs (Figure 27e), consistent with our previous 

observation that there is no deviation in the uORF Kozak scores from those expected 

by random sequences (Figure 22). This analysis is somewhat complicated because 

some TL’s having multiple uORFs however valid comparisons can still be made, in 

that we can ask weather having, for example a short uORF correlates with strong 

uORF dependant regulation of gene expression. 

Since mRNAs frequently exist in multiple isoforms we predict that, in some genes, 

there will be transcript isoforms that do not contain the uORF so the overall influence 

that the uORF has on expression will be reduced.  In support of this idea, it was 

recently suggested that about 70% of genes transcribe multiple isoforms of mRNA 

(Pelechano et al., 2013).  
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The decrease in ALD3 and CMK1 expression observed upon introduction of a point 

mutation to their respective uORFs indicates that expression of ALD3 and CMK1 is 

facilitated by uORFs, in contradiction with the general view that uORFs impede 

translation (Jackson et al., 2010). An alternative explanation however is that the point 

mutations we introduced affect secondary structure of the TL, thereby negatively 

influencing translation. It would be of interest to determine a mechanism by which 

uORFs can promote downstream expression. 

Tma20 and Tma22 are thought to be required for optimal translation of genes that 

have uORFs. Since we demonstrated that uORFs have different effects on 

translation we speculated that deletion of TMA20 and TMA22 would cause a 

reduction expression of those genes whose expression is affected by uORFs.    
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Figure 25: 22 genes with uORFs selected to explore the role of Tma20 and Tma22 in 

translation. Illustration depicting the genes used to measure effect of mutating 

uORFs. Promoter lengths were taken from Yeast Promoter Atlas 

(http://archive.is/Xgoi) accessed on 05/12/2015 (Chang et al., 2011), TL length 

estimates taken from (Arribere and Gilbert, 2013) and (Nagalakshmi et al., 2008).  

Colours have been used to indicate the relative strength of the Kozak sequence. 

http://archive.is/Xgoi
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Figure 26 - uORFs, as expected, inhibit the expression of main ORFs to varying 
extents.  

Figure 26: uORFs, as expected, inhibit expression of main ORFs to varying 

extents. A-U shows the effect of abolishing uORFs (by introducing a point mutation in 

the initiation codon). YFG expression is determined as the ratio of Renilla (YFG 

driven) over Firefly (PGK1 driven, normalisation control) luciferase activity (rluc/fluc). 

The effect of abolishing uORFs is quantified by expressing normalised Renilla activity 

(rluc/fluc) when uORFs have been abolished (unfilled bars) relative to normalised 

Renilla activity (rluc/fluc) when uORFs have not been abolished (filled bars). Cells 

were grown according to ‘Luciferase assay’ protocol in the methods section. 

Plasmids were transformed into two independent WT strains and luciferase activity 

was measured in two colonies from each transformation reaction. Means of four 

independent repeats are plotted with error bar indicating the SEM. P values were 

calculated using t-test (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 
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Figure 27- uORFs that reside close to the main ORF correlate with reduced 

translation. A) Summary of the impact that eliminating the uORFs of different 

transcripts has on their expression. Each gene is grouped according to the change in 

expression that occurs when uORFs are eliminated from the transcript. B-E) 

Comparison of the change in gene expression that occurs when uORFs have been 

eliminated from a transcript with B) the distance separating the uORF termination 

codon and the main ORF initiation codon, C) the length of the shortest or D) longest 

uORF within the TL, E) the initiation contexts of the uORFs. The colours refer to the 

particular grouping of each gene that is shown in A.   
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4.7 No evidence that Tma20 or Tma22 promote translation re-initiation in 
yeast 

To test if the 22 candidate genes selected in this study are regulated by TMA20 and 

TMA22 we measured the effect of tma20Δ, tma22Δ and tma20Δ tma22Δ on each of 

the selected genes. To clarify that the effect of TMA20 and TMA22 deletion is indeed 

because of the uORF, the effect of tma20Δ and tma22Δ on expression of identical 

reporter harbouring point mutations in the uORF initiation codons was also 

measured. If Tma20/Tma22 complex promotes translation re-initiation we expect 

tma20Δ and tma22Δ to result in a decrease in expression since Tma20/Tma22 

complex would be required for efficient re-initiation following translation of a uORF. 

However, when the uORFs have been disrupted, we expect the deletion of TMA20 or 

TMA22 to have no effect. Since Tma20 and Tma22 function as a heterodimer 

(Lomakin et al., 2017) we predict that tma20Δ, tma22Δ and tma20Δ tma22Δ will 

function as biological controls.  The mammalian homolog of Tma64, eIF2D has been 

shown to share functions with the heterodimer of Tma20 and Tma22. Both eIF2D 

and Tma20/Tma22 complex promote the dissociation of 40S, mRNA and de-

acetylated tRNA following translation termination (Skabkin et al., 2010a) and can also 

facilitate re-initiation events on viral transcripts (Zinoviev et al., 2015). We therefore 

investigated the effect of tma64Δ on expression of some of the 22 candidate genes 

selected. 

In 10 out of 22 genes (MBP1, MOD5, SMY1, NTR2, DUS3, PUS9, RRG1, BRE4, 

CTF3 and ALD3) expression was higher in tma20Δ, tma22Δ and tma20Δtma22Δ 

strains compared with WT or tma64Δ strains suggesting that Tma20/Tma22 complex 

but not Tma64 inhibits the expression of these genes (Figure 28 – indicated with 

diamonds). However, we also observe, in 9 of these 10 genes, that tma20Δ, tma22Δ 

and tma20Δ tma22Δ result in a similar increase in expression when uORF initiation 

codons have been eliminated demonstrating that the effect of TMA20 and TMA22 is 

independent of uORFs (Figure 28 –indicated with filled diamond). In just one gene, 

BRE4, tma20Δ and tma22Δ increase expression when the uORF is intact and not 

when it had been inactivated, consistent with a model that Tma20 and Tma22 

repress rather than promote, translation re-initiation (Figure 28 – indicated with filled 

diamond). In the other 12 genes investigated expression is similar in tma20Δ, 
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tma22Δ, tma20Δtma22Δ, tma64Δ and wild type strains, both when uORFs were 

intact and when they had been disrupted suggesting that TMA20, TMA22 or TMA64 

do not regulate expression of these genes. 

Interestingly the impact of tma64Δ on expression of most genes was distinct from the 

effect of tma20Δ, tma22Δ and tma20Δ tma22Δ, in agreement our observation that 

TMA20 and TMA22 function differently to TMA64 at telomeres. This provides further 

evidence that TMA20/TMA22 and TMA64 have independent functions in yeast.   

Our data demonstrates that, in contrast with their Drosophila homologs, TMA20 or 

TMA22 are not required for the efficient translation of genes that contain uORFs. 

Further we found evidence that Tma20 and Tma22 may actually act to repress 

expression after translation of some uORFs since they decrease expression of the 

BRE4 allele that has a uORF but not the BRE4 allele that does not have a uORF. 

Further experiments are required to confirm that the decrease in expression of BRE4 

promoted by Tma20 and Tma22 is actually because Tma20 and Tma22 repress 

translation re-initiation, rather than start codon recognition or transcript stability. 

Although our model that TMA20 and TMA22 repress translation re-initiation conflicts 

with the model in Drosophila, that they promote translation re-initiation, evidence that 

they promote dissociation of mRNA, tRNA and 40S following translation termination 

ribosome complexes are support the idea that Tma20 and Tma22 inhibit translation 

re-initiation. Dissociation of the 40S subunit from mRNA would prevent any possible 

re-initiation event from occurring. 
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Figure 28. No evidence that Tma20 or Tma22 promote translation re-initiation in 

yeast. A-U) shows the effect, relative to WT of tma20Δ, tma22Δ, tma20Δ tma22Δ and 

in some cases tma64Δ on expression of two alleles of YFG (TLs containing uORFs 

are unfilled bars; mutated TLs with no uORFs are filled bars). The ratio of Renilla 

(YFG driven) over Firefly (PGK1 driven, normalisation control) luciferase activity is 

calculated to obtain the normalised Renilla luciferase activity (rluc/fluc). For each 

plasmid pair (native uORFs; filler bars and disrupted uORFs; unfilled bars) the 

normalised Renilla luciferase activity of the WT was given a value of 1 and all other 

strains were expressed relative to this value. In deletion strains normalised Renilla 

luciferase activity was measured in two independent colonies and the bar indicates 

the mean of the two values, with the error bars indicating the individual values. In WT 

strains normalised Renilla luciferase activity was measured in four independent 

strains the bar indicates the mean of the four values a with the error bars indicating 

the SEM of the four values. Cells were grown and luciferase assays conducted as 

per the conditions that are outlined in the ‘Luciferase assay’ section of the methods.  
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4.8 Evidence suggests that Tma20 and Tma22 decreases transcript stability, 
as demonstrated using alleles of BRE4 

BRE4 is the only gene; out of the 22 we tested, for which TMA20 and TMA22 reduce 

expression when the uORF is present but not when the uORF is absent. This 

suggests that, in contrast with the proposed function of Tma20 and Tma22 homologs 

in Drosophila they inhibit rather than promote translation downstream of a uORF and 

do so in a gene specific rather than global manner. We therefore wanted gain further 

insight into the mechanism by which Tma20 and Tma22 inhibit expression of BRE4.  

BRE4 has a single 9 amino acid long uORF, situated in the same reading frame and 

just 9 nucleotides upstream of the main coding sequence (Figure 29a). To examine if 

Tma20 and Tma22 inhibit BRE4 expression via the uORF initiation or termination 

codons we created an allele of BRE4, termed BRE4-uORF-9*Y where the uORF 

termination codon is abolished by point mutation (Figure 29a). Since the uORF and 

main coding sequence are in the same reading frame BRE4-uORF-9*Y encodes an 

isoform of Bre4 (or Renilla luciferase in this case) containing a 12 amino acid N-

terminal extension. Therefore, to distinguish between stop codon read-through and 

translation re-initiation we also created an additional BRE4 allele where the uORF 

and main coding sequence are in different reading frames, termed BRE4-uORF out. 

BRE4-uORF-out was created by insertion of a nucleotide 5’ of the uORF stop codon 

resulting in a uORF that terminates 14 nucleotides downstream of BRE4 main coding 

sequence. We also measured the effect that each mutation has on transcript levels to 

distinguish between effects on translation and on the stability of the transcript.   

BRE4-uORF-M1V, which contains a point mutation in the BRE4 uORF initiation 

codon, results in 12 fold increase in reporter protein activity, in agreement with 

previous data (Figure 29b). The 12 fold increase in protein expression is 

accompanied only by 2 fold increase in mRNA level indicating that the uORF 

represses expression mostly by decreasing translation, but in combination with 

reducing transcript levels (Figure 29 b+c). BRE4-uORF-9*Y results in a more modest, 

2 fold increase in reporter protein activity, despite the fact that, like BRE4-uORF-

M1V, this allele does not have a uORF indicating that the N-terminal extension in 

BRE4-uORF-9*Y may reduce the function of Renilla luciferase (Figure 29b). BRE4-

uORF-9*Y also results in a 2 fold increase in mRNA levels, suggesting that the 

increase in protein might be due to an increase in transcript level and not from 
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activity of Renilla luciferase that contains an N-terminal extension (Figure 29c). 

Interestingly expression of BRE4-uORF-out is reduced by about 25% compared with 

expression of BRE4 showing that the overlapping version of the uORF represses 

BRE4 expression more than the native uORF (Figure 29b). One possible explanation 

for this could be that BRE4 expression is partially facilitated by translation re-initiation 

and translation re-initiation does not occur in BRE4-uORF-out since the termination 

codon resides within the main ORF.  
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Figure 29. BRE4 expression is decreased by a uORF. A) The TL sequence of BRE4, 

BRE4-uORF-M1V, BRE4 uORF *9Y and BRE4-uORF-out indicating the positions of 

the uORF. BRE4 has a single 9 amino acid long uORF. BRE4-uORF-M1V contains a 

point mutation in the uORF initiation codon and BRE4-uORF-9*Y contains a point 

mutation in the uORF termination codon. BRE4-uORF-out was created by insertion 

of a nucleotide 5’ of the uORF stop codon resulting in a uORF that terminates 14 

nucleotides downstream of BRE4 main coding sequence. B) The effect of each allele 

in A is quantified by expressing normalised Renilla luciferase activity (rluc/fluc) of 

BRE4 uORF M1V, BRE4 uORF *9Y or BRE4-uORF-out relative to normalised 

Renilla luciferase activity (rluc/fluc) of BRE4. Each point represents an individual 

measurement (from an independent colony of cells), coloured according to when the 

experiment was conducted. Plasmid were transformed into WT (DLY 3001 or 

DLY8460) strains. Cells were grown and luciferase assay was conducted according 

to ‘Luciferase assay’ section of the methods. C) Transcript levels of Renilla luciferase 

measured in BRE4, BRE4 uORF M1V, BRE4 uORF *9Y and BRE4-uORF-out 

measured was measured. RNA was isolated from cells grown in liquid culture to 

exponential phase at 30°C and transcript levels determined by SYBR Green RT-

PCR. RNA concentrations of the samples were normalized to the loading control 

BUD6. The level of normalized Renilla luciferase expressed form BRE4 was given 

the value of 1 and all other values were corrected relative to this. Each measurement 

was performed in triplicate. Each point on the plot represents an independent 

measurements (mean of triplicates) and the bar represents the mean of the 5 

independent measurements.  
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To explore the function of Tma20 and Tma22 we next investigated the effect of 

tma20Δ and tma22Δ on expression of BRE4, BRE4-uORF-M1V, BRE4-uORF *9Y 

and BRE4-uORF-out. As previously demonstrated tma20Δ and tma22Δ increase 

expression of BRE4 but have no effect on expression of BRE4 uORF-M1V 

demonstrating that Tma20 and Tma22 repress BRE4 expression by a mechanism 

dependant on the uORF (Figure 30a). In further support of the idea that regulation of 

Bre4 by Tma20 is dependant on the uORF tma20Δ increases expression of BRE4-

uORF-out, a BRE4 allele that contains an overlapping uORF, but has no effect on the 

expression of BRE4 uORF *9Y, an allele which does not contain a uORF (Figure 

30a).  

Drosophila homologs of Tma20 and Tma22 are thought to promote expression of 

genes that contain uORFs by promoting translation re-initiation. The finding that 

Tma20 and Tma22 decrease expression of BRE4 but not BRE4-uORF-M1V or 

BRE4-uORF *9Y are in support of a model that Tma20 and Tma22 inhibit translation 

re-initiation. However Tma20 and Tma22 also decrease translation of BRE4-uORF-

out, which presumably would not be permissive of translation re-initiation since it 

overlaps with main coding sequence (Figure 30a). This led us to consider other 

mechanisms by which Tma20 and Tma22 might repress BRE4 expression. 

Since levels of Renilla luciferase are lower when expressed from alleles of BRE4 that 

contain uORFs this made us speculate that Tma20 and Tma22 may decrease levels 

of transcripts that contain a uORF. To test this we measured the effect of tma20Δ on 

reporter mRNA levels in each of the alleles of BRE4. Consistent with our hypothesis 

we observed that the increase in level of BRE4 and BRE4-uORF-out reporter activity 

observed upon deletion of TMA20 is actually accompanied by a similar increase in 

the mRNA level suggesting that TMA20 decreases BRE4 transcript levels rather than 

translation (Figure 30c).  

Since transcripts that contain uORFs are NMD substrates (Gaba et al., 2005a) and 

we previously demonstrated that TMA20 and NMD2 act in the same pathway to 

suppress cdc13-1 (Figure 15) we speculated that TMA20 might repress BRE4 and 

BRE4-uORF-out through NMD. Surprisingly however our data suggest that Tma20 

represses expression independently of NMD since expression of BRE4-uORF-out is 

higher in tma20Δ nmd2Δ compared with tma20Δ or nmd2Δ (Figure 30b + c). 
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In summary, Tma20 and Tma22 repress expression of BRE4 by reducing transcript 

levels and the mechanism by which they reduce transcript levels is via the uORF but 

is independent of NMD. Tma20 and Tma22 homologs in Drosophila, on the other 

hand, increase expression of transcripts that contain uORFs by increasing translation 

re-initiation. We propose a model where interaction of Tma20/Tma22 with the post 

termination complex can have multiple consequences to expression. In some cases, 

as with the BRE4 example, Tma20/Tma22 decrease the level of transcript, 

presumably by decreasing its stability. In other cases, such as has been proposed in 

Drosophila (Schleich et al., 2014b), Tma20/Tma22 increase the efficiency of 

translation re-initiation. Our proposed model that Tma20/Tma22 interactions with 

uORFs can result in more than one outcome for expression is supported by 

biochemical evidence that MCT-1/DENR, like most initiation factors, adopt multiple 

roles in translation (Skabkin et al., 2010a). MCT-1/DENR promotes the recruitment of 

Met-tRNAi
Met to and also dissociation of 40s/tRNA/mRNA after translation termination 

(Skabkin et al., 2010a). 
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Figure 30. Tma20 and Tma22 decrease expression of BRE4 by decreasing transcript 

levels. A) The effect, relative to WT of tma20Δ, tma22Δ, B) nmd2Δ and tma20Δ 

nmd2Δ on expression of BRE4, BRE4-uORF-M1V, BRE4-uORF-*9Y and BRE4-

uORF-out. The ratio of Renilla  (BRE4 driven) over Firefly (PGK1 driven, 

normalisation control) luciferase activity (rluc/fluc) is calculated. Each point 

represents an individual measurement, coloured according to when the experiment 

was conducted. Cells were grown and luciferase assays conducted as per the 

conditions that are outlined in the ‘Luciferase assay’ section of the methods. C) 

Transcript levels of Renilla luciferase expressed form BRE4, BRE4-uORF-M1V, 

BRE4-uORF-*9Y and BRE4-uORF-out measured in WT tma20Δ, nmd2Δ and 

tma20Δ nmd2Δ strains. For each allele of BRE4 the Renilla luciferase transcript level 

measured in WT was given a value of 1 and all other measurements were corrected 

relative to this. RNA was isolated from cells grown in liquid culture to exponential 

phase at 30°C and transcript levels determined by SYBR Green RT-PCR. RNA 

concentrations of the samples were normalized to the loading control BUD6. Each 

measurement was performed in triplicate. Each point on the plot represents an 

independent measurements (mean of triplicates) and the bar represents the mean of 

all independent measurements. 
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4.9 All three uORFs of ALD3 are required to promote translation. 

uORFs are generally thought to inhibit gene expression therefore we were surprised 

to observe that uORFs seemingly promote expression in 2 of the 22 genes we 

examined, ALD3 and CMK1. Strikingly expression of ALD3 was reduced by about 

80% upon introduction upon abolition of the uORFs (Figure 26M). ALD3 contains 3 

uORFs that overlap each other and are, from the most proximal to ALD3 main coding 

sequence 66, 30 and 75 nucleoids in length (Figure 31a).  

To gain insight into the mechanism by which one or more uORF/s are seemingly 

required for optimal translation of ALD3, point mutations were individually introduced 

into each of the 3 uORF initiation codons, thus creating 3 new alleles of ALD3, 

termed ALD3 – uORF1 M1V, ALD3 – uORF2 M1V and ALD3 – uORF3 M1V (Figure 

31b). ALD3 – uORF1 M1V, ALD3 – uORF2 M1V, ALD3 – uORF3 M1V contain point 

mutations in the initiation codons of the 5’ most uORF, the middle uORF and the 

uORF closest to ALD3 main coding sequences respectively whereas ALD3 uORF1, 2 

&3 M1V contains 3 point mutations in the initiation codons of the 3 uORFs. 

Consistent with our previous data expression is reduced by about 80% when point 

mutations were introduced into all 3 uORFs in ALD3 uORF1, 2 &3 M1V (Figure 31c). 

However introduction of a single point mutation into only the initiation codon of the 5’ 

most uORF (ALD3-uORF1 M1V) resulted in only a slight reduction of ALD3 

expression and ALD3 expression is reduced by about 40% in ALD3-uORF2 M1V and 

ALD3-uORF2 M1V (Figure 31c). This indicates that uORF1 has minimal effect on the 

expression of ALD3 and although uORF2 and uORF3 both promote expression of 

ALD3 their effect is greatly reduced compared with that of ALD3 uORF1, 2 &3 M1V 

(Figure 31C). We investigated the regulation of ALD3 by TMA20 and TMA22 

however tma20Δ and tma22Δ had no significant effect on expression of any of the 

alleles of ALD3 suggesting that they do not play a role in regulating ALD3 expression 

(Figure 31d).  

One possible mechanism by which expression of a transcript may be stimulated by a 

uORF is if the uORF produced a functional peptide, which enhanced expression. 

However if a single uORF at the ALD3 locus encoded a functional peptide then a 

large decrease in ALD3 expression would have been observed upon introduction of a 

point mutation a single uORF initiation codon. Another possible explanation of how 

ALD3 uORFs may promote expression of a downstream ORF is if initiation at that 
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uORF prevented start site selection of another aberrant initiation codon, thus 

initiating translation of an incorrect polypeptide. This model was excluded however 

since there are no other uAUGs within ALD3 TL. Translation of ALD3 may rely on TL 

secondary structure or an IRES and it is possible that introducing point mutations into 

the TL disrupts secondary structure, thereby reducing ALD3 expression. 

At the ALD3 locus the 5’ most uORF, uORF1 is in a much stronger initiation context 

than uORF2 or uORF3 but ALD3 uORF1M1V has little impact on ALD3 expression 

compared with ALD3 uORF2 M1V and ALD3 uORF3 M1V, consistent with our 

previous data which also indicate no correlation between a uORF initiation context 

and the impact that a uORF has on downstream expression.   
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Figure 31. All three uORFs of ALD3 are required to promote translation. A) The TL 

sequence of ALD3, indicating the positions of each of the uORFs. B) Alleles of ALD3 

used in C and D showing the uORFs that have been disrupted by the introduction of 

a point mutation to the initiation codon. C) The ratio of Renilla (driven by an allele of 

ALD3) over Firefly (PGK1 driven, normalisation control) luciferase activity is 

calculated to obtain the normalised Renilla luciferase activity (rluc/fluc). The 

normalised Renilla luciferase activity that was expressed from ALD3 (containing no 

point mutations) was given a value of 1 and the normalised Renilla luciferase activity 

that was expressed from each of the other alleles of ALD3 was expressed relative to 

this. Plasmids were transformed into WT (DLY3001) cells. Each point represents a 

measurement from an independent colony. C) The effect, relative to WT of tma20Δ, 

tma22Δ expression of each of the alleles of each allele of ALD3. For each allele of 

ALD3 the Renilla luciferase activity measured in WT was given a value of 1 and 

Renilla luciferase activity measured from each of the deletion strains was corrected 

relative to this. Cells were grown and luciferase assays conducted as per the 

conditions that are outlined in the ‘Luciferase assay’ section of the methods. 
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4.10 Discussion 

Data in this chapter suggests that Tma20 and Tma22, in contrast with the reported 

function of their homologs in Drosophila (Schleich et al., 2014b), do not promote 

translation re-initiation in yeast. We propose an alternative model to explain how 

Tma20 and Tma22 can regulate expression of transcripts that contain uORFs, by 

reducing transcript levels. Using alleles of BRE4 we show that Tma20 and Tma22 

decrease rather than increase expression downstream of a uORF and do so by 

reducing transcript levels in a mechanism that is independent of NMD. We also 

identified, using an allele of BRE4 that transcripts containing oORFs are also among 

Tma20 and Tma22 substrates.   

4.10.1 Regulation	  of	  gene	  expression	  by	  uORFs	  

Computational analysis of the TL sequences showed that uORFs are less common 

than expected from random sequences and associate with reduced translation 

efficiencies, in agreement with published observations (Arribere and Gilbert, 2013). 

We selected 22 genes that contain uORFs, to test the hypothesis that Tma20 and 

Tma22 promote translation re-initiation. Interestingly, of these 22 genes there is 

substantial variation in the influence that uORFs have on gene expression. 13 genes 

have uORFs that repress expression, 7 have uORFs that do not affect expression 

and 2 have uORFs that seemingly promote expression (Figure 26). Surprisingly we 

found no evidence to suggest that uORFs in strong initiation contexts repress 

translation more than those in weaker initiation contexts (Figure 26), as has been 

previously predicted (Wethmar, 2014) (Figure 27e). Consistent with our observation 

that there is more selection against uORFs that reside in close proximity to the main 

coding sequence (Figure 23b), the genes whose expression was repressed the most 

by uORFs also contain uORFs in close proximity to the main coding sequence 

(Figure 27b). uORFs serve as important regulatory elements within the TL and many 

polymorphisms that create or eliminate uORFs have already been associated with 

disease (Barbosa et al., 2013a). uORFs are also more prevalent in oncogenes 

suggesting that understanding how they influence expression is of importance in 

cancer biology (Barbosa et al., 2013a).  However much current understanding about 

how uORFs regulate expression is largely made up of gene specific mechanisms 
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such as GCN4 and CPA1. This chapter highlights the importance of uORF-mediated 

control which should be considered when exploring how the expression of a gene is 

controlled.  

4.10.2 No	  evidence	  that	  TMA20	  and	  TMA22	  promote	  translation	  re-‐initiation	  

The main aim of this chapter was to test to the hypothesis that Tma20 and Tma22 

promote translation re-initiation after translation of a uORF, as in Drosophila 

(Schleich et al., 2014b). Interestingly we found that uORF mediated regulation of 

expression is, in all but one case, unaffected by deletion of TMA20 and TMA22 

(Figure 28). This suggests therefore that that the model proposed in Drosophila, that 

Tma20 and Tma22 are required for optimal expression of genes that contain uORFs 

does not apply to yeast (Schleich et al., 2014b).  More recently it has been published 

that mammalian homologs of TMA20 and TMA22 also promote expression of genes 

that contain uORFs but, in contrast with Drosophila homologs, they only promote 

expression of genes that have 6 nucleotide long uORFs (Schleich et al., 2017). We 

considered this possibility but found that Tma20 and Tma22 are not required for 

expression of PGS1, a gene that contain a 6bp uORF (Figure 28 G).  

4.10.3 Interaction	  of	  Tma20	  and	  Tma22	  with	  the	  ribosome	  has	  multiple	  consequences	  for	  

translation	  

Based on our analysis of alleles of BRE4, showing that Tma20 and Tma22 decrease 

expression by reducing transcript levels, we propose an alternative model to explain 

how Tma20 and Tma22 can affect expression of transcripts that contain uORFs. We 

suggest that Tma20 and Tma22 can also decrease expression by reducing transcript 

levels via interaction with the uORF termination codon. We propose that the 

interaction of Tma20 and Tma22 with a uORF can have multiple consequences for 

expression of the downstream ORF (Figure 32). This model is supported by 

biochemical evidence that MCT-1/DENR can adopt multiple roles in translation 

(Figure 32 a, b and c) (Skabkin et al., 2010a). MCT-1/DENR promote the dissociation 

of 40S from de-acetylated tRNA and mRNA after translation termination (Figure 32b) 

and in the same study they were also shown to promote recruitment of an acetylated 

tRNA to the 43S initiation complex (Figure 32c) (Skabkin et al., 2010a). The authors 

propose that different roles that can be adopted by Tma20/Tma22 are a 
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consequence of different outcomes of similar interaction of Tma20/Tma22 with the 

40S and depend on the 40S ribosomal complexes (Skabkin et al., 2010a). 

Figure 32 depicts the different possible outcomes that could potentially occur upon 

loss of Tma20 or Tma22.  Published observations in mammalian extracts predict that 

loss of Tma20 or Tma22 would result in decreased dissociation of the 40S ribosomal 

complex from de-acetylated tRNA and mRNA (Skabkin et al., 2010a). This decrease 

in dissociation of 40S ribosomal complex from de-acetylated tRNA and mRNA after 

translation of a uORF could have 3 potential consequences to expression of the 

downstream ORF. The first is that it may increase expression by increasing 

translation re-initiation through maintaining the interaction of 40S with the TL (Figure 

32D). The second, it may also increase expression by increasing the stability of the 

transcript, preventing its degradation (Figure 32E). It could also similarly decrease 

stability of the transcript. The third is that it may decrease expression by acting as a 

‘roadblock’, impeding the path of other 40S complexes that otherwise would have 

initiated translation at that downstream ORF (Figure 32F). Published observations 

also suggest that loss of Tma20 or Tma22 would result in decreased recruitment of 

acetylated tRNA to the 43S initiation complex (Skabkin et al., 2010a), which would 

decrease the likelihood of translation re-initiation thereby decreasing expression 

(Figure 32G).  

The model presented in Figure 32 suggests that the effect Tma20 or Tma22 on 

expression of a gene that contains a uORF is highly context dependant. This context 

dependence may explain why, in most of the genes that we tested, Tma20 and 

Tma22 had no effect on uORF-mediated regulation (Figure 28). It also offers an 

explanation as to the different roles of Tma20 and Tma22 homologs in mammalian 

cells with Drosophila (Schleich et al., 2014b, Schleich et al., 2017). Another 

possibility to explain why Tma20 and Tma22 do not promote expression of most of 

the genes that contain uORFs could be that they only do so under conditions of 

stress. Further there may be species-specific variations in their function. 

One outstanding question that remains however is why the mammalian homolog of 

Tma64 (eIF2D), that is proposed to also promote dissociation of 40S ribosomal 

complex from de-acetylated tRNA and mRNA (Skabkin et al., 2010a) has no effect 

on the expression of any of the genes that we tested. One explanation for this is the 

subtle difference in the action of Tma64 (eIF2D) and MCT-1/DENR which is that 
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eIF2D was shown to more strongly promote release of 40S ribosomal complex from 

de-acetylated tRNA and mRNA (Skabkin et al., 2010a), which possibly has different 

implications for expression of the downstream gene. 

Our data suggests that Nmd2 decreases transcript levels of BRE4 alleles by 

interaction with the uORF termination codons (Figure 30 b+c), consistent other 

observations that transcripts that contain uORFs are NMD substrates (Gaba et al., 

2005a). Surprisingly we observed that Tma20 and Tma22 function independently of 

NMD to decrease transcript levels of BRE4 (Figure 30 b+c). This implies that Tma20 

and Tma22 may directly activate decapping factors or nucleases that degrade 

transcripts or function in a different mRNA decay pathway.  

Interestingly we show that Tma20 and Tma22 also decrease the transcript levels of a 

BRE4 allele that has an overlapping ORF (oORF) suggesting that TMA20 and 

TMA22 may also reduce expression of other genes that contain oORFs. The 

possibility that mammalian homologs of TMA20 and TMA22 affect the expression of 

genes that contain oORFs has not, that we are aware of been investigated.  
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Figure 32. Proposed interactions between homologs of Tma20 and Tma22 with the 

post-termination ribosome. A-C) Proposed biochemical roles of mammalian 

homologs of Tma20/Tma22. A) following translation of a uORF and dissociation of 

the 60S ribosomal subunit Tma20/Tma22 may B) promote dissociation of the 40S, 

de-acetylated tRNA and mRNA or C) promote recruitment of an acetylated tRNA to 

the 40S complex. D-G) Possible consequences to gene expression of loss of Tma20 

or Tma22. Following termination of translation at a uORF the 40S remains attached 

to the mRNA, which could result in an increase of expression of the downstream 

ORF by D) increased translation re-initiation, E) Decreased decay or a decrease in 

expression of the downstream ORF by F) resulting in a roadblock that prevent other 

ribosomes from reaching the main ORF or G) decreasing translation re-initiation by 

decreasing the recruitment of Met-tRNAi
Met. 
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Chapter 5. Expression of Stn1 is tightly controlled by an oORF 

5.1 STN1 upstream open reading frames decrease reporter gene expression 

STN1 contains two uORFs, one of which overlaps with the main ORF. There is a 16 

amino acid long uORF that is positioned 27 base pairs from the main ORF start 

codon and a 6 amino acid long overlapping ORF that terminates 2 base pairs after 

the main ORF start codon (Figure 33a).  

To investigate the impact of these uORFs on STN1 expression we created two new 

alleles of STN1, each containing a point mutation in one of the uORF initiation 

codons and called these alleles STN1-101 and STN1-102 (Figure 33a). STN1-101 

contains a point mutation in the uORF closest to the main ORF and STN1-102 

contains a point mutation in the uORF most distal to the main ORF. To measure the 

effect each of the mutations has on expression we cloned each of the STN1 alleles 

into our luciferase reporter plasmid. We found that compared with STN1, expression 

is 1.2 fold higher in STN1-102 and remarkably, 10 fold higher in STN1-101 

demonstrating that the uORF most distal to STN1 slightly represses expression while 

the overlapping uORF dramatically represses expression (Figure 33b). 

The idea that the uORF further from the main coding sequence is a much weaker 

suppressor of STN1 expression than the oORF that is in closer proximity to the main 

coding sequence is consistent with the idea that oORFs in close proximity to the 

main coding sequence repress translation more than those further from the main 

coding sequence, as demonstrated in Figure 23.  

Previous studies showed that strains ectopically overexpressing STN1 have shorter 

telomeres (Dahlseid et al., 2003) and have an impaired S phase checkpoint 

(Gasparyan et al., 2009) suggesting that tight regulation of the Stn1 levels are 

important for cell fitness. It would be of interest therefore to determine if STN1 uORFs 

and oORFs regulate its expression in the genome.  
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Figure 33 - STN1 upstream open reading frames decrease reporter gene 
expression 

Figure 33 - STN1 upstream open reading frames decrease reporter gene expression. 

A) The TL sequence of STN1, STN1-102 and STN1-102 indicating the positions of

the uORF and oORFs. B) The ratio of Renilla (driven by an allele of STN1) over

Firefly (PGK1 driven, normalisation control) luciferase activity is calculated to obtain

the normalised Renilla luciferase activity (rluc/fluc). The normalised Renilla luciferase

activity that was expressed from STN1 (containing no point mutations) was given a

value of 1 and the normalised Renilla luciferase activity that was expressed STN1-

102 and STN1-101 were corrected relative to this. Plasmids were transformed into

WT (DLY3001) cells. Each point represents a measurement from an independent

colony. Cells were grown and luciferase assays conducted as per the conditions that

are outlined in the ‘Luciferase assay’ section of the methods. P values were

calculated using t-test (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.
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5.2 STN1 mutations strongly increase STN1 expression from the native locus. 

To confirm that Stn1 expression is negatively regulated by two uORFs we measured 

the levels of endogenous Stn1 in STN1-102 and STN1-101. STN1-102 and STN1-

101 were incorporated into the genome at the STN1 locus and Stn1 was fused with a 

Myc epitope tag to allow for detection by western blot.  

In agreement with our data from the luciferase assay, Stn1 levels are about 10 fold 

higher in STN1-102 compared with STN1 demonstrating that STN1 expression is 

dramatically attenuated by the oORF (Figure 34a +b). This increase in Stn1 is 

accompanied by a much smaller increase, of only 4 fold, in mRNA level 

demonstrating that the oORF decreases the level of STN1 transcript in addition to 

reducing translation (Figure 34c). 

Stn1 levels in STN1-101 are similar to wild type STN1, which, in contrast with the 

luciferase assay data, suggests that the distal uORF does not repress STN1 

expression at least to a level detectable by western blot (Figure 34a +b). There was a 

small increase in the level of STN1 -101 mRNA, however this was not found to be 

statistically significant (Figure 34c). 

It is unclear why there was an increase in STN1-102 expression observed by 

luciferase assay but not by western blot. One possible explanation could be due to 

the sensitivities of the luciferase assay compared to western blot in that the 1.2 fold 

increase in STN1-102 expression detected by luciferase assay is below the detection 

limit of the western blot. Another possible explanation is that the increase in STN1-

102 expression detected by luciferase assay is an artefact of the luciferase assay. 

The observation that the oORF decreases STN1 transcript levels suggests that the 

oORF may be reducing the stability of the transcript, raising the question of what 

mechanism may degrade mRNAs that have oORFs. One possibility is the NMD 

pathway. A recent study found NMD substrates to have significantly lower ribosome 

densities and higher rates of out of frame translation (Celik et al., 2017a). STN1 

transcript is presumably associated with less ribosomes since it produces 

substantially less Stn1 compared with STN1-101, therefore may be targeted by NMD 

more than STN1-101. Additionally out of frame translation will be dramatically 

reduced on STN1-101, which does not have an oORF, thereby making STN1 again 

more likely to be targeted by NMD.  
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The dramatic increase in Stn1 levels observed in STN1-101 indicates the oORF 

plays an important regulatory role in maintaining appropriate levels of Stn1.  

In the course of our studies we noticed that STN1-101-MYC strains contains an 

additional point mutation within the main coding sequence of STN1. The increase in 

Stn1 levels observed in STN1-101-MYC are similar to those observed in our 

luciferase, suggesting that they are unlikely a consequence of the secondary 

mutation. However measurements of Stn1 and STN1 transcript levels in STN1-101-

MYC should be repeated.  
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Figure 34 - STN1 mutations strongly increase STN1 expression from the native 

locus. A) Western blot analysis of Stn1 protein levels in STN1, STN1-102 and STN1-

101. Strains contain Stn1-13Myc. Proteins were extracted from cells that were grown

in liquid culture to exponential phase at 30°C. Antibodies against Myc-tag were used

to detect Stn1 and antibodies against tubulin were used for loading control. B)

Quantification of the western blot. C) Transcript levels of Stn1-13Myc measured in

STN1, STN1-102 and STN1-101. RNA was isolated from cells grown in liquid culture

to exponential phase at 30°C and transcript levels determined by SYBR Green RT-

PCR. RNA concentrations of the samples were normalized to the loading control

BUD6. The mean of 3 STN1 strains was given the value of 1 and all other values

were corrected relative to this. Each measurement was performed in triplicate. Each

point on the plot represents an independent measurements (mean of triplicates) and

the bar represents the mean of the 4 independent measurements. P values were

calculated using t-test (*) P < 0.05, (**) P < 0.01, (***) P < 0.001
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5.3 STN1-101 and STN1-102 improve fitness of cells with cdc13-1 telomere 
defects. 

Stn1, together with Ten1 and Cdc13 forms the CST complex that functions in 

telomere capping and telomerase regulation (Sun et al., 2009). Overexpression of 

STN1 improves fitness of cdc13-1, presumable because Stn1 can compensate for 

loss of telomere capping in cdc13-1 (Grandin et al., 1997). We therefore wondered if 

the uORF and particularly the oORF of STN1 might contribute to the cdc13-1 fitness 

defect.   

STN1-102 and STN1-101 were combined with cdc13-1 and fitness of resulting 

strains was assessed by spot test. We controlled our experiments with strains that 

contain a URA3 at the STN1 locus as in STN1-101 and STN1-102 to account for any 

possible side effects of the marker. Thus STN1, STN1-101 and STN1-102 differ by 

single point mutations. The growth of cdc13-1, at 26°C, is marginally improved in 

strains that contain a URA3 at the STN1 locus suggesting that the marker may have 

a minor affects on levels of Stn1 (Figure 35). Interestingly however, cdc13-1 STN1-

102 grows better than cdc13-1 and importantly cdc13-1 STN1 at 26°C suggesting the 

uORF closest to the 5’ cap may slightly reduce STN1 levels, supporting the data from 

our luciferase assay (Figure 35). Remarkably, growth of cdc13-1 is dramatically 

improved by STN1-101 at 26°C-29°C, in line with our observation that STN1-101 

results in a substantial increase in the level of Stn1 (Figure 35). Our results are 

consistent with published data showing that overexpression of STN1 is able to 

partially suppress cdc13-1 (Grandin et al., 1997).   

Stn1 has been shown to completely compensate for loss of Cdc13 when delivered to 

the telomere by being fused to the DNA binding domain of Cdc13 (Pennock et al., 

2001). However STN1-101 does not improve fitness of cdc13-1 at temperatures 

above 29°C indicating that there is still a requirement for Cdc13, possibly in 

recruitment of Stn1 to the telomeres.  
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Figure 35 - STN1-101 and STN1-102 improve fitness of cells with cdc13-1 telomere 

defects. Yeast strains of the indicated genotypes were grown to saturation in liquid 

YEPD, serially diluted, 5-fold, in water, and spotted onto YPD solid media.  Plates 

were incubated for two days at the indicated temperatures before being 

photographed. Genotypes and strain numbers are listed on either side of the spot 

tests. 
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5.4 TMA20 and NMD2 reduce Stn1 levels 

Deletion of nonsense mediated decay genes (NMD) increase fitness of cdc13-1 and 

it is thought that this is partially due to the higher levels of Stn1 in NMD null strains 

(Addinall et al., 2011, Enomoto et al., 2004). TMA20 and TMA22 function in the same 

pathway as NMD genes to affect fitness of cdc13-1 leading us to hypothesise that 

TMA20 and TMA22 also affect fitness of cdc13-1 by increasing levels of Stn1 (Figure 

15). 

Consistent with our hypothesis levels of Stn1 are higher in tma20Δ, demonstrating 

that TMA20 inhibits Stn1 levels (Figure 36a). The levels of Stn1 in tma20Δ are lower 

than in nmd2Δ, in line with the observation that nmd2Δ is a much stronger 

suppressor of cdc13-1 thermo-sensitivity than tma20Δ. While tma20Δ results in an 

increase in Stn1, there was not a statistically significant increase in STN1 transcript 

suggesting that that TMA20 decrease the translation of Stn1 (Figure 36b). On the 

other hand nmd2Δ results in a similar increase in STN1 mRNA and protein level 

suggesting that the effect of NMD on Stn1 levels are due to NMD decreasing Stn1 

transcript levels, consistent with the role on NMD in mRNA decay (Figure 36b). The 

levels of Stn1 protein and transcript that we observe in nmd2Δ accurately reproduce 

those previously published (Addinall et al., 2011). Interestingly levels of Stn1 are 

slightly higher in tma20Δ nmd2Δ compared with tma20Δ or nmd2Δ, indicating that 

TMA20 and NMD2 act in different pathways to decrease Stn1 (Figure 36a). However 

transcript levels of tma20Δ nmd2Δ and nmd2Δ are similar consistent with the idea 

the effect of tma20Δ on Stn1 levels is due to increased translation (Figure 36b).  

The NMD pathway is known to promote the degradation of transcripts that containing 

uORFs suggesting that NMD may repress Stn1 levels as a consequence of the Stn1 

uORFs (Arribere and Gilbert, 2013). Observations that NMD targets poorly translated 

transcripts that have higher rates of out of frame translation support the idea that 

NMD targets STN1 as a consequence of the oORF (Celik et al., 2017a). The oORF 

of STN1, in addition to reducing translation efficiency also reduces the STN1 

transcript levels, providing further evidence that NMD could reduce Stn1 levels via 

the oORF.  Some of our data also indicate that TMA20 contributes the reduction of 

expression that occurs as a result of an oORF leading us to hypothesise that TMA20 

may also repress STN1 via the oORF.  
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Figure 36 - TMA20 and NMD2 reduce Stn1 levels 

Figure 36. TMA20 and NMD2 reduce Stn1 levels. A) Western blot analysis of Stn1 

protein levels in WT, tma20Δ, nmd2Δ and tma20Δ nmd2Δ strains contain Stn1-

13Myc. Proteins were extracted from cells that were grown in liquid culture to 

exponential phase at 30°C. antibodies against Myc-tag were used to detect Stn1 and 

antibodies against tubulin were used for loading control. B) Quantification of the 

western blot. C) Transcript levels of Stn1 measured in WT, tma20Δ, nmd2Δ and 

tma20Δ nmd2Δ strains. RNA was isolated from cells grown in liquid culture to 

exponential phase at 30°C and transcript levels determined by SYBR Green RT-

PCR. RNA concentrations of the samples were normalized to the loading control 

BUD6. Each time the experiment was performed the WT was given a value of 1 and 

other measurements were expressed relative to this. Each measurement was 

performed in triplicate. Each point on the plot represents an independent 

measurements (mean of triplicates) and the bar represents the mean of the 

independent measurements. P values were calculated using t-test (*) P < 0.05, 

(**) P < 0.01, (***) P < 0.001 
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5.5 TMA20 and NMD2 reduce Stn1 levels via the overlapping uORF. 

Deletion of TMA20 and NMD2 or ablation of the oORF all results in increased levels 

of Stn1. We hypothesised that TMA20 and NMD2 may function through the oORF to 

reduce levels of Stn1 and used a luciferase assay to test this.  

The effect of tma20Δ and nmd2Δ on the level of reporter gene produced from STN1, 

STN1-101 and STN1-102 was measured. In agreement with the western blot 

analysis of Stn1, deletion of NMD2 and TMA20 result in an increase in STN1 

expression, which is more profound in nmd2Δ (Figure 37). Similarly tma20Δ and 

nmd2Δ also resulted in an increase in expression of STN1-102. However tma20Δ 

and nmd2Δ have no impact on expression of STN1-101 implying that TMA20 and 

NMD2 repress STN1 expression via the overlapping uORF (Figure 37). 

Our data support a model the reduction in Stn1 that occurs in NMD2 and TMA20 null 

alleles is a consequence of Stn1 oORF.  NMD and the oORF both cause a reduction 

in the transcript levels of STN1, supporting the idea that the oORF results 

degradation of the transcript via NMD. This could be a consequence of ribosomes 

stalling on the oORF or a reduced density of ribosomes on the main ORF of STN1. 

However a mechanism to explain how the oORF of STN1 causes a Tma20 mediated 

reduction in expression remains to be established. Our data indicate that TMA20 

decreases expression of Stn1 independently of NMD, and also that TMA20 reduces 

the translation of STN1.  
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Figure 37. TMA20 and NMD2 reduce Stn1 levels via the overlapping uORF. The 

effect of tma20Δ or nmdΔ is quantified in each allele of STN1 (STN1, STN1-102 or 

STN1-101). The ratio of Renilla (driven by an allele of STN1) over Firefly (PGK1 

driven, normalisation control) luciferase activity is calculated to obtain the normalised 

Renilla luciferase activity (rluc/fluc). For each allele of STN1 the Renilla luciferase 

activity measured in WT was given a value of 1 and Renilla luciferase activity 

measured from tma20Δ or nmdΔ were corrected relative to this. The points on the 

graph represent independent measurements and the bars are a mean of all the 

independent measurements. Individual measurements are coloured according to the 

time that they were obtained, so point of the same colour were obtained on the same 

experiment. Cells were grown and the luciferase assay conducted according to the 

‘Luciferase assay’ section in the methods. P values were calculated using t-

test (*) P < 0.05, (**) P < 0.01, (***) P < 0.001 
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5.6 Genetic evidence supports the idea that TMA20 decreases fitness of 
cdc13-1 by decreasing levels of Stn1 

tma20Δ and nmd2Δ both increase the levels Stn1 and increased levels of Stn1 

increase the fitness of cdc13-1. Together this forms the hypothesis that the increase 

in fitness of cdc13-1 that occurs upon deletion of TMA20 or NMD2 is a result of their 

influence on levels of Stn1. This idea has been proposed previously to explain the 

effect of nmd2Δ on cdc13-1 fitness (Addinall et al., 2011). However the extent to 

which NMD2 and TMA20 act through STN1 to increase fitness of cdc13-1 remains to 

be tested.  

To investigate the extent to which NMD2 and TMA20 act through STN1 to increase 

fitness of cdc13-1 we combined STN1-101 and STN1-102 with tma20Δ and nmd2Δ 

in a cdc13-1 background and measured fitness by spot test. tma20Δ does not 

improve fitness of STN1-102 or STN1-101 in the context of cdc13-1, supporting the 

idea that that tma20Δ improves fitness of cdc13-1 by increasing levels of Stn1 

(Figure 38- compare lines 3, 4 & 5 with 6 & 7). On the other hand, nmd2Δ strongly 

improves the fitness of both STN1-102 and STN1-101 in a cdc13-1 background 

(Figure 38- compare lines 3, 4 & 8 with 9 & 10).  

The increase in fitness of cdc13-1 STN1-101 observed upon deletion of NMD2 could 

be because nmd2Δ might further increases the level of Stn1 produced in cdc13-1 

STN1-101, thus resulting in an increase in fitness. However this contradicts our data 

from the luciferase assay that suggests that nmd2Δ has no effect on the level of Stn1 

produced from STN1-101. An alternative explanation is that effect of nmd2Δ on 

growth of cdc13-1 is only partially due to an increase in Stn1. In support of this idea, 

nmd2Δ also increases the level Ten1 (Enomoto et al., 2004) and co-overexpression 

of TEN1 and STN1 improves cdc13-1 fitness more than the individual overexpression 

of either gene (Grandin et al., 2001b). 

There is no observable difference in the fitness of tma20Δ and STN1-102 in a cdc13-

1 background despite the higher levels of Stn1 in tma20Δ compared with STN1-102. 

This indicates that there is not a linear correlation between the level of Stn1 and 

suppression cdc13-1 temperature sensitivity. In agreement with this experiments 
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from our lab have shown equal growth of cdc13-1 cells transformed with either a low 

or high copy plasmid expressing STN1.  

In summary our data suggests that TMA20 decreases fitness of cdc13-1 by 

decreasing levels of Stn1 whereas the decrease in cdc13-1 fitness that occurs as a 

result of NMD is only partially explained by NMD decreasing levels of Stn1.  
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Figure 38. Genetic evidence supports the idea that TMA20 decreases fitness of 

cdc13-1 by decreasing levels of Stn1. Yeast strains of the indicated genotypes were 

grown to saturation in liquid YEPD, serially diluted, 5-fold, in water, and spotted onto 

YPD solid media.  Plates were incubated for two days at the indicated temperatures 

before being photographed. Genotypes and strain numbers are listed on either side 

of the spot tests. 



159 

5.7 STN1-102 and STN1-101 do not affect sensitivity to HU 

STN1 overexpression has been shown to disrupt the S-phase checkpoint leading to 

HU and MMS sensitivity (Gasparyan et al., 2009). This led us to hypothesise that the 

role of the oORF in maintaining low levels of Stn1 may be important to maintain a 

functional S phase checkpoint. 

The sensitivity of STN1-102 and STN1-101 to HU was assessed by spot test. For 

comparison, rad50Δ was included, since it is sensitive to HU (Shor et al., 2002). 

Surprisingly we observe no difference in the growth of STN1-101 compared with WT 

or STN1-102 when strains were spotted onto HU, despite the obvious growth defect 

of the HU sensitive control, rad50Δ.  

The observation that STN1-101 does not reduce sensitivity to HU is surprising since 

previous studies show that overexpression of STN1 sensitises cells to HU 

(Gasparyan et al., 2009). One possible explanation for these differences might be 

due to differences in strain backgrounds. Alternatively it could be an artefact of the 

differences between overproducing Stn1 via STN1-101 and artificially expression 

from a plasmid.  
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Figure 39. STN1-102 and STN1-101 do not affect sensitivity to HU. Yeast strains of 

the indicated genotypes were grown to saturation in liquid YEPD, serially diluted, 5-

fold, in water, and spotted onto YPD solid media containing indicated concentration 

of HU.  Plates were incubated for two days at 30°C before being photographed. 

Genotypes and strain numbers are listed on either side of the spot tests. 
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5.8 Discussion 

In this chapter we describe a novel mechanism of regulating Stn1 levels whereby 

they are dramatically reduced by an oORF. We also show that Tma20, via this 

oORF, decrease levels of Stn1, thus explaining how Tma20/Tma22 decreases 

fitness of cdc13-1. We show that NMD, which has been known for some time, to 

regulate Stn1 expression (Dahlseid et al., 2003) (Advani et al., 2013), decreases 

Stn1 levels via the oORF. Our data suggests that while TMA20 decreases the fitness 

of cdc13-1 by decreasing levels of Stn1, the increase in fitness of cdc13-1 that 

occurs in nmd2Δ is only partially explained by the increased levels of Stn1 in these 

strains.  

5.8.1 Stn1	  levels	  are	  tightly	  controlled	  by	  an	  oORF	  

STN1 contains two uORFs, one of which overlaps with the main oORF (Figure 33a). 

To enable us to study the influence of these uORFs on Stn1 levels we created two 

new alleles of STN1. STN1-102 harbours a point mutation in the initiation codon of 

the uORF most distal to the main ORF and STN1-101 harbours a point mutation in 

the initiation codon of the overlapping ORF (Figure 33a). While our luciferase assay 

indicates that STN1-102 produces increased levels of Stn1, this result was not 

reproduced when we introduced STN1-102 into the genome and measured 

endogenous levels of Stn1 (Figure 33b, Figure 34). Remarkably STN1-101 

dramatically increase levels of Stn1 indicating that the oORF substantially reduces 

STN1 expression (Figure 34). We showed that the oORF reduces Stn1 levels by a 

combination of reducing transcript levels and decreasing translation and our data 

suggest that the decrease in transcript levels are due to NMD (Figure 34).  

Translation is an extremely effective mechanism of regulating gene expression in 

response to environmental stimulus since it allows immediate and selective changes 

in protein levels. There are many examples of translational control mechanisms that 

are mediated by uORFs, especially mechanisms, such as the uORF that facilitate 

expression of GCN4 in response to stress. In GCN4 following translation of the first 

or second uORF the ribosome reinitiates translation at a downstream uORF and 

subsequently dissociates from the transcript (Hinnebusch, 2005). However in 

conditions of stress the ribosome will resume translation instead at the main coding 

sequence, thus up-regulating expression of Gcn4 (Hinnebusch, 2005) . It would be of 
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interest to determine if the uORFs of STN1 regulate expression by increasing 

translation under conditions of stress. It is tempting to hypothesise that a similar 

mechanism of translational control could occur on STN1 where following re-initiation 

after translation of the uORF furthest from the main ORF, initiation either occurs on 

the oORF, thereby decreasing STN1 expression of the main ORF which would 

increase the level of STN1.   

Interestingly the human version of STN1 also contains an overlapping ORF that has 

a termination codon that overlaps with the main ORF initiation codon. The oORF in 

human STN1 is 15 amino acids, which is slightly longer than the 6 amino acid long 

oORF in yeast (Figure 40). The overlapping ORF in human STN1 contains two 

initiation sites, which presumably increases the likelihood of capturing a scanning 

ribosome. Since the human STN1 also contains an oORF the mechanism of 

translational regulation may be conserved. 

5.8.2 Degradation	  of	  Stn1	  by	  NMD	  

It has been known for some time that NMD decreases STN1 transcript levels but 

conflicting explanations have been proposed to describe the mechanism by which 

NMD reduced Stn1 levels (Dahlseid et al., 2003) (Advani et al., 2013). It has 

previously been demonstrated that the promoter region of STN1 is sufficient to confer 

regulation by NMD (Dahlseid et al., 2003). Our data builds on this hypothesis by 

demonstrating that indeed the URS is responsible for NMD mediated regulation of 

STN1 expression but shows that it is in fact the oORF rather than the promoter that 

mediates this regulation (Figure 37). Our data however contradicts some of the 

conclusions of this paper, which show that NMD doesn’t affect the half-life of STN1 

transcript, thus implying that the effects of NMD on Stn1 are indirect (Dahlseid et al., 

2003). Our model on the other hand implies that the effects of NMD on Stn1 levels 

are via a direct interaction of NMD factors with the oORF. A separate study suggests 

that NMD degradation of Stn1 is due to a programmed ribosomal frameshift (PRF) 

sequence within the coding sequence of STN1 (Advani et al., 2013). There could 

therefore be more than one mechanism to explain how NMD is recruited to Stn1.   
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5.8.3 Tma20	  and	  Tma22	  decrease	  fitness	  of	  cdc13-‐1	  by	  decreasing	  Stn1	  levels	  

The main aim of this thesis was to determine how tma20Δ and tma22Δ increase 

fitness of cdc13-1. We propose a model based on data from this chapter than Tma20 

and Tma22 affect fitness of cdc13-1 and stn1-13 by increasing the level of Stn1 in a 

mechanism that is dependant on the oORF of Stn1. Data from Chapter 3 shows that 

TMA20 act in the same pathway as NMD to decrease fitness of cdc13-1 (Figure 15). 

Although Tma20 and NMD both increase fitness of cdc13-1 by increasing levels of 

Stn1 our data also suggest that Tma20 and NMD affect oORF-mediated repression 

of Stn1 by different mechanisms (Figure 37). NMD decreases STN1 transcript levels 

while Tma20 decreases the translation of STN1. This is in agreement with some of 

our observations from Chapter 4 showing that NMD and Tma20/Tma22 

independently decrease oORF-mediated expression of BRE-uORF-out (Figure 30). 

The mechanism by which Tma20 reduces the translation of Stn1 is as yet unclear, 

although we show that it is dependant on the oORF. One possible mechanism could 

be by increasing the translation re-initiation following translation of the oORF. Since 

the oORF termination is only 2 nucleotides downstream of the main initiation codon 

of STN1 it may be possible that the ribosome migrates across these 2 nucleotides to 

reach the main initiation codon.    

5.8.4 Tma20	  and	  Tma22	  regulate	  expression	  of	  genes	  with	  oORFs	  

We have now shown that Tma20 regulates expression of two genes, STN1 and 

BRE4, by a mechanism that is dependent on an oORF. However regulation of Stn1 

by Tma20 occurs by a decrease in translation while regulation of Bre4 by Tma20 

occurs as a result of a decrease in transcript levels. This is compatible with our model 

proposed in chapter Chapter 4 (see Discussion 4.10.3 and Figure 32) that predicts 

that the interaction of Tma20/Tma22 with the ribosome following translation 

termination on a uORF or oORF has multiple possible consequences to gene 

expression. It would be of interest to find out of Tma20/Tma22 regulate the 

expression of other genes that contain oORFs and further to test if in mammalian 

cells they regulate expression of this group of genes. 
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Figure 40: Comparison of the yeast and human STN1 TL sequences. The ORFs are 

indicated.  
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Chapter 6. General Discussion 

6.1 Tma20 and Tma22 decrease fitness of cdc13-1 by reducing levels of Stn1 

The main aim of this thesis was to understand how two interacting proteins, Tma20 

and Tma22, affect the fitness of cells with cdc13-1 telomere capping defect. We 

answered this question, demonstrating that Tma20 and Tma22 decrease fitness of 

cdc13-1 by reducing levels of the telomere capping protein Stn1. Further we provide 

a mechanism to explain how Tma20 and Tma22 reduce the level of Stn1, which is by 

increasing the repressive effect of the oORF. Remarkably, tma20Δ has no effect on 

the fitness of cdc13-1 when a single base pair mutation is introduced into the 

initiation codon of an oORF at the STN1 locus (STN1-101) (Figure 38). This suggests 

that Tma20 decreases fitness of cdc13-1 via interaction with this oORF. Consistent 

with this we demonstrate that Tma20 only reduces expression of STN1 when 

expressed from WT STN1 allele that contains the oORF, but not from STN1-101 

(Figure 37). The human homolog of Tma20 de-regulates cell cycle checkpoints and 

increases genome instability (Hsu et al., 2007). Therefore it is possible that in 

humans MCT-1 may result in increased levels of Stn1, which contributes to genome 

instability and possibly other oncogenic phenotypes that are induced by MCT-1. 

6.2 Genetic interactions between TMA20 and NMD2 

Overexpression of Stn1 or Ten1 and the deletion of NMD factors have all been 

previously shown to increase the fitness of cdc13-1 (Enomoto et al., 2004). This, in 

combination with the observation that nmd2Δ cells have elevated levels of Stn1 and 

Ten1 form the hypothesis that nmd2Δ improves fitness of cdc13-1 at least in part by 

increasing levels of Stn1 and Ten1 (Dahlseid et al., 2003) (Enomoto et al., 2004). We 

build on this knowledge showing that the oORF of STN1 is what causes it to be an 

NMD substrate. We are also able to show that the increase in expression of cdc13-1 

is indeed only partially explained by an increase in the level of Stn1 since deletion of 

NMD2 improves fitness of cdc13-1 nmd2Δ (Figure 38). It would be interesting to test 

if overexpression of TEN1 in STN1-101 phenocopies the cdc13-1 suppression that is 

observed in STN1-101 nmd2Δ. This would address the question of whether the 

increase in fitness of cdc13-1 observed when the NMD pathway is perturbed is a 
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solely the result of only increased Stn1 and Ten1 levels or if NMD also affects 

another pathway that contributes to fitness of cdc13-1. Further STN1-101 results in 

higher Stn1 levels than nmd2Δ suggesting that overexpression of TEN1 in STN1-101 

may even permit growth of cdc13Δ. cdc13Δ strains are normally inviable but 

combinations of certain gene deletions have been shown to rescue cdc13Δ (Holstein 

et al., 2014).  

One seemingly contrasting observation is that NMD2 and TMA20 act in the same 

pathway to increase the fitness of cdc13-1 (Figure 15) and we conclude that this is by 

decreasing levels of Stn1 (Figure 36), but NMD2 and TMA20 decrease the levels of 

Stn1 by different mechanisms (Figure 36). We reason that this because increase in 

the level of Stn1 that occurs in nmd2Δ tma20Δ compared with nmd2Δ is not large 

enough to further increase the fitness of cdc13-1.  

6.3 Levels of Stn1 are controlled by an oORF 

We show that levels of Stn1 are tightly regulated by an oORF and, to a much lesser 

extent a uORF (Figure 34). The oORF dramatically reduces levels of Stn1 by 

reducing translation and decreasing the levels of transcript (Figure 34). We 

demonstrate biological relevance for the oORF, which dramatically decreases fitness 

of cdc13-1 (Figure 35). The question still remains however of what advantage this 

oORF confers to cells to have allowed it to be selected for. Most oORFs are heavily 

selected against, as we demonstrated in (Figure 21). Interestingly overexpression of 

STN1 has previously been shown to result in decreased telomere length (Dahlseid et 

al., 2003) suggesting that maintaining low levels of Stn1 are important for appropriate 

telomere length regulation.  

There are many examples of uORFs functioning as regulatory elements that facilitate 

the expression of genes under conditions of stress, some of which are discussed in 

Chapter 1: Section 1.9.3. It possible therefore the oORF and/or uORF of STN1 

facilitate the expression of STN1 in response to of stress. We, and others have 

demonstrated that increased levels of Stn1 improve the fitness of cells with cdc13-1 

telomere defect but it is not know if Stn1 levels increase as a response to cdc13-1. It 

would be interesting to explore if Stn1 levels increase in response to any 

environmental or endogenous stresses (such as a gene mutation). Another approach 



168 

would be to test if STN1-101 affects the fitness of cells in response to stresses other 

than cdc13-1 or HU. 

Control over telomere protein levels is critically important to cancer (Jafri et al., 2016). 

Most cancer cells aberrantly express telomerase, which allows them to divide 

indefinitely (Iyer et al., 2005) and consistent with this point mutations in the 

telomerase subunit hTERT promoter are among the most frequent mutations in 

human carcinogenesis (Bell et al., 2016). Caner cells that do not express telomerase 

continue to proliferate by using telomerase independent mechanisms to maintain 

telomere length, termed Alternative lengthening of Telomeres (ALT) (Gocha et al., 

2013). Interestingly Stn1 has been implicated in facilitating the switch to ALT since in 

K. lactis a mutation in STN1 has been shown to produce an ALT-like telomere

phenotype. Further mutations in Stn1 are associated with Coats plus syndrome, a 

disease that is characterised by short telomeres (Simon et al., 2016). There is also 

evidence to suggest that Stn1 is important for cancer cells since as suppression of 

STN1 increases the sensitivity of cancer cells to a range of genotoxins used in 

chemotherapy (Zhou and Chai, 2016). It seems likely that the tight regulation of 

STN1 levels in humans is also important and since STN1 in humans also has an 

oORF (Figure 40) suggesting that the mechanism of regulation may be conserved. 

Since STN1-101 induces the overexpression of Stn1 we predict that this mutation is 

dominant however it would be of interest to test this. Dominant mutations in human 

disease are more harmful since only one copy is required to confer the disease 

phenotype. An important future experiment is to confirm that this mutation is 

dominant in yeast.  

6.4 Multiple ways that Tma20 and Tma20 can affect expression of genes that 
contain uORFs or oORFs 

An aim of this thesis was to learn about the function of Tma20 and Tma22 of which 

there is little understanding of. Since they were discovered as factors that interact 

with the 40S ribosomal subunit, there has been nothing published about their 

function. We tested therefore, the hypothesis that they promote translation re-

initiation, as was shown in Drosophila (Schleich et al., 2014b). We tested this 

hypothesis using 22 genes that contain uORFs (Figure 25). However we found no 

evidence to suggest that they affect translation in a manner dependant on the 

uORF/s in 21 of these cases (Figure 28). Further we found evidence to suggest that 
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the mechanism by which Tma20 and Tma22 mediated expression of the remaining 

gene BRE4, is not by translation re-initiation but rather by decreasing transcript levels 

(Figure 30). Interestingly the possibility that in Drosophila Tma20 and Tma22 affect 

transcript levels rather than promote translation re-initiation was not tested (Schleich 

et al., 2014b).  In the course of our investigation into how Tma20 and Tma22 

facilitate uORF mediated repression of BRE4 we showed that they also decrease the 

transcript levels of an allele of BRE4 that we created which contains an oORF 

(Figure 30). Since Tma20 and Tma22 also facilitate the oORF mediated repression 

of Stn1 we suggest that Tma20 and Tma22 may function to repress the translation of 

other genes that contain oORFs. In contrast with BRE4 however our data suggests 

Tma20 and Tma22 decrease expression of STN1 by decreasing translation, although 

it remains to be tested if Tma20 and Tma22 decrease translation re-initiation (Figure 

36). It would be interesting to introduce a stop codon mutation of STN1 oORF into to 

test weather translation re-initiation is mediated by the ribosome shifting in a 3’ to 5’ 

direction. We suggest a model whereby interaction of Tma20 and Tma22 with a 

uORF or oORF can have multiple possible consequences for expression of the 

corresponding main ORF (Figure 32).  

One thing that is apparent from our analysis is that the interactions between Tma20 

and Tma22 and uORF are rare and that most genes that have uORFs are unaffected 

by Tma20 and Tma22. It is unclear what factors cause Tma20 and Tma22 to 

regulate the expression of some genes that contain uORFs but not others. 

Drosophila and mammalian homologs of Tma20 and Tma22 regulate expression of 

short uORFs in strong initiation contexts (Schleich et al., 2014b) (Schleich et al., 

2017). 18 of the 22 uORF containing genes that we used to measure regulation by 

Tma20 and Tma22 (shown in Figure 25), have uORFs that are in stronger initiation 

contexts than BRE4 therefore it is unlikely that the uORF initiation context is a factor 

which causes Tma20 and Tma22 dependence. This is in agreement with our 

observations that uORF initiation contexts do not play a major role in contributing to 

the repressive effects of uORFs (Figure 22). It is possible that uORF length or 

proximity to the main ORF are factors that determine if Tma20 and Tma22 affect 

gene expression. This is supported by the fact that BRE4 and STN1 both have a 

relatively short uORF and oORF respectively both of which are in close proximity 

their corresponding main ORFs. However there are many of the other cases in 

Figure 25 that have uORFs shorter, and in closer proximity to the main ORF than the 
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BRE4 uORF suggesting that having a short uORF or a uORF that is close to the 

main ORF does not impart Tma20 and Tma22 dependence. It would be necessary 

the regulation of more genes by Tma20 and Tma22 to determine what features of the 

uORF or indeed of the TL impart Tma20 and Tma22 dependence. 
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Appendix A. Strains 

DYL	   Genotype	   Figure	  

3001	  
MATalpha	  ade2-‐1	  	  trp1-‐1	  can1-‐100	  leu2-‐
3,112	  	  his3-‐11,15	  	  ura3	  	  GAL+	  psi+	  	  ssd1-‐d2	  
RAD5	  

11,	  12,	  13,	  14,	  15,	  16,	  17,	  
18,	  19,	  24,	  28,	  29,	  30,	  31,	  
33,	  35,	  36,	  37,	  38,	  39	  

8460	   MATa	  ade2-‐1	  	  trp1-‐1	  can1-‐100	  leu2-‐3,112	  	  
his3-‐11,15	  	  ura3	  	  GAL+	  psi+	  	  ssd1-‐d2	  RAD5	   24,	  28,	  29,	  30,	  35,	  37	  

1108	   MATa	  cdc13-‐1	   11,	  12,	  13,	  14,	  15,	  16,	  17,	  
18,	  19	  

7026	   MATa	  cdc13-‐1	  tma20::KANMX	   11,	  13,	  14,	  17,	  18,	  19	  

8538	   MATalpha	  cdc13-‐1	  	  tma22::KANMX	   11,	  13,	  15,	  16,	  17	  

8655	   MATa	  cdc13-‐1	  tma64::NATMX	   11	  

8717	   MATa	  cdc13-‐1	  tma22::HPHMX	  
tma20::KANMX	  tma64::NATMX	   11	  

8566	   MATa	  cdc13-‐1	  	  tma22::HPHMX	   11	  

8993	   MATa	  stn1-‐13	   11	  

8994	   MATa	  stn1-‐13	   11	  

9762	   MATalpha	  stn1-‐13	  tma20::KANMX	   11	  

9763	   MATa	  stn1-‐13	  tma20::KANMX	   11	  

9765	   MATa	  stn1-‐13	  tma22::HPH	   11	  

9766	   MATa	  stn1-‐13	  tma22::HPH	   11	  

9768	   MATa	  stn1-‐13	  tma22::HPH	  tma20::KANMX	   11	  

1412	   MATa	  yku70::HIS3	   11	  

11933	   MATa	  yku70::HIS3	   11	  

11939	   MATalpha	  ku70::HIS3	  tma20::KANMX	   11	  

11943	   MATalpha	  ku70::HIS3	  	  tma20::KANMX	   11	  

4528	   MATa	  nmd2::HIS3	   12,	  30,	  36	  

6866	   MATa	  nmd2::HIS3	   12	  

8528	   MATa	  tma20::KANMX	   12,	  24,	  28,	  30,	  31,	  36,	  37	  
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8529	   MATalpha	  tma20::KANMX	   12,	  37	  

8542	   MATalpha	  tma22::HPH	   28,	  31	  

8640	   MATa	  tma20::KANMX	  tma22::HPH	   28	  

8658	   MATa	  tma64::NATMX	   28	  

8623	   MATa	  tma20::KANMX	  nmd2::HIS3	   30,	  36	  

11361	   MATa	  cdc13-‐1	  HCR1::HIS3	   13,	  

11362	   MATa	  cdc13-‐1	  HCR1::HIS3	   13,	  14	  

11369	   MATa	  cdc13-‐1	  tma22::HPH	  HCR1::HIS3	   13	  

11370	   MATalpha	  cdc13-‐1	  tma20::KANMX	   13	  

11363	   MATa	  cdc13-‐1	  tma20::kanmx	  HCR1::HIS3	   13	  

11364	   MATalpha	  cdc13-‐1	  tma20::kanmx	  HCR1::HIS3	   13	  

11365	   MATalpha	  cdc13-‐1	  tma22::HPH	  HCR1::HIS3	   13	  

11366	   MATa	  cdc13-‐1	  tma22::HPH	  HCR1::HIS3	   13	  

11367	   MATalpha	  cdc13-‐1	  tma22::HPH	  HCR1::HIS3	   13	  

11368	   MATa	  cdc13-‐1	  tma22::HPH	  HCR1::HIS3	   14	  

11372	   MATa	  hcr1::HIS3	   14	  

5106	   MATa	  cdc13-‐1	  nmd2::HIS3	   15	  

8619	   MATalpha	  cdc13-‐1-‐int	  nmd2::HIS3	  
tma20::KANMX	   15	  

8670	   MATa	  cdc13-‐1	  nmd2::HIS3	  tma22::KANMX	   15	  

4576	   MATa	  cdc13-‐1	  ebs1::KANMX	   15	  

8627	   MATalpha	  cdc13-‐1-‐int	  ebs1::URA3	  
tma20::KANMX	   15	  

8633	   MATalpha	  cdc13-‐1-‐int	  ebs1::URA3	  
tma22::KANMX	   15	  

1289	   MATalpha	  cdc13-‐1	  chk1::HIS3	   17	  

8729	   MATalpha	  cdc13-‐1-‐int	  tma20::KANMX	  
chk1:HIS3	   17	  

8730	   MATalpha	  cdc13-‐1-‐int	  tma22::HPHMX	  
chk1:HIS3	   17	  
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1255	   MATa	  cdc13-‐1	  rad9::HIS3	   17	  

8513	   MATa	  cdc13-‐1-‐int	  rad9::HIS3	  tma20::KANMX	   17	  

8540	   MATa	  cdc13-‐1	  tma22::KANMX	  rad9::HIS3	   17	  

1257	   MATa	  cdc13-‐1	  rad24::TRP1	   17	  

8516	   MATa	  cdc13-‐1	  rad24::TRP1	  tma20::KANMX	   17	  

8687	   MATa	  cdc13-‐1-‐int	  rad24::TRP1	  
tma22::KANMX	   17	  

1296	   MATa	  cdc13-‐1	  exo1::LEU2	   17	  

8517	   MATalpha	  cdc13-‐1	  exo1::LEU2	  
tma20::KANMX	   17	  

8690	   MATa	  cdc13-‐1-‐int	  exo1::LEU2	  tma22::KANMX	   17	  

1259	   MATa	  cdc13-‐1	  rad9::HIS3	  	  rad24::TRP1	   17	  

8521	   MATalpha	  cdc13-‐1-‐int	  rad9::HIS3	  
rad24::TRP1	  tma20::KANMX	   17	  

8691	   MATalpha	  cdc13-‐1-‐int	  rad24::TRP1	  
rad9::HIS3	  tma22::KANMX	   17	  

1692	   MATa	  cdc13-‐1	  exo1::LEU2	  rad9::HIS3	   17	  

8522	   MATa	  cdc13-‐1	  rad9::HIS3	  exo1::LEU2	  
tma20::KANMX	   17	  

8693	   MATalpha	  cdc13-‐1	  exo1::LEU2	  rad9::HIS3	  
tma22::KANMX	   17	  

1696	   MATalpha	  cdc13-‐1	  exo1::LEU2	  rad24::TRP1	   17	  

8525	   MATa	  cdc13-‐1	  rad24::TRP1	  exo1::LEU2	  
tma20::KANMX	   17	  

8696	   MATa	  cdc13-‐1	  exo1::LEU2	  rad24::TRP1	  
tma22::KANMX	   17	  

1694	   MATalpha	  cdc13-‐1	  exo1::LEU2	  
rad9::HIS3	  	  rad24::TRP1	   17	  

8526	   MATa	  cdc13-‐1	  rad24::TRP1	  rad9::HIS3	  
exo1::LEU2	  tma20::KANMX	   17	  

8697	   MATalpha	  cdc13-‐1	  exo1::LEU2	  rad24::TRP1	  
rad9::HIS3	  tma22::KANMX	   17	  
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7023	   MATalpha	  cdc13-‐1	  tma20::KANMX	  
rad9::HIS3	   16	  

7028	   MATalpha	  cdc13-‐1	  tma20::KANMX	   18	  

10714	   MATa	  cdc13-‐1	  TMA20-‐3FLAG-‐KANMX	   18	  

10404	   MATa	  cdc13-‐1	  TMA20-‐3FLAG-‐KANMX	   18	  

10407	   MATa	  TMA20-‐3FLAG-‐KANMX	   18	  

10406	   MATalpha	  TMA20-‐3FLAG-‐KANMX	   18	  

12287	   MATalpha	  STN1-‐URA3	  cdc13-‐1	   35,	  38	  

12301	   MATa	  URA3-‐STN1-‐102	  cdc13-‐1	   35,	  38	  

12297	   MATalpha	  URA3-‐STN1-‐102	  cdc13-‐1	   35	  

12317	   MATa	  URA3-‐STN1-‐101	  cdc13-‐1	   35,	  38	  

12313	   MATalpha	  URA3-‐STN1-‐101	  cdc13-‐	   35	  

11817	   MATa	  nmd2::HIS	  STN1-‐MYC	   36	  

11819	   MATalpha	  nmd2::HIS	  STN1-‐MYC	   36	  

11827	   MATalpha	  tma20::KANMX	  STN1-‐MYC	   36	  

11828	   MATalpha	  tma20::KANMX	  STN1-‐MYC	   36	  

11823	   MATa	  nmd2::HIS	  tma20::KANMX	  STN1-‐MYC	   36	  

11824	   MATa	  nmd2::HIS	  tma20::KANMX	  STN1-‐MYC	   36	  

12294	   MATa	  URA3-‐STN1	   39	  

12309	   MATa	  URA3-‐STN1-‐102	   39	  

12305	   MATalpha	  URA3-‐STN1-‐102	   39	  

12321	   MATalpha	  URA3-‐STN1-‐101	   39	  

12325	   MATa	  URA3-‐STN1-‐101	   39	  

10876	   MATa	  rad50::URA3	   39	  

11813	   MATa	  STN1-‐MYC	   34,	  36	  

11814	   MATa	  STN1-‐MYC	   34,	  36	  

12049	   MATalpha	  stn1-‐uAUG1-‐1-‐MYC-‐TRP	   34	  

12050	   MATalpha	  stn1-‐uAUG1-‐1-‐MYC-‐TRP	   34	  
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12051	   MATalpha	  stn1-‐uAUG1-‐1-‐MYC-‐TRP	   34	  

12060	   MATalpha	  	  stn1-‐uAUG2-‐1-‐MYC-‐TRP	   34	  

12061	   MATalpha	  	  stn1-‐uAUG2-‐1-‐MYC-‐TRP	   34	  

12062	   MATalpha	  	  stn1-‐uAUG2-‐1-‐MYC-‐TRP	   34	  

12289	   MATalpha	  URA3-‐STN1	  cdc13-‐1	  
tma20::KANMX	   38	  

12302	   MATa	  URA3-‐STN1-‐102	  cdc13-‐1	  
tma20::KANMX	   38	  

12314	   MATalpha	  URA3-‐STN1-‐101	  cdc13-‐1	  
tma20::KANMX	   38	  

12292	   MATa	  URA3-‐STN1	  cdc13-‐1	  tma20::KANMX	   38	  

12299	   MATalpha	  URA3-‐STN1-‐102	  cdc13-‐1	  
nmd2::HIS3	   38	  

12319	   MATa	  URA3-‐STN1-‐101	  cdc13-‐1	  nmd2::HIS3	   38	  
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Appendix B. Plasmids 

Plasmids obtained from Lydall lab collection and others 

pDL Description Source/Reference 

1674 
SUP35NM fused to GFP under a 

CUP1 URS 
Mick Tuite (p6442) 

1277 
URA3 centromeric plasmid 

(pRS416) 

pDL13; pRS416 genetics 1989 

122:19-27 

452 pRS406 genetics 1989 122:19-27 

1833 pFA6 URA3 Houseley et al (NAR) 2011 

1250 
LEU centromeric plasmid 

(pRS415) 

pDL13; pRS415 genetics 1989 

122:19-27 

1659 
plasmid containing Renilla and 

firefly Luciferase 
Keeling et al 2004 

452 pRS306 pRS306 genetics 1989 122:19-27 

216 pRS425 genetics 1989 122:19-27 

Plasmids created in this study by in vivo cloning 

pDL Description Fragments Primers 

1798 

TMA20 expressed 

from CEN plasmid 

(LEU) 

TMA20 ORF 
m3542 and m3566 from 

DLY 3001 DNA 

backbone - 

pDL1250 digested 

with BAMH1 BRE4 

1799 

TMA20 S118A 

T119A expressed 

from CEN  plasmid 

(LEU). 

Frag 1 - TMA20 S118A T119A 

Reporter 

Part 1 amplified from 

pDL1798 with M1918 

and M4251 

Frag 2 - TMA20 S118A T119A 

Reporter 

Part 2 amplified from 

pDL1798 with M1919 

and M4252 

backbone - pDL1250 digested with 

BAMH1 
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1665 

TMA20 expressed 

from CEN plasmid 

(URA3) 

TMA20 ORF 
m3542 and m3566 from 

DLY 3001 DNA 

backbone - pDL1277 digested with 

BAMH1 

1676 

TMA20 T79A -

expressed from 

CEN plasmid 

(URA3) 

Frag 1 - T79A  Reporter 
m1918 and m3599 

amplified from pDL1665 

Frag 2 - T79A  Reporter 
m1919 and m3599 

amplified from pDL1665 

backbone - pDL1277 digested with 

BAMH1 

1701 
pRS415 with PGK1 

promoting Firefly 

Frag1 - PGK1 promoter 
m3926 and m3812 from 

DLY 3001 

Frag 2 - Firefly ORF m3829 and m3830 

1728 

PGK1 drives Firefly 

luciferase YFG 

drives Renilla 

luciferase  

CYC1 terminator sequence 
m3962 and m3965 from 

DLY 3001 DNA 

ADH1 terminator 
m3962 and m3963 from 

DLY 3001 DNA 

Renilla luciferase 
m3966 and m3964 from 

pDL1659 

backbone - pDL1701 digested with 

Spe1 and BamH1 

1777 CTF3 Reporter CTF3 URS 
m4147 and m4148 from 

DLY 3001 DNA 

1788 CTF3-M1V Reporter 

Frag 1 - CTF3 M1V Reporter 

m4035 and m4188 used 

to amplify part1 from 

pDL1777 

Frag 2 - CTF3 M1V Reporter 

m4038 and m4187 used 

to amplify part 2 from 

pDL1777 

backbone - pDL1728 digested with 

Not1 

1767 BRE4 Reporter 

BRE4 URS 
m4169 and m4170 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1768 BRE4-9*Y Reporter Frag 1- BRE4-9*Y URS 
m4038 and m4230 from 

pDL 1767 
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Frag 1- BRE4-9*Y URS 
m4035 and m4231 from 

pDL 1767 

1766 HDA3 Reporter 

HDA3 URS 
 m4167 and m4168 

ampified from DLY 3001 

backbone - pDL1728 digested with 

Not1 

1768 

HDA3 URS with non 

functional uORFs 

inserted in front of 

Renilla in pDL1728 

Frag1 - HDA3 M1V Reporter 

m4035 and m4203 used 

to amplify part1 from 

pDL1766 

Frag2 - HDA3 M1V Reporter 

m4038 and m4205 used 

to amplify part 2 from 

pDL1766 

backbone - pDL1728 digested with 

Not1 

1782 NTR2 Reporter 

NTR2 URS 
m4157 and m4162 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1793 NTR2-M1V Reporter 

Frag 1 - NTR2 M1V Reporter 

m4035 and m4202 used 

to amplify part1 from 

pDL1782 

Frag 2 - NTR2 M1V Reporter 

m4038 and m4203 used 

to amplify part 2 from 

pDL1782 

backbone - pDL1728 digested with 

Not1 

1781 ATG5 Reporter 

ATG5 URS 
 m4155 and m4156 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1792 ATG5-M1V Reporter 

Frag 1 - ATG5 M1V Reporter 

m4035 and m4182 used 

to amplify part 1 from 

pDL781 

Frag 2 - ATG5 M1V Reporter 

m4038 and m4183 used 

to amplify part 2 from 

pDL1781 

backbone - pDL1728 digested with 
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Not1 

1780 NDJ1 Reporter 

NDJ1 URS 
m4153 and m4154 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1791 NDJ1 M1V Reporter 

Frag 1 - NDJ1 M1V URS 

m4035 and m4193 used 

to amplify part1 from 

pDL1780 

Frag 2 - NDJ1 M1V URS 

m4038 and m4194 used 

to amplify part 2 from 

pDL1780 

backbone - pDL1728 digested with 

Not1 

1745 PGS1 Reporter 

PGS1 URS 
m4009 and m4010 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1840 
PGS1-M1V 

Reporter 

Frag 1 - PGS1 M1V URS 

part1 amplified using 

m4035 and m4132 with 

pDL1745 

Frag 2 - PGS1 M1V URS 

part2 amplified using 

m4038 and m4133 with 

pDL1745 

backbone - pDL1728 digested with 

Not1 

1778 FRE6 Reporter 

FRE6 URS inserted in front of Renilla 

in pDL1728 

m4149 and m4150 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1790 FRE6-M1V Reporter 

Frag 1 - FRE6 M1V URS 

m4038 and m4189 used 

to amplify part1 from 

pDL1778 

Frag 2 - FRE6 M1V URS 

m4035 and m4190 used 

to amplify part 2 from 

pDL1778 

backbone - pDL1728 digested with 

Not1 
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1783 RRG1 Reporter 

RRG1 URS 
m4158 and m4159 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1794 
RRG1-M1V 

Reporter 

Frag 1 - RRG1 M1V URS 

m4035 and m4213 used 

to amplify part1 from 

pDL1783 

Frag 2 - RRG1 M1V URS 

m4038 and m4214 used 

to amplify part 2 from 

pDL1783 

backbone - pDL1728 digested with 

Not1 

1779 PUS9 Reporter 

PUS9 URS inserted in front of Renilla 

in pDL1728 

m4151 and m4152 from 

DLY 3001 DNA 

backbone - pDL1728 digested with 

Not1 

1789 PUS9-M1V Reporter 

Frag 1 - PUS9 M1V URS 

m4035 and m4181 used 

to amplify part1 from 

pDL1779 

Frag 2 - PUS9 M1V URS 

m4038 and m4182 used 

to amplify part 2 from 

pDL1779 

backbone - pDL1728 digested with 

Not1 

1743 MOD5 Reporter 

MOD5 URS 
m4019 and m4020 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1843 
MOD5-M1V 

Reporter 

Frag 1 - MOD5 M1V URS 

m4035 and m4123 used 

to amplify part1 from 

pDL1743 

Frag 2 - MOD5 M1V URS 

m4024 and m4125 used 

to amplify part2 from 

pDL1743 

Frag 2 - MOD5 M1V URS 

m4038 and m4130 used 

to amplify part 3 from 

pDL1743 
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1776 ATG20 Reporter ATG20 URS 
m4145 and m4146 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1787 
ATG20-M1V 

Reporter 

Frag 1 - ATG20 M1V URS 

m4035 and m4186 used 

to amplify part1 from 

pDL1776 

Frag 2 - ATG20 M1V URS 

m4038 and m4185 used 

to amplify part 2 from 

pDL1776 

1749 DUS3 Reporter 

DUS3 URS 
m4021 and m4022 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1841 
DUS3-M1V 

Reporter 

Frag 1 - DUS3 M1V URS 

m4035 and m4138 used 

to amplify part1 from 

pDL1749 

Frag 2 - DUS3 M1V URS 

m4038 and m4139 used 

to amplify part 2 from 

pDL1749 

backbone - pDL1728 digested with 

Not1 

1785 SMY1 Reporter 

SMY1 URS 
m4171 and m4172 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1796 
SMY1-M1V 

Reporter 

Frag 1 - SMY1 M1V URS 

m4035 and m4198 used 

to amplify part1 from 

pDL1785 

Frag 2 - SMY1 M1V URS 

m4038 and m4197 used 

to amplify part 2 from 

pDL1785 

1786 MBP1 Reporter 

MBP1 URS inserted in front of Renilla 

in pDL1728 

m4173 and m4174 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 
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1797 
MBP1-M1V 

Reporter 

Frag 1 - MBP1 M1V URS 

m4035 and m4200 used 

to amplify part1 from 

pDL1786 

Frag 2 - MBP1 M1V URS 

m4038 and m4199 used 

to amplify part 2 from 

pDL1786 

backbone - pDL1728 digested with 

Not1 

1746 RBS1 Reporter 

RBS1 URS inserted in front of Renilla 

in pDL1728 
m4011 and m4012 

backbone - pDL1728 digested with 

Not1 

1754 RBS1-M1V Reporter 

Frag 1 - RBS1 M1V URS 

m4035 and m4041 used 

to amplify part1 from 

pDL1746 

Frag 2 - RBS1 M1V URS 

m4038 and m4042 used 

to amplify part 2 from 

pDL1746 

backbone - pDL1728 digested with 

Not1 

1747 SFG1 Reporter 

SFG1 URS inserted in front of Renilla 

in pDL1728 

m4015 and m4016 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1753 SFG1-M1V Reporter 

Frag 1 -SFG1 M1V URS 

m4035and m4039 used 

to amplify part1 from 

pDL1747 

Frag 2 - SFG1 M1V URS 

m4038 and m4040 used 

to amplify part 2 from 

pDL1747 

backbone - pDL1728 digested with 

Not1 

1750 CDC13 Reporter 

CDC13 URS inserted in front of 

Renilla in pDL1728 

m4023 and m4024 from 

DLY 3001 

backbone - pDL1728 digested with 

Not1 

1888 CDC13 M1V Frag 1 - CDC13 M1V URS m4035 and m4127 from 
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Reporter pDL1750 

Frag 2 - CDC13 M1V URS 
m4131 and m4038 from 

pDL1750 

backbone - pDL1728 digested with 

Not1 

1784 IST2 Reporter 

IST2 URS inserted in front of Renilla 

in pDL1728 
m4160 and m4161 

backbone - pDL1728 digested with 

Not1 

1795 IST2-M1V Reporter 

Frag 1 -IST2 M1V URS 

m4035 and m4192 used 

to amplify part1 from 

pDL1784 

Frag 2 - IST2 M1V URS 

m4038 and m4191 used 

to amplify part 2 from 

pDL1784 

backbone - pDL1728 digested with 

Not1 

1748 RAI1 Reporter 

RAI1 URS inserted in front of Renilla 

in pDL1728 
m4017 and m4018 

backbone - pDL1728 digested with 

Not1 

1842 RAI1-M1V Reporter 

Frag 1 -RAI1 M1V URS 

m4035 and m4134 used 

to amplify part1 from 

pDL1748  

Frag 2 - RAI1 M1V URS 

m4038 and m4135 used 

to amplify part 2 from 

pDL1748 

backbone - pDL1728 digested with 

Not1 

1744 CMK1 Reporter 

CMK1 URS inserted in front of Renilla 

in pDL1728 
m4007 and m4008 

backbone - pDL1728 digested with 

Not1 

1844 
CMK1-M1V 

Reporter 

Frag 1 - CMK1 M1V URS 

m4035 and m4136 used 

to amplify part1 from 

pDL1744 

Frag 2 - CMK1 M1V URS m4038 and m4137 used 
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to amplify part 2 from 

pDL1744 

backbone - pDL1728 digested with 

Not1 

1743 ALD3 Reporter 

ALD3 URS m4019 m4020 

backbone - pDL1728 digested with 

Not1 

1843 ALD3- M1V URS 

Frag 1 - ALD3 M1V URS 
m4035 and m4123 from 

pDL1745 

Frag 2 - ALD3 M1V URS 
m4124 and m4125 from 

pDL1745 

Frag 3 - ALD3 M1V URS 
m4038 and m4127from 

pDL1745 

backbone - pDL1728 digested with 

Not1 

1895 

RLI1 expressed in 

2micron plasmid 

(leu2) 

RLI1 ORF 
m4384 and m4385 with 

DLY 3001  

prs425 (pDL216) digested with 

BamH1 

1889 ALD3 uORF1 M1V 

Frag 1 - ALD3 uORF 1M1V URS 
m4035 and m4277 from 

pDL1745 

Frag 2 - ALD3 uORF 1M1V URS 
m4038 and m4278 from 

pDL1745 

backbone - pDL1728 digested with 

Not1 

1890 ALD3 uORF2 M1V 

Frag 1 - ALD3 uORF2 1M1V URS 
m4035 and m4279 from 

pDL1745 

Frag 2 - ALD3 uORF2 1M1V URS 
m4038 and m4280 from 

pDL1745 

backbone - pDL1728 digested with 

Not1 

1891 ALD3 uORF3 M1V 

Frag 1 - ALD3 uORF3 1M1V URS 
m4035 and m4281 from 

pDL1745 

Frag 2 - ALD3 uORF3 1M1V URS 
m4038 and m4282 from 

pDL1745 

backbone - pDL1728 digested with 

Not1 
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1893 BRE4 uORF 9*Y 

Frag 1 - BRE4 uORF 9*Y URS 
m4035 and m4231 from 

pDL1767 

Frag 2 - BRE4 uORF 9*Y URS 
m4038 and m4230 from 

pDL1767 

backbone - pDL1728 digested with 

Not1 

1894 BRE4 out 

Frag 1 - BRE4 out URS 
m4035 and m4380 from 

pDL1767 

Frag 2 -BRE4 out URS 
m4038 and m4379 from 

pDL1767 

backbone - pDL1728 digested with 

Not1 

Plasmids created during this study by Gibson assembly 

1867 
Integrate STN1 with 
URA3 in the URS 
into genome 

Frag 1 - STN1 URS and first 139 bps of 
STN1 

m4608 + 
m4609 from 
3001 DNA 

Frag 2 - URA3 in including endogenous 
URS and terminator in the same 
orientationas STN1 

m4610 + 
m4611 from 
pDL1833 

Frag 3 - PDC2 URS 
m4612 + 
m4613 from 
3001 DNA 

pDL 452 digested with BamH1 and Xho1 

1868 
Integrate STN1-102 
with URA3 in the 
URS into genome 

Frag 1 - STN1 URS and first 139 bps of 
STN1 

m4608 + 
m4609 from 
11870 DNA 

Frag 2 - URA3 in including endogenous 
URS and terminator in the same 
orientationas STN1 

m4610 + 
m4611 from 
pDL1833 

Frag 3 - PDC2 URS 
m4612 + 
m4613 from 
3001 DNA 

backbone - pDL452 (cut with BamH1 and 
Xho1) 

1869 
Integrate STN1-101 
with URA3 in the 
URS into genome 

Frag 1 - STN1 URS and first 139 bps of 
STN1 

m4608 + 
m4609 from 
11871 DNA 

Frag 2 -  URA3, including endogenous URS 
and terminator 

m4610 + 
m4611 from 
pDL1833 

Frag 3 - PDC2 URS 
m4612 + 
m4613 from 
3001 DNA 
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backbone - pDL452 (cut with BamH1 and 
Xho1) 
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Appendix C. Primer sequences 

Primer Sequence 

m3599 CGATGAACTGATTCCAGTCCTGAAATTAGTACACAAATTTCC 

m3600 CTGGGACTTACCTGTCCTGA 

m3542 
AACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCAT

ACGCTTCACGAAGAACG 

m3566 
CAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGCT

AGGTTTGATCGTGTGATGG 

m4251 GCGGTGTGAAATACCGCACAGATGCGTAAGG 

m4252 CTGGAAAGCGGGCAGTGAGCGCAACGC 

m4147 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGCCA

AGCCACGCGACG 

m4148 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTCATG

TAAAAAAAACAAAAATTGA 

m4035 GGTCTGGTATAATACACCGCGCTAC 

m4188 ATCAAAAACAATCAACTGTGAAG 

m4038 CCTATGTTGTGTGGAATTGTGAGCGG 

m4187 CGTATTGTTTTTCACTTCACAGTTG 

m4169 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATGAGG

ACCTGTTACAATTCCAG 

m4170 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGGCA

AACTACTACTAACAAAC  

m4167 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATACTAA

AGGGCAATTAGTTTGTG 

m4168 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGAGTT

ACTGATTTAATCCACTCAG 

m4203 GAAATACTTTAGACTATAAAAGTG 

m4157 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTATTA

ATTACTGCAAACCCAA 

m4162 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATAATGT

GTTCAAATGCTATAAC 

m4202 GTTACGTCAAGTTCTGCCTAGCAGTG 



188 

m4203 GAAATACTTTAGACTATAAAAGTG 

m4155 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGTAC

CGGATAACAGAGTAA 

m4156 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATACTTA

CATCATAGGTTTCCT 

m4182 CATAAGTTTCCTATTCCACTATACGAGCACTCACCC 

m4183 
CTTCTAGAACCAAAAGAACAAAAATTCACTCGCACTTCTGAGCA

CGCTACTTCACTATTT 

m4153 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGAATGT

ATTACCTGACTCAGG 

m4154 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTATAG

TTTTTCTACCTGTATTTT 

m4194 GTATGCGAATTAAAGTAATCCGTGTG 

m4193 TGATTTTATTTACCACACGGA 

m4205 CTTCTAACTTTCCTTTTTATCACTTTTATAG 

m4009 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTTATT

GCAATTACTTCTTCTCA 

m4010 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTAATA

TATGTTATCCTGAGTAT 

m4132 CACAAGAAAGTAGATATAGTGTAGG 

m4133 GGACAAGCTGGGTGTCCTACACTATATC 

m4149 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGGTA

AATGATTTCACAAATGA 

m4150 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATATTCA

ACGAGCTATGGTC 

m4189 CGTCACGCTTCACTTTAGAAGATTATAGAAAAATCACTGC 

m4190 GCAGTGATTTTTCTATAATCTTCTAAAGTGAAGCGTGACG 

m4158 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGAGTGT

TTAAATCATTTATTTCAT 

m4159 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATATTTT

CTACTTGTTCATTACAA 

m4213 AGATTAACACTTTTGTAGTG 

m4214 GAAGTCATATTTTCTACTTGTTCACTACAAAAG 

m4151 CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGAGTTT
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TTGTATCGCGATGTT 

m4152 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATAAGTT

TCCTATTCCATTATAC 

m4181 GAAAATGGGTGAGTGCTCGTATAGTGG 

m4182 CATAAGTTTCCTATTCCACTATACGAGCACTCACCC 

m4019 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTTAGT

AAAACTTAAAATATATGTAT 

m4020 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATGAAG

ATTTTTGGTTCTATTTAC 

m4123 ATTAAAACAGAAAAAAATTCTAAAGTGGC 

m4124 GCTTTTCTTCTTTTTTGCCACTTTAG 

m4125 CCTTATGTTGCTGCTCCTCGGTGGC 

m4127 CATATATGTTTCTCTTTGGATACGAGTGACC 

m4145 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTTTGC

TGGTAAAAAAAAGGTA 

m4146 
CCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTGTGT

GCTGTAGAAGACAA 

m4186 GATTTACAGCAAGTCATCTCCAAAGTGAAGAGGTG 

m4185 CGAGCTAGTCACCTCTTCACTTTGG 

m4021 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTAAGA

TCTAGTTAAAGTTATGAA 

m4022 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATCAATA

ATGTTTAGAAGTTGCC 

m4138 GAGCAGTAATGAAACATTAGTGAACTC 

m4139 GCCTTTTTTTCCTATTCTGAGTTCACTAATG 

m4171 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTTTAA

CAAGTTTGCACCTAC 

m4172 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTCGAT

TTATAATACTAACTTAG 

m4198 GGTTAACAAGGAAAGAGGTGGAAGTTAAAAAAGTGGAAAT 

m4197 ATTTCCACTTTTTTAACTTCCACCTCTTTCCTTGTTAACC 

m4173 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATGCTT

GTGTTTCTGGGATTT 

m4174 CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGACCAT
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ACAACTACATATTAATC 

m4200 CCATCCGATTAGTATAATCAACAGGTGAAAAAGTG 

m4199 CTTTTTTTCACTTTTTCACCTGTTGATTA 

m4011 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTGATC

TATGGAATGAGGGTT 

m4012 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATCACC

TACTTCTGCCCTAA 

m4042 GTGCGCCCACTATAAGATGCACGTTTCAACACACTGTC 

m4041 CCGTGGTGACAGTGTGTTGAAACGTGCATCTTATAGTGGGCG 

m4015 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTAATG

GATCAATTTTGTCACTC 

m4016 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATGTTTT

TGAAATTTTTTTTTTCTTA 

m4039 TGATAAGTTGTTCTGTAAATGTGTTTGATTAG 

m4040 CTCTTGTTTAACTAATCAAACACATTTACA 

m4023 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTTGTA

AATCCGCTGCTGAAT 

m4024 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTTTTA

GGCGATAGTTTCCAC 

m4160 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGGTTTG

TGCTGTACTAATCTA 

m4161 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATAGTAT

GCTCAACCGCTTG 

m4192 GGTGAATACTGTTTCGGTCGATTTGTGG 

m4191 GTATTTGACAAATTAGCCACAAATC 

m4017 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTCTTG

ATCCCTTCTATGCTT 

m4018 
TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATTGGG

ATACACTATGTTGGT 

m4134 GTCTGGTAGTGTTACTAATACTTCTGTAATGTGG 

m4135 CTTTCACCACATTACAGAAGTATTAGTAACACTA 

m4007 
CCCTCACTAAAGGGAACAAAAGCTGGAGCTCCACCGCGTAACC

ATCTTAACTTCTGCTA 

m4008 TCCGTTTCCTTTGTTCTGGATCATAAACTTTCGAAGTCATAGTAA
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TTGACTCGTTATTTTTT 

m4136 CTACAAGCCAGAGTATAAGTGG 

m4137 GAGTTCTCTACGAGAATTGAAACCACTTATAC 

m4384 
AACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCGAAT

ATTTGACTACTTTGTTTGG 

m4385 
CAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGCTG

TTGCTATAGTAGCTAAAGCGG 

m4277 CATACCTCAGAAACTAATTGTATAAATTGGC 

m4278 GTCAAATTTATTCCCATCCAGATTTGCCAATTTATAC 

m4279 CTAATTGTATAAAATGGCAAATCTGGTTGGG 

m4280 GTCAAATTTATTCCCAACCAGATTTGCC 

m4281 GGGAATAAATTTGACTCTTGCCAGG 

m4282 CCAAGGTATAATTACCTGGCAAGAG 

m4231 GTATAGTGCTGGAATTGTATCAGG 

m4230 CTTTCGAAGTCATGAGGACCTGATAC 

m4380 CAGTATAGTGCTGGAATTGGTAAC 

m4379 CGAAGTCATGAGGACCTGTTACCAATTCC 

m4609 CGAAGTCATGAGGACCTGTTACCAATTCC 

m4611 
TAACACCAAGCAGTAAAGAGACAGCTTTATTATAACCAGCGAAT

TCGAGCTCGTTTAAAC 

m4613 
GCTTTATGGAGGATCTGGCGCGCCTTAATTAACCCGGGGATCC

GGCTCCAACCCATTATTAAAAG 

m4610 
AAAGAGCAATAAGCTGGCTTTTAATAATGGGTTGGAGCCGGAT

CCCCGGGTTAATTAAG 

m4608 
ATATCAGTTATTACCCGGGCTGTTTAAACGAGCTCGAATTCGCT

GGTTATAATAAAGCTGTCTC 

m4612 
GGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGTG

CCAAACAGCTTGTGCAG 

m4609 
CAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGCTC

TCATCCGGTACTTTAAATC 
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Primers for gene deletion 

Sequence Target 

m2858 TTCAAGAGCTAAACTAAAGAAAAGCATATTGCAT

AAAATGCGGATCCCCGGGTTAATTAA 

TMA22 

m2862 TCTCCCAGAACGGTGCTATTACATATTTATGGAT

TGCTTAGAATTCGAGCTCGTTTAAAC 

TMA22 

m4296 CTATCCTAACCACCACCTCAAAAAAAAAAAAGTA

ATAAAACGGATCCCCGGGTTAATTAA 

HCR1 

m4298 AGATGGACAAGTTTATCATAGCAAAGAAACAATA

AGCAGAGAATTCGAGCTCGTTTAAAC 

HCR1 

m3894 AGATGGACAAGTTTATCATAGCAAAGAAACAATA

AGCAGAGAATTCGAGCTCGTTTAAAC 

TMA20-flag 

m3896 GCAGATGGATAGTAATATAGTGTTGACGGCTCC

GTTTG GAATTCGAGCTCGTTTAAAC  

TMA20-flag 

m2922 CCGACTCAATAGATTAGTGTAGCGCAGGATTAG

TACAGCTCGGATCCCCGGGTTAATTAA 

TMA64 

m2923 CGGGCATTTTTACGCATTTAAACATTTATATGATA

TAAATGAATTCGAGCTCGTTTAAAC 

TMA64 

Primers for qPCR 

Sequence Target 

m1172 CAGACCGAACTCGGTGATT T BUD6 

m1173 TTTTAGCGGGCTGAGACCT A BUD6 

m1734 TCGAGCAACTGCAAGAAGA A STN1 

m1735 CGAAATGACAAGGAATGCA C STN1 
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