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Abstract 

Dysregulation of miRNAs has been implicated in obstructive airway diseases 

including TGF-β1 mediated Bronchiolitis Obliterans Syndrome (BOS), where TGF-β 

induced epithelial phenotype plasticity or Epithelial-Mesenchymal Transition (EMT) 

may also contribute to pathophysiology. This study investigated the role of miRNAs in 

TGF-β1 induced fibrosis and had two main aims: (1) Identification of key miRNAs 

crucial in TGF-β1 induced EMT and fibrosis, a key clinical feature of BOS and (2) 

investigating the role of selective miRNAs (miR-200b, miR-200c and miR-146a) in 

maintaining epithelial cell morphology during EMT using immortalised human 

bronchial epithelial cells (BEAS-2B cells) and human primary bronchial epithelial cells 

(PBECs). Initially, NanoString® nCounter miRNA assay was used to profile miRNAs 

in control versus TGF-β1 stimulated BEAS-2B cells. MiR-200b and miR-200c were 

downregulated while miR-146a was upregulated post TGF-β1 treatment compared to 

control BEAS-2B cells. BEAS-2B cells and PBECs were transfected with miR-200b 

and miR-200c mimics that maintained the expression of epithelial cell markers and 

downregulated mesenchymal cell markers in the presence of TGF-β1 at RNA and 

protein level. The same experiment when replicated in PBECs derived from lung 

allografts yielded similar results. Next, the effect of miR-200b/c mimics was evaluated 

in TGF-β1 pre-treated cells. MiR-200b and miR-200c mimics reversed established 

TGF-β1 driven EMT in BEAS-2B cells. Furthermore, miRNA target studies were 

performed using computational tools, and a luciferase assay validated ZNF532 and 

ZEB2 as direct targets of miR-200b and miR-200c. Importantly, in situ hybridization 

revealed miR-200b-3p expression in the healthy lung epithelium. Cells transfected 

with miR-146a did not show any significant changes in EMT marker expression 

indicating some specificity to the miR-200b/c data. In conclusion, these investigations 

showed that miR-200b and miR-200c protect airway epithelial cells from EMT.  Use 

of miR-200b/c mimics may therefore represent a novel therapeutic modulator of EMT 

associated with BOS. 
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Chapter 1: Introduction 

1.1 Lung transplantation history  

Early lung transplant attempts were made in animals in the 1940s and 1950s by a 

Soviet researcher (Cooper, 1969). However, the first human lung transplant was 

performed in 1963 at the University of Mississippi for a patient suffering from an 

advanced form of lung carcinoma. However, the patient died on day 18 post-surgery 

(Hardy, 1999). During the following 20 years, only one out of the total 40 lung 

transplant patients survived the surgery but died soon after due to sepsis (Detterbeck 

et al., 1995; de Perrot et al., 2004). Since the first successful isolated lung transplant 

procedure in 1983 performed by Patterson and colleagues at the Toronto general 

hospital (Toronto Lung Transplant, 1986; Patterson et al., 1988), the International 

Society for Heart and Lung Transplantation (ISHLT)  has reported data from 51,440 

adult lung transplants that occurred until June 2014 (Yusen et al., 2015).  

1.2 Lung allograft dysfunction  

1.2.1 Primary graft dysfunction 

Primary graft dysfunction (PGD) is a type of acute lung injury that begins within the 

first 72 hours post transplantation, developing from several pathological mechanisms 

integral to the process of transplantation. With every transplant, there is an initial 

insult to the allograft due to lack of natural blood supply post organ retrieval followed 

by ischemia during organ preservation stage and then subsequent reperfusion. All 

these factors contribute to the development of PGD (also known as ischemia 

reperfusion injury or primary graft failure)(Lee and Christie, 2009). The clinical 

hallmarks of PGD are varying degrees of impaired oxygenation and alveolar and 

interstitial edema (Christie et al., 2005a).  In its more severe form there is fibrotic 
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tissue deposition along the alveoli that resembles pathology seen in adult respiratory 

distress syndrome (ARDS) or other forms of acute lung injury (Christie et al., 1998; 

Christie et al., 2005b). There is now evidence suggesting that the severe form of 

PGD is associated with decline in long term allograft survival and is the leading 

cause of morbidity and mortality rate (first 30 days post transplantation) of 35-60% 

(Fiser et al., 2001). 

The process of ischaemia-reperfusion injury is pivotal in the pathogenesis of PGD. 

This is driven by the tissue ischaemia and generation of reactive oxygen species 

during the reperfusion process. These oxygen species subsequently cause oxidative 

stress at the cellular level directly causing damage to the epithelium and endothelium 

of the grafted lung (Ng et al., 2006). This triggers a pro-inflammatory cascade with 

increased cytokine, chemokine and adhesion molecule expression, that leads to the 

recruitment of macrophages, recipient lymphocytes, and neutrophils to the sites of 

injury, further propagating the process of lung injury (Moreno et al., 2007). Ultimately, 

there is activation of downstream signalling such as lipid peroxidation driven by 

neutrophils, platelets and complement cascade activation. Histologically, this process 

causes damage to the alveoli, capillary leak, neutrophil infiltration and formation of 

hyaline membranes along the alveolar spaces (Matthay and Zemans, 2011).  

1.2.2 Acute cellular rejection 

The incidence of lung allograft rejection is the highest amongst the commonly 

transplanted solid organs and is associated with poor long term outcomes despite 

modern immunosuppressive regimes (Yusen et al., 2015). As many as 55% of lung 

transplant recipients receive treatment for acute allograft rejection in their first year 

post transplantation and only 50% of recipients survive 5 years after transplant. 

Furthermore, recipients that have at least one episode of acute rejection that is 
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thought to be one of the reasons for subsequent predisposition to bronchiolitis 

obliterans syndrome (BOS). The high susceptibility of the lung to infection and 

persistent environmental exposure with innate immunity activation contributes to the 

high rates of early rejection (Martinu et al., 2009).  

1.2.2.1 Innate immune responses 

The innate immune system is a highly conserved mechanism of host defence that 

precedes adaptive immunity. This system provides an immediate response, 

distinguishing self from nonself by using germline-encoded receptors to recognize 

patterns distinct to pathogens or injured tissues (Medzhitov and Janeway Jr, 2000a). 

Innate pathways are of significance in the lung as the extensive alveolar surface area 

is continuously exposed to a wide array of airborne particles and invading microbes 

during normal respiration. The innate response resolves the infection or airborne 

challenge, without causing damage to the delicate alveolar structures necessary for 

gas exchange (Zhang et al., 2000). The anatomy of the upper and lower airways 

represents the initial barrier to foreign bodies expelling particles larger than 5 μm by 

cough reflex. Smaller particles, including bacterial, viral and mycobacterial 

components gain access to the terminal airways and alveolar spaces. Here they 

encounter a variety of soluble proteins such as defensins, surfactants, lysozyme, 

lactoferrin, fibronectin and complements are crucial in maintaining a sterile 

microenvironment (Ganz, 2003; Wright, 2005; Zaas and Schwartz, 2005; 

Dunkelberger and Song, 2010). These components present in the fluid of the 

epithelial lining exert direct microbicidal effects and facilitate phagocytosis thus 

playing an important role in regulating local inflammation (Zaas and Schwartz, 2005).  

Cells important to the innate response include airway and alveolar epithelial cells, 

resident alveolar macrophages (AMs), natural killer (NK) cells, dendritic cells (DCs), 
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and neutrophils. AMs phagocytose and eradicate inhaled particles on an ongoing 

basis and account for the majority of leukocytes in a normal healthy lung. A large 

particulate or exceptionally virulent pathogen may elicit an immune response wherein 

the AMs produce proinflammatory cytokines and chemokines to initiate recruitment of 

neutrophils, DCs, and monocyte-derived macrophages that generates a local 

inflammatory microenvironment. AMs also act as antigen presenting cells (APCs), 

transporting foreign antigens to regional lymph nodes, where they are taken up by 

DCs and presented to naïve lymphocytes, thus invoking T-cell proliferation and 

promoting adaptive immune responses (Martin and Frevert, 2005). Interestingly, lung 

itself can act as a tertiary lymphoid organ where local antigen presentation and cell 

maturation can occur in the absence of extra pulmonary lymphoid tissue, a novel 

discovery relevant to lung transplantation (Gelman et al., 2009). 

1.2.2.1.1 Receptors and ligands of the innate immune system 

Commencement of the innate immune response depends on pattern recognition 

receptors (PRRs) that recognize highly conserved molecular patterns on 

microorganisms (pathogen-associated molecular patterns [PAMPs]). In addition to 

recognition of foreign molecular patterns, PRRs can elicit a response to injured self-

tissue via recognition of damage-associated molecular patterns (DAMPs). PRRs 

serve a variety of functions depending on the cell type and location of expression (in 

bloodstream or intracellularly or on the cell surface) (Trinchieri and Sher, 2007). 

The Toll-like receptors (TLRs) are the most extensively studied PRRs of relevance to 

transplant rejection. TLRs are expressed by a variety of cells significant to pulmonary 

innate immunity, including AMs, DCs, neutrophils, and epithelial cells of the alveoli 

and conducting airways. There are 11 well-described TLRs (numbered TLR1 through 

TLR11); TLR 1, 2, 4, 5 and 6 are located on cell surface while TLR 3, 7, 8, 9, 11 are 
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intracellularly located (Akira et al., 2001; Kawai and Akira, 2007). Most TLRs 

associate with co-receptors in a tissue-specific manner in order to detect microbial 

antigens while some do not require a co-receptor. Myeloid differentiation factor 88 

(MyD88) dependent pathway utilizes MyD88, an adaptor protein that is shared by all 

TLRs except for TLR3. It activates transcription factor NFκ (kappa) β thus promoting 

DC maturation and proinflammatory cytokine production that in turn directs a Th1 

immune response. MyD88-independent signalling pathway operates via another 

adaptor protein, TRIF that initiates a complex intracellular kinase cascade. Hence, 

TLR signalling helps in distinguishing healthy self from injured self and microbial 

nonself and directs downstream adaptive immune reactivity (Medzhitov and Janeway 

Jr, 2000b; Imler and Hoffmann, 2001). 

1.2.2.2 Adaptive immune response 

The alloimmune response post-allograft injury is predominantly driven by T cell 

recognition of foreign major histocompatibility complexes (MHC). The MHC, also 

referred to as the Human Leukocyte Antigen (HLA) represents a protein complex 

encoded by a set of very closely linked genes (class  and class II) that elicit an 

immune response by presenting antigenic peptides to T cells. Each MHC molecule is 

composed of an extracellular peptide-binding cleft, a transmembrane domain, and a 

cytoplasmic domain. The peptide-binding cleft allows binding to variety of antigenic 

peptides. MHC class I molecules are expressed on most nucleated cells while class II 

molecules are expressed constitutively on APCs and can be upregulated under 

inflammatory conditions. In humans, MHC molecules also referred to as HLA genes 

are located on the short arm of chromosome 6 and are divided into two classes 

based on historic distinction. The HLA class I and class II genes include A, B, and C 

loci and DR, DQ, and DP genes respectively (Abbas et al., 2014). 
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T and B lymphocytes that constitute the adaptive system have the capacity to 

recognize large number of peptides, generate a memory response and rapidly 

produce clones that can carry out the immune response. T cells recognize specific 

antigenic determinants via the T cell receptor (TCR). T cells also express several 

signal transduction molecules that participate in antigen responses, such as CD3+, 

CD4+ (Th- T helper cell) or CD8+ (Tc- cytotoxic T cell), CD28+ and CD40L 

(costimulatory molecules) and adhesion molecules. CD4+ Th cells help other cells by 

producing cytokines for CD8+ Tc cell stimulation and activation of other inflammatory 

cells. CD8+ Tc cells have the ability to kill target cells by direct delivery of cytotoxic 

granules containing enzymes such as granzyme B, that induce apoptosis (Csencsits 

and Bishop, 2003). 

There are two pathways of alloantigen recognition: direct and indirect (Hornick and 

Lechler, 1997). Direct allorecognition involves recognition of donor antigen-

presenting cells (APCs) displaying MHC class II antigens (and peptides) on their 

surface by recipient T cells. A large proportion of circulating T cells is able to 

recognise wide range of allo-MHC molecules directly, and this accounts for the 

dynamic nature of acute rejection in the early post-transplant period when numerous 

donor APCs are present. During indirect allorecognition recipient APCs engulf and 

process donor alloantigens and present donor-derived processed peptides to 

recipient T cells via self-MHC: donor peptide complexes. In this case, the number of 

T cells with appropriate TCRs is much smaller and this response is thought to 

develop later and remain active throughout life of the allograft due to the infiltration of 

recipient APC in the allograft or the availability of donor antigens in the lymphoid 

tissue (Snyder and Palmer, 2006). Although the indirect pathway is thought to 

contribute to the development of chronic rejection, direct recognition of MHC by T-
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cells can lead to chronic rejection after the depletion of APCs (Snyder and Palmer, 

2006). Class I MHC molecules expressed mainly on hematopoietic cells present 

antigens to CD8+ T cells. There is evidence that CD8+ T cells: class I MHC direct 

alloreactivity to the graft contributes to obliterative airway disease of transplanted 

tracheal allografts. In a rat model, class II MHC was upregulated on the lung 

epithelium and endothelium post transplantation. The expression of class II 

molecules on non-hematopoietic cells in an allograft may provide a mechanism of 

direct allorecognition for CD4+ T cells (Vigneswaran and Garrity, 2010).  

In lung transplantation, acute rejection occurs frequently within the first year post 

transplant and is characterized by infiltration of CD4+ and CD8+ T cells and 

mononuclear cells in the perivascular and peribronchiolar regions of the graft. Early 

rejection is augmented by local innate immune activation through tissue injury, 

infection and an autoimmune response to cryptic self-epitopes exposed during lung 

injury (Vigneswaran and Garrity, 2010). In addition, some lung transplant recipients 

also engage a humoral response to the allograft that occurs via indirect 

allorecognition. This process provides help for B cell memory, antibody class 

switching, and affinity maturation in the presence of appropriate cytokines and co-

stimulatory factors. Consequently, successful lung transplants became possible after 

the introduction of a T cell activation and proliferation blocker, the calcineurin inhibitor 

cyclosporine that prevents episodes of acute rejection (Longoria et al., 1999; Colvin 

and Smith, 2005). Other immunosuppressive therapies include use of antiproliferative 

agents including azathioprine, mycophenolate, sirolimus, everolimus, and 

corticosteroids. About 50% of lung transplant centres also utilize induction therapy 

with polyclonal antibody preparations (rabbit anti-thymocyte globulin) or IL-2 receptor 

antagonists such as daclizumab or basiliximab (Bhorade and Stern, 2009). 
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1.2.3 Chronic rejection  

Chronic rejection is the leading cause of morbidity and mortality thus limiting the 

long-term success of lung transplantation (Verleden, 2001). About 50 % of lung 

transplant recipients are affected by this condition by 5 years after transplantation 

and the patient survival rate is 53% out of the total diagnosed (Boehler et al., 1998). 

Chronic lung transplant rejection was first described as obliterative bronchiolitis at 

Stanford in 1984. Fourteen patients out of the 19 heart–lung transplants performed 

for end-stage pulmonary vascular disease were long-term survivors. Five of these 

patients developed a progressive obstructive ventilatory defect with a decline in the 

forced expiratory volume in 1 second (FEV1).  

Chronic airway rejection affects the airways wherein there is deposition of granular 

tissue and dense connective tissue between the epithelium and the elastic lumen. It 

also involves infiltration of chronic inflammatory cells leading to development of 

obliterated lumen (Stehlik et al., 2012). Lately the term “chronic lung allograft 

dysfunction” (CLAD) has been introduced to include specific forms of allograft 

dysfunction. CLAD is a descriptive term for chronic lung transplant rejection which 

includes several phenotypes such as BOS, restrictive allograft syndrome, recurrence 

of primary disease, azithromycin-responsive allograft dysfunction and other specific 

causes of decline in lung function (Snell et al., 2013). 
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1.3 Development of BOS  

1.3.1 Overview and classification 

Lung transplantation has proved to be successful in carefully selected individuals 

suffering from a variety of end stage lung diseases (Arcasoy and Kotloff, 1999). 

Despite the advances in immunosuppression, surgical techniques and management 

of infections, acute lung allograft rejection and development of the BOS is still a 

problem (Christie et al., 2005a). Progression of BOS is thought to indicate chronic 

rejection and allograft injury and is characterized by irreversible airway obstruction 

due to progressive fibroblast proliferation and ECM deposition in the small airways. 

Ultimately, this leads to loss of lung function and has been defined as being 

irreversible (Boehler et al., 1998; Belperio et al., 2009; Borthwick et al., 2010b; 

Hayes, 2011). Because BOS represents an important problem for all lung transplant 

centres, early identification and prediction of progressive loss of lung function is a 

common and important goal (Sohal et al., 2013b; Suwara et al., 2014). 

The development and severity of BOS has been characterised by the International 

Society of Heart and Lung Transplantation (ISHLT) that describes the various stages 

of BOS with increasing loss of lung function (Hayes, 2011) (Table 1.1). It is 

postulated that initial acute rejection seeds the development of progressive graft 

deterioration and chronic rejection. This is characterized by decline in lung function 

that is termed as the BOS. Thus the development of BOS is indicative of chronic graft 

injury and is clinically diagnosed by determining the forced expiratory volume (FEV) 

of the patient measured at least 3 weeks apart post lung transplant (Jackson et al., 

2002).  
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Table 1.1: The 5 stages of BOS. The baseline FEV1 and FEV25-75 were recorded as 
the average of two highest FEV without the use of bronchodilator 3 weeks post 
transplant. The progressive stages of BOS correlate to declining airflow obstruction. 
BOS 0p (potential BOS) gives an indication of early decline of lung function (Kesten 
et al., 1995).  

Baseline values for FEV1 and forced expiratory flow at 25–75% of forced vital 

capacity (FEF 25–75%) are defined as the average of the two highest values for 

each measurement that are obtained at least 3 weeks apart post-transplant without 

the use of a bronchodilator. In order for the diagnosis of BOS to be made, three or 

more months are required to have elapsed from the time of transplantation so as to 

distinguish BOS from acute and other complications of lung transplantation; also 

taking into account the time required to establish a baseline FEV1 and a decline in 

FEV1 (Cooper et al., 1992). As the cut-off value for FEV1 at 80% may be sensitive to 

early decline in lung function due to early disease, BOS grade 0-p  was added to the 

classification system that may suggest ‘potential BOS’ (Estenne et al., 2002) . 

The identification of patient groups may allow the recognition of specific risk factors 

and/or strategies for treatment and prevention that pertain to a subset of patients with 

BOS. Patients exhibiting early decline in FEV1 (according to BOS criteria) may 

represent a BOS phenotype which is characterised by rapid progression and poor 

prognosis (Jackson et al., 2002; Burton et al., 2007). Another potential BOS 

phenotype consists of recipients with significant bronchoalveolar lavage (BAL) 

neutrophilia with responsiveness to azithromycin therapy. A study showed an 

increase in BOS-like syndromes with BAL neutrophilia, however prophylactic 
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administration of azithromycin shortly after transplantation suppressed the 

development of this syndrome and the recipients no longer met the spirometric 

criteria for BOS. Patients who meet BOS criteria but fail to respond to azithromycin 

may represent a phenotype with fibro-obliterative BOS (Gottlieb et al., 2008; Vos et 

al., 2010).  

The development of the pathology thought to underly BOS involves a series of 

events in which various insults (alloimmune dependent and independent) can lead to 

a similar histological result (Figure 1.1).   
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Figure 1.1: Pathogenesis of BOS- Allogeneic injury leads to activation of cytokines, chemokines and growth factors that cause 
fibroblast proliferation, epithelial mesenchymal transition and finally chronic rejection with the possible involvement of a number of 
microRNAs (Ladak et al., 2016).  
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Activation of the innate immune system, via Toll-like receptors, leads to the release of 

cytokines that are able to activate APCs leading to antigen presentation to T-

lymphocytes. This process leads to an increased alloantigen expression by the graft 

and thus triggers the adaptive immunity. The chemoattractants facilitate recruitment 

of mononuclear phagocytes and T cells that maintain the levels of cytokine and 

chemokine at the site of injury. This leads to inflammation and epithelial damage and 

causes release of profibrotic chemokines such as TGF-β and platelet derived growth 

factor (PDGF) that promote epithelial repair and vascular remodelling  (Neuringer et 

al., 2008; Song et al., 2008).  

1.3.2 Risk factors of BOS 

There is evidence that recipients who develop BOS have greater degrees of HLA 

mismatch (Schulman et al., 1998) and involvement of autoimmune pathways 

(Burlingham et al., 2007). Additionally, many non-alloimmune mechanisms have also 

been implicated in BOS pathogenesis such as airway injury due to primary PGD, 

gastro-oesophageal reflux disease (GERD), various infections, and airway ischaemia 

due to disruption of the bronchial circulation. These alloimmune-independent factors 

may promote tissue damage and inflammation that in turn initiate and intensify an 

alloimmune recipient response (Verleden et al., 2009; Weigt et al., 2010).  

1.3.2.1 Alloimmune dependent 

In addition to acute rejection there are other alloimmune risk factors associated with 

the development of BOS in lung transplant recipients. Lymphocytic bronchiolitis, a 

precursor of BOS, is characterised by submucosal lymphocytic and plasma cell 

infiltration around the airways and to the smooth muscle layer. Patients who went on 

to develop BOS in the first year post-transplantation had over twice as many 
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episodes of LB compared to those without BOS. Thus presence of LB, and especially 

the severity has been associated with the development of BOS (Yousem, 1993; 

Husain et al., 1999). In a study involving 221 lung transplant recipients with end 

stage chronic obstructive pulmonary disease (COPD), single transplant recipients 

were at higher risk of developing BOS as compared to bilateral transplant recipients 

(Hadjiliadis et al., 2006).  

The nature of development of antibody mediated rejection (AMR) after lung 

transplantation can manifest itself as BOS. AMR is driven by humoral response/ B-

cell immune response as opposed to the classical T-cell mediated rejection or 

cellular rejection. The presence of HLA incompatibility, due to mismatches between 

donor and recipient poses a risk factor for BOS. Anti-HLA antibodies have been 

associated with a worse outcome in all solid-organ transplants. These antibodies pre-

existing to the transplant procedure may expose the patient to the risk of acute 

rejection (Hodge et al., 2009). Studies have shown that development of anti-HLA 

antibodies post-transplantation is associated with the development of BOS (Song et 

al., 2008). Binding of these antibodies to the airway epithelium may induce injury and 

proliferation of the airway epithelial cells.  

The development of cell-mediated and humoral response to self-antigens in the lung 

allograft may play an important role in the inflammation and fibrosis that leads to 

progressive graft dysfunction. In addition to the alloimmune response to donor HLA, 

there is increased risk of BOS observed due to non-HLA antibodies such as collagen 

V and Kα1 tubulin (Goers et al., 2008; Fukami et al., 2009). These epitopes are 

exposed as a result of ischemia and reperfusion injury or other insults that may 

damage the respiratory epithelium (Sumpter and Wilkes, 2004)  and have been found 



 

15 
 

in up to 31% of lung transplant recipients with BOS. This type of autoimmune 

activation seems to be mediated by a Th17 response (Burlingham et al., 2007). 

1.3.2.2 Alloimmune independent 

Multiple studies have shown that endogenous DAMPs released from ischemic or 

dying tissues can activate innate pathways via TLR2, TLR4, and the innate PRRs. 

This response may potentiate alloimmune reactivity and account for the increased 

risk for BOS in lung allograft recipients with a history of PGD. Interestingly, GERD 

may directly activate TLRs to provoke downstream inflammation and adaptive 

processes. For example, aspiration of gastric juice has been shown to cause severe 

acute lung rejection and increase in innate cytokine levels in rat models (Hartwig et 

al., 2006). Apart from tissue injury and DAMP release, lung-transplant recipients are 

also exposed to microbial PAMPs that hold the potential to directly activate TLRs 

(Hartwig et al., 2006; Appel et al., 2007; Fishman, 2007; Wu et al., 2007).  

1.3.2.2.1 Respiratory tract infections 

Lower respiratory tract infections have been reported to increase the risk for BOS, 

including rhinovirus, coronavirus, respiratory syncytial virus, influenza A, 

parainfluenza, human meta-pneumovirus, and human herpes virus-6 (Kumar et al., 

2005; Neurohr et al., 2005). Studies suggest that community-acquired respiratory 

viral infections increase the risk for BOS (Billings et al., 2002). Infection with Sendai 

virus, a murine parainfluenza type I-like virus, has shown to increase tracheal fibro-

obliteration and alloreactive T cells (Kuo et al., 2006). CMV infection has been well 

documented in the post-transplant period in patients with both reactivated and donor-

derived CMV infection. Smith et al. found that CMV mismatch (donor 

positive/recipient negative) may be a risk factor for developing BOS within 3 years of 
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transplantation (Khalifah et al., 2004; Weigt et al., 2008; Snyder et al., 2010). The 

treatment of CMV and the subsequent prevention of BOS remains unclear (Keenan 

et al., 1991; Glanville et al., 2005).  

There is inconsistent data available on literature evaluating role for bacterial infection 

and colonization in BOS. Positive serostatus for Chlamydia pneumoniae in donors 

and recipients is associated with the development of BOS (Kotsimbos et al., 2005). 

An interesting study by Weigt and colleagues implicated Aspergillus colonization in 

the lung allograft as a novel BOS risk factor that independently predicted BOS-

related morbidity and mortality regardless of acute rejection problem. As Aspergillus 

is recognized through TLR2 and TLR4, this shows that relationship between lung 

infection and BOS may not be limited to specific pathogens, but rather a broad 

spectrum of pathogen-associated motifs subsequently initiating an alloimmune  

common response to injury (Garantziotis and Palmer, 2009; Weigt et al., 2009).  

1.3.2.2.2 GERD 

GERD is very common post-lung transplant. However, the mechanism by which 

GERD contributes to BOS remains unclear. The presence of bile acids and pepsin in 

BAL fluid of lung transplant recipients suggests that aspiration may stimulate airway 

injury (D’Ovidio et al., 2005). Treatment with proton pump inhibitors has shown to 

reduce acid reflux but did not affect non-acid reflux, including bile or pepsin. The 

benefit of surgical correction of GERD is an ongoing area of investigation. In a study, 

fundoplication has been shown to contribute to increased graft survival together with 

an improvement of the pulmonary function (Davis et al., 2003). It has also been 

demonstrated that GERD is associated with an increased number of acute rejection 

episodes and severity of initial acute rejection (Blondeau et al., 2008). Fundoplication 

at an early stage decreased the number of late rejections. These studies indicate that 
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alloimmune-independent mechanisms (in this case GERD) may indeed lead to BOS, 

and might be to some extent treatable (Hartwig et al., 2004). 

In summary, the important findings indicate that BOS develops as a consequence of 

complex interactions where TLR activation and signalling play a critical role in 

modulating allograft rejection. 

1.3.3 Cytokines and chemokines implicated in BOS  

Fibro-obliteration is characterised by the combined action of type 1, type 2 and type 

17-alloimmune responses. Acute lung allograft rejection is indicative of Type 1 

immune response that initiates cell-mediated immunity. This induces production of IL-

2 , IFN- γ and further activates cytotoxic T lymphocytes (CTLs) that mark the onset of 

inflammation (Toews, 2001). Studies have shown a correlation between high levels 

of IFN- γ in BAL samples and accelerated acute rejection. It has also been shown 

that low levels of IL-12 in BAL samples post lung transplant correlate to development 

of BOS (Deslee et al., 2007; sabel Neuringer*, 2008). 

Chronic lung rejection is marked by the activation of humoral and Type 17-

alloimmune responses that lead to up regulation of fibro proliferative cytokines IL-6, 

IL-17, IL-8 and IL-23 (Mangi et al., 2011). Studies have shown that IL-8 (CXCL8), a 

chemo attractant for recruiting neutrophils at the sight of injury and growth factors 

such as TGF-β and PDGF contribute to epithelial repair. IL-8 is produced by epithelial 

cells, endothelial cells, smooth muscle cells and macrophages in response to IL-17. 

The production of IL-17 is associated with autoimmunity in human diseases and it 

was also found to be linked with the incidence of BOS post lung transplantation 

(Wong et al., 2000). Thus the differential expression of these cytokines in lung 

transplant correlates to the development of BOS (Holbro et al., 2013). 
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Certain Chemokines are thought to have a critical role in pathogenesis of BOS such 

as Monocyte chemotactic protein 1 (MCP1). The chronic inflammatory process is 

persistent during the expression of MCP1, which binds to CCR2. Recent studies 

have elucidated the potential role of MCP1 in mediating the infiltration of 

mononuclear phagocytes in the lung allograft ultimately leading to rejection. 

Experimental studies in mice also suggest the role of CXCL10 in promoting epithelial 

hyperplasia and inflammatory response that eventually leads to fibro proliferation 

(Martin, 1999; Deslee et al., 2007). 

1.3.4 Role of dysregulated repair in BOS 

The risk factors for BOS also contribute to epithelial injury and long term airway 

obstruction. The integrity of the airway epithelial lining crucial in providing a barrier 

against microorganisms and other toxic molecules may be disturbed post onset of an 

infectious or inflammatory-related injury. This may cause the epithelium to attempt to 

repair itself (Persson et al., 1995; Erjefält and Persson, 1997). In a normal airway 

epithelium the ciliated cells are terminally differentiated and do not possess the ability 

to divide further. However, in response to injury they may transdifferentiate into 

squamous cells in order to maintain the integrity of the epithelium (Wong et al., 

2009). The de-differentiated cells then migrate into the wound site while releasing 

proinflammatory cytokines and growth factors required to restore the ECM (Rock et 

al., 2010). Once the wound-site is concealed, reepithelialisation can occur by 

recruitment of progenitor cells. These cells then proliferate and undergo phenotypic 

differentiation in order to establish integrity and stability of the epithelial layer (Qu et 

al., 2005).  

The normal repair response is similar for different types of injury, but the 

dysregulated repair response to persistent injury may lead to fibrosis (Horowitz and 
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Thannickal, 2006), bronchiectasis and airway remodelling (Wilson and Wynn, 2009). 

A study showed that epithelial cells derived from asthmatic patients when grown in 

culture and mechanically wounded were unable to close the wound completely 

suggesting the poor reparative capacity of the airway epithelium (Stevens et al., 

2008; Hackett et al., 2009). Exposure to cigarette smoke leads to a repetitive cycles 

of epithelial injury and abnormal repair leading to COPD (Churg et al., 2008). Thus, it 

is possible that persistent injury both alloimmune and non-alloimmune post 

transplantation could lead to development of BOS.  

During normal repair there is some degree of epithelial-to-mesenchymal transition 

(EMT)  where epithelial cells at the periphery of the wound de-differentiate, migrate 

and transiently behave in a manner similar to mesenchymal cells in order to facilitate 

wound closure (Roberts et al., 2006). Fibroblasts are also important during the 

wound closure. Activated resident fibroblasts contribute by secreting cytokines that 

facilitate epithelial airway repair and formation of the ECM (Sacco et al., 2004). In 

addition, there is infiltration of circulating fibroblasts that may lead to uncontrolled 

fibrosis. Previous studies have reported the presence of fibroblasts in the BOS 

lesion, but the source of the fibrotic tissue has not been confirmed. Studies have 

suggested that fibrosis may be caused by circulating recipient derived fibrocytes, 

which have been (Andersson-Sjöland et al., 2009) detected in fibrotic foci of BOS 

lesions (Brocker et al., 2006). Cells isolated from these fibrotic foci exhibit epithelial 

and mesenchymal characteristics (Ward et al., 2005). Studies have well documented 

that EMT is one of the pathway leading to fibrosis as a result of injury and 

dysregulated repair (Iwano et al., 2002).  
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1.3.5 Treatment for BOS 

Prevention and treatment of BOS in order to improve long-term graft survival after 

transplant has been challenging for physicians. Treatment approaches have targeted 

the prevention or slowing the onset of BOS (Dudek et al., 2003). However, once BOS 

is established, it leads to irreversible airway obstruction where re-transplantation is 

usually required. Administration of macrolides such as azithromycin has shown some 

success, however most treatments have largely not been successful in lowering the 

occurrence of BOS (Estenne and Hertz, 2002). Current immunosuppressive 

treatments include a calcineurin inhibitor, a purine synthesis inhibitor, and 

corticosteroids. At present, not much is known as to which calcineurin inhibitor at the 

time of transplantation might reduce the probability of developing BOS. However, 

several studies have confirmed that substituting tacrolimus for cyclosporine A in 

patients with acute rejection could possibly help prevent the subsequent 

development of BOS (Webster et al., 2005).  

Treatment after the onset of BOS consists primarily of increasing 

immunosuppression by changing medications or by employing nonmedicinal 

immune-modulating therapies; these include polyclonal and monoclonal anti-

lymphocyte antibody preparations (Kesten et al., 1996), methotrexate (Dusmet et al., 

1996), cyclophosphamide (Verleden et al., 1999) and total lymphoid irradiation. The 

use of immunosuppressive regime has been effective in treating acute rejection. 

However, the effectiveness is limited since there is reactivation of disease once the 

patient is off immunosuppressants.  Furthermore, prolonged use of this kind of 

treatment has adverse effects such as invasive infections and malignancy 

(Agraharkar et al., 2004).  
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1.5 Epithelial to mesenchymal transition  

EMT is characterised by loss of cell-to-cell contact that is a characteristic feature of 

epithelial cells, cytoskeleton remodelling which ultimately generates cells with 

fibroblast like morphology that express mesenchymal markers (Ward et al., 2005). 

The completion of EMT is characterized by degradation of underlying basement 

membrane and the subsequent generation of mesenchymal cells, that can migrate 

away from the region of origin. Various molecular processes are involved in order to 

initiate EMT. These include activation of transcription factors, expression of specific 

cell-surface markers, rearrangement of cytoskeletal proteins, production of ECM 

enzymes and changes in the expression of specific microRNAs (Kalluri and Neilson, 

2003). In several studies, these factors are also used as biomarkers to determine the 

transition of a cell through EMT (Hay, 2005). 

TGF-β1 is one of the major inducers of EMT during fibrosis that promotes ECM 

production and deposition and thereby induces a change in the cell morphology. It 

has been described as a potent inducer of EMT in epithelial cells in renal proximal 

cells, alveolar epithelial cells and other cell types (Radisky, 2005; Kalluri and 

Weinberg, 2009). 

1.5.1 Types of EMT 

Three distinct biological settings of EMTs exist, each of which carry very different 

functional roles (Kalluri and Weinberg, 2009). 

1.5.1.1 Type 1 EMT: EMT during early development 

Type 1 EMT drives important aspects of development from implantation to organ 

development (Vićovac and Aplin, 1996). The early sign of gastrulation is generation 

of a primitive streak in the epiblast layer that leads to the formation of the three germ 
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layers that further form all tissue types of the body (Hay, 1990). The epithelial cells in 

the epiblast undergo changes driven by expression of specific proteins related to cell 

migration and differentiation (Thiery and Sleeman, 2006). Once formed, the primitive 

streak generates the meso-endoderm, which separates to form the mesoderm and 

the endoderm via epiblast-mesoderm transition (Hay, 1995). The embryonic 

mesoderm eventually gives rise to primary mesenchyme where the cells exhibit 

enhanced migratory characteristics (Hay, 2005). 

Wnt3 deficient embryos cannot undergo the EMT, this suggests that EMT associated 

with gastrulation is dependent on Wnt signalling (Liu et al., 1999). The formation of 

the primitive streak is associated with expression of Wnt8c (Skromne and Stern, 

2001). Studies have shown that expression of Wnt8c in embryos leads to generation 

of multiple primitive streaks. Nodal and Vg1 that belong to the TGF-β superfamily 

mediate the action of Wnts, and their deficiencies can lead to a defect in mesoderm 

formation due to absence of EMT (Collignon et al., 1996; Skromne and Stern, 2002). 

Therefore, EMT is crucial in embryogenesis and organ development (Thiery, 2002). 

1.5.1.2 Type 2 EMT: EMT involved in fibrosis 

During organ fibrosis, epithelial cell passes through various stages before acquiring 

mesenchymal properties. This phenotypic conversion requires the molecular 

reprogramming of epithelium wherein the epithelium in transition loses polarity, tight 

junctions and adherens junction in order to rearrange their actin stress fibres (Strutz 

et al., 1995; Okada et al., 1997).  

1.5.1.2.1 Loss of epithelial cell markers 

As EMT progresses the cells leave the epithelial layer, enter the interstitium of tissue 

through the underlying basement membrane where they ultimately acquire fibrotic 
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phenotype and shed epithelial characteristics (Okada et al., 1996). One of the first 

signature markers lost is E-cadherin that is thought to initiate and promote the EMT 

pathway. Other markers such as cytokeratins and Zona Occludens-1 (ZO-1) involved 

in maintaining cell-cell contact and structural integrity are also downregulated (Ward 

et al., 2005). Formation of tight junction between cells is a unique characteristic of 

epithelial cells. The loss of barrier junction proteins such as claudin and occludin 

indicate loss of epithelial cells ability to form tight junctions with one another on the 

basement membrane that imparts the cobblestone like structure. Therefore, cells 

become motile and migratory (Hartsock and Nelson, 2008; Furuse, 2010).  

1.5.1.2.2 Gain of mesenchymal cell markers 

Due to loss of cell adhesion proteins, epithelial cells lose their normal cellular 

organisation and there is an increased expression of fibroblastic proteins such as 

vimentin, fibronectin and S100 A4 (Huyard et al., 2014). The most reliable markers 

that characterises mesenchymal cell properties are α-SMA and fibroblast-specific 

protein 1 (FSP1 or S100A4 /MTS-1). In addition to these markers vimentin and 

desmin have also been used to identify cells in lung and other organs that are at the 

verge of undergoing EMT due to inflammation (Strutz et al., 1995; Kim et al., 2006). 

Such cells continue to exhibit epithelial cell surface markers while concurrently 

expressing S100A4 and α-SMA. These cells express an intermediate phase of EMT. 

This type of behaviour exhibited by epithelial cells under inflammatory stress creates 

a notion of ‘partial EMT (Strutz et al., 2002).  

Inflammatory injury that triggers an EMT leads to release of growth factors, such as 

TGF-β, PDGF, EGF, and FGF-2. In addition, macrophages and resident fibroblasts 

release chemokines and matrix metalloproteinases (MMPs), notably MMP-2, MMP-3, 

and MMP-9 (Koskela von Sydow, 2016). The MMPs comprise of 24 zinc dependent 
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endopeptidases that are released in response to stimuli such as cytokines, 

chemokines, inflammatory intermediates and environmental factors. One of the 

targets of MMPs is collagen IV that constitutes the basement membrane. Thus these 

enzymes degrade the basement membrane thereby causing damage, differentiation 

and translocation of epithelial cells thereby promoting EMT (Jugdutt, 2003; Greenlee 

et al., 2007; Egger et al., 2014). Qin Yu et al. and other studies describe the role of 

MMP-2 and MMP-9 in activation of profibrotic growth factor TGF-β. This growth factor 

has shown to induce EMT in PBECs and type II lung adenocarcinoma cell line (A549) 

(Camara and Jarai, 2010; Van Linthout et al., 2014). A study utilised TGF-β1 to 

induce EMT in alveolar epithelial cells and suggested that the extreme plasticity 

exhibited by these cells may serve as a source of fibroblasts in lung fibrosis. The 

downstream mediators of this ‘master switch’ contribute to activation of series of 

processes that lead to progressive deterioration of lung function due to airway 

remodelling (Willis and Borok, 2007; Vancheri et al., 2010).  

1.5.1.3 Type 3 EMT: EMT in cancer progression 

Excessive epithelial cell proliferation and angiogenesis has been proposed as the 

critical mechanism for early growth of primary epithelial cancers (Hanahan and 

Weinberg, 2000) . Many experiments have projected that carcinoma cells acquire a 

mesenchymal phenotype and express markers such as α-SMA, FSP1 and vimentin. 

There has been extensive research done on studying the genetic and biochemical 

mechanisms involved in the acquisition of the invasive phenotype and the 

subsequent systemic spread of the cancer cell (Thiery, 2002). EMT-derived migratory 

cancer cells establish secondary colonies at distant sites that resemble the primary 

tumor from which they arose. In many cases of carcinoma, there is activation of a 

series of EMT-inducing transcription factors, notably Snail, Slug, zinc finger E-box 
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binding homeobox 1 (ZEB1) and Twist. Upon activation, each of these factors can 

act in harmony to heighten the complex EMT (Tse and Kalluri, 2007; Yang and 

Weinberg, 2008).  

1.5.2 Role of EMT in BOS 

Recent research in BOS has focused on the prevalence of EMT. Improvements in 

immunosuppression and other therapies have almost no effect on the reduction in 

the rate of incidence of BOS and long-term patient survival has marginally improved 

(Taghavi et al., 2005; Hodge et al., 2009). These observations lead to the 

investigation of other possible mechanisms responsible for causing BOS. Evidence 

suggests EMT as a candidate in the pathogenesis of BOS and has been postulated 

in various models (Ward et al., 2005; Borthwick et al., 2009). Earlier studies have 

demonstrated that high levels of TGF-β1, a well-known inducer of EMT, is found in 

the airways of BOS patients. Furthermore, clinical detection of BOS is followed by 

increasing levels of TGF-β1 that directly correlates to BOS grade. Therefore, TGF-β1 

plays a crucial role in the pathogenesis of BOS (Jonigk et al., 2016) .  

There is also data available that defines EMT in the allograft lung. A study analysed 

the expression of mesenchymal cell markers on epithelial cells collected from the 

bronchial brushings (small and large airways) of BOS+ transplant recipients. A 

number of epithelial cells isolated from BOS+ patients co-expressed markers such as 

S100A4, EDA-Fn and α-SMA. This study stated progression of BOS from grade 0 to 

3 was associated with increase in mesenchymal markers and reduction in epithelial 

cell markers (Hodge et al., 2009). Another study reported S100A4 and cytokeratin 

positive fibroblasts in biopsy samples from BOS lesions providing evidence that 

epithelial cells undergoing EMT are detectable in vivo (Ward et al., 2005).  
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Researchers have attempted to develop model for studying EMT in BOS based on 

cell lines, primary cells and animals (Hackett and Knight, 2007; Borthwick et al., 

2009). 

1.5.2.1 Animal models 

Murine models were initially developed to study BOS post transplant and they were 

successfully used to study acute rejection (Belperio et al., 2000) and Idiopathic 

pulmonary fibrosis (Hertz et al., 1993; Fahrni et al., 1997; Fujita et al., 2001). These 

models were later modified to study airway obstruction occurring during a later stage 

post transplantation (Adams et al., 2000). The most commonly used model involves 

transplanting trachea derived from a donor animal into the subcutaneous pouch of a 

mismatched allograft recipient. This heterotopic model developed sub epithelial 

inflammation, necrosis and fibrosis by 21 days, therefore exhibiting symptoms of 

BOS (Hertz et al., 1993). However, this and other similar models only performed 

studies on the trachea, whereas BOS is a small airway disease (King et al., 1997; 

Neuringer et al., 1998). Thus it could be argued whether such models provide a 

complete picture of BOS pathogenesis.  

To counter this problem, murine orthotopic model of transplantation was developed. 

This involved a more challenging surgery wherein the entire lobe of lung was 

transplanted (Marck et al., 1985; Okazaki et al., 2007). Although this model was more 

appropriate to study airway remodeling, the success rate of these models in studying 

BOS has been variable. Some animals developed symptoms within 10-20 days while 

others took upto 120 days to develop lesions (Tazelaar and Yousem, 1988; Chung et 

al., 1999). Several attempts have been made to develop larger animal models. These 

models utilized terminal bronchi, thus making it more appropriate to study BOS 

(Ikonen et al., 1998; Maasilta et al., 2000). Although this provides hope in 
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translational research due to the size and similarities with humans, there may be a 

high risk of having MHC mismatch alloreactivity (Maasilta et al., 2000). Therefore, to 

improve BOS research human in vitro cell culture models have been developed 

which are both cost-effective and translatable to humans (Sato et al., 2009).  

1.5.2.2 Cell culture models 

A number of cell culture models have utilized primary animal cell cultures or primary 

cells derived from human lungs to study the effect of TGF-β1 on epithelial cells (El-

Gamel et al., 1999; Yao et al., 2004; Willis et al., 2005). The immortalized alveolar 

type II (AT2) cell line, also known as A549 cells, when stimulated with TGF-β1 

undergoes EMT and thus is commonly used to study lung fibrosis (Kasai et al., 

2005b; Lee et al., 2008). However, authors have raised concerns about using A549 

cell line due to its limitations. Firstly, although A549 shares similarity with primary 

epithelial cells, there are a few differences in EMT between A549 and primary cells. 

For instance, it is known that 1L-1β induces EMT in epithelial cells. However, 

treatment with TNF-α or IL-1β didn't induce EMT in A549 cells (Kasai et al., 2005b). 

Secondly, A549 cell line only represents the morphology of the alveolar regions of 

the lung (Borthwick et al., 2010b). BOS primarily affects the peripheral airways and 

causes fibrosis while it manifests as bronchiectasis in the proximal airways at a later 

stage. Therefore, bronchial epithelial cells have been employed in studies related to 

fibrosis (Molloy et al., 2008). Transformed bronchial epithelial cell lines such as 

BEAS-2B, 16HBE4o- and Calu3 stimulated with TGF-β1 have been almost identical 

pattern of EMT post stimulation with TGF-β (Doerner and Zuraw, 2009b; Buckley et 

al., 2010; Kamitani et al., 2010).  
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Primary bronchial epithelial cells acquired from healthy patients have been used as 

an in vitro model (Doerner and Zuraw, 2009a). However, these commercially 

available cells obtained from healthy adults demonstrate critical functional and 

biochemical differences when compared to primary epithelial cells in different 

diseases as well as stable lung transplant recipients (Stecenko et al., 2001). 

Therefore, although commercially available primary cells may serve as healthy 

controls, they may not accurately represent the process of EMT in a lung allograft 

recipient. To overcome these problems it is necessary to establish primary cell 

culture model directly from the lung epithelium. Furthermore, since BOS is a 

progressive disease, isolating tissue from different stages of its pathogenesis and 

comparing to healthy epithelium may be a powerful tool. The drawback of using this 

in vitro transplant fibrosis model is that it only allows collecting airway brushings from 

the large airways (Romagnoli et al., 1999). Collecting samples from small airways 

that is the first site of injury poses further technical challenges and is associated with 

a high risk of developing complications (Oki et al., 2005). To avoid this, a thinner 

fiberscope is used; but it is costly and not commonly available (Tanaka et al., 1994; 

Shinagawa et al., 2007).   

Since small airway epithelial cells from transplant recipients are not always available, 

non-immortalized primary cell cultures such as hSAEC (LONZA) are used to conduct 

experiments (Jyonouchi et al., 1998; Walsh et al., 1999). The drawback of these 

cultures is that they only represent the ‘healthy’ state and are inapplicable as a model 

to study transplanted lung. Researchers have successfully collected and cultured the 

small airway epithelial cells from tobacco smokers to study COPD (Takizawa et al., 

2001). This could allow development of an in vitro primary small airway epithelial cell 

model of BOS. 



 

29 
 

1.5.3 TGF-β1 signalling and its role in EMT 

TGF-β1, a multifunctional cytokine, is a member of the TGF-β superfamily of 

polypeptides that regulates cell proliferation and differentiation, apoptosis and ECM 

production (Massagué et al., 2000; Derynck and Akhurst, 2007). There are 33 TGF-β 

related genes that have been identified, including bone morphogenic proteins 

(BMPs), activins and inhibins, nodal, anti-Mullerian hormone and growth 

differentiation factors (GDFs) (Vale et al., 1990; Kingsley, 1994; Chen et al., 2012). 

The individual members of TGF-β family bind to seven type I receptors and 5 type II 

receptors in different combinations in order to induce downstream signalling cascade. 

For example, BMP type II receptor pairs with three different BMP type I receptors: 

BMP-RIA, BMP-RIB and activin type I receptor or ALK2 (Derynck and Feng, 1997).  

1.5.3.1 TGF-β isoforms, synthesis and activation 

The three TGF-β isoforms (TGF-β 1, 2 & 3) are synthesized as precursor proteins 

coupled with latency associated proteins (LAPs), which are required for proper 

folding and dimerization of carboxy-terminal growth-factor domain (mature peptide). 

(Saharinen et al., 1996). After folding and dimerization, TGF-β dimer undergoes 

cleavage in the trans-Golgi apparatus creating a ‘large latent complex’ that includes 

120-240KDa latent TGF-β binding protein (LTBP).This complex is released by most 

cultured cells and is composed of EGF-like repeats and eight-cysteine domains. The 

C-terminal region is covalently bound to TGF-β precursor via LAP and the amino 

terminal of LTBP is linked to the ECM (Nunes et al., 1996). Activation of TGF-β 

begins with release of large latent complex from ECM by proteases (Annes et al., 

2003). The TGF-β activators found so far are associated with the wound healing 

process, and  include MMPs, thrombospondin-1 and  integrin αvβ6 (Frazier, 1991; 

Munger et al., 1999; Yu and Stamenkovic, 2000). 
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1.5.3.2 TGF-β receptors and their activation 

TGF-β signalling is mediated via three cell surface receptors: TGF-β receptor I 

(TβRI), II (TβRII) and III (TβRIII). Out of the three receptors, TβRIII (also called 

betaglycan) is the most abundant binding molecule and is expressed on most cell 

types and fetal /adult tissues (Cheifetz et al., 1986; Cheifetz et al., 1988). Endoglin 

(CD105) was also shown to act as type III receptor for TGF-β (Cheifetz et al., 1992). 

TβRIII binds all three isoforms of TGF-β, but has higher affinity for TGF-β2; while 

endoglin binds TGF-β1 and -β3 with constant affinity and has only but has weak 

affinity for TGF-β2 (Yamashita et al., 1994).  

TβRI and TβRII are transmembrane serine/theronine kinases that mediate signal 

transduction. They are organised into an extracellular N-terminal ligand binding 

domain, a transmembrane region and a C-terminal comprising of serine/threonine 

kinase (Massagué, 1992). TβRI contains a 20 amino acids highly conserved region in 

the cytoplasmic part that needs to be phosphorylated for its complete activation 

(Lyons et al., 1988). TβRII contains a 10bp poly-adenine repeat in the coding region 

of extracellular domain. Changes or mutations in this region may lead to premature 

protein terminations resulting in truncated products (Lu et al., 1996). Binding of TGF-

β to extracellular domains of TβRI and TβRII forms hetero-tetrameric receptor 

complexes and induces proper conformation of the intracellular kinase domains. 

These receptors are subjected to post-translational modifications such as 

phosphorylation ubiquitylation and sumoylation that in turn regulates the availability 

and stability of these receptors and also SMAD and non-SMAD pathway activation 

(Sun and Davies, 1995). 

Receptor phosphorylation activates the TGF-β signalling pathway - the ligand binds 

to TβRII and this is followed by subsequent phosphorylation of a Gly-Ser regulatory 
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region in TβRI (Miyazawa et al., 2002; Shi and Massagué, 2003). TGF-β1 and TGF-

β3 bind to TβRII without involvement of type I receptor, whereas TGF-β2 interacts 

with the arrangement of both receptors. Next, Ubiquitin-mediated degradation 

maintains the stability and turnover of receptors. Ubiquitylation occurs via the actions 

of E1, E2 and E3 ubiquitin ligases. E3 ubiquitin ligases including SMURF1 and 

SMURF2 regulate stability of TβRI and TGF-β receptor complex. The process 

wherein the three ligases form a polypeptide attachment is called sumoylation. This 

process is similar to ubiquitylation and modifies TβRI function by recruitment of 

phosphorylated SMAD3.  

TGF-β1 has been implicated in various lung disorders and changes in its expression 

contribute to the development of BOS (Broekelmann et al., 1991; Bergmann et al., 

1998). Studies have shown that excessive accumulation of TGF-β1 correlates with 

metastatic phenotype and poor patient outcome (Ito et al., 1995; Shariat et al., 2001). 

Furthermore, TGF-β1 is the key compound responsible for inducing EMT related 

fibrosis in lung (Sime and O'Reilly, 2001). It causes the epithelial cells to lose polarity, 

express MMPs that degrade the basement membrane, induces cytoskeletal 

rearrangement and increases migration. Prolonged exposure of TGF-β1 and other 

growth factors ensure that the epithelial cells lose their characteristics and transform 

into mesenchymal cells (Docherty et al., 2006). 

TGF-β receptors are also constitutively internalized via two major endocytic 

pathways, clathrin-mediated endocytosis and caveolin-mediated endocytosis wherein 

the latter has shown to be prominent in airway epithelia (Rejman et al., 2004). 

Clathrin-mediated endocytosis is the most common and well-studied (McLean and Di 

Guglielmo, 2010). It is utilized by various cell surface receptors such as G protein-

coupled receptors, tyrosine kinase receptors and other non-kinase, single 
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transmembrane receptors (Schmid, 1997). The internalizing receptors are first 

concentrated on the clathrin-coated pits, which are assembled on the cytoplasmic 

face of the plasma membrane (Takei and Haucke, 2001). These pit folds into and 

pinches off from the plasma membrane in a GTPase-dependent manner. After 

releasing the clathrin coat, the vesicle fuses while the receptors are transported to 

early endosomes (Hinshaw, 2000). Caveolae mediated endocytosis involves 

formation of small concave pits comprising of a 21 KDa protein caveolin-1 on the 

surface of the plasma membrane enriched in glycolipids and cholesterol (Anderson, 

1998). This method is highly sensitive to intracellular cholesterol levels and are 

associated with TβRI/II mediated endocytosis of TGF-β1 (Simons and Toomre, 2000; 

Razani and Lisanti, 2001). If TGF-β1 endocytosis occurs via clathrin mediated 

endocytosis it leads to activation of SMAD2 dependent pathway ultimately leading to 

EMT. However, SMAD7-SMURF2 ubiquitin ligase complex is activated if signalling 

occurs via caveolar internalisation pathway which leads to degradation of TβRs and 

thus suppression of TGF-β1 signalling (McLean and Di Guglielmo, 2013). Thus these 

two pathways function independently and have the ability to act as a master switch to 

control TGF-β1 activity in cells. Once TGF-β1 signal is internalised, it may then 

initiate SMAD-dependent or SMAD-independent pathways (Figure 1.2). 

1.5.3.3 SMAD dependent TGF-β1 signalling pathways 

The SMAD proteins are latent cytoplasmic transcription factors that are directly 

activated by serine phosphorylation at their related receptors. Based on their 

function, SMADs are classified into 3 groups: the receptor-regulated SMADs (R-

SMADs), SMAD1, SMAD2, SMAD 3, SMAD5 and SMAD8/9; the common SMAD 

(Co-SMAD), SMAD4, and the inhibitory SMADs (I-SMADs), SMAD6 and SMAD7 

(Attisano and Wrana, 2000). R-SMADs and Co-SMAD contain conserved MH1 
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domain (Mad-homology-1) and MH2 domain (Mad-homology-2; C-terminal) that are 

connected via a linker segment (Liu et al., 1996). I-SMADs contain only highly 

conserved MH2 domain and regulate activation of R-SMADs by competing with them 

and preventing their phosphorylation (Hayashi et al., 1997). SMAD6 is also able to 

compete with SMAD4 for heteromeric complex formation and inhibits BMP signalling 

whereas SMAD7 acts as a general inhibitor of TGF-β signalling (Kavsak et al., 2000; 

Ebisawa et al., 2001). 

The SMAD pathway is activated directly by the TGF-β cytokines. TβRI recognizes 

and phosphorylates the SMAD proteins. R-SMAD binding to the type I receptor is 

mediated by an anchor protein SARA (The SMAD Anchor for Receptor Activation) 

that recruits non-activated SMADs to the activated TGF-β receptor complex 

(Tsukazaki et al., 1998). However, TMEPAI, a transmembrane TGF-β inducible 

protein competes with SMAD anchor for receptor activation for R-SMAD binding thus 

perturbing SMAD 2/3 recruitment to TβRI. Therefore TMEPAI controls the duration 

and intensity of TGF-β /SMAD signalling (Watanabe et al., 2010). Receptor mediated 

phosphorylation of SMAD2 leads to dissociation from SARA (Wu et al., 2001). 
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Figure 1.2: Schematic illustration of the TGF-β signalling pathway (TF: 
transcription factor). 

Subsequently, phosphorylated SMAD2/3 forms a complex with SMAD4 and moves to 

the nucleus. Here, SMURF1 interacts with SMAD2/3, triggers their ubiquitination and 

inactivation (Zhu et al., 1999). SMURF2 binding to SMAD7 in the nucleus induces 

transfer and employment to the activated TGF-β receptors, where it causes 

degradation of receptors and SMAD7 through proteasomal and lysosomal pathways 

(Kavsak et al., 2000). SMURF1, specific for BMP-SMADs binds to SMAD7 and 

induces SMAD7 inactivation and translocation into the cytoplasm (Ebisawa et al., 

2001). 

Several studies revealed that TGF-β proteins stimulate transcription of different 

genes via interaction of the conserved MH1 domain of SMADs, particularly SMAD1, 
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SMAD2, SMAD3 and SMAD4 with sequence-specific transcription factors and co-

activators such as CBP and p300 in vitro and in vivo (Pouponnot et al., 1998; Topper 

et al., 1998). Recent studies indicate miRNA regulation by TGF-β/BMP signalling. R-

SMADs have shown to associate with the p68/Drosha/DGCR8 miRNA processing 

complex thereby regulating miRNA processing in a ligand dependent and sequence 

specific manner. In this way, SMADs act as sequence specific transcription factors 

and control diverse signalling pathways (Ross and Hill, 2008; Davis et al., 2010). 

The role of SMAD2/3 is crucial to the EMT process. Ectopic expression of SMAD2 

and SMAD3 in mouse mammary epithelial cells has shown to elicit EMT (Valcourt et 

al., 2005). Furthermore, adenovirus infected mouse mammary epithelial cells 

overexpressing SMAD2, SMAD3 and SMAD4 were also shown to induce EMT, even 

in the absence of TGF-β1 (Piek et al., 1999). Subsequent inhibition of SMAD2 and 

SMAD3 blocked TGF-β1 induced EMT (Valcourt et al., 2005). SMAD3 has been 

shown to play a central role in EMT, as TGF-β1 stimulated renal epithelial cells 

deficient in SMAD3 fail to undergo EMT (Sato et al., 2003). Furthermore, TGF-

β1/SMAD3 is a major pathway that regulates myofibroblast differentiation in lung (Gu 

et al., 2007).  

1.5.3.2 SMAD independent TGF-β1 signalling pathways 

In addition to SMAD-mediated signalling, TGF-β activates other signalling cascades 

such as ERK, JNK and p38 MAPK kinase pathways. Activation with slow kinetics 

may result from SMAD-dependent responses, while the rapid activation (5–15 min) 

suggests SMAD-independent responses (Massagué, 2000). Studies using SMAD4-

deficient cells support the possibility that MAPK pathway activation is independent of 

SMADs (Engel et al., 1999). In addition, mutated TGFBRI defective in SMAD 

activation can activate p38-MAPK signalling in response to TGF-β stimulation (Yu et 



 

36 
 

al., 2002). TGF-β induced activation of ERK and JNK pathways can lead to SMAD 

phosphorylation while activation of Ras/ERK MAPK signalling can induce TGF-β1 

expression, thereby amplifying and inducing secondary TGF-β responses (Engel et 

al., 1999; Funaba et al., 2002). Activation of MAPK pathways by TGF-β may also 

have direct effects on SMAD-interacting transcription factors. For example, the JNK 

substrate c-Jun may allow convergence of TGF-β induced SMAD and MAPK 

pathways (Massagué, 2000; Moustakas et al., 2001). In addition to convergence, 

these pathways may also counteract each other (Mazars et al., 2001). 

1.6 miRNAs: biogenesis and their mechanism of action 

1.6.1 Overview 

MiRNAs are a class of 20-22 nucleotide noncoding molecules that are produced by 

two RNase III proteins, Drosha and Dicer. These regulate posttranscriptional gene 

expression where more than 60% of the human transcriptome is predicted to be 

under miRNA regulation (Bartel, 2004; Chekulaeva and Filipowicz, 2009). About 35–

40% of miRNA binding sites are found in the 3’UTRs, 40–50% in the coding regions 

and <5% in the 5’UTRs (Zisoulis et al., 2010; Loeb et al., 2012). In RNA silencing, 

miRNA base pairs with its target mRNAs, whereas AGO proteins recruit factors that 

induce translational repression, mRNA deadenylation and mRNA degradation 

(Huntzinger and Izaurralde, 2011). 5ʹ end of miRNAs that spans from nucleotide 

position 2 to 7 is crucial for identification of miRNA-binding sites in the 3’UTR of the 

mRNA. The downstream nucleotides of miRNA also contribute to base pairing with 

the targets. Greater than 60% of human protein-coding genes comprise of at least 

one conserved miRNA-binding site, and since numerous non-conserved sites exist, 

most protein-coding genes may be under the control of miRNAs (Friedman et al., 
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2009). Thus the biogenesis and function of miRNAs are tightly regulated, and their 

dysregulation is often associated with human diseases (Lujambio and Lowe, 2012).  

In addition to intracellular regulatory functions, miRNAs can be secreted and 

detected in blood and urine. These secreted miRNAs are associated with Ago2 

proteins, lipoprotein complexes, or packaged into microvesicles or exosomes. 

Circulating miRNAs are very stable and resistant to treatment with ribonucleases, 

and extreme experimental conditions such as freezing/thawing (Im and Kenny, 2012; 

Zhang et al., 2015). The biogenesis and function of miRNAs is shown in Figure 3. In 

summary, the identification of miRNAs and their target and function in health and 

disease are one of the big challenges in research (Sayed and Abdellatif, 2011).  

1.6.2 miRNA nomenclature 

miRNAs are allocated a three letter identifier which indicates the organism (example- 

hsa in Homo sapiens(human)). Typically, ‘pre-miR’ prefix denotes mature miRNA 

while ‘pre-miR’ refers to a precursor miRNA. A number is assigned depending on the 

time of miRNA discovery. Furthermore, identical miRNAs are assigned the same 

number independent of the organism in which they are present in. In addition multiple 

miRNAs can be evolutionary related, therefore a letter after a number is used to 

differentiate members of the same family (example hsa-miR-200b and hsa-miR-200c) 

(Ambros et al., 2003; Griffiths-Jones et al., 2006; Yang and Lai, 2011). A tag is also 

included in miRNA name indicating which double-stranded RNA the mature 

sequence comes from (e.g. has-miR-141-5p comes from the 5' arm of the precursor 

and hsa-miR-200b-3p from the 3' arm of the precursor) (Ha and Kim, 2014). 
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1.6.3 Biogenesis and processing 

1.6.3.1 miRNA transcription and maturation 

Early description of the genomic position of miRNAs indicated that miRNAs are 

derived from non-annotated parts or intergenic regions of the genome, or the intronic 

regions as a part of the annotated genes in the sense or antisense orientation 

(Lagos-Quintana et al., 2001; Lee and Ambros, 2001; Bartel and Chen, 2004). 

miRNAs may be transcribed as a cluster from its primary transcript (pri-miRNA) 

(Lagos-Quintana et al., 2001) (Lee and Ambros, 2001). These miRNAs are related to 

one another with similar seed region, for example miR-200 family (Figure 1.3, 1.4). 

Transcription of miRNA genes is mediated by RNA polymerase II (pol II).  It was 

initially believed that pol III could mediate miRNA transcription because it transcribes 

most small RNAs, such as tRNAs. However, pri-miRNAs (primary miRNAs) are 

several kilobases long, containing sections of more than four uracils, which would 

have resulted in pre-mature transcription termination by pol III (Lee et al., 2002). 

Further processing of hairpin-looped pri-miRNA includes involvement of following 

factors: RNase-III family proteins, double-stranded (ds) binding proteins and the 

export receptor (Kim, 2005). The stem-loop structure is cleaved by Rnase III Drosha 

resulting in the generation of precursor miRNA (pre-miRNA) that is approximately 60-

70 nucleotide long. 
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Figure 1.3: Generation and function of miRNA. Pre-miRNA is transcribed in the 
nucleus and released into the cytoplasm by a nuclear transporter protein exportin-5. 
In the cytoplasm, pre-miRNA is further processed by dicer to form mature miRNA that 
forms a RISC complex to regulate its target mRNA (Mas et al., 2013). 

 

Figure 1.4: Members of miR-200 family have a common seed region although they 
might be located on different chromosomes. Also the stem-loop structure of miR-
200b is a double stranded precursor-miRNA that dissociates to yield two mature 
miRNAs- miR-200b-5p and miR-200b-3p. The former comes from the 5’ arm while 
the latter comes from the 3’ arm of precursor miRNA. 
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Due to the staggered cutting by RNase III Drosha, there is a 5’ phosphate and a 3’ 

overhang (~2nt) (Basyuk et al., 2003). Drosha is a large 160kDa protein that is 

comprised of two tandem repeats (Han et al., 2004). Following nuclear processing 

with Drosha, Exportin-5 exports the pre-miRNAs to the cytoplasm. Here pre-miRNAs 

are subjected to second processing step by dicer (another pol III) that has affinity for 

the 5’ phosphate and the 3’ overhang of the pre-miRNA (Bartel, 2004). Dicer makes 

a double-stranded cut at two helical turns from the base of the pre-miRNA. Until now, 

two Dicer dependent pathways have been described. The first pathway employs a 

spliceosome that produces short-hairpin structure for processing by Dicer (Gangaraju 

and Lin, 2009). The second pathway utilizes unknown nucleases to produce the hair-

pin structure which is then processed by Dicer. MicroRNAs derived via the first 

pathway are termed as miRtrons (Okamura et al., 2007) while those from the second 

pathway are referred to as endogenous short hairpin derived miRNAs (Babiarz et al., 

2008). In the Dicer independent pathway, the pre-miRNA is cleaved by Argonaute 2 

(Ago2) proteins that results in the generation of mature miRNA. Therefore, cleavage 

by Dicer leads to formation of ~22-nucleotide miRNA duplexes (Chendrimada et al., 

2005). 

1.6.3.2 miRNA assembly in RISC complex and mRNA targeting 

Mature miRNAs are incorporated into miRNA-containing ribonucleoprotein complex 

known as miRNP or miRISC or miRgonaute. This consists of a member of the 

Argonaute proteins that act as catalysts of the RISC complexes that are located in 

the cytoplasm and referred to as the P-bodies (Filipowicz et al., 2008). The duplex 

(miRNA-5p: miRNA-3p) comprises of two strands of miRNA (Ro et al., 2007) and the 

incorporation of the single-stranded miRNA onto the RISC complex leads to target 

repression. The RISC identifies target mRNA based on complementarity to the 
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specific miRNA. Most of miRNAs are associated with RISC complexes, and only less 

than 3% are present on their own. Thus miRNAs are stable in cells with a long half-

life of days to months (Liu et al., 2004; Martinez and Tuschl, 2004). 

miRNA target recognition through seed sequence is more productive than to any 

other region. miRNAs supress gene expression by mRNA cleavage or translational 

repression (Bartel and Chen, 2004). This mechanism is dependent on the target 

mRNA. mRNA cleavage is achieved when the incorporated miRNA has complete 

complementarity with the target mRNA. In animals, partial complementarity between 

the miRNA and the mRNA sequence at the seed sequence is a prerequisite for 

translational inhibition (Lemons et al., 2013; Lee and Ajay, 2014). Translational 

repression might occur at a later stage after initiation of translation. On the other 

hand, suppression can also be achieved because of product degradation, whilst the 

rate of translation remains unaltered (Olsen and Ambros, 1999). 

1.6.4 MiRNA target identification 

Assaying miRNAs can be useful for identification of novel miRNA candidates and for 

studying miRNA–mRNA and miRNA–protein interactions (Pritchard et al., 2012). 

Computational tools allow identification of potential mRNA targets by matching the 

complementarity between the seed region (2-8 bases) of the miRNA and 3’ 

untranslated region of an mRNA.  

Various online prediction tools are available to find miRNA-mRNA matches. 

TargetScan calculates a score after finding a perfect match to the seed region. 

Based on the match type it also takes into consideration other aspects of seed region 

such as A-U enrichment (M Witkos et al., 2011). The result screen ranks predicted 

targets either based on predicted efficacy of targeting or probability of conserved 
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targeting (Lewis et al., 2003). MiRanda uses a miRSVR score to select the miRNA-

mRNA duplexes. It identifies candidate target sites and allocates a miRSVR score to 

each match. MiRSVR takes into consideration different relevant features such as 

target site within 3’ UTR region, UTR length and AU flanking content (Enright et al., 

2003). PicTar algorithm locates all perfect seed (~ 7 seed match) or imperfect seed in 

3’ UTR and predicts the score for each match. It utilizes sequence alignment to eight 

vertebrate species to reject false positive results and scores the candidate genes of 

each species separately to create a combined score for a gene (Krek et al., 

2005). DIANA-microT, one of the first online tools to predict targets in human, allows 

prediction of miRNA binding sites in coding sequences (CDS) and 3’ UTR region. 

The results of predicted target location, binding type and score is linked to Ensembl, 

miRBase and PubMed and thus is highly reliable (Maragkakis et al., 2009).  

Each prediction tool uses a different rule of miRNA targeting and therefore produces 

a different list of predicted mRNA targets as a result the targets acquired might not 

be genuine and the definitive targets can be missed. Therefore more than one tool is 

required for experimental data and only the overlapping results need be considered 

to conclude if a miRNA-mRNA interaction is reliable (Shkumatava et al., 2009; 

Thomson et al., 2011). 

1.6.5 Regulation of miRNA in lung function and its role in lung 

injury 

Recent findings suggest that most miRNAs are conserved across different species 

and also most mRNAs are conserved targets of miRNA in mammals. Therefore 

earlier studies focused on animal models before studying the miRNA diversity in 

human samples (Grun et al., 2005; Lu et al., 2005; Friedman et al., 2009; Sittka and 

Schmeck, 2013). 
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1.6.5.1 miRNA expression in lung epithelial cells 

A study reported that let-7d downregulation induced loss of epithelial characteristics 

and increase in mesenchymal markers such as α-SMA and VIM in A549 cell line, rat 

alveolar type II epithelial cells (RLE-6TN) and PBECs (Pandit et al., 2010). The role 

of miR-200 family has been extensively studied in RLE-6TN and overexpression of 

miR-200b and miR-200c has shown to attenuate TGF-β1 induced EMT (Yang et al., 

2012b). Knockout studies also indicated a role for miR-155 in lung development. 

miR-155 deficiency was correlated with increase in collagen deposition and 

myofibroblast in bronchioles which is the site of BOS development (Rodriguez et al., 

2007). Recently, use of miR-29b mimics inhibited collagen induction in A549 cells, 

confirming the ability of miR-29b to block EMT (Montgomery et al., 2014b).  

Similarly, overexpression of miR-326 mimics in A549 and PBECs caused a 

significant downregulation in TGF-β1 while miR-326 inhibitors induced TGF-β1 

production and promoted increased expression of mesenchymal markers along with 

decreased expression of epithelial marker, cytokeratin 14 (Das et al., 2014). Thus, 

miR-326 is capable of maintaining epithelial phenotypes by inhibiting TGF-β1. Post 

TGF-β1 treatment, miR-424 expression increased in A549 cells, subsequently 

leading to increase in α-SMA expression. In miR-424 mimic transfected and TGF-β1 

treated cells there was further increase in expression of α-SMA and CTGF when 

compared with the TGF-β1 treated or miR-424 mimics treated A549 cells (Xiao et al., 

2015). This suggests that the specific suppression or overexpression of selective 

miRNAs, may be a viable approach in blocking the excessive EMT process in the 

fibrotic lungs. 

End-stage lung diseases have also shown altered miRNA expression. Due to 

alterations at gene level, improper recognition and binding to its complementary 
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targets, the involvement of miRNAs has been indicated in progressive inflammatory 

disorders (Sonkoly et al., 2008). During the early stages of allograft injury a 

significant increase in numerous miRNAs occurs due to modulation of several 

pathways such as cell proliferation and signalling. This activates stress response and 

mechanisms promoting cell death. In the later phase of repair cells proliferate and 

release ECM proteins contributing to fibrosis (Lu et al., 2006; Szczepankiewicz et al., 

2013). The changes in miRNA expression levels in tissues indicate their role in 

maintaining the cellular phenotype, tumor suppression and fibrosis (Wang et al., 

2009). Loss of miR-34a is noted in various kinds of malignancies including lung 

cancer. It plays an important role in controlling cell proliferation, cell cycle and 

senescence. In A549 cells, miR-34a expression leads to cell cycle arrest in G1/G2 

phase and transforms cells into large, flat bodies staining positive for senescence-

associated proteins (Bader, 2012). Thus the absence of miR34a expression leads to 

fibroblast proliferation and fibrosis (Pogribny et al., 2010). 

Another miRNA potentially associated with lung allograft dysfunction is miR-146a. 

Increased expression of miR-146a and miR-146b is observed following activation of 

innate immune response. Perry et al. showed changes in miR-146a/146b in PBECs. 

The study inferred the role of miR-146a in regulating a negative feedback pathway 

and that its expression was up regulated only during severe inflammation (IL-1β ≥ 

0.3ng/ml). Thus use of miR-146a mimics could prove to be a therapeutic approach in 

down regulating inflammation and chemokine secretion (Perry et al., 2008; Huang et 

al., 2012). Another study by Chen et al. reports the involvement of miR-146a in 

development and progression of lung cancer. Samples with low expression of miR-

146a were associated with metastasis while patients with high expression of miR-

146a showed prolonged cancer free survival. It was thus concluded from the study 
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that miR-146a expression inhibits cell growth and induces apoptosis and is a novel 

marker of carcinoma (Chen et al., 2013).  

MiRNAs are implicated in fibrotic disorders by directly regulating the ECM deposition 

and profibrotic TGF-β signaling pathway. The profibrotic activity of miR-21, an 

oncomiR, is proportional to the severity of lung fibrosis found in animal models. 

Authors showed that increased expression of miR-21 was associated with increase in 

TGF - β1 (Liu et al., 2010a; Vettori et al., 2012). 

1.6.5.2 miRNAs expression in lung fibroblasts 

miR-21 transfection of TGF-β1 treated human primary fibroblast cell line, MRC5, 

induced the increased expression of Fibronectin and α-SMA,  coupled  with a 

decrease in SMAD7 expression (Liu et al., 2010b). Thus, miR-21 appears to enhance 

TGF-β1 signalling in fibroblasts. miR-29 inhibition in TGF-β1 treated human fetal lung 

fibroblasts (IMR-90) cells increases the expression of ECM associated entities such 

as collagens and remodelling genes, thus implicating the regulatory role of miR-29 in 

eliciting fibrotic gene expression in fibroblasts (Cushing et al., 2011). Overexpression 

of miR-200b and miR-200c attenuated TGF-β1-induced expression of Fibronectin 

and α-SMA in MRC-5 cell line and in mice derived lung fibroblasts (Yang et al., 

2012b).  

MiR-145, an inducer of fibroblast differentiation, was found to be upregulated in TGF-

β1-treated human lung fibroblasts. Ectopic expression of miR-145 in human lung 

fibroblasts increased α-SMA expression and promoted the formation of focal and 

fibrillary adhesions (Yang et al., 2013). On the other hand, miR-326 was found to 

downregulate TGF-β1 and pro-fibrotic genes expression in NIH/3T3 cells (Das et al., 

2014), thus proposing the involvement of an anti-fibrotic miRNA in lung fibroblasts. 
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Likewise, the antifibrogenic role of miR-26a has been established by two studies 

(Liang et al., 2014; Montgomery et al., 2014b). In MRC-5 cells, miR-26a eliminated 

TGF-β1-induced release of collagen, and repressed the expression of fibrotic genes 

such as collagen IV, α-SMA, and SMAD4. In the second study, miR-26a inhibited 

TGF-β1-mediated nuclear translocation of pSMAD3 while inhibition of endogenous 

miR-26a was found to promote proliferation of human lung fibroblasts (Montgomery 

et al., 2014b). Lastly, Huleihel et al found that let-7d overexpression in lung 

fibroblasts decreased mesenchymal markers expression and delayed wound healing 

(Huleihel et al., 2014). Thus, the above studies established pro-fibrotic and anti-

fibrotic roles of miRNAs in lung fibroblasts. 

1.6.6 MiRNA as non-invasive biomarker for allograft rejection      

Identification of exclusive miRNAs differentially expressed under various conditions 

may help in distinguishing outcomes such as early graft dysfunction and others 

without rejection history.  Since miRNAs are relatively stable, they are well preserved 

in a range of sample types including formalin fixed tissues, urine, serum and blood 

plasma. Therefore studying the differential expression of miRNA in various samples 

is relatively easy (Montano, 2011; Zhang et al., 2013). An overview of differential 

expressed miRNA is given in Table 1.2. 

MiRNA profiling has been conducted to investigate their role in different diseased and 

normal human tissues. A study showed expression of 345 miRNAs in 40 normal 

human tissues that were universally expressed or exclusively expressed in specific 

tissues. Human tissue samples were hierarchically clustered based on anatomical 

position and functions using miRNA expression profile and the predicted miRNA 

targets were validated. Results suggested that miRNAs and their target genes had 

coordinated expression patterns in these tissues (Liang et al., 2007).  MiRNA 
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quantification in biofluids has emerged as a promising new approach for disease 

biomarker detection. It has recently been shown that disease specific exosomes 

and/or extracellular vesicle (EV) signatures might be useful in differentiating between 

normal and disease states. EVs include exosomes (<100nm) and microparticles 

(100–1000 nm) wherein the former are formed and stored in the cell before being 

released while the latter are generated through a process called ectocytosis (cell 

membrane shedding) (Julich et al., 2014).  

Allograft 
dysfunction 

Differentially expressed miRNAs Target 
tissue 

 
 

Acute injury and 
inflammation 

miR-155, miR-146b, miR-146a, miR-200a, 
miR-10a, miR-10b,18a 

Kidney44 45 

miR-326, miR-142-3p  
miR-10a, miR-31, miR-92a and miR-155, 
miR-133b 

Heart 46 47 

miR-122, miR-148a, miR-192, miR-194 Liver 48 
miR-127, miR-146a, miR-181b, miR-24, 
miR-26a, miR-126,miR-30a/b, miR-135b, 
miR-346,miR-146a/b 

Lung 49 50 

 
 

Chronic injury 
and fibrosis 

miR-16, miR-21, miR-155, miR-210,  
miR-638, miR-192, miR-194, miR-204, 
miR215/216 

Kidney 51 
52 

miR-210, miR-423-5p, miR-320a, miR-22, 
miR-92b 

Heart 53 54 

miR-29, miR-122, miR-34a Liver 55 56 
miR-148b, miR-29b, miR-200, miR-21,  
miR-146a, miR-150, miR-1, miR-26a 

Lung 57 58 

Table 1.2:  Differential expression on miRNAs in various tissues during acute 
and chronic allograft injury (Ladak et al., 2016). 

1.6.6.1 miRNAs in lung, liver, kidney and heart transplantation 

There are limited miRNA studies that exist in the field of lung transplantation. 

Therefore, the role of miRNAs in other organ transplants has also been discussed 

below. 
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Lung. Pulmonary fibrosis driven by TGF-β reveals the involvement of miRNAs that 

may help pave a way for effective therapeutics. The development of antibodies to 

donor mismatched HLA (DSA) has shown association with eight selectively 

expressed circulating miRNAs (miR-369-5p, miR-144, miR-134, miR-10a, miR-142-

5p, miR-195 and miR-155) in lung recipients with BOS as compared to stable lung 

transplants. Dysregulated expression of TGF-β associated miRNAs - miR-369-5p 

and miR-144 in lung transplant recipients with BOS suggested their role in fibrosis 

driven by TGF-β signalling. Furthermore, results acquired from a cohort of DSA+ 

BOS- and DSA+ BOS+ lung allograft recipients indicated that the miRNA candidates 

identified in this study could differentiate lung transplant recipients susceptible to 

development of DSA and BOS compared to stable lung transplant recipients.  In 

addition to the study described above, mononuclear cell’s miRNA profiling from 

stable lung transplants (LT, n=10), DSA+ BOS- LTs (n=10, DSA group) and DSA+ 

BOS+ LTs (n=10, BOS group) revealed that the development of DSA altered the 

expression of miRNAs affecting TGF-β and other associated signalling pathways that 

play an integral role in development of BOS (Xu et al., 2015c). 

miR-144 is another candidate involved in fibrosis, leading to BOS. The expression of 

miR-144 was examined in biopsy specimens obtained from lung transplant recipients 

with and without BOS. BOS+ patients demonstrated a significant increase in miR-144 

expression (4.1 ± 0.8-fold) as compared to the BOS- patients. Over expression of 

miR-144 resulted in a significant decrease in (TGF-β)–induced factor homeobox 1 

that is a co-repressor of SMADs. Thus miR-144 is an important biomarker of BOS 

(Xu et al., 2015d). A very recent study elucidated the role of miR-323-3p in BOS. 

MiR-323-3p was identified to be downregulated in lung epithelium of BOS+ murine 

models post transplantation. AntagomiRs of miR-323-3p amplified while mimics 
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reduce murine lung fibrosis post bleomycin injury. Furthermore, miR-323-3p 

downregulated CASP3, a component of programmed cell death pathway. This study 

demonstrated that miR-323-3p limits TGF-β induced fibrotic effects by attenuating 

apoptotic cell death (Ge et al., 2016).  

The development of the bronchiolitis obliterans syndrome is poorly understood. A 

study hypothesized the involvement of donor HLA to be associated with miRNA 

dysregulation that predisposes the allograft to BOS.  MiR-369-5p and miR-548d 

downregulation in a DSA+ (donor HLA) lung transplant group correlated with 

upregulation of its gene targets LTBP1 and DCN respectively in TGF-β signalling 

pathways. This showed the importance of miRNAs involved in TGF-β pathway in 

BOS development (Xu et al., 2015b). It is unclear if there is damage to lung cells 

during preparation prior to transplant or lung tissue injury post transplantation. Since 

miRNA profiling yields large number of candidates and parameters such as DSA+ 

and/or BOS+ show variable profile of miRNAs, further investigation is required to 

define specific marker for lung injury.  

Liver. Liver specific miRNA expression (miR-122) in serum is associated with acute 

injury and inflammation post transplant injury. The extent of rejection has been 

determined by differential expression of subset of miRNAs at each stage of liver 

dysfunction. Downregulation of miR-122 and let-7b in liver allograft correlated to 

acute rejection while expression of miR-142-3p in liver graft suggested alloimmunity 

during rejection (Wei et al., 2013). A study was devised to identify miRNAs related to 

hepatocellular carcinoma (HCC) recurrence following orthotopic liver transplantation 

(OLT). The outcome revealed six miRNA candidates as biomarkers for early 

prediction of HCC post OLT (Han et al., 2012). Similarly, miR-718 an exclusive 

biomarker of HCC recurrence post liver transplantation expression was found 



 

50 
 

significantly low in serum exosomes acquired from patients post liver transplantation 

with HCC recurrence as compared to with those without HCC recurrence. 

Furthermore HOXB8 was identified as the target of miR-718 and its increased 

expression was indicative of HCC progression (Sugimachi et al., 2015). 

Kidney. Several studies have identified miRNAs as prognostic marker of kidney 

fibrosis and ECM deposition post kidney allograft transplantation. Sui et al identified 

and verified 20 differentially expressed miRNA candidates during acute rejection 

(AR) post transplantation out of which 8 were upregulated and 12 were 

downregulated. The study indicated that miR-142–5p, miR−155, miR−223, miR−10b, 

miR−30a-3p and let-7c have a potential role in the pathogenesis of AR (Sui et al., 

2008; Harris et al., 2010). Studies have suggested that miRNA expression in urine 

samples as potential diagnostic and/or prognostic biomarkers of early kidney allograft 

rejection. MiRNA expression profile was assessed in 19 stable transplant patients 

and 19 patients before the episode of acute rejection. MiR-210 was elucidated as an 

important marker for discriminating between stable transplant patients and patients at 

the risk of rejection. This was the first trial that evaluated the role of miRNAs in urine 

samples from patients with AR (Anglicheau et al., 2009; Lorenzen et al., 2011). 

Downregulation of miR-10b correlated to reduced expression of BCL2L11. 

Overexpressing miR-10b into human renal glomerular endothelial cells prevented 

endothelial cell apoptosis and release of pro/inflammatory cytokines (IL-6, TNF-

alpha, IFN-gamma, and CCL2), whereas use of miR-10b inhibitors had the opposite 

effects (Hamdorf et al., 2017). Despite several studies in kidney transplantation, there 

is yet no common marker available for early prognosis of rejection and thus further 

investigation to find a marker is clinically important. 
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Heart. Heart transplantation has been recognised as an effective therapy for end 

stage coronary diseases. However the donor heart undergoes multiple episodes of 

insults during organ retrieval, preservation and transplantation. This prompts 

apoptosis of cardiomyocytes leading to myocardial injury following heart 

transplantation. Wang et al studied the expression of cardiomyocyte specific 

circulating miRNAs during myocardial injury and recovery post heart transplantation. 

High levels of miR-133b, miR-133a and miR-208a was found in peripheral blood 

indicated heart injury after transplantation suggesting that circulating miRNAs are 

promising biomarkers for prediction of early graft dysfunction (Wang et al., 2013). 

Subsequent studies have helped to clarify the role of selective miRNAs and mRNAs 

in a model of acute cellular rejection (ACR). MiR-155 expression was significantly 

upregulated in human and mouse ACR samples while its downregulation reduced 

inflammation and increased long-term graft survival in the murine ACR model. Thus 

this study concluded that targeting miR-155 and intermediates of IL-6 pathway may 

prevent ACR (Van Aelst et al., 2015). 

1.6.7 MiRNA-based therapeutics 

The regulatory mechanisms of miRNAs are controlled by single nucleotide 

polymorphisms (SNPs) in the seed region, miRNA editing and other epigenetic 

modifications (Cai et al., 2009). In general, there are two ways of targeting miRNA in 

therapeutics: miRNA mimics and miRNA inhibitors/antagonists. miRNA mimics 

restore a loss of function and the process of incorporating these mimics is commonly 

called miRNA replacement therapy. This technique involves introduction of double 

stranded miRNAs that are crucial for maintaining homeostasis. This therapy also 

activates various endogenous pathways that are required for maintaining a healthy 



 

52 
 

state and blocks those that may cause disease (Bader et al., 2010; Montgomery et 

al., 2014a).  

Cancerous tissues exhibit dysregulated miRNA expression, however only few can 

induce phenotypic changes in cancer cells. miR-34a, a master of tumour 

suppression, represses several gene targets involved in metastasis, oncogenic 

transcription, apoptosis, cell cycle signalling and cancer cell stemness. Therapeutic 

activity of miR-34a has been studied in several animal models where it has shown to 

reduce tumour growth (between 20% and 78%). The application of miR-34a leads to 

clinical trials wherein using NOV340 technology, MiRNA Therapeutics Inc. 

pharmacologically formulated NOV340/miR-34a and tested its effect in a model of 

hepatocellular carcinoma. miR-34a can be efficiently delivered to the liver and cause 

growth inhibition of human hepatocellular carcinoma cells in vivo. MiR-34a 

replacement therapy has been anticipated to be one of the first miRNA mimics to 

reach the clinic (Bader, 2012). Let-7 is another emerging target in cancer 

therapeutics. It targets various oncogenes and key components of developmental 

pathways thereby preventing angiogenesis and tumor progression. Let-7 

replacement therapy is still in the preclinical stage due to lack of an effective delivery 

system (Barh et al., 2010). 

MiRNA antagonists are chemically modified anti-miR that binds to target miRNA and 

deplete the levels of the specific miRNA. The most clinically advanced miRNA based 

therapeutic study at present targets hepatitis C virus (HCV). MiR-122 inhibitor 

(SPC3649) when administered to hepatocytes blocked the replication HCV by 

targeting the 5’ end of the HCV genome. Clinical trials on chimpanzees showed a 

long lasting suppression of viral RNA post administrating SPC3649. Thus, miR-122 

inhibition provides a way to treat this viral disease in humans (Jopling et al., 2005; 
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Lanford et al., 2010).  Other miRNAs, currently in the preclinical development phase 

are miR-208/499 and miR-195. MiR-208 is exclusively expressed in the heart and 

inhibiting its activity induced resistance to fibrosis and cardiomyocyte hypertrophy in 

mice models. Likewise, miR-499 inhibition slows down myofibroblast proliferation 

(van Rooij et al., 2007). Overexpressing miR-195 in transgenic mice has shown to 

cause heart failure and is associated with cardiac remodeling, while downregulating 

this miRNA reversed the process (You et al., 2014). 

1.7 Hypothesis of the project 

Dysregulation of miRNAs is implicated in obstructive airway diseases including 

Bronchiolitis Obliterans Syndrome (BOS), where Epithelial-Mesenchymal Transition 

(EMT) also contributes to pathophysiology. However, the potential role of miRNAs in 

the EMT demonstrated in BOS is not fully understood. Manipulating the expression of 

miRNAs in stressed human airway cells may offer better therapeutic options. 

1.8 Specific aims of the study 

MiRNAs play an important role in the critical events like inflammation and fibrosis. 

This study sets out to enhance the current understanding of miRNAs during TGF-β1 

induced EMT. The aims of the study were as follows: 

1. To investigate the role miRNAs in maintaining bronchial epithelial cell phenotype. 

2. Manipulate the expression of key miRNAs in bronchial epithelial cell line and 

primary human bronchial epithelial cell to modulate EMT.  

3. Identify and validate downstream miRNA targets that may have a role in the 

progression of lung allograft dysfunction. 
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Chapter 2: Materials and methods  

2.1 Risk assessment and ethical approval 

The experiments were performed in accordance to Biological Control of Substances 

Hazardous to Health (BIOCOSH) and Control of Substances Hazardous to Health 

(COSHH) regulations. The risk assessment was submitted to the University 

Biological safety committee and tissue culture was carried out in accordance with 

university regulations for the containment of class II pathogens. 

The ethical approval was given by the local research committee for conducting 

studies on patient samples and tissue sample acquired from lung tissue samples 

were obtained from donor lung tissue (Ref: 2001/179, The Newcastle and North 

Tyneside Local Regional Ethics). Informed consent was obtained from donor families 

and lung transplant recipients (REC 11/NE/0342). 

The patient samples (cells) were obtained from patients during routine surveillance 

bronchoscopy carried out for diagnostic purposes at the Freeman hospital. 

Anonymised patient details were used for evaluating the varying changes in miRNA 

expression levels. 

2.2 Cell lines and primary cells 

2.2.1 Adenocarcinoma human alveolar basal epithelial cell lines 

(A549) 

The A549 cell line (Figure 2.1,A)  was isolated in 1972 by D.J. Giard et al. from lung 

carcinoma tissue from a 58-year-old Caucasian male to attempt to establish 

continuous cell lines from 200 different tumours (Giard et al., 1973). This cell line is 

representative of the Alveolar Type II pneumocytes of the human lung in culture; 
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A549 cells exhibit features of an ATII epithelial cell phenotype, form confluent 

monolayers and are squamous (Corbière et al., 2011; Cooper et al., 2016).  

2.3.2 Immortalized human bronchial epithelial cells (BEAS-2B) and 

human primary bronchial epithelial cells (PBECs)  

BEAS-2B (Figure 2.1, B) is a human bronchial epithelial cell line derived from 

autopsy of non-cancerous individuals transformed by the hybrid adenovirus simian 

virus 40. The cells are not tumorigenic in immunosuppressed mice, but form colonies 

in semisolid medium. The adeno 12-SV40 cells contain both the SV40 and adeno T 

antigens (inhibits apoptosis) and both the viral genomes are operative in these cells. 

Cells infected with this hybrid have clear and large nuclei (intermediate morphology) 

(CRL-9609; American Type Culture Collection, Manassas, VA). Squamous 

differentiation can be observed in response to serum (Reddel et al., 1988; Kinnula et 

al., 1994). 

Human primary bronchial epithelial cells (PBECs) were isolated from healthy 

individuals by bronchoscopy. Cultured primary cells were expanded upto a maximum 

of 2 passages as required. PBECs characterised by immunofluorescence prior to 

conducting experiments exhibited epithelial cell surface marker expression and 

minimal or no expression of fibrotic markers such as α-SMA and Fibronectin.    
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Figure 2.1: Images of cells in culture. Panel A shows A549 human lung 
adenocarcinoma cell line in culture medium. Panel B shows BEAS-2B cells in culture 
medium. Images obtained show typical polygonal appearance with epithelial 
characteristics (×20 magnification).  

2.3 Culture media 

Mycoplasma screening was carried using MycoAlert PLUS detection kit (Lonza) for 

the cells prior to experimental use as per manufacturer’s protocol (Uphoff and 

Drexler, 2014). 

2.3.1 DMEM media 

The A549 cell line was cultured in DMEM (Sigma-Aldrich) medium supplemented 

with 10% FBS, Penicillin (100 U/ml), Streptomycin (100 U/ml) and L-glutamine 

(2mM). 15ml of the complete medium was used to maintain cells in a T75 cm2 culture 

flask in a humidified incubator at 37°C. 

2.3.2 BEBM/BEGM media 

The BEAS-2B cell line and PBECs were cultured in BEGM complete medium that 

was prepared by adding BEGM SingleQuots (Lonza) that included Bovine pituitary 

extract (2ml), Insulin (0.5ml), Hydrocortisone (0.5ml), Retinoic acid (0.5ml), 

Transferrin (0.5ml), Triiodothyronine (T3, 0.5ml), Epinephrine (0.5ml), Epidermal 

growth factor human recombinant (rhEGF, 0.5ml), Penicillin (100U/ml) and 

Streptomycin (100μl/ml) to BEBM media (Lonza). Complete medium (13ml) was used 
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to maintain cells in T75 cm2 culture flask in 5% CO2 humidified incubator at 37°C. 

Experiments were conducted in serum free media by incubating cells in BEBM 

medium only with ITS Liquid Media Supplement (SIGMA-ALDRICH). 

Prior to seeding cells, T75 cm2 culture flask was coated with a mixture of collagen 

(0.03mg/ml), Fibronectin (0.01mg/ml) and BSA (0.01mg/ml) in BEBM (5ml) for half an 

hour. This coating allows proper adherence of BEAS-2B cell line by mimicking the 

basement membrane of the bronchial epithelium. 

2.4 Haemocytometry for cell counting    

Cell counting was performed using a haemocytometer. Pelleted cells were 

suspended in 1ml complete media. 10 μl of the cell suspension was then mixed with 

an equal volume of trypan blue stain that stains cells with a disrupted cell membrane 

when cells are visualised under a microscope, such that dead cells appear blue. 

Cells were counted in five squares and the total number was divided by 0.02 (total 

volume of each square is 0.004 mm3, therefore for 5 squares 0.004 × 5) and 

multiplied by 1×103 (103 cubic mm= 1cm3) to obtain total number of cells in 1ml.  

2.5 Trypsinization and cell storage 

A549, BEAS-2B cells and PBECs grow as a monolayer and adhere to the surface of 

the flask. Use of Trypsin- EDTA solution (Sigma) dissociates these adherent cells 

from the surface of the flask. Trypsin is a proteolytic enzyme that breaks the tight 

bridge of proteins between the cell and the flask surface while EDTA is a calcium 

chelator that allows trypsin to work efficiently by engaging certain metal ions that 

might inhibit its activity. The use of trypsin EDTA solution to detach cells is termed 

trypsinisation. 
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The initial process involves discarding the cell medium and washing the flask surface 

with sterile phosphate buffer solution (10ml, 3 times). Trypsin-EDTA solution (6ml) 

was then added to each flask, which was subsequently incubated at 37°C for 4-5 

minutes. To avoid cell damage, complete media was used to neutralize the trypsin 

activity and the cell solution was subjected to centrifugation at 500 g for 5 minutes. 

The cell-containing pellet was then suspended in complete media in a new flask or 

cryopreserved.  

Prior to trypsinisation, BEAS-2B and PBECs culture flasks were washed with 5ml 

HEPES-BSS to eliminate complex medium components such as proteins and 

calcium that neutralize the trypsin.  After trypsinisation, equal volumes of trypsin 

neutralising solution (Lonza) were added as BEGM complete media is devoid of 

bovine serum. The harvested cells were then centrifuged at 300 g for 5 minutes to 

obtain a cell pellet. 

Stocks of cryopreserved cells were kept in liquid nitrogen. >90% confluent T75 flasks 

were split 1 in 2 and (500μl) placed in a cryovial. 100μl dimethyl sulfoxide (DMSO) 

(Sigma) was added to 900μl FBS, this new solution was added in a 1:1 ratio (500μl) 

to the cryovial containing the cell suspension. Although DMSO is toxic to cells at 

room temperature it prevents the formation of ice crystals that can rupture cell 

membranes during the freezing process. Cryovials were sealed, placed in a Mr 

Frosty Freezing Container (ThermoFisher Scientific) containing isopropanol at room 

temperature which was transferred to a -80°C freezer. This procedure allows cells to 

be frozen gradually, at a rate of -1°C/min. Cells were subsequently transferred into 

liquid nitrogen for long-term storage. As and when required the frozen cells were 

quickly thawed at 37°C in a water bath, suspended in culture media and a cell pellet 

was obtained post centrifugation.  
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2.6 Protein studies 

2.6.1 Immunofluorescence 

Cells (5 × 104) were seeded onto a six well chamber slide (ThermoFisher Scientific) 

and cultured in 250μl of complete media in 5% CO2 humidified incubator at 37 0C 

until the cells adhered to the surface. 5ng/ml TGF-β1 was added to each well and 

incubated for 72 hours. 

Cells were fixed using ice cold methanol for 15 minute that dehydrates cells and 

allows proteins to denature and precipitate. Chamber slides were then allowed to dry 

for 15 minutes. To minimize non-specific antibody binding, cells were incubated with 

100μl of 5% w/v BSA solution for 1 hour at 4°C. Cells were stained with primary 

antibody specific for the antigens (overnight) (Table 2.1). After rinsing cells with PBS, 

cells were incubated with Alexa Fluor 488 goat anti-mouse or anti-rabbit (1:100 

dilution; ThermoFisher Scientific, Catlog: R37120 and R37116) made up in 1 % BSA 

solution and incubated overnight at 4°C. Washing was then carried out three times 

with PBS solution and 100μl of DAPI solution (1 μl DAPI in 3 ml PBS solution) was 

added to each well and incubated for 30 minutes at room temperature. The solution 

was then discarded and chamber superstructure removed from the slide. 

Fluoromount (Sigma) was used to mount cover slips and kept covered in dark at 4°C 

until further visualization. 

The visualization of immunofluorescence was done using a Leica TCS SP2 UV laser 

scanning microscope. It is able to detect emission spectra from DAPI (blue, excitation 

360 nm and emission 450-550 nm) and FITC (green, excitation 488 nm and emission 

510-535 nm). Images were analysed by image J software (Version 1.4.3.67) and the 

area of fluorescence per cell was calculated. 
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Table 2.1:  Specific primary antibodies used for the antigens. 

2.6.2 Western Blotting 

Western blotting is a widely used technique to detect specific proteins in a sample 

(tissue homogenate or cell lysate). This analytical technique is based on the 

separation of proteins by gel electrophoresis followed by protein transfer onto a 

suitable membrane to be accessible and detectable by specific-antibodies. The 

separation of proteins was based on the molecular size by using a reducing agent 

and a detergent, Sodium Dodecyl Sulphate (SDS) and β-mercaptoethanol (Sigma-

Aldrich) respectively. The former converts the tertiary structure of the proteins into 

linear polypeptide chains, while the latter maintains the denatured form of the 

proteins and coats the proteins with negative charge enabling the separation 

according to the molecular size. The result is that, the protein becomes coated with 

negative charges, unfolding into a rod, a conformation that maximally separates 

those mutually repellent negative charges and the mobility depends exclusively on its 

length. Along with the addition of SDS to denature (i.e., unfold, destroy native 

structure of) the cellular proteins, a second reagent is added. This reagent contains a 

soluble thiol (-SH) group to reduce any inter- or intra-molecular disulfide bonds. This 



 

61 
 

is important because disulfide bonds, which can exist within as well as between 

polypeptide chains, prevent the polypeptide from fully unfolding.  

Separated proteins are transferred to a Polyvinylidene fluoride (PVDF) membrane for 

detection of proteins. To avoid non-specific binding, the non-protein bound areas of 

the membrane are blocked before probing with primary protein specific antibody. 

After incubation, a secondary antibody conjugated with an enzyme, fluorophore or 

isotope is added. Horseradish peroxidase (HRP) is one of the most common and 

safe conjugates. The detection of this enzyme, which correlates with the abundance 

of the examined protein, is determined indirectly by the addition of a peroxide-luminol 

based reagent. The peroxidase enzyme catalyses the oxidation of the luminol, 

resulting in the emission of the light. The emitted light can be captured through 

exposure to X-ray photographic film (Burnette, 1981). 

2.6.2.1 Cell lysate preparation  

Stimulated and untreated cells were pelleted post trypsinisation. Cells were lysed 

using lysis buffer consisting of cell lytic solution (Sigma) supplemented with 

cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail tablets (Roche, USA). To 

ensure complete cell lysis and protein extraction, samples were sonicated using an 

MSE Soniprep 150 sonication. The samples were centrifuged at 15000 g for 15 

minutes to pellet cells debris and either used immediately or stored at -80°C.  

2.6.2.2 Determination of protein concentration 

The protein concentration of each sample was estimated colorimetrically using a 

bicinchoninic Acid (BCA) protein assay kit (Pierce, USA) in accordance with the 

manufacturer’s instructions. In this assay BCA reagent detects the protein sample 

when Cu2+ ions are reduced to Cu1+ in alkaline condition. The addition of protein rich 
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sample allows the colour change thereby exhibiting strong absorbance at 562 nm. 

The extent of the colour on sample is proportional to the amount of the protein 

presence. The concentration of the unknown protein was evaluated from a bovine 

serum albumin standard curve, which was run in parallel with unknown samples. To 

each well 10 µl of varying concentration of BSA (2 mg/ml, 1 mg/ml, 500 µg/ml, 250 

µg/ml, 125 µg/ml) and 200 µl of working solution was added. Similarly 10 µl of the 

sample and 200 µl of working solution were added to determine the unknown protein 

concentration. The working solution was prepared prior to use by mixing reagent A 

(BCA in alkaline buffer) with reagent B (4% w/v cupric sulphate) in a ratio of 50:1. 

The plate was incubated at 37°C for 30 minutes before recording the absorbance at 

562 nm. A linear regression analysis of the standard curve was calculated and the 

unknown protein concentration was determined by interpolation (Figure 2.2). 

 

Figure 2.2: Representative standard curve of protein concentration 

2.6.2.3 SDS-PAGE Gel Electrophoresis and protein transferring 

SDS-PAGE gels consist of a stacking gel on the top of a resolving gel. The amount of 

acrylamide in the resolving gel determines the percentage of that gel and its pore 

size. In this project, 10% v/v gel was used to separate large proteins and 12% was 
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used for smaller proteins (60-40 kDa molecular weight). 5 ml resolving gel solution 

and 3 ml stacking gel solution was prepared to cast one gel and added to glass and 

alumina plates (Table 2.2). 

The resolving gel polymerised within 30 minutes. After polymerization, stacking gel 

was added on the top and comb was inserted. The prepared gel was immersed into 

electrophoretic buffer (10% SDS, Tris Base, Glycine at pH 8.3) and loading sample 

was prepared by mixing 25 μg equivalent of purified cell lysate (Refer to 2.6.1) and 

loading dye (containing β-mercaptoethanol) and then subjecting the mix to heating 

(100°C for 5 minutes) prior to loading on the gel. Parallel to the sample, PageRuler™ 

Plus Prestained Protein Ladder (ThermoFisher Scientific) was also loaded as a guide 

for molecular weight. Gel run setting was a maximum of 180V at room temperature 

for 30-60 minutes (based on gel porosity). 

 

Table 2.2: Gel preparation reagents for SDS-PAGE 

TEMED (ThermoFisher Scientific)-Tetramethylethylenediamine; APS (Sigma-
Aldrich)- Ammonium persulphate 
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To ensure presence of purified proteins, gels were stained with Coomassie stain 

consisting of 10% v/v acetic acid, 10% v/v Isopropanol and 0.1% w/v Coomassie blue 

powder. After 20 minutes incubation at room temperature on the rocker, the gels 

were destained in three sequential steps using three different solutions. The stained 

gels were mixed with destain 1 consisting of 25% v/v propanol with 10% v/v acetic 

acid for 10 minutes before the addition of destain 2. After the removal of destain 1, 

destain 2 consisting of 10% v/v propanol and 10% v/v acetic acid was added to the 

gel and washed many times until the clear bands were obtained. The gels were 

stored in destain buffer 3 containing 10%v/v acetic acid until further use. 

After protein separation, the proteins were transferred to Amersham Hybond LFP 0.2 

PVDF (GE healthcare LifeSciences) membrane. This membrane was equilibrated in 

absolute methanol for ten seconds followed by washing with distilled water twice for 5 

minutes each. The gels and transfer electroblotting cassette were soaked in transfer 

buffer before being assembled. Protein transfer was performed either overnight at 30 

V or for 2 hours. 

2.6.2.4 Immunoblotting 

After transfer, the PVDF membrane was washed once with PBS containing 0.1 % v/v 

tween 20 (TPBS) for 5 minutes to remove the transfer buffer before blocking. To 

block the non-specific binding, the membrane was blocked with 5% w/v milk for at 

room temperature for 1 hour before probing with primary antibody. Primary antibody 

was diluted in the blocking buffer at a concentration recommended by the 

manufacture and added to the membrane. This was incubated overnight at 40 C with 

continuous shaking on a rocker. After incubation with primary antibodies, the 

membrane was washed three times with 30 ml 0.1 % TPBS for 5 minutes each. 

Membranes were incubated with HRP-conjugated specific secondary antibody 
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(Santa Cruz Biotechnology; Catlog: sc2005 and sc2004) in 5% w/v milk for 1 hour at 

room temperature with continuous shaking. After three washes with 30 ml TPBS, 

peroxidase activity was detected by using 2 ml SuperSignal West Pico 

Chemiluminescent Substrate (ThermoFisher Scientific) for 1 minute. The detection of 

bound antibodies was dependent on the oxidation of the luminol in the substrate by 

HRP conjugated to the secondary antibody and consequent emission of light. The 

resulting bands were visualized by exposure of the membrane to a film using 

developer and fixer (Tentenal, Germany). The exposure time varied according to the 

expression of the desired protein, starting from 1 minute. As a control, membrane 

was stripped at room temperature for 30 minutes using stripping buffer consisting of; 

1.5 % w/v glycine, 0.1 % w/v SDS and 1 % v/v Tween 20  followed by washing with 

30 ml TPBS and reprobed for GAPDH using the same protocol. Initial attempts were 

made to optimize minimum protein concentration required to give desirable results 

(Figure 2.3). 

 

Figure 2.3: Western blot optimization. 25µg equivalent protein and 1:2000 diluted 
primary antibody was optimum to yield good results. Further western blot 
experiments were conducted using this optimised concentration and dilution factor for 
all the markers. 
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2.7 Molecular biology 

2.7.1 Procedure of RNA isolation 

2.7.1.1 MRNA isolation using Qiagen RNeasy mini kit 

The Trizol/RNeasy hybrid RNA isolating protocol involved the use of phase 

separation technique as well as RNeasy mini kit (Qiagen). The pelleted cells were 

homogenized using TRI reagent (Sigma) and the RNA supernatant was collected in 

an eppendorf post phenol-chloroform phase separation  

An equal volume of 100% v/v ethanol was added to this aqueous solution and the 

mixture was vortexed. 700 μl of the sample was then loaded into RNeasy spin 

columns (Qiagen) seated in collection tubes and centrifuged for 15 seconds at 8000 

g at room temperature. The flow through was discarded and the step was repeated 

for the remaining sample. 500 μl of RPE buffer was added to the spin columns and 

centrifuged for 15 seconds at 8000 g to wash the spin column membrane. The flow 

through was discarded and the step was repeated, but the centrifugation was for 2 

minutes to ensure that there was no ethanol contamination during RNA elution step. 

The spin column was placed in a new collection tube and centrifuged at full speed for 

1 minute.This step ensured that any residual RPE buffer was eliminated. The spin 

column was then transferred in a new collection tube, 50 μl of RNase free water was 

added to spin column membrane and centrifuged for 1 min at 8000 g to elute the 

RNA. The OD was measured and sample was stored at -80°C until further use 

(Figure 2.4, A). 
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2.7.1.2 miRNA isolation using MiRVana Paris kit (Applied Biosystems) 

The pelleted cells were re-suspended in 300 µl of ice-cold Cell Disruption Buffer, 

followed by mixing with 300 µl of 2x Denaturing solution at room temperature. The 

guanidinium thiocyanate in the denaturing solution would prevent RNA degradation. 

Thereafter, 600 µl Acid-Phenol:Chloroform was added and the eppendorf was 

vortexed for 30-60 secs. The eppendorf was subjected to centrifugation for 5 minutes 

at 12000 g at room temperature to separate the mixture into aqueous and organic 

phases. After centrifugation, the upper aqueous phase was carefully pipetted and 

transferred into a fresh tube. 1.25 volumes of 100% ethanol to the aqueous phase 

mixed thoroughly and applied to a filter cartridge provided in the kit. The cartridge 

containing tube was centrifuged at 12000 g for 1 minute and the flow through was 

discarded. After this, the filter was subjected to washes using 700 μl miRNA Wash 

Solution 1 (one time) and 500 μl Wash Solution 2/3 (2 times). After each wash the 

flow through was discarded and the filter was placed back in the collection tube. In 

the last step after the washes, the filter was placed in a new collection eppendorf, 50 

μl preheated nuclease free water was applied carefully to the centre of the filter and 

let to rest for 1 minute before subjecting to centrifugation for 1 minute at 12000 g. 

The eluate was collected, kept on ice and RNA concentration and quality was 

determined using Nanodrop. RNA was then stored at -80°C until further use (Figure 

2.4, B). 
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Figure 2.4: Spectrophotometric analysis of RNA samples (Nanodrop). Panel A 
and B are images taken from spectrophotometer for mRNA and miRNA (in total RNA) 
isolated respectively. RNA quality is shown by 260/280 and 260/230 ratios. Ratios 
between 2.0 and 1.8 confirm the good quality and purity of RNA extracted. 

2.7.2 Complimentary DNA strand synthesis  

2.7.2.1 cDNA synthesis using Tetro cDNA synthesis kit (for mRNA) 

Complementary DNA was generated from RNA template using Tetro cDNA synthesis 

kit (Bioline). The first strand cDNA generated was suitable for RT-PCR with gene 

specific primers (Figure 2.5). The tube prepared as per table 2.3 was transferred to a 

T100™ Thermal Cycler (Bio-Rad;45°C - 30 minutes, 85°C - 5 minutes, 4°C - 5 

minutes). 
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Table 2.3: Contents of first strand Tetro cDNA synthesis reaction. 
 

 

Figure 2.5: First strand cDNA synthesis. First Complementary DNA strand to 
mRNA was synthesized using Tetro cDNA synthesis kit (Bioline) that utilizes RT 
buffer. 
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       2.7.2.2 cDNA synthesis using TaqMan miRNA reverse transcription kit 

(ThermoFisher Scientific) 

miRNA cDNA synthesis involved a two-step process. First, a miRNA specific stem–

loop RT primer is hybridised to a single stranded miRNA and then reverse 

transcribed with a MultiScribe reverse transcriptase enzyme. RNA was diluted to the 

required concentration and added to 7 µl of RT master mix (containing RT buffer, 

dNTP, Rnase inhibitor, RT enzyme and water). This was subjected to centrifugation 

at 2000 g for 2 minutes (Table 2.4). Thereafter, RT primer for specific miRNA was 

added and the eppendorf was incubated on ice for 5 minutes before transferring to 

the thermocycler (16°C - 30 minutes, 42°C - 30 minutes, 85°C - 5 minutes). 

 

Table 2.4: Protocol for cDNA synthesis using TaqMan miRNA reverse 
transcription kit. 
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2.7.3 Quantitative real time PCR 

2.7.3.1 Validation of housekeeping genes and primers 

For normalising data in microRNA experiments, an endogenous reference miRNA 

was chosen from a panel of six different housekeeping genes (5.8S, U54, RNU49, 

RNT6B, RNU19 and U6; Figure 2.6). The data shown in is a representative of an 

experiment performed in triplicates. The Ct value (cycle threshold) for each gene 

gave an estimate of the target cDNA in the samples that is constant across different 

time points for housekeeping genes. The Ct values for all the housekeeping genes 

were plotted (BEAS-2B control and TGF-β1 treated cells) to look for any difference 

between the Ct values across the three time points. There was no statistical 

significant change between the Ct values across the three time points (for all genes).  

Although changes in expression of five different housekeeping was studied across 

various time points (untreated, 8 hrs and 24 hrs TGF-β1 treated BEAS-2B cells) U6 

was chosen as an endogenous reference gene for quantification of miRNA using 

qRT-PCR. This is because RNU6 has been used as an endogenous control for 

various studies and has shown to be constant across different cell types including 

human bronchial epithelial cells (Wong et al., 2007; Mujahid et al., 2013; Sohal et al., 

2013a; Solleti et al., 2017). 
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Figure 2.6: Validation of housekeeping genes. The Ct values for each of the six 
different housekeeping genes 5.8S, U54, RNU49, RNT6B, RNU19 and U6 was 
obtained by performing qRT-PCR of treated and untreated BEAS-2B cells. The 
expression level of each gene was then compared across treated and untreated time 
points using prism 6 software. This data is representative of one experiment done in 
triplicate. 

 

The primers for the target mRNA and miRNA were validated for their efficiency 

before proceeding with RT- PCR experiments (Table 2.5). To check for the efficiency 

and reliability of the primers used, the template cDNA of known concentration was 

serially diluted (1:10, 1:100, 1:1000 and 1:10000). The resultant Ct values were used 

to plot a standard curve to calculate q-PCR efficiencies. The standard curve was 

constructed by plotting the log of dilution factor against the Ct value obtained for each 

dilution. Each set of dilution was performed in triplicates to check for pipetting error. 

Using the slope (y) derived from standard curve, percentage amplification efficiency 

(E) was calculated using the formula E = [(10–1/slope)-1] × 100%. For the assay to be 

robust and reproducible, the efficiency should lie between 85- 105%. The efficiency 
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values for miR-200b, miR-146a, miR-34a, miR-21 and RNU6 primer ranged between 

93%-110% (Figure 2.7). 

 

Table 2.5: Details of primers used in qRT-PCR 

2.7.3.2 TaqMan probe assay 

TaqMan based chemistry involves use of sequence specific probes (SensiFast Probe 

assay, Bioline) carrying a fluorophore FAM at the 5’ end of probe 

(tetrachlorofluorescein) and quencher TAMRA (tetramethylrhodamine) at the 3’ end. 

During the annealing and extension phase of PCR, the probe is cleaved by the 5’ to 

3’ exonuclease activity of Taq DNA polymerase that results in separation of the 

fluorophore and quencher dyes thus resulting in detectable fluorescence (Figure 2.8). 

For mRNA and miRNA studies 10 µl SensiFAST™ Probe Hi-ROX mix (Bioline) was 

mixed with 2 µl cDNA prepared previously, 1 µl TaqMan primer-probe (Applied 

Biosystems) and 7 µl of Rnase free water was loaded in each well on a 96 well plate. 

The thermal cycling conditions were as described in table 2.6. 

∆∆CT based method was used to calculate the gene expression. The comparative 

ΔΔCT method first determined the ΔCT and the standard deviation of each sample. 

Following this, ΔΔCT was calculated after calculating the standard error for each 

sample. The final step involved determining the comparative fold change (2–∆∆CT) of 
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the gene in sample to the normalised sample. The formulae and calculations are as 

follows: 

ΔΔCT = ΔCT(1) - ΔCT(2) 

ΔCT(1) = CT of gene of interest - CT of housekeeping gene.  

ΔCT(2) = CT of gene of interest  control- CT of housekeeping gene control 

The data analysis was carried out using excel spreadsheet. 

 

Table 2.6: Real time PCR cycling conditions for mRNA and miRNA studies 
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Figure 2.7: RT-PCR miRNA primer efficiencies. Panel A to E shows efficiency of 
miR-200b, miR-146a, miR-34a, miR-21 and RNU6 primer. The reaction was run on 
Applied Bio systems (StepOnePlus) for 40 cycles. Efficiency (E) value was calculated 
from linear regression and x scale was converted to log scale. This data is 
representative of one experiment done in triplicate. 
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Figure 2.8: TaqMan probes in quantitative RT-PCR. A. The PCR primer and 
TaqMan probe anneal to target sequence during annealing step of PCR. The 
proximity between the reporter molecule and quencher keeps the fluorescence low. 
B. During the extension phase, Taq DNA polymerase extends the primer. Upon 
reaching the probe, the 5’ to 3’ exonuclease activity of the enzyme cleaves the 
fluorescent reporter (fluorophore) from the quencher and the fluorescent signal is 
then measured. 

 

2.8 miRNA transfection 

2.8.1 General principle 

Cationic lipids such as Lipofectamine transfection regents (ThermoFisher Scientific) 

assist in delivering DNA and RNA (including siRNA and miRNA) into cells. The 

structure of a cationic lipid comprises of a positively charged group and one/two 

hydrocarbon chains. The charged head group directs the interaction between the 

lipid and the phosphate backbone of the nucleic acid.  Positively charged liposomes 

mediate interaction between the nucleic acid and the cell membrane. This allows for 

the fusion of a liposome-nucleic acid transfection complex with the cell membrane 

(that is negatively charged). The complex enters into the cells through endocytosis. 

Therefore cationic lipids assist in delivering DNA/RNA into the cells mediating DNA or 

RNA –cellular interactions (Chesnoy and Huang, 2000; Hirko et al., 2003; Liu et al., 

2003). 
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Transfection strategies are classified into two types- stable and transient transfection. 

During stable transfection, nucleic acid integration persists in the cells long-term and 

is passed to subsequent generations after cell division (Felgner et al., 1987). When 

cells are transiently transfected, the transgene is introduced into the nucleus of the 

cell, but does not integrate into the chromosome. While transfected DNA is 

translocated into the nucleus for transcription, transfected siRNA/miRNA are found in 

the cytosol, where they bind to the mRNA to silence the target gene (also known as 

RNA Interference). Transiently transfected gene can be analysed within 24–96 hours 

after introduction. This process is most efficient when supercoiled plasmid DNA is 

used, although siRNAs miRNAs and mRNAs can also be transfected (Kim and 

Eberwine, 2010). 

2.8.2 Optimising transfection parameters 

It is crucial to maximize transfection efficiency while minimizing cell toxicity level 

during transfection. miRIDIAN microRNA Mimic Transfection Control (cel-miR-67) 

labelled with Dy547 was used to optimize transfection conditions, where Dy547 

labelling allowed monitoring delivery into cells. The miRIDIAN microRNA transfection 

reagents were suspended in RNase-free water (stock concentration = 20 μM) and 

aliquots were stored at -20°C to limit freeze thawing (Table 2.7). BEAS-2B cells were 

counted and re-suspended at a density of 40000 cells per well (seeding density: 

50000 cells/cm2) in an 8 well chamber slide (0.8cm2/well) containing Opti-MEM 

(ThermoFisher scientific) without antibiotic (e.g. Streptomycin, penicillin). The volume 

of transfection reagent, miRNA concentration and the length of exposure of cells to 

transfection reagent/miRNA complexes was optimised (Figure 2.9, n=2).  
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 Table 2.7: Summary of control transfection reagents  

 

Figure 2.9: Optimizing transfection conditions. BEAS-2B cells were seeded on a 
8 well chamber slide and transfected with 30nM transfection control for 48 and 72 hrs 
using 0.5, 0.75 and 1 µl transfection reagent (A). Transfection control concentration 
(10, 30 and 50nM) was also optimized using 1 µl transfection reagent at 48 hrs and 
72 hrs time point (B). This data is representative of two independent set of 
experiments, each done in triplicate. 
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The volume of transfection reagent was optimised by transfecting cells with 30nM 

transfection control for 48 and 72 hrs using 0.5, 0.75 and 1 µl transfection reagent 

prepared in Opti-MEM per well. The transfection control concentration was optimised 

by incubating cells with 10nM, 30nM and 50nM transfection control for 48 and 72 hrs 

while keeping Lipofectamine volume constant (1 µl). Cells were fixed with methanol 

and nuclei were stained using DAPI. Slides were visualised under a fluorescence 

microscope to assess the presence of transfection control. 

2.8.3 miRNA-200b Mimic and inhibitor optimisation 

BEAS-2B cells were transfected with 10nM, 30nM and 50nM miR-200b mimic 

(miRIDIAN microRNA Mimic, Dharmacon) and 10nM, 30nM, 50nM, 70nM and 90nM 

miR-200b inhibitor (miRIDIAN microRNA Hairpin Inhibitor, Dharmacon) for 24 hrs. 

RNA was isolated followed by cDNA synthesis and q-RT PCR was performed to 

evaluate changes in miR-200b mimic and inhibitor expression, E-Cadherin 

expression and fibronectin expression. Phenotypic changes in cell morphology were 

also recorded by capturing images at 48 hrs post-transfection (Figure 2.10 & 2.11, 

n=2). 
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Figure 2.10: miR-200b mimic concentration optimization in BEAS-2B cells. 
BEAS-2B cells were transfected with 10nM, 30nM and 50nM miR-200b mimics for 24 
hrs. RNA was isolated followed by cDNA synthesis and q-RT PCR was performed. 
Panel A shows phenotypic changes post transfection with varying concentration of 
miR-200b mimics. miR-200b gene expression (B) and corresponding E-Cadherin 
expression (C) profile was evaluated and plotted. The data was analysed by one way 
ANOVA followed by Bonferroni test [(*=p≤0.05) (**=p≤0.01) (***=p≤0.001)] compared 
to the control. The data is representative of two independent set of experiments, 
each done in triplicate.  
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Figure 2.11: miR-200b inhibitor concentration optimization in BEAS-2B cells. 
BEAS-2B cells were transfected with 10nM, 30nM,50nM, 70nM and 90nM miR-200b 
inhibitors for 24 hrs. RNA was isolated followed by cDNA synthesis and q-RT PCR 
was performed. Panel A shows phenotypic changes post transfection with varying 
concentration of miR-200b inhibitors. miR-200b gene expression (B) and 
corresponding fibronectin expression (C) profile was evaluated and plotted. The data 
was analysed by one way ANOVA followed by Bonferroni test (***=p≤0.001) 
compared to the control. The data is representative of two independent set of 
experiments, each done in triplicate.  
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2.8.4 TGF-β1 treatment and miRNA transient transfection 

Cells were cultured to reach 60% confluency and then transfected with 30nM miRNA 

using Lipofectamine transfection reagents in Opti-MEM medium as described in 

Table 4.2. A 30nM nonspecific miRNA (Qiagen, NSmiRNA) was used as a negative 

control for the transfection experiments. Cells were transfected for 24 hrs followed by 

treatment with 5ng/ml TGF-β1 for 48 hours. 

 

Table 2.8: Summary of transfection protocol (8 well-chamber slides & 6-well 
plate) 
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2.9 Statistical analysis 

For statistical analysis of data, Prism 6.0 (Graph Pad software, San Diego USA) was 

used. Comparison between two groups was performed by unpaired Student’s t-test. 

Comparison between more than two groups was performed using one way analysis 

of variance (ANOVA) or two way ANOVA followed by Bonferroni test as a post hoc 

test considering the significance at p≤0.05. In this study, * refers to p≤0.05, ** refers 

to P≤0.01, *** refers to p≤0.001 and **** refers to p≤0.0001. Densitometric analysis of 

western blotting data was performed using Alpha Imager software of Alpha Imager 

gel documentation system (Alpha innotech, USA). 
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Chapter 3: The effect of TGF-β1 stimulation in human lung 
epithelial cells  

3.1 Introduction 

EMT is a process by which epithelial cells lose their lineage specific characteristics 

and assume a mesenchymal phenotype. Although EMT is a vital part of foetal 

development, uncontrolled re-activation of this cellular process in adulthood may lead 

to tissue fibrosis/remodelling (Borthwick et al., 2009). Pathological findings in lung 

fibrosis are a consequence of disturbances in physiological processes such as 

proliferation and apoptosis of fibroblasts, and accumulation and breakdown of ECM. 

Several possible origins of ECM producing mesenchymal cells have been previously 

described that include lung fibroblasts (resident and systemic) and differentiation of 

other circulating fibrocytes or monocytes (Bucala et al., 1994; Hashimoto et al., 2004; 

Postlethwaite et al., 2004). The bronchial epithelium has been studied as a potential 

source of fibroblasts and myofibroblasts during the remodelling of airways. This 

bronchial remodelling is one of the main features of diseases including BOS (Pain et 

al., 2014).  

The crucial effector cell in pulmonary fibrosis is the myofibroblast, a differentiated 

fibroblast with contractile properties similar to smooth muscle cells. Myofibroblasts 

are characterised by the presence of α-SMA and minimal expression of epithelial cell 

characteristics such as E-Cadherin and cytokeratins. In addition to this, recent 

studies have implicated a cross-talk between damaged epithelial cells and lung 

myofibroblasts. This interplay imparts support to the process of pulmonary fibrosis, in 

which altered lung mesenchymal cells coupled with epithelial cell injury result in the 

accumulation of ECM and remodelling of the lung airways (Horowitz and Thannickal, 

2006; Wynn, 2011). Studies have also shown that EMT derived myofibroblasts may 
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be the primary source of excess scar tissue obstructing the small airways as 

observed in BOS (Felton et al., 2011).  

One of the most common stimulators of EMT evaluated by researchers is excess of 

TGF-β1. This multifunctional cytokine is involved in cell cycling, apoptosis and 

cellular differentiation. In excess TGF-β has been shown to induce EMT in various 

tissues (Willis and Borok, 2007). Subsequently, in vitro experiments have shown that 

primary bronchial epithelial cells undergo EMT when stimulated with TGF-β1 

(Borthwick et al., 2009). Previous studies have also reported abnormally elevated 

levels of TGF-β1 in BOS patients and have proposed that elevated TGF-β1 

aggravates BOS symptoms. Therefore, these findings support in vitro observation 

that increased levels of TGF-β1 leads to EMT (Ward et al., 2005). Hence, 

understanding of ECM components and stimulators of ECM remodelling in 

pulmonary fibrosis is crucial for presenting novel therapeutic strategies against BOS. 

In context, miRNAs have gained significant attention for their role as post-

transcriptional regulators of gene expression (Foshay and Gallicano, 2007). In 

addition to transcription factors such as ZEB1 (Eger et al., 2005) and ZEB2 (Comijn 

et al., 2001), miR-205, miR-146a and the miR-200 family have emerged as new 

epithelial markers and repressors of EMT (Gregory et al., 2008). In contrast, miR-21 

is upregulated in myofibroblasts during lung fibrosis and promotes TGF-β signalling. 

Therefore, miRNAs may be attractive candidates for preclinical studies as anti-fibrotic 

treatment for fibrosis (Yamada et al., 2013). 

3.2 Specific aims 

1. Optimizing TGF-β1 concentration required to induce EMT in lung epithelial cells. 
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2. Examining the expression of EMT markers in TGF-β1 treated A549 cells, BEAS-

2B cells and PBECs at the protein level. 

3. Evaluating the expression profile of selective miRNA candidates in TGF-β1 treated 

A549 cell line, BEAS-2B and PBECs (for various time points). 

4. miRNA profiling using NanoString® nCounter miRNA expression assay kit to 

identify expression of novel miRNAs in TGF-β1 treated and control BEAS-2B cells. 

3.3 Specific materials and methods 

3.3.1 Cell viability and proliferation assay 

BEAS-2B cells were cultured and grown in BEGM complete media, but for stress 

inducing studies, cells were incubated in resting media supplemented with ITS Liquid 

Media Supplement (Sigma Aldrich) to eliminate any chance of interference by media 

components present in complete medium and to synchronise cells in a non-dividing 

phase. A preliminary experiment was conducted to test BEAS-2B cells viability in 

resting media. Percentage cell viability at 12 hours and 36 hours was assessed in 

untreated control cells and 5ng/ml TGF-β1 treated cells (Figure 3.1, n=1). 
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Figure 3.1: Percentage viability was assessed at 12 hours and 36 hours in control 
and 5ng/ml TGF-β1 treated cells. Data is representative of one experiment performed 
in triplicate. 

A proliferation assay was conducted for duration of 4 days (96 hours). This study was 

performed to study the effect of 5ng/ml TGF-β1 on the cell number in incomplete 

media (BEBM supplemented with ITS). A549 and BEAS-2B cells were cultured 

(10,000 cells) in a 96 well plate at the start of the experiment in serum free media 

and the total cell number per well were counted every 24 hrs. Trypan blue staining 

was done to exclude dead cells that are permeable and can take up the dye. This 

study was performed to study the effect of TGF-β1 on the cell number in the absence 

of media components (Figure 3.2, n=1). 
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Figure 3.2: TGF-β (5ng/ml) positively regulates proliferation of A549 and BEAS-
2B cells. A proliferation assay was conducted for 4 days (96 hours) for A549 and 
BEAS-2B cells in serum free media and resting media supplemented with ITS 
respectively in the presence and absence of TGF-β1. The data was analysed by two 
way ANOVA followed by Bonferroni test [(*=p≤0.05) (***=p≤0.001) (****=p≤0.001)] 
compared to TGF-β1 treated cells. The data is representative of one experiment 
done in triplicate. 

 

3.3.2 NanoString technologies nCounter assay 

3.3.2.1 Principle and overview 

NanoString® nCounter technology is an alternative to traditional techniques such as 

q-RT-PCR and alternative approaches such as Affymetrix. This platform enables 

profiling individual miRNA/mRNA in a highly multiplexed reaction by assigning a 

unique fluorescently labelled probe to each entity. A computerised optical camera 

counts the probes that are bound to the target molecules. 

Since miRNAs are short sequences of about 20-22 nt, the initial step involves miRNA 

ligation to unique tags for downstream detection. A bridge sequence partially 

complements to the miRNA and partially to the miRtag sequence assists in ligating 

the two. Thereafter excess of tag are washed away and bridge is enzymatically 

removed in a single tube reaction. NanoString nCounter technology relies on the use 

and detection of colour coded probe pair. Reporter probe carries the signal on the 5’ 
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end and capture probe is attached with biotin at the 3’ end. The coloured tag bound 

to biotin acts as a barcode that comprises of four colours in six positions and is 

indicative of a specific gene it refers to. After hybridisation, excess probes are 

washed away and the capture probes enable immobilisation of the complex on the 

nCounter cartridge surface for data collection. Thereafter the cartridge is placed in 

the nCounter digital analyser unit. The copies for each unique coded miRNA are 

counted. NanoString doesn’t require any pre-amplification step and therefore there is 

no possibility of any amplification bias (Figure 3.3). 

3.3.2.2 Data analysis 

NanoString miRNA assay were performed using 100ng total RNA isolated from 

BEAS-2B cells for various time points (control, 1 hr, 4 hrs and 24 hrs post 5ng/ml 

TGF-β1 treatment). Hybridization reactions were conducted according to 

manufacturer’s protocol followed with reading by NanoString nCounter analyser. The 

data was imported and normalized using nSolver software (provided by NanoString).  

Raw data obtained was first normalized against negative control that helps confirm 

specificity of the ligation reaction and provide a means to estimate background 

hybridization counts. Background threshold is defined as the mean of all the negative 

probes. Once the background threshold is determined, it is possible to determine the 

true counts.  

Second, positive control normalization allows assessment of sample preparation 

conditions such as annealing and ligation with their unique tags in the reaction tubes 

with their miRNAs. Data was normalized to internal positive controls that are 

independent of the sample and thus help in eliminating variability unrelated to the 

sample. Further normalization steps were also carried out as follows: 
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• Normalization to the internal mRNA controls: The miRNA code-set comprises 

of five highly expressed mRNA sequences namely ACTB, B2M, GAPDH, RPL19 and 

RPL0. These controls are used to confirm and normalize successful hybridization 

and variations in the sample input respectively. 

• Normalization to highest expressed miRNAs in an assayed sample: 

Calculating the mean count of top 100 miRNAs with the highest counts generates a 

normalization factor. Thereafter the normalization factor is multiplied to the counts in 

each column.  

The data was then exported from the nSolver software and further analysed and 

visualised using R studio software. R studio helps in reducing the variability between 

similar groups (such as control 1 and control 2, 1 hr-set 1 and 1 hr-set 2). Correlation 

plots (Figure 3.4), Volcano plots and heat maps can be generated using R-studio 

which gives a better understanding of the expression pattern of miRNAs across 

various time points. 
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Figure 3.3: Schematic representation of NanoString® nCounter miRNA assay. 
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Figure 3.4: Scatterplot of log control ratio. The plot depicts a strong positive 
association (r value= 0.91) between control 1 and control 2 data sets. This suggests 
that the expression of miRNAs in control 1 and control 2 data sets are similar and 
there is acceptable variability of gene expression across the two control wells used in 
the NanoString nCounter assay. 

 

3.4 Results 

3.4.1 TGF-β1 induces EMT in a concentration dependent manner in 

A549 cells 

To determine the optimum concentration required for TGF-β1 to initiate EMT in cell 

culture, A549 cells were stimulated with varying concentration of TGF-β1 (0.5ng/ml, 

1ng/ml, 2ng/ml, 5ng/ml and 10ng/ml) for 72 hrs. Treatment with 2ng/ml (p≤0.05), 

5ng/ml (p≤0.001) and 10ng/ml (p≤0.01) TGF-β1 significantly reduced the expression 
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of E-cadherin at RNA level. 5ng/ml of TGF-β1 stimulation showed maximum 

reduction in E-Cadherin marker (Figure 3.5, n=2). The expression was normalised 

using endogenous control gene HPRT1 and compared to the untreated control. 

Subsequently, phenotypic changes in cell morphology were examined (Figure 3.6). 

A549 cells acquired mesenchymal like phenotype and displayed reduced cell-cell 

contact and an elongated morphology when treated with 5ng/ml TGF-β1 for 72 hours 

while untreated cells retained a characteristic epithelial, “cobblestone/pebble” 

morphology. Thus, 5ng/ml of TGF-β1 was used in further experiments to induce 

EMT. These results suggest that lung epithelial cells demonstrate loss of epithelial 

cell markers and transition into a mesenchymal like phenotype upon TGF-β1 

treatment leading to deposition of matrix proteins. 

3.4.2 TGF-β1 induces EMT in A549, BEAS-2B cells and PBECs 

Changes at protein expression were examined using immunofluorescence and 

western blotting to further comprehend changes in EMT markers.  A549 is a cancer 

cell line and may not reflect the miRNA profile exhibited by normal alveolar epithelial 

cells. Moreover studies have indicated abnormal miRNA expression in normal A549 

cell line (Kasai et al., 2005a). Also since BOS is an airway disease, it is crucial to 

assess the relevance of observations by replicating the study using bronchial 

epithelial cells. Therefore, although initial study was performed using A549 cell line, 

further studies involved use of only BEAS-2B cells and PBECs. 
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Figure 3.5: E-cadherin expression changes in TGF-β1 stimulated A549 cell line.  
A549 cells were incubated with upto 10ng/ml of TGF-β1 in serum free media for 72 
hours. The data was analysed by one way ANOVA followed by Bonferroni test 
[(*=p≤0.05) (***=p≤0.001)] compared to control. The data is representative of two 
independent set of experiments, each done in triplicate. 

 

 
Figure 3.6: TGF-β1 treatment induces morphological changes in the A549 cell 
line.  A549 cells were incubated with varying concentration of TGF-β1 in serum free 
media for 72 hours. Untreated cells (control) displayed pebble shaped morphology 
while 5ng/ml TGF-β1 stimulated cells showed reduced cell-cell contact and acquired 
fibrotic phenotype. Images were captured using a bright field microscope (X20). 

 

3.4.2.1 Immunofluorescence  

Cell viability and proliferation study was performed prior to conducting experiments at 

RNA and protein level. No change in viability between control and BEAS-2B treated 

cells was observed upto 36 hrs in resting or incomplete media (Figure 3.1). 

Furthermore, proliferation assay in TGF-β1 treated A549 (A) and BEAS-2B (B)  cells 
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suggested a significant increase in cell number at 48 hrs (p≤0.05, p≤0.05) 72 hrs 

(p≤0.05, p≤0.0001) and 96 hrs (p≤0.001, p≤0.0001) time point as compared to their 

respective untreated controls (Figure 3.2). 

A significant reduction in epithelial cell markers E-Cadherin and cytokeratin 19 was 

observed at 72 hrs after TGF-β1 treatment in A549 cells (both p≤0.0001; Figure 3.7, 

n=3), BEAS-2B cells (p≤0.001 and p≤0.01; Figure 3.8, n=3) and PBECs (both 

p≤0.001; Figure 3.9, n=3). Subsequently, there was significant increase in the 

expression of mesenchymal markers fibronectin and α-SMA post TGF-β1 treatment 

in A549 cells (both p≤0.0001), BEAS-2B cells (p≤0.001 and p≤0.01) and PBECs 

(both p≤0.001).  

3.4.2.2 Western blotting 

Western Blot was performed to examine and confirm the protein expression pattern 

obtained from immunofluorescence results. Results showed an increase in the 

mesenchymal cell markers Fibronectin and α-SMA while a reduction in the 

expression of E-Cadherin and cytokeratin 19 post TGF-β1 treatment when compared 

to the untreated A549 and BEAS-2B cells respectively. The PVDF membranes were 

stripped and reprobed for housekeeping gene, GAPDH. Densitometric analysis was 

performed using Alpha Imager gel documentation system and a ratio of relative 

expression of target protein and relative expression of GAPDH was plotted (Alpha 

innotech, USA) (Figure 3.10). This confirmed that TGF-β1 induced increased 

expression of mesenchymal cell surface markers while reducing epithelial markers at 

protein level. 
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Figure 3.7: Immunofluorescence of TGF-β1 treated A549 cells. Serum starved 
cells were treated with 5ng/ml of TGF-β1 for 72 hours in 8 well chamber slides 
followed by methanol fixing. Slides were incubated with primary and secondary 
antibody for 24 hrs each following which DAPI staining was done. Mounting medium 
was used and cover slips were placed onto the chamber slides. The cells were 
visualised and pictures were captured under a Zeiss microscope at 40X 
magnification .The area of florescence per cell was calculated using Image J 
software and graphs were made in Prism 6. The data was analysed by unpaired t-
test (****=p≤0.0001). The statistical data is representative of three set of independent 
experiments, each done in triplicate. Scale bar, 100µm 
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Figure 3.8: Immunofluorescence of TGF-β1 treated BEAS-2B cells. Serum 
starved cells were treated with 5ng/ml of TGF-β1 for 72 hours in 8 well chamber 
slides followed by methanol fixing. Slides were incubated with primary and secondary 
antibody for 24 hrs each following which DAPI staining was done. Mounting medium 
was used and cover slips were placed onto the chamber slides. The cells were 
visualised and pictures were captured under a Zeiss microscope at 40X 
magnification. The area of florescence per cell was calculated using Image J 
software and graphs were made in Prism 6. The data was analysed by unpaired t-
test [(**=p≤0.01) (***=p≤0.001)]. The statistical data is representative of three set of 
independent experiments, each done in triplicate. Scale bar, 100µm  
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Figure 3.9: Immunofluorescence of TGF-β1 treated PBECs. Serum starved cells 
were treated with 5ng/ml of TGF-β1 for 72 hours in 8 well chamber slides followed by 
methanol fixing. Slides were incubated with primary and secondary antibody for 24 
hrs each following which DAPI staining was done. Mounting medium was used and 
cover slips were placed onto the chamber slides. The cells were visualised and 
pictures were captured under a Zeiss microscope at 40X magnification. The area of 
florescence per cell was calculated using Image J software and graphs were made in 
Prism 6. The data was analysed by unpaired t-test (***=p≤0.001). The statistical data 
is representative of three set of independent experiments, each done in triplicate. 
Scale bar, 100µm 
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Figure 3.10: Western Blot and densitometry analysis for A549 and BEAS-2B 
cells.  Serum starved cells were treated with 5ng/ml of TGF-β1 for 72 hours followed 
by cell lysis and western blot. The membrane was probed with various antibodies. 
The same membrane was stripped and reprobed for GAPDH (A; endogenous 
control). Densitometric analysis was performed using Alpha Imager software and 
plotted using Prism 6 (B).  

 

3.4.3 miRNA expression profile in TGF-β1 stimulated versus 

untreated A549 and PBECS 

Expression levels of selected miRNAs- miR-146a, miR-34a, miR-21 and miR-200b 

involved in fibrosis and inflammation were analysed initially in TGF-β1 stimulated 
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A549 cells and then in treated PBECs. An initial study was performed using A549 

cells at 1 hr, 2 hrs, 4 hrs, 8 hrs, 12 hrs and 24 hrs post TGF-β1 treatment in order to 

reveal time points suggesting significant changes in miRNA expression (n=2; Figure 

3.11). All miRNA experiments were normalized to an endogenous control U6 and 

compared to untreated samples.  

Further study was performed using PBECs at 1 hr, 2 hrs and 24 hrs post TGF-β1 

stimulation. miR-21 expression (a marker of fibrosis) significantly peaked at 1 hr 

(p≤0.05) but was downregulated at 2 hrs and 24 hrs (both p≤0.001) post treatment. 

While there was no significant change observed in the expression profile of miR-34a, 

miR-200b that is otherwise well expressed in healthy epithelial cells was 

downregulated significantly at 1 hr (p≤0.05), 2hrs (p≤0.001) and 24 hrs (p≤0.05) post 

treatment. This correlated well with changes in EMT marker expression studied 

previously at RNA and protein level since reduction in miR-200b expression has 

been found to be associated with fibrosis (Yang et al., 2012a). Lastly, the expression 

of miR-146a involved in inflammation showed an increased trend of expression and 

was significantly upregulated at 2 hrs and 24 hrs post TGF-β1 stimulation (n=1; 

Figure 3.12). 
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Figure 3.11: Studying miRNA expression in response to TGF-β1 stimuation at 
various time points in A549 cell line. The graphs show analysis of (A) miR-21, (B) 
miR-146a, (C) miR-34a and (D) miR-200b expression at 1hrs, 2hrs,4hrs,8hrs,12hrs 
and 24hrs post TGF-β1 treatment for two independent experiments normalised to U6 
and expression levels compared to untreated control. The data was analysed by one 
way ANOVA followed by Bonferroni test [(*=p≤0.05) (**=p≤0.01)] compared to the 
control. The data is representative of two independent set of experiments, each done 
in triplicate. 
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Figure 3.12: miRNA profiling in PBECs following TGF-β1 stimuation . The 
graphs show analysis of miR-21, miR-146a, miR-34a and miR-200b expression at 
1hrs, 2hrs and 24hrs post TGF-β1 treatment normalised to U6 and expression levels 
compared to untreated control. The data was analysed by one way ANOVA followed 
by Bonferroni test [(*=p≤0.05) (**=p≤0.01) (***=p≤0.001)] compared to the control. 
The data is representative of one experiment done in triplicate.  

 

3.4.4 miR-200b expression profile in TGF-β1 stimulated versus 

untreated in BEAS-2B cells 

Since A549 cells display aberrant expression of miRNAs that are normally expressed 

in low levels in healthy epithelium, further studies were performed using BEAS-2B 

cell line that resemble cells of the airway epithelium (Jeong et al., 2011; He et al., 

2012). The expression of miR-200b was also studied in control (untreated cells) and 

TGF-β1 stimulated BEAS-2B cells (n=3, Figure 3.13). BEAS-2B cell line 
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morphologically mimics the bronchial epithelium of the respiratory tract and 

represented a second best option after PBECs that were not available at all times. 

MiR-200b was significantly downregulated at all-time points post treatment (p≤0.001). 

Similar trend of miR-200b was noted in PBECs (section 3.4.3) suggesting a role of 

miR-200b in TGF-β1 induced EMT in bronchial epithelial cells. 

 

Figure 3.13: TGF-β1 induced downregulation of miR-200b in BEAS-2B cells. 
Graph shows analysis of miR-200b at 1 hr, 2 hrs 4 hrs and 24 hrs post treatment with 
5ng/ml TGF-β1 normalized to U6 and expression levels compared to untreated 
control. The data was analysed by one way ANOVA followed by Bonferroni test 
(***=p≤0.001) compared to the control. The data is representative of three 
independent set of experiments, each done in triplicate. 

 

3.4.5 MiRNA profiling using NanoString® nCounter miRNA 

expression assay in BEAS-2B cells and miRNA target identification. 

To investigate the role of miRNAs in BOS, miRNA profiling was performed using 

Nanostring technology (n=2). Hierarchical clustering (Figure 3.14A) of 130 most 

differently expressed miRNAs (control versus various time points) was determined 

using R (version 3.1.3) and a heatmap was generated (using R; heatmap function).  

The differential expression of miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-

3p, miR-141-3p and miR-429) between the control and TGF-β1 treated samples was 

found interesting due to their key role in regulating EMT (Figure 3.14B). MiR-200b-3p 



 

104 
 

and miR-200c-3p were downregulated at all-time points post TGF-β1 treatment. 

Expression profile of miR-200b was previously studied in TGF-β1 treated BEAS-2B 

cells at various time points (Figure 3.13). NanoString authenticated the expression 

trend of this miRNA candidate. The expression profile was further validated using q-

RT-PCR (n=2, Figure 3.14C) that also suggested a significant decrease at 4 hrs 

(p<0.05) and 24 hrs (p<0.001) in response to TGF-β1 treatment (n=2). Results 

suggested a significant decrease in miR-200b-3p expression upon TGF-β1 

treatment, which was also associated with loss in epithelial cell markers.  

 

Figure 3.14: miRNA profiling using Nanostring nCounter assay. BEAS-2B cells 
were treated with 5ng/ml TGF-β1 for 1 hr, 4 and 24 hrs and total RNA was isolated. 
Each sample was then assayed for expression of miRNA using Nanostring nCounter 
assay. A heatmap (A) was generated demonstrating differential expression of 
miRNAs in all samples where an increased intensity of blue signifies increased 
expression while (B) is expression profile of miR-200 family. For NanoString data, 
two independent set of experiments were performed, each done once. The 
expression profile of miR-200b was validated by q-RT-PCR and data was analysed 
by one way ANOVA followed by Bonferroni test [(*=p≤0.05) (***=p≤0.001)] compared 
to the control. This data is representative of two independent experiment, each done 
in triplicate (C).  
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3.5 Discussion 

This project was an attempt to challenge cells via TGF-β1 stimulation and study the 

expression levels of selective miRNAs thought to be involved in early and late lung 

allograft injury. This was done with a view to elucidating candidates that may be 

biomarkers for early prediction of graft rejection and which may represent novel 

targets of therapeutic modulation.  

An optimum concentration of TGF-β1 (5ng/ml) was determined to stimulate A549 

cells and BEAS-2B cells. Published studies also suggest that 5ng/ml of TGF-β1 

induces morphological changes in BEAS-2B cells (Doerner and Zuraw, 2009a). 

Viability and proliferation studies were conducted to ensure there was no significant 

cell death in control and test sample as cells were incubated in serum free medium 

throughout the treatment. This allowed studying the effect of TGF-β1 alone without 

the confounding effects associated with active cell proliferation driven by the 

components of complete medium. 

To confirm the pro-fibrotic effect of TGF-β1 in airway epithelial cells, 

immunofluorescence and western blot studies were performed using A549 cells, 

BEAS-2B cells and PBECs. An increase in mesenchymal markers α-SMA and 

fibronectin and significant reduction in E-cadherin and cytokeratin-19 clearly 

indicated TGF-β1 induced EMT. This is supported by studies that have demonstrated 

that alveolar epithelial cells and bronchial epithelial cells undergo EMT as evidenced 

by loss of epithelial cell markers cytokeratins and ZO-1 and upregulation of 

mesenchymal markers α-SMA, vimentin and type 1 collagen (Willis et al., 2005; 

Doerner and Zuraw, 2009a). Post lung transplantation, epithelial cell damage and 

EMT occurs because of initial graft injury due to alloimmune and non-alloimmune 

factors. In response to injury and inflammation, epithelial cell repair activates several 
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downstream fibrotic markers that lead to deposition of extracellular matrix that 

eventually obstructs the small airways leading to BOS (Martin, 1999; Meloni et al., 

2004; Deslee et al., 2007). TGF-β1 signalling controls various cellular processes that 

triggers downstream activation of Smad proteins that regulate the transcription of 

various genes. Smad signalling allows TGF-β1 induced protein expression leading to 

upregulation of α-SMA, collagen and vimentin and reduction in epithelial cell markers, 

E-Cadherin and ZO-1(Xie et al., 2004).  

MiRNA studies were conducted by stimulating A549 cells for 1 hr, 2 hrs, 4 hrs, 8 hrs, 

12 hrs and 24 hrs with 5ng/ml TGF-β1. Recent studies have shown rapid changes in 

significantly important miRNA candidates as early as 24 hrs to 72 hrs post 

transplantation. The literature has shown that changes in selective circulating miRNA 

had strong co-relation to early myocardial injury after heart transplantation (Nazarov 

et al., 2013; Wang et al., 2013). A similar study investigated the role of selective 

miRNAs in early ischemia and further confirmed the results in a neuroblastoma cell 

line subjected to ischaemic insult (Dhiraj et al., 2013). These studies suggest the 

importance of investigating miRNA expression profile for the earlier time points.  

Studies have indicated that the A549 cell line exhibits aberrant expression of miRNA 

involved in cell cycle progression and proliferation. MiR-200b, miR-21 

(downregulates tumor suppressor genes), miR-182, miR-375 expression were found 

to be overexpressed in lung adenocarcinoma specimens when compared to samples 

from healthy individuals. However, tumor suppressor miRNAs- miR-145, miR-126 

and miR-486 were expressed in low levels in tumor samples (Yu et al., 2010; Boeri et 

al., 2011; Peng et al., 2013). This variability restricts studying the expression of 

miRNAs in the A549 cell line. However, studies have showed that the normal human 

bronchial epithelial cells express miR-200b, miR-200c, miR-34a and other miRNAs 
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involved in the regulation of the cell cycle, maintaining epithelial framework and cell 

proliferation while miR-155 that has a role in inflammation is expressed in very low 

levels  (Martinez-Anton et al., 2013; Guz et al., 2014). Therefore, further miRNA 

studies were conducted using cell line (BEAS-2B) and cells (PBECs) derived from 

human bronchial epithelial cells. 

Since miRNA-200b expression was significantly downregulated in TGF-β1 stimulated 

A549 cell line, its expression profile was further investigated in PBECs and BEAS-2B 

cells. The results indicated significant downregulation in miR-200b expression in 

PBECs that could be correlated to changes in EMT marker expression studied 

previously. MiR-200b has been reported as maintaining the epithelial framework and 

is only expressed in cells exhibiting epithelial markers and has also been shown to 

reverse EMT (Park et al., 2008; Lim et al., 2013). In BEAS-2B cells, miR-200b 

expression significantly reduced with increasing TGF-β1 stimulation time as observed 

in PBECs. These result were consistent with data from a study performed in kidney 

proximal tubular epithelial cells (Xiong et al., 2012a).  

NanoString has not only been used to validate results of other platforms such as 

RNA sequencing (Sabo et al., 2014) but also is the favoured technique over 

microarray and NGS (Chatterjee et al., 2015). A higher number of miRNAs have 

been detected with high stringency and technical replicates are not required as 

excellent reproducibility has been previously demonstrated when using NanoString 

nCounter platform (Balko et al., 2012). Therefore, in my study TGF-β1 stimulated 

BEAS-2B cells were subjected to miRNA screening using Nanostring nCounter 

assay. The results showed the differential expression of the miR-200 family between 

the control and TGF-β1 treated samples occurring during EMT. It is of interest that in 

limited previous literature the miR-200 family has also been described as regulating 
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EMT in kidney studies and cancer progression (Sun et al., 2012). Thus, these results 

suggested the need to investigate the potential role of miR-200b in BOS by 

manipulating its expression in order to study its effect on TGF-β1 treated cells. 
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Chapter 4: Role of miRNA-200b in repressing TGF-β1 induced 
EMT in BEAS-2B and primary bronchial epithelial cells 

4.1 Introduction 

Dysregulated expression of miRNA is increasingly implicated in various airway 

diseases and may play an important role in fibrosis; however, a role in BOS is not 

established. MiRNAs are small non coding RNAs wherein the seed region (2-8 

bases) of the miRNA predominately targets the 3’ untranslated region (3’ UTR) of 

mRNA leading to degradation, or inhibition of translation (Agarwal et al., 2015; Lin 

and Gregory, 2015). Since a single miRNA has the potential of targeting more than 

one mRNA target, they have a suggested role in modulating multiple biological 

pathways. This induces modulating inflammation (Lv et al., 2016), amplifying the 

inflammatory microenvironment (McDonald et al., 2016) and predisposing epithelial 

cells to undergo EMT that leads to extracellular matrix (ECM) deposition and fibrosis 

(Suwara et al., 2014; Jonas and Izaurralde, 2015; Xu et al., 2015a). 

TGF-β1 is a potent inducer of EMT and the SMAD signalling pathway components 

governs its downstream effects. Once activated the SMAD complex translocates into 

the nucleus and activates genes involved in fibrosis. MiR-200b plays an important 

role in regulating EMT in renal proximal cells by preventing renal fibrosis. 

Experiments confirmed the effect of miR-200b on TGF-β1 induced EMT by 

transfecting HK2 cells with miR-200b mimics prior to exposing cells to TGF-β1 

treatment. Results suggested restoration of TGF-β1 induced downregulation of E-

Cadherin levels when miR-200b mimics were added to cell culture. Furthermore, 

miR-200b also suppressed the expression of fibronectin suggesting a potential 

reversal of EMT mediated fibrosis (Martinez-Anton et al., 2013; Tang et al., 2013; 

Saikumar et al., 2014). In 2008, pioneering work achieved by Gregory et al 
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demonstrated miR-200b as a key candidate in regulating EMT by targeting ZEB1 and 

ZEB2 transcription factors in an immortalised model of distal tubular cells (Gregory et 

al., 2011). Subsequently miR-200b was shown to prevent TGF-β1 induced ECM 

production in in vitro models of rat tubular epithelial cells (Xiong et al., 2012a). These 

findings suggest that miR-200b is an important candidate involved in fibrosis but its 

role in preventing airway/lung injury and molecular mechanisms involved remain 

unclear. 

4.2 Specific aims 

1. Determine whether manipulating the concentration of miR-200b (using mimics and 

inhibitors) leads to a change in expression of EMT markers in BEAS-2B cells and 

PBECs. 

2. Examine the expression of specific predicted miR-200b target genes in BEAS-2B 

cells, PBECs and patient cells derived post lung transplant. 

3. Study the expression of miR-200b target genes that are transcription factors 

involved in TGF-β signalling.  

4. Validate the miR-200b direct targets- ZEB2 and ZNF532 using the pmiRGLO 

miRNA luciferase assay system. 

5. Perform in-situ detection of miR-200b in paraffin embedded, human lung sections. 

4.3 Specific materials and methods 

4.3.1 In-situ hybridisation 

4.3.1.1 Overview 

In situ hybridization (ISH) is one of the most common methods for visualizing gene 

expression and localization in cells and specific tissue. The principle behind ISH is 
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the specific annealing of a labelled nucleic acid probe to its complementary 

sequences in fixed tissue, followed by visualisation of the localised probe. This 

technique can be used to detect mRNA, small RNAs such as miRNAs and DNA 

molecules (Jørgensen et al., 2010). 

The miRCURY LNA™ microRNA ISH Optimization kit (FFPE) (Exiqon, Denmark) 

allows for detection of microRNA in FFPE tissue sections using a non-mammalian 

hapten digoxigenin (DIG) labelling. During the protocol miRNAs are unmasked using 

Proteinase-K treatment that allows the entry of double-DIG labelled probes 

(mimic/inhibitor; Exiqon) to hybridise to the complementary miRNA sequence present 

in the tissue. The digoxygenins are recognised by DIG specific (Anti-DIG) antibody 

coupled with the enzyme alkaline phosphatase (AP).  Upon introduction of AP 

substrate, the enzyme converts the soluble substrate 4-nitro-blue tetrazolium (NBT) 

and 5-bromo-4-chloro-3’- indolylphosphate (BCIP) into a water and alcohol insoluble 

dark-blue NBT-BCIP precipitates. Finally, a nuclear counter stain is used to allow 

better histological resolution (Figure 4.1). 

The ISH protocol was optimised. Protocol parameters such as hybridisation 

temperature and Proteinase-K treatment (duration of incubation and concentration) 

were initially optimised. Using the optimised parameters, a range of probe 

concentrations were tested in order to achieve a strong specific ISH signal for the 

positive control miRNA and no/minimum signal for the scrambled negative control 

miRNA. Finally, detection of the miRNA of interest was carried out at the optimised 

concentration (Kloosterman et al., 2006).  
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Figure 4.1: Schematic diagram of in situ hybridisation (ISH) technique for 
miRNA detection using double-DIG-labelled LNA™ probes. 
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4.3.1.2 Hybridization and visualization 

A double DIG labelled (5’ and 3’) miRCURY LNA miRNA detection probe (Exiqon, 

Denmark) was used to detect the endogenous expression of miR-200b. 

Deparaffinised lung sections were treated with 15μg/ml Proteinase-K buffer for 10 

minutes at 37°C. The sections were hybridised at 50°C (30°C lower than the probe 

Tm) for 18 hrs in hybridization mix containing 40nM miR-200b DIG-labelled probes or 

40nM of scrambled miRNA probes or 40nM of positive control miRNA probes (miR-

126). Sections were washed with decreasing standard saline citrate buffer 

concentration (5xSSC, 1xSSC and 0.2xSSC) at hybridization temperature (for 5 

minutes each). For immunostaining, sections were incubated with 1: 800 anti-DIG 

reagents (Roche) for 1 hr at room temperature followed by incubation with AP 

substrate (Roche) for 1.5 hrs at 30°C. Nuclear Fast Red (Vector Laboratories) was 

applied for 1 minute and nuclei were counterstained. Sections were mounted using 

Eukitt (Sigma) mounting medium. 

4.3.2 TGF-β TaqMan Array, Human TGF-β-Pathway 

4.3.2.1 Overview 

The panel of TGF-β TaqMan Array comprises of target genes encoding members of 

TGF-β superfamily ligands. This includes TGF-β family, BMPs, GDFs, AMH, activin, 

inhibin and Nodal. The panel also includes gene coding for TGF-β receptors, SMAD 

family that are central to the TGF-β signal transduction pathway (Figure 4.2). The 

TGF-β pathway array plate consists of 92 assays to TGF-β associated genes and 4 

assays to endogenous control genes (ThermoFisher Scientific). 

 



 

114 
 

 
 

Figure 4.2: TGF-β superfamily signalling pathway. The superfamily is comprised 
of 30 members including Activins, Inhibins, Nodals, Bone Morphogenetic proteins 
(BMPs) and Growth differentiation Factors (GDFs). TGF-β superfamily ligands signal 
via cell-surface serine/threonine kinase receptors to the intracellular SMAD proteins, 
which in turn translocate to the nucleus to regulate gene expression. In addition to 
this cascade, SMAD-independent pathways are also activated in a cell specific 
manner to transduce TGF-β signals.  

 

4.3.2.2 Protocol and data analysis 

BEAS-2B cells were cultured in four T75 flasks and grown until they were 60-70% 

confluent. Two flasks were transfected with 30nM miR-200b mimics for 24 hrs out of 

which one flask was further subjected to treatment with 5ng/ml TGF-β1 for 48 hrs. 

The cells in the third flask were treated with only TGF-β1 for 48 hrs. And the last flask 

consisted of control/untreated cells. Thereafter total RNA was isolated using 

miRVana Paris kit (Applied Biosystems) and stored at -80°C until further use. 
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The TaqMan® Array Plate was subjected to centrifugation at 300g for 1 min before 

loading the TaQman mastermix and cDNA. 50ng of cDNA and SensiFAST™ Probe 

Hi-ROX mastermix (Bioline) per 10µl reaction was loaded per well and the fast 

thermal cycling conditions were specified prior to running the plate on StepOnePlus 

system (Table 4.1). 

 

Table 4.1: Cycling conditions for TaqMan array assay. 

After completion of the run, Ct values acquired from the StepOnePlus sytem was 

uploaded on RT2 profiler software (Qiagen) available online. This software allowed 

normalising the expression of genes to the endogenous houskeeping genes such as 

HPRT1 and 18s. The expression of each gene in miR-200b transfected, TGF-β 

treated and miR-200b transfected followed by TGF-β treatment was also compared 

to the untreated control and fold change was evaluated. A heat map of differently 

expressed genes  (p<0.05) was also plotted using this  online software (Figure 4.3). 
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Figure 4.3: Clustering of genes regulated by TGF-β. A heat map of significantly 
expressed genes was plotted using RT2 profiler software (Qiagen). TGF-β pathway 
array was used to study the differentially expressed genes in control, miR-200b 
transfected, TGF-β treated and miR-200b transfected and TGF-β treated BEAS-2B 
cells. Expression levels were normalized to the housekeeping gene HPRT1. 

 

4.3.3 Reporter gene assay 

4.3.3.1 Overview -pmiRGLO dual luciferase miRNA expression vector 

The pmiRGLO Vector allows quantitative evaluation of miRNA activity by the 

insertion of miRNA binding regions/target sites downstream of 3´ region of the firefly 

luciferase gene (luc2). Reduced firefly luciferase expression indicates the binding of 

endogenous or introduced miRNAs to the cloned miRNA target sequence. This 

vector system is based on the dual-luciferase technology comprising of luc2 gene 

that is the primary reporter to monitor mRNA regulation. It also includes Renilla 

luciferase (hRluc-neo) that acts as a control reporter for normalization and selection 

using the Dual-Luciferase Assay. In addition, the vector contains the following 

features (Coré; Aldred et al., 2011): 

1. Non-viral universal human phosphoglycerate kinase (PGK) promoter: This 

promoter present upstream of the luc2 gene provides low translational expression 

that leads to desired repose such as a reduction in signal. 

2. Multiple cloning site (MCS): This is located downstream of the luc2 gene and 

contains unique restriction sites that occur only once within a given plasmid such as 
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XhoI and SacI. Hence, cutting the plasmid with one of the restriction enzymes may 

serve to insert the miRNA target sequence. 

3. SV40 late poly(A) signal sequence positioned downstream of luc2 gene is 

responsible for transcription termination and mRNA polyadenylation. 

4. Ampicillin (Ampr) gene allows for selecting bacterial colonies that contain the 

plasmid. 

Bacterial transformation was carried out using pmiRGLO miRNA expression vector 

(Promega, San Luis Obispo, CA, USA). Thereafter, plasmid DNA was isolated, 

lineralised and purified. On the other hand, primers were designed for ZEB2 and 

ZNF532 in order to generate inserts (3’UTR region of ZEB2 and ZNF532 containing 

binding sites for miR-200b) using DNA isolated from BEAS-2B cells. The inserts were 

then purified. The purified inserts were then incorporated into the pmiRGLO vector 

using infusion cloning and sent for sequencing to verify successful cloning. 

Thereafter, luciferase assay was performed after co-transfectiong BEAS-2B cells and 

PBECs with the vector containing the insert and miRNA-200b/200c mimic (Figure 

4.4). 
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Figure 4.4: Flowchart illustrating the steps involved in generating miRNA 
expression vector system with ZEB2/ZNF532 3’ UTR insert. 

 

4.3.3.2 Bacterial transformation, plasmid DNA isolation and plasmid 

restriction enzyme digestion and purification. 

DH5α bacteria (50µl) were transformed using 10ng of pmiRGLO vector. A negative 

control containing only bacteria and 2.5µl of pUC19 (100pg/µl) as positive control 

was also included. The eppendorfs were incubated on ice for 30 minutes, subjected 

to heat shock for 30 seconds at 42˚C and then incubated on ice for 2 minutes. 

Bacteria containing the plasmid were incubated for 1 hour at 37˚C in 950µl of LB 

(Lennox) broth growth medium (Sigma-Aldrich). 100µl of this starter culture was 
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added to Ampicillin (100µg/ml) containing agar plates and grown overnight in an 

incubator at 37˚C. A single colony was picked from the agar plate and bacterial 

cultures were prepared in 10ml Luria broth (LB) and ampicillin (100µg/ml). A colony 

inoculated in LB broth without ampicillin was considered as a positive control. A 

negative control consisted of LB broth only. The bacteria were cultured overnight at 

37˚C in a shaker incubator.  

The Qiagen plasmid midi kit was used to isolate pmiRGLO plasmid DNA from the 

DH5α bacteria. 50 ml of overnight bacterial growth culture was centrifuged for 20 

minutes at 4000 g at 4˚C. The pellets were suspended in 2ml of Buffer P1 to facilitate 

lysis. Thereafter, 2 ml Buffer P2 was added and the lysate was thoroughly mixed by 

inverting the falcon tubes and incubating them for 5 minutes at room temperature. 2 

ml of Chilled Buffer P3 was added, mixed as previously described and incubated on 

ice for 15 minutes. The falcon tubes were then subjected to centrifugation at 18000 g 

for 30 minutes at 4˚C. Clear lysate supernatant containing the plasmid DNA was 

collected and loaded onto the equilibrated QIAGEN-tip 100 in order to allow it to 

enter the resin by gravity flow. Following this the Qiagen tip were washed with 10 ml 

of Buffer QC 2 times and plasmid DNA was eluted with 500 µl of pre-heated Tris-

EDTA solution. The quantity and quality of the isolated plasmid was measured using 

NanoDrop® 1000 spectrophotometer.  

pmiRGLO plasmid DNA (5µg) isolated was subjected to restriction enzyme digestion 

by using  10µl Xho1 enzyme (10u/µl, Promega), 10µl acetylated BSA (10µg/µl, 

Promega), 10µl 10X Buffer D (Promega) and RNase free water in a total 100µl 

reaction mix.  The digestion mix was incubated overnight at 37˚C to facilitate 

complete digestion. The digested plasmid was run on 0.8% w/v agarose gel 

alongside undigested plasmid DNA and 1kb ladder. Ethidium bromide (0.5µg/ml) in 
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agarose gel allowed visualisation of DNA when exposed to ultraviolet light (Figure 

4.5B). 

After the bands were separated, the purified plasmid band (7350bp) was excised 

from the gel and QIAGEN QIAquick gel extraction kit was used to purify the plasmid 

DNA. The gel slice was weighed and 3 volumes Buffer QG was added to 1 volume 

gel and incubated at 50˚C for 20 minutes and vortexed every 3 minutes to help 

dissolve the gel quickly. After the gel dissolved, 1 gel volume equivalent isopropanol 

was added and the sample was applied to the QIAquick column for 1 min and the 

flow through was discarded. The columns were washed with 500 μl Buffer QG and 

750 μl Buffer PE. Thereafter, the column was placed into a clean 1.5 ml eppendorf 

and 50 μl preheated water was applied to the centre of the column membrane and 

then centrifuged for 1 min. The samples were subjected to speed vacuum at room 

temperature for 30 minutes to yield 10 μl final volume plasmid DNA as the previously 

purified DNA concentration was too low. NanoDrop profile was irrelevant as the 

absorption peak moved from 260nm to 230nm for the linearised DNA extracted from 

the gel as compared to the undigested DNA possibly due to guanidinium thiocyanate 

present in buffer QG. There this data wasn’t included (Figure 4.5).  
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Figure 4.5: pmiRGLO miRNA expression vector isolation, digestion with 
restriction enzyme Xho-1 and purification. Panel A shows quantity/quality of 
pmiRGLO plasmid DNA isolated. Isolated pmiRGLO DNA was subjected to restriction 
enzyme digestion using Xho1 and agarose gel electrophoresis (0.8% w/v) was 
performed (2ng & 5ng plasmid, B). The region corresponding to the molecular weight 
of the plasmid (7350bp) was excised from the gel and purified. Purified plasmid 
obtained was subjected to SpeedVac in order to concentrate the sample. The 
concentration was then checked using a Nanodrop (C). 

4.3.3.3 Primer design and amplification of ZEB2 and ZNF532 3’ UTR region 

Online computational tools allowed identifying miR-200b binding sites in the 3’ UTR 

containing (2-8 bases) of ZEB2 and ZNF532 mRNAs. The Ensembl platform was 

used to scan 3’UTR region of ZEB2 and ZNF532 to find potential binding regions for 

miR-200b. The sequence containing the binding region was inserted in Primer3 

online tool that provided the primer sequences required to amplify the regions of 
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interest. The size of the 3’UTR regions containing miRNA binding sites were 271 

bases for ZEB2 and 215 bases for ZNF532. The primers were then converted into In-

Fusion® primers (Forward infusion primer: 

GCTCGCTAGCCTCGACCTTCCTTCACCTCGTCGTA; reverse infusion primer: 

CGACTCTAGACTCGAGGAACTGCCCCTGTTACTAAG) and ZEB2 (Forward 

infusion primer: GCTCGCTAGCCTCGAAGGCAGCAGTTCCTTAGTTT; reverse 

infusion primer: CGACTCTAGACTCGATGCCCAAATGATCAACGTCA) that added 

15 base overhangs complementary to the plasmid DNA sequence in order to provide 

directional insertion of the amplified 3’UTR into the vector (Figure 4.6). The infusion 

primers for conventional PCR were synthesised by ThermoFisher scientific. 

For Genomic DNA isolation, a T25cm2 flask was trypsinised and centrifuged to obtain 

a pellet of BEAS-2B cells. Thereafter, Promega Wizard® SV genomic DNA 

purification kit was used according to the manufacturer’s protocol. A range of 

annealing temperatures was used for ZEB2 and ZNF532 primers in order to 

determine the optimum temperature that yields a single band for the PCR product. 

The range included the following temperatures 40, 45, 50, 55 and 60˚C. Each PCR 

reaction contained reagents and volumes as outlined in Table 4.2. In addition, the 

cycling conditions used to amplify the 3’UTR is listed in Table 4.3. Since only single 

bands were obtained at all temperatures, 20µl reactions (55 & 60˚C) were pooled 

together used for infusion cloning (Figure 4.7). 
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Figure 4.6: Forward and reverse In-Fusion primer sequence for ZEB2. The 
sequence in black is the conventional primer. The 20 nucleotides coloured in red at 
the 5’end of the primer are the bases complementary to the vector. These were 
added as part of the conversion to In-Fusion primers (A). Panel B, the sequence in 
blue indicates the restriction enzyme site for Xho-1, the dashed lines between PCR 
product and vector in “Step 3. Annealing” indicates the complementarity between the 
single strand 5’ end hangover from the vector (due to 3’ to 5’ exonuclease activity in 
In-Fusion cloning’s infusion mix) and the 5’ hangover on the PCR product. 

 
Table 4.2: PCR reaction reagents and volumes for amplification of ZEB2 and 
3’UTR insert 
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Table 4.3: PCR reaction reagents for ThermoFisher Phire® hot start II DNA 
polymerase. 

 

Figure 4.7: 2% w/v agarose gels showing PCR reactions at different annealing 
temperatures. Gel electrophoresis for the amplified ZEB2 (271 bp) and ZNF532 
(215 bp) insert was performed at different temperature (40- 60˚C). A single product 
band was obtained at all annealing temperatures indicating the primers were highly 
specific. 

4.3.3.4 Infusion cloning and bacterial transformation 

The Infusion system (Clontech) is based on the principle of Ligation Independent 

Cloning method (LIC) that makes use of annealing single-stranded complementary 

overhangs on the target vector and a PCR-generated insert of 15-bases. The 

linearised vector and the PCR product (insert) when incubated with In-Fusion HD 

Enzyme Premix leads to generation of single stranded overhangs by using T4 DNA 

polymerase and dNTP in the reaction mix. The 3' exonuclease activity of the enzyme 

begins to chew-back the linearized destination vector and the PCR product from 3' to 

5' at the site of the first occurrence of this nucleotide leading to the generation of 5' 
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overhangs complementary to the termini of the linearized vector (Aslanidis and de 

Jong, 1990; Betts and Farmer, 2014).  

The ClonTech In-Fusion cloning kit was used to generate the recombinant vector 

containing the amplified 3’UTR insert of either ZEB2 or ZNF532. A range of insert to 

vector molar ratios were used to obtain optimal cloning (Table 4.4).The vector and 

insert were incubated with the 2 µl of infusion enzyme mix and Rnase free water 

(Total volume -10 µl). The reaction was incubated for 15 min at 50°C and then placed 

on ice and stored at -20˚C until further use. 

 

Table 4.4: In-Fusion cloning reaction mixtures for the most successful 
attempts. To each reaction 2µl of Infusion primer was added. 

Bacterial transformation was carried out using 1.25µl of infusion mixture and stellar 

competent cells. It was also ensured that more than 5ng of vector DNA was used per 

50µl of stellar competent cells. 100µl of transformed cells were spread on ampicillin 

(100µg/ml) selective agar plates and single colony was picked up and grown 
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overnight in 10ml of LB broth and ampicillin (100µg/ml) in a shaker incubator (37˚C at 

225rpm). The recombinant plasmid DNA was isolated from the bacteria and sent to 

Source Bioscience (UK) for sequencing to confirm successful cloning (Figure 4.8). 

        4.3.3.5 Luciferase reporter gene assay 

BEAS-2B cells were seeded (35000 cells) in 96 well plates and transfected with 

500ng of pmiRGLO vector containing the 3’UTR of ZEB2 (Figure 4.9A) or ZNF532 

(Figure 4.9B) or empty plasmid and co-transfected with 30nM miR-200b mimics or 

NSmiRNA using Lipofectamine 2000 (Invitrogen). Luciferase activity (firefly and 

renilla luciferase) was measured at 24hrs post-transfection using a Dual luciferase 

reporter assay system (Promega). 

 

Figure 4.8: Sequencing data post in-fusion cloning. PmiRGLO plasmid samples 
cloned with ZEB2 and ZNF532 3’UTR region were sent for sequencing to verify 
successful cloning. Sequencing data post cloning indicates presence of primer 
overhangs (yellow highlighted region) and miRNA binding site (grey highlighted 
region). 
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Figure 4.9: pmiRGLO vectors with ZEB2 and ZNF532 3’ UTR insert as a result of 
infusion cloning 
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4.4 Results 

4.4.1 BEAS-2B and PBECs maintain epithelial cell characteristics 

when transfected with miRNA-200b 

To examine the changes in cell morphology post miR-200b transfection and TGF-β1 

treatment, BEAS-2B cells and PBECs were first transfected with 30nM miR-200b 

mimics for 24 hrs followed by treatment with 5ng/ml TGF-β1 for 48 hrs. BEAS-2B 

cells under control conditions (Figure 4.10A) exhibited a typical epithelial like 

“cobblestone” morphological phenotype, whereas upon transfection with NSmiRNA 

(AllStars Negative Control siRNA, Qiagen) followed by TGF-β1 treatment cells 

acquired an elongated spindle shaped like phenotype (Figure 4.10B) indicating 

morphological change due to EMT. Cells transfected with miR-200b mimics followed 

by stimulation with TGF-β1 maintained their epithelial framework and cell-cell 

contact. They appeared more cobbled shape (Figure 4.10C). 

Human PBECs were isolated from the bronchial epithelium of healthy patients. The 

bronchial epithelium plays an important role in the development of BOS since it is not 

only the target but also the mediator of BOS through response to injury (Forrest et 

al., 2005). Columnar PBECs displayed typical epithelial cell morphology but possess 

a limited regeneration capacity as they acquire a less well-differentiated phenotype 

(fibroblasts) and become unsuitable for use as primary cells (Brodlie et al., 2010). 

PBECs were therefore cultured only until passage 2. The morphology of PBECs 

under normal conditions (Figure 4.10D) and in miR-200b transfected and TGF-β1 

treated sample (Figure 4.10F) were identical. However cells pre-incubated with 

NSmiRNA and treated with TGF-β1 displayed an elongated fibrotic morphology 

similar to that of mesenchymal cells (Figure 4.10E). 
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Figure 4.10: BEAS-2B cells and PBECs transfected with miR-200b and treated 
with TGF-β1 maintained epithelial characteristics. BEAS-2B cells and PBECs 
treated with TGF-β1 acquired a fibrotic phenotype compared with control (A, D) while 
cells transfected with 30nM miR-200b and treated with TGF-β1 (C) exhibited 
cobblestone-like morphology with increased cell-cell contact in BEAS-2B cells 
indicating a presentation of epithelial characteristics. PBECs transfected with miR-
200b and treated with TGF-β1 phenotypically resembled the control cell morphology 
(F) (n=3) consistent with preservation of epithelial characteristics in TGF-β1 
challenged cells transfected with miR-200b. 

 

4.4.2 Ectopic expression of miR-200b followed by TGF-β1 treatment 

maintained E-Cadherin and reduced fibronectin expression at the 

RNA level 

Transfection efficiency of miRNAs in BEAS-2B cells was assessed and a significant 

increase in fluorescence was found at 48 hrs and 72 hrs post transfection (Figure 

2.9). In addition, miR-200b mimic concentration was optimised by transfecting BEAS-

2B cells with varying concentration of mimics for 48 hrs. There was significant 
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increase in miR-200b expression post-transfecting cells with 10nM, 30nM and 50nM 

(p≤0.001) as compared to the non-transfected control. E-Cadherin expression was 

also significantly upregulated at all time points (10nM- p≤0.05; 30nM- p≤0.01; 50nM- 

p≤0.001) when compared to non-transfected cells (Figure 2.10). The optimum 

concentration of miRNA mimic that induced significant changes at RNA level and 

phenotypically was 30nM. Further experiments were performed to study the effect of 

miR-200b mimics in the presence and absence of TGF-β1 at the RNA level using 

BEAS-2B cells, PBECs and cells. 

BEAS-2B cells (n=3), PBECs (n=2) and cells from transplant brushings (n=3) were 

transfected with miR-200b for 24 hrs followed by treatment with TGF-β1 for 48 hrs. 

Total RNA was isolated and expression level of E-Cadherin and fibronectin was 

studied using q-RT-PCR. Results suggested a significant restoration of E-Cadherin 

levels in miR-200b transfected and TGF-β1 treated BEAS-2B (p<0.01, Figure 4.11A) 

and PBECs (p<0.05, Figure 4.11B) when experiments were normalised to 

endogenous control HPRT1 and compared to NSmiRNA + TGF-β1 treated sample. 

Furthermore, there was an increase in E-Cadherin expression in miR-200b 

transfected BEAS-2B cells (**=p≤0.01) and PBECs (**=p≤0.01) compared to 

NSmiRNA transfected cells. One- way ANOVA followed by Bonferroni test was 

performed for evaluating significance difference in the expression levels post qRT-

PCR. On the other hand, there was a significant downregulation of fibronectin in miR-

200b transfected and TGF-β1 treated BEAS-2B cells (p<0.01) and PBECs 

(p<0.0001) when compared to NSmiRNA + TGF-β1 treated cells. The study was 

replicated in cells acquired from patients post lung transplant (n=3). Results showed 

a similar trend of significant fibronectin downregulation (p<0.001, Figure 4.11C) as 

seen in BEAS-2B and PBECs. There was no significant change in E-Cadherin 
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expression in miR-200b +TGF-β1 treated cells as compared to NSmiRNA +TGF-β1 

treated cells.  

 
Figure 4.11: miR-200b mimics maintained epithelial markers while reducing 
fibronectin levels in the presence of TGF-β1. BEAS-2B cells (A), PBECs (B) and 
PBECs from lung allograft (C) were transfected with 30nM miR-200b for 24 hrs 
followed by TGF-β1 (5ng/ml) treatment for 48 hrs. Total RNA was harvested and q-
RT-PCR was performed. Expression levels were normalized to the housekeeping 
gene HPRT1 and calculated as fold change (2-ΔΔCT) in comparison to the untreated 
control cells. The data was analysed by one way ANOVA followed by Bonferroni test 
[(*=p≤0.05) (**=p≤0.01) (***=p≤0.001) (****=p≤0.0001)]. The data is representative of 
three (A, C) or two (B) independent set of experiments, each done in triplicate. 



 

132 
 

4.4.3 MiR-200b mimics lead to reduction in extracellular matrix 

proteins in TGF-β1 pre-treated BEAS-2B cells 

Changes in protein expression were examined using immunofluorescence (Figure 

4.12-1) and western blot (Figure 4.12-2). In BEAS-2B cells, results were consistent 

with changes in mRNA expression. There was loss of E-Cadherin and cytokeratin-19 

and an increase in α-SMA and fibronectin expression in NSmiRNA +TGF-β1 treated 

BEAS-2B cells (After evaluating fibronectin expression, PVDF membranes were 

washed and reprobed with α-SMA antibody. The PVDF membrane was subjected to 

second cycle of stripping and reprobing with GAPDH antibody). However, miR-200b 

transfection restored E-Cadherin (p≤0.01) and cytokeratin (p≤0.05) levels and 

supressed the expression of α-SMA (p≤0.001) and fibronectin (p≤0.001) in NSmiRNA 

+TGF-β1 treated BEAS-2B cells. This trend of protein expression was confirmed by 

performing western blot.  

Similar expression of EMT markers was observed when experiment was replicated in 

PBECs (Figure 4.13, n=1). 

4.4.4 Overexpression of MiR-200b post TGF-β1 treatment reverses 

EMT in treated BEAS-2B cells 

The effect of overexpressing miR-200b post TGF-β1 treatment is also crucial to 

understand the potential effect of modulating fibrosis through modulation of miR-

200b. MiR-200b overexpression for 24 hrs post TGF-β1 treatment was able to 

restore E-Cadherin levels (Figure 4.14A) and downregulate fibronectin (Figure 4.14B) 

in (for both, p≤0.0001) NSmiRNA + TGF-β1 treated (48 hrs) BEAS-2B cells when 

expression was normalised to endogenous control HPRT1 (n=3). Therefore, miR-
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200b was able to reverse EMT in cells that had already acquired a fibrotic phenotype 

implicating its potential role in future therapeutic strategies in reversing EMT. 

 
Figure 4.12-1: Overexpression of miR-200b blocked TGF-β1 induced epithelial 
to mesenchymal transition in vitro. BEAS-2B cells were transfected with 
NSmiRNA (negative control) and 30nM miR-200b mimics. Post-transfection cells 
were treated with/without 5ng/ml TGF-β1 for 48 hrs. Pictures were captured using 
Zeiss Axioimager microscope and the two channels DAPI and FITC were merged 
(A). Bar graphs depict the quantification of immunofluorescence for each of the EMT 
markers in terms of area of fluorescence per cell (B). The data was analysed by one 
way ANOVA followed by Bonferroni test [(*=p≤0.05) (**=p≤0.01) (***=p≤0.001)]. The 
data is representative of three independent set of experiments. Scale bar, 100µm. 
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Figure 4.12-2: miR-200b suppresses the expression of fibrotic markers in TGF-
β1 treated BEAS-2B cells at the protein level. MiR-200b transfected BEAS-2B 
cells (24 hrs) were subjected to treatment with 5ng/ml of TGF-β1 for 48hrs. Total 
protein lysate was harvested and protein production was determined using western 
blot studies (15µg protein per well). Relative expression of each EMT marker was 
normalised to the housekeeping gene GAPDH. The data is representative of three 
independent set of experiments. 

  
Figure 4.13: Overexpression of miR-200b blocked TGF-β1 induced epithelial to 
mesenchymal transition in PBECs. PBECs were transfected with NSmiRNA 
(negative control) and 30nM miR-200b mimics. Post-transfection cells were treated 
with/without 5ng/ml TGF-β1 for 48 hrs. Pictures were captured using Zeiss 
Axioimager microscope and the two channels DAPI and FITC were merged. Scale 
bar, 100µm. The data is representative of one set of experiment. 
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Figure 4.14: miR-200b reversed EMT in BEAS-2B cells treated with TGF-β1. 
BEAS-2B cells (n=3) were treated with TGF-β1 (5ng/ml) for 48 hrs followed by 
transfection with 30nM miR-200b for 24 hrs. Total RNA was harvested and q-RT-
PCR was performed. Expression levels were normalized to the housekeeping gene 
HPRT1 and calculated as fold change (2-ΔΔCT) in comparison to the untreated control 
cells. The data was analysed by one way ANOVA followed by Bonferroni test 
[(***=p≤0.001) (****=p≤0.0001)]. The data is representative of three independent set 
of experiments, each done in triplicate. 

4.4.5 miR-200b supresses expression of target genes involved in 

TGF-β1 signalling 

To identify miR-200b targets, four different software algorithms were employed to find 

the conserved target site throughout the human transcriptome. Computational tools 

allowed identification of 7 common genes as potential targets of miR-200b by 

matching the complementarity between the seed region (2-8 bases) of the miRNA 

and 3’ untranslated region of an mRNA using TargetScan, MiRanda, DIANA-Micro-T 

and PicTar (Figure 4.15A). Out of the 7 targets the expression of 4 selective miRNA 

target genes was assessed.  

miR-200b significantly reduced the expression of ZNF532 in the presence of TGF-β1 

as compared to NSmiRNA + TGF-β1 treated cells in BEAS-2B cells (p≤0.0001), and 
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PBECs (p≤0.05). In PBECs from lung allograft, although there was no significant 

reduction in ZNF532 in miR-200b transfected and TGF-β1 treated cells when 

compared to NSmiRNA + TGF-β1 treated cells, the trend of expression was similar to 

that observed in BEAS-2B cells and PBECs.  

While a significant reduction in ZEB2 was only observed in BEAS-2B cells 

(p≤0.0001). PBECs and PBECs from lung allograft showed a significant reduction in 

RHOA (p≤0.05) and SMURF2 (p≤0.0001) respectively. In PBECs and PBECs from 

lung allograft, the expression of ZEB2 was only detectable in TGF-β1 treated cells 

and so the data couldn’t be plotted (Figure 4.15B, n=3). 
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Figure 4.15: miR-200b targets were predicted and analysed using 
computational tools and qRT-PCR. Venn diagram shows the intersection analysis 
of miR-200b target genes in TargetScan, PicTar, Diana-Micro T and MiRanda. Seven 
common mRNA targets were predicted using the online prediction tools (A). BEAS-
2B cells, PBECs and cells from transplant brushings were transfected with 30nM 
miR-200b before being exposed to 5ng/ml TGF-β1 for 48 hrs. mRNA expression of 
target genes RHOA, SMURF2, ZNF532 and ZEB2 was quantified using q-RT-PCR 
(B). The data (B) was analysed by two way ANOVA followed by Bonferroni test 
[(*=p≤0.05) (**=p≤0.01) (****=p≤0.0001)]. The data (B) is representative of three 
independent set of experiments, each done in triplicate. 
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 4.4.6 miR-200b modulates the expression of specific transcription 

factors involved in mediating TGF-β induced fibrosis   

A TGF-β array was performed to study other differentially expressed genes in miR-

200b transfected and TGF-β treated cells. Target genes were categorised according 

to the pathway that activates them- activins/inhibins receptor mediated pathway, 

BMP receptor mediated pathway and TGF-β receptor mediated pathway (Figure 

4.16, n=1). These results demonstrated the need to use online computational tools in 

order look up which mRNA candidates (out of all differentially expressed genes in the 

results) had binding sites for miR-200b or are direct targets of miR-200b.  

4.4.7 miR-200b directly targets ZEB2 and ZNF532 that are integral 

members of the TGF-β signalling pathway 

The likelihood of a direct targeting mechanism of miR-200b to ZEB2 and ZNF532 

3’UTR was studied (n=2). The luciferase reporter plasmids containing binding regions 

(ZEB2 and ZNF532 3’UTR regions) to miR-200b were co-transfected with 30nM miR-

200b mimics. There was 62 % reduction in luciferase activity (p≤0.01) in cells co-

transfected with the mimic and plasmid containing ZEB2 gene as compared to cells 

co-transfected with NSmiRNA and plasmid containing ZEB2 gene. MiR-200b mimics 

reduced luciferase activity by 54% in cells transfected with plasmid containing 

ZNF532 gene as compared to cells co-transfected with NSmiRNA and plasmid 

containing ZNF532 gene (Figure 4.17A). Similar results were obtained when 

experiments were conducted using PBECs (Figure 4.17B). This confirms that miR-

200b directly targets ZEB2 and ZNF532 mRNA. 
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Figure 4.16: Expression profiling of genes regulated by TGF-β. BEAS-2B cells 
were transfected with 30nM miR-200b for 24 hrs followed by TGF-β1 (5ng/ml) 
treatment for 24 hrs. Total RNA was harvested and TGF-β pathway array was used. 
Expression levels were normalized to the housekeeping gene HPRT1 and calculated 
as fold change (2-ΔΔCT) in comparison to the untreated control cells. 
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Figure 4.17: miR-200b binds to the 3’UTR region of ZEB2 and ZNF532 gene. 
3’UTR region of ZEB2 and ZNF532 containing miR-200b binding site was cloned into 
the 3’UTR region of luciferase firefly gene in pmiRGLO expression vector. The cloned 
plasmid was co-transfected with 30nM miR-200b mimics or non-specific miRNA in 
BEAS-2B cells (A) and PBECs (B). Firefly luciferase activity was measured at 24 hrs 
post transfection and normalised to renilla luciferase activity (n=2). miR-200b 
significantly reduced the luciferase activity in cells transfected with plasmid 
containing 3’ UTR of ZEB2 and ZNF532. The data was analysed by one way ANOVA 
followed by Bonferroni test [(**=p≤0.01) (***=p≤0.001)]. The data is representative of 
two independent set of experiments, each done in quadruplicate. 

 

4.4.8 In-situ detection of miR-200b in normal paraffin embedded 

lung sections 

The study was designed to examine the expression of miR-200b in tissue derived 

from normal donor lung tissue that was subsequently used for transplantation. A 

strong positive staining for miR-200b was observed in the bronchial epithelium region 

of lung tissue (Figure 4.18A) while the negative control (scrambled miRNA) showed 
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no staining (Figure 4.18C). There was strong staining (deep purple) when sections 

were incubated with the positive control miRNA-126 (Figure 4.18B).  

 
Figure 4.18: Localization of miRNA-200b in EVLP sections by in-situ 
hybridization (FFPE). Strong expression of miR-200b was observed in bronchial 
epithelium region (A). Sections were positive for miR-126 (deep purple staining; B) 
and no staining was observed for sections probed with scrambled miRNAs (C). 
Images were captured at 20X magnification; scale bar 50µm (n=3). 

 

  4.4.9 Effect of miR-200b inhibition in TGF-β1 treated BEAS-2B 

cells   

The miRNA-200b inhibitor concentration was optimised before manipulating its 

expression in TGF-β1 treated and untreated cells (Section 2.8.3). A significant 

decrease in miR-200b (p≤0.001) was observed when cells were transfected with 

miR-200b inhibitor. Therefore, 50nM miR-200b inhibitor was selected as an optimum 

concentration after monitoring the changes in BEAS-2B cell phenotype and changes 

in fibronectin expression at RNA level (Figure 2.11). 

BEAS-2B cells were transfected with 30nM miR-200b hairpin inhibitor or NSmiRNA 

for 24 hrs followed by 48 hrs of TGF-β1 treatment (n=3). The expression of E-

cadherin and Fibronectin was studied using q-RT-PCR. E-cadherin expression was 

inhibited in miR-200b inhibitor transfected and TGF-β1 treated cells, however the 

change was not significant when compared to NSmiRNA + TGF-β1 treated cells 

(Figure 4.19). There was no significant reduction in E-Cadherin expression in cells 
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transfected with miR-200b inhibitor when expression was compared to NSmiRNA 

transfected cells. miR-200b inhibitor transfection did not induce an increase in 

fibronectin expression when expression was compared to NSmiRNA transfected 

cells. Furthermore, there was no change in Fibronectin expression in miR-200b 

transfected and TGF-β1 treated cells when expression was compared to NSmiRNA + 

TGF-β1 treated cells.  

 
Figure 4.19: miR-200b inhibition had no effect on EMT marker expression with 
or without TGF-β1. BEAS-2B cells were transfected with 50nM miR-200b inhibitors 
for 24 hrs followed by TGF-β1 (5ng/ml) treatment for 48 hrs. Total RNA was 
harvested and q-RT-PCR was performed. Expression levels were normalized to the 
housekeeping gene HPRT1 and calculated as fold change (2-ΔΔCT) in comparison to 
the untreated control cells. The data is representative of three independent set of 
experiments, each done in triplicate. 

4.5 Discussion 

The initial miRNA study elucidated the potential role of miR-200b in the development 

of airway fibrosis. miRNA mimic transfection studies were conducted to confirm the 

involvement and importance of these exclusive candidates. Thereafter, online 

computational tool analysis revealed ZEB2 and ZNF532 as potential direct targets of 

miR-200b. In order to confirm the direct targeting, a luciferase assay using pmiRGLO 

miRNA expression vector was performed (Figure 4.20). 
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BOS occurs because of progressive loss of lung function. Airway EMT that involves a 

complex series of events is a potential major leading cause of lung allograft fibrosis. 

However, the role of miRNAs in EMT and development of BOS is not well established 

(Yang et al., 2012a). A recent study elucidated the role of circulatory miRNA as a 

potential biomarkers of BOS. A selected group of miRNAs were significantly 

upregulated in BOS + patients prior to clinical BOS diagnosis with miR-21, miR-103 

and miR-191 involved (Budding et al., 2016). In another study, in situ hybridisation 

revealed that miR-34a and miR-21 were upregulated in explanted human BOS lungs 

(Di Carlo et al., 2016). These studies listed miRNA candidates upregulated during 

BOS, but failed to recognise miRNAs that could prevent TGF-β induced EMT, which 

may play a central role in BOS pathogenesis (Hodge et al., 2009). In my study the 

effectiveness of miR-200b to prevent TGF-β1 induced EMT in BEAS-2B cells and 

patient derived PBECs was demonstrated. My aim was to detect and quantify 

changes in EMT in bronchial epithelial cells as previously shown by Hodge S et al 

(Hodge et al., 2009) in miR-200b transfected cells pre-treated with TGF-β1. I also 

replicated this study in cells from transplant brushings. It was of interest that the work 

in transplant brushings showed no significant change in E-cadherin expression 

although a significant decrease in fibronectin was noted in miR-200b transfected and 

TGF-β1 treated cells. This could be due the fact that following transplant, cells show 

increased expression of IL-8, MMP9, MMP2 and IL-6 as compared to cells acquired 

from healthy individuals. Therefore, the expression profile of markers in these cells 

may differ to those normally expressed in PBECs acquired from normal epithelium 

(Kalluri and Neilson, 2003). TGF-β1 induced changes in cells were reversible 

following miR-200b manipulation. I also showed that, miR-200b was able to restore 

the loss of the epithelial cell marker, E-Cadherin while significantly reducing the 

expression of fibronectin in BEAS-2B cells. 



 

144 
 

Online computational tools revealed 7 potential miRNA targets out of which, four 

mRNA genes namely RHOA, SMURF2, ZNF532 and ZEB2 were studied that belong 

to the TGF-β1 signalling pathway. These targets have an exact match to positions 2 

to 7 of the mature 3’ arm of miR-200b and thus interact with high specificity. Recent 

studies have reported that miR-200b downregulates zinc finger proteins. ZEB2 and 

ZNF532 are E-Box– binding proteins that are involved in repressing E-cadherin 

transcription and hence revoke E-cadherin–mediated intercellular adhesiveness. 

These actions of zinc finger proteins may make them important candidates in the 

early stage of EMT (Comijn et al., 2001; Dinney et al., 2011). 

 

Figure 4.20: Overview of miR-200b study and importance of investigating miR-
200b targeting. The initial miRNA profiling revealed that expression miR-200b and 
miR-200c-3p was significantly downregulated post TGF-β1 treatment (1hr, 4 hrs and 
24 hrs). Thereafter miR-200b mimic transfection in the presence and absence of 
TGF-β1 was studied in BEAS-2B cells. miR-200b targets were identified using online 
computational tools. After performing studies at RNA level, ZEB2 and ZNF532 were 
found to be potential direct targets of miR-200b. To confirm the direct targeting, 
PmiRGLO miRNA expression vector and luciferase assay was used.  

 

Several reports have also established that ZEB1 and ZEB2 are key transcriptional 

regulators of TGF-β mediated suppression of E-cadherin (Shirakihara et al., 2007). In 
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my study, mature miRNA-200b was able to directly target transcription factors ZEB2 

and ZNF532 3’UTR region upon transfection in BEAS-2B cells with and without TGF-

β1 stimulation, representing the first such data in airway epithelial cells. In PBECs, 

although the expression of ZEB2 was undetermined using qRT-PCR, the luciferase 

reporter assay was performed and the results were consistent with data from my 

BEAS-2B study. Hence specific targeting of ECM markers and transcription factors to 

limit fibrosis and unwanted EMT may be a potential therapeutic strategy in airway 

epithelial cells and BOS post lung transplantation (Sato et al., 2003; Wight and 

Potter-Perigo, 2011). 

In addition to the candidate gene approaches, a TGF-β array was used to search for 

possible genes and gene networks that are differently regulated in miR-200b 

transfected and TGF-β1 treated cells as opposed to TGF-β1 treated cells only. It was 

recognised that the expression of several transcription factors such as EP300, 

CREEBP and other proteins belonging to the TGF-β superfamily were downregulated 

when BEAS-2B cells were transfected with miR-200b and treated with TGF-β1 as 

compared to TGF-β1 treated only (Attisano and Wrana, 2002; Mauviel, 2005; Ghosh 

and Varga, 2007). Thus, it could be concluded that miR-200b has the potential of 

inhibiting the activity of other signalling molecules even in the presence of TGF-β1, a 

finding which might provide novel therapeutic opportunities.  

Next, I used in situ hybridization on paraffin embedded donor lung tissue sections. A 

strong staining for miR-200b in these sections was restricted to the healthy bronchial 

epithelium. These findings suggest miR-200b may be a key homeostatic system in 

the epithelium, and overall our study indicates that miR-200b may modify the 

development of EMT, which is known to be associated with BOS. 
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To study the effect of miR-200b inhibition in the presence of TGF-β1, miR-200b 

inhibitors were used. BEAS-2B cells transfected with these inhibitors in the presence 

and absence of TGF-β1 did not show significant changes in EMT marker expression 

at the mRNA level. This could be due to the fact that the inhibitor only suppresses the 

expression of miR-200b but not the other members of the miR-200 family that shares 

the same seed region. An inhibitor crossreactivity amongst members of the miRNA 

family that share extensive sequence identity has been previously reported 

(Robertson et al., 2010).  Therefore, use of microRNA family inhibitors (Exiqon) could 

be the best way of studying the impact of miRNA inhibition on EMT marker 

expression as they use a pool of inhibitors to target a group of related miRNAs at a 

low dosage rather than a single inhibitor (Rottiers et al., 2013). 

To conclude, the results in this chapter suggest the potential therapeutic relevance of 

miR-200b in inhibiting EMT even in the presence of TGF-β1 and that this involves 

targeting the transcription factors ZEB2 and ZNF532. TGF-β pathway array analysis 

revealed other potential candidates that could be direct targets of miR-200b, but this 

needs further investigation. Finally, in-situ hybridisation showed that miR-200b is 

mainly localised in the epithelium, which is the primary target of injury post-lung 

transplantation and which is a biologically plausible location for a miRNA implicated 

in EMT.  

 

 

 

 

 



 

147 
 

Chapter 5: Involvement of miR-200c and miR-146a in bronchiolitis 
obliterans syndrome  

5.1 Introduction 

Most miR-200 studies have been carried out in the field of  EMT (Park et al., 2008) 

and in cardiovascular diseases (Magenta et al., 2017). In contrast, the role of the 

miR-200 family in BOS is still poorly investigated. Previously, a study demonstrated a 

decrease in miR-200a and miR-200c levels in lungs of patients with IPF. 

Furthermore, introduction of mimics diminished fibrosis in bleomycin induced lung 

fibrosis mice models. Overall, the data suggested that restoring miR-200 levels in 

alveolar epithelial cells might represent a novel therapeutic approach for treatment of 

IPF (Yang et al., 2012a). My data identified miR-200b regulation in epithelial cells 

stimulated with TGF-β1. It was therefore crucial to study the involvement of other 

members of the miR-200 family, for instance miR-200c. 

A role for miR-146a has been indicated in innate immunity, inflammatory diseases 

(Ichii et al., 2012; Feng et al., 2017) and TGF-β1 induced liver fibrosis (He et al., 

2012). In vitro screening of differentially expressed miRNA candidates in asthma 

progression revealed that miR-146a was downregulated during asthma (Garbacki et 

al., 2011). Overexpression of miR-146a reduced the production of various pro-

inflammatory cytokines and chemokines (Perry et al., 2008). Increasing evidence 

suggests that miR-146a limits the intensity and duration of inflammation via a 

feedback control mechanism by reducing levels of genes such as COX2 that are 

involved in  inflammation and pain (Sato et al., 2010). In my study, the expression of 

miR-146a was significantly upregulated in a dose dependent manner post TGF-β1 

treatment in BEAS-2B cells. Further experiments were conducted to study the effect 

of ectopic expression of miR-146a in TGF-β1 treated BEAS-2B cells. 
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5.2 Aims 

1. Determine whether transfecting cells (BEAS-2B cells and PBECs) with miR-200c 

mimics (pre and post TGF-β1 stimulation) lead to a change in expression of EMT 

markers. 

2. Study the expression of miR-200c target genes that are involved in TGF-β 

signalling. 

3. Validate the miR-200c direct targets- ZEB2 and ZNF532 using the pmiRGLO 

miRNA luciferase assay system. 

4. Study the effect of using miR-146a mimics in BEAS-2B cells treated and untreated 

with TGF-β1. 

5.3 Results 

5.3.1 miR-200c mimics restored TGF-β1 induced downregulation of 

E-Cadherin and reduced fibronectin at the RNA level 

miRNA profiling (NanoString) data suggested a significant decrease in miR-200c-3p 

expression  in TGF-β1 treated BEAS-2B cells at 1 hr, 4 hrs and 24 hrs, as compared 

to the untreated control (Figure 5.1A; n=2). This was in accordance with the 

expression profile previously demonstrated for miR-200b-3p (Chapter 3; Figure 3.14). 

To validate the expression profile of miR-200c, qRT-PCR was performed. The results 

suggested a significant decrease in miR-200c expression at 4 hrs (p<0.001) and 24 

hrs (p<0.001) in TGF-β1 treated BEAS-2B cells when compared to the control/ 

untreated cells (Figure 5.1B; n=3). 
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Figure 5.1: MiR-200c expression at various time points in BEAS-2B cells. BEAS-
2B cells were treated with TGF-β1 for various time points. Panel A shows graph 
obtained post NanoString analysis.  Panel B shows analysis of miR-200c at 1 hr, 2 
hrs 4 hrs and 24 hrs post treatment with TGF-β1 (using q-RT PCR) normalized to U6 
and expression levels compared to untreated control (n=3). The data was analysed 
by one way ANOVA followed by Bonferroni test (***=p≤0.001) compared to the 
control. The data (B) is representative of three independent set of experiments, each 
done in triplicate. 

 

To evaluate the effect of miR-200c mimics, BEAS-2B (n=3) and PBECs (n=3) were 

transfected with miR-200c for 24 hrs followed by treatment with TGF-β1 for 48 hrs. 

Total RNA was isolated and expression level of E-Cadherin and fibronectin was and 

downregulated the expression of fibronectin in TGF-β1 treated BEAS-2B cells 

(p<0.05, p<0.0001) and PBECs (p<0.01, p<0.0001). There was also significant 

increase in E-cadherin expression in BEAS-2B cells and PBECs following miR-200c 

mimic transfection (p<0.0001, p<0.01). The experiments were normalised to 

endogenous control HPRT1 and compared to TGF-β1 cells (Figure 5.2). 
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Figure 5.2: miR-200c mimics restored TGF-β1 induced downregulation of E-
Cadherin and reduced fibronectin at the RNA level. BEAS-2B cells (A, n=3) and 
PBECs (B, n=3) were transfected with 30nM miR-200c for 24 hrs followed by TGF-β1 
(5ng/ml) treatment for 48 hrs. Total RNA was harvested and q-RT-PCR was 
performed. Expression levels were normalized to the housekeeping gene HPRT1 
and calculated as fold change (2-ΔΔCT) in comparison to the untreated control cells. 
The data was analysed by one way ANOVA followed by Bonferroni test [(*=p≤0.05) 
(**=p≤0.01) (****=p≤0.0001)]. The data is representative of three independent set of 
experiments, each done in triplicate. 

 

5.3.2 miR-200c reduces expression of fibrotic markers at protein 

level. 

Changes in protein expression post miR-200c transfection were examined using 

immunofluorescence. The results were consistent with changes in mRNA expression 
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in BEAS-2B cells. The expression of E-Cadherin and Cytokeratin-19 decreased while 

expression of α-SMA and fibronectin increased in NSmiRNA +TGF-β1 treated BEAS-

2B cells. However, transfecting BEAS-2B cells with miR-200c mimics lead to 

restoration of E-Cadherin and Cytokeratin-19 expression while the expression of α-

SMA and fibronectin diminished post TGF-β1 treatment (Figure 5.3). Thus, the 

results confirmed that miR-200c (of the miR-200 family) like miR-200b restored 

epithelial cell markers while significantly reducing fibrotic marker expression even in 

the presence of TGF-β1.  

 

Figure 5.3: miR-200c mimic transfection reduced expression of fibrotic markers 
at protein level. BEAS-2B cells were transfected with NSmiRNA (negative control) 
and 30nM miR-200c mimics. Post-transfection cells were treated with/without 5ng/ml 
TGF-β1 for 48 hrs (n=3). Pictures were captured using Zeiss Axioimager microscope 
and the two channels DAPI and FITC were merged (40X). Scale bar, 100µm 
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5.3.3 miR-200c reverses EMT in TGF-β1 treated BEAS-2B cells 

To investigate whether miR-200c could restore epithelial cell markers after the onset 

of fibrosis, BEAS-2B cells were treated with TGF-β1 followed by transfection with 

miR-200c. MiR-200c mimic transfection (24 hrs) restored E-Cadherin levels and 

downregulated fibronectin (both p<0.0001) in TGF-β1 treated (48 hrs) BEAS-2B cells 

when expression was normalised to endogenous control HPRT1. Furthermore, there 

was significant increase in E-Cadherin expression (p<0.0001) in miR-200c mimic 

transfected cells as compared to NSmiRNA transfected cells (Figure 5.4). Therefore, 

miR-200c was able to reverse EMT in cells that had already acquired fibrotic 

characteristics. 

Figure 5.4: MiR-200c reverses EMT in TGF-β1 treated BEAS-2B cells at mRNA 
level. BEAS-2B cells were treated with TGF-β1 (5ng/ml) for 48 hrs followed by 
transfection with 30nM miR-200c for 24 hrs. Total RNA was harvested and q-RT-
PCR was performed. Expression levels were normalized to the housekeeping gene 
HPRT1 and calculated as fold change (2-ΔΔCT) in comparison to the untreated control 
cells. The data was analysed by one way ANOVA followed by Bonferroni test 
(****=p≤0.0001). The data is representative of three independent set of experiments, 
each done in triplicate. 
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5.3.4 miR-200c supresses expression of selective target genes 

involved in TGF-β1 signalling 

MiR-200b, miR-200c, and miR-429 (AAUACU) share the same binding sequence 

region and therefore they would bind to the same mRNA targets. I previously studied 

the expression of RHOA, SMURF2, ZNF532 and ZEB2 in TGF-β1 treated cells that 

were transfected with miR-200b mimics. The gene expression was then compared to 

cells treated with TGF-β1 only. In order to examine whether miR-200c has similar 

effect as previously demonstrated with miR-200b mimics, the experiment was 

replicated using miR-200c mimics in BEAS-2B cells and PBECs.  

miR-200c significantly reduced the expression of ZNF532 and ZEB2 alone (p≤0.01, 

p≤0.05) and in the presence of TGF-β1 (p≤0.05, p≤0.001) as compared to untreated 

cells and NSmiRNA+TGF-β1 treated BEAS-2B cells respectively (Figure 5.5A). In 

PBECs, a significant reduction in SMURF2 (p≤0.001) and RHOA (p≤0.001) was 

observed (Figure 5.5B). There was significant reduction in ZNF532 expression in 

miR-200c transfected cells (p≤0.01) and miR-200c+TGF-β1 treated cells (p≤0.001) 

as compared to the control cells and NSmiRNA+ TGF-β1 treated cells respectively.  

Furthermore, the expression of ZEB2 was only detectable in TGF-β1 treated PBECs 

and therefore data for the same could not be plotted. The results suggest that it is 

likely that miR-200c enhances E-Cadherin expression by directly reducing the 

expression of its target genes involved in TGF-β signalling pathway. 
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Figure 5.5: miR-200c supresses expression of selective target genes involved 
in TGF-β1 signalling. BEAS-2B cells (A) and PBECs (B) were transfected with 
30nM miR-200c before being exposed to 5ng/ml TGF-β1 for 48 hrs. MRNA 
expression of target genes RHOA, SMURF2, ZNF532 and ZEB2 was quantified 
using q-RT-PCR. The data was analysed by two way ANOVA followed by Bonferroni 
test [(*=p≤0.05) (**=p≤0.01) (***=p≤0.001) (****=p≤0.0001)]. The data is 
representative of three independent set of experiments, each done in triplicate. 
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5.3.5 miR-200c directly targets transcription factors ZEB2 and 

ZNF532 thereby reducing their expression. 

To test whether miR-200c directly targets ZEB2 and ZNF532, BEAS-2B cells and 

PBECs were co-transfected with luciferase reporter plasmids containing binding 

regions for ZEB2 and ZNF532 3’UTR regions and 30nM miR-200c mimics. There 

was significant reduction in luciferase activity in miR-200c mimic and plasmid 

transfected BEAS-2B cells (both ZEB2 and ZNF532 p≤0.001) and PBECs (both 

ZEB2 and ZNF532 p≤0.001) as compared to cells transfected with NSmiRNA and 

plasmid (containing ZEB2 and ZNF532 region). The reduction in luciferase activity 

demonstrated that miR-200c binds to specific sites in the 3’UTR of ZEB2 and 

ZNF532 thereby significantly reducing downstream protein synthesis (Figure 5.6, 

n=2). 

 
Figure 5.6: miR-200c directly targets transcription factors ZEB2 and ZNF532 
thereby reducing their expression. 3’UTR region of ZEB2 and ZNF532 containing 
miR-200b binding site was cloned into the 3’UTR region of luciferase firefly gene in 
pmiRGLO expression vector. BEAS-2B cells (A, n=3) and PBECs (B, n=3) were co-
transfected with 30nM miR-200c and the cloned plasmid containing ZEB2/ZNF532 
3’UTR region. Firefly luciferase activity was measured at 24 hrs post transfection and 
normalised to Renilla luciferase activity. The data was analysed by one way ANOVA 
followed by Bonferroni test (***=p≤0.001). The data is representative of two 
independent set of experiments, each done in quadruplicate. 
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5.3.6 No effect of miR-146a overexpression in BEAS-2B cells 

treated and untreated with TGF-β1. 

NanoString nCounter miRNA assay (n=2) revealed that miR-146a that is involved in 

inflammation was significantly upregulated at all time points post TGF-β1 treatment 

(Figure 5.7A). This was validated by qRT-PCR (n=3) that also suggested a significant 

increase in miR-146a expression at 1 hr (p≤0.05), 4 hrs (p≤0.01) and 24 hrs 

(p≤0.001) post TGF-β1 stimulation (Figure 5.7B). 

 
Figure 5.7: miR-146a expression at various time points in BEAS-2B cells. 
BEAS-2B cells were treated with TGF-β1 for various time points. Panel A (n=2) 
shows graph obtained post NanoString analysis.  Panel B (n=3) shows expression of 
miR-146a at 1 hr, 2 hrs 4 hrs and 24 hrs post treatment with TGF-β1 (using q-RT 
PCR) normalized to U6 and expression levels compared to untreated control. The 
data was analysed by one way ANOVA followed by Bonferroni test  [(*=p≤0.05) 
(**=p≤0.01) (***=p≤0.001)] compared to the control. The data is representative of 
three (B) independent set of experiments, each done in triplicate. 

 

miR-146a mimic concentration was optimised (n=2) by transfecting BEAS-2B cells 

with varying concentration of the mimic, isolating RNA and performing q-RT-PCR. 

MiR-146a expression level was significantly upregulated at 10nM, 30nM, 50nM, 

70nM and 90nM post transfection with miR-146a mimics (all p≤0.0001; Figure 5.8B). 

Furthermore, no morphological changes in cells were observed when cells were 
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transfected with 10nM, 30nM and 50nM miR-146a mimics. Using concentration 

higher than 50nM resulted in increased cell death (Figure 5.8A). Therefore, for further 

experiments 10nM of miR-146a mimics was used.  

To study the effect of miR-146a in TGF-β1 induced EMT, BEAS-2B cells were 

transfected with 10nM miR-146a mimics in the presence and absence of TGF-β1. 

Thereafter, changes in expression of EMT markers were evaluated at the RNA level. 

There was no significant reduction in E-Cadherin and Fibronectin expression in miR-

146a mimics transfected cells and miR-146a mimics transfected and TGF-β1 treated 

cells as compared to NSmiRNA and NSmiRNA+ TGF-β1 treated cells respectively 

(Figure 5.9, n=3). Therefore, manipulating the expression of miR-146a had no effect 

on EMT marker expression.  
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Figure 5.8: miR-146a concentration optimization in BEAS-2B cells. BEAS-2B 
cells were transfected with 10nM, 30nM, 50nM, 70nM and 90nM miR-146a mimic for 
24 hrs. RNA was isolated followed by cDNA synthesis and q-RT PCR was 
performed. Panel A shows phenotypic changes post transfection with varying 
concentration of miR-146a mimics. miR-146a gene expression (B) profile was 
evaluated and plotted. Excel was used to analyse the data and graphs were plotted 
using prism 6 software. The data was analysed by one way ANOVA followed by 
Bonferroni test (****=p≤0.0001) compared to the control. The data (B) is 
representative of two independent set of experiments, each done in triplicate. 
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Figure 5.9: miR-146a mimic transfection post TGF-β1 stimulation in BEAS-2B 
cells had no effect on EMT markers and TGF-β signalling molecules. BEAS-2B 
cells (n=3) were transfected with 10nM miR-146a for 24 hrs followed by TGF-β1 
(5ng/ml) treatment for 48 hrs. Total RNA was harvested and q-RT-PCR was 
performed. Expression levels were normalized to the housekeeping gene HPRT1 
and calculated as fold change (2-ΔΔCT) in comparison to the untreated control cells. 
The data is representative of three independent set of experiments, each done in 
triplicate. 

 

5.4 Discussion  

Studies have previously linked the miR-200 family with epithelial phenotype and their 

expression is significantly downregulated during EMT (Korpal et al., 2008; Gregory et 

al., 2011). It has also been suggested that miRNA’s from the same family may target 

the same process co-operatively thereby obtaining a more effective regulation 

(Barnes et al., 2007). In animals, miRNAs function by base pairing (seed region) with 

the complementary sequence in the 3’UTR of the target mRNA. Based on the 

similarity of the seed region nucleotides, miR-200b and miR-200c are predicted to 

interact with the same targets. Therefore, following my work implicating miR-200 in 

EMT, it was logical to study another candidate from the miR-200 family to examine 

whether transfecting BEAS-2B cells and PBECs with miR-200c mimics had the same 
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effect as observed previously with miR-200b mimics.  In this study, the effect of 

ectopic expression of miR-200c in TGF-β1 treated cells was examined. Like miR-

200b, miR-200c was not only able to maintain the expression of epithelial cell surface 

markers in the presence of TGF-β1 but also was able to restore the expression of 

epithelial cell marker- E-cadherin when BEAS-2B cells were pre-treated with TGF-β1. 

This was observed by performing studies at the RNA level and protein level and by 

examining changes in epithelial cell morphology. Previous study has shown that 

administration of miR-200c diminishes bleomycin-induced pulmonary fibrosis in IPF 

lungs (Yang et al., 2012a). Consistent with that study, my results indicate that miR-

200c plays a role in maintaining epithelial phenotype through inhibiting EMT and has 

a potential to reverse EMT.  

Reports have also shown that miR-200 family regulates EMT by targeting EMT 

accelerators such as Zinc finger E-box-binding homeobox (Lamouille et al., 2014). 

My results demonstrated that ectopic expression of miR-200c hindered EMT 

progression in TGF-β1 treated BEAS-2B cells and PBECs by keeping ZEB2 and 

ZNF532 levels low. This result was confirmed by luciferase assay performed after co-

transfecting cells with miR-200c mimics and pmiRGLO vector containing ZEB2 or 

ZNF532 3’ UTR region. In accordance with downregulation of ZEB2 and ZNF532, an 

increase in the level of E-cadherin and decrease in fibronectin was observed, 

indicative of their influence on E-cadherin and fibronectin transcription. Taken 

together these data indicate that miR-200c can prevent EMT by targeting 

transcription factors ZEB2 and ZNF532 and thus may provide an important avenue 

for therapeutic targeting during fibrosis. 

Another miRNA candidate that has shown potential involvement in inflammation and 

fibrosis is miR-146a. Previous study has shown that miR-146a targets SMAD4 and 



 

161 
 

TRAF6 that are important mediators of TGF-β signalling (Min et al., 2017). In my 

study, I attempted to evaluate the effect of transfecting TGF-β1 treated BEAS-2B 

cells with miR-146a mimics. No significant change in EMT marker expression was 

observed in miR-146a transfected and TGF-β1 treated cells when compared to TGF-

β1 treated cells. Previous studies have shown the responsiveness of miR-146a to IL-

1β, a cytokine that induces inflammation (Li et al., 2012). Furthermore, miR-146a 

expression has been found to be upregulated in human dermal fibroblasts cells in 

response to TGF-β1 stimulation and the expression of its target SMAD4 was studied 

(Liu et al., 2012). Therefore, instead of examining the changes in EMT marker 

expression post miR-146a overexpression, studying the expression of its potential 

target genes would be a better experimental plan.  

My findings of an important role for miR-200b and miR-200c in enforcing the 

epithelial phenotype are supported by studies across various tissue types. It is 

noteworthy that miR-200 is enriched in tissues where epithelial cells predominate in 

humans (Thomson et al., 2004; Baskerville and Bartel, 2005); an architectural 

location that is ideally suited for a role in epithelial phenotypic homeostasis. 

Furthermore, miR-200 family members are highly expressed during skin 

morphogenesis (Yi et al., 2006). In summary, this chapter shows that in a similar way 

to miR-200b, miR-200c is a key determinant of epithelial cell identity and the 

expression of transcription factors ZEB2 and ZNF532 is controlled by miR-200b and 

miR-200c. This suggests that downregulation of these miRNAs may be an essential 

early step in progression of lung fibrosis, which could represent a novel therapeutic 

target. 
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Chapter 6: General discussion 

6.1 Summary of aims and outcomes 

1. To investigate the role miRNAs in maintaining bronchial epithelial cell phenotype. 

A cell culture model was developed to study EMT in lung epithelial cells. Initial 

studies were performed using A549 cell lines that are derived from the alveolar 

epithelium. However, since BOS affects the large and the small airways, PBEC 

cultures that were collected during normal and post-transplant surveillance 

bronchoscopy and BEAS-2B cells were utilised for further studies. Changes in EMT 

marker expression using immunofluorescence and western blot studies 

demonstrated that bronchial epithelial cell line and primary cells are capable of 

undergoing TGF-β1 induced EMT. Next, the changes in miRNA expression were 

assessed in normal versus TGF-β1 treated BEAS-2B cells and PBECs. Results from 

miRNA assays and qPCR showed that miR-200b and miR-200c were significantly 

downregulated in response to TGF-β1 stimulation, which was also associated with 

loss in epithelial cell markers. 

2. Manipulate the expression of key miRNAs in bronchial epithelial cell line and 

primary human bronchial epithelial cell to modulate EMT. 

Expression of several miRNAs is dysregulated in diseased conditions. However, their 

role in experimental models of airway EMT is not well characterised. The first section 

of chapter 4 and chapter 5 aimed to determine whether manipulating the expression 

of miR-200b, miR-200c and miR-146a in vitro led to a change in EMT marker 

expression in TGF-β1 treated BEAS-2B cells and PBECs. Results showed that miR-

200b and miR-200c mimics had similar effects on epithelial cell phenotype in BEAS-

2B cells and PBECs. Results demonstrated that miR-200b and miR-200c mimics not 
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only limited epithelial cells to undergo EMT but also reversed TGF-β1 induced EMT. 

However, transfecting BEAS-2B cells with miR-146a had no effect on EMT marker 

expression. This study demonstrated a potential use for miRNA-200b and miR-200c 

in therapeutics in order to prevent and reverse TGF-β1 induced EMT.  

3. Identify and validate downstream miRNA targets that may have a role in the 

progression of lung allograft dysfunction. 

MiRNAs control gene expression by binding to complementary sequences in target 

mRNAs. Therefore, various miRNA target prediction programs were used to 

determine the direct targets of miR-200b and miR-200c. Out of the 7 predicted 

targets ZEB2 and ZNF532 were further studied as RNA studies suggested that miR-

200b and miR-200c significantly downregulated these targets even in the presence of 

TGF-β1. A miRNA expression vector system was used to generate plasmids 

containing 3’UTR region of ZEB2 and ZNF532 that had binding sites for miR-

200b/200c. Co-transfection studies and luciferase assay revealed that the 3’ UTR of 

ZEB2 and ZNF532 are likely targets of miR-200b/200c and that use of mimics blocks 

their activity thereby preventing TGF-β induced effects. In order to study other 

potential targets of miR-200b that are transcription factors involved in TGF-β 

signalling, TGF-β array was used and the results were categorised according to the 

pathway that is activated. However due to time restriction further work of using online 

computational tools in order to find miRNA targets could not be carried out. Lastly, in 

order to show that miR-200b is extensively expressed in the bronchial epithelium, 

lung sections from normal patients were used to perform in situ hybridisation. Results 

demonstrated that miR-200b was expressed in high levels in the epithelium as 

compared to the extracellular matrix. 
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6.2 Implications 

Increasing numbers of lung transplants are being successfully carried out globally to 

prolong and improve the lives of patients suffering from end-stage lung disorders 

(Christie et al., 2010). However, long-term survival is restricted due to the incidence 

of BOS and the mechanism leading to this irreversible airway obstruction remains 

unclear. Emerging evidence suggests that EMT may be the common pathway 

leading to loss of lung function and fibrosis (Todd et al., 2012). MiRNAs have been 

implicated in end stage lung diseases and are a major focus for therapeutics in the 

clinic.  Although the role of several miRNAs has been investigated in lung in vitro 

(Sato et al.) and animal models (Ji et al., 2015; Gubrij et al., 2016) only a few make it 

through the phase II clinical trials due to lack of efficacy and off target effects 

(Rupaimoole and Slack, 2017). This highlights the greater need to investigate the 

role of miRNAs in lung allograft dysfunction, with an emphasis on their clinical utility. 

My study attempted to use specific miRNAs in an in vitro model of BOS in order to 

reverse EMT marker expression.  

A debatable issue in research into BOS has been the choice of an appropriate 

model. Animal models, while having the advantage of producing lesions that are 

histologically similar to BOS, have been repeatedly challenged, as the lesions in the 

whole-lung transplant model are not consistently reproducible (Mimura et al., 2015). 

Given this background, studying the changes in EMT marker expression in human 

bronchial epithelial cell line and primary cells could lead to a better understanding of 

disease pathogenesis. A number of publications investigating the role of EMT in BOS 

have been conducted using PBECs (Forrest et al., 2005; Ward et al., 2005; 

Borthwick et al., 2010a). Although these studies provided critical insight into the 

subject, one drawback is that it only utilises primary cells and failed to develop a 
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model using a cell line that would be a much more feasible/reproducible option for 

understanding the mechanism. Therefore, my initial study aimed to develop an in 

vitro model using A549 cells and BEAS-2B cells to study the phenomenon of EMT 

and how it may lead to fibrosis and then determine its reproducibility in PBECs. The 

immunofluorescence results of this study in Chapter 3 add significantly to the 

understanding gained from previously reported observations in lung epithelial cells 

(Section 1.5.1.2)(Hackett et al., 2009; Kamitani et al., 2011; Gong et al., 2014). My 

data demonstrates the ability of BEAS-2B cells and PBECs derived from normal lung 

to undergo EMT in the presence of TGF-β1. 

The expression of miRNAs was then evaluated in BEAS-2B cells that were pre-

treated with TGF-β1 and compared to the untreated control. Expression of selective 

miRNAs was studied followed by miRNA screening using Nanostring nCounter 

platform. This is the first time that nCounter miRNA assay was used to study the 

differentially expressed miRNAs in BEAS-2B cells. The data suggested that miR-

200b and miR-200c, which were downregulated post TGF-β1 treatment, are suitable 

candidates for further analysis. Several cancer studies have utilised mimics to study 

the effect of increasing the concentration of specific miRNA on EMT (Kong et al., 

2012; Park et al., 2015; Li et al., 2016; Liu et al., 2017) . A number of reports have 

highlighted changes in miR-200 family expression as fundamental regulators of EMT 

(Fatatis, 2012). Furthermore, there is evidence that miR-200 is a determining factor 

of the epithelial phenotype and that its direct targets are E-cadherin transcriptional 

repressors (Park et al., 2008). Since E-cadherin expression is known to be lost 

during EMT, my study aimed at using miR-200b/c mimics to correct the EMT marker 

expression by increasing the naturally occurring miRNAs that are underexpressed 

post TGF-β1 treatment. The use of mimics attenuated the expression of fibrotic 
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markers in TGF-β1 stimulated BEAS-2B cells and this was reproducible in PBECs 

and cells from lung allografts. Therefore, miR-200b and miR-200c showed potential 

for reversing a fibrotic phenotype induced in epithelial cells by TGF-β. This study 

demonstrated that miR-200b and miR-200c were capable of reprogramming TGF-β1 

stimulated epithelial cells to an epithelial like state. 

Next, the miRNA-target interactions were studied. Online computational tools 

revealed ZEB2 and ZNF532 as one of the predicted targets of miR-200b/c. The 

former has been previously studied (Park et al., 2008), however ZNF532 is a novel 

target thought to participate in TGF-β signalling pathway. In this study, the direct 

targets were not only identified but also validated using qRT-PCR and miRNA vector 

system customised with 3’ UTR ZEB2/ZNF532 gene containing binding sites for miR-

200b/c. MiR-200b/miR-200c attenuated EMT marker expression in TGF-β1 

stimulated cells (BEAS-2B cells and PBECs) by directly targeting ZEB2 and ZNF532. 

Furthermore, miR-200b localisation was also studied. My results demonstrate that 

miR-200b expression is highest within the normal epithelium as shown in previous 

cancer studies that demonstrate a reduction in miR-200 with disease progression 

(Mongroo and Rustgi, 2010; Zaravinos, 2015). Furthermore, a previous study shows 

that miR-200a localisation in proximal tubular cells of obstructed kidneys after 

unilateral ureteric obstruction was markedly decreased as compared to normal 

kidneys (Xiong et al., 2012b). Overall, my results demonstrate the need to study the 

expression of miR-200b/c in BOS+ lung tissue and that miR-200b/c mimics have 

future clinical applicability in lung fibrosis. 

TGF-β TaqMan array analysis identified significantly downregulated candidates in 

miR-200b transfected and TGF-β1 treated BEAS-2B cells. However, the candidates 

couldn’t be verified due to time constraints. Future study verifying the targets using 
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qRT-PCR and miRNA expression vector system will be required to clarify the 

association between the miRNA and the candidates. Lastly, the role of miR-146a was 

also studied in BEAS-2B cells. However, since miR-146a is mainly upregulated 

during inflammation (Aronica et al., 2010), it may not hold much relevance in TGF-β1 

induced EMT.  

Differential changes observed in epithelial cells might just be the average of all 

miRNAs expressed by different cells. Although, the epithelium is the initial target in 

lung fibrotic disorders like BOS, it would be worth investigating the miRNA profile of 

endothelial cells as they also undergo a transition to acquire fibrotic phenotype under 

stressful conditions.  

6.3 Limitations 

The main limitation of the study was the lack of PBECs from BOS+ patients. It would 

be interesting if the miR-200b/c expression could be manipulated in these cells and 

see whether that reverses EMT marker expression. Furthermore, due to time 

restriction the miR-200b expression could not be evaluated in tissue sections 

acquired from BOS+ patients. This study would allow comparing the expression of 

miR-200b in normal versus diseased lung epithelium in vivo. Lastly, miRNA inhibitors 

had no significant effect in vitro and use of miRNA power inhibitors may offer an 

efficient inhibition of microRNA activity. 

6.4 Future directions 

The ability to screen cell-free miRNAs in biofluids has allowed early detection in 

cases where there is limited tissue availability. It has recently been shown that 

disease specific exosomes and/or extracellular vesicle (EV) signatures might be 

useful in differentiating between normal and disease states. One recent study has 
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demonstrated the use of tissue-specific targeting of recombinant exosomes. 

Therefore, manipulating the expression of miRNAs within the exosomes may be an 

effective tool for target-specific therapy (Ladak et al., 2016).  

The future work could focus on profiling archived lung transplant Bronchoalveolar 

lavage (BAL) samples for selected circulating miRNAs in BOS patients. The 

experimental plan could be as follows: 

1. To investigate the prognostic value of selected circulating miRNAs in BOS 

patients. 

My PhD data has shown the importance of bronchial epithelial cell specific miRNAs 

and how they are differentially expressed in normal versus BOS patients. The next 

step would be to study the expression of circulating miRNAs from different cell 

origins. Extracellular vesicles can be isolated from BAL samples acquired from 

normal individuals and BOS patients and their cellular origin could be determined by 

flow cytometry. Levels of selective miRNAs between control and BOS group can be 

classified and correlated with clinical outcome. 

2. Identify genes and pathways that are targeted by miRNAs differentially expressed 

in normal versus BOS patients by using bioinformatics tools. 

Differentially expressed miRNAs would be further investigated. miRNA-target 

analysis would be performed as previously done during my PhD. Furthermore, 

pathway analysis using Ingenuity online software will allow identifying miRNA targets 

and their pathway interaction. These targets will then be verified and validated using 

qRT-PCR and luciferase reporter assays. 

3. Co-localize the expression of selective miRNA/s and their target/s in lung tissues 

acquired from normal and BOS patients.   
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In situ hybridisation was performed during my PhD to localise miR-200b expression 

in the lung bronchial epithelium acquired from normal individuals. However, the 

expression of miR-200b wasn’t evaluated in BOS+ lungs. Therefore, in addition to 

miR-200b the expression of other selective miRNAs and their validated targets will be 

co-localised in tissue sections acquired from healthy versus BOS patients using in-

situ hybridization (Exiqon).  

4. Determine the expression of selective miRNAs differentially expressed in lung 

tissues using quantitative methods. 

Post In-situ hybridization, laser capture microdissection would allow quantification of 

miRNA expression in normal and BOS+ epithelium isolated from sections. 

5. Study the expression profile of selective miRNAs in ex vivo lung perfusate in 

transplanted versus non-transplanted lung. 

A final study would involve studying the expression of a panel of selected miRNAs 

(from previous experiments, including miR-200b/c) in ex vivo lung perfusate in 

transplanted versus non-transplanted lungs. This would allow devising a panel of 

miRNAs that may allow accurate prediction of graft’s susceptibility to developing 

BOS. 

6.5 Conclusion 

My study provides proof of concept that miR-200b and miR-200c both protect the 

airway epithelial cells from EMT and that miR-200b and miR-200c augmentation can 

reverse established TGF-β driven EMT. Manipulation of miR-200b/200c may 

therefore represent a novel therapeutic modulator of EMT, which is associated with 

the devastating pathophysiology of BOS in lung transplant recipients.  
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