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Abstract  

The tumour suppressor p53 is activated by cellular stress to induce cell cycle arrest 

and/or apoptosis. Despite being frequently mutated, theTP53 gene is wild-type and 

functional in approximately 50% of human cancers. Targeting the p53 tumour 

suppressor pathway by inhibition of its negative factors MDM2 and MDMX is central 

to many cancer therapies. Small molecule antagonists have been developed to 

inhibit p53-MDM2 binding to release p53 and reactivate p53 function. However, 

previous studies have indicated that MDMX amplification or expression may be 

associated with resistance to MDM2-p53 binding inhibitors. MDMX could also play a 

significant role in the response to other therapeutic agents that act by a p53-

dependent mechanism.  

The effects of MDM2-p53 binding antagonists (Nutlin-3 and RG7388) and the 

MDM2/X–p53 binding co-inhibitor (RO5963) were compared in a panel of cell lines of 

different TP53 and MDMX(MDM4) status. The endpoints tested included expression 

of p53 and its downstream transcriptional targets, growth inhibition, cell cycle 

distribution changes and caspase 3/7 apoptotic activity. Moreover, the effect of 

suppression of MDMX expression by lentiviral shRNA and siRNA systems on the 

response to MDM2 inhibitors and co-inhibitors was tested in a panel of cell lines. 

Affymetrix Human Transcriptome Array 2.0 was used to detect differences in the 

expression of full-length genes and alternatively spliced forms after suppression of 

MDMX expression in MDM4-amplified MRK-nu-1 cells.  

The results showed that cells with wild-type p53 respond to both MDM2-p53 and 

MDM2/X-p53 antagonists by growth inhibition. TP53 mutational status is the main 

factor governing resistance to MDM2-p53 binding antagonists. In TP53 wild-type 

cells, MDMX expression is associated with sensitivity to the RO5963 MDM2/X con-

inhibitor and has only minor impact on resistance to MDM2-p53 binding antagonists. 

Knockdown of MDMX reduced cell growth by induction of cell cycle arrest in both p53 

dependent and independent ways, while the effect of MDMX suppression had a 

modest effect on the efficacy of MDM2-p53 binding antagonists which was cell line 

dependent. Reduction of MDMX expression slightly increased TP53-dependent 

downstream transcriptional activity measured by Affymetrix Human transcriptome 
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array 2.0. The gene showing the greatest increase in response to MDMX knockdown 

was VGLL1, which is an oncogene associated with the Hippo pathway that regulates 

organ size. Suppression of MDMX may activate VGLL1-TEAD dependent 

transcriptional activity, thereby regulating cell proliferation via an increase of VGLL1 

expression, linking to the Hippo signalling pathway. 

In summary, TP53 status has a much greater impact on the response to pure MDM2-

p53 binding antagonists compared with MDMX expression. In wild-type TP53 cell 

lines, MDMX amplification and high expression was modestly associated with 

resistance to MDM2-p53 binding antagonists. 
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1.1  Cancer 

Cancer is a collection of related genetic diseases involving growth and division of 

abnormal cells that invade adjoining parts of the body and spread to surrounding 

organs. Metastasis is the latter process and the major cause of death from cancer. 

Tumour cells are abnormal dividing cells, which are caused by genomic change such 

as mutation leading to out-of-control cell growth and proliferation. Oncogenes (from 

Greek onkos, a tumour) are activated versions of normal genes that generally share 

the ability to accelerate cell division and growth, but often also variously contribute to 

less of differentiation, increased cell motility, and avoidance of apoptosis and 

invasion (Pelengaris and Khan, 2013). By contrast, Tumour suppressor are the cell’s 

guardians against DNA damage induced. Tumour suppressors also monitor critical 

cellular checkpoints that govern the mitotic cycle, DNA repair transcription, apoptosis, 

and differentiation (Pelengaris and Khan, 2013). Normal cell growth is controlled in a 

balance between cell proliferation and death by tumour suppressors and oncogenes. 

The multiple alternative sequential alterations in tumour suppressor genes and 

oncogenes result in heterogeneity in cancer. The hallmarks of cancer, as 

diagrammatically and elegantly summarised by Hanahan and Weinberg, are shown 

in figure 1.1, including the capabilities of tumour growth, progression and metastatic 

dissemination, to provide a framework to consider the biology of cancer (Hanahan 

and Weinberg, 2011). Figure 1.2 illustrates different classes of therapeutic agents 

and examples of their capabilities of targeting the different features of cancer, 

including tumour growth and progression (Hanahan and Weinberg, 2011). 
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Figure 1.1. The Hallmarks of Cancer (Hanahan and Weinberg, 2011) 

 

Figure 1.2. Therapeutic Targeting of the Hallmarks of Cancer (Hanahan and 
Weinberg, 2011).  
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1.2  Tumour suppressors and Oncogenes 

Oncogenes (from Greek onkos, a tumour) are activated versions of normal genes 

that generally share the ability to accelerate cell division and growth, but often also 

variously contribute to less differentiation, increased cell motility, and avoidance of 

apoptosis and invasion.  

An oncogene, sometimes referred to in its normal form as a proto-oncogene, is a 

gene that has the potential to cause cancer. Mutation and amplification (high copy 

numbers) of proto-oncogenes result in the activation of the oncogenes. This can lead 

to out-of-control cell growth in human tumour cells. For example, B-RAF and K-RAS 

mutation in melanoma leads to continuous activation of the mitogen-activated protein 

kinase (MAPK) growth regulatory pathway in tumour division (Fecher et al., 2008). 

The products of oncogenes can be classified into six broad groups: transcription 

factors, chromatin remodelers, growth factors, growth factor receptors, signal 

transducers, and apoptosis regulators (Croce, 2008). 

Nowadays, a number of oncogene products can be targeted for cancer therapy. For 

example, MDM2 and MDMX are two oncoproteins which inhibit p53 activation by 

binding to p53 as a heterodimer (Hu et al., 2007). Drug development researchers 

have produced small molecular weight compounds or peptides targeted at MDM2 

and MDMX to release and reactivate the p53 tumour suppressor to inhibit tumour 

growth. 

Tumour suppressor are the cell’s guardians against induced DNA damage. Tumour 

suppressors also monitor critical cellular checkpoints that govern the mitotic cycle, 

DNA repair transcription, apoptosis, and differentiation. Mutation, deletion or 

suppression of the activity of tumour suppressor genes causes loss or reduction of 

their function, allowing abnormal cell division which can lead to tumour progression. 

For example, the TP53 tumour suppressor gene is found mutated in half of all human 

cancers (Hollstein et al., 1991).  

Epigenetic modifications such as DNA methylation and histone modifications are 

crucial to regulate the activation of tumour suppressor genes by changing chromatin 

architecture in mammals. It is commonly known that inactivation of certain tumour 
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suppressor genes occurs as a consequence of hypermethylation within the promoter 

regions. The CpG sites in CpG islands of promoter regions of DNA where cytosines 

can be methylated. The multiple methylated CpG sites in CpG islands of promoters 

causes stable silencing of genes such as tumour suppressor genes. Loss of 

expression of tumour suppressor genes in cancers occurs more frequently by 

hypermethylation of promoter CpG islands than by mutations (Clark and Melki, 2002; 

Baylin, 2005; Kulis and Esteller, 2010). A previous study listed 147 genes which were 

found with high frequency of hypermethylated promoters are associated with colon 

cancers (Schnekenburger and Diederich, 2012). DNA repair genes are also 

frequently repressed in cancers due to hypermethylation of CpG islands within their 

promoters (Jin and Robertson, 2013; Rieke et al., 2016).  

  

https://en.wikipedia.org/wiki/DNA
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1.3  RB and Cell cycle 

The Rb (retinoblastoma) protein is a tumour suppressor, which is located at position 

chromosome 13q14. Most inactivating Rb mutations lead to retinoblastoma. Rb plays 

a crucial role in the negative control of the cell cycle and cell proliferation in tumour 

progression (Weinberg, 1995).  

Rb protein (pRb) is responsible for a major G1 checkpoint (restriction point) blocking 

S-phase entry and cell growth, promoting terminal differentiation by inducing both cell 

cycle exit and tissue-specific gene expression (figure 1.3A) (Weinberg, 1995). Rb is 

physically associated with E2F factors and blocks their transactivation domain in G0 

and early-G1 phase. In late G1 phase, phosphorylated form of Rb releases E2Fs, 

allowing the expression of genes that encode products necessary for S-phase 

progression (figure 1.3A). The pRb is hypophosphorylated in resting G0 cells (Sherr 

and McCormick, 2002; Giacinti and Giordano, 2006). Loss of pRb functions may 

induce cell cycle deregulation. The interaction between the pRb family of proteins 

and the E2F family of transcription factors plays a central role in governing cell cycle 

progression and DNA replication by controlling the expression of cell cycle E2Fs-

dependent genes (Macaluso et al., 2005). The other two members of Rb family are 

p107 (20q11.2) and p130 (16q13). The Rb family are referred to as pocket proteins. 

The term pocket proteins derives from the conserved binding pocket region through 

which Rb, p107 and p130 bind viral oncoproteins and cellular factors such as the 

E2F family of transcription factors (Weinberg, 1995). In G0 and early-G1 phase, p107 

and p130 also bind to the E2F family and inhibit E2Fs’ responsive gene expression 

(figure 1.3B). In G1 phase, cyclin D-Cdk4/6 and cyclin E-Cdk2 holoenzymes 

phosphorylate pRb proteins, allowing E2Fs to induce the transcription of genes 

required for S-phase entry (figure 1.3B) (Pelengaris and Khan, 2013).  
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Figure 1.3. Rb controls the cell cycle. (A) Rb and pRB (phosphorylated forms of 
RB) control E2F transactivation in G0, G1 and S (Giacinti and Giordano, 2006). 
(B) The Rb family of proteins regulate E2F4/5 in G0 and early G1 phase 
(Pelengaris and Khan, 2013). 

  

Two E2F3 proteins exist: E2F3a, the full-length protein
that acts as an activating E2F, and E2F3b, a mutant form
truncated at its N-terminus that represses transcription of
proteins, including the tumor suppressor p19Arf (p14ARF in
humans) (discussed in this chapter) by interacting with as
yet unknown protein partners (Box 7.3). E2F6, another
E2F family member, is part of a repressor polycomb
complex that does not interact with the RB family of
proteins. The most recently discovered E2F family
member, E2F7, like E2F6, also acts as a transcriptional
repressor and lacks an RB-binding domain.

Box 7.3 ARF Expression Is Repressed by
E2F3b
The transcription factor E2F3b is a repressor
of the ARF gene in nonstressful conditions. It
interacts with as yet unknown partners to

A

B
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1.4  Tumour suppressor – p53 

A tumour suppressor is anti-oncogene which is a factor preventing the development 

of tumours. Mutation or deletion of tumour suppressor genes causes loss or 

reduction of their function, allowing abnormal cell division which can lead to tumour 

progression. For example, the TP53 tumour suppressor gene is found mutated in half 

of all human cancers (Hollstein et al., 1991).  

1.4.1 Regulation of p53 

Activation of transcriptional factor p53 function includes three steps, which are p53 

stabilization, DNA binding and transcriptional activation (figure 1.4). Cellular stress, 

including DNA damage, oncogenic activity, ribosomal stress and metabolic stress, 

stabilizes and activates p53 to induce down-stream cellular effects such as 

apoptosis, cell cycle arrest and senescence (Harris and Levine, 2005; Rufini et al., 

2013). The genes involved in these cellular effects are transactivated by p53 via 

interaction with DNA through its DNA binding domain (Shadfan et al., 2012). ATM, 

ATR and other DNA damage and stress-dependent kinases phosphorylate and 

stabilize p53. DNA-bound p53 then recruits the transcriptional machinery to activate 

the transcription of p53 target genes that inhibit growth and promote apoptosis 

(Kruse and Gu, 2009). P53 is degraded via MDM2-mediated ubiquitination (Haupt et 

al., 1997; Honda et al., 1997; Kubbutat et al., 1997; Brooks and Gu, 2011). 

The TP53 tumour suppressor gene plays a crucial role in protecting cells from 

genomic instability by regulating apoptosis and cell cycle arrest in response to 

cellular stress. Amplification or overexpression of negative regulators such as MDM2 

and MDMX can be alternative mechanisms by which p53 function is compromised in 

cancer, even though tumour cells are often more sensitive to apoptosis signals than 

normal cells. The TP53 gene is nevertheless wild-type in approximately half of 

human cancers, therefore where it is suppressed by other mechanisms, re-activation 

of p53 has been of major interest in the development of tumour-specific therapies in 

different types of cancers (Kim and An, 2016).  
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Figure 1.4. The transcription factor p53 is activated by phosphorylation in 
response to oncogenic and cellular stress (Pelengaris and Khan, 2013). 
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1.4.2 TP53 mutation   

Mutant p53 is found in around 50% of human cancer. TP53 has several mutational   

hot spots shown in figure 1.5. The majority (75%) of TP53 mutations are missense 

substitutions in its central DNA-binding domain (Olivier et al., 2002; Petitjean et al., 

2007; Goh et al., 2011). Other alterations include frameshift insertions and deletions 

(9%), nonsense mutations (7%), silent mutations (5%) and other infrequent 

alterations (Olivier et al., 2002). About 30% of TP53 missense mutations found in 

cancer correspond to nucleotide substitutions at highly mutable CpG dinucleotides, at 

codons encoding residues that play essential structural and chemical roles in the 

contact between the p53 protein and specific DNA sequences that constitute the p53 

response elements (Hainaut and Hollstein, 2000). Most tumour somatic mutations 

are accompanied by deletion of the remaining wild-type TP53 allele. High expression 

of mutant p53 can also contribute to transformation, metastasis and drug resistance 

in part by inhibiting wild-type p53 and p53 family members in many cancers (Goh et 

al., 2011). 

Mutations in TP53 confer susceptibility to cancer and may be somatic or inherited. 

Li–Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by 

germline mutations in TP53 (Petitjean et al., 2007). The family with LFS are 

predisposed to diverse types of cancer including breast cancer, bone, soft tissue, 

brain, adrenal, colorectal carcinoma and melanoma. The p53 mutation is transmitted 

from one generation to the next. The position of TP53 mutation at R337H was initially 

found in young Brazilian patients with LFS (Pelengaris and Khan, 2013). 

Some forms of mutant p53 can have a dominant negative effect on wild-type p53 

(figure 1.6). Mutant p53 also inhibits p63 and p73 (Goh et al., 2011). In normal cells 

on figure 1.6A, wild-type p53 is synthesised in the cytoplasm and forms dimers. After 

being transported to nucleus, tetramers of p53 bind to p53-binding sites in the DNA. 

At low mutant p53 protein levels (figure 1.6B), mutant p53 dimers do not block wild-

type p53 tetramers and activation. At high levels of mutant p53 (figure 1.6C), inactive 

heterotetramers are formed and inhibit the formation and function of wild-type p53 

tetramers (Goh et al., 2011). Mutant p53 can have oncogenic gain-of-function 
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properties (Bossi et al., 2006). Mutant p53 results in chromosomal instability 

accelerating tumour progression in cells (Bossi et al., 2006).   
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Figure 1.5. The hot spots of TP53 mutation in human cancer. The majority of 
mutations are located in DNA-binding domain (Pelengaris and Khan, 2013).  

 

 

Figure 1.6. Models to explain dominant mutant p53 effect to wild-type p53 (Goh 
et al., 2011). Wild-type p53 dimers and tetramers are green circles. Mutant p53 
dimers are orange squares. 
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1.4.3 Modification of p53  

Phosphorylation of p53 mediates its activation by DNA damage ATM (Ataxia 

Telangiectasia Mutated), which is a serine/threonine protein, is a key up-stream 

activator of p53 responsible for activation by DNA double-stand break (Banin et al., 

1998; Chun and Gatti, 2004) or DNA-PK (Shieh et al., 1997). Ser20 of p53 is 

phosphorylated by Chk2, which is activated by ATM. Ser20 is also a part of the 

MDM2-binding site on p53, and phosphorylation of this residue prevents p53 binding 

to MDM2 (Chehab et al., 2000; Shieh et al., 2000). However, individual 

phosphorylation site mutation does not block p53 stabilization. It was demonstrated 

in a mouse model that Ser18 (equivalent of Ser15 in human p53) single-site mutation 

does not affect p53 stabilization or tumour suppression significantly. After DNA 

damage, it only causes poor activation of certain p53 target genes (Chen et al., 

2012). 

Ubiquitin (Ub) conjugation is a general targeting modification and poly-ubiquitin 

chains constituting lysine 48 (K48) linkages specifically target proteins to the 

proteasome for degradation. The lysines on C-terminal basic domains of p53 are 

targets for ubiquitination by MDM2 leading to proteasomal degradation (figure 1.7). 

MDM2 functions as an E3 ligase to add ubiquitin chains to p53, leading to p53 

degradation in co-operation with MDMX (Wade et al., 2013). Ubiquitins on p53 are 

deubiquitinated by the enzyme HAUSP for activation of p53 (Li et al., 2002b). MDM2-

mediated monoubiquitylation of p53 greatly promotes its mitochondrial translocation 

and apoptosis (Marchenko et al., 2007). On the other hand, p53 undergoes rapid 

deubiquitylation by mitochondrial HAUSP via a stress-induced mitochondrial p53–

HAUSP complex (Marchenko et al., 2007). 

Histone acetyltransferases (HATs) provide an important role of p53 regulation and 

transcription (Brooks and Gu, 2003). The p53 protein was the first nonhistone 

substrate found to be acetylated by the histone acetyltransferase CBP/p300. Also 

CBP/p300 mutations are found in several types of human tumours (Goodman and 

Smolik, 2000; Iyer et al., 2004). Acetylation of p53 lysine residues is critically 

important both for the efficient recruitment of cofactors and for the activation of p53 

target genes in vivo. The acetyltransferases Tip60 and hMof can acetylate p53 as 
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well as histones (Tang et al., 2006). The acetyltransferase activity of Tip60 is 

implicated in both DNA repair and apoptosis (Tang et al., 2006; Kruse and Gu, 2009). 

Methylation, sumoylation, and neddylation may contribute to p53 promoter specificity 

(Kruse and Gu, 2009) as indicated in Figure 1.7A. Three different methyltransferases 

have been shown to be able to methylate C-terminal lysine residues of p53. Set7/9-

mediated monomethylation of p53 at lysine K372 promotes p53 activation of p21 

(Chuikov et al., 2004). Monomethylation of p53 at K370 and K382 by Smyd2 and 

SET8, respectively, represses p53 activity (Huang et al., 2006; Shi et al., 2007). 

Regulated dimethylation of K370 and K382 provides a binding site for the DNA repair 

factor 53BP1, and DNA damage increases p53 dimethylation and therefore promotes 

the interaction of p53 and 53BP1 (Kruse and Gu, 2009). Modification of p53 by the 

ubiquitin-like modifications SUMO and Nedd8 further add to the competition for the 

C-terminal lysines. Some studies report that sumoylation promotes p53 

transcriptional activity (Melchior and Hengst, 2002) but others demonstrate that 

sumoylation promotes the localization of p53 to the cytoplasm (Carter et al., 2007). 

MDM2-mediated neddylation of K370, K372, and K373 (Xirodimas et al., 2004) and 

FBXO11-mediated neddylation of K320 and K321 (Abida et al., 2007) appear to 

inhibit p53-mediated transcriptional activation.  
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Figure 1.7. Structure and modification of the p53 family. (A)Structure and 
posttranslational modification of p53 (Kruse and Gu, 2009) . Phosphorylation 
(P), ubiquitination (Ub), acetylation (Ac), methylation (Me), sumoylation (S), 
neddylation (N8), glycosylation (O-Glc), and ribosylation (ADP) are indicated. 
(B) Structural domains of p53, p63 and p73 proteins. All three proteins share 
common domains but contain different lengths of negative regulatory domains 
(NRD) (Pelengaris and Khan, 2013). 
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1.4.4 Mouse models of TP53  

TP53 family members have been deleted by homologous recombination in the 

mouse, leading to tumorigenesis and developmental effects summarised in table 1.1. 

Knockout mice with one or two copies of p53 deleted develop cancers with high 

frequency, including lymphomas, sarcomas, lung and brain tumours (Pelengaris and 

Khan, 2013). TP53-null mice have been used to test potential new therapies. A single 

amino acid substitution at 172 (R172H) in the mouse p53 allele induces an increase 

in the number of carcinoma and metastases in TP53+/- mice (Pelengaris and Khan, 

2013). However, knockout of p63 and p73 does not make mice tumour prone, but is 

associated with developmental defects. 

 

 

  

Table 1.1 Mouse model of TP53 family (Pelengaris and Khan, 2013) 
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1.5  Oncogene MDM2 

MDM2 (murine double minute 2) is one of two members of the MDM family and a 

major inhibitory regulator of p53 by binding to the N-terminal domain of p53. The 

MDM2 gene is located on chromosome 12 at q15 9. MDMX (also known as MDM4 

gene) is a structural MDM2 paralogue. The percentage of domain amino acid 

similarity between MDM2 and MDMX is around 50% shown in figure 1.8. 

1.5.1 MDM2 structure and function 

The structure of both MDM2 and MDMX includes three main domains (figure 1.5 & 

figure 1.6): a hydrophobic pocket N-terminal p53 binding domain, a zinc-finger 

domain and a C-terminal RING-finger domain (Toledo and Wahl, 2007). The C-

terminal RING domains are responsible for homodimerisation or heterodimer 

formation by interaction between MDM2 and MDMX RING domains (Sharp et al., 

1999; Tanimura et al., 1999).  

The first difference between MDM2 and MDMX is that MDM2 has nuclear localization 

signal (NLS) and nuclear export signal (NES) domains, which MDMX does not. 

MDM2 is localized in the nucleus of the cell in non-stressed conditions by the NLS, 

whereas the NES allows MDM2 to shuttle between the cytoplasm and the nucleus 

(Tao and Levine, 1999; Boyd et al., 2011). The NES facilitates the ability to export 

p53 from the nucleus to inhibit the transactivation of genes by keeping p53 in the 

cytoplasm and blocking its interaction with DNA. Although p53 cannot induce 

transcription outside of the nucleus, some research has shown that p53 also 

performs different activities in the cytoplasm (Chipuk et al., 2005; Tasdemir et al., 

2008).  

The other difference is that the RING domain in the C-terminal region of MDM2 

carries an E3 ligase activity, which MDMX does not have (figure 1.8). As an E3 

ubiquitin ligase, MDM2 has several substrates including itself, p53, and MDMX. 

MDMX and p53 can be ubiquitinated for proteasomal degradation by MDM2 (Kawai 

et al., 2003; Pan and Chen, 2003). The RING domain of MDM2 has been shown to 

be required for MDM2 to transport p53 out of the nucleus (Boyd et al., 2000c; Geyer 

et al., 2000). MDM2-mediated mono-ubiquitination of p53 localises it in the cytoplasm 
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and greatly promotes its mitochondrial translocation and thus its direction of 

mitochondrial-mediated apoptosis (Marchenko et al., 2007).  

1.5.2 Modification and regulation of MDM2 

The kinases related to DNA damage activate the p53 pathway and stop the cell cycle 

in order to repair the damage or, if the damage is irreparable, put the cell into a state 

of permanent cell cycle arrest (senescence) or programmed cell death (apoptosis).  

ATM has been reported to indirectly cause phosphorylation of MDM2 via the c-Abl 

kinase at Y394, which also inhibits the E3 ligase activity to stabilize p53 for activation 

of apoptosis (Sionov et al., 2001; Goldberg et al., 2002) (figure 1.9). The AKT 

kinases regulate cell growth and survival, and they are activated in human cancers; 

among their targets are MDM2 and MDMX. Phosphorylation of MDM2 at Ser166 and 

Ser186 (Mayo and Donner, 2001) leads to MDM2 stabilization, and is associated with 

p53 inhibition.  

DNA-PK (DNA-activated Protein Kinase) has been shown to phosphorylate the p53-

binding domain of MDM2 at S17 to decrease the affinity of MDM2 for p53 (Mayo et 

al., 1997). DNA damage-mediated modification of MDM2 not only stops ubiquitination 

of p53, but it also actively changes the affinity of MDM2 for p53 and instead MDM2 

tags MDMX with ubiquitin for degradation. Activation of p53 also causes the 

transcriptional induction of MDM2 and increases the level of MDM2 protein 

generating a negative feedback loop (Stommel and Wahl, 2004; Shadfan et al., 

2012) (figure 1.9).  

A cellular protein MTBP (MDM2 binding protein), which is located on human 

chromosome 8q24 (Boyd et al., 2000b), has been reported to bind to MDM2 resulting 

in the induction of G1 arrest (Boyd et al., 2000a). A subsequent study found that 

MTBP contributes to MDM2-mediated ubiquitination and degradation of p53 (Brady 

et al., 2005). 

The inhibition of p53 by MDM2 and MDMX cooperation can be involved in both the 

proliferation and altered differentiation status of cancer cells (Marine et al., 2007). 

Both MDM2 and MDMX have been implicated in regulation of the stability and/or 
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activity of several other proteins that control cell proliferation, such as the 

retinoblastoma protein Rb, the heterodimer E2F1-DP1, Numb and Smad (Ganguli 

and Wasylyk, 2003; Marine and Jochemsen, 2005). Mice lacking both MDM2 and 

MDM4 in the CNS exhibited a phenotype that is more severe and appears earlier 

than that of MDM2-null mice embryos (Xiong et al., 2006). Similarly, p53-mediated 

apoptosis was increased in the neuroepithelium and in post-mitotic cells in mice 

lacking both MDM2 and MDM4 compared with mice lacking MDM2 alone (Francoz et 

al., 2006).  

 

   



20 

 

 

Figure 1.8. Functional domains and similarity of the MDM2 and MDMX 
oncoproteins. The percentages indicate the degree of amino acid sequence 
similarity between the individual domains shared by MDM2 and MDMX. NLS = 
nuclear localization signal; NES = nuclear export signal; Zn finger = Zinc finger 
(Gannon and Jones, 2012). 

 

 

Figure 1.9. Post-translational modification of the MDM2 and MDMX 
oncoproteins (Wade et al., 2010) 
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1.5.3 MDM2 and p53 interaction 

MDM2 has been demonstrated to negatively regulate p53 in three ways. Firstly, 

MDM2 binds to the N-terminal transactivation domain (TAD) of p53 and blocks its 

transcriptional activity. Secondly, MDM2 exports p53 from the nucleus to the 

cytoplasm. Monoubiquitination can directly promote further modifications of p53 with 

ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase 

PIASy with p53, enhancing both sumoylation and nuclear export (Carter et al., 2007). 

Finally, MDM2 has E3 ligase function leading to poly-ubiquitination of and then 

proteasomal degradation of p53 and MDMX (Zhang and Xiong, 2001; Vousden and 

Lu, 2002; Pei et al., 2012; Wade et al., 2013). MDM2 is also a p53 transcriptional 

target regulated by p53 activation in a negative feedback loop (figure 1.10). 

Superimposed crystal structures of MDM2 and MDMX docked with p53 illustrating 

the structural similarity of 54% between MDM2 and MDMX in the p53 binding domain 

are shown in figure 1.11. MDM2 binds to p53 using three amino acid residues of the 

p53 peptide, Phe19, Trp23 and Leu26, in the hydrophobic p53 binding pocket 

(Kussie et al., 1996). 

1.5.4 MDM2 mutation and overexpression in cancer 

MDM2 is commonly found to be over-expressed in some cancers, including around 

20% of sarcoma, and around 10% of stomach, bladder and lung adenocarcinoma as 

seen in the cBioPortal data shown in figure 1.12A. MDM2 mutations are rare and the   

distribution of those few MDM2 mutations that have been reported is shown in figure 

1.12B. The mutations of MDM2 can increase MDM2 protein expression leading to 

p53 inhibition.   
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Figure 1.10. MDM2-p53 negative feedback loop (Landre et al., 2014). 

 

Figure 1.11. Crystal structures of p53 (pink) complexed to MDM2 (orange) and 
MDMX (green) shown as superimposed ribbon diagrams, with the three key 
interacting residues of p53 shown as stick structures (Joseph et al., 2010).   

MDM2
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Figure 1.12. (A) The MDM2 genes data from cBioPortal website (Cerami et al., 
2012; Gao et al., 2013). The data was gated to show cancers with over 3% 
amplification (red) and mutation (green). (B) The position of MDM2 mutations in 
human cancer. (http://www.cbioportal.org/) (Cerami et al., 2012; Gao et al., 
2013) 

  

A

B

http://www.cbioportal.org/)
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1.6  Oncoprotein MDMX 

MDMX (gene name MDM4) is one of the set of murine double minute (MDM) genes 

originally discovered as amplified genes carried on double minute chromosomes in a 

spontaneously transformed mouse NIH3T3 cell line, from which their name is 

derived. The human MDM4 gene is located on chromosome 1 at q32-33 and codes 

for a protein of 490 amino acids (Shvarts et al., 1997; Mancini et al., 2009). 

1.6.1 MDMX structure and function 

MDMX and MDM2 can form heterodimers by C-terminal RING-RING domain 

interactions between both proteins. MDMX is closely related to MDM2 in amino acid 

sequence and overall structure (figure 1.8). N-terminals of both MDM2 and MDMX 

have p53 binding domains but the similarity of p53 binding domains between MDM2 

and MDMX is lower than 50% (figure 1.8) (Gannon and Jones, 2012). MDMX does 

not have E3 ligase function like MDM2 to ubiquinate p53, although it can still inhibit 

p53 by direct binding (Jackson et al., 2001). 

1.6.2 Modification of MDMX 

The overall domain structure and posttranslational modification of MDMX is shown in 

figure 1.9. C-terminal serine residues of MDMX are phosphorylated through the 

induction of DNA damage by ATM, Chk1 and Chk2, which stimulates MDMX 

degradation by MDM2 contributing to p53 activation (Chen et al., 2005a; Chen et al., 

2005c; Okamoto et al., 2005; LeBron et al., 2006). AKT was found to directly 

phosphorylate MDMX at S367, enhancing 14-3-3 binding, which stabilized MDMX 

and downregulated p53 (figure 1.13) (Lopez-Pajares et al., 2008).Casein kinase 1α 

(CK1α)‐mediated phosphorylation of MDMX increases its affinity for p53 and may 

reduce p53 activity (Chen et al., 2005b), and c-Abl (also known as ABL1) 

phosphorylates Tyr99 of MDMX (Zuckerman et al., 2009) leading to the dissociation 

of p53 from its negative regulators. Chk2 and 14-3-3 cooperatively stimulate MDMX 

ubiquitination and overcome the inhibition of p53 by MDMX response to DNA 

damage (LeBron et al., 2006). Oncogenes such as c-Myc can engage damage-

independent pathways such as the p14ARF tumour suppressor in order to inhibit 
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MDM2 and activate p53, or may induce DNA damage kinases and other kinases, 

which then phosphorylate either MDM2 or MDMX (Wade et al., 2010). 

Following resolution of a DNA damage response, Wip1 (wild-type p53-inducible 

phosphatase-1) can dephosphorylate MDM2 and MDMX, leading to their 

stabilization. Wip1 directly dephosphorylates MDMX at the ATM-targeted Ser403 and 

indirectly suppresses phosphorylation of MDMX at Ser342 and Ser367. Wip1 inhibits 

the DNA damage-induced ubiquitination and degradation of MDMX, leading to the 

stabilization of MDMX and reduction of p53 activities (Zhang et al., 2009)..  

1.6.3 Regulation of MDMX 

In contrast to MDM2, MDMX is not regulated by p53. MDMX expression is regulated 

by mitogenic signals and growth factors (Gilkes et al., 2008). Mitogenic survival 

signals have also been shown to modulate MDMX. One previous study showed that 

K-Ras and insulin-like growth factor-1 (IGF1) can increase levels of MDMX mRNA 

and subsequently increase MDMX protein levels (Gilkes et al., 2008). Some 

mitogenic signals can also enhance MDM2-MDMX stabilization, thereby further 

suppressing p53 in order to transform a cell.  

The levels of MDM2 and MDMX ubiquitination are in part controlled by the 

deubiquitinase HAUSP (Meulmeester et al., 2005), which removes ubiquitin from 

each protein, leading to their stabilization (figure 1.13). However, there is a lack of 

studies linking HAUSP levels with response to MDM2 inhibitors. 

MDMX has been reported to exert oncogenic activity via suppression of 

retinoblastoma protein (RB), suggesting that both MDM2 and MDMX could be 

chemotherapeutic targets, although this would have to undergo specific target 

validation (Zhang et al., 2015). MDMX binds to and promotes RB degradation in an 

MDM2-dependent manner. Specifically, the MDMX C-terminal RING domain binds to 

the RB C-pocket and enhances MDM2–RB interaction (Hu et al., 2016). 

Ribosomal stress proceeds via the release of ribosomal proteins that inhibit MDM2 

ubiquitin ligase activity and stabilize p53. Overexpression of MDMX increases the 

resistance of cells to low dose 5-Fu, which causes ribosomal stress (Gilkes and 
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Chen, 2007). Ribosomal proteins bound to MDM2 have also been found to induce 

degradation of MDMX as a potential step in p53 activation (Gilkes et al., 2006). 

Ribosomal subunit S7 was found to inhibit MDM2, but this effect, and the subsequent 

stabilization of p53, were dependent on the presence of MDMX (Zhu et al., 2009). It 

has been demonstrated by researchers that ribosomal noncoding 5S rRNA can also 

stabilize MDMX, possibly playing a role in the stable level of MDMX under non-stress 

conditions (Li and Gu, 2011).  
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Figure 1.13. Multiple cell signalling cascades converge on MDM2 and MDMX. 
p53 activating stresses (red print) can signal through damage-dependent and 
independent pathways to activate p53. Ribosomal stress proceeds via the 
release of ribosomal proteins that inhibit MDM2 ubiquitin ligase activity and 
stabilise p53. Kinases associated with proliferation and survival (green print) 
can also phosphorylate MDM2 and enhance its p53 inhibitory function (Wade et 
al., 2010). 
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1.6.4  Isoforms of MDMX 

The presence of different isoforms of MDMX have been reported.  Immunoblot 

(Western Blot) analysis detected at least 5 shorter MDMX forms in a panel of 31 

human tumour cell lines (Ramos et al., 2001). Seven different shorter isoforms of 

MDMX have been characterized and shown to be derived from alternative splicing. 

The transcript variants and different predicted isoforms of MDMX in relation to the 

functional domains are shown in figure 1.14. These transcript variants, shown in 

figure 1.15, are designated MDM4-S, MDM4-A and MDM4-G, MDM4-211, MDM4-

XALT1 and MDM4–XALT2 (Mancini et al., 2009; Lenos and Jochemsen, 2011).  

1.6.4.1  MDMX-S 

MDMX-S has been reported to suppress p53-mediated transcription from a p53 

target promoter better than full-length MDMX. The DNA damage inducibility of these 

p53 responsive promoters was suppressed better by MDMX-S than by MDMX. 

Analysis of the MDMX-S protein indicated that the 13 novel amino acids at its 

carboxy terminus were responsible for high affinity binding to p53 in vitro and for high 

level expression of the protein in cells. Deletion of this 13 amino acid sequence 

resulted in a protein that was not able to bind p53 and was not expressed well in cells 

(Rallapalli et al., 2003). 

The MDMX-S splice variant also leads to a decrease in MDMX-FL (MDMX full-

length) expression. The mutant allele MDMXΔE6 (MDMX exon 6 deleted) prevented 

the expression of MDMX-FL, but also led to increased MDMX-S mRNA levels (figure 

1.15). Mice homozygous for this allele died during embryonic development, but were 

rescued by a concomitant p53 deficiency. The main effect of a skipping of MDMX 

exon 6 that has been demonstrated is not the synthesis of the Mdm4-S protein, but 

rather a decrease in MDMX-FL expression (Bartel et al., 2005; Bardot et al., 2015). 

Both the overexpression of the MDMX-S transcript and MDMX gene amplification are 

important prognostic markers for soft-tissue sarcomas (Bartel et al., 2005). The 

increase in MDMX-S isoform, which results from skipping of MDMX exon 6, 

correlates with more aggressive cancers (Rallapalli et al., 2003). 
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Figure 1.14. MDMX domains and the regions involved in protein-protein 
interaction (Mancini et al., 2009). 

 

Figure 1.15. Schematic representation of the MDMX protein and scheme of the 
MDMX mRNA and the reported MDMX splicing variants (Lenos and Jochemsen, 
2011)  
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1.6.4.2  MDMXp60 

Cap-independent translation of an N-terminal truncated isoform of human MDMX, 

MDMXp60 (figure 1.16), is initiated at the 7th AUG codon downstream of the initiation 

site for full length MDMX-FL at position C384. MDMXp60 lacks the p53 binding motif 

but retains the RING domain and interacts with MDM2 and MDMX-FL. MDMXp60 

shows higher affinity for MDM2. Low levels of MDMXp60 promote degradation of 

MDM2 whereas higher levels stabilize hMDM2 and prevent MDM2-mediated 

degradation of MDMX-FL. These results describe a novel alternatively translated 

MDMX isoform that exhibits unique regulatory activity toward MDM2 

autoubiquitination. The data illustrate how the N-terminus of MDMX regulates its C-

terminal RING domain and hMDM2 activity (Tournillon et al., 2015). 
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Figure 1.16. The MDMXp60 isoform is initiated at the 7th in frame AUG codon.  
(A) MDMX mRNA constructs and the mutated AUG sites. (B) The MDMXp60 
lacks the first 127 amino acids (grey part), including the p53 binding domain 
(Lenos and Jochemsen, 2011). 
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1.6.4.3  WWW element 

MDMX has recently been found to contain an autoinhibitory sequence element called 

the WWW element (figure 1.17A) (Bista et al., 2013). Full-length MDMX has an 

approximately ∼100-fold weaker affinity for the N-terminal domain of p53 than its 

isolated N-terminal domain. Previous research using NMR spectroscopy and binding 

studies observed that MDMX (but not MDM2) contains a self-inhibitory element that 

competes intramolecularly for binding with the N-terminal domain of p53 (figure 

1.17B). Deletion or mutation of this element increased binding affinity of MDMX to the 

level of the isolated N-terminal domain. An alternative splicing variant of MDMX that 

does not contain the WWW element is found in some aggressive cancers (Bista et 

al., 2013). 

1.6.4.4  MDMX-ALT2 

MDMX-ALT2 (MDM4-XAL2 in figure 1.15) is able to dimerize with both full-length 

MDMX and MDM2, and the expression of MDM2-ALT1 and MDMX-ALT2 leads to the 

upregulation of p53 protein, and of its downstream transcriptional target, p21. 

Moreover, the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-

ALT2 are important modifiers of the p53 pathway and present a potential mechanism 

to tailor the p53-mediated cellular stress response (Jacob et al., 2014). The 

occurrence of cancer-associated splice variants, MDMX-S (that possesses high 

affinity for p53) and MDMX-ALT2 (that lacks the p53-binding domain), has been 

reported upon cisplatin treatment (Chandler et al., 2006; Markey and Berberich, 

2008; Jacob et al., 2013). 
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Figure 1.17. (A) Structure of MDMX and WWW binding site (red) mapping. (B) 
Regulation of MDMX activity by autoinhibition. Full-length MDMX rests in a 
latent state in which its binding activity with p53TAD is masked. Activation of 
MDMX can achieved either by alternative splicing, yielding a truncated MDMX 
variant (MDMX-S), or by binding of the inhibitory module by an accessory 
factor (Bista et al., 2013). 

 

  

A

B



34 

 

1.6.5 MDMX in cancer 

MDMX as an MDM2 structural homolog and p53 negative regulator has been 

reported with high expression in 40% of tumour cell lines (Ramos et al., 2001; Danovi 

et al., 2004). MDMX is also overexpressed in several types of cancers that retain 

wild-type p53 including gliomas (Riemenschneider et al., 1999), a number of pre-B 

acute lymphoblastic leukemias (Han et al., 2007) and some primary tumours 

including breast tumours (Yu et al., 2014; Haupt et al., 2015), head and neck 

squamous cell carcinomas (Valentin-Vega et al., 2007), retinoblastomas (Laurie et 

al., 2006), and cutaneous melanoma (Gembarska et al., 2012). 

Figure 1.18A shows the frequency of amplification and mutation of MDM4(MDMX) in 

a panel of primary tumour types from the cBioportal database website (Cerami et al., 

2012; Gao et al., 2013). MDM4 amplification can be found in primary data of 13 % of 

breast, 10% of glioblastoma (GBM), 10% of cholangiocarcinoma, nearly 10% of liver 

and nearly 10% of lung adenocarcinoma (Burgess et al., 2016). MDM4 with gain and 

amplification has been reported in 10% of sarcoma. (Ohnstad et al., 2013). The hot 

spot of mutations in MDM4 was shown in figure 1.18B. The higher frequency of 

mutations locates on V371I (colorectal and stomach adenocarcinoma) and E141K 

(invasive breast carcinoma and non-small cell lung cancer) and both sites of 

mutations are not in the domains of MDMX. However, these two mutant sites did not 

located at the MDMX-S isoform (chapter 1.6.4.1) and WWW autoinhibitory element 

(chapter 1.6.4.3) 
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Figure 1.18. The MDM4 (MDMX) genes data from cBioPortal website (Cerami et 
al., 2012; Gao et al., 2013). (A)The data was gated to show over 3% 
amplification (red) and mutation (green). (B) The distribution of MDM4 
mutations in human cancer. (http://www.cbioportal.org/)(Cerami et al., 2012; 
Gao et al., 2013). 
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1.7  MDM2-p53 antagonists 

MDM2 blocks the p53 transactivation domain by interacting with three key p53 amino 

acids which are Phe19 (F19), Tyr23 (W23) and Leu26 (L26) (figure 1.18B) (Bottger et 

al., 1997). Small molecular compounds are designed to disrupt p53-MDM2 

interaction and bind into the N-terminal hydrophobic pocket of MDM2 (Kussie et al., 

1996). In wild-type p53 cells these compounds prevent p53 from binding to MDM2 

and release the p53 to carry out its transcriptional activation and cell cycle arrest and 

pro-apoptotic functions (Vassilev, 2004; Vassilev et al., 2004).  

A number of small molecule inhibitors of the MDM2-p53 binding interaction have 

been developed (Hardcastle et al., 2006). Targeting of MDM2 by small molecule 

antagonists to reactivate p53 function has been developed for cancer therapy. The 

MDM2-p53 binding inhibitor Nutlin-3, shown in figure 1.19A, is a cis-imidazoline 

analogue (MDM2 IC50 ~36nM; MDMX IC50 ~18 μM) (Vassilev et al., 2004). Nutlin-3 

has been demonstrated to activate the p53 pathway and inhibit the growth of tumour 

cells with wild-type p53 both in vitro and in vivo. Reactivation of p53 by Nutlin-3 

causes cell cycle arrest in G1 and G2 phases of the cell cycle and apoptosis. Nutlin-3 

binding to MDM2 leads to reactivation of p53, but in the same dose range does not 

affect cells with transcriptionally inactive mutant p53 (Vassilev et al., 2004). MI-63 

(figure 1.20) is a spiro-oxindole compound used as another first generation small-

molecule inhibitor of MDM2, which is a more potent MDM2-binding inhibitor than 

Nutlin-3 (Canner et al., 2009).  

RG7112 (figure 1.20) was subsequently the first of cis-imidazoline class to enter 

clinical trials. The results from several Phase I trials indicated RG7112-induced 

thrombocytopenia and insight into the role of the p53-MDM2 auto-regulatory loop in 

normal megakaryocytopoiesis (Iancu-Rubin et al., 2014). Limiting toxicity RG7388 

(figure 1.20) is high-affinity spiroindoline-3,3′-pyrrolidine MDM2 inhibitor which have 

been tested as second-generation clinical antagonists with more potency and 

selectivity than the earlier nutlin series by Hoffmann-La Roche (Ding et al., 2013). 

RG7112 and RG7388 have been subject to early phase clinical trials in acute 

myeloid leukemia (Andreeff et al., 2016; Reis et al., 2016). RG7112 has been shown 
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to activate the p53 pathway and decrease cell proliferation in patients with MDM2 

amplification and wild-type p53 Liposarcoma (Ray-Coquard et al., 2012). 
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Figure 1.19. (A) Chemical structures and binding ability of Nutlin-1, Nutlin-2 and 
Nutlin-3 (a and b) (Vassilev et al., 2004). (B) Structure of the p53–MDM2 
interaction and nutlin-2 binding. (a) MDM2 (yellow) and p53 (green) interact 
with each other at their N-terminal domains through a well-defined p53 binding 
pocket. MDM2 binds to p53 though three amino acid residues of the p53 
peptide. (b) Nutlin-2 (red) binds to the p53 pocket of MDM2 by mimicking the 
interaction of the three crucial amino acid residues from the p53 peptide 
(green) (Janz et al., 2007). 
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Figure 1.20. Chemical structures of MI-63, HDM201, RG7112 and RG7388 
(Canner et al., 2009; Yu et al., 2009; Ding et al., 2013; Furet et al., 2016). 
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1.7.1 MDM2 inhibitors in cancer treatment 

Figure 1.21 shows the type of drugs targeted at the MDM2/X-p53 network. The 

alteration frequency of TP53, MDM2 and MDM4(MDMX) in different types of cancers 

showed in figure 1.21A. There are plenty of pre-clinical studies and a limited number 

of clinical trials that have tested MDM2 inhibitors in a wide range of cancers. Cancers 

such as chronic lymphocytic leukaemia (CLL) (Secchiero et al., 2006), acute 

lymphoblastic leukaemia (ALL) (Long et al., 2010), acute myeloid leukaemia (AML) 

(Long et al., 2010), renal cell myeloma (Saha et al., 2010), carcinoma (RCC) 

(Polanski et al., 2014), laryngeal carcinoma (Arya et al., 2010), neuroblastoma (Van 

Maerken et al., 2009), melanoma (Lu et al., 2013), and mantle cell lymphoma (Tabe 

et al., 2009) often contain wild‐type p53, which allows the targeting of interactions 

between MDM2 and p53 in order to activate p53 (Khoo et al., 2014). Insert in figure 

1.21A shows the mutual exclusivity observed between MDM2 expression and p53 

deletion in sarcomas. 

HDM201 (MDM2 IC50 ~ 0.13 nM) is an imidazolopyrrolidinone analogue developed 

by Novaris (figure 1.20). HDM201 as a second generation p53-MDM2 inhibitor is 

recently entered phase I clinical trials in advanced solid tumour with wild-type TP53. 

(Furet et al., 2016). 
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Figure 1.21. Targeting of p53 in cancer. (A). Frequency of alterations are shown 
with mutation (green), deletion (blue), amplification (red), and combination of 
alterations (grey) in TP53, MDM2, and MDM4 in cancers. Data derived from 
cBioPortal (http://www.cbioportal.org) (Cerami et al., 2012; Gao et al., 2013). (B) 
Schematic representation of inhibitors in clinical trials (yellow box) or in 
preclinical studies (blue box) targeting the p53–MDM2/X axis. Compounds are 
either small molecules (green circle) or peptides (blue circle) (Burgess et al., 
2016).   

http://www.cbioportal.org)/
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1.7.2 Combination therapy with MDM2 antagonists 

A number of researchers have reported on combination treatment of Nutlin MDM2 

antagonists with traditional treatment or different drugs in cancer therapy (table 1.2) 

(Khoo et al., 2014). Previous research has reported that combinations of RG7388 

with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic in 

growth inhibitions. Furthermore, combination treatments led to increased apoptosis, 

as evident by higher caspase-3/7 activity, compared to either agent alone. The data 

of increasing caspase-3/7 activity showed that RG7388 is highly potent against wild-

type p53 neuroblastoma cells (Chen et al., 2015). It has been documented that 

combination treatment with MDM2 inhibitors (Nutlin-3 & RG7388) and cisplatin has 

synergistic potential for the treatment of ovarian cancer, dependent on cell genotype 

(Zanjirband et al., 2016). 

Recent evidence reported potentiation of MDM2 inhibitors (Nultin-3 and RG7388) by 

combination with WIP1 (wild-type p53-inducible phosphatase-1) inhibitor (Esfandiari 

et al., 2016; Pechackova et al., 2016; Sriraman et al., 2016). The potentiation 

correlated with significant increase in MDM2 inhibitor–induced cell death. The WIP1 

inhibitor (GSK2830371) promotes the degradation of WIP1 protein as well as directly 

blocking WIP1 phosphatase enzymatic activity and suppressing WIP1 

dephosphorylation of p53ser15 to enhance p53 transcriptional activity by MDM2 

antagonists. The combination treatment provided an increase of gene expression in 

the subset of early RG7388-induced p53 transcriptional target genes. These findings 

demonstrate that potent and selective WIP1 inhibition potentiates the response to 

MDM2 inhibitors in TP53 wild-type cells (Esfandiari et al., 2016).  
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Table 1.2. Summary of published experimental drug combinations with Nutlin. 
AML, acute myeloid leukaemia; B‐CLL, B cell chronic lymphocytic leukaemia; 
CDK1, cyclin‐dependent kinase 1; p53, tumour suppressor p53; TRAIL, TNF‐
related apoptosis‐inducing ligand; XIAP, X‐linked inhibitor of apoptosis protein 
(Khoo et al., 2014) (Secchiero et al., 2004; Cao et al., 2006; Ribas et al., 2006; 
Kojima et al., 2008; Wade et al., 2008; Michaelis et al., 2009; Van Maerken et al., 
2009; Carter et al., 2010; Thompson et al., 2010; Zhang et al., 2010; Tovar et al., 
2011; Zauli et al., 2011; McCormack et al., 2012; Zauli et al., 2012; Dagnell et al., 
2013; Kojima et al., 2013; Mir et al., 2013; Vatsyayan et al., 2013).  

  

proteins such as PUMA and NOXA (as discussed 
below)149. Although the high level of curative testicular 
germ cell tumour responses to cisplatin may make it an 
unlikely choice for the development of MDM2 inhibi-
tors, the very high level of hearing damage induced by 
cisplatin could provide a clinical opportunity for the 
development of a less toxic drug. As polymorphisms that 
predict adverse reactions to cisplatin become apparent, 
patients with these polymorphisms may be better suited 
to alternative therapies such as MDM2 inhibition150.

Nutlin5, MI-219 (REF. 46) and the very recently pub-
lished follow-on drugs RG7388 (REF. 63) and MI-888 
(REF. 47) were shown to be very potent in xenograft mod-
els of human cancer with wild-type p53. These drugs 
led to a robust accumulation of p53 and apoptosis in 
xenograft tumours such as the osteosarcoma SJSA-1 cell 
line and the prostate metastasis-derived LNCaP cell line, 
with little toxicity observed in terms of weight loss or 
in necroscopy studies5,46,47,63. There is also little toxicity  
towards the normally radiosensitive tissues such as 
small-intestine crypts and the thymus46, which show 
only minimal accumulation of p53 protein. However, an 
observed accumulation of the p21 protein suggests that 
p53 is, nonetheless, activated in these tissues. This is in 
contrast to the high levels of p53 accumulation observed 
in these tissues after treatment with ionizing radiation.  
It is known that ionizing radiation induces many other 
signalling pathways independently of its effects on the 
p53 pathway. Thus, although apoptosis induction by 
irradiation is highly dependent on p53 activity, this 
occurs in the context of the activation of many other 
radiation-induced pathways. By contrast, in cells treated 

with nutlin only the p53 pathway is activated. The 
enhanced apoptotic response observed after radiation 
treatment can therefore be explained as a consequence 
of the integration of the pathways activated by radiation7.

As discussed above, the kinetics of the p53 response 
are also crucial when considering p53-directed therapy; 
for how long do tumour cells need to be exposed to the 
p53-activating agent before they are eliminated? As 
discussed elsewhere, some models suggest that a short 
exposure to a p53-activating drug may activate a revers-
ible growth arrest, whereas prolonged exposure induces 
apoptosis151.

Recent work investigating the effects of nutlin in an 
axozymethane carcinogen-induced mouse model of colon 
cancer showed that treatment with nutlin resulted in cell 
cycle arrest in the colon cancer cells without causing a sig-
nificant increase in apoptosis. This suggests that nutlin has 
to be used in combination with other drugs to elicit any 
p53-dependent cell killing in colon cancer. Normal tissues 
displayed limited toxicity with decreased cell proliferation 
but without any induction of apoptosis135.

The second-generation nutlin, RG7112, was shown 
to kill cancer cell lines with potent efficacy as a single 
agent152. It also induced cell cycle arrest and apoptosis in 
SJSA-1 and LNCAP xenografts in mice, leading to the 
regression of tumours152. RG7112 is currently in clini-
cal trials for different types of cancer (TABLE 1). One of 
the first published sets of clinical results revealed that 
the treatment of liposarcoma patients with RG7112 
increased p53 and p21 levels in biopsy specimens and 
reduced proliferation in tumours. It was also shown that 
macrophage inhibitory cytokine 1 (MIC1; also known 

Table 3 | Summary of published experimental drug combinat ions with nut lin
List of drug combinations Tumour types (xenograft models) Refs
Nutlin with doxorubicin; nutlin with cytarabine AML and B-CLL 140,143,185
Nutlin with vincristine Neuroblastoma, rhabdomyosarcoma and melanoma 180
Nutlin with roscovitine Various cancers 181,182
Nutlin with valproic acid AML 190
Nutlin with Aurora kinase inhibitors Various cancers 183,184
Nutlin with 1,2,5-dihydroxyvitamin D3 AML 189
Nutlin with XIAP inhibitor AML 155
Nutlin with cisplatin Ovarian cancer 194
Nutlin with androgen-depleting agent Prostate cancer 195
Nutlin with CDK1 inhibitor; JNJ-7706621 Melanoma 66
Nutlin with TRAIL Haematological malignancies 238
Nutlin with sorafenib Renal cell carcinoma 239
Nutlin with ABT-737 Various cancers 151,192,193
Nutlin with selumetinib (AZD6244) AML 188
Nutlin with KPT-185 AML 240
Nutlin with sorafenib (independent of p53 status) AML 200
Nutlin with dasatinib (independent of p53 status) B-CLL 199
Nutlin with radiation Lung and prostate cancer 186,187,201
AML, acute myeloid leukaemia; B-CLL, B cell chronic lymphocytic leukaemia; CDK1, cyclin-dependent kinase 1; p53, tumour 
suppressor p53; TRAIL, TNF-related apoptosis-inducing ligand; XIAP, X-linked inhibitor of apoptosis protein.
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1.8  MDMX-p53 antagonists & MDM2/X- p53 co-antagonists 

MDMX has poor binding ability to MDM2 inhibitors (Vassilev, 2004; Vassilev et al., 

2004; Patton et al., 2006; Wade et al., 2006; Shangary and Wang, 2009). Some 

studies suggested that cells with overexpression or amplification of MDMX might not 

be sensitive to MDM2 antagonists because of poor binding ability to MDMX. 

Overexpression or amplification of MDMX might reduce the efficiency of MDM2 

inhibitors to activate p53-dependent pathways (Hu et al., 2006; Koblish et al., 2006; 

Wade et al., 2006). The N-terminal hydrophobic p53 binding pockets of MDM2 and 

MDMX show structural differences resulting in poor binding ability of MDMX and 

MDM2 antagonists (Popowicz et al., 2007; Popowicz et al., 2008; Riedinger and 

McDonnell, 2009). Inhibition of both MDM2 and MDMX has been suggested in order 

to achieve complete activation of p53 in MDM2 and/or MDMX high expression and 

amplified tumour cells. 

Several small molecule compounds have been developed in an attempt to target 

MDMX, although this has proved more difficult than specifically targeting MDM2 

(figure 1.22). A benzofuroxan derivative (NSC207895) has been identified to target 

MDMX protein expression. It seems to suppress the MDM4 promoter leading to 

downregulation of MDMX protein levels, and causes p53-independent transactivation 

of pro-apoptosis genes (Wang et al., 2012). WK298, targeting the MDMX-p53 

protein-protein interaction, was the first reported crystal structure of a small molecule 

inhibitor-MDMX complex, and WK298 has been shown to disrupt the p53-MDMX 

interaction to reactivate p53 function. However, WK298 does not have specific 

cellular activity (Popowicz et al., 2010).  

The research to date has tended to focus on MDM2 rather than MDMX. Although for 

small molecule inhibitors of the MDM2-p53 interaction, development is progressing 

fast, with multiple compounds available for the inhibition of MDM2-p53 binding, the 

development of MDMX-p53 binding antagonists is still in the early stages and proving 

to be less readily tractable. 

Dual antagonists for MDM2-p53 and MDMX-p53 binding may reactivate p53 more 

effectively than only MDM2 or MDMX antagonists. RO-2443 is a small molecule dual 
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inhibitor in the early stage of drug development for targeting MDM2-p53 and MDMX-

p53. It was reported to bind to MDMX by dimer formation, but has poor water 

solubility (Graves et al., 2012). RO-5963, which is an lndolyl hydantoin close 

analogue of RO-2443, has improved water solubility. The MDM2/X co-inhibitor RO-

5963 has a similar inhibitory activity to Nutlin-3a, as shown in figure 1.22 (MDM2 IC50 

~17.3 nM; MDMX IC50 ~24.7nM). This co-inhibitor also binds to the p53 binding 

pocket of MDMX and results in protein dimerization (Graves et al., 2012). Although 

Nutlin-3a activates p53 potently in cell culture models, it is inactive against MDMX, 

whereas RO-5963 is reported to inhibit high levels of both MDM2 and MDMX in cells 

(Graves et al., 2012; Wade et al., 2013). In this project, RO5963 was used to test the 

response to MDM2/X-p53 binding inhibitors in a panel of cell line models. 

Previous studies have also described peptide compounds which disrupt MDM2-p53 

and MDMX-p53 complexes such as SAH-p53-8 (Bernal et al., 2010), PDI (peptide 

dual inhibitor) (Madden et al., 2011) and PMI (Pazgier et al., 2009). SAH-p53-8, 

which is based on the p53 transactivation domain alpha-helix, has a higher binding 

affinity for MDMX than MDM2, and is a poor antagonist of MDM2-p53 in the presence 

of high level MDM2 expression (Bernal et al., 2010; Verdine and Hilinski, 2012). 

Recent studies also show that stapled α−helical peptide MDM2/X inhibitors have the 

ability to disrupt the p53 interaction with both MDMX and MDM2 (Chang et al., 2013). 

A stapled peptide MDM2/X inhibitor has also been tested in a phase I clinical trial in 

advanced solid tumour or lymphomas with wild-type TP53.  

This study has focused more on the MDMX oncoprotein as a therapeutic target and 

determinant of the response to MDM2-p53 binding antagonists and MDM2/X-p53 

binding dual antagonists in human cancer.  
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Figure 1.22 The structure and of potency of RO-5963 compared with Nutlin-3a 
in cell free assays. RO-5963 is an inhibitor of both MDM2-p53 and MDMX-p53 
interactions, in contrast to Nutlin-3a, which is a potent inhibitor of MDM2, but 
shows much less activity against MDMX (Graves et al., 2012). 
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1.9  Hypotheses 

MDMX(MDM4) amplification and over-expression is associated with altered response 

to MDM2-p53 binding antagonists in a wide range of human cancers. 

1.10  Aims 

1) To study the response of cell line models to small molecule MDM2-p53 binding 

antagonists Nutlin-3 & RG7388 and the MDM2/X- p53 co-antagonist RO5963.  

2) To confirm the wild-type p53 status of MDMX amplified JEG3 and MRK-nu-1 cells 

by DNA sequence analysis.  

3) To investigate the p53 functional response in JEG3, MRK-nu-1 cells exposed to 

Nutlin-3, RG7388 and RO5963 by the induction of p53 responsive genes, including 

p21, MDM2 and BAX. 

4) To test the ability of MDM2-p53 binding inhibitors Nutlin-3, RG7388 and RO5963 

to activate p53 in the presence and relative reduction of MDMX expression achieved 

by a regulated lentiviral shRNA and siRNA knockdown system.  

5) To develop and characterise TP53 mutant sub-clones of JEG-3 and MRK-nu-1 

MDM4(MDMX) amplified cell lines. This will provide matched TP53 wild-type and 

mutant cell line pairs for testing the specificity of agents targeted against the MDMX-

p53 binding interaction. 

6) To better understand the cellular function and therapeutic potential of targeting 

MDMX by investigating the downstream expression transcriptomic consequences of 

knocking down MDMX. 
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Chapter 2 Materials and Methods 
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2.1 Cell culture 

Cell culture work was carried out in sterile conditions in class II biological safety 

containment hoods (Biomat, Medair Technologies, MA, USA). All cell lines used in 

this study are displayed in table 2.1, alongside their MDMX, MDM2 and p53 status. 

All cell lines were authenticated using short tandem repeat (STR) DNA profiling (LGC 

Standards) and early post-authentication passages were cryogenically preserved in 

liquid nitrogen until the working stock reached post-authentication passage 30, after 

which a lower passage number reserve batch was revived and used in subsequent 

experiments. STR DNA sequences are 1-6bp long variable repeated DNA motifs 

providing unique molecular fingerprints which can be used to identify each individual 

cell line or host (Reid et al., 2004). Cell lines were tested every 3-6 months for 

mycoplasma infection (Work carried out by Elizabeth C. Matheson).  

The MDM4-amplified tumour cell line JEG-3 (placental choriocarcinoma) was 

maintained in EMEM medium (Sigma-Aldrich, UK) with 10% heat-inactivated FBS 

(Gibco, Scotland), 2 mM L-glutamine (Sigma-Aldrich, UK) and 1% Pen/Strep (Sigma-

Aldrich, UK). MRK-nu-1 (breast carcinoma) was cultured in Dulbecco’s modified 

Eagle’s medium (DMEM/F12, Gibco, Scotland) with 10% FBS. These two MDM4-

amplified cell lines are both reported to be wild-type for p53. The tumour cell lines 

SJSA-1, S-M6R1 (SJSA-1, MI63 resistant), SN40R2 (SJSA-1, Nutlin resistant), NGP, 

SKNSH, MCF-7, HCT116 +/+ & HCT116 -/- were maintained in RPMI-160 medium 

supplemented with 2 mM L-glutamine 10% FBS and 1% Penicillin / Streptomycin. 
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Cell line Type MDMX MDM2 TP53 

JEG-3 Placental choriocarcinoma Amp WT WT 

MRK-nu-1 Breast carcinoma Amp WT WT 

SJSA-1 Osteosarcoma WT Amp WT 

S-N40R2 SJSA-1 daughter cell line WT Amp MUT 

S-M6R1 SJSA-1 daughter cell line WT Amp MUT 

NGP Neuroblastoma HE Amp WT 

N-20R1 NGP daughter cell line HE WT MUT 

SKNSH Neuroblastoma HE WT WT 

MCF-7 Breast adenocarcinoma HE WT WT 

HCT116 +/+ Colorectal carcinoma HE Amp WT 

HCT116 -/- Colorectal carcinoma HE Amp Null 

WT: Wild-type; Amp: amplified; MUT: mutant; Null: p53 null; HE: High expression.  

Table 2.1. Gene status information on cell lines   
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2.1.1 Passage of cells 

Cell lines were cultured as adherent monolayers in medium and grown in humidified 

incubators (MCO-20AIC, SANYO, UK) at 37°C and 5% CO2. Cells were passaged at 

over 80 % confluency in 25 cm2, 75 cm2 and 175 cm2 flasks (Nunc, Denmark). Cells 

were washed in 10ml PBS (Gibco, Paisley, Scotland) and then 1 ml 1x trypsin-EDTA 

(Sigma-Aldrich, UK) was added. Approximately 5 minutes incubation is required to 

detach cells from the surface of the flask or plate bottom. Cell suspension was diluted 

using fresh medium and was transferred into new flasks to continue growing. 

Otherwise, the cells were proceeded to experiments such as drug treatment. 

2.1.2 Estimating cell densities 

Cell densities for suspension cell cultures or harvested attached monolayer cultures 

were determined by cell counting. A haemocytometer (AC1000 Improved Neubauer, 

Hawksley, UK) was used to determine the cell density of a cell suspension. A small 

volume (10µl) of cell suspension was transferred from a growing cell culture flask to 

each side of the haemocytometer. Cells lying within a 1 mm2 area in each chamber 

were counted by microscope examination. The average number observed in two 

chambers times 104 provided an estimate of the cell density in the sampled cell 

suspension (cell density=Av.x104).  

2.1.3 Culture from cell stock and storage of cells 

Cell stocks were defrosted in a waterbath at 37°C in order to resurrect cells. Then the 

stock vial was transferred to a sterile universal tube and centrifuged at 1200 rpm for 5 

minutes (Mistral 3000, MSE, UK) to remove media containing Dimethyl Sulfoxide 

(DMSO, Sigma-Aldrich, UK.). The cell pellet was resuspended in fresh medium and 

transferred to a 25 cm2 flask to be incubated at 37°C, 5% CO2 in an incubator.  

For cryogenic storage, cells were harvested by trypsinisation, resuspended in medium 

and the suspension was centrifuged at 200 g for 5 minutes at room temperature. The 

cell pellet was resuspended in freezing medium (culture medium, 20% FBS and 10% 

DMSO) to achieve a cell density of 1-2 x106 cells/ml. One millilitre aliquots of cell 

suspension were placed into a cryogenic vial (NUNCTM, Rochester, NY, USA) labelled 
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with the name of the cell line and passage number. Vials were frozen at -80°C 

overnight and transferred into liquid nitrogen storage (Biosystem, Cryostor) for long-

term maintenance. 

2.1.4  MDM2 inhibitor resistant TP53 mutant sub-clones  

MDM2 inhibitor resistant TP53 mutant sub-clones were developed from parental cell 

lines by culturing the parental cells with MDM2 inhibitors. MDM2 inhibitor resistant 

TP53 mutant daughter clones S-N40R2 and S-M6R1 (table 2.1) were SJSA-1 

daughter cell lines from culturing in MI-63 and Nutlin-3 respectively. Nutlin-3 resistant 

TP53 mutant daughter clones N_N20R1 (table 2.1) were NGP daughter cell lines 

from culturing in Nutlin-3. TP53 mutant sub-clone cell lines were developed for 

comparison with TP53 wild-type cells of their response to MDM2 antagonist-

mediated p53-dependent cellular effect. Sanger sequencing later determined that 

these cell lines harbour TP53 mutations and show loss of p53 transcriptional 

function. All MDM2 inhibitor resistant TP53 mutant sub-clones work was carried out 

by Dr Junfeng Liu, Dr Xiaohong Lu and Dr Catherine Drummond (Drummond et al., 

2016) . STR profiling was not able to differentiate parental TP53 wild-types from their 

MDM2 inhibitor resistant daughter cell lines because the daughter cell lines are 

isogenic or very closely related to their parental cell lines, but nevertheless provided 

confirmation that the resistant cell lines were otherwise isogenic with the parental cell 

lines. 

2.2 Polymerase chain reaction (PCR) 
2.2.1 DNA sample preparation and DNA extraction 

Total DNA was extracted from JEG-3 and MRK-nu-1 cell lysates using a DNA 

extraction kit (QIAamp DNA mini kit, QIAGEN, USA). DNA samples were quantified 

and qualified by a Nano Drop (ND-1000, NanoDrop, Delaware USA) 

spectrophotometer with light absorbance at 260 nm and 280 nm wavelengths.  

2.2.2 PCR and PCR product purification 

Table 2.2 shows the sequences of all sense and antisense primers used to amplify 

the TP53 exons, with their annealing temperatures. Sample DNA and primers were 
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added to PCR master mix (PCR gold buffer (Promega, Southampton, UK), 2.5 mM 

MgCl2 (Roche, USA), dNTP’s (Promega, Southampton, UK) and dH2O) as shown in 

table 2.3. The TP53 gene DNA in JEG-3 and MRK-nu-1 cells was amplified by PCR 

using p53 exon 2-11 primers (table 2.2) and running touchdown55, touchdown58 and 

touchdown60 PCR programmes for annealing temperatures 55°C, 58°C and 60°C, 

respectively, on the thermal cycler (GeneAmp PCR System 9700, Applied 

Biosystems) (table 2.3).  

The PCR products were analysed using a 2% agarose gel to check for a clean 

product of the expected size, which was then extracted using a PCR product 

purification kit (Invitrogen by Thermo Fisher Scientific, USA). The PCR products were 

sent to DBS genomics for Sanger dideoxy sequencing. The p53 exon sequencing 

results were analysed by visual inspection of the chromatograms and alignment with 

a normal reference sequence using the SeqMan software package (DNAStar).  
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Exon Sense Antisense AT* 

Exon 2 
CGA GCT GTC TCA GAC 

ACT GG 

CCT TGT CCT TAC CAG 

AAC GTT G 
58 °C 

Exon 3 
CAT GGG ACT GAC TTT 

CAG CTC TTG 

CGG GGA CAG CAT CAA 

ATC ATC 
55 °C 

Exon 4 
GTT CTG GTA AGG ACA 

AGG GT 

ATA CGG CCA GGC ATT 

GAA GT 
55 °C 

Exon 5 
ATC TGT TCA CTT GTG 

CCC TG 

CAA CCA GCC CTG TCG 

TCT CTC 
55 °C 

Exon 6 
GCC TCT GAT TCC TCA 

CTG AT 

GGA GGG CCA CTG ACA 

ACC A 
55 °C 

Exon 7 
AAG GCG CAC TGG CCT 

CAT CTT 

ACAG GGG TCA GCG GCA 

AGC AGA 
60 °C 

Exon 8 
GAG CCT GGT TTT TTA 

AAT GG 

TTT GGC TGG GGA GAG 

GAG CT 
60 °C 

Exon 9 
AGC GAG GTA AGC AAG 

CAG G 

GCC CCA ATT GCA GGT 

AAA ACA G 
55 °C 

Exon 10 
CTT CTC CCC CTC CTC 

TGT TGC 

GAA GGC AGG ATG AGA 

ATG GA 
60 °C 

Exon 11 
TGG TCA GGG AAA AGG 

GGC AC 

GAG AGA TGG GGG AGG 

GAG GC 
58 °C 

*AT: Annealing temperature 

Table 2.2. Primer sequences and annealing temperatures of TP53 exons   
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Reagent Amount 
 

Touchdown 

programme Temperature Time 

PCR Gold Buffer 2.5 µl 
 

Hot start 94 °C 10 min 

MgCl2 (50 mM) 2.5 µl 
 14 cycles 

 

94 °C 20 sec 

dNTP's (2.5 mM) 2.5 µl 
 

AT* + 7 °C 1** min 

Primer SN (10µM) 1 µl 
 

72 °C 1 min 

Primer ASN (10µM) 1 µl 
 26 cycles 

 

94 °C 20 sec 

dH2O 10.25 µl 
 

AT* 1 min 

Ampliq Gold 0.25 µl 
 

72 °C 1 min 

DNA 5 µl 
 

End 72 °C 5 min 

                          Total 25 µl               *AT: Annealing temperature show on Table 2.2 

Table 2.3. PCR reagents and Touchdown running programme. 

 

2.3 Quantitative real-time PCR 
2.3.1 Total RNA extraction  

MRK-nu-1 cells were seeded into a 6-well plate with 2x105 cell/well. Total RNA was 

extracted for gene expression profiling by Affymetrix HTA 2.0 microarray and for 

following qRT-PCR validation. After cells were harvested and lysed, RNA was 

extracted from MRK-nu-1 cell lysates using an RNeasy mini kit (QIAGEN, Germany).  

2.3.2 Estimation of nucleic acid concentration 

Extracted MRK-nu-1 total RNA samples were quantified and the quality checked 

using a Nano Drop (ND-1000) spectrophotometer to measure light absorbance at 

260 & 280 nm wavelengths. A 260:280 ratio of ~2.0 was considered as pure RNA. 

The concentrations were used to calculate the volumes required for qRT-PCR 

reactions. 

The Nanodrop sample loading platform has a receiving fibre optic and was washed 

with distilled water before and after use. One microlitre of the sample was loaded and 

detected by the fibre optic. The solvent containing the sample (e.g. elution buffer or 
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distilled water) was used as blank control. The Nanodrop covers a spectrum of 

220nm-750nm which is used for measurement of the concentration of samples 

containing molecules that show absorbance in this spectral range. Sample type DNA-

50 software option was used for DNA quantification and RNA-40 for RNA 

quantification. Nucleic acids absorb at 260nm and protein or phenol contaminants 

absorb at 280. Therefore this ratio can be used to evaluate the purity of samples. A 

260:280 ratio of ~1.8 was considered as pure DNA and ~2.0 as pure RNA. 260:230 

ratio is another measure of nucleic acid purity which is normally higher than the 

260:280 ratio for a given sample (normally 1.8-2.2). Considerably lower 260:230 ratio 

suggests carbohydrate or solvent contamination as they both absorb strongly at 230.  

2.3.3 Quantitative real-time PCR 

Quantitative real-time PCR (qRT-PCR) is used for quantification of nucleic acids. 

Total messenger RNA was reverse-transcribed to cDNA using the Promega Reverse 

Transcription System (A3500, Promega, Southampton, UK). In order to assess the 

quantity of transcripts of interest, specific primers were designed to flank regions of a 

given gene’s mRNA, including all known splice variants for that gene (table 2.4). 

SYBR® green RT- PCR master mix (Life technologies) was used for qRT-PCR 

reactions. SYBR green is a double stranded DNA (dsDNA) binding (fluorescent dye 

with an excitation wavelength of ~485nm and an emission wavelength of ~524nm. 

Fluorescent signal from SYBR green directly correlates with dsDNA quantity and 

therefore the amount of PCR dsDNA sample can be measured after every elongation 

step in real time. The final reaction volume used was 10μl (with 50ng/μl of the cDNA 

samples) per well to run qRT-PCR using the standard cycling parameters (Stage 1: 

50 ̊C for 2 minutes, Stage 2: 95 ̊C for 10 minutes then 40 cycles of 95 ̊C for 15 sec 

and 60 ̊C for 1 minute), which were set and carried out on an ABI 7900HT sequence 

detection system. Data were presented as the mean ± standard error of mean (SEM) 

relative quantities (RQ) of three independent repeats where GAPDH was used as 

endogenous reference control. Analysis was carried out using SDS 2.2 software 

(Applied Biosystems) and GraphPad Prism 6.0 (GraphPad Software, Inc.). 
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  Sequence (5’ -> 3’) 

MDM4 (MDMX)   

Forward Primer TGATTGTCGAAGAACCATTTCGG 

Reverse Primer TGCAGGGATCAAAAAGTTTGGAG 

BTG 
 

Forward Primer CCTGTGGGTGGACCCCTAT 

Reverse Primer GGCCTCCTCGTACAAGACG 

CDKN1A (p21)   

Forward Primer TGTCCGTCAGAACCCATGC 

Reverse Primer AAAGTCGAAGTTCCATCGCTC 

VGLL1   

Forward Primer TCAGAGTGAAGGTGTGATGCT 

Reverse Primer GCACGGTTTGTGACAGGTACT 

CCNG2   

Forward Primer TCTCGGGTTGTTGAACGTCTA 

Reverse Primer GTAGCCTCAATCAAACTCAGCC 

RRM2B   

Forward Primer ATTGGGCCTTGCGATGGATAG 

Reverse Primer GAGTCCTGGCATAAGACCTCT 

FAS   

Forward Primer AGATTGTGTGATGAAGGACATGG 

Reverse Primer TGTTGCTGGTGAGTGTGCATT 

TNFRSF10C   

Forward Primer TCCCCAAGACCCTAAAGTTCG 

Reverse Primer CAGTGGTGGCAGAGTAAGC 

GHR   

Forward Primer CCATTGCCCTCAACTGGACTT 

Reverse Primer AATATCTGCATTGCGTGGTGC 

GAPDH   

Forward Primer CAATGACCCCTTCATTGACC  

Reverse Primer GATCTCGCTCCTGGAAGAT  

Table 2.4. Primer sequences for qRT-PCR 
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2.4 Growth curves and cell characteristics 

Growth curves were generated to establish the pattern of cell growth for different 

seeding densities and to measure the doubling time. The conditions of the cell density 

and incubation time required for growth inhibition studies can be decided from the 

growth curves and doubling time.  

2.4.1 SRB assay for adherent cells 

SRB (sulforhodamine-B) which is a water-soluble dye can be measured at 564nm 

absorbance. SRB can be used to bind with the basic amino acids of cellular proteins 

and to assess population growth (Skehan et al., 1990)(Papazisis et al., 1997). The 

SRB dissolved by 10mM Tris buffer was quantified by absorbance readings at 570nm 

as a measure of protein content and hence number of cells in a well. 

Cells were fixed in Carnoy’s fixative (100ml of concentrated acetic acid to 300ml of 

methanol) on the plates and stored at 4°C for at least 1 hour. Then the plates were 

washed with tap water five times and were subsequently dried on the bench. The 

dried and fixed cells on the plates were stained with 0.4 % SRB in 1% acetic acid 

solution using 100 µl/well for 30 minutes, followed by washing with 1% acetic acid 

five times and drying the plates. Then the residual bound stain on the cells was 

dissolved by incubation with 10mM Tris pH10.5 for 20 minutes. After reading the 

absorbance at 570nm on a 96-well spectrophotometer with FLUOstar Omega plate 

reader (BMG Labtech, Germany), the relative cell number could be quantified. 

2.4.2  XTT assay for suspension cells 

Tetrazolium salt (XTT), a soluble formazan orange dye, was used to measure cell 

viability via mitochondria activity in metabolically active cells. Cells were seeded and 

incubated with XTT reagent (Roche, USA) mixture (labelling reagent: electron-

coupling reagent ratio of 50:1) at 37°C for a period of time depending on the cell 

density and cell lines. Figure 2.1 shows the different cell density of MRK-nu-1 cells 

with different incubation times using the XTT assay. After incubation, the colour 

change was quantified spectrophotometrically by absorbance measurements at 

450nm wavelength (Kondo et al., 1991; Roehm et al., 1991).  
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Figure 2.1. Proliferation of MRK-nu-1 cells measured by XTT assay for different 
starting cell densities. The different cell densities of MRK-nul1 cells were used 
for testing the absorbance values of XTT reagents mixture after incubating for 
4, 6 and 8 hours. The best incubating time for XTT reagents mixture was 
chosen to 4 hour for the following growth curve and growth inhibition 
experiments. 
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2.5 Cell counting 

Cell counting was used to set up an experiment with suitable cell density in different 

sized plates or dishes. Seeding density was cell line-dependent as shown in table 

2.5. 

2.5.1 Haemocytometer 

Haemocytometer (Improved Neubauer haemocytometer, AC1000, Hawksley, UK). 

was used for cell counts with both adherent and suspension cells to set up equal cell 

numbers for drug treatment. Cell suspension was added in both chambers of the 

haemocytometer after detachment by trypsin-EDTA. The cells in the square of both 

chambers were counted by visualization down a microscope. The average of both 

chambers was taken and multiplied by 104. The number provided the cell density per 

ml of medium. (cell density=Av.x104). 

2.5.2 Cell counter 

An automatic cell counter was used for the early stages of cell density calculation 

and growth curve estimations for the suspension cell line MRK-nu-1. A 0.5ml cell 

suspension was fixed in 0.5ml Carnoy’s fixative and then 9 ml fluid was added (BD 

FACSFlowTM Sheath Fluid #342003). The diluted cell suspension was passed 

through a particle Coulter counter ((Beckman Coulter) in which the cells or particles 

flow through a small hole to be detected electronically by a transient resistance 

change between electrodes and their number calculated. Cell clumps and cell debris 

could affect detection, so measures were taken to ensure single cell suspensions 

and optimal threshold settings. The coulter counter counts the number of events per 

0.5ml. The average of three repeats was multiplied by 40 to obtain the original cell 

density of cells/ml. 
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Cell line 
In 96-well plate 

(cell/well) 

In 60mm 
dish 

(cell/dish) 

In 6-well plate 
(cell/well) 

MRK-nu-1 5000 3 x 105 2 x 105 

JEG-3 4000 3 x 105 1 x 105 

HCT116 +/+ & -/- 5000 5 x 105 2 x 105 

SJSA-1 & S-M6R2 

& S-N40R1 
5000 2 x 105 2 x 105 

MCF-7 4000 4 x 105 1 x 105 

NGP & N20R1 5000 5 x 105 2 x 105 

Table 2.5. Seeding density for cell lines 

 
2.6 Drug information and preparation 
2.6.1 Drug information 

Nutlin-3 (Enzo Life Sciences & Newchem Tech., UK) is a mixture of active 

enantiomer Nutlin-3a and inactive enantiomer Nutlin-3b. RG7388 and RO5963 were 

synthesised in-house by Newcastle University’s medicinal chemistry group and 

prepared as a 10 mM stock in DMSO. These compounds were all dissolved in 100% 

DMSO to produce 10mM stock solutions stored at -20°C.  

2.6.2 Drug preparation 

Working stocks were diluted into media before treatment, and the concentrations of 

the drug were prepared 100-fold from the final treating concentrations in media with 

final 1 % DMSO drug solvent (table 2.6). The final doses for treating cells were from 

0 (1% DMSO only) to 50 µM drug dissolved to give a final concentration in 1% DMSO 

when the working stocks were diluted into the medium. Cell viability was maintained 

over 80% while testing with 1% of DMSO or 0.5 % of DMSO solvent controls. Thus, 

DMSO as solvent did not affect cell viability.   
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2.7 Growth inhibition 

Growth inhibition assays determine the concentration at which a compound reduces 

the growth of the cell population compared to the solvent-only DMSO control. DMSO 

sensitivity testing was performed to confirm that the drug solvent did not affect cell 

growth and solvent control growth rate was maintained at over 80%, especially in 

some sensitive cell lines. 

GI50 values were calculated using GraphPad Prism Version 6.0 software (GraphPad 

Software, Inc.). The percentage cell number relative to control (DMSO control cells) 

was determined for each concentration of Nutlin-3 or RG7388 or RO5963, and data 

were plotted using Prism statistical software. GI50 values were determined by 

transforming X values (concentrations) using X=log(X), and performing a nonlinear 

regression (curve fit) analysis to generate a GI50 value.  

2.7.1 Growth inhibition for adherent cells 

Cells were seeded at 5x103 cells/well density in two 96-well plates and incubated at 

370C, 5% CO2 for 24 hours. The medium in the wells of one plate was aspirated and 

replaced with 100 µl/well of fresh medium containing test agent. Different test agents 

were made up according to table 2.6, with 0%, 0.5%, 1.0%, 1.5% and 2% DMSO for 

testing the DMSO sensitivity of JEG-3 cells. The medium in the wells of the other 

plate was aspirated and replaced with 100 µl/well fresh media with final 

concentrations of 0 - 50 µM Nutlin-3 in 1 % DMSO (table 2.7). Both of the plates were 

incubated at 370C, 5% CO2 in a humidified incubator for 72 hours. The 72 hour 

treating time was chosen based on cell growth curve and doubling time shown in 

Figure 3.4. The SRB assay was used to measure JEG-3 cell line growth inhibition 

compared to solvent DMSO control. 

2.7.2 Growth inhibition for suspension cells 

Cells were seeded 5x103 cells/well in 50 µl/well of medium in two 96-well plates, to 

which was added the other half of the medium containing the drug. The cells were 

incubated at 370C, 5% CO2 for 24 hours. The effect of DMSO alone was tested at a 

final concentration of 0%, 0.5%, 1.0%, 1.5% and 2%. The Nutlin-3 concentrations 
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tested were 0 - 50 µM Nutlin-3 in 1 % DMSO (table 2.7). Both of the plates were 

incubated at 370C, 5% CO2 for 72 hours. The XTT assay was used to measure cell 

growth inhibition compared to solvent DMSO control. 

 

 

 

 

Table 2.6. DMSO dilution for DMSO sensitivity in adherent and suspension cell lines. The 
values of 100% DMSO were calculated and added into media for testing the toxicity 
of 0 – 2% of DMSO in different type of cell lines.  

Adherent cells 

100% DMSO Add medium Conc. Of DMSO Add 100µl/well Æ Final conc. of DMSO 

0 1000 µl 0% 0% 

6 µl 1194 µl 0.5% 0.5% 

12 µl 1188µl 1.0% 1.0% 

18 µl 1182 µl 1.5% 1.5% 

24 µl 1176 µl 2.0% 2.0% 

Suspension cell 

100% DMSO Add medium Conc. Of DMSO Add 50 µl/well Æ Final conc. of DMSO 

0 1000 µl 0% 0% 

10 µl  990 µl  1% 0.5% 

20 µl  980 µl  2% 1.0% 

30 µl 970 µl 3% 1.5% 

40 µl 960 µl 4% 2% 
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Adherent cells 

Working stock mM 

(µM) in 100% DMSO 

Nutlin-3 conc. (µM) & 

1% DMSO with media 

Final conc. (µM) & 

1% DMSO in wells 

0.01 (10) 0.1 0.1 

0.05 (50) 0.5 0.5 

0.1 (100) 1 1 

0.2 (200) 2 2 

0.4 (400) 4 4 

0.6 (600) 6 6 

0.8 (800) 8 8 

1.0 (1000) 10 10 

3.0 (3000) 30 30 

5.0 (5000) 50 50 

Use 10 µl working stock + 990 µl media, then add 100 µl/well 

 

Suspension cells 

Working stock mM 

(µM) in 100% DMSO 

Nutlin-3 conc. (µM) & 

2% DMSO with media 

Final conc. (µM) & 

1% DMSO in plates 

0.01 (10) 0.2 0.1 

0.05 (50) 1.0 0.5 

0.1 (100) 2 1 

0.2 (200) 4 2 

0.4 (400) 8 4 

0.6 (600) 12 6 

0.8 (800) 16 8 

1.0 (1000) 20 10 

3.0 (3000) 60 30 

5.0 (5000) 100 50 

Use 10µl working stock + 490µl media, then add 50 µl/well 

 

Table 2.7. Drug dilution with DMSO for growth inhibition with adherent cells and 
suspension cells. Drug was solved in 100% DMSO. The working stocks of drug was 
calculated and added into media to provide final concentrations of 0 to 50 µM in 1% 
DMSO in the treatment of different types of cell lines.   
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2.8 Lentiviral shRNA expression knockdown systems 

A Lentiviral shRNA system was used to produce long-term and inducible knockdown 

of gene expression. Once the cell lines have been transduced with the MDMX 

shRNA plasmid (pTRIPZ plasmid, Thermo Fisher Scientific, figure 2.2) using lentiviral 

particles, the fragment which carries target shRNA will ingrate into the host DNA. 

Puromycin (Invitrogen by thermos Scientific, USA) was used to select the cells 

carrying shRNA fragment along with the puromycin resistance gene. Doxycycline 

(Sigma-Aldrich, UK) is used to induce the promoter of the targeted shRNA and turbo 

red fluorescent protein (tRFP) gene so that the knockdown can be switched on and 

off by adding doxycycline. The red fluorescence protein allows monitoring of the 

successful uptake of the viral vector and regulation of expression by doxycycline 

using fluorescence microscopy of live cells. The cells which have integrated more 

copies of lentivirus can be selected by an increase of the puromycin dose. The 

knockdown efficiency of the cells is potentially increased after doxycycline induction 

(Manjunath et al., 2009). 

2.8.1 pTRIPZ with shRNA lentiviral transfection (work of Claire Hutton) 

The pTRIPZ plasmid containing the shRNA for MDMX was prepared from a glycerol 

stock using Qiagen Midi-prep kit (QIAGEN, Germany). The shRNA for MDMX was 

designed by Thermo Fisher Scientific. The concentration of plasmid DNA was 

calculated by NanoDrop and stored at -20°C. The plasmid carrying shRNA DNA was 

transfected into HEK293T host cells to produce lentiviral particles by using Trans-

Lentiviral Packaging Mix (including reagents and HEK293T cells, Thermo Fisher 

Scientific, USA). The viral particle was collected from the cell supernatant and 

extraneous cell debris was removed by centrifuging at 1600g at 4°C. The lentiviral 

particles were then passed through a 0.22 - 0.45 µm PVDF filter (Millipore, USA). and 

stored at -80°C. The lentiviral particles were tested by Lenti-X GoStix test (Clontech, 

USA). This test detected lentiviral p24 to determine sufficient lentivirus titre.  

Multiplicity of infection (MOI) was established by serial dilution to optimise the 

number of transducing units per cell before transduction of the target mammalian cell 

line. HEK293T cells were seeded to a range of seeding densities and then 



66 

 

transduced by the same volume of lentiviral particles to determine optimal MOI for 

the target mammalian cell line. The target cell line was seeded overnight and 

transduced by the lentiviral particles using different MOI (a range is recommended 

initially. Eg. 0, 0.5, 1, 2, 5, 10).  

The puromycin kill curve in figure 2.3 was used to find the minimum antibiotic 

puromycin concentration required to kill non-transduced cells. Successfully 

transduced cells would be selected through this process. The lowest concentration 

was chosen which eliminated 100% of the cells in 1-4 days. 

2.8.2 Doxycycline induction system  

The transduced cell lines could be induced by 1 µg/ml doxycycline. The presence of 

a doxycycline inducible red fluorescent protein (RFP) gene on the plasmid also 

allowed successful uptake of the plasmid and doxycycline response to be monitored 

by FACS (fluorescence activated cell sorting) in figure 2.4 and fluorescence 

microscopy in figure 2.5. 
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Figure 2.2. Map of lentivirus plasmid pTRIPZ (TRIPZ Technical Manual, Thermo 
Fisher Scientific, UK). Features of the pTRIPZ vector (TRIPZ Technical Manual, 
Thermo Fisher Scientific, UK). 

 

Figure 2.3. Puromycin (0-10µg/ml) kill curve in MRK-nu-1 (Data kindly provided 
by Claire Hutton). The cells were seeded with 5x104 cells per well into a 24 well 
plate. The media containing a dose range of 0-10 µg/ml of puromycin was 
tested. The cell growth inhibition curve from day 1 to day 4 was plotted for the 
different doses of puromycin. The final dose for puromycin used in MRK-nu-1 
cells was 3 µg/ml.  
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Figure 2.4. FACS results showing the increased population of MRK-nu-1 cells 
with high red fluorescence signal after 1 µg/ml doxycycline induction. 

 

 

Figure 2.5. The negative control (Dox-) was MRK-nu-1 cells with lentiviral 
shRNA without doxycycline induction. The MRK-nu-1 cells with lentiviral 
shRNA were induced for 48 hours by 1 µg/ml doxycycline (Dox+). Fluorescence 
and phase contrast images were merged, showing red fluorescence only in the 
presence of doxycycline, confirming successful transduction and induction of 
expression. 

 

Dox+ Dox- 
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2.9  SiRNA expression knockdown systems 

RNA interference is a method of silencing post-transcriptionally regulated gene 

expression (Figure 2.6). Double stranded RNA is targeted specifically for degradation 

and is triggered by small interfering RNAs (siRNAs). A dicer nuclease cuts the larger 

initially formed siRNAs into 20-25 nucleotide siRNAs. The siRNAs then assemble on 

to the RNA-induced silencing complexes (RISCs), where they unwind, and 

subsequently guide the RISCs to complementary RNA molecules where they cleave 

and destroy the cognate RNA.   

2.9.1 siRNA sequence 

Small interfering RNA sequences for knockdown of MDMX expression were 

established by a previous PhD student Dr Laura Gamble. She designed and tested 

three MDMX siRNA sequences. One of them showed highly efficient knockdown of 

MDMX protein expression in neuroblastoma cell lines. The sequence is 

5’GCAGUUAGGUGUUGGAAUAtt3’ (Gamble, 2011). In the present study, the siRNA 

sequence was also confirmed to show a high efficiency of knockdown in MDMX-

amplified cell lines, shown in figure 2.7. The sequence of the universal negative 

control is 5’GCGCGCUUUGUAGGAUUCGtt3’. 

2.9.2 siRNA transfection 

Cells were seeded into 6-well plates with the seeding densities shown in table 2.8 for 

24 hours before siRNA work. Lipofectamine (Invitrogen Lipofactamine 2000, Thermo 

Fisher Scientific) reagent was used to transfect siRNA duplexes with final 20 – 60 nM 

into target cells to suppress MDMX expression. SiRNAs were stored at stock 

concentrations of 20μM. The ratio of siRNA: lipofectamine is 1:1.25. Table 2.9 shows 

the volume of siRNA, lipofectamine and optimem per well with different final siRNA 

concentrations (Fiszer-Kierzkowska et al., 2011). 

The siRNA was added into optimem (Gibco) with the volumes shown in table 2.9 and 

vortexed for 10 seconds then left at room temperature for 10 minutes. The 

lipofectamine was added into optimem separately from the siRNA. The siRNA-

optimem mixture and lipofectamine-optimem mixture were mixed and vortexed for 10 
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seconds and then left at room temperature for 30 minutes to 1 hour to wait for 

lipofectamine to react with siRNA. The media were aspirated and replaced by 1.6 ml 

fresh serum-free optimem in the well with the cells to be treated. The mixture of 

siRNA and lipotectamine in optimem was added as an 800 µl volume per well and 

the cells were placed in an incubator. After incubation overnight or for 24 hours, 10 % 

FBS was added to each well. The optimum medium also could be change to normal 

growing media contained 10 % FBS. Cell lysate was collected after siRNA treatment 

for 24, 48 and 72 hours to confirm the reduction of MDMX protein level. 
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Figure 2.6. A diagram of siRNA and shRNA targeting mRNA and inhibition of 
target protein expression (Kim et al., 2009). 
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Cell line In 6-well plate 
(cell/well) 

MRK-nu-1 4 x 105 
JEG-3 2 x 105 

HCT116 & 
HCT116-/- 4 x 105 

MCF-7 2 x 105 
NGP & N20R1 4 x 105 

Table 2.8. Seeding density for siRNA work 

 

Final siRNA 
conc. 

20µM siRNA + Optimem Lipofectamine + Optimem 

20 nM 2.4µl + 400 µl 3µl + 400 µl 

40 nM 4.8µl + 400 µl 6µl + 400 µl 

60 nM 7.2µl + 400 µl 9µl + 400 µl 

 

Table 2.9. Volume of siRNA and lipofactamine for one well of a 6-well plate   
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Figure 2.7. MDMX protein expression after knockdown of MDMX in two MDMX 
amplified cell lines detected by Western blots. MRK-nu-1 and JEG-3 cells were 
treated with final 20 nM of siMDMX and universal siRNA negative control for 24, 
48 and 72 hours. The final 20 nM siRNA for 48 hours was chosen as the best 
condition of MDMX suppression for the following experiments such as drug 
treatment. 
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2.10 Western blot 

Western blotting is a technique used to assess the protein expression levels of 

specific proteins by antibody-protein interaction in a mixture protein sample such as a 

cell lysate after separation by electrophoresis (van Kooten et al., 2001). In the current 

study, whole protein lysate was quantified and 25-40 µg was used per well for the 

electrophoretic separation. All buffers used for western blot are shown in table 2.10. 

2.10.1 Lysate collection 

Media were aspired from the cell culture plates, and PBS was used to rinse the cells, 

then the PBS was removed and 30-40 µl Lysis buffer was added to the dish. The cells 

were then detached using a cell scraper. Cell lysate was transferred into a labelled 1.5 

ml microfuge tube and the cell lysate was boiled at 100oC for 10 minutes, then stored 

at -20oC. 

2.10.2 Lysate sonication 

The cell lysate was sonicated with a 5-6 grade probe for 10 seconds 3 times. 

(Sonicator probe, Soniprep 150, MSE, UK). The probe must be cleaned with 70% 

ethanol before and after using with each sample to avoid cross-contamination. 

2.10.3 Protein estimation 

A Pierce BCA Protein Estimation Assay was performed to calculate protein 

concentration. A sample was diluted 1 in 10 into water before measuring the 

concentration. A standard curve was generated using: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 

mg/ml standard protein concentrations which were diluted from BSA standard 2 

mg/ml stock. 10 µl of the samples or standard were added into each well of a 96-well 

plate. Reagent A and Reagent B were mixed with 50:1 Pierce® BCA Protein Assay 

kit (Pierce, Rockford, IL, USA) and 190 μl of the mixture was added to the sample in 

each well. The plates were incubated at 37oC for 30 minutes. Absorbance values 

were detected at 562 nm using a 96-well spectrophotometer which was set up with 

an automatic standard curve to calculate the concentrations of the samples. The 

values were multiplied by 10 to give the original concentration of the samples. A 25-
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35 µg aliquot of lysate from cell lines was loaded onto each well of an SDS-

polyacrylamide electrophoresis gel. 

2.10.4 SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel 
electrophoresis) and transfer 

Protein lysates were boiled with SDS loading buffer for 10min. Reducing agent β-

mercaptoethanol was added into each sample to break disulphide bonds within the 

protein and coat the proteins uniformly with the negatively charged SDS. Equal 

quantities of protein were loaded onto SDS-polyacrylamide gels (4 - 20% gradient 

gel, Biorad, USA). The protein gel electrophoretic separation was performed at 180V 

for approximately 45 min. The gel was then moved to a transfer electrophoresis tank 

and the protein from the gel was transferred (100 V, 30 min) and immobilized onto a 

nitrocellulose membrane (Hybond C membranes Amersham & GE, USA). SeeBlue 

pre-stained protein molecular weight markers (Thermo Fisher Scientific, USA) were 

loaded into tracks on both ends of the gel for estimation of protein sizes. The buffers 

used for western blots are shown in table 2.10. 

2.10.5 Primary and Secondary antibodies 

To prevent non-specific binding of the antibody probes, the membranes were blocked 

by incubation with 5% skimmed milk in 1x TBS/Tween for 45 minutes at room 

temperature on the shaker (Belly Dancer, Strovall, USA). The membranes were 

probed for specific proteins by incubation with primary antibodies in a 50ml tube on a 

tube roller mixer (SRT6, Stuart, UK). Details of the antibodies used are shown in 

table 2.11. The detection of actin was used to check and control for sample loading 

differences. After washing off unbound primary antibody, the specifically bound 

primary antibodies were detected by secondary antibodies conjugated to horseradish 

peroxidise (HRP).  

Chemiluminescence was used to detect and visualise the location of the HRP-

conjugated secondary antibodies, which included polyclonal goat anti-mouse 

immunoglobulins (1:1000, Dako, Denmark) for MDM2, p53, p21 and actin; polyclonal 

goat anti-rabbit immunoglobulins (1:1000, Dako, Denmark) conjugated with HRP for 

BAX. After incubating at room temperature for 45 minutes with the antibodies, the 
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membranes were washed with TBS/Tween on the Belly Dancer shaker (Strovall, 

USA) for 4 minutes and this was repeated 7 times. 

2.10.6  Protein detection by enhanced chemiluminescence 

Chemiluminescence (ECL) reagent (GE Healthcare), which produces a light signal that 

can be captured on photographic film or digital camera system, was used to visualize 

protein bands. ECL 1 reagent and ECL 2 reagent (GE Healthcare) were mixed 1:1 in 

a universal tube. The mixture was pipetted onto the membrane and incubated at room 

temperature for 1 minute. The membranes were exposed to photographic films (Super 

RX, FUJI medical X-ray film, Thermo Fisher Scientific, UK) in a light-tight X-ray 

cassette in the darkroom for 30 seconds to 10 minutes, depending on the protein levels 

and signal intensity. The resultant signals on the X-ray film were developed using an 

automated film processor (Mediphot 937). 

 

  



77 

 

 

 
volume  conc. 

SDS loading buffer     

0.5 M Tris-HCL pH 6.8 2.5 ml 0.0625 M 

SDS (Sigma-Aldrich, UK) 0.4 g 2% 

β-mercaptoethanol (Sigma-Aldrich, UK) 1 ml 5% 

Glycerol (Sigma-Aldrich, UK) 2 ml 10% 

0.1% bromophenol blue (Biorad, UK) 1 ml 0.003% 

distilled water 13.5 ml   

      

SDS Lysis buffer     

 0.5 M Tris-HCL pH 6.8 12.5 ml 0.0625 M 

SDS (Sigma-Aldrich, UK) 2 g 2% 

Glycerol (Sigma-Aldrich, UK) 10 ml 10% 

distilled water to 100 ml   

      

10 x Running/Electrode Buffer     

Glycine (Sigma-Aldrich, UK) 144 g   

Tris base (Fisher Scientific, UK) 30 g   

SDS (Sigma-Aldrich, UK) 10 g   

distilled water To 1 L   

      

Transfer buffer     

Tris base 3 g   

Glycine (Sigma-Aldrich, UK) 14.14 g   

Methanol (Fisher Scientific, HPLC grade) 200 ml   

distilled water To 1 L   
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10 x TBS volume 

Tris base (Sigma-Aldrich, UK) 24.2 g 

NaCl (Sigma-Aldrich, UK) 80 g 

distilled water 800 ml 

Adjust pH to 7.6 with HCl   

distilled water To 1 L 

    

1 x TBS/Tween   

10 x TBS 100 ml 

distilled water  900 ml 

Tween 20 (Sigma-Aldrich, UK) 1 ml 

  
Blocking buffer   

Milk powder 2.5 g 

1 x TBS/Tween 50 ml 

Tween 20 (Sigma-Aldrich, UK) 1 ml 

Table 2.10. Western Blotting buffers  

Protein Size (kDa) Dilution Buffer incubating 2nd Ab Company and detail 

MDM2 ~ 90 1/300 milk 1 hour, RT Mouse CALBIOCHEM, OP46 

MDMX ~ 80 1/1000 milk 1 hour, RT Mouse Millpore, 8C6 

p53 53 1/500 milk 1 hour, RT Mouse Vector Lab. Inc., DO7 

Actin ~ 42 1/2000 milk 1 hour, RT Mouse Sigma, AC4700 

BAX 20 1/1000 BSA O/N, 4℃ Rabbit Cell Signaling, 2772 

p21 21 1/100 milk 1 hour, RT Mouse CALBIOCHEM, OP64 

PPM1D 
(Wip1) 

~ 64 1/300 milk O/N, 4℃ Rabbit Santa Cruz, H-300 

Table 2.11. Primary antibodies used in this study).  

RT: Room temperature; O/N: Overnight; 2nd Ab: secondary antibody   
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2.11 Flow cytometry 

Flow cytometry was used to analyze cell cycle distribution via fluorescence activated 

cell sorting (FACS) by FACSCalibur (Becton Dickinson, BD Biosciences, UK). 

Propidium iodide (PI) is induced by UV or blue light to emit a red fluorescence 

(Ormerod, 2000). PI binds to DNA and provides a quantitative measure of cellular 

DNA content, from which the stage of the cell cycle can be determined. A single flow 

of cells passes through the flow cell where light from the argon laser beam excites 

the fluorescent PI dye bound to DNA. Cells harbor one copy of the genome (n=2) in 

G1/G0 phases and a double copy (n=4) in G2/M phases. Cells in S phase have a 

DNA content between G1/G0 and G2/M (2<n<4). The change in population of cells in 

each phase of the cell cycle distribution can be estimated by quantifying the number 

of copies of DNA content. The cell cycle distribution changes in response to the 

treatment can therefore be measured and related to changes in cell proliferation.  

2.11.1 Preparation of samples  

Cell samples were seeded in a 6-well plate and living cells were prepared for 

analysis by flow cytometry. Following siRNA or drug treatments, both adherent and 

non-adherent cells were washed twice with PBS (spun at 1200rpm for 5 minutes) to 

remove media and drugs. Then 500μl of PBS was added to cell pellets and the cells 

suspended by a micro pipette (Gilson, WI, USA). 500μl of the PI solution shown in 

table 2.12 was added to the re-suspended cell samples before analysis by 

FACSCalibur flow cytometry. 

2.11.2 FACSCalibur  

Before running samples through the flow cytometer, cells were passed through a 

syringe and needle to remove cell clumps. CellQuest software (BD Biosciences, UK) 

was able to modify instrument settings and simultaneously acquire data from the 

FACSCalibur machine. FL2-A (fluorescent detector 2-area) vs FL2-W (fluorescent 

detector 2-width) plots were used to identify and gate-out a range of the cell events 

(figure 2.7). Scatter plots of FL2-A vs. FL2- W were set up to optimise instrument 

settings using an untreated control (figure 2.7), as well as a 2D histogram of counts 
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vs. FL2-A where the G1 peak was set to 200 on a linear scale, and the G2 peak at 

400. 10,000 events were acquired per sample and data was saved as FCS files.  

2.11.3 Analysis  

FCS files were generated by CellQuest software. Flow cytometry data was analysed 

using Cyflogic v1.2.1 software. FL2-W versus FL2-A scatter plots were generated 

and cells were gated to the main population, either including sub-G1 or excluding 

sub-G1, as shown in the example in figure 2.7. 

The sub-G1 cells were excluded in cell cycle analysis, to avoid inclusion of dead and 

fragmented cells. For a measure of apoptosis, the sub-G1 signals could be analysed 

separately. The gated data was used to generate FL2-A histograms, and the 

proportion of cells in G1/G0, S and G2/M phases was determined by marking the 

various phases of the cell cycle (shown in figure 2.7), and generating a table of 

statistics. An increase in the G1/S and G2/S ratio indicates G1 and G2 arrest, 

respectively. 

 

 volume  Final concentration 

PI solution     

Propidium iodide (Sigma-Aldrich, UK) 50 mg 100 µg/ml  

DNase free RNase A (Sigma-Aldrich, UK) 50 ml 200 µg/ml  

Triton-X-100 (Sigma-Aldrich, UK) 1.5 ml 0.3 %  

Sodium Citrate (Sigma-Aldrich, UK) 500mg 1 mg/ml 

PBS (Gibco, Paisley, Scotland) 500 ml   

Table 2.12. PI solution 
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Figure 2.8. Example FL1-W versus FL2-A scatter plots and histograms showing 
the signal gating and regions of cell histograms selected for analysis of cell 
cycle stages, including and excluding sub-G1.  (The example of plots shown 
are for the control DMSO treated MRK-nu-1 cells)  
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2.12  Immunofluorescence and confocal microscopy 

MDMX Protein location was detected by immunofluorescence using a confocal 

microscope. The nucleus was visualised by staining with a nucleic acid fluorescent 

intercalating dye 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI).  

2.12.1 Immunofluorescence protocol  

Cells were seeded into a 6-well plate at 1x104 cells/well, with 22x22mm coverslips 

(Thermo Fisher Scientific, UK) inside the wells. The coverslips should be sterilized 

before culturing cells on them. After incubating for 24 hours, the medium was 

aspirated and the cells were washed in cold PBS twice. Cells on the coverslips were 

fixed by adding 2 ml ice cold methanol and placed in a -20°C freezer for 30 minutes. 

(The fixed cells on coverslips can be stored at -20°C for up to a week.) Methanol was 

removed and the coverslips were washed in PBS twice and transferred to a layer of 

parafilm in a 100mm petri dish. The blocking solution (table 2.13) was added onto the 

coverslips by pipetting, to cover the whole surface, and incubated at room 

temperature for 1 hour. The blocking solution was then removed and the anti-MDMX 

antibody diluted at 1 in 1000 in blocking buffer was added and incubated with the 

fixed cells at 4°C overnight. The primary antibody was removed gently from the 

coverslips by P1000 Gilson pipette. The coverslips were replaced into a 6-well plate 

and washed by PBS/Triton (2ml/well) for 3 repeats of 15 minutes on a platform 

shaker. The coverslips were replaced onto a fresh piece of parafilm. The fluorescent 

secondary antibodies (A11001, Thermo Fisher Scientific, UK) at 1 in 1000 dilution in 

the blocking buffer were added onto the coverslips and incubated for 1 hour at room 

temperature in the dark. After this step, the samples should be kept in the dark as 

much as possible. The secondary antibodies were removed and 50 µl of DAPI diluted 

1/10 in PBS/T (H-1500, Vector Lab Inc., UK) was added and incubated for 15 

minutes at room temperature in the dark. The coverslips were washed in PBS/T 

(table 2.13) for 15 minutes 4 times. Finally, the coverslips were placed face down on 

slides (Thermo Fisher Scientific, USA) using 5 µl mounting medium per coverslip. 

The samples were prepared for confocal microscopy. 
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 volume  concentration 

Blocking buffer     

BSA (Sigma-Aldrich, UK) 0.2 g 2%  

Triton-X-100 (Sigma-Aldrich, UK) 150 µl 1.5%  

PBS (Gibco, Paisley, Scotland) 10 ml   

 
  

 
Washing buffer     

Triton-X-100 (Sigma-Aldrich, UK) 750 µl 1.5%  

PBS (Gibco, Paisley, Scotland) 500 ml 
 

Table 2.13. Buffer for immunofluorescence 

2.12.2 Confocal microscope  

A Zeiss LSM 700 confocal microscopy system was used to capture 2D images and 

the z- stack for 3D image or video. The microscope was prepared for imaging using 

the Zen 2009 software. A drop of Immersol (Zeiss, #ISO 8036-1/2) oil was placed on 

the coverslip and the slide was placed into its allocated slot on the microscope 

platform. Z-stacking was used at 63× magnification, then a number of slices were 

taken for a different z-stack experiment ranged to present as a video.  

2.13 Caspase 3/7 activity assay 

The Caspase-Glo® 3/7 Assay (Promega, Southampton, UK) is a luminescent assay 

that measures caspase-3 and -7 activity in cell cultures. The assay provides a 

proluminescent caspase 3/7 substrate containing the tetrapeptide sequence DEVD. 

The substrate is cleaved by the caspase3/7 to release a substrate for luciferase. The 

light from the luciferase reaction can then be detected with a FLUOstar Omega plate 

reader (BMG Labtech, Germany). 

Cells were seeded at 5000 cells/well in 96-well plates with a final volume of 100 

μl/well medium. The Caspase 3/7 kit was defrosted and the buffer added to the tablet 

of caspase 3/7 substrate at room temperature. 75μl of medium was removed from 

each well, only 25μl of medium was left with the cells in each well before adding 

caspase 3/7 reagents. An equal volume of caspase reagent (25 μl) was added before 
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incubating for 1 hour at 37°C. After 1 hour, the resulting mixture was transferred to a 

white-welled 96-well plate and analysed using a FLUOstar Omega microplate 

Luminometer reader (BMG Labtech,Germany).   

2.14 Statistical analyses 

All statistical tests were performed using GraphPad Prism Version 6.0 software 

(GraphPad Software, Inc., USA). All t-tests were used two-tailed and paired or 

unpaired according to the experiments. A p-value of p < 0.05 was considered to be 

statistically significant. 
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Chapter 3 The effect of MDMX amplification and high expression on 
the response to MDM2-p53 antagonists and MDMX/2-p53 co-

antagonist 
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3.1  Introduction 

MDMX, which is an MDM2 structural homolog and p53 negative regulator, has been 

reported to be highly expressed in 40% of tumour cell lines (Ramos et al., 2001). 

MDMX expression and amplification show a wide variety in different tumour types.  

Previous research has indicated that MDMX has 10% with gain and amplification in 

sarcoma (Ohnstad et al., 2013). MDMX amplification was found in 4% of glioblastoma, 

15% of breast, and over 10% of liver and lung adenocarcinomas (Burgess et al., 2016). 

It is commonly detected with high expression in breast cancer (~18%), lung 

adenocarcinoma (~10%), liver tumours (~12%), glioblastoma multiform (~10%) 

(Riemenschneider et al., 1999), retinoblastomas (~60%) (Laurie et al., 2006) and 

cutaneous melanoma (~65%) (Gembarska et al., 2012). Targeting both MDM2 and 

MDMX has been suggested to be highly desirable in cancer therapy, depending on the 

status of TP53, MDM2 and MDMX. 

MDMX expression has been reported to confer resistance to MDM2-p53 binding 

inhibitors (Chandler et al., 2006) and to play a significant role in the response to other 

therapeutic agents which are activated by a p53-dependent mechanism. Nutlin-3a 

specifically targets the MDM2-p53 interaction, but fails to disrupt the binding between 

MDMX-p53 and MDMX-S-p53 (Bozzi et al., 2013). Furthermore, other MDM2 

inhibitors were also found to be unable to inhibit the MDMX and p53 interaction 

(Koblish et al., 2006; Patton et al., 2006; Wade et al., 2006; Shangary et al., 2008). 

SJSA-1, which has MDM2 amplification and TP53 wild-type, has been used in many 

studies to test the growth inhibition and cytotoxicity of MDM2 inhibitors. A previous 

study reported that SJSA-1 transduced to overexpress MDMX were more resistant to 

MDM2 inhibitors (Hu et al., 2006). 

A small molecule dual MDM2/MDMX inhibitor, a co-antagonist, was developed by 

ROCHE to reactivate p53 function in the presence of high MDMX expression and to 

effectively treat cancer cells with high expression of MDMX (Graves et al., 2012).  
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3.2  Hypotheses and aims 

Hypothesis: 

MDMX amplification and over-expression is associated with altered response to 

MDM2-p53 binding antagonists in a wide range of human cancer. 

 

Aims: 

To study the response of cell line models to small molecule MDM2-p53 binding 

antagonists Nutlin-3 & RG7388 and the MDM2/X- p53 co-antagonist RO5963.  

To confirm the wild-type p53 status of the JEG3 and MRK-nu-1 by DNA sequence 

analysis.  

To investigate the p53 functional response in JEG3, MRK-nu-1 cells exposed to 

Nutlin-3, RG7388 and RO5963 by the induction of p53 responsive genes, including 

p21, MDM2 and BAX. 
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3.3  Specific Materials and Methods 

3.3.1 Cell lines 

JEG-3 (placental choriocarcinoma) and MRK-nu-1 (breast carcinoma) were identified 

from chromosome 1 SNP array data on the Sanger database to have focal 

amplification of a genomic region encompassing the MDMX gene (figure 3.1). 

Neuroblastoma NGP, SKNSH and LAN-6 have been identified in our laboratory to 

have high expression of MDMX, also MDMX high expression was found in the breast 

carcinoma MCF-7 cell line (figure 3.2 and table 3.1).  

3.3.2 MDMX location 

JEG-3 cells were fixed on slides and probed with MDMX antibody by 

Immunofluorescence. DAPI was used to stain nuclei and a Zeiss LSM 700 confocal 

microscopy system was used to capture 2D images and z- stack images for 3D or 

video display. The microscope was prepared for imaging using the Zen 2009 

software. The z-stacking was used at 63× magnification, then a number of slices 

were taken for different z-stack experiments ranging between 30-50.  

3.3.3 Growth curve 

Growth curves were used to decide the cell density and incubation time for growth 

inhibition studies. JEG-3 cells (adherent cells) were seeded in 96-well plates using 

100 µl/well of 0.5x104, 1.2x104, 2.5x104, 5x104, 1x105, 2x105 cells/ml cell densities 

and then incubated at 370C, 5% CO2 for 24, 48, 72, 96 and 120 hours. The cultures 

were fixed using 25µl/well of Carnoy’s fixative (100ml of concentrated acetic acid to 

300ml of methanol) and stored in a 4°C fridge for at least 1 hour before washing with 

tap water 5 times and drying the plates. The dried and fixed cells on the plates were 

stained with 0.4 % SRB in 1% acetic acid solution using 100 µl/well for 30 minutes, 

before washing with 1% acetic acid 5 times and drying the plates. Then the stain on 

the cells was dissolved by incubation with 10mM Tris pH10.5 for 20 minutes. After 

reading the absorbance at 570nm on a 96-well spectrophotometer, the relative cell 

growth could be quantified.   

MRK-nu-1 cells were seeded in 96-well plates using 100 µl/well at 0.2x104, 0.5x104, 

1.2x104, 2.5x104, 5x104, 1x105 cells/ml cell densities and incubated at 370C in a 5% 
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CO2 incubator for 24, 48, 72, 96 and 120 hours. The data was collected each day. The 

XTT mixture (labelling reagent: electron-coupling reagent = 50:1) was added at 50 

µl/well and incubated at 37°C for 6 hours. After reading the absorbance at 450nm on 

a 96-well spectrophotometer, the relative cell growth could be quantified. 

3.3.4 TP53 DNA sequencing  

The PCR products were analysed using a 2% agarose gel to check for a clean 

product of the expected size, which was then extracted using a PCR product 

purification kit (Invitrogen). The PCR products were sent to DBS Genomics (Durham, 

UK) for Sanger dideoxy sequencing. The p53 exon sequencing results were 

analysed by visual inspection of the chromatograms and alignment with a normal 

reference sequence using the SeqMan software package (DNAStar).  

3.3.5 Clonogenic assay 

JEG-3 cells were seeded into a 6-well plate with 100 cells/well density and left for 24 

hours to ensure cells touched the bottom of the plate. The cells were treated with 0 – 

30 µM of Nutlin-3 and 0 – 3 µM of RG7388 for 48 hours. After treatment for 48 hours, 

the drug was taken out of the cells and fresh media was added. The cells were then 

cultured and left to recover and form colonies. Once the individual colonies were big 

enough to see and count, cells were fixed with Carnoy’s fixative and stained with 

crystal purple for 5 minutes. The plates were then washed with tap water and dried 

on the bench. The colonies were counted by visual inspection and the number of 

colonies recorded. 

3.3.6 Protein response to drug treatment  

JEG-3 and MRK-nu-1 cells were seeded into 60 mm dishes with 3x105 and 3x105 

cells/well densities (table 2.5). After 48 hours, they were treated with 0 (DMSO only), 

0.2, 1 and 5 µM Nutlin-3 for 4 hours and 24 hours and cell lysates collected. The 

same amount of lysate was loaded and probed by Western blotting for MDM2, 

MDMX, p53 and p21, with actin used as a loading control. 
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3.3.7 Growth inhibition  

MRK-nu-1 cells were seeded into a 96-well plate with the cell densities shown in 

table 2.5. After 24 hours, cells were treated with different doses of Nutlin-3, RG7388 

and RO5963 for 72 hours. XTT assay was used to measure the cell viability after 

drug treatment for the MRK-nu-1 suspension cell line. 

JEG-3, SJSA-1, NGP and MCF-7 cells were seeded into 96-well plates with different 

cell densities (table 2.5) for 24 hours. A different dose of Nutlin-3, RG7388 and 

RO5963 was then added into each well for 72 hours. After the treatment, SRB assay 

was used to measure the cell proliferation for adherent cells.  
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Cell line Type MDMX MDM2 p53 

JEG-3 placental choriocarcinoma amp LE WT 

MRK-nu-1 breast carcinoma amp LE WT 

SJSA-1 osteosarcoma LE amp WT 

NGP neuroblastoma HE amp WT 

MHM osteosarcoma LE amp WT 

SaOS-2 osteosarcoma LE LE del 

SKNSH neuroblastoma HE LE WT 

LAN-6 neuroblastoma HE LE WT 

NB1691 neuroblastoma HE amp WT 

MCF-7 breast carcinoma HE LE WT 

Table 3.1. Gene status or protein expression of p53, MDM2 and MDMX on cell 
lines. WT: wild-type; amp: amplified; del: deleted; HE: high expression; LE: low 
expression and basal level undetectable by Western blot  

 

 

Figure 3.1. Chromosome 1 SNP array data for JEG-3 and MRK-nu-1 cell lines 
showing focal copy number amplification at the MDMX locus 1q32 (CONAN 
database, Sanger Institute). 
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3.4  Results 

3.4.1 MDMX protein expression in a panel of cell lines 

A panel of cell lines including the MDMX gene-amplified JEG-3 and MRK-nu-1 cells 

were probed for MDMX protein expression. As can be seen from figure 3.2, the 

MDMX amplified JEG-3 and MRK-nu-1 cells were confirmed to express MDMX 

protein. Interestingly, the cell lines NGP, MCF-7, SKNSH and LAN-6, which are not 

amplified for MDMX, also showed high levels of MDMX protein expression. However, 

MDM2-amplified SJSA-1 demonstrated a low expression level of MDMX. Table 3.1 

summarizes the MDM2, MDMX and TP53 status and protein expression levels based 

on figure 3.2. 

The MDMX expression in MRK-nu-1 changes in a time-dependent manner in figure 

3.2. MRK-nu-1 cells expressed the highest protein of MDMX on day 4. Figure 3.3 

shows the location of MDMX protein in JEG-3 cells by confocal microscopy. Most of 

the MDMX protein (green stain) is located in the nuclei (DAPI blue stain) of the cells. 

As a p53 negative regulator, MDMX is located in the nucleus and inhibits p53 

transcriptional activity by binding to p53 as an MDM2-MDMX heterodimer. The 

MDMX distribution within the nucleus was not uniform and appeared to show 

nucleolar exclusion (Li et al., 2002a). 
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Figure 3.2. Basal levels of MDMX and p53 expression in the indicated cell lines. 
Actin is included as a loading control. 
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Figure 3.3. (A) MDMX protein location in JEG-3 cell line detected by confocal 
fluorescence microscopy with the anti-MDMX antibody (8C6, Millpore).Green 
stain shows MDMX protein. Blue shows DAPI stained nuclei (B) The image 
shows the normal cells (left) and mitotic cells (right).  
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3.4.2 The JEG-3 and MRK-nu-1 MDMX amplified cell lines have wild-type and 
functional p53 

Chromosome 1 SNP array data from the CONAN database (figure 3.1) for JEG-3 

(placental choriocarcinoma) and MRK-nu-1 (breast carcinoma) cells show focal 

MDMX amplification of these two cell lines. The Western blot result in figure 3.2 also 

shows high basal protein expression in JEG-3 and MRK-nu-1 cell lines. 

The TP53 status of these two MDMX amplified cell lines was confirmed by Sanger 

DNA sequencing. The PCR products of TP53 exons were checked for their quantity 

and size, as well as absence of non-specific bands, by agarose gel electrophoresis 

(figure 3.5A). To illustrate the quality of the sequencing, the codon 72, exon 4, C/G 

(Arg/Pro) polymorphism in the JEG-3 cell line is shown (figure 3.5B). No point 

mutations or other sequence variants were detected in either cell line by PCR and 

Sanger sequencing of TP53 exons 2-11, which encompasses the coding region. This 

was consistent with p53 in these two cell lines being wild-type in functional assays.  

Figure 3.4 shows the growth curves for the MDMX amplified cell lines, JEG-3 

(adherent cell line) and MRK-nu-1 (suspension cell line), from day 1 (24hr) to day 5 

(120hr) after seeding cells at different densities. The SRB assay was used for the 

adherent cell line and XTT assay for the suspension cell line. Based on these growth 

curves, the seeding density and time course for assessing the growth inhibition by 

Nutlin-3 treatment was decided and the doubling time estimated (table 3.2). For 

seeding densities of ≤ 2.5x104 cells/ml both cell lines showed a significant growth 

delay for the first 72 hours after seeding. Initially, the cultures grew rapidly at the 

highest seeding densities, but the growth rate was then slowing down by 48 hours. 

For subsequent growth inhibition studies, an optimal seeding density of 5x104 cells 

per ml was chosen and the effect on optical density measured after 72 hours of drug 

treatment. 
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Figure 3.4. Growth curves of JEG-3 (adherent cell line) and MRK-nu-1 
(suspension cell line).  

 
JEG-3 (cells/ml) 0.5x104 1.2x104 2.5x104 5x104 1x105 2x105 

Doubling Time (hr) 26.07 29.08 24.29 32.13 43.82 47.95 

MRK-nu-1 (cells/ml) 0.2x104 0.5x104 1.2x104 2.5x104 5x104 1x105 

Doubling Time (hr) 25.09 25.24 21.44 19.23 17.89 19.14 

Table 3.2. The maximum doubling times of JEG-3 and MRK-nu-1 from the growth 
curves 
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Figure 3.5. (A) 2% Agarose gel electrophoresis analysis of PCR products of 
exon 3 to exon 11 of TP53 gene in JEG-3 and MRK-nu-1 cell lines. (B) 
Sequencing of JEG-3 TP53 exon 4 antisense. The red arrow shows the position 
of the codon 72 C/G (Arg/Pro) polymorphism in the JEG-3 cell line.  
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The Western blot analysis in Figure 3.6 and Figure 3.7 shows the response of JEG-3 

and MRK-nu-1 cells to different doses of Nutlin-3 treatment for 4 hours. MDMX was 

expressed at high levels in these two MDMX amplified cell lines, but the MDMX 

protein levels did not change after 4 and 24 hours of Nutlin-3 treatment at each dose. 

Dose-dependent stabilisation of p53 was observed in response to Nutlin-3 treatment 

in MRK-nu-1 cells and was accompanied by downstream activation of MDM2 and 

p21. A similar trend was seen in the JEG-3 cell line, although interestingly the basal 

p53 level was high prior to treatment and did not show any further increase in 

response to treatment, although increases in MDM2 and p21 indicated the p53 was 

functional. The inductions of MDM2 and p21 by Nutlin-3 were dose-dependent. BAX 

also increased in a dose-dependent manner after 24 hour drug exposure in both 

JEG-3 and MRK-nu-1 cells. The responses to Nutlin-3 were similar to those seen 

with MDM2 amplified and MDMX non-expressing cell lines such as SJSA-1 (Vassilev 

et al., 2004). The reactivated response of p53 was also evidence that JEG-3 and 

MRk-nu-1 were carrying wild-type and functional p53. 
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Figure 3.6. Nutlin-3 treatment (4 hours) responses of MDMX, MDM2, p53, p21, in 
JEG-3 and MRK-nu-1 cell lines. Actin used as a loading control. 

 

 

Figure 3.7. Nutlin-3 treatment responses of MDM2, p53, pp53ser15, p21 and BAX 
in JEG-3 and MRK-nu-1 cell lines for 24 hours. Unfortunately, MDMX was not 
probed in this blot. Actin was used as a loading control.  
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Figure 3.8 shows DMSO sensitivity and growth inhibition by Nutlin-3 treatment for 

JEG-3 and MRK-nu-1 cell lines. JEG-3 and MRK-nu-1 cells showed around or over 

80% cell survival in 1% DMSO for 72 hours. DMSO showed only slightly cytotoxic 

effects to these two cell lines. For growth inhibition by 72 hours Nutlin-3 treatments, 

the average (over 3 replicates) GI50 values were 11.7 ± 1.4 µM in JEG-3 and 3.0 ± 

0.5 µM in MRK-nu-1 (table 3.3). These two MDMX amplified cell lines have similar 

sensitivity to Nutlin-3 compared with SJSA-1 with 2.8 ± 0.4 µM of Nutlin-3 GI50 value 

(table 3.3).  

Clonogenic assay was used for testing tumour regrow and colony forming ability after 

removing drugs. JEG-3 cells were seeded into 6-well plates with 200 cells/well cell 

density. After 24 hour, the JEG-3 cells were treated by different doses of Nutlin-3 and 

RG7388 for 48 hours and then the drugs were removed. The cells regrew and 

formed colonies after incubating for 2 weeks. The clonogenic assay results of JEG-3 

cells after 48 hour Nutlin-3 and RG7388 treatment are shown in figure 3.9. The JEG-

3 clonogenic LC50 values for Nutlin-3 and RG7388 for 48 hour treatment were 18.3 ± 

2.7 µM and 2.2 ± 0.215 µM respectively.  
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Figure 3.8. DMSO sensitivity and growth inhibition by Nutlin-3 in JEG-3 and 
MRK-nu-1 cells. JEG-3 and MRK-nu-1 cells were treated with Nutlin-3 dissolved 
in 1% DMSO from 0.1 μM to 30 μM for 72 hours.  

 

 

 

Figure 3.9. Clonogenic assay for 48 hours treatment with Nutlin-3 and RG7388 
in JEG-3 cells. The average LC50 values for Nutlin-3 and RG7388 were 18.3 ± 2.7 
µM and 2.2 ± 0.2 µM respectively (n=3). 
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3.4.3 Cells with MDMX amplification and/or high expression are sensitive to 
MDM2-p53 binding antagonists  

The cells with MDMX amplification (JEG-3 and MRK-nu-1) and high MDMX 

expression (NGP and MCF-7) were sensitive to 72 hour treatments with Nutlin-3 and 

RG7388 (figure 3.10A & B).  

The Western blot results in figure 3.6 and figure 3.7 show MDMX was expressed at 

high levels in these two MDMX amplified cell lines but MDMX protein levels did not 

change after 4 hours of Nutlin-3 treatment. The p53 showed dose-dependent 

stabilization in MRK-nu-1 cells, followed by dose-dependent down-stream activation 

of MDM2 and p21 protein levels. Despite high basal levels of p53, a similar p53-

dependent downsteam transcriptional response was seen in the JEG-3 cell line, 

including pp53ser15 phosphorylation. The overall pattern of response to Nutlin-3 was 

similar to that seen with MDM2 amplified and MDMX non-expressing cell lines such 

as SJSA-1 (Drummond et al., 2016).  
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3.4.4 Mutant p53 cells are resistant to MDM2-p53 antagonists and the MDMX/2-
p53 co-antagonist 

S-M6R1 and S-N40R2 (SJSA-1 daughter cell lines resistant to MI63 and Nutlin-3) 

and N-20R1 (NGP daughter cell line resistant to Nutlin-3) were both selected for 

resistance to MDM2-p53 binding antagonists and mutant for TP53 (Drummond et al., 

2016). The TP53 mutant daughter cells (dashed line) were resistant to Nutlin-3, 

RG7388 and RO5963 compared with their parental TP53 wild-type cell lines (solid 

line) SJSA-1 and NGP (figure 3.10). RG7388 as the more potent MDM2 antagonist 

also has better selectivity for growth inhibition between mutant and wild-type p53.  

This indicates that MDMX amplification does not make cells resistant to MDM2 

antagonists in the same way as observed for mutation of TP53. Mutant TP53 cell 

lines have much higher GI50 values for Nutlin-3 (> 40 μM), RG7388 (> 3 μM) and co-

inhibitor RO5963 (>30 μM), compared with the TP53 wild-type and MDMX amplified 

cell lines (Table 3.3). This suggests that TP53 gene status is a more important factor 

in the efficacy of MDM2-p53 antagonists than MDMX status. 

3.4.5 Comparison of co-antagonist GI50 values in MDMX amplified/high 
expressed cell lines and MDM2 amplified cell lines 

The MDMX amplified cells and MDMX high-expressing cells have similar sensitivity 

to the RO5963 co-inhibitor. Interestingly, SJSA-1 cells had the highest GI50 value for 

RO5963 of 13.1 ± 1.0 µM among all theTP53 wild-type cell lines. Thus low or 

undetectable expression of MDMX in SJSA-1 was associated with resistance to the 

RO5963 MDMX/MDM2 co-inhibitor and highest sensitivity to Nutlin-3 and RG7388 

(figure 3.10 and table 3.3). 
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Cell line MDM2 MDMX Nutlin-3 (µM) RG7388 (µM) RO-5963 (µM) 

JEG-3 LE Amp 11.7 ± 1.4 1.76 ± 0.64 4.5 ± 0.7 

MRK-nu-1 LE Amp 3.0 ± 0.5 0.54 ± 0.13 2.4 ± 0.2 

SJSA-1 Amp LE 2.8 ± 0.4 0.007 ± 0.003 15.7 ± 0.7 

S-N40R2 Amp LE 49 ± 0.4 > 5 > 30 

MCF-7 LE  HE 5.3 ± 1.3 0.14 ± 0.05 2.7 ± 0.1 

NGP Amp HE 2.0 ± 0.7 0.12 ± 0.01 2.7 ± 1.1 

N20R1 Amp HE 41 ± 6 > 3 - 
The cells were treated with the drugs for 72 hr and the cell viability tested by SRB 
and XTT (MRK-nu-1 only) assay. The average GI50 values were calculated from at 
least n=3 individual repeats (Means ± SEM). (Amp: amplification; HE: high 
expression; LE: low expression and basal level undetectable by Western blot.)  

Table 3.3. The GI50 values for Nutlin-3, RG7388 and RO5963 in a panel of cell 
lines of differing MDM2, MDMX and TP53 status.  
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Figure 3.10. Dose-dependent growth inhibition response of cell lines of varying 
MDMX status to MDM2-p53 binding antagonists, Nutlin-3 (A) & RG7388 (B), and 
the MDMX/2-p53 co-inhibitor RO5963 (C). (D) Summary plot of the GI50 values 
for Nutlin-3, RG7388 and RO5963 for wild-type TP53 cell lines. 
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3.5  Discussion 

TP53 status has a much greater impact on the response to MDM2-p53 binding 

antagonists compared with MDMX expression. The summary GI50 value bar chart in 

figure 3.11 indicates MDMX amplified cell lines and cell lines with high MDMX 

expression have similar Nutlin-3 GI50 values as MDM2 amplified and TP53 wild-type 

cell lines. MDMX amplification does not make tumour cells as resistant to MDM2 

antagonists as observed for mutation of TP53. 

According to the results of Nutlin-3 treatment in the present study, MDMX protein 

levels did not show a significant change in either of the MDMX amplified cell lines 

after treatment with different concentrations of Nutlin-3. These results are consistent 

with previous studies (Hu et al., 2006; Patton et al., 2006; Wade et al., 2006). It has 

reported that MDMX expression is associated with cell growth and proliferation. 

MDMX expression is induced at the transcriptional level by activation of K-Ras and 

IGF-1 (insulin-like growth factor 1) via the MAPK pathway; also, increased MDMX 

correlates with ERK phosphorylation. An increase of MDMX expression by mitogenic 

signals might contribute to the protection of tumour cell proliferation from p53 

activation (Gilkes et al., 2008).The p53, phosphorylated pp53ser15, MDM2 and p21 

protein levels increased in a dose-dependent manner after Nutlin-3 treatment. The 

MDMX amplified cells showed a similar response to other TP53 wild-type cell lines. 

The p53 was stabilized and the transcriptional function was reactivated after 

treatment with MDM2 antagonists in the cells with MDMX amplification as typically 

seen for wild-type TP53 cell lines (Vassilev et al., 2004). 

MDMX amplification and high expression showed some, but not strong, association 

with resistance to MDM2-p53 binding antagonists in wild-type p53 cells. These 

findings are consistent with a previous study in acute myeloid leukaemia that high 

levels of MDMX expression do not block function of MDM2 inhibitors in AML. Also 

AML cells with high MDMX remain sensitive to Nutlin-3 treatment (Tan et al., 2014). 

By contrast, another study reported that cell lines with high MDMX expression 

presented more resistance to growth inhibition by Nutlin-3, which was different from 

our findings (Hu et al., 2006). This might be due to the shorter treatment duration (48 

hours) in the previous study compared with the current study (72 hours). 
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MDMX expression is associated with sensitivity to MDM2/X-p53 binding co-inhibitor 

(Graves et al., 2012). High MDM2 and undetectable MDMX in SJSA-1 cells was 

associated with resistance to RO5963, although RO5963 has similar and strong 

binding ability to both MDM2 and MDMX. TP53 status is the major factor in 

resistance to co-inhibitors. Selection for resistance to MDM2 inhibitors is not 

associated with increased MDMX expression, which might be expected if MDMX 

expression was an important mediator of resistance to MDM2 inhibitors (Drummond 

et al., 2016). 
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Figure 3.11. GI50 values of Nutlin-3 and RG7388 in different cell lines with 
different TP53, MDM2 and MDM4(MDMX) status.JEG-3 and MRK-nu-1 cells have 
a GI50 value for Nutlin-3 which is similar to other TP53 wild-type cell lines, such 
as SJSA-1, and not resistant like the TP53 mutant cell lines.  
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Chapter 4 The effect of knockdown of MDMX expression by 
lentiviral shRNA on the response to MDM2-p53 binding 

antagonists & MDMX/2 co-antagonist 
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4.1 Introduction 

MDMX as a homolog of MDM2 is also a p53-binding negative regulator that can 

inhibit p53 function in tumour cells and in normal cells. Suppression of MDMX 

expression may lead to p53 reactivation, particularly in cells with MDMX amplification 

or high MDMX expression. In addition, some research has suggested that 

knockdown of MDMX improves response and cell sensitivity to Nutlin-3 and other 

MDM2 inhibitors (Hu et al., 2006; Patton et al., 2006; Wade et al., 2006). A previous 

study indicated that U2OS cells transduced to overexpress MDMX were rendered 

resistant to growth inhibition and activation of p53 down-stream protein responses 

(Hu et al., 2006). Knockdown of MDMX in MCF-7 cells infected with lentivirus shRNA 

has also been reported to enhance Nutlin-3 induced cytotoxicity (Wade et al., 2006). 

Therefore, in chapter 4 and chapter 5 of this thesis, results are described for the 

effects of two different knockdown systems used to suppress MDMX protein 

expression on the subsequent response to treatment with MDM2-p53 binding 

antagonists Nutlin-3 & RG7388 and the MDM2/X-p53 binding co-antagonist RO5963. 

In this chapter, the establishment and testing of a lentiviral shRNA system as a long-

term and stable method of decreasing MDMX protein expression in a panel of cell 

lines is described. 
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4.2 Hypotheses and aims 

Hypotheses: 

Cell lines amplified for and/or expressing high levels of the MDMX gene are 

nevertheless responsive to MDM2-p53 binding antagonists and response to these 

agents is altered by suppression of MDMX expression by lentiviral shRNA.   

Suppression of MDMX expression by lentiviral shRNA is associated with increased 

sensitivity to MDM2-p53 binding antagonists for growth inhibition apoptosis and cell 

cycle arrest. 

Suppression of MDMX expression by lentiviral shRNA is associated with decreased 

response and increased resistance to MDM2/X-p53 binding antagonist RO5963 for 

growth inhibition, apoptosis and cell cycle arrest. 

Aim: 

To test the ability of MDM2-p53 binding inhibitors Nutlin-3, RG7388 and RO5963 to 

activate p53 in the presence and relative reduction of MDMX expression achieved by 

a regulated lentiviral shRNA knockdown system  

 

Figure 4.1 Knockdown of MDMX by lentiviral shRNA affects the response to 
MDM2 inhibitors and MDMX/MDM2 co-inhibitors via the p53 pathway   
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4.3 Specific Materials and Methods 

4.3.1 Transduced cell lines 

Two MDMX amplified cell lines, JEG-3 & MRK-nu-1, and high MDMX-expressing 

neuroblastoma cell lines NGP and SKNSH were transduced with the TRIPZ MDMX 

shRNA knockdown construct (chapter 2.8). They were selected for uptake and 

expression of the viral DNA by growth in puromycin based on previously established 

puromycin sensitivity assays (work of Claire Hutton). Optimal puromycin doses were 

established to provide sufficient cell killing of non-transduced cells to allow selection 

of those successfully transduced with the construct and expressing the puromycin-

resistance gene. After being transduced successfully, for example, the MRK-nu-1 L1 

cells were named for the MRK-nu-1 lentiviral transduced clone 1. 

4.3.2 Red fluorescent protein (RFP) check 

Fluorescence microscopy was used to confirm doxycycline-inducible expression of 

the red fluorescent protein (RFP) gene marker, to check successful uptake of the 

lentivirus and inducible gene expression from the DNA construct in the MRK-nu-1, 

JEG-3, NGP and SKNSH cells (figures 4.3-6). The red fluorescence signal was also 

checked by flow cytometry microscopy (figure 4.2). 

4.3.3 Response of p53 pathway proteins to MDM2/MDMX inhibitor treatment 
after knockdown of MDMX 

The lentivirus models were used to explore the effect of MDMX expression 

knockdown on cell growth and on the response to treatment with the MDM2 

antagonists Nutlin-3 & RG7388 and the MDM2/MDMX co-inhibitor RO-50963. The 

treatment time for Nutlin-3, RG7388 and RO5963 was chosen to be after 72 hours of 

doxycycline induction in order to treat the cells at the optimal time for knockdown of 

MDMX protein expression. The time points of treatment and lysate collection for 

Western blots followed the time line shown in figure 4.8.  

4.3.4 Growth inhibition of MDM2 antagonists after knockdown of MDMX 

Nutlin-3, RG7388 and RO5963 treatments were performed after knocking down 

MDMX by doxycycline-induced lentiviral shRNA for 72 hours.  The time points of 
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treatment and XTT assay for growth inhibition after MDMX knockdown followed the 

time line in figure 4.9. 

4.3.5 FACS analysis in lentiviral transduced cells 

FACS analysis was also used to confirm doxycycline inducible expression of the red 

fluorescent protein (RFP) gene marker from the DNA construct in the MRK-nu-1 cells 

(figure 4.2). 

Nutlin-3, RG7388 and RO5963 treatment were performed after knocking down 

MDMX by doxycycline-induced lentiviral shRNA for 72 hours. The time points of 

treatment and FACS analysis for cell cycle distribution change after MDMX 

knockdown followed the time line in figure 4.8. The time points of collecting data was 

the same with lysate collecting. 

Measurement of sub-G1 signals was not included with the cell cycle distribution 

changes in lentiviral transduced MRK-nu-1 cells. The sub-G1 data was affected by 

RFP signals on the setting for PI staining, because the doxycycline-inducible RFP 

signal peak overlapped with the sub-G1 peak, as shown in figure 4.2. 
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Figure 4.2. (A) Red fluorescence signal to check the doxycycline induction in 
MRK-nu-1 by FACS. (B) RFP signal check of dox- (white) & dox+ (red) in MRK 
L1 DMSO control. The same setting for the PI stained sample showed that the 
sub-G1 peak overlapped with the RFP signal. 
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4.4 Results 

4.4.1.  Knockdown of MDMX by lentiviral shRNA has low efficiency for 
suppressing MDMX protein levels in the cell lines except MRK-nu-1 

MDMX protein level did not show significant decrease in JEG-3 and SKNSH cells 

after 48, 72 and 96 hour doxycycline-induced lentiviral shRNA knockdown of MDMX, 

although doxycycline-induced RFP was detected (figure 4.3, figure 4.4 & figure 4.5). 

JEG-3 cells had low level of RFP signal after doxycycline induction, and the MDMX 

level was not decreased by lentiviral shRNA (figure 4.4). JEG-3 cells with more 

copies of the lentivirus plasmid construct were selected by increasing the dose of 

puromycin up to 10 µg/ml, but the induction of RFP was still lower than in the other 

cells, consistent with MDMX knockdown not working as well as in the other cell lines. 

NGP cells showed a decrease of MDMX after 48-hour induction. However, the blots 

shown in figure 4.5 was the best example and there was only one case in which the 

lentiviral shRNA knockdown worked in NGP cells. 

However, MRK-nu-1 cells had significant inducible RFP signal after 72 & 96 hour 

doxycycline induction (figure 4.6) and successful knockdown of MDMX expression by 

lentiviral shRNA was obtained. The MDMX protein level decreased more than 70% 

over the 72 hour induction (figure 4.7A). 

4.4.2.  Suppression of MDMX expression by lentiviral shRNA has no effect on 
cell growth 

The cell growth curve shown in figure 4.7B indicates that doxycycline inducible 

lentiviral shRNA-mediated knockdown of MDMX did not affect the growth of JEG-3 

and MRK-nu-1 cells. Absence and presence of puromycin might affect cell growth 

and keep the lentiviral shRNA sequence in the cells. The Western blot for daily 

MDMX expression of MRK-nu-1 cells showed highly significant knockdown of MDMX 

from 48 hour induction to 120 hours. The same level of p53 protein expression was 

maintained after knocking down MDMX expression. 
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Figure 4.3. Red fluorescent protein (RFP) signal check following 1 µg/ml 
doxycycline induction for 48 hours in MRK-nu1, SKNSH and NGP cells. Left 
panel: white-light microscopy; middle panel: red fluorescence image; right 
hand panel: merged image.  
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Figure 4.4 Red fluorescent protein (RFP) signal and MDMX protein level check 
following 1 µg/ml doxycycline induction for 72 hours in SKNSH & JEG-3 cells. 

 

 

Figure 4.5. Red fluorescent protein (RFP) signal and protein expression check 
following 1.5 µg/ml doxycycline induction for 48 hour in NGP cells 
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Figure 4.6. Doxycycline (1 µg/ml) induction of RFP signal for 72 & 96 hours in 
MRK-nu-1 cells. 
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Figure 4.7. (A) The percentage of MDMX protein expression after lentiviral 
shRNA-mediated knockdown by doxycycline induction from 24 hours to 120 
hours in MRK-nu-1 cells. (B) Growth curves and Western blots for MRK-nu-1 
and JEG-3 with lentiviral shRNA knockdown of MDMX. MDMX expression is 
reduced by 24 hours (day 1) and maintained for 120 hours (day 5) of 1 µg/ml 
doxycycline induction. The RFP signal was used to provide a non-invasive 
quick check of induction by doxycycline.  
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Figure 4.8. MDM2, p53 and p21 protein response to 4 hour Nutlin-3 after 
knockdown of MDMX. (A) Time line graph showed the experiment design. (B) 
The immunoblots showed the knockdown of MDMX did not affect the 
increasing p53, MDM2 and p21 by Nutlin-3 in 72 hour and longer 96 hour 
doxycycline induction. 
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4.4.3.  MRK-nu-1 cells were slightly more resistant to Nutlin-3 & RO5963 but not 
RG7388 after knockdown of MDMX expression by lentiviral shRNA 

The Western blot result in figure 4.7 & 4.8 shows MDMX expression in MRK-nu-1 

cells was knocked down successfully after 72 & 96 hours of doxycycline induction. 

Figure 4.9 shows n=3 repeats for the effect on growth inhibition by Nutlin-3, RG7388 

and RO5963 following lentiviral shRNA-mediated knockdown of MDMX in MRK-nu-1 

cells. The mean GI50 value of Nutlin-3 had a statistically significant increase of 

approximately 2-fold after 72 hour drug exposure, while the mean GI50 value of the 

co-inhibitor RO5963 slightly increased as well after knockdown of MDMX, although 

the difference in GI50 value narrowly failed to reach statistical significance. However, 

no significant difference following MDMX knockdown was observed for the potent 

MDM2 inhibitor RG7388. In summary, MDMX lentiviral shRNA knockdown increased 

the Nutlin-3 and RO-5963 GI50 values for MRK-nu-1 cells, but had little or no effect 

on the GI50 value for RG7388. 
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Figure 4.9. Growth inhibition by 72 hour drug treatment to Nutlin-3, RG7388 and 
RO5963 following lentiviral shRNA-mediated knockdown of MDMX in MRK-nu-1 
cells. Two-tailed paired t test used.   
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4.4.4.  MDM2, p53 and p21 protein levels did not change significantly after 
knockdown of MDMX by lentiviral shRNA 

The images in A show that the doxycycline-induced RFP signal in MRK-nu-1 cells 

was not affected by Nutlin-3 treatment. The dose-dependent stabilization of p53 and 

induction of MDM2 and p21 by 4 hour Nutlin-3 exposure shown in figure 4.13B were 

maintained after knockdown of MDMX. BAX expression showed no change in the 

response to 4 hour Nutlin-3 treatment following knockdown of MDMX. 

4.4.5.  Lentiviral shRNA-mediated knockdown of MDMX suppressed p53 
stabilization and expression of its downstream transcriptional targets by 
RO5963 

The Western blots in figure 4.13 & figure 4.14 show the results for different treatment 

times with RO5963. The blot in figure 4.13C shows the comparison between Nutlin-3, 

RG7388 and RO5963 for 4 hour drug exposure following knockdown of MDMX. The 

p53 stabilization reached a peak at 4 hour treatment time with MDM2 inhibitors. BAX 

expression slightly increased after 24 hour RO5963 exposure (figure 4.14A). MDMX 

expression was stabilized in a dose-dependent manner by RO5963 (figure 4.14B). 

After knockdown of MDMX, the increase in p53 and MDM2 was modestly reduced for 

6 and 24 hours RO5963 treatment. 
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Figure 4.10 (A) A quick check of the induction system of RFP signal by 
doxycycline in MRK-nu-1 with Nutlin-3 treatment for 4 hours (B) 4 hour Nutlin-3 
treatment following doxycycline-induced lentiviral shRNA knockdown of MDMX 
in MRK-nu-1 breast tumour cells. (C) The response to 4 hour drug treatment 
with Nutlin-3, RG7388 and RO5963 after 72 hours doxycycline-induced lentiviral 
shRNA knockdown of MDMX in MRK-nu-1 breast tumour cells.   
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Figure 4.11. Time dependence of RO5963 response for MRK-nu-1 cells 
following MDMX knockdown by lentiviral shRNA. The response of p53, MDM2 
and MDMX expression showed different time dependent increase by RO5963 
treatment. 
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4.4.6.  At lower doses Nutlin-3 and RO5963 treatment result in G1 arrest while 
high doses result in G2/M arrest 

The propidium iodide FACS analysis histograms in figure 4.15 & figure 4.17 show the 

cell cycle distribution after 24 & 48 hours respectively of treatment with 5 µM & 10 µM 

of Nutlin-3 and RO5963 in MRK-nu-1 cells with lentiviral shRNA knockdown of 

MDMX. The G1 peak increased dramatically after Nutlin-3 and RO5963 treatment for 

24 hours. This G1 arrest did not change statistically significantly after knockdown of 

MDMX (figure 4.17A). The Western blot in figure 4.16B was for the same cell set as 

used for the FACS analysis to confirm MDMX suppression and p53 activation. The 

sub-G1 peak was excluded from the bar charts of whole cell cycle distribution 

because the lentiviral transduced cells have background red fluorescence protein 

(RFP) signals which are strongly induced by doxycycline and overlap with the sub-G1 

propidium iodide signal (chapter 4.3.5) The histograms in figure 4.17 show the strong 

background RFP signal even in the sub-G1 of untreated medium control. 

Dose-dependent G1 and G2 accumulation was observed for both Nutlin-3 and 

RO50963 after 24 hour treatment (figure 4.16A). However, the MDMX knockdown by 

lentiviral shRNA did not affect the G1 & G2 arrest statistically significantly, although 

there was a trend for increased G1 and G2 arrest in the MDMX knocked-down 

samples, particularly for G2 arrest at high doses of Nutlin-3. The G1 and G2 arrest in 

the bar charts in figure 4.18 show no statistically significant difference due to the 

knockdown of MDMX after 48 hour drug exposure. Two-tailed paired t-tests were 

carried out for comparison of control (Dox - ) and MDMX knockdown (Dox + ) 

samples.  
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Figure 4.12. FACS analysis of cell cycle distribution after 24 hour Nutlin-3 & 
RO5963 treatments in MRK-nu-1 cells with lentiviral shRNA knockdown of 
MDMX. 
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Figure 4.13. The effect of knockdown of MDMX by lentiviral shRNA on cell cycle 
distribution changes (A) and protein expression (B) in response to Nutlin-3 & 
RO5963 after 24 hour drug treatments in MRK-nu-1 cells. A two-tailed paired t-
test used for comparison of knockdown of MDMX and there was no statistically 
significant difference after knockdown.  
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Figure 4.14. FACS analysis of cell cycle distribution after 48 hours Nut-3 & 
RO5963 treatments in MRK-nu-1 cells with lentiviral shRNA knockdown of 
MDMX. 
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Figure 4.15. The effect of knockdown of MDMX by lentiviral shRNA on cell cycle 
distribution changes (A) and protein expression (B) in response to Nutlin-3 & 
RO5963 after 48 hour drug treatments in MRK-nu-1 cells. MDMX shRNA 
knockdown had no significant effect on the p53 functional response to Nutlin-
3.  
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4.5 Discussion 

4.5.1 The effect of suppression of MDMX by lentiviral shRNA on cell 
proliferation 

The MDMX shRNA knockdown in the MRK-nu-1 cell line shows that MDMX 

expression can be inhibited successfully for approximately a week in MDMX 

amplified cells without inducing MDM2. However, so far attempts to transduce and 

knock down MDMX in the JEG-3, NGP and SKNSH cell lines have not been as 

successful. Both FACS analysis and fluorescence microscopy showed evidence of 

doxycycline induction of the RFP marker protein. But, there was a lack of MDMX 

knockdown in JEG-3 NGP and SKNSH cells when the cells were probed with an anti-

MDMX antibody in Western blot analysis.  

Despite the successful suppression of MDMX in MRK-nu-1 cells they maintained a 

similar growth rate, even though MDMX expression was reduced over 70% by 

lentiviral shRNA. Knockdown of MDMX expression by long-term lentiviral shRNA did 

not reduce cell growth. This result may be explained by the fact that long-term 

lentiviral shRNA did not completely suppress MDMX expression to the same extent 

as siRNA (Chapter 5 ). As mentioned in the literature, decreasing MDMX expression 

in tumour cells would be expected to result in p53 reactivation leading to cell death 

as reported for melanoma cells (Gembarska et al., 2012). It is also reported that 

MDM2-null mice embryos die because of apoptosis initiated at 3.5 days postcoitum 

(dpc), which was shown to be p53-dependent by rescue with Trp53 knockout. By 

contrast, Mdm4-null mice embryos died at 7.5–8.5 dpc because of cell proliferation 

lost and not induction of apoptosis (Chavez-Reyes et al., 2003). The loss of Trp53 

completely rescued the MDM4 –/– embryonic lethality show it was nevertheless a 

p53-dependent effect (Parant et al., 2001). This demonstrates that MDMX and Mdm2 

have non-redundant functions during embryonal development. 

4.5.2 The effect of lentiviral shRNA-mediated knockdown of MDMX on 
response to MDM2-p53 binding antagonists 

MRK-nu-1 cells were more resistant to Nutlin-3 (statistically significant) but more 

sensitive to RG7388 after suppression of MDMX expression by lentiviral shRNA. 

MDMX shRNA knockdown had no significant effect on the p53 functional response to 



 132 

Nutlin-3 and RG7388. These results differ from some published studies (Wade et al., 

2006), which reported that shRNA-mediated decrease of MDMX in cancer cells 

enhanced Nutlin-induced cytotoxicity. 

Nutlin-3 and RO5963-induced G1 and G2 arrest in the MDMX amplified cells after 24 

hours of treatment. The higher dose of Nutlin-3 and RO5963 increased p53 and p21 

expression and showed higher G1 and G2 arrest. This is consistent with previous 

findings that p21 is able to activate both G1 and G2 arrest in a p53-dependent 

manner (Hoeferlin et al., 2011; Warfel and El-Deiry, 2013). The p53, MDM2 and p21 

protein level responses to Nutln-3 and RG7388 showed no significant change after 

knockdown of MDMX. In addition, no differences were found in cell cycle distribution 

between the absence and presence of MDMX expression. 

Longer induced lentiviral shRNA knockdown of MDMX in MRK-nu-1 cells caused 

some measurable resistance to Nutlin-3. A possible explanation for this might be that 

MDMX expression is variable and reaches a peak at 96 hours (figure 4.10B) & day 4 

on (figure 3.2), so the knockdown made the biggest difference at that point. 

4.5.3 The effect of lentiviral shRNA-mediated knockdown of MDMX on 
response to the RO5963 MDM2/X-p53 binding co-antagonist 

MRK-nu-1 cells showed a trend to more resistance to the MDM2/X co-inhibitor 

RO5963 after suppression of MDMX expression by lentiviral shRNA although this 

narrowly failed to reach statistical significance (p=0.052, figure 4.12). The result 

further supported previous findings that MDMX expression is associated with 

sensitivity to RO5963 (Graves et al., 2012). Similarly, reduction of MDMX expression 

also suppressed p53 stabilization and p53 functional response induction. Knockdown 

of MDMX increases resistance in MRK-nu-1, indicating that the co-inhibitor has 

selectivity according to the absence and presence of MDMX expression. This is also 

consistent with the relative resistance to RO5963 of the SJSA-1 cell line, which does 

not express MDMX, compared to cell lines which do express high levels of MDMX. 

4.5.4 The limitation of shRNA-mediated knockdown 

One of the major limitations of the study was that a negative control of lentiviral 

shRNA transduced cells with control shRNA should be used as a negative control. 
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Present and absent of doxycycline was unable to distinguish the effect of MDMX 

depletion. Moreover, the efficiency of knockdown by lentiviral shRNA was only 

effective with the MRK-nu-1 cell line. The shRNA sequence was designed by the 

company supplying the lentiviral construct. Ideally, multiple shRNA sequences should 

be tested to find the best knockdown and they need to be tested for absence of off-

target effects. Lentiviral shRNA-mediated knockdown of MDMX was unstable and 

difficult to suppress MDMX expression in most of cell lines I tested. Therefore, the 

knockdown system used for subsequent experimentation was a lipofectamine-based 

siRNA knockdown strategy. Also time limitation was considered. More evidence for 

the contribution of MDMX is discussed in relation to the siRNA-mediated knockdown 

of MDMX in a panel of cell lines described in Chapter 5.  
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Chapter 5  The effect of knockdown of MDMX expression by siRNA 
on the response to MDM2-p53 binding antagonists & MDMX/2 

co-antagonist 

  



135 

 

5.1  Introduction 

Suppression of MDMX expression has been suggested to lead to p53 reactivation in 

cells, particularly those with MDMX amplification or high expression. A previous study 

reported that transduction of U2OS cells with an MDMX expression construct 

resulted in resistance to Nutlin-3 induced growth inhibition and p53 down-stream 

protein response (Hu et al., 2006). Another study reported that siRNA-mediated 

decrease of MDMX enhanced apoptotic induction and cell cycle arrest by an MDM2 

inhibitor in human prostate adenocarcinoma cells (Hu et al., 2006; Wade et al., 2006; 

Shangary and Wang, 2009). To validate MDMX as a potential drug development 

target, in chapter 4 and chapter 5, two different knockdown systems were used to 

suppress MDMX protein expression and the consequences for the response to 

treatment with MDM2-p53 binding antagonists Nutlin-3 & RG7388 and MDM2/X-p53 

binding co-antagonist RO5963 examined. In this chapter, results are presented for 

siRNA knockdown, which was shown to be a highly efficient system for short-term 

decrease of MDMX protein expression in a panel of cell lines. 
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5.2  Hypotheses and aims 

Hypotheses: 

Suppression of MDMX expression by siRNA is associated with the sensitivity of cells 

and the response to MDM2-p53 an MDM2/X-p53 binding antagonists for growth 

inhibition, apoptosis and cell cycle arrest. 

Aim: 

To test the ability of MDM2-p53 binding inhibitors Nutlin-3, RG7388 and RO5963 to 

activate p53 in the presence of siRNA-mediated knockdown of MDMX expression.  

 

 

Figure 5.1. The effect of knockdown of MDMX by siRNA on response to MDM2 
inhibitors and MDMX/MDM2 co-inhibitor via the p53 pathway 
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5.3  Specific Materials and Methods 
5.3.1  Cell lines 

Two MDMX-amplified cell lines JEG-3 & MRK-nu-1 and high MDMX-expressing 

MCF-7 & NGP were used with transfected siRNA to study the effect of knocking 

down MDMX in a panel of cell lines. 

5.3.2  Time point of knockdown  

Cells were seeded into 6-well plates with a suitable cell density (shown in table 2.8) 

in serum free Optimem medium. MDMX siRNA was transfected into target cells by 

lipofectamine reagent with 20nM final siRNA concentration for 48 hours (detail in 

chapter 2.9). The best knockdown condition was chosen from the Western blot 

comparison of different conditions shown in figure 2.5. 

5.3.3  Growth curve after knockdown of MDMX by siRNA 

Cells were seeded and treated with 20 nM siRNA to suppress MDMX (table 5.1). For 

adherent cell lines, after 24 hours of treatment, the cells were re-seeded into 96-well 

plates for SRB-based growth curve analysis and into 6-well plates for protein 

expression analysis by Western blot. For MRK-nu-1 suspension cells, the cells were 

counted each day after siRNA knockdown to plot the growth curve by cell numbers. 

5.3.4  Growth inhibition by MDM2 antagonists after knockdown of MDMX 

Nutlin-3 and RG7388 treatment took place after 48 hours siRNA-mediated 

knockdown of MDMX. The time points of treatment and XTT assay for growth 

inhibition of MRK-nu-1 suspension cells after MDMX knockdown followed the time 

line in figure 5.3A. For the adherent cell lines, the time line of treatment and SRB 

assay is shown in figure 5.4A. 

5.3.5  Protein response to drug treatment after knockdown of MDMX 

Treatment with Nutlin-3, RG7388 and RO5963 was carried out after siRNA treatment 

for 48 hours. The time points of treatment and lysate collection for Western blots 

followed the time line in figure 5.3B and figure 5.4B. 
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5.3.6  Clonogenic assay for response to MDMD2 inhibitors after knockdown of 
MDMX 

JEG-3 cells were treated with siRNA for 48 hours to knock down MDMX. The cells 

were re-seeded into a 6-well plate with 100 cells/well cell density for clonogenic 

assay. Different doses of Nutlin-3 and RG7388 were added into each well for 48-hour 

exposure. After that, the medium was replaced with drug-free medium and the cells 

were incubated to wait for the surviving cells to form colonies for approximately 2 

weeks.  

5.3.7  FACS analysis of MDMX knocked down cells 

MRK-nu-1, JEG-3, NGP and N20R1 cells were seeded and treated with 20nM siRNA 

to knock down MDMX for 48 hours. Nutlin-3 and RG7388 treatment took place after 

knocking down MDMX by siRNA for 48 hours. The time points of treatment and 

FACS analysis for cell cycle distribution change after MDMX knockdown are shown 

in figure 5.3C and figure 5.4C. The 2D overlapping histograms were analysed using 

Cyflogic v1.2.1 software.  

5.3.8  Caspase 3/7 apoptotic activity in MDMX knocked down cells 

MRK-nu-1, JEG-3 and MCF-7 cells were seeded and treated with 20nM siRNA to 

knock down MDMX for 48 hours. Treatment with Nutlin-3 and RG7388 for 24 hours 

was carried out after siRNA-mediated knockdown of MDMX. Following 24 hours of 

drug treatment, the Caspase-Glo® 3/7 Assay (Promega, Southampton, UK) was 

used to detected caspase 3/7 apoptotic activity in JEG-3 and MRK-nu-1 cells. Details 

of the protocol were presented in chapter 2.13. 
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  Sequence (5' -> 3')RNA(tt)DNA 

MDM4 (MDMX)   

Sense GCAGUUAGGUGUUGGAAUA 

Antisense UAUUCCAACACCUAACUGC 

UCR  Universal negative control 

Sense GCGCGCUUUGUAGGAUUCG 

Antisense CGAAUCCUACAAAGCGCGC 

Table 5.1. Sequence of siRNA and negative control. 

 

 

Figure 5.2. The siRNA mRNA target site in relation to the coding region for the 
MDMX protein (Mancini et al., 2009; Wade et al., 2010). 
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Figure 5.3. Time lines of siRNA-mediated knockdown of MDMX in MRK-nu-1 
suspension cells following drug treatment for (A) growth inhibition, (B) protein 
response and (C) FACS analysis.  
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Figure 5.4. Time lines of siRNA-mediated knockdown of MDMX in adherent 
cells following drug treatment for (A) growth inhibition, (B) protein response 
and (C) FACS analysis 
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5.4  Results 
5.4.1  The siRNA-mediated knockdown of MDMX slowed the growth rate of 

cells 

The growth curves in figure 5.5 show that the siUCR and siMDMX treated cells grew 

more slowly compared to untreated cells. The knockdown of MDMX in JEG-3 cells 

slowed down their cell growth rate compared to siUCR (universal negative control 

siRNA; however, for the MRK-nu-1 cells there was no difference between the siUCR 

and siMDMX treated cells). The western blots showed that MDMX was efficiently 

knocked down by the MDMX siRNA in both cell lines and resulted in p53 stabilisation 

and the increase of p21 expression in both cell lines after knockdown of MDMX by 

siRNA. Since p21 was not induced by the siUCR, the growth inhibition seen with this 

negative control must have been via a p21-independent mechanism.  

Figure 5.6 shows the growth curves after knockdown of MDMX in three cell lines with 

normal MDMX gene copy number and positive for MDMX expression. All three cell 

lines, NGP, N20R1 and MCF-7, grew more slowly after knockdown of MDMX 

expression by siRNA. Interestingly, the growth inhibition associated with MDMX 

knockdown in the NGP (TP53 WT) and N20R1 (TP53 Mut) otherwise isogenic cell 

line pair was independent of TP53 status. This was the case despite the clear 

induction of p21 by MDMX knockdown in the NGP cell line and relative lack of p21 

expression in the N20R1 cells, as typical for TP53 mutant cell lines. This suggests 

that the growth suppression seen on MDMX knockdown in the N20R1 cells is 

through a p21-independent mechanism. 
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Figure 5.5. Growth curve and MDMX protein expression of MRK-nu-1(A) and 
JEG-3 (B) with siRNA knockdown of MDMX after 24 (Day 1)-120 hours (Day 5). 
UCR (universal control siRNA) was used as negative control.  
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Figure 5.6. (A) MDMX protein expression in NGP and MCF-7 cells with 48-hour 
siRNA knockdown of MDMX. (B) Growth curve of MCF-7 after siRNA 
knockdown of MDMX from 48 hours (day 2) to 144 hours (day 6). (C) Growth 
curve of NGP (TP53 WT) & N20R1 (TP53 Mut) cell line pair after siRNA 
knockdown of MDMX from 48 hours (day 2) to 144 hours (day 6). UCR 
(universal scrambled control siRNA) was used as negative control. 
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5.4.2  The siRNA knockdown of MDMX did not affect the time-dependent 
response to Nutlin-3 in JEG-3 cells 

JEG-3 cells were treated with 20 nM siRNA to supress MDMX expression for 48 

hours. Then the cells were treated with 0.65 µM Nutlin-3 from 2 hours to 24 hours as 

shown in figure 5.7A. The Western blot result showed p53 expression increased 

rapidly by 2 and 4 hours treatment. The dose of Nultin-3 used was a dilution mistake; 

however, surprisingly the protein levels showed a better time-dependent increase in 

p53, MDM2 and p21. MDM2 reached a peak after approximately 8 hours of 

treatment. Levels of p21 protein increased by 4-6 hours of Nutlin-3 treatment. MDMX 

siRNA knockdown strongly enhanced the levels of p21 following induction by Nutlin-

3, but had a relatively small effect on p53 stabilisation and MDM2 induction in the 

JEG-3 cells. This reflects the effect of MDMX siRNA knockdown alone on p21 

expression seen in the minus Nutlin-3 control track in figure 5.7A and the time course 

following siRNA knockdown alone in figure 5.5B, indicating that MDMX has an 

important role in the regulation of p21 expression. 

The Western blot results in figure 5.7B show the results of 4 hours of 5µM Nutlin-3 

treatment in JEG-1 and MRk-nu-1 with siRNA-mediated knockdown of MDMX. The 

protein level of p21 increased after knockdown of MDMX in both JEG-3 and MRK-nu-

1 cells. The p53 stabilization and MDM2 induction by Nutlin-3 modestly increased 

after knockdown of MDMX in MRK-nu-1 cells but not JEG-3 cells. However, in both 

cell lines the increase in p21 was enhanced by siRNA knockdown of MDMX. 
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Figure 5.7. (A) Time dependence of Nutlin-3 response for JEG-3 cells with 
MDMX knockdown by siRNA (B) MDM2, p53 and p21 protein levels in MRK-nu-1 
and JEG-3 cells after 4 hours Nutlin-3 treatment with siRNA MDMX knockdown 
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5.4.3  Day 0 subtraction of growth inhibition in MRK-nu-1 & JEG-3 

Figure 5.8 shows the effect of siRNA-mediated knockdown of MDMX on growth 

inhibition by Nutlin-3 in MRK-nu-1 and JEG-3 cells in two different ways. One is the 

growth inhibition curve, normalized to DMSO control, which indicates cell growth 

inhibition by the drug. The other is a day 0 subtraction curve. The day 0 optical 

density values were subtracted from the values of the 72 hour treatment plates and 

the data was normalized to DMSO control. The day 0 subtraction growth inhibition 

curve shows whether the cell number is lower than at the start of treatment and if 

below 0 shows the drug is cytotoxic and not just growth inhibitory.  

The GI50 values were affected by subtraction of day 0 optical densities. The GI50 

values for Nutlin-3 in JEG-3 (28.9 µM) decreased by around half after day 0 

subtraction (14.3 µM) while the GI50 values in MRK-nu-1 (16.2 µM) decreased more 

than 3-fold after day 0 subtraction (5.0 µM), dependent on cell growth. Knockdown of 

MDMX expression by siRNA decreased the GI50 values of Nutlin-3 for MDMX-

amplified JEG-3 cells by half compared to the negative siRNA control on both with 

and without subtraction of day 0 optical densities. The GI50 values of Nutlin-3 without 

day 0 subtraction in the siRNA control and after knockdown of MDMX were 26.5 µM 

and 12.0 µM respectively. The GI50 values for Nutlin-3 in MRK-nu-1 also decreased 

from 16.4 µM to 10.7 µM after knockdown of MDMX by siRNA (figure 5.8). 
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Figure 5.8. The relative growth inhibitory effect of Nutlin-3 on MRk-nu-1 and 
JEG-3 cells after siRNA knockdown of MDMX, plotted and GI50 calculated with 
and without day 0 subtraction. Western blot results confirming siRNA 
knockdown of MDMX expression.  
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5.4.4  The siRNA-mediated knockdown of MDMX sensitized JEG-3 cell 
response to Nutlin-3 and RG7388 

Knockdown of MDMX expression by siRNA decreased the GI50 values of Nutlin-3 

and RG7388 for MDMX-amplified JEG-3 cells by half compared to the negative 

siRNA control. The GI50 values of Nutlin-3 in the siRNA control and after knockdown 

of MDMX were 12.7 ± 1.3 µM and 4.6 ± 0.8 µM respectively, and the difference was 

statistically significant (p=0.002). The GI50 values of RG7388 in siRNA control and 

after knockdown of MDMX were 2.03 ± 0.70 µM and 1.05 ± 0.79 µM respectively, 

showing a trend towards increased sensitivity on MDMX knockdown, although the 

difference was not statistically significant (p=0.10) (figure 5.9 and figure 5.10).  

The effect of knockdown of MDMX with MRK-nu-1 cells on the growth inhibition 

response to Nutlin-3 and RG7388 varied. MRK-nu-1 cells showed a trend towards 

increased sensitivity to Nutlin-3, with the 3.6 ± 0.5 µM GI50 value after knockdown of 

MDMX compared to the negative siRNA control with 5.9 ± 1.0 µM GI50, although the 

difference was not statistically significant (p=0.054). The GI50 values of RG7388 were 

not significantly different after siRNA-mediated knockdown of MDMX in MRK-nu-1 

cells. The growth inhibitory effect of Nutlin-3 remained the same in MCF-7 cells after 

suppression of MDMX expression. 

5.4.5  The siRNA-mediated knockdown of MDMX sensitized JEG-3 cells to 
Nutlin-3 and RG7388 treatment measured by clonogenic assay 

The clonogenic cell survival results presented in figure 5.11 show that 48 hour 

siRNA-mediated knockdown of MDMX increased sensitivity to Nutlin-3 and RG7388 

for 48 hour drug treatment. The LC50 values of Nutlin-3 and RG7388 of 23.6 ± 2.4 µM 

and > 3 µM respectively in the control siRNA group were reduced by half to 10.2 ± 

5.2 µM and 1.2 ± 0.5 µM respectively in the MDMX knocked down group. 
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Figure 5.9. The effect of siRNA knockdown of MDMX on GI50 values of Nutlin-3 
in MRK-nu-1, JEG-3 and MCF-7 cells. The average of GI50 values for 72 hour 
growth inhibition treatment after knockdown of MDMX by siRNA for 48hours.  
(Av.GI50 values in MRK-nu-1: siControl 5.9 ± 1.0 µM & siMDMX 3.6 ± 0.5 µM, n=4; 
Av. GI50 value JEG-3 siControl 12.7 ± 1.3 µM siMDMX 4.6 ± 0.8 µM, n=7; Av. GI50 
value MCF-7 siControl 9.7 ± 1.0 µM siMDMX 8.8 ± 4.2 µM, n=3). The p-values 
shown are for paired t-tests.   
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Figure 5.10. The effect of siRNA knockdown of MDMX on GI50 values of RG7388 
in MRK-nu-1 and JEG-3 cells. The average of GI50 values from 72 hour growth 
inhibition treatment after knockdown of MDMX by siRNA for 48hours. (Av. GI50 
value MRK-nu-1 siControl 0.052± 0.008 µM siMDMX 0.062 ± 0.023 µM, n=3; Av. 
GI50 value JEG-3 siControl 2.03 ± 0.70 µM siMDMX 1.05 ± 0.79 µM; n=3). The p-
values shown are for paired t-tests.  
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Figure 5.11. The effect of 48 hour siRNA knockdown of MDMX on the 
clonogenic cell survival of JEG-3 cells following treatment with Nutlin-3 and 
RG7388 for 48 hours. The average LC50 values for clonogenic cell survival were 
measured for n=3 repeat experiments (Means ± SEM).  
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5.4.6  The siRNA-mediated knockdown of MDMX decreased the protein 
responses to RO5963 but not Nutlin-3 or RG7388 

Figure 5.12A shows the immunoblots of the protein response to 5 µM Nutlin-3 and 1 

µM RG7388 in JEG-3 and MRKn-1 cells for 4 and 24 hour drug exposure after 

siRNA-mediated knockdown of MDMX. The inductions of MDM2 and p21 by 

activated p53 were higher for 24 hour drug exposure. After knockdown of MDMX by 

siRNA, p53 stabilization and MDM2 induction increased to some extent in these two 

MDMX-amplified cell lines, depending on the time point, the drug and which cell line. 

The p21 protein expression showed the largest increases after knockdown of MDMX 

by siRNA, particularly in the JEG3 cells and enhanced the effect of MDM2 inhibitor 

treatment. 

The Western blot in figure 5.12B shows the protein expression response to 4 hours 

treatment with Nutlin-3, RG7388 and RO5963 in MCF-7 cells in the presence and 

absence of MDMX expression knockdown. RO5963 stabilized p53 and then induced 

phosphorylated p53ser15, MDM2, p21 and BAX expression. However, knockdown of 

MDMX reduced p53 stabilization and phosphorylated p53ser15 by the MDM2/X co-

inhibitor RO5963, despite a small decrease in WIP1 expression after knockdown of 

MDMX, which would tend to increase p53ser15 phosphorylation.  

Similarly to JEG-3 and MRK-nu-1 cells, knockdown of MDMX expression in MCF7 

cells did not affect p53 stabilization by Nutlin-3 and RG7388, although MDM2 protein 

levels increased after MDMX knockdown. The protein level of p21 in control and 

MDM2 inhibitor treated cells increased markedly after knockdown of MDMX in JEG-3, 

MRK-nu-1 and MCF-7 cells. BAX also increased after knockdown of MDMX in MCF-7 

cells. However, the inductions of phosphorylated p53ser15 by Nutlin-3, RG7388 and 

RO5963 were decreased after knockdown of MDMX in MCF-7 cells. 

  



154	

	

 

Figure 5.12. (A). The effect of MDMX knockdown on p53, MDM2 and p21 
response to Nutlin-3 and RG7388 in MDMX amplified JEG-3 and MRK-nu-1 
cells. (B) MCF-7 cell response to 4 hours Nutlin-3, RG7388 and RO5963 
exposure after 48 hours siRNA-mediated MDMX knockdown. 
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5.4.7  The effect of MDMX siRNA knockdown on Nutlin-3 and RG7388-induced 
G1 & G2 arrest  

The overlapping histograms in figure 5.13 show the effect of MDMX siRNA 

knockdown on the cell cycle distribution for DMSO control and Nut-3 or RG7388 after 

24 hours treatment with the MDM2 inhibitors, for the MDMX-amplified JEG-3 and 

MDMX high expression MCF-7 cells. The siRNA knockdown of MDMX expression did 

not affect the cell cycle distribution in JEG-3 and MCF-7 cells in the DMSO treated 

control cells. However, knockdown of MDMX decreased the population of cells in S 

phase in JEG-3 and MCF-7 cells after 24 hours of Nutlin-3 treatment. The siRNA 

knockdown of MDMX had little effect on the cell cycle distribution of JEG-3 cells 

following treatment with 1µM RG7388. However, for the MCF-7 cells 1µM RG7388 

treatment for 24 hours resulted in an accumulation of cells in S-phase, which 

appeared to be abrogated by the MDMX knockdown.  

The bar chats of cell cycle distributions in figure 5.14 showed G1 & G2 arrest by 24 

hour Nutlin-3 and RG7388 treatments in JEG-3, MRK-nu-1 and NGP cells. The G1 & 

G2 arrest by MDM2 inhibitors showed a slight increase trend in JEG-3 cells after 

knockdown of MDMX (figure 5.14B). The induction of G2/S ratio by Nutlin-3 and 

RG7388 showed a modest increase trend in MRK-nu-1 cells after knockdown of 

MDMX. JEG-3 cells showed a better response to MDM2 inhibitors after siRNA 

mediated knockdown of MDMX in growth inhibition, G1&G2 arrest and p53 

downstream activated protein response. 

5.4.8  Knockdown of MDMX in NGP cells decreased the response to Nutlin-3 
and RG-7388 for cell cycle change and caspase 3/7 apoptotic activity  

Knockdown of MDMX in NGP cells (with MDM2 amplification and high MDMX 

expression) increased the GI50 values of Nutlin-3 for 72 hour drug exposure (figure 

5.15C). Figure 5.14C shows that G1 and G2 cell cycle arrest was induced by MDM2 

antagonists in NGP cells. Knockdown of MDMX by siRNA in NGP cells reduced the 

induction of G1 and G2 arrest by both MDM2 inhibitors (figure 5.14C). The induction 

of G1 and G2 arrest by MDM2 inhibitors was not seen in TP53 mutant N20R1 cells. 
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Figure 5.15 shows caspase 3/7 apoptotic activity after 24 hour Nutlin-3 and RG7388 

in MRK-nu-1, JEG-3, NGP and N20R1 cells. A dose dependent increase in Caspase 

3/7 activity after 24 hours Nutlin-3 and RG7388 treatments was seen in NGP cells, 

while N20R1 (with mutant p53) did not respond to Nutlin-3 and RG7388 (figure 5.15A 

& B). Following knockdown of MDMX, the increase of caspase activity was reduced 

for high doses of both Nutlin-3 and RG7388 in NGP cells. The results were 

consistent with the increase in resistance to Nutlin-3 and RG7388 after knockdown of 

MDMX for both growth inhibition and cell cycle arrest response to MDM2 inhibitors. 

The two MDMX amplified cell lines JEG-3 and MRK-nu-1 have no caspase 3/7 

activity (figure 5A & B). 

Caspase 3/7 apoptotic activity remained at a very low level after treatment with 

different doses of Nutlin-3 and RG7388 for 24 hours in JEG-3 and MRK-nu-1 cells 

with both siUCR and siMDMX. These two MDMX(MDM4)-amplified cells have very 

low detectable caspase apoptotic activity (figure 5.15A & B). In support of this, JEG-3 

and MRK-nu-1 did not show cleaved caspase expression in immunoblots (data not 

shown). However, the findings of the current study do not support previously reported 

research. A previous study reported that MDMX enhances the p53-mediated 

intrinsic-apoptotic pathway when MDMX localizes at the mitochondria (Rallapalli et 

al., 2003). MDMX was suggested to bind BCL-2, facilitate phosphorylated p53Ser46 

and release cytochrome C for apoptosis (Rallapalli et al., 2003). In the current study, 

the results for growth inhibition by Nutlin-3 and RG7388 with JEG-3 and MRK-nu-1, 

the cytotoxic effect might not be caused by caspase3/7 dependent apoptosis and 

more likely reflects growth arrest and/or induction of senescence by Nutlin-3 and 

RG7388.  
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Figure 5.13. The effect of siRNA-mediated knockdown of MDMX on cell cycle 
distribution change with 24-hour 5µM Nutlin-3 and 1µM RG7388 treatment in 
JEG-3 and MCF-7 cells (n=1). Red: siMDMX; White: SCR control.  
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Figure 5.14. Knockdown of MDMX increased the Nutlin-3 and RG7388 induced 
G1 and G2 arrest in JEG-3 cells but decreased G1 and G2 arrest in NGP cells. 
The effect of MDMX knockdown on cell cycle distribution changes in response 
to Nutlin-3 & RG7388 after 24 hours drug treatments in MRK-nu-1(A), JEG-3(B), 
NGP and N20R1 (C) cells measured by flow cytometry. The cells were treated 
by siRNA for 48 hours and then treated with Nutlin-3 RG7388. Two-tail t test 
was used for comparison of MDMX knockdown effect. 
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Figure 5.15. Caspase 3/7 apoptotic activity reduced by knockdown of MDMX in 
NGP. The effect of MDMX knockdown on caspase 3/7 apoptotic activity in response 
to Nutlin-3 (A) & RG7388 (B) after 24-hour drug treatment in MRK-nu-1, JEG-3, NGP 
and N20R1 cells. (C) The effect of siRNA knockdown of MDMX on growth inhibitions 
of Nutlin-3 in NGP (TP53 WT) and N20R1 (TP53 MUT) paired cell lines.  

0 1 0 2 0 3 0

0

2 0

4 0

6 0

8 0

1 0 0

M R K -n u -1

N u tl in -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 1 0 2 0 3 0
0

2 0

4 0

6 0

8 0

1 0 0

J E G -3

N u tl in -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

1 0 0

N G P

N u tl in -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
0

2 0

4 0

6 0

8 0

1 0 0

M R K -n u -1

R G 7 3 8 8  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 1 2 3
0

2 0

4 0

6 0

8 0

1 0 0

J E G -3

R G 7 3 8 8  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

1 0 0

N 2 0 R 1

N u tlin -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

A B

C

0 1 0 2 0 3 0

0

2 0

4 0

6 0

8 0

1 0 0

M R K -n u -1

N u tlin -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 1 0 2 0 3 0

0

2 0

4 0

6 0

8 0

1 0 0

J E G -3

N u tlin -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

1 0 0

N G P

N u tlin -3  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

0

2 0

4 0

6 0

8 0

1 0 0

M R K -n u -1

R G 7 3 8 8  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 1 2 3

0

2 0

4 0

6 0

8 0

1 0 0

J E G -3

R G 7 3 8 8  (µM )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

1 0 0

N 2 0 R 1

N u tlin -3  (µ M )

C
e

ll
 g

ro
w

th
 (

%
)

s iC o n tro l

s iM D M X

A B

C

C



161 

 

5.5  Discussion 
5.5.1  High efficiency of knockdown of MDMX by siRNA  

SiRNA-mediated knockdown of MDMX was successful and efficient in the cell lines, 

compared to lentiviral shRNA system. The Western blot in figure 5.15 shows that 

while MDMX expression was reduced significantly by lentiviral shRNA, the MDMX 

expression was nearly undetectable after siRNA-mediated knockdown in MRK-nu-1 

cells. Moreover, lentiviral shRNA knockdown did not supress MDMX expression 

successfully in the other cell lines apart from MRK-nu-1 cells. This also shows the 

consistent strong increase in p21 seen on knockdown of MDMX by either method.  

 

 

 

Figure 5.16. A comparison of 72 hour induced lentiviral shRNA & 48 hour 
siRNA knockdown of MDMX expression in MRK-nu-1, JEG-3 and MCF-7 cell 
lines.  
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5.5.2  The effect of suppression of MDMX by siRNA on cell growth 

Knockdown of MDMX decreased cell proliferation in MDMX-amplified and MDMX 

high expression cell lines. These results are consistent with data obtained for a 

cutaneous melanoma cell line and metastatic melanoma cells. (Gembarska et al., 

2012). Previous research also reported that knockdown of MDMX suppressed the 

growth of cells with high expression of MDMX but not cells with low MDMX 

expression. All of the cells they used had wild-type p53 (Hirose et al., 2014). In the 

current study, suppression of MDMX expression did not completely inhibit cell 

proliferation but slowed down the increase in cell number. MDMX as a co-operator of 

MDM2 is not as important as MDM2 in the p53-dependent pathway and knockdown 

of MDMX expression does not have as dramatic effect on cell proliferation. These 

differences are reflected in studies with the MDMX knockout mice, which die later 

than MDM2 knockout mice because of over-activation of p53 leading to cell 

apoptosis, but can also be rescued by Trp53 (mouse TP53) knockout (Gannon and 

Jones, 2012).  

Consistently the highest effects on siRNA-mediated knockdown of MDMX is an 

increase of p21 level in all TP53 wild-type cell lines. Previous research reported that 

MDMX directly bound to p21 and mediated its proteasomal degradation (Jin et al., 

2008). Knockdown of MDMX induced the level of endogenous p21 proteins resulting 

in G1 arrest in p53-null cells. The level of p21 was low at early S phase but markedly 

induced by knocking down either MDMX or MDM2 in human cells. MDMX and MDM2 

have been demonstrated to independently and cooperatively regulate the 

proteasome-mediated degradation of p21 at the G1 and early S phases (Jin et al., 

2008). The other previous research showed that siRNA-mediated knockdown of 

MDMX in MCF-7 cells causes a slight increase in p21 levels without other drug 

treatment (Hu et al., 2006). Furthermore, a published study presented that 14-3-

3gamma induced p21 via inhibition of MDMX-mediated proteasomal turnover 

independent of p53 after DNA damage induction. The level of 14-3-3gamma -MDMX 

complex increased in response to DNA damage whereas that of the MDMX-p21 

complex declined leading to the induction of p21 in p53-null cells. (Lee and Lu, 

2011).The mRNA expression level of CDKN1A (gene name of p21) will be tested by 

microarray and qRT-PCR in Chapter 6by absent and present MDMX expression.  
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5.5.3  The effect of siRNA-mediated knockdown of MDMX response on MDM2-
p53 binding antagonists 

Knockdown of MDMX by siRNA sensitized JEG-3 cells to growth inhibition by two 

MDM2 inhibitors, Nutlin-3 and RG7388. JEG-3, which is one of the cell lines with the 

highest MDMX expression, also expressed a shorter isoform of MDMX (data not 

shown). Several studies have indicated that short isoforms of MDMX have higher 

binding for and inhibitory ability against p53 than full-length MDMX (Rallapalli et al., 

2003; Bartel et al., 2005; Jacob et al., 2013; Jacob et al., 2014; Tournillon et al., 

2015). It has been reported that MDMXp60 binds MDM2 with higher affinity by the C-

terminal RING domain compared with full-length MDMX (Tournillon et al., 2015). The 

other report identified that MDMX-S (skipped or deleted exon 6 form) is responsible 

for its high affinity interaction with p53 and high-level expression (Rallapalli et al., 

2003). The shorter isoform of MDMX might protect JEG-3 cells from MDM2 inhibitors, 

resulting in the higher GI50 values of Nutlin-3 and RG7388 (table 5.2).  

MDMX amplification and high expression showed a minor association with resistance 

to MDM2-p53 binding antagonists in wild-type p53 cells. Our findings are consistent 

with a previous study in acute myeloid leukaemia that high levels of MDMX 

expression do not block function of MDM2 inhibitors in AML also AML cells with high 

MDMX remain sensitive to Nutlin-3 treatment (Tan et al., 2014). This contrasted with  

a study that reported cell lines with high exogenous MDMX expression were more 

resistant to growth inhibition by Nutlin-3, which was very different to our findings (Hu 

et al., 2006). That might resulted from the shorter treatment duration (48 hours) in 

previous study than current study (72 hours) and the supranormal non-physiological 

levels of MDMX in transfection studies.   

The stabilization of p53 by MDMX suppression in JEG-3 cells showed increased 

transcriptional reactivation of p53. This results in sensitivity to MDM2 inhibitors after 

knockdown of MDMX. Previous research indicated that the proportion of cells in S-

phase showed no change in JEG-3 with 8 hour 5µM Nutlin-3 treatment, but was 

decreased by 8 hour Nutlin-3 treatment in the JEG-3 cells with knockdown of MDMX 

(Hu et al., 2006). By contrast, NGP cells (with MDM2 amplification and high MDMX 

expression) showed a reduction in sensitivity and apoptotic response to MDM2 
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inhibitors after suppression of MDMX expression. Overall, the effect of siRNA 

mediated knockdown of MDMX on the response to MDM2 inhibitors are varied and 

cell line dependent.  

5.5.4  The effect of siRNA-mediated knockdown of MDMX on response to the 
MDM2/X-p53 binding co-antagonist  

Knockdown of MDMX in the cells expressing high MDMX reduced the response to 

the RO5963 co-inhibitor. A previous study determined that response to the MDM2/X 

co-inhibitor is associated with MDMX expression (Graves et al., 2012). In the current 

study, the high efficiency of MDMX suppression by siRNA was associated with a 

reduction of the response to the RO5963 co-inhibitor. Similarly, the results of 

lentiviral shRNA-mediated knockdown of MDMX on response to RO5963 treatment 

also indicated this trend (Chapter 4).  

5.5.5 The limitations of siRNA-mediated knockdown 

The three different siRNA sequences for targeting MDMX were tested by a previous 

PhD student, Dr Laura Gamble (Gamble, 2011). In this study, the best siRNA 

sequence used was based on Dr Gamble’s results. However, multiple siRNA 

sequences still should be tested to make sure that they are not simply off-target 

effects. Knockdown of MDMX by siRNA in JEG-3 cells was unstable and 

inconsistent. It could be because of variation in the seeding density of JEG-3 cells. 

MDMX expression failed to be suppress by siRNA mediated knockdown when the 

cells were confluent.  

The GI50 values for Nutlin-3 in the cells with siUCR were slightly higher than parental 

in some cell lines (table 5.2). The effect of MDMX knockdown appeared to increase 

sensitivity compared to siUCR control for growth inhibition. However, the change of 

sensitivity to Nutlin-3 was minor compared to parental cell lines. 
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Table 5.2. GI50 values of Nutlin-3 & RG7388 with and without suppression of 
MDMX   
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Chapter 6 The effect of MDMX knockdown on cellular gene 
expression profiles 
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6.1  Introduction 

Cells maintain a constant level of MDMX in healthy tissue. MDM4 gene expression 

remains constitutive during cell proliferation and differentiation or following DNA 

damage. Unlike MDM2, DNA damage does not regulate MDMX mRNA levels, or 

posttranslational modifications (Jackson and Berberich, 1999). Previous studies 

reported that mutant knockout mice could be generated that lacked p53 together with 

either MDM2 or MDM4 (Iwakuma and Lozano, 2007; Barboza et al., 2008). MDM4 

null mice are embryonic lethal, but can be rescued by crossing with p53 null mice 

(Parant et al., 2001; Migliorini et al., 2002). Absence of MDM2 or MDM4 had different 

effects. Loss of MDM2 promoted p53-dependent activation of apoptosis related 

genes, while loss of MDM4 promoted p53-dependent activation of cell cycle arrest 

genes (Migliorini et al., 2002; Minsky and Oren, 2004; Ohkubo et al., 2006).  

In the relationship between MDMX and MDM2 antagonists, previous studies have 

indicated that MDM4 amplification and/or increased protein expression may be 

associated with resistance to MDM2-p53 binding antagonists (Hu et al., 2006; Patton 

et al., 2006; Wade et al., 2006). However, specific inhibitors for MDMX have yet to be 

developed and an MDM2/MDMX-p53 co-inhibitor (RO-5963) does not particularly 

show better efficacy against high MDMX-expressing cells than single target MDM2 

inhibitors (chapter 3-5). The question goes back to what MDMX affects, other than 

inhibitors of p53 binding. 

In this chapter, results are presented for the use of Affymetrix Human Transcriptome 

Array 2.0 to scan the gene expression profile of both MDMX knockdown and 

expression in MRK-nu-1 cells. The results of differential gene expression can reveal 

possible genes and their related pathways that could be regulated by MDMX. 
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6.2  Hypotheses and aims 

Hypothesis: 

Suppression of MDMX expression increases the TP53-dependent and/or TP53-

independent downstream transcriptional activity and pathways regulated by MDMX. 

Aim: 

To better understand the cellular function and therapeutic potential of targeting 

MDMX by investigating the downstream transcriptomic consequences of knocking 

down MDMX expression. 
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6.3  Materials and methods 
6.3.1  Knockdown of MDMX in MRK-nu-1 cells 

MRK-nu-1 cells were seeded and induced by 1µg/ml doxycycline for 72 hours. The 

conditions for knockdown of MDMX were according to the results described in 

chapter 4. 

MRK-nu-1 cells were also seeded and treated with 20 nM siRNA to knock down 

MDMX. RNA samples were collected after siRNA treatment for 48 hours. This time 

point showed the highest efficiency of suppression of MDMX expression by siRNA 

(chapter 5).  

6.3.2  RNA extraction  

Total RNA samples from MRK-nu-1 cells were extracted using an RNeasy mini kit 

(QIAGEN, Germany). The MRK-nu-1 total RNA samples were quantified and the 

quality checked using a Nano Drop (ND-1000) spectrophotometer to measure light 

absorbance at 260 & 280 nm wavelengths. A 260:280 ratio of ~2.0 was considered 

as pure RNA. 

6.3.3  RNA quality analysis  

The quality and concentration of mRNA were determined using an Agilent RNA 6000 

nano kit (Agilent Technologies, CA, USA) on an Agilent 2100 Bioanalyser (Agilent 

Technologies, CA, USA) to determine an RNA integrity number (RIN) (Schroeder et 

al., 2006). The RIN values of 16 RNA samples, which included 4 replicated samples 

of each lentiviral shRNA and siRNA knockdown and control pair, were measured with 

an Agilent 2100 Bioanalyser.  

A fluorescent intercalating nucleotide dye and a sieving polymer were loaded into a 

16-well chip, which was interconnected with microcapillaries. Finally, the samples 

and an RNA 6000 ladder (as size reference) were loaded in separate wells. Electric 

current was applied throughout the polymer-filled capillaries interconnecting the 

wells, to separate charged molecules migrating at a rate proportional to their size. 

The smaller molecules migrate faster through the path of the laser, which excites the 
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dye molecules intercalated with the RNA molecules resulting in their fluorescence. 

An electropherogram is then digitally generated by the 2100 Expert software (Agilent 

Technologies, CA, USA) (figure 6.1). Fluorescence units are proportional to the 

amount of dye intercalated into the RNA molecules. A smaller marker is also run with 

each sample to use as a control for potential shifts between the different samples run 

on each chip. 

RNA has stable 28S and 18S ribosomal RNA (rRNA) components that are normally 

detected as two distinct peaks with a ~2:1 ratio in FU (fluorescence unit) peak 

intensity. Human 28S and 18S rRNA produce a theoretical ratio of 2.6:1. RNA 

integrity was traditionally calculated based on the 28S:18S ratio with optical densities 

obtained by running samples on a denaturing agarose gel (alkaline conditions) 

followed by densitometry. Aligent expert software calculates the RIN value of RNA 

samples based on the whole electropherogram trace (Schroeder et al., 2006). RIN 

values range from 1-10, with values above 8 considered acceptable for microarray 

applications (Schroeder et al., 2006).  
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Figure 6.1. Aligent Bioanalyzer electropherogram trace and gel electrophoresis 
image (on the right). RNA concentration and RIN value are calculated and 
presented. The ratio of 28S:18S rRNA molecules is calculated based on the 
area under each curve. Peaks associated with other rRNA or tRNA molecules 
have been arrowed in addition to the control molecule. (y-axis: fluorescent 
units (FU) v x-axis: size relative to ladder fragments.) 

  

Control 18S RNA 28S RNA 5S & 5.8S RNA or tRNA 
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6.3.4  Microarray analysis of gene expression 

The 3 replicates of both lentiviral shRNA and siRNA were chosen based on their RIN 

values and quality of RNA. The 3 repeats of total RNA extraction samples in each 

lentiviral shRNA pair and siRNA pair from MRK-nu-1 cells with MDMX knockdown 

treatment were sent to AROS Applied Biotechnology (A/S, Demark). The Affymetrix 

Human Transcriptome Array 2.0 (HTA 2.0) was used to detect differences in the 

expression of full genes and alternatively spliced forms between negative control and 

MDMX knockdown groups. A total of 67539 genes including 44710 coding and 22829 

non-coding genes were scanned for analysis of the expression of alternatively 

spliced genes. Full gene differential expression analysis included a total 67528 genes 

including 44699 coding genes and 22829 non-coding genes. 

6.3.5  Data analysis  

Transcriptome Analysis Console 3.0 software (TAC, Affymetrix Thermo Fisher 

Scientific, CA, USA) was used to analyse the microarray data to identify significant 

changes in gene expression, alternative splicing and associated functional pathways. 

One-Way paired ANOVA was used for the statistical t-test. The data for full gene 

level differential expression was filtered to remove non-statistically significant 

changes and showed the data with over 2-fold increase or decrease and ANOVA p-

value <0.05.  

The data for alternative splicing expression was filtered to show the data with over 2-

fold change in splicing index (SI) and ANOVA p-value <0.05. The Splicing Index 

algorithm is a way to measure how much exon specific expression differs between 

two conditions after excluding gene level influences (figure 6.2). The algorithm first 

normalizes the exon and junction expression values by the level of gene expression 

and creates a ratio of normalized signal estimates from one condition relative to 

another  (Srinivasan et al., 2005; Gardina et al., 2006; Clark et al., 2007; Kwan et al., 

2007). Furthermore, there are some other conditions. A gene is expressed in both 

conditions of groups, that means, for example, the gene is expressed in both the 

knockdown of MDMX group and the negative control group in this study. A probe 

selection region (PSR) or junction must be expressed in at least one condition of 
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group. A gene must contain at least one PSR. PSR is the smallest unit on the exon 

array for expression profiling and each PSR is represented by an individual probe set 

(Clark et al., 2007; Kwan et al., 2007). 

Scatter plots, volcano plots and Hierarchical clustering of full gene level differential 

expression between knockdown and MDMX expression were analysed by TAC 3.0 

software. Scatter plots of alternative splicing expression was also analysed by TAC 

3.0 software. Pathways related to the full gene changes and alternative splicing 

expression changes were generated by using TAC 3.0 software to link to the 

Wikipathway database (Pico et al., 2008; Kelder et al., 2012) 

(http://www.wikipathways.org/). The WebGestalt analysis website (Zhang et al., 2005; 

Wang et al., 2013) was also used to find related pathways based on a profile panel of 

differentially expressed genes linked to KEGG pathway analysis (Kanehisa and Goto, 

2000; Kanehisa et al., 2016) and wikipathway databases (Pico et al., 2008; Kelder et 

al., 2012). 

6.3.6  qRT-PCR Confirmation of array results 

The same RNA samples used to generate the microarray data were used for qRT-

PCR analysis. Alterations in mRNA expression for a selected panel of genes was 

investigated by qRT-PCR. The details of the qRT-PCR protocol can be found in 

chapter 2.3. The genes chosen for qRT-PCR were based on the array differential 

expression results for the alternative splicing dataset with siRNA-mediated 

knockdown of MDMX. The sequences of primers used are shown in table 2.4. For 

example, for the VGLL1 gene, the ∆∆Ct Algorithm was ∆∆Ct = ∆Ct (VGLL1siMDMX ‐ 

GAPDHsiMDMX ) ‐ ∆ct (VGLL1siControl ‐ GAPDHsiControl) The fold change = 2∆∆Ct. 
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Figure 6.2. Splicing Index (SI) Algorithm and Configurable Parameters for 
alternative splicing data (Affymetrix TCA 3.0 user guide) 
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6.4  Results 
6.4.1  Quality control of the RNA samples  

The 4 replicates of RNA samples in both lentiviral shRNA and siRNA-mediated 

MDMX knockdown groups were tested for their RNA quality before selection for 

microarray analysis. The gel representation results are shown in figure 6.3. The first 

replicate of the lentiviral shRNA-mediated knockdown samples showed some 

evidence of degradation and had an RIN value of 8.3. This pair of lentiviral shRNA 

samples were taken out and were not included for the following transcriptome 

microarray analysis. Some of the samples did not present their RIN values. This 

might be because the concentrations of RNA samples were too high and over the 

range which the machines can measure and calculate for an RIN value. Although the 

RIN values for these samples are shown as N/A in figure 6.4, the electropherogram 

curve showed high quality for these samples equal to those with RIN values of 10. 

The 12 samples which showed RIN values >9 were chosen for the Human 

Transcriptome microarray. Aligent Bioanalyzer electropherogram traces and MDMX 

protein knockdown confirmation checks for the 12 samples chosen for microarray 

analysis are shown in figure 6.4. 
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Figure 6.3 Aligent Bioanalyzer electropherogram images of the 16 RNA 
samples. An RNA 6000 ladder was loaded in the first column for size reference. 
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Figure 6.4. Protein level checks for confirmation of the suppression of MDMX 
and Agilent Bioanalyzer electropherogram traces for 3 repeated MDMX 
knockdown experiments with MRK-nu-1 cells. (A) Lentiviral shRNA and (B) 
siRNA knockdown.   
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6.4.2  Close relationship between each group of samples based on 33832 
genes 

The PCA (Principal Component Analysis) cluster results for the microarray-based 

gene expression results (Data kindly provided by Dr Sirintra Nakjang) in figure 6.6 

show the array datasets clustered together more closely according to the knockdown 

method. The lentiviral shRNA knockdown repeats clustered together and the siRNA 

repeats clustered together. 

6.4.3  Full gene differential expression in relation to lentiviral shRNA-mediated 
knockdown of MDMX  

Full level of gene expression analysis scanned total 67528 genes. Only two genes 

were shown to be differentially expressed over 2-fold between lentiviral shRNA-

mediated knockdown of MDMX and control. One of them was OR2J2 (olfactory 

receptor, family 2, subfamily J, member 2) with 2.41-fold increase after knockdown of 

MDMX by lentiviral RNA. The other one was a noncoding gene (TC07000215hg.1). A 

2-fold cut-off for change in gene expression was shown. The data was re-gated to 

show over 1.5-fold change (figure 6.6 and figure 6.7) to see if there were additional 

smaller changes in gene expression which might be interesting. After 1.5-fold cut-off, 

MDM4 gene expression showed up as a 1.57-fold significant decrease after lentiviral-

mediated knockdown treatment. In the PCA, the lentiviral shRNA pairs did not group 

together like siRNA pairs. Lentiviral shRNA pairs showed smaller set of genes 

change then siRNA pairs. The minor change of genes might affect and be difficult to 

group the same pair of repeats together in the PCA results.  
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Figure 6.5. Relationship of the samples by PCA cluster analysis (Data kindly 
provided by Dr. Sirintra Nakjang) based on gene expression profiles from the 
HTA 2.0 microarray results. SiMDMX knockdown and shRNA knockdown gene 
expression datasets clustered separately.  
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Figure 6.6. Hierarchical clustering of MRK-nu-1 full gene level >1.5-fold 
differential expression analysis between lenti dox- (MDMX expression) and 
lenti dox+ (knockdown of MDMX). The corresponding volcano plot and scatter 
plot is shown in Figure 6.7. 
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Figure 6.7. (A) Volcano plot of full gene differential expression in MRK-nu-1 
cells. (B) Scatter plot of full gene differential expression in MRK-nu-1 cells 
between lenti dox- (X-axis, MDMX expression) and lenti dox+ (y-axis, 
knockdown of MDMX).  (Red spot: significantly higher expression in 
knockdown group; green spot: significantly higher expression in control 
group; grey spots: less than 1.5-fold difference; blue spot: MDM4) 
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6.4.4  Full gene differential expression in relation to siRNA-mediated 
knockdown of MDMX 

A set of 18 gene transcripts of the total 67528 genes increased while 24 genes 

decreased after siRNA-mediated knockdown of MDMX. The Hierarchical clustering in 

figure 6.8 shows all significantly up-relegated and down-regulated genes after MDMX 

knockdown. Figure 6.9 presents the volcano plot and scatter plot of MRK-nu-1 full 

gene differential expression. MDM4 gene expression was reduced significantly (2.48-

fold) after siRNA-mediated knockdown. VGLL1 (vestigial-like 1 in Drosophila) was the 

gene with the highest increase (3.9-fold change) after knockdown of MDMX by 

siRNA in MRK-nu-1 cells. CCNG2 and TNFS10, which are involved in the p53 

pathway, increased 1.92 and 2.05-fold after knockdown of MDMX by siRNA. 
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Figure 6.8. Hierarchical clustering of MRK-nu-1 full gene level >2-fold 
differential expression analysis between siControl and siMDMX. (Group 1: 
siMDMX, Group 2: siControl).The corresponding volcano plot and scatter plot 
is shown in Figure 7.9. 

  

siMDMX siControl
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Figure 6.9. (A) Volcano plot of full gene differential expression in MRK-nu-1 
cells. (B) Scatter plot of full gene differential expression in MRK-nu-1 cells 
between siControl (X-axis, MDMX expression) and siMDMX(y-axis, knockdown 
of MDMX). bRed spot: significantly higher expression in knockdown group; 
green spot: significantly higher expression in control group; grey spots: less 
than 2-fold difference; blue spot: MDM4)   
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6.4.5  The differential alternative splicing expression in relation to the presence 
and knockdown of MDMX expression by lentiviral shRNA 

33072 coding and 14685 non-coding gene transcripts were detected both in cells 

expressing MDMX and those with MDMX expression knocked down by lentiviral 

shRNA cells, and 7810 coding and 5433 non-coding genes were not expressed in 

either condition. The MDMX-expressing (dox-) group showed expression of 2742 

coding genes and 1899 non-coding which were not expressed in the MDMX 

knockdown (dox+) group. On the other hand, there were 1086 coding and 812 non-

coding genes which were expressed in lentiviral shRNA knockdown (dox+) group but 

not in lentiviral control (dox-) group. Although MDMX expression did not reduce (1.6-

fold) statistically significantly, CLCA2 (chloride channel accessory 2) increased 

statistically significantly (4.82-fold) after knockdown of MDMX by lentiviral shRNA. 

ATM and MDM2 also increased after knocking down MDMX (1.35-fold and 1.33-fold 

change respectively). 

6.4.6  The differential alternative splicing expression in relation to the presence 
and knockdown of MDMX expression by siRNA 

33010 coding and 14630 non-coding transcripts were detected both in cells 

expressing MDMX and those with MDMX expression knocked down by siRNA, and 

6810 coding and 4767 non-coding genes were not expressed in either condition. The 

MDMX-expressing group showed expression of 4292 coding genes and 2908 non-

coding transcripts that were not expressed in the MDMX knockdown group. On the 

other hand, there were 598 coding genes and 524 non-coding genes that were 

expressed in the siMDMX group but not in the siControl group. 

The splicing MDM4(MDMX) expression was reduced significantly (2.4-fold) after 

siRNA-mediated knockdown. VGLL1 (vestigial-like 1 in Drosophila) was the gene 

with the highest increase (4.51-fold change) after knockdown of MDMX by siRNA in 

MRK-nu-1 cells. The expression of a number of p53 transcriptional target genes 

(table 6.1) was found to be altered, including CDKN1A, CCNG2, RRM2B, BTG2, 

ZMAT3, TNFRSF10C and FAS with over 1.5-fold increase, consistent with a role for 

MDMX in suppression of p53 function in these MDM4-amplified MRK-nu-1 cells. 
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Table 6.1. Splicing gene expression change between siControl and siMDMX 
from HTA 2.0 results.  
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Figure 6.10. Scatter plot of alternative splicing differential gene expression in 
relation to lentiviral shRNA (A) and siRNA (B)-mediated knockdown of MDMX. 
X-axis is negative control with normal MDMX expression; y-axis is knockdown 
of MDMX. Green spots show higher level of gene expression in MDMX-
expressing control; red spots show higher level of gene expression in MDMX 
knockdown. The one blue spot in each plot is MDM4(MDMX).  
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6.4.7  Microarray results confirmation by qRT-PCR 

Figure 6.10 shows the bar charts of ∆Ct and ∆∆Ct values for increased genes after 

siRNA-mediated knockdown of MDMX. The MDM4 transcript levels decreased, as 

shown in figure 6.11A and B, after lentiviral and siRNA-mediated knockdown of 

MDMX. The bar chart shows that VGLL1 had the highest increase of around 4-fold 

gene change. Because the genes were chosen based on the siRNA HTA 2.0 results, 

as expected some genes were not detected as significantly increased after 

knockdown of MDMX by lentiviral shRNA. 

Figure 6.11C shows VGLL1 and CDKN1A expression also increased over 4-fold in 

MRK-nu-1, JEG-3 and MCF-7 cells after siRNA mediated knockdown of MDMX for 

48 hours. By contract, the VGLL1 expression decreased after siRNA mediated 

knockdown of MDMX in NGP cells. The TP53 and CDKN1A expression showed 

more increase by MDMX suppression in JEG-3 than MRK-nu-1 cells. These results 

were consistent with the protein level results in chapter 5. 
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Figure 6.11. The qRT-PCR results show the ∆Ct and ∆∆Ct values of increased 
genes after MDMX knockdown by lentiviral shRNA (A) and siRNA (B), 
confirming the results of HTA 2.0 data. (C) The qRT-PCR results show the ∆∆Ct 
values of increased genes after MDMX knockdown by siRNA in MRK-nu-1, JEG-
3, MCF-7 and NGP cells.  (y-axis shows log2 fold gene change) ∆∆Ct = ∆Ct 
(VGLL1siMDMX ‐ GAPDHsiMDMX ) ‐ ∆ct (VGLL1siControl ‐ GAPDHsiControl) The fold 
change = 2∆∆Ct 
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6.5  Discussion 
6.5.1  The gene expression changes of p53-dependent pathways 

A greater degree of MDMX expression knockdown was achieved with the siRNA 

(>95%) than the lentiviral shRNA (>50%) This was reflected by increased 

suppression of growth and larger changes in gene expression patterns with the 

siRNA knockdown. 

The 48-hour MDMX knockdown time point of was chosen as the best time point for 
suppressing MDMX protein expression based on Western blot. The reason for 
choosing the most efficient knockdown of MDMX protein is that the aim was to see 
what the MDMX protein affects. 

ATM and MDM2 showed a slight increase after lentiviral shRNA-mediated 

knockdown of MDMX. Compared to siRNA-mediated knockdown of MDMX, 

CDKN1A, FAS, CCNG2, RRM2B and ZMAT3 were increased over 1.5-fold by 

siRNA-mediated knockdown of MDMX. They are down-regulated by p53 (figure 

6.12).  
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Figure 6.12. The p53 signal pathway from HTA 2.0 alternative splicing form of 
differential gene expression between siControl and siMDMX. Taking HTA 2.0 
data of siMDMX and siControl with over 1.5-fold change, the gene set was 
found to be enriched for genes from the p53 pathway, using pathway 
enrichment analysis from the WebGestalt website linked to the KEGG pathway 
database (Kanehisa and Goto, 2000; Zhang et al., 2005; Wang et al., 2013; 
Kanehisa et al., 2016). (Red: genes with increased expression) 
(PAG608=ZMAT3, p53R2=RRM2B, Cyclin G=CCNG2) http://www.webgestalt.org/  

  

http://www.webgestalt.org/
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6.5.2  Knockdown of MDMX increased both gene and protein expression of 
p21(CDKN1A) 

SiRNA-mediated knockdown of MDMX increased CDKN1A (p21) expression, these 

results are consistent with the western blots results shown in chapter 5. The p21 

protein level was increased significantly in JEG-3, MRK-nu-1, MCF-7 (figure 5.12) 

and NGP (figure 5.6) cells by siRNA knockdown MDMX. MDMX not only promotes 

proteasomal degradation of p21 but it also regulates transcriptional of CDKN1A 

expression via p53 activation (Kruse and Gu, 2009). Knockdown of MDMX protein 

expression reactivates p53 activity and leads to increased down-stream target gene 

expression. The effect was minor but still show detectable transcriptional activation of 

p21. Similarly, MDMX and MDM2 is also reported to regulate p21 proteasomal 

degradation (Jin et al., 2003; Jin et al., 2008). A published study presented that 14-3-

3gamma induced p21 via inhibition of MDMX-mediated proteasomal turnover 

independent of p53 after DNA damage induction (Lee and Lu, 2011). The level of 14-

3-3gamma -MDMX complex increased in response to DNA damage whereas that of 

the MDMX-p21 complex declined leading to the induction of p21 in p53-null cells 

(Lee and Lu, 2011). MDMX might regulate CDKN1A expression via p53 dependent 

pathway but p21 protein degradation via a p53 independent pathway. 

6.5.3  VGLL1 was the gene showing the highest increase in expression 
induced by MDMX knockdown 

VGLL1 was the gene that increased the most, with over 4-fold change in gene 

expression after knockdown of MDMX by siRNA in MRK-nu-1 breast cancer cells. A 

search of the Sanger COSMIC database revealed VGLL1 to be mutant in the MRK-

nu-1 cell line. MRK-nu-1 cells have a coding missense mutation (p.R47K; c.140G>A) 

resulting in an arginine to lysine substitute in the VGLL1 gene which is likely to have 

functional consequences. The position of the mutation is near the VGLL1-TEAD 

binding sites which are V41, H44, I45 (Pobbati et al., 2012; Pobbati and Hong, 2013). 

The mutation and high expression of VGLL1 might result in the activation of cell 

proliferation via VGLL1. It might be an explanation for no net cell growth change in 

MRK-nu-1 cells after siRNA-mediated knockdown of MDMX in figure 5.5.  



193 

 

VGLL1 (Vestigial Like Family Member 1, Vestigial-like 1 in Drosophila) is a gene 

encoding a transcriptional co-activator structurally homologous to TAZ and YAP that 

modulates the Hippo pathway in Drosophila. VGLL1 is recognized as an oncogene, 

which has similar structure and function to TAZ and YAP in the Hippo signalling 

pathway (Pobbati et al., 2012; Mesrouze et al., 2014). VGLL1 is located on Xq26.3. 

The protein encoded by this gene binds proteins of the TEA transcription factors 

(TEAD) through the Vg (vestigial) homology region found in its N-terminus. It may 

thus function as a specific coactivator for the mammalian Thyrotroph embryonic 

transcription factor family (TEFs). The TEAD transcription factors, the most 

downstream elements in the Hippo signaling pathway, are regulated by different 

cofactors, such as the VGLL proteins. Investigation of the interaction between 

VGLL1-derived peptides and human TEAD4 shows that, although it lacks a key 

secondary structure element required for tight binding by two other TEAD co-factors 

(YAP and TAZ), VGLL1-derived peptides bind to TEAD with nanomolar affinity 

(Pobbati et al., 2012; Mesrouze et al., 2014).  

The Hippo signalling pathway controls organ size in animals through the regulation of 

cell proliferation and promoting apoptosis. Over-activation of the Hippo signalling 

pathway is linked to tumour development. The Hippo signalling pathway will be 

discussed further in chapter 7.2. The siRNA-mediated knockdown of MDMX showed 

higher efficacy in MRK-nu-1 cells, which may have been required to trigger increased 

VGLL1 expression. Thus, when one oncogene, MDM4(MDMX), was knocked down, 

the expression of another oncogene, VGLL1, was increased. This might indicate that 

tumour cells are able to survive p53-dependent growth inhibition and apoptosis by 

increasing the expression of an alternative oncogene that regulates a growth-

promoting pathway. The VGLL1 oncogene may play an important role in regulating 

and linking the Hippo signalling pathway and the p53-dependent pathway through 

MDMX.  
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Chapter 7  General Discussion 

 

  



195 

 

7.1  Does MDMX affect sensitivity to MDM2-p53 binding antagonists? 

7.1.1  TP53 status and response to MDM2-p53 binding antagonists 

Pre-clinical studies of MDM2 inhibitors as single agents or combination treatments 

have been reported in a wide range of cancers, such as neuroblastoma (Chen et al., 

2015), ovarian cancer (Mir et al., 2013; Zanjirband et al., 2016), renal carcinoma 

(Polanski et al., 2014), breast cancer (Pechackova et al., 2016). Clinical trials studies 

have also reported response to MDM2 inhibitors in acute myeloid leukemia (Reis et 

al., 2016) and relapsed/refractory chronic lymphocytic leukemia and small cell 

lymphocytic leukemia (Andreeff et al., 2016). MDM2 inhibitors have also been 

investigated across a wide range of tumours in pre-clinical and clinical trial research 

(figure 1.17) as signal agents and combinations with other drugs (chapter 1.7 ) 

According to the results of the present study, amplification and high expression of 

MDMX do not markedly reduce the efficacy of MDM2 antagonists and cells with 

amplification and high expression of MDMX are still responsive to MDM2 

antagonists. This would suggest that MDMX status is not the main factor which 

needs to be a concern before treatment with MDM2 inhibitors in human cancer 

therapy. 

The findings of this project for Nutlin-3 and RG7388 treatments show response and 

growth inhibition in the two TP53 wild-type MDMX amplified cell lines (JEG-3 and 

MRK-nu-1) and MDMX high-expressing cell lines (NGP and MCF-7). These results 

are in agreement with those available for Nutlin-3a on the Sanger Cancer Genome 

Project website (figure 7.1), in whichTP53 status has by far the most influence on 

sensitivity to Nutlin-3a, while MYCN and BRAF alterations are also associated with 

sensitivity to Nutlin-3a (figure 7.1). The growth inhibition effect of Nutlin-3 from a 

previously published study (figure 7.2A) and GI50 values distribution in a wild panel of 

cell lines (figure 7.2B) show that cells carrying a TP53 mutation, on average are more 

resistant to Nutlin-3 than cells with wild-type TP53. However, it is interesting to note 

that the alleged wild-type TP53 cell lines have a much broader range of sensitivity, 

the distribution for which is bimodal, with a high proportion of the wild-type TP53 cell 

lines having GI50 values for Nutlin-3a which overlap with those for the mutant TP53 

cell lines. 
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In reviewing the literature for other potential determinants of response to MDM2-p53 

binding antagonists, it was noted that MYCN-amplified cell lines are sensitive to 

these inhibitors. It was reported that MYCN knockdown in neuroblastoma cell lines 

with wild-type p53 made them more resistant to the MDM2-p53 binding inhibitors, 

Nutlin-3 and MI-63 (Gamble et al., 2012). This result shows that other cellular 

regulating proteins, like MYCN, could affect the response to MDM2-p53 binding 

antagonists. These observations for MYCN status are supported by data for 

response to Nutlin-3 on the Sanger Cancer Genome Project website (figure 7.1).  

MDMX expression has been reported to be associated with sensitivity to MDM2/X-

p53 binding co-inhibitor (Ray-Coquard et al., 2012). High MDM2 expression and 

undetectable MDMX in the SJSA-1 cells were associated with resistance to RO5963, 

although RO5963 has similar and strong binding ability to both MDM2 and MDMX. 

TP53 status is also the major factor in resistance to the co-inhibitors. However, 

selection for resistance to MDM2 inhibitors was found not to be associated with 

increased MDMX expression, which might be expected if MDMX expression was an 

important mediator of resistance to MDM2 inhibitors (Drummond et al., 2016). 
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Figure 7.1. Volcano plot of the relationship of Nutlin-3a sensitivity to genetic 
alterations in cells (Sanger Cancer Genome Project website). Note the 
dominant association of TP53 mutation to Nutlin-3a resistance. 
http://www.sanger.ac.uk/genetics/CGP/). 

 

	

Figure 7.2. (A) Growth inhibition by Nutlin-3 treatment for wild-type p53 cell 
lines (HCT116, RKO and SJSA-1) and mutant p53 cell lines (MDA-MB-435 and 
SW480) (Vassilev et al., 2004). (B) The GI50 distributions of Nutlin-3 and TP53 
status for 527 cell lines on the Sanger data base. 
http://cancer.sanger.ac.uk/cosmic.   
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7.1.2  MDMX expression and response to MDM2-p53 binding antagonists 

The results of this project have shown that MDMX amplification and high expression 

was not associated with resistance to MDM2-p53 binding antagonists. Suppression 

of MDMX expression showed a significant increase in sensitivity to the two MDM2 

inhibitors in just one cell line, MRK-nu-1. In this case, the results did seem to be 

consistent with other research which suggests that MDMX is resistant to MDM2 

inhibitors and that its inactivation is necessary to achieve full activation of p53 in 

tumour cells (Hu et al., 2006; Patton et al., 2006; Wade et al., 2006; Hirose et al., 

2014). However, in the cases of other cell lines, the overall results indicated that 

suppression of MDMX expression did not significantly affect sensitivity or response to 

MDM2 inhibitors in either MDMX amplified or MDMX high-expressing cell lines. One 

neuroblastoma cell line, NGP, showed a decrease in sensitivity and apoptotic 

response to MDM2 inhibitors after suppression of MDMX expression. 

Furthermore, the data mined from the Sanger database, shown in figure 7.3, 

supports the findings of this project, which is that MDMX expression is not associated 

with altered response to MDM2-p53 binding antagonists in a wide range of human 

cancer cell lines. The plot in figure 7.3A shows the increasing trend for increased 

expression of both MDM2 and MDMX to be associated with increased sensitivity to 

Nultin-3. A stronger trend is seen for MDM2 mRNA expression than for MDMX, and 

there is no evidence of an overall increase in resistance to be associated with MDMX 

expression. The GI50 values for the subset of mutant TP53 cell lines were not 

associated with MDM2 and MDMX mRNA expression (figure 7.3B). The overall GI50 

values of Nutlin-3 including wild-type and mutant p53 in Figure 7.3C also showed a 

more strongly dependent trend for MDM2 mRNA but a weaker similar trend for 

MDMX mRNA. For the TP53 wild-type subset of cell lines, higher MDM2/MDMX 

mRNA is associated with increased sensitivity to Nutlin-3, as shown in Figure 7.3D. 

However, this ratio is driven by MDM2 expression changes and MDMX expression 

shows relatively little change across cell lines.  Therefore, TP53 status and MDM2 

expression are the dominant factors associated with increased sensitivity to MDM2-

p53 binding antagonists. 
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Figure 7.3. The dependence of Nutlin-3 GI50 values on MDM2 and MDMX mRNA 
levels across a wide range of cell lines including wild-type TP53 (A), mutant 
TP53 (B), and both TP53 wild-type and mutant (C) from Sanger database 
mining. (D) MDM2 and MDMX ratio of mRNA relative to Nutlin-3 GI50 values. 
http://cancer.sanger.ac.uk/cosmic  
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7.1.3  Lentiviral shRNA and siRNA-mediated knockdown of MDMX expression 

Cell lines amplified for and/or expressing high levels of the MDMX gene are 

nevertheless responsive to MDM2-p53 binding antagonists, and the response to 

these agents was not altered significantly by suppression of MDMX expression by 

lentiviral shRNA. Significant sensitisation to Nutlin-3 by siRNA knockdown was only 

seen for JEG-3 cells, although similar, but not statistically significant, trends were 

observed for MRK-nu-1 and MCF-7 (see figure 5.10 and table 5.2). Suppression of 

MDMX expression by lentiviral shRNA and siRNA was associated with increased 

sensitivity to MDM2-p53 binding antagonists for growth inhibition apoptosis and cell 

cycle arrest in the case of JEG-3 cells. It shows the effect of suppressing MDMX 

expression on the response to MDM2 inhibitors was cell line-dependent also 

dependent on the extent to which MDMX expression could be suppressed. 

Suppression of MDMX expression by lentiviral shRNA and siRNA was also 

associated with decreased response and increased resistance to the RO5963 

MDM2/X-p53 binding dual antagonist, which was converse to the effect on MDM2-

p53 binding antagonists. 

Lentiviral shRNA knockdown showed more difficulties in suppressing MDMX 

expression successfully in all of the cell lines which have been tested. Although it 

might be a long-term and switchable knockdown system with less damage to cells, it 

was hard to achieve a high efficiency of suppression of MDMX expression in the cell 

lines apart from MRK-nu-1. The short-term siRNA-mediated knockdown of MDMX 

gave successful and efficient knockdown in the cell lines compared to the lentiviral 

shRNA system. The less efficient shRNA-mediated MDMX knockdown might be an 

explanation for why there was no cell growth effect after knockdown of MDMX 

expression by lentiviral shRNA. Similarly, the gene expression profiles for lentiviral 

shRNA-mediated knockdown of MDMX showed few and smaller significant changes 

in gene expression compared to the effect of siRNA knockdown. The MDMX 

suppression effect achieved by either shRNA or siRNA might not be big enough to 

produce biologically significant cellular changes. In further studies, it would be 

interesting to use CRISPR methods to investigate the consequences of completely 

deleting MDMX.   
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7.2  The role of MDMX and VGLL1 in the Hippo pathway 

The Hippo signalling pathway is a growth and organ size control pathway that 

regulates cell proliferation and stem cell function as illustrated in figure 7.4 (Pan, 

2010; Johnson and Halder, 2014). The name of the pathway comes from one of the 

protein kinases, Hippo (Hpo), in Drosophila development, because of the 

hippopotamus-like phenotype of the mutated body parts (Harvey et al., 2003; 

Pantalacci et al., 2003; Udan et al., 2003; Wu et al., 2003). Over-activation of its 

downstream YAP (Yes-associated protein) and TAZ (PDZ-binding motif) contribute to 

cancer development and drug resistance. Activated YAP/TAZ binds to TEADs (TEA 

domain transcription factor 1-4) as a complex to promote the expression of target 

genes involved in cell proliferation and anti-apoptosis. YAP/TAZ are regulated and 

phosphorylated in the cytoplasm by kinase Lats1/2 (Large tumour suppressor 1/2) 

and then degraded by 14-3-3 protein (figure 7.4) (Chan et al., 2011; Johnson and 

Halder, 2014). YAP overexpression derived from the potent growth-regulatory activity 

of the Hippo signalling pathway leads to a dramatic increase in organ size shown in 

figure 7.4B&C (Pan, 2010).  

Previous study established that LATS2 binds and inhibits MDM2 E3 ligase activity 

resulting in activation of p53. It shows a positive feedback loop between p53 and 

LATS2 by inhibition of MDM2 (Aylon et al., 2006). It has been reported that silencing 

of LATS1 and LATS2 in non-transformed mammary epithelial cells reduces p53 

phosphorylation (Furth et al., 2015). Moreover, LATS down-regulation promotes p53-

dependent cell migration (Furth et al., 2015). LATS2 was shown to stabilize p53 by 

binding and inhibiting MDM2 in G1 tetraploidy checkpoint (Aylon et al., 2006; Visser 

and Yang, 2010). Recent research demonstrated that the Hippo kinases, LATS1 and 

LATS2, control human breast cell fate YAP/TAZ independently though intrinsic and 

paracrine mechanisms via ERα (Britschgi et al., 2017).  

VGLL1 (vestigial-like family member 1), which is a structural and functional homolog 

of YAP/TAZ, also binds to transcriptional enhancer TEAD as a complex by protein-

protein interaction to promote anchorage-independent cell growth in cancer 

progression (Figure 7.5) (Pobbati et al., 2012; Pobbati and Hong, 2013). Previous 

studies have showed that a subset of YAP/TAZ-responsive genes are not activated 
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by VGLL1. This finding suggests that VGLL1 and YAP/TAZ have different 

transcriptional specificity targeting different genes, which also has been observed in 

Drosophila (Pobbati et al., 2012). The Hippo signalling pathway is the main up 

regulating pathway to control YAP/TAZ-TEAD interaction and TEAD dependent 

transcriptional activity.  

Several publications have reported that over expression of oncogene VGLL1 has the 

potential to promote cancer progression, and it has also been reported that nuclear 

VGLL1 expression was observed in over 40% of triple-negative (TN) breast cancer 

and over 50% in BRCA1-assciated positive TN breast carcinomas in primary human 

tumours (Castilla et al., 2014). The data from this published research showed MDMX  

high expression in triple-negative primary breast tumour (Castilla et al., 2014). 

Moreover, VGLL1 expression is associated with reduced overall survival (Castilla et 

al., 2014). It also has been reported that the Hippo pathway plays an important 

contributory role in the cell fate of human breast cells and tumour progression. The 

results from the current study showed that a significant increase of VGLL1 

expression occurs after knockdown of MDMX. MDMX might contribute to a negative 

regulation of VGLL1 and affect VGLL1-TEAD downstream transcriptional activation in 

cell proliferation especially in tumours with VGLL1 overexpression (Figure 7.5). 

However, there is a lack of knowledge about the interaction between the p53-

dependent and Hippo pathways. 
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Figure 7.4. (A) The Hippo Signalling Network in Drosophila and Mammals. (B) A 
normal (left) and a yki-overexpressing (right) Drosophila wing imaginal disc 
(Huang et al., 2005). (C) A normal (left) and a YAP-overexpressing (right) mouse 
liver (Dong et al., 2007). The dramatic increase in organ size induced by Yki/YAP 
overexpression illustrates the potent growth-regulatory activity of Hippo signalling in 
Drosophila and mammals (Pan, 2010).  
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Figure 7.5. Proposed model for the regulation of p53-MDMX and VGLL1-TEAD 
dependent transcriptional activity. Activated YAP/TAZ binds to TEADs to promote 
target genes involved in cell proliferation and anti-apoptosis. VGLL1 also binds to 
transcriptional enhancer TEAD to promote anchorage-independent cell growth in 
cancer progression. Suppression of MDMX increases VGLL1 expression leading to 
transcriptional activation of VGLL1-TEAD counteracting p53-dependent apoptosis 
and cell cycle arrest. 
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7.3  Overall conclusion 

In summary, TP53 status is the major factor influencing response to MDM2-p53 

binding antagonists and the MDM2/X-p53 binding co-inhibitor. Cell lines amplified for 

and/or expressing high levels of the MDMX gene are nevertheless responsive to 

MDM2-p53 binding antagonists. The effect of MDMX knockdown varied according to 

cell line and which MDM2-p53 binding antagonist was being tested, but overall, 

suppression of MDMX had minimal effect on the response to MDM2-p53 binding 

antagonists. The MDM2/MDMX-p53 co-inhibitor showed better efficacy with high 

MDMX-expressing cells and was more effective for growth inhibition than MDMX 

knockdown. Highly efficient suppression of MDMX expression increased TP53-

dependent downstream activity. MDMX might play an important role in regulating the 

link between Hippo signalling pathway and p53-dependent pathway via the VGLL1 

oncoprotein. 
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7.4  Future work 

In further studies, CRISPR could be used to completely delete MDMX in order to 

investigate the contribution of MDMX function relative to P53-dependent and 

independent regulation as a therapeutic target in human cancer. A stapled peptide 

MDM2/X co-inhibitor has been developed and tested in a Phase I clinical study. It 

would be interesting to test the stapled peptide co-inhibitor or more potent MDM2/X 

co-inhibitors and moreover test the drug combination with WIP1 inhibitors to see if 

the potentiating effect on MDM2 inhibitors is also seen with MDM1/X co-inhibitors. 

This study has found and validated that the mRNA expression of VGLL1 is increased 

by siRNA-mediated knockdown of MDMX in MRK-nu-1. More research is needed to 

better understand the importance of VGLL1 in relation to MDMX and its connection 

effect on the p53 pathway. More evidence of VGLL1 induction after siRNA-mediated 

MDMX knockdown needs to be investigated in other cell lines. The protein level 

expression of VGLL1 and the Hippo pathway down-stream activity need to be tested 

and investigated on a wider panel of cell lines. The other VGLL family members are 

also worth studying, as well as the relationship between the MDMX-p53 and the 

Hippo signalling pathways. 
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