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Abstract 

Breast cancer is fatal mainly due to the development of metastatic disease and the 

resistance to current in use chemotherapeutic options. The role of cancer stem cells 

(CSCs) has become one of increasing interest over the last few years, as they seem to be 

involved in the acquisition of drug resistant and more aggressive cell phenotypes. Side 

population (SP) cells are a putative CSC population identified by their ability to efflux 

the DNA binding dye Hoechst 33342 due to the expression of members of the ABC 

transporter family of proteins. This efflux ability is also thought to confer on these cells 

the ability to efflux chemotherapeutic reagents. Epithelial-to-Mesenchymal Transition 

(EMT) has been shown to regulate the function of several CSC populations and it is a 

process that is predominantly associated with metastasis. Hypoxia has been shown to 

activate several EMT related signalling pathways. 

The aims of the present study were to investigate the effects of Transforming Growth 

Factor-β1 (TGF-β1) and hypoxia driven EMT on the breast cancer stem cells (BCSCs), 

including SP and CD44+ cells of the MDA-MB-231 (ER-/PR-/HER2-) and MCF-7 

(ER+/PR+/HER2-) breast cancer cell lines. The TGF-β receptor expression was also 

assessed in both cells lines and I confirmed the activation of the TGF-β signalling 

pathway when these were induced to undergo EMT. Both MDA-MB-231 and MCF-7 

cells were found to express TGFB-RI, but MCF-7 cells had low expression of TGFB-

RII. Interestingly, both TGF-β1 and hypoxia-induced EMT resulted in the loss of MDA-

MB-231 SP phenotype, while TGF-β1 significantly reduced and hypoxia significantly 

increased the MCF-7 SP population. Changes on the CD44+ cells were found to be non 

significant. 

My data suggest that autocrine TGF-β1 production might be responsible for the 

reduction of the SP population in both cell lines and that targeting the SP population 

through the TGF-β signalling pathway in hormonal responsive breast cancer patients 

may be promoted by the cooperative effect of hypoxia and TGF-β treatment. Most 

importantly, I concluded that resistance to chemotherapeutic treatment due to SP 

presence can be further induced by hypoxia as seen by the increased MCF-7 SP 

numbers compared to hypoxia alone. Understanding the regulatory mechanisms of SP 

cells by EMT could enable the identification of new therapeutic targets in certain groups 

of breast cancer patients for overcoming metastasis and drug resistance. 
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Chapter 1: Introduction 

 1.1 Cancer  

Cancer is defined by the excessive and uncontrolled proliferation of cells leading to the 

formation of tumors. It is caused due to the accumulation of genetic mutations affecting 

the signalling pathways that are associated with self-renewal, proliferation and 

apoptosis in normal cells. This results in cells characterized by an increased ability to 

self-renew and divide infinitely. Cancer cells also evade the cellular mechanisms that 

control growth suppression as they acquire mutations in essential tumor suppressor 

genes. Additionally, they gain access to the angiogenic processes that sustain tumors by 

providing them with nutrients and oxygen. Finally, cancer cells activate signalling 

pathways that are responsible for invasion and metastasis and they become resistant to 

cell death and immune response (Hanahan and Weinberg, 2011).  

1.2 Epidemiology of breast cancer 

Breast cancer is the most common type of cancer in women affecting over 1.4 million of 

them worldwide every year. In the UK it accounts for 1/5 of deaths in women aged 40-

50 and the annual incidence in women aged 50 and over is 3/1,000 while  in women 

aged 65-69 it is 4/1,000 (Dixon, 2012). Breast cancer accounted for approximately 

11,556 deaths in women and 77 in men in the UK in 2010 (Cancer Research UK 

Website). Overall, the annual number of new breast cancer cases has increased two 

times in the last 30 years with more than 12,000 deaths each year, although death rates 

have decreased by a fifth over the last 10 years (Dixon 2012). The survival rates are 

usually higher in women aged 50-60 compared to younger or older women (Dixon 

2012). 

 In breast cancer it is rarely the primary tumor that is fatal; fatality is often due to the 

development of MBC. The 5-year relative survival rate is significantly higher (9 out of 

10) in women diagnosed with stage I breast cancer compared to those diagnosed with 

stage IV (1 out of 10) (Britton et al., 2011). Additionally, almost 30% of early breast 

cancer patients eventually develop MBC for which no cure exists. The first-line 

chemotherapeutic agents that are currently used include anthracyclines and/or taxanes, 

but these are often effective only for the first 6-10 months of the treatment, as in 90% of 

MBC patients multi-drug resistance (MDR) occurs. Second-line agents have not been 

shown to have any significant long term benefit (Coley, 2008). 
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1.3 Breast cancer risk factors 

Age: The incidence of breast cancer increases with age and it is most prevalent after 

menopause.  

 

Geographical location: There is a 3-fold to 4-fold difference between the incidence of 

breast cancer in Far Eastern and Western countries. Environmental factors contribute to 

the pathogenesis of breast cancer to a higher extent than genetic factors as shown by the 

rates of breast cancer in migrants from Japan to Hawaii which adjust to the ones in the 

host country within one or two generations (McPherson et al 2000, Dixon 2012).  

 

Breast density: Density of the breast decreases with age, which influences detection by 

mammography. Breast density is not increased with tamoxifen treatment, as opposed to 

hormone replacement therapy (HRT). According to 42 studies comparing breast cancer 

risks in women with high and low density breasts, it has been concluded that there is a 4 

to 5-fold difference (Mandelson et al., 2000; McCormack and dos Santos Silva, 2006; 

Boyd et al., 2007; Bertrand et al., 2015). 

 

Age at menarche and menopause: Women that start menstruating early or stop late in 

life are more likely to develop breast cancer. In fact, women who experience menopause 

after the age of 55 have twice as high a risk compared to those who experience 

menopause before the age of 45 (Dixon 2012). 

 

Age at first pregnancy and birth: Nulliparous women or women whose age at first birth 

is higher than 35 have an increased risk of breast cancer. There is also a 2-fold risk 

increase in women that have their first child at the age of 30 compared to those that 

have a first child at the age of 20 (McPherson et al., 2000; Dixon, 2012).  

 

Family history: In Western countries familial breast cancer due to a strong genetic 

predisposition accounts for almost 5% of breast cancer cases. In these families, breast 

cancer is inherited as an autosomal dominant with variable penetrance. This means that 

it can be inherited from individuals within the same family to both sexes without the 

patients experiencing breast cancer themselves. In women with a strong family history it 

is likely that they will develop the disease before the age of 50 (Dixon, 2006). In a 

recent study familial breast cancer was found to be a very heterogeneous disease 

comprised of 10 different subtypes. This classification was based on the discovery of 
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variation in copy number or expression of at least 10 different genes (IGF1R, KRAS, 

EGFR, CDKN2B, BRCA2, RB1, ATM, SMAD4, NCOR1 and UTX) (Curtis et al., 

2012). Most importantly, mutations in the BRCA1 and BRCA2 genes, located on the 

long arms of chromosomes 17 and 13, respectively are associated with a substantial 

number of familial breast cancer cases. These genes are large and mutations at any site 

in them could be involved in the pathogenesis of the disease (Dixon, 2006). Genetic 

testing for mutations in these genes is now routinely performed in high-risk women and 

surgical risk-reduction is becoming a common preventive option (Dixon 2012).   

 

Lifestyle: Obesity has been found to increase the risk for breast cancer two times in 

postmenopausal women, while other lifestyle options, such as alcohol intake or smoking 

have been shown to slightly contribute to the development of the disease. Interestingly, 

each year of breast feeding is thought to reduce the risk by 4.3% (Dixon 2012). The 

short term use of oral contraceptives appears to have no major impact on breast cancer 

risk. However, there is a slight increase in women who have taken oral contraceptives 

for 10 years and in those who begin taking them before the age of 20. The risk of breast 

cancer in women 10 or more years after cessation of oral contraceptives falls to normal 

population levels. Women receiving HRT seem to have an increased risk for breast 

cancer by 2.3% each year, while risk rates become normal almost immediately after the 

cessation of HRT. The combination of both progesterone and estrogen HRT can lead to 

a 2-fold increase of breast cancer after 5 years or more of use. HRT affects the 

sensitivity and specificity of breast screening, since it increases breast density. It has 

also been reported that women taking HRT were more likely to be diagnosed with 

larger tumors and node positive forms of the disease (Dixon 2012). 

 

1.4 Anatomy of the breast  

The adult human breast has a heterogeneous anatomical structure and is composed of 

different types of tissue, mainly fatty and glandular tissue. It contains 14-18 lactiferous 

lobes and each lobe consists of 20-40 lobules that converge to the nipple through a 

network of ducts that are responsible for the milk production and storage (Figure 1.1). 

Each nipple is surrounded by a circular and pigmented area called the areola, which is 

responsible for lubricating the nipple during lactation. The process of lactation is 

stimulated due to the excretion of the hormone prolactin normally during late pregnancy 

and after birth. Breast tissue is drained by a number of lymphatic vessels that lead to 
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axillary, supraclavicular and internal mammary lymph nodes. These lymph nodes are 

common sites of metastasis in breast cancer (Elston, 1998). 

 

 

Figure 1.1: Anatomy of the breast. 1. Chest Wall 2. Pectoralis muscles 3. Lobules  

4. Nipple 5. Areola 6. Milk duct 7. Fatty tissue 8. Skin (Jütte et al., 2014) 

 

1.5 Normal mammary gland development and cell types in the breast 

The mammary gland consists of an extensive tree-like network of branched ducts 

expanding from an epithelial bud. The developing epithelial ducts ultimately give rise to 

the mature ductal tree through cellular processes that are regulated by hormonal stimuli 

(Sternlicht, 2006). The mammary gland is mainly characterized as having two different 

cell types; a) luminal cells which are further divided into ductal and alveolar luminal 

cells with the former constituting the inner lining of the ducts and the latter forming the 

alveolar units during pregnancy and b) myoepithelial cells, which are located at the 

basal surface of the epithelium (Figure 1.2). There are three stages of human mammary 

gland formation; a) the embryonic stage when the basic structure is developed b) the 

pubertal stage at which the ducts elongate and branch through the mammary fat pad to 

form terminal end buds (TEBs) and c) the pregnancy stage that is characterized by 

alveolar differentiation and tertiary ductal branching in preparation for lactation. TEBs 

are composed of many epithelial layers and they are located in the end of the ducts. 

Their differentiation results in the development of the ducts, which consist of both 

luminal epithelial and myoepithelial cells. In addition, cap cells at the end of TEBs also 
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contribute to epithelial plasticity in normal conditions (Micalizzi et al., 2010) (Figure 

1.2). 

 

 

Figure 1.2: Schematic representation of a TEB consisting of luminal cells forming the 

inner lining of the ducts and myoepithelial cells the basal surface of the epithelium. Cap 

cells at the end of TEBs contribute to epithelial plasticity in normal conditions 

(Sternlicht, 2006). 

 

1.5.1 Normal mammary gland stem cells 

The dynamic expansion of the mammary gland during puberty and pregnancy, 

implicates the existence of mammary stem cells (MaSCs) which differentiate in order to 

generate mature epithelial structures of either the luminal or myoepithelial origin 

(Visvader, 2009). Deome and colleagues were the first to demonstrate that different 

parts of the mammary gland at different stages postnatally could give rise to mammary 

epithelial outgrowths (DeOme et al., 1959), while other studies supported the concept 

that the mammary gland consists of cells with different degrees of differentiation 

(Chepko and Smith, 1997; Smith and Chepko, 2001). Several experimental approaches 

have been used for the identification of putative MaSCs populations, including cell 

surface marker profiling, mammary fat pad transplantation assays and cell culture  

techniques to test self renewal and differentiation capacity (Petersen and Polyak, 2010).  

However, the origin and lineage of MaSCs has not been fully understood with several 

studies suggesting that these cells are restricted to the basal cell population (Stingl et al., 

1998; Shipitsin et al., 2007; Eirew et al., 2008; Lim et al., 2009) and another indicating 
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that that both the luminal and basal cell compartments are composed of MaSCs (Keller 

et al., 2012). The diversity of the data generated from these studies could be due to 

different methods used for the dissociation of breast tissue, cell culture and the 

assessment of stem cell properties. Additionally, the plethora of cell surface markers 

that have been suggested increased the need for the performance of functional assays to 

confirm the stemness of potential MaSC populations. For instance, BrdU labelling 

allowed the detection of slow cycling cells which retained the dye for longer and they 

were characterized by the absence of differentiation markers, Sca-1 expression and the 

SP phenotype (elaborated in following section) with a luminal origin and a high 

regenerative capacity (Welm et al., 2002).   

 

 1.6 Histological breast cancer classification 

Breast cancer occurs in the epithelial cells that line the terminal duct lobular unit. Breast 

cancer is divided into ductal and lobular, depending on whether is arises from the ducts 

or the lobules, respectively. 80% of breast cancer cases have ductal origin and 20% 

lobular. Cancers that remain within the basement membrane are characterized as in-situ 

or non-invasive, whereas cancers that invade in the surrounding adjacent tissue are 

classified as invasive. Some invasive breast cancer subtypes may have particular 

cellular morphology and growth patterns (tubular, mucinous, medullary and papillary) 

and they usually have a better prognosis. All the other types not belonging to these 

special types are known as not otherwise specified (NOS) (Dixon 2012).  

Ductal carcinoma in situ (DCIS) 

DCIS is the most common non-invasive type of breast cancer which remains in the milk 

duct and does not invade in the surrounding breast tissue. There is a 30% possibility of 

recurrence or future new disease within the first 5-10 years after the initial diagnosis in 

a conserved breast, however, radiotherapy reduces this to less than 5% when resection 

margins are clear (Breast Cancer Website). DCIS is further subdivided into Comedo, 

Cribiform, Micropapillary, Papillary and Solid DCIS depending on microscopic 

morphology (Malhotra et al., 2010). 

Lobular carcinoma in situ (LCIS) 

LCIS arises within the lobules at the terminal ends of the ducts and is not invasive. This 

is usually diagnosed in women before menopause who undergo a biopsy for some other 
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reason, since it is asymptomatic and cannot easily be detected by mammogram. LCIS is 

extremely rare in men (Breast Cancer Website).   

 

Invasive Ductal Carcinoma (IDC) 

This is the most common invasive form of breast cancer, accounting for almost 80% of 

invasive cases. In IDC the abnormal cells break through the basement membrane of the 

milk duct and invade to other areas of the breast, and can also metastasize to other 

organs of the body. The risk for IDC increases with age and it is also the commonest 

type in men (Breast Cancer Website).  

Invasive Lobular Carcinoma (ILC) 

ILC is the second most prevalent type of invasive breast cancer in which cancer spreads 

locally beyond the lobules ultimately to the lymph nodes and possibly to other parts of 

the body. It usually occurs later in life (early 60’s) than the IDC and HRT before or 

during menopause has been suggested to increase the risk for ILC (Breast Cancer 

Website).  

Paget’s disease 

Paget’s disease is a rare form of non invasive breast cancer that affects the nipple. 

Cancer cells accumulate in the nipple ducts and then they expand to the nipple surface 

and the areola. Most importantly, more than 97% of patients with Paget’s disease have 

invasive or non invasive breast cancer deeper within the affected breast (Breast Cancer 

Website)  

Inflammatory Breast Cancer (IBC) 

IBC is a rare but aggressive type of breast cancer and as its name implies it mimics 

inflectional. It starts with reddening and swelling of the breast with or without the 

presence of a lump. Symptoms worsen rapidly requiring prompt treatment. A 

combination of chemotherapy, surgery, radiation therapy and targeted therapies is 

currently being used for the management of IBC (Breast Cancer Website; Dixon, 2006). 

1.7 Molecular classification of breast cancer 

Although the above described classification system is commonly used and it has 

prognostic value the molecular classification of breast cancer is more useful for 
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predicting the patient’s response to different therapeutic options. There are four 

different molecular breast cancer subtypes depending on their hormone receptor status 

(estrogen receptor (ER), progesterone receptor (PR) or their human epidermal growth 

factor receptor (HER2) status. These subtypes are: 1) Luminal A (ER+/PR+/HER2-), 2) 

Luminal B (ER+/PR+/HER2+), 3) HER2 (ER-/PR-/HER2+) and basal like or triple 

negative (ER-/PR-/HER2-) (Breast Cancer Website; Iwata, 2012). More recently, the 

claudin low subtype has also been identified. All these subtypes have differences in 

overall survival and disease free-survival rates with the triple negative one being 

associated with the shortest rates. What is more, Luminal A and B types have very 

distinct clinical outcomes (Malhotra et al., 2010). 

1.7.1 The role of the estrogen receptor in the normal mammary gland and breast 

cancer 

Estrogen exposure promotes the proliferation of epithelial cells leading to branching 

morphogenesis during puberty, pregnancy and the menstrual cycle. Almost 2/3 of breast 

cancer patients express higher levels of ERα and ERβ. Increased exposure to estrogen 

due to early menarche or late menopause or hormonal treatment can also increase the 

risk for breast cancer (Clemons and Goss, 2001). Patients with this phenotype usually 

have a better prognosis and response to endocrine treatment, which involves anti-

estrogen drugs, such as tamoxifen or aromatase inhibitors which reduce the levels of 

estrogen (Dixon 2012) (Ikeda and Inoue, 2004). Binding of estrogen to ERα and ERβ 

leads to the formation of homodimers or heterodimers, which in turn bind to the 

estrogen responsive elements (ERE) of target genes via their DNA binding domain 

(Glass and Rosenfeld, 2000). The list of estrogen-regulated target genes is increasing, 

however, the exact mechanisms that induce tumor growth have not been fully elucidated 

(Ikeda and Inoue, 2004). Estrogen signalling can be either ligand independent through 

the AF-1 region in the N-terminal domain or ligand dependent through the AF-2 region 

in the E-domain in the ER genes (Glass and Rosenfeld, 2000).  

1.7.2 The role of the progesterone receptor in breast cancer 

Progesterone (PG) is involved in the regulation of many reproductive processes in 

women, including the establishment and maintenance of pregnancy and ovulation. The 

biological actions of PG are mediated through the nuclear ligand-activated progesterone 

receptors PR-A and PR-B. Upon binding of PG to the inactive receptor complex with 

HSP90 and immunophilins, the receptors become activated by dissociating from this 

and form dimers. They can then bind to progesterone responsive elements (PRE) in 
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target genes and activate or suppress their expression (Leonhardt and Edwards, 2002). 

In the mammary gland ER signalling induces the expression of PR, whereas PG inhibits 

ER synthesis (Conzen, 2008). PR expression is usually associated with ER expression 

in breast cancer and ER+/PR+ patients have the best response to hormone therapy. 

Cases of ER-/PR+ breast cancer are rare (Dixon 2012).  

1.7.3 The role of the HER2 in breast cancer 

The HER2 receptor is a transmembrane tyrosine kinase belonging to the epidermal 

growth factor (EGF) or HER receptor family of proteins consisting of 4 members; 

HER1, HER2, HER3 and HER4. Although the ligands of these receptors have not been 

completely characterized, it has been shown that signalling mediated through the HER2 

receptor is the strongest. The effects of the HER signalling depend on the dimerization 

partners, with the PI3K/Akt, phospholipase Cγ, mitogen-activated protein kinase and 

STAT pathways being the most commonly activated pathways. In normal breast tissue 

HER2 signalling is thought to play a role in cell proliferation, motility, apoptosis and 

adhesion, while HER2 overexpression (mainly caused due to the amplification of the 

HER2 gene) has been found to promote carcinogenesis by inducing the hyperactivation 

of the PI3K/Akt and MAPK pathways (Ross et al., 2003). Breast cancer patients with 

these features have worse prognostic outcomes, early recurrence rates and reduced 

response to hormone therapy, as HER overexpression has been correlated with ER-

negativity (Ross et al., 2003) (Dixon 2012). 

1.8 Staging of invasive breast cancer 

The extent of many cancers can be assessed by the Tumour Node Metastasis (TNM) 

system, which takes into account the size of the primary tumor (T), the status of the 

lymph nodes (N) and the presence of distant metastases (M). However, this system does 

not take into account the biological properties of the tumor, including hormonal status, 

which would allow the detection of early tumors and identify the patients who might 

benefit from endocrine treatment (Escobar et al., 2007). There are also histological 

grading systems, including the Scarff-Bloom-Richardson (SBR) and the Nottingham 

Prognostic Index (NPI). The SBR system uses information about a) tubule formation b) 

nuclear grade and c) the mitotic rate.  Each of the categories gets a score between 1 and 

3; with “1” meaning that cells look mostly normal, and a score of “3” meaning that the 

cells and tissue have an abnormal appearance. The scores for the three categories are 

then added, resulting in a total score of 3 to 9. There are three grades according to the 

total score, as described in Table 1. The most commonly used system is the NPI system 
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which considers a) the size of the lesion b) the number of the affected lymph nodes (0 

=1, 1-3 = 2, >3 = 3) and c) the grade of the tumor (Grade I =1, Grade II =2, Grade III 

=3). It can be calculated using the following formula: NPI = (0.2 x size) + stage + grade.  

The total score can be interpreted as shown in Table 2 (Haybittle et al., 1982). 

 

SBR score SBR grade Degree of differentiation 

3-5 Low Well differentiated 

6-7 Intermediate Moderately differentiated 

8-9 High Poorly differentiated 

Table 1.1: The SBR scoring system for breast cancer 

 

Score 5-year survival  

>/=2.0 to </=2.4 93% 

>2.4 to </=3.4 85% 

>3.4 to </=5.4 70% 

>5.4 50% 

Table 1.2: The NPI scoring system for breast cancer 

 

1.9 Diagnosis 

The introduction of the national screening programme in the UK in the late 1980s has 

revealed a huge number of undiagnosed cases of breast cancer. It is performed for 

women at the age 47-73 every year and it leads to the detection of 8.1/1,000 new cases 

per annum (Dixon 2012). Mammography is the most efficient method of screening for 

breast cancer in the UK and is normally offered to women over 47 or younger women 

with a family history of breast cancer, previously diagnosed with a benign but atypical 

lesion or those that have been treated with mantle radiotherapy as a young adult or 

child.  The aim of the screening process is to detect the disease at its early stages and 

thus reduce the rates of morbidity and mortality. Patients with an abnormality detected 

often require further mammography or ultrasonography, clinical examination and needle 

or core biopsy (Breast Cancer Screening NHS Website; Dixon, 2006) 

 

1.10 Treatment 

Surgery is the primary treatment option for most patients with breast cancer. Breast-

conserving surgery is the operation for the removal of the tumor (lumpectomy) or the 

http://en.wikipedia.org/wiki/Lesion
http://en.wikipedia.org/wiki/Lymph_node
http://en.wikipedia.org/wiki/Grading_%28tumors%29
http://en.wikipedia.org/wiki/Tumour
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part of the breast tissue within which the cancer is (partial mastectomy). In some cases, 

the whole breast needs to be removed (total mastectomy). Selective lymph node 

dissection for biopsy is carried out at the same time. Chemotherapy can be used before 

surgery in order to reduce the size of the tumor and render it operable (neoadjuvant 

therapy). In addition to chemotherapy, radiation or hormonal therapy for patients whose 

tumors express hormonal receptors can be used as a post-surgery treatment (adjuvant 

therapy). Hormonal therapy involves the administration of anti-estrogen therapy to 

patients both as adjuvant therapy or to those with metastatic disease. Post-menopausal 

women with hormone-dependent breast cancers are usually treated with aromatase 

inhibitors, which prevent the enzyme aromatase from converting androgen to estrogen. 

Targeted therapy is an approach that aims to treat particular molecular targets within the 

tumor without causing harm to normal cells. Monoclonal antibodies, such as 

trastuzumab or pertuzumab to cancer cells combined with chemotherapy and tyrosine 

kinase inhibitors (lapatinib for HER2 positive subtypes or PARP inhibitors for triple 

negative cancers) are used as part of targeted therapy, where specific molecules are used 

to block or inhibit growth factor receptors on breast tumor cells (Dixon, 2006).  

1.11 Theories related to the cellular origin of cancer 

Cancer is caused due to the accumulation of genetic mutations affecting the signalling 

pathways that are associated with self-renewal, proliferation and apoptosis in normal 

cells (Al-Hajj et al., 2004; Britton et al., 2011)  Although many of these mutations have 

been successfully identified, the origin and differentiation status of the cell populations 

responsible for these transforming events have not yet been elucidated for most human 

cancer types (Polyak and Hahn, 2006). Two models have been suggested to explain the 

cellular origin of cancer:  

1) The Stochastic Theory; which claims that every single cell can potentially become 

cancerous in the appropriate microenvironment (Dick, 2003). Given the clonality of 

tumors, cells can be induced to undergo malignant transformation by acquiring different 

combinations of mutations. This results in the generation of tumours consisting of 

heterogeneous cell populations with a variable degree of differentiation and proliferative 

potential. Differentiated cells have a shorter life span and they rarely proliferate, 

therefore they are unlikely to accumulate a sufficient number of mutations in order to 

become neoplastic. (Polyak and Hahn, 2006). In addition, the use of cancer cell lines or 

patient-derived cells in culture requires a large number of cells in order to form tumours 
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in most experimental or even xenograft models leading to very low efficiency (Masters, 

2000; Al-Hajj et al., 2003). 

2) The Hierarchy (Cancer Stem Cell) Theory; which supports the hypothesis that CSCs 

are more likely to generate a tumour, because of the fact that they have a longer life 

span and ability to self-renew. This means that CSCs asymmetrically divide resulting in 

one daughter cell that retains its stem cell properties and one committed progenitor. 

Consequently, fewer mutations are required for neoplastic transformation (Waterworth, 

2004). Cohnheim was the first to introduce the concept of CSCs in 1875, suggesting 

that tumor formation is caused by stem cells that are misplaced during embryonic 

development (Cohnheim, 1875). Furthermore, many signalling pathways that regulate 

normal stem cell function have been found to be mutated in human cancers, including 

the Wnt, Notch, Bmi-1, TGF-β, Hedgehog and others. CSCs (Crowe et al., 2004; 

Polyak and Hahn, 2006) are also good candidates for tumor formation due to their 

relationship with their microenvironment, known as the stem cell niche (Spradling et 

al., 2001).  

Although there is an increasing number of studies that focus on the role of CSCs in 

cancer, their origin remains poorly understood. It is believed that CSCs presumably 

arise either from the de-differentiation of differentiated cells or from the acquisition of 

mutations in normal stem cells. However, the exact molecular mechanisms that are 

involved in these processes have not been completely defined. This is of great clinical 

importance, given that conventional chemotherapy targets the bulk of the tumor cells 

but fails to target slow cycling cells, such as CSCs (Reya et al., 2001) (Figure 1.3). 

Therefore, the identification and targeting of CSCs could enable the more effective 

prevention and management of metastasis and drug resistance in cancer.  

 

Figure 1.3: The cancer stem cell theory and its relationship with treatment failure. Most 

current therapies aim to target the bulk of the tumor cells leaving the CSC populations 
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intact. If CSCs can be targeted more effectively tumours could eventually degenerate , 

since these are thought to be responsible for tumor recurrence (Reya et al., 2001).  

 

1.12 Evidence for the existence and methods for identification of breast cancer 

stem cells (BCSCs)  

In recent years it has been suggested that metastasis occurs early in primary tumor 

development (Gunasinghe et al., 2012). In breast cancer, BCSCs can be isolated using 

several methods (Gangopadhyay et al., 2013). One of these methods is testing the 

mammosphere forming ability of single cells in non-adherent culture conditions (Dontu 

and Wicha, 2005). These have been found to promote tumorigenesis in 

immunodeficient mice. They are thought to contain tumor-initiating cells, including 

BCSCs and thus they are used to test self-renewal capacity (Ponti et al., 2005). The 

identification of BCSCs can also be based on the use of specific markers, such as CD44, 

CD24, CD49f and ALDH1. Cells expressing these markers are sorted and used for 

further analysis  of their clonogenicity, proliferation, self-renewal capacity, 

differentiation and tumorigenic ability (Britton et al., 2011) In fact, cells that expressed 

high levels of CD44 and low levels of CD24 were found to be present in eight out of 

nine patients with breast cancer. The tumorigenic ability of these CD44+/CD24- cells 

was demonstrated in immunocompromised mice in which a few cells were sufficient to 

form new tumors, while a high number of cells with alternative profiles failed to do so. 

Al-Hajj et al. also showed that CD44+/CD24- cells were able to give rise to new 

tumorigenic and non tumorigenic cells (Al-Hajj et al., 2004). 

Aldehyde dehydrogenase 1 (ALDH1) is an enzyme responsible for the oxidation of 

intracellular aldehydes. It has been suggested that it is involved in self-renewal of cells 

at early differentiation stages by oxidizing retinol and thus converting it to retinoic acid 

(Duester, 2000). Moreover, ALDH1 activity has been identified in murine and human 

hematopoietic and neural stem cells, suggesting it has a role in stem cell function 

(Armstrong et al., 2004). ALDH1 expression has been detected in both normal and 

cancer human mammary stem cells (Ginestier et al., 2007). While ALDH1+ tumor cells 

derived from human breast cancer cell lines have a higher ability for mammosphere 

formation in culture and increased tumorigenicity in vivo compared to ALDH1- cells 

(Deng et al., 2010).  

ALDH1 has been reported to be inversely correlated with the survival rate of breast 

cancer patients. Interestingly, CD44+/CD24-/ALDH1+ cells have also been found to be 
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more tumorigenic than CD44+/CD24- cells (Ginestier et al., 2007). However, a recent 

study aimed at revealing the distribution of CSCs markers in different breast cancer 

subtypes suggested that ALDH1 was present in a low number of patients, but was 

significantly associated with basal-like tumors, high tumor grade but not with poor 

clinical outcome as suggested in previous studies. The authors also indicated that 

luminal breast cancer cell lines are enriched with CD44-/CD24+ cells, 

basal/mesenchymal with CD44+/CD24- and basal/epithelial with CD44+/CD24+  

(Ricardo et al., 2011). Zhu and co-workers proposed that BCSCs can also be sorted 

based on the CD44+/CD24-/EpCAM+ phenotype (Zhu et al., 2012).  

Additionally, several functional assays have been used for identifying the properties of 

putative BCSC populations. One of these approaches utilizes their ability to retain 

bromodeoxyuridine or H3-thymidine for a longer time compared to cycling cells, since 

BCSCs are slow cycling cells that remain inactive in the G0 phase (Kenney et al., 2001; 

Smith, 2005). Another method involves the use of the lipophilic dye, PKH26 and it is 

also based on the quiescence of BCSCs (Pece et al., 2010). Moreover, ALDH1+ cells 

can be detected by their high aldehyde dehydrogenase activity using the ALDEFLUOR 

assay (Ginestier et al., 2007). Finally, SP cells are sorted due to their property to export 

the Hoechst 33342 dye resulting in a less intensively stained population, as described in 

more detail in the following sections (Goodell et al., 1996). 

1.13 ATP-binding cassette (ABC) transporters: structure and normal function 

The ABC superfamily is one of the largest families of proteins encoded in the human 

genome. All members of this family are characterised with two distinct domains: the 

hydrophobic transmembrane domain (TMD) or the membrane-spanning domain (MSD) 

and the nucleoside-binding domain (NBD). Although ABC transporters differ in the 

arrangement of these domains, a common ABC transporter contains two MSDs and two 

NBDs (e.g the MDR P-gp protein, ABCB1 transporter). However, some others have 

only one MSD and one NBD (e.g BCRP, ABCG2) or three MSDs and two NBDs (e.g 

MRP2, ABCC2). TMDs are composed of alpha helices and most ABC transporters have 

12 alpha helices (6 per monomer). ABC transporters also have a highly conserved 

cytoplasmic ATP-binding cassette (ABC) sequence motif consisting of the Walker A 

and B sequences, which are common in all ABC transporters and a C upstream of the B 

sequence, which is specific for each member of the family (Toyoda et al., 2008). Two 

NBDs can be joined via binding to ATP, which causes conformational changes, and the 

reversal of these can allow the transporters to efflux substrates by utilizing ATP 
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hydrolysis (Figure 1.4). There are 48 characterized ABC transporter genes in the human 

genome, which are responsible for several functions in normal tissue. Of note, genetic 

disorders in 18 of them are linked with Mendelian diseases, such as cystic fibrosis 

caused by a mutation in the ABCC7/CFTR gene and adrenoleukodystrophy, caused by 

mutations in ABCD1 (Dean, 2009). Several ABC transporters are distributed in tissues 

all over the human body contributing to the protection of these tissue cells from 

xenobiotics. These transporters are normally expressed at essential pharmacological 

barriers, such as the brush border membrane of intestinal cells or the epithelium that 

contributes to the blood–brain barrier (BBB) (Gottesman et al., 2009).  

 

 

 

Figure 1.4: Structure of the ABCB1, ABCC1 and ABCG2 transporters. Transmembrane 

Domain: TMD, Nucleoside-Binding Domain (NBD), L0: linker region between TMD0 

and TMD1 in ABCC1 (Szakács et al., 2008).  

 

 

 

 



16 
 

1.13.1 ABC transporter expression in normal stem cells 

It has been reported that many stem cell populations are characterized by the expression 

of high levels of ABC transporters. In fact, it has been found that hematopoietic stem 

cells highly express ABCG2 and/or ABCB1, but they stop expressing these once they 

become differentiated (Gottesman et al., 2002; Kim et al., 2002b; Scharenberg et al., 

2002). However, the expression of ABC transporters does not seem to be essential for 

the survival, growth and maintenance of stem cells, since gene silencing of ABCG2, 

ABCB1 and ABCC1 has not affected the viability and fertility of mice and their stem 

cell populations (Zhou et al., 2002; Jonker et al., 2005). Nevertheless, these mice had 

increased sensitivity to certain substances, including vinblastine, ivermectin, topotecan 

and mitoxantrone, suggesting the loss of these transporters results in the loss of 

protection they provide against toxins and xenobiotics (Schinkel et al., 1994).  

1.13.2 Contribution of ABC transporter expression to the SP phenotype 

SP cells, which have been found to express high levels of ABC transporters, can be 

sorted due to their ability to expel Hoechst 33342 dye, which binds to AT-rich regions 

in the minor groove of the DNA. The Hoechst fluorescence intensity is indicative of the 

DNA content, chromatin structure and cell cycle stage. Additionally, it has been 

reported that less differentiated cells have a higher Hoechst efflux activity (Goodell et 

al., 1996). The term SP is based on the observation, that these cells appear as the less 

intensively stained population in flow cytometry analysis to one side on a density plot 

(Golebiewska et al., 2011).  

The mechanism by which Hoechst is transported has been controversial. It has been 

thought that this is achieved through both ABCB1 and ABCG2, since SP populations 

seem to disappear when verapamil is used to block their activity (Golebiewska et al., 

2011). It should be noted that verapamil is a calcium channel inhibitor that binds with a 

higher affinity to ABCB1, while it is considered less specific for the inhibition of 

ABCG2 (Britton et al., 2012). In 2001 Zhou et al demonstrated that ABCB1 only 

partially contributes to the SP phenotype in bone marrow cells, while ABCG2 

expression is directly associated and can be considered the only essential molecular 

determinant for this (Zhou et al., 2001) Additionally, it has been shown that ABCG2-

null mice were characterized with the presence of reduced hematopoietic SP numbers 

compared to the wild-type mice, while these were also more sensitive to mitoxantrone 

(Zhou et al., 2002). The SP assay is useful for the identification of stem/progenitor cells 

in several tissues, especially when there is lack of cell surface markers for serving this 



17 
 

purpose. However, it should be noted that although the SP population is enriched with 

stem cells, the SP phenotype is not exclusive to stem cells and the expression of ABC 

transporters is not limited to the stem cell compartment in most tissues (Golebiewska et 

al., 2011) 

1.13.3 ABC transporter expression and the presence of SP cells in normal breast 

tissue 

It has been reported that ABCG2 is expressed in the mammary gland and during 

lactation in particular. In fact, an estrogen responsive element is present in the ABCG2 

promoter (Ee et al., 2004). What is more, ABCG2 expression in the breast is thought to 

be involved in the secretion of riboflavin (van Herwaarden et al., 2007), while several 

other ABC transporters participate in the lipid and cholesterol transportation during 

lactation as well (Farke et al., 2008). However, knockdown of 

ABCG2/ABCB1A/ABCB1B in mice resulted in the loss of murine mammary gland SP 

cells, suggesting that the SP phenotype can be attributed to the expression of other 

transporters apart from ABCG2 (Jonker et al., 2005). SP cells have been isolated from 

both murine and human breast tissue (Alvi et al., 2002; Clayton et al., 2004).  It remains 

questionable whether SP cells on the mammary gland are considered a stem cell 

population or a more-restricted progenitor cell population. Nevertheless, human 

mammary gland cells have been shown to give rise to both luminal and myoepithelial 

lineages (Clayton et al., 2004), which were able to form branching structures in matrigel 

and had a high mammosphere forming capacity in vitro (Clarke, 2005; Clarke et al., 

2005).  

1.13.4 ABC transporter expression in CSCs 

CSCs are resistant to chemotherapy partially due to the high expression of ABC 

transporters. It has been suggested that they can lead to MDR tumors by generating 

more cells with these properties (Dean et al., 2005). The ability of SP cells to efflux the 

Hoechst dye could explain their ability to also export cytotoxic drugs contributing to 

MDR. Patrawala and colleagues reported that 30% of human cancer cells and xenograft 

tumors have an SP population (Patrawala et al., 2005) and several studies aimed to 

investigate their properties in comparison to the NSP population (NSP, the bulk cells 

minus the SP cell population) (Britton et al., 2011). SP cells found in cancer cell lines 

have also found to have self-renewal (Szotek et al., 2006) and asymmetric division 

(Patrawala et al., 2005; Szotek et al., 2006; Ho et al., 2007) properties and express stem 

cell markers, such as Notch1 and Bmi-1 (Hirschmann-Jax et al., 2004; Patrawala et al., 
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2005; Ho et al., 2007). Intriguingly, SP cells were also shown to be chemoresistant 

(Hirschmann-Jax et al., 2004; Szotek et al., 2006; Ho et al., 2007), radioresistant (Wang 

et al., 2007a; Woodward et al., 2007) and have a higher invasive potential in vitro  

(Fuchs et al., 2009) and increased metastatic potential in vivo (Steiniger et al., 2008; 

Nishii et al., 2009). 

1.13.5 ABC transporter expression and the presence of SP cells in breast cancer cell 

lines 

The role of ABC transporters in the existence of SP cells has been investigated for many 

breast cancer cell lines. In many studies ABCG2 expression was found to be 

significantly increased in the SP compared to NSP counterpart (Zhou et al., 2002; 

Patrawala et al., 2005; Steiniger et al., 2008). SP cells were also shown to be more 

resistant to chemotherapeutic agents (Steiniger et al., 2008; Yin et al., 2008) such as 

mitoxantrone and carboplatin and they also seem to be radioresistant (Woodward et al., 

2007). All these properties of SP cells would support the idea that they might contribute 

to MDR and thus they could be good targets for the management of breast cancer. In the 

MCF-7 cell line, the use of Fumitremorgin C (FTC), a specific inhibitor of ABCG2, 

resulted in the depletion of the SP population and the same effect was observed with the 

use of siRNA inhibitors for ABCG2. These isolated SP cells were able to 

asymmetrically divide and give rise to both SP and NSP cells and they formed new 

tumors when injected in the mouse mammary gland (Rabindran et al., 2000).  

Moreover, the SP cells in breast cancer cell lines that were predominantly 

ER+/PR+/HER2+ were found to be present at a higher percentage and they were 

characterized with a higher colony forming efficiency in vitro, in comparison to the 

Basal A and B subtypes. HER2 expression was also significantly associated with the SP 

presence, since cell lines induced to express HER2 had an increased SP percentage. 

Notably, treatment with the HER2 inhibitors, tyrophostin AG825 and trastuzumab, 

promoted the reduction of the SP numbers and decreased tumor growth in vivo 

(Nakanishi et al., 2010). 

There are conflicting data regarding the presence of SP cells in the MDA-MB-231 cell 

line. To be more specific, many studies have reported that although there is high 

expression of ABCG2 in these cells, but they do not contain SP cells (Patrawala et al., 

2005; Christgen et al., 2007; Yin et al., 2008; Golebiewska et al., 2011). However, 

Britton et al recently showed that SP cells can be isolated from both MDA-MB-231 and 
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MCF-7 cell lines and both SP populations had a higher ABCG2 mRNA expression level 

than the NSP cells. Conversely, ABCG2 protein expression was only higher in the 

MCF-7 SP cells and this was thought to result in a greater resistance to mitoxantrone 

than that of the MCF7 NSP, whereas no significant difference was observed in either 

population of the MDA-MB-231 cells (Britton et al., 2012). In addition, SP cells 

isolated from the MDA-MB-231 did not have an increased invasive potential at one of 

the most common metastatic sites of breast cancer, the bone (Hiraga et al., 2011).  

1.13.6 ABC transporter expression and the presence of SP cells in breast cancer 

patients 

Although the presence of SP cells has been identified in various breast cancer subtypes 

(Christgen et al., 2007), Clarke et al. demonstrated that SP cells in normal breast tissue 

are ER-positive (Clarke, 2005). As a consequence, it has been suggested that SP cells 

can mainly be found in luminal breast cancer patients (Nakshatri et al., 2009). The SP 

prevalence has been detected in clinical breast specimens derived from luminal breast 

cancer patients (Nakanishi et al., 2010). Based on the clinical data and on the findings 

on breast cancer cell lines mentioned in the previous section, the authors concluded that 

HER2 signalling is essential for the regulation of the SP population in HER2+ breast 

cancer patients leading to the formation of aggressive and chemoresistant tumors 

(Nakanishi et al., 2010).  

However, in a more recent study Britton and colleagues also detected a high prevalence 

of SP in most Fine Needle Aspirates (FNAs) from patients with ER-negative or triple 

negative breast cancer subtypes and elevated protein expression of ABCG2 was 

significantly correlated with these cases by using IHC approaches. On the other hand, in 

some cases both ABCG2 and ABCB1 transcripts were detected in SP populations 

isolated from these patients, indicating that ABCG2 expression alone could not be used 

as a marker for the identification of SP cells in breast cancer. Patients with triple 

negative breast cancer have poorer prognosis outcomes and therefore they do not 

respond effectively to particular therapeutic approaches, such as endocrine therapy. The 

presence of SP cells in these individuals could be indicative of their clinical condition 

and would represent a robust target for treatment (Britton et al., 2012).   
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1.14 EMT in normal embryonic development and oncogenesis 

In all complex organisms there is a distinction between epithelial and mesenchymal 

cells. These different cell phenotypes arise early in normal development and 

organogenesis and their role is equally essential for these processes. Epithelial cells 

provide cell-cell adhesion contacts and they are attached to the basement membrane. 

Thus, they create an important barrier for the appropriate regulation of the internal 

environment. On the other hand, mesenchymal cells are motile and also responsible for 

supporting the structure of epithelial cells mostly by producing components of the 

extracellular matrix (ECM). However, the action of these cell phenotypes is not static, 

which means that they convert from one phenotype to the other depending on external 

or internal signals. This dynamic conversion is termed EMT and the reverse process is 

Mesenchymal-Epithelial Transition (MET). In EMT the epithelial cells lose their 

epithelial characteristics and acquire more mesenchymal properties by cytoskeleton 

rearrangements and alterations in adhesion, cellular structure and morphology. In fact, 

cell surface proteins, such as E-cadherin or integrins are replaced by mesenchymal 

markers, such as N-cadherin, vimentin or fibronectin. This leads to the detachment of 

epithelial cells from the basal membrane and these are then more capable of migrating 

to other sites (Micalizzi et al., 2010). EMT mediates many early events during 

embryogenesis, such as gastrulation (Solnica-Krezel, 2005), neural crest formation 

(Tucker, 2004), palatogenesis (Nawshad et al., 2004), heart valve formation (Mercado-

Pimentel and Runyan, 2007), nephrogenesis (Chaffer et al., 2007) and myogenesis 

(López‐Novoa and Nieto, 2009). It is also known to contribute to wound healing and 

regeneration by providing cellular flexibility (Shook  and Keller, 2003; Choi and Diehl, 

2009). 

In addition to the role of EMT in normal embryonic development, it is also involved in 

pathological conditions, such as fibrosis and cancer metastasis (López‐Novoa and Nieto, 

2009). In epithelial cancers, including breast cancer, metastasis is thought to occur by 

EMT. During this process, the epithelial cells lose their epithelial characteristics and 

acquire more mesenchymal properties as described above.  As a result, epithelial cells 

are detached from the basal membrane and they are then more capable of migrating to 

other sites or they become more invasive and enter the blood and lymphatic systems 

(Britton et al., 2011) (Figure 1.5). 
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1.14.1 EMT as a physiological process in normal mammary development 

There are three stages of human mammary gland formation; a) the embryonic stage 

when the basic structure is developed b) the pubertal stage at which the ducts elongate 

and branch through the mammary fat pad to form TEBs and c) the pregnancy stage that 

is characterized by alveolar differentiation and tertiary ductal branching in preparation 

for lactation. TEBs are composed of many epithelial layers and they are located in the 

end of the ducts. Their differentiation results in the development of the ducts, which 

consist of both luminal epithelial and myoepithelial cells. Besides, cap cells at the end 

of TEBs also contribute to epithelial plasticity in normal conditions. However, these 

cells display features of epithelial plasticity, without losing their cell-cell contacts, but 

by losing their apico-basal polarity (Ewald et al., 2008). In addition, TEB cells exhibit 

changes in their interaction with the ECM as shown by the secretion of extracellular 

proteases and the expression of a different panel of integrins and ECM receptors (Fata et 

al., 2004). In general, TEB cells do not undergo all the changes that are observed in a 

complete EMT, but they exhibit certain signs of epithelial plasticity (Micalizzi et al., 

2010). 

 

 

Figure 1.5: Schematic representation of the EMT and MET processes in cancer 

metastasis. Epithelial cells are detached from the primary tumor by losing their cell-cell 

contacts and acquiring a fibroblast-like morphology and a higher migratory potential. 

This allows them to enter the blood circulation and colonize at distant sites or organs. In 

order to form metastatic colonies the reverse process MET enables these cells to 

incorporate to the new tumor (Meng and Wu, 2012).  
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1.14.2 EMT in breast cancer progression and metastasis 

The epithelial plasticity and EMT can also facilitate the local migration of tumor cells at 

early stages of breast cancer and their invasion to distant sites during the metastatic 

disease (Guarino et al., 2007). Interestingly, EMT is thought to occur in a more local 

pattern rather than across the whole tumor (Carter et al., 2006). One of the limitations 

for identifying EMT features is that cells that have undergone this process might 

morphologically resemble fibroblasts. Furthermore, the fact that most metastatic sites in 

many cancers are characterized by the presence of cells with an epithelial structure has 

contributed to the notion that EMT does not contribute to tumor progression. 

Nevertheless, it has also been suggested that EMT can be reversed in cells that have 

metastasized and colonized at distant sites (Micalizzi et al., 2010) (Figure 1.6). 

Consistent with this hypothesis, cell fate mapping of epithelial tumor cells in the Whey 

Acidic Protein (WAP)-Myc transgenic mice has resulted in the conclusion that there is a 

direct relationship of EMT in the acquisition of an invasive phenotype in tumor cells in 

breast cancer (Trimboli et al., 2008). Certain breast cancer subtypes have been 

correlated with the existence of EMT. In fact, basal or triple negative breast cancer 

patients have been found to have a more aggressive phenotype and poorer clinical 

outcome (Carey et al., 2006). These patients and patients belonging to the claudin-low 

subtype have also been reported to express EMT markers, supporting the role of EMT 

in particular breast cancer patient subgroups, which can be reversible depending on 

signals from the local microenvironment (Sarrió et al., 2008; Hennessy et al., 2009).  

Another theory suggests that metastatic progression is a result of the co-operation of 

both EMT and non-EMT cells while each one of these populations alone is not 

sufficient to induce these effects (Tsuji et al., 2009). What is more, EMT is thought to 

occur not only in single tumor cells, but also in a group of tumor cells leading to 

collective migration, as seen in a breast cancer xenograft model (Alexander et al., 2008; 

Giampieri et al., 2009). Strikingly, collectively migrated cells have been shown to lead 

to lymphatic dissemination by inhibiting the TGF-β signalling pathway that is involved 

in the induction of EMT and migration of single cells in a rat breast cancer model 

(Giampieri et al., 2009).  

Furthermore, EMT has been linked to the emergence of cancer-initiating cells, which 

have stem cell properties, also known as CSCs. The exact molecular events by which 

this happens are not clearly understood, but it has been suggested that this can be caused 

by either the conversion of epithelial cells to a more mesenchymal phenotype or the de-

diferrentiation to a more progenitor or stem cell-like phenotype (Thomson et al., 2005; 
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Frederick et al., 2007). EMT also seems to contribute to drug resistance in the CSC 

populations and this explains the failure of existing chemotherapeutic therapies in 

basal/claudin-low breast cancer patients. The role of EMT in the BCSCs and drug 

resistance will be covered in more detail in following sections (Creighton et al., 2009; 

Gupta et al., 2009). Finally, EMT has also been found to directly suppress the immune 

system and therefore to impair the tumor surveillance mechanisms and promote the 

development of more aggressive and uncontrolled tumors (Kudo-Saito et al., 2009). 

 

 

Figure 1.6: EMT in normal mammary gland development and in breast cancer 

metastasis. Mammary gland development begins during embryogenesis resulting in the 

formation of the basic structures of the ductal system. During puberty, these structures 

elongate leading to the extension of the ductal tree, while differentiation of precursor 

cells in the TEB into the luminal and myoepithelial cells also occurs. During pregnancy, 

branching morphogenesis is completed in preparation for lactation. In breast cancer the 

inappropriate expression of genes involved in normal EMT leads to the generation of 

motile and metastatic breast cancer cells (Micalizzi et al., 2010). 

1.14.3 Molecular regulation of EMT  

The most critical and well studied EMT molecule is E-cadherin (CDH1). It belongs to 

the family of genes coding calcium dependent cell adhesion molecules (CAMs) and 
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plays an important role in the maintenance of epithelial tissues. Loss of E-cadherin 

expression is associated with increased invasiveness in cancer and is considered a 

hallmark in the process of EMT. It has also been shown that E-cadherin expression is 

re-established in cells that form secondary tumor colonies and undergo MET. A recent 

study demonstrated that the levels of E-cadherin were significantly higher in these cells 

compared to the cells from the primary tumor. Additionally, more than 50% of 

metastatic organs in breast ductal carcinoma showed increased expression of E-cadherin 

(Chao et al., 2012). The underlying mechanisms controlling E-cadherin re-expression 

are not clear, but it may occur at the metastatic sites if the appropriate 

microenvironment and signals are provided, so that the migrating tumor cells can 

connect and incorporate with the target organs. For instance, E-cadherin promoter 

methylation was reversed in some breast cancer cells when co-cultured with normal 

hepatocytes (Wells et al., 2008). 

The transcription factors Snail, Slug and Twist are known to regulate the down-

regulation of E-cadherin. In fact, Snail can bind with strong affinity to the E-boxes in 

the promoter of the E-cadherin gene and repress its expression (Batlle et al., 2000). It 

has also been shown that ectopic expression of Snail in different types of epithelial cells 

caused a mesenchymal-like phenotype and in these cells E-cadherin expression is 

significantly reduced. Furthermore, Snail expression is abundant in highly tumorigenic 

and invasive areas in both murine and human carcinomas, while it is very low or absent 

in non carcinogenic regions (Cano et al., 2000). Additionally, when Snail levels were 

estimated by immunohistochemical analysis in human breast cancer tissue, it was found 

that there was a significant correlation of elevated expression levels with infiltrating 

ductal carcinomas (IDCs) with a poor grade of differentiation, but that do not develop 

lymph node metastases. Therefore, Snail was suggested as a prognostic marker for the 

metastatic potential in breast cancer (Blanco et al., 2002). Microarray analysis of human 

breast cancer samples also revealed that Snail was overexpressed in patients who had 

decreased relapse-free survival (Moody et al., 2005). 

Slug has also been shown to directly repress E-cadherin in breast cancer cell lines. In 

fact, both Snail and Slug down-regulated the expression of wild-type E-cadherin genes, 

whereas they failed to do so when the E-cadherin gene contained mutated E-box 

elements (Hajra et al., 2002). High expression of Snail and Slug were inversely 

correlated with E-cadherin expression in a large number of cancerous cell lines, but the 

same was not observed in breast cancer samples. Both increased Slug and Snail levels 

were detected in breast tumors associated with lymph node metastases, but Slug was 
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also overexpressed in semi-differentiated tubules of ductal carcinoma (Côme et al., 

2006). 

Twist is a basic helix-loop-helix transcription factor expressed during embryonic 

development. It is also overexpressed in many cancers, including breast cancer. MCF-7 

cells overexpressing Twist exhibited loss of E-cadherin and gain of vimentin 

expression. These cells also acquired increased motility and invasive potential 

(Mironchik et al., 2005). Twist has been found to directly repress E-cadherin in a dose 

dependent manner. Increased expression of Twist and decreased expression of E-

cadherin have been associated with grade III tumors in human breast cancer (Vesuna et 

al., 2008). 

 

1.14.4 Other transcription factors involved in EMT 

The ZEB family of transcription factors consists of two members ZEB1 (or EF1) and 

ZEB2 (or SIP1). These are composed of two zinc finger domains located at their ends 

and a central homeodomain. The ZEB transcription factors bind to specific E-boxes in 

the E-cadherin promoter through the zinc-finger domains and they induce its down-

regulation leading to EMT (Comijn et al., 2001). 

The human Forkhead box (FOX) gene family of transcription factors is a large family of 

proteins consisting of more than 43 members.  These contain a 100 amino-acid long 

DNA binding domain, the forkhead box. Several members of the FOX family have been 

found to be involved in cancer progression, with FOXC2 first being reported to play a 

role in the induction of EMT and metastasis (Katoh and Katoh, 2004).  Additionally, 

FOXC1 has been shown to drive EMT in the MCF-12A cell line and its action has also 

been correlated with basal-like breast cancer (Bloushtain-Qimron et al., 2008). What is 

more, FOXQ1 also seems to promote, while FOXA2 has been found to inhibit the EMT 

process (Feuerborn et al., 2011).  

The Kruppel-like factors (KLF) also contain zinc-finger domains through which they 

regulate several cellular functions, such as proliferation, differentiation and apoptosis. 

For instance, transfection of 4T1 orthotopic mammary cancer cells with KLF4 led to the 

significant attenuation of primary tumor formation and micrometastases to the lungs and 

liver and it was accompanied with a decrease of the Snail levels (Yori et al., 2010). 

KLF17 has also been suggested as a suppressor of EMT in breast cancer, whereas KLF8   

has been shown to promote EMT by regulating MMP-9 and E-cadherin (Wang et al., 
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2007b). KLF6 is also thought to take part in the TGF-β driven EMT of proximal tubule 

cells (Holian et al., 2008).  

1.14.5 Developmental EMT signalling pathways de-regulated in breast cancer 

EMT that participates in normal development has been better characterized; however, 

the pathological EMT mechanisms have not been clearly defined. Overall, EMT has 

been divided into three categories; Type I: developmental EMT, Type II: fibrosis and 

wound healing-related EMT and Type III: cancer EMT (Kalluri and Weinberg, 2009). 

Interestingly, oncogenic EMT is thought to occur due to the abnormal activation of 

developmental EMT (Micalizzi et al., 2010). In line with this hypothesis, several EMT 

regulators have been found to be inappropriately expressed in human cancers leading to 

less coordinated features than the ones seen in developmental EMT (Gavert and Ben-

Ze’ev, 2008). As a consequence, EMT is believed to drive cancer progression, as it has 

been associated with poor patient outcomes and increased tumor aggressiveness (Prasad 

et al., 2009; Logullo et al., 2010). It has also been suggested that all the oncogenic 

effects of EMT are linked with its involvement in the signalling pathways that regulate 

the self-renewal of CSCs, as described in more detail below. Defining the molecular 

mechanisms that are involved in cancer EMT is challenging, since it can result from 

unpredictable genetic abnormalities or changes in the microenvironment and it can be 

limited to a certain number of cells at any one time (Micalizzi et al., 2010). 

1.14.6 The TGF-β signalling pathway  

TGF-β is thought to play an essential role in the induction of EMT not only during 

embryogenesis, but also during cancer progression. TGF-β has a direct effect on EMT 

by down-regulating epithelial markers and by up-regulating mesenchymal markers 

(Micalizzi et al., 2010). It has also been shown to regulate the differentiation and 

proliferation of both normal mammary and cancer stem cells (Mani et al., 2008; Scheel 

et al., 2011). TGF-β can also activate additional molecules, such as MAPK, PI3K or 

GTPases belonging to the Rho family of proteins (Moustakas and Heldin, 2007).  The 

TGF-β action is mediated upon its binding to the TGF-βR I and TGF-βR II receptors 

which have a serine/threonine kinase activity. These can phospholyrate downstream 

cytoplasmic molecules e.g., Smad 2 and 3 and activate them. Phosphorylated Smad 2 

and 3 (p-smad 2/3) can in turn bind to Smad 4 and enter the nucleus, where they form 

complexes with other factors and promote the expression of several target genes related 

to proliferation, differentiation, apoptosis and cell migration (Figure 1.7). The TGF-β 
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cascade can also be smad-independent, but its role in  stem cell regulation has not yet 

been clarified (Sakaki-Yumoto et al., 2013).  

Although, TGF-β has tumor promoting effects in almost all types of cancer, in some 

types, including breast cancer, it seems to have a dual role. It acts as a tumor suppressor 

at early stages, whereas at later stages of the disease it drives invasion and metastasis. 

Tumor suppression activity can be seen in breast cancer due to the presence of particular 

mutations at genes encoding either TGF-β receptors or the three Smad molecules that 

participate in the TGF-β signalling pathway. For instance, abnormal signalling is found 

in advanced breast cancers because of point mutations in the kinase domain of TGF-β I 

or II receptor (Pardali and Moustakas, 2007). Additionally, several reports have 

associated the elevated expression of ΤGF-β isoforms with poor patient outcomes in 

breast cancer (Ghellal et al., 2000; Mu et al., 2008).  

Despite the number of reports indicating that TGF-β signalling is responsible for the 

enhancement of the CSC phenotype and its role in the induction of oncogenesis (Mani 

et al., 2008; Hollier et al., 2013), TGF-β has also been shown to reduce the number of 

CSCs and inhibit tumor formation (Tang et al., 2007; Yin et al., 2008). In fact, the link 

of BCSCs to EMT and metastasis has been recently reviewed (Mallini et al., 2014). 

First of all, Mani et al. induced EMT in a non tumorigenic, immortalized human 

mammary epithelial cell line (HMLE) by introducing either the Twist or Snail gene or 

by exposing these cells to TGF-β. All these approaches resulted in the generation of 

CD44+/CD24- cells with increased mammosphere forming efficiency and self-renewal 

capacity. Conversely, CD44-/CD24+ cells were not able to generate CD44+/CD24- 

cells, confirming that the latter have a stem cell-like phenotype (Mani et al., 2008).  

Additionally, Shipitsin et al. examined the molecular profiles of CD44+ and CD24+ 

cells derived from normal and breast cancer tissue and reported that there was up-

regulation of the TGF-β signalling pathway in CD44+ cells with a high expression of 

TGF-β1 and one of its receptors TGF-βR II compared to the CD24+ cells, while the 

TGF-βR II gene was hypermethylated in CD24+ cells, explaining its low levels of 

expression in these cells. Interestingly, these results were reversed upon the addition of 

a TGFβ-R inhibitor in CD44+ cells which became more epithelial-like (Shipitsin et al., 

2007). Genome-wide transcriptional profiling of breast cancer cell lines revealed that 

the ‘Basal B’/mesenchymal cells have a more enhanced invasive potential, in 

comparison to ‘Luminal’ or mixed basal/luminal (‘Basal A’) features (Neve et al., 

2006). Additionally, Basal B cells are mostly correlated with a CD44+/CD24- 

phenotype while differences in expression of 299 genes were found between 
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CD44+/CD24- and CD44-/CD24+ cells. This means that the Basal B subtype might be 

stem-cell driven. Ideally, the molecular characterization of BCSCs could enable the 

identification of new genes that can be targeted in patients with this particular subtype 

(Blick et al., 2010).  

Furthermore, induced expression of Twist2 in the immortalized and naturally non-

transformed mammary epithelial MCF-10A cell line led to a fibroblast-like morphology 

and changes in expression patterns of epithelial and mesenchymal markers (down-

regulation of epithelial markers and up-regulation of mesenchymal markers). The 

migratory ability of both MCF-7/Twist2 and MCF-10A/Twist2 expressing cells was 

assessed by using wound healing assays and was significantly increased compared to 

controls (cells that were transfected only with the vector without the Twist2 gene). The 

tumorigenicity of the Twist-2-expressing cells was also enhanced compared to the 

control leading to the formation of large tumors after injection into nude mice. In 

addition, an increased number of CD44+/CD24- cells were identified and it was 

suggested that Twist2 not only promotes the EMT programme, but also generates cells 

with stem cell-like properties (Fang et al., 2011).  

It has also been reported that Twist directly regulates the transcription of CD24 in the 

breast cancer cell lines MCF-7 and MCF-10A. Following transfection with Twist, the 

cells were characterized as having a CD44+/CD24- profile, increased ALDH1 activity 

and increased export of Hoechst 33342 and Rhodamine 123 dyes due to high ABCC1 

expression. Also, only 20 cells of this subpopulation were enough to promote new 

tumor formation in the mammary fat pads of immunodeficient mice. All these effects 

were reversed when Twist was silenced by the use of short hairpin RNA in MCF-7 and 

MCF-10A cells overexpressing Twist (Vesuna et al., 2009).  

Another study aimed at investigating the effect of silencing of FOXC2 in HMLE cells 

that were driven to EMT by overexpression of Snail, Twist or TGF-β1. This resulted in 

the production of cells with epithelial-like characteristics, reduction of CD44+/CD24- 

cells and a significant decrease in their mammosphere formation ability. Conversely, the 

opposite properties were seen in FOXC2 overexpressing cells that displayed increased 

drug resistance and tumor initiation ability, leading to the suggestion that FOXC2 is 

sufficient to induce BCSCs generation (Hollier et al., 2013). 

The gene expression patterns of CD44+/CD24- and CD44-/CD24+ cell populations of 

the basal cell phenotype MCF-10A cell line have been investigated. 32 genes were 

found to be differentially expressed in the two subpopulations and most importantly 

Slug overexpression was reported to increase the number of CD44+/CD24- cells. 
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However, overexpression of Slug in the luminal type breast cancer cell line MCF-7 

could only give rise to CD44+/CD24+ cells, suggesting that Slug can only induce the 

generation of this phenotype in basal cell types and presumably basal types of breast 

cancer (Bhat-Nakshatri et al., 2010). Moreover, treatment of H-Ras-V12 transfected 

HMLE cells with TGF-β resulted in the emergence of CD24- from CD24+ cells, while 

the opposite was not shown, suggesting that there is a cooperative effect of the TGF-β 

and the Ras-MAPK signalling pathways on promoting the generation of BCSCs (Morel 

et al., 2008).  

On the other hand, TGF-β treatment was found to decrease the percentage of the SP 

cells of the MCF10A cell line, by down-regulating Id1, which is involved in self-

renewal and prevents differentiation in many types of tissue (Perk et al., 2005). 

Similarly, Yin and colleagues also demonstrated the negative regulatory effect of TGF-

β on the SP population of the MCF-7 breast cancer cell line (Yin et al., 2008). Taken 

together, TGF-β seems to also inhibit tumor growth by inducing the differentiation of 

CSCs. These findings indicate the complex roles of TGF-β in the regulation of CSCs 

and contrasting effects of TGF-β on CSC populations depending on tumor type. The 

elucidation of the TGF-β mechanisms that are involved in the CSC function are of great 

scientific and clinical importance.  

             

Figure 1.7: Schematic 

representation of the smad-

dependent TGF-β signalling 

pathway. Upon binding of TGF-

β to the TGF-βR I and TGF-βR 

II receptors, receptor-regulated 

smads (known as R-smads), 

including smad 2 and 3 are 

phosphorylated through the 

receptors’ serine/threonine 

kinase activity. p-smad 2/3 can 

then bind to Smad 4 and enter 

the nucleus, where in 

association with other factors 

they promote the expression of 

several target genes related to 

EMT (Izzi and Attisano, 2004). 
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1.14.7 The Wnt signalling pathway 

The Wnt signalling pathway plays a pivotal role at different stages of the normal 

mammary gland development including the mammary duct formation during 

embryogenesis and the alveolar differentiation and duct branching during pregnancy. It 

is also known to regulate cell fate determination and maintenance of the progenitor cell 

populations in their stem cell state (Brennan and Brown, 2004). The main molecule in 

the Wnt pathway is β-catenin whose cellular localization determines the effects of the 

pathway. In fact, when it is located in the cell membrane it is connected with E-cadherin 

and provides tight contacts between epithelial cells. Alternatively, when β-catenin 

accumulates in the cytoplasm it translocates into the nucleus where it activates the 

transcription of the Wnt target genes, such as c-Jun, c-Myc, fibronectin and Cyclin D 

(Kalluri and Weinberg, 2009). 

When the Wnt ligand is absent, the cytoplasmic β-catenin protein is degraded by the  

Axin complex, consisting of the scaffolding protein Axin, the tumor suppressor 

adenomatous polyposis coli gene product (APC), casein kinase 1 (CK1), and glycogen 

synthase kinase 3 (GSK3). CK1 and GSK3 are responsible for the phosphorylation of β-

catenin, leading to its ubiquitination by β-Trcp and protein degradation. Therefore, β-

catenin fails to reach the nucleus and induce the expression of the Wnt target genes, 

which are repressed by the DNA-bound T cell factor/lymphoid enhancer factor 

(TCF/LEF) family of proteins. Upon binding of the Wnt ligand to a seven-pass 

transmembrane Frizzled (Fz) receptor and its co-receptor, low-density lipoprotein 

receptor related protein 6 (LRP6) or its homolog LRP5 promotes the recruitment of the 

scaffolding protein Dishevelled (Dvl) and leads to LRP6 phosphorylation and 

activation. These molecular events bring the Axin complex in close proximity to the 

receptors and block the Axin-driven β-catenin phosphorylation resulting in the 

stabilization of β-catenin and its nuclear translocation (MacDonald et al., 2009).   

Deficiency of any of the Wnt signalling components, including the inactivation of the 

Axin complex, mutations in β-catenin or in the tumor suppression gene Wnt5 might be 

involved in the abnormally regulated self-renewal of normal stem cells, leading to the 

generation of CSCs  (Howe and Brown, 2003). Additionally, WNT1 has been identified 

as an oncogene whose activation leads to the transformation of mouse mammary cells 

(Harada et al., 1999). Notably, no mutations have been found in breast cancer, but since 

active Wnt signalling has been detected in breast cancer specimens from patients with 

poor prognosis (Prasad et al., 2009; Logullo et al., 2010), research has focused on the 
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epigenetic alterations that might affect the normal pathway action (Gangopadhyay et al., 

2013).  

Furthermore, activation of the Wnt pathway has led to the induction of EMT in various 

in vitro models, including mammary epithelial and carcinoma cells lines (Kim et al., 

2002a; Yook et al., 2006). Wnt activity has also been shown to regulate the mammary 

stem cells at the basal layer of the mammary ducts. It has also been demonstrated that 

treatment of mammary stem cells with the Wnt3 protein enhanced their colony 

formation capacity in vitro, which exhibited high mammary gland formation efficiency 

(Zeng and Nusse, 2010). Interestingly, MMTV-WNT1 mice were characterized with a 

significantly higher proportion of mammary stem cells, supporting the involvement of 

the Wnt pathway in the BCSC function (Shackleton et al., 2006).  

1.14.8 The Notch signalling pathway 

Notch signalling is involved in cell fate determination and it is mediated through Notch 

receptors (Notch 1-4) and 5 ligands (Jagged-1 and 2 and Delta-like (Dll)-1, -3, -4). The 

pathway activation is initiated when cells expressing the receptor interact with 

neighbouring cells secreting the ligand and this in turn leads to the cleavage of the 

intracellular domain of the receptor by the γ-secretase complex. This domain then 

translocates into the nucleus where it promotes the transcriptional activation of the 

Notch target genes, belonging to the Hes and Hey families of transcription factors 

which are responsible for the prevention of cell differentiation and maintenance of a 

stem cell state (Miele, 2006).  

Notch signalling is essential in mammary gland development where it acts as a regulator 

of stem cell self-renewal and differentiation. Interestingly, Notch activation has been 

shown to contribute to the regulation of asymmetric division in mammospheres at early 

developmental stages, while at later stages it promotes the generation of myoepithelial 

cells from progenitor cells, which facilitates branching morphogenesis. Additionally, it 

has been concluded that de-regulation of these processes might lead to aberrant self-

renewal in normal breast stem cells, resulting in the acquisition of breast cancer stem 

cell properties (Dontu et al., 2004).  Indeed, loss of Numb expression, a negative 

regulator of the Notch pathway, has been found in more than 50% of cases, while 

elevated expression of Notch-1 and Jagged-1 has been associated with poor prognosis in 

breast cancer (Yu et al., 2007; Fillmore and Kuperwasser, 2008).  
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Furthermore, Farnie and co-workers introduced a new primary cell culture method for 

DCIS and they demonstrated that these cells had a greater mammosphere forming 

efficiency (MFE) compared to cells derived from normal breast tissue. In fact, MFE 

increased with increased grade DCIS. Notch signalling activation was found to be more 

apparent in the DCIS mammospheres and the use of the γ-secretase inhibitor decreased 

MFE, but not to the same degree as treatment with a Notch-4 neutralizing antibody did. 

Therefore, the authors suggested that this technique might be useful for the investigation 

of the molecular events that regulate self-renewal in BCSCs from DCIS patients and the 

efficiency of potential inhibitors that disrupt Notch signalling could be examined 

(Farnie et al., 2007). Intriguingly, in a more recent study it was reported that blocking 

signalling through the Notch-4 rather than the Notch-1 receptor more effectively 

reduces the percentage of the CD44+/CD24-/ESA+ cells isolated from both breast 

cancer cell lines and patients, suggesting that targeting BCSCs can be more specific 

(Harrison et al., 2010). Similarly, it has also been shown that Hes-1 was highly 

expressed in all mammospheres derived from breast cancer cell lines and patients and it 

was shown that the MRK003 was the most effective γ-secretase inhibitor at eliminating 

the formation of mammospheres in vitro, while it retained its activity through the whole 

treatment period (Grudzien et al., 2010).  Finally, Qiu et al also reported that treatment 

with a Notch-1-specific antibody alone or in combination with docetaxel significantly 

reduced mammosphere formation in a SUM149 model by down-regulating Hes-1 and c-

Myc, while it also decreased the metastatic potential and delayed tumor re-occurence in 

mice (Qiu et al., 2013).   

1.14.9 The Hedgehog signalling pathway 

The Hedgehog signaling pathway also participates in normal mammary gland 

development. The actions of this signalling pathway are dependent on the presence or 

absence of the hedgehog ligands and they are mediated through the GLI zinger-finger 

transcription factors (GLI1, 2, 3). GLI1 is thought to act as a transcriptional activator 

only, whereas GLI2 and 3 have been reported to act either as activators or as repressors 

of gene expression. In mammary gland development the role of the Indian hedgehog 

ligand and of the Patched receptor (PTC1) seem to be important.  When the ligand is 

present it binds to PTC1 and it inhibits the action of Smoothened (SMO). SMO is a 

seven-pass transmembrane protein which interacts with a multiprotein complex which is 

supported by its connection with the microtubules and it consists of the dynamin-related 
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protein Costal-2 (COS-2), the serine-threonine kinase Fused (FU), the suppressor of Fu, 

(SUFU) and one of the GLI transcription factors (Gangopadhyay et al., 2013).  

In the absence of the ligand the GLI proteins are phosphorylated by a cAMP-dependent 

protein kinase A (PKA) or GSK3 and CK1. This in turn promotes their cleavage into a 

repressor form that translocates into the nucleus and blocks the transcription of the 

Hedgehog target genes. However, in the presence of the ligand the GLI complex 

dissociates from the microtubules and its cleavage is inhibited by the action of PP2A-

like phosphatase. As a result, the uncleaved form of the GLI proteins can then 

translocate into the nucleus and induce the expression of the target genes (Lewis and 

Veltmaat, 2004).  

Dysfunction of any of the Hedgehog signalling components is thought to contribute to 

tumor progression in the mammary gland (Liu et al., 2005). For instance, 

overexpression of GLI1 or Bmi-1, which are both downstream molecules of the 

Hedgehog pathway, has led to increased tumor growth in mice (Fiaschi et al., 2009). 

O’Toole and co-workers also reported that high Hedgehog ligand expression is 

associated with increased risk of metastasis and death from breast cancer and it was 

particularly correlated with the basal-like breast cancer subtype. These findings were 

confirmed with the use of a mouse model representing this phenotype in which 

overexpression of the ligand was induced leading to the acceleration of metastasis and 

the decrease of survival. Accordingly, treatment with the monoclonal antibody against 

the ligand (5E1) reversed these effects (O'Toole et al., 2011). Similarly, it has been 

shown that abnormal activation of this pathway can promote bone metastasis in breast 

cancer (Das et al., 2012a; Das et al., 2012b).  

Moreover, the SP and CD44+/CD24-, which were found to partially overlap in the 

MCF-7 cell line, were characterized by the overexpression of Hedgehog components, 

including SHH and GLI1 on both mRNA and protein level. Silencing of GLI1 by 

siRNA resulted in the inhibition of proliferation and reduction of the percentages of 

both BCSC populations. Therefore, it was suggested that targeting the Hedgehog 

pathway might have a therapeutic potency for the prevention of metastasis (Tanaka et 

al., 2009). It has also been found that Bmi-1 seems to be responsible for the self-

renewal and differentiation of BCSCs. In fact, Bmi-1 and c-Myc levels were higher in 

the corresponding metastases than in the primary tumors and the highest expression of 

Bmi-1 was present in late relapse tumors. These findings were also correlated with the 

high expression of Snail in metastases (Joensuu et al., 2011). Another study showed that 
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Bmi-1 was up-regulated in primary cancerous tissue compared to the non cancerous 

tissue. This was inversely correlated with E-cadherin expression providing evidence that 

Bmi-1 might also be involved in EMT. This was confirmed by the use of human 

mammary cell lines. In fact, MCF-10A cells overexpressing Bmi-1 exhibited increased 

cell motility and acquired invasive properties, while they also expressed mesenchymal 

markers. Conversely, silencing of Bmi-1 in the highly invasive MDA-MB-435S cell 

line resulted in the opposite effects (Guo et al., 2011). What is more, Liu et al. 

demonstrated that there was a 6-fold increase in the levels of Bmi-1 when the Hedgehog 

pathway was active, but Bmi-1 was significantly down-regulated when this pathway 

was inhibited. Furthermore, Bmi-1 was up-regulated up to 5 times in the CD44+/CD24- 

human breast cancer stem cell subpopulation. Therefore, it is reasonable to suggest that 

Bmi-1 is an essential stem cell regulator in breast stem cells and that de-regulation of 

the Hedgehog pathway might result in the generation of BCSCs which can cause 

malignancies (Liu et al., 2006).  

  

1.14.10 EMT and BCSC features in breast cancer patients 

Several studies have aimed to investigate the association of EMT with the presence of 

CSCs in breast cancer patients. The analysis of 226 blood samples derived from 39 

metastatic breast cancer patients undergoing chemo-, antibody or hormonal therapy 

revealed a correlation of ALDH1 with the expression of EMT markers (Aktas et al., 

2009). In another study the evaluation of breast cancer samples from patients at all 

stages led to the identification of CSCs in 66% of the patients and these were further 

examined for the presence of ERα, HER2, ALDH1, vimentin and fibronectin. 

Interestingly, ALDH1 expression was significantly associated with the disease stage and 

the expression of vimentin and fibronectin, suggesting that EMT is involved in this CSC 

phenotype (Raimondi et al., 2011). Vimentin was also found to be prevalent in CSCs in 

77% and Twist was highly expressed in 73% of patients with primary disease, while all 

of the patients with the metastatic disease expressed both markers at high levels 

(Kallergi et al., 2011). 

What is more, the presence of breast cancer tumor initiating cells was associated with 

the claudin-low breast cancer subtype, which represents 5% of the breast cancer 

patients. It was also reported that these cells were characterized with the elevated 

expression levels of mesenchymal markers, including FN1, VIM, FOXC2, MMP2 and 

MMP3, while the expression of epithelial markers, such as CDH1 and DSP were almost 
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undetectable (Creighton et al., 2010).  Finally, it is worth mentioning that 50% of 

human breast cancers have a dysfunctional Notch signalling pathway, predominantly 

due to reduced expression of the Notch inhibitor, NUMB (Dontu et al., 2004; Liu et al., 

2005). In conclusion, the correlation of EMT and CSC traits in certain subgroups of 

breast cancer patients increases the need for the development of more effective 

strategies to target these cells, therefore many research groups have focused on the 

determination of the EMT mechanisms that regulate CSC function in breast cancer 

metastasis and drug resistance.    

1.14.11 The role of EMT in the induction of MDR 

There is accumulating evidence to support the contribution of EMT to drug resistance as 

we also summarized in our recent review (Mallini et al., 2014).  In fact, when breast 

cancer cells were treated with doxorubicin for 1 week, the expression of many ABC 

transporters and EMT markers was up-regulated in invasive cell lines only. 

Interestingly, induction of EMT by TGF-β1 treatment or Twist1 overexpression in the 

non-invasive cell line MCF-7 led to elevated expression of ABC transporters, while 

knocking down of Twist and Zeb1 reversed dox-mediated EMT and drug resistance. It 

has also been shown that there are binding sites for several EMT transcription factors 

(Snail, Twist, Slug and FOXC2) in 16 ABC transporters and Chip analysis revealed that 

Twist directly binds to E-boxes in the promoter region of ABCC4 and ABCC5 in MCF-

7 cells transfected with Twist (Saxena et al., 2011).  

Vesuna and co-workers demonstrated that induced expression of Twist in MCF-7 cells 

promoted the increased efflux of Hoechst 33342 and Rhodamine 123 dyes caused by the 

up-regulation of the ABCC1 transporter (Vesuna et al., 2009). On the other hand, 

depletion of Slug/Snail2 in the basal/HER2+ cells resulted in the up-regulation of 

CD24, increased sensitivity to trastuzumab and led to the inhibition of tumor growth in 

vivo, providing further evidence for the role of EMT in drug resistance in BCSCs 

(Oliveras-Ferraros et al., 2012). Similarly, FOXC2 knockdown in HMLE cells that were 

previously induced to undergo EMT through Snail or Twist transfection or TGF-β 

exposure led to the decrease of the CD44+/CD24- population, which were also 

characterized with reduced resistance to paclitaxel (Hollier et al., 2013).  

Additionally, tamoxifen resistant MCF-7 cells were found to have a more aggressive 

and invasive behavior that could be reversed upon the inhibition of the autocrine EGFR 

pathway, also known to be involved in EMT, by using an EGFR tyrosine kinase 

inhibitor (EGFR-TKI), gefitinib (Hiscox et al., 2004).  
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Moreover, doxorubicin treatment of murine 4T1 cells led to an increase in Sca-1 cells 

with a high metastatic potential (Bandyopadhyay et al., 2010). The same effect was 

shown after TGF-β mediated EMT in pancreatic cell lines and this was reversed upon 

the removal of TGF-β (Kabashima et al., 2009). In contrast, TGF-β treatment in MCF-7 

cells eliminated the SP population, decreased the levels of ABCG2 expression and 

reduced cell viability in the presence of mitoxantrone and these changes were also 

reversed when TGF-β was removed. E-cadherin knockout also reduced the SP numbers, 

but this was not as significant as the TGF-β driven EMT or the ABCG2 knockout and 

did not affect the mRNA or proteins levels of ABCG2. Consequently, the authors 

claimed that EMT controls the post-translational regulation of ABCG2 via E-cadherin 

(Yin et al., 2008). In our laboratory we have also been able to demonstrate that 

treatment of the MCF-7 cell line with TGF-β1 results in the reduction of the SP 

phenotype (Mallini et al., 2014). 

 

1.15 Hypoxia in cancer 

The rapid expansion of tumor cells creates large distances from the blood vessels which 

support their proliferation with oxygen and nutrients and leads to altered 

microenvironmental conditions, such as low oxygen concentration, acidosis and nutrient 

deprivation (Brown and Giaccia, 1998). Low concentration of oxygen in cells or tissues, 

referred to as hypoxia, is the most studied and best characterized of tumor 

microenvironment conditions and it seems to play a crucial role in carcinogenesis. 

Hypoxia has an effect on many aspects of tumor progression especially on cancer cell 

survival, resistance to apoptosis, invasion, metastasis, chemo-radiation resistance and 

angiogenesis, while recent evidence suggests that it is also responsible for CSC self-

renewal and maintenance. It is usually caused due to insufficient blood supply (transient 

hypoxia) or increased oxygen diffusion due to tumor expansion (chronic hypoxia) (Bao 

et al., 2012).  

Notably, hypoxia or anoxia have been found to be prevalent in up to 60% of advanced 

solid tumors (Favaro et al., 2011). In fact, the components of the hypoxia-regulated 

pathways have been suggested as clinical prognostic markers for patients with solid 

tumors (Jubb et al., 2010). Additionally, adaptation to hypoxia has been correlated with 

a more aggressive phenotype and increased resistance to chemo- and radiotherapy 

(Moulder and Rockwell, 1987). For instance, hypoxia has been associated with poor 

clinical outcome and decreased survival in cervical cancer (Nordsmark et al., 2005), 
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while management of hypoxia has been shown to improve the efficiency of radiation 

therapy in head and neck cancer patients (Overgaard, 2011).  

1.15.1 Molecular regulation of hypoxia 

The hypoxia-inducible factors (HIFs) are the fundamental molecular mediators of 

hypoxic adaptation. The HIF family of proteins (1, 2 and 3) belong to the per-aryl 

hydrocarbon receptor nuclear translocator (ARNT)-sim (PAS) basic helix-loop-helix 

(bHLH) heterodimeric transcription factors and they are composed of the α and the β 

subunits.  The expression of the α subunit depends on oxygen availability and under low 

oxygen conditions both mRNA and protein levels elevate, while the β subunit is 

constitutively expressed (Wang et al., 1995). Interestingly, hypoxia can regulate the 

expression of up to 1.5% of the genes in the human genome (Favaro et al., 2011).  

The most common heterodimer which is involved in hypoxic adaptation is ΗIF-1α/β. 

Although, HIF-1α and HIF-2α have very similar sequences and undergo similar 

regulation processes, HIF-1α seems to be more commonly expressed, whereas the 

expression of HIF-2α is more restricted (Wiesener et al., 2002). HIF-3α has not been 

studied to the same extent as 1 and 2α (Rohwer and Cramer, 2011). During normal 

oxygen conditions the HIF-α subunits are hydroxylated by prolyl-hydroxylase (PHD) at 

two specific prolyl residues located in their oxygen-dependent degradation (ODD) 

domain. As a result, they interact with the von-Hippel-Lindau (VHL) complex, which 

recruits an E3 ubiquitin ligase complex and leads to their proteolytic degradation (Ivan 

et al., 2001; Yu et al., 2001).  

Under hypoxic conditions, hydroxylation by PHD is inhibited resulting in the 

accumulation of the HIF-α subunits, which upon their translocation to the nucleus form 

heterodimers with the β subunits and associate with other co-activators, including p300 

and CBP. Binding of these complexes to the hypoxia-responsive elements (HRE) within 

the promoter regions of target genes can in turn regulate their expression  (Mahon et al., 

2001). Apart from low oxygen availability, hypoxia effects can also be induced by other 

factors, such as reactive oxygen species (ROS) (Dewhirst et al., 2008) (Figure 1.8). 
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Figure 1.8: Schematic representation of the HIF signalling pathway after normoxic and 

hypoxic conditions. During normal oxygen conditions PHD hydroxylates HIF-1α 

leading to its targeting for protein degradation via its binding to the VHL complex. 

During low oxygen conditions PHD can no longer hydroxylate HIF-1α, which can then 

enter the nucleus and associate with HIF-1β and the P300/CBP complex. These in turn 

bind to the HRE and transcriptionally activate the expression of several hypoxia target 

genes  (Burroughs et al., 2013). 
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1.15.2 The role of hypoxia in the induction of EMT 

There is evidence to suggest that hypoxia can also drive EMT in several in vitro 

systems, including cancer cells (Lee et al., 2006; Chang et al., 2011). Despite the fact 

that the exact contribution of hypoxia to the EMT process has not been fully described, 

it has been proposed that this is achieved via several mechanisms. First of all, it has 

been demonstrated that hypoxia-induced EMT results in the acquisition of 

mesenchymal properties and the up-regulation of the E-cadherin repressors, Twist, 

Snail, Slug, SIP1/ZEB2 (Sahlgren et al., 2008; Klymkowsky and Savagner, 2009). 

Furthermore, hypoxia seems to stimulate the activation of known EMT-related 

pathways, including the TGF-β, the Notch, the Wnt and the Hedgehog cascades (Koong 

et al., 1994; Eger et al., 2000; Sahlgren et al., 2008). It has also been shown to regulate 

the expression of cytokines that participate in EMT-related inflammatory response, such 

as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) (Chuang et al., 2008; St. 

John et al., 2009). Next, hypoxia is also thought to have a direct or indirect impact on 

the mediation of cell-matrix interactions that are associated with migration and invasion 

through affecting the expression of LOX/LOX2 and urokinase-type plasminogen 

activator (uPA) (Chen et al., 2010). It has also been reported that angiogenesis, which is 

induced by hypoxia, can also drive EMT through the VEGF pathway (Gonzalez-

Moreno et al., 2010).  

In addition, hypoxia seems to regulate EMT through known stem cell self-renewal 

pathways. For instance, it has been shown that it can activate the Notch signalling 

pathway via direct binding of HIF-1 to the HES-1 promoter and thus resulting in EMT 

and increased cell invasion and migration in breast cancer (Chen et al., 2010). There 

also seems to be an interaction of the HIF and the Wnt signalling pathways, although 

the exact mechanisms by which this occurs have not been fully elucidated. In fact, 

increased HIF-1α expression has been associated with increased activation of the Wnt 

pathway. Finally, there might be a crosstalk between the Hedgehog and the HIF 

pathways, as the former has been suggested to contribute to the angiogenic process 

(Bicknell and Harris, 2004). Taken together, hypoxia plays a role in the regulation of 

EMT via various pathways, indicating that targeting hypoxia might be an effective 

approach to also inhibit EMT and cancer progression. The involvement of hypoxia in 

the activation of stem cell self-renewal pathways might be the reason why it also 

regulates the function of CSCs, which will be described in more details in a following 

section. 



40 
 

1.15.3 The role of hypoxia in the induction of MDR 

There is accumulating evidence to support the role of hypoxia in the induction of drug 

resistance in cancer, although there are also conflicting reports. However, the molecular 

events underlying this effect are not fully understood and they depend on tumor type. It 

should be noted that the HIF-1α– mediated effects on MDR have been studied more 

extensively than the HIF-2α ones (Rohwer and Cramer, 2011). Several mechanisms 

have been suggested with one of them being the HIF-1α driven changes in cell 

proliferation and survival, as HIF-1α has been shown to inhibit apoptosis. In fact, 

knocking down of HIF-1α has resulted in increased cell death following 

chemotherapeutic treatment in tumor cells with several origins (Ricker et al., 2004; 

Peng et al., 2006; Hao et al., 2008). It has also been demonstrated that these effects are 

due to inhibition of p53-mediated apoptosis by HIF-1α (Bertout et al., 2008; Rohwer et 

al., 2010).  

Additionally, Sullivan and colleagues reported that hypoxia can affect the irreversible 

cell cycle arrest, known as senescence, which is caused by the cellular DNA-damage 

response mechanisms in response to drug treatment. Further evidence supports that this 

depends on HIF-1α activity as shown by siRNA targeting of HIF-1α in breast and colon 

cancer cells, which led to the reversion of drug resistance (Sullivan et al., 2008). 

Furthermore, it was reported that HIF-1α blocked the etoposide-induced DNA damage 

in breast and prostate cancer cells (Sullivan and Graham, 2009). It has also been 

suggested that hypoxia regulates various metabolic processes in cancer, including 

mitochondrial activity. Mitochondria are the main sources of intracellular ROS and 

ROS production in tumor cells by radiation or chemotherapy is a common way of 

targeting them (Fruehauf and Meyskens, 2007). However, HIF-1α has been shown to 

decrease ROS production and thus increase cancer cell survival in response to 

chemotherapy, while silencing HIF-1α led to the opposite effects (Rohwer et al., 2010).  

The involvement of hypoxia in the induction of MDR via the regulation of ABC 

transporter expression is becoming increasingly evident. Silencing of HIF-1α using si-

RNA in T98G human glioma cells resulted in decreased mRNA and protein levels of 

both HIF-1α and ABCC1 and these cells became more sensitive to doxorubicin and 

etoposide (Chen et al., 2009). In this context, Li and co-workers also demonstrated that 

sh-RNA knockdown of HIF-1α in MCF-7 cells led to the down-regulation of HIF-1α 

target genes, including VEGF, Glut-1, PGK and ABCB1 and these cells exhibited 

higher sensitivity to methotrexate (Li et al., 2006). Further evidence suggests that 
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hypoxia can induce the increase in drug export, since knock-down of the HIF-1α gene in 

the gastric cancer cell line SGC7901 decreased their resistance to 5-FU, vincristine, 

cisplatin, etoposide and adriamycin and was accompanied with a decrease of both 

ABCB1 and ABCC1 mRNA and protein expression. Notably,  co-injection of 

vincristine with HIF-1α si-RNA into nude mice reduced the tumor size by a half in 

comparison to vincristine alone (Liu et al., 2008).  

Finally, hypoxia also seems to promote MDR through the regulation of the already drug 

resistant CSCs. Prostate cancer SP numbers were enhanced in the prostate cancer cell 

lines PC-3 and DU145 when exposed to hypoxic conditions, while the percentage of 

CD44+ cells and the expression of OCT 3/4, NANOG and ABCG2 were also increased 

(Ma et al., 2011). Cardiac SP cells treated with hydrogen peroxide were also increased 

due to ABCG2 up-regulation (Martin et al., 2008). Of note, Liu and colleagues 

demonstrated that the up-regulation of ABCG2 in kidney SP cells due to hypoxia and 

re-oxygenation was mediated by the MEK/ERK pathway (Liu et al., 2013). According 

to another study, the up-regulation of ABC transporters prevents the accumulation of 

porphyrins and heme under hypoxia, since the production of ROS and mitochondrial 

dysfunction can lead to cell death (Krishnamurthy et al., 2004).  

1.15.4 The role of hypoxia in the generation of BCSCs 

Hypoxia seems to be involved in the development of breast cancer and it has been 

associated with more aggressive breast cancer phenotypes (Mimeault and Batra, 2013). 

For instance, HIF-2α expression has been significantly correlated with high ABCG2 

expression, histology-grade and Ki67 expression in invasive breast cancer patients, 

indicating that targeting HIF-2α could serve as an effective therapeutic strategy for the 

management of drug resistance and metastasis in breast cancer (Xiang et al., 2012). 

Hypoxia presumably induces all these effects by affecting BCSCs, which are 

characterized with improved survival mechanisms against oxygen deprivation 

(Mimeault and Batra, 2013). Accordingly, HIF-1α expression has been associated with 

the presence of the CD44+/CD24- phenotype in 253 specimens from patients with 

breast ductal carcinoma who had poor prognosis (Oliveira-Costa et al., 2011).  

Furthermore, HIF-1α expressing CD44+/CD24- cells were also found to express high 

levels of mesenchymal and low levels of epithelial markers and had increased 

mammosphere forming and tumorigenic ability under normal and hypoxic conditions 

compared to their differentiated progenies (Conley et al., 2012; Han et al., 2012). Louie 
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et al showed similar findings for the CD44+/CD24-/ESA+ cells of the MDA-MB-231 

and BCM2 breast cancer cells lines when they exposed these to three cycles of hypoxia 

and re-oxygenation (Louie et al., 2010). Finally, the up-regulation of both CD44 and 

VEGF in the MDA-MB-231 and SUM-149 breast cancer cell lines was also attributed 

to hypoxia (Krishnamachary et al., 2012).  

 

1.16 Hypothesis 

Triple negative breast cancer patients fail to respond to current therapeutic options and 

it has been reported that they have an increased SP prevalence, which may be 

responsible for their poor clinical outcome (Britton et al., 2012). What is more, ER 

expression has been found to be inversely correlated with TGFB-RII expression 

(Arteaga et al., 1988) and the CD44+/CD24- cell phenotype has been associated with 

ER-/TGFB-RII+ patients (Shipitsin et al., 2007). Therefore, I hypothesize that ER status 

and the presence of a functional TGF-β signalling pathway will be crucial for the 

regulation of putative BCSCs through EMT in different breast cancer patients. As a 

consequence, in this project I used the MDA-MB-231 (ER-/PR-/HER2-) and MCF-7 

(ER+/PR+/HER2-) breast cancer cell lines representing triple negative and luminal 

epithelial breast cancer subtypes, respectively. Since MDA-MB-231 cells are 

characterized with an intact TGF-β signalling pathway and MCF-7 cells have been 

found to lack essential components of the pathway, including TGFB-RII expression, I 

hypothesize that the effect of EMT on the regulation of BCSCs contained in the former 

will be stronger than the one in the latter. Furthermore, based on the effect of hypoxia 

on several CSCs and its definite impact on EMT, I also hypothesize that there will be a 

potential response of BCSCs to hypoxic culture conditions. Finally, I hypothesize that 

there will be a relationship between hypoxia and the induction of drug resistance. It was 

expected that this project would provide insight to the mechanisms that are involved in 

the regulation of BCSCs depending on breast cancer subtype and that this could be the 

basis of promising and more effective therapeutic strategies for the prevention of 

metastasis and drug resistance in breast cancer.   
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1.17 General aims  

 To determine the effects of EMT induced by ΤGF-β1 treatment of BCSCs in the 

MDA-MB-231 and MCF-7 cell lines.   

 To investigate the properties of the TGF-β signalling pathway in both cell lines 

in order to explain the potentially different effect of EMT on the SP cells from 

these. 

 To study the effects of hypoxia induced by CoCl2 treatment on the MDA-MB-

231 and MCF-7 BCSCs. 

 To examine the possible impact of hypoxia on the transcriptional activation of 

EMT related genes, stem cell markers and ABC transporter genes. 

 To determine the possible relationship of hypoxia with the induction of drug 

resistance in BCSCs of the MDA-MB-231 and MCF-7 cell lines. 

 To test whether there is an interaction between the hypoxia and TGF-β 

signalling pathways by investigating the combined effect of hypoxic and ΤGF-β 

on BCSCs in the MDA-MB-231 and MCF-7 cell lines.  
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Chapter 2: Materials & Methods 

 

 2.1 General Laboratory Practice 

All experimental procedures were carried out according to the Control of Substances 

Hazardous to Health (COSHH and BIOCOSHH) regulations. All work was conducted 

in accordance with Newcastle University Safety policies. Tissue culture was performed 

in compliance with the regulations related to containment of class II pathogens. 

2.2 Tissue culture 

2.2.1 Definition of cell lines used 

MDA-MB-231  

MDA-MB-231 is a breast cancer cell line isolated from pleural effusions of a 51 year 

old female. This cell line is ER-/PR-/HER2- (Cailleau et al., 1978). 

MCF-7  

MCF-7 is a breast cancer cell line obtained from a pleural effusion of a 69 year old 

Caucasian woman with MBC. This cell line is ER+/PR+/HER2- (Levenson and Jordan, 

1997). 

Human Mammary Epithelial Cells (HMEpC) 

HMEpC are derived from normal adult mammary glands. They are cryopreserved at fifth 

passage and can be propagated 16 population doublings.  

2.2.2 Validation of cell lines 

The MDA-MB-231 cell line from MD Anderson were validated by short tandem repeat 

(STR) DNA fingerprinting using the AmpF_STR Identifier kit according to 

manufacturer's instructions (Applied Biosystems). STR profiles were compared to 

known ATCC fingerprints, and to the Cell Line Integrated Molecular Authentication 

database (CLIMA) version 0.1.200808. The STR profiles matched known DNA 

fingerprints or were unique. Cell lines from ECACC were validated using the Applied 

Biosciences Identifier Plus system for DNA profiling (Applied Biosystems). STR 

profiles were compared to those held on ECACC’s database. The authentication of the 

MCF-7 cell line was performed by ECACC using the AmpFISTR®SGM Plus® PCR 

amplification kit and the ABI Prism 3730 genetic analyser (SOP ECACC/047).  
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2.2.3 Cell culture conditions and maintenance 

Human breast cancer cell lines, MDA-MB-231 (provided by MD Anderson) and MCF-

7 (purchased from ECACC) were cultured in the presence of complete media (cDMEM) 

which is DMEM (Sigma) without phenol red, supplemented with 10% FBS (Lonza), 

2mM L-glutamine (Sigma), 100 IU/ml penicillin, 100 μg/ml streptomycin (Invitrogen). 

The cells were maintained at 37
o
C in a humidified atmosphere of 5% CO2 in air. All 

procedures were carried out under aseptic conditions in a class II laminar flow hood 

(SAFE 2020, Thermo Scientific) and all working areas were decontaminated by using 

70% ethanol. Medium was changed every 4-5 days and cells were split when ~80% 

confluent. For maintenance of cell lines; DMEM was discarded and the flasks were 

washed with 1X PBS. 1X trypsin EDTA (Sigma) (T/E) was added for approximately 3 

min. T/E was neutralized with the addition of sufficient amount of cDMEM and the 

mixtures were centrifuged at 3000 rpm, 4
o
C for 5 min. The supernatant was discarded 

and the pellet was re-suspended in cDMEM. The cell suspensions were transferred into 

new flasks containing cDMEM.  

2.2.4 Cryopreservation of cells 

1x10
6
 cells were re-suspended in 1ml aliquots of recovery cell culture freezing medium 

(Gibco). Cells were cryopreserved in 2 ml cryogenic vials which were placed in a cell 

freezing container [Nalgene] containing 250ml of 100% isopropyl alcohol [VWR BD 

Prolabo] and stored at -80
o
C. This ensures successful cell cryopreservation and recovery 

by providing -1°C/minute cooling rate. Frozen stocks were rapidly thawed and the 

recovery cell culture freezing medium was washed with 1 x Phosphate Buffered Saline 

(PBS) and centrifuged at 3000 rpm, 4
o
C for 5 min. Pellets were re-suspended in 

cDMEM and cells were cultured as described above.  

2.2.5 Cell counting 

Cells were counted prior to cryopreservation or experiments using a haemacytometer 

(Scientific Laboratory Supplies). 10 μl of cell suspension were diffused under a 

coverslip at both edges of the haemacytometer. The number of cells in the 25 squares of 

the grid were counted and multiplied by 1 x 10
4
, in order to get the total cell number per 

1ml of media.  

 2.2.6 Mycoplasma detection and treatment 

Cells were routinely tested for mycoplasma contamination (every 4 months) using the 

MycoAlert
TM 

mycoplasma detection kit by Lonza. This is a selective biochemical test 
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that detects the activity of certain mycoplasmal enzymes that react with the 

MycoAlert
TM 

substrate leading to the conversion of ADP to ATP. An increase of ATP 

is indicative of mycoplasma contamination and it can be assessed by measuring the 

increased light intensity emitted in the following bioilluminescent reaction catalyzed by 

luciferase: ATP + Luciferin + O2          Oxyluciferin + AMP + PPi + CO2 + Light. 100 

μl of the MycoAlert Reagent were added to 100 μl of cell culture supernatant followed 

by a 5 min incubation and then Reading A was taken. 100 μl of the MycoAlert
TM 

substrate were added to the sample and followed by a 10 min incubation before taking 

Reading B. Measuring the emitted fluorescence before (Reading A) and after (Reading 

B) the addition of the MycoAlert
TM 

substrate can allow the calculation of the ratio: 

Reading A/Reading B. A ratio of 1 was indicative of an uninfected culture, while a 

ratio higher than 1 identified the presence of mycoplasma contamination.  

 

2.2.7 TGF-β treatment 

1 x 10
5
 cells were seeded in 100-mm dishes. After 24 h cells were treated with 5 ng/ml 

or 10 ng/ml TGF-β1 (R & D Systems) for 72 hours. 5 ng/ml and 10 ng/ml were chosen 

as the optimal concentrations in the MDA-MB-231 and MCF-7 cells, respectively (data 

presented in Chapter 3). Cells treated in parallel with the carrier only were used as 

controls. 1, 3 and 5 μΜ SB-505124 (Sigma-Aldrich), a selective inhibitor of the TGFΒ-

RI receptor, was added 30 min prior to TGF-β1 treatment to separate cells cultured 

under the same conditions to confirm the inhibition of TGF-β1. 5 μΜ SB-505124 was 

chosen as the optimal concentration (data presented in Chapter 3).  After 72 hours cells 

were harvested for further analysis.  

 

2.2.8 Cobalt (II) chloride hexahydrate (CoCl2) treatment 

CoCl2 has been shown to up-regulate the expression of HIF-1α by affecting the 

intracellular ascorbate concentration and thus it promotes iron oxidation and 

inactivation of prolyl hydroxylase (Salnikow et al., 2004). 2 x 10
5
 cells were plated in 

100 mm dishes. After 24 hours cells were treated with 200, 400 and 600 μM CoCl2 

(Sigma-Aldrich),   while the 400 μM was chosen as the optimal concentration for all 

experiments (data presented in Chapter 4). Untreated cells were used as controls. Cells 

were harvested after 24h for qPCR and after 48 h for protein or SP analysis.  
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2.2.9 Mitoxantrone treatment 

Mitoxantrone is an anthracenedione antineoplastic agent, which is used for the treatment 

of certain types of cancer, including  metastatic breast cancer, acute myeloid leukaemia, 

and non-Hodgkin's lymphoma (Katzung, 2006). 5 x 10
5
 cells were plated in 100 mm 

dishes. After 24 hours cells were treated with 0.5, 1 and 2 μg/ml mitoxantrone, while 1 

μg/ml was chosen as the optimal concentration (data presented in following section). 

Cells were harvested after 48h as previously optimized by Britton et al (Britton et al., 

2012) for SP analysis. 

 

2.3 Cell viability assessment using the MTS assay 

The CellTiter 96® AQueous One Solution Reagent containing a tetrazolium compound 

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt; MTS) was used for the assessment of cell viability in the 

presence of CoCl2 and mitoxantrone. MTS is reduced by dehydrogenase enzymes of 

viable cells producing formazan, which is soluble in cell culture medium. The amount 

of the formazan product is directly proportional to the number of living cells in culture 

(Promega Website).   

2,000 cells in 200 μl of complete media per well were plated in a 96-well plate and  

incubated for 24 h. The media was then removed and replaced with media containing 

200, 400 and 600 μM CoCl2 or 0.5, 1 and 2 μg/ml mitoxantrone. Untreated cells were 

used as controls. Cells were treated for 48 h and the media was removed and replaced 

with 100 μl of fresh media. 20 μl MTS was added to each well followed by a 2 hour 

incubation at 37
o
C with 5% CO2. The absorbance was read at 492 nm in a Thermo 

Multiskan Ascent ELISA plate reader. Media only controls were used in triplicate and 

the average of these was subtracted from all absorbance values. The percentage of living 

cells was calculated according to the following equation: 

% Living cells = (Absorbance of treated cells/Absorbance of untreated cells) x 100 

The concentration of 1 μg/ml mitoxantrone and 400 μM CoCl2 were preferred for all 

future experiments (Figures 2.1 and 2.2). 

 

 

http://en.wikipedia.org/wiki/Anthracenedione
http://en.wikipedia.org/wiki/Antineoplastic
http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/Breast_cancer
http://en.wikipedia.org/wiki/Acute_myeloid_leukemia
http://en.wikipedia.org/wiki/Non-Hodgkin%27s_lymphoma
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Figure 2.1: Percentages of living cells in the presence of 0.5, 1 and 2 μg/ml 

mitoxantrone in A) MCF-7 and B) MDA-MB-231 cells (n=1). 
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Figure 2.2: Percentages of living cells in the presence of 200, 400 and 600 μM CoCl2 in 

A) MCF-7 and B) MDA-MB-231 cells (n=1). 
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2.4 RNA extraction 

2.4.1 RNA isolation from cells  

RNA extraction was performed using the RNeasy Micro kit (Qiagen) according to the 

manufacturer's instructions. 1 x 10
6
 cells were lysed in a total volume of 350 μl of RTL 

buffer containing 10% β-mercaptoethanol and vortexed for 30 sec. Lysate was added to 

a gDNA Eliminator spin column placed in a 2 ml collection tube and centrifuged for 30 

sec at 11,000 rpm. The column was discarded. 350 μl of 70% ethanol were added and 

mixed by pipetting. The mixtures were transferred to an RNeasy Min Elute spin column 

placed in a 2 ml collection tube and centrifuged for 15 sec at 11,000 rpm. The flow 

through was discarded. 700 μl of RW1 buffer were added and centrifuged for 15 sec at 

11,000 rpm. The flow through was discarded. 500 μl of RPE buffer were added and 

centrifuged for 2 min at 11,000 rpm. The flow through was discarded. 500 μl of 80% 

ethanol were added and centrifuged for 2 min at 11,000 rpm. The flow through was 

discarded. The spin column was transferred into a new 2 ml collection tube and 

centrifuged for 5 min at 11,000 rpm with open lid. The tube and contents were 

discarded. The spin column was placed in a 1.5 ml eppendorf, 14 μl of RNase free water 

were added and the columns stayed on ice for 10 min before centrifuging for 1 min at 

13,000 rpm. The eluted RNA could be then stored at -80
o
C. 

2.4.2 Estimation of RNA concentration and purity using NanoDrop 

The NanoDrop spectrophotometer 2000 (Thermo Scientific) was used for measurement 

of the RNA concentration. Absorbance at 260nm (A260) measures the RNA 

concentration and 280nm (A280) measures the protein concentration. The instrument 

was blanked using 1μl RNAase free water in which the extracted RNA was eluted. 1μl 

of each sample was applied on the lower arm of the machine and then the readings of 

the concentrations were recorded. The generally accepted reading for the RNA 

concentration is ~40 ng/μl and for the A260/A280 ratio is ~2.0. 

2.4.3 Determination of the RNA integrity 

The RNA integrity was determined by running a 1% agarose gel in 1X 

Tris/Borate/EDTA (TBE) buffer [Sigma], containing 2 μl ethidium bromide 

(BIOLINE). The gel run was run at voltage of 85 V for approximately 45 min and 

visualized under a UV gel documentation system [UVP Ltd, Cambridge, UK]. The total 

RNA that is isolated includes messenger RNA (mRNA), transfer RNA (tRNA) and 

ribosomal RNA (rRNA), but almost the 85% consists of rRNA. Therefore, the presence 

of two clear 18S and 28S rRNA bands that encode for the two ribosomal sub-units is 
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indicative of a good RNA integrity (Figure 2.3). The intensity of the 28S rRNA band 

should be approximately twice as higher as the 18S rRNA band. Degraded RNA is 

expected to appear as a smear. 

1 kb 
DNA 

ladder

RNA

28S

18S

 

Figure 2.3: Determination of RNA integrity. Lane 1: DNA ladder. Lane 2: RNA from 

MDA-MB-231 cells.  

 

2.5 cDNA synthesis by reverse transcription 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) is used to generate 

complementary DNA sequences using RNA as a template. Small fragments consisting 

of T nucleotides (oligo (dT)18) are used to ensure binding to the poly-A tale of the 

mRNA molecules. RT-PCR can be performed in one or two steps, depending on 

whether the reverse transcription and PCR are carried out in one or in separate reaction 

tubes, respectively. The BIOLINE cDNA synthesis kit was used for the preparation of 

cDNA. RNA aliquots were prepared by diluting the RNA samples to get a final 

concentration of 1000 ng/μl. 1μl of 10mM dNTP, 1μl of oligo(dT)18 and 

RNAase/DNAase free water was added to make the volume up to 10 μl. The mixtures 

were then incubated at 65
o
C for 10 min and placed on ice for 2 min. Reverse 

Transcription master mix was prepared, containing 4 μl 5 X RT buffer, 1μl RNase 

inhibitor, 0.25 μl reverse transcriptase (200 U/μl) and 4.5 μl DEPC- treated water per 

reaction. 10 μl of this was then added to each of the RNA samples and mixed by 

pipetting. The mixture was then incubated at 45
o
C for 50 min and reactions were 

terminated by incubating at 70
o
C for 15 min. The cDNA samples could be then stored at

 

-20
o
C.  
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2.6 Polymerase Chain Reaction (PCR) 

PCR is a method developed by Kary Mullis in the 1980s. It utilizes the ability of the 

enzyme DNA polymerase to amplify specific DNA sequences by synthesizing their 

DNA complementary strand. As a result, at the end of PCR billions of copies of a 

particular target sequence can be produced. The most commonly used DNA polymerase 

is the Taq DNA polymerase isolated from the bacterium Thermus aquaticus, which is 

heat resistant and can perform at high temperatures. This enzyme acts by extending the 

3' end of smaller DNA sequences, known as primers, with a 5’     3' direction. PCR 

involves the following 4 steps: 

1) Denaturation: This step is achieved at a temperature of 94-96
o
C for 30 sec and it 

results in the separation of the two complementary DNA strands by breaking 

their hydrogen bonds. 

2) Annealing: This step consists of the binding of the forward and the reverse 

primer to complementary sequences on the single stranded RNA (50-60
o
C for 30 

sec) allowing DNA polymerase to bind to their 3' end and begin DNA synthesis. 

3) Extension: This step is usually carried out at 72
o
C and it involves the elongation 

of the primer sequences, resulting in the production of double PCR products at 

the end of each PCR cycle. Every synthesized DNA sequence of one PCR cycle 

becomes the template for the next cycle leading to a chain reaction and the 

exponential amplification of DNA.  

4)  Final elongation: After steps 2-3 have been repeated for 20-40 cycles. This step 

is carried out at 72
 o
C for 5 min to ensure that any remaining single stranded 

DNA will be extended.   

 

 2.6.1 Conventional (qualitative) PCR and primer design and optimization 

Conventional PCR was carried out for 30, 35 and 40 cycles using a G-storm 

thermocycler. 25 μl reactions were prepared, containing 12.5 μl of 2X PCR Master Mix 

(Promega; Taq DNA polymerase (50 units/ml), dNTPs and 3mM MgCl2), 10µM 

Forward primer, 10µM Reverse Primer, 2.5 μl of cDNA and Nuclease Free water 

(Promega) up to 25 μl. For each primer pair gradient annealing temperatures from 51 to 

60
o
C were used. The thermocycling programme was set at 94°C for 30 seconds for 

denaturation and at 72°C for 1 minute for elongation. For all reactions a non template 

control (NTC) and a reaction containing the corresponding RNA template were used to 

ensure that no genomic DNA was amplified.  
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All gene sequences and refseq accession numbers were obtained from the National 

Centre for Biotechnology Information (NCBI) and entered into the Primer-Blast 

website, in order to get specific primer sets. Only primer sets that spanned an exon- 

exon junction were selected to avoid genomic contamination. The optimal primer length 

was between 18 and 22 bp and the CG content was approximately 40-60%. The optimal 

primer melting temperature (Tm) was in the range of 52-58
o
C, while the differences in 

the Tm between the forward and reverse primers of each set did not surpass 2. A 

maximum product length of 200 bp was preferred. All primers sequences and product 

lengths are listed in Table 2.1.  

Primer optimization was carried out with conventional PCR for 30, 35 and 40 cycles 

using a G-storm thermocycler. 25 μl reactions were prepared, containing 12.5 μl of 2X 

PCR Master Mix (Promega; Taq DNA polymerase (50 units/ml), dNTPs and 3mM 

MgCl2), 10µM Forward primer, 10µM Reverse Primer, 2.5 μl of cDNA and nuclease 

free water (Promega) up to 25 μl. For each primer pair gradient annealing temperatures 

from 51 to 60
o
C were used. PCR for GAPDH was used to ensure good cDNA quality, 

while RNA and nuclease free water were used to ensure genomic contamination free 

PCR products. The thermocycling programme was set at 94°C for 30 seconds for 

denaturation and at 72°C for 1 minute for elongation. 
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Gene 

name 

Primer Sequence (5’-3’) Product 

Length (bp) 

E-cadherin Forward TGCCATTTCCACTCGGGCTG 172 

Reverse AGGTTCTGGTATGGGGGCGT 

ABCG2 Forward GAGCGCACGCATCCTGAGAT   157 

Reverse TCATTGGAAGCTGTCGCGGG 

FOXC2 Forward TCGCACGCAAGAATCTTACCC 

 

100 

Reverse ACAGCAACCAAGGACAGGTTT 

 

Δp63α Forward   

GTGATGATGGTTCACGTTGG 

143 

Reverse ACATGACGTCGGGTGTTTTT 

ABCB1 Forward CTGACGTCATCGCTGGTTTC 116 

Reverse ATTTCCTGCTGTCTGCATTGTG

A 

GAPDH Forward GCACCGTCAAGGCTGAGAAC 150 

Reverse GCCTTCTCCATGGTGGTGAA 

Table 2.1: List of primer sequences and product lengths. 

 

2.6.2 Agarose gel electrophoresis 

Agarose gel electrophoresis is a technique used to separate a mixed population of DNA 

or RNA fragments depending on their size. An electric field is applied, so that the 

negatively charged molecules can move towards the positive electrode, with the smaller 

fragments migrating faster.  1% agarose gel in 1X Tris/Borate/EDTA (TBE) buffer 

[Sigma], containing 2 μl ethidium bromide was prepared (BIOLINE). 18 μl of PCR 

product were mixed with 2 μl of DNA loading dye (Biolabs) and loaded to each well of 

the agarose gel. The gel run was performed at voltage of 85 V for approximately 45-60 
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min and PCR products were visualized under a UV gel documentation system [UVP 

Ltd, Cambridge, UK] (Figure 2.4).  

 

A B

C D

E

1      RNA  NTC GAPDH  T1    T2     T3     T4   1      RNA  NTC GAPDH  T1    T2     T3     T4   

1      RNA  NTC GAPDH  T1     T2      T3      T4   

1      RNA  NTC GAPDH  T1    T2      T3       T4   

1      RNA  NTC   T1    T2     T3     T4   

 

 

Figure 2.4: PCR products for primer optimization A: E-cadherin, B: ABCG2, C: 

FOXC2, D: Δp63α E: ABCB1 

1: 1 kb DNA ladder, RNA (RNA template), NTC (Non Template Control), T1-T4: 

gradient annealing temperatures 

T1: 51.8 
o
C, T2: 53.7

  o
C, T3: 56

  o
C, T4: 58.6 

 o
C.  

The cDNA template was not sufficient for GAPDH in C, while DNAase treatment 

needs to be performed prior to the preparation of the PCR reactions in D.  
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2.6.3 Quantitative Real-time PCR (qPCR) 

qPCR has the advantage of measuring the amount of PCR product after each PCR cycle 

while it is produced. This is achieved by the use of several fluorescent dyes with the 

fluorescent signal being directly proportional to the amplified PCR products 

(amplicons). By plotting fluorescence against the cycle number (Ct value) an 

amplification plot is generated providing information about the accumulation of the 

product over the duration of the PCR reaction. Therefore, target sequences that are 

highly expressed can be detected at earlier cycles, while the ones that have a lower 

expression are detected at later cycles. Reactions are usually performed at 40 cycles 

with each cycle consisting of the same steps as conventional PCR. qPCR products are 

quantified in the beginning of the exponential phase as opposed to conventional PCR, in 

which the final amplicons can be visualized. This provides more accurate data, since all 

the reagents are still in abundance and DNA polymerase is highly active at this stage.  

Two of the main fluorescent technologies commonly used in qPCR are: the SYBR 

Green dye and the TaqMan- based technology. The SYBR Green dye is a DNA binding 

dye which binds to double-stranded DNA and generates a stronger fluorescent signal 

than the unbound dye. However, the specificity of SYBR green is questionable, as it can 

bind to any double stranded DNA regardless of if it is target or non target. The Taqman- 

based technology utilizes two gene-specific PCR primers and a TaqMan probe that is 

attached to a reporter at its 5' end and a quencher at its 3' end. The reporter and the 

quencher are both fluorescent dyes with the reporter having a longer emission 

wavelength compared to the quencher. When these two dyes are in close proximity, 

excitation of the reporter causes its emission energy to be transferred to the quencher, 

suppressing its signal by a phenomenon called Fluorescent-Resonance Energy Transfer 

(FRET). During PCR, the 5' nuclease activity of Taq DNA polymerase cleaves the 

probe and releases the reporter from the quencher allowing it to emit its fluorescence 

(Life Technologies, 2014) (Figure 2.5).  
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Figure 2.5: The principles of qPCR (German Cancer Research Centre Website, 2013) 
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2.6.4 Preparation of qPCR reactions and data analysis 

20 μl qPCR reactions were prepared in triplicates for each sample, containing 2µl 

cDNA, 1µl primer probes (Applied Biosystems), 10µl Brilliant II QPCR master mix 

with High ROX (Agilent) and DNase-free water (Promega) to make up a total volume 

of 20µl. NTCs were used to ensure that all procedures were free of DNA contamination. 

All reactions were pipetted in triplicate into a 96-well plate (Applied Biosystems), 

covered with plastic seal and centrifuged briefly. The run was performed in an Applied 

Biosystems Step One thermocycler at 95°C for 10 minutes, followed by 40 cycles of 

95°C for 15 seconds, and 60°C for 1 minute. The comparative ΔΔCt method was used 

for the assessment of the expression levels of each gene of interest in comparison to the 

expression of the housekeeping gene (beta-actin) in both the controls and the samples. 

This method involves the following calculations:  

 

ΔCt= Ct of the gene of interest – Ct of the housekeeping gene 

 ΔΔCt= ΔCt of sample – ΔCt of control 

Fold change= 2^
- ΔΔCt

 

  

2.6.5 Validation of efficiency of primer probes for qPCR 

Taqman gene expression assays (Applied Biosystems) were used as primer probes 

(Table 2). The efficiency of each primer probe was validated by the use of serial 

dilutions of the cDNA (1:10, 1:20, 1:40, 1:80, 1:160), 1µl primer probes (Applied 

Biosystems), 10µl Brilliant II QPCR master mix with High ROX (Agilent) and DNase-

free water (Promega) to make up a total volume of 20µl. All reactions were pipetted in 

triplicate into a 96-well plate (Applied Biosystems), covered with plastic seal and 

centrifuged briefly. The run was performed in an Applied Biosystems Step One 

thermocycler using the thermocycling parameters mentioned above. The ΔCt values 

were plotted against the logarithmic value of 2 of each dilution and analyzed for linear 

regression curve with 95% confidence interval (Figure 2.6). The x value (slope) of the 

equation was considered as the efficiency of each primer set. The acceptable value for 

the efficiency was ~90%. Cell lines that express ABCB5 and VEGF-A at high levels 

were not available, therefore the validation of the qPCR probes for these genes was not 

successful (Table 2.2).  
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Assay ID Gene name Cells used Efficiency (%) 

Hs01060665_g1  ACTB (Beta 

Actin) 

MCF-7 79.1 

Hs01053049_s1 SOX2 MCF-7 84.5 

Hs04260366_g1  NANOG MCF-7 82.6 

Hs00243202_m1 S100A4 MCF-7  80.6 

Hs00270951_s1  FOXC2 Endothelial cells 84.8 

Hs00195591_m1  SNAI1 (Snail) HEYA8MDR 78.7 

Hs00950344_m1 SNAI2(Slug) HTCEC 96.7 

Hs01675818_s1 TWIST1 MCF-7 99.9 

Hs02379973_s1  TWIST2 HEYA8MDR 88 

Hs00999632_g1 POU5F1 (Oct4) MCF-7 89.9 

Hs00900055_m1 VEGFA *MDA-MB-231 *63.5 

Hs00607978_s1 CXCR4 HEYA8MDR 91.7 

Hs00153153_m1 HIF1A MCF-7 85.1 

 Hs01053790_m1  ABCG2 MDA-MB-231 87.3 

Hs00978473_m1 ABCC3 MCF-7 87.5 

Hs02889060_m1 ABCB5 * * 

Hs00184500_m1 ABCB1 HEYA8MDR 84.9 

Hs01075861_m1 CD44 MDA-MB-231 90.9 

Hs00185584_m1 VIMENTIN MDA-MB-231 78.3 

Hs01023894_m1 E-CADHERIN MCF-7 75.8 

Table 2.2: Taqman Gene Expression assay IDs and efficiencies. * indicates no 

availability of the appropriate cDNA template. 
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Figure 2.6 Graphical representation of efficiency curves for qPCR primer probes 
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2.7 Flow cytometry: Definitions and principles 

Flow cytometry is a technology that analyzes multiple properties of single particles, 

most commonly cells, with a size of 0.2-150 μm as they flow through a beam of light.   

An optical-to electronic coupling system enables the measurement of the size, 

granularity or internal complexity and the relative fluorescence intensity of these 

particles. A flow cytometer consists of three main systems: 1) the fluidics system which 

transports particles to the laser beam. 2) the optics system in which the lasers illuminate 

the particles and the optical filters direct the scattered light to the detectors and 3) the 

electronics system which converts all the detected light signals into electronic signals 

that can be analyzed by a computer.  

2.7.1 Forward Scatter (FSC) and Side Scatter (SSC) 

When the light strikes the single-file particles it scatters depending on the particle's size 

and internal complexity. FSC is proportional to the cell surface area or size of the 

particle. FSC allows the identification of particles with a bigger size and it can be used 

in many applications, including immunophenotyping. SSC is proportional to the cell 

granularity and internal complexity. SSC is usually collected at 90
o 
to the laser beam. 

Combined FSC and SSC measurements can be used to distinguish different cell types 

within a heterogeneous cell population.  

2.7.2 Fluorescence 

Fluorescence is termed as the transition of energy from an excited electron of a 

fluorescent compound when this absorbs light from a light source with the appropriate 

wavelength. The range of emitted wavelengths for a particular compound is known as 

emission spectrum. Multiple fluorescent compounds can be analyzed as long as their 

emission wavelengths do not overlap. When a fluorescent dye is conjugated with a 

monoclonal antibody, it can be used to identify a particular cell type that expresses cell 

surface antigens specific to this antibody.  
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2.7.3 Principles of cell sorting 

Cell sorting allows the collection of the cells of interest for further analysis. This 

process requires the identification of distinct cell populations within a heterogeneous 

cell population. Gates are used to indicate which cells will be sorted. Droplet sorting is 

an effective technique for distributing cells into collection containers. A single stream is 

vibrated to form uniform droplets downstream with each one of these containing a 

single particle of interest. The droplets pass through the laser beam one by one and an 

electrical charge is applied to each one of them as it approaches the break off point. As 

droplets pass between electrical plates, charged droplets are sorted into a collection 

tube, while uncharged droplets pass into the waste aspirator (Figure 2.7).  

 

 

 

Figure 2.7: The principles of cell sorting (Applied Cytometry Website, 2013) 
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 2.7.4 SP assay 

The SP assay was first introduced by Goodell in 1996 who used it on murine bone 

marrow cells (Goodell et al., 1996). This assay is based on the differential ability of 

cells to export the Hoechst 33342 dye through members of the ABC transporter family 

of proteins (Golebiewska et al., 2011). The SP phenotype has mainly been associated 

with high expression of ABCB1, ABCG2 and ABCC1 (Schinkel, 1999; Zhou et al., 

2001; Sun et al., 2003; Robey et al., 2009). This subpopulation of cells is thought to be 

enriched in stem cells and the SP assay has been used for the identification of such cells 

in several types of tissue, including umbilical cord blood (Storms et al., 2000) skeletal 

muscle (Asakura et al., 2002),  kidney (Iwatani et al., 2004), mammary gland (Clayton 

et al., 2004) and others. Furthermore, several ABC transporters are distributed in tissues 

all over the human body contributing to the protection of these tissue cells from 

xenobiotics. These transporters are normally expressed at essential pharmacological 

barriers, such as the brush border membrane of intestinal cells or the epithelium that 

contributes to the BBB (Gottesman, 2002). Of note, it has been suggested that the 

ability of SP cells to more actively efflux the Hoechst 33342 dye could be the 

mechanism by which chemotherapeutic drugs are exported, leading to drug resistant 

tumors. Therefore, SP cells could also represent a putative cancer stem cell population 

(Hirschmann-Jax C, 2005).  

2.7.5 Hoechst 33342 dye and mechanism of action 

The Hoechst 33342 dye is a DNA binding dye that specifically binds to AT-rich regions 

withing the minor groove of the DNA (Lalande and Miller, 1979). This dye can be 

passively diffused in all cells, but only the ones that express sufficient levels of ABC 

transporters can actively export it. In the presence of an ultraviolet (UV) laser Hoechst 

33342 emits fluorescence that can be visualized at two distinct wavelengths: one at 

450/50 nm (Hoechst blue) and one at 675/20 nm (Hoechst red), while a dichroic mirror 

is used to split these two wavelengths. As a result, SP cells appear as a tail near the 

G0/G1 cells, while several inhibitors (verapamil:specific to ABCB1 and ABCG2, 

Fumitremorgin C:specific to ABCG2) block the dye efflux by competing with the 

binding of the Hoechst dye and are used to confirm the SP phenotype, as they restore 

the intracellular accumulation of the dye (Golebiewska et al., 2011) (Figure 2.8).  
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Figure 2.8: SP profile of human breast epithelial cells using Hoechst staining. A. Clear 

discrimination of the SP population, representing approximately 0.25% B. Note the 12-

fold reduction of the SP population after the addition of verapamil (Alvi et al., 2002).   

 

2.7.6 SP identification in breast cancer cell lines; optimization of the Hoechst 33342 

dye concentration 

One of the most critical factors that affects the efficiency of the SP assay is the 

concentration of the Hoechst 33342 dye, as unsaturated Hoechst staining can result in a 

mistaken SP profile and oversaturated Hoechst staining can even cause increased cell 

death or loss of the SP phenotype (Montanaro et al., 2004). Cells were re-suspended to 

give a final concentration of 1 x 10
6 
cells/ ml in pre-warmed complete DMEM media. 5 

μl of DNase (Ambion) was added to each tube to prevent cell clumping. 5 μl of FTC (10 

mM; Axxora) was added to one tube containing 1 x 10
6 

cells/ ml and incubated with all 

other tubes at 37
o
C on a MACsMix rotor (Miltenyi Biotec) housed within a standard TC 

incubator for 15 min, after this 3μg/ml, 5μg/ml and 7μg/ml of Hoechst 33342 (1μg/ml; 

Sigma-Aldrich) were added into separate tubes. 5μg/ml of Hoechst 33342 was added to 

the tube containing the inhibitor, all samples were then incubated rotating at 37
o
C in a 

TV incubator for 90 min and then washed in ice-cold 1X PBS and centrifuged at 2500 

rpm for 5 min. Cells were re-suspended in 700 μl ice-cold 1X PBS and filtered through 

70 μm cell strainers (BD Biosciences) into sterile FACs tubes (BD falcon). The cells 

were maintained on ice in the dark and prior to cell analysis, non-viable cells were 

excluded by the addition of 2μl propidium iodide (2μg/ml) (Sigma). LSRII flow 

cytometer (BD Biosciences) was used for SP assays and the FACS Diva software was 

used for the analysis of the data. 5 μg/ml and 7 μg/ml Hoechst were used for the MDA-
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MB-231 and the MCF-7 cells, respectively for all future experiments (Figures 2.9 and 

2.10).  

 

 

Figure 2.9: FACS profiles for the identification of SP cells in the MCF-7 breast cancer 

cell line using dual-wavelength flow cytometry combined with A) 3μg/ml Hoechst dye. 

C) 5μg/ml Hoechst dye. E) 7μg/ml Hoechst dye. B), D) and F) represent the inhibited 

samples of A, C and E, respectively upon the addition of 10μm FTC.  Note the absence 

of SP cells in the inhibited samples. Dead cells were excluded by the addition of 

propidium iodide prior to analysis (not shown). 
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Figure 2.10: FACS profiles for the identification of SP cells in the MDA-MB-231 

breast cancer cell line using dual-wavelength flow cytometry combined with A) 3μg/ml 

Hoechst dye. C) 5μg/ml Hoechst dye. E) 7μg/ml Hoechst dye.B), D) and F) represent 

the inhibited samples of A, C and E, respectively upon the addition of 10μm FTC. Note 

the absence of SP cells in the inhibited samples. Dead cells were excluded by the 

addition of propidium iodide prior to analysis (not shown). 
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2.7.7 Determination of the effects of confluency on the SP numbers in breast cancer 

cell lines 

Cell density is another important factor that requires optimization to ensure the 

successful identification of SP cells (Tavaluc et al., 2007). For each cell line 1, 2, 4 and 

6 X 10
6
 cells were seeded into T75 flasks in cDMEM. 48 h later cells were harvested 

and stained with the optimal concentrations of Hoechst 33342 for SP isolation. Negative 

control samples containing 5 μl of FTC (10 mM) and Hoechst 33342 were also used. 

The cells were maintained on ice in the dark and prior to cell analysis, non-viable cells 

were excluded by the addition of 2μl propidium iodide (2μg/ml) (Sigma). LSRII flow 

cytometer (BD Biosciences) was used for SP assays and the FACS Diva software was 

used for the analysis of the data. The lowest cell numbers were used for future SP 

assays to ensure high SP percentages (Figures 2.11 and 2.12).  
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Figure 2.11: FACS profiles for the identification of SP cells in the MCF-7 breast cancer 

cell line at different confluencies. A) 10% confluency C) 20% confluency E) 40% 

confluency and G) 60% confluency. B), D), F) and H) represent the inhibited samples 

of A, C, E and G, respectively upon the addition of 10μm FTC. Note the absence of SP 

cells in the gated regions of the inhibited samples. Dead cells were excluded by the 

addition of propidium iodide prior to analysis (not shown). 
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Figure 2.12:  FACS profiles for the identification of SP cells in the MDA-MB-231 

breast cancer cell line at different confluencies. A) 10% confluency C) 20% confluency 

E) 40% confluency and G) 60% confluency. B), D), F) and H) represent the inhibited 

samples of A, C, E and G, respectively upon the addition of 10μm FTC. Note the 

absence of SP cells in the gated region in the inhibited samples. Dead cells were 

excluded by the addition of propidium iodide prior to analysis (not shown). 
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2.7.8 SP isolation from Fine Needle Aspirates (FNAs) 

Needles were flushed out with 1 ml of Tissue culture PBS into a 1.5 ml eppendorf 

which was then centrifuged at 3000 rpm at 4
o
C for 5 minutes to pellet the cells. The 

pellet was then re-suspended in 1 ml of complete DMEM and added to a 50 ml tube 

containing 3 ml of complete DMEM and 21 ml of Red Blood Cell (RBC) lysis buffer 

(0.2% Tris Base, 0.75% ammonium chloride in distilled water, pH 7.5). This was 

followed by 5 min incubation at RT and centrifugation at 3000 rpm for 5 min. The lysis 

step was repeated and the pellet was re-suspended in 2ml of complete DMEM and 

incubated overnight in a 24 well plate. On the next day, cell suspensions or adhered 

cells were pelleted at 3000 rpm at 4
o
C for 5 min and re-suspended in 1 ml of pre-

warmed Hanks’ balanced salt solution (Sigma; 2% FBS, 1% P/S) and counted. The 

protocol described in section 2.14 was used with the alterations of 2.5 μg/ml Hoechst 

33342 (1μg/ml; Sigma-Aldrich) and 25 μM Verapamil (Sigma-Aldrich) for 1 x 10
6
 

cells/ml. All tubes were incubated at 37
o
C by using a MACsMix rotor in incubator for 

20 min before the addition of Hoechst 33342 and for 45 min after the addition of it. The 

cells were maintained on ice in the dark and prior to cell analysis, non-viable cells were 

excluded by the addition of 2μl propidium iodide (2μg/ml) (Sigma). LSRII flow 

cytometer (BD Biosciences) was used for SP assays and the FACS Diva software was 

used for the analysis of the data (Figure 2.13). 
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Figure 2.13: FACS profile of cells obtained from a breast cancer patient’s FNA (Patient 

3, see Appendix A). A) Identification of an SP population B) Note the partial inhibition 

on the addition of 25 μM Verapamil.  
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2.7.9 Staining cell surface proteins in suspended cells; staining breast cancer cell 

lines with anti-CD44 and anti-CD24 antibodies; optimization of antibody 

concentrations 

Cells were re-suspended in 1X PBS and counted to get aa final number of 1x 10
6
 cells 

per tube. MDA-MB-231 cells were used for the optimization of the CD44 antibody and 

MCF-7 cells were used for the optimization of the CD24 antibody.  The following tubes 

were set up: 1 x 10
6 
cells in 100 μl PBS and 1) 20 μl 2) 10 μl 3) 5 μl 4) 2 μl BD 

Pharmingen PE mouse anti human CD24, 1 x 10
6 
cells in 100 μl PBS and 5) 20 μl 6) 10 

μl 7) 5 μl 8) 2 μl BD Pharmingen APC mouse anti human CD44 9) 1 x 10
6 
unstained 

MCF-7 and 10) unstained MDA-MB-231 cells . All mixtures were incubated on ice for 

20 min in the dark and then washed x2 in excess cold PBS. The pellets were re-

suspended in 500 μl PBS, filtered through 70 μm cell strainers (BD Biosciences) and 

they were then ready for FACS analysis. The mean values of fluorescence intensity 

were increased gradually with increasing concentrations of the antibodies and the 

highest concentrations were preferred for all future experiments to ensure antigen 

saturation (Figures 2.14 and 2.15).  
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Figure 2.14: Optimization of the concentration of anti-CD24 in the MCF-7 cell line 
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Figure 2.15: Optimization of the concentration of anti-CD44 in the MDA-MB-231 cell 

line 
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2.8 Immunocytochemistry (ICC) 

ICC allows the detection of antigens or proteins and their cellular localization by the use 

of specific primary antibodies. Primary antibodies can be conjugated with a 

fluorochrome or another detectable tag (direct method) or alternatively these can be 

attached to secondary antibodies that bind to the Fc domain of the primary antibodies 

(indirect method). The use of fluorophores enables the localization of proteins in 

question when a light source with the appropriate wavelength is applied by a 

fluorescence or confocal microscope. Secondary antibodies can also be bound to 

enzymes which upon the addition of the appropriate substrate, also known as 

chromogens [such as AEC (3-Amino-9-EthylCarbazole) or DAB (3,3'-

Diaminobenzidine Tetrahydrochloride)] generate a detectable product, such as color, in 

the areas where the protein of interest is localized.   

2.8.1 Preparation of cells on chamber slides 

10,000 cells were seeded into each chamber of an 8-chamber slide (BD Falcon) and 

cultured in the presence of complete DMEM until they become sufficiently confluent. 

The media was then removed and chambers were washed x3 with 1 X PBS. The cells 

were fixed by incubation in cold methanol (BDH Laboratory Supplies) for 20 min at -

20
o
C.  

2.8.2 Protocol 1: Vectastain Elite ABC kit 

The Vectastain Elite ABC kit (Vector Laboratories; mouse PK6102 and rabbit PK6101) 

was used for the ICC staining for the (anti-rabbit) TGFB-RI and (anti-mouse) II 

receptors in MDA-MB-231 and MCF-7 cells according to the manufacturer’s 

instructions. Briefly, cells were fixed by incubation in cold methanol (BDH Laboratory 

Supplies) for 20 min at -20
o
C. Slides and the inserts were washed x2 with Tris Buffered 

Saline (TBS) pH 7.6 for 5 min. Cells were covered with blocking buffer (15 μl normal 

horse serum in 1000 μl TBS) for 10 min and then incubated for 30 min with primary 

antibodies diluted in TBS (1:50). Negative controls for the primary (TBS instead of the 

primary antibody) were also used. The washing step was repeated as described above. 

Cells were covered with the appropriate biotinylated secondary antibody solutions (15 

μl normal horse serum + 5 μl Biotinylated secondary antibody in 1000 μl TBS) for 30 

min. The washing step was repeated as described above. The avidin peroxidase complex 

was added [20 μl of Avidin DH (Reagent A) and 20 μl of Biotinylated Horseradish 

Peroxidase H (Reagent B) in 1000 μl TBS] and incubated for 30 min. The washing step 

was repeated as described above. Chambers were removed and DAB was added as a 

http://en.wikipedia.org/wiki/3,3%27-Diaminobenzidine_tetrahydrochloride
http://en.wikipedia.org/wiki/3,3%27-Diaminobenzidine_tetrahydrochloride
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peroxidase substrate for 2-3 min [One DAB tablet was added to 10 ml TBS. To this 200 

μl H2O2 in distilled water (5.8 ml distilled water + 200 μl H2O4) were added]. Slides 

were washed in tap water for 5 min and cells were counterstained with the nuclear 

counterstain haematoxylin. Slides were then dehydrated and cleared through alkaline 

solution and graded ethanol series and mounted in DPX. Slides were visualized under a 

microscope using bright-field illumination.  

 

2.8.3 Protocol 2: Fluorescence 

Slides and the inserts were washed x2 with 1 X PBS and permeabilized by soaking into 

0.3% (v/v) Triton X-100 (Fisher Scientific) in PBS for 10 min when staining for 

intracellular proteins. For extracellular or cell surface proteins this step was omitted. 

Slides were then washed once with PBS and non-specific binding sites were blocked by 

the addition of 5% normal goat serum (NGS; Sigma)/PBS for 30 min. This was 

followed by a  1 hour incubation in humid chamber with the primary antibody, diluted 

in 0.5% NGS/PBS in a range of antibody concentrations was tested (see Table 2.3 

Slides were then washed 3 times with PBS for 5 min followed by a 30 min incubation in 

the presence of the appropriate secondary antibody (diluted 1:25; Jackson Labs; Table 

3) again in a humid chamber in the dark Slides and the inserts were washed x3 with 

PBS for 5 min and chambers were removed. Slides were mounted in vectashield anti-

fading medium (Vector Laboratories) and coversliped. Negative controls for the 

primary (0.5% NGS/PBS instead of the primary antibody) and the secondary antibody 

(0.5% NGS/PBS instead of the secondary antibody) were also used. Slides could then 

be stored at 4
o
C in the dark until microscope visualization or for longer term at -20

o
C. 
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Antibody  Optimal concentration 

Mouse monoclonal Nanog (2.6 

μg/μl, ab62734) 

7 μg/μl 

Mouse anti-Oct 3/4 (250 μg/ml, 

BD Biosciences) 

2.5 μg/ml 

Rabbit polyclonal SOX-2 (1 

mg/ml, ab97959) 

5 μg/ml 

Rabbit polyclonal S100A4 (0.72 

mg/ml, ab27957) 

1:100 

Rabbit polyclonal p-smad 2/3 

(Ser 423/425)(200 μg/ml, sc-

11769) 

1:100 

Rabbit polyclonal Twist1 (1.100 

mg/ml, ab50581)  

1 μg/ml 

Rabbit polyclonal TGF beta 

Receptor I (ab31013) 

1:50 

Mouse monoclonal TGF beta 

receptor II (ab78419) 

1:50 

Table 2.3: Antibody names, codes and optimized concentration for use. 

 

 

2.9 Statistical analysis  

Statistical analyses and graphical representation of results were carried out using 

GraphPad Prism version 3 (GraphPad, San Diego, USA) and included unpaired and 

paired two tailed student t-tests or column statistics or ANOVA statistical tests. Each 

figure displays one representative experiment, while the number of repeats is described 

in each figure legend.  All data were considered statistically significant at p<0.05.  
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 Chapter 3: The effect of TGF-β treatment on BCSCs 

3.1 Introduction 

CSCs are good candidates for tumor regrowth and drug resistance due to their self 

renewal capacity, resistance to apoptosis and ability to expel chemotherapeutic drugs 

through ABC transporters (Reya et al., 2001). In fact, SP cells, a putative CSCs 

population, can be identified by their ability to efflux vital dyes through these 

transporters (Gottesman et al., 2002). SP cells isolated from both mouse and human 

primary breast tissue were able to generate epithelial and luminal cells and structures in 

vitro and in vivo, respectively (Alvi et al., 2002). Moreover, ABCG2 was found to be 

highly expressed in the SP compared to the NSP compartment suggesting that this is a 

distinctive property of SP cells in most cell types (Zhou et al., 2002; Patrawala et al., 

2005; Steiniger et al., 2008). Additionally, complete elimination of the SP population 

was achieved by the use of FTC, a specific inhibitor of ABCG2, and siRNA for ABCG2 

in the MCF-7 breast cancer cell line (Rabindran et al., 2000).  

The expression of high levels of CD44 and low levels of CD24 in eight out of nine 

patients with breast cancer has also been suggested as a property of another BCSC 

population. The tumorigenic ability of CD44+/CD24- cells was demonstrated in 

immunocompromised mice, a few of these cells were enough to form new tumors, while 

a high number of cells with alternative profiles failed to do so.  Al-Hajj and colleagues 

also showed that CD44+/CD24- cells were able to give rise to new tumorigenic and non 

tumorigenic cells (Al-Hajj et al., 2003).  

 

It is becoming increasingly evident that EMT is involved in the regulation of BCSCs. 

EMT is thought to contribute to the metastatic process during which tumor cells at the 

primary site acquire an increased migratory potential and colonize at distant sites where 

they proliferate and form new tumors (Evans, 1991; Britton et al., 2011).  Several 

growth factors and cytokines are involved in EMT. TGF-β binding to TGFB-RII, results 

in the heterodimerization of TGFB-RII and RI. TGFB-RI phosphorylates and activates 

downstream cytoplasmic molecules such as smad 2 and 3. p-smad 2/3 can then form 

complexes with Smad 4 and enter the nucleus, where it induces the expression of 

several target genes related to EMT in association with other transcription factors 

(Moustakas and Heldin, 2007). This pathway seems to play a dual role in 

carcinogenesis; at early stages it promotes inhibition of cell growth and apoptosis, while 

at more advanced stages cancer cells become resistant to the TGF-β induced suppressive 
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activity leading to excessive cell proliferation, motility and invasiveness (Pardali and 

Moustakas, 2007). Interestingly, higher mRNA (MacCallum et al., 1994) and protein 

(Walker and Dearing, 1992; Auvinen et al., 1995) levels  of TGF-β1, 2 and 3 were 

found in primary breast cancer tissue specimens and the latter were significantly 

increased in more aggressive carcinomas compared to in situ carcinomas (Walker and 

Dearing, 1992). Elevated circulating TGF-β plasma levels were also detected in breast 

cancer patients with worse survival rates (Grau et al., 2008).  

 

Induction of EMT in the HMLE led to an increase of CD44+/CD24- cells which had a 

higher mammosphere forming and self-renewal ability compared to the CD44-/CD24+ 

cells (Mani et al., 2008).  Similarly, introduction of the Twist1 gene (Vesuna et al., 

2009) in MCF-7 and MCF-10A cells and of the Twist2 gene in the MCF-10A cells 

(Fang et al., 2011) led to an increase of the CD44+/CD24- cells, which acquired 

enhanced migratory (Fang et al., 2011) and invasive (Vesuna et al., 2009) characteristics 

and had an increased export activity of the Hoechst 33342 and Rhodamine 123 dyes 

(Vesuna et al., 2009). Conversely, FOXC2 silencing mediated by shRNA in HMLE cells 

that were induced to undergo EMT resulted in the generation of cells with epithelial-like 

properties, a reduction of CD44+/CD24- cells which demonstrated a decreased ability to 

form  mammospheres (Hollier et al., 2013).   

 

Interestingly, microarray analysis of the gene expression patterns of the CD44+/CD24- 

and the CD44-/CD24+ cells in the MCF-7 and MCF-10A cell lines led to the 

identification of 32 genes that are differentially expressed in these two subpopulations 

with the Slug gene being able to promote the generation of CD44+/CD24- cells in the 

basal MCF-10A cell line only (Bhat-Nakshatri et al., 2010) Additionally, genome-wide 

transcriptional profiling of the above mentioned subpopulations revealed that there is 

higher expression of TGF-β and TGF-ΒRII in the CD44+/CD24- compared to the 

CD44-/CD24+ cells, suggesting that BCSCs are more prone to undergo EMT (Shipitsin 

et al., 2007).  

 

TGF-β1 treatment of the MCF-7 cell line led to the loss of the SP phenotype, decreased 

ABCG2 expression and reduced cell viability in the presence of mitoxantrone (Yin et 

al., 2008). We have also confirmed these findings (Mallini et al., 2014). In most studies 

it was shown that EMT has a negative regulatory role in the SP from several cancer cell 

lines. TGF-β significantly reduced the SP percentage of human diffuse-type gastric 
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carcinoma cells by down-regulating ABCG2 through direct binding of p-smad2/3 to the 

ABCG2 promoter region (Ehata et al., 2011). Similarly, SP cells isolated from 

pancreatic cell lines were more likely to gain and lose E-cadherin expression before and 

after TGF-β exposure in vitro and they had a greater in vivo metastatic potential 

compared to NSP cells (Kabashima et al., 2009).  

  

3.2 Chapter hypothesis 

Autocrine production of TGF-β in the MDA-MB-231 cells is thought to be essential for 

their growth and maintenance, since inhibition of the TGF-β signalling pathway has led 

to apoptosis (Lei et al., 2002). This cell line represents basal-like or hormone non 

responsive breast cancer subtypes, who have been found to have a high SP prevalence 

(Britton et al., 2012), whereas the MCF-7 cell line represents hormone-dependent 

subtypes. Additionally, the TGF-β signalling pathway has been found to be less 

functional in ER+ patients due to low TGF-BRII expression (Arteaga et al., 1988) and 

this phenotype has also been correlated with the presence of CD44-/CD24+ cells, which 

are not considered CSCs (Shipitsin et al., 2007). Therefore, I hypothesize that there will 

be potential differences in the responsiveness of the SP cells to EMT in these cell lines, 

and that the BCSCs in MDA-MB-231 will be more prone to undergo EMT due to the 

presence of an intact TGF-β signalling pathway, and to their increased mesenchymal 

and migratory potential compared to the MCF-7 cell line. It was expected that this 

would also explain different clinical outcomes and response to current therapeutic 

options depending on the hormonal status of breast cancer patients. Ideally, the 

identification of the exact EMT mechanisms that regulate the SP population in these cell 

lines would enable the development of more efficient patient-specific therapeutic 

approaches for overcoming drug resistance and metastasis caused by the presence of 

BCSCs. 

3.3 Aims  

 To determine the effects of ΤGF-β1 treatment on the SP population in the 

MDA-MB-231 cell line.   

 To determine the effects of TGF-β treatment on the CD44+/CD24- 

population in the MDA-MB-231 and MCF-7 cell lines 

 To confirm the impact of EMT on the MCF-7 SP cells, (previously reported), 

and compare it to that of the MDA-MB-231 SP cells. 
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 To investigate the properties of the TGF-β signalling pathway in both cell 

lines in order to explain the potentially different effect of EMT on the SP 

cells from these. 

3.4 Experimental design 

 EMT was induced in the MDA-MB-231 and MCF-7 cell lines by treatment 

with TGF-β1 for 3 days followed by SP analysis to examine the effect of 

EMT on these SP populations. The TGF-BRI inhibitor, SB-505124, was 

used to reverse these effects and therefore confirm that they are due to the 

TGF-β signalling pathway.  

 The activation of the pathway was further confirmed with the detection of p-

smad 2/3 by ICC in response to TGF-β treatment with or without the 

addition of SB-505124 or just SB-505124 to test whether the autocrine TGF-

β signalling was blocked.  

 The expression levels of TGF-β1 and its receptors, TGF-ΒRI and II, were 

assessed by qPCR and by qPCR and ICC, respectively. 
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3.5 Results 

3.5.1 The effect of TGF-β1 treatment on SP numbers in breast cancer cell lines 

To determine the role of EMT on the SP population of the MDA-MB-231 cell line 

unfractionated MDA-MB-231 cells were treated with 5 ng/ml TGF-β1 for 3 days and 

SP analysis was performed. TGF-β1 treatment resulted in the complete abrogation of 

the SP phenotype of the SP population (p= 0.04). The use of increasing doses of SB-

505124 [1, 3 and 5 μΜ] in the presence of TGF-β1 led to a gradual increase in the SP 

percentage (from 0.1 to 0.8%) to that seen in the untreated cells (0.8%) confirming that 

the loss of the SP phenotype in this cell line was due to the activation of the TGF-β 

signalling pathway (Figure 3.1). In order to further confirm that the action of this 

pathway is responsible for reducing the SP numbers, SB-505124 was added to 

unfractionated MDA-MB-231 cells without the presence of any exogenous TGF-β1. 

This experiment showed that the SP percentage was further increased compared to the 

untreated cells (p=0.03) (Figures 3.2, 3.3).  

Since the addition of 5 ng/ml did not effectively eliminate the SP population (Figure 

3.4), unfractionated MCF-7 cells were treated with 10 ng/ml TGF-β1 for 3 days and SP 

analysis was performed. This induced a significant reduction (p=0.03), but not complete 

abrogation of the SP numbers (Figures 3.5 and 3.6). The use of SB-505124 was not 

possible in the MCF-7 cells, as it caused cell death (data not shown).  
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Figure 3.1: Representative FACS images of SP analysis in MDA-MB-231 cells. A) 

Untreated C) Treated with 5 ng/ml TGF-β1 Ε) Τreated with 5 ng/ml TGF-β1 and 1 μΜ 

SB-505124 G) Τreated with 5 ng/ml TGF-β1 and 3 μΜ SB-505124 I) Τreated with 5 

ng/ml TGF-β1 and 5 μΜ SB-505124. FTC, an ABCG2 inhibitor, was used to confirm 

the SP phenotype in B), D), F), H) and J). (n=8, p=0.04 for 5 μΜ SB-505124). 

(student’s paired t-test). Results were considered significant when p<0.05. 
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Figure 3.2: Representative FACS images of SP analysis in MDA-MB-231 cells. A) 

Untreated C) Treated with 5 μM SB-505124. FTC, an ABCG2 inhibitor, was used to 

confirm the SP phenotype in B) and D). n=6, p=0.03 (student’s paired t-test). Results 

were considered significant when p<0.05. 
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Figure 3.3: Graphical representation of flow cytometry data. Percentages of SP cells in 

untreated and treated with 5 μM SB-505124 unfractionated MDA-MB-231cells. Bars 

represent an average of n=6 individual experiments, p=0.03. Results are expressed as 

the mean SEM using a paired student’s t-test and were considered significant when 

p<0.05. 
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Figure 3.4: FACS images of SP analysis in MCF-7 cells. A) Untreated C) Treated with 

5 ng/ml TGF-β1.  FTC, an ABCG2 inhibitor, was used to confirm the SP phenotype in 

B) and D). n=1 
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Figure 3.5: Representative FACS images of SP analysis in MCF-7 cells. A) Untreated 

C) Treated with 10 ng/ml TGF-β1.  FTC, an ABCG2 inhibitor, was used to confirm the 

SP phenotype in B) and D). n=7, p=0.03 (student’s paired t-test). Results were 

considered significant when p<0.05. 
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Figure 3.6: Graphical representation of flow cytometry data. Percentages of SP cells in 

untreated and treated with 10 ng/ml TGF-β1 unfractionated MCF-7 cells. Bars represent 

an average of n=7 individual experiments, p=0.03. Results are expressed as the mean 

SEM using a paired student’s t-test and were considered significant when p<0.05. 
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3.5.2 The effect of TGF-β treatment on the CD44+ population in breast cancer cell lines. 

To investigate the role of TGF-β treatment on the CD44+/CD24- cells in the MDA-MB-

231 and MCF-7 cells, staining for CD44 and CD24 was performed in untreated and 

treated cells. CD24 staining gave double peaks in the MCF-7 cells, which made the 

interpretation of data impossible. For the MDA-MB-231 cells the decrease in CD24 

expression was very low in the treated with TGF-β1 sample (Appendix B, 

Supplementary data, pages 217 and 218). Treatment with TGF-β1 resulted in a higher 

increase of the CD44 protein levels in the MDA-MB-231(Figure 3.7) compared to the 

MCF-7 (Figure 3.8) cells, yet non significant (Figures 3.9-3.10).  

 

Figure 3.7: Representative FACS images from CD44 staining in MDA-MB-231 cells. 

A) Unstained B) Untreated C) Treated with 5 ng/ml TGF-β1 for 3 days. n=3, p=0.21 

(student’s paired t-test). Results were considered significant when p<0.05. 
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Figure 3.8: Representative FACS images from CD44 staining in MCF-7 cells. A) 

Unstained B) Untreated C) Treated with 10 ng/ml TGF-β1 for 3 days. n=3, p=0.19 

(student’s paired t-test). Results were considered significant when p<0.05. 
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Figure 3.9: Graphical representation of flow cytometry data. Protein expression levels 

of CD44 in untreated and treated with 5 ng/ml TGF-β1MDA-MB-231 cells. Bars 

represent an average of n=3 individual experiments, p=0.21. Results are expressed as 

the mean SEM using a paired student’s t-test and were considered significant when 

p<0.05. 

 

 

Figure 3.10: Graphical representation of flow cytometry data. Protein expression levels 

of CD44 in untreated and treated with 10 ng/ml TGF-β1MCF-7 cells. Bars represent an 

average of n=3 individual experiments, p=0.19. Results are expressed as the mean SEM 

using a paired student’s t-test and were considered significant when p<0.05. 
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3.5.3 Confirmation of TGF-β pathway activation through TGF-β1 treatment 

To confirm the activation of the TGF-β pathway by the addition of TGF-β 

unfractionated MDA-MB-231 cells were treated with 5 ng/ml TGF-β1 for 3 days and 

nuclear p-smad 2/3 levels were assessed by ICC. Untreated cells showed low p-smad 

2/3 levels, suggesting that there is autocrine production of TGF-β1 in the MDA-MB-

231 cells. Additionally, successful activation of the TGF-β signalling pathway was 

achieved by TGF-β1 exposure as seen by the significant increase of p-smad 2/3 (n=3, 

p=0.001) and these effects were reversed upon the addition of the TGF-B-RI antagonist, 

SB-505124 with or without the presence of ΤGF-β1 (Figures 3.11A and 3.12). Since 

treatment of the MCF-7 cells with 5 ng/ml TGF-β1 was not sufficient to activate the 

pathway (data not shown), 10 ng/ml were added and significantly increased p-smad 2/3 

(n=3, p=0.0008), but not to the same degree as in the MDA-MB-231 cells. The use of 

SB-505124 also reduced the levels of nuclear p-smad2/3 in the MCF-7 cell line (Figures 

3.11B and 3.13).  
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Figure 3.11:  ICC images for nuclear p-smad 2/3 staining showing activation of the 

TGF-β signalling pathway. A) MDA-MB-231 B) MCF-7 cells upon exposure to 5 ng/ml 

TGF-β1 (MDA-MB-231) and 10 ng/ml (MCF-7) for 3 days (red). p-smad 2/3 is 

decreased or almost absent with the addition of 5 μM SB-505124 with or without TGF-

β1, respectively. Nuclei were visualized by 4’, 6-diamidino-2-phenylindole DAPI stain 

(blue). Negative controls for the primary antibody were used.  All images were taken at 

20X magnification and a 20 μm scale bar was used. Representative images from n=3 

experiments.  
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Figure 3.12: Graphical representation of ICC data. p-smad 2/3 levels in untreated, 

treated with 5 ng/ml TGF-β1, 5 ng/ml TGF-β1 + 5μM SB-505124 and 5μM SB-505124 

MDA-MB-231 cells. Bars represent an average of n=3 individual experiments, p=0.001. 

Results are expressed as the mean SEM using a one way ANOVA test and were 

considered significant when p<0.05. 

 

Figure 3.13: Graphical representation of ICC data. p-smad 2/3 levels in untreated, 

treated with 10 ng/ml TGF-β1, 10 ng/ml TGF-β1 + 5μM SB-505124 and 5μM SB-

505124 MCF-7 cells. Bars represent an average of n=3 individual experiments, 

p=0.0008. Results are expressed as the mean SEM using a one way ANOVA test and 

were considered significant when p<0.05. 
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3.5.4 Assessment of endogenous TGF-β1 production and TGF-ΒRI and II expression 

in MDA-MB-231 and MCF-7 cells 

To explain the different responsiveness of SP cells in the MDA-MB-231 and MCF-7 

cells, I used q-PCR and ICC experimental approaches to characterize the properties of 

the TGF-β signalling pathway in the above mentioned unfractionated cell lines. In fact 

TGF-β1 mRNA and TGFB-RI and II mRNA and protein expression were assessed by 

qPCR and ICC, respectively. Although mRNA expression of TGFB-RI was not 

significantly different between the two cell lines, levels of TGFB-RII were significantly 

higher in the MDA-MB-231 than in the MCF-7 cells (p=0.04, n=6 (Figure 3.14A and 

B). The levels of all three isoforms of endogenous TGF-β (data only shown for TGF-β1) 

were also measured by qPCR in MDA-MB-231 and MCF-7 cells, with only TGF-β1 

being produced at measurable levels by both cell lines. Interestingly, the mRNA 

expression of TGF-β1 was significantly higher in the MDA-MB-231 cells (p=0.04, n=3) 

(Figure 3.14C). ICC analysis for the TGFB-RI and II receptors confirmed that although 

TGFB-RI protein levels were similar in both cell lines, TGFB-RII protein expression 

was increased in the MDA-MB-231 compared to the MCF-7 cells (Figure 3.15).  

 

Figure 3.14: Graphical representation of qPCR data A) TGFB-RI B) TGFB-RII and C) 

TGF-β1 mRNA levels in MDA-MB-231 and MCF-7 cells. Results are expressed as the 

mean SEM for A) n=6, p=0.33 and B) n=6, p=0.04 and C) n=3, p=0.04 using an 

unpaired student’s t-test.  
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Figure 3.15: ICC staining for A) TGFB-RI and B) TGF-RII protein expression in 

MDA-MB-231 and MCF-7 cells. All images were taken at 40X magnification and a 20 

μm scale bar was used. Representative images from n=2 experiments.  
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3.5.5 SP isolation from a breast cancer patient's Fine Needle Aspirate (FNA) 

Obtaining a breast cancer patient’s FNA containing a high number of cells allowed me 

to perform a series of experiments in order to detect the presence of SP cells and 

investigate the expression of ABCB1 and ABCG2 in this patient. SP analysis of this 

FNA revealed that there was a distinct SP population, which was only partially inhibited 

upon the addition of Verapamil (Figure 3.16). In addition, the use of the normal primary 

cells (HMEpC) isolated from normal adult mammary glands served as a negative control 

and allowed me to confirm that there is no SP population in these. In Figure 3.17 

ABCG2 and ABCB1 are both expressed in the FNA sample, but ABCG2 expression 

seems higher than ABCB1, which could explain the incomplete inhibition by 

Verapamil, since it is known that it is more specific for ABCB1. The absence of an SP 

population in the HMEpC cells was validated by the very low ABCG2 and ABCB1 

expression.  
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Figure 3.16: SP profile obtained from a breast cancer patient’s FNA (Patient 5, see 

Appendix A). A) FACS profile showing an SP population B) Note the partial inhibition 
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of the SP phenotype as indicated by the reduced numbers of cells in the SP gate on the 

addition of 25 μM Verapamil. C) Negative control: HMEpC D) Note the absence of an 

SP population on the addition of 10 mM FTC. 

3.5.6 Investigation of EMT marker expression in cells derived from a breast cancer 

patient's FNA 

The expression of several EMT markers in this FNA was also assessed by PCR and it 

was shown that the patient’s cells express mRNA for E-CADHERIN, TWIST, SLUG 

and FOXC2. HMEpC were used as a negative control and showed lower expression of 

E-CADHERIN, TWIST and SLUG and almost no expression of FOXC2 (Figure 3.17). 

The cells obtained from this FNA were cultured and ICC for EMT and stem cell 

markers was performed. High TWIST and S100A4 protein expression was seen (Figure 

3.18) and there was also low expression of OCT 3/4 and SOX-2 and high expression of 

NANOG (Figure 3.19).  

 

 

NTC

 

 

Figure 3.17: PCR products for EMT markers and ABC transporters gene expression 

obtained from a breast cancer patient’s FNA (top panel) and from normal primary cells 

HMEpC (bottom panel). GAPDH was used as a housekeeping gene and a NTC ensured 

no genomic contamination.  
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Figure 3.18: ICC images for EMT markers obtained from a breast cancer patient’s FNA 

A) TWIST1 B) S100A4 protein expression. Images were taken at 20X magnification 

and a 20 μM scale bar was used.  
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Figure 3.19: ICC images for stem cell markers obtained from a breast cancer patient’s 

FNA. A) NANOG and OCT 3/4 B) SOX2. Images were taken at 20X magnification and 

a 20 μM scale bar was used.  
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3.6 Discussion  

The relationship between EMT, BCSCs and multidrug resistance has become of 

increasing interest in recent years, with the TGF-β signalling pathway having a role in 

inducing EMT via down-regulation of E-cadherin (Moustakas and Heldin, 2007). The 

TGF-β signalling pathway has a key role in normal mammary gland development by 

maintaining the mammary epithelium in an undifferentiated state. It is also responsible 

for the induction of apoptosis in the alveolar department and for the inhibition of cell 

growth in the ductal epithelial compartment, indicating its multiple roles depending on 

cell and environmental context (Wakefield et al., 2000). However, during tumorigenesis 

tumor epithelial cells acquire an altered responsiveness to TGF-β, they increase the 

secretion and/or activation of it, promoting invasion and metastasis (Wakefield and 

Roberts, 2002).  

TGF-β signalling plays a role in the regulation of both normal and cancer stem cells in 

the breast. However, its impact differs depending on the cell type and physiological cell 

state and other microenvironmental factors. In normal mammary gland development, 

TGF-β is thought to highly contribute to the regulation of the stem cell properties of 

normal epithelial stem  cells (Sakaki-Yumoto et al., 2013). Additionally, it has been 

found that induced expression under the WAP promoter in mice, which is mostly active 

during late pregnancy and lactation, has led to the impairment of alveolar growth and 

development and to premature alveolar cell apoptosis. Mammary epithelial stem cells 

were also prematurely senescent and thus failed to form ductal mammary trees due to 

overexpression of TGF-β1 (Kordon et al., 1995). Of note, in another study it has been 

reported that these effects prevented tumor formation caused by MMTV-induced 

tumorigenesis presumably by reducing the self-renewal capacity of mammary epithelial 

stem cells and by promoting their differentiation (Boulanger and Smith, 2001). 

 Although in some studies TGF-β has been shown to promote the generation of CSCs, 

there are contrasting reports which demonstrate an inhibitory role of TGF-β on CSCs 

(Sakaki-Yumoto et al., 2013). Indeed, the effect of EMT through the TGF-β pathway on 

several BCSCs populations has been studied previously and it has been reported that it 

leads to the enhancement of the CD44+/CD24- phenotype
 
 (Mani et al., 2008) or to 

significant reduction of the SP phenotype (Yin et al., 2008). In my study SP analysis of 

TGF-β1 treated cells showed loss of the SP phenotype in the MDA-MB-231 and a 

significant reduction of cells with an SP phenotype in the MCF-7 cell line. A similar 

observation on the MDA-MB-231 SP has also been made by Tang and colleagues, who 
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demonstrated that SP fraction was decreased in response to TGF-β exposure (Tang et 

al., 2007). Furthermore, my data regarding the MCF-7 SP are consistent with those of 

Yin et al., who demonstrated that the decrease of the SP percentage was due to ABCG2 

down-regulation caused by TGF-β exposure (Yin et al., 2008).  

Additionally, it has been shown that treatment of the MCF10ACa1h subline, 

transformed with the activation of the Ha-ras oncogene, with TGF-β also resulted in  

significant decrease of the SP cell percentage and these effects were also observed in the 

mouse tumor cell line Wnt1. TGF-β treatment also reduced the mammosphere forming 

ability of the SP cells in the Ca1h cells and this was reversed by the loss of TGFB-RII 

expression in the Ca1h cells transfected with the dominant negative form of the TGFB-

RII gene (Ca1h-DNR). Notably, the SP numbers were increased in tumors formed by 

injection of the Ca1h-DNR cells in mice, supporting the role of the TGF-β signalling 

pathway both in vitro and in vivo. It is worth mentioning that in the same study TGF-β 

was found to be responsible for also promoting the differentiation of a more committed, 

but highly proliferative progenitor cell population as shown by the elevation of the 

MUC1 and CK8 luminal differentiation markers, while in addition it reduced  the 

proliferation rates of this progenitor cell population  (Tang et al., 2007).  

I anticipate that there is a stronger impact on the MDA-MB-231 SP cells, since these 

have been shown to express no significantly different protein levels of ABCG2 

compared to the MDA-MB-231 NSP cells (Britton et al., 2012). However, there was a 

significantly higher ABCG2 protein expression in the MCF-7 SP cells than in the MCF-

7 NSP cells (Britton et al., 2012), which is presumably more difficult to down-regulate. 

I also observed differences in the responsiveness of the two cell lines to TGF-β1 

treatment, the effects of which could be reversed by the use of the SB-505124 inhibitor 

in the MDA-MB-231 cells, as shown by the re-appearance of the SP population in cells 

treated with SB-505124 in the presence of TGF-β1. Most importantly, treatment of 

MDA-MB-231 cells with SB-505124 in the absence of exogenous TGF-β1 further 

enhanced the SP phenotype, indicating that the autocrine TGF-β1 production is 

responsible for reducing the SP numbers in this cell line. MCF-7 cells did not survive 

the addition of SB-505124, which presumably was due to the decreased internalization 

of TGF-β1 and weak TGF-β signalling.  

Findings of this study are consistent with previous reports in which TGF-β treatment 

also decreased the SP fraction in other cancer cell lines. Ehata et al demonstrated that 
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ABCG2 was down-regulated upon the addition of TGF-β to the culture media of several 

cancer cell lines, including MDA-MB-231 cells. Accordingly, ABCG2 was among the 

most up-regulated genes in tumors formed after the injection with the diffuse-type 

gastric carcinoma cell line, OCUM-2MLN which had been transfected with the 

dominant negative form of TGFB-RII (2MLN-dnTGFB-RII) into nude mice. Most 

importantly, SP cells exhibited a higher tumorigenicity in vivo compared to the NSP 

cells from diffuse-type gastric carcinoma cell lines and this was reduced when cells 

were pre-treated with exogenous TGF-β before being injected into nude mice. Knock-

down of the smad4 gene did not result in the repression of ABCG2 expression in 

response to TGF-β, indicating that these effects were due to the TGF-β/smad dependent 

pathway (Ehata et al., 2011).  

What is more, isolated SP cells from the pancreatic cell lines PANC-1 and Capan-2 re-

gained E-cadherin expression after 3 days in culture and this was down-regulated with 

TGF-β treatment for 2 days, whereas E-cadherin expression levels were lower before 

and after treatment in the NSP cells. E-cadherin expression was also restored upon 

withdrawal of TGF-β from the culture media. These observations indicated that SP cells 

were more responsive to EMT changes induced by TGF-β in comparison to NSP cells. 

This was further confirmed with luciferase reporter assays in the PANC-1 SP and NSP 

cells which showed that SP cells had a higher luciferase transcription activity even 

without the addition of any exogenous TGF-β. Furthermore, p-smad2/3 was increased in 

the SP compared to the NSP, suggesting that the TGF-β pathway was more active in the 

former (Kabashima et al., 2009). Additionally, TGF-β exposure led to the decrease of 

SP hepatic stellate LX2 cells and the increase of collagen type I expression which was 

reversed upon the addition of the SB431542 inhibitor. It was concluded that TGF-β 

signaling participates in Extracellular Matrix (ECM) accumulation causing fibrosis in 

addition to the regulation of the SP population (Kim et al., 2014).   

The only study that reported a positive regulation of the SP population by TGF-β was in 

the human gallbladder cancer cell line GBC-SD. The SP cells generated through EMT 

induced TGF-β exposure were characterized with the up-regulation of ABCG2 and 

decreased sensitivity to mitoxantrone. These effects were reversed by the use of a 

specific si-RNA for smad 3 which resulted in the reduction of the SP abundance. I 

anticipate that TGF-β may have different regulatory roles depending on cellular context. 

However, it should be noted that SP cells in this study also showed a higher colony 
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forming efficiency in vitro and a higher tumorigenic ability in vivo compared to the 

NSP cells, confirming the notion that they are a CSC population (Zhang et al., 2011).  

The autocrine TGF-β1, β2 and β3 mRNA production by MDA-MB-231 and MCF-7 

cells was assessed using qPCR, but only ΤGF-β1 was produced by these cells. The 

levels of ΤGF-β1 were significantly higher in the MDA-MB-231 cells compared to the 

MCF-7 cells. qPCR and ICC analysis for the ΤGFB- receptors I and II revealed that 

although the levels of TGFB-RI were similar, there was very low expression of the 

TGFB-RII in the MCF-7 cells. These results are consistent with published findings that 

MCF-7 cells lack expression of RII and when this was restored the cells became less 

tumorigenic both in vitro and in vivo (Sun et al., 1994).
 
The effects of defective TGF-β 

signalling by loss of TGFB-RII expression on the SP population have been 

demonstrated in the MCF10ACalh1 subline by Tang et al. (Tang et al., 2007).  

RII expression is considered more important for the activation of the TGF-β signalling 

pathway, since TGF-β1 bound RII forms a heterodimer complex with RI, which 

promotes the subsequent molecular events through its kinase activity (Vivien et al., 

1995). Additionally, all TGF-β isoforms are mainly produced in a latent form, therefore 

the small amount that is activated requires sufficient receptors on the cell surface to 

internalize it (Chen et al., 1997). Low RII expression in the MCF-7 cells is presumably 

responsible for defective binding of TGF-β1, internalization and signalling in 

contradiction with the MDA-MB-231 cells.  

It has been reported that RIII binds to RII and causes conformational changes, which 

facilitate the binding of the ligand to RII and enhance the pathway activation (López-

Casillas et al., 1993).
 
Interestingly, RIII expression is also very low in MCF-7 cells and 

transfection with the RIII gene led to increased TGF-β promoter activity measured by 

luciferase and decreased levels of activated TGF-β1 in the conditioned media. 

Additionally, there was significant inhibition of anchorage independent colony 

formation and cell growth (Chen et al., 1997). Moreover, ectopic expression of the 

dominant negative form of RIII (sRIII) in the MDA-MB-231 cell line had the same 

effects, but it also caused apoptosis by increasing the levels of PTEN (Lei et al., 2002), 

which has a pro-apoptotic role by competing with phosphatidylinositol 3-kinase 

mediated Akt activation (Simpson and Parsons, 2001).
 
Treatment with TGF-β1 

prevented apoptosis and reduced the PTEN levels, suggesting that autocrine TGF-β1 
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production is essential for the proliferation and maintenance of these cells (Lei et al., 

2002).
 
 

TGF-β exerts its tumor suppressive activity by inhibiting cyclin-dependent protein 

kinases (cdk) that regulate the G1 phase of the cell cycle (cdk2, cdk4, cdk6) (Massagué, 

2000; Massagué et al., 2000). It is known to induce the elevation of p15Ink4b, which is 

a cdk4/6 inhibitor (Sandhu et al., 1997).
 
TGF-β also prevents c-myc from blocking 

p15Ink4b and thus it promotes inhibition of cell growth (Warner et al., 1999).
 
However, 

in MDA-MB-231 cells there is loss of c-myc down-regulation, leading to excessive cell 

cycle arrest and uncontrolled proliferation (Chen et al., 2001).
 
It has been proposed that 

MCF-7 cells are also resistant to the inhibitory effects of TGF-β (Lei and 

Bandyopadhyay, 2002; Lei et al., 2002) due to the fact that RII, whose expression is 

low, can be saturated by TGF-β1 and therefore reaches the cells’ maximal autocrine 

TGF-β activity more easily (Chen et al., 1997).
  

The oncogenic effects of the TGF-β signalling pathway have not been attributed to the 

inactivation of any of the pathway components, since genetic alterations are thought to 

be extremely rare in breast cancer (Wakefield et al., 2001). In fact, no mutations have 

been found in TGFB-RII in primary breast cancer tumors or breast cancer cell lines 

(Vincent et al., 1996; Anbazhagan et al., 1999; Tomita et al., 1999) and in TGF-BRI in 

20 breast cancer specimens from metastatic cases (Anbazhagan et al., 1999), while 90% 

of primary cell cultures expressed normal levels of TGF-BRI (Chakravarthy et al., 

1999). Additionally, none of the 22 breast cancer cell lines showed any gene alterations 

in Smad 1, 3, 5 and 6 (Riggins et al., 1997). 

Nevertheless, it has been reported that breast cancer development can be caused due to 

loss of TGFB-RII expression at both early and late stages of the disease (Wakefield et 

al., 2001). In 17% of women with epithelial hyperplasia lacking atypia (EHLA) there 

was a reduction to less than 25% of cells expressing TGF-BRII, which was correlated 

with increased risk of invasive breast cancer (Gobbi et al., 1999). Furthermore, 

immunohistochemical analysis of specimens derived from human DCIS and IBS 

patients showed low TGFB-RII expression compared to the normal tissue. Therefore, it 

was suggested that resistance to the TGF-β suppressive actions caused by low or absent 

TGF-BRII expression may lead to the progression of a more aggressive disease (Gobbi 

et al., 2000).  
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Moreover, prolonged TGF-β exposure may also lead to the inhibition of the apoptotic 

role of the TGF-β signalling and to the induction of EMT and migration as 

demonstrated in the murine mammary epithelial cell line namru murine mammary gland 

(NmuMG) by Gal and co-workers. The EMT related changes were found to be caused 

through the activation of the PI3K-Akt and the MAPK cascades, which were reversible 

upon TGF-β removal and the addition of an TGFB-RI inhibitor (Gal et al., 2007).  

 

Nuclear expression of p-smad 2/3 in treated MDA-MB-231 and MCF-7 cells was 

increased by exogenous TGF-β1 treatment. However, even treatment with higher 

concentration of TGF-β1 did not augment activation of the p-smad 2/3 pathway in 

MCF-7 cells to the same extent as in the MDA-MB-231 cells. Surprisingly, MCF-7 

cells survived following addition of the antagonist SB-505124 probably due to the 

higher number of cells used in this experiment. Normally, a limited number of cells are 

plated for the SP assay in order to ensure low confluency and high SP percentage. 

Although the total cell population is responsive to the TGF-β exposure there seems to 

be a visible impact only on the SP phenotype. Interestingly, it has previously been 

shown that p-smad 2/3 directly binds to the ABCG2 promoter and down-regulates its 

expression in response to TGF-β (Ehata et al., 2011). As a result, it is reasonable to 

suggest that effects on the SP population are caused through the TGF-β smad-dependent 

pathway.  

There is accumulating evidence to support the cross-talk between the TGF-β and 

estrogen-signalling pathways. ER- breast cancer cell lines have been found to express 

receptors for TGF-β, while ER+ cell lines are characterized by undetectable levels of 

these. Furthermore, TGF-β treatment led to the inhibition of proliferation of almost all 

ER- breast cancer cell lines in a dose dependent manner, while all ER+ cell lines were 

unaffected. As a result, it was concluded that ER- cells produce and secrete large 

amounts of TGF-β into the cell culture medium, express sufficient receptors for it and 

respond to even low concentrations of exogenous TGF-β (Arteaga et al., 1988).  

Another study also showed that ER+ breast cancer cell lines were TGFB-RII- and 

resistant to TGF-β treatment, while the opposite was found in ER- cell lines. However, 

early passage MCF-7 cells (MCF-7E) were found to express TGF-BRII which was lost 

in late passage cells (MCF-7L). Using 5-aza-2’-deoxycytidine (5-aza-2’-dC), a DNA 

methyltransferase inhibitor, the authors were able to reverse methylation of the TGFB-

RII gene and restore its expression in MCF-7L cells, which became sensitive to TGF-β 
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exposure. Interestingly, the TGFB-RII promoter region was found to contain 2 binding 

sites for the SP1 transcription factor and cells expressing a mutant form of SP1 failed to 

express TGFB-RII and respond to TGF-β treatment (Ammanamanchi et al., 1998). Liu 

and colleagues also demonstrated that low TGFB-RII expression is partially due to 

insufficient amounts of SP1 protein, since co-transfection of MCF-7L with an SP1 

plasmid and a TGFB-RII promoter construct resulted in the increase of TGFB-RII 

protein levels (Liu et al., 2000)  

In addition, Fujita and colleagues demonstrated that both ER-α and estradiol are 

essential for the inhibition of EMT through SNAIL repression and maintain E-cadherin 

expression and therefore the epithelial morphology of breast cancer cells (Fujita et al., 

2003). In another study, they further showed that ER-α transcriptionally activates the 

metastasis-associated protein 3 (MTA3) in MCF-7 cells by directly binding to both an 

SP1 and an ERE site, which are in close proximity in the MTA3 promoter region (Fujita 

et al., 2004). It should be noted that MTA3 is an important subunit of the Mi-2/NuRD 

complex, which has histone deacetylase and chromatin remodeling ATPase activities 

and thus it contributes to the transcriptional repression of several genes (Fujita et al., 

2003; Bowen et al., 2004).  

 

Conversely, SNAIL and SLUG overexpression in MCF-7 cells promoted the acquisition 

of a more claudin-low- like phenotype caused by the induction of EMT and the up-

regulation of genes that are involved in the TGF-β family, including Transgelin, 

SPARC and CTGF. The transfected MCF-7 cells also had an increased migratory 

potential, which was reversed by the use of TGF-β inhibitors. Most importantly, histone 

H3K9 was acetylated in the promoter of the TGFB-RII gene followed by SNAIL and 

SLUG overexpression in the MCF-7 and resulted in a pattern of this promoter in the 

MDA-MB-231 cells. Therefore, the authors suggested a model which explains the 

negative regulatory role of ΕR-α and MTA3 on the expression of SNAIL, which leads 

to the reduced activity of the TGFB-RII promoter and thus to weak TGF-β signalling in 

luminal type breast cancer cells (e.g MCF-7) (Dhasarathy et al., 2011).   

 

Intriguingly, two distinctive stem cell populations were identified in primary human 

breast cancer cells: CD44-, CD24+, ER+, TGFB-RII- or CD44+, CD24-, ER-, TGFB-

RII+  with the latter only being able to undergo EMT due to TGF-β treatment (Shipitsin 

et al., 2007). I also observed a higher increase of CD44+ cells in the MDA-MB-231 
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cells in response to TGF-β treatment in comparison to the MCF-7 cells. These findings 

further support the TGF-β signalling involvement in the regulation of the stem cell 

counterpart as well as ER signalling in breast cancer. Indeed, in MCF-7 cells the 

estrogen receptor α (ERα) induces p-smad 2/3 degradation by forming a complex with it 

and ubiquitin ligase Smurf (Ito et al., 2010). Similarly, when the ERα gene was 

introduced in MDA-MB-231 cells it resulted in decreased tumor formation both in vitro 

and in vivo. These effects were reversed in cells overexpressing ERα and a 

constitutively active form of Smad 2.
 
Consequently, ERα was proposed as negative 

regulator of the TGF-β/Smad dependent signalling pathway in later stages of breast 

cancer, although estrogen exposure drives tumor progression in early stages (Goto et al., 

2011).
 
  

Finally, I was able to identify a distinct SP population in the cells obtained from an 

FNA of a breast cancer patient. The use of verapamil did not completely inhibit the SP 

cells and this effect could be explained by PCR analysis, which showed that this 

patient’s cells were characterized with a higher expression of ABCG2 than ABCB1. It 

is known that verapamil binds to ABCB1 with a higher affinity than ABCG2 (Britton et 

al., 2012). The use of the normal primary mammary cells HMEpC for the SP analysis 

showed that there is no SP population in these, which indicates that the presence of this 

population in the breast cancer patient may be responsible for her clinical condition. 

These data can be supported by the PCR analysis which showed almost undetectable 

expression of ABCG2 and ABCB1 in HMEpC. It should be mentioned that other cell 

types are also present in the FNA sample, including blood cells, fat cells and fibroblasts, 

therefore, the use of a biological negative control, such as the HMEpC cells is extremely 

important. PCR analysis showed expression of several EMT markers, including E-

CADHERIN, TWIST, SLUG and FOXC2, while E-CADHERIN, TWIST, SLUG had 

had lower expression and FOXC2 expression was absent in the negative control. In 

addition, protein levels of TWIST and S100A4 were also increased. OCT 3/4 and SOX-

2 protein levels were slightly increased, while NANOG showed a higher expression. 

This suggests that there is a population of cells which express stem cell and/or EMT 

markers. However, it would be interesting to determine whether the stem cell 

population also expresses EMT markers, which would be indicative of the presence of a 

CSC population in this patient. This particular breast cancer patient was 

ER+/PR+/HER-, Grade 2 with 3 positive lymph nodes. The limited number of FNAs 

that I obtained during this project and the difficulties of the SP analysis due to the low 



117 
 

cell number in these did not allow me to associate the presence of SP cells and 

EMT/stem cell marker expression with any particular breast cancer patient subtypes. 

Any possible conclusions from this study would provide insight to the mechanisms that 

are involved in the regulation of SP cells by EMT and they could enable the 

identification of new target molecules for the prevention of metastasis. It should be 

noted that a recent study which analyzed 2,000 breast cancer tumors classified breast 

cancer into 10 different subtypes (Curtis et al., 2012), therefore the specificity of future 

strategies that target SP cells based on the exact patient subgroup is of great importance.  

Taken together, I have demonstrated that there is a clear impact of EMT on SP cells. 

Based on the literature (Yin et al., 2008; Kabashima et al., 2009; Ehata et al., 2011) and 

my study I assume that TGF-β1 induces differentiation in the SP population. SP cells 

have been reported to be more capable of up-regulating E-cadherin and undergoing 

EMT when treated with exogenous TGF-β, suggesting that they are more prone to the 

phenotypic alterations caused by this process and thus they can acquire a higher 

metastatic and invasive potential compared to the NSP cells (Kabashima et al., 2009). 

Yin et al. suggested that SP cells might re-emerge after the establishment of secondary 

tumors at metastatic sites (Yin et al., 2008).
  
MCF-7 cells have an epithelial origin and 

they could be more reliable models for defining the EMT-related changes caused by 

TGF-β exposure. However, the MDA-MB-231 cell line represents triple negative breast 

cancer subtypes, which have been significantly correlated with the presence of SP cells 

(Britton et al., 2012). 
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Chapter 4: The effect of hypoxia on BCSCs 

4.1 Introduction 

Low concentration of oxygen in cells or tissues, known as hypoxia, is one of the 

conditions in the tumor microenvironment that is considered an important step in tumor 

progression, since it has a great impact on invasion, metastasis, chemo-radiation 

resistance and angiogenesis. It can result from insufficient blood supply (transient 

hypoxia) or increased oxygen diffusion due to tumor expansion (chronic hypoxia) (Bao 

et al., 2012). Most importantly, hypoxia or anoxia have been found to be prevalent in up 

to 60% of advanced solid tumors (Favaro et al., 2011). The effects of hypoxia are 

regulated by the HIF family of proteins (1, 2 and 3), which belong to the per-aryl 

hydrocarbon receptor nuclear translocator (ARNT)-sim (PAS) basic helix-loop-helix 

(bHLH) heterodimeric transcription factors and consist of the α and the β subunits. The 

most common heterodimer which is responsible for hypoxic response is ΗIF-1α/β. The 

expression of the α subunit is dependent on oxygen levels and under hypoxic conditions 

its mRNA and protein expression increases while the protein translocates into the 

nucleus (Wang et al., 1995), where it can induce the expression of up to 1.5% of the 

genes in the human genome (Favaro et al., 2011). During normoxia HIF-1α is 

hydroxylated by prolyl-hydroxylase and it is targeted for protein degradation by binding 

to the VHL complex (Yu et al., 2001).  

Hypoxia has been recognized as a critical regulator of self-renewal capacity and it is 

believed to be responsible for the maintenance of the undifferentiated state of stem cells 

during embryonic and adult development (Chandel and Simon, 2008; Simon and Keith, 

2008).  There is also accumulating evidence to support the role of hypoxia in the 

regulation and function of CSCs (Bao et al., 2012), which are thought to result in the 

development of drug and chemo-resistant tumors and reduced patient survival (Reya, 

2001). The mechanism by which this is mediated is not completely elucidated, but it has 

been suggested that necrotic or hypoxic tumor regions are considered as a niche for 

CSCs. In addition, it has been hypothesized that hypoxia or inappropriate expression of 

HIF can promote  the expansion  of CSCs by maintaining their undifferentiated state 

(Gustafsson et al., 2005; Barnhart and Simon, 2007; Bao et al., 2012) and this is 

reversible when oxygen levels are restored (Zeng et al., 2011). Of note, the signalling 

pathways driven by HIF-1α and HIF-2 have been reported to be involved in the 

transcriptional activation of stem cells markers, such as OCT 3/4 (Covello et al., 2006; 

Heddleston et al., 2010). In fact, it has been demonstrated that hypoxia induces the 
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expression of genes that are responsible for stem cell maintenance (SOX2, OCT 3/4) in 

neuroblastomas through the activation of Notch signalling (McCord et al., 2009).  

What is more, recent evidence suggests that hypoxic regions or poorly vascularised 

tumors are enriched with BCSCs that express high levels of HIFs and EMT markers 

leading to the enhancement of angiogenesis and the formation of more metastatic 

phenotypes during breast cancer development (Louie et al., 2010; Oliveira-Costa et al., 

2011; Wang et al., 2011). Immunohistochemical analysis of 253 breast cancer 

specimens revealed an association of HIF-1α expression with the presence of 

CD44+/CD24- cells (Oliveira-Costa et al., 2011). Notably, CD44+/CD24- cells 

overexpressing HIF-1α were found to also express mesenchymal markers, while they 

acquired an increased mammosphere and colony forming efficiency and tumorigenic 

capacity (Conley et al., 2012; Han et al., 2012). Similarly, repetitive cycles of hypoxia 

and re-oxygenation resulted in the generation of CD44+/CD24-/ESA+ in the MDA-

MB-231 and BCM2 cell lines, and these cells  had a higher metastatic potential to the 

lungs (Louie et al., 2010). Moreover, Krishnamachary and colleagues demonstrated that 

hypoxia is responsible for the up-regulation of both CD44 and VEGF in the MDA-MB-

231 and SUM-149 breast cancer cell lines (Krishnamachary et al., 2012).  

In addition, the contribution of hypoxia in the regulation of SP cells is becoming 

increasingly evident. Hypoxia increased the stem cell-like properties of cells of the 

prostate cancer cell lines PC-3 and DU145 by enhancing the number of SP cells. It also 

led to the increase of CD44+ cells which were characterized  as having a higher 

expression of OCT 3/4, NANOG and ABCG2 and had a greater sphere and colony 

formation potential in vitro (Ma et al., 2011). Liu et al also reported that hypoxia and re-

oxygenation induced an increase in the expression of ABCG2 in  SP cells of kidney 

cells from  C57BL/6 mice and protected them against hypoxic damage through the 

MEK/ERK pathway (Liu et al., 2013). The induction of ABCG2 expression has been 

found to prevent the accumulation of porphyrins and heme within a cell which increase 

under hypoxic conditions and lead to the production of reactive oxygen species and 

mitochondrial dysfunction (Krishnamurthy et al., 2004). HIF-2α has been shown to 

directly bind to and up-regulate ABCG2 thus increasing the percentage of cardiac SP 

cells  3-fold, these SP then exhibited improved survival mechanisms when exposed to 

hydrogen peroxide (Martin et al., 2008). Most importantly, HIF-2α expression was 

significantly correlated with high ABCG2 expression, histology-grade and Ki67 

expression in a patient cohort consisting of 196 invasive breast cancer patients. 
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Therefore, it was proposed that HIF-2α could serve as a reliable prognostic marker for 

the prediction of drug resistance and metastasis in breast cancer (Xiang et al., 2012).  

 

4.2 Chapter hypothesis 

Given the evidence regarding the effect of hypoxia on several CSCs and the lack of 

evidence regarding the regulation of SP cells by hypoxia particularly in breast cancer 

cell lines, I sought to determine the response of BCSCs populations (SP and CD44+ 

cells) to hypoxic culture conditions in the MDA-MB-231 and MCF-7 cell lines. I also 

aimed to study the possible transcriptional effect of hypoxia on stem cell and EMT 

markers in unfractionated cells, which would further support its potential role in the 

regulation of CSCs. Additionally, I was interested in determining whether there is an 

interaction between the pathways mediated by HIFs and TGF-β, since they have both 

been reported to induce EMT and I also addressed the question of how the BCSCs will 

respond to the concomitant stimulation of these. Finally, I examined the possibility of 

up-regulation of ABCG2 and other ABC transporters by hypoxia and the impact of this 

on the induction of drug resistance in the SP and NSP populations.  

 

4.3 Aims 

 To determine the effects of hypoxia on the MDA-MB-231 and MCF-7 SP cells 

 To determine the effect on mRNA and protein expression of CD44 in MDA-

MB-231 and MCF-7 cells as a result of exposure to hypoxia. 

 To investigate the impact of hypoxia on the transcriptional activation of EMT 

related genes and stem cell markers. 

 To examine whether there is a crosstalk between the hypoxia and TGF-β 

signalling pathways. 

 To test the combined effect of hypoxic and ΤGF-β treatment on the above 

mentioned BCSCs in the MDA-MB-231 and MCF-7 cell lines.  

 To study the impact of hypoxia on the transcriptional activation of members of 

the ABC transporter family. 
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 To investigate how hypoxia affects the drug resistance of SP cells of the above 

mentioned breast cancer cell lines. 

4.4 Experimental Design 

 I used the hypoxia mimetic CoCl2 to chemically induce hypoxia, since it has 

been reported to interfere with the activity of prolyl-hydroxylase and prevent the 

hydroxylation of HIF-1α (Salnikow et al., 2004). I then optimized the treatment 

conditions by assessing the mRNA levels of known hypoxia-responsive genes, 

including VEGF-A, CXCR4 and HIF-1α after treatment with CoCl2 for 24 h. 

 Following a 24h incubation with CoCl2 I performed qPCR analysis for CD44, 

EMT markers (TWIST1, TWIST2, SNAIL, SLUG, E-CADHERIN, VIMENTIN 

and S100A4), stem cell markers (NANOG, SOX-2 and OCT 3/4) and ABC 

transporters (ABCB5, ABCB1, ABCG2 and ABCC3). 

 After treatment of MCF-7 and MDA-MB-231 cells with CoCl2 for 48 h I 

performed the SP assay or CD44 staining and examined the effect of hypoxia on 

BCSCs by flow cytometry. 

 Following a 48 h treatment with CoCl2 I used ICC to determine what happens to 

p-smad 2/3 expression and test whether hypoxia leads to the activation of the 

TGF-β signalling pathway. 

 SP analysis and CD44 protein expression analysis by flow cytometry allowed 

the determination of treatment with TGF-β and CoCl2 together or alone in cells 

treated for 3 and 2 days, respectively.  

 SP analysis was performed on cells pre-treated with CoCl2, mitoxantrone and 

both for 48 h to investigate the effect of hypoxia on the drug resistance of the SP 

and NSP cells.  
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4.5 Results 

4.5.1 Optimization of CoCl2-induced hypoxia conditions in breast cancer cell lines 

To optimize the conditions for the induction of hypoxia I assessed the mRNA levels of 

three important hypoxia-responsive genes, including HIF-1α, VEGF-A and CXCR4 

after treatment of the MDA-MB-231 and MCF-7 cells with 200, 400 and 600 μΜ CoCl2 

for 24 h. I found that HIF-1α levels exhibited the highest increase with 400 μΜ CoCl2 in 

the MDA-MB-231 cells, while the increase in the MCF-7 cells was negligible even with 

the highest concentration of CoCl2 (Figure 4.1). VEGF-A mRNA expression levels 

were increased approximately 40 times when treated with 400 μΜ CoCl2 in the MDA-

MB-231 and almost 3.5 and 5-fold with 400 and 600 μΜ CoCl2, respectively in the 

MCF-7 cells (Figure 4.2). Finally, the highest CXCR4 expression was induced with 400 

μΜ CoCl2 in the MDA-MB-231, while no significant increase was seen in the MCF-7 

cells (Figure 4.3). The treatment with 400 μΜ CoCl2 was repeated 3 more times to 

confirm that the concentration of CoCl2 was optimal and there was a significant increase 

of VEGF-A (p=0.02) and CXCR4 (p=0.04) levels in the MDA-MB-231 cells (Figure 

4.4).  
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Figure 4.1: Graphical representation of qPCR data. mRNA expression levels of HIF-1α 

in MDA-MB-231 and MCF-7 cells treated with 200, 400 and 600 μΜ CoCl2 for 24 h. 

Untreated cells are included as control. Bars represent an average of triplicates (n=1).  
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Figure 4.2: Graphical representation of qPCR data. mRNA expression levels of VEGF-

A in MDA-MB-231 and MCF-7 cells treated with 200, 400 and 600 μΜ CoCl2 for 24 h. 

Untreated cells are included as control. Bars represent an average of triplicates (n=1).  

 

Figure 4.3: Graphical representation of qPCR data. mRNA expression levels of  

CXCR4 in MDA-MB-231 and MCF7 cells treated with 200, 400 and 600 μΜ CoCl2 for 

24 h. Untreated cells are included as control. Bars represent an average of triplicates 

(n=1).  
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Figure 4.4: Graphical representation of qPCR data. mRNA expression levels of VEGF-

A, CXCR4 and HIF-1α in MDA-MB-231 and MCF-7 cells treated with 400 μΜ CoCl2 

for 24 h. Untreated cells are included as control. Bars represent an average of n=3 

individual experiments. Results are expressed as the mean SEM using a paired student’s 

t-test. * p<0.05 
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4.5.2 The effect of CoCl2-induced hypoxia on the transcriptional activation of stem 

cell marker genes. 

To determine the effect of hypoxia on the potential induction of expression of stem cell 

marker genes I used qPCR analysis to determine the expression of these in 

unfractionated MDA-MB-231 and MCF-7 cells when these were exposed to 400 μΜ 

CoCl2 for 24 h. The expression of NANOG (n=3, p=0.03) and OCT 3/4, (n=3 p=0.02) 

mRNA levels were significantly increased in the MDA-MB-231. SOX-2 was also 

increased in both cell lines and all genes were increased in the MCF-7, but not 

significantly (Figure 4.5). 

 

Figure 4.5: Graphical representation of qPCR data. mRNA expression levels of 

NANOG, SOX-2 and Oct 3/4 in MDA-MB-231 and MCF-7 cells  treated with 400 μΜ 

CoCl2 for 24 h. Untreated cells are included as control. Bars represent an average of n=3 

individual experiments. Results are expressed as the mean SEM using a paired student’s 

t-test. * p<0.05 
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4.5.3 The effect of CoCl2-induced hypoxia on the transcriptional activation of EMT 

marker genes. 

To confirm the role of hypoxia in the induction of EMT I assessed the expression of 

several EMT markers in unfractionated MDA-MB-231 and MCF-7 cells after exposure 

to 400 μΜ CoCl2 for 24 h. qPCR analysis revealed that TWIST1 was significantly up-

regulated in the MDA-MB-231 (n=7, p=0.03) and MCF-7 (n=7, p=0.03), while 

TWIST2 mRNA were only significantly increased in the MCF-7 (n=6, p=0.03) cells. 

SNAIL and SLUG mRNA levels were also significantly elevated in both cell lines (n=6, 

p=0.04 for SNAIL in both/n=4, p=0.01 in MDA-MB-231 and n=3, p=0.01 in MCF-7 for 

SLUG). S100A4 was slightly decreased in the MDA-MB-231 cells and increased in the 

MCF-7 and VIMENTIN increase was not significant in any of these. Surprisingly, E-

CADHERIN levels were elevated in the MCF-7, but not significantly (Figure 4.6). The 

changes in E-CADHERIN expression in response to CoCl2 treatment were not studied 

in the MDA-MB-231 cell line, since this is a mesenchymal cell line with undetectable 

E-CADHERIN expression (Figure 4.7).  
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Figure 4.6: Graphical representation of qPCR data. mRNA expression levels of 

TWIST1, TWIST2, SNAIL, SLUG, S100A4 and VIMENTIN in MDA-MB-231 and 

MCF-7 cells treated with 400 μΜ CoCl2 for 24 h. Untreated cells are included as 

control. Bars represent an average of n=7 (TWIST1), n=6 (TWIST2 SNAIL) n=4 

(SLUG in MDA-MB-231, VIMENTIN), n=3 (SLUG in MCF-7, S100A4) individual 

experiments. Results are expressed as the mean SEM using a paired student’s t-test. * 

p<0.05 

 

 

Figure 4.7: Graphical 

representation of qPCR data. 

mRNA expression levels of 

E-CADHERIN in MCF-7 

cells treated with 400 μΜ 

CoCl2 for 24 h. Untreated 

cells are included as control. 

Bars represent an average of 

n=4 individual experiments. 

Results are expressed as the 

mean SEM using a paired 

student’s t-test. 
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4.5.4 The effect of CoCl2 and low oxygen induced hypoxia on the SP cells of breast 

cancer cell lines. 

Since I saw an up-regulation of both EMT and stem cell marker genes in the MCF-7 

and MDA-MB-231 cell lines I investigated the impact of hypoxia on the SP cells in 

these. Treatment with 400 μM CoCl2 for 48 h resulted in a significant increase of the SP 

percentage in the MCF-7 cells (n=4, p=0.03), while exposure to 1% O2 for the same 

time only slightly increased the SP percentage, suggesting that CoCl2 treatment is a 

more efficient method to induce hypoxic culture conditions for my study (Figures 4.8, 

4.9). To determine whether exposure to 1% O2 for a longer period of time would 

enhance the SP numbers to the same degree as the CoCl2 I performed SP analysis after 

2, 5 and 8 days of culturing the MCF-7 cells at low oxygen conditions. Interestingly, I 

observed high sensitivity of the cells to staining with the Hoechst 33342 dye, as the cell 

viability of the total cell population and of the SP population was reduced in a time-

dependent manner (Figure 4.10). Additionally, SP analysis was carried out for MDA-

MB-231 cells untreated and treated with 400 μM CoCl2 for 48h  and  the SP population 

was eliminated (n=4, p=0.03) (Figure 4.11).  
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Figure 4.8: Representative FACS images of SP analysis in MCF-7 cells. A) Untreated 

B) With the addition of FTC to confirm the SP phenotype. C) Treated with 400 μM 

CoCl2 for 48 h alone. n=4, p=0.03 D) Exposed to 1% O2 for 48 h n=1 (student’s paired 

t-test). Results were considered significant when p<0.05. 
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Figure 4.9: Graphical representation of flow cytometry data. Percentages of SP cells in 

untreated and treated with 400 μM CoCl2 unfractionated MCF-7 cells. Bars represent an 

average of n=4 individual experiments, p=0.03. Results are expressed as the mean SEM 

using a paired student’s t-test and were considered significant when p<0.05. 

 

 

 

 

 

 

 



132 
 

 

Figure 4.10: FACS images of SP analysis in MCF-7 cells. A) Exposed to 20% O2 B) 

Exposed to 1% O2 for 2 days D) Exposed to 1% O2 for 5 days. E) Exposed to 1% O2 for 

8 days. FTC, an ABCG2 inhibitor, was used to confirm the SP phenotype in D). n=1.  
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Figure 4.11: Representative FACS images of SP analysis in MDA-MB-231 cells. A) 

Untreated B) With the addition of FTC to confirm the SP phenotype. C) Treated with 

400 μM CoCl2 for 48 h alone. n=4, p=0.03 (student’s paired t-test). Results were 

considered significant when p<0.05. 
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4.5.5 Investigation of TGF-β signalling pathway activation by CoCl2 treatment in 

breast cancer cell lines. 

To address the question of whether CoCl2-induced hypoxia is responsible for activating 

the TGF-β signalling pathway I performed ICC for p-smad 2/3 in unfractionated MDA-

MB-231 and MCF-7 cells untreated and treated with 400 μΜ CoCl2 for 48 h CoCl2 

treatment led to a significant increase of the nuclear p-smad 2/3 levels (p=0.0003, 

p=0.005, respectively), indicating that hypoxia also activates this pathway. However, 

the increase was higher in the treated MDA-MB-231 compared to the treated MCF-7 

cells (Figures 4.12, 4.13, 4.14). 
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Figure 4.12:  ICC images for p-smad 2/3 staining showing activation of the TGF-β 

signalling pathway. A) MDA-MB-231 B) MCF-7 cells upon exposure to 400 μΜ CoCl2 

for 48 h. p-smad 2/3 is increased after CoCl2 treatment in both cell lines. Nuclei were 

visualized by 4’, 6-diamidino-2-phenylindole DAPI stain (blue). Negative controls for 

the primary antibody were used.  All images were taken at 20X magnification and a 20 

μm scale bar was used. Representative images from n=3 experiments.  
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Figure 4.13: Graphical representation of ICC data. p-smad 2/3 levels in untreated and 

treated with 400 μΜ CoCl2 MDA-MB-231 cells. Bars represent an average of n=3 

individual experiments, p=0.0003. Results are expressed as the mean SEM using a 

paired student t- test and were considered significant when p<0.05. 

 

Figure 4.14: Graphical representation of ICC data. p-smad 2/3 levels in untreated and 

treated with 400 μΜ CoCl2 MCF-7 cells. Bars represent an average of n=3 individual 

experiments, p=0.005. Results are expressed as the mean SEM using a paired student t- 

test and were considered significant when p<0.05. 
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4.5.6 The effect of CoCl2 and TGF-β1 treatment on the SP population of the MCF-7 

cell line. 

Following the observation that CoCl2 treatment also activates the TGF-β signalling 

pathway and since I observed a significant increase of the MCF-7 SP following CoCl2 

treatment as opposed to the results observed following TGF-β treatment (as described in 

Chapter 3), I wanted to explore the effect of combining the two treatments on the MCF-

7 SP cells. Interestingly, treatment with both CoCl2 (48 h) and TGF-β1 (72 h) 

simultaneously led to a significant decrease of the SP cells (n=3, p=0.02), suggesting 

that the impact of TGF-β is stronger than CoCl2, although they both seem to activate the 

TGF-β signalling pathway (Figures 4.15, 4.16). The fact that the MDA-MB-231 SP 

cells were abrogated with both CoCl2 and TGF-β1 (as described Chapter 3) when 

treated separately did not allow me to perform the combined treatment on this cell line, 

as no conclusions could have been drawn. 
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Figure 4.15: Representative FACS images of SP analysis in MCF-7 cells. A) Untreated 

B) With the addition of FTC to confirm the SP phenotype. C) Treated with 400 μM 

CoCl2 for 48 h alone. D) Treated with 10 ng/ml TGF-β1 for 72 h alone E) Treated with 

both 400 μM CoCl2 and 10 ng/ml TGF-β1for 48 and 72 h, respectively, n=3, p=0.02 

(student’s paired t-test). Results were considered significant when p<0.05. 
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Figure 4.16: Graphical representation of flow cytometry data. Percentages of SP cells 

resulting from treatment of unfractionated MCF-7 cells with 400 μM CoCl2 and treated 

with 400 μM CoCl2 and 10 ng/ml TGF-β1. Bars represent an average of n=3 individual 

experiments, p=0.02. Results are expressed as the mean SEM using a paired student’s t-

test and were considered significant when p<0.05. 
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4.5.7 The effect of CoCl2 and TGF-β1 treatment on the CD44+ population of breast 

cancer cell lines 

I also investigated the role of CoCl2, TGF-β1 and combined treatment on the CD44+ 

cells in both breast cancer cell lines. Addition of CoCl2 led to a significant increase of 

the CD44 mRNA levels in the MDA-MB-231 cells (n=3, p=0.003). An up-regulation of 

CD44 was also induced by CoCl2 in the MCF-7 cells, but it was non-significant (Figure 

4.17). CD44 staining in combination with flow cytometry was also carried out to assess 

the levels of CD44 protein expression before and after TGF-β treatment, CoCl2 

treatment or combined treatment and none of the changes were significant (MDA-MB-

231:p=0.72, MCF-7:p=0.5). Treatment with TGF-β alone resulted in an increase of the 

CD44 protein levels in both cell lines, but not to the same degree as CoCl2 treatment. 

Combined treatment also induced a higher increase of CD44 above that of cells treated 

with TGF-β alone, but slightly lower than that of cells treated with  CoCl2 alone 

(Figures 4.18, 4.19 and 4.20, 4.21). CD24 protein levels were also assessed in the 

untreated and treated with CoCl2 samples, but staining did not work in the MCF-7 cells, 

as it gave double peaks and in the MDA-MB-231 cells the expected changes were not 

seen with CD24 expression being slightly increased instead of decreased (Appendix B, 

Supplementary data, pages 217 and 218). 

 

Figure 4.17: Graphical representation of qPCR data. mRNA expression levels of CD44 

in untreated and treated with 400 μΜ CoCl2 MDA-MB-231 and MCF-7 cells. Bars 

represent an average of n=3 individual experiments. Results are expressed as the mean 

SEM using a paired student’s t-test. ** p<0.01 
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Figure 4.18: Representative FACS images from CD44 staining in MDA-MB-231 cells. 

A) Unstained B) Untreated C) Treated with 5 ng/ml TGF-β1 for 3 days D) Treated with 

400 μM CoCl2 for 2 days E) Treated with 5 ng/ml TGF-β1 and 400 μM CoCl2 for 3 and 

2 days, respectively.   
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Figure 4.19: Representative FACS images from CD44 staining in MCF-7 cells. A) 

Unstained B) Untreated C) Treated with 10 ng/ml TGF-β1 for 3 days D) Treated with 

400 μM CoCl2 for 2 days E) Treated with 10 ng/ml TGF-β1 and 400 μM CoCl2 for 3 and 

2 days, respectively.   
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Figure 4.20: Graphical representation of flow cytometry data. Protein expression levels 

of CD44 in untreated and treated with 5 ng/ml TGF-β1, 400 μΜ CoCl2 and both 5 ng/ml 

TGF-β1 and 400 μΜ CoCl2 in MDA-MB-231 cells. Bars represent an average of n=3 

individual experiments, p=0.72. Results are expressed as the mean SEM using a one 

way ANOVA test and were considered significant when p<0.05. 

 

Figure 4.21: Graphical representation of flow cytometry data. Protein expression levels 

of CD44 in untreated and treated with 10 ng/ml TGF-β1, 400 μΜ CoCl2 and both 10 

ng/ml TGF-β1 and 400 μΜ CoCl2 in MCF-7 cells. Bars represent an average of n=3 

individual experiments, p=0.5. Results are expressed as the mean SEM using a one way 

ANOVA test and were considered significant when p<0.05. 
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4.5.8 The effect of CoCl2-induced hypoxia on drug resistance in the MCF-7 breast cancer cell 

line. 

To determine if hypoxia increases the drug resistance in the MDA-MB-231 and MCF-7 

cell lines I first investigated the effect of CoCl2 treatment on the expression of several 

ABC transporter genes, including ABCB1, ABCG2, ABCB5 and ABCC3 in unsorted 

cells.   Analysis of qPCR results demonstrated a significant increase in ABCG2 (n=5, 

p=0.01: MDA-MB-231, n=5, p= 0.02: MCF-7). ABCC3 mRNA expression was also 

significantly elevated in the MCF-7 cells (n=4, p= 0.0003) and in the MDA-MB-231 

(n=4, p=0.03). No increase was seen for ABCB1 in any of the cell lines and the increase 

in ABCB5 mRNA expression was non-significant. It should be noted that ABCB5 

expression was barely detectable in the untreated cells of both cell lines and although 

this tended to increase with CoCl2 treatment, it was still too low to determine if it was 

significant (Figure 4.22). I then treated unfractionated MDA-MB-231 and MCF-7 cells 

with 1 μg/ml mitoxantrone alone and in combination with CoCl2 and I saw that hypoxia 

reduced the sensitivity of the cells to mitoxantrone and increased their viability (Figures 

4.23 and 4.24). Furthermore, I performed SP analysis to examine whether hypoxia is 

responsible for the enhancement of the SP phenotype and thus for the induction of drug 

resistance to mitoxantrone in these cells. Mitoxantrone treatment led to the cell death of 

all NSP cells, while some of the SP cells still survived, confirming that these are more 

drug resistant compared to the NSP cells. CoCl2 treatment alone led to an increase of the 

SP percentage and surprisingly it induced a significant increase of the SP numbers when 

combined with mitoxantrone (n=3, p=0.04). Notably, both SP and NSP cells were 

protected from the mitoxantrone cytotoxic effects when treated with CoCl2 at the same 

time (Figures 4.25, 4.26).  I only performed this experiment in the MCF-7 cell line, as 

CoCl2 treatment resulted in the complete abrogation of the SP population in the MDA-

MB-231 cell line as shown in Figure 4.11.  
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Figure 4.22: Graphical representation of qPCR data. mRNA expression levels of 

ABCB1, ABCG2, ABCB5 and ABCC3 in MDA-MB-231 and MCF-7 cells  treated with 

400 μΜ CoCl2 for 24 h. Untreated cells are included as control. Bars represent an 

average of n=5 (ABCB5 in MDA-MB-231, ABCG2), n=4 (ABCB5 in MCF-7, ABCB1, 

ABCC3) individual experiments. Results are expressed as the mean SEM using a paired 

student’s t-test. *p<0.05 ** p<0.01  
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Figure 4.23: MTS assay for treated with 1μg/ml mitoxantrone alone and in combination 

with 400 μM CoCl2 in the MDA-MB-231 cells (n=1) 

 

 

Figure 4.24: MTS assay for treated with 1μg/ml mitoxantrone alone and in combination 

with 400 μM CoCl2 in the MCF-7 cells (n=1) 

 

 

 

 



147 
 

 

Figure 4.25: Representative FACS images of SP analysis in MCF-7 cells. A) Untreated  

B) With the addition of FTC to confirm the SP phenotype. C) Treated with 400 μM 

CoCl2 for 48 h. D) Treated with 1μg/ml mitoxantrone for 48 h E) Treated with both 400 

μM CoCl2 and 1μg/ml mitoxantrone for 48, n=3, p=0.04 (student’s paired t-test). 

Results were considered significant when p<0.05. 
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Figure 4.26: Graphical representation of flow cytometry data. Percentages of SP cells 

resulting from treatment of unfractionated MCF-7 cells with 400 μM CoCl2 and treated 

with 400 μM CoCl2 and 1 μg/ml mitoxantrone. Bars represent an average of n=3 

individual experiments, p=0.04. Results are expressed as the mean SEM using a paired 

student’s t-test and were considered significant when p<0.05. 
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4.6 Discussion 

The role of CSCs in tumor re-occurrence has gained increasing attention over the last 

years due to the notion that CSCs are responsible for tumor re-growth, chemo- and 

radioresistance (Reya, 2001). EMT has also been reported to contribute to the regulation 

of several CSCs populations (Mani, 2008; Yin et al., 2008). Hypoxia is thought to 

promote the EMT process (Marie-Egyptienne et al., 2013) and thus many research 

groups have aimed to investigate its impact on particular CSC populations (Das et al., 

2008; Louie et al., 2010; Ma et al., 2011; Krishnamachary et al., 2012).  

In the present study, I sought to determine the effect of CoCl2-induced hypoxia on the 

SP and CD44+ populations of the breast cancer cell lines MDA-MB-231 and MCF-7. 

Additionally, I assessed the mRNA expression levels of known stem cell and EMT 

markers, which would support the potential role of hypoxia in the above mentioned cell 

populations. I also examined whether hypoxia can drive the TGF-β signalling pathway 

and what the effect of combined CoCl2 and TGF-β1 exposure would be on these cell 

populations. Finally, I studied the possible induction of drug resistance in cells treated 

with CoCl2 by estimating the mRNA levels of several ABC transporters in both cell 

lines and I tested the resistance of the MCF-7 SP and NSP cells to mitoxantrone in 

response to hypoxia.  

First of all, I optimized the hypoxic cell culture conditions to ensure the best efficiency 

at inducing hypoxia in all experiments. Exposure to 1% O2 only slightly up-regulated 

HIF-1α levels after 30 days (data not shown), therefore I decided that the use of a 

hypoxia mimetic would be faster and more effective. CoCl2 is a known chemical 

inducer of hypoxia and it acts by affecting the intracellular ascorbate concentration and 

thus by promoting the iron oxidation and inactivation of the enzyme prolyl hydroxylase, 

which is responsible for the hydroxylation of HIF-1α leading to its protein degradation 

(Salnikow et al., 2004). CoCl2 has been used for this purpose in many studies (Fu et al., 

2009; Krishnamachary et al., 2012; Befani et al., 2013; Huang et al., 2014; Jeon et al., 

2014). To assess the efficiency of CoCl2 I measured the mRNA levels of some 

important genes whose up-regulation is fundamental during hypoxia, including HIF-1α, 

CXCR4 and VEGF-A.  

Interestingly, all the above mentioned genes were up-regulated in both cell lines apart 

from CXCR4 in the MCF-7 cells. HIF-1α, which is the up-stream molecule in the 

hypoxic pathway (Wang et al., 1995), showed an increased expression in response to 

hypoxia, but this was not significant in any of the cell lines. Other HIF-α members also 
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contribute to this process (Wang et al., 1995) with HIF-2α being important for the CSC 

maintenance, while HIF-1α has been reported to be present only under more severe 

hypoxic conditions and in both CSC and  non-CSC populations (Li et al., 2009).  

However, both HIF-1α and HIF-2α are thought to regulate stem cell pathways, but HIF-

1α seems to also activate metastasis-related pathways as reviewed by Barnhart and 

Simon (Barnhart and Simon, 2007). Indeed, HIF-1α has been suggested to be 

responsible for the stabilization of Notch1, leading to the maintenance of cells in an 

undifferentiated state (Gustafsson et al., 2005), while it also promotes the expression of 

genes that are involved in invasion and metastasis, such as lysil oxidase (LOX) (Erler et 

al., 2006) and matrix metalloproteases (MMPs) (Pouyssegur et al., 2006). What is 

more, Pennacchietti et al. have described the role of HIF-1α in the up-regulation of 

MET, which is a proto-oncogene conferring self-renewal and metastatic properties to 

CSCs (Pennacchietti et al., 2003). On the other hand, HIF-2α has been shown to 

promote the expression of OCT-3/4 (Covello et al., 2006) and c-myc (Gordan et al., 

2007), two important  stem cell markers.  

Furthermore, CoCl2 treatment resulted in the significant elevation of CXCR4 mRNA 

levels only in the MDA-MB-231 cells. I anticipate that the increase of CXCR4 levels 

was only apparent in the MDA-MB-231 cell line, since this is highly metastatic as 

opposed to the MCF-7 cell line. CXCR4 is known to be regulated by hypoxia in many 

ways and in many different cell types that participate in tumor progression and 

metastasis. In fact, CXCR4 was found to be highly expressed in tumor-associated 

macrophages (TAMs), which are involved in the inflammatory response during 

tumorigenesis in hypoxic tumor regions. CXCR4 levels were also increased under 

hypoxia and even after several hours of re-oxygenation in cancer cells, indicating that 

this is an essential property for them in order to be able to be ‘’attracted’’ by target 

organs secreting CXCL12 and metastasize (Schioppa et al., 2003). Increased CXCR4 

expression in response to hypoxia has been found in various hematologic malignancies 

(Kim et al., 2009) and solid tumors (Phillips et al., 2005; Sun et al., 2010). Notably, 

luciferase reporter assays revealed that HIF-1α directly binds to the promoter of CXCR4 

and it leads to a higher transcriptional activation under hypoxic conditions compared to 

normoxic conditions, while it has been suggested that this regulation occurs at the post-

transcriptional  level as well (Schioppa et al., 2003).  
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VEGF-A mRNA levels showed a significant up-regulation in MDA-MB-231 after 

treatment with CoCl2. VEGF-A is one of the main molecules that are involved in 

angiogenesis not only during early tumor development (Hanahan and Folkman, 1996), 

but also at more advanced stages and during hypoxia (Crowther et al., 2001). 

Surprisingly, it has been demonstrated that chemotaxis between endothelial cells 

expressing CXCL2 and cancer cells characterized by high CXCR4 expression is 

mediated through the VEGF pathway (Nagasawa, 2001). As a consequence, it has been 

proposed that angiogenesis during hypoxia can be driven by high CXCR4 expression in 

endothelial cells, cancer cells and TAMs comprising the tumor microenvironment 

(Schioppa et al., 2003). In addition, CXCR4 has been found to regulate VEGF 

expression via the PI3K/Akt pathway in the MDA-MB-231 cells, which was confirmed 

by the observation that VEGF levels were reduced in the presence of a known inhibitor 

of this pathway, LY294002. High CXCR4 mRNA levels were also associated with high 

VEGF mRNA levels in a breast cancer specimens from primary tumors (Liang et al., 

2007).  

qPCR analysis of stem cell marker expression after CoCl2 treatment revealed an 

increase in all three genes in both cell lines with NANOG and OCT 3/4 being 

significantly increased in the MDA-MB-231 cell line. These findings indicate the role 

of hypoxia in the induction of stem cell properties by potentially promoting the de-

differentiation of differentiated cancer cells and leading to an increased CSC phenotype. 

Barnhart and Simon proposed a model to explain the potential contribution of hypoxia 

to the regulation of CSCs. They suggested that low oxygen conditions can a) induce de-

differentiation of differentiated cells by activating stem cell related pathways, such as 

the Notch pathway or by causing the up-regulation of stem cell genes, such as OCT 3/4 

and c-myc b) by maintaining the already existing CSCs into their undifferentiated state 

and c) by increasing their invasive and metastatic potential through EMT pathways 

(Barnhart and Simon, 2007). I hypothesize that hypoxia might also increase self-

renewal and proliferation rate of CSCs resulting in the generation of higher CSC cell 

numbers. 

I also investigated the effect of hypoxia on the expression of several EMT markers and I 

found that there was a significant elevation in mRNA levels of almost all genes in both 

cell lines, excluding TWIST2 in the MDA-MB-231 and S100A4 in both cell lines. 

These data support the role of hypoxia in the induction of EMT, but surprisingly I did 

not observe the expected changes in the mesenchymal marker VIMENTIN in neither 
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cell line nor changes in the epithelial marker E-CADHERIN in the MCF-7 cell line. In 

fact, VIMENTIN expression was increased, but not highly and E-CADHERIN 

expression was also increased in the MCF-7 cells. There is evidence to suggest that 

down-regulation of E-CADHERIN is not necessarily the hallmark of the EMT process, 

since SNAIL over-expression has led to the increased migratory potential of T-47D and 

MCF-7 cells despite the fact that E-CADHERIN expression remained unaffected. 

Accordingly, silencing of the SNAIL gene caused a significant decrease of the 

migratory capacity of the MCF-7, MDA-MB-231 and MDA-MB-468 without changing 

the expression of VIMENTIN or E-CADHERIN. Likewise, DCIS cells in necrotic 

tumor areas were found to be positive for nuclear SNAIL staining, while VIMENTIN 

and E-CADHERIN expression did not show any changes. As a result, the authors 

suggested that hypoxia only partially promotes the EMT process, although this is 

sufficient for the enhancement of cell movement (Lundgren et al., 2009). In line with 

these findings, Barrallo-Gimeno et al. also claimed that the role of SNAIL is to increase 

the cells’ migratory potential, rather than to induce complete EMT (Barrallo-Gimeno 

and Nieto, 2005). Intriguingly, the majority of the specimens from invasive breast 

carcinomas exhibited E-CADHERIN expression (Hashizume et al., 1996) and no 

association between its expression and metastatic status has been found, while it has 

been concluded that complete EMT is not an essential factor for tumor invasiveness and 

aggressiveness (Parker et al., 2001; Kovács et al., 2003). 

CoCl2 treatment for 48 h resulted in a significant increase of the SP percentage in the 

MCF-7 cells, while exposure to 1% O2 for even 8 days failed to do so and the cells 

became sensitive to the staining with Hoechst 33342 dye. In prostate cancer SP numbers 

were  increased in the prostate cancer cell lines PC-3 and DU145 when cultured under 

hypoxic conditions this was accompanied by an increase of the CD44+ cells and higher 

expression of OCT 3/4, NANOG and ABCG2 (Ma et al., 2011). Interestingly, the 

induction of ABCG2 expression in kidney SP cells caused by hypoxia and re-

oxygenation was attributed to the MEK/ERK pathway (Liu et al., 2013). This has been 

considered as a protective mechanism against the accumulation of porphyrins and heme, 

which leads to detrimental effects for the cells under hypoxia due to the production of 

reactive oxygen species and mitochondrial dysfunction (Krishnamurthy et al., 2004). 

Indeed, in cardiac SP cells exposed to hydrogen peroxide HIF-2α was able to directly 

bind to and up-regulate ABCG2 leading to a significant increase of the SP percentage 

(Martin et al., 2008). Notably, HIF-2α expression was significantly associated with high 
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ABCG2 expression, histology-grade and Ki67 expression in invasive breast cancer 

patients, suggesting that targeting HIF-2α could enable the prevention of drug resistance 

and metastasis in breast cancer (Xiang et al., 2012).  

The opposite effect was seen on the MDA-MB-231 SP cells, as they were completely 

diminished in the presence of CoCl2. I anticipate that these differences in the 

responsiveness of the SP populations in these two cell lines could be explained by the 

fact that the MDA-MB-231 cells are characterized by the presence of more active 

TGFB-RII receptors, which are thought to be more essential for the activation of the 

TGF-β signalling pathway (Vivien et al., 1995). However, there are almost undetectable 

levels of TGFB-RII in the MCF-7 cells as described in Chapter 3. As a consequence, it 

is reasonable to assume that hypoxia is more likely to lead to the activation of the EMT 

pathway in the MDA-MB-231 and have the same effects as exogenous TGF-β treatment 

as shown in Chapter 3. Indeed, I have demonstrated that hypoxia can lead to the 

phosphorylation of smad 2/3 and to its nuclear localization, which is indicative of the 

activation of the TGF-β signalling pathway, and this occurred to a greater degree in the 

MDA-MB-231 in comparison with the MCF-7 cells.  

In a recent study, ERα was found to affect the responsiveness of CSCs to hypoxia both 

in vitro and in vivo. Firstly, the authors demonstrated that ERα is essential for the 

induction of hypoxia-related changes, since mammosphere forming efficiency was 

increased in ERα-positive primary samples and cell lines and it was decreased in ERα-

negative primary samples and cell lines in response to hypoxia. These effects were 

reversed upon the addition of 4-hydroxytamoxifen (Tam), confirming that they were 

due to the activation of the ERα pathway. Additionally, hypoxic culture of ERα-positive 

primary samples and cell lines resulted in the transcriptional activation of known target 

genes of the ERα pathway (AREG, PIP, TFF1) and the significant up-regulation of 

ABCG2, CD44 and ALDH1 (Harrison et al., 2013). The authors further examined the 

effects of hypoxia on the activation of the Notch signalling pathway in the above 

mentioned cells given  that this pathway has been reported to play a pivotal role in the 

maintenance of cells into their stem cell state under hypoxia (Gustafsson et al., 2005) 

and that Notch1 is a downstream target of ERα-positive primary samples and cell lines 

(Soares et al., 2004). Indeed, both JAG1, which is a ligand and downstream target of the 

Notch signalling pathway, and HES1 and HEY2 were up-regulated in ERα-positive cell 

lines followed by hypoxic culture. Interestingly, a decrease in mammosphere formation 

was observed in the presence of a γ-secretase inhibitor (GSI) of the pathway, 
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dibenzazepine, in ERα-positive cell lines and accordingly over-expression of ERα in 

MDA-MB-231 and MDA-MB-468 cells led to an increase of mammosphere forming 

capacity. Furthermore, a xenograft model using cell lines and patient-derived cells with 

a different ER-α status further confirmed the contrasting hypoxic responsiveness of 

CSCs depending on this. Therefore, it was suggested that the breast cancer patient 

subtype should be considered in antiangiogenic therapies, as it could be combined with 

blocking both the ERα and the Notch signalling pathways in ERα positive patients to 

prevent the hypoxia-induced increase of CSCs, while increasing tumor hypoxia might 

be an effective therapeutic approach to eliminate the CSC population in ERα negative 

patients (Harrison et al., 2013).  

It should be noted that Clarke et al. demonstrated that breast SP cells had a 6-fold higher 

expression of ERα compared to NSP cells and they were also positive for p21
CIP1

, CK19 

and Msi1, which are putative stem cells markers. These were considered as the 

intermediate population during the development of the breast epithelium which could 

potentially give rise to a CSC population if they accumulate mutations (Clarke et al., 

2005).  There are several reports that highlighted the regulation of the Notch signalling 

pathway by ERα. Soares and colleagues showed that co-culture of MCF-7 cells 

transfected with Jagged1 and MCF-7 cells expressing the Notch reporter gene resulted 

in a 45-fold increase in the reporter expression when 17 β-estradiol was added to the 

culture media, suggesting that Notch pathway activation is mediated through the ERα 

pathway. Intriguingly, HIF-1α was found to be one of the Notch1 target genes, this was 

confirmed by the decrease of HIF-1α expression when MCF-7 cells were transfected 

with the dominant negative form of Notch1. These findings indicated that Notch 

signalling can also promote tumor angiogenesis (Soares et al., 2004). However, another 

study suggested that induced Notch signalling is only prevalent in ERα negative cells 

and that ERα leads to the accumulation of inactive Notch1 in the cell surface (Rizzo et 

al., 2008).  

The presence of both Notch1 and Notch4 have been associated with ductal carcinoma in 

situ in the breast (Brennan and Brown, 2003) and it was detected in the majority of 

ductal and lobular infiltrating carcinomas (Rizzo et al., 2008). Abnormal Notch 

signalling has also been found in invasive breast cancer cases (Stylianou et al., 2006). 

However, it has been reported that Notch4 and not Notch1 is responsible for the 

regulation of BCSCs as inhibition of the former only led to the reduction in the 

percentages of ESA+/CD44+/CD24- cells. Similarly, injection of MCF-7 cells in which 
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Notch1 was knocked down in mice promoted the formation of tumors whose volume 

was not significantly different in comparison to the control group, but no tumors were 

formed in Notch4 knockdown mice. The authors implied that Notch4 may have a role 

on the BCSC self-renewal potential and that Notch1 is presumably involved in the 

progenitor proliferation and luminal differentiation (Harrison et al., 2010). Therefore, 

targeting Notch4 could be a more effective therapeutic strategy as BCSCs have been 

resistant to GSIs used in clinical trials (Li et al., 2008).  

In addition, my results show that CXCR4 expression is only significantly increased in 

the MDA-MB-231 cells in response to hypoxia, supporting the notion that the CSC 

population within this cell line is more prone to acquire an enhanced migratory capacity 

and metastasize. It is also known that CXCR4 expression is also regulated via the TGF-

β signalling pathway (Javelaud et al., 2007), which according to our study is also 

activated by hypoxia. Since this pathway is intact and more functional in the MDA-MB-

231 cells, SP cells in this cell line can presumably become more migratory during 

hypoxia partially due to the elevation of CXCR4 expression levels.  

I then investigated the impact of both CoCl2 and TGF-β treatment on the MCF-7 SP 

cells, since I saw contrasting effects with each one of these alone in this particular cell 

line despite the fact that CoCl2 also induced the activation of the TGF-β signalling 

pathway. Surprisingly, the TGF-β effect was dominant when this was combined with 

CoCl2 and it led to the reduction of the SP numbers.  I anticipate that these effects may 

vary in vivo depending on the concentration of TGF-β and the severity of hypoxic 

conditions in certain tumor areas. Alternatively, I assume that MCF-7 cells, which are 

characterized by a dysfunctional TGF-β pathway, require the co-operation of CoCl2 in 

order to drive the EMT pathway, whereas CoCl2 itself is enough and sufficient to cause 

the same effect in the MDA-MB-231 cells. In line with these findings, Dunn and 

colleagues found that there was an additive increase in the expression levels of VEGF 

and CXCR4 when both the TGF-β and HIF-1α pathways were activated simultaneously 

in the MDA-MB-231 cell line, suggesting that there is a small interaction between these 

two pathways (Dunn et al., 2009). Therefore, combined treatment could also enhance 

the migratory and invasive potential of the MCF-7 SP cells in my study. Of note, the 

authors also showed that there is no direct regulation of the TGF-β signalling pathway 

by hypoxia. However, blocking both pathways might be a more promising therapeutic 

strategy to prevent metastasis, as this further decreased bone metastases in vivo (Dunn et 

al., 2009).  Additionally, SP cells that can be augmented in hypoxic tumor regions could 
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be targeted more effectively through ABCG2 down-regulation due to TGF-β treatment 

as targeting the HIF-1α pathway might have contrasting effects on the CSC population 

depending on the patient’s ERα status as mentioned above.  

Furthermore, I tested the impact of CoCl2 alone and in combination with TGF-β 

treatment on the CD44 mRNA and protein expression in MCF-7 and MDA-MB-231 

cells. Although there was an elevation in the CD44 mRNA levels in both cell lines, the 

changes were only significant in the MDA-MB-231 cell line. However, none of the cell 

lines showed a significant increase in CD44 protein expression. The MCF-7 cells 

exhibited a gradual tendency to respond to the treatment with TGF-β1, CoCl2 and 

combined treatment, while the MDA-MB-231 cells did not show a further increase of 

the CD44+ population in response to the combined treatment than with the CoCl2 alone.  

Several reports have suggested the correlation of hypoxia with the CD44+/CD24- 

phenotype in breast cancer (Oliveira-Costa et al., 2011; Conley et al., 2012; Han et al., 

2012) and the same relationship was seen in  the MDA-MB-231 cell line (Louie et al., 

2010). I also investigated the possible effect of hypoxia on CD24 expression, but the 

staining did not work in the MCF-7 cells and I could not observe the expected changes 

in the MDA-MB-231 cells. Several groups have only focused on the effect of hypoxia 

on CD44 expression; in fact, CD44+ cells have been shown to acquire higher ABCG2 

expression due to exposure to hypoxic culture conditions (Ma et al., 2011) and the up-

regulation of ABCG2, CD44 and ALDH1 in response to hypoxia has also been 

documented (Harrison et al., 2013). Therefore, given the fact that the data regarding 

CD24 expression were not satisfying following CoCl2 treatment and the possible 

association of the CD44 up-regulation with the SP phenotype, I also focused on the 

analysis of the CD44 marker.  

Additionally, Krishnamachary and colleagues demonstrated that hypoxia is responsible 

for the up-regulation of both CD44 and VEGF in the MDA-MB-231 and SUM-149 

breast cancer cell lines (Krishnamachary et al., 2012), but I was only able to detect this 

effect at the mRNA level. Consequently, based on my findings hypoxia affects the SP 

population in the MCF-7 and MDA-MB-231 cell lines. These variable results are 

presumably due to the different methodologies used in all these studies. I also assume 

that the CD44+ population might overlap with the SP phenotype in the MCF-7 cells, 

since the effect of hypoxia was similar. Nevertheless, the effects of the combined CoCl2 

and TGF-β1 treatment were different. 
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Finally, I examined the potential involvement of hypoxia in the induction of drug 

resistance by assessing the mRNA levels of some ABC transporters in response to 

CoCl2 treatment. Interestingly, I observed a significant up-regulation of ABCG2 and 

ABCC3 in both cell lines, while ABCB1 expression was almost unaffected. Of note, 

ABCB5 expression was hardly detectable in both cell lines when untreated, however, 

there was a tendency for an increase in its mRNA levels after CoCl2 treatment, but this 

would probably not relate to detectable or meaningful expression of protein. The 

increase of ABCG2 expression levels that I saw is in accordance with the effect that 

hypoxia has on the MCF-7 SP cells, but this fails to lead to the increase of the MDA-

MB-231 numbers. Notably, previously published findings in my research group indicate 

that there is no significant difference of ABCG2 protein expression between SP and 

NSP cells in the MDA-MB-231 cell line (Britton et al., 2012). Consequently, other 

ABC transporters apart from ABCG2 and ABCC3 could be responsible for the SP 

phenotype in this cell line, but since no increase of the SP percentage is seen, these are 

presumably unaffected by hypoxia.  

Intriguingly, an ERE was discovered in the ABCG2 promoter and estrogen treatment 

promoted the up-regulation of ABCG2 mRNA levels in both ER+ cells (T-47D: A18) or 

cells induced to express ERα (PA-1). Furthermore, PA-1 cells transfected with the full-

length ABCG2 promoter-luciferase construct as well as the ERα plasmid showed a 

higher promoter activity in response to estrogen treatment and these effects were 

reversed upon the addition of the ICI 182,780 inhibitor of the ER pathway. 

Additionally, site directed mutagenesis revealed that the ERE is located between the -

243 and -155 positions in the ABCG2 promoter, due to the fact that luciferase activity 

was reduced when this region was mutated. Finally, electrophoretic mobility shift 

analysis showed that ERα directly binds to the ABCG2 promoter (Ee et al., 2004). 

Therefore, I anticipate that the MCF-7 cells, which are ER+, have a higher potential to 

up-regulate ABCG2 than the MDA-MB-231 cells when exposed to hypoxia. What is 

more, the ER signalling pathway has also been reported to promote the degradation of 

p-smad 2/3 and thus it prevents the activation of the TGF-β signalling pathway (Ito et 

al., 2010). As a result, I assume that the SP cells within this cell line are less prone to 

undergo EMT-related changes through this pathway as opposed to the MDA-MB-231 

SP cells. 

According to these findings I expect that preventing the hypoxia-induced up-regulation 

of certain ABC transporters would provide a beneficial method for overcoming drug 
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resistance to particular chemotherapeutic drugs. To further support this hypothesis, I 

aimed to determine the effect of CoCl2 on the SP population of the MCF-7 cell line 

when combined with mitoxantrone. Interestingly, I saw a significant increase of the SP 

percentage in MCF-7 cells exposed to both CoCl2 and mitoxantrone at the same time, 

while both the SP and the NSP populations were protected by CoCl2 against 

mitoxantrone. This observation could be explained by the up-regulation of ABCG2 and 

ABCC3 in unfractionated cells, but the increase of the SP numbers is remarkable and 

indicative of the induction of resistance to mitoxantrone.  

Hypoxia has been reported to be responsible for promoting resistance to certain 

chemotherapeutic drugs in cancer by several research groups. In fact, Chen t al. 

demonstrated that T98G human glioma cells in which HIF-1α was silenced by si-RNA 

exhibited lower mRNA and protein levels of both HIF-1α and ABCC1 and they were 

also characterized with increased sensitivity to doxorubicin and etoposide (Chen et al., 

2009). Similarly, sh-RNA knockdown of HIF-1α in MCF-7 cells was accompanied with 

suppression of expression of HIF-1α target genes, including VEGF, Glut-1, PGK and 

ABCB1 and these cells showed increased sensitivity to methotrexate (Li et al., 2006). 

The gastric cancer cell line SGC7901 also had a reduced resistance to 5-FU, vincristine, 

cisplatin, etoposide and adriamycin when the HIF-1α gene was silenced. Additionally, 

vincristine treated SGC7901 cells which were exposed to hypoxic culture conditions 

have a reduced apoptotic rate as shown by Annexin V/PI staining with the anti-

apoptotic Bcl-2 being up-regulated and the pro-apoptotic Bax being down-regulated. 

HIF-1α led to the increase of both ABCB1 and ABCC1 mRNA and protein expression 

and the intracellular adriamycin accumulation was decreased, suggesting that hypoxia 

can drive mechanisms to promote drug efflux. Of note, when vincristine was co-injected 

with HIF-1α si-RNA into nude mice the tumor size was decreased by a half compared to 

vincristine alone (Liu et al., 2008). Finally, Sasabe and colleagues reported that HIF-1α 

targeting in OSCC cell lines established from patients with oral cancer resulted in the 

inhibition of cell growth and the induction of apoptosis, which were reversed in HIF-1α 

overexpressing cells. The increase of CDDP and 5-FU efflux was attributed to the 

increase of ABCB1 and not ABCC1 expression caused by HIF-1α overexpression 

(Sasabe et al., 2007).  

Interestingly, chemotherapy has also been reported to induce the activation of the HIF 

signalling pathway even under normoxic conditions. Cao et al. were the first to 

demonstrate that HIF-1α  expression increased in response to doxorubicin treatment in 
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the 4T1ODD-luc and MCF-7 breast cancer cell lines, while it also promoted tumor 

angiogenesis via increasing VEGF expression (Cao et al., 2013). More recently, 

Samanta and co-workers  demonstrated that paclitaxel treatment can also promote an  

increase in the percentages of ALDH+ cells in the triple negative breast cancer cell lines 

SUM-159 SUM-149, MDA-MB-231, while it also increased their secondary 

mammosphere forming efficiency and these effects were reversed upon the addition of 

digoxin. It was also shown that the increase of the BCSC cells was due to the elevation 

of IL-6 and IL-8 in response to paclitaxel treatment, since the use of antibodies for these 

resulted in the abrogation of ALDH+ and mammosphere increase in the MDA-MB-231 

and SUM-159 cell lines. The authors further reported that paclitaxel led to the elevation 

of ROS levels and of the histone demethylase JMJD1A and JMJD3 mRNA levels, 

which are both HIF target genes that bind to the promoters of IL-8 and IL-6, 

respectively to up-regulate their expression. Therefore, it was concluded that the 

paclitaxel indirectly triggers the stimulation of HIF signalling and induces the 

enrichment of BCSCs. Intriguingly, ABCB1 mRNA levels were also increased 

following paclitaxel exposure  especially in the ALDH+ cells, which was inhibited 

when either HIF-1α or HIF-1β were silenced. Furthermore, paclitaxel treated cells led to 

increased tumor growth and increase of ALDH+ cells, which were characterized by 

high IL-6, IL-8 and ABCB1 expression and all these effects were inhibited when 

paclitaxel was combined with digoxin. It is also worth mentioning that the expansion of 

ALDH+ cells due to paclitaxel treatment was not restricted to triple negative cell lines, 

since MCF-7 cells exhibited the same pattern, while no significant increase of ALDH+ 

cells was observed in the HCC-1954 (HER2+) cell line. Finally, the HIF-1 signature 

was significantly associated with the triple negative breast cancer subtype, but not with 

the HER2+ subtype in 1,160 breast cancer specimens (Samanta et al., 2014).  

In summary, I have demonstrated that there is a definite impact of hypoxia in the 

regulation of SP cells in the breast cancer cell lines MCF-7 and MDA-MB-231 for the 

first time, whereas no significant effect was observed in the CD44+ population in these 

cell lines. All these effects were supported by alterations in mRNA levels of stem cell 

and EMT marker genes, which were more significant in the MDA-MB-231 cells. 

Strikingly, I was able to show contrasting effects of hypoxia on the MCF-7 and MDA-

MB-231 SP cells, which I assume may mainly depend on their ERα status. 

Consequently, different therapeutic approaches should be used in the corresponding 

breast cancer patient subtypes, since hypoxia seems to have a positive and a negative 
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regulatory role in ERα positive and ERα negative cell lines, respectively. Targeting 

stem cell pathways, such as the Notch signalling pathway, might be a more effective 

strategy to eliminate the SP cells in ERα positive, while blocking EMT pathways could 

be promising for the prevention of metastasis in ERα negative breast cancer patients. 

Lastly, it is reasonable to suggest that targeting hypoxia might have a therapeutic 

potency to favour the reversion of drug resistance to chemotherapeutic drugs. It seems 

that chemotherapy further promotes the enrichment of BCSCs as demonstrated by our 

findings on the MCF-7 SP cells and as supported by recent research findings (Samanta 

et al., 2014). Since chemotherapy has been found to stimulate the activation of HIF 

signalling (Cao et al., 2013), it presumably affects the CSC population indirectly under 

normal oxygen conditions. Unlike the effects of hypoxia, the increase of ALDH+ cells 

in response to chemotherapy has not been found to depend on the ERα status (Samanta 

et al., 2014). It is possible that different BCSCs populations respond differently to 

chemotherapy. Therefore, the identification of the exact ABC transporters whose 

expression and function is affected by hypoxia is crucial for each cancer type or even 

each patient subgroup with the same cancer type to ensure the efficiency of possible 

therapeutic strategies. 
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Chapter 5: General discussion 

5.1 Summary of findings 

 To determine the effects of EMT induced by ΤGF-β1 treatment of BCSCs in the 

MDA-MB-231 and MCF-7 cell lines.   

The SP phenotype in MDA-MB-231 cells was lost while the MCF-7 SP cells were 

significantly decreased after TGF-β treatment. The use of the SB-505124 inhibitor 

allowed me to confirm that these effects were due to the exogenous addition of TGF-β. 

However, no significant effect was seen on the CD44+ cells in any of these cell lines. 

The negative regulatory role of EMT in the SP population has also been reported by 

other research groups (Tang et al., 2007; Yin et al., 2008; Ehata et al., 2011). 

 To investigate the properties of the TGF-β signalling pathway in both cell lines 

in order to explain the potentially different effect of EMT on the SP cells from 

these. 

The impact of TGF-β treatment on the SP population was further confirmed by the 

observation that nuclear p-smad 2/3 levels increased when both cell lines were exposed 

to TGF-β and this was reversed when the SB-505124 inhibitor was added. In fact, this 

can be supported by the findings of Ehata and co-workers who showed that p-smad 2/3 

is able to directly bind and down-regulate ABCG2 and therefore reduce the SP 

percentage (Ehata et al., 2011). Additionally, MCF-7 cells, which are ER+, have a 

lower potential to exhibit this effect, since it has been shown that ERα is responsible for 

the degradation of p-smad 2/3 (Ito et al., 2010). Most importantly, I demonstrated that 

there is very low mRNA and protein expression of TGFB-RII in the MCF-7 cells, while 

TGFB-RI expression was not different between MDA-MB-231 and MCF-7 cells. This 

is in accordance with previous reports suggesting that TGFB-RII expression is inversely 

correlated with ER expression (Arteaga et al., 1988; Ammanamanchi et al., 1998). 

TGFB-RII is thought to be more essential for the activation of the TGF-β signalling 

pathway (Vivien et al., 1995) and suppression of its expression has resulted in the 

enhancement of the SP phenotype (Tang et al., 2007).  

 To study the effects of hypoxia induced by CoCl2 treatment on the MDA-MB-

231 and MCF-7 BCSCs. 

The induction of hypoxia through CoCl2 treatment led to the abrogation of the SP 

population in the MDA-MB-231, whereas it resulted in the significant expansion of 

these cells in the MCF-7 cell line. Nevertheless, there was an increase of the CD44+ 
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cells in both cell lines, but it was not significant. The contrasting effects of hypoxia 

have been shown to depend on ERα status (Harrison et al., 2013), while it has also been 

reported that the Notch signalling pathway is activated by ERα (Soares et al., 2004). 

Therefore, it is reasonable to assume that hypoxia stimulates the self-renewal of BCSCs 

in the MCF-7, but it promotes their depletion in the MDA-MB-231 cell line. It is also 

possible that the more aggressive MDA-MB-231 cell line is more prone to undergo 

EMT through hypoxia.  

 To examine the possible impact of hypoxia on the transcriptional activation of 

EMT related genes, stem cell markers and ABC transporter genes. 

CoCl2 treatment promoted the up-regulation of most EMT markers in both cell lines 

apart from TWIST2 in the MDA-MB-231 and S100A4 in both cell lines. Notably, E-

CADHERIN expression was not decreased and VIMENTIN was not increased, but it 

has been suggested that complete EMT is not essential for the induction of invasion and 

metastasis (Parker et al., 2001; Kovács et al., 2003). Regarding the effect of hypoxia on 

stem cell marker expression I found that all markers were up-regulated in both cell 

lines, with the NANOG and OCT 3/4 elevation being significant in the MDA-MB-231 

cells. Finally, the expression of both ABCG2 and ABCC3 was significantly increased in 

both cell lines, while ABCB1 expression was unaffected and ABCC5 expression was 

almost undetectable even in the treated cells.  

 To determine possible relationship of hypoxia with the induction of drug 

resistance in BCSCs of the MDA-MB-231 and MCF-7 cell lines. 

I performed the SP assay for the MCF-7 cells to test whether treatment with 

mitoxantrone would further enhance the SP numbers in the presence of CoCl2. This 

experiment was carried out only in the MCF-7 cells, as the MDA-MB-231 SP cells were 

eliminated under hypoxic conditions. While treatment with mitoxantrone alone led to 

cell death of most of the cells in both the SP and the NSP compartment, treatment with 

CoCl2 not only protected both populations from the cytotoxic effects of mitoxantrone, 

but it also significantly increased the SP numbers in comparison to the treatment with 

CoCl2 alone. I assume that this effect could be due to the up-regulation of some 

members of the ABC transporter family of proteins, such as ABCG2 and ABCC3 in 

unfractionated cells. Chemotherapy also seems to induce the activation of the HIF 

signalling pathway (Cao et al., 2013; Samanta et al., 2014) and this presumably acts as 

a feedback loop mechanism by further increasing the SP percentage.  
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 To test whether there is an interaction between the hypoxia and TGF-β 

signalling pathways by investigating the combined effect of hypoxic and ΤGF-β 

on BCSCs in the MDA-MB-231 and MCF-7 cell lines.  

SP analysis of MCF-7 cells treated with both CoCl2 and TGF-β showed that there is a 

dominant effect of TGF-β leading to the significant reduction of the SP percentage 

compared to CoCl2 alone. MCF-7 SP cells might need the co-operative action of both 

CoCl2 and TGF-β for the induction of EMT, since I have already demonstrated that 

there is defective TGF-β signalling in the MCF-7 cell line. However, CoCl2 or TGF-β 

alone are sufficient to promote the same effects on the MDA-MB-231 SP cells. The 

combined treatment only induced a slightly higher CD44 protein expression in the 

MCF-7 and had no additive effect in the MDA-MB-231 cells compared to CoCl2 or 

TGF-β alone.  

5.2 Limitations of study 

One of the main limitations of the present study was the fact that there was a limited 

number of FNAs provided, so no significant conclusions could be drawn about the 

association of EMT marker expression and the presence of SP cells in particular breast 

cancer patient subgroups. What is more, in most cases the number of cells that were 

available was very low and this did not allow me to perform all the required 

experiments. Secondly, although I feel confident about our results on the TGF-β and 

hypoxia induced effects on the two different breast cancer cell lines, I was hoping to 

carry out the same treatment experiments on cells derived from actual FNAs from breast 

cancer patients. Furthermore, I anticipate that the ICC data could be better supported by 

the use of a more quantitative method for protein expression analysis, such as western 

blotting and it could also provide more reliable information about the localization of the 

proteins of interest. Therefore, this experimental approach could be performed in the 

future to enhance the reliability of the protein analysis. Finally, due to limited time I did 

not examine the possible functional differences of the SP and the NSP populations in 

response to EMT, including migration and invasion or clonal ability, but these could be 

some of the future directions of this study. 

5.3 Clinical implications 

Breast cancer is a complex disease, consisting of 10 different subtypes (Curtis et al., 

2012). In addition, the mammary gland is thought to contain undifferentiated cells that 

give rise to its myoepithelial and luminal compartment during puberty and pregnancy 

(Villadsen et al., 2007). The elucidation of the mechanisms underlying normal 
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mammary development would reveal the actual source of CSCs. Furthering our 

understanding of the gene expression patterns that characterize normal and CSCs would 

enable the specific targeting of CSCs without having any negative effects on the normal 

stem cell population. Induction of the slow cycling and long-lived CSCs to undergo 

differentiation and incorporate with the bulk of the tumor cells might have a therapeutic 

potency. Thus, CSCs could become less resistant to conventional chemotherapy and 

they could ideally be detected at early stages of the primary disease favouring the 

prevention of metastasis. Understanding the molecular signature of breast cancer is 

challenging and the benefits of potential CSCs therapies need to be determined for each 

particular patient subgroup.  

Blocking the ABC transporters expressed in most CSCs, including SP combined with 

current therapies might be more efficient. Strategies based on this approach need to be 

designed depending on the ABC transporter which is responsible for the SP phenotype 

in particular breast cancer patient subtypes, so that more specific ABC inhibitors can be 

developed. The use of general ABC inhibitors, such as verapamil for the reversion of 

drug resistance in patients with refractory myeloma in clinical trials has been 

unsuccessful due to toxicity issues (Dalton et al., 1995). Nevertheless, the use of 

tyrosine kinase inhibitors (TKIs) which act by binding to ATP and preventing it from 

binding to the ATP binding site of several oncogenic tyrosine kinases seems more 

promising. For instance, it has been reported that some TKIs, such as nilotinib (Tasigna) 

can efficiently reduce the activity of ABCB1 and ABCG2 transporters (Tiwari et al., 

2009). Apatinib (YN968D1) is another TKI, which is at Phase III clinical trial in China 

for the treatment of gastric carcinoma and non-small cell lung cancer. Mi and colleagues 

explored the ability of apatinib to reverse MDR in breast cancer cell lines and in 

xenograft models of breast cancers overexpressing ABCG2 and/or ABCB1. 

Intriguingly, they found that apatinib remarkably enhanced the accumulation of 

doxorubicin and Rhodamine 123 dye in these cells by affecting the transporters’ efflux 

function. Additionally, apatinib in combination with paclitaxel significantly increased 

the activity of paclitaxel in the animal models (Mi et al., 2010).  

Moreover, given the increasingly evident role of hypoxia in the induction of drug 

resistance  (Sasabe et al., 2007; Liu et al., 2008; Chen et al., 2009), molecular targeting 

of the HIF signalling pathway might be more effective for the prevention of all the 

downstream effects including ABC up-regulation caused by hypoxia. For example, the 

use of the HSP90 inhibitor in mice with triple negative breast cancer tumors resulted in 



165 
 

the degradation of HIF-1α and led to the reduction of tumor size and the decrease of the 

ALDH+ cell percentage in the residual tumor (Xiang et al., 2014). What is more, 

Samanta and co-workers provided evidence that targeting HIFs may also reverse the 

increased hypoxic response due to chemotherapeutic treatment, therefore, they 

suggested that several potential HIF-inhibitors (Chintala et al., 2010; Semenza, 2012; 

Xiang et al., 2014) should be used in combination with chemotherapy in clinical trials.  

Findings obtained from this study clearly demonstrate that TGF-β driven EMT has an 

impact on breast cancer SP cells, while this is stronger on the ER-/PR-/HER2- MDA-

MB-231 than the ER+/PR+/HER2- MCF-7 cell line. The diversity of these effects 

depending on the hormonal status might also reflect the differences in the 

responsiveness of SP populations contained in patients with different breast cancer 

subtypes. TGF-β1 presumably promotes the differentiation of the SP cells, therefore, I 

expect that these could be targeted more efficiently in hormonal non responsive breast 

cancer patients, who are characterized with a more active TGF-β signalling pathway. I 

believe that this observation is of great clinical significance, since breast cancer patients 

belonging to this subgroup have limited therapeutic options and anti-hormonal 

treatment cannot be used in these cases. Most importantly, these patients' clinical 

condition and worse prognosis may mainly be due to the higher prevalence of the SP 

phenotype, which has been significantly associated with this particular breast cancer 

subtype (Britton et al., 2012). Therefore, triple negative breast cancer patients can be 

benefited from the TGF-β tumor suppressive actions and the inhibitory role of this 

pathway on the SP population as opposed to patients with low or absent TGF-BRII 

expression.  

Furthermore, inhibiting angiogenesis, which is one of the main effects of hypoxia, has 

been another therapeutic method for reducing oxygen and nutrient tumor supply and 

VEGF targeting is currently used in a number of clinical trials (Miller, 2003; Semenza, 

2007). Although the initial results in most of these seem promising, cancer recurrence is 

very common. Indeed, the use of bevacizumab, a monoclonal antibody against VEGF-

A, showed satisfactory results in terms of pathological response in triple negative breast 

cancer patients, whereas no improvement was seen in hormone receptor positive 

patients (von Minckwitz et al., 2012). A recent study demonstrated that the adverse 

effects of such therapies could be because of differences in the responsiveness of 

BCSCs from ER-α positive and negative breast cancer cell lines and patients (Harrison 

et al., 2013). In line with these observations, my results also support the contrasting 
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effects of hypoxia in different breast cancer cell lines depending on their ERα status and 

I suggest that these could be applied therapeutically.  

Anti-angiogenic therapies, that are used to target tumor vasculature, may eventually 

lead to the induction of more severe hypoxic conditions (Conley et al., 2012). These in 

turn can promote the expansion of BCSCs in ERα-positive patients and result in more 

aggressive and drug resistant tumors.  However, hypoxia seems to have the opposite 

effect on the BCSC populations of ERα negative breast cancer patients. Consequently, 

immunohistochemical analysis of ERα expression can not only be carried out for anti-

hormonal therapies in breast cancer, but it is also essential for the selection or not of 

anti-angiogenic therapies. I suggest that taking into account the patient's breast cancer 

subtype could facilitate the decision of whether these could be used in combination with 

approaches which aim to inhibit both the ERα and the Notch signalling pathways in 

ERα positive patients. Ideally the hypoxia-induced increase of CSCs could be prevented 

in these patients, whereas increasing tumor hypoxia might be a more efficient method to 

deplete the CSC population in ERα negative patients. 

In addition, my findings on the combined effect of TGF-β and hypoxic treatment in the 

MCF-7 cell line indicate that blocking both pathways could more effectively target the 

SP population in patients represented by this cell line. Higher numbers of SP cells in 

hypoxic tumor regions of these patients could be eliminated through ABCG2 down-

regulation induced by TGF-β treatment given that targeting hypoxia might promote 

diverse effects on the CSC population based on the patient’s ERα status.  

Finally, I was able to successfully demonstrate that mitoxantrone treatment further 

induces the enhancement of the SP phenotype under hypoxic conditions in the MCF-7 

cell line, while it has also been shown by others that these effects can occur even under 

normal oxygen conditions (Samanta et al., 2014). I anticipate that targeting hypoxia 

could prevent the enrichment of SP cells in estrogen responsive breast cancer patients, 

however, the chemotherapy-induced hypoxia and the subsequent increase of the 

ALDH1+ cells does not seem to depend on the ERα status. As a result, preventing 

hypoxia could potentially be used to target other BCSCs except SP cells in hormonal 

non responsive patients, but the exact mechanisms by which hypoxia regulates different 

types of BCSCs require further investigation.  
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5.4 Future directions 

The results of the present study give rise to several research questions. First of all, HIF-

1α was not significantly up-regulated with CoCl2 treatment, so it might be worth 

assessing the levels of HIF-2α in response to hypoxia in the MDA-MB-231 and MCF-7 

breast cancer cell lines. Given the role of HIF-2α in CSC maintenance (Li et al., 2009) 

and the fact that HIF-2α has been shown to directly bind to and up-regulate ABCG2 

(Martin et al., 2008), I assume that it may play a more important role in the regulation 

of BCSCs. Additionally, HIF-2α expression has been significantly associated with high 

ABCG2 expression, histology-grade and Ki67 expression in patients with invasive 

breast cancer (Xiang et al., 2012). I could also further investigate the role of both HIF-

1α and HIF-2α, since HIF-2α is thought to act in both normoxic and hypoxic conditions, 

while HIF-1α seems to be essential only during hypoxia (Shaw et al., 2012). Knocking 

down both HIF-1α and 2α would result in the reversion of the effects that I have 

observed and this would confirm that they are due to the activation of the HIF signalling 

pathway.  

Furthermore, another experimental approach in order to confirm the potential 

involvement of the Notch signalling in the expansion of the SP population would be to 

block this pathway using the appropriate inhibitors, such as γ-secretase inhibitors, in the 

MCF-7 cells. Inhibiting the ER pathway by either silencing ERα or by using specific 

inhibitors for this, such as 4-hydroxytamoxifen, would lead to the same effects as the 

blocking the Notch pathway, since this has been reported to be activated by ERα 

(Soares et al., 2004). In addition, Notch or ERα overexpression in the MDA-MB-231 

cells might result in the increase instead of the depletion of the SP cells and this would 

provide further evidence that the Notch pathway, which is regulated by ERα is 

responsible for the enrichment of the SP cells in the MCF-7 cell line. It would also be 

important to determine which Notch is important for the regulation of SP cells, as 

targeting Notch4 rather than Notch1 has been suggested to be more effective for 

ESA+/CD44+/CD24- cells (Harrison et al., 2010). 

Moreover, transfection of MDA-MB-231 cells with ERα might also promote the 

increase of the SP cells in response to hypoxia considering the direct role of ERα in the 

up-regulation of ABCG2 (Ee et al., 2004). This experiment would address the question 

why the SP percentage does not elevate although there is increase of the ABCG2 

mRNA levels under hypoxic conditions. The protein expression changes in both the SP 

and NSP cells of this cell line could also be examined in comparison to the MCF-7 cell 
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line, as it has been previously reported that the levels of ABCG2 protein expression are 

not different between the MDA-MB-231 SP and NSP cells (Britton et al., 2012).     

In addition to the role of hypoxia in the up-regulation of the ABCG2 protein levels, I 

could test if the ABCC3 protein levels are also increased by hypoxia as the mRNA 

levels. Further functional assays, such as invasion and migration assays as well as drug 

resistance tests to certain chemotherapeutic drugs (such as taxane due to ABCC3 up-

regulation (O'Brien et al., 2008) and mitoxantrone due to ABCG2 up-regulation (Mao 

and Unadkat, 2015), would confirm the role of hypoxia in the induction of a more 

metastatic and drug resistant phenotype in the SP cells in comparison to the NSP cells. 

Knocking down ABCC3 and ABCG2 individually or jointly under hypoxic conditions 

and performing the above mentioned experiments would reveal their involvement in the 

regulation of the SP population.  

5.5 Conclusions 

In this project I aimed to characterize the role of EMT induced by the activation of the 

TGF-β and the HIF-signalling pathways in the regulation of BCSCs in the breast cancer 

cell lines MDA-MB-231 and MCF-7. Hormonal status seems to play a role in the 

prevalence of BCSCs in breast cancer patients and thus I was interested in determining 

the possibly different effects in the above mentioned cell lines. Based on evidence about 

the effect of hypoxia on the stimulation of EMT and stem cell self-renewal pathways I 

investigated its potential to transcriptionally activate known EMT and stem cell 

markers. I was able to clearly demonstrate differences in the effects of EMT driven by 

TGF-β treatment and hypoxia on the SP populations of the MDA-MB-231 and MCF-7 

cell lines, which I concluded that depend on ERα and TGFB-RII expression. Finally, 

given the emerging relationship between hypoxia and the induction of drug resistance, I 

aimed to study the impact of hypoxia on the expression of several ABC transporters and 

determine what the actual effect on the BCSCs is. I have shown that hypoxia can 

promote the up-regulation of several ABC transporters and enhance the SP phenotype, 

while combined chemotherapeutic and hypoxic treatment can further enrich the SP 

population in the MCF-7 cell line.  
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A 

 

B 

 

Figure 5.1: Proposed model of hypoxia response in A) ERα-positive breast cancer 

patients and B) ERα-negative breast cancer patients.  

In A the TGF-β signalling pathway is less active due to the low levels of TGFB-RII 

receptor and the ERα-induced degradation of p-smad 2/3. Therefore, ABCG2 

expression is not repressed by p-smad 2/3, but it is directly up-regulated by ERα leading 

to the enhancement of the SP phenotype. ΗIF-1α seems to positively regulate the 

expression of ABCG2 as well. ERα also promotes the activation of the Notch signalling 

pathway by activating the expression of Notch1 and Jagged1 resulting in the expression 

of stem cells markers and HIF-1α, which can further increase ABCG2 expression. 

In B the TGF-β signalling pathway is intact and thus ABCG2 expression is repressed. 

However, during hypoxic conditions the elevation of the CXCR4, SNAIL1/2 and 

TWIST expression levels may be responsible for driving cell EMT and cell migration.  
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Appendix A 

Patient No Presence of an SP 

population 

Clinical assessment Hormonal status 

1 Inadequate cell 

number 

Ductal carcinoma in situ N/A 

2 Inadequate cell 

number 

Invasive ductal 

carcinoma 

ER+/HER2- 

3 YES benign/no evidence of 

malignancy 

N/A 

4 Inadequate cell 

number 

Invasive ductal 

carcinoma 

ER+/HER2+ 

5 YES Invasive ductal 

carcinoma 

ER+/PR+/HER2- 

Comparison of FNA SP status to pathology of breast tumor 
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Appendix B 
Supplementary data  

The induction of hypoxia was confirmed by Dr Gendie Lash who performed a protein 

array for angiogenic factors according to the manufacturer's instructions (Fast Quant 

Human Angiogenesis Kit Cat# 10486063). Briefly, this kit allows the simultaneous 

fluorescent detection of cytokines from any biological fluids, including cell culture 

supernatants, since it contains anti-cytokine monoclonal antibodies. The quantitative 

analysis is based on a seven-pont standard curve. 

 

 

 



217 
 

CD24 staining data in A) MDA-MB-231 cells and B) MCF-7 cells. In A) CD24 

expression was only slightly decreased with TGF-β treatment, while it increased instead 

of decreasing with CoCl2 treatment. In B) the staining was unsuccessful as double peaks 

were obtained. Values represent mean fluorescence. 

 

 

 

 



218 
 

 

 

 

 

 

 



219 
 

Appendix C 

Presentations and publications arising from this project 

Mallini, P., Lennard, T., Kirby, J. and Meeson, A. (2014) 'Epithelial-to-mesenchymal 

transition: What is the impact on breast cancer stem cells and drug resistance', Cancer 

Treat Rev 40(3), pp. 341-348. 

 

 

December 2013     Poster presentation at the Breast Cancer Meeting 2013 in San 

Antonio, Texas, USA 

 

January 2013     Poster presentation on IGM Postgraduate research Day, Newcastle, 
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