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Abstract 

 

Accurate cell division is a strictly ordered, highly regulated event. In mitosis, a robust 

spindle checkpoint ensures that chromosome division errors occur at a relatively low 

frequency, maintaining high levels of cyclin B1 and securin until chromosomes are 

accurately aligned. In contrast, in mouse oocytes, cyclin B1 and securin are targeted for 

destruction in late prometaphase I, at a time when the spindle is yet to fully migrate to the 

cortex and checkpoint proteins are still at kinetochores. This has been suggested to be 

symptomatic of an inefficient spindle checkpoint in meiosis I oocytes and a potential 

contributor to the high rates of aneuploidy observed in human oocytes. Curiously however, 

these observations have been made in mouse oocytes which ordinarily experience much 

lower rates of error. The seemingly early loss of cyclin B1 and securin rarely has a 

negative impact. This study demonstrates that cyclin B1 and securin destruction in late 

prometaphase I is not simply due to an inefficient spindle checkpoint, but instead due to 

controlled novel mechanisms of destruction within the oocyte. Meiotic cyclin B1 and 

securin destruction can in fact be split into two distinct periods; a later period that 

resembles mitotic destruction where the D-box is sufficient for APC/C targeting, and a 

much earlier period of destruction requiring previously unidentified motifs able to bypass 

the spindle checkpoint. Due to the location of these motifs, it is likely that they are hidden 

when in complex; cyclin B1 with Cdk1 and securin with separase. A model is proposed by 

which free pools of cyclin B1 and securin act as buffer zones, protecting Cdk1 activity and 

separase inhibition when the spindle checkpoint may become insufficient over the 

extended prometaphase period in the huge cell volume of an oocyte. Furthermore, meiotic 

cyclin A2 regulation is investigated. When put alongside cyclin B1 and securin data this 

begins to shed light on overall APC/C processivity in meiosis I. 
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Chapter 1: General introduction. 

In this chapter, I will introduce general themes underlying the study. These include 

progression through the female meiotic cell cycle, oogenesis and aneuploidy. I will also 

discuss how the method of spindle assembly and the checkpoint which protects this assembly 

vary between mitosis and meiosis. Each results chapter will include a separate, in-depth 

introduction focusing on the literature relevant to the data presented in that chapter. 

1.1 Meiosis, oogenesis and aneuploidy 

Meiosis is the specialised cell division in which a diploid progenitor cell undergoes two 

sequential rounds of division without an intermediate DNA synthesis phase, to produce a 

haploid gamete. The first meiotic division (MI) involves the division of the homologous pairs 

of chromosomes, in the case of humans from 46 to 23 pairs and in mice from 40 to 20 pairs. 

MI is therefore described as a reductional division. The second meiotic division (MII) is more 

like mitosis, in that sister chromatids are segregated in a division described as equational.  

Following MI and MII, the subsequent fusion of two haploid gametes, the egg from the 

maternal side and the spermatozoa from the paternal side, takes place during fertilisation to 

re-establish a diploid zygote with half the genetic material from each parent. A schematic 

diagram highlighting the important features of female meiosis I and II is shown in fig. 1.1. 

Anomalies are extremely common in human gametes with ~9% of spermatozoa and ~21% of 

oocytes being abnormal. The types of abnormalities are very different and have a different 

impact on human wellbeing. Spermatozoa are produced in their millions and the majority of 

abnormalities are structural. On the other hand, most ovulatory cycles involve the release of a 

single oocyte and most abnormal oocytes are aneuploid (Martin 2008). This study was 

conducted in MI mouse oocytes and therefore the focus hereafter will be female rather than 

male meiosis.  

Prior to meiosis I, connections or crossovers between homologous chromosomes are 

established during a process known as homologous recombination. This takes place during 

early oocyte development within the foetus and functions to allow exchange of genetic 

material between maternal and paternal chromosomes. Homologous pairs of maternal and 

paternal chromosomes are first paired together by the synaptonemal complex, a molecular 

‘zipper’ that provides the scaffolding for crossover to take place (see Hunter 2015 for review). 

1



BEFORE BIRTH

FEMALE 
MEIOSIS

MI MII

FERTILISATIONPUBERTY

Figure 1.1. An overview of mammalian female meiosis. (A) Crossovers are established during 
early oocyte development in the foetus, allowing exchange of genetic material between maternal 
and paternal chromosomes. Any future offspring will therefore be genetically diverse from either 
parent cell. Following crossover, oocytes arrest in the germinal vesicle (GV) stage and are stored 
in the ovary. The oocyte remains in this prolonged growth phase until it is released from the ovary, 
following puberty. (B) When the egg is released from the ovary, during the monthly menstrual 
cycle, the GV breaks down (GVBD) and MI resumes. Bivalent pairs of chromosomes are aligned 
on the spindle over many hours, requiring multiple rounds of error correction to reposition homol-
ogous pairs. (C) Following alignment, there is an asymmetric division in which one half of 
homologous chromosomes remain within the large oocyte while the other half is lost in the extru-
sion of the first polar body (PB1) which eventually degenerates. (D) As the oocyte progresses into 
MII it is arrested in metaphase II and relocates to the oviduct. (E) If fertilised, the now mature egg 
progresses into anaphase II, in which sister chromatids are segregated. This is followed by extru-
sion of the second polar body, leaving a human egg with 23 maternal sister chromatids and the 23 
paternal sister chromatids from the male nuclei. The membranes of these 2 pro nuclei dissolve to 
allow fusion of the genetic material and entry into the first mitosis and embryonic cell divisions. 

A. B. C. D. E.
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Crossover between the sister chromatids of homologous pairs results in chromatids with a 

combination of maternal and paternal DNA. Any future offspring will therefore be genetically 

diverse from either parent cell. 

Following crossover, there is a switch in the function of the cohesin ring structures that 

previously held sister chromatids together. While cohesin complexes located closer the 

centromere remain holding sisters together, those located distally to crossover sites switch 

towards holding homologous chromosomes together as crossover sites are resolved. This 

newly formed pair of chromosomes is termed a bivalent (Watanabe & Nurse 1999; Webster & 

Schuh 2017).  

After formation of bivalents, oocytes arrest in the germinal vesicle (GV) or dictyate stage and 

are stored in the ovary, surrounded by a thin layer of follicular cells in a state known as the 

primordial follicle (Webster & Schuh 2017). Over multiple decades in humans, or many 

weeks in mice, the primordial follicle undergoes an extended growth phase, nursed by 

follicular cells (Herlands & Schultz 1984). The oocyte remains in this prolonged growth 

phase until a time when, following puberty, a cyclical increase in luteinising hormone (LH) 

released by the pituitary gland results in its release from the ovary (ovulation). The germinal 

vesicle of this prophase-arrested oocyte breaks down (GVBD) and MI resumes (Webster & 

Schuh 2017).  

Bivalent pairs of chromosomes are then arranged and aligned on the meiotic spindle apparatus 

over many hours, requiring multiple rounds of error correction to reposition homologous pairs 

(Kitajima et al. 2011). The mechanisms of spindle assembly in human and mouse oocytes are 

not only vastly different from that in mitotic cells, but also distinct from each other. 

Mechanisms of meiotic spindle assembly will be discussed in more detail in section 1.3.   

While chromosomes are aligning on the spindle, levels of cyclin B1-Cdk1 activity must be 

kept high to drive the progression of both mitotic and meiotic cell division (Ledan et al. 2001; 

Gavet & Pines 2010).  At the same time, inhibition of separase by securin must be maintained 

to prevent premature cleavage of cohesin before chromosomes are bi-oriented and under 

tension (Ciosk et al. 1998). In mitosis, destruction of cyclin B1 and securin is restrained by 

the spindle checkpoint (discussed further in section 1.4) until all chromosomes become 

correctly aligned (Lara-Gonzalez et al. 2012). In brief, spindle checkpoint proteins serve to 

sequester Cdc20, a co-activator of the giant E3 ubiquitin ligase, the Anaphase Promoting 

Complex or Cyclosome (APC/C; Di Fiore et al. 2016). On correct alignment, the spindle 

checkpoint ceases and Cdc20 becomes free to bind to the APC/C and form a bipartite receptor 

3



with the APC10 subunit that recognises short D-box degrons within APC/C substrates (Chao 

et al. 2012; He et al. 2013). Cyclin B1 and securin are then targeted for degradation via their 

D-box motifs driving mitotic exit and sister chromatid segregation. See Figure 1.2 for a 

schematic diagram showing regulation of mitotic progression. 

In contrast to mitosis in which a single unattached kinetochore is sufficient to generate 

enough of a checkpoint signal to prevent degradation of metaphase APC/C substrates (Lara-

Gonzalez et al. 2012), in meiosis I mouse oocytes cyclin B1 and securin degradation is 

initiated in late prometaphase (Homer et al. 2005). This takes place before all chromosomes 

are congressed and kinetochore attachments are stabilised (Kitajima et al. 2011) and is 

perhaps suggestive of a spindle checkpoint that is inefficient over the large volume of an 

oocyte. However this seems contradictory as mouse oocytes are rarely aneuploid, with errors 

present in only 1-2% of fertilised mouse eggs (Bond & Chandley 1983). In contrast, 

aneuploidy rates in human female oocytes are much higher and will be discussed in section 

1.2. 

In oocytes, prior to anaphase I, separase activation allows for cleavage of the Rec8 kleisin 

subunit, specific to meiotic cohesin (Buonomo et al. 2000). In MI this only occurs on 

chromosomes arms since while distal cohesin is readily targeted, proximal cohesin is 

protected from cleavage by Shugoshin-2 (Sgol2) which recruits PP2A, removing the 

phosphorylations essential for cohesin cleavage (Lee et al. 2008). This allows for segregation 

of homologous chromosomes while sister chromatids remain strongly attached over their 

centromeric regions. Following anaphase I, there is an asymmetric division in which one half 

of homologous chromosomes remain within the large oocyte while the other half is lost in the 

extrusion of the first polar body (PB1) which eventually degenerates. Important to note is the 

extended time over which MI is executed in mammalian oocytes, lasting 7-11 hours in mice 

and 24-36 hours in humans, this is in stark contrast to mitosis which often lasts less than an 

hour (Homer 2013). 

As the oocyte progresses to MII it is arrested in metaphase II and relocates to the oviduct 

(Webster & Schuh 2017). If fertilised, the now mature egg completes MII (Clift & Schuh 

2013). Shugoshin proteins that previously protected centromeric cohesin during the first 

meiotic division have been reported to dissociate away from the centromere in MII in a 

tension-dependent manner (Gómez et al. 2007; Nerusheva et al. 2014). However, a more 

recent study questions whether or not the tension model is the full story since in yeast, sister 

chromatid biorientation is not sufficient to permit Rec8 de-protection during meiosis II (Jonak 

et al. 2017). Instead they suggest that APC/C-Cdc20 targeting of Sgo1 and Mps1, and  
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Figure 1.2. General model for the regulation of mitotic progression through APC/C-medi-
ated cyclin B1 and securin destruction. (A) While chromosomes are aligning on the spindle, 
a robust spindle assembly checkpoint (SAC) inhibits APC/C activity through sequestration of 
APC/C co-activator Cdc20. This maintains high levels of cyclin B1-Cdk1 activity to drive the 
early stages of mitosis and high levels of securin which acts to inhibit separase, preventing 
premature cleavage of cohesin.(B) Once chromosomes are correctly aligned, the SAC ceases 
and APC/C-Cdc20 targets cyclin B1 and securin for proteasomal degradation via their D-box 
motifs.Cyclin B1 degradation inactivates Cdk1 which drives anaphase onset, while securin 
degradation activates separase allowing for cleavage of cohesin and segregation of sister 
chromatids. 

A. B.
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subsequent removal of PP2A from centromeres is necessary. They propose that in yeast, Rec8 

is protected until anaphase II onset, at which point it is phosphorylated in time with separase 

activation (Jonak et al. 2017). Co-localisation of I2PP2A with PP2A at the centromeres in 

metaphase II has also been shown to play a role in centromeric Rec8 de-protection through 

direct inhibition PP2A function (Chambon et al. 2013). 

Together these mechanisms allow for segregation of sister chromatids in anaphase II. This is 

followed by extrusion of the second polar body, leaving a human zygote with 23 maternal 

sister chromatids and the 23 paternal sister chromatids from the male nuclei. The membranes 

of these 2 pro nuclei dissolve to allow fusion of the genetic material (syngamy) and entry into 

the first mitosis and subsequent embryonic cell divisions (Webster & Schuh 2017). 

In oocytes, sister chromatid cohesion is lost in an age-dependent manner, partially mediated 

by down regulation of Sgo2 and cohesin (Lister et al. 2010; Wassmann 2013). This is thought 

to be a major contributor to the ageing effect. While this clearly has a great effect on 

segregation errors, instead this study focuses on understanding the roles of fundamental cell 

cycle proteins in younger, healthy oocytes. 

In contrast to meiosis in mouse oocytes, human female meiosis is extremely error prone, with 

an estimated 10-30% of fertilised eggs carrying an incorrect number of chromosomes 

(Hassold & Hunt 2001). 80-90% of these errors are thought to originate in meiosis I (Homer 

2011). This loss or gain of chromosomes is known as aneuploidy and is the leading genetic 

cause of miscarriage and developmental defects in babies that survive to term (Hassold & 

Hunt 2001). On top of this, there is an exponential increase in the frequency of meiotic 

missegregation observed in women over the age of 35 (Hassold & Hunt 2001). Indeed woman 

who conceive over the age of 40 are 30% more likely to become pregnant with a trisomic 

child (Nagaoka et al. 2012). A problem confounded by the growing trend in the western world 

towards having children later in life, a societal shift that has led to a 70% increase in trisomic 

pregnancies over a 30 year period (Touati & Wassmann 2016). While the reasons why human 

oocytes have such a high frequency of segregation errors when compared to mouse oocytes 

remains largely elusive, the question can at least begin to be answered by looking at the 

different mechanisms they employ to assemble their MI spindle. However to begin with, I 

will introduce the mechanisms of mitotic spindle assembly. 
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1.2 Mechanisms of spindle assembly 

In mitotic cells, two centrosomes positioned at opposite spindle poles form the basis for 

bipolar spindle establishment. Initially positioned together at the start of mitosis, having 

duplicated in G1/S phase, the centrosomes must separate and position themselves at opposite 

poles across the nucleus prior to nuclear envelope breakdown (NEBD) (Tanenbaum & 

Medema 2010). Following NEBD, microtubules emanating from each of these poles firstly 

capture and then accurately align chromosomes on the spindle. Microtubules then retract, 

mediating chromosome segregation in anaphase. The presence of more than two centrosomes 

within a cell, a situation often observed in cancer, is associated with multipolar spindle 

formation and an increase in segregation defects (Silkworth et al. 2009; Webster & Schuh 

2017). 

In contrast, spindle assembly in mouse oocytes is mediated by self-arranging microtubule 

organising centres (MTOCs) lacking any canonical centrosomes (Schuh & Ellenberg 2007). 

Early spindle assembly in mouse meiosis involves microtubule nucleation from around 80 

newly-fragmented MTOCs, which form a large sphere throughout the ooplasm (Schuh & 

Ellenberg 2007; Clift et al. 2009). MTOCs then merge over time and the oocyte goes through 

multiple rounds of error correction, eventually forming the characteristic barrel-shaped 

bipolar spindle in the center of the oocyte (Schuh & Ellenberg 2007; Kitajima et al. 2011).  

Even between closely related mammalian species, the mechanism of meiotic spindle assembly 

seems to be divergent. In human female meiosis, the mechanism of spindle assembly is 

different once again, taking place independently of both centrosomes and MTOCs 

(Holubcova et al. 2015). Instead, microtubule nucleation is mediated directly by the 

chromosomes themselves and the small GTPase, Ran (Holubcova et al. 2015). A T24N 

mutation that blocks the GTPase function on Ran causes a delayed and disorganised spindle 

assembly, yet does not prevent assembly altogether (Holubcova et al. 2015). Microtubules 

nucleating directly from chromosomes form an aster, which over a prolonged period of 

around 16 hours eventually develops into a stable bipolar spindle (Holubcova et al. 2015). 

This method of chromosome-mediated spindle assembly is intrinsically error-prone and may 

begin to explain why human oocytes have such a higher frequency of segregation defects 

when compared to mice.  
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1.3 The Spindle Checkpoint in mitosis and meiosis 

1.3.1 The spindle checkpoint in mitosis 

The spindle checkpoint detects microtubule occupancy of kinetochores; the multi-protein 

microtubule attachment site located near the centromere of each chromosome. A graded 

checkpoint response is stimulated at these sites of attachment, the strength of which is directly 

related to kinetochore occupancy by microtubules (Collin et al. 2013; Touati & Wassmann 

2016). While chromosomes are aligning on the spindle, there are often errors made in 

attachments as the cell attempts to perfect bi-orientation. The response at sites of erroneous 

attachment is to stimulate the assembly of the mitotic checkpoint complex (MCC), a multi-

protein complex that directly sequesters the APC/C co-activator, Cdc20 (Chao et al. 2012).  

Central to MCC assembly is Aurora B, a key component of the Chromosomal Passenger 

Complex (CPC), enriched at incorrectly attached kinetochores (Musacchio 2015) and 

involved in a positive feedback loop with Mps1 where both proteins are recruited to 

unattached kinetochores (Santaguida et al. 2010). The process of MCC assembly begins when 

Mps1 phosphorylates MELT motifs within the kinetochore scaffold protein Knl1, allowing 

for recruitment of spindle checkpoint proteins Bub1, Bub3, BubR1, Mad1, Mad2 and Cdc20 

(Musacchio 2015). The MCC, which comprises Bub3, BubR1, Mad2 and Cdc20 is then 

subsequently enriched in the cytoplasm and functions to inhibit APC/C through direct 

sequestration of both APC/C-bound and free Cdc20 (Di Fiore et al. 2016). Mechanisms of 

Cdc20 sequestration by the MCC are discussed in more detail in chapter 5. 

 

1.3.2 The spindle checkpoint in meiosis 

In meiosis, checkpoint proteins are present and are similarly recruited to unattached 

kinetochores (Sun & Kim 2012; Touati & Wassmann 2016). However, unlike in mitosis 

where a single unattached kinetochore is sufficient to prevent destruction of cyclin B1 (Lara-

Gonzalez et al. 2012), MI is characterised by a lengthy period of cyclin B1 destruction which 

initiates several hours ahead of metaphase, before chromosome alignment is achieved. 

Furthermore, this destruction initiates prior to stabilisation of kinetochore attachments and 

while checkpoint proteins remain on kinetochores (Kitajima et al. 2011; Gui & Homer 2012; 

Lane et al. 2012; Lane & Jones 2014). These data together suggest that while all the same 

checkpoint proteins appear to be present in oocytes as mitotic cells, somehow the response 

elicited is less efficient. This has been previously suggested to be due to the large volume of 
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an oocyte in which a diffusible checkpoint signal may become much weaker. In the following 

chapters, I will dispute that the situation is this simple and present an alternative model for 

cyclin B1 and securin destruction. 

While a number of studies have demonstrated that mouse oocytes with multiple attachment 

errors fail to block anaphase onset (LeMaire-Adkins et al. 1997; Yuan 2002; Hodges et al. 

2005; Nagaoka et al. 2011), all were carried out in genetically abnormal strains. Ordinarily 

mouse oocytes repair these attachment errors and the rate of aneuploidy (1-2%) is much lower 

than in human oocytes (20-25%) (Hook 1985; Hassold & Hunt 2001), this could be at least 

partially explained by the fact a human oocyte is 50% larger in diameter than a mouse oocyte 

(Griffin et al. 2006). However, pig oocytes that are only marginally smaller than human 

oocytes experience aneuploidy rates of around 10%, much higher than mouse oocytes yet still 

clearly much lower than the human error rates (Hornak et al. 2011). Pig oocytes have a 

spindle assembly mechanism that bears resemblance to that of both mice and humans; 

mediated by self-organising MTOCs yet also chromosome-dependent (Miyano et al. 2007). 

Perhaps a combination of a chromosome-dependent spindle assembly mechanism in humans 

that favours segregation errors (Holubcova et al. 2015), combined with an inefficient 

checkpoint over the large volume of an oocyte can begin to address the high error rates in 

human oocytes. 

Spindle assembly mechanisms, oocyte size and the ageing effect are all features of oocyte 

biology linked to the frequency of segregation defects in female meiosis, features vastly 

different to those presented by a normal mitosis. Since the same cell cycle proteins underpin 

and drive both meiotic and mitotic division, it seems reasonable to predict that the regulation 

of key cell cycle proteins will vary between mitosis and meiosis, adapted to a very different 

type of cell division. However, when compared to the depth and breadth of mitotic cell cycle 

studies, there are few independent, comparative cell cycle studies in mammalian female 

meiosis. In mouse oocytes, both cyclin B1 and securin are destroyed from late prometaphase 

while chromosomes are not aligned, yet this is not associated with an increase in divisional 

errors. From our understanding of how these proteins behave in mitosis, these observations 

are at complete odds with each other. In this thesis, I aim to expand upon our understanding 

of these key cell cycle mediators in mouse oocyte meiosis. 
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Chapter 2: Methods 
 

2.1 Mouse oocyte collection and culture 

Outbred four to eight week old female CD1 mice were purchased from Charles River and 

housed in the Comparative Biology Centre at Newcastle University. Germinal vesicle (GV) 

stage oocytes were collected from excised ovaries by shredding with a sterile 25-gauge 

needle. Cumulus cells were then mechanically stripped using hand pulled mouth pipettes, 

made by heating glass Pasteur pipettes over a Bunsen flame until soft. Pulling results in a 

fine, whisker-like shaft with an internal diameter just wider than that of an oocyte. All 

animals were handled in accordance with the ethics approved by the UK Home Office 

Animals (Scientific Procedures) Act 1986. For bench handling, microinjection and imaging 

experiments, oocytes were cultured on a heated stage at 37°C in M2 medium (Sigma) and 

where necessary, held in GV arrest until imaging by the addition of 30nM 3-isobutyl-1-

methyl xanthine (IBMX; Sigma). M2 medium also contained penicillin G (0.06g/l) and 

streptomycin sulphate (0.05g/l). Prior to imaging, oocytes were kept in petri dishes in small 

drops of M2 medium covered with embryo-tested mineral oil (Sigma) to prevent evaporation. 

When not being handled, petri dishes were covered with tin foil lids to prevent unnecessary 

light exposure. Only oocytes that underwent GVBD with normal timings and had a diameter 

within 95-105% of the population average were used. Where necessary and at the times 

indicated, nocodazole (Sigma) was added to the media at a concentration of 150 nM, and the 

Mps1 inhibitor reversine (Sigma) at 100 nM (Kolano et al. 2012). SiR Hoechst was added to 

media at 250 nM, 30 minutes prior to imaging (Lukinavičius et al. 2015). 

 

2.2 Plasmid constructs 

Wild-type human cyclin B1 (NM_031966), securin (NM_001282382) and cyclin A2 

(NM_001237) sequences were amplified from pre-existing gene targets within the lab. Wild-

type Cks1 (EF026652) was amplified from pWZL Neo Myr Flag CKS1B, a gift from William 

Hahn & Jean Zhao (Boehm et al. 2007) (Addgene plasmid # 20461). Amplified products were 

then subcloned using the SLIC technique (detailed in section 2.3) into MDL9; a modified 

pRN3 vector that contains a 5 amino acid C-terminal linker (AGAQF) to Venus Fluorescent 

Protein (VFP). All mutations were made as detailed in section 2.4. The Cdk1 FRET sensor 

(Addgene plasmid #26064; a gift from Jonathan Pines; Gavet & Pines 2010) and the separase 
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biosensor (a gift from Jan van Deursen; Nam & van Deursen 2014) were both amplified and 

cloned into pRN3 vectors.  

 

2.3 One-Step Sequence- and Ligation-Independent Cloning (SLIC) 

The MDL9 or pRN3 vector was linearized by incubation with BglII (Promega) for 3 hours at 

37 °C. The full digestion reaction was then run on a 1% agarose TAE w/EtBr gel. The 4kb 

digested vector was excised and extracted from the gel (GeneJET Gel Extraction Kit (Thermo 

Scientific)) and eluted in 10 mM Tris-HCl; pH 8.5. Inserts were amplified using primers 

designed to include a specific recognition site for BglII flanked on either side by a ≥15 bp 

extension homologous to the BglII-cut vector ends and a 10 bp insert-specific extension. This 

specifically creates 15 bp sequence length homologues to the vector. PCR reactions for SLIC 

were done using KOD polymerase (Merck), to give blunt-ended products. PCR products were 

then purified using a GeneJET PCR Purification Kit (Thermo Scientific), with elution in 10 

mM Tris-HCl, pH 8.5. Concentrations of both vector and insert were measured on a 

NanoDrop 2000 UV-Vis Spectrophotometer to calculate a 1:3 vector to insert molar ratio. 

Vector and insert were then combined along with H2O, BSA, NEB’s buffer 2 and T4 DNA 

Polymerase (0.4 µl) and incubated for 2.5 minutes in a 22 °C water bath. This reaction takes 

advantage of the 3’ to 5’ endonuclease activity of T4 DNA polymerase, creating the 

complementary overhangs with which the vector and insert will anneal during a 10 minute 

incubation period on ice. Following this, the plasmids were transformed into competent E. 

Coli cells (NovaBlue Singles competent cells (Novagen)) and plated on Agar containing 

ampicillin. SLIC was carried out according to the protocol in (Jeong et al. 2012). 

 

2.4 Mutagenesis by crossover PCR 

Mutations and linked constructs were generated using multi-round arm extension crossover 

PCR. The first round for any given mutation construct involved two separate, 30-cycle 

DreamTaq (Thermo Fisher) PCR reactions, reactions A and B. Reaction A used the normal 5’ 

SLIC primer designed as above with a 3’ primer designed with homology to 15 bp either side 

of the desired site of mutagenesis. The point changes mutations were included in the sequence 

of the primer arm. Reaction B was the reverse, a 5’ primer designed with homology to 15 bp 

either side of the site of mutagenesis, with the desired mutation in the primer sequence and a 

standard 3’ SLIC primer.  From reactions A and B, we get two PCR products, one running 

from the start of the sequence to 15 bp after the site of mutagenesis and one from 15 bp before 
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the site of mutagenesis to the end of the sequence, each containing the desired mutation. A 

third reaction is then carried out as a standard SLIC reaction, described in section 2.3, using 

only the 5’ and 3’ SLIC primers. However, rather than a wild-type gene template, instead the 

target is 0.5 µl of finished reaction A and 0.5 µl of finished reaction B. This allows for the 

homologous 30 bp mutation spanning regions of product A and B to anneal during the PCR 

reaction and assemble a full-length protein with the desired mutation. 
 
2.5 Sequencing 

Colonies selected from transformation plates were grown in LB broth in an oscillating (180 

rpm) 37 °C incubator overnight. Plasmid DNA was then isolated using a GeneJET Plasmid 

Miniprep Kit (Thermo Scientific) and quantified by a NanoDrop Spectrophotometer. 5 µl 

samples (100 ng/µl) were sent to Eurofins UK for sequence analysis. Returned sequences 

were checked via nucleotide BLAST search (http://www.ncbi.nlm.nih.gov) for accuracy 

before cRNA preparation. 

 

2.6 Preparation of cRNA and morpholino oligomers for microinjection 

cRNA for microinjection was prepared using a T3 mMESSAGE mMACHINE kit (Ambion 

Inc.). Following SLIC and sequence confirmation, approximately 1 µg of plasmid DNA was 

digested with SfiI for 5 hours at 50 °C. Once the reaction was complete, proteinase K was 

added for a final hour at 50 °C to remove any protein contamination. The reaction mix was 

then phenol/chloroform extracted, and followed by the addition of Pellet Paint (Merck) and 

1/10th volume of Na Acetate, pH 5.5, precipitated in 100% EtOH for >1 hour at -80 °C. The 

DNA pellet was then washed and resuspended in nuclease-free H20, all of which was used in 

a transcription reaction containing RNA polymerase enzyme mix, ribonucleotides and 

reaction buffer according to the manufacturer’s protocol. This reaction mix was incubated for 

2 hours at 37 °C, with addition of DNase for the final 15 minutes. Overnight lithium chloride 

precipitation at -20 °C followed by centrifugation extracted the cRNA from solution. The 

final cRNA pellet was then washed and resuspended in nuclease-free H20 and aliquots were 

stored at -20 °C for later use. Maximal stability was conferred on all cRNA constructs by the 

presence of a 5’ globin UTR upstream and both 3’ UTR and poly (A)-encoding tracts 

downstream of the gene. 
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Morpholino antisense oligomers (MO; Gene Tools) were used to knockdown gene expression. 

MOs were designed to recognize the 5’ UTR of APC3 and Cdc20. As per the manufacturer’s 

instructions, all MOs were stored at room temperature then heated for 5 minutes at 65 °C 

prior to use to resolubilise the oligos. MOs were then used at a micropipette concentration of 

1 mM. 

 

2.7 Microinjection and imaging 

Oocyte microinjection of MOs and cRNA constructs were carried out on the 37 °C heated 

stage (Intracel) of an inverted epifluorescence microscope (Olympus; 1X71) in a chamber 

containing 1 ml of M2 media covered with mineral oil to prevent evaporation. A pre-

fabricated holding pipette with a 30° bend (Hunter Scientific) was connected to a syringe 

(IM-5B, Narishige, Japan) filled with mineral oil, allowing for a fine hydraulically driven 

inward and outward flow of oil to position and hold oocytes during injection. The holding 

pipette was positioned centrally by eye to the base of the chamber using a three-way coarse 

manipulator (MMN-1, Narishige, Japan).  

Microinjection micropipettes were made from filamented borosilicate glass capillaries, outer 

diameter of 1.5 mm and inner diameter of 0.86 mm (Harvard Apparatus Ltd.). Microinjection 

needles were made using a micropipette puller (Model P-97, Sutter Instruments, California, 

USA). Freshly pulled needles were then broken by gently brushing through cotton wool and 

checked for size and suitability using a bench top stereomicroscope (Nikon Optiphot Pol) at 

10x magnification. 

Microinjection pipettes were then loaded with cRNA or MO using a glass Microliter syringe 

(Hamilton) and microloader tip (Eppendorf). Loaded microinjection pipettes were fitted into a 

microelectrode holder prefilled with 120 mM KCl in 10 mM HEPES, pH 7.4 and connected 

to an electrometer (Electro 705, World Precision Instruments). The microelectrode holder was 

attached to a Pneumatic PicoPump (PV830, World Precision Instruments) via plastic tubing. 

This apparatus was manipulated using both a three-way coarse manipulator (MMN-1, 

Narishige, Japan) and a three-axis oil hydraulic micromanipulator (MMO-203, Narishige, 

Japan). Micropipettes were positioned just above the egg and then pushed through the zona 

pellucida. A brief pulse of negative capacitance overcompensation provided by the ‘Tickler’ 

function on the Electro 705 electrometer provides a momentary oscillation assisting passage 

into the oolemma. The cRNA or MO was then injected by a brief pulse of compressed air to 

the back of the micropipette provided by the Pneumatic PicoPump. This procedure ensures a 
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high rate of survival, typically >90%. The final volume of injection was estimated by the 

diameter of displaced ooplasm and was typically between 0.1-0.3% of total volume. 

Images were captured on an Olympus IX71 inverted epifluorescence microscope using a CCD 

camera (Micromax, Sony Interline chip, Princeton Instruments) and analysed using MetaFluor 

software (Molecular Devices). All experiments were performed at 37 °C. To generate the 

resulting fluorescent protein profiles, bright-field and fluorescence images were recorded at 

10 minute intervals.  

 

2.8 Confocal microscopy of separase biosensor 

Separase biosensor-injected oocytes were imaged on a Nikon A1R confocal laser microscope. 

Imaging began at 5 hours post GVBD to minimise oocyte laser exposure. Oocytes were 

imaged at 10 minute intervals over a 6 hour period in a temperature-controlled, humidified 

chamber set at 37 °C. Bright-field and fluorescent images were recorded in NIS-Elements 

(Nikon) and processed in Fiji (Schindelin et al. 2012). All oocytes extruded polar bodies. 

 

2.9 Western blots 

Mitotic U2OS cells and MEFs were prepared by lysis in Laemmli buffer following 

mechanical shake off of metaphase cells after an 8 hour incubation in 100 nM nocodazole. 

Oocytes were collected 5.5 hours after GVBD ± 15 min and lysed in Laemmli buffer. The 

cyclin B1:Cdk1 purified complex was purchased from Thermo Fisher Scientific; PV3292. 

Protein samples were boiled for 5 minutes at 95 °C, loaded into the wells of a Bis-Tris 

NuPAGE gel (Thermo Fisher), then fractioned at 180 V for 1 hour in an XCell SureLock 

Mini-Cell Electrophoresis tank (Invitrogen) attached to a PowerPac HC High Current power 

supply (BioRad). Gels were run in MOPS running buffer (Thermo Fisher). A multicolour 

protein ladder (Spectra, Thermo Fisher) was loaded into the first lane as a size marker. 

Following electrophoresis, gels were removed from casing and transferred onto a 

polyvinylidene fluoride (PVDF) membrane at 30 V overnight in a Mini Trans-Blot tank (Bio-

Rad) attached to a PowerPac HC High Current power supply (BioRad). Transfer buffer 

contained 25mM Tris buffer, 192mM glycine, 20% methanol. PVDF membrane required pre-

wetting in methanol for 30 seconds followed by incubation for 10 minutes in transfer buffer. 

Following transfer, membranes were blocked in 5% non-fat dry milk (Bio-Rad) in phosphate 

buffered saline 0.05% Tween 20 (PBST) for 1 hour at room temperature before addition of 
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primary antibodies. For cyclin B1, immunoblots were incubated at RT for 2 hours with anti-

cyclin B1 (Abcam ab72) at 1:250. For Cdk1, immunoblots were incubated at RT for 2 hours 

with anti-Cdk1/Cdk2 (Santa Cruz sc-53219) at 1:200. After the overnight incubation, 

membranes were washed in PBST (3 x 10 minutes changing wash solution in between) then 

incubated with anti–mouse IgG (7076P2; Cell Signalling) horseradish peroxidase (HRP)-

linked secondary antibody for 1 hour at RT in 2.5% non-fat dry milk in PBST. Membranes 

were given a final wash step in PBST (2 x 10 minutes) followed by a 10 minute wash in 

phosphate buffered saline (PBS) before a 5 minute incubation in ECL Select (RPN2132; GE 

Healthcare) to detect protein-bound HRP-labelled secondary antibodies. Membranes were 

then exposed to Hyperfilm x-ray film (Amersham Biosciences) and developed using a 

SRX101 film processor (Konica). The exposure time depended on the strength of the signal. 

 

2.10 Data analysis 

Real-time destruction profiles were recorded in MetaFluor (Molecular Devices) and data was 

automatically logged in Excel. By taking an average VFP intensity reading from a defined 

region of interest around the oocyte, these were plotted over time and aligned at PB1 

extrusion unless otherwise stated. Average cleavage profiles for separase biosensor 

experiments were produced in Fiji (Schindelin et al. 2012) by first creating a clipping mask to 

the DNA using the far red signal from Sir Hoechst treatment. The GFP and mCherry intensity 

readings from the clipping mask were then plotted over time and aligned at PB1 extrusion and 

the GFP/RFP ratio was calculated. Statistics were exported from MetaFluor and Fiji into 

Excel (version 14.4.8, Microsoft) where all destruction traces were produced. Typically when 

only two constructs were being compared, both the average traces and individual traces were 

shown, whereas when 3 or more constructs were being compared, for clarity, only the average 

traces are shown but with error bars = +/- SEM. 

 

2.11 Other techniques 

Molecular structure images were generated using the PyMOL Molecular Graphics System, 

version 1.3 Schrödinger, LLC. Sequence conservation alignments were made by importing 

protein sequences from Uniprot and aligning in Jalview, version 15.0, (Waterhouse et al. 

2009). All figures were prepared in Adobe Illustrator CC, version 17.1.0.  
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Chapter 3: A second destruction motif in the N-terminal helix of 

cyclin B1 mediates late prometaphase destruction in mouse 

oocytes. 

 

3.1 Introduction 

Cdk1 is the only cyclin-dependent kinase that is essential to the eukaryotic cell cycle 

(Santamaría et al. 2007). Throughout early mitosis, Cdk1 is activated by its binding partner 

cyclin B1. Cyclin B1 must be maintained at a level sufficient to generate enough cyclin 

B1:Cdk1 activity (“Cdk1 activity”) to drive the early stages of cell division (Gavet & Pines 

2010). By monitoring the status of kinetochore microtubule attachments, spindle checkpoint 

proteins safeguard cyclin B1 levels, preventing its destruction, thereby inhibiting anaphase 

until all chromosomes have congressed and their kinetochores have established stable 

attachments (Lara-Gonzalez et al. 2012). Thereafter, a sharp drop in Cdk1 activity via cyclin 

B1 destruction is equally important to drive the events of anaphase and cytokinesis (Sullivan 

& Morgan 2007). 

The goal of the spindle checkpoint is to attenuate the activity of the anaphase promoting 

complex or cyclosome (APC/C), an E3 ubiquitin ligase which directs the degradation of a 

number of cell cycle proteins. To ensure accurate passage through all stages of chromosome 

alignment and segregation, the APC/C must process its substrates in strict order, an order 

largely achieved via distinct substrate degradation motifs. The most common of these motifs 

is the classic destruction motif, the D-Box, that directs cyclin B1 destruction in metaphase 

(Glotzer et al. 1991).  

In the absence of checkpoint activity, the APC/C and its co-activator Cdc20 form a bipartite 

co-receptor for D-Box docking (He et al. 2013). This allows cyclin B1 to be ubiquitinated on 

several lysine residues and to be delivered to the 26S proteasome-mediated degradation 

(Yamano et al. 1998). Prior to chromosome alignment, each unattached kinetochore generates 

a checkpoint signal which is sufficient to prevent Cdc20 from binding to the D-box of 

metaphase substrates (Lara-Gonzalez et al. 2012). Chromosome misalignment in mitosis 

therefore strongly inhibits cyclin B1 destruction to prevent premature chromosome 

segregation and the possibility of aneuploid daughter cells. Metaphase then coincides with the 

initiation of cyclin B1 destruction. 
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Female mammalian meiosis is also driven by Cdk1 activity (Ledan et al. 2001) and governed 

by the same checkpoint as mitosis (Gorbsky 2015). Yet, unlike mitosis, meiosis I (MI) is 

characterised by a lengthy period of cyclin B1 destruction which initiates several hours ahead 

of metaphase, before chromosome alignment is achieved, prior to the stabilisation of 

kinetochore attachments, and while checkpoint proteins remain on kinetochores (Brunet et al. 

1999; Davydenko et al. 2013; Gui & Homer 2012; Kitajima et al. 2011; Lane et al. 2012; 

Lane & Jones 2014; Nagaoka et al. 2011; Sebestova et al. 2012). Indeed, at the initiation of 

cyclin B1 destruction, nearly half of all mouse oocytes have chromosomes not located near 

the spindle equator (Lane et al. 2012). 

Surprisingly however, during this prolonged period of cyclin B1 destruction, the vast majority 

of mouse oocytes continue to perfect chromosome alignment and undergo a division which 

produces a euploid egg. Indeed the rate of aneuploidy observed in fertilised mouse eggs is 

only 1-2% (Bond & Chandley 1983), a figure far lower than the estimated error rate of 20-

25% in human eggs (Hassold & Hunt 2001). A key puzzle, therefore, is how cyclin B1 evades 

the spindle checkpoint in mouse oocytes, and why the early loss of cyclin B1 does not 

negatively impact oocyte competency. 
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3.2 Results 

3.2.1 Cyclin B1 levels are in excess and do not report Cdk1 activity in MI 

mouse oocytes. 

In contrast to mitotic cells where Cdk1 protein levels are in excess of cyclin B1, we find that 

this balance is reversed in prometaphase I mouse oocytes, a finding also reported in prophase 

I mouse oocytes (Kanatsu-Shinohara et al. 2000). Mass amounts of cyclin B1 and Cdk1 

protein were initially determined in a range of known numbers of mitotically enriched U2OS 

cells by immunoblotting alongside known masses of a purified cyclin B1:Cdk1 complex (Fig. 

3.1A-C). The average mass of cyclin B1 and Cdk1 per 1000 U2OS cells was calculated to be 

0.68ng and 0.4ng respectively. Using molecular weights based on the amino acid sequences, 

molar masses were calculated demonstrating the molar ratio of cyclin B1:Cdk1 in mitotically 

enriched U20S to be approximately 1:1. 

Mass amounts of cyclin B1 and Cdk1 protein were then determined in late prometaphase I 

oocytes (5.5 hours post GVBD) by immunoblotting alongside a range of known numbers of 

U2OS cells (Fig. 3.1D-E). The average mass of cyclin B1 per single oocyte was calculated to 

be equal to that of 16.3 U2OS cells or 11.09 pg. The average mass of Cdk1 per single oocyte 

was calculated to be equal to 2.7 U2OS cells or 1.09 pg. Molar amounts were then 

determined, generating a ratio of approximately 6:1 cyclin B1:Cdk1 in late prometaphase I 

mouse oocytes. Interestingly in mouse embryonic fibroblasts (MEFs), Cdk1 is once again in 

excess (Fig. 3.1D). This suggests the cyclin B1 excess observed in meiosis is quickly lost by 

early mitotic divisions. Consequently, though exogenous fluorescently-tagged cyclin B1 

reports changes in Cdk1 activity during mitosis (as confirmed by a Cdk1 activity FRET 

biosensor (Gavet & Pines 2010)), we reasoned that early cyclin B1 destruction in mouse 

oocytes might instead reflect the proteolysis of free cyclin B1 rather than Cdk1-bound cyclin 

B1.  

Mouse oocytes were microinjected with cRNA encoding the Cdk1 FRET biosensor then 

imaged at 10 minute intervals from prophase to anaphase I. Average fluorescence intensity 

readings were taken from a defined region of interest around each oocyte, plotted over time 

and aligned using the first polar body (PB1) extrusion as a reference point.  

Indeed, after validating the Cdk1 FRET biosensor for its use in oocytes, we find that Cdk1 

activity is stable during the first ~1.5 hours of cyclin B1 destruction, only declining in the 

final hour before polar body (PB1) extrusion (Fig. 3.2C). Fluorescent cyclin B1 levels  
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Figure 3.1. Quantification of cyclin B1 and CDK1 in mouse oocytes 5.5 h post GVBD using 
a 1:1 cyclin B1:CDK1 protein complex. (A) Western blot of known amounts of cyclin B1 and 
CDK1 recombinant protein (purified complex) alongside known numbers of mitotic U2OS cells 
to quantify cyclin B1 and CDK1 protein bands in U2OS cells (cell numbers indicated above). (B) 
Band densities of ‘purified complex’ lanes in part ‘A’ plotted relative to protein amount in ng. (C) 
Calculated amounts of cyclin B1 and CDK1 in 1000 U2OS cells using U2OS lane band densities 
in part ‘A’ and the equation of the line generated in part ‘B’. (D) Western blot of mitotic mouse 
embryonic fibroblasts (MEFs), U2OS cells, oocytes collected 5.5 hours post GVBD and 1.5 ng of 
cyclin B1 + 1.5 ng of CDK1 recombinant protein (cell numbers indicated above). Note the 
difference in the balance of cyclin B1 and CDK1 in the mitotic cycles of MEFs, here CDK1 is in 
excess. (E) Using the same strategy as in ‘B’ and ‘C’, cyclin B1 and CDK1 band densities from 
part ‘D’ were used to relate cyclin B1 and CDK1 protein levels in oocytes to an equivalent 
number of U2OS cells. From this cyclin B1 and CDK1 protein amounts were calculated per 
oocyte. We calculate the ratio of cyclin B1:CDK1 to be approximately 6:1. 
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therefore misinform our view of MI progression. If prometaphase and metaphase are timed in 

relation to the loss of Cdk1 activity (Fig. 4.2C), rather than the initiation of cyclin B1 

degradation (Fig. 3.2B), a clear picture of MI emerges. Metaphase, during which Cdk1 

activity declines, now coincides with the time at which stable end-on kinetochore-microtubule 

attachments are formed and checkpoint proteins are maximally depleted from kinetochores 

(Kitajima et al. 2011; Lane et al. 2012). However, this does not explain why cyclin B1 levels 

decline in prometaphase. 

 

3.2.2 D-box only recognition is not sufficient for a normal cyclin B1 

destruction profile in mouse oocyte meiosis. 

Given that, in oocytes, two pools of cyclin B1 exist (Cdk1-bound and non-Cdk1-bound), and 

that the majority of cyclin B1 is lost before a decline in Cdk1 activity, we wanted to 

determine whether free cyclin B1 is destroyed in preference to Cdk1-bound cyclin B1. 

Initially we tested two fluorescent cyclin B1 reporters, a Y170A mutant of full-length cyclin 

B1 unable to bind to Cdk1 (Y170A; Bentley et al 2007) and the N-terminal 90 amino acids of 

cyclin B1 (N90; Fig. 3.3A) . Y170A was used as a marker to represent free cyclin B1 while 

N90 was used to represent the tail of cyclin B1 that remains accessible when the protein is in 

complex with Cdk1 (Brown et al. 2015).  Both constructs contain the D-box sequence and 

neighbouring lysine residues known to be necessary and sufficient for recognition by APC/C-

Cdc20 and subsequent proteolysis in mitosis (Pines 2011; Yamano et al. 1998), however N90 

critically lacks other well conserved regions of the protein, namely the N-terminal helix and 

cyclin box/fold regions of the protein.  

When cRNA encoding these proteins is microinjected into oocytes we find that while the 

destruction profile of Y170A is similar to that of wild-type (WT) cyclin B1, N90 is not 

destroyed until much later (~80 minutes) and concurrently with the loss of Cdk1 activity (Fig. 

3.3B). The difference seen in protein destruction kinetics is not an artefact of contrasting 

levels of exogenous protein or as a result of differences in translation efficiency. 

Overexpression levels are matched for each protein and no higher than 15% endogenous. 

Furthermore, the use of cycloheximide (CHX) to block translation does not change the order 

of destruction (data not shown). This raises the possibility that an additional binding motif or 

degron exists in cyclin B1 between residues 90-433, which promotes its earlier degradation. 
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Figure 3.3. D-box only recognition is not sufficient for a normal cyclin B1 destruction 
profile.  (A) Schematic of Venus-tagged cyclin B1 Y170A, a non-CDK1-binding mutant and 
cyclin B1 N90 constructs. (B) Levels of Venus-tagged cyclin B1 Y170A (n=32) and cyclin B1 
N90 (n=34) alongside CDK1 activity (n=72, secondary axis) during MI. (C) Levels of 
Venus-tagged cyclin B1 Y170 (n=32); N90 (n=34); N167 (n=38) and N190 (n=38) during MI. 
Traces are aligned to the first polar body extrusion (PB1). Error bars = SEM throughout.
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3.2.3 A second destruction motif exists within the N-terminal helix (NTH) of 

cyclin B1. 

To test if a second destruction motif exists within cyclin B1, one that facilitates its 

prometaphase destruction, we made the following stepwise extensions to the C-terminus of 

N90; N146, N167 and N190. We found that a destruction profile resembling that of full-

length Y170A was recovered between residues 167 and 190 (Fig. 3.3C). Between residues 

167 and 190 lies the N-terminal helix (NTH) of cyclin B1 (residues 170-196, Fig. 3.4D), an 

integral part of the Cdk1 binding interface (Brown et al. 2015). Coupling the NTH to N90 

(N90+NTH) is sufficient to convert N90 from a late substrate to a much earlier WT-like 

destruction target (Fig. 3.4B), thus confirming that the region required for early degradation 

lies completely within the NTH.  

Alanine mutagenesis of Y170A revealed residues within the NTH that are essential for early 

cyclin B1 destruction (only the final mutant is shown; figs 3.4A and 3.4C). We suggest that 7 

residues, DIY (173-175) and LRQL (178-181), constitute a novel motif (hereafter named the 

PM-motif) able to direct APC/C-mediated proteolysis of free cyclin B1 in late prometaphase. 

Indeed, a PM motif mutant lacking these 7 residues (Y170A lacking the PM motif), B1 PM 

mutant is destroyed over the same late time period as N90 (Figs 3.4C and 3.4E). Again this 

order of destruction is maintained where Y170A and PM mutant expressing oocytes are 

matured in the presence of CHX. 

 

3.2.4 Masking of the NTH region of cyclin B1 on Cdk1 binding. 

The crystal structure of the human cyclin B1:Cdk1 in complex with Cks2 (Brown et al. 2015) 

supports our hypothesis that the PM motif would be masked when cyclin B1 is bound to 

Cdk1. The NTH forms a crucial part of the interaction, sitting deep in the interface between 

cyclin B1 and Cdk1 (Fig. 3.5A), making it likely that Cdk1 binding would obscure the PM-

motif, leaving only the D-box of cyclin B1 accessible. We propose the following model; 

unbound excess cyclin B1 is targeted preferentially in late prometaphase via its PM motif; 

Cdk1-bound cyclin B1 is then destroyed later, in metaphase, via its D-box, thus protecting 

Cdk1 activity. 
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Figure 3.4. A second destruction motif exists within the NTH of cyclin B1. (A) NTH sequence 
detail. WT, Y170A and PM mutant (B1 PMmut) sequences are shown. (B) Destruction profiles of 
B1 N90+NTH (yellow, n=22) and B1 N90 (pink, n=34). (C) B1 N90, Y170A and PM mut destruc-
tion profiles. (D) Sequence alignment of NTH-containing region in cyclin B1 orthologs.  (E) 
Destruction of Venus tagged cyclin B1 truncations and mutants. Other than wild type cyclin B1 (B1 
WT), all lack the ability to bind CDK1 and therefore act as reporters of destruction timing without 
perturbing endogenous CDK1 activity. Schematic representations of cyclin B1 constructs are 
shown down the right hand side (cyclin box / fold not to scale) while the bars to the left indicate 
destruction timings. The length of each bar indicates the number of minutes ahead of the minimum 
fluorescence/maximum destruction point (time 0). The open, white bars indicate the point at which 
75% of the destruction has taken place. The light blue extension to this bar indicates the point at 
which 50% of the destruction has taken place (error bars = SEM), followed by a dark blue exten-
sion indicating the point at which 25% of the destruction has taken place. Similarly, CDK1 activity 
loss, as measured via FRET, is shown in green. The period over which PB1 extrusions occur is 
shaded in grey.  
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Figure 3.5. Masking of the NTH region of cyclin B1 on CDK1 binding. (A) Surface representa-
tion of cyclin B1:CDK1 from the crystal structure of its complex with CKS2 (Brown et al., 2015) 
(pdb accession 4Y72). The NTH and preceding loop are excluded from the surface and their back-
bones are instead shown, with residues 173-DIY-175 and 178-LRQL-181 highlighted in red. The 
flexible N-terminal extension harbouring the D-box is illustrated.  (B) Model of cyclin B1 degrada-
tion in mouse oocytes as spindle checkpoint activity declines and APC/C-Cdc20 activity increases. 
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3.3 Discussion 

An estimated 20-25% of human oocytes missegregate their chromosomes, making aneuploidy 

the number one genetic cause of miscarriages and birth defects (Hassold & Hunt 2001). 80-

90% of these segregation errors are thought to occur in MI (Homer 2011). The seemingly 

precocious destruction of cyclin B1 observed in mouse oocyte MI has previously been 

suggested to contribute to aneuploidy and evidence of an oocyte-specific defect in the spindle 

checkpoint which allows the cell cycle to proceed despite chromosome alignment errors. 

However, mouse oocytes are rarely aneuploid. Misaligned chromosome pairs are a common 

feature of mouse oocytes during the initial period of cyclin B1 destruction, yet almost all 

achieve biorientation before anaphase onset (Lane et al. 2012). Mouse oocytes continue to 

perfect chromosome alignment and undergo a division yielding a euploid egg. It therefore 

became of primary interest how cyclin B1is able to bypass the spindle checkpoint in mouse 

oocytes, and why its early degradation does not negatively affect oocyte competency. 

In stark contrast to the situation in mitosis in which Cdk1 is present in excess over cyclin B1 

(Arooz et al. 2000), we show that in oocytes it is instead cyclin B1 that is present in large 

excess. By quantifying the ratio of cyclin B1:Cdk1 in prometaphase I mouse oocytes we find 

cyclin B1 to be approximately 6-fold in excess of Cdk1. This excess of cyclin B1 is lost by 

early mitotic divisions, evident in the dramatic switch back to a large Cdk1 excess observed in 

early embryonic mitosis (MEFs). This therefore suggests a meiosis specific translation 

program that generates a large excess of cyclin B1. How cyclin B1:Cdk1 ratio evolves 

through MII and the first embryonic divisions remains a point of future interest. 

What is clear is that early cyclin B1 degradation is not associated with a decrease in Cdk1 

activity; Cdk1 activity is instead preserved until the final hour before PB1 extrusion. This late 

drop in Cdk1 activity coincides with timings for maximal removal of checkpoint proteins 

from the kinetochore and the formation of stable end-on kinetochore microtubule attachments 

(Kitajima et al. 2011; Lane et al. 2012). We therefore suggest that early destruction represents 

that of an excess pool of free cyclin B1 whose degradation will not directly compromise Cdk1 

activity.  

To address how free cyclin B1 could evade an active checkpoint in late prometaphase while 

Cdk1-bound cyclin B1 was protected, we used reporters for free and Cdk1-bound cyclin B1. 

We show that an N-terminal truncation (N90) of cyclin B1, representing the tail region of 

cyclin B1 that remains accessible on Cdk1 binding, was targeted for degradation much later 

than a full length non-Cdk1-binding cyclin B1, in time with a drop in Cdk1 activity. Critically 
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the truncated construct contains the D-box and neighbouring lysine residues previously shown 

to be necessary and sufficient for degradation in mitosis (Glotzer et al. 1991). This raised the 

possibility that, similar to other APC/C substrates such as cyclin A2, an additional sequence 

exists between residues 90-433 which functions to promote degradation in the presence of an 

active checkpoint (Di Fiore et al. 2015).   

After multiple rounds of serial truncation and point mutation we arrived at a discrete motif in 

the N-terminal helix (centred around residues 173DIY175 and 178LRQL181). We have named this 

motif the PM motif due to its ability to direct Pro Metaphase destruction. Mutating this motif 

delays cyclin B1 degradation until the metaphase drop in Cdk1 activity. Pinpointing the PM-

motif to within the NTH suggests how the cellular destruction machinery is able to 

discriminate between Cdk1-bound and free cyclin B1. Excess free cyclin B1 is targeted via its 

D-box and PM-motif, both of which are essential for timely degradation when the checkpoint 

is still active in prometaphase. In contrast, Cdk1 binding obscures the PM-motif, leaving only 

the D-box of cyclin B1 accessible. This protects a proportion of cyclin B1 and maintains 

Cdk1 activity until the checkpoint is satisfied in metaphase (see Fig. 3.5B for model); the 

availability of the PM motif grants APC/C preferential targeting of non-Cdk1-bound cyclin 

B1 in situations where chromosomes have not yet achieved full alignment. We suggest that in 

mouse oocytes, PM-motif-mediated destruction of free cyclin B1 may couple the timing of a 

prolonged late prometaphase to the progressive positioning of chromosomes.  
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Chapter 4: A hidden motif in securin mediates late prometaphase 

destruction in mouse oocytes 

 

4.1 Introduction 

Mitosis 

Successful cell division relies on chromosomes first organising and correctly aligning on the 

spindle followed by the separation of sister chromatids into two genetically identical sets of 

chromatids, an event tightly coordinated with metaphase exit. Two key events within the cell 

are critical to this process. Firstly, the removal of Cdk1 activity via cyclin B1 degradation 

(discussed in Chapter 3) which initiates a cascade of Cdk1 substrate dephosphorylations 

(Sullivan & Morgan 2007), and secondly degradation of securin allowing for separase 

activation (Ciosk et al. 1998; Uhlmann et al. 1999). If these events become disconnected, as 

demonstrated by artificial stabilisation of Cdk1 activity during normal separase activity, 

anaphase becomes extremely problematic with cells unable to form stable kinetochore 

microtubule attachments (Kamenz & Hauf 2014; Rattani et al. 2014). 

In order to prevent precocious separation of sister chromatids, separase must be kept inactive 

state until a time when all chromosomes are correctly orientated on the spindle.  Prior to 

anaphase, separase is kept inactive via a number of intricate mechanisms. Firstly, separase is 

inhibited by its binding partner securin which is present in excess of separase in mitotic cells 

(Hellmuth et al. 2014; Kamenz et al. 2015). Human securin is a relatively short and 

unstructured protein that binds across the surface of separase, acting as a pseudo substrate by 

occupying the Scc1 recognition site (Sánchez-Puig et al. 2005; Nagao & Yanagida 2006; Lin 

et al. 2016). Not only does securin function to inhibit separase, it also has an activating role. 

Separase is less active and less stable before it complexes with securin, than it is once 

released from securin, thereby preventing premature proteolytic activity prior to securin 

binding (Holland & Taylor 2008). 

While in a typical eukaryotic cell most separase is inhibited by securin, cyclin B1-Cdk1 has 

also been shown to have the capacity to bind and inhibit separase (Stemmann et al. 2001; 

Gorr et al. 2005), likely able to completely take over this role given that securin is dispensable 

in mice (Mei et al. 2001; Wang et al. 2001). Phosphorylation of serine residue S1126 of 

separase by Cdk1 provides a platform for Pin1, a mitotic peptidyl-prolyl isomerise, to bind. 
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Pin1 then isomerises the bond between the phosphorylated serine and its adjacent proline 

residue (Hellmuth et al. 2015). This both renders separase more prone to aggregation and 

allows cyclin B1-Cdk1 to bind and inhibit separase (Hellmuth et al. 2015). In vertebrate cells, 

this inhibition is mutual, with separase having an inhibitory effect on cyclin B1-Cdk1. Where 

securin is the chief separase inhibitor, once separase is liberated and isomerised by Pin1, 

residual cyclin B1-Cdk1 is seen to complex with active separase. Abolishing cyclin B1 

binding to separase by mutating a key serine residue (S1121) in separase results in 

segregation errors that are rescued by Cdk1 inhibition (Shindo et al. 2012). Correct polar body 

extrusion in mouse oocytes has also been shown to be dependent on Cdk1 inhibition by 

separase (Gorr et al. 2006). Whether separase is inhibited primarily by securin or by cyclin 

B1-Cdk1 varies depending on cell type and developmental state. Primordial germ cells and 

early stage embryos rely primarily on cyclin B1-Cdk1-mediated inhibition, whereas in female 

mouse meiosis II, human cancer cells and healthy human mitotic cells, securin is largely 

responsible for separase inhibition (Nabti et al. 2008; Huang et al. 2009; Kamenz & Hauf 

2017). 

Upon accurate chromosome alignment and termination of the spindle checkpoint, the APC/C 

in conjunction with its co-activator Cdc20 targets securin and cyclin B1 via their D-box 

motifs for ubiquitination and subsequent proteasomal degradation (Yamano et al. 1998; 

Hagting et al. 2002). Unlike cyclin B1, securin also contains a KEN box (residues 9-11) in 

addition to its destruction box. Since the KEN box can be targeted by the APC/C and its 

anaphase co-activator Cdh1, KEN box recognition is thought to take place much later in 

mitosis when the APC/C switches from Cdc20 to Cdh1 co-activation (Pfleger & Kirschner 

2000). Where in mitosis a D-box mutation in cyclin B1 renders it non-degradable (Glotzer et 

al. 1991), securin with a mutated D-box but an intact KEN box is still degradable, however its 

destruction is delayed until anaphase when the APC/C switches from Cdc20 to Cdh1 co-

activation (Hagting et al. 2002). APC/C-mediated securin destruction releases the inhibitory 

hold on separase which in turn cleaves the kleisin subunit of the cohesin ring structure which 

holds sister chromatids together during metaphase (Uhlmann et al. 1999). Together separase 

activity and Cdk1 inactivation due to cyclin B1 destruction drive anaphase and mitotic exit. 

Securin destruction in mitosis begins at metaphase, once the spindle checkpoint is satisfied 

and mirrors that of cyclin B1, with degradation of both proteins required before sister 

chromatids can properly separate (Hagting et al. 2002). 
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Meiosis 

Like mitosis, securin is known to be targeted for destruction in time with cyclin B1 in mouse 

oocytes (Homer et al. 2005). Unlike mitosis, this is at a time when checkpoint proteins are 

still detectable at the kinetochore (Lane et al. 2012). Beyond this, very little is known about 

securin destruction and separase inhibition in meiosis I. How and why securin is degraded 

throughout late prometaphase I is unknown. The similarities in degradation timings and 

APC/C recognition of cyclin B1 and securin, their overlapping roles in mitosis and the critical 

need for the synchronous loss of both proteins made it a primary line of interest to further 

investigate securin in meiosis. Specifically, whether securin exhibits a similar biphasic pattern 

of destruction to that of cyclin B1 in mouse oocytes.  
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4.2 Results 

4.2.1 The D-box of securin is not sufficient for a wild-type (WT) destruction 

profile in MI mouse oocytes. 

Given that securin is targeted for degradation in time with cyclin B1 in oocytes (Homer et al. 

2005), I wanted to determine whether securin also showed a biphasic destruction profile 

similar to that of cyclin B1 (Levasseur et al. 2017 unpublished). Furthermore, I wanted 

investigate whether late prometaphase I destruction of securin was similarly mediated by a 

second destruction box working alongside the D-box. 

Employing a strategy similar to that of the cyclin B1 PM motif discovery, two fluorescent 

securin reporters were initially tested, full-length securin (securin FL) and the N-terminal 101 

residues of securin (securin N101). Both constructs contain the KEN box, D-box and 

neighbouring lysine residues necessary for APC/C recognition and subsequent proteolysis 

(Zur & Brandeis 2001; Hagting et al. 2002), however N101 critically lacks highly conserved 

regions within the C-terminal half of the protein (Fig. 4.1A).  

Mouse oocytes were microinjected with cRNA encoding the securin VFP construct of interest 

then imaged at 10 minute intervals from prophase I to anaphase I. Average fluorescence 

intensity readings were taken from a defined region of interest around each oocyte, plotted 

over time and aligned using first polar body (PB1) extrusion as a reference point.  

Securin FL was consistently targeted for destruction much earlier (~80 minutes) than securin 

N101 (Fig. 4.1B). When these destruction profiles were combined with data from our cyclin 

B1 study, it was revealed that not only were securin FL and cyclin B1 FL targeted for 

degradation simultaneously, securin N101 was degraded in time with cyclin B1 N90 (which 

contains the D-box and neighbouring lysine residues but critically lacks the PM motif that 

mediates late prometaphase I destruction) and concurrently with the loss of Cdk1 activity 

(Fig. 4.1C). This raises the possibility that, similar to cyclin B1 and other APC/C substrates 

such as cyclin A2, an additional sequence in the C-terminus of securin may cooperate with the 

D-box to direct APC/C-mediated degradation during prometaphase I in oocytes. 
 

4.2.2 A second destruction motif exists within the C-terminus of securin. 

To test if a second destruction motif exists within securin, one that facilitates its prometaphase 

destruction, a number of stepwise extensions were made to the C-terminus of securin N101.  
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Initial extension constructs were securin N133 and N159, two extensions of securin N101 that 

separated regions of high conservation within the protein. Securin N159 was targeted for 

destruction in time with securin FL whereas securin N133 was targeted for destruction 

approximately 50 minutes after this (Fig. 4.1D). However, when residues 109-133 were 

replaced with a neutral linker in a full-length securin construct (securin Δ109-133), it was 

then targeted in time with securin N101 (Fig. 4.1E). To fully mimic wild-type destruction, it 

appears that a region within residues 109-133 is essential for prometaphase targeting of 

securin in meiosis, alongside additional information present between residues 133-159. 

To narrow down the residues important in mediating prometaphase I securin destruction, 

residues 109-133 were divided into three blocks based on sequence conservation (Fig. 4.2A) 

and alanine mutagenesis was used to assess the importance of each group of residues in the 

timing of securin degradation (Fig. 4.2B). The first mutant, securin DAYPEIE-A, initially 

predicted to eliminate prometaphase targeting due to its similarity to the PM motif in cyclin 

B1 was instead targeted in time with securin FL, whereas securin FFPFNP-A and DFESFD-A 

where both degraded at a later time (Fig. 4.2C). Securin FFPFNP-A was targeted for 

destruction approximately 60 minutes after securin FL but still ~20 minutes ahead of securin 

N101 (Fig. 4.2D), whereas securin DFESFD-A was targeted in time with securin N101 (Fig. 

4.2E). This suggests that essential residues for wild-type prometaphase securin degradation lie 

within both regions. The interaction which mediates this early degradation is likely 

strengthened by residues within FFPFNP. However, DFESFD-A gave the most striking 

phenotype and opened up the possibility of identifying discrete residues critical for 

prometaphase destruction. 

Further point mutations within DFESFD highlighted a pair of conserved phenylalanine 

residues, F125 and F128, which when substituted for alanines (securin FxxF-A) delayed 

degradation by ~90 minutes in time with securin N101 (Fig. 4.2F). These two phenylalanine 

residues appear to constitute crucial residues of a novel interacting region (hereafter named 

the FxxF motif) able to direct APC/C-mediated proteolysis of securin in late prometaphase I 

in mouse oocytes. Destruction timings for all securin truncations and mutations are 

summarised in figure 4.3. 

To confirm that the differences observed in degradation timing between securin FL and 

securin FxxF-A was not simply due to differences between protein expression of the two 

different mRNA constructs, oocytes were treated with cycloheximide (CHX) to block protein 

synthesis (Fig. 4.2G). On addition of CHX, securin FL was evident (~10% of the total protein 

was lost). The rate of degradation then increased ~3.5 hours after CHX addition. Securin  
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Figure 4.2. A second destruction motif exists within the C-terminus of securin. (A) 
Alignment of residues 109-133 in securin orthologs. (B) Securin residues 109-133 sequence 
detail showing the nomenclature of Venus-tagged securin mutations. (C) Average securin 
FL::VFP (orange, n=25), securin N101::VFP (blue, n=23) and securin DAYPEIE-A::VFP 
(light blue, n=19) destruction traces aligned at PB1 extrusion. (D) Average securin FL::VFP 
(orange, n=25), securin N101::VFP (blue, n=23) and securin FFPFNP-A (purple, n=23) 
destruction traces aligned at PB1 extrusion. (E) Average securin FL::VFP (orange, n=25), 
securin N101::VFP (blue, n=23) and securin DFESFD-A (red, n=20) destruction traces 
aligned at PB1 extrusion. (F) Average securin FL::VFP (orange, n=25), securin N101::VFP 
(blue, n=23) and securin FxxF-A (green, n=20) destruction traces aligned at PB1 extrusion. 
(G) Average securin FL::VFP (orange, n=24) and securin FxxF-A (green, n=27) on addition 
of cycloheximide to inhibit protein synthesis. Traces are aligned to the addition of cyclohex-
imide at 3 hours post GVBD. Error bars = +/- SEM.
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Figure 4.3. Securin constructs destruction timings. (A) Destruction of Venus-tagged securin 
truncations and mutants. Schematic representations of securin constructs are shown down the right 
hand side, while the bars to the left indicate destruction timings. The length of each bar indicates the 
number of minutes ahead of the minimum fluorescence/maximum destruction point (time 0). The 
open, white bars indicate the point at which 75% of the destruction has taken place. The light red 
extension to this bar indicates the point at which 50% of the destruction has taken place (error bars = 
SEM), followed by a dark red extension indicating the point at which 25% of the destruction has 
taken place. The period over which PB1 extrusions occur is shaded in grey.  
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FxxF-A protein appears to be turned over far less readily, instead remaining mostly stable 

until it was targeted for degradation ~5 hours after CHX addition. Critically, the securin 

FxxF-A becomes a target ~90 minutes after securin FL, consistent with results from non 

CHX-treated oocytes. 
 

4.2.3 The FxxF motif is likely to be masked when securin is bound to separase. 

The recently solved structure of the S. cerevisiae separase-securin complex (Luo & Tong 

2017) has allowed us to see that residues Y276 and F279 which correspond to F125 and F128 

in the human protein sit deep within a hydrophobic binding pocket on the surface of separase 

(Fig. 4.4A), making it likely that these two residues are obscured when securin is in complex 

with separase, yet visible when securin is free. This provides a mechanism by which an 

unbound pool of securin could be targeted preferentially in late prometaphase ahead of 

separase-bound securin, preventing premature separase activation.  
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Figure 4.4. The FxxF motif is likely to be masked when securin is in complex with sepa-
rase. (A) Molecular surface of the separase interaction segment of securin (purple) bound to 
separase (green) from the crystal structure of the Saccharomyces cerevisiae separase-securin 
complex (Luo & Tong, 2017.). The side chains of securin residues Y276 and F276, which 
correspond to F125 and F128 in the human protein, are shown as stick models. (B) Alignment 
of FxxF motif-containing region in securin orthologs.
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4.3 Discussion 

Securin destruction in mitosis begins at metaphase, once the spindle checkpoint is satisfied 

and mirrors that of cyclin B1. Degradation of both proteins is required before sister 

chromatids can properly separate (Hagting et al. 2002). In mouse oocytes, securin has also 

been shown to be targeted for destruction in time with cyclin B1 (Homer et al. 2005). Beyond 

this however, there is very little meiosis specific securin data with the majority of studies 

carried out in mitosis. Since we know that cyclin B1 is regulated in a different way in meiosis 

(chapter 3), given that securin and cyclin B1 are destroyed synchronously, it became 

important to explore the possibility of a similar biphasic destruction mechanism for securin in 

meiosis I mouse oocytes. 

To address this question, mouse oocytes were microinjected with cRNA encoding full-length 

securin alongside an N-terminal truncation containing only the D-box and neighbouring 

lysine residues yet critically missing highly conserved regions within the C-terminus of the 

protein. It was found that the destruction of full-length securin mirrors that of full-length 

cyclin B1 in oocytes as previously observed by Homer et al. 2005, initiating at a time point 

when checkpoint proteins are still observed at the kinetochore (Kitajima et al. 2011; Lane et 

al. 2012) and the spindle is yet to migrate to the cortex (Verlhac et al. 2000). A D-box only N-

terminal truncation is targeted approximately 80 minutes later than full-length securin and 

critically in time with a cyclin B1 mutant lacking its PM motif. Given that an additional motif 

was necessary to permit late prometaphase destruction of cyclin B1 (Chapter 3; Levasseur et 

al. 2017 unpublished), this made it likely an additional sequence may exist in the C-terminus 

of securin; a motif able to cooperate with the D-box and direct APC/C-mediated degradation 

in prometaphase I oocytes prior to full checkpoint satisfaction. 

To investigate this and narrow down the region within the C-terminus of securin mediating 

prometaphase destruction, a number of extensions based on sequence conservation were made 

to the initial N-terminal truncation. This revealed that a region within residues 109-133 is 

essential for prometaphase degradation of securin in meiosis (Fig. 4D-E).  

Based on sequence similarity to the PM motif of cyclin B1 (DIYxxLRQL), it was predicted 

that the region surrounding securin residues 109DAY111 was a likely candidate, mediating late 

prometaphase degradation in oocytes. A theory strengthened by a report that in humans, 

primates and rodents, securin residues 108-113 (DDAYPE) form an unconventional βTrCP 

recognition motif that targets securin for SCFβTrCP-mediated degradation, principally 

following UV-irradiation damage, but also involved in securin turnover in normal cells 
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(Limón-Mortés et al. 2008). Surprisingly however, an alanine mutation that eliminated 

residues 109-115 was still degraded during prometaphase and mirrored the destruction profile 

of full-length securin (4.2B-C).  

Further mutations within residues 109-133 highlighted a pair of conserved phenylalanine 

residues, F125 and F128, which when substituted for alanines in an otherwise wild-type 

securin delayed degradation by ~80 minutes in time with the D-box only N-terminal 

truncation (Fig. 4.2F) and critically the cyclin B1 PM mutant. I suggest that these two 

phenylalanine residues constitute crucial residues of a novel interacting region (hereafter 

named the FxxF motif) able to direct APC/C-mediated proteolysis of securin in late 

prometaphase I in mouse oocytes. While the presence of F125 and F128 are clearly essential 

for wild-type destruction, I also acknowledge that neighbouring residues and regions also play 

an important role, namely residues within 117FFPFNP122 and the region spanning residues 

133-159. Interestingly, whilst degradation timings of the securin FxxF mutant and the cyclin 

B1 PM mutant appear to mirror each other, much like the wild-type proteins, the motifs 

themselves have very little in common. 

The recently solved structure of the S. cerevisiae separase-securin complex (Luo & Tong 

2017) has allowed us to visualise how the FxxF motif might be positioned when securin is in 

complex with separase as yeast separase shares the same elongated same as human separase. 

Residues Y276 and F279 which correspond to F125 and F128 in the human protein sit deep 

within a hydrophobic binding pocket on the surface of separase (Fig. 4.4A), making it likely 

that these two residues are obscured when securin is in complex with separase, yet visible 

when securin is free. This provides a mechanism by which an unbound pool of securin could 

be targeted preferentially in late prometaphase ahead of separase-bound securin, preventing 

premature separase activation. Important to note is that whilst the primary amino acid 

sequence of securin is generally poorly conserved through evolution, the D-box and region 

surrounding the FxxF motif are well conserved down to yeast (see Appendix for full 

alignment of securin orthologs). 

Initial quantification blots suggest that securin is in large excess over separase in oocytes. 

Securin is known to be in excess in mitotic cells (Hellmuth et al. 2014). In MEFs, U2OS and 

HeLa, we are able to detect both separase and securin bands via immunoblot. However in 

mouse oocytes, while we are readily able to detect securin, we have not been able to detect 

separase (investigations are on going) despite neighbouring wells giving strong separase band 

for mitotic cells (MEFs, U2OS and HeLa). This suggests that in meiosis, securin is in huge 

excess of separase. An excess of free-securin may be targeted preferentially during late 
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prometaphase via its visible FxxF motif, potentially as a buffer zone, allowing the oocyte time 

to manage its highly complex spindle assembly without affecting separase inhibition 

prematurely. This theory will be discussed in further detail in chapter 7. 

The idea of preferential targeting of free securin is not without president. In HeLa cells, 

separase-bound securin is dephosphorylated by PP2A-B56 phosphatase, whereas free securin 

exists in a phosphorylated state and is thus a preferential APC/C target, though this 

destruction takes place only after checkpoint satisfaction (Hellmuth et al. 2014). 

It has been suggested that securin is present in excess of separase in mitosis, with free securin 

present at 4-5x the abundance of separase-bound securin in HeLa cells (Hellmuth et al. 2014). 

Why then is free securin destruction not seen in mitosis, prior to checkpoint satisfaction? It is 

important to note that HeLa cells are an immortalised cancer cell line and likely do not reflect 

the securin to separase ratio in healthy somatic cells. This may explain why the FxxF motif 

does not appear to target securin for prometaphase destruction in mitosis, however it may still 

have a role in housekeeping should securin become overexpressed. Another possibility is that 

some degree of prometaphase securin destruction does take place in mitosis yet is 

undetectable due to the relative speed of the metaphase anaphase transition in comparison to 

meiosis. Other studies have also noted securin to be in excess of separase though here without 

rigorous quantification (Ciosk et al. 1998; Shindo et al. 2012; Kamenz et al. 2015). 

Possible mechanisms for the prometaphase destruction of securin in meiosis will be discussed 

in chapters 5 and 6. Clues to solving this can be taken from known prometaphase APC/C 

substrates such as cyclin A, Nek2A and HOXC10 which are degraded rapidly in 

prometaphase as soon as the nuclear envelope breaks down (NEBD) (Elzen & Pines 2001; 

Geley et al. 2001; Gabellini et al. 2003; Hayes et al. 2006). The mechanism by which the 

FxxF motif mediates prometaphase securin destruction in oocytes, as well as the role of this 

novel mechanism in protecting separase inhibition, will be addressed in chapter 5. 
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Chapter 5: The FxxF motif in securin functions alongside a D-box 

to promote preferential degradation of free securin ahead of 

separase activation in meiosis I mouse oocytes. 

 

5.1 Introduction 

In chapter 4, the existence and location of a novel and conserved FxxF motif within the C-

terminus of securin was uncovered. The FxxF motif permits destruction in late prometaphase, 

two hours ahead of a securin mutant construct lacking this motif. This destruction takes place 

at a time when weak Mad2 staining is still detectable at kinetochores (Lane & Jones 2014) 

and the meiotic spindle is yet to fully migrate to the cortex (Verlhac et al. 2000; Kitajima et 

al. 2011). In this chapter I will begin to discuss how this motif promotes destruction during a 

period of active checkpoint signalling and further aim to explore the roles of other known 

destruction motifs, namely the KEN box and D-box, in meiotic securin destruction. In 

addition to understanding the mechanism by which securin seems able to bypass an active 

checkpoint, the aim was to investigate the relationship between this prometaphase destruction 

and meiotic separase activity. Precocious separase activity would likely have disastrous 

consequences, therefore the early loss of securin seems at odds with the requirement of the 

oocyte. 

In mitosis, the majority of securin destruction is mediated by the large multi-subunit E3 

ubiquitin ligase the anaphase promoting complex or cyclosome (APC/C) (Hagting et al. 

2002). However further studies have also highlighted a number of additional E3 ligases at 

least partially responsible for securin destruction in a number of different situations and cell 

types. The SCFβTrCP has been shown to mediate destruction when securin becomes 

abnormally hyper-phosphorylated through inhibition of the phosphatase PP2A, a situation that 

may arise in certain cancers (Gil-Bernabé et al. 2006). The same group also showed that UV 

irradiation had a similar effect, SCF-mediated securin degradation was triggered following a 

standard exposure to UV (100 J/m2). Here a discrete motif within the C-terminus of securin 

(DDAYPE) was identified as being responsible for mediating the interaction with the SCF. In 

the same study, the SCF was also shown to have a role in securin turnover in healthy cells 

(Limón-Mortés et al. 2008). More recently, Parkin, an E3 ubiquitin ligase involved in 

Parkinson’s disease has been observed to interact with Cdc20 and Cdh1, targeting securin and 

a number of other substrates including cyclin B1 and Nek2A for mitotic degradation 
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alongside the APC/C (Lee et al. 2015). In mouse embryonic fibroblasts (MEFs), Smurf1 

directly interacts with securin and targets it for proteasomal degradation. When Smurf1 is 

knocked down, sister chromatid segregation is strongly inhibited and marked delay in 

anaphase onset is observed (Wei et al. 2017), likely due to an extended period of separase 

inhibition.  

While there is far less known about securin degradation in meiosis, one study has suggested 

securin degradation in mouse oocytes to be entirely APC/C-dependent, due to securin 

stabilisation when the D-box is mutated (Herbert et al. 2003). However, since a new motif has 

been identified within securin, it becomes critical revisit this theory and investigate how the 

D-box, KEN box and FxxF motif are working together to mediate meiotic degradation. 

The APC/C is able to recognise its substrates through two co-activators, Cdc20 and Cdh1, 

each of which contain WD40 domains serving as major sites for substrate recognition (Kraft 

et al. 2005; Chao et al. 2012). Through domains within the APC/C subunits and its co-

activators, the APC/C is able to recognise a range of short motifs, known as degrons (Davey 

& Morgan 2016). Aside from the two well-characterised APC/C degrons (the D-box and KEN 

box), there exists also the newly discovered ABBA motif, originally identified in cyclin A and 

consisting of the consensus motif Fx[ILV][FHYx[DE]. The ABBA motif has been shown to 

outcompete a similar motif within BubR1 for an ABBA-binding domain in Cdc20 thus 

permitting APC/C activation during an active checkpoint (Di Fiore et al. 2015).  

As well as the newly discovered FxxF motif (chapter 4), and in addition to the D-box, human 

securin contains a further classic APC/C degron, namely a KEN box. In mitosis, securin 

degradation begins in metaphase once the spindle checkpoint is satisfied and is mediated 

primarily by APC/C-Cdc20. This degradation requires only the D-box and not the KEN box 

(Hagting et al. 2002). However when key D-box residues are replaced via alanine 

mutagenesis, the KEN box takes over and degradation is pushed back to a later time point, 

following anaphase (Hagting et al. 2002). This KEN box only mediated degradation likely 

indicates a time in mitosis when APC/C-Cdh1 activity replaces that of APC/C-Cdc20. If both 

the KEN box and D-box are mutated in tandem, securin is largely stabilised in mitotic cells 

(Hagting et al. 2002). While not strictly degrons, human securin also contains two TEK 

boxes, mutation of which impairs initiation of ubiquitin chain formation by E2 ubiquitin 

conjugating enzyme, Ube2C (Jin et al. 2008). 

Securin destruction in mouse oocytes begins 3 hours ahead of polar body extrusion (Chapter 

4) at a time when weak Mad2 staining is still detectable at kinetochores, suggesting that a 
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reduced yet active checkpoint is still signalling (Lane et al. 2012). In mitosis, while 

chromosomes are still correctly aligning on the spindle, APC/C activation is strongly 

inhibited by the spindle checkpoint, a diffusible “wait anaphase” signal propagated from 

unattached kinetochores (Musacchio & Salmon 2007). The spindle checkpoint signal is 

generated primarily through the action of Mad2 and BubR1 (Sczaniecka et al. 2008), which 

act to sequester Cdc20 in a number of ways. As part of the mitotic checkpoint complex 

(MCC), Mad2 prevents association of free Cdc20 with the APC/C by outcompeting APC8 for 

binding of the KILR motif in Cdc20 (Izawa & Pines 2014). The MCC can then bind a second 

APC/C-bound Cdc20 through a conserved ABBA-KEN-ABBA binding cassette, preventing 

Cdc20 from interacting with APC3 (whilst still bound to APC8) and hence removing the 

bipartite D-box receptor formed with APC10 (Izawa & Pines 2014; Di Fiore et al. 2016). 

Cdc20 therefore shows a shift in the way it interacts with the APC/C depending on whether 

the checkpoint is on or off. When the checkpoint is on Cdc20 interacts with APC8 only, 

whilst when the checkpoint is satisfied and MCC production ceases, Cdc20 is free to also 

interact with APC3 and form a D-box receptor with the neighbouring APC10, thus initiating 

cyclin B1 and securin degradation (Izawa & Pines 2011). While chromosomes are still 

aligning during prometaphase both APC/C co-activators are suppressed. The spindle 

checkpoint acts to inhibit Cdc20, and Cdh1 is inhibited through Cyclin B1-Cdk1 

phosphorylation (Zachariae 1998).  

In contrast to mitotic cells where MCC complexes formed in the cytoplasm are sufficient for 

correct prometaphase timing (Maciejowski et al. 2010), mouse oocytes also require 

kinetochore localisation of MPS1 (whose role is discussed in Chapter 1) for correct timing of 

prometaphase I (Hached et al. 2011). This supports a long held theory that diffusible MCC 

complexes are insufficient over a large volume (Minshull et al. 1994), as is the case in a 

mouse oocyte. This is further evident in a recent study in C. elegans embryonic cells, where 

the strength of checkpoint was directly related to the ratio of kinetochores to cytoplasmic 

volume ratio (Galli & Morgan 2016). 

Unlike in mitosis, where a single unattached kinetochore is sufficient to induce cell cycle 

arrest (Rieder et al. 1994), it has previously been suggested that APC/C activation in mouse 

oocytes can take place in the presence of multiple incorrect attachments since cyclin B1 and 

securin are destroyed so early (Gui & Homer 2012; Lane et al. 2012). Late prometaphase 

destruction of cyclin B1 and securin has therefore previously been considered as evidence of 

this inefficient or diluted checkpoint, resulting in a precocious degradation of APC/C 

metaphase substrates. However, previous chapters have shown that D-box only mediated 
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degradation is still insufficient for wild-type prometaphase destruction and that additional 

discrete motifs within the two proteins are also required.  

In mitosis, there is a delay observed between the initiation of securin degradation and the 

activation of separase. In some systems, this delay is at least in part due to the 

phosphorylation state of securin. In human cells, phosphorylated free securin is targeted 

preferentially over separase-bound securin due to dephosphorylation by PP2A in complex 

with separase, thus delaying separase activation (Hellmuth et al. 2014). In budding yeast, the 

situation is reversed and Cdk1-dependent phosphorylation of securin has in fact been shown 

to delay degradation (Lu et al. 2014).  

Securin destruction is observed for 3 hours ahead of polar body extrusion in meiosis I mouse 

oocytes. In chapter 4 it was hypothesised that preferential degradation of free securin via its 

FxxF motif may function to protect against premature separase activation, since a later second 

wave of securin destruction relying only on its D-box does not begin until 90 minutes prior to 

PB1 extrusion. However, initiation of separase activation even 90 minutes ahead of PB1 

extrusion would still likely be catastrophic due to cohesin cleavage so far ahead of anaphase. 

It is therefore, alongside the role of the KEN box and D-box, a primary point of interest to 

investigate the exact timing and regulation of separase activity in oocytes.  
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5.2 Results 

5.2.1 Meiotic securin destruction is D-box-dependent but not KEN box-

dependent. 

Following identification of a discrete FxxF motif within the C-terminus of securin (chapter 4) 

I wanted to investigate how this functioned alongside the D-box and KEN box to mediate 

meiotic destruction.  Alignment of metazoan securin orthologs showed that while the 

consensus D-box motif is well conserved throughout; the canonical KEN box is lost even in 

mouse, where it is replaced by KDN. The mouse KDN sequence in securin would be unlikely 

to be recognised as a functional KEN motif since if the Cdc20 KEN box is mutated to KDN 

in mouse cell lines, Cdc20 is stabilised (Zur & Brandeis 2002) (Fig. 5.1A). This suggests that 

while the KEN box has been shown to be functional in humans when the D-box is mutated 

(Hagting et al. 2002), its functional significance seems of far less evolutionary importance 

than the D-box.  

To assess the functionality of securin degrons in meiosis, three mutant securin constructs were 

tested, a KEN box mutant in which all three core residues were replaced with alanines 

(KEN>AAA, securin KEN mutant), a D-box mutant in which the three key residues forming 

the consensus motif, the arginine in position 1, the leucine in position 4 and the asparagine in 

position 8 were replaced with alanines (RKALGTVN>AKAAGTVA, securin D-box mutant) 

and finally a double mutant that combined both degron mutations (securin KEN/D-box 

mutant). Securin KEN mutant was targeted with an identical destruction profile to that of a 

wild-type securin construct (securin FL; Fig. 5.1B), while mutation of the D-box inhibited FL 

securin destruction (Fig. 5.1C-D). Though largely stabilised, in contrast to a previous study 

that found D-box mutation to completely stabilise securin in mouse oocytes, evidence of 

destruction was still observed in the fluorescence profiles of individual oocytes injected with 

securin D-box mutant, however this effect is lost in the average trace. Degradation here never 

exceeds 25% and is completely lost in the securin KEN/D-box mutant, which is completely 

stable (Fig. 5.1D). This suggests that while meiotic securin degradation is largely D-box 

dependent, when the D-box is mutated a small amount of destruction can be maintained via 

the KEN box. However, unlike in mitotic studies there does not appear to be a significant 

change in the timing of KEN-box mediated degradation, indeed some destruction profiles for 

securin D-box mutant constructs show targeting even ahead of securin FL (Fig. 5.1C). 
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Figure 5.1. Meiotic securin destruction is D-box dependent but not KEN box dependent. 
(A) Alignment of residues 1-69 in securin orthologs containing both KEN box and D-box 
motifs. (B) Average securin FL::VFP (orange, n=25) and securin KEN mutant::VFP (purple, 
n=20) destruction profiles aligned at PB1 extrusion. (C) Average securin FL::VFP (orange, 
n=16) and securin D-box mutant::VFP (light blue, n=23) destruction profiles aligned at 
GVBD. (D) Average securin FL::VFP (orange, n=16) and securin KEN/D-box mutant::VFP 
(red, n=19) destruction profiles aligned at GVBD. Both securin D-box mutant and securin 
KEN/D-box mutant were largely stabilized and blocked anaphase progression, therefore 
destruction profiles are aligned at GVBD rather than PB1 extrusion. Fine traces represent 
destruction profiles from individual oocytes, heavy traces represent the average destruction 
profile resulting from all injected oocytes of a given contruct.

54



5.2.2 The FxxF motif in securin functions to bypass an active checkpoint in 

late prometaphase I oocytes and is involved in preferential targeting of free 

securin once the spindle checkpoint is satisfied. 

Securin destruction in mouse oocytes begins in late prometaphase at a time when Mad2 

staining is still detectable at kinetochores (Lane et al. 2012), however it is not known exactly 

how much control the spindle checkpoint has over FxxF-driven degradation. To investigate 

this, oocytes were treated with 150 nM nocodazole to depolymerise microtubules. This 

activates the checkpoint such that PB1 extrusion is blocked in >95% of oocytes. It was 

observed that while the rate of full-length securin degradation was dramatically reduced, it 

was still almost fully degraded by 20 hours, whereas securin FxxF-A was almost completely 

stabilised (Fig. 5.2A).  This suggests that the destruction of securin in late prometaphase I is 

not simply due to a checkpoint signal that is insufficient over the large volume of an oocyte, 

but that the FxxF motif is actively involved in bypassing a checkpoint signal that can still 

sufficiently block D-box only APC/C substrates. 

To further investigate the role of the FxxF motif in securin degradation, oocytes were treated 

with 100nM reversine to inhibit MPS1 and block the assembly of new MCC complexes. As 

expected, reversine treatment rapidly accelerated the meiotic cell cycle, with securin 

degradation beginning ~30 minutes after drug addition (Fig 5.2B). In reversine-treated 

oocytes, securin FL was still consistently targeted for destruction ~60 minutes ahead of 

securin FxxF-A (Fig 5.2B). This demonstrates that whilst the FxxF motif is necessary to 

bypass an active checkpoint, even once the spindle checkpoint is inactivated, FL securin (in 

which the FxxF motif is visible) is still the preferential APC/C substrate ahead of separase-

bound securin in which only the D-box is visible. 

 

5.2.3 APC3 and Cdc20 levels are rate limiting for prometaphase securin 

destruction. 

Wild-type meiotic securin destruction begins in late prometaphase and is mediated via the 

FxxF motif which functions to bypass an active spindle checkpoint (Fig 5.2A). However, the 

FxxF motif must function alongside the D-box, given D-box mutation largely stabilises 

securin destruction (Fig 5.1C). The requirement for a D-box would suggest APC/C-Cdc20 

activity is responsible for early securin degradation, as the D-box is recognised by a bipartite 

receptor formed between the WD40 domain of Cdc20 and APC/C subunit APC10 (Chao et al.  
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Figure 5.2. The FxxF motif in securin functions to bypass an active checkpoint and is involved 
in preferential targeting of free securin once the SAC is satisfied. (A) Average securin FL::VFP 
(orange, n=20) and securin FxxF-A (green, n=30) destruction profiles on addition of nocodazole to 
arrest oocytes in prometaphase. Traces are aligned to GVBD as oocytes did not extrude polar bodies. 
(B) Average securin FL::VFP (orange, n=21) and securin FxxF-A (green, n=18) on addition of 
reversine to inhibit MCC formation. Traces are aligned to reversine addition, however a second x-axis 
above the graph shows timing relative to average GVBD. Fine traces represent destruction profiles 
from individual oocytes, heavy traces represent the average destruction profile resulting from all 
injected oocytes for a given construct.
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2012). To test this, a pool of oocytes was injected with an APC3 morpholino oligomer (MO), 

to knock down APC3 gene expression and thus inhibit APC/C activity (Nilsson et al. 2009), 

followed by a separate injection of securin FL. In these oocytes, securin degradation was 

drastically reduced in comparison with control securin FL oocytes (Fig. 5.3A). In a similar 

experiment Cdc20 levels were knocked down and gave a surprising result. Securin FxxF-A 

was completely stabilised, yet while the rate of securin FL destruction was reduced, destroyed 

over a 5 hour time period rather than 3 hours, it was still fully degraded (Fig. 5.3B). This 

suggests that early securin targeting is permitted at much lower concentrations of Cdc20, 

perhaps due to the high affinity of combining an FxxF motif with a D-box. In comparison, 

late D-box only degradation requires much higher levels of Cdc20 for APC/C targeting.  

Interestingly, when Cdc20 is knocked down by MO injection, securin FL is targeted for 

degradation ~2 hours ahead of securin FL in control oocytes (Fig 5.3B), yet polar body 

extrusion is blocked. This could be due to upregulation of Cdh1 in Cdc20 MO-injected 

oocytes, a situation in which the spindle checkpoint may be less able to prevent premature 

APC/C activation. However, this requires further investigation. 

 

5.2.4 Meiotic securin destruction begins 2.5 hours ahead of separase 

activation in meiosis I mouse oocytes. 

I hypothesise that early meiotic securin degradation represents destruction of a free pool of 

securin, targeted preferentially via a FxxF motif that is obscured when securin is bound to 

separase, thus preventing premature activation of separase while chromosomes are correctly 

aligning.  Following this initial phase of destruction a second wave of securin destruction 

initiates 90 minutes ahead of PB1 extrusion. Here the D-box alone is sufficient to target 

securin for degradation, however the gradual activation of separase this far ahead of anaphase 

would be potentially catastrophic for faithful chromosome segregation. Separase activation 

from this early time point would lead to cohesin cleavage and homolog dissociation before the 

cell was ready to proceed into anaphase. We therefore reasoned that separase activity must 

still be delayed even after the 2nd wave of securin destruction is initiated.  

To address this, the H2B-mCherry-Scc1147-467-eGFP separase activity biosensor was used 

(Nam & van Deursen 2014) (Fig. 5.4C). The sensor is targeted to chromosomes via its histone 

H2B tag and shows a colour shift from yellow to red as separase becomes active and cleaves 

two cut sites within the Scc1 peptide, causing eGFP dissociation into the cytoplasm leaving 

only mCherry signal on the DNA. Separase activation was typically observed 20-30 minutes  
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Figure 5.3. APC3 and Cdc20 levels are rate limiting for meiotic securin destruction. (A) 
Average securin FL::VFP (orange, n=16) and securin FL + APC3 morpholino oligomer (MO) 
(purple, n=15) destruction profiles aligned at GVBD. (B) Average securin FL + Cdc20 MO::VFP 
(orange, n=19), securin FxxF-A + Cdc20 MO (green, n=19) and control securin FL::VFP (orange 
dashed, n=16) destruction profiles aligned at GVBD. Traces were aligned at GVBD as both APC3 
and Cdc20 MOs prevented polar body extrusion. Fine traces represent destruction profiles from 
individual oocytes, heavy traces represent the average destruction profile resulting from all injected 
oocytes for a given construct.
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B.

Figure 5.4. Prometaphase securin degradation begins 2.5 hours ahead of separase 
activation. (A) Time-lapse images of oocyte injected with a H2B-mCherry-Scc1-eGFP 
separase activity biosensor and imaged at 10 minute time intervals starting 5 hours after 
GVBD. Representative fluorescence (eGFP in green and mCherry in red) and bright field 
images are shown during the 50 minutes surrounding PB1 extrusion. Scale bars = 50µm. (B) 
Quantification of separase activity by measuring the average eGFP/mCherry fluorescence 
ratio from eggs injected with the separase biosensor (green, n= 20), plotted alongside aver-
age securin FL::VFP (orange, n=25) and securin FxxF-A::VFP (blue, n=20) destruction 
profiles produced by taking an average intensity reading from a defined region of interest 
around the oocyte, plotted over time and aligned at PB1 extrusion. Error bars = +/- SEM. 
(C) Schematic representation of separase activity biosensor adapted from Shindo et al. 2012.
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ahead of polar body extrusion as can be seen in a representative oocyte (Fig 5.4A). This 

timing was confirmed by quantification of the eGFP/mCherry fluorescence ratio which 

showed that separase became active ~30 minutes ahead of polar body extrusion, 60 minutes 

after D-box only mediated destruction commences, with the majority of substrate cleavage 

taking place in the final 20 minutes Fig. 5.4B). 

 

5.2.5 A securin phosphomutant does not significantly affect degradation 

timing in meiosis I mouse oocytes. 

Given that 90 minutes prior to anaphase the D-box alone becomes sufficient to target securin 

for degradation, yet separase remains inactive for an hour subsequent to this suggests an 

additional layer of separase regulation once checkpoint signalling ceases. In mitosis, a pool of 

phosphorylated free securin is targeted for destruction preferentially ahead of a separase-

bound securin pool protected by PP2A-mediated dephosphorylation (Hellmuth et al. 2014). I 

wanted to investigate whether similarly in oocytes the phosphorylation state of securin affects 

its degradation timing. To address this, 4 residues highlighted to be important for 

phosphorylation-dependent timing of mitotic securin degradation were replaced with alanines 

in both a wild-type and FxxF-A securin. Surprisingly neither phosphomutant, securin FL 4A 

or securin FxxF-A 4A showed a delayed degradation when compared to securin FL and FxxF-

A respectively (Fig. 5.5A-B). Interestingly however, securin FxxF-A 4A was in fact targeted 

~30 minutes ahead of securin FxxF-A, suggesting that phosphorylation may actually delay 

degradation in oocytes (as is the case in budding yeast (Lu et al. 2014)), however this would 

require further investigation to fully characterise (Fig. 5.5B). 
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Figure 5.5. A securin phosphomutant does not significantly affect degradation timing in 
meiosis I mouse oocytes. (A) Average securin WT 4A::VFP (blue, n=17) and securin FxxF-A 
4A::VFP (red, n=20) destruction profiles aligned at PB1 extrusion. Fine traces represent destruc-
tion profiles from individual oocytes, heavy traces represent the average destruction profile 
resulting from all injected oocytes for a given construct. (B) Average securin WT 4A::VFP (blue, 
n=17), securin FxxF-A 4A::VFP (red, n=20), securin WT::VFP (orange dashed, n=25) and securin 
FxxF::VFP (green dashed, n=20) destruction profiles aligned at PB1 extrusion. Error bars = +/- 
SEM.
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5.3 Discussion 

Meiotic securin destruction in mouse oocytes is biphasic; consisting of an initial phase during 

late prometaphase in which free securin is targeted preferentially via a FxxF motif ahead of 

separase-bound securin in which the FxxF motif is masked in the interface between securin 

and separase (chapter 4). This is followed by a second phase of destruction initiating 90 

minutes ahead of polar body extrusion where the D-box alone is sufficient.  

In APC3 knockdown oocytes, securin degradation was drastically reduced in line with the 

APC/C being the primary E3 ubiquitin ligase mediating meiotic degradation (Fig. 5.3A). To 

investigate how securin’s known APC/C degrons, namely the KEN box and D-box, function 

alongside the FxxF motif to mediate prometaphase I destruction, securin constructs were 

tested with either KEN box or D-box mutations or both combined. It was observed that 

contrary to a previous report (Herbert et al. 2003), when only the D-box is mutated, the KEN 

box is able to direct minimal degradation. This is not observed in the double KEN/D-box 

mutant (Fig. 5.1C-D). Unlike in mitotic cells, there was no time delay associated with this 

switch from D-box to KEN box mediated destruction (Hagting et al. 2002). This could 

suggest that Cdh1 may not be as strongly inhibited prior to anaphase as it is in mitotic cells 

where a D-box mutant securin is only targeted for degradation following anaphase once 

Cdk1-mediated Cdh1 inhibition ceases and the APC/C switches co-activators from Cdc20 to 

Cdh1 (Hagting et al. 2002). Indeed APC/C-Cdh1 has been shown to moderate the rate of 

Cdk1 activation prior to GVBD in mouse oocytes, suggesting that especially in early 

prometaphase, there may be more Cdh1 available to activate the APC/C when compared to 

that in mitotic cells (Reis et al. 2007; Rattani et al. 2017). Despite this, securin destruction in 

mouse oocytes was observed to be largely D-box dependent, as a KEN box mutation had no 

significant effect on destruction profile (Fig. 5.1D). This suggests that securin degradation 

during late prometaphase in mouse oocytes requires both D-box interaction with the bipartite 

receptor on APC-Cdc20 and the FxxF motif in order to bypass an active checkpoint and 

present itself as an APC/C substrate. Other examples of prometaphase APC/C substrates able 

to bypass an active checkpoint include Nek2A and cyclin A (Zon & Wolthuis 2010). While 

Nek2A targeting is Cdc20-independent and mediated via direct interaction with the APC/C, 

cyclin A must liberate Cdc20 from the MCC prior to APC/C activation (Hayes et al. 2006; Di 

Fiore & Pines 2010). Liberation of Cdc20 is achieved via an ABBA motif within the N-

terminus of cyclin A which outcompetes a similar motif in BubR1 for Cdc20 binding, thus 

freeing Cdc20 from the MCC and activating the APC/C during an active checkpoint. 
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Interestingly, the FxxF motif shows high sequence similarity to the ABBA motifs identified 

in cyclin A, BubR1 and Bub1. This will be further explored in chapter 6. 

Our hypothesis that the FxxF motif is involved in Cdc20 liberation from the MCC, allowing 

an APC10/Cdc20 D-box receptor to form during an active checkpoint is further strengthened 

by observations made in nocodazole-treated oocytes. When oocytes were incubated with 

nocodazole to depolymerise microtubules and stimulate the checkpoint, a wild-type securin 

construct was still fully degraded despite the fact that anaphase was blocked. In comparison a 

mutant construct lacking the FxxF motif was largely stabilised (Fig. 5.2A), evidence that the 

late prometaphase degradation of securin is not simply due to an inefficient checkpoint, but 

instead is a controlled mechanism. The FxxF motif functions to bypass an active checkpoint 

that would otherwise be sufficient to block D-box only mediated degradation since securin 

FxxF-A is stable in nocodazole treated oocytes.  

Morpholino oligo knockdown of Cdc20 reduced securin degradation, however not to the same 

extent as APC3 knockdown. In Cdc20 knockdown oocytes, wild-type securin was fully 

degraded yet with much slower degradation dynamics whilst securin FxxF-A mutant was 

mostly stabilised with only small amounts of degradation observed in certain eggs (Fig. 

5.3B). Early securin degradation relying on both the FxxF motif and the D-box is less 

sensitive to situations where Cdc20 levels are limited, suggesting that perhaps both degrons 

combined have a higher binding affinity. This leads to the hypothesis that requirement of both 

an FxxF motif and a D-box for late prometaphase securin destruction would suggest that the 

destruction machinery mediating this is APC/C-Cdc20, as it is between APC10 and the 

WD40 domain of Cdc20 that the bipartite D-box receptor is formed (Chao et al. 2012).  

The possibility cannot be ruled out that when Cdc20 is knocked down there is the potential for 

Cdh1 upregulation in order to substitute as primary APC/C co-activator during meiosis I, 

however further analysis including quantification of relative Cdc20 and Cdh1 levels following 

MO treatment is required and currently the only conclusion that can be drawn is that Cdc20 is 

indeed rate limiting for meiotic securin degradation. 

While meiotic securin destruction is initiated 3 hours ahead of the first polar body extrusion in 

mouse oocytes, using a separase biosensor I demonstrate that activation of separase is only 

observed 20-30 minutes before anaphase (Fig. 5.4A-C). Though it makes sense that separase 

would only become active over a short time period preceding polar body extrusion, the 

mechanisms that keep separase inhibited for a further hour after the D-box becomes a 

sufficient securin degradation signal remain a point of interest. In mitotic cells, securin 
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phosphorylation serves to protect against premature separase activation. Separase-bound 

securin is kept in a dephosphorylated state by PP2A and thus protected, while free securin is 

phosphorylated and thus preferentially targeted for degradation (Hellmuth et al. 2014). 

However, when these phosphorylation sites were mutated to alanines in a securin FxxF-A 

mutant, mimicking the dephosphorylated state of mitotic protected separase-bound securin, it 

was found that rather than being delayed, degradation instead began ~30 minutes ahead of 

securin FxxF-A (Fig 5.5A-B). This suggests that when securin is phosphorylated, degradation 

timing may in fact be delayed, a phenomenon previously observed in budding yeast (Lu et al. 

2014) but at odds with current mitotic data. 

Further clues as to how separase inhibition may be protected after checkpoint signalling 

reaches a minimum come from oocytes treated with reversine to remove MCC assembly. 

Even in oocytes lacking an active spindle checkpoint, wild-type securin was consistently 

targeted for degradation an hour ahead of securin FxxF-A, suggesting that even after 

checkpoint signalling has ceased, any excess free securin in which both the FxxF motif and 

D-box are visible will still be targeted preferentially, thus further delaying the point at which 

separase-bound securin becomes a target for APC/C-mediated degradation. However this 

potential mechanism for separase protection would only work if there was a sufficient excess 

of free securin remaining after the initial phase of destruction. Quantification of 

securin:separase ratio in oocytes is currently under investigation, with initial results 

suggesting a large excess of securin in oocytes matured for 6 hours post GVBD (data not 

shown). Following quantification, I intend to use the separase biosensor in securin MO-

injected oocytes to investigate how the timing of separase activation varies in a separase 

knockdown background. 

Preliminary imaging data shows securin to be localised throughout the cytoplasm yet absent 

from chromosomes prior to anaphase onset (data not shown). It is therefore of future interest 

whether securin-separase complex localisation could play a role in this delayed activation, in 

which separase relocalisation to chromosomes would be required following the removal of 

securin-mediated inhibition. To probe this idea, the separase biosensor could be targeted to 

the cell membrane to investigate whether separase activity is observed with different timing 

away from chromosomes.  
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Chapter 6: Cyclin A2 and APC/C processivity in meiosis I. 

 

6.1 Introduction 

In chapter 5 it was shown that late prometaphase securin destruction is mediated by both the 

FxxF motif and the D-box, which work together to permit degradation in the presence of an 

active checkpoint. Furthermore, it was shown that both APC/C activity and Cdc20 levels were 

rate limiting to this process. However is was not clear from these experiments how the FxxF 

motif works alongside the D-box to permit degradation when a D-box alone is insufficient. In 

this chapter, I will address the possibility that the FxxF motif could be behaving in a similar 

way to the ABBA motif of cyclin A, a theory based on a high degree of sequence similarity 

and the relative spatial positioning of the two degrons. I also discuss the potential 

functionality of a conserved PM motif within cyclin A2, given that a sequence within cyclin 

A shows homology to the prometaphase APC/C degron identified in cyclin B1 (presented in 

chapter 3). 

Through ubiquitin-mediated hydrolysis, the anaphase promoting complex or cyclosome 

(APC/C) targets specific substrates for proteolysis at specific times to drive ordered mitotic 

progression (Pines 2006). In mitosis, the multi-subunit APC/C has a number of prometaphase 

(Cyclin A, Nek2A and HOXC10), metaphase (Cyclin B and securin) and later substrates 

(Cdc20, Plk1 and the Aurora kinases) (see Pines 2006 for review). How the same ubiquitin 

ligase targets each specific substrate at a specific time is still not fully clear even in mitosis 

and involves a complex balance of a number of factors. These include phosphorylation, co-

activator abundance, subcellular localisation, relative substrate abundance, degrons and 

inhibitor binding (see Sivakumar & Gorbsky 2015 for review). 

The APC/C is largely inactive without one of its co-activators; Cdc20 and Cdh1. The 

presence and position of these co-activators is one of the best known decisive factors in 

influencing substrate specificity (Vodermaier 2001). Cdh1 is largely responsible for APC/C 

co-activation in early G1 phase and late M phase of the cell cycle (Pines 2006). However 

once the cell enters mitosis, cyclin B1-Cdk1 phosphorylation of APC/C subunits, APC3 and 

APC1, prevents Cdh1 binding and primes the APC/C for Cdc20 co-activation (Fujimitsu et al. 

2016). When in complex with Cdc20, the APC/C primarily targets substrates through 

formation of a putative bipartite destruction box (D-box) receptor between Cdc20 and APC10 
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(Chao et al. 2012), whereas APC-Cdh1 is able to target substrates with either a D-box or KEN 

box and does not require a phosphorylated APC/C (Kramer et al. 2000). 

In mitosis, the APC/C complexes with Cdc20 until a point when cyclin B1- Cdk1 activity 

falls and as a result the APC/C loses its priming phosphorylation for Cdc20 binding. At this 

point there is a switch back towards APC/C co-activation by Cdh1 and Cdc20 itself becomes 

a target for degradation (Pfleger & Kirschner 2000). Loss of Cdc20 from mitotic cells causes 

stabilisation of cyclin B1 and securin and results in metaphase arrest (Li et al. 2007; Wolthuis 

et al. 2008), Cdh1 depletion stabilises the Aurora kinases and causes premature S-phase entry 

(Floyd et al. 2008). While chromosomes are still aligning during prometaphase both APC/C 

co-activators are suppressed. The spindle checkpoint acts to inhibit Cdc20, and Cdh1 is 

inhibited by high cyclin B1-Cdk1 activity. Despite this, the APC/C is still active from very 

early on in mitosis. Cyclin A, Nek2a and HOXC10 are all degraded rapidly in prometaphase 

as soon as the nuclear envelope breaks down (NEBD) (Elzen & Pines 2001; Geley et al. 2001; 

Gabellini et al. 2003; Hayes et al. 2006). 

Cyclin A binds to Cdc20 during early mitosis and is targeted to the phosphorylated APC/C in 

early prometaphase as a Cdc20-Cyclin A2-Cdk2-Cks1 complex (Wolthuis et al. 2008), 

through the direct binding of Cks1 to phosphorylated APC3 subunits (Di Fiore & Pines 2010; 

Zon & Wolthuis 2010). Via its ABBA motif, cyclin A2 outcompetes BubR1 for a binding site 

on Cdc20, rendering cyclin A an APC/C target at a time when the spindle checkpoint is still 

actively sequestering both APC/C-bound and free Cdc20 (Di Fiore et al. 2016).  

While it is clear there is a role for Cks1 in this early degradation, it is not yet fully defined. In 

one report, when both Cks1 and Cks2 were knocked down using shRNA, cyclin A2 appeared 

to be stabilised by immunoblot (Wolthuis et al. 2008). However in another study, Di Fiore 

and Pines instead observe that when cyclin A2 is truncated to its first N-terminal 165 residues 

(a length lacking the cyclin folds involved in Cdk-binding and thus Cks1 association) it is still 

targeted for destruction, only this time 20 minutes after NEBD and WT cyclin A2 targeting, 

yet still 20-25 minutes ahead of anaphase onset (Di Fiore & Pines 2010). Wild-type 

destruction is then recovered when cyclin A2 N165 is artificially fused to Cks1 (Di Fiore & 

Pines 2010). 

Although depleting Cdc20 largely stabilises cyclin A2 (Di Fiore & Pines 2010), Nek2A 

degradation is unaffected (Boekhout & Wolthuis 2015). Nevertheless, though direct Cdc20 

binding is not required for Nek2A destruction, catalytic activation of the APC/C by Cdc20 at 

the beginning of the prophase to prometaphase transition is essential (Boekhout & Wolthuis 
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2015). Nek2A binds directly to TPR motifs in APC/C subunits through its C-terminal MR tail 

(Hames et al. 2001) and therefore does not require Cdc20 binding to be recruited to the 

APC/C. 

In this chapter the aim was to investigate how cyclin A is regulated in mouse meiosis I and in 

so doing provide insight to the mechanisms by which cyclin B1 and securin are able to evade 

the checkpoint in late prometaphase I.  
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6.2 Results 

6.2.1 The FxxF motif in securin resembles an ABBA motif in both positioning 

and sequence. 

The FxxF motif in securin and the PM motif in cyclin B1 both work alongside a D-box to 

permit APC/C-Cdc20 mediated destruction simultaneously in late prometaphase I (chapters 3 

and 4, Levasseur et al. 2017 unpublished). However, other than the seemingly identical 

temporal degradation profiles, the motifs themselves have very little similarity. While the 

FxxF motif and the PM motif share no obvious sequence homology, sequence alignment of 

the region containing the FxxF motif in securin orthologs alongside the ABBA motif-

containing regions of cyclin A1, cyclin A2 and BubR1 revealed multiple common features. 

For the purpose of exploring the similarity between the motifs, investigation was focused on 

cyclin A2, as this is the primary A-type cyclin expressed in the female germline (Touati et al. 

2012). 

Both the FxxF motif in securin and the ABBA motif in cyclin A2 typically center around two 

aromatic residues, either phenylalanine, tyrosine or histidine, in positions 1 and 4, with an 

upstream proline rich region and a downstream acidic region (Fig. 6.1A). Furthermore, both 

the FxxF motif of securin and the ABBA motif of cyclin A2 are found in unstructured regions 

~50 amino acids downstream of the D-box, while the PM motif of cyclin B1 is located within 

the N-terminal Helix and is ~120 amino acids downstream of the D-box (Fig. 6.1B).  

Due to these common features it became a primary interest to explore how cyclin A2 was 

regulated in meiosis and if in fact the FxxF motif in securin was working to directly liberate 

Cdc20 from MCC sequestration via a similar mechanism to the ABBA motif of cyclin A2 in 

mitosis (Di Fiore et al. 2015).  
 

6.2.2 Cyclin A2 degradation in mouse oocytes begins in early prometaphase I 

and relies on the Cdk-binding cyclin box/folds. 

To investigate the regulation of cyclin A2 in meiosis, initially two constructs were tested, a 

full-length cyclin A2 (cyclin A2 FL) and a truncated version of cyclin A2 containing only the 

first N-terminal 165 residues (cyclin A2 N165, Fig. 6.2A). Both constructs contain the D-box 

and ABBA motif, however cyclin A2 N165 critically lacks the cyclin box/folds essential for 

Cdk binding (Di Fiore & Pines 2010). Cyclin A2 FL was consistently targeted from early  

72



* *

Securin     human      117                                                                                                                                                135

Securin     mouse        114                                                                                                                           132                                                                                                                 

Securin     barn owl    111                                                                                                                           129 

Securin     frog               107                                                                                                                           125 

Pds1          yeast            268                                                                                                                            286 

F F P F N P L D F E S F D L P E E H Q
F F P F N P L D F E S F D L P E E H Q
M F P Y D P R D F E S F D L P E E H K
F V P Y N P L D F E S F D V P E D H K
P L P Y V P E G Y S P F Q Q D D I E K

                   

P S V P
P A P S

P A
Cyclin A1 ABBA       127                                                                                                                                             145

Cyclin A2 ABBA        91                                                                                                                                             109

BubR1 ABBA1           264                                                                                                                                             282

BubR1 ABBA2           331                                                                                                                                            349

BubR1 ABBA3         519                                                                                                                                             537

V Q E Q GP P K F D I Y M D E L E Q G
K A N S K Q F T I H V D E A E K E
Q Q MQ N N S R I T V F D E N A D E A
A V V L F T P Y V E E T A R Q
H S K G F S I F D E F L L S E

A.

KEN box D-box
202 aa

Securin
9-11 61-68 125-128

FxxF motif

433 aa
Cyclin B1 

D-box
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D-box
47-57 99-105
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N-terminal 
      helix
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Figure 6.1. The FxxF motif in securin resembles an ABBA motif in both positioning and 
sequence. (A) Alignment of FxxF motif-containing region in securin orthologs alongside ABBA 
motif-containing regions from human cyclin A1, cyclin A2 and BubR1. (B) Schematic representa-
tion showing relative positioning of APC/C degrons within securin, cyclin A2 and cyclin B1. 
Major structural features are represented by a thick black line, unstructured regions by a thin black 
line and known degrons highlighted in red. A potential PM motif in cyclin A2 is highlighted in 
yellow and will be discussed later. All features are to scale.
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D.

Figure 6.2. The D-box and ABBA motif of cyclin A2 are not sufficient for early promet-
aphase degradation in meiosis. (A) Schematic showing VFP-tagged cyclin A2 and securin 
truncations and mutations. (B) Average cyclin A2 FL::VFP (purple, n=22) and cyclin A2 
N165::VFP (light blue, n=26) destruction profiles aligned at PB1 extrusion. (C) Average 
securin FL::VFP (orange, n=25) and cyclin A2 N165::VFP (light blue, n=26) destruction 
profiles aligned at PB1 extrusion. (D) Average cyclin A2 N165::VFP (light blue, n=26) and 
cyclin A2 N165 ABBA mutant::VFP (red, n=22) destruction profiles aligned at PB1 extru-
sion. Fine traces represent destruction profiles from individual oocytes, heavy traces repre-
sent the average destruction profile resulting from all injected oocytes of a given contsruct.
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prometaphase and had a relatively slow rate of degradation over a period of ~8 hours, 

eventually reaching a minimum in time with PB1 extrusion (Fig. 6.2B). In contrast, cyclin A2 

N165 was completely stable during early prometaphase and only began to be degraded ~2 

hours ahead of PB1 extrusion. Therefore the D-box and ABBA motif together are not 

sufficient to mediate early prometaphase I degradation of cyclin A2. Furthermore, when 

cyclin A2 N165 was injected alongside securin FL, it was observed that securin was the 

preferred substrate as N165 degradation began ~1 hour after securin FL (Fig. 6.2C). 

Interestingly, a cyclin A2 N165 construct lacking its ABBA motif (cyclin A2 N165 ABBA 

mutant) was targeted for degradation approximately an hour after N165, demonstrating that 

the ABBA motif does function at this late stage (Fig. 6.2D). 
 

6.2.3 Cks1 binding is required for early prometaphase cyclin A2 destruction in 

mouse oocytes. 

The regions containing the FxxF motif in securin and the ABBA motif in cyclin A2 show 

strong sequence homology (Fig. 6.2A) and indeed when cyclin A2 is truncated to N165, a 

construct far more similar to securin (a largely unstructured protein unable to bind Cdk1, yet 

still containing the D-box and additional degrons), it instead became a target for degradation 

only 2 hours ahead of PB1 extrusion (Fig. 6.2B). This suggests that rather than a difference in 

degrons, the dramatic timing difference between cyclin A2 and securin targeting (~5.5 hours) 

is largely due to the fact cyclin A2 can associate with a Cdk and therefore be targeted to the 

APC/C via Cks1.  

In mitotic cells, early prometaphase cyclin A2 degradation is enabled by Cks1 interaction 

through Cdk2, which targets cyclin A2 to the phosphorylated APC/C early in mitosis 

(Wolthuis et al. 2008; Di Fiore & Pines 2010). To test whether the difference in degradation 

timings between cyclin A2 and securin was in fact largely due to Cks1 targeting of cyclin A2 

to the APC/C, a number of Cks1-linked constructs were made (Fig 6.3A). Linking cyclin A2 

N165 to Cks1 with a short neutral linker (cyclin A2 N165-Cks1) brought forward destruction 

which now began as early as 7 hours ahead of PB1 extrusion. Thereby partially rescuing the 

early prometaphase degradation of cyclin A2 FL (Fig 6.3B). This early degradation was 

however more gradual than cyclin A2 FL during early prometaphase. Cyclin A2 N165-Cks1 

instead showed an increased rate of destruction in the last 4 hours before PB1 extrusion, this 

is in contrast to cyclin A2 FL where the rate of destruction is largely constant (Fig 6.3B). 
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Figure 6.3. Cks1 binding is required for early prometaphase cyclin A2 destruction in 
oocytes. (A) Schematic showing VFP-tagged cyclin A2 and securin truncations and mutations 
alongside Cks1-linked constructs. (B) Average cyclin A2 N165-Cks1::VFP (green, n=12), cyclin 
A2 FL::VFP (purple dashed, n=22) and cyclin A2 N165::VFP (light blue dashed, n=26) destruc-
tion profiles aligned at PB1 extrusion. (C) Cks1 residues 118-147 sequence detail showing the 
nomenclature of Venus-tagged Cks1 mutations. (D) Average cyclin A2 N165-Cks1::VFP (green 
dashed, n=12), cyclin A2 N165-Cks1 APC/C mutant::VFP (purple, n=15), cyclin A2 N165-Cks1 
APC/C+Skp2 mutant::VFP (red, n=9) and cyclin A2 N165::VFP (light blue dashed, n=26) 
destruction profiles aligned to PB1 extrusion. (E) Average securin FL-Cks1::VFP (dark blue, 
n=12) and securin FL::VFP (orange dashed, n=25) destruction profiles aligned at PB1 extrusion. 
(F) Average cyclin A2 N165-Cks1::VFP (green, n=12) and securin FL-Cks1::VFP (dark blue, 
n=12) destruction profiles aligned at PB1 extrusion. (G) Average securin FL-Cks1::VFP (dark 
blue dashed, n=12), securin FL-Cks1 APC/C mutant::VFP (purple, n=15), securin FL-Cks1 
APC/C+Skp2 mutant::VFP (red, n=13) and securin FL::VFP (orange dashed, n=25) destruction 
profiles aligned to PB1 extrusion. Fine traces represent destruction profiles from individual 
oocytes, heavy traces represent the average destruction profile resulting from all injected 
oocytes of a given contruct.
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To test whether linking cyclin A2 N165 to Cks1 caused early degradation by specific 

targeting to the phosphorylated APC/C during early prometaphase and not through interfering 

with protein structure for example, the anion-binding site in Cks1 was mutated (Cks1 APC/C 

binding mutant; Watson et al. 1996; Fig.6.3C). Cyclin A2 N165-Cks1 APC/C mutant was 

targeted for degradation at a slower rate than cyclin A2 N165-Cks1, yet some degradation still 

took place from early prometaphase (Fig. 6.3D). I hypothesised that this persisting 

degradation could be due to the previously reported Cks1 association with Skp2, the F-box 

protein component of the SCF E3 ubiquitin ligase (Sitry et al. 2002). Indeed, when both the 

anion-binding site and two residues highlighted to be important in Skp2-binding (Sitry et al. 

2002) were mutated together (A2 N165-Cks1 APC/C+Skp2 mutant; Fig. 6.3C), destruction 

was observed in time with cyclin A2 N165 (Fig. 6.3D). 

I reasoned that if Cks1 was able to permit ABBA-mediated cyclin A2 destruction from early 

prometaphase even without Cdk interaction, then fusing Cks1 to securin may also allow for 

early prometaphase degradation. Indeed, securin FL-Cks1 degradation consistently began 

from GV stage and continued at a similar rate until ~4 hours ahead of PB1 extrusion when the 

rate increased, reaching a minimum in time with polar body extrusion (Fig. 6. 3E). While 

securin FL-Cks1 was targeted from GV stage, ahead of cyclin A2 N165-Cks1, from mid to 

late prometaphase the two constructs show similar destruction profiles (Fig. 6.3F). 

Surprisingly however, when securin FL-Cks1 was mutated at the Cks1 anion-binding site 

(securin FL-Cks1 APC/C mutant), rather than simply a reduced early degradation (as in the 

case of cyclin A2 N165-Cks1 APC/C mutant) the construct was instead rapidly degraded to 

50% by 5 hours ahead of PB1 extrusion (Fig. 6.3G). How inhibiting the APC/C interaction 

could actually make this protein a better substrate is very interesting. I hypothesised that again 

this may be due to Cks1 interaction with Skp2 and subsequent SCF-mediated degradation. 

Perhaps by removing the capacity for Cks1 interaction with the APC/C, this increases the 

portion of the construct targeted to Skp2. Increased initial degradation may be due to the 

presence of a previously identified SCF recognition motif (DDAYPE) within the C-terminus 

of securin (Limón-Mortés et al. 2008), not present in cyclin A2, hence why we did not see the 

effect with cyclin A2 N165-Cks1 APC/C mutant. 

However, mutation of both the anion-binding site and the two Skp2-interacting residues does 

not fully stabilise prometaphase destruction (Fig. 6.3G). Note that while securin FL-Cks1 

degradation rate accelerates ~3 hours ahead of PB1 extrusion, APC/C+Skp2 mutant 

degradation only increases in the last 2 hours before PB1 extrusion. 
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6.2.4 The ABBA motif is essential for early cyclin A2 degradation in mouse 

oocytes. 

In nocodazole-treated mitotic cells, when the ABBA motif in cyclin A2 is mutated, though the 

rate of degradation decreases, the mutant is still fully degraded (Di Fiore et al. 2015). This is 

in contrast to the equivalent securin FxxF-A mutant which is largely stabilised in nocodazole-

arrested oocytes (Chapter 5). This prompted the question of whether cyclin A2 contained yet 

further regions promoting degradation during an active checkpoint. Indeed after sequence 

alignment and conservation analysis, it was found that the PM motif responsible for late 

prometaphase I destruction of cyclin B1 is present in all A- and B-type cyclins in humans, yet 

lost in D- and E-type cyclins (Fig 6.4A). Indeed the motif is highly conserved in cyclins B1 

and A2 through Metazoa (Fig. 6.4B-C) and is present in various cyclins of both budding and 

fission yeast, where the ABBA motif is either divergent or lost completely (Fig. 6.4D-E). 

To assess the functionality of this conserved PM motif within cyclin A2, two full-length 

mutant cyclin A2 constructs were tested, one with the ABBA motif mutated (cyclin A2 FL 

ABBA mutant) and one with the PM motif mutated (cyclin A2 FL PM mutant) alongside 

cyclin A2 FL, containing both motifs, and cyclin A2 N165 ABBA containing neither (Fig. 

6.5A). It is important to note that all constructs contain a D-box. Though cyclin A2 FL PM 

mutant was consistently targeted for degradation from early prometaphase, the rate of 

destruction was slow over the first 6 hours compared to cyclin A2 FL. This was followed by a 

sharp increase in degradation in the last hour before PB1 extrusion, reminiscent of the cyclin 

B1 PM mutant as seen in chapter 3 (Fig 6.5B). However, at present we do not have a tested 

cyclin A2 mutant where Cdk interaction is inhibited (a cyclin B1 Y170A equivalent; see 

chapter 3). Without a control mutation in both WT and PM mutant constructs, any changes in 

degradation profile could simply be due to an altered affinity of Cdk and in turn Cks1 

binding. As such, while the features of this curve make it tempting to speculate, it is currently 

not possible to draw any conclusions regarding the function of a cyclin A2 PM motif without 

such a control.  

Cyclin A2 FL ABBA mutant is only a destruction target in the last ~2 hours before PB1 

extrusion, however here destruction is rapid (Fig. 6.5C). This is in contrast to mitosis where 

the reverse is true, mutating the ABBA motif reduces the rate of degradation but does not 

affect the timing (Di Fiore et al. 2015). Note the particularly late targeting of the cyclin A2 

N165 ABBA mutant. This construct contains only a D-box and was expected to be destroyed 
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in time with the cyclin B1 PM mutant. Instead it appears that the D-box of cyclin B1 is 

preferred to the D-box of cyclin A2 at this late time point (Fig. 6.5D). 
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Figure 6.4. The PM motif is conserved in A- and B-type cyclins through Metazoa and 
various cyclins in both budding and fission yeast. (A) Alignment of PM motif-containing 
region in human cyclins, showing conservation in A- and B-type cyclins but loss in D- and 
E-type cyclins. (B) Alignment of PM motif-containing region in cyclin B1 orthologs. (C) 
Alignment of PM motif-containing region in cyclin A2 orthologs. (D) Alignment of PM 
motif-containing region in budding yeast cyclins. (E) Alignment of PM motif-containing 
region in fission yeast cyclins. The MRAIL motif, important in Cdk binding, is highlighted as 
a common feature of most cyclins. Note the conservation of the relative positioning of the PM 
motif ~18-22 residues upstream of the MRAIL motif. 
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Figure 6.5. The ABBA motif in cyclin A2 is essential for early prometaphase degradation 
in mouse oocytes. (A) Schematic showing VFP-tagged cyclin A2 and cyclin B1 truncations and 
mutations. (B) Average cyclin A2 FL::VFP (purple, n=22), cyclin A2 FL PM mutant::VFP 
(orange, n=14) and cyclin A2 N165 ABBA mutant::VFP (dark blue dashed, n=22) destruction 
profiles aligned at PB1 extrusion. (C) Average cyclin A2 FL::VFP (purple dashed, n=22) and 
cyclin A2 FL ABBA mutant::VFP (red, n=14) destruction profiles aligned at PB1 extrusion. (D) 
Average cyclin A2 N165 ABBA mutant::VFP (blue, n=22), cyclin B1 Y170A::VFP (red dashed, 
n=32) and cyclin B1 PM mutant::VFP (blue dashed, n=28) destruction profiles aligned at PB1 
extrusion. Fine traces represent destruction profiles from individual oocytes, heavy traces 
represent the average destruction profile resulting from all injected oocytes of a given construct.

Cyclin B1 Y170A 
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6.3 Discussion 

In chapters 3 and 4, two novel motifs were identified, the PM motif in cyclin B1 and the FxxF 

motif in securin that function to permit destruction in late prometaphase I during an active 

checkpoint. Whilst the degradation timings of cyclin B1 and securin are seemingly identical 

in both wild-type constructs and in PM/FxxF mutant constructs, the motifs share no 

discernable similarity either in sequence or position relative to key domains. While the PM 

motif forms part of the N-terminal helix of cyclin B1, the FxxF motif is found within an 

unstructured region of securin (Fig. 6.1B). It therefore seems likely that these degrons act to 

bypass the checkpoint via distinct mechanisms.  

Sequence alignment and conservation analysis of other known APC/C degrons revealed that 

the FxxF motif in securin shares a number of common features with the ABBA motif recently 

identified in cyclin A1, cyclin A2, Bub1 and BubR1 (Di Fiore et al. 2015). Both motifs 

typically center around two aromatic residues, either phenylalanine, tyrosine or histidine, in 

positions 1 and 4, with an upstream proline rich region and a downstream acidic region (Fig. 

6.1A). Whilst the FxxF motif does not exactly fit the consensus ABBA motif sequence 

(Fx[ILV][FHY]x[DE]), it is important to note that the ABBA motif is the most recently 

characterised APC/C degron and has only been identified a handful of proteins and is 

therefore likely to evolve as more cases are identified. Also important to note is that ABBA 

motif in cyclin A was identified using a computational motif search (SLiMSearch; Davey et 

al. 2011) rather than from experimental data. While the minimal consensus D-box motif is 

RxxL, there are a number of experimentally identified D-box degrons that do not fit this such 

as cyclin B3 which has a phenylalanine rather than a leucine in position 4 (Nguyen et al. 

2002). Such studies highlight a level of flexibility even in an APC/C degron as well defined 

as the D-box. 

Our data shows that cyclin A2 degradation from early prometaphase I is mediated by Cks1 

targeting to the phosphorylated APC/C.  A cyclin A2 N165 truncation which includes both 

the D-box and the ABBA motif, yet lacks Cdk-binding modules is not able to form a complex 

with Cks1 and only becomes an APC/C target in late prometaphase (Fig. 6.2B). This suggests 

that while the ABBA motif is essential for a wild-type degradation, the difference between 

early and late prometaphase APC/C targeting was largely a result of a presence or absence of 

Cks1. The ABBA motif may offer a higher affinity for the APC/C, but this interaction is only 

possible when coupled to Cks1-directed recruitment. Indeed, cyclin A2 N165 was targeted an 

hour after securin FL in late prometaphase suggesting that at this earlier time point the D-box 
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and FxxF motif of securin have the higher combined binding affinity than the D-box and 

ABBA motif of cyclin A2 in the absence of Cks1 binding (Fig. 6.2C-D).  

Early prometaphase degradation was rescued by linking cyclin A2 N165 to Cks1 (Fig. 6.3B), 

thus confirming that without Cks1, the D-box and ABBA motif together are insufficient to 

mediate destruction in early prometaphase. Furthermore, when the linked Cks1 protein 

contained mutations removing both APC/C and Skp2 interactions, this rescue was abolished 

(Fig. 6.3F). Interestingly, the APC/C binding mutation alone did not completely abolish the 

rescue, suggesting that some level of degradation can be mediated via the SCF through direct 

interaction of Cks1 and the F-box protein Skp2. This finding is supported by a previous study 

reporting an interaction between cyclin A2-Cdk2 and Skp2 (Yam et al. 1999). 

It seemed plausible that the dramatic difference in degradation timing between cyclin A2 and 

securin may be largely due to Cks1 targeting and that in fact the motifs may function in the 

same way if similarly localised. To test this, securin was linked to Cks1. Indeed the linked 

construct was targeted for degradation from early prometaphase. However somewhat 

unexpectedly, wild-type degradation in late prometaphase was not recovered when both 

APC/C and Skp2 interacting residues were mutated in Cks1. Whether the FxxF motif can act 

as an ABBA motif in early prometaphase remains under investigation. Ongoing 

immunoprecipitation experiments to assess whether the FxxF motif can directly bind to 

Cdc20’s ABBA interacting region will further address this.  

In chapter 5, it was demonstrated that late prometaphase degradation of securin is a regulated 

mechanism, mediated by discrete motifs which permit securin to bypass the spindle 

checkpoint. An FxxF-A mutant securin was stabilised in nocodazole-treated oocytes. This is 

in contrast to the ABBA motif in mitotic cyclin A2 destruction, where a cyclin A2 ABBA 

mutant was still fully degraded in nocodazole-arrested cells, albeit at a reduced rate (Di Fiore 

et al. 2015). This prompted the question whether cyclin A2 contained additional regions able 

to mediate degradation during an active checkpoint. Sequence alignment and conservation 

analysis revealed a conserved PM motif within the N-terminal helix of cyclin A2 (showing 

high sequence homology to the motif identified in cyclin B1, Fig. 6.4B-C). This conservation 

carried through to budding and fission yeast cyclins, both of which hold PM motifs 

consistently ~20 residues upstream of the MRAIL motif critical for Cdk binding (Fig. 6.4D-E; 

Schulman et al 1998), suggesting this may have important evolutionary significance. 

Interestingly, while a functional ABBA motif does exist in budding yeast Clb5 (Lu et al. 

2014), it bears little resemblance to the mammalian ABBA motif and is completely absent in 

fission yeast cyclins. It could be argued that the PM motif is so well conserved simply 
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because it has a role to play in Cdk binding, however human D- and E- type cyclins also have 

Cdk partners and a well conserved MRAIL motif, yet no PM motif. 

We suggest that cyclin A2 contains 3 APC/C degrons; a D-box, an ABBA motif with high 

sequence homology to the FxxF motif in securin and a PM motif with high sequence 

homology to that of cyclin B1. To test the functionality of the PM motif would require a non 

Cdk-binding cyclin A2 with and without a PM motif mutation. An example of this could be a 

cyclin A2 truncation after the N-terminal helix at around residue 230.  
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Chapter 7: Conclusion and final remarks. 

 

Accurate cell division is a strictly ordered, highly regulated event that requires complex 

regulation in order to avoid chromosomal segregation errors during the metaphase to 

anaphase transition. Errors during segregation often lead to generation of aneuploid daughter 

cells; cells containing an incorrect number of inherited chromosomes. In mitosis, a robust 

spindle checkpoint ensures that chromosome division errors occur at a relatively low 

frequency, by maintaining high levels of cyclin B1 and securin until chromosomes are 

accurately aligned on the metaphase plate. In contrast, human oocyte meiosis is extremely 

error prone, with chromosomal abnormalities estimated to be present in as many as 30% of 

fertilised eggs in younger women, possibly exceeding 50% in those who conceive later in 

their reproductive lifespan (Hassold & Hunt 2001). This meiotic aneuploidy is the primary 

genetic cause of miscarriage, congenital disability and mental retardation in foetuses that 

survive to term (Hassold & Hunt 2001).  

It is well observed that in meiosis I mouse oocytes, cyclin B1 and securin degradation initiate 

in late prometaphase (Homer et al. 2005; Lane et al. 2012) at a time when the spindle is yet to 

fully migrate to the cortex (Verlhac et al. 2000; Kitajima et al. 2011) and checkpoint proteins 

are still detected at kinetochores (Lane et al. 2012). This has often been viewed as precocious 

degradation, missed by a checkpoint that has become insufficient over the large volume of an 

oocyte. Indeed, the spindle checkpoint does appear to be less robust in oocytes as MPS1 

localisation to kinetochores and subsequent kinetochore-dependent MCC assembly is 

essential for correct prometaphase timing (Hached et al. 2011). In contrast, in mitotic cells 

MCC complex formation within the cytoplasm is sufficient for correct cell cycle progression 

(Maciejowski et al. 2010). Thus a diffusible checkpoint able to block premature progression 

in mitotic cells is not sufficient in oocytes. While a diluted checkpoint may seem like an 

attractive explanation for the high rates of aneuploidy observed in human oocytes, mouse 

oocytes are comparable in size and chromosome number but are far less error prone with an 

estimated 1-2% of fertilised eggs being aneuploid (Bond & Chandley 1983), compared to 25-

30% in human eggs (Hassold & Hunt 2001). This implies that cyclin B1 and securin 

destruction in late prometaphase I is not responsible for segregation errors and consequently 

seemed worthy of further investigation. 

We show that degradation of cyclin B1 and securin in late prometaphase I is not simply due to 

an insufficient checkpoint but in fact due to controlled novel mechanisms of destruction 
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within the oocyte. Meiotic destruction of cyclin B1 and securin can be split into two distinct 

periods; a later period of destruction that resembles mitotic destruction where the D-box is 

sufficient for APC/C targeting, and a much earlier period of destruction requiring additional 

previously unidentified motifs able to bypass the spindle checkpoint. The PM motif in cyclin 

B1 and the FxxF motif in securin constitute novel regions that work alongside a D-box to 

mediate degradation during an active checkpoint.  

Due to the location of these motifs within the proteins, they are likely to be masked when 

bound to their respective partner proteins; cyclin B1 to Cdk1 and securin to separase. This is 

supported by the crystal structures of both complexes (Brown et al. 2015; Luo & Tong 2017). 

We therefore propose a mechanism by which free pools of cyclin B1 and securin are targeted 

preferentially ahead of bound pools in which the PM motif and FxxF motif respectively 

would be obscured. This preferential targeting of unbound pools would protect Cdk1 activity 

and separase inhibition when the spindle checkpoint may become insufficient over the 

extended prometaphase period in the huge cell volume of an oocyte.  

Key experiments to prove this model will involve determination of securin:separase ratio in 

oocytes, followed by knock down of securin protein level to mimic a mitotic ratio and 

subsequent measurement of separase activity in a securin knock down background. These 

would mimic cyclin B1 knock down experiments from our lab in which oocytes are unable to 

maintain Cdk1 activity and extrude abnormal polar bodies when cyclin B1 protein levels are 

knocked down such that oocytes contain ~2-fold rather than the usual ~6-fold excess at 5.5 

hours post GVBD (Levasseur et al. 2017 unpublished). 

It has been suggested that each APC/C substrate is governed in a unique way, ensuring 

delivery to the proteasome at a particular time and in a specific order (Lu et al. 2014). In the 

case of cyclin B1 and securin, we expand upon this and suggest processing in a way that is 

unique to binding state. Our research provides a new insight into fundamental aspects of cell 

cycle control in meiosis I mouse oocytes, relevant to our understanding of the high rates of 

aneuploidy in human eggs. We provide substantial evidence for oocyte-specific mechanisms 

which protect the oocyte from an increased incidence of division error. Destruction 

mechanisms utilising degrons that would otherwise be masked in complex may be a common 

principle of proteostasis, this has been suggested (Ravid & Hochstrasser 2008; Harper & 

Bennett 2016; Davey & Morgan 2016). The position of such degrons allows control over the 

balance of individual subunits of complexes where their balance becomes misregulated. We 

would suggest that the oocyte may be exploiting such mechanisms to control the activity of 

key cell cycle regulators.  
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We have revised our understanding of both the timing of the oocyte cell cycle and the 

regulation of cyclin B1, cyclin A2 and securin. Our findings will aid the search for the origins 

of aneuploidy in oocytes and the design of treatment strategies for women who suffer 

repetitive miscarriages, a substantial contributor to human infertility. In certain cases, 

recurrent miscarriage may be due to an imbalance in the ratio of cyclin B1:Cdk1 or 

securin:separase. Furthermore, given the general conservation of molecular mechanisms in 

the control of both mitotic and meiotic cell cycles, it is possible that the PM motif and FxxF 

motif have additional mitotic functions in the ‘housekeeping’ of cyclin B1 and securin protein 

levels, or the slippage of cells out of drug-induced mitotic arrest. Beyond cell division, it 

seems plausible that the masking and unveiling of degrons has a key role to play in 

proteostasis.  

While an error-prone spindle assembly and large cell volume clearly contribute to the high 

levels of aneuploidy observed in human oocytes, it is also of critical interest whether the 

protective mechanisms we have identified in mouse oocytes are conserved in humans. Spindle 

assembly in human oocytes lasts up to 16 hours compared to 3-5 hours in mice (Holubcova et 

al. 2015). A human oocyte would therefore need much larger excesses of cyclin B1 and 

securin in order to protect Cdk1 activity and separase inhibition over such an extended time 

period. The situation in aged oocytes is also very interesting. While all of our studies have 

been conducted in young mice, we can speculate that the balance of cyclin B1:Cdk1 and 

securin:separase could be perturbed with age, contributing to the age-dependent exponential 

increase in error alongside other known problems associated with aged oocytes. 
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Appendix I: Abbreviations 

 

APC/C Anaphase promoting complex or cyclosome 

CHX Cycloheximide 

CPC Chromosome passenger complex 

FL Full-length 

FRET Förster resonance energy transfer 

GFP Green fluorescent protein 

GV Germinal vesicle 

GVBD Germinal vesicle breakdown 

I2PP2A PP2A inhibitor 2 

IBMX 3-isobutyl-1-methyl xanthine  

LH Luteinising hormone 

MI First meiotic division 

MII Second meiotic division 

MCC Mitotic checkpoint complex 

MEFs Mouse embryonic fibroblasts 

MO Morpholino oligomer 

MTOC Microtubule organising centre 

NEBD Nuclear envelope breakdown 

NTH N-terminal helix 

PB1 First polar body extrusion 

PP2A Protein phosphatase 2A 

RT Room temperature 

SCF Skp1-Cullin-F-box complex 

Sgo Shugoshin 

SLIC Sequence- and ligation-independent cloning 

VFP Venus fluorescent protein 

WT Wild-type 
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