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Abstract

If a set {2 is a spectral set for an operator 7', is it necessarily a complete spectral
set? That is, if the spectrum of T is contained in {2, and von Neumann’s inequality
holds for T and rational functions with poles off of 2, does it still hold for all such
matrix valued rational functions? Equivalently, if {2 is a spectral set for T', does T’
have a dilation to a normal operator with spectrum in the boundary of (27 This is
true if (2 is the disk or the annulus, but has been shown to fail in many other cases.
There are also multivariable versions of this problem. For example, it is known that
rational dilation holds for the bidisk, though it has been recently shown to fail for
a distinguished variety in the bidisk called the Neil parabola. The Neil parabola is
naturally associated to a constrained subalgebra of the disk algebra, as are many
other distinguished varieties.

We show that the rational dilation fails on certain distinguished varieties of the
polydisk D" associated to the constrained subalgebra o/ := C + B(2)A(D). Here
A(D) is the algebra of functions that are analytic on the open unit disk D and
continuous on the closure of D, and B(z) is a finite Blaschke product of degree
N > 2. To this end we identify and study the set of test functions ¥p for Hy :=
C+ B(z)H>(D). Among others, we show that ¥ is minimal (in a sense that there

is no proper closed subset of ¥y is suffices).
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Chapter 1

Introduction and known results

1.1 Introduction

The purpose of this thesis is to study the rational dilation problem on certain dis-
tinguished varieties of D" for N > 2 (that is, the intersection of a variety with
the closed polydisk DV which intersects the boundary of DV in its distinguished
boundary T) associated to some constrained subalgebras of the disk algebra.

Let £2 be a compact subset of C? and suppose that T = (T, ..., Ty) is a d—tuple
of commuting operators on a Hilbert space H with spectrum contained in {2. Fur-
thermore, let R({2) be the algebra of rational functions with poles off {2 and assume

that for every r in R({2), the von Neumann inequality holds; that is,
(D) < Irfle, (1.1)

where || - || is the supremum norm over (2. When the von Neumann inequality (1.1)
holds for an operator (or tuple of operators) T', we say that (2 is a spectral set for
T. More about the von Neumann inequality and its generalizations can be found in
[39]. Also, more recent improvements can be found in [9], [8], [6], [32]).

The rational dilation problem asks: If {2 is spectral set for a commuting d-
tuple T" operators on a Hilbert space H, then does T dilate to a d-tuple of commuting
normal operators N' = (Ni,..., ;) with the joint spectrum in 9£2, the Shilov (or
distinguished) boundary of 27 More precisely, does there exits a Hilbert space
K D H and a tuple of commuting normal operators N on {2 such that o4 (N) C 952
and

r(T) = Pyr(N)ly (1.2)
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for all » € R(§2)? Here Py denotes the orthogonal projection from K to H, |y is
the restriction to H and o4 (N) is the joint spectrum of N (see the definition 3.3.1).
If such a commuting normal d-tuple N exists, we say that rational dilation holds,
and otherwise, that it fails.

The rational dilation problem is not yet fully solved, but operator theorists have
discovered a great deal about this problem; see the next subsection. In this thesis,
we give a negative answer for this question when (2 comes form a certain class of
distinguished varieties.

This thesis consists of the following two main parts.

In the first part, we study the test functions of certain weak-* closed, unital
subalgebras of H*°. Namely we find a set of test functions ¥p for Hy = C +
BH>(D), where B is a finite Blaschke product of degree 2 or more. We also show
that ¥p is minimal, in the sense that no proper closed subset of ¥ is a set of
test functions for H% . The interpolation problem of the algebras HZ was already
studied in [22, 43]. The first application of test functions appeared in the solution
of the Pick interpolation problem on the bidisk in the unpublished work by Jim
Agler [2], also stated in [4]. Subsequent work has expanded its use to other types
of interpolation problem and rational dilation problems; see [7], [25], [33], [27], [42],
[28]. Finding a set of test functions for H is our starting point in dealing with the
rational dilation problem.

In the second part, by using the set W5 and applying a method from [24] we show
that the constrained algebra @75 = C+BA(D) has a contractive representation which
is not completely contractive. Here A(D) is the disk algebra, that is, the algebra of
the analytic functions on the open unit disk D which are continuous on the closure
of . Consequently, we show that the rational dilation problem fails on certain
distinguished varieties associated to .<7p.

Our main tool for dealing with the rational dilation problem on a distinguished
variety associated to @7z is a remarkable result of William Arveson [14]. It says
that the n-tuple T' dilates to a normal n-tuple N with spectrum in the (Shilov)
boundary of {2 (relative to R(f2)) if and only if 77 is completely contractive, where
77 is unital representation of R({2) on H via mp = r(T) . Note that the condition
2 is a spectral set for T' is equivalent to the condition that the representation m is

contractive.
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1.2 Some known positive and negative cases

The first dilation theorem was proved by Sz.-Nagy [45] in the 1953.

Theorem (Sz.-Nagy’s dilation theorem ). Every contraction T' (i.e, an operator of
norm less than or equal to 1 on a Hilbert space H) dilates to a unitary operator.
That is, there exist a Hilbert space D H and a unitary operator U on K such
that

F(T) = Puf(U)lx

for all f € R(D), the rational functions poles off of D, where Py is the orthogonal

projection of K onto H and |4 is the restriction on H .

One of the most important application of Sz.-Nagy’s dilation theorem is the
von Neumann inequality [50], though von Neumann’s inequality appeared two years

before the Sz.-Nagy’s dilation theorem.

Theorem (von Neumann’s inequality). An operator 7T is a contraction if and only
if [[£(T)] < ||f]| for all f € R(D), where ||f|| = sup,5|f())| and the left hand

norm is the usual operator norm.

Observe that there is the common condition that appears in both the Sz.-Nagy
dilation theorem and von Neumann inequality: [|T|| < 1. The above theorems
immediately implies that the rational dilation holds when 2 = D. Berger (1963),
Foias (1959) and Lebow (1963) extended the Sz.-Nagy dilation theorem to more
general simply connected planar domains. Hence the rational dilation holds for any
simply connected domain in the complex plane; see [39]. A deep result of J.Agler
[3] shows that rational dilation holds when (2 is an annulus. A simplified proof can
be found in [24]. In 1992, P.Chu [39] showed that if 7" is a tuple of commuting 2 x 2
matrices, then rational dilation holds-so no matter how badly behaved {2 is.

However, for (many) planar domains of higher connectivity rational dilation
fails. For example, Agler, Harland and Raphael [5] have showed this by machine
computation, in an example of a two holed domain in the complex plane. More
generally, Dritschel and McCullough [26] showed that rational dilation fails when
(2 is any triply connected domain with analytic boundaries in C. Furthermore,
Pickering [42] showed that rational dilation fails whenever {2 is a domain in C with
n holes, satisfying a symmetry condition for 3 < n < oco. The approaches of [26]
and [42] was to find a set of test functions ¥ so that H>(Ky) = H*((2). Then they
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show that test functions can be used to characterize the contractive and completely

contractive representation of H*({2). Using these characterizations they showed

that certain contractive representations of H>({2) are not completely contractive.
The first multivariable positive answer to the rational dilation problem is given

by Tsuyoshi Andoé [13] in the 1963.

Theorem (Ando’s dilation theorem). Let H be a Hilbert space and assume that
T = (T1,T) is a commuting pair of operators acting on H. If ||T;|| < 1,i = 1,2,
then T has a unitary dilation, i.e., there exist a Hilbert space ' D H and a pair of

commuting unitary operators U = (Uy, Us) acting on K such that

f(T17T2) = PHf(Ula U2)|7-[

for all f € R(D?), where Py is the orthogonal projection of K onto H and |4 is the

restriction on H .

Theorem (von Neumann inequality for the bidisk). Let H be a Hilbert space and

assume that 7' = (T}, T3) is a commuting pair of contractions acting on H, then

I (T, D)l < I £

for all f € R(D?), where ||f| = SUD(y, ap)ep? |/ (A1s A2).

Ando’s result implies that rational dilation holds for the closed bidisk. Another
positive answer for the 2-variable case of the rational dilation problem is obtained
when (2 is the closed symmetrized bidisk I" [10, 17, 36], a domain in C? defined by

I'={(z1 4 22, 2122) : |21| < 1,]22| < 1} (1.3)

However, Parrot showed by a counterexample [38, 39] that rational dilation fails on
the closed tridisk D3. Very recently, S. Pal [37] showed that rational dilation fails
also when (2 is the closure of the tetrablock E, a polynomially convex, non-convex

and inhomogeneous domain in C3, defined as
E = {(z1, 79, 73) € C*: 1— 22 —wro+2ww3 # 0 whenever |z| < 1,|w| < 1}. (1.4)

Note that there is a way of mapping an annulus to a distinguished variety of the

closed bidisk, so rational dilation holding for annuli is equivalent to it holding for



Chapter 1. Introduction and known results

a certain family of distinguished varieties in ﬁg, see [24]. It has been shown in [24]
that rational dilation holds for the distinguished variety {(z,w) € D22 = w?}.
It is natural therefore to wonder if this is in some sense a legacy of what we know
about rational dilation for D2, and so perhaps rational dilation also holds for other
distinguished varieties in D2?

But this is too much to hope for. In [24], it was also proved that rational dilation
fails for the Neil parabola A4,z = {(z,w) € D? : 23 = w?}. The method of proof is
somewhat indirect. In this case, there is a complete isometry mapping R(./#;2) onto
o = C+ 22A(D). Tt is shown that this algebra has a contractive representation

which is not 2-contractive, and so not completely contractive.

1.3 Definitions and notation

Our approach to solving the rational dilation problem for a distinguished variety
associated to /g requires finding a family of so-called “test functions” for the algebra
Hg. For other purposes (such as solving interpolation problems), it is useful for
this family to be in some sense minimal. This is technically the most challenging
aspect of the problem, and once accomplished the method used in [24] can be readily
modified to yield the desired examples on rational dilation. The minimality of the set
of test functions also allows us to construct a representation which is not contractive,
despite sending the generators of o/ to contractions. This is in the spirit of the
example due to Kaijser and Varopolous [48]. We give a brief synopsis of the notion
of test functions and their use in the solution of interpolation problems. We refer to
[27] for further details.

Definition 1.3.1. A set ¥ of complex-valued functions on a set X is called a

set of test functions if:
1. For any x € X,supyey [¢(7)] < 1; and
2. The elements of ¥ separates the points of X.
Definition 1.3.2. An n x n matrix A = (a;;) is positive semidefinite (A > 0) if
Z a;;cic; > 0
ij=1

for all ¢q4,...,c, € C.
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For further properties of positive semidefinite matrices, see [16].

Definition 1.3.3. Let X be aset and A be a C*-algebra. A function k : X x X — A
is called a kernel. It is a positive kernel if for every finite set {zy,...,2,} of

distinct points in X, the matrix (k(z;,z;)) € M, (A) is positive semidefinite.
Every set of test functions defines a Banach algebra in the following sense.

Definition 1.3.4. Let X be a set. For a set of test functions ¥, we define a set of

positive semidefinite kernels, called the admissible kernels, by

Ky = {k:X xX = C: ((1—¢(x)m)k(z,y)) >0 \wew}.

Here > indicates that the left-hand side is a positive semi-definite kernel. We

use the admissible kernels to define a Banach algebra.

Definition 1.3.5. Let X be a set. Also let Ky be the set of admissible kernels for
a set of test functions ¥ on X. We define the Banach algebra H>(Ky) consisting
of those functions ¢ : X — C for which there is a finite constant C' > 0 such that
for all k € Ky, the kernel

((C? = p(x)p(y) ) k(z,y)) (1.5)

is positive semidefinite.

We set
Cp =inf{C: ((C* — p(z)p(y)")k(z,y)) > 0 forall k€ Ky}.

Then the norm is given by

ol o kcp) = Cy

on H*(Ky). One can check that (H*(Kyg), | - ||g=(x,)) is a Banach algebra, with
pointwise addition and multiplication (see the Appendix A.1). Obviously, the test
functions are in the unit ball of H*(Ky). Because the kernel k(z,z) = 1 for all
and k(z,y) = 0 if  # y is an admissible kernel, the norm of H*(Ky) will always
be greater than or equal to the supremum norm, and so H*(Ky) is weakly closed
(that is, closed under pointwise convergence).

The algebra of all bounded continuous functions on ¥ with pointwise algebra

operations, is denoted by Cy(¥). If ¥ is compact, then the set C(¥) of continuous

6
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functions from ¥ to C is equal to Cy(¥) (see page 2, [35]). Let Cp(¥)* be the dual
space of Cy(¥). If ¥ is compact, then Cy(¥)* is the Borel measures on ¥, see [31].
We assume that ¥ is endowed with a suitable topology so that for all x € X, the
functions E(x) : ¢ € ¥ — ¢(x) are in Cp(¥). In this case E(z)* : ¢ € ¥ — ()" is
also in Cy(¥).

A key result in the study of algebras generated through test functions is the real-
ization theorem [27], which gives several equivalent characterizations of membership
in the closed unit ball of the algebra H>(KCy). We state the portion relevant to us

here.

Theorem 1.3.6 (Realization theorem). Let ¥ be a collection of test functions on a
set X and H>®(Ky) the associated function algebra. For ¢ : X — C, the following

are equivalent:
1. ¢ € H*(Ky) and ||¢||gec,) < 1.

2. (a) For each finite set F' C X there exists a positive kernel I' : F' X F —
Cy(P)* such that for all x, y € F,

1 —o@)e(y) =z, y)(1-E@)E(y)) .

(b) There exists a positive kernel I' © X x X — Cy(¥)* such that for all
z,y€X,
1—o(@)py)" =z, y) (1 - E@)E(y)) .

3. If m is any unital representation of H®(Ky) such that ||m(¥)| < 1 for all

Y €W, then 7 is contractive.

The proof of the realization theorem is the basis for the following interpolation
theorem of [27].

Theorem 1.3.7 (Agler-Pick interpolation theorem). Let ¥ be a collection of test
functions on a set X and H®(Ky) the associated function algebra. Fix a finite

subset F C X. For f: F — D, the following are equivalent:
1. There is a function ¢ € H*(Ky) with |¢|| yoc (i, < 1 such that ¢|r = f.

2. For each k € Ky, the kernel

FxF 3 (x,y) = (1= f(@)f(y)") k(z, y))

7
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18 positive.

3. There is a positive kernel I' : F' x F' — Cy(¥)* so that for all z, y € F
L= f(a)f(y) =T'(z,y) (1 - E(x)E(y)") .

To sum up, given a set of test functions ¥, we can construct a normed function
algebra H*(KCy) via a set of admissible kernels ICy. But, for example, if we want
to study interpolation problems or completely contractive representations of a given
normed function algebra A on a domain (2, then finding a set of test functions ¥
such that the function algebra H*°(Ky) is isometrically isomorphic to A is more
useful tool. A trivial solution to this problem is to take the set of test functions ¥
to be the open unit ball of A. However, if we want ¥ be minimal, in the sense that
there is no proper closed subset of ¥ such that H>°(/Cy) is isometrically isomorphic
to A, then this problem becomes harder. Because, if ¥ is not closed, then we may
possibly remove a finite or a countable number of test functions from ¥ and still get
a set of test functions ¥ such that H ®(Ky) is isometrically isomorphic to A. So we
need an additional constraint on ¥ to be a norm closed (and hence compact) subset
of A. The minimal set of test functions will only be defined up to an automorphism

(for example, see Lemma 2.1.1).

1.4 Main results

Let B be a finite Blaschke product. Write

z—ag \° [/ z—a1 \" z—a, \™
B(z) = = 1.
=) (1—04_0Z) (1—a_1z> <1—a_nz> ’ (0

where ay, . . ., a,, are distinct complex numbers in the open unit disk D, and ¢, ..., %,

and n are non-negative positive integers with tg +---+1t, = N > 2.
Let
HY :=C+ B(z)H*(D),

where H*°(DD) is the algebra of bounded holomorphic functions in the open unit disk.
Note that a function f € H*(D) is in Hy if and only if it satisfies the following two

constraints

1. f(ay) = flay) for 0 <i,j <mn;
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2. f®)(a;) =0for k=1,...,t; — 1 whenever t; > 2.

For the proof of above statement see the introduction of the Chapter 3.

Let ¥g be a set consisting of functions of the form 1(z) = ¢B(z)R(z), where R is
ko 1-aj
jzl l—a]‘7
where the «; ’s are the zeros of 1 and N < k < 2N — 1. These form the set of test

functions for Hg in the following sense.

a Blaschke product with number of zeros between 0 and N — 1, and ¢ =[]

Theorem. 2.3.10 The Banach algebras H>*(Ky,) and Hy are isometrically iso-

morphic.

Obviously there could be other choices for the set of test functions for H7, for
example we can simply take the unit ball of 7. We want the set of test functions
to be minimal. There is a dual version of this for the set of kernel functions for this
algebra; see [43]. The next theorem shows that the set ¥p is a minimal set of test
functions for the algebra H7’, in the sense that there is no proper closed subset of

Uy such that the realization theorem holds for all functions in the unit ball of H
( or H*® (Kw)>
Theorem. 2.4.4 The set ¥p is a minimal set of test functions for the algebra H .
This theorem covers the special case when B(z) = 22, a result of Dritschel and
Pickering [28]. As an application of Theorem 2.3.10 and with the reformulation of
rational dilation problem by Arveson (see [39, Cor. 7.8] and [14] ), we show that
rational dilation does not hold on certain distinguished varieties of D" associated
to the algebra o7z = C + BA(D), where A(D) is the disk algebra.

Theorem. 3.4.1 The algebra @/ has a contractive representation which is not

completely contractive.

Outline of the proof of Theorem 3.4.1. First, let S be a finite subset of D and form

the closed convex cone

e ([ (= vt daal®)) (1.7)

T,yeS

where p1 = (p,,) € M (S) is a kernel taking its values p,, in the 2 X 2 matrix

valued such that for all Borel subset (2 of ¥, the measure

M(Q) = (N$7y<0))x,yes S MS(MQ(C)) (1'8)

9
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takes positive semidefinite values in M (M(C)), where s is the cardinality of the

set S. Second, we define the kernel
Aps = (I = F(x)F(y) )z yes

for F' = (F;)7 =1 € Ma(o7p).

If Apg & Cy s for some F' € My(efp), then by using a Hahn-Banach separation
argument we can separate Apg from Cy ¢ with a positive functional, and apply a
GNS construction to get a contractive representation of @7 that is not completely
contractive.

We fix an analytic function F' € Ms(/g), which is unitary valued on T and
non-diagonalizable. However, if we assume that Apg € Cy g for this fixed F, then

there exists an M, (C)-valued positive semidefinite measure p such that

I, - F(z)F(y)" = / (= p@(w)) dusy()  for  zyeS.  (L9)

Relying on the concreteness of set of test functions ¥z we show that /' must then

be diagonalizable, giving a contradiction. O]

Let @70 be the subalgebra of &/ generated by B(z) and zB(z). Then the dis-

tinguished variety associated to &7 is given by

Ng = {(x,y) cD : xH(m—&ky) = H(y—akx)}.

k=1 k=1
See section 3.2 for further details.

Theorem. 3.3.12 Let A(.45) be the algebra of analytic functions on .45 which
extends continuously to the boundary with the supremum norm. The algebra A(.A43)
is completely isometrically isomorphic to the algebra .73, which consists of those
functions in /g which do not have terms of the form z'B’(z),7 =1,..., N — 2 and
i=7j+1,...,N — 1. This algebra contains BY~1(2)A(D), so in particular, when
N =2, 49 = 3.

In Lemma 3.1.1 we show that the algebra 7 is generated by B(z),zB(z),...,

2N71B(z). Then in section 3.2 we show that the associated distinguished variety

10
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associated to o/g is given by
—N
/VB_{.Tl—SN )Ty —|—Z SNk —Sk(a)).TN,kl'Q:OZ(1’1,...,1‘]\[)6]1) }
k=0

Theorem. 3.3.13 The algebra R(¥5) is completely isometrically isomorphic to the
algebra 7.

As a consequence of Theorem 3.3.13 an Theorem 3.3.12 we have the following

main result:
Theorem. 3.4.2 Rational dilation fails on the distinguished variety 73.

In particular, when N = 2 we have that ¥ = A5 = {(z,y) € D x(r —
ay)(r —By) = (y—ax)(y — Bz)}, where a, 3 two zeros of B. This covers the special
case when B(z) = 22, which was been previously considered by Dritschel, Jury and

McCullough [24].

11
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Test functions for constrained

algebras

2.1 Test functions for HF

Let us turn our attention to the constrained algebra o/g. We wish to construct a set
of test functions ¥y for o7z, or rather, for its weak- closure Hy = C+ B - H>*(D).
To simplify the work, we assume that oy = 0.

This assumption imposes no real restriction. For suppose that B is a Blaschke
product with zeros {ay, ..., a,} such that oy # 0. Composing B with the Mobius
map m_q, = (2 + ag)/(1 + @z), we get a Blaschke product B with zeros {a; =
Mag (@)} g, hence &y = 0. Obviously composing with m,, maps B back to B.
Since Mmy,, is an automorphism of D, we find that f € H¥ if and only if f =
fom_q, € HY, and furthermore, | f|| = 1 £1I-

Lemma 2.1.1. If ¥ and ¥ are the set of complex valued functions such that ¥ =
{) omy, : b € W}, then

a) ¥ is a set of test functions for HZ if and only if ¥ is a set of test functions
for Hg . That is, the algebras H*(Ky) and HZ are isometrically isomorphic

if and only if the algebras H*®(Ky) and HE are isometrically isomorphic.
b) The set ¥ is minimal for HZ if and only if ¥ is minimal for HE .

Proof.  a) Suppose that ¥ is a family of test functions for HZ. Since mq, is an
automorphism of the unit disk and [)(z)| < 1 for z € D, the map M,, (¢)) = ¥o

M, TAPS ¥ injectively onto ¥. This map has the inverse Mojol () = om_q,.

12



Chapter 2. Test functions for constrained algebras

So M,, is an isomorphism of ¥ and ¥. Thus we can identify Cy(¥) and Cy(¥).
So we may identify the spaces Cy(¥)* and Cy(¥)*.

For x € D, set & = mq,(z). Then

E(x)(¥) = ¥(x) = 1h(me,(x)) = (&) = E(F) ().

Let ¢ € HF and set ¢ = p om_,,. Assume [|@|/(= |l¢|]) = 1. By the
realization theorem and the assumption that ¥ is a family of test functions for
H, there is a positive kernel I':D x D — Cy(¥)* such that for all z,y € D,

and T = My, (), J = me,(y) we have

— E(Z)E()) (2.1)

where I'(z,y) = I'(ma, (), M, (y)) is a positive kernel from D x D to Cy(¥)*.
We conclude that Hg is in the algebra H*(Ky) induced by the test functions
¥ and ¢ is in the unit ball of H*(Ky). Since the norm of ¢ in H*®(Ky) is
greater than or equal to the supremum norm (the norm in H§), the norms
must be equal. On the other hand, if ¢ is in the unit ball of H*(/Ky), then by
realization theorem there exist a positive kernel I : D x D — Cy(¥) such that

1—o(@)e(y)” = 'z, y)(1 - E(x)E(y)").

Then the same computation as in (2.1) , for ¢ = ¢ o m_,, yields that

1 - ¢(2)§(§)" = I'(7,9)(1 - BE(2)E()").
where I'(#,9) = I'(z,y). Hence ¢ € H®(K;). By assumption H*(Ky) is
isometrically isomorphic to HZ. So ¢ € HZ. This implies that ¢ € Hp.
Thus H*(Ky) is isometrically isomorphic to Hg, and we conclude that ¥ is

a family of test functions for H7.

It is suffices to show one direction. Suppose ¥ is minimal for HZ and let C be
closed subset of ¥, which is a set of test functions for Hg. Let C' = M HC) =

13



Chapter 2. Test functions for constrained algebras

{pom o, 1 ¥ € C}. Let {¢;}52, be a sequence in C which converges to a
function 9. Then { My, (¥)}32; = {¥0j 0 ma,}32, is a sequence in C, which
has the the limit ¢ om,, € ¥. Since C'is a closed set in ¥, we must have that
) 0 Mg, € C. Since mq, is an automorphism of the unit disk and |¢(2)| < 1
for » € D, we have M, (¢ 0 Me,) = ¥ 0 Mgy 0M_gy =1 € C. It follows that
C is a closed subset of ¥. Since C' is a set of test functions for Hp, by part
a) we see that C' is a set of test functions for H*(K;). By minimality of ¥,
C' =¥. Hence C = C omgy, =W 0mg, = V.

O

2.2 The Herglotz representation and finite mea-

sures

Recall that we are assuming that B is Blaschke product of degree bigger than 1 with
a zero at ap = 0 of multiplicity at least 1. Write ¢; for the multiplicity of the zero
a; of B.

Assume that ¢ € HZ which is non-constant. By subtracting ©(0) we may
assume ¢(0) = 0. And considering ¢/||¢]|«, We also may assume that ||p[|. < 1.
Define f = M o ¢, where M(z) = 12 maps the unit disk to the right half plane H.
Then Ref > 0 and f(0) = 1. The map M has the inverse M ~!(z) = =1, and so we

z+1?
get a one to one correspondence between the set of functions in 3" which are zero

at 0 and the set of holomorphic functions mapping the disk to the right half plane
with non-negative real part and value 1 at 0.

By the Herglotz representation theorem, for any holomorphic function f : D — H
with Ref > 0 and f(0) = 1, there is a unique probability measure p on T such that

1) = [ 2 duw),

w—z

and conversely, if u is a probability measure on T, then

1) o= [ 2 dutw)

w—z

defines a holomorphic function on D to H with Ref > 0 and f(0) = 1.

Lemma 2.2.1. Let ¢ be a non-constant function in HZ'. Then there is a unique

14
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probability measure p, on T such that

1 .
/deu@(w)zo, j>0andk=1,....t. (2.2)

and
/wkduw(w)zo, k=1,...ty—1, (2.3)
T

whenever ty > 1. Furthermore, let f be an analytic function on D with positive real

part and has the property that

flaj)y=1forj=0,....,n and fF(a;) =0 for j =0,1,....m;1 <k <t; — 1.
(2.4)
If f has the Herglotz representation with a probability measure u, then this measure
has the properties (2.2) and (2.3).

Proof. As noted above we may assume that ||| < 1 and ¢(0) = 0. It follows that
we can define the map f = M o ¢ from D to H. Then the assumption ¢(0) = 0
imply that Re f > 0 and f(0) = 1. By the Herglotz representation theorem, there

is a unique probability measure p, on T such that

) = [ 2 (o) 25)

w—z

Recall that ¢; is the multiplicity of zero of «; of B, and we are assuming that

ap = 0. Then for j > 0 we have

1= fla) = [ 5% ) = [ 20| dg(a) = 1420, |

U)—Oéj U)—Oéj Tw—ozj

and thus

1
/ dpy(w) =0, 7>0.
T

UJ—O./]'

Inductively we get

F(z) = 2k / e e l)

7 (w—2z

= 2k! [Aﬁ@so(@"‘/ﬁrﬁdw(w)

Ift; > 1, then as neither M nor its derivatives have any zeros in DD, the Faa di Bruno

15
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Chapter 2. Test functions for constrained algebras

formula implies that
fa;)=0, j>0andk=1,...,t— L.

Thus .
/—duq,(w):(), j>0and k=1,...,¢.
T (W

— a)k

On the other hand, if z = ag =0 and ¢y > 1, then

1
/Tﬁd,uw(w):(), k=1,...,to— 1.

Finally, suppose that f(z) = [, %= du(w) and that it has the property (2.4).
First note that 1 = [ du(w) = f(0) = f(a).
Next for j =1,...,n,

w— 1
= d 20 d
[ = )+ 20 [ )
1
= 1+ 2¢q; d .
+ O‘J/Tw_aj p(w)

Since a; # 0 for j =1,...,n we have

0= /T L du(w). (2.6)

w — Oéj
Thus by induction for £ =1,...,t; — 1, we get

w

0 = 1) =20 | s dutu)

- /T v i) + [ =
= 2K /T e dw).

Since a; # 0 for j =1,...,n we have

16
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Together with (2.6) and (2.7) gives (2.2).
If ¢ty > 1, then by the assumption (2.4) we have

_ M) (o) — v _ [ _ [
0= F9an) = 24 | e du() = [ dut) = [ @ duto)
for k =1,...,ty — 1. Taking conjugation in later equation gives (2.3). O

Remark 2.2.2. Note that (2.2) and (2.3) impose a variety of constraints on the
probability measure p. For example, if ¢5 > 1, then the first {5 — 1 moments of u

are zero.

Lemma 2.2.3. Let p be a positive finite atomic measure on T, = {(X\;,m;)}7_; C
T xRsq, with f the function having Herglotz representation with this measure. Then
o = M~Yo fis a unimodular constant muliple of a Blaschke product with n zeros,
counting multiplicities, and ¢(0) € R.

Conversely, given a Blaschke product ¢ with n zeros {a;} counting multiplicities
such that ¢(0) € R, there is a positive finite atomic measure p on T such that
f(z) = M o p(z) has a Herglotz representation with this measure. Furthermore, u

is probability measure if and only if ¢(0) = 0.

Proof. We begin by introducing some notation. For z = (z1,...,2,) € C", define

So(z) =1 and

Se(x) = (=1F > my e, k=1,

1<i1 << <n

the k-th (signed) symmetric sum of the elements of x. Then

(z—a;) =) S(z)z"" and ] -mT52) =D S@F  (28)
j=1 k=0 j=1 k=0
where T = (Z1,...,Tn). We also define S;*(z) = 1 and
S ) = Sp(@1, -y Ti1, —Tiy Tig1s - - T, k=1,...,n.

Then S, *(x) = —S,(x). For A C T", it is straightforward (see the remark at end of
the proof) that

Su(\) = Su(N) Sk () and  SN) = —STIA)STL (V). (2.9)

17
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Let

1= [ 25 gy = - Yom Y,

=1

a holomorphic function from D to H. Set m = > m,. Then

o imilz ) [z = ) F I (2 = A)
fo=1= L2

_ Dheol= iy maS (A F Sk(V)]
Hj(z = Aj) ’

and

fz) -1

flz)+1 |

Yo [ S () + Se()] 2
Yo [y maSgt(A) = Sk(A)] 2nk

is a holomorphic map of the disk to itself.

p(z) == (M1 o f)(2) =

Since the coefficient of 2z in the numerator of ¢ is 1 +m > 0, the numerator is

a polynomial of degree n with complex roots ay, ..., a,. Express the numerator as
(1+m)I[;(z — ;). Then

(1—|—m Sk Zmz +Sk()\)

and so the denominator can be expressed as

3 S mS ) =S| = =S Y S miSi ) + S (0| 2

k=0 Li=1 k=0 Li=1

Hence

18
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Since f(0) = "1, m; € R, the same is obviously true for ¢.
Conversely, assume that ¢ = ¢B, where ¢ is a unimodular constant and B is a

Blaschke product with n zeros oy, . . ., ay,, counting multiplicity and ¢(0) € R. Then

_l+p(z) IO —a52) + eIz — o)
1—o(z)  TLQA—a52) —cI;(z — o)

(2.10)

f(2)

is a holomorphic map from D to H. In the denominator, the leading coefficient is
C = S,(a) — ¢ = ¢(eSp(a) — 1), which is non-zero since |¢S,(a)] < 1. Thus the
denominator has n zeros in C\D, which we write as Aj,...,\,, and we write the
denominator as C'[[;(z — Aj).

If the numerator and denominator have a common root w, then || j(w—a;) =0,
implying A\, = a; € D for some k and j, which is a contradiction. The constant
coefficient of the denominator equals (1 —¢S,,(«))/C = —¢, which has absolute value
1. Hence each \; € T.

Suppose that the denominator of f has a repeated root at some \; € T. Then

the logarithmic derivative of ¢,

P2~ -l 20()
A5 T w1

is zero at A;. On the other hand, since \; € T,

(M) 3 1 — Ja”
= — T~ 1a 2.]_1
() & i — au|? =0 ( )

giving a contradiction. Hence we conclude that \; are all distinct for e =1,...,n.
In the numerator of f, the leading coefficient is S, («) 4+ ¢ = ¢(¢S, () + 1), which
is non-zero. Thus the numerator of f has degree equal to n. Consequently, since

the denominator of f has n simple roots, f has a partial fraction decomposition

flz)=— (m—l—kaZQ_)\];k). (2.12)

It remains to verify that each my > 0 and m = ), my,. This will then imply

Z—{—)\Z’
f(z) :_Zmiz——)\i’

=1

19
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and so f has a Herglotz representation with positive finite atomic measure p =
{(Aj,m;)}5_; on T as claimed. Now, by (2.12)

lim (2 — Aj) f(2) = —2m; ;. (2.13)

Z—>>\j

Also since p(Aj) =1forall j=1,...,n,

lim (== A)f(2) = Jim (2= \) 725

Hence by 2.12 and 2.13 we see that

Aje(\)
' (A5)

The assumptions that ¢ € T and ¢(0) = ¢S,(a) € R, along with (2.10) and
(2.12), imply that

m; = > 0.

_ S, () + ¢ 14+ ¢S, (a -
_mzzlggof(z) = SnEa;—c :_1—cSnEa; =—/(0) Zm—Q;mk.

Hence m = >}, my. We see from this that if a; = 0 for some j, then m = 1,
and so p is a probability measure, and conversely, if i is probability measure, then

cSp(a) = 0, and so a; = 0 for some j. This completes the proof. O

Remark 2.2.4. Just for completeness we give a proof for the following: For A =
(A, .oy Ap) €T,
Sk(A) = Sn(N)Su—k(X)  and  S(A) = =S, (NS 1L ().

n

Proof. The first identity is clear. So we only need to prove the second identity.

20
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Without loss of generality we may assume ¢ = 1. Observe the following identity

ST = Sk(=An Az An) = = A (=1 Skt (Aas o An) + Se(Aas - An)

(2.14)
= MSho1 Aoy An) + Selhas o An),

for1<k<n-—1.
Next using the first identity for the points Ag, ..., A, in (2.14) gives

St (V)

M=) g\, Snflf(kfl)(xm )
+ (D" A XS k(g A)
(_1)n71)\1)\2 e )\n (Snfk(XQ, Ce ,Xn> + Xlsn,l,k(x% Ce ,Xn)) .

Finally, applying the identity (2.14) for the points A,..., A, in the last expression
yields

2.3 The Agler-Herglotz representation

In this section we give a concrete description of the set of test functions for the
algebra HZ’, and so for Hp.

We recall some definitions from the theory of the convex analysis.

Definition 2.3.1. A subset C of a real vector space X is said to be convex if, given
any collection of vectors uq, ..., u, in C and a collection of nonnegative real numbers

Ciy...,¢. With ¢; + -+ 4+ ¢, = 1, then one has that the convex linear combination
ZZ:I CLUL € C.

Definition 2.3.2. If X is a real vector space and W C X, we say W is a wedge
if a4+b € W and ta € W whenever a,b € W and t > 0. A wedge VW is a cone if
W N =W = {0}, where 0 is the zero vector of X.

Note that by definition a wedge is a convex set.

Definition 2.3.3. A point x € W called an extreme point for W if z = (1 —
t)xy + txg, with 21,29 € W and 0 <t < 1, then z1 = z = x.
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In practice the following result is more useful than the definition of extreme

points of the convex sets.

Lemma 2.3.4 ([15, Lemma 1.1]). Let C be convex set in a real vector space X.
The point x € C is an extreme point of the convex set C if and only if the follwoing

condition holds: whenever y € X 1is such that x +y € C, then y = 0.

Definition 2.3.5. A nonzero vector z in VV is an extreme ray in W if © = x1 + x»,
with xq, 29 € W, then xy = tx and x5 = sz for some t, s > 0. Extreme rays are also

called extreme directions in [5].

Definition 2.3.6. A X topological space X is called locally compact, if every
point of X has a compact neighborhood.

Let X be a compact Hausdorff space. We let denote Mg(X) the space of finite
regular Borel measures on X and Cg(X) denote the space of real valued continu-
ous functions on X with the norm topology. Let My (X) be the space of positive
measures in Mg(X).

Define the following continuous (in fact holomorphic) functions on T given by

Lij(w) :=w’ for j =1,...,to — 1 whenever ¢, > 1
and (2.15)
1
Li g (w) = o) fori=1,...,nk=1,.... t.

Clearly, ReL;,ImL;, ReL;,,ImL;;, € Cgr(T). This will give us in total 2N — 2
continuous real valued functions on T, and for notational complexity we write them

{hj}iff > € Cg(T). Then taking the real and imaginary parts in the constraints in

(2.2) and (2.3) we have
/Thj(w)d,u(w) =0forj=1,...,2N — 2, (2.16)
for the measures in Lemma 2.2.1. Also we define the sets
Mg o(T) := {p € M (T) : p(T) = 1 and (2.16) holds for p} (2.17)

and
M (T) = {w e M (T): (2.16) holds for p}. (2.18)
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In other words, the set M;R('JI‘) is the set of positive measures satisfying the con-
straints in (2.16). This is a weak-* closed, convex, locally compact set in the Banach
space of finite Borel measures Mz (T) = \/ M;R(T), and additionally is a cone since
it is closed under sums, positive scalar multiples, and M;R(T) N —M;R(T) = {0}.

The set M ER(T) is weak*-closed, convex and forms a base for MER(T), because
any i € M;R(T) is of the form ¢4 for some p € MER(T) and ¢ > 0. Hence M};R(T)
is in the closed unit ball of M (T), the dual space of normed vector space C (T).
So by the Banach-Alaoglu theorem M E’R(T) is compact. Thus by the Krein-Milman

Theorem [41], ML _(T) is the closed convex hull of ext <M E R(T)), which is the set

of extreme points of M} (T). Henceforth, we fix the notation

éB = ext <M}§’R(T)> :

It is an elementary observation that pu € M E’R(T) is an extreme point if and only if
{tp : t € RT} is an extreme ray in ME’R(T) (see [5, Lemma 1.3.4]).

Note that the local compactness of MER(T) is equivalent to compactness of
MER(T) (see [31, 13.C , Lemma 1] and [41, Proposition 11.6]).

We need the following general result from [15], we just state here scalar-valued
case. To state this theorem we need to introduce some notations from this paper.
Let X be a compact Hausdorff space. Given a collection ¢ = {¢1,...,d,.} of m real

valued continuous functions on X, we define a subset of My (X) given by
C(X,1,¢) = {n € M{(X): u(X) =1, and

2.19
(o) ::/Xqﬁr(x)d,u(x) :()forr:l,...,m}. (2.19)

The space C(X, 1, ¢) is a convex subset of the real Banach space Mg(X) which
is compact in the weak-* topology on Mg (X) induced by its duality with respect to
the real Banach space Cr(X). Note that the space C(X, 1, ¢) can be empty, see for
example [15, page 538]. But in our case it is always case that C(X,1,¢) # 0.

Theorem 2.3.7 ([15, Theorem 2.2]). Let X be a compact Hausdorff space. Suppose
that p € Mg (X) is an extreme point of the set C(X,1,¢). Then there is a natural
number k with 1 < k < (m + 1), k distinct points x1,...,xx € X, and k positive
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real numbers mq, ..., my such that
k k
Zmi: 1, qur(xi)mi: 1 forr=1,...m (2.20)
i=1 i=1

and v 1S a positive finite atomic measure,i.e.

k

M= Z miéa:ia

i=1
where 0, 1s the scalar-valued measure equal to the unit point-mass at the point x;.
Next we turn to concretely characterizing elements of © 5 = ext(M} (T)).

Theorem 2.3.8. Let N be the number of zeros of B, counting multiplicities. Then
the extreme points of M ER(T) are probability measures on T supported at ¢ points
m T, where N < ¢ < 2N — 1.

Proof. Let p be an extreme point of Mé’R(T). If we choose X =T, ¢ = {hj}?gl_z in
(2.19), then we have C(T,1,¢) = M tl?,R<T)’ which is non-empty. Then by Theorem
2.3.7 we see that the support of u is at most 2N — 1 and this measure is a finite
atomic measure.

Now consider the lower bound. Then first part of this proof implies that p is a

finite atomic measure on T. Write

¢
n = Z mié)\ia
i=1

where for all 7,m; > 0 and d,, is the point measure on T supported at ;. Consider

r(e) =3 Ai}’

=1

the function

with its derivatives ,

m;
i=1 "

We conclude from equations (2.2) and (2.3) that r has roots at o of at least multi-

plicity o — 1 and at «a; of at least multiplicity ¢;,7 = 1,...,n. Hence r has at least
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(>°%oti) —1 =N —1roots. The same is then true for the polynomial

pla) =r(x) - [Jv =) =D TN = 2)m;,

i=1 j=1 j#i

which has degree ¢ — 1. We conclude that ¢ > N. m
For 0 € é\é, define

hy(z) = /T y - " db(w), (2.21)

an analytic function on D with positive real part and value 1 when z = 0. We then

have, as in [28, Theorem 6], the so called Agler- Herglotz representation.

Theorem 2.3.9 (Agler-Herglotz representation). Let f be an analytic function on
D with positive real part. Suppose further that

flajy=1, j=0,1,....,n and f®(a;)=0, j=0,1,....n,1<k<t;—1.
(2.22)

Then there exists a probability measure v on Op such that
f(z) = [ hy(z) dv(6). (2.23)
©g

Proof. Since Re f > 0 and f(ag) = f(0) = 1, by the Herglotz representation theorem

there is a unique probability measure p such that

1) = [ 22 du).

w—z

By assumption f has property (2.22), and hence by Lemma 2.2.1, 1 has the proper-
ties (2.2) and (2.3). Thus p € MéR(T). On the other hand, by the Choquet-Bishop-
de Leeuw theorem [41], given any u € M E,R(T), there is a probability measure v,
on 6 5 such that

= [ 0 dv,(0).

O3
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Then we have

o) = [
- [ / dé<w>>dvu<é>]
=/@B[/w” )| a0
"
This completes the proof. B 0

We now translate our results on measures to statements about functions in the
unit ball of HZ. Using a Cayley transform from the right half plane to the unit
disk, for each u € MEE(T), define a map

hy—1
h,+1

Yy, = (2.24)

We have that

1= (2)¢u(w)”
L h(E) = Lh(w) -
hu(2) + 1 hy,(w)* +
hu(z)hu( )"+ hu(z) + hu(w)* +1-— hu(z)hu(w)* + hu(Z) + hu(w)* —1 (2:25)
(

hyu(2) + 1) (hu(w)* +1)

*

*

and so in particular, v, is a map of the unit disk to itself.

If 6 is an extremal measure in M;’I}&(T), then by Theorem 2.3.8, it is a finitely
supported atomic probability measure on T. It then follows from Lemma 2.2.3 that
in this case there is a corresponding finite Blaschke product v, = CéBRé, where
¢ is a unimodular constant and R, is a Blaschke product with number of zeros
between 0 and N — 1. We write @B for the collection {1 : 0 c ég}. The support
of the measure  corresponds to the set wé’l(l) (see the proof of Lemma 2.2.3).
Ultimately, we will use a subset of ¥z as test functions. It is apparent from the

realization theorem (Theorem 1.3.6) and equation (2.27), that we can replace any
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test function by a unimodular constant times the test function. So for convenience,
we identify 1;(2) with 1y(1)1y(2). This amounts then to having the point 1 as a
support point for the measure 0. Let O be the subset of measures in éB having 1
as a support point, and write ¥ for the collection set {1y : 6 € ©3}. Thus, clearly
LPB - l/p\é.

Next theorem shows that ¥y is a set of test functions for H2’.
Theorem 2.3.10. The algebras H*(Ky,) and HF are isometrically isomorphic.

Proof. Tt is enough to show that the unit ball H*(Ky ) of the algebra H>(Ky_) is
same as the unit ball H iOB of the algebra H>’. Since any test function maps the open
unit disk to itself, the Szegd kernel k; is an admissible kernel for H>(Ky ). Hence for
any function ¢ in the unit ball H*(Ky ), we conclude that ((1—p(z)p(y)*)ks(z,y))
is positive kernel, and so ¢ € H; °°~

For the reverse containment, 1f ¢ € H>; with ¢(0) =0, and f = M o, then f
is a function on the disk with positive real part and (2.22) holds, where M (z) = 122,

Also,
SO =

=
7]

and so

fz) + f(w)
(f(z) + D(f(w)+ 1)
Applying the Agler-Herglotz representation (Theorem 2.3.9), there is a probability
measure v on éé such that (2.23) holds. Thus, by (2.25) we have

1 - p(z)p(w)* =

2 A
. * hs R *
L= R0 = Ty ) Jy, () + o) v -
= [ Hio) 1= )yt Hiw)” ),
where Hy(2) = 77 +1)(21— e i 111}} 2@ " Recall that we identify the test function

Vg = (1)1, with 1) in @B. Thus 14(1) = 1, and as noted above the corresponding
measure ¢ is supported at 1. Thus 6 € O3 and ¢y € ¥5. By (2.26) we have

— / Hy(2) (1~ 0l05(z) (Fa0a(w) ) Hylow)* dv(6)
(2.27)
/ Hy(=) (1 = o =)n(w)°) Ho(w)" du(6),
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where Hy(z) = 7 1t follows that

2
(f(z)+D(A—¢g(2)

1= @(2)p(w)" = I'(z,w)(1 = E(z)E(w)"),

with I : D x D — Cy(¥3)* the positive kernel given by
P(ew)g = [ Hol)g(w)Ha(w)” dv(6),
]

where g € Cy(¥p).
If ¢ € H; with ¢(0) = ¢ # 0, then we consider the function

Thus we have

1 — po(2)po(w)*
_p(z) —c p(w) —¢
1 —2p(z) 1 = cp(w)*
_ 1=2p(2) — cp(w)* + c@p(2)p(w)* — p(2)p(w)" + cp(w)” +p(z) —ce (2:28)
(1 —=2p(2))(1 = cp(w)*)
(1 —co)(1 = p(z)p(w)")
(1 —=2p(2))(1 — ep(w)*)’

=1

On the other hand, since ¢y(0) = 0 as in previous case we get the following

1= o(2)po(w)” = /@ Hy(2) (1 = vg(2)tbe(w)") Hy(w)" duo(0),

0(5) — 2
where Hy(2) = tremma—e
measure associated to fy in the Agler-Herglotz representation. Then by (2.28) we

) with fo = Moy, and vy is chosen as the probability

get
L= p(plw) = [ Gule) (L= vol=)un(w)) Golw)" dnf), (229

B
where Gy(z) = (=2eEHEE)  Hence we get the following realization

1—cc

L= p(2)p(w)" = To(z,w) (1 = E(z) E(w)"),
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with I : D x D — Cy(¥p)* the positive kernel given by

Iz w)g = [ Gol2)g(w)Go(w)” d(o)
©p
where g € C,(¥5). Finally, by the realization theorem (Theorem 1.3.6) we conclude
that ¢ € HY*(Ky,). O

Combining Theorem 2.3.8 with Lemma 2.2.3 and Theorem 2.3.10, we have shown
the following.

Corollary 2.3.11. Let O be the set of extreme measures in Mé,R(T) with 1 as
a support point. Then Op consists of all such probability measures supported at
N < k < 2N —1 points, where N is the number of zeros of B, counting multiplicity.
Furthermore, the set Wy is a collection of test functions for HZ', and consists of
functions of the form 1y = cBRy, where Ry is a Blaschke product with number of
zeros between 0 and N — 1, and ¢ =[] —% ¢ T,

1—a;

Let ¥p = {Q/NJ 0 My, 1 € LPB}- The next result relates the algebra H*(Ky,) to

the constrained algebra Hp7 .

Corollary 2.3.12. The two algebras H*(Ky,) and HY are isometrically isomor-

phic.
Proof. Applying Lemma 2.1.1 to Theorem 2.3.10 gives the result. O

Finally we close this section with the following natural question: Is the set of
test functions that we found minimal, in the sense that no proper closed subset of
Up is a set of test functions for HF? In other words, if we take a closed subset
of ¥p, does Theorem 2.3.10 still hold, or more generally, is the realization theorem

true? The next section is devoted to dealing with this question.

2.4 Minimality of the set of test functions

In this section we prove that there is no closed subset of ¥z which is a set of test
functions for HZ*. At this point Corollary 2.3.11 gives a fairly concrete description of
the set of test functions. However, it is more useful for what follows to describe them
in terms of the placement of the zeros rather than the support points for the measure

in the Herglotz representation. Obviously, in writing any test function as a Blaschke
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product, changing the order of the zeros does not change the function. There is also
the small problem that the number of zeros of a test function is between N and
2N — 1, where N is the number of zeros of B, so not all test functions necessarily
have the same number of zeros. For this reason, we introduce the following order
on elements of the one point compactification of the disk, (D, for D U 0o).

We order the points of Dy, as follows: ¢; < (5 in Dy if either |(3] < [(a] or
|C1] = |¢2] and arg(; < arg(y. The point oo is the maximal element of D, with
respect to this order, and 0 the minimal element.

We can use this order to describe the set of test functions.

Let Z(B) = {c/,...,a&/n_1} be the (ordered) zeros of B, so B = ma, - - - Mary_,,
M, the Mébius map with zero o';. If as an abuse of notation we let m(z) = 1,
then any Blaschke product B, = BR with a number of zeros between N and 2N — 1

can be written as
B.(z) = H M,
j=0

where Z(B,) = {0 = ap <X -+ < agn_2a}, the ordered zeros of B, in D, contains

the elements of Z(B).
Define the set

W= = {¢B, : Z(B,) an ordered 2N — 1 tuple , Z(B,) 2 Z(B) and ¢ = B,(1)}.
Then obviously, W5 C ¥=. Conversely, let ¢ € ¥=. Since Z(B,) 2 Z(B), we have
©(0) = 0. By Lemma 2.2.3 there is a unique probability finite atomic measure p,,
supported at N < k < 2N — 1 points on T, write it p, = Zle m;0y,. Again the
constraint Z(B,) 2 Z(B) implies that the measure [ty has to satisfy the constraint
(2.16) (or the constraints (2.2) and (2.3)). Hence p, € Mé’R(T). On the other
hand, we have that ¢(1) = B,(1)Ba(1) = 1. Thus support of y, contains the point
Lie 1 € {A1,..., \}. Also the proof of Lemma 2.2.3 implies that m; > 0 for
all © = 1,..., k. Hence we see that the measure pu, satisfies the condition of [15,
Theorem 2.3]. This implies that pu, € ©5. So ¢ € ¥5. Hence we have the opposite
containment. In summary, we have that U= = ¥3.

With this identification, we view the measure in (2.27) as being on the set ¥z in

place of the set of extremal measures @, so that
1= p(2)p(w)" = /W Hy(2)(1 = ¢ (2)¢(w)") Hy(w)™ dv (). (2.30)
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To prove the minimality we need some results from [28].

Lemma 2.4.1 ([28]). Let u be a measure on a space C', H a separable Hilbert space,
and f € B(H) ® L'(pu) with f(x) > 0 p-almost everywhere. If M > [ f(x)du(x)
for some M € B(H), then for all § > 0 there exists some subset Cs C C and a
constant cs > 0, such that u(C\Cs) < § and M > csf(x) for all z € Cs.

We also need the notion of differentiating kernels from [28]. Let k(z,y) = 1_1,

Ty
be the Szegd kernel on H?*(ID), then its differential is defined by

k(z™ y) = n!(l T = gﬁnk(x’y)‘ (2.31)

For brevity, we write k:g(f)() for the function k(z®,.). If M; is the multiplication
operator of f on H*, then the differentiating kernels satisfy an analog of the repro-

ducing property

M0 =3 () @), (2:32)

For more details the reader is addressed to [28].

For k the Szegd kernel and for all function f in the unit ball of HZ*, we define

the positive kernel
Py(z,w) = (L= f(2)f(w)")k(z, w).

The following is a generalization of some part of the proof of [28, Theorem 9].

Lemma 2.4.2. Let Cz be some proper closed subset of Wz, which is a set of test
functions for HZ’. Then the following hold:

i) If Y € Uy, then the kernel @ (z,w) has rank at most 2N — 1.

i) Ifvg € W5\Cg, then there exists a measure u on Cg and functions hy, € L*(1)
fort=1,...2N such that

1= o(2)¢o(w)” = /C D (@)L= () (w) Vhye(w) du(¥).  (2.33)

Moreover the following inequality holds,

Puofec) = [ 2ol ()" dul) (2.31)
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for all hyo(z) € L*(p), £=1,...,2N.

Proof.

i) First note that any test function ¢ € ¥ has at most 2N — 1 zeros. Suppose that
ZW)={B1,-,B1,--Bms -, B} Then, clearly 37, d; < 2N — 1. By Theorem

dy dm,
A.2.1 the multiplication operator M, is an isometry on H?(ID), since 1 is a Blaschke

product. Furthermore, by identity (2.32) we can see that Py, 1= 1 — MMy, is the

projection onto

My, := ker M, = span{kg,, ... ,kgflfl), kg, ,kéi’"fl)}.

Since @y (z,w) = (P, kw, k=) and ker M = Py, H? (see [51, p.100]) we conclude
that @, has rank at most 2N — 1.

ii) Since Poy, is the projection from H? onto 9, we have
@1/,(2’, 'LU) = <Pgmwkw, kz> = <Pgmw/€w, Pimwkz>-

Hence we can think @,(z,w) as a holomorphic function in z and anti-holomorphic
function in w. If we think of the anti-holomorphic function as being in the dual of
H?, then

@, € H* ® (H*)* = B(H?).

More explicitly, @, defines an operator on H? as

Bof(z) = / Bz, w) f(w) dy(w),
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where 7 is the arc-length measure on T. Let us calculate the following inner product

@ity = | [5E0s0)fw) drw) o)
= | [ SE P P ) ) ) 2
= [ [0 Pk 90 P ) () ()
= ([ ) Pwbudrtw), [ o) Pk dr(2)

= / £ (w) Pon, Koy (), / 9(2) P, ks d7(2))an,
= (Ayf, Apg)
= (ALAf ),

where Ay : H? — 9, is given by

Aot = [ Fw) P bur ().
T
This gives the factorization

Dy (z,w) = A} (2) Ay (w). (2.35)

Let Ioy, be the embedding map of M, into H 2. We also consider the following inner
product

(Aofa) = ([ F0) Pk (). o,
= /T F(w){Pam,kw, g)om, dy(w)
_ /1r F(w){Pon, ku, Ton, g) dry(w)
_ / f () (k, Lo, g) dry(w)

- / £ ()T 9) (@) dy(w)
= (f, Im,9).
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From this calculations we conclude that
A:‘p = [{mw. (2.36)

Let F'={z,...,29n} be an arbitrary finite subset of ID. Then we consider the
classical Nevanlinna-Pick interpolation problem of finding a function ¢ in the closed
unit ball of H>°(D) such that ¢(z;) = ¥o(z;) fori =1,...,2N.

Since the operator @y, (z,w) has rank at most 2N — 1 the 2NV x 2N matrix

2N

([1 — ¢0(Zi)wzj'>i| k(2;, Zz‘)). .

i,j=1

must be singular, so the problem has a unique solution, namely ¢ = .
Recall the assumption that Cj is a set of test functions for HZ. Hence by
Theorem 1.3.7, there is a positive kernel I' : F' x F' — C,(Cp)* such that

1= vo(zi)t0(z;) = I'(2i, 2j) (1 = E(2:) E(%)") , (2.37)

where 2;,2; € F'with 7,5 =1,...,2N.
Moreover, by Theorem 1.3.6, the equation (2.37) must holds for all over D?. That
is,

1 —9o(2)tho(w) = I'(z,w) (1 — E(z) E(w)"), (2.38)
for all (z,w) € D% We can rewrite this, in our case, by saying that there exists a

measure £ on Cg, and functions hy (z) € L*(u) (by Kolmogorov decomposition, see
[7, Theorem 2.62]), for £ =1,...,2N such that

1= wn(e)n(w) = | S bty (1~ wE0r) duw). (239)
C5 r=1
Multiplying this equation by k(z,w) gives
2N
Punlziw) = [ o)) di(),

CBEl

Since @, is positive kernel and a positive operator, when seen as an operator on H?,
as above we have that for all / =1,...,2N,
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Pun(210) 2 [ ool w)hw)’ duv).

B

This completes the proof. n

Remark 2.4.3. Let Cj be a proper closed subset of ¥5. Then there exists a function
Yo = ¢oB Hj\;l mg,; in Wz \ Cp such that 3; ¢ Z(B)and B # B, for 1 <i<j <
N — 1, where we write Z(B) for the zero set of B, including all the multiplicities
ie. Z(B)={0=Ps,...,Biy_,}. To see this, note that the set ¥z \ Cp is relatively
open, so we can perturb the zeros of ¢ small enough which are not roots of B, so
that without increasing the norm of ¢y. This is because of the following argument.
Let 1o = coB H;V:_ll mg, 4,. Then

N— N—
Y0 — Yol = |coBl - H H Bi+e;
=0 =0
N-2 N—-1k-1
= ‘B‘ ’ ‘(mﬁl - m51+€1) H mp; + Z Hmﬁz+éz mpg, — m5k+6k H Mg,
j=2 k=2 i=1 j=k+1
N-1

+ H Mg, +e; (mﬁN—l - m/BN—1+€N—1)

i=1
N—1 |k—1
< ‘B (‘(mﬂl m51+61 H mg; | + Z Hmﬁﬁ-el mﬁk mﬁiﬁ-ek H mg;
k=2 |i=1 Jj=k+1
N-1
+ H mg;+e; (mﬂNfl - m5N71+6N71) ) )
i=1
which tends to O when ¢; — 0,...,ey_; — 0. Additionally, to prove the minimality
of ¥5 we can assume also that 3; # oo for all j =1,...,00. Since 1)y € ¥z we must
have the ordering on the numbers fi,..., 8y_1, so we can assume without loss of

generality that 8 < --- < OBy_1. Hence if g = oo, then 5, = oo for all £ > k.
Consider the following closed subsets of ¥ given by

—{YeW;: =00} ={cB},W* ={ cWs: =00} for2<k <N —1.

Since all ¥* 1 < k < N —1 are closed, the finite union C := U{L’llwk UCj is a proper
closed subset in ¥5. Now if we prove that C is not a minimal set of test functions

for HZ, then this automatically implies that Cp is also not minimal.

35



Chapter 2. Test functions for constrained algebras

Theorem 2.4.4. The set ¥y is a minimal set of test functions for the algebra HZ .

Proof. The set W5 is norm closed in H*(D), and we endow it with the relative
topology. Suppose that some proper closed subset C'5 of ¥ is a set of test functions
2N -2 . )
i—o Mg, in this

set, where Z(B) = {0 = &,,,d;, ...,d;,_,} = {1 ...,ax} are the zeros of B. Since

for HZ. Then U;\Cp is relatively open, and there exists 1y = ¢o [|
U\Cp is relatively open, by Remark 2.4.3 we can assume without loss of generality
that no &; = oo and that any root which is not a root for B is distinct from the
roots of B and all such roots are distinct from each other.

Let ¢ = c[[}Y,° Mg, bein Cg, and Z(B) = {0 =ag,a, ...,ak,_,} be the zeros
of B. For any «y, in a which occurs only once, set ko, (2) = 1/(1 — @;z), the Szegd
kernel, where k., := 0. More generally, if a root other than oo is repeated, it is
understood that we use the kernels kY )(z) =1!2'/(1 — @z)"*! instead, where 7 runs
from 0 to one less than the multiplicity of the root, though we do not write this
explicitly to avoid notational complexity. We define k5, in an identical manner. By
assumption the inequality (2.34) holds, hence by Lemma 2.4.1 for any ¢ > 0, there
is a set Cs C C'z and a constant ¢s such that p(C5\Cs) < § and

Ayo(2,w) 2 Cshy o(2) Ay (2, w)hy o (w)
for all ¢ € Cs. Then from the factorization (2.35) we have
Ay (2)" Ay (w) = Cshy1(2) Ay (2)" Ay (w)ho,o(w)

for all ¢ € Cj. It follows that by Douglas’ lemma, the range of A, ¢(+) A}, is contained
in the range of Ay, . Hence by (2.36) there exists constants c;; such that

2N—2

hyka, = Y Cnjka,- (2.40)
=0

forn=0,...,2N — 2. Taking the limit for 6 — 0 we see that above equations hold
for p—almost all » € C5. In particular, taking n = 0 gives

2N—-2

hye = Z coj ka,

J=0
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and so plugging this back into (2.40), we have

2N -2 2N -2

kan Z Coj k‘aj = Z Cnj k&j- (2-41)
Jj=0 J=0

The kernels extend to meromorphic functions on the Riemann sphere, as then does

g g
We use (2.41) to eliminate some of the terms and to eventually solve for hy .
Consider 0 # a,, € Z(B). Then a,, = &; for some j. If this is a zero of order 1 for
1o, then the right side of (2.41) has a pole of at most order 1 at 1/é;, while the left
side has a pole of order 2 at this point if ¢y; # 0. Hence we must have cy; = 0.
More generally, suppose that 1 has a zero of order m > 1 at a,, € Z(B) (where
now «, may be 0). Let &; = -+ = Gj4m_1 be the m repeated zeros. If a,, # 0,
Kaij o

right side of (2.41) has a pole of order more than m at 1/a&;. On the left side, if

we choose k,, to have a pole of order m, and if any of ¢y; to co jim—1 are nonzero,

0 <7< m —1, have poles of order between 1 and m, and so no term on the

the corresponding term has a pole of order bigger than m. Hence each of these
coefficients must be zero.

Things are slightly different when a,, = 0. In this case, j = 0 and ks, 1 <1 <
m— 1, have poles of order between 1 and m—1 at oo (we take kg, = 1). So reasoning
as before, no term on the right of (2.41) has a pole of order bigger than m — 1 at oo,
while if we choose k,, to have a pole of order m — 1 there, the left side has a pole of
order at least m at oo if any of ¢y to cp,—1 are nonzero. So all of these coefficients
must also be zero.

Combining these observations, we conclude that with the possible exception of

coo, all coefficients ¢g ; corresponding to &; € Z(B) are zero. Hence we have

h%g = Cgo + Z Cojk&j =T H kdj-

a;€Z(1o)\Z(B) &;€Z(1o)\Z(B)

Recall that we were able to choose the elements of Z(1)\Z(B) so that they are

distinct and none are repeats of elements of Z(B). Consequently,

r(z) = coo H (1—a,2) + Z Coj H (1 — anz)

8, €2(0)\Z(B) G EZWo\Z(B)  an€Z(Wo)\Z(B),n#j

37



Chapter 2. Test functions for constrained algebras

is a polynomial of degree at most N — 1. So (2.41) becomes

2N—-2

rha, [ kay = D cojka, (2.42)
j=0

a;eZ(¥o)\Z(B)

Now we turn to a, € Z(¢)\Z(B), where we write Z(1) for the zero set of 1),
but including all the multiplicities. Let m’ be the multiplicity of a, as a root of B
(which may be 0) and m the multiplicity of «,, as a root of ). The right side of
(2.42) has a pole of order m’ at 1/az,, so r must have a zero of order m —m’ at 1/a,.
Running over all a,, € Z(1)\Z(B), we conclude that

I, c2won2(8) Fay

hoe = gu e : (2.43)

[lo,ezwnz@) Fan

where, since the poles of Hanez(w)\z(é) k., are roots of r,

Gy =T H ko,

an€Z(Y)\Z(B)

is a polynomial of degree at most 2N — 1 — deg, where ry is the cardinality of

Z(W)\Z(B).
Substitute the formula for Ay, into (2.33) and multiply by J] czyonz5) (1 —
a;z)(1 — ajw)* we get
N-1 N-1

—aw)" = B(x)B(w)" [[ (2 = @)(w — )’

=1 =1

/ Zgw 2) gup,e(w (H(l—@z)(l—@w)* (2.44)

Cs =1 =1

~B(2)B(w)" ] [(z = o) (w ~ %,i)*) dv (1)),

i=1

where oy € Z(¢) \ Z(B) and ay; € Z(1) \ Z(B). We can expand this more

38



Chapter 2. Test functions for constrained algebras

precisely,

S [T S @)5,@) - BE)Bw) N, (6)5, (@)

N min{m,N—1—ry} min{n, N—1—-ry}

2 N-1
/C Z Z 2w Z Z 91#,@7892,6,155771—5(O‘_dJ)Sn—t(O‘_?ﬁ)*
B (=

1 m,n=0 s=max{0,m—ry} t=max{0,n—ry}
min{N—-1-m,N—1—ry} min{N—-1-n,N—1—ry}

B()B()*Nlmlen Z Z

s=max{0,N—1-m—ry} t=max{0,N—1—n—ry}

giﬁ»E,Sg;,Z,tST@z;*NJrlerJrs(O‘w)srwa+1+n+t(aw)*) dv(i).
(2.45)

Here we use the symmetric sum notation from the proof of Lemma 2.2.3 and as a
shorthand notation, write & for Z(1)\Z(B) and ay, for Z(1)\Z(B). Observe that
the coefficients of 2z™@w" and B(z)B(w)*zN~'="wN 1" are complex conjugates of
each other, and so in particular are equal when m = n.

For n,m =0,..., N — 1, define vectors in L*(v) @ C*V by

min{m,N—ry—1}

Urln = Z Gt,5Sm—s(0) |

s=max{0,m—ry}

. (2.46)
min{N—-1-n,N—1-ry}
v = > G0t Sry—N+14n+t(y)
t=max{0,N—1-n—ry}
Hence (2.45) becomes
N—1 o
3 [zmm"sm(a)sn(a)* - B(z)B(w)*zN_l_mwN_l_”Sm(d)Sn(&)*]
m,n=0
N o (2.47)
— (zmw” <v,1n,v711> — B(2)B(w)* 2NN ”<vm, v2 )
m,n=0
Looking at the coefficients of z™w™, z"w" and z™w" in (2.47), we get
2 2 —= =
ol Nlvnll” = 18m (@) *1Sn(@)** = [Sim(a) = [(op )| (2.48)

It then follows from the Cauchy-Schwarz inequality that the vectors v} and v} are
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collinear. Identical reasoning shows that v2, and v? are collinear as well.

Looking at the terms 2°%° and B(z)B(w)*zN '@V =" in (2.47), we see that the
vectors vy = (gy,e0) and v§ = (gyr,n—1-r,) both have norm equal to [Sy(&)| = 1, so
are non-zero. Furthermore, it follows from (2.47) that (v}, v}) = (v3,v2) = S,(a),

and so
vl =S, (@)vy and 02 =S, (a&)v3, n=1,...,N -1 (2.49)

n n

This implies that v-a.e. ¢ € Cj,

min{n,N—ry,—1}

Z 9y 0.55n—s(@y) = Sn(@)gyeo and
s=max{0,n—ry }
min{N—-1-n,N—1—-ry}

Z 9,045y —N+14n+(0) = Sn (&) gy, N-1-r,
t=max{0,N—1—n—ry}

(2.50)

When ry = N — 1, gye = gy00 = gype.N-1-r, 15 constant. From the first equation
of (2.50) we have gy 1059, (y) = Sn(&)gy.eo- Thus by considering the coefficients of

2w in (2.45), we see that

N—-1
2> Su(@)z"
n=0

N—-1
gocol®  JI (1 =a52) = lgvaol® Y Su(@)z" = |gu.c0
as€Z()\Z(B) n=0

=lgweol® ] (-a2).

a;eZ(vo)\Z(B)

Since Cj is a closed set not containing 1y, this gives a contradiction unless gy /0,
and hence gy is zero.

For ry < N —1, gy is a non-constant polynomial. Factor it as

N—l—’l‘w N—l—’l‘w

9p.e(2) = gyeo H (2 = Bi) = gyeo Z Ss(B)z°.

=1 s=0
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SO Gyo.s = Gupu09s(B) for s =0,...,N —1 —ry. Then (2.44) becomes

I[I a-@»0-dGuw -BEBw" ]I -da)w-a)y

a;€Z(1o)\Z(B) &;€Z(10)\Z(B)
N—l—rw
= [] -8)w-5) [I -0 —aw) (v, v)
=1 ay ;€Z(W)\Z(B)

—B(2)B(w)" [T (= awp)w—oyy) (v3. )
oy JEZ(Y)\Z(B)

Since (v, vy) =1, (v3,v3) = 1, the later equation becomes

[[ -@)0-qGu =BEBw" ] (-d)w-da)
& €Z(10)\Z(B) a;€Z(vo)\Z(B)
N—1-ry

= Il G-8)w-s) I[I -0 -arw)

ay,;€Z(Y)\Z(B)

—B(2)B(w)" [T  G-aw)w—oayy)
oy ;EZ(W)\Z(B)

~—

(2.51)
Considering the coefficients of 27 - w° in (2.51), we have that
N—l—r/,/)
Sy, @) I =80 [ G-a@mo= J[ @-d2).
i=1 ay  €Z(W\Z(B) &;€Z(vo)\Z(B)

and so the union of 37 := (1/5;,...,1/By_1-r,) and Z(1)\Z(B) equals Z(1)\ Z(B).
In particular, 1/5; € D for all 4.

In a similar manner, but now using the coefficients of 2" B(z)B(w)* in (2.51), we
find that

N—1-ry
Svar,B) I G=8) I (- (—a;)
i=1 ay  €Z(W\Z(B) ay ;€Z(Y)\Z(B)
= (2 = &) (—ay).
&;€Z(vo)\Z(B)
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Hence the union of 8 = (Bi,...,Byv-1-r,) and Z(P)\Z(B) equals Z()\Z(B),
implying that 3; € D for all <. Thus we again have a contradiction unless gy, = 0.

We conclude therefore that g, = 0 v-a.e. This then implies that

[T G-a)=0

&;€Z(40)\Z(B)

which since Z(¢9)\Z(B) # 0, is an absurdity. We conclude that C5 cannot have
been a set of test functions for the algebra H>’, and so it follows that ¥ is a minimal

set of test functions. O

As a consequence of Theorem 2.4.4 and Lemma 2.1.1 we have the following

general result:
Theorem 2.4.5. The set ¥p is a minimal set of test functions for the algebra HF .

Remark 2.4.6. At least in some simple cases, it is possible to describe the geometry
of the set of test functions. First, if deg B = 2, then the minimal set of test functions

is given by

!PB:{B(z)Z__C :(eﬂ)w}.

1—-(=z

Then it is clear that ¥g is homeomorphic to the Riemann sphere. This covers the

s

Figure 2.1: Y5 when N =2

special case in [28].

Next we consider when B(z) is a Blaschke product degree 3, so

z2—C z—

Wy = {B(z) S8 () ¢) € Do x D with G < 42} e
1—Gzl— G2

It is interesting to note that the set ¥p is homeormorphic to a closed ball in R3

with a smaller open ball tangent to the boundary removed from the interior. To see

this, we have chosen the arguments to lie in the interval (0, 27]. By rotating, we can

always assume that one of the points (¢; or (») has argument 27. For this reason,
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Chapter 2. Test functions for constrained algebras

we assume that (5 is either co or in the interval [0,1). With (; < (3 in our order for
(2 > 0, the set of (; < (5 is a closed disk of radius |(3|. The resulting set of points
(C1, (o) with ¢, in the interval [0,1) is thus homeomorphic to a solid truncated cone
which contains the boundary along the side of the cone, but not the boundary at
the top. To the top we attach the points of the form ((;,00), when (; in the open
unit disk. The resulting object then looks like a closed truncated cone, except that
the rim of the cone is not included. To finish things off, the rim is identified with
the point (00, 00), and then the parametrizing set is closed. It is homeomorphic to
a closed ball in R? with a smaller open ball tangent to the boundary removed from

the interior.

Figure 2.2: ¥p when N =3
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Rational dilation on distinguished

varieties

3.1 Rational dilation on the distinguished vari-

eties associated to /3 and &)

Let ID denote the open unit disk in the complex plane and its closure. The disk
algebra, A(ID), consists of the functions that are analytic on D and continuous on D
its closure. One should note that by the maximum modulus principle the supremum
of such a function over D is attained on T, the boundary of ID. Thus, we may regard
A(D) as a closed subalgebra of C(T), the space of continuous function on T with
the supremum norm.

The goal of this section is to study rational dilation problem on the distinguished
varieties associated to @7 (see (3.1)) and 75, where &7 is the subalgebra of o7,
generated by B(z), zB(z).

For N =ty +---+1t, > 2, let

be a Blaschke products at the distinct points ay, ..., a, in the open unit disk I and
to,...,tn,n are non-negative integers.

Let us consider the following subalgebra of the disk algebra,
o =C+ B(2)A(D). (3.1)
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Chapter 3.  Rational dilation on distinguished varieties

We write «y, ..., ay for the zeros of B, including any repeated roots, i.e., the com-
Y ) Y ) Y
plex numbers ag,...,aq,...,qy,...,qa,. Hence
—— —_——
to tn
N
B(z) =] ——==

tL1-qajz
Jj=1

A function f € /g if and only if it satisfies the following two constraints
L. f(au) = f(ay) for 0 <i,j <m
2. f®)(a;) =0for k=1,...,t; — 1 whenever t; > 2.

Since A(D) ¢ H*(D), we show the above statement for H>*(D). Hence If f €
H>*(D) and f(«;) = f(ay) for distinct points a;, o; € D, then the function f — f(a;)
vanishes at both «; and a;. Hence, f— f(a;) = By, where B is the Blaschke product
with zeros at a;,; and g € H*®(D). On the other hand, if f)(a;) = 0 for some
ar € Dand £ =0,...,t — 1, then f = Bg, where g € H*(D) (if f(as) is not zero,
then we consider f — f(ax)) and B is the Blaschke product with zero at oy with
multiplicity at least ¢. Thus, this algebra is of the form C + BH>(D). (see also
[43].) In the following lemma we prove that the algebra o7 is finitely generated.

Lemma 3.1.1. Let N > 2. The functions fy := B(z), f1 := zB(2),..., fn-1 =
zN=1B(z) generate the algebra /.

Proof. Since the polynomials on D are dense in A(D), we can see that A(D) is the
closure of analytic polynomials in C(D). Let P(ID) be the set of all polynomials on
D. We claim that /g = C+ B(z)P(D). It is straightforward to see that </ DO
C+ B(z)P(D). For the other containment, let ¢ + B(z)f(z) be in «/g. Then f €
A(ID). Hence by Runge’s theorem there exists a sequence of polynomials {p;},>1 on
D such that p; — f, and so c+Bp; — c+Bf. It follows that c+Bf € C + B(z)P(D).
This completes the proof of the claim. Consequently, to complete the proof, for any
p € P(D) it is enough to show that

c+ Bp = Q(an fly R fN—1)7
where ¢ is a polynomial over DV. To prove this, observe that
fo=2fy for 1<k<N-—1, (3.2)
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and
fo=2""1f for 1<k<N-1. (3.3)

Since fo(z) = B(z) we see that
(I—arz) -(I—anz)fo=(z—a) (2 —an)

Using the identities (2.8) in the proof of Lemma 2.2.3, we have

ZSk(a)zkfg = ZSk(a)zN_k, (3.4)

k=0

where a = (ay,...,ay) € DV. Multiplying both sides of equation (3.4) by f, and
using (3.2) and (3.3) we get

8+ 8@ fia(2)f1(2) = fn(2) + Y Sela) fis(2), (3.5)
k=1 k=1
where fy(2) = 2V fo(2). From (3.5) we find that
Iv(2) = 2+ 37 (Sel@)fur(2) = S(@)fwv-a(2)) (3.6)

Based on the (3.6), since all f, ..., fy_1 are finite Blaschke products on D, we have

fn(2) = P (fo(2),. .., fn-a(2)), (3.7)

where P is a multi-variable polynomial over the polydisk DV. Thus inductively
we see that 2* f(2) can be expressed as a polynomial of fy(2),..., fy_1(2) for k >
N. Hence we conclude that fy(2)Q(z) € @7 can be expressed as a polynomial of
fo,---, fn_1, where Q(z) is arbitrary polynomial with deg@ > N. This completes
the proof.

0
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Chapter 3.  Rational dilation on distinguished varieties

3.2 The distinguished varieties associated to the
algebras & and &}

We begin this section with the following definition first given by Jim Agler and John
McCarthy [9] and later reformulated by Greg Knese [32]. Note that distinguished
varieties go back at least to Rudin’s paper [44].

Definition 3.2.1. A non-empty set V in D is a distinguished variety if there

exists a polynomial p in C[z,y| such that
V= {(x,y) cD’ cp(x,y) = O} (3.8)
and such that V exits the bidisk through the distinguished boundary:
VNnod)) =V NT (3.9)

Here V is the closure of V in D2.

The following theorem was proved in [9], with an easier proof given in [32].

Theorem 3.2.2. Let V be a distinguished variety, defined as the zero set of a
polynomial p € Clz,y| of minimal degree (n,m). Then, there is an (m+n) X (m+n)

unitary matriz U which we write in block form as

A B
U:( ):Cm@C"—):Cm@C”,
C D

such that
i) D has no unimodular eigenvalues

ii) p(z,y) is a constant multiple of

A—
et yl, zB |
C xD — 1,

and

iii) defining the following rational matriz-valued inner functions:
W(z) =A+xB (I, —zD)"' C,
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we have

V ={(z,y) €D : det(yl,, — ¥(z)) = 0}.
Conversely, if ¥ is a matriz-valued rational inner function on D, then

{(z,y) € D" : det(yl,, — ¥(z)) = 0}

15 a distinguished variety.

Note that the roles of x and y can be reversed in the above theorem.
Let us recall the functions fy(z) = B(z), fi(z) = 2B(z) generate the algebra .o72.
Observe the following identity,

(1—ap2) (1 —@2)"fo=(z— ) (2 — an)™. (3.10)
Multiplying both sides of the above equation by f&' we get

(fo=of1)™ -+ (fo = @nf1)" fo = (fr — arfo)® -+ (fr — anfo)'™ (3.11)

Since fy, f1 are Blaschke products, when we run z over D, the ranges of fy(2), f1(2)
are in . Thus we can make the substitution x = fy(z),y = fi(z) for (z,y) € D

Then we have

(& = @oy)" - (x = Wy)"x = (y — agz)® - (y — )™ (3.12)

. (fJ/_””a_—oyC;l)to (%)t (3.13)

So if |z| = 1 then |y| = |y/z|. Taking the modulus at both sides of equation (3.13)
we get that

From (3.12)

tn

y/x —ag
1 —apy/x
If |y| = |y/x| < 1, then the right hand side of (3.14) is strictly less than 1, giving a

(3.14)

to .
1:‘ ‘y/x_a

1 —auy/z

contradiction. Hence we conclude that |y| = 1.

Likewise if |y| = 1, then |z| = |z/y|. From (3.12) we have

(fin—O;;Oy)to . (%)tgﬁ 1. (3.15)
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If |x| = |z/y| < 1, then the modulus of the left hand side of (3.15) is strictly less
than 1, which is a contradiction. Hence |z| = 1.

Consequently, |z| = 1 if and only if |y| = 1. Therefore the variety
Ng = {(x,y) eD’: P(z,y) = O} (3.16)

is a distinguished variety associated to /3, where

P(z,y) = (. —aoy) - (z — @py) "z — (y — )™ -+ (y — )™

Note that, when n = 0,ty = 2 and oy = 0 we have the well known Neil parabola

Ji/zzz{(x,y)EEQ:x:)’—yZ:O}.

Recall that we are writing aq,...,ay for the zeros of B, including any repeated
roots, i.e., the complex numbers ag,...,ag,...,Q,,...,q,. Hence
—— ——

to tn

N N
J{g:{(x,y)GEZ:xHx—aky H —ozka:}

According to Theorem 3.2.2 we must have a determinantal representation .A43.

By the direct calculation we see that

1 —a; 0 ... 0 0 -y 0 ... 0
0 1 —a 5 0 @y —y :
NAp=det [z | . 0 -
0 1 —QN 0 0 my )
0 1 (DN ... ... 0  awy
0 —y O 0
0 oy —vy :
=det | Iy — : : S~ | det(S)
0 o 0 anoiy -y
=Dy L 0 any
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0 -y 0 0
0 oy —y
= det xINH — . ’ S_l ,
0 0 ayy -y
(—1)N 0 any
where
1 —a; O 0 0
0 1 — Q9
0 0 1
S =
0
0 0 1
and
I ar o Qp---Qny—g Q1---Qn_1 Q1--QN
1 Qg a0y Qg ...QN_1 Qo...QN
0 1 (0% Q30 az...QN
S =
aAN-1GaN
. . aN
0o ... ... 0 0 1

with det(S) = det(S™') = 1. Hence A5 = {(x,y) eD: det(zlyi1 —¥(y)) = 0},

where

0 -y 0 0
0 awy —y '
U(y) = L s
0 . 0 anwy -y
-y . 0 any

The geometric characterization of distinguished varieties was studied by Vegulla
in [49]. He proved that every bounded planar domain with finitely many piecewise

analytic boundary curves is a distinguished variety. Note that by Theorem 3.2.2
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every distinguished variety of closed bidsik D has a determinantal representation,
but for the higher dimensional distinguished variety of the polydisk D? not yet
known.

Now we turn to describe a variety associated to 7. Define z; = 2971 B(z),j =
1,...,N. Then (z1,...,zy) € D" and by Lemma 3.1.1 z,...,xy generates the
algebra @7g. Since

we have
> Su@)[z* ' B(2)][2B(2)|B(2) + B(2)°
= Su(@) [V *IB(2)][2B(2)] + Sn () B(2)?,

where o = Z(B). Hence the N-tuple (xy,...,zy) satisfies the multi-variable poly-

nomial Q(x1,...,zyx) = 0, where

N N—1
Qz1,...,2n) = Z Si(@)gpmomy + 23 — (Z Sk(@)Tn -T2 + SN(OCW%)
=1 k=0
N—1
= (Sy_k(@)x1 — Sp(a)) oy_pxo + 25 — Sy(a)z].
k=0

The locus described by Q(z1,...,zy) = 0 defines a variety in CV. Fix j €
{1,...,N}. Since |z;] = [227'B(z)| = 1 if and only if |z| = 1. Hence |z;| = 1
if and only if |zx| = 1 for all & = 1,..., N. It follows that this variety intersects
the boundary of D" in TV , which is the Shilov (or distinguished) boundary of D",

Thus, we conclude that the variety
—N
Vo ={(@,....an) €D Qar,....ax) = 0} (3.17)

is a distinguished variety in EN, which is associated to 7.

51



Chapter 3. Rational dilation on distinguished varieties

3.3 Rational dilation on the distinguished vari-
eties /3 and 7j

The following definitions are taken from Arveson [14].

Definition 3.3.1 ([14]). Let T'= (T3, ...,Ty) be a d-tuple of commuting bounded
operators on a Hilbert space. Then the joint spectrum of 7', denoted by o4 (7T), is
the set of all complex d-tuples A = (A1,...,\q) € C? such that p()\) belongs to the

spectrum of p(T") for every multivariate polynomial p € Clzy, ..., z4).

A more general treatment of this spectrum can be found in [21]. In that paper
the joint spectrum o4(7) is called algebraic joint spectrum (in fact, Curto defined
this joint spectrum for unital commutative Banach algebra), see in particular, [21,
Proposition 1.2] and [14, Corollary 2]. The algebraic spectrum o4 of d-tuples T of

commuting operators on a Hilbert space is defined as the complement of the set
{AeC?:3S =(Sy,...,S4) € B(H)* such that (T} —A\;)Sy+---+(Ty—Ng)Sq = I}.

There are other notions of the joint spectrum of d-tuples T' = (13, ...,T}), for
example the Taylor joint spectrum, see for example [7, 21, 46] and [47]). But in
the rest of this thesis, we will only work with the joint spectrum o4(7") of d-tuples

T = (T1,...,Ty) of commuting operators on a Hilbert space.

Definition 3.3.2. Given a set X C C%, a function f : X — C is holomorphic
on X if for every x € X, there is an open neighborhood of x to which f extends

analytically.

Formally, a function f : X — C is holomorphic on a set X in C? if, at every
point x in X , there is a non-empty ball B(x,¢) centered at  and an analytic
mapping of d variables defined on B(z,¢) that agrees with f on B(z,e) N X.

Given a compact subset X of C?, let R(X) denote the algebra of rational func-
tions with poles off of X with the norm

I7]lx = sup[r(z)].
zeX

Theorem 3.3.3 ([14]). Let T = (T1,...,Ty) be a d-tuple of commuting bounded
operators on a Hilbert space and let X = o4(T). Then
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i) The set X is non-empty;
it) oa(r(T)) =r(ca(T)) for every r € R(X).

Definition 3.3.4. A compact set X in C? is a spectral set for a d-tuple of com-
muting bounded operators T' = (17, ...,T,) defined on a Hilbert space H if o4(T)
lies in X and

lr(T)|| < ||I7||x for all r € R(X),

where the left hand norm is the usual operator norm (that is, a version of the

von Neumann inequality holds).

Definition 3.3.5. A commuting d-tuple of operators T on a Hilbert space H having
X as a spectral set, is said to have a rational dilation or normal 0X-dilation if
there exist a Hilbert space K, an isometry V : H — K and a d-tuple of commuting
normal operators A on K with 04(N) C 90X such that

r(T) = V*r(N)V for all r € R(X).

Here 0X denotes the Shilov or distinguished boundary of X (see appendix A.3).

The d-tuple N is referred to as a mormal boundary dilation.

Note that we can interpret the von Neumann inequality (or spectral set condi-
tion) as saying the 7" induces a contractive unital representation mr of R(.A%) on H
via

nr(r) = r(T). (3.18)

Theorem 3.3.6 (Arveson([14]). Let X be a compact subset of C? which is a spectral
set for a commuting d-tuple of operators T on a Hilbert space H. Then T has a
normal boundary dilation if and only if the representation m, of R(X) is completely

contractive.

Assume that a normal boundary dilation A of a commuting d-tuple T exists.
Then since M;N; = N;N; the Putnam-Fuglede theorem implies that N N; = NN
and /\/'j*/\/'Z = J\/;J\/'J* for 1 < 4,5 < d. Tt follows that p(N) commutes with p(N)*
for p € C[z, ..., 2z4]. Hence p(N) is a normal operator on K. Consequently, by the

spectral mapping theorem

[pPN)II < sup |p(A)| for p € Clz, . .., 24
AET 4 (N)
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The assumption implies also that o4(N) C dX. Hence
IPAI < sup [p(A)] = lipllox = lIpllx for p € Cles, ..., zd], (3.19)
S

where the last equality follows by the maximum modulus principle.

Definition 3.3.7 ([12, 21]). Let 2 be a compact subset of C¢. The polynomially

convex hull of {2 is

H(2):={zeC: |p(z)| <suplp(z)| for all p e Clz,..., 24}
Q

Note that the set H is compact and contains {2 by definition.

Definition 3.3.8 ([12, 21]). A compact subset {2 of C? is polynomially convex
if H() = 0.

Remark 3.3.9. Showing that a domain in C? is polynomially convex is not an easy

task. We list here some well known polynomially domains:

e A compact simply connected domain in the complex plane is polynomially
convex [12, Lemma 7.2], [29, Lemma 13|, 21, Example 1.5];

e The polydisk D’ is polynomially convex [21, Example 1.5], more generally any

compact and convex subsets of C¢ is polynomially convex [29, page 67];

e The symmetrized bidisk and tetrablock as defined in (1.3) and (1.4) are poly-

nomially convex [11, Theorem 2.3], [1, Theorem 2.9], respectively.

Theorem 3.3.10 (Oka-Weil [34, Theorem 24.12], [12, Theorem 7.3],[20]). Let X be
a compact, polynomially convex set in CL. Then for every function f holomorphic
in some neighborhood of X, we can find a sequence p; of polynomials in Clzy,. .., 24

with p; — f uniformly on X.

Remark 3.3.11. Polynomial convexity might only play a role if we were trying to
prove a positive result on rational dilation. Hence we do not need have to concern

ourselves about the polynomial convexity of the domains we consider.

Under the assumption that existence of normal boundary dilation d-tuple N of

d-tuple T and X C C? is a polynomially convex domain, the Oka-Weil theorem
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implies that there exists a sequence p; of polynomials in C[zy,...,z4] such that

p; — [ uniformly on X.
lr (M=l lim p;(N)[| < lim sup |p;(z)| = sup |r(2)],
J—00 J]—00 X X

where inequality by (3.19). Thus we conclude that X is spectral set for N. Then

by the maximum modulus principle we see that

I (raa), 1< 0 ().

for r;; € R(X) and for all k£ € N. It follows that if 7" has a normal boundary dilation,
then
Ir () = IV r NV < [lr(N)]| for all r € R(X),

so it is also the case that ||7(T")|| < ||| for r € R(X)®M;(C), k € N. In other words,
when rational dilation holds, contractive representations of R(X) are completely
contractive. A theorem of Arveson’s shows the converse is also true [14]. Thus a
strategy for showing that rational dilation fails is to find a contractive representation
of R(X) which is not completely contractive.

Our goal in this section is to study the rational dilation problem on the distin-
guished variety ¥z in D" for deg B = N > 2. In particular when N = 2 we show
that rational dilation fails for ¥ = A5 = {(z,y) € D z(r —ay)(z — By) =
(y - az)(y — Bx)}, where Z(B) = {a, 8}.

Theorem 3.3.12. Let A(Ap) be the algebra of analytic functions on Ap which
extends continuously to the boundary with the supremum norm. The algebra A(Np)
is completely isometrically isomorphic to the algebra @/, which consists of those
functions in /g, which do not have the terms of the form 2'Bi(z),j=1,...,N —2
andi = j+1,...,N—1. This algebra contains BN=1(2)A(D), so in particular, when
N =2, d) = 3.

Proof. Define a map p : R(A5) — < by

_ p(B(2),2B(2))
PPl = (B ). 2B )

where p, ¢ polynomials

and extending linearly. If it were the case that ¢(B(€),£B(€)) = 0 for some & € D,
we would have for (zo,y0) = (B(£),£B(§)) € A5 so that q(zo,y0) = 0, and so p/q
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cannot be in R(A%5). So the image of p is in A(D). Hence, about any point in
NN ®2, 1/q(n,¢) has a power series expansion »_, ._, cijn'¢? since it is analytic.
Thus 1/q(x,y) = 1/q(B(2),2B(2)) = 3, j_o ¢i;B(2)'(2B(2))’. So the image of p is
generated by B(z), 2B(z), which equals &7. For f € R(.A3), the maximum modulus
principle holds for p(f(z,y)) = f(B(z),2zB(z)). Since (z,y) € A5 N T? if and only
if the associated z is in T, f achieves its maximum modulus on (z,y) € A5 N T2
Hence the map is isometric. The same reasoning shows that the map is a complete
isometry. Since R(Ap) is dense in A(A4%5) the complete isometry extends to a
complete isometric homomorphism from A(A%) to 7).

Now we turn to the description of 0. Suppose for the time being that B has
three or more zeros, and that there is some f € A(4%) such that p(f) = 22B(z) €
Q. Then p(xf) = 2°B%*(z) = p(y?). Since the map p is isometric, this implies
that zf = y? in an open neighborhood U of (0,0). Fix any non-zero complex
number ¢ and let Cy = {(z,y) € C? : z = ty?}. For yy small enough and non-zero,
(20,90) # (0,0) is in C; N U. Evaluating at (zg,y0) gives f(zo,yo) = t~'. Hence f
cannot be analytic, and so 22 B(z) is not in /3. The same argument shows that any
term of the form 2'B(z)/,j=1,...,N—2andi=j+1,...,N — 1 of &5 is not in
/3. Obviously anything of this form where j is arbitrary and i < j can be written
as a product of powers of B(z) and zB(z).

Now suppose B has N > 2 zeros and let j = N — 1. Then

NB(2)N T = (Hu —@;2)B(z) — g) (Z S;(@)2’ B(z ) B(z)N 1,

where deg g < N —1. All terms have the form cz'B(z)’, ¢ a constant and 7 < j, and

hence are in @72. Also,

NEB(z <ZS )2/ B(z ) B(z)N 7,

so by an induction argument, we find that all of these are in 73 as well. Hence,
Q) D B(z)N"LA(D). In particular, if B has only two zeros, B(z) and 2z B(z) generate
the algebra o7g, and in this case p is onto. O

Mimicking the proof part i) of Theorem 3.3.12 we have the following result.
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Theorem 3.3.13. The algebra R(¥5) is completely isometrically isomorphic to the
algebra /.

Proof. Define a map p : R(¥5) — <5 by

p(B(2),2zB(2),...,2VN " 1B(2))
q(B(2),2B(2),...,2N"1B(2))

p(p/q) = where p, ¢ polynomials

and extend linearly. If it were the case that q(B(€),EB(€),...¢N"1B(€)) = 0 for
some ¢ € D, we would have for (29,...,2%) = (B(£),(B(€),...,¢VN1B(€)) € 73
so that q(z9,...,2%) = 0, and so p/q cannot be in R(¥3). So the image of p is
in A(D). Hence, about any point in ¥z N ﬁN, 1/q(y1,-..,yn) has a power series

expansion Zil iy Cito

So the image of p is generated by B(z),2B(2),...,2Y"1B(z). On the other hand,
by Lemma 3.1.1 the algebra <75 is generated by B(z),2B(z),...,2"1B(z), so the

map p is onto. For f € R(¥5), the maximum modulus principle holds for

p(f(x1,...,2Nn)) = f(B(2),2B(2),..., 2N ' B(2)).

Since (z1,...,xy) € ¥ NTY if and only if the associated z is in T, f achieves its
maximum modulus on (x,y) € ¥z NTY. Hence the map is isometric. The same

reasoning shows that the map is a complete isometry. This completes the proof. [

3.4 Completely contractive representations of .oy

This section inherits much of its structure from section 1 and 2 of [24], and in
particular, almost all the results in this section are analogues of results from that
paper. Proofs are included for completeness.

A unital representation 7 : @/ — B(H) on H is contractive if ||[7(f)|| < || f|| for
all f € o/, where || f|| represents the norm of f as an element of C(D) and ||7(f)]|
is the operator norm of 7(f).

The norm || F|| of an element F' = (f;¢) in M, (<) is the supremum of the set
{||F(2)| : z € D}, where ||[F(z)] is the operator norm of the n x n matrix F(z).
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Applying 7 to each entry of F,
TM(F) =1, @ 7(F) = (7(fi.0))

produces an operator on the Hilbert space ®7H and |7 (F)|| is then its operator

norm. The mapping 7 is completely contractive if for each n and F' € M, (<),
I () < [IF].

The following theorem is the main result of this section.

Theorem 3.4.1. The algebra </ has a contractive representation which is not

completely contractive.

In fact, we show that there exists a finite dimensional Hilbert space H and a
unital contractive representation 7 : @z — B(H) which is not 2 contractive. This
is done by showing that ||7®(F)|| > 1 for some rational inner matrix function
F € My(o/p) with |F|| < 1.

Consequently, combining Theorem 3.3.13 and Theorem 3.4.1 we have the follow-
ing failure of rational dilation on ¥z when the Blaschke product has two or more

ZEeros.

Theorem 3.4.2. Rational dilation fails on the distinguished variety ¥g. In par-
ticular rational dilation fails for ¥ = N = {(x,y) € D : r(x —ay)(z — By) =
(y — ax)(y — px)}, where Z(B) = {a, B}

The following theorem characterizes the completely contractive representations
of o/5. The case B(z) = 2% has been proved in [19] and [24]. Mimicking the proof

of Theorem 2.1 in [24] we prove the general case.

Theorem 3.4.3. A wunital representation © : o/g — B(H), H a Hilbert space,

1s completely contractive if and only if there is a unitary operator U acting on a

Hilbert space K D H such that for all k € 77T,
7 (2"B(z)) = Py (U*B(U)) |n, (3.20)

where Z+ :={0,1,2,... }.
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Proof. Let 7 : o/ — B(H) be unital, completely contractive representation. Let
o C C(T) denote the set of complex conjugates of functions in «7. Then o7 + .27}
is an operator system and p : /g + <7} — B(H) given by

p(f+g") =n(f) +7(g9)

is well defined (Proposition 2.12 in [39]). Since 7 is unital and @/ N &7} = Cl1, p
is completely positive (Proposition 3.5 in [39]). By the Arveson extension theorem,
p extends to a unital, completely positive (ucp) map o : C(T) — B(H). By the
Stinespring theorem there is a larger Hilbert space K O H, a unital x-homomorphism
7 : C(T) — B(K), and a bounded operator V : H — K with ||o(1)|| = ||V]|* such
that

o(a) =V*a(a)V.

Now since o is unital and V' is isometry, we may identify VH with H. With this
identification, V* becomes the orthogonal projection of I onto H, Py . Setting
7(z) = U, where z is coordinate function, and since 2Z = Zz = 1 we have that U is

unitary and that
o(2F) = Pyo (%) |y = PyU"|y for all ke Z".
With this U € B(K) for all k € Z* we have
o (2*B(z)) = Py (U*B(U)) |u.
Since
7 (2*B(z)) = 0 (:*B(2)),

for all nonnegative integer k, one direction follows.
Conversely, suppose that there is a unitary operator U € B(K) such that for all
k>0,
7 (2"B(z)) = Py (U*B(U)) |,

Then 7 defined as
7(z)=U

defines a completely contractive representation of C(T) (hence 7 (2*B(z)) = U*B(U), k €

Z*). So 7 restricted to the operator system o/ N .27} is completely positive, as is p,
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its compression to H, by the Stinespring dilation theorem. Since unital completely

positive maps are completely contractive, m = p|.,, is completely contractive. O

By using Theorem 3.3.12, the same arguments work to give a dilation theorem
for the algebra 7).

Theorem 3.4.4. A unital representation m : &3 — B(H), H a Hilbert space, is
completely contractive if and only if there is a unitary operator U acting on a Hilbert
space KK O H such that for 1 <3 < N—-2and1 <1 <7, and forj =N —1 and
i1 eN,

m(2'B?) = PyU'B(U)|y.

As in [24], it happens that even though there is a contraction T' := Py U]y, for
neither algebra is it necessarily the case that 7(B) = B(T) and n(zB) = TB(T).
To see this, we find the complex annihilator of /5. Recall that a function f in /g

can be written as
N

f(2)=c+ ][z —ayg(=),

j=1
for some g € A(D), where a; € Z(B). By [31, Theorem 1H], the annihilator («/3)*
of @7 is isometrically isomorphic to the dual of A(D)/.e/5. On the other hand, the
space A(D) /o7 is spanned by 2*+.a73, k = 1,..., N —1 and so has dimension N —1.

So the dimension of (&/z)* is also N — 1. The kernel functions

Z’L

FO(z) = il—
(2) =1 (1 —az)it!

«

(3.21)

have the property that (f(z), kgf)(z)) = f@(a), the i-th dervative of f evaluated
at a € D (consider the Taylor series of the functions f(z) and k$(z)). So for
Ogjgn,lgigtj—landfeHgo,

(F(2), kD (2)) = FD(a;) = 0.

This accounts for 37 ((t; — 1) = N — (n + 1) linearly independent functions. Fix
ay. Then for j =0,...,n and j # ¢,

0 0 _
(f(2), k5 (2) = k) (2)) = —c.
These n functions along with the previous N — (n+ 1) functions then form a linearly
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independent set, and hence a basis for the complex annihilator of /5. We write

{gi}n=}* for the list of these functions.

Proposition 3.4.5. For both <7z and </, there is a completely contractive repre-
sentation 7 in B(H) for which there is no operator T € B(H) such that 7(B) = B(T)
and w(2B) = TB(T).

Proof. Consider o7g to begin with. Recall the functions gy, ..., gy_1 defined in terms
of the kernel functions k&? . By definition, k&? is divisible by 2* (and no higher power
of z) and a simple calculation shows that likewise, the functions /{:&02() - kg;)(-),
j # € are divisible by z but no higher power of z. Each g; is in H*(D), the functions
in L?(T) (with normalized Lebesgue measure) where the coefficients of 27 are zero
when j < 0.

Define H C H?*(D) to be the orthogonal complement of the span of g;, where
either g; = k:((f]) for some j or k:g?() - k&g)() Since B has degree at least 2, there is
always one such g;. Since ran B is orthogonal to the span of g;, H is invariant under
multiplication by both B and zB.

Let U be the bilateral shift on L?(T), which is unitary. Then # is invariant
under both B(U) and UB(U). Hence by Theorem 3.4.3, the representation 7 of /g
defined by m(z/B) = PyU’B(U)|#, j € N, is completely contractive.

Furthermore, U*g; € H*(D), and z does not divide U*g;. Since each g; is divisible
by z, this implies that U*g; is not in the annihilator of 27.

Suppose that there exists 7' € B(H) such that 7(B) = B(T) = B(U)|y and
m(2B) =TB(T) = UB(U)|y. Since B is inner, both m(B) and 7(zB) are isometries.
The quotient space H = H2(D)/\/ g; is isometrically isomorphic to 2. Let ¢ be the
quotient map. Since H is invariant under U, T passes to a contraction operator T on
the quotient space and TiB (T) are isometries, j = 0, 1. Also, there is an isometry
V : H — L*(T) such that 79 B(T) = V*U7B(U)V, and so this induces a completely
contractive representation # of @75 into B(H).

Since U(U*g;) = gi, Tq(U*gi) = 0. As we saw, the map 7' is isometric, and so
it follows that ¢(U*g;) = 0. But as was noted, U*g; is not in the annihilator of
5 D\ ¢, so q(U*g;) cannot be 0, giving a contradiction.

The representation 7 of /g constructed above restricts to a completely contrac-
tive representation of &3. Since there is no operator T such that 7B (T), j=0,1,

and these latter are in «7p, the claim holds for @7 as well. O

61



Chapter 3. Rational dilation on distinguished varieties

3.5 The cone generated by the test functions

Recall that by Corollary 2.3.12 the set of test functions for H7,

Up = {n = B(2)Dr(2) : A= (A,..., An_1) € DY with A < -+~ =< Ay_1},
(3.22)
where D, is the finite Blaschke product with zeros Aq,...,Ay_1. Note that ¥p
inherits the topology and the Borel structure from DY ~1. Moreover, it is clear that

Wy separates the points of D and sup,, ¢y, [¢¥a(2)] < 1 for all z € D.

Definition 3.5.1 ([26]). Let X be a compact Hausdorff space. A kxk matrix-valued

measure
o= (i )5 o

is a k x k matrix whose entries p; ; are complex valued Borel measures on X. The

measure j is positive (u > 0) if for each function f: X — CF,
fi

Jr

we have

0 < /X Frduf =3 /X T fidpi

ij=1
The positive measure p is bounded by C' > 0 if

CIL, — (1 (X)) > 0

is positive semi-definite, where [}, is the k£ x k identity matrix.

Lemma 3.5.2 ([26, Lemma 5.3]). The k x k matriz valued measure v is positive if
and only if for each Borel set §2 the k x k matrix

(Hi,j<9))§,j:1

18 positive semi-definite.
Further, if there is a k so that each diagonal entry u,;;(X) < k, then each entry
ij of p has total mass at most k. Particularly, if i s bounded by C, then each

entry has total variation at most C'.
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Lemma 3.5.3 ([26, Lemma 5.4]). If u" is a sequence of positive k x k matriz-valued
measures on X which are all bounded above by C, then u"™ has a weak-* convergent
sub-sequence. That is, there exists a positive k X k matriz-valued measure p, such

that for each pair of continuous functions f, g : X — C¥,
g dp™f = / figidp; — / figjdp; = / g dpf.
firas= o+ -

Lemma 3.5.4 ([26, Lemma 5.5]). If u is a positive k x k matriz-valued measure on
X, then the diagonal entries, jj; are positive measures. Further, with v = 2521 fjj s
there exists a k x k matriz-valued function A : X — My(C) so that A(x) is positive
semi-definite for each x € X and dy = Adv; that is, for each pair of continuous

functions f, g : X — C¥,
Bt =Y [ T Aty
DY RZZTED DY RV

Let M (¥g) be the space of finite Borel measures on ¥p. For every fixed subset
Y of D, we define the set

MY*Y)={pu:Y xY — M(Wg) : u>0}.

We write p, ,, for the value of p at the pair (z,y). The kernel € M*(Y') is positive
if for all finite sets Z C Y and all Borel sets {2 C ¥p, the matrix

1(12) = (hay(12)), ez (3.23)

is positive semidefinite.
The following example illustrates what it means for p to be a positive M*(Y)-

valued kernel.

Example 3.5.5. If p,, is identically equal to a fixed positive measure v, or more
generally is of the form y, , = f(z)f(y)*v for a fixed positive measure v and bounded
measurable function f : D — C, or more generally still is a finite sum of such terms,

then p = (a,) is positive.

Proposition 3.5.6. Let f be a function in A(D). Then f € o and || f|leo < 1 if
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and only if there is a positive kernel p € M* (D) such that

1~ f@)f(y)* = / (1= (@)b(y)*) dytay () (3.24)

for all z,y € D.
Proof. Suppose f € /g and | f|lo < 1. Then the function f = fo M_q, 18 in the
algebra 75 and || f||s < 1. Hence by (2.27) (or (2.29)), we have

V= F@Fwr = [ @) (1= dole)into)) How) d0). (.25

Since Wy = {1y : 0 € O3} we view the measure in (3.25) as being on the set ¥z in

place of the set of extremal measures O, so that
1= F@f) = [ Hyle) (1= 0)00)") Hy(0)* do(),
B
This is equivalent to

L= f(m—a,(2)) f(m—ae(y))" = ; Hy () (1 = th(m—ay (2))¥(m—ae(y))") Hy(y)" dv(¥),
where Vg = {w = 1; 0 Mgy gﬁ € !PB} . Since m_,, is the automorphism of D, we
have

1~ f@)f(y)* = / (1= (@)b(y)") dptay (), (3.26)

where jig,, (1) = Hy(2)v () Hy(y)"
Conversely, suppose f € A(D) and there is a positive kernel p € M*(D) such

that (3.24) holds. By the realization theorem (Theorem 1.3.6) we have that f €
H®(Ky,). By Corollary 2.3.12 we conclude that f € H%. Hence the assumption
f € A(D) implies that f € o/p. This completes the proof. O

3.6 A closed matrix cone and the separation ar-

gument

Let M5(C) denote the 2 x 2 matrices with entries from C. In order to study the

action of representations on My (o7), we consider a finite subset S C D.
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Let ICa s denote the set of all kernels K : S xS — M(C) and Log = {F € Ky5:
F(z,y)* = F(y,z)} the set of all self-adjoint kernels in Cy g. Finally, write Cy g for

the cone in L5 g of elements of the form

(/WB (1 —=(x)p(y)") dﬂxyyw)) : (3.27)

z,yeS

where p = (p,,) € M (S) is a kernel taking its values p,, in the 2 x 2 matrix

valued measure on ¥g such that for every Borel subset (2 of ¥ the measures

n($2) = (Mx,y(Q))x,yeS (3.28)

takes positive semidefinite values in M (M(C)), where s is the cardinality of the
set S. Given f: S — C?, the kernel (f(2)f(y)*), ,cg 15 called a square.

Lemma 3.6.1 ([24, Lemma 3.3]). The cone Cy g is closed and contains the squares.

Proof. By definition

sup |¢(x)| <1 for x € S.
pePp

Hence as S is finite, there exists a 0 < k < 1 such that for all x € S and ¢ € ¥p

1L —y(x)Y(x)” > k.

Consequently, for the kernel

K(,y) = / (1= (@)b(y)") dytay(®) € Cos

we have

1
E}{($71ﬂ t NLxOpBL

where the inequality is in the sense of the positive semidefinite matrices in My(C).
Let {K,}n>1 be a sequence in Cy g which converges to some K. So for each n

there is a positive measure p" such that
Kaloy) = [ (1= 0(@u00)") du, (o)
Up

Hence there exists a &£ > 0 such that &Iy > I,(z, z) for all n and all z € S (because
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S is finite), and so

x|

Iy >y (UB)

for all n and all x € S. By Lemma 3.5.2 we see that positivity of the y"s implies
that the measures p7 , are uniformly bounded. Hence by Lemma 3.5.3 there exists
a subsequence p™ and a measure p such that p" converges weak-* to p, which

therefore is positive. Thus the positive kernel K is given by

K(.y) = / (1= (@)b(y)*) dyiay(®)

is in Cy . We conclude that Cy g is a closed cone.
Fix a test function v in ¥g. Let f : S — C? be given. Let &y denote the unit

scalar point mass at ¢y. Then

1
1 — vo(x)1o(y)

py(82) = f () 00(42)f(y)",

defines a positive M(C)-valued measure, where {2 is a Borel subset of ¥g. Thus

(@) f)") = ( [ =@t duz,yw)) € Cys.

]

Proposition 3.6.2. If a € @ is analytic in a neighborhood of the closure of the
open unit disk with ||la|l <1 and f: S — C?, then

(f(x) (1 = a(x)a(y)”) f(¥) )ayes € Cas-

Proof. By assumption and Proposition 3.5.6 there exist a positive kernel v € M (D)
such that

L= a@a(y)’ = [ (1= 0@ul)) vy (©) (3.20)

for all z,y € D. Since v € M (D), we have

V(Q) = (Vx,y(Q))x,yES

is positive semidefinite for every Borel subset {2 of ¥, and each v, , is a scalar
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valued measure. Then, since f : S — C2, for each {2 a Borel subset of ¥,

p(82) = (pay(2)) g yes = (F@)ay (D) F(U) )4 yes

defines an M (M>(C)) -valued positive measure. Thus, by (3.29) we conclude that

(1 — ()b ()") dux,yw)) € Cos.

z,yEeS

(f(2) (1= a(@)a(y)’) f(¥)"), yes = (/W

B

Let Ip denote the ideal of functions in /g which vanish on Sj i.e.,
I ={p € dp:p(x)=0forall x € S}.

Since S is finite set, the ideal Ip is closed. The canonical quotient map ¢ : @/ —
/I is completely contractive. We denote by F* the transpose of the matrix
function F € My(e/g). Thus , F'(z) = F(z)". Clearly, F' € My(o/p) and ||F|l =
| Ft||oo whenever F' € My(e7p). Given F' € My(a7g), let Apg denote the kernel

Aps = (I — F(2)F(y)")zyes- (3.30)

Proposition 3.6.3 (|24, Proposition 3.5]). Let q : o/ — /5/Ip be the canonical
quotient map. If F' € My(o/p) and || F|lc < 1, but Apgs & Cas, then there ezists a
Hilbert space H and representation 7 : o/g/Ip — B(H) such that for all a € o/p,

(i) ||7(q(a))|| <1 whenever ||a|| < 1; but
(i) [T (g (F))] > 1.
Therefore the representation T o q is contractive, but not completely contractive.

Proof.

(1) We use the Hahn-Banach cone separation with a GNS construction to get a linear
functional that separates Apg from Cy .

By Lemma 3.6.1 the cone Cy g is closed and by assumption Ap g & Cs 5. Hence by
the separation theorem there exists a nonconstant R-linear functional A: £y — R
such that A(Cys) > 0, but A(Ars) < 0. By Lemma 3.6.1 for given f : S — C? the
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square ff* = (f(x)f(y)"), es 18 in the cone Cy 5. Thus A(ff*) > 0. For any kernel
K in Ky g, there exist unique kernels Uy, Vi € Ly g such that K = Uk +1iVk, where

1 1

So there exists a unique L : Ko g — C linearly extending A. Let H denote the
Hilbert space obtained by giving (C?)° the pre-inner product

(fr9)=L(fg")

and passing to the quotient by the space of null vectors (those f for which L(ff*) =
0). Since S is finite, the quotient will be complete.
Define a representation p of @/ on B(H) by

pla)f(x) = f(z)a(z), (3.31)

where the scalar valued a multiplies the vector valued f entrywise.

Indeed p is unital homomorphism, since

plab)f(z) = f(x)a(z)b(z) = pla)f(x)b(x) = p(a)p(b)f(z).

We also have that p is x-homomorphism, because of finiteness of S implies that

(p(a”)f,9) = (f(z)a",g)
= L(fa"g") = L(f(ga)")
= (f.9a) = {f,p(a)g)
= (p(a)"f,g).

If a € 973, is analytic in a neighborhood of closed unit disk and |||l < 1, then
by Proposition 3.6.2, (f(x)(1 — a(x)a(y)*)f(y)*), s € C2,5- Thus,

(o) = (pl@)f.pl@)f) = L ((F@)1 = al@)a() V@) Dayes) 2 0. (332)

Hence, if ||a||ooc < 1, then ||p(a)]| < 1. That is, p is a contractive representation of
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/. Since the definition of p depends only on the values of a on S, if a € Iz, then

Thus, p(a) = 0 whenever a € Ig. Hence Ip C kerp. By [18, Theorem 2.3.5] p

descends to a contractive representation 7 : A/Ip — B(#) given by

p=To0q.

This completes the proof of ().
(ii) Let {e1,es} denote the standard basis for C* and let [e;] : S — C? be the
constant function [e;](z) = e;. Note that {e;ej}7,_; are a system of 2 x 2 matrix

units. We find

PEF) ([ea] & [ea]) = (p e ol >> .

p(Frz2)er + p(Faz)es

Since
(p(Fip)er + p(Fan)es) (p(Fip)er + p(Faa)es)”
= p(FiaFi )ere] + p(Foa FTy)ese + p(FiiFyy)eres + p(FaaFyy)ese;
_(PUELET) p(FLaFs )
p(Fo  FYy)  p(FoiFyy)
and

(p(Fi2)er + p(Fag)ea)(p(Fia2)er + p(Foa)e2)”
= p(FiaFTy)eie] + p(FooFyy)ese] + p(FiaFyy)eies + p(FaaFy,)eses

_[PF2FTs) p(F1Es)
p(F2lTs)  p(Fapkys,)

it follows that

(PP (F)([er] @ [ea)), P (F)([er] @ [e2])) = L<<
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Since L(Arg) <0,
{(Io — p@ (F") p® (F)") [e1] @ [ea], [e1] @ [e2]) < 0.

We conclude that ||p® (F?)|| > 1. Since ||F||c < 1 and ¢ is completely contractive
, the representation p is not 2-contractive. Thus p = 7 o ¢ is contractive but not

completely contractive. O

3.7 Preliminary results

Lemma 3.7.1 ([24, Lemma 4.2]). Let X be a set and X a o-algebra over X . Suppose
pij are 2 x 2 matriz-valued measures on the measure space (X,X) fori,j = 0,1.
If 11 j(X) = Iy for all i,5 and if for each 2 € X the 4 x 4 matriz-valued measure

(block 2 x 2 matriz with 2 X 2 matriz entries)

1
(Hi,j(Q))i,jzo
is positive semidefinite, then i, ; = oo for each i,j =0,1.

Lemma 3.7.2. Let U € My(C) be a unitary matriz. Given distinct points py,ps €
D\ {0}, let By, By be finite Blaschke products such that py € Z(By) \ Z(By) and

G= (Bl 0) U (1 0 > (3.33)
0 1 0 By

Then there exists unimodular constants s and t such that

B
G = (S 1 0 ) (3.34)
0 tB,

if and only if there exists unitaries V- and W in My(C) such that

B, 0
G=v | W™, (3.35)
0 B,
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(2 a) 6026

1 0 S

*

0
choosing V' = L = ) yields the forward implication.

0

For the converse, evaluating at p, gives

(85 (55 ()
0 0 0 1 00

Since V' is unitary we have that

B 0 B 0 1 0

R A . (3.36)
0 0 0 1 0 0

Assume W = [0 ) yo= (T ) oo (") 2 AL(C). Then
Wo1 W22 V21 V22 U1 U292

(3.36) becomes

Bi(p2) 0 w11 W _ V11 V21 Bi(p2) 0 Ul Usgy 10
0 0 Wig W2 V12 U2 0 1 U1 U2 00/

This simplifies to

Proof. Since

(Bl(pQ)wll Bl(pQ)wﬂ) _ (Bl(pQ)Wnun + Ua1U921 0)

0 0 By (pa)Uagun1 + Taguga 0

Since Bj(ps2) # 0, we have wg; = 0. It follows that

WA — ( |wy1]? wW11W12 )

Wiowyy  |wig)* + |wag|?

On the other hand, W is unitary, so |wi;]|?> = 1. Hence wy; # 0. This imply that
wie = 0. So W is diagonal matrix with entries wqy,wee € T. A similar argument
shows that V is diagonal matrix with entries vy1,v99 € T. Finally, with the choice

s = vp1wqy and t = vyotWey gives the desired result. O

Lemma 3.7.3 ([24, Lemma 4.3]). Let U € My(C) be a unitary matriz with non-zero
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entries. Gien distinct points py,p2 € D\ {0}, let k,, and k,, be the Szegd kernels.
If G is given as in (8.33) with Bj(z) = m,,(2) for j = 1,2, the Mébius map at the
points pi,pa, then there exists linearly independent vectors vy, vy € C? and, for any
finite subset S of D, functions a,b: S — C? in the span of {ky, (x)v1, kp,(x)va} such

that
I — G(2)G(y)"

P a(z)a(y)” + b(z)b(y)". (3.37)

Proof. Let e, ey denote the standard basis for C? and let Mg denote the operator
multiplication by G on HZ,, the Hardy space of C*-valued functions on the disk.

First, we claim that the operator Mg is an isometry on T. To prove this, we need

to show (Mg f, Maf) = (f, f) for f = <;1

2

€ HZ,. Since

M P =ty [ NGEA GNP dr = Ty [ 1A do = 117,

and so the claim is proved.

It is well known that M&kyv = G*(A\)kyv for v € C? (see section A.2 in the
Appendix). Hence the first and third factors in G*(\) have one dimensional ker-
nels. Since U* is unitary in My(C), it has zero kernel. Thus we conclude that the
dimension of the kernel of M is at most two.

Observe that for v; = ey,

om0 5
(0 m) (o) o)
0 mpz(pl) 0 0

Thus k,,v; is in the kernel of M¢.

Choose a unit vector v, in C? with entries o and 3 # 0 such that

mpl(pZ) 0 Uy — mpl(p2) 0 a _ ampl(p2) — Ue
o 1) 0o 1)\ 3 .

That such a choice of a and g # 0 is possible follows from the assumption that

p1 # Do, which ensures that m,, (p2) # 0, and the assumption that U has no nonzero
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entries, giving # # 0. Further, with this choice of vy we have that

10 My, (ps) O 10 0
M=k — U* P1 — U*U — ’

which shows that k,,v, is in the kernel of M¢. Hence, the dimension of the kernel
of M is two. Since My is isometry, I — MM/ is the projection onto the kernel of
M.

Choose an orthonormal basis {a, b} for the kernel of M/, so that
I — MgM¢, = aa* + bb*.

It now follows that for vectors u,w € C?,

< ]2—G(ac)G(y)*u7w>H2 = {(I — G(2)G(y)" ) ky(x)u, w)

1 —ay*
(ky(2)u, w) = (G(z)G(y) ky(z)u, w)
(kyu, kyw) — (G(x)G(y) kyu, kyw)
= (kyu, kyw) — (G(y) kyu, G(x) k,w)
( (M,
( )
{

c2

kyu, kyw) — (MEkyu, Mk, w)
(I — MaME)kyu, k w)Hg
(aa® 4 bb*)kyu, kyw) .

On the other hand, we have

((aa™ + b0 ) kyu, kyw) = (aa*kyu, kyw) + (bb*kyu, kyw)
(alkyu,a), kyw) + (b{kyu, b), kyw)
= (kyu,a) (a, kyw) + (kyu,b) (b, kyw) (3.38)
{a, kyu) (a, kaw) + (b, kyu) (b, kyw)
(aly), u)

a(y),w) (a(x), w) + (b(y), u) (b(z), w) .
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Since a(z),a(y),b(z),b(y), u, w € C?, we have

(ay), u) {a(x),w) = (a1(y)ur + az(y)uz)(ar(x)wy + az(x)ws)

and likewise

{b(y), u) (b(x), w) = (b(x)b(y) u, w). (3.40)

Hence by (3.38), (3.39) and (3.40),

<12 — G)G)”

1 —axy*

ww) = ale)ala) + bl (1) o)

c2

This completes the proof. n

3.8 Construction of the counterexample

Let m¢ be the Mobius map on ¢ € D. Fix distinct points py,ps € D\ Z(B), where
Z(B) = {o,...,an} the zero set of B(z). Fix a finite subset S of D containing
p1, P2, Z2(B) and consisting of at least 2N + 4 distinct points. Recall that the set of

test functions ¥p is given by
WB = {’l/})\(Z) = B(Z)D)\<Z) P = ()\17 s 7/\N71> € Dé\éil}a

with the ordering A\; < -+ =< Ay_1, where D,)(2) = Hj\;l my,(2). Recall also that
we take my(2) = 1 in ¥p for all \; € Dy.. Fix j € 1,..., N — 1. Then the above
ordering implies that if \; = oo , then \; = oo forall k =j5+1,...,N —1. So in

the rest of this section we fix the following notation

V0(2) 1= Yoo, .00 (2) = B(2) (3.41)

and
A(2) = P dnsono0) (2), (3.42)
where \y,...,\; € Dfori=1,...,N—2. Also, we write oo~ for the (N —1)-tuple

(00,...,00) in DY-L.
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H:(m’” O)U<1 0 > (3.43)
0 1 0 my,
1 (1 1
U:ﬁ<1 —1)'

In particular I7 is a 2 x 2 matrix inner function with det I7(z) = 0 at the points

Let

where

p1, p2 and degree at most 2.
Let
F(z) = B(2)I1(2), (3.44)

where F'is a rational inner function in My(e7g) with || F|l = 1.

Theorem 3.8.1. Let F' = (F;;)?

fi=1 € My(op) be defined as in (3.44). Then
Aps ¢ Cas.

Consequently this will establish the proofs of and Theorem 3.4.1 and Theorem
3.4.2.

The proof of Theorem 3.4.1. By Theorem 3.8.1, we have that Apg & Cos. Hence
by Proposition 3.6.3 there exists a contractive representation of @7g, which is not

completely contractive. O]

The proof of Theorem 3.4.2. By Theorem 3.4.1, there exists a contractive represen-
tation of .@7g, which is not completely contractive. Then by Theorem 3.3.13 there ex-
ists a contractive representation of R(#3), which not completely contractive. Hence
by Theorem 3.3.6, rational dilation fails for the N- distinguished variety #5. This
completes the proof. n

The proof of Theorem 3.8.1 goes by a contradiction. More precisely, we assume
that Apg lies in the cone Ca g; that is, there exists an My (C)-valued positive measure
i such that

L= F@F) = [ (1= @0 dusy(@) for 2yeS. (349
¥p

for z,y € S. We will restrict the measures y,, in (3.45) by a sequence of lemmas.
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Multiplying (3.45) by the Szegd kernel s(z,y) = (1 — zy*)~! we get

(12 —1F_(:;);:(y)*)x’yes _ ( /WB (1 —1w_(x;;/)*(y)*) dum’y(w)wes' (3.46)

Since F(x) = B(x)II(x), then

L — F(x)F(y)* 1= B(x)B(y)"
1 —zy* 1 —zy*

I — H(z)1(y)"
1 —xy*

I + B(z)B(y)* < > o (3.47)

Similarly, for the test functions v,(z) = B(z)Dy(z) for A € DX~ we have that

L= a(@)aly)” _ 1= Bx)B(y) . (1= Da(z)Dx(y)"
e P B(x)B(y) ( T ) . (3.48)
Let i
ke(x) = —11__5’3 (3.49)

denote the normalized Szeg6 kernel at ( € Do,. We take ko, = 0 when ¢ = oo (this is
because we identify the infinity point with the boundary of D). A direct calculation

verifies that

1— nfgixgizzc(y)* — ke(@)ke(y)", (3.50)

for all ¢ € D,. Let £ be a Blaschke product with zeros &;,...,& in D4 such that
§&i =X+ 2 &. Then

1—B(x)By)" 1 —me (x)me (y)* 1 — mg, (x)me, (y)* ‘
e e 31 C el D EA0)
Using 3.50 we get
1 — B(x)AB(y)*
1 —xy*

l
= ke, (2)ke, (y *+Z me, () ke, (2)ke, (y Hm£ )" (3.51)

k=2 i=

>—‘

Define

Kelw) = (ke (2) me @)k (r) . 12 me(@)he (@) € Micl©).  (3.52)
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Then identity (3.51) becomes

1 - B(x)By)"
1 —ay*

= Ke(2)Ke(y)". (3.53)

It follows also that the kernel (%

with the choice Z = D, in equation (3.48), we obtain

) is positive semidefinite. Applying (3.53)

1 —a(@)Pa(y)” 1 - B(z)B(y)"

1— ay* Ty " B@BO) K@) (3.54)
where
Ky\(x) = (k’m (x) my, (2)ka(x) ... HiN:IQ mxi@)km,l(w)) € Mixn-1)(C).
(3.55)

Using (3.47) and (3.54), rewrite (3.46) as follows

1— B(x)B(y)* I, — I (x)I(y)*
1—xy 1 -y
1—B(z)B(y)* . .
= I PIBOE [ )+ B@BWY [ KyFAG) ey (). (356)
-y g v,
As pointed out at the beginning of the section if A\; = oo, then we have Ay =

00, ..., An_1 = 00, this implies that k), = koo = 0 for all j =1,..., N — 1. Hence
the second integral in (3.56) is restricted to ¥% = g \ {¢°}.
By Lemma 3.7.3, there exist linearly independent vectors vy, v, in C? and func-
tions f,g: S — C? in the span of {k,, v, k,,v2} such that
1— B(z)B(y)* . « x
PP+ B Bl (F@f ) + sl@)g(o))

1 B()B(y)’
1—axy*

L d1iay(6) + B@)B) | Ka(@)Ea(y)" duay(¥).  (357)

43

Let

Alz,y) = / iy ();

R(z,y) = B(x)B(y)" (f(«)f(y)" + g(x)g(y)"): and

R(z,y) = B(x)B(y)" | Kx(x)Kx(y)" dptey (),

0
lIIB
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which are all positive kernels on S. Then (3.57) becomes

Riz,y) — R(.y) = L= B@BU)F

T (Aley) ~ 1), (359)

We next show that p, , is independent of  and y. To do this, we define
K :={B(x)kp, (x)v1, B(x)kp,(x)va} (3.59)

where the points pq, ps are fixed as before.

Lemma 3.8.2. If Apg € Cy 5 and for x,y € S, then the following hold

(1) The My(C) valued kernel (A(x, y) — Ig> is positive semidefinite ;

(ii) The Ms5(C) valued kernel <R(x, y) — R(z, y)> is positive semidefinite with rank
at most two;

(11i) The range of R lies in the range of R, which is in the span of K; and

(iv) Let s be the cardinality of the set S and let [I3] denote the s x s block matriz

with all entries consisting of Is. Then either
(a) The kernel A— [Iy] has rank at most one; i.e., there is a function u : S — C?
such that

A(z,y) = I + u(z)u(y)" (3.60)

or
(b) There exist functions u,v : S — C? such that

Az, y) = I+ u(z)u(y)* + v(x)v(y)*, (3.61)

and a point p € S\ Z(B) such that u(p) = v(p) = 0.

Proof. (i) Recall that o = {«;} is the zero set of B, so ¢(a;) = 0 for all ¢ € ¥ and
1 <i < N. It follows from (3.45),

Iy = L= F(a;) F(a;)" = /p (1=9(i)p(;)") dpas o, () = / .05 (1) = Alai, )

¥p
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for all y € S. The square matrix (A(z,y))syes is positive semidefinite, so there
exists a matrix D such that (A(x,y))syes = D*D. Fix a; € Z(B), then

I
<A(:U,y)> (A(:c,o@) D*D :
0= RIS a; | —
(A(az,y (A(al,a]) I
yFo
([2 : [2> I
I
So there is a contraction Z such that | : | = (D*D)Y2Z (see [16, Proposition
I
1.3.2]). Hence,

(Mw))xyes = D'D=(D'D)"*(D*D)"* = (D"D)"*22"(D"D)"/*
I,

= 0 )Pzz D) = | | (1 - B) =15
I,

This completes the proof of (i).
(ii) Applying (3.53) with the choice # = B in (3.58) gives

1 — B(x)B(y)"
1 —xy*

= Ka(2)Ka(y)",
where

o) = (Ko (2) 1, (2)kay () - T15" i ()b () € Misw(C). (3.62)

1-B(z)B(y)*

It follows that the matrix ( T—

) is positive semidefinite. On the other
T,yeS
hand, the Schur product of positive semidefinite matrices is positive semidefinite, so

since (A — [I2]), g 18 positive semidefinite, we have that

(e L)

is positive semidefinite. Hence by (3.58) we conclude that <R(x, y) — R(z, y)>

z,yEeS
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is positive semidefinite.
Since ran R C K, R has rank at most 2. Hence, since R is positive semidefinite,
(R(x,y) — ]:2(:15, y)) has rank at most 2.
T,yeS

(iif) By item (i7) and Douglas’ lemma, the range of R is contained in the range
of R. By Lemma 3.7.3, the range of R is spanned by the set K and (iii) follows.

(1v) First note that in any case equation (3.58) and item (ii) imply A —[I5] has at
most rank two, because the matrix (%

u,v : S — C? such that

) is invertible. So there exists
T,yeS

Az, y) — Ia = u(z)u(y)" +v(z)v(y)"

Hence by (3.58) and (3.62) we have

R(x,y) — R(x,y) = Ka(2)Ka(y)" (u(z)u(y)” +v(z)v(y)") .

Fix a1, as € Z(B), the first zeros of B that appears as in (3.62). Thus, all the func-
tions u(z)ka, (), V(2)ka, (), w(2)kay (X)Ma, (), V(2)Kay (€)Ma, () lie in the range of
R, which equals the span of K. If u is nonzero at two points in .S, then u(z)k,, (x) and
U(Z)kay (T)Ma, () are linearly independent. Otherwise there exists distinct points
21,29 € S such that u(z;) # 0,u(29) # 0 so there exist complex numbers ¢y, ¢y (at

least one is nonzero) such that
1u() ko, (2) + cou(x) ko, ()M, () = 0 for & = 21, 29.

Hence we get ¢1kq, () + caka, ()M, (x) = 0 for x = 21, z5. Multiplying the equation
for z; by ke, (w) and the equation for z; by k4, (2), and taking the difference gives

kaQ (Zl)kal (ZZ)thl (21> - kaQ (zZ)kal (Zl)mal (22) =0. (363>

Since 1 —ajz # 0 and 1 —@yx # 0 for x = 21, 29, clearing out denominator in (3.63)
gives

(z1 —a1)(1 —agze) — (22 — a1)(1 — agz;) = 0.

This simplifies to

(21 — 22)(1 — ozloz_Q) =0.

Since 1 — aja; # 0, we have z; = 29, which contradicts our assumption. Thus
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w(2) ko, () and u(x)kq, (x)mq, () span the range of R. In this case, as both v(x)k,,
and v(x)kq, (2)maq, (z) are in the range of R there exists v; and 3; (for j = 1,2) such
that

U($)ka1($) - ’Vlu(x)kal(x)+72u(x)kaz(x)ma1(x)
U(x)k;w(x)mal(:p) - 61“(1:)1{;041(1:)+/32u(x)ka2(x>ma1(x)'

Multiplying the first equation by k,, ()me, (z) and the second by k,, (x), and taking

the difference, we get
0 = v()ka, (2)kay (2)ma, () — v(2)ka, (2)Kay ()00, (1) = p(z)u(z),  (3.64)

where p(x) = Bi(ka, (2))* + (B2 = 1)Koy () kay ()10, () = Y2 (Kay (2))* (Ma, ().
If 45 = 0, then v is a multiple of u and case (iv)(a) holds. Otherwise, in view
of (3.64), u is zero except at two points (the two roots of Bi(ka,(z))? + (B2 —
Y1) kay () ko, (2)ma, (2) — Y2(kay (7)) (ma, () = 0). Thus u is zero at two points
in S, one of which, say p, must be different from 0 (because all points in S are
distinct). Since v must be zero when w is, v(p) = 0 too, and so (iv)(b) holds. The
same argument works if v is nonzero at two points in S.

Finally, there is only one possibility left that we need to check. That is, both u
and v are nonzero at at most one point each and these may be distinct. In this case,
the intersection of zero sets of u and v has the cardinality at least 2N (excluding
p1,P2). Since all points in S are distinct points and 2N > |Z(B)| = N, there exists
a point p such that p € S\ Z(B) and u(p) = v(p) = 0. This proves (iv)(b). O

Lemma 3.8.3. If Apgs € Ca 5, then A(x,y) =I5 for all z,y € S.

Proof. By Lemma 3.7.3, the range of R is spanned by the set K. According to
Lemma 3.8.2 (iv), the matrix (A(x, y)) can be expressed in two ways. First we

T,yeS
assume that

A(z,y) = I + u(z)u(y)*

as in (3.60). So in this case we need to show u = 0. Rewrite (3.58) in the following
way

R(z,y) = R(z,y) + Ka(z) Ka(y) w(@)u(y)". (3.65)
As in the proof of the previous lemma, u(x)kq, (z) and u(z)ka, (x)mq, () are in the
range of R; that is, both u(x)k,, (z) and u(x)ka,(x)me, (z) are in the span of K. It
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follows that there exists v; and ; (j = 1,2) such that
2
u(@)ka, (x) = Bx) Y ik, ()0
=1
2
u(@)kay (€)ma, (x) = B(x) Y Biky, (x)u;.
=1

Multiplying the first equation by k., (z)ma, (x), the second by k,,(x), and taking

the difference gives

0= B(x) Y (Bikas (@) = Yikas (2)may (2))hy, (2)0;. (3.66)

Jj=1

Since the set {v1, vo} is a basis for C? (see Lemma 3.7.3), it has a dual basis {wy, ws}.

Taking the inner product with w, (¢ = 1,2) in equation (3.66) gives, for x € S,
0 = B(z)(Beka, () = Yekay (2)ma, (€)) Kp, (). (3.67)
Evaluating at x = p, € S\ Z(B) in (3.67), we get
Bekiay (pe) = Yekas (A)ma, (pe) = 0. (3.68)
and at © € S\ {p1, p2, Z(B)} gives,
ek () = Yk (€)M, () = 0, (3.69)

because ky,(p¢) # 0,k,,(x) # 0,B(p;) # 0 and B(x) # 0. Multiplying (3.68) by
ko, (x) and (3.69) by ka, (A\¢) and taking the difference, we get

Ve (kOQ (pf>ma1 (pg)kal (ZL’) - ka2 (‘r)mal <I>ka1 (pf)) = 0.

Since all 1 — ayx,1 — @1py, 1 — asx and 1 — @ypy in the denominator of the last

expression is non-zero, so the last equation simplifies to

Ye[(pe — 1) (1 — @z) — (2 — ) (1 — @iapy)] = 0,
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which can be rewritten as

Ye(z — po)(1 — ay@a) = 0.

Since x # py and 1 — ajay # 0, we have v, = 0, and so §, = 0. We conclude that
u(z) =0 for all z € S.

Now assume A(z,y) = I + u(x)u(y)* + v(z)v(y)* and there exists a point p €
S\ Z(B) such that r(p) = s(p) = 0. In this case, from (3.58) , we have

R =R+ Ka(x)Ka(y)" (u(z)uly)” +v(z)v(y)"). (3.70)

Thus, u(z)ka, () and v(z)k,, () are in the range of R is spanned by K. Hence there

exists complex numbers 7; and §; such that

(3.71)

kp, () v;
v()ka Bk, (€)v;.

2
w(@)ka, (x) = B(x) Y viky, (@)0;

j=1

2

(z) = B(x)

j=1
Choosing = = p and taking the inner product with wy in the first equation of (3.71)
gives

0 = ek, (p)-

Since ky,(p) # 0, we have v, = 0 for £ = 1, 2. Similarly, from the second equation of
(3.71), we have 5y = 0 for £ = 1,2. Thus u = v = 0. This completes the proof. [

Lemma 3.8.4 ([24, Lemma 5.5]). If Aps € Cag, then there exists a 2 X 2 matriz

valued positive measure j1 on Wy such that p(¥g) = Iy and

[ — (z)(y)" = K(2) Kx(y)" du(y). (3.72)

L —ay~ w9,
for all x,y € S\ Z(B).

Proof. Applying Lemma 3.8.3 to equation (3.56) we have

L IENOY gy [ K@) disag ().

B(r)Bly) ;
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Dividing both sides by B(x)B(y)* when z,y € S\ Z(B) gives

Iy — II(z)Il(y)*
2 = M) lT)” _ K\ (@) K (y)" ditesy (¢)-
1 —ay* Y,
Again by Lemma 3.8.3 we have flPB dpzy () = I for z,y € S\ Z(B). So by

Lemma 3.7.1, there exists a positive measure p on ¥p such that p = p,, for all
z,y € S\ Z(B). It follows that

I — I (x) 1 (y)* _ K(2) K (y)* du()

1 —ay~ Y,

and

n-| iy (4) = / ) = ().
O

In a view of equation (3.72), we see that the entries of y are independent of x, y.
The next step is to restrict the support of 4 via Lemma 3.7.3. To do this, we need
the following result.

Given a 2 X 2 matrix valued measure v and a vector v € C?, let v, denote the
scalar measure defined by v,(£2) = v*1v(£2)y for every Borel subset (2 of ¥5. Note
that if v is a positive measure (that is, takes positive semidefinite values), then each

Uy 1S & positive measure.

Lemma 3.8.5 ([24, Lemma 4.5]). Suppose v is a 2x2 positive matriz-valued measure
on W = g\ {Y"}. For each v € C? the measure v, is a nonnegative linear

combination of at most k point masses if and only if there exist (possibly not distinct)

points ny, ..., mx € DY\ {001} and positive semidefinite matrices P, ..., Py in
M (C) such that
k
v= Z 577ij
j=1
where 0,,, ..., 0, are scalar unit point measures on Wy supported at iy, , ..., Y,
respectively.

Proof. Assume that every v, is a nonnegative linear combination of at most k point
i1 Nia . 0

masses. Let v = € M5(C) be a matrix valued measure on ¥} with
Va1 V22
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respect to the standard orthonormal basis eq, e of C?, where each entry v;; is a
scalar valued measure on V).

By Lemma 3.5.4 the measures vy; and vy are positive because v(f2) is positive
matrix for every Borel subset, {2 of ¥3. Also the positivity of v implies that vo; = v},.
By Lemma 3.5.2, if v;(£2) = 0 for a Borel subset §2 of ¥}, then v;;(2) = 0. Hence
the measures 115 and 15 are absolutely continuous with respect to both 17 and vs,.
It follows that supp via = supp 91 C supp vi1 N supp rag, where supp v;; is the
support of v;; for i,5 =1,2.

Choosing v = e; and v = e, we have
* *
v, = ejve; = vy and v, = ejrvey = Vg,

respectively. Then the assumption implies that supp v; is finite, and so supp v;; is

finite. Let n;; = |[supp v4;|. By assumption n;; < k and there exists nonnegative

11 22
real numbers ¢, ¢,”" such that

nii n22

1,1 . 2,2
Vi = g oy 5TH7€1 and vy = g o 5722%2.

=1 to=1
t
Thus, for v = (fyl 72) ,

Vy = |71 P11 + M aver + Fiveriz + el Pres
= 11?11 + [1e)?ve2 + 2Re(n7av)

(3.73)

ni1 n22 n21

1,1 2,2 —
=D 0ny 12D 00, + 2Re(WR) D b,

6=1 =1 =1

where supp 1o = supp va1 C supp gy Nsupp vy and ¢ € {ey’,. .. cepl N
{22  forall £=1,... ny.

Assuming 71,72 = |12]e? are nonzero, there are at most two values of 6 € [0, 27)
such that 2Re(71%2)ce = (71]72l€? + yi|v2le™®)e, = —|71|2021 - |72|205;2. Running

all over ¢, there are at most a finite number of such 6. Choosing # avoiding these
points, it follows that supp v, = supp v11 U supp 4. By assumption, at most £k of
these points can be distinct, and hence v has the form claimed.

Conversely, if v = Z?Zl On, Pj with ny,...,m and Pi,..., P, as in the state-

ment of lemma, then the scalar valued measure v, = y*v7v is a nonnegative linear

85



Chapter 3. Rational dilation on distinguished varieties

combination of at most £ point masses. This completes the proof.
m

Lemma 3.8.6 ([24, Lemma 5.6]). Let u be the measure as in the statement of
Lemma 3.8.4. If Apg € Ca,g, then the measure j1 has the form

po=01P1 + 02 P + 012 P12 + 000 Pro,

where Py, Py, Pio, Py are 2 X 2 positive matrices such that Py + Py + Py + Py = I,
and 01,09, 012, and O are unit scalar point masses of measures on ¥y supported at

Bm,,, Bm,,, Bm, m,,, and ¢ = B, respectively.

Proof. Let v denote the restriction of p to W3 (or eqiuvalently to DY =1\ {oo™V~1}).
For v € C?, define a scalar valued measure v, on ¥% given by v, (2) = v*v(£2)y for
any Borel subset 2 C ¥9. An application of Lemma 3.7.3 to IT and Lemma 3.8.4
implies that

Y (f(@)f(y) +9(x)gy) )y = 7 ( g Kx(x)KA(y)*du(w)> v (3.74)

= K\ (@) Kx(y)" dvy (¥),
v
where f, g are as in (3.57).
Fix a set of three non-zero points X = {21, 29,23} C S\ Z(B). Let ¢ : X — C be
a nonzero vector in the orthogonal complement of \/ 1.2 (kpj (21) kp,(22) Ky, (23)> :
Suppose that one of the entries of ¢ is zero, without loss of generality we may take
this to be ¢(z3). Then the vectors (k:pj(zl) kpj<22)> ,J = 1,2 are orthogonal to

(c(zl) 6(22)>. Since ¢ is nonzero, this implies that the vectors (k;pl(zl) kpl(z2)>
and (lfpg(zl) kp2(22)> are collinear. Hence (kpl(zl) kp1(22)> =C (km(zl) kp2(22)>
for some constant C. Let s; := /1 — |p;|?> # 0,7 = 1,2. Then (p;s2 — 51CDy)z; =
sg — Csy,7 = 1,2, Since 21 # 2y, we must have s, — C's; = 0 and so p; = p,, a
contradiction. Thus no entry of ¢ is zero. For any v € C? is in the span of the dual

basis {wy, ws} to {vy,v2} , which are vectors from (3.57), we have

> @)y (f(2) f(y)" + g(x)g(y)*) ve(y)” = 0. (3.75)

T,YyeX
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Thus by (3.74), we have
o=/ (Z Ko >) (Z chm) o) (3.76)

Consequently,
ZK,\ z) = 01xny_1 for v, — a.e. on Wp. (3.77)

TeEX

Returning to the definition of K in (3.55), the later equation implies that

> el HmA )ky () =0, k=1,...,N—1,0,— ae. onW¥y  (3.78)

TeEX

Here we take [[=) my,(z) = 1 when k = 1. For k = 1 this gives
c(z1)kr, (21) + c(22)kn, (22) + c(23)ky, (23) = 0. (3.79)

Hence we have ky, (2;) = aiky, (2j) + azky,(2;) for some constants ay, ay. Let ¢y :=
1 —|A1]2. Then we have

co(1 — (D) + Do)z + D1p2z))
= CL181(1 - (/\1 +p2)zg + )\1]922 ) + a232(1 - ()\1 +p1)Zg + >\1p12 )

Equating coefficients, we find that

Co = aisy+azsy (3.80)
Co(ﬁl + ﬁQ) = (CL181 + ClgSg)Xl + CZ181}_?2 + GQSQﬁl (381)
copipz = (a151p, + a232]51))\_1. (3.82)

Using (3.82) and (3.80) into (3.81), we get

co(Py + Pa) = Aico + Co%~ (3.83)

1
Note that if Ay = 0, then this contradicts with (3.81). There is an obvious solution
0 (3.83), namely ¢y = 0. Equivalently A\; = oo (this is because we are identifying
oo with T, the boundary of the disk). Then our ordering on the set of test functions
imply that \; = oo for all j =2,..., N — 1. So this solution corresponds to the test
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function ¢° = B. Thus for ¢y # 0, from (3.83) we get )\_12 — (pr +P2)M +Dipz = 0.
Hence A1 € {p1,p2}. If N =2, we stop at this point.
Otherwise, we take A\; = p;. By (3.78) with k = 2, we likewise have that vector

(my, (2j)kx, (2;)) is orthogonal to ¢, and so there are constants aq, as such that

zi—p1 V1= [Xa*  arsi(1 —D2z;) + azsa(1 — prz;)

1—prz 1— Doz (1 —Pprz)(1 —P225)

So either Ay = oo or

V1= [Xe2(zj — p1)(1 = P2zj) = ars1(1 — P2z;) (2 — Aazj) + azsa(l — Prz;) (1 — Aazj).

In the first case, the ordering implies that A\; = oo for all j = 3,...,00. For the
second case, equating coefficients yields Ay = py or 1/py. Since 1/p71 ¢ D, we must
have Ay = py. In the same manner, if we had assumed that A; = py, we could have
Ay = py or oco. If N = 3, we stop.

If N > 3, by (3.78) with k£ = 3 we now have the vector (my, (z;)my,(2;)kx,(25))
is orthogonal to c. Now, we have A\; = p;, Ay = po (or vice versa). Then a similar
calculation yields A3 = 1/py or 1/p3. These are both outside of D, so are ruled out.
Then only other alternative is A3 = oo. It follows that v, is supported at three
points in ¥; namely Bm,, , Bm,, and Bm,, m,,. Then by Lemma 3.8.5 there exists
positive semidefinite matrices Py, Py, Pio € M5(C) such that

v=01P 4 02 + 012 P12,

where 01, 02, 12 are the unit scalar point masses of measures supported at Bm,,, , Bm,,,,

Bmy,,m,,, respectively. Letting Po, = u({1°}), gives that
p=01P1 + 02Ps + 012P12 + 0o0 Peo-
Finally, by Lemma 3.8.4, we have
Iy = (W) = P+ Po + Pis + Px.

]

The proof of Theorem 3.8.1. Assume by the contradiction that Apg € Cy 5. Then
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by Lemma 3.8.4 we have

L= I@IQ) _ [ k() dulw)

1 —ay* v

for all z,y € S\ Z(B). Multiplying both sides by 1 — zy* and using (3.50) we get
L= H@() = [ (1= Die)Drw)) dut).
WB

for all z,y € S\ Z(B). By Lemma 3.8.6, the measure p only supported at functions
Bmy,, Bm,,, Bm, m,, in ¥}, and there exists a positive semidefinite matrices
Pl,PQ, P127P<x> GMQ((C) such that Pi+ P+ P+ P =1 and

Ly = () (y)" = (1= my, (2)mp, (y)*) P + (1 = myp, (2)my, (y)*) Py

) ’ (3.84)
+ (1 = myp, (@) my, (z)my, (y) 'myp, (y)") Pr
for x,y € S\ Z(B). This simplifies to
(@)1 (y)" = myp, (2)myp, ()" Py + myp, (2)my, ()" P (3.85)
+ My, ()M, ()0, () 1, (Y) " Pra + Poo
for x,y € S\ Z(B). Decompose P, =TT,z = 1,2,12, 0o, where
a, b,
T, = .
Let Cy = |my,(p1)|* and Cy = |my, (p2)|>. From (3.85) we get
1/0 0
I (p) I (py)* = ~
oI = | (0 . a)
(3.86)

Chlas]? + |as|* Ciazby + Gocboo
Chazhs + assbos C1(|b2]? + [c2]?) + [boo]® + |caol? )
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(1 + (Y 0)
(3.87)

1
2
( blar|? + |an)? Cyttiby + Tacboc )

Ca1by + Aoobos  Co(|b1]? + |c1]?) + |bos|? + |coo|?

H(p1) I (p2)" = ! <_O 0) = P, (3.88)

2 Mp, <p2) 1

From the first of these equations, we have a,, = 0, while the second gives by, = oo =
0, and so P,, = 0. But this contradicts with the last equation. By the way, positivity
of P, would require that p; = ps, which is also contradicts our assumptions. This

completes the proof. O
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Future projects

4.1 Planar domains associated to the distinguished
variety 43

The annuli are homeomorphic to the distinguished varieties determined by

2 w—a; W — as

zt = — —
l—aqwl—aw

for aj,as € D and (z,w) € D’ [44]. Also every bounded planar domain with finitely
many piecewise analytic boundary curves corresponds to a distinguished variety [49].
Conversely, we pose the following: Is there a planar domain which is homeomorphic

to the distinguished variety .45 for some B?

4.2 The rational dilation problem on more gen-
eral distinguished varieties

An interesting example of distinguished varieties

It is interesting to know whether rational dilation holds on the distinguished varieties

of the form
Bi(2) = By(w) for (z,w) € D, (4.1)
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where By, By are finite Blaschke products. For instance, if all the zeros of B, B,

are zero then we obtain varieties of the form
—2
2™ =w" for (z,w) €D,

where m,n are the degrees of By, By, respectively. In [24], it has been shown that

rational dilation holds for the distinguished variety

22 = w? for (z,w) € D

We conjecture that rational dilation also holds on the distinguished variety

2F = wk for (z,w) € ﬁz,

where k € N.

4.3 Intersection of algebras of the form C+BH> (D)

Let
ng = C+ Bj(2)H* (D)

for j = 1,...,n, where B; are finite Blaschke products and n € N. Then we can
consider the intersection

Hep =N Hg .
The following list of questions are naturally posed:
1) What is a minimal set of test functions for Hgp 7

2) What is the distinguished variety associated to the algebra @/p, 1= N}_; /5.7,
where @5, = C+ B;(2)A(D) for j =1,...,n.

4) Does rational dilation holds for the distinguished variety associated to </ p,?

4.3.1 Sum of algebras of the form C + B(z) H*(D)

Another interesting algebras would be of the form
Hy g :=C+ By(2)H*(D) + - - - + B, (2) H*(D),
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where B;,j = 1,...,n are the finite Blaschke product and n € N. So we could ask

the same questions as above.

4.3.2 Constrained subalgebras of A(D")

Other interesting algebras include C+22A(D?) and C+ z?w?A(D?) or more generally
1p, = C+ [ Bi(z)AD"),

J=1

where each Bj(z;) is a finite Blaschke product. Again, the same questions can be

posed for these.
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A.1 The Banach algebra H*(Ky)

Recall that if have a set of test functions ¥ on a set X, then we form a set of
admissible kernel Ky = {k : X x X — C: ((1 — ¢ (x)¥(y)")k(z,y) > 0)Vy € ¥}
associated to ¥. Then we define a normed algebra H*>°(Ky) consisting of those
functions f : X — C for which there is a finite constant C' > 0 such that for all
k € Ky, the kernel

((C* = f(@) f(y)")k(z,y))

is positive semi-definite, and the norm of f is given by

£l ey = f{C 2 ((C* = f(@) f(y)")k(z,y)) = for all k € Ky}

Let ¢, ¢ € H*(Ky). For convenience set ||| g (x,) = Cp and ||@| g (k) = Cs-
We prove the submultiplicativity :

0P|l oo (kcp) < N0l oo ) |@]] o0 (10 ) -

Let F' C X be a finite set with |F'| = n. Then by definition we have

((CF = e(@)eW) k() \ep 2 0

and

((C3 = ¢(@)b(¥) k(2. 9)), e 2 0.
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for all k € Ky and all (x,y) € F x F. Consequently,

(((CoCo)” — 9(@)(x) (P (w))) k(x.9)) o
= (G (C2-pla)e <>>k<w,y>)w
+ (el@)pl)” (€4 — d@)o)) k(z.v),,p > 0.

for all k € Ky and all (z,y) € F' x F. Then by definition ||p¢|| ge(xc,) < C,Cy. For
the further properties of this norm we refer to [27, 33, 23].

Remark A.1.1. The kernel

1 when z =y
k(z,y) = (A1)
0 when x #vy

is an admissible kernel, since

L—(z)¢(21) O 0
(1= WD b Der = | o 0 =
0 1 —Y(20)0(2n)

because sup,cy [¢(2)| < 1for all z € D. We also claim that the Szegd kernel ks(x,y)

is an admissible kernel. To prove this, let a € C". Then

(0= v@Y @) ks(@,y), er ara)
= aia;(1 — (z:)p(wy))ks (2, wy)

ij=1

= > may(1 = (=) (wy) (ks )
i,j=1

- Z a_iaj <kwja k‘zl> - Z a_iaj <w(wj)kwja ¢(Zl)kzz>
i,j=1 6,j=1

= Z <ajkw] ) alk21> - Z <ajw<wj)kwj ) azw(zz)kzz>
'j—l ij=1

_ ZHal 2= Nl (zi)ke |-
=1
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Let m = maxj<i<n |¢(ZZ)| Then

(= (@)b(y)") ks(@ 1)), per asa) = Zuam 21— m?) > 0,

The next theorem shows that H>(Ky) is a complete space.

Theorem A.1.2 ([23, Lemma 2.15]). The space H*(KCy) is complete in the norm
topology. Furthermore, its norm closed unit ball H{°(KCy) is closed in both the topol-

oqy of pointwise convergence and the topology of uniformly convergence on compact

subsets of X.

A.2 Multiplication operators

It can be shown that the multipliers of the Hardy-Hilbert space HZ, i.e. the func-
tions ¢ such that ¢f is in H2, whenever f is in HZ, are precisely H>*(D), the
bounded analytic functions on D ([7, Theorem 3.24]). Moreover, || My|| = ||¢| o (m)-
Now we claim that evaluation at any point z in ID is a continuous linear functional
on Hé2. Recall that for every z € DD, the linear evaluation functional F, : Hég — D
is defined by E.(f) = f(2). Indeed we compute

BNl = 1) anz"] Z!anl\z

00 00 1/2
1
< (ZO !%!2) (Zﬂ ’Z|2n> = |IfIl- \/TW

This shows that every power series in HZ, converges to a function on the disk.

Moreover the map FE. is bounded with |E.|| < —= and so claim is proved.

V1-]z2’
(This also shows that HZ; is a RKHS on D.)
For a point ¢ € D, note that

[e.9]

g(z) = Zznzn € HE.

n=0
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and for any f(z) = > " a,z" € HZ, we have that

o0

(f.9) = anl" = f(Q).

n=0

Thus, g is the reproducing kernel for ¢ and so

1

K(z,0) = kel2) = () = 302" = 1=

So we have that

{fike) = F(C)

for all ¢ € D for any HZ,.
The observation is that the kernel functions are eigenvectors for the adjoints of

multiplication operators:

(f, Mgke) = (0 f k) = SO F(Q) = (f,o(Oke) VS € Hea.
Hence M (ch = Mkc,

Theorem A.2.1 ([40]). Let f € H>®(D) be an inner function, then the multipli-
cation operator M; : H*(D) — H?*(D) is an isometry and the range of My is a

reproducing kernel Hilbert space with the kernel %

Proof. Since f is an inner function, for any ¢ € H?(T), we have that

1 2m ; . 1 21 .
1Mpell* = [l fll* = 2—/ [feM)ple)Pdt = o= [ [p(e)?dt = |l
T Jo 2m Jo
and so My is an isometry. By [40, Proposition 6.2] the kernel function ! (12? is
kernel for range of M. O]

A.3 The Shilov boundary

Let {2 be a domain in C? and {2 be its closure. Let also C'(£2) be the space of all
continuous complex-valued functions on {2, with supremum norm. Then a closed
subalgebra A(£2) C C(£2) is called a uniform algebra if 1 € A(f2) and A(S?)

separates the points of (2.
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The notion of Shilov or distinguished boundary is a useful boundary because of

being the smallest boundary in the following sense:

Definition A.3.1 ([30, 1]). Let A(§2) be a uniform algebra on 2 € C?. A boundary
for 2 is a subset X of 2 such that every function in A(f2) attains its maximum
modulus on the set X. By definitin 3.3.8 and [41, Proposition 6.4] if {2 is polyno-
mially convex, then there is a smallest closed boundary of 2 that is contained in
all closed boundaries of 2. We call this boundary the Shilov or distinguished
boundary of {2 and denote it by 9f2.

Example A.3.2. Let 2 be the closed bidisk, i.e.
D=DxD=D"={(z,w) €eC2: |2| < 1,|w| < 1}.
Its topological boundary is
TxDUDxT={(z,w) € C*: |2],|w| < 1,|z| =1 or |w| =1}
whereas its Shilov boundary is

0N =TxT={(z,w) €C*: |2| = |w| = 1}.

The last statement is obtained by applying twice the maximum modulus principle
with respect to each complex variable. Note that by exactly the same argument we

can see that
oD" = T".
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