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Abstract 

Throughout the hydrocarbon supply chain, process optimisation is driven by the desire to 

maximise profit margins. In the global refining marketplace, the biggest cost is crude oil and to 

improve margins increasing use of non-conventional crude oils (also called opportunity crudes) 

lowers the cost of the crude blend. Opportunity crudes are selected based on market forces, for 

example in North America, the production booms in shale oil and tar sands have provided ample 

amounts of new low-cost oils which refineries are buying and processing. 

 

However, as these oils are new to the marketplace many refineries have never processed them 

before which brings about challenges. These are mainly a lack of understanding of the quality 

of the crude oil being processed (shale oils for example can come from many thousands of 

wells) and how these oils interact with the more conventional refinery feedstocks (such as Brent 

or West Texas Intermediate).  

 

The Eng.D project was carried out in collaboration with Intertek Group plc, a multinational 

corporate organisation consisting of more than 42,000 employees in over 1,000 locations in 

over 100 countries across the globe, and was aimed at developing solutions to address crude oil 

processing problems. The issues covered over the course of the project fall into the areas of: 

enhancing understanding of crude oil quality, addressing issues of hydrocarbon blend stability 

because of blending and better utilisation of process data to promote efficiency and facilitate 

process troubleshooting.  

 

As such, the Eng.D project was firstly concerned with developing a robust chemometric model, 

based on Near Infrared spectra, for use in a major Asian refinery. Once built and tuned this 

model was ultimately used to predict physical properties (such as density, sulphur content and 

distillation properties) of every crude oil delivery and also online in the refinery for frequent 

prediction of crude oil blend properties. 

 

The second project was then aimed at solving refinery issues of the deposition of undesirable 

material (such as wax and asphaltenes) in pipes and process units. The research carried out 

during the course of the Eng.D project resulted in a patented approach to characterise these 

issues and provide refineries strategies to mitigate the problems. This approach is not just 

limited to crude oils but can be applied to any blended hydrocarbon streams and detects the 

precipitation of undesirable material using Near Infrared spectroscopy and microscopy. This 
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approach has now been applied to solving problems of blending crude oils in refineries and 

offshore, heavy fuel oils, shale oils and marine fuels. 

 

Finally, the application of smart data analytics in an upstream installation was investigated. The 

objective of this application was to provide a customer with process troubleshooting for a 

historical recurring pump failure issue. To achieve this, the root cause of the issue first needed 

to be identified and then a solution developed.  
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TriChloroEthylene TCE 

True Boiling Point TBP 

Vapour Pressure Osmometry VPO 

Wavelet Neural Network WNN 
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Chapter 1. Introduction 

Throughout the hydrocarbon supply chain, process optimisation is driven by the desire to 

maximise profit margins. In the global refining marketplace, the biggest cost is crude oil and to 

improve margins increasing use of non-conventional crude oils such as shale oils or tar sands 

high (also called opportunity crudes) lowers the cost of the crude blend. Opportunity crudes are 

selected based on market forces, for example in North America, the production booms in shale 

oil and tar sands have provided ample amounts of new low-cost oils which refineries are buying 

and processing. 

 

However, as these oils are new to the marketplace and many refineries have never processed 

them before it brings about challenges including: lack of understanding of the quality of the 

crude oil being processed (shale oils for example can come from many thousands of wells) and 

how these oils interact with the more conventional refinery feedstocks (such as Brent or West 

Texas Intermediate).  

 Intertek 

Intertek Group plc are a multinational corporate organisation consisting of more than 42,000 

employees in over 1,000 locations in over 100 countries across the globe.  

 

Through their global network of state-of-the-art facilities and industry-leading technical 

expertise Intertek provides innovative and bespoke Assurance, Testing, Inspection and 

Certification (ATIC) services to customers in a variety of sectors including food, 

pharmaceuticals, electrical, automotive and oil and gas. (Intertek, 2016). 

 

The Exploration and Production (E&P) division is one of Intertek’s oil and gas focussed 

business lines and primarily deals with upstream operations, the locations of the E&P division 

globally are shown in Figure 1-1.  
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Figure 1-1: Global Exploration and Production business line locations 

 

The E&P business line is itself split into four sub business lines: Upstream Services, Production 

and Integrity Assurance, Calibration and Metering and Production Support.  

 

The Production Support sub business line is responsible for activities including hydrocarbon 

characterisation, pipeline allocation, crude oil assay, oil condition monitoring and deposits 

analysis. Because of the nature of its business, the Production Support sub business line 

supports the deployment of Intertek’s chemometric modelling software ‘PT5Technology’ on a 

global basis. 

 PT5Technology 

PT5 measurement technology (PT5Technology) is used across the entire crude oil supply chain, 

including crude oil production, pipelines, refining and biofuel blending activities.  The 

combined topological modelling and near infrared analysis combination supports quality 

control and control systems, enhances production yields and helps customers run their business 

more efficiently and profitably. 

 

PT5 software is combined with on-line near infrared (NIR) analysis to provide rapid product 

analysis, exploiting real time property measurement for improved control and optimisation. 

When Intertek's PT5 software is combined with on-line NIR Analysis, accurate and real-time 

data is available for online composition measurement and quality assurance on platforms and 

pipelines, fiscal allocation and hydrocarbon accounting for shared pipeline system, well-stream 
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allocations, multiphase meter validation and distillation column reconciliation. The technology 

can be used across the whole spectrum, including MIR (Mid Infra-Red), NIR (Near Infra-Red), 

Nuclear Magnetic Resonance (NMR) and Gas Chromatography (GC). 

 Objectives 

This Eng.D project has been focused on working in collaboration with the industrial partner 

Intertek to develop commercially viable solutions to provide customers in the hydrocarbon-

processing sector with the following: 

1. Develop a methodology for rapid identification of crude oil composition both online 

and offline. 

2. Implement a tool to facilitate optimisation of crude blending performance utilising 

the information from objective 1. 

3. Develop an approach to characterise the stability and compatibility of blended 

hydrocarbon streams 

4. Apply data analytics approaches to solve historical hydrocarbon processing issues 

 Contributions 

My contribution has been to firstly critique and improve existing chemometric approaches for 

helping refineries understand and predict the quality of crude oils from Near Infrared (NIR) 

spectra. Using this information has helped refineries to inform crude processing and process 

control decisions.  

 

Secondly, as a consequence of the research, a process was developed to assess the compatibility 

of blended crude oils. This is of critical importance to the industry because blending 

incompatible crude oils can elicit precipitation of problematic material such as wax and 

asphaltene. These can contribute to heat exchanger and distillation column fouling, block pipes 

and storage tank offtakes to name a few of the multitude of undesirable effects. 

 

Finally, further development of the data analytics approach of the industrial partner to solving 

client specific issues has shown exciting outcomes including maximisation of refinery fractions 

and improving process stability. 

 Thesis Overview 

This thesis is designed to build up the story of the work, to take the reader on the research 

journey and ultimately present the achievements of the project in a series of case studies.  
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As such an initial literature review draws attention to literature relevant to the research and 

covers the oil & gas industry in general as well as the principles of oil refining. It then drills 

down to the chemistry of crude oil stability and the economic drivers to develop a solution. 

Finally, it looks at spectroscopic techniques for hydrocarbon characterisation and modelling 

techniques for both chemometric and process data analysis 

 

The first case study then explores the contributions of the thesis to the field of chemometrics. 

It describes the refinement of the modelling tool and then demonstrates its application within 

an Asian refinery. 

 

The thesis then goes on to describe the development and application of an innovative 

methodology, patented during the course of the Eng.D project, for describing and predicting 

the stability of blended crude oils. The benefits of the research and development are then 

contextualised in two case studies, one that looks at the blending of heavy fuel oil in refineries 

and another which looks at challenges of fuel blending in the maritime sector. 

 

Finally, the thesis presents a study of the application of multivariate statistics to an offshore 

facility and talks through an example of the application of data analytics to resolve a historical 

pump failure problem.  
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Chapter 2. Literature Review 

 

In this section different themes from the literature, relevant to the industry and the research will 

be explored. Examples of the application of various techniques to the characterisation of 

hydrocarbon process streams, as well as non oil and gas applications will be explored with the 

intention of drawing out the strengths and weaknesses of the methodologies used in the rearach. 

 

As this project is predominantly focussed in the oil and gas industry, an overview of crude oil 

formation, exploration, production and refining will be examined. Crude oil is the key resource 

in the world today, almost everyone comes into contact with a crude oil derivative product on 

a daily basis, whether it is in the form of plastics, fuels or paints and as such the price of oil is 

an important factor, which affects daily lives.  

 

A voracious appetite for crude oil from rapidly growing economies such as China and India 

was driving the price up. However, due to the shale oil boom, weaker than anticipated global 

demand, and the refusal of OPEC countries (particularly Saudi Arabia) to cut production means 

that the price of oil has fallen dramatically since the start of the project in 2011. 

 

This literature review draws attention to key areas relevant to the research and covers the oil & 

gas industry in general as well as the principles of oil refining. It then drills down to the 

chemistry of crude oil stability and the economic drivers to develop a solution. Finally, it looks 

at spectroscopic techniques for hydrocarbon characterisation and modelling techniques for both 

chemometric and process data analysis 

 

 Formation 

 

Crude oil is formed from prehistoric flora and fauna falling to the beds of lakes and warm 

shallow seas. This was mixed with the mud and sediments forming anaerobic conditions. As a 

consequence of the conditions, the organic material did not decompose in the normal manner 

by aerobic bacteria.  

 

Over a period of many years, more layers of mud and sediment build up burying the material 

deeper. As more weight pressed down the heat and pressure increased, this caused a 

transformation of the material into Kerogen (a collection of organic compounds found in 
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sedimentary rock). with the addition of more heat and pressure the Kerogen was then altered 

into liquid and gaseous hydrocarbons by a process called catagenesis (Braun and Burnham, 

1993). 

 

To trap oil after it has formed it is necessary for three conditions to exist. First of all a rock rich 

in organic matter has to have been buried deep enough to have experienced the intense heat and 

pressure required for the formation of oil. Secondly, a porous rock must be in place, which can 

act as a reservoir for the oil to accumulate. Finally, a non-porous rock must sit over the porous 

and act as a cap to stop the oil seeping out of the reservoir. Shown in Figure 2-1 are two types 

of traps that occur to create oil reservoirs. The first (Figure 2-1a) is an anticline trap; this is 

caused by ripples in the earth’s plate due to tectonic movement. The ripples are called anticlines 

at the crest and synclines at the trough (Grace, 2007). Figure 2-1b is a fault trap, this is caused 

by tectonic plate shearing (Burg, Selves and Colin, 1997). 

 

a. 

 

b. 

 

Figure 2-1: Showing an anticline trap (a) and a fault trap (b) taken from Burg et al. (1997)  

 Composition 

 

The precise chemical composition of petroleum can vary with location and the age of the field 

in additions to any variations that occur with the depth of the individual well (Speight, 2001). 

It is also possible that two wells that are adjacent to each other may produce oil that is of varying 

composition. However all crude oils contain at least some of the following components: 

Hydrocarbons, nitrogen compounds, oxygen compounds, sulphur compounds and metallic 

constituents (Speight, 2001). 

 

Speight (2001) also states that the consideration of the atomic hydrogen-carbon ratio, sulphur 

content, and API gravity are no longer adequate to the task of determining refining behaviour. 

This is in strong agreement with the research work carried out in this project, a large constituent 

of which is aimed at providing refiners with more information in a shorter time space to allow 
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for improved process optimisation.  As will be seen in a case study later on, the measurement 

of API gravity and Sulphur measurements of both neat crudes and blends are the predominant 

metrics used by refineries for quality monitoring and economic optimisation, as they are quick, 

simple and cheap tests.  

 

Although crude oil is composed of a plethora of components including inorganic components 

such as salts and metals (such as vanadium, nickel and iron), by far the most abundant and 

useful constituent of crude oils are the hydrocarbons, for convenience these can be divided into 

three groups (paraffin’s, napthenes and aromatics) (Speight, 2001) and are shown in Figure 2-2: 

 

Figure 2-2: A representation of the chemical forms of Paraffin’s, Naphthenes and Aromatics taken from Naskar (2015) 

 

1. Paraffin’s - Saturated hydrocarbons with straight or branched chains, but without any ring 

structure. 

2. Naphthenes - Saturated hydrocarbons containing one or more rings, each of which may have 

one or more paraffinic side chains (more correctly known as alicyclic hydrocarbons). 

3. Aromatics Hydrocarbons containing one or more aromatic nuclei, such as benzene, 

naphthalene, and phenanthrene ring systems, which may be linked up with (substituted) 

naphthene rings and/or paraffinic side chains.  

 

A variant of this classifies crude oils depending on the characteristics of the distillation residues 

and whether it is asphalt-base, paraffin base or mixed base. (Guthrie, 1960). 

 

However the above classifications do not work well for heavy oils (Speight, 2016) and does not 

describe all the constituents which must be considered when describing crude oil blending 
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behaviour (particularly with respect to crude oil stability) and as a consequence a four group 

classification of crude oils is more widely used. 

 

This model, named SARA, is discussed in more detail in section 2.14 and includes Saturates 

(S) as an umbrella term covering paraffin’s and naphthenes. Aromatics (A), Resins (R) which 

are a solubility group of molecules with both polar and non-polar constituent, miscible with 

heptane and Asphaltenes (A) which are the most polar fraction of crude oil, soluble in toluene 

and insoluble in heptane. In this process, the oil is first deasphalted to obtain asphaltenes + SAR 

fraction. This is then separated by HPLC using either bonded phase columns or a combination 

of silica and bonded phase columns (Lundanes and Greibrokk, 1994). 

 

 

Figure 2-3: SARA separation taken from Lundanes and Greibrokk (1994) 

 Exploration and Production 

 

Petroleum exploration is the domain of geologists and geophysicists. It is not economically 

viable to drill holes in the ground and hope to strike lucky, although this has been historically 

undertaken by both large and small energy companies, a practice known as ‘wildcatting’.  The 

normal practice before drilling, however, is to carry out full and proper geographical surveys.  

 

It is a well understood fact that there are locations in the world where oil is more prevalent. 

Indeed, there are parts of the world (such as Casper, Wyoming) where oil seeps to the surface, 

drilling in that area found a vast oil field, which is still producing to this day. In other places 

visible mounds where the earth has been pushed up by the pressure of subterranean oil (such as 

tea pot dome, Wyoming) has also yielded oil strikes (Grace, 2007).  

 

Crude Oil

Asphaltenes Resins Aromatics Saturates

Maltenes

n-Hexane

Solution

N-Hexane

Silica

N-HexaneTrichloromethane
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However, in locations where oil is not so obvious, surveys are carried out. Figure 2-4 is a 

diagram of the undertaking of a seismic survey to find the location of oil. The fundamentals of 

the seismic survey are straightforward, an explosion on the surface sends shocks rippling 

through the rock strata, and these are deflected off the different layers of rock and are detected 

by instruments on the surface of the earth. The time taken for the echo to be detected and the 

intensity of the signal are then recorded. 

 

Figure 2-4: A seismic survey taken from Grace (2007) 

 

Once the oil has been located, it then has to be reached by drilling. Figure 2-5 shows a picture 

of a drilling rig (left) and a schematic of the process (right). This particular example is a land 

drilling rig however; the principles of both exploration and drilling at sea are the same. Basic 

drilling has not changed for over 100 years; the only advancements made are in what is known 

as ‘directional drilling.’  

 

Directional drilling involves directing the drill bit whilst drilling. In this way, it can pass through 

faults that can otherwise separate wells. This has been revolutionary in allowing more oil to be 

extracted from previously depleted wells. Other methodologies employed for enhancing well 

recovery are performed post drilling and known as enhanced oil recovery (EOR) techniques 

and can be generally classified as either thermal injection or gas recovery; these are discussed 

in more detail in 2.3.1. 

  

There are many problems that can arise during the drilling process such as leakage of oil during 

drilling due to the lack of a proper seal (Ibrahim, 2007). The latest proposed method of drilling 

is to use laser drilling. This method will eliminate the current problems with conventional 

drilling, and is also less expensive than current methods. It has also found widespread and very 

successful use in other industries (Ibrahim, 2007). 
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a. 

 

b. 

 

Figure 2-5: Showing an oil drilling rig (a) and a schematic of drilling (b) taken from Grace (2007) 

 

Another new proposal reported is water jet drilling which has similar advantages to laser 

drilling.  It has also been postulated that the two methodologies are combined, using laser 

drilling to start the hole and then following it up with water jet drilling to widen it. (Ibrahim, 

2007). 

 Enhanced Oil Recovery (EOR) 

 

Directional drilling is not the only methodology that has allowed greater well production to be 

possible. Other post drilling EOR strategies are utilised to maximise well recovery, these were 

defined by Islam (2000) as a recovery scheme that uses the injection of fluids not normally 

present in the reservoir. 

 

Most EOR techniques are based on oil viscosity reduction and/or improvement of the mobility 

ratio by increasing the displacement phase viscosity or by reducing oil viscosity and/or 

interfacial tension between injected fluid and oil (Ibrahim, 2007). 

 

Three main categories of EOR that have been successful to varying degrees are (Koottungal, 

2004; Ibrahim, 2007; Alvarado and Manrique, 2010): 

 

• Thermal recovery - Involves the introduction of heat, such as the injection of steam to 

lower the viscosity or thin the heavy viscous oil, and so improve its ability to flow 
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through the reservoir. Thermal techniques account for over 50% of US EOR production 

and enjoy extensive popularity throughout the Canadian tar sands fields. 

• Gas injection - Uses gases such as natural gas, nitrogen, or carbon dioxide that expand 

in a reservoir to push additional oil to a production wellbore, or other gases that dissolve 

in the oil to lower its viscosity and improve its flow rate. 

• Chemical Injection – Widely used in the 1980’s but has been in decline ever since. 

Chemical injection strategies involve flooding wells with manufactured compounds, 

usually polymeric in nature, to increase well production. This is achieved by adding the 

polymer to waterflood (a technique for maintaining well pressure by injecting water into 

the well to displace the oil) fluids alter viscosity and thus increase pore mobility and 

waterflood characteristics. 

 

 Refining 

 

Refineries come in many sizes and complexities, however even the ‘simplest’ of refineries still 

has upstream and downstream processing. The heart of a refinery is the crude distillation unit 

(CDU). Figure 2-6 shows a simplified refinery flow sheet. It can be seen that the crude from 

the tank farm flows into the CDU where it undergoes fractionation. The majority of these 

fractions then undergo additional downstream processing to turn them into more valuable 

refined products.  

 

An expanded view of the CDU is shown in Figure 2-7 complete with the temperatures of the 

fractions (also known as ‘cut points) and the chain lengths that come off at each cut. 
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Figure 2-6: Refinery flowsheet taken from Kraus (1996) 
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Figure 2-7: showing the fraction temperatures and chain lengths taken from Energia (2010) 

 

Refineries can be optimised (both in terms of design and operation) to process crudes in a 

variety of ways. The refineries of North America tend to be optimised to produce light distillate 

products such as gasoline, whereas European refineries tend to be orientated towards the 

production of middle distillates such as Diesel and Jet fuel (Energia, 2010). In addition, older 

refineries tend to be optimised to produce more gasoline due to the fact that it is only relatively 

recently that diesel cars have made diesel a more popular commercial fuel.  

 

A conference paper by (Blanco et al. 2005) discusses crude oil processing and planning 

throughout the whole supply chain. It also covers the important issue of optimizing refinery 

blending processes. Refinery blending is essential to refinery economics because by having an 

effective blending model the refinery can be operated at the best possible margin.  

 

For example, light sweet (those with less than 0.5 weight percent sulphur) crudes (such as Brent 

or Arab Light) command a higher price than heavier sour crudes (such as those from Venezuela 

or the Canadian Tar Sands). Thus to keep down costs and maximise margins crudes are blended 

before the CDU. The object of the blend optimisation is to minimise the cost of the blend whilst 

still meeting current refinery operating constraints (such as Sulphur, API, TBP etc.).   
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Extensive work has been carried out on the subject of scheduling refinery crude oil operations 

and processing. Mouret (2010) produced an extensive Ph.D. dissertation on the subject of 

scheduling refinery operations, in the thesis the problem of scheduling refinery processes is 

approached by using both linear and non-linear mixed integer procedures.  

 

Blending of crude oils to maximise refinery economics is a key theme for the Eng.D project. 

The organic deposition work was sparked by the identified need to develop a methodology to 

assess stability of blended crude oils. This is becoming more important with the increased 

amount of low cost (but also not well understood) opportunity oils in the marketplace such as 

U.S. shale oils and Canadian tar sands. 

 Primary Reference Data 

No two crude oils are the same, each has unique molecular and chemical characteristics 

resulting in crucial differences in crude oil quality. These in turn have an effect on the valuation 

of each individual crude. 

 

The physical testing results of the individual fractions contained within each crude provide 

extensive detailed analysis data for refiners, oil traders and producers. The data also helps 

producers design new refineries to maximise product output and or type according to the 

feedstock provided.   

 

Existing refineries can determine if a new crude feedstock is compatible, or if the crude could 

cause yield, quality, production, environmental and other problems. Feedstock assay data is 

used for detailed refinery engineering, client marketing purposes and an important tool in the 

refining process.  

 

To generate the data used within the chemometric models, ASTM methodologies for crude oil 

analysis are applied to generate the primary reference data. The case studies presented later 

focus primarily on distillation data, density and sulphur content so those will now be described. 

 

 ASTM D2892/D5236 – Distillation Curve 

Used to produce True Boiling Point (TBP) curve for the determination of the %wt or %vol 

against temperature curve and also to produce fractions for further analysis.   This distillation 

corresponds very closely to the type of fractionation obtained in a refinery. 
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The method is split over two stages, firstly the atmospheric (D2892) still is charged 

with crude oil and then distilled up to 350°C. The residue from this distillation is then 

taken and charged to the high vacuum (D5236) still where it is then taken to 565°C.  

 

Combining the two methods then gives a full distillation profile of the crude oils which 

can be used for optimisation. It will be seen in the later case study however that the 

crossover can create variability in the dataset and make this region difficult to model. 

This can be seen in the below table where the reproducibility in wt% over this the 

crossover (circa. 350°C) is higher than the other fractions until 565°C+ is reached, this 

also has a high reproducibility as the amount of residue in a crude oil can vary 

dramatically depending on its molecular composition 

 

Method Cut ASTM Reproduicibility (wt%) 

D
2
8

9
2

 

W_IBP-45 1.3 

W_45-60 1.3 

W_60-75 1.3 

W_75-90 1.3 

W_90-105 1.3 

W_105-120 1.3 

W_120-135 1.3 

W_135-165 1.3 

W_165-200 1.3 

W_200-250 1.4 

W_250-300 1.4 

W_300-350 1.4 

D
5

2
3
6

 

W_350-400 2.7 

W_400-450 2.5 

W_450-500 2 

W_500-550 2 

W_550-565 2 

W_565°C+ 2.9 

 

 ASTM D5002 - Density 

 

Price for crude and processing needs are usually initially based on density.   Used in conjunction 

with other analysis density can be used to give approximate hydrocarbon composition and heat 

of combustion.   
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The ASTM method uses a digital densitometer and stipulates the results must be reported in 

grams per centimetre cubed (g/cm3) to 4 decimal place accuracy. Density is a quick and simple 

test for crude oil quality and is subject to the following reproducibility: 

 

 0.00412*X (2-1) 

 

Where X is the average of two results. To critique modelling data this is taken as the average 

of the laboratory data and the prediction generate by the chemometric model for the same 

sample. 

 

 ASTM D4294 - Sulphur 

High sulphur content in petroleum products may be undesirable as it can be corrosive and create 

an environmental hazard when burned.  For these reasons, sulphur limitations are specified in 

the quality control of fuels, solvents etc.  Hydrogen sulphide deactivates catalysts; feed 

pretreating can be used to remove these materials.   

 

A hydrotreater is used to convert organic sulphur and nitrogen compounds to hydrogen sulphide 

and ammonia, which are then removed from the system with the unreacted hydrogen.  The 

hydrogen required is obtained from the catalytic reformer.  Sulphur is removed to reduce or 

eliminate corrosion during refining, handling or in the use of various products.  To produce 

products with an acceptable odour and specification and to improve burning characteristics of 

fuel oils. 

 

In the laboratory Sulphur is measured using X-Ray Diffraction (XRD) and is subject to the 

following reproducibility 

 

 1.9182*((X*10,000) ^ 0.6446))/10000 (2-2) 

   

Where X is once again the average of two results. To critique modelling data this is taken as 

the average of the laboratory data and the prediction generate by the chemometric model for 

the same sample. 
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 Spectroscopy 

 

Shown in Figure 2-8 is the spectrum of light. It clearly shows the well-known groups of the 

electromagnetic spectrum including microwaves, X-Rays, UV and Infrared. 

 

Figure 2-8: The spectrum of light taken from NG (2012) 

 

Typically, areas of the electromagnetic spectrum are expressed in terms of the distance between 

the peaks of the waves; in the diagram this is shown in meters, it can also be expressed in terms 

of frequency or the number of waves per second (for which the units are Hertz).  

 

In chemometric applications different regions are described in terms of wavenumber or the 

number of waves per centimetre (give units of cm-1). This is primarily for convenience because 

wavenumber is directly proportional to photon energy as shown below. 

 

If wavenumber (v’) is equal to reciprocal wavelength (λ): 

 

 𝑣′ =
1

λ
 (2-3) 

 

The energy of a photon (E) is equal to Planck’s constant (h) multiplied by frequency (f): 

 

 𝐸 = ℎ𝑓 (2-4) 
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And the relationship between velocity (v), frequency and wavelength is: 

 

 𝑣 = 𝑓λ (2-5) 

 

By substituting the velocity of a photon as the speed of light (c) the equation becomes: 

 

 𝑐 = 𝑓λ (2-6) 

 

Rearranging: 

 

 𝑓 =
𝑐

λ
 (2-7) 

 

And substituting back into Equation (2-4): 

 

 𝐸 = ℎ𝑐×
1

λ
 (2-8) 

 

 𝐸 = ℎ𝑐𝑣′ (2-9) 

 

 Near Infrared 

 

The Near Infrared Region covers the 4000cm-1 to 12,820cm-1 region (780nm to 2500nm) and 

contains regions known as the combination region and overtone regions. NIR has been used in 

the hydrocarbon processing industry for decades, primarily for fuels blending (Rohrback, 

1991). The attraction of NIR is due to its strong response to functional groups such as 

methylinic, olefinic or aromatic C-H stretching vibrations that are independent of the molecule 

(Kelly and Callis, 1990; Aske et al., 2001). 

 

Near Infrared is a particular focus of this thesis because it has the ability to describe changes in 

both the chemical composition of a hydrocarbon stream (Blanco et al., 2000; Chung and Ku, 

2000) and the physical composition of a hydrocarbon stream (Gossen, MacGregor and Pelton, 

1993; Pasikatan et al., 2003). This has a twofold implication for the analysis of crude oils, that 

the chemical changes in blended oils change and therefore so do the spectra, and also that if any 
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non-linear behaviour occurs (such as particle flocculation) that this should also be picked out 

in the spectra. 

 

Figure 2-9: Different Crude Oil Spectra Baselines 

 

Light scattering by flocculation of particles is exhibited as a distinct change in the spectral 

baseline as a consequence of light scattering. Figure 2-9 shows spectra generated as part of the 

Eng.D project. The basic postulate of spectral blending dictates that for two similar substances 

the spectra blend linearly, in the figure it can be seen that this is the case for the heavy crude 

and aromatic condensate, but not true for the heavy crude and paraffinic condensate. This is 

due to light scattering caused by particle precipitation as a consequence of blending the crude 

oils. 

 Applications of Infrared Spectroscopy in the Hydrocarbon Processing Industry 

 

Both mid and near infrared are versatile spectroscopy methods used throughout the whole of 

industry for a multitude of purposes. In the oil and gas sector (both upstream and downstream) 

much evaluation work has been carried out on both methods. Much of the early work on 

spectroscopy in the field of hydrocarbon processing has been on refined fuels, particularly 

gasoline. A range of techniques and combinations thereof have been explored to improve the 

prediction of gasoline properties, with Octane Number being of particular interest. 

 

However, very little has been written on the subject of the application of NIR to crude oils and 

this is due to the belief that standalone NIR applications are of limited scope because they 

cannot identify individual molecules (Hsu and Robinson, 2006).  
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Other work demonstrates that this is not strictly true and the Eng.D project has proven that with 

the application of good chemometrics, extensive crude oil data can be predicted from NIR 

spectra. For example Hidajat & Chong (2000) built PLS models to predict distillation data and 

density of 110 crude oil samples. In their work, they report that the correlations were very good 

and the predictions had reproducibility limits equivalent to those stated by American Society 

for Testing and Materials, a benchmark for global laboratories and the standard against which 

the models in the Eng.D project were compared. 

 

An evaluation by (Chung et al. 1999) on kerosene found that in a comparative study of MIR 

and NIR modelling with PLS that although both techniques showed good correlation with the 

reference method, NIR provided better calibration performance over MIR. NIR was also found 

to have a greater signal to noise ratio than MIR. This meant that although more qualitative 

information could be gained from the MIR spectra (due to the specific, sharp and highly 

absorbing peaks); the NIR gave more spectral variation and quantitative information necessary 

for PLS modelling. 

 

NIR and MIR was compared by (Felicio et al. 2005) for the prediction of Research Octane 

Number (RON) for gasoline and flash point for gas oil. Models of NIR and MIR spectra were 

built individually and a combined model was also created using single PLS, multiblock PLS 

(MB-PLS) and Serial PLS (S-PLS). The single PLS models were found to be the preferable 

method as they achieved accurate results and in a reasonable time. The overall best predictive 

results however were achieved using S-PLS which consistently achieved better results than both 

single PLS and MB-PLS on both MIR and NIR and proved to be a robust model. MB-PLS was 

found to give results that were an average between the single PLS and S-PLS. This was offset 

however by the fact that S-PLS is a time consuming and computationally expensive algorithm 

for which only marginal predictive gains were achieved.  

 

When comparing the three PLS methods, MIR gave a smaller Root Mean Squared Error of 

Prediction (RMSEP) for benzene (6.41 for MIR versus 12.80 for NIR) when predicting gasoline 

properties, however, NIR was much better when predicting flash point for gas oil (2.98 for NIR 

versus 3.38 for MIR). NIR was also superior when predicting RON number in gasoline (0.52 

for NIR versus 1.83 for MIR).  

 

A comparison of three techniques (NIR, MIR and Raman spectroscopy) was carried out by 

Qiao & Kempen (2004) for characterising amino acids in animal feeds. This investigation found 
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that although NIR is the quicker and easier system for scanning and characterising the samples 

that MIR actually yielded better results, this is because for this particular application it achieves 

better quality spectral responses. However, the paper does state quite firmly that the MIR 

system requires a much more stringent and complicated sample handling; also, the samples 

must be finely ground, as the system used was not ideal for solids. In this investigation Raman 

spectroscopy was found to be an unsuitable method due to its susceptibility from noise, to the 

extent that Qiao & Kempen (2004) abandoned building a calibration model for Raman 

spectroscopy. This investigation while applicable to the thesis in its comparison of spectral 

methodologies also demonstrates the strengths of using NIR for predictive purposes by 

demonstrating the wide applications of spectroscopy and modelling in other industries. 

 

Later work on NIR and MIR spectroscopy has been compared by (Gaydou, Kister and Dupuy, 

2011) for detecting adulteration of diesel and biodiesel blends in vegetal oil using Hierarchical 

PLS (H-PLS) and S-PLS regression analysis. H-PLS is a methodology that forms a PLS 

variable matrix with PCA scores and performing the regression on several concatenated PCA 

score matrices. The analysis suggested that NIR gave better predictions than MIR giving 

consideration to the pre-treatment and selected variables in the analysis. The study also 

concluded that the H-PLS gave slightly better predictive performance than S-PLS. 

 

Balabin & Safieva (2008) analysed three different classification methods for gasoline and 

gasoline fractions, linear discriminant analysis (LDA), soft independent modelling of class 

analogy (SIMCA) and multilayer perceptron (MLP). Classification work of this type is 

important in terms of both quality control and also in cases of gasoline adulteration and 

contamination (Balabin and Safieva, 2008). The most effective method found in this study was 

MLP with an average classification error of 12% in comparison to an average error of 20% for 

LDA. It is important to note that in this study no pre-processing was carried out on the spectra 

to attempt to improve the model discrimination, it was also only a small dataset and thus it is 

possible there was not sufficient data variability for modelling. 

 

In a paper by (Balabin, Safieva and Lomakina, 2007) 6 different regression techniques are 

applied to NIR spectra for predicting properties of gasoline. These are multiple linear regression 

(MLR), principal component regression (PCR), linear PLS, polynomial partial least squares 

regression (Poly-PLS), spline partial least squares regression (Spline-PLS) and artificial neural 

networks (ANN)(Balabin, Safieva and Lomakina, 2007). The three PLS techniques used 

investigate both linear and non-linear PLS. The regular PLS algorithm is a linear method of 
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data analysis. However, by changing one step in the algorithm, it can be transformed to a non-

linear analysis technique. In poly-PLS the function is altered to polynomial and in spline-PLS 

a spline (or piecewise polynomial function) is added (Balabin, Safieva and Lomakina, 2007).  

 

The investigation found that the non-linear methods were the most effective predictive model, 

suggesting that the properties of gasoline are non-linear. In terms of predictive capability and 

minimising the error of prediction the order of the PLS models was found to be Poly-

PLS>Spline-PLS>Linear PLS (Balabin, Safieva and Lomakina, 2007). For this particular 

investigation, the ANN model performed consistently the best in predicting all six of the 

gasoline components; this could be because of both its flexibility and non-linear nature. 

 

NIR spectroscopy was used by Kardamakis & Pasadakis (2010) combining Linear Predictive 

Coding (LPC) and MLR as an integrated estimation technique. Using these methods, a model 

to predict RON numbers of gasoline was built with an RMSEP of 0.3. The model was applied 

to a large dataset of 384 samples showing this was a robust characterisation technique; also, no 

pre-treatment of the experimental raw data was used to build the model that was based on the 

Linear Predictive Coefficients. 

 

NIR spectroscopy was used to build predictive models of gasoline by (Balabin, Safieva and 

Lomakina, 2012). In this study nine different multivariate methods were used to build gasoline 

models and their effectiveness compared. The nine methods investigated were LDA, quadratic 

discriminant analysis (QDA), regularized discriminant analysis (RDA), SIMCA, partial least 

squares discriminant analysis (PLS – DA), K-nearest neighbour (KNN), support vector 

machines (SVM), probabilistic neural network (PNN), and artificial neural network multilayer 

perceptron (ANN-MLP)’. The study found that when compared with other characterisation 

methods such as GC and NMR that NIR spectroscopy was comparable in results. The NIR 

spectral region chosen for this investigation was 8,000cm-1 to 14,000 cm-1. 
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Figure 2-10: Showing the comparison of errors for several models used to predict the composition of gasoline taken from 

Balabin et al. (2007) 

 

In another paper by (Balabin, Safieva and Lomakina, 2008) NIR was once again investigated 

as a tool for modelling gasoline composition. This time the paper focused on two types of ANN, 

MLP and Wavelet Neural Network (WNN). The findings showed that WNN was more effective 

at predicting from the spectra than the MLP. 

 

It can thus be seen that there are wide applications of Near Infrared in the process industry, this 

is due to the fact that there is a strong response to hydrocarbons within NIR spectra which allow 

a range of properties to be modelled. It is also quick which means that it can be moved from 

the laboratory to online, a major benefit within high throughput process industries. 

 

It should be noted however that to date, although there has been much work undertaken on 

modelling gasoline and fuels using NIR, very little work has been undertaken in the area of 

crude oils, this is because crude oils are a much more complex system to deal with, with a much 

larger range of property values and more complex molecular makeups. 

 Gas Chromatography 

 

Gas Chromatography is a chromatographic method for separating the volatile components of 

various mixtures in which the mobile phase is a gas. In its application to crude oil 

characterisation GC mimics a fractional distillation column but has the equivalent of up to 

1,000,000 theoretical plates, meaning that its separation is very efficient (Speight, 2001). Being 

especially good at characterising gaseous material means that GC out performs conventional 

laboratory distillation when it comes to measuring the weight percentage of lower boiling point 
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components. However, at the other end of the spectrum, the large heavy and high boiling point 

constituents have a very high residence time and thus are not detected as easily by the GC.  

 

GC is now the “preferred technique for the analysis of hydrocarbon gases, and gas 

chromatographic in-line monitors are experiencing increasing application in refinery plant 

control” (Speight, 2001). The system works by having a gas (usually nitrogen, helium or argon) 

that flows continuously through a column (usually made of glass, copper of stainless steel) 

which is 3 – 6mm in diameter and 1 – 2m long and packed with a solid with a large surface area 

(commonly diatomaceous earth or crushed firebrick) impregnated with a non-volatile liquid 

(Speight, 2001). The sample (1 - 5μL) is then injected into the column by syringe through a 

sample port, the liquid is vaporised into the carrier gas and carried into the column. The sample 

is then transported through the column and the separation occurs by partitioning of the gas and 

liquid phases, meaning that even a small difference between components can cause a large 

separation (Speight, 2001). On exiting the column, the sample passes a detector registering a 

peak on a graph, and the time between injection and the detection is measured giving what is 

known as the retention time. Shown in Figure 2-11 is a representation of the GC equipment. 

 

 

Figure 2-11: A representation of the GC equipment taken from Sheffield Hallam (2010) 

 

Development work on the characterisation of crude oil by GC has been carried out for many 

years. Burg et al. (1997) used gas chromatography to characterise 47 crude oils. They achieve 

this by measuring the polarity parameter and coefficients of the Linear Solvation Energy 

Relation (LSER). These parameters inputted into a descriptive equation provided better crude 
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oil characterisation than by just using standard chromatographic polarity (Burg, Selves and 

Colin, 1997). The study found that characterisation of 47 crude oils using this method gave 

good agreement with the chemical composition measured by other methods. 

 

However, the main drawback of the GC method versus NIR is the time taken to undertake the 

analysis. A typical GC run can take 30 minutes and with data interpretation, to generate a 

boiling point distillation for a crude oil takes in the region of 1 hour, whereas an NIR spectrum 

takes 30 seconds and linked to a chemometric model, property generation takes only a few 

minutes. 

 

 Nuclear Magnetic Resonance 

 

Nuclear Magnetic Resonance (NMR) spectroscopy is a relative new technique under 

investigation for the characterisation of crude oils. NMR directly measures aromatic and 

aliphatic carbon as well as hydrogen distributions. The most common types of NMR 

spectroscopy in use utilise the Proton (1H) and carbon-13 (13C) nuclei, however, for specialist 

petroleum analyses, nitrogen (15N and 14N) and sulphur (33S) have also been used (Speight, 

2001). To perform an NMR analysis only a small amount of sample (<10mg) is needed, 

dissolved in a solvent such as deuteron-chloroform. It is placed in a glass tube approximately 

5mm in diameter, which is then placed in a homogenous magnetic field surrounded by one (or 

more) coils. If the hydrogen nuclei are imagined to be small magnets these interact with a weak 

radio frequency emitted by the coils, at the correct frequency the nuclei resonate and the spin 

resonance is detected by a receiver coil (Speight, 2001). The sample position relative to the 

standard of tetramethylsilane (TMS) is then reported as a chemical shift (δ) which can then be 

characterised using reference tables. 

 

Work on the characterisation of crude by Flumignan et al. (2012)  looked at the use of 1H NMR 

profiles in predicting a whole manner of physiochemical properties of crudes, such as density, 

distillation curve, octane numbers etc. To model the spectra standard PLS modelling was used. 

The investigation found that NMR-PLS modelling gave good results when compared to ASTM 

standard reproducibility’s. Excellent accuracy and precision were also reported. Also the 13C 

NMR spectra was used in conjunction with Principal Components Analysis (PCA), PLS and 

PCR to discriminate olive oils and attempt to detect any adulteration in a study by Shaw et al., 

(1997). The study found that of 66 samples predicted, 65 predicted correctly and the models 

achieved consistent predictions of over 90% of the samples. 
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 Organic Deposition 

 

A significant portion of the Eng.D investigation was in the field of crude oil stability and 

Organic Deposition (OD) in the hydrocarbon supply chain. From production wells to refined 

products OD (particularly from wax and asphaltenes) causes serious processing problems. As 

part of this work a close relationship has been established with several refineries across the 

world, including North America, Europe and Asia. The work has also resulted in patented 

approaches for the quantification and mitigation of instability in blended hydrocarbon streams.  

 

These approaches have already been applied to numerous applications in the hydrocarbon 

processing sector including: evaluation of the impact of new well streams offshore, crude oil 

blending in refineries, heavy fuel oil blending in refineries and marine fuel blending on ships. 

Many future projects have also been identified and are being actively pursued. 

 

However, process NMR applications are very costly to install (at least 10 times the cost of 

online NIR) and are very difficult to keep clean, particularly if the refinery is processing very 

heavy crude oils. 

 Background to the problem 

 

The petroleum refining industry aims to optimize its oil production and hence increase its crude 

oil supply chain by blending more crude oils and increase the use of heavier crude oils to 

minimise the costs of the blend to the crude distillation unit (CDU). One of the principle issues 

experienced by many refineries is the precipitation of organic material such as asphaltene and 

crystalline organics. These problems can be instantaneous, as the crudes are being blended, or 

the problems can develop over time. 

 

When crude oil is produced it typically contains solids, liquid and gases. The mixture may 

become more or less stable for a variety of reasons including pressure, temperature, and 

blending. Less stable crude may precipitate organic solids including asphaltene. Methods have 

been developed for assessing both solubility and insolubility of asphaltenes in crude oils, 

primarily using Toluene and n-Heptane (Wiehe and Kennedy, 1999, 1999). 
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 Refining Economics 

 

The biggest cost to a refinery on a global basis is the cost of crude, and although this has recently 

fallen refineries continue to source lower cost oils for blending to maximise margins. These 

opportunity oils have affected market and refinery economics globally; this problem 

particularly affects European refineries (Figure 2-12, Figure 2-13 and Figure 2-14) due to their 

aging designs and stringent EU environmental legislation. 

  

Figure 2-12 also shows that the majority of European refineries are in the first quartile when 

compared to Former Soviet Union (FSU) and African refineries. However, when other factors 

such as domestic tariffs or crude oil availability are taken into account this is not necessarily a 

true benchmark of a refineries ability to be profitable. This reinforces the need for refiners to 

have a thorough understanding of neat crude composition as well as the interactions between 

crudes during crude blending as it is only through a full understanding of this can process be 

optimised and margins maximised, thus maintaining a competitive edge. Recognition of this 

need is a driver for improvement of existing technology and innovation of new technology. 

  

Figure 2-13 shows European refineries identified as most at risk, many have already have 

already been forced to close with many smaller refineries making less than $1.00 per barrel net 

cash margin (NCM), indeed Coryton refinery identified as being at risk in this graph has since 

closed. 

 

 Net Cash Margin 

 

NCM is a method of expressing a refineries economics and is defined as: 

 

NCM = Refinery Gross Margin (RGM) – Operating Costs 

Where: 

Refinery gross margin = the sum of barrels of each product multiplied by the price of each 

product (PetroleumOnline, 2012) 

Operating Costs = Costs to operate refinery, excluding income taxes, depreciation and 

financial charges (PetroleumOnline, 2012) 

 

According to Wood-Mackenzie (2012) the benchmark figure for refinery performance is an 

NCM of $1 per barrel. Figure 2-14 shows European refiners and their respective NCM. It can 
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be seen that refiners achieving <$1/bbl. have been identified as being most at risk. It is also 

interesting to note that since this work the company Petroplus, identified on this plot as being 

at high risk of closure has indeed gone bankrupt. 

 

Figure 2-12: A plot comparing margins of refineries in Europe, FSU and Africa taken from Wood-Mackenzie (2012a) 
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Figure 2-13: Showing NCM in $/bbl. for a selection of major European refineries taken from Wood-Mackenzie (2012a)  

 

Figure 2-14: Showing NCM in $/bbl. of major European Refiners taken from Wood-Mackenzie (2012a) 

 Margin Improvement Strategy? 

 

To improve margins refineries are having to process lower cost heavier crude and blend with 

lighter crude to achieve optimum crude composition and lower the overall cost of crude 

purchases. This however brings its own problems. Although the crudes are cheaper they also 

contain higher amounts of asphaltene and wax, constituents that cause problems when 

processing a crude oil. 

 Asphaltenes 

 

Asphaltenes are a solubility class of the crude oil and composed of many different molecular 

configurations, generally accepted to be the heaviest and most polar fraction of crude oil, 

soluble in toluene and precipitating in light alkanes such as pentane, hexane and heptane (Aske, 

2002a). Figure 2-15 shows the effect of a range of solvents on the asphaltene solubility of 

Souedie crude oil, these have been ranked in order of solubility parameter and the crude oil is 

positioned according to its flocculation parameter (δf). 
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Figure 2-15: Solvents and precipitants for asphaltenes taken from Wiehe and Kennedy (2000b) 

 

Figure 2-16 shows a hypothetical asphaltene molecule, as it can be seen it is a very large 

molecule, the molecular weight of asphaltene is believed to be in the range of 500 – 2000 g/mole 

(Aske, 2002a). Asphaltene molecules also contain a high number of heteroatoms and 

organometallics, they also have the lowest carbon:hydrogen ratio of any component of crude 

oil. This makes them a good candidate for coking and production of other products such as 

carbon black. 

 

Figure 2-16: A hypothetical asphaltene molecule taken from Aurdal et al., (1998) 
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 Oil compatibility model and SARA relationship 

 

Crude oil is a complex mixture, composed of a multitude of different components. For ease of 

classification crude is commonly described in terms of four constituent components, Saturates, 

Aromatics, Resins and Asphaltenes (SARA). The saturate fraction consists of nonpolar material 

including normal (or straight chain), branched, and cyclic (also known as naphthenes) saturated 

hydrocarbons. The aromatic constituents contain one or more delocalised ring structures, and 

are also much more polarizable. Both resins and asphaltenes have polar substituents, however 

the distinction between the two is that asphaltenes are insoluble in an excess of heptane (or 

pentane) whereas resins are miscible with heptane (or pentane) (Fan, Wang and Buckley, 2002). 

 

This exists as a balance in crude oils, which maintains a stable colloidal system. Figure 2-17 

shows a physical model postulated by Wiehe & Kennedy, which describes how the SARA 

components exist in a crude oil to maintain a stable system. According to Wiehe & Kennedy 

(2000) the largest, most aromatic molecules, the asphaltenes (A) are actually sub microscopic 

solids dispersed in the oil by the resins (R), the next largest, most aromatic group of molecules. 

This asphaltene-resin dispersion is dissolved into petroleum by small ring aromatics (a) that are 

solvents but opposed by saturates (s) that are nonsolvents. Thus, asphaltenes are held in 

petroleum in a delicate balance, and this balance can be easily upset by adding saturates or by 

removing resins or aromatics.  

 

The problem with this system is that it is a fine balance, which can also be easily disrupted, this 

issue is observed in real life when crudes are blended. Wiehe & Kennedy have therefore 

developed a predictive model capable of assessing crude stability in terms of its behaviour in 

heptane/toluene systems. This means that using data obtained from laboratory assessments of 

neat crude oils in heptane and toluene their compatibility for blending can be predicted.  
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Figure 2-17: Physical model of a petroleum system, showing the SARA balance taken from Wiehe and Kennedy (2000b) 

 

In another paper by Wiehe & Kennedy this model was applied to a real refinery process (Wiehe 

and Kennedy, 2000a). This application examined a fixed bed hydrotreater, a refinery process 

for removing impurities such as sulphur, nitrogen, oxygen and metals (Jechura, 2016), blocked 

by precipitation of asphaltenes, a problem caused by the incompatibility of oils in the feed to 

the hydrotreater. According to Wiehe & Kennedy insoluble asphaltenes coked a heat exchanger 

upstream of the hydrotreater; this blockage then flaked off the heat exchanger and plugged the 

catalyst bed. By applying the oil compatibility model to this system, the feed stream to the 

hydrotreater was kept within the stability limits for the feed components, thus avoiding future 

plugging of the catalyst bed. 

 

 Investigating asphaltene precipitation and behaviour 

 

Many studies have been carried out with the intention of studying asphaltene precipitation and 

behaviour. Marks (2005) investigated the effects of the precipitation of asphaltenes using CO2. 

In the study marks monitored the viscosity of fluid using NMR relaxation times as a method of 

monitoring the process of asphaltene precipitation. To conduct this study CO2 was injected into 

crude samples over varying times and under varying conditions. The bubbling of CO2 through 

the sample caused a shift in the NMR spectra typically associated with asphaltene precipitation. 

This was further backed up by a solid precipitate left in the bottom of the container when the 

liquid was decanted off. This research is in an important area due to the usage of CO2 in the 

hydrocarbon industry as an EOR mechanism as discussed in section 2.3.1. 
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Gawrys & Kilpatrick (2004) made a study of techniques for observing aggregation of 

asphaltene particles, primarily Pulse-Field Gradient Spin Echo Nuclear Magnetic Resonance 

(PFG-SE NMR), Small Angle Neutron Scattering (SANS), NIR and Vapour Pressure 

Osmometry (VPO). In the analysis they observed that NIR is a quick, simple and non-invasive 

method of studying flocculation and can be used to observe aggregation with changes in 

temperature, pressure, solvents and additives. However, they note that NIR is not a particle 

sizing method and although it can see the onset of aggregation it cannot be used to quantify 

particle size. This is in stark contrast to work by Gossen et al. (1993) and Pasikatan et al. (2003) 

where NIR was used for such a purpose, albeit not for determination of asphaltene aggregate 

size.  

 

Morphology work was carried out using PFG-SE NMR is a “non-invasive, relatively fast 

instrumental technique to probe molecular self-diffusion coefficients using magnetic field 

gradients of varying strength to effect large signal attenuation” (Gawrys and Kilpatrick, 2004). 

Using this technique, it was determined that asphaltene aggregates are not spherical in shape 

but rather disc like.  

 

The technique also proved that the addition of n-alkane to a model asphaltene solution induces 

asphaltene flocculation. VPO is a method that monitors change in vapour pressure when a small 

amount of solute is added to a pure solvent.  

 

Figure 2-18: Showing a typical Vapour Pressure Osmometer setup taken from UCI (2016) 

 

Figure 2-18 shows the typical apparatus setup which consists of a solvent reservoir with two 

wicks providing a saturated solvent atmosphere around two thermistors. Within this apparatus 

a solvent is condensed from the atmosphere into a solution containing the asphaltene placed at 
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one thermistor. This then releases heat and raises the thermistor temperature until the vapour 

pressure of the solution matches vapour pressure of the pure solvent. During this process small 

voltage changes are induced at the thermistor and these in turn can be related to the number-

averaged molar  (Gawrys and Kilpatrick, 2004)mass of the asphaltene.  

 

Using this method Gawrys & Kilpatrick (2004) calculated molar masses of asphaltenes in 

different crude oils and observed them to differ depending on the solvent polarity and 

experiment temperature. Most importantly however the molar mass of asphaltene aggregates 

was found to be highly dependent on the concentration of asphaltenes in the solution. Figure 

2-19 shows how the molar mass of asphaltene aggregates increases sharply with asphaltene 

concentration in solution before plateauing out, this plot also shows the effects of temperature 

on molar mass of asphaltene aggregates.  

 

Finally SANS is a technique used for determine sizes and morphologies of agglomerates formed 

from colloidal solutions, SANS uses elastic neutron scattering at small angles to determine these 

attributes. To employ SANS deuterated solvents must be used however this is expensive. SANS 

analysis suggests that asphaltenes form highly porous aggregates and that asphaltene aggregate 

size increases with the resin content in the presence of insoluble asphaltenes. 

 

 

Figure 2-19: VPO determined molar masses in Athabasca bitumen taken from Gawrys and Kilpatrick (2004) 
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VPO and SANS was also used by Spiecker, Gawrys & Kilpatrick (2003). In this work 

asphaltenes were fractionated from four different crude oils using heptane and toluene, the 

fractions were then analysed using VPO and SANS. Studies conducted using these techniques 

indicated that the fractions generated from the crude oils that were less soluble formed 

asphaltene aggregates much larger than those sub-fractions which were more soluble. This 

described a general trend, which saw aggregate size increasing as a function of decreasing 

aromaticity of the solvent. It was also observed that the individual aggregate sizes increased to 

a maximum at the solubility limit and after that began to decrease. This was due to flocculation 

of individual asphaltene aggregates.  

 

In another paper Spiecker et al. (2003) also employed SARA fractionation of crude oils 

combined with SANS analysis to analyse the effect of petroleum resins on asphaltene stability 

in crudes. It was found that addition of resins to the crude oil reduced the aggregate size of 

asphaltenes by interrupting the chemical bonding of asphaltene molecules. Increasing 

concentration of resins also reduced the interfacial tension of the asphaltenes, reducing the 

ability of asphaltenes to stabilise water in oil emulsions. It was also observed that reducing the 

amount of resin in crude rendered the higher molecular weight asphaltenes insoluble in 

solutions of heptane/toluene. Thus proving the importance, asserted by Wiehe & Kennedy 

(2000b) of resins for stabilising asphaltenes in crude oils. 

 

Work by Tharnivasan (2012) centred around the whole area of asphaltene precipitation from 

crude oil blends and emulsions. The thesis main focus was to develop a model to describe the 

phase behaviour of these systems and to be able to predict the onset and amount of precipitation 

from oils and oil blends being subjected to depressurisation. The research and development 

work drew conclusions for three main areas: blends, live oils and the effects of water on 

asphaltene precipitation.  

 

For blends, Tharnivasan (2012) developed a model which would predict unstable blends; 

however, the model did not work as well with high concentrations of diluents such as toluene. 

This is to be expected due to the definition of asphaltenes as the most polar toluene soluble 

fraction of crude oil, asphaltene precipitation becomes more difficult to force even with large 

amounts of saturates in the presence of large amounts of toluene. 

 

In live oils, a methodology was developed which characterised live crude oils for solubility 

parameters of asphaltenes. Ultimately, a model was configured to predict precipitation onset 
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pressures for live oil, applied to depressurisation of crude oil in offshore applications. This 

model however was not very robust and was found to be very sensitive to certain variables, 

limiting its predictive performance, furthermore, the predictive performance of this model was 

only tested on a single light oil.  

 

Tharnivasan (2012) also discovered that emulsified water had no discernible effect on the 

solubility of asphaltenes in solvents or in a crude oil above the onset of precipitation. It has to 

be noted however that the water used to conduct the tests was deionised water and this is not a 

true test because water used in offshore applications is usually brine and thus ion rich, indeed 

the thesis states that “the presence of ions may possibly interact with asphaltene molecules to 

alter the precipitation behaviour”. 

 

Investigations into asphaltene solubility using Infrared (IR) techniques were carried out by Aske 

et al. (2001). Eighteen different crude oils and condensates were investigated, applying Near 

Infrared (NIR) and High Performance Liquid Chromatography (HPLC) to aid crude 

characterisation. The HPLC method was used to split the oils and condensates into their 

corresponding Saturates, Aromatics, Resins and Asphaltenes fractions. A diagram outlining this 

separation can be seen in Figure 2-20 below. It can be seen that the HPLC utilises different 

solvents to elute the four SARA fractions of the crude oil.  

 

Figure 2-20: SARA Fractions Methodology taken from Lundanes and Greibrokk (1994) 

 

Multivariate Analysis techniques such as Principal Components Analysis (PCA) and Partial 

Least Squares (PLS) the predictive capability of the spectra were assessed. In this paper Aske 

et al. (2001)  discover that the spectra (particularly NIR) give good predictive models for the 
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SARA properties, with errors of prediction comparable in magnitude to the uncertainties of the 

HPLC method.  

 

The SARA components of crude oils can also be separated using Open Column 

Chromatography (OPC). This method involves using a silica packed column and eluting the 

column with the solvents heptane, toluene and toluene/methanol. In a paper by Islas-Flores et 

al. (2005) OPC was compared with HPLC as a technique for separating crude oils into SARA 

fractions. It was determined however that HPLC gives a much sharper separation of the 

fractions, particular between the resin and nonpolar aromatic fractions. In OPC the fraction 

eluted in toluene has to be considered as part of the resin fraction however because the toluene 

and toluene/methanol eluting solvents fail to separate the aromatic fraction from the low 

polarity resins. 

 

Aske et al. (2002) also investigated the aggregation of asphaltene by pressure depletion methods 

on live crudes. This particular paper explores offshore application problems where asphaltene 

molecules precipitate when the pressure is reduced during extraction of the oil. As with other 

work (Wiehe and Kennedy, 2000b; Spiecker, Gawrys and Kilpatrick, 2003; Tharnivasan, 2012) 

model systems of asphaltenes in toluene with n-alkane solutions were also studied to model 

ideal behaviour. The system was monitored during depressurisation by NIR and PCA. It was 

observed that a significant shift occurred in the principal component scores at the onset of 

asphaltene aggregation and this can be seen in Figure 2-21.  

 

The experiments showed that the behaviour of the model system was very similar to that of real 

crude oils however, “while the asphaltene aggregation in the crude oil is more or less completely 

reversible with re-pressurization, indications of only a partial re-dissolution are seen in the 

model systems” (Aske et al., 2002). It was found that to re-equilibrate the asphaltenes after 

precipitation a pressure of 300 bar and a time period of 72 hours was required, this not only 

demonstrates the stability of asphaltenes once precipitated but also highlights the difficulties 

faced with dealing with asphaltene deposition issues after precipitation. This study also shows 

that a combination of NIR and PCA is an effective system for detecting asphaltene aggregation. 

The setup of this system is such that it could also be easily taken online if necessary, indeed as 

part of the Eng.D research several online systems were evaluated and studied. 

 

SARA fractionation was also carried out by Cho et al. (2012) and then the fractions were 

analysed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 
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equipped with atmospheric pressure photoionisation (APPI). The analysis performed produced 

expected results, with each fraction containing compounds with expected behaviour  and 

appearance, i.e. “the saturates fraction was composed of less aromatic molecules with long or 

multiple alkyl chains”(Cho et al., 2012).  

 

Figure 2-21: A Plot Showing the Shift in Principal Component Scores of a Crude Oil Sample during Depressurisation taken 

from Aske (2002b) 

 

Oh et al. (2004) investigated asphaltene precipitation using n-heptane from four different 

solvents; tetrahydrofuran (THF), toluene, trichloroethylene (TCE) and pyridine. The onset of 

asphaltene aggregation was monitored using NIR and observing the optical density at 1600nm 

every thirty seconds. The onset of aggregation was determined as the point at which the optical 

density was at its minimum, i.e. when asphaltene aggregation occurs an increase in optical 

density is observed despite diluting with heptane. It was also observed that the solubility 

parameters of the asphaltenes increased linearly with increasing solvent solubility parameter. It 

was also found that the best asphaltene solvent of these four was pyridine. 

 

Buckley et al. (1998) conducted a study to try and predict the onset of asphaltene precipitation 

by using refractive index (RI) to characterise neat oils and mixtures of crude oils with 

precipitants and solvents. It was found that the onset of asphaltene precipitation occurs at a 

characteristic RI for each oil/precipitant combination.  
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Work on RI as a method of characterising stability of asphaltenes in solution was also carried 

out by Dinadayalene et al. (2012). They describe a novel method whereby a correlation is first 

drawn between SARA fractions and density of the crude. A relationship is then made between 

density and RI to infer a link between RI and SARA fractions. This relationship is then used to 

investigate stability of asphaltene in crudes. The rules drawn are (Dinadayalene, Farag and 

Fujita, 2012): 

(i) Crude oil with an RI>0.060 are more likely to have stable asphaltenes 

(ii) Crude oil with 0.045< RI <0.060 are in the border region 

(iii) Crude oil with RI<0.045 are more likely to have unstable asphaltenes 

When compared with previous work this gives a good approximation model for predicting 

asphaltene precipitation. 

 

Buenrostro-Gonzalez et al. (2004) study asphaltene precipitation from two Mexican crudes oils 

and measure it with a combination of high pressure isothermal expansion and atmospheric 

titration with n-alkanes. A theoretical study for these systems was performed “using the 

statistical association fluid theory for potentials of variable range (SAFT-VR) equation of state 

(EOS) in the framework of the McMillan–Mayer theory”(Buenrostro-Gonzalez et al., 2004). 

Using this it was found that a good prediction of asphaltene precipitation could be found over 

a wide range of temperatures and pressures. 

 Techniques for Dealing with Aggregation 

 

Due to the problems caused by asphaltenes during processing there has also been a lot of work 

carried out investigating possible methods for dealing with asphaltene precipitation. (Hashmi 

and Firoozabadi, 2012) investigated controlling asphaltene aggregation by using electrostatic 

repulsion generated by adding aromatic chemicals to the oil. Increasing electrostatic repulsion 

between asphaltene molecules inhibits the growth of aggregates and stops asphaltene 

precipitation. 

 

Earlier work by Khvostichenko & Andersen (2010) also looked at methods of stabilising 

asphaltenes in crude oil by addition of three different stabilisers: toluene, petroleum resins and 

a synthetic additive p-nonylphenol. All three components led to dissolution of asphaltenes in 

heptane. The main effect observed with addition of these components was the charge on the 

asphaltene particles. Depending on the method of mixture preparation, addition of toluene could 

cause the asphaltene to be positively, negatively or neutrally charged. Addition of petroleum 

resins neutralised the charge on asphaltene particles and p-nonylphenol did not affect the charge 
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of the asphaltene particles. The most interesting conclusion from this work is that asphaltene 

deposition could be reduced or even stopped if the asphaltene particle charge is neutralised. The 

other solution would be to charge the asphaltenes and use electro deposition to remove them 

from the oil completely. 

 

Acevedo et al. (2008) studied solutions of 3% asphaltene in resins using Freeze Fracture and 

Transmission Electron Microscopy (FF-TEM). This method fractures a solid sample to create 

a surface, which is then sprayed with platinum and observed under the Transmission Electron 

Microscope (TEM). The study found that with increasing the temperature the samples were 

prepared at, smaller asphaltene aggregates were observed. Falling from 5 microns to 3.5 

microns and finally settling at approximately 2.5microns for sample preparation temperatures 

between 100°C and 250°C. 

 

The re-dissolution of asphaltene back into crude oil was investigated by Ashoori et al. (2006) 

on a heavy Iranian crude oil. Asphaltenes were precipitated from the crude oil and then re-

dissolution was facilitated with a range of temperatures and solvents. The study found that 

under the correct conditions asphaltene precipitation can be completely reversed. 

 Oil in Water Emulsions 

 

As well as the inherent problems caused by asphaltene deposition from crude oils throughout 

the entire hydrocarbon supply chain, asphaltenes also cause other problems as a consequence 

of other undesirable properties. One such property is the asphaltenes ability to stabilise water 

in oil emulsions. This causes problems in crude processing when the crude is being de-watered, 

an effect that has been observed in offshore applications and in refineries.  

 

Work by McLean & Kilpatrick (1997) examined the effects of asphaltene aggregation on the 

stability of water in oil emulsions. They found that model emulsions were most stable when a 

concentration of 30-40% toluene was present and interestingly the effect was greatest at low 

resin:asphaltene ratios, a finding contradicted in the work of Spiecker, et al. (2003) where it is 

noted the inverse, that increasing resin:asphaltene ratios in crude oil reduced the efficacy of 

asphaltenes for stabilising water in oil emulsions. It was also determined that the primary factors 

governing asphaltene stability are: “the aromaticity of the crude medium (as controlled by the 

heptane/toluene ratio), the concentration of asphaltenes, and the availability of solvating resins 

in the oil”(McLean and Kilpatrick, 1997). This is backed up by the postulate in the paper by 

Wiehe & Kennedy (2000b). Finally, the experiments conducted suggested that the asphaltenes 
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had the greatest power for stabilising water in oil emulsions if the asphaltenes were at the point 

of precipitation. 

 

This problems has also been investigated by Graham et al. (2008) who fractionated crudes into 

SARA fractions and then further separated the asphaltene fraction into two fractions called 

binding resins (BR) and residual asphaltenes (RA). To assess the power of the asphaltene to 

stabilise a water in oil emulsion they used the concept of R=BR/RA. It was noted that this ratio 

correlates with the tightness of water in oil emulsions and increasing R means a less stable 

emulsion is formed. In the oils studied only the oil with R>1 did not form a stable water in oil 

emulsion and as R decreased the stability of the emulsion increased. This is in line with what 

would be expected from the work of asphaltenes Spiecker et al. (2003) due to the fact that 

increasing R means increasing the ratio of resins to asphaltenes. 

 

In other work Poteau et al. (2005) are investigating this phenomenon from a completely 

different perspective, the objective of the work is to create stable oil in water emulsions to help 

facilitate the transportation of heavy, viscous oils. They find as with Khvostichenko & 

Andersen (2010) that the key feature to the emulsion stability is the charge on asphaltenes and 

thus investigate the effects of pH on the stability of these emulsions. It is found that both high 

and low pH charge the asphaltene functional groups and enhance their surface activity. Both 

high and low pH environments allow the asphaltenes to prevent the coalescence of water 

droplets and thus help form stable emulsions. 

 

  Modelling 

 

Converting the spectral data into predicted values for the substance of interest can be carried 

out using a variety of different methodologies, which will be explored, in this section. 

 Pre-processing 

 

Spectral pre-processing is a large part of the whole work undertaken on modelling. It can in fact 

account for as much as 90% of the total work of modelling. Most of this work is simply looking 

at the data for the purposes of detecting and removing any questionable points, which do not 

reflect the true system behaviour. Treatment of missing data is also a large part of the pre-

treatment, sensors can go down or not log a measurement for a number of reasons. In these 

instances the missing data can either be cut totally, or, if the user has confidence in the method 
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the missing data points can be in filled with a variety of such as n order interpolation, average 

infilling or local average infilling.  

 

Spectrally, techniques such as standardising the data by mean centre or taking standard normal 

variance (SNV) can scale the data and improve model performance (Cui et al., 2012). Spectral 

scatter can also be corrected to an extent to improve the signal to noise ratio by using 

multiplicative scatter correction (MSC).  

 

Spectral variation can also be increased by taking derivatives of the spectra. Typically a higher 

order than 2nd order is not used because of the amount of noise it can create. Treating spectra 

using this plethora of techniques has improved several studies. (Cui et al., 2012) found that 

treating NIR spectra with 2nd order derivatives greatly improved the discrimination of a PLS 

model for predicting cotton genotypes. The study also found that when 2nd order derivatives 

were coupled with SNV that the model discrimination was further improved with a 

classification accuracy of 100% for seeds and 97.6% for leaves. 

 

In the paper by (Balabin, Safieva and Lomakina, 2007) different pre-processing methods are 

investigated and applied to the appropriate properties in each of the models. The methods used 

are normalisation, magnitude normalisation, linearisation (taking the logarithm), 

differentiation, double differentiation, auto scaling, and range scaling in different intervals 

(Balabin, Safieva and Lomakina, 2007). The most frequently used technique was differentiation 

giving most improved signal to noise ratio of the spectra. 

 Principal Component Analysis 

 

Principal Component Analysis (PCA) is a technique used to examine the variability in large 

datasets. Going beyond simple two-dimensional correlation, PCA works in many dimensions, 

having as many dimensions as variables in the dataset. Each principal component is a linear 

combination of the coefficients of n number of variables in the dataset. The first principal 

component explains the line of greatest variability in the data; the second principal component 

explains the second greatest line of variability in the dataset, orthogonal to the first principal 

component and so on.  

 

By way of example, the below figure shows a group of triangles illustrating data points and 

these have been distributed in an oval shape. A vertical line has been drawn with the points 

projected on to illustrate a random line of variability in the dataset. 
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Figure 2-22: PCA Example 1 

 

It can be seen that the data in this region is not spread out and hence the variance will be low. 

The objective of principal components analysis is to find the principal components that explain 

a dataset. In the second example below, the line has been drawn horizontally through the same 

dataset. 

 

Figure 2-23: First Principal Component 

 

In the second example, it can be seen that the data is more spread out and has a much larger 

variance, indeed, it would not be possible to move the line to any other position and increase 

the variance captured in the dataset, hence, this is the principal component of this dataset. 
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The lines drawn between the samples and the line of best fit are at right angles to it and this is 

known as the orthogonal projection of the data. The next line of best fit will then be drawn at a 

right angle to the first line of best fit. The orthogonal projections will once again be made as 

shown in the figure below.  

 

Figure 2-24: Second Principal Component 

 

This is the second principal component and it is this orthogonality that allows underlying trends 

and relationship to be easier visualised. 

 

By way of example the full Non-Iterative Lease Squares (NILES) algorithm for PCA is shown 

in Appendix C of this document, however, the result of the PCA procedure is then a 

decomposition of the full data matrix, X, into principal components of score and loading 

vectors: 

 

 𝑋𝑛×𝑚 = 𝑡1𝑝1
𝑇 + 𝑡2𝑝2

𝑇 + 𝑡𝑖𝑝𝑖
𝑇 + ⋯ 𝑡𝑘𝑝𝑘

𝑇 + 𝐸𝑛×𝑚 (2-10) 

 

Where: ti = the score vector, pi = the loading vector and E is the residual matrix. 

 

To contextualise this into a real-life example, Another excellent example of the application of 

principal components analysis is on the following example using data from DEFRA on diets in 

the United Kingdom.  
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Table 1: Food Consumpton in the UK (g/person/week) taken from Richardson (2009) 

  England Wales Scotland N Ireland 

Cheese 105 103 103 66 

Carcass meat 245 227 242 267 

Other meat 685 803 750 586 

Fish 147 160 122 93 

Fats and oils 193 235 184 209 

Sugars 156 175 147 139 

Fresh potatoes 720 874 566 1033 

Fresh veg 253 265 171 143 

Other veg 488 570 418 355 

Processed potatoes 198 203 220 187 

Processed veg 360 365 337 334 

Fresh fruit 1102 1137 957 674 

Cereals 1472 1582 1462 1494 

Beverages 57 73 53 47 

Soft drinks 1374 1256 1572 1506 

Alcoholic drink 375 475 458 135 

Confectionery 54 64 62 41 

 

As it can be seen this data is complex, the columns (countries) are the samples and the rows 

(foodstuffs) are variables. By looking at this dataset it is not immediately obvious if there are 

any underlying trends, however, by the application of principal component analysis the dataset 

can be interrogated as a whole. 

 

The first principal component finds the line of maximum variability in the dataset and is actually 

the equivalent of the least squares line of best fit through the data. Using the principal 

component orthogonal projection a new set of axes can be drawn to interrogate the data.  figure 

shows the projection of the data onto the first principal component. 

 

Figure 2-25: Projection to Principal Component 1 taken from Richardson (2009) 
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This diagram is known as a score plot and it is already obvious that data clustering is being 

achieved, it seems there is something in the data the differentiates Northern Ireland from the 

remainder of the dataset. 

 

By then obtaining the second principal component it allows a two axis, or bivariate plot to be 

produced which should further discriminate between the clusters. This is shown in the below 

figure. 

 

Figure 2-26: Bivariate Scores plot (PC1 v PC2) taken from Richardson (2009) 

 

It is now obvious that Northern Ireland is indeed an outlier, to interrogate which variables 

caused this, the analysis can now proceed to the relevant loadings. As scores are related to 

samples, loadings are thus related to the variables and bivariate loadings plots, using the same 

two principal components as Figure 2-26 are a very useful way to understand what is affecting 

the clustering. Figure 2-27 below shows the bivariate loadings plot of PC1 v PC2 for the dataset. 

 

 

Figure 2-27: Bivariate loadings plot (PC1 v PC2) taken from Richardson (2009) 
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It is obvious from the plot there is a cluster of samples in the middle, however, 3 variables are 

particularly interesting, Fresh fruit, Alcoholic drinks and Fresh potatoes. It can be seen that 

these Fresh fruit and Alcoholic drinks are in the area of England, Scotland and Wales and 

Potatoes are in the Northern Ireland region. When looking at the data it can indeed be seen that 

Northern Ireland consumes more potatoes and less fresh fruit and alcoholic drinks than England, 

Scotland and Wales and this is what causes the differentiation.  

 

To further demonstrate that the scores vector obtained is a very powerful tool in PCA. Figure 

2-28 shows the application of PCA to a refinery and the bivariate scores plot of PC2 v PC3. 

 

Figure 2-28: Bivariate Scores Applied to a Refinery Dataset 

 

The two main regions are before and after issues with a furnace and drilling down into the 

dataset further then allowed these operating regions to be related to production of diesel 

fraction. 

 

 

 

 

Before furnace 

problems
After Furnace 

Problems



   

50 

 Partial Least Squares 

 

Partial least squares (Projection to Latent Structures or PLS) is a powerful regression tool and 

is in essence an extension of PCA. However, whereas in PCA decomposition the scores and 

loadings are the vectors that best describe the variance of the X matrix, in PLS decomposition 

the scores and loadings are the vectors that have the highest covariance with the response vector 

Y. After decomposition a regression between score vectors and the response is then 

performed”(Aske, 2002a). 

 

In practice, this means that a regression can be formed on a full block of X values rather than 

just one as with ordinary least squares. If once again the UK diet example is taken this means 

that by taking the diet of an unknown individual, a PLS model could be built on the dataset 

which would allow the user to predict the country of origin of te individual. 

 

The full algorithm for the Non-Iterative Partial Least Squares Approach used later in the thesis 

is shown in Appendix C of the document. 

 

Many examples of the industrial applications of PLS are documented in the literature. In a study 

on detecting vegetal oil adulteration in diesel and biodiesel by Gaydou, Kister and Dupuy 

(2011) using PLS predictive models found that NIR gave better results than MIR. (Gaydou, 

Kister and Dupuy, 2011) also discusses the use of multiblock PLS to combine the two methods 

to form a predictive model based on a combination of analyses. Three methods of multiblock 

PLS are investigated in the paper. 

 

The first method is called the concatenated method and works by combining the matrices of 

both NIR and MIR data into a signal matrix, the PLS method is then applied to this matrix, it is 

important to ensure that if this method is applied both matrices of data are correctly scaled to 

achieve sensible results.  

 

The second method discussed considers each data matrix independently, by application of PCA 

to the data scores are obtained for each block of data. The scores are then collected and 

combined to form a super matrix (Gaydou, Kister and Dupuy, 2011). This method is called 

Hierarchical-PLS (H-PLS) and is also described by Bastien, Vinzi and Tenehaus (2005).  
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The third method used by Gaydou, Kister and Dupuy (2011)  is known as Serial Partial least 

squares (S-PLS) and was  proposed by (Berglund and Wold, 1999). This method uses PLS on 

each data matrix to obtain scores. As with H-PLS the scores are then combined into a single 

super matrix upon which PLS is once again applied. Out of the three methods the one that 

yielded the best results was H-PLS with a prediction error of 2.03%. These findings raise the 

intriguing possibility of improving model discrimination by using combined analytical 

methods. 

 

In a study by (Balabin, Safieva and Lomakina, 2012) PLS was used as to predict gasoline data 

using NIR spectra. The method was found to be only moderately effective for predicting 

gasoline composition. K nearest neighbour modelling was found to be the simplest of the 

algorithm assessed and also more effective. This is a well-known phenomenon and is due to the 

simplicity and lack of variability in gasoline datasets. 

 Nearest Neighbour 

 

Nearest neighbour (or K Nearest Neighbours or KNN) is a non-parametric classification method 

whereby a distance (Euclidean distance) is assigned between all points in a dataset. The distance 

between each point is expressed as the root of square differences between the coordinates of 

the objects being examined and is described by the following formula: 

 

 𝑑 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2-11) 

 

The neighbours of the sample under scrutiny are then ordered by distance and a parameter (K) 

is then given to optimise the numbers of neighbours selected to describe the sample. Variations 

on this method have been also been applied, for example a weighted KNN is a similar algorithm 

which tries to introduce bias to the model by assigning weights to the samples nearest 

neighbours to alter the effects that nearest neighbour samples have on the final predicted result. 

 

(Balabin, Safieva and Lomakina, 2012) investigated the use of (amongst other algorithms) 

KNN modelling for predicting gasoline composition. The study showed that it was actually one 

of the most effective methods for classification all three of the datasets investigated. This is 

shown by the model errors shown in Figure 2-29. It can be seen that in all three models the 
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KNN model had one of the lowest classification errors, it can be seen that both SVM and MLP 

also do very well. This also validates the usage of nearest neighbour in Chapter 3. 

 

 

Figure 2-29: Showing modelling errors for different methods used to build a gasoline model taken from Balabin et al. (2012) 
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Chapter 3. Refinery Crude Oil Quality Monitoring 

Chapter 3 describes a novel technology application within a major Asian refinery. As described 

in the literature review, the application of NIR in the hydrocarbon processing sector is well 

understood and widely applied for predicting the properties of refined streams, particularly 

gasoline and diesel. 

 

However, the application of NIR for modelling crude properties is an area that has not been 

explored due to the difficulty of modelling a stream with the complex chemistry of crude oil. 

This difficulty is further compounded by the variability of crude feedstocks bought and 

processed by refineries meaning that a successful model would need to cover a high range of 

crude types with a variable range of properties. 

 

Currently refineries monitor the quality of each crude delivery with a measurement of API 

gravity and Sulphur and compare this to the expected quality of the delivery. This is quick and 

simple and given the results match the quality expectation the crude will be processed. 

However, API gravity and sulphur measurements are not always indicative of crude quality and 

indeed for the same API gravity and sulphur measurements, the distillation behaviour of a crude 

oil and the fractions it yields can be very different. 

 

The opportunity therefore is to develop a technique, which can provide a refiner with as much 

information about the crude oils being delivered and processed as possible, whilst still being 

quick and simple to deploy. The benchmark for the model was to tune the predicted paramaters 

to be within the laboratory reproducibility limits, as defined by ASTM. This gives the customer 

confidence that the results generated by the model can be treated as if they were generated by 

conventional laboratory analysis and are performing to the same standards. 

 

This project meets objectives 1 and 2 of the thesis and addresses this opportunity by taking 

Intertek’s proprietary chemometric modelling package (PT5Technology) and database of 

global crude oils (circa. 1200 global oils) which has been built over a ten year period to develop 

a successful model for a major Asian refiner.  

 

This introduction to PT5 provides a brief description of the technology with its hardware, 

benefits and the underlying principles of PT5Technology and PT5Crude with the Intertek 

Global Crudes Database. 
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 Introduction 

 

PT5 measurement technology is used across the entire crude oil supply chain, including crude 

oil production, pipelines, refining and biofuel blending activities.  The combined topological 

modelling and near infrared analysis combination supports quality control and control systems, 

enhances production yields and more, helping customers run their business more efficiently and 

profitably. 

 

PT5 software is combined with on-line near infrared (NIR) analysis to provide rapid product 

analysis, exploiting real time property measurement for improved control and optimisation of 

the hydrocarbon supply chain. When Intertek's PT5 software is combined with on-line NIR 

Analysis, accurate and real-time data is available for online composition measurement and 

quality assurance on platforms and pipelines, fiscal allocation and hydrocarbon accounting for 

shared pipeline system, well-stream allocations, multiphase meter validation, hydrocarbon 

reconciliation and more. The technology can be used in conjunction with several spectroscopic 

techniques which include MIR, NMR and GC but the predominant analysis technique modelled 

is NIR. 

 

 Methodology 

 

The measurement of physical properties in a laboratory requires properly calibrated equipment 

and skilled personnel using a well prepared sample. The collection of a representative sample 

is critical to good laboratory analysis, used for plant operation. In addition, the design of the 

sample point and sampling method must ensure that the sample is not contaminated, does not 

lose components, and is representative. 

 

NIR predictions become attractive compared to conventional laboratory analytical methods 

particularly because of speed, for example the conventional laboratory analytical method is 

particularly time consuming. Measurement of TBP (True Boiling Point) of crude oil requires 

two separate distillations to give the full distillation curve. Firstly an ASTM D2892 distillation 

takes the crude from its Initial Boiling Point (IBP) to the method cross over temperature 

typically 350°C, this is known as the atmospheric distillation and simulates the fractionation of 

crude in a typical refinery atmospheric crude distillation unit (CDU).  
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The second method, ASTM D5236, is charged with the 350°C+ atmospheric residue from the 

first method and the distilled under vacuum to approximately 550°C equivalent. This is known 

as a vacuum distillation and the remaining crude portion of 550°C+ is the vacuum residue, this 

simulates a typical refinery vacuum distillation unit. 

 

The measurement can form part of an on-line or at-line measurement which is updated every 

few minutes. These measurements can be used as the input to a control loop and / or input to a 

process optimiser. Typical spectrometers are shown in Figure 1. 

 

Figure 3-1 - Typical Spectrometers (courtesy of ABB 2017) 

 

To take measurements a transmission cell is used. This enables the NIR beam to be used to 

check for deposits on cell windows and to measure path length to ensure that the instrument is 

working as designed. The technology is used within Intertek to deliver a valued service to many 

key customers. A picture of the laboratory in Aberdeen is shown in Figure 3-2. 

Laboratory NIR spectrometer 

 

On-line NIR spectrometer 
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Figure 3-2 - Laboratory Crude Oil Sample Handling and Spectrometer 

 

In the case of crude oil analysis, live crude oil and on-line systems can operate at pressures of 

up to 100 Bar. For refinery blending operations the sample can be handled at atmospheric 

pressure.  

 NIR Spectra in PT5 

 

Typical industrial application using NIR utilises spectra with wavenumbers between 4000 and 

4800 cm-1 which is the combination band between MIR and the first overtone (as described in 

section 2.7). In MIR each chemical compound has a specific finger print and in mixtures the 

individual amounts of the compounds can be deduced.  

 

In the NIR spectra there are no peaks for individual compounds and the absorption spectra 

overlap for different compounds (Figure 3-3). When measuring refinery streams or crude oil 

the problem is further complicated by the very large number of chemical compounds present in 

the analyte.  

 

When combined with the inherent signal to noise ratio of the instrument there is no practical 

way of reading the spectra. The shape of the spectra does however give a qualitative view of 

the composition as shown in Figure 3-3. 
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Figure 3-3 - Hydrocarbon absorption in Near Infra-Red radiation 

 

Whilst there is no peak for properties e.g. TBP, API, Pour Point, RON or Sulphur the 

information is in the spectrum as a finger print.  Figure 3-4 shows that for any measured spectra 

there is a set of properties measured in the laboratory. 

 
Figure 3-4 - Link Spectrum to Properties 

 PT5Technology - Chemometric Modelling Process 

The link between the spectra and properties measured by laboratory analysis is a chemometric 

model as shown in Figure 3-5. The chemometric model is an empirical correlation built using 

known laboratory samples that have spectra and laboratory analysis. 
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Figure 3-5 - NIR as Information Vector 

 

PT5Technology works on the basic understanding that the same sample has the same spectra 

and the same properties. A hypothetical example of this is shown in Figure 3-6, in this case the 

unknown sample (spectrum B) has been matched to the database sample (spectrum A) and 

hence the predicted properties would be those of spectrum A as the two are identical.  

 
Figure 3-6 - Same Sample have Same Spectrum 

 

Figure 3-7 demonstrates this in practice. The spectrum and properties of sample A are known 

and reside within the database. When the spectrum of sample B is collected the properties of 

that sample will be predicted using A as this is the closest match. 
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Figure 3-7 - Same Spectra Same Properties 

 

 PT5Technology Aggregate Plots 

 

The only way to give a quantitative measurement is to have a model to interpret the spectra. 

PT5Technology uses a completely non-linear modelling paradigm based on nearest neighbours.  

 

Spectra contain the finger print of the chemical compounds of the sample. These finger prints 

fall into families which can be evaluated as a function of the absorbance at different 

wavenumbers – these functions are called aggregates and the general form is shown in Equation 

(3-1) 

 

 Aggregate = f(𝑊𝜆1, 𝑊𝜆2 … 𝑊𝜆𝑛) (3-1) 

 

To give an example of the generation of an aggregate parameter, the case of a simple spectra 

will be considered. Figure 3-8 shows a simple sample spectra cover 4000 to 4016 wavenumber 

region of the NIR spectra, it can be seen that each wavenumber has a corresponding absorbance 

on the y axis. 
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Figure 3-8: Simple sample spectra 

 

If parameter 1 is related to the absorbance at 4000 wavenumbers and this is called EA1 

(Example Aggregate 1) then the aggregate expression, according to equation 3-1 would be as 

follows: 

 EA1 = Abs(4000) (3-2) 

 

𝐸𝐴1 = 0.1 

 

Layers of complexity can then be added. For example, if a second aggregate (EA2) for 

parameter two is then taken as being related to the absorbance at 4008 multiplied by the 

absorbance at 4016 the following aggregate expression would be created: 

 

 EA2 =Abs(4008)×Abs(4016) (3-3) 

 

𝐸𝐴2 = 0.25×0.1 = 0.025 

 

By plotting the values of two aggregates the spectra can be seen in their families on a spectral 

plane. For the above example this would lead to the following 1 sample aggregate: 
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Figure 3-9: Simple Aggregate 

 

With multiple sample spectra, aggregate plots are constructed as shown in Figure 3-10. These 

areas for each family can be enclosed by a box which defines the limit of the different families. 

This box is positioned by both operator experience, sample characteristics (such as a crude oil 

family) and use of a nearest neighbour clustering algorithm. The aggregates used in this 

example are proprietary expressions designed to take features from the spectra related to 

chemical signatures of the samples. In this case KARO and KCY have been used. KARO is 

related to areas of the spectra which describe sample aromaticity and KCY is related to areas 

of the sample related to cyclicity. 

 

The colour of the sample is determined by the z axis bar (on the right of the plot) and represents 

the magnitude of the selected property value – in Figure 3-10 this is Total Acid Number (TAN) 

which is a measurement of the acid content of a crude oil and the value is directly from the 

titration of  a crude oil with potassium hydroxide and expressed in milligrams of potassium 

hydroxide (mg/KOH) require to neutralise the oil. It is a useful parameter for refiners because 

a higher TAN value means more KOH required to neutralise the oils and thus the crude is more 

likely to be corrosive.  

 

The coloured Z axis is thus a useful visualisation (and its use will be described in the case study) 

and it can be seen that crude oil families tend to share very similar property values and spectra.  
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The aggregate planes and associated boxes can be used to identify the family of an unknown 

sample and also track the spectral changes of samples over time. The boxes can be drawn either 

by hand, utilising user experience or by utilising the nearest neighbour clustering algorithm. 

 

This is the simplest qualitative prediction of sample family and a very powerful tool. In practice 

this means that using only a NIR spectra the customer can identify if the crude oil batch is the 

same as historically or if it has deviated in some way. 

 
Figure 3-10 – Spectral Plane with Boxes of sample families 

 Finding properties for spectra 

PT5 uses historical samples to find neighbours and make a prediction. These historical samples 

are held in a database. The spectral database shown in Table 3-1 is constructed by collecting 

process samples and for each sample performing NIR scans to get the spectra and conventional 

laboratory analysis to get the properties. In normal plant operation the conventional laboratory 
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analysis will be performed, therefore the only additional work is performing the NIR scan which 

is a simple task. 

Table 3-1: Database Structure 

 

 

Given a new spectrum with unknown properties PT5 will search the database for similar 

spectra. The spectra are ranked by calculating a nearest neighbour distance and the properties 

of the unknown sample are predicted as those of the closest spectrum in the database (Figure 

3-11).  

 
Figure 3-11 - PT5Technology Prediction - Database Search 
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The simple database search only works in practice when there are many samples and the 

chemical components do not vary significantly. In practice the closest sample is too far away 

and / or the closest sample has measurement errors itself and it is prudent for the prediction to 

use more than one sample. 

 

To predict sample properties, the PT5 prediction engine identifies a set of close neighbours 

from the database. The neighbours to be used in the prediction are selected using nearest 

neighbour clustering. The distance the software will use to search for neighbours it believes are 

spectrally similar to the unknown sample is termed RSphere. 

 

This is shown as the blue circle in Figure 3-12 and is defined by selecting a Euclidean distance 

with sufficient magnitude to select a training set with enough variability to make an acceptable 

prediction, without including samples with properties which are dramatically different from 

that of the unknown sample. In this particular example, the software has picked four samples 

from the database (N1  N4) as spectral matches for the unknown sample (green circle) based 

on the size of the RSphere, converesely it has excluded four samples (M1  M4) as too far 

away to be useful in making a prediction. 

 
Figure 3-12 - Topological Modelling Using Nearest Neighbours 

 

The model then takes the property values of the selected neighbours and the predicted properties 

are then calculated. This calculation is based on proportional blending of the properties of each 

of the known samples from the database. For illustration, in this example N1  N4 have been 

selected as neighbours for the unknown sample and, for a given property, the model will take 

the property values of these samples and proportionally blend them as shown by equation (3-4): 

RSphere 
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 Property (x) = f(𝑁1×𝑤1 + 𝑁2×𝑤2 + 𝑁3×𝑤3 + 𝑁4×𝑤4) (3-4) 

Where: 

Nx = Property value of sample N 

wx = proportional weighting assigned to that sample 

 

For illustration if it is assumed that the samples N1 N4 have individual property (x) values 

14 respectively, if these are proportionally blended at a weighting of 25% each then the 

property (x) for the unknown sample would be calculated thus: 

 

Property (x) = f(1×0.25 + 2×0.25 + 3×0.25 + 4×0.25) = 2.5 

 

To improve the robustness of the prediction PT5Technology also automatically generates 

samples using spectral blending in ‘real time’ so as to create more near neighbours, for this 

example the N samples would be blended to create the Y samples, shown in Figure 3-13. 

 
Figure 3-13 - Topological Modelling Using Artificial Nearest Neighbours 

 

The unknown sample properties would then be calculated using the Y samples, as well as the 

N samples, using the principles described for equation (3-4) and shown in equation (3-5) 

 

 
Property (x) = f(𝑁1×𝑤1 + 𝑁2×𝑤2 + 𝑁3×𝑤3 + 𝑁4×𝑤4+𝑌1×𝑤5 + 𝑌2×𝑤6

+ 𝑌3×𝑤7 + 𝑌4×𝑤8) 
(3-5) 

Where: 

Nx = Property value of sample N 

Yx = Property value of sample Y 

wx = proportional weighting assigned to that sample 
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The properties (P) for the artificial samples are calculated using mixing rules, the simplest rules 

are linear and examples are shown in Equations (3-6) and (3-7) for the concentration (c) of each 

component in the blend and the absorbance at a specific wavenumber (W). 

 

 W𝜆
𝑀𝑖𝑥𝑡𝑢𝑟𝑒 =  𝑐1𝑊 𝜆

(1)
+ 𝑐2𝑊 𝜆

(2)
 (3-6) 

 

 𝑃𝑀𝑖𝑥𝑡𝑢𝑟𝑒 =  𝑐1𝑃(1) + 𝑐2𝑃(2) (3-7) 

 

By reducing the distance over which the properties are predicted allows the neighbours to more 

closely match the unknown spectrum whilst still having sufficient close neighbours as shown 

in Figure 3-14. With a smaller RSphere the prediction is typically more accurate but as there 

are less neighbours this configuration can introduce instability. A larger RSphere will predict 

more spectra but may include samples that are of an increasingly different property. 

 
Figure 3-14 - Effect of R-Sphere 

 

The variation of property with distance away from an unknown spectra (marked “?” in Figure 

3-15) will exhibit the underlying variation from the variance in experimental error from the 

conventional laboratory analysis. This will typically be limited to the Reproducibility of the 

method, R. 

 

RSphere 

Reduction 
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Figure 3-15 - Change of property with distance 

If PT5 cannot find neighbours within the RSphere then the unknown spectrum will not be 

predicted. 

 Sparse Data 

For some samples the spectrum will be near the unknown sample but the properties will not be 

present for those spectra. When data is analysed from the plant some property analysis will be 

more frequent on critical values. This is ideal for model building as more critical values 

typically have more analysis. PT5Technology modelling workbench makes predictions with 

missing values (often referred to as sparse data) as shown in Table 3-2. 

Magnitude of RSphere 
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Table 3-2: Database Management 

 

 

The PT5 database is able to hold outliers without interfering with the prediction of “normal” 

spectra. When samples with spectra outside the operating box of the model are reviewed they 

can be left in the model. As new data becomes available when the operating point of the plant 

changes these data become valuable and they will be used for predictions. It is imperative to 

never throw away the sample data as this can potentially be used at a later date. 

 Treatment of outliers 

 

Rather than being lost in a numerical correlation PT5Technology shows exactly which 

historical samples are being used to make the prediction and therefore simplifies tuning and 

model review as the issues are closely related to the industrial process and the associated 

information of batch, date, type etc. Areas of the model can be investigated to understand how 

many samples are present and the best approach to collect new samples as shown in Figure 

3-16. 
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Figure 3-16 - Prediction and Model Update 
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 Case Study 1 – PT5Technology in an Asian Refinery 

 

In case study 1 PT5Technology is applied in a large Asian refinery for both online and offline 

crude quality monitoring. The application included setting up the model to predict the properties 

of crude deliveries and allow the customer to benchmark this against expected crude quality. 

An online spectrometer was then used to predict the composition of the blend to the CDU 

ultimately allowing for continuous process improvement. 

 

The novelty of this case study lies in the fact that no NIR chemometric solution had ever before 

been implemented for such a large refinery with such a high variability in terms of crudes in 

the blend to the CDU. 

 

As already discussed, PT5Technology can predict the properties of a crude oil sample purely 

from a NIR spectrum. This case study was prepared to demonstrate the use of the technology 

in an Asian refinery, carried out as part of the Eng.D research. This case study also highlights 

the advantages that PT5Technology can give refiners. It achieves this by analysing the variation 

of a given crude type in this case with the sanitised name “XX”. The case study focuses on four 

samples of XX delivered to a refinery in chronological order over a period of 8 months.  

 

A summary table of the crudes being scrutinised in this case study are shown in Table 3-3. The 

important values in this case study are API Gravity (density of the crude oil) and wt% Sulphur, 

as these are the common measurements that refiners make of the crude. As mentioned API 

Gravity is related to the density to crude oil and is expressed relative to the specific gravity of 

water (SG) at 15°C and given by the following formula: 

 

 
𝐴𝑃𝐼 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 =

141.5

𝑆𝐺
− 131.5 

 

(3-8) 

API is a measure of the heaviness of crude oil by relating the density of crude oil to water. This 

means the higher the API the lighter the crude. Coupled with API measurements, Sulphur 

analysis also gives important information about crudes. Although not as indicative as API, 

Sulphur content can also be used to get a feel for the heaviness of crude (in fact the sulphur 

measurement is used in the crude scheduling) with the trend being that the lower the sulphur 

content the lighter the crude.  

 



   

72 

API and Sulphur measurements are quick, easy and readily available methods of characterising 

crude oils. These values are widely used to confirm the value of the crude and are measured at 

both the load port (where the crude is loaded onto the tanker) and refinery jetty (where the crude 

is unloaded).  

 

The 565°C+ property represents the amount of residue in the crude, i.e. the percentage which 

will boil off over 565°C. Table 3-3 thus shows the API, Sulphur and 565°C+ values for the 4 

samples. 

Table 3-3: Four samples of type XX with their API, Sulphur and the cut 565°C+ from TBP 

 SampleID API Sulphur 565°C+ 

 Sample_01 – 05/09/11 32.8 0.9 7.6 

 Sample_02 – 06/11/11 33.8 0.8 6.0 

 Sample_03 – 19/01/12 37.9 0.3 11.6 

 Sample_04 – 23/02/12 33.0 0.8 6.2 

 

As discussed earlier it is normal for refineries to carry out measurements of API, sulphur and 

water on all imported crude cargos.  

 

However a full distillation is never carried out on every crude delivery and as can be seen from 

the value of 565°C+ in Table 3-3 this can vary between batches for the same crude. Refiners 

use assay data to update Linear Programme and optimisation software, obviously if the real 

crude composition is deviated from expectations then the refinery does not operate optimally. 

 

API gravity and Sulphur analysis therefore does not provide sufficient information to properly 

evaluate the value of each crude cargo. In Table 3-3 Samples_01, _02, and _04 form a group 

with similar properties, Sample_03 is different. The API gravity of Sample_03 would suggest 

a lower residue and more valuable crude, however, the 565°C+ cut is double the other members 

of this group which indeed means the opposite, this crude has twice as much residue and is 

therefore likely to be less valuable.  If this pattern was repeated then 25% of the crude cargos 

being processed would have twice as much residue as expected, impacting margins. 

 Utilising the Aggregate Plot 

NIR scans were taken of each of the four crude oils as shown in Figure 3-17 below. 
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Figure 3-17: Case Study Crude Spectra 

 

It can be seen that the spectra of Sample_03 shown in light blue is considerably different to the 

clustered samples of Sample_01, Sample_02 and Sample_04. However, the reason for this 

needs to be assessed utilising chemometric approaches in PT5 Technology. 

 

The first tool used to deconvolute the data are PT5Technology aggregates, which show the 

spectral variation within a crude type. Figure 3-18 shows an aggregate plot of a group of crudes 

from the same geographical location within the PT5Crude global crudes database. The trend in 

the aggregate plot is that API Gravity is lower in the lower right of the box and increases as the 

crudes get lighter to the upper left of the box. This can be seen also in the 565°C+ property 

aggregate where the heavier crudes with the higher 565°C+ are in the lower right of the box 

and lighter crudes with less 565°C+ are in the upper right of the box.  

 

The points are colour coded and the higher the value of the property the darker the colour, i.e. 

high API gravity are the red points in the upper right of the box (Figure 3-18a) and high 565°C+ 

are the red points in the lower right of the box (Figure 3-18b). Conversely, as the property value 

gets lower the colour tends towards green as can once again be seen in the aggregates of Figure 

3-18a and Figure 3-18b. The axes used in these figures are the Intertek proprietary aggregate 

expression ag1 and ag3, these use the principles described in section 3.3 and are related to the 

API gravity and the 565°C+ residue content respectively. 
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a.

 

b. 

 

Figure 3-18: PT5 Aggregate Plots of all Example Crudes showing API gravity aggregate (a) and 565°C+ aggregate (b) 
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The aggregate plot is shown below in Figure 3-19  is of example crudes is shown next to a plot 

of physical properties of API gravity and 565°C+. 

 

a.

 

b.

 

Figure 3-19: Showing PT5 Aggregate plot (a) and a physical properties correlation (b) 

 

Figure 3-19 shows that the spectral aggregates from PT5 (Figure 3-19a) mirror the clustering 

of crude properties from the properties correlation (Figure 3-19b). The correlation shown in 

Figure 3-19b is between the variables of API gravity and 565°C+ and clearly shows the 

relationship that with decreasing API gravity comes increasing 565°C+.  

 

This particular correlation demonstrates that for very similar API gravity you can have 

significant change in the TBP, in this case an API gravity of value of 35 is associated with a 

TBP 565°C+ cut range of between 3% and 15%. Thus demonstrating that is not prudent to rely 

on this as a key marker for crude quality, it also shows how the aggregate plot can be used to 

relate spectral space to measured laboratory values.  

 Crude Type XX Analysis 

 

The PT5Crude aggregate plot in Figure 3-20 shows how Sample_03 is identified by the spectra 

as being different from the other three samples. The crude is shown as the red point. It is 

important to note that the red colour of this dot is assigned to it by the PT5 aggregate legend 

and is derived from its properties; it is not a flag colour to indicate the crude is different. 
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  SampleID 

 Sample_01 
05/09/11 

 Sample_02 
06/11/11 

 Sample_03 
19/01/12 

 Sample_04 
23/02/12 

 

Figure 3-20: PT5Crude Aggregate Plot of Crude Type XX showing cluster and difference 

 

The API gravity of this crude from Table 3-3 is 37.9 and thus indicates that it is the lightest of 

the four crudes in question. However, although it is slightly higher up on the y axis than the rest 

of the crude family it is no further to the left of the x axis. This flags this crude up as different 

because as has been demonstrated by Figure 3-19, lighter crude tend to move to the upper left 

corner of the aggregate plot. Looking at the Sulphur content it can be seen it is 0.3 which is the 

lowest Sulphur content of the four, once again suggesting this would be the lightest and most 

valuable of these four crudes. This is due to the fact that higher API gravity and lower sulphur 

suggests a larger quantity of higher value fractions and less sulphur would indicate less 

downstream desulphurisation requirements. 

 

Due to this obvious outlier further investigation of this crude was carried out. Shown in Figure 

3-21 is the laboratory TBP curve of the four crudes. It can be clearly seen that Sample_03 is 

different to the other three samples and that the TBP curves of the other three samples are very 

similar. 
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Figure 3-21: TBP Curves for all four crude samples 

 

To further highlight this difference an average was taken for the TBP curves of Samples_01, 

_02 and _04 and plotted against the TBP curve of Sample_03, this plot is shown on the left of 

Figure 3-22. On the right of figure five is a plot showing the difference between the average 

TBP curve of Samples_01, _02 and _04 and the TBP curve for Sample_03. These two plots 

clearly show the difference between these two crudes in terms of composition.  

 

Looking at both plots in Figure 3-22 it can be seen how below 250°C, the sample_03 crude has 

higher yield, this is what gives the higher API gravity value than the other three crudes, a fact 

that would not be possible to see without the TBP prediction from PT5Technology, or a time 

consuming crude assay. It can also be clearly seen from the differences that above 250°C the 

crude has less mass up to the 565°C+ region, showing clearly how this crude has more residue. 

From these plots it thus starts to become clear how, although this crude has significantly more 

residue compared to the historical samples of the same family, it also has a higher API gravity. 
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Figure 3-22: Showing Average TBP v Sample_03 

 

 

Figure 3-23: the difference between the average and Sample_03 

 

As stated before PT5Technology can predict the properties of a crude sample purely from a 

NIR spectrum. In Figure 3-24 the NIR predictions are plotted, as with the laboratory analysis 

from Figure 3-21 it can be seen that once again  the chart shows that Sample_03 has the highest 

amount of light ends and also significantly higher 565°C+ cut (an additional 5%). This 
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demonstrates that both methodologies are picking up the compositional difference in this 

sample from the rest of its family, however, it should be noted that the laboratory analysis takes 

a number of days to produce whereas the prediction can be generated within a few minutes. 

 

Figure 3-24: TBP curves from PT5 prediction 

 

The distillation curves show clearly that Sample_03 is heavier than the other 3 samples, having 

more 565°C+ residues. Looking at the predicted values it can be seen they follow the same 

trend as the actual values. It is also important to note that the outlying crude has been predicted 

to be different to the other crudes in the same family, this is important because it shows the 

capability of PT5Technology.  

 

Table 3-4 below shows the Standard error of prediction (SEP) for each of the properties 

modelled for a database of 60 samples from the same geographical area as the case study crudes. 

The SEP value is calculated by adding the absolute of the average to two times the standard 

deviation of the differences between the predicted and laboratory methods. An SEP <100% 

indicates the model performance is good enough to be released for use. 

 

Table 3-4: Property Prediction Statistics 

Property SEP 

API 74% 

Sulphur 29% 

565C+ 91% 
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This prediction has been made based purely on the NIR spectra and thus the technology ignores 

the other crudes of the same family for sample_03 because spectrally they are further away. 

The technology thus uses other spectra that are close to sample_03 and predicts the spectra. 

 

Show in Table 3-5 is the aggregate distance matrix; this is constructed by taking the spectral 

distance of each sample relative to each other sample. If a crude is within a spectral (Euclidean) 

distance of 4.5 (based on historical confidence) of another crude then those two crudes are 

spectrally very similar, any crude within a spectral distance of 10 is used in a prediction. It can 

be seen looking at the values that Sample_01 and Sample_02 are spectrally identical to each 

other and Sample_04 is very similar to both Sample_01 and Sample_02. Sample_03 however 

is spectrally a distance of more than 30 away from the other samples, showing how different 

this crude is from the other crudes. It is also important to note that because of this distance this 

crude will not be used in the prediction of the other three samples and the other three samples 

are not used in the prediction of Sample_03. Looking at the distances however it can be seen 

that Samples_01, _02 and _04 are within a distance of 10 and thus are all similar enough to be 

considered the same spectral family. 

 

Table 3-5: Aggregate Distance Matrix 

Sample 10 Sample_01 Sample_02 Sample_03 Sample_04 

Sample_01 0.0 3.6 33.3 7.5 

Sample_02 3.6 0.0 30.8 5.9 

Sample_03 33.3 30.8 0.0 27.6 

Sample_04 7.5 5.9 27.6 0.0 
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Table 3-6 shows the difference between the laboratory analysis and the prediction by PT5Crude 

Technology. The values were achieved by taking the difference between the laboratory value 

and predicted value. If the difference between the values lies within the ASTM reproducibility 

for a particular cut then there is a high confidence in the prediction and laboratory method.  

 

In the table (overleaf) the differences are normalised against the ASTM reproducibility for the 

laboratory method and expressed as a percentage of the method reproducibility (R). Thus, 

≤100% is within R and >100% is outside R. Method reproducibility is an important metric to 

understand the applicability of the prediction. This is because the model results are treated in 

industry as if they were laboratory generated values and, the reproducibility is the maximum 

limit, as stipulated by ASTM that any two laboratories are allowed to differ by.  

 

It is generated by conducting round robin testing between laboratories all over the globe with 

the same capability and in this case, is expressed in mass percent. 

 

It can be seen that not all fractions predict within ASTM reproducibility, and two example 

values have been highlighted. These values are in the region of the distillation curve known as 

the ‘crossover region’ and this is where the residue from the atmospheric ASTM D2892 

distillation is taken and moved over to the high vacuum ASTM D5236 distillation. As a 

consequence, modelling in this region can be difficult as the laboratory primary reference data 

can have a high inherent reproducibility. 

 

However, despite some deviations, utilising the predictions instead of historical assay data to 

update the LP results in a much closer match to the measured crude oil composition and thus 

more optimal refinery operation. 
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Table 3-6: Difference between prediction and laboratory analysis expressed as a percentage of method reproducibility R 

Cut 
ASTM R 

(wt%) 
Sample_01 Sample_02 Sample_03 Sample_04 

W_IBP-45 1.3 33% 26% 69% 1% 

W_45-60 1.3 6% 9% 32% 1% 

W_60-75 1.3 1% 9% 34% 4% 

W_75-90 1.3 24% 10% 46% 12% 

W_90-105 1.3 21% 35% 25% 12% 

W_105-120 1.3 14% 12% 28% 7% 

W_120-135 1.3 4% 11% 30% 1% 

W_135-165 1.3 2% 3% 45% 2% 

W_165-200 1.3 12% 32% 12% 8% 

W_200-250 1.4 78% 24% 100% 38% 

W_250-300 1.4 33% 24% 109% 39% 

W_300-350 1.4 4% 263% 151% 84% 

W_350-400 2.7 16% 53% 35% 23% 

W_400-450 2.5 9% 99% 23% 29% 

W_450-500 2 12% 87% 2% 29% 

W_500-550 2 29% 29% 12% 19% 

W_550-565 2 5% 24% 3% 12% 

W_565°C+ 2.9 11% 60% 144% 51% 
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 Net Back Calculations 

 

Net back calculations using Haverly HCOMET software showed that with a simple refinery 

setup (Table 3-7) this crude would indeed be more valuable purely because of its lower sulphur; 

however with a complex refinery setup (Table 3-8) this crude was indeed less valuable.  

Table 3-7: Simple Refinery Netbacks 

Simple Refinery Sample 1 Sample 2 Sample 3 Sample 4 

Feedstocks Consumed (Vol%)     

 Natural Gas for Fuel @3.00 $/MBtu Vol% 1.94 1.89 1.79 2.03 

Product Make (Vol%)     

F
ra

c
ti

o
n

s
 

LPG @542.41 $/MT Vol% 0.12 0.12 0.12  

Naphtha @932.15 $/MT Vol% 14.62 14.89 19.18 17.87 

Mogas Prem 95 @986.20 $/MT Vol% 3.53 3.53 3.46  

Jet-A1 @1,009.60 $/MT Vol% 13.66 15.76 12.28 15.59 

Diesel @10ppmS @958.45 $/MT Vol% 12.87 14.75 23.99 12.67 

Heating Oil 0.1% S @930.80 $/MT Vol% 17.02 12.76  17.68 

Fuel Oil 1% S @636.08 $/MT Vol%   41.41  

Fuel Oil 3.5% S @591.60 $/MT Vol% 38.51 38.54  36.84 

 Products Sum Vol% 100.33 100.35 100.44 100.65 

 Crude Est Value US$/B 111.95 112 112.21 112.94 

 

Table 3-8: Complex Refinery Netbacks 

Complex Refinery Sample 1 Sample 2 Sample 3 Sample 4 

Feedstocks Consumed (Vol%)     

 Natural Gas for Fuel @3.00 $/MBtu Vol% 5.67 5.66 5.33 6.69 

Product Make (Vol%)     

F
ra

c
ti

o
n

s
 

LPG @542.41 $/MT Vol% 1.04 1.07 1.03 3.21 

Naphtha @932.15 $/MT Vol% 20.82 22.26 24.05 36.88 

Mogas Prem 95 @986.20 $/MT Vol% 18.62 18.2 18.88  

Jet-A1 @1,009.60 $/MT Vol% 14.69 20.81 23.97 16.64 

Diesel @10ppmS @958.45 $/MT Vol% 40.61 34.13 27.03 41.99 

Heating Oil 0.1% S @930.80 $/MT Vol% 0.63 0.81   

Fuel Oil 1% S @636.08 $/MT Vol% 1.56 2.92 7.29 3.21 

Fuel Oil 3.5% S @591.60 $/MT Vol% 5.3 3.43 1.16 3 

 Products Sum Vol% 111.16 111.47 110.6 112.69 

 Crude Est Ref Value US$/B 122.44 122.89 121.55 122.31 
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 Conclusion 

 

The object of this project was to develop a technique, which can provide a refiner with as much 

information about the crude oils being delivered and processed as possible, whilst still being 

quick and simple to deploy.  

 

Although process NIR has been used for many years for refined fuels blend optimisation, this 

project was novel because it was the first application of process NIR to monitor refinery crude 

oil quality. 

 

The case presented was intended to demonstrate not only that the technology implementation 

was successful, but also that there is a clear need for this. The business benefit was thus 

contextualised by looking at the information a refinery would get from the conventional 

analysis schedule (API and sulphur measurements) and then the extra benefits from being able 

to quickly analyse crude oil TBP. 

 

The case study clearly shows that whole crude property measurements are not a conclusive 

method of characterising a crude type to give a refinery the real value of a crude import. In this 

case the crude Sample_03 had a higher API gravity suggesting a lighter crude oil; however, 

looking at the aggregate plot shows that it has changed in quality, the PT5Crude prediction then 

calculated, purely from an NIR spectra, that whilst the light ends are greater, the 565°C+ 

fraction is higher compared to the rest of its crude type.  

 

The predictive performance was then validated by comparing it against laboratory measured 

analysis values and ultimately the benefits to the customer were then shown by undertaking 

netback calculations on the crude oil quality. 
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Chapter 4. Blended Hydrocarbon Stability 

Crude oil blending to maximise margins is carried out by the majority of refineries across the 

globe (single source crude oil refineries are very rare) and has been for many years. The 

increasing numbers of different crude oils available in today’s marketplace gives refineries 

more chances to source low cost, unconventional crude oils to blend and process, thus giving 

the opportunity to maximise margins hence the terminology ‘opportunity crudes.’ 

 

Unconventional crude oils can fall into many categories such as highly paraffinic (waxy), highly 

acidic (giving rise to corrosion issues) and highly asphaltenic (causing instability issues). As 

such the chemistry and composition of some of these oils can be very different to those 

processed historically and as a consequence unexpected issues can arise from blending these 

opportunity oils. 

 

One issue is the deposition of wax and asphaltene. This can cause problems as serious as 

causing refinery shutdowns from blocked pipes and process units. The science of asphaltene 

deposition in isolation is reasonably well understood and can be explained using models such 

as SARA (discussed in section 2.14), however, how this relates to blending multiple crude oils 

is not as well understood and much research is being carried out around the world to try and 

address this issue.  

 

As part of the Eng.D research an innovative approach has been developed to address the issue 

of deposition of undesirable material that can arise from blending crude oils such as wax and 

asphaltene. This was undertaken as a consequence of identified weaknesses in existing test 

methodologies (such as ASTM D7060, ASTM D7112 and ASTM D7157). These weaknesses 

are significant in that although refineries are blending multiple crude oils, these methodologies 

assess the crude oils in isolation and instead use pure solvents such as heptane and toluene to 

assess stability. 

 

Furthermore, the stability is assessed as the titrants are added and does not give consideration 

to the effects of time on blend stability. As crude is a colloidal system and asphaltene deposition 

is as a consequence of the colloidal balance being disturbed, time is a major factor when 

considering crude blend stability. In addition, due to the nature of the assessments they are only 

considering asphaltenic deposition and not other components such as wax. 
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Finally the assessment is only on the crude oil sampled at that time and gives no consideration 

to the quality deviations that can happen in the same crude oil family.  

 

The methodology developed and patented as part of the Eng.D project addresses all the above 

issues, it assesses stability of the oils being blended in the refinery without addition of 

components not in the blend (i.e. heptane and toluene). Because of the way the assessments are 

carried out any time period of interest to the customer can be assessed, indeed in Case Study 2: 

Assessment of Heavy Fuel Oil Blending in a Refinery the customer was very interested in the 

effects of time as once the blend was made up it was then stored. 

 

The analysis is carried out using a combination of near infrared (NIR) spectra, microscopy 

chemometric models and mathematical modelling algorithms meaning it is not specific to the 

deposition of asphaltene but also wax precipitation, making the methodology very flexible. 

Using NIR also means that the crude quality monitoring approach can be applied to monitor 

deviations in quality of crude oil, as significant quality changes can mean the interactions in the 

blend, and therefore the stability behaviour, can change. 

 

Finally, the methodology can be applied to any hydrocarbon stream as demonstrated in the two 

applications discussed below where one focuses on a heavy fuel oil blending project and the 

other one on blends of marine fuels. 
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 Introduction 

 

To address challenges of instability of crude oil blends in a refinery, the Eng.D project carried 

out innovative research in this area, resulting in a patented approach which has been used in 

many different applications and continues to be rolled out across the globe. 

 

The assessment of wax and asphaltene precipitation, known as Organic Deposition (OD), is 

based on blending hydrocarbon streams from the process. Therefore, the assessment is 

representative of actual operating parameters and the experimental measurements reveal the 

interaction between crudes during and after blending.  

 

To allow refiners flexibility in the application of this technique, and also to ensure a robust and 

representative model, a variety of different ratios in the crude blend are assessed to generate 

instability and stability limits, this is called a blend recipe evaluation report. The blend recipe 

evaluation report is kept up to date using NIR spectra from neat crude quality tracking (using 

PT5Technology).   

 

The samples are assessed for organic deposition by a both NIR spectroscopy and microscopy 

to ensure that stability is both observed and validated. To assess the response over time multiple 

samples are stored, NIR scanned and validated by microscopy and mathematical calculations.  

 

The output from the Intertek OD Programme is a series of reports which are described in detail 

later, however, the main purpose is to provide assessment of combinations of stable and 

unstable crude oils which can allow the refinery to optimise the process with respect to stability 

as well as normal operating constraints. 

 Methodology 

 

To develop the methodology it was first decided that the spectral behaviour of crude oils when 

blended should be assessed, particularly how linear blending can be expressed, what happens 

to the spectra at the point of deposition and after, and also, if this is quantifiable, repeatable and 

can be validated. 

 

This is why microscopy was undertaken on all blends made up as it is a very visual 

representation of asphaltene deposition. The drawback of microscopy is that it is a more 
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laborious process than Near Infrared and also, crucially cannot be take online in a process 

environment. 

 

The analytical technique selected as the primary reference method was NIR spectroscopy. This 

was for several reasons. Firstly, the equipment was readily available and widely used within 

Intertek already, and as the business groups core business is supporting online and offline 

laboratory NIR solutions to the refining marketplace, additional benefits that could be derived 

from existing hardware was a very lucrative business proposition, especially given that crude 

oil stability services is a rapidly growing marketplace. 

 

To visualise deposition, the principals of light scattering by small particles was anticipated to 

be an observable phenomenon within the NIR spectra. TO be effective this effect has to be 

greater than the effect on the spectra as a consequence of the dilution of crude oil A in crude oil 

B. 

 

As discussed previously a spectrometer measures the difference between detected light, with 

and without the sample. This difference is caused by the following three phenomena (ASTM, 

2013): 

 

• Obstacles – When radiation strikes a bluff body, it is scattered back to the source and 

within solid bodies without retransmission. This baseline shift is not a function of 

wavenumber. The amount of baseline shift is proportional to the area of the sample 

obscured by opaque particles.  

• Reflection and Refraction - Some radiation is scattered due to the particle size where 

the light fails to reach the detector as its direction has been changed. The amount of light 

refracted is a function of wavenumber, particle size, and particle density. 

• Absorption – Accelerated electric charges may transform some of the energy into 

another type of energy, i.e. radiation is absorbed and retransmitted where the 

retransmitted energy spectrum does not contain energy where the chemical bonds have 

absorbed the energy. 

 

By monitoring absorption, the chemical composition of the neat crudes and blends can be 

characterised using PT5Technology, thus giving OD constraints. 
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To understand linearity of spectral blending, two crudes were first blended which were know, 

from process experience, to form a stable blend at all ratios. This can be seen in the below figure 

where crude A was titrated into crude B at 10% increments to form binary blends. 

 

Figure 4-1: Binary Crude Blend Exhibiting linear behaviour  

 

As expected this blend is linear, i.e. as the blend transitions from crude A to crude B the spectra 

move proportionally and as expected. This becomes more apparent when the percentage of 

crude A in the blend is plotted against Deposition Aggregate 2 (DA2 = absorbance at 

wavenumber 8,000) 

 

Figure 4-2: Linear Blend Aggregate 
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It can be seen that the blend plots as a straight line indicating linearity, this is then validated by 

the microscopy shown below. It can be seen that the crude oil is a flat colour with no precipitated 

asphaltenes evident. 

a.

 

b.

 

c.

 

100% Crude A 50% Crude A 0% Crude A 

Figure 4-3: Transmitted Light Microscopy 100% Crude A (a), 50% Crude A (b), 0% Crude A (c) 

 

Next a different crude A was selected and titrated into the same B, a blend which was known 

to cause processing problems, the spectra for this is shown in Figure 4-4 below. 

 

 

Figure 4-4: Binary Crude Blend Exhibiting Non-Linear Behaviour 

 

As can be seen, the spectra of Crude A is very different in this case, also it is apparent that the 

blending is not linear, i.e. with increasing B the transition from A to B is not smooth as with 

the previous example. Taking an expanded view of the spectral absorbances at the 8,000-

wavenumber region, upon which DA2 is based this differentiation can be seen. 
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Figure 4-5: 8,000 Region of NIR Spectra Showing Non-Linearity 

 

Looking at the absorbance at 8,000 shows that up to 40% A in B the blending is linear, however, 

from the 50% A in B binary blend, this linearity ends and the spectral behaviour changes, the 

absorbance rather than continuing to decrease actually starts to increase, despite the fact that 

the proportion of A in the blend is continuing to decrease. This is once again better visualised 

if the proportion of A in the blend is plotted against the DA2 axis. 

 

Figure 4-6: Linear Blend Aggregate 
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It is now very obvious that the behaviour of this crude oil blend is not linear and that an effect 

is occurring at the 50% A in B point. The behaviour observed is a marked increase in spectral 

absorbance that is consistent. This means that although the crude is being diluted it is actually 

absorbing more light. And this effect is stronger than the effect of the dilution of crude A with 

B. 

 

If the microscopy of this is now examined it can be seen that this blend precipitates particulate 

material at the 50% mark and it is this deposition that is contributing to the increased spectral 

absorbance. 

a.

 

b.

 

c.

 

100% Crude A 50% Crude A 0% Crude A 

Figure 4-7: Transmitted Light Microscopy 100% Crude A (a), 50% Crude A (b), 0% Crude A (c) 

 

 Observing Organic Deposition by Spectral Inflection 

Through laboratory crude oil titrations, the applicability of NIR to observing this problem has 

been proved. OD is observed by a NIR spectral inflection point. As discussed in section 3.3.1 

spectra blend linearly and as a crude is titrated the spectra moves towards the titrant as shown 

in Figure 4-1.  

 

However, at the onset of OD an inflection point is observed where even though the amount of 

titrant is still being increased the spectral trajectory deviates from the expected behaviour, this 

occurs at the inflection point and is also shown in Figure 4-8. 

 

Figure 4-8 shows the spectral behaviour at the point of OD. Due to scattering of light by particle 

flocculation the absorbance increases throughout the whole spectrum (3880cm-1 to 10,000cm-

1). Chemical changes due to OD are also observed in the 3800cm-1 to 6000cm-1 region. Figure 

4-8 also shows microscopy pictures validating that the change in spectral behaviour. 
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Figure 4-8: Showing inflection point 

 Neat Crude Tracking 

 

NIR spectra allow finger printing of the neat crudes and provide an assessment of changes in 

neat crude composition. This assessment is made using PT5Technology, near neighbour 

analysis, spectral distance analysis and PT5 Aggregates.  

 

Changes in composition of neat crude can affect the OD behaviour in the blend. Should the 

change be significant, the crude may be subject to re-sampling and/or further laboratory 

investigation.  

 

Figure 4-9 below shows a PT5Technology spectral aggregate to demonstrate the application of 

crude quality monitoring in a refinery. This is another case of one delivery from the same crude 

family (in this case a group of African crude oils) that appears spectrally and analytically 

different, as discussed in Case Study 1 – PT5Technology in an Asian Refinery.  

 

Figure 4-9 - Crude Tracking on PT5 Aggregate 
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 Neat Crude Property Evaluation 

PT5Technology and the Intertek NIR Global Database can be used to predict physical 

properties of crude. To predict the properties conventional laboratory analysis is required to 

tune a model. Once the model has been tuned the predictions can be made for every neat crude 

delivery. 

 Blend Validation 

NIR spectra are compared to neat crude spectra, spectra from crude blend titrations, pseudo 

component spectra (i.e. crude blend before addition of titrant crude), titrant crude spectra and 

optionally actual spectra from the refinery blend. 

 

As a further assessment, the spectra of the neat crudes allow theoretical blended spectra and 

properties to be calculated using mixing rules within the chemometric model. These calculated 

samples are compared to spectra obtained from actual blend experiments and refinery operation. 

The difference between theoretical blends and actual blends is used to assess organic deposition. 

 

The stability of blends is also displayed on the PT5 Aggregate plot. In Figure 4-10 below the 

areas of instability (red) and stability (yellow) are identified from blend titration. Using these 

areas, drawn up based on experimental data, spectra of actual blends can be assessed for 

stability and instability without any additional laboratory analysis. 
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Figure 4-10 - Aggregate plot of instability observed from blend titrations 

 Neat Crude Stability and Instability Assessments 

The current ASTM methodologies (such as ASTM D7060, ASTM D7112 and ASTM D7157) 

for assessing neat crude stability involve characterisation of each neat crude against paraffinic 

and aromatic standards (e.g. n-Heptane and Toluene) and follow a procedure as follows. 

 

Firstly, the amount of asphaltene in the neat crude is measured using a paraffinic standard by 

ASTM D6560 – Standard Test Method for Determination of Asphaltenes (Heptane Insoluble’s) 

in Crude Petroleum and Petroleum Products. 

Three vials of neat crude are then combined with different percentage volumes of the standard 

aromatic. The vials are then titrated with the paraffinic titrant and are continuously assessed 

using optical density.  

 

The principle is that the optical density will decrease (i.e. the solution becomes more 

transparent) as the pure paraffinic titrant is added, however, at the point of asphaltene 

flocculation, the optical density will then increase again. Once flocculation is observed in a vial, 

the level of paraffinic titrant added is recorded. 
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By plotting % volume aromatic solvent in the test liquid against 100 x volume of oil divided by 

the volume of test liquid, for a minimum of three tests, a straight line is drawn as shown in 

Figure 4-11  

 

Figure 4-11: Determination of Insolubility Number and Solubility Blending Number for Forties and Souedie Crude Oils 

taken from Wiehe, Kennedy and Dickakian (2001) 

 

The Y intercept gives the Insolubility number for the crude oil and thus the Solubility 

Coefficient (SC) can be calculated using the following equation: 

 

 𝑆𝑐 = 𝐼𝑁(1 + 1
𝐻𝐷

⁄ ) (4-1) 

Where: 

IN = The instability coefficient of the crude (y-intercept) 

HD = Heptane Dilution limit (x-itercept, the point at which the crude precipitates asphaltenes with 

no additional toluene 

 

The above test assumes that deposition will be elicited and observed from the test oil with an 

excess of heptane. If organic deposition is not initiated in the neat crude being assessed by the 

standard paraffinic then a previously assessed neat crude is blended with the neat crude being 

assessed to form a binary (two crude) blend. The binary (two crude) blend is assessed using the 

same method as neat crude. The change in Stability and Instability of the binary blend compared 

to the previously assessed neat crude is attributed to the neat crude being assessed. 
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The SC and IN are produced for each crude in the blend and then proportionally blending 

(according to the percentage of each crude in the blend) to determine the overall blend SC. Blend 

stability is assessed by ensuring that the blend SC is no less than 1.4 times the IN of any neat 

crude in the blend. 

 

However, this methodology does not account for the interactions between crudes when blended, 

the batch to batch variations in crude quality as well as any time dependent stability effects,  

 Generating Blend Stability / Instability Coefficients by Experimentation 

To address the weaknesses of the neat crude assessment methodologies, the Eng.D project 

focussed on developing a new methodology which could provide a true to life assessment of 

the stability of crude oil blends in a refinery. 

 

This first starts by assessing all the neat crudes in a recipe cluster (see section 4.4.1) and 

establishing the practical minimum and maximum percentage volume (based on refinery design 

constraints) These percentage volume ranges are used to design a series of blend experiments 

which cover the range of refinery blending. 

 

For each blend experiment a titrant is chosen, from the blend (usually the most paraffinic) that 

will make the blend go from stable to unstable. The remaining neat crudes are then blended into 

a pseudo component to be used with the titrant crude. In the example below (Table 4-1) a set 

of five refinery crude oil have been blended in various ratios to form a designed experiment. 

Table 4-1: Example Blend Experiment 

 

 

The experimental methodology is then as follows. The pseudo component is blended for the 

experiment (i.e. blend 110). Vials of the pseudo component are combined with different 

percentage volumes of the titrant crude (in this case Crude_05). The vials are scanned and an 

algorithm in the chemometric model monitors the NIR-spectra and identifies when flocculation 

has occurred by looking for an inflection point (section 4.2.1) and validating whenever possible 

using microscopy. 

 

Blend Crude_01 Crude_02 Crude_03 Crude_04 Crude_05
110 74.4% 4.7% 4.7% 16.3% 0.0%

111 52.1% 3.3% 3.3% 11.4% 30.0%

112 44.7% 2.8% 2.8% 9.8% 40.0%

113 37.2% 2.3% 2.3% 8.1% 50.0%

114 29.8% 1.9% 1.9% 6.5% 60.0%

115 22.3% 1.4% 1.4% 4.9% 70.0%
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The initial screening series of vials uses large increments of titrant (e.g. 10%). To fine tune the 

assessment of the point of instability, after screening with large increments, smaller increments 

are used (e.g. 1%). The vials are scanned following mixing and after one or more retention 

times (e.g. 0 hrs. +24 hrs). As time increases, the crude blends can become more instable 

resulting in increased precipitation. Duplicate vials are available for microscopy and laboratory 

analysis which can be selectively triggered based on the information obtained from the 

assessment from the NIR spectra. 

 

The onset of OD for each blend is then input into the Matrix Blending Algorithm to calculate 

the coefficients for each crude in the blend. 

 Blending and regression fitting  

Having obtained the experimental data from the blend titration it is useful to fit a regression to 

enable stability of any crude ratio in a blend recipe to be calculated. The confidence in the 

regression can also be calculated to ensure that sufficient, repeatable measurements have been 

made in the blend titrations. 

 N-1 Factor Blend 

Using N-1 factors gives one more set of results to estimate the error purely from 

experimentation and also eliminates the collinearity within the equation, as the proportions of 

each crude in the blend will add to 1 (Deming and Morgan, 1993). 

 

When all the experimental blends have been completed the relative stability of the neat crudes 

in the blend can be calculated. Over the range of the experimental blends a linear approximation 

is practical. 

 

At the point of flocculation, the coefficient of instability for the blend is equal to the coefficient 

of stability for each component in the blend, multiplied by its percentage volume. Thus the 

following assertion can be made: 

 

 𝐼𝐶 = 𝑆𝐶0𝑉0 + 𝑆𝐶1𝑉1 + 𝑆𝐶2𝑉2 + ⋯ + 𝑆𝐶𝑛𝑉𝑛 (4-2) 

Where  

 𝐼𝐶 - Instability Coefficient 

 𝑆𝐶𝑛 - Stability Coefficient for component n 

 𝑉𝑛 - Percentage Volume of Component n 
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In addition, the sum of the volumes of the components must equal to 1: 

 1 = 𝑉0 + 𝑉1 + 𝑉2 + ⋯ + 𝑉𝑛 (4-3) 

 

Therefore  

 𝑉𝑛 = 1 −  𝑉0 − 𝑉1 − ⋯ − 𝑉𝑛−1 (4-4) 

 

Substituting into (4-2) gives: 

 

 

 

𝑉0 =
𝐼𝐶 − 𝑆𝐶𝑛

(𝑆𝐶0 − 𝑆𝐶𝑛)
+

(𝑆𝐶𝑛 − 𝑆𝐶1)

(𝑆𝐶0 − 𝑆𝐶𝑛)
𝑉1 + ⋯ +

(𝑆𝐶𝑛 − 𝑆𝐶𝑛−1)

(𝑆𝐶0 − 𝑆𝐶𝑛)
𝑉𝑛−1 (4-5) 

 

Which is also of the multiple linear regression form: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛−1𝑋𝑛−1 

Where: 

𝛽0 =
𝐼𝐶 − 𝑆𝐶𝑛

(𝑆𝐶0 − 𝑆𝐶𝑛)
 

𝛽𝑛−1 =
𝑆𝐶𝑛 − 𝑆𝐶𝑛−1

(𝑆𝐶0 − 𝑆𝐶𝑛)
 

Thus solving for the stability coefficient of the nth component (𝑆𝐶𝑛): 

 

 𝑆𝐶𝑛 =
𝐼𝐶 − 𝛽0𝑆𝐶0

(1 − 𝛽0)
 (4-6) 

 

And solving for the n-1 component (𝑆𝐶n−1): 

 

 𝑆𝐶𝑛−1 = 𝑆𝐶𝑛 − 𝛽𝑛−1(𝑆𝐶0 − 𝑆𝐶𝑛) (4-7) 

 

As this type of assessment is a designed experiment conducted on a relatively small number of 

samples covering a narrow operating region, a matrix solution to the least squares fit is 

appropriate. This generates the coefficients for this range of neat crude blends for refinery 

organic deposition. 

 

 𝑩^ = (𝑿′𝑿)−𝟏𝑿′𝒀 (4-8) 

 

Where  
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 𝑩^ - Regression coefficients 𝛽0 … 𝛽𝑛 

 𝒀 - Vector of percentage of Titrant Crude in each blend 

 𝑿 - 
Matrix of percentages of each crude in the pseudo component 

blends 

 

Once the coefficients have been calculated for each crude oil equation (4-2) instructs us that at 

the point of instability the volumetrically blended coefficients of each crude in the blend will 

give a number equal to the instability coefficient. If this overall SC is higher than IC it means 

that the blend is stable and vice versa. 

 Comparison of Methodologies 

 

The SC and IC from the developed methodology were then compared to the IN and SN from the 

established ASTM methodology on the same crude blends. It was envisaged that two scenarios 

are possible. 

1. All of the SC and SN are similar and within experimental repeatability. This means there 

is little interaction between the crudes when blended and the coefficients can be used 

for any of the crudes in the recipe. In this case the ASTM methodology would be quicker 

and simpler to implement as it requires less crude blending and analysis. 

2. Some of the SC and SN are not similar and different by more than experimental 

repeatability. This means that interactions between crudes are observed when blending 

and the ASTM methodology would not work in this case. 

 

In Table 4-2 below two different blends are shown (where L denotes a low percentage of a 

crude in the blend and M a medium percentage of the crude in the blend) and were tested using 

both methodologies. It was established that Crude001 had a destabilising effect on Crude003 

and thus Blend A was  more stable than Blend B. In this case more testing would be involved 

to provide stability coefficients for specific combinations and ratios of crude. 

 

Table 4-2: Stability testing for variation in crude ratios 
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Assessing the blended crudes thus allows SC to more accurately match the refinery operating 

conditions. Providing more accurate constraints will improve the optimisation of the financial 

and operating outcomes of the blend under specific conditions. 

 Condensate Testing of Crude Blends 

 

The recipes processed by refineries are planned to stay away from instability. In practice, the 

plan will use previously generated coefficients to assess blend stability. However, when the 

crude qualities change and / or a new crude is introduced then the stability of the new blend 

needs to be assessed in the laboratory.  

 

Ideally a titration is required for each crude in the blend, so the number of titrations equals the 

number of crudes. However, this is a significant amount of testing and a simpler way is 

desirable. 

 

Thus, a single titration with a reference crude determines if the new recipe with the new crude 

is more or less stable than expected. The single test provides enough information to inform 

processing decisions. The reference crude is a yard stick to measure the relative stability of 

recipes. 

 

Whilst the reference crude is not in the refinery recipe, the crude recipe tested exactly matches 

the chemistry of the refinery. Close to instability the amount of reference crude added is small 

and therefore the assessment of instability is close to refinery conditions. 

 

Table 4-3 shows an example titration dataset for a blend of 4 crudes which have been titrated 

with reference crude to determine the point of instability. Each row shows the percentages of 

each crude in the blend, plus the reference crude.  

 

It can be seen that depending on the ratio of the four crudes in the blend, differing amounts of 

reference crude are required to force the precipitation of asphaltenes from the blend. TO 

understand the impact of crude 4 on the blend stability it can be seen that blends 06 – 09 do not 

contain any crude 04. 
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Table 4-3: Laboratory Results, condensate Matrix 

Blend 
Intertek 

Reference Crude 
Crude01 Crude02 Crude03 Crude04 

01 35% 26% 29% 7% 3% 

02 25% 15% 45% 8% 8% 

03 30% 21% 28% 16% 5% 

04 30% 25% 25% 13% 8% 

05 30% 7% 56% 5% 2% 

06 40% 6% 27% 27% 0% 

07 40% 12% 24% 24% 0% 

08 45% 17% 19% 19% 0% 

09 50% 25% 13% 13% 0% 

 

The pattern of the data dictates the number of possible solutions that can be calculated for blend 

stability coefficients. The calculated stability coefficients are relative to SC0 and IC and this 

testing has the following consequences: 

 

1. The stability coefficients are relative to a selected component SC0 which is the yard 

stick crude and remains a reference point. 

2. Changes in individual crude stability coefficients reflect the different behaviour of the 

individual crude in those blends. 

3. Maintaining a constant value of the blend instability coefficient shows all changes in 

blend chemistry in the individual crude blend stability coefficients. 

4. Solving for individual stability coefficients using different titration sets determines 

how an individual crude coefficient changes in different mixtures. 

5. Testing in the laboratory with an unstable reference crude enables instability to be 

observed quickly even though a particular blend is stable. 

6. The blend assessed relates directly to the refinery operation. Even for a new operating 

region only this single test is required to assess current operation.  

 Blend Feasibility Report 

The crude blend constraints from the refinery plan, production units and crude slate limit the 

actual blending options available to a refinery planner. The crude blends fall into recipe clusters, 

which are defined based on the optimum blend recipe based on current refinery demand (i.e. 

maximise gasoil fraction). These recipe clusters are exercised by the Intertek Matrix Blending 

Algorithm shown in Figure 4-12. 
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Figure 4-12 - Example Blend Recipe Feasibility Report 

 

This is an example of the blend feasibility report. The report is populated in stages as new neat 

crude samples become available. The report is updated as blending constraints are updated. 

Each cell in the table shows the following: 

• Neat crudes listed in columns. 

• Potential recipes are listed as rows, grouped by CDU blend types (recipe clusters) 

• Blend Properties (shown on the right) 

• Crudes that can be blended together to meet the blend constraints are expressed in 
terms of their feasibility for refinery processing as follows: 

o P – possible blend component 

o L – low percentage blend component 

o H – high percentage blend component 

 

Areas shaded in yellow represent an initial study carried out for a refinery as part of the 

development of this methodology. This section shows five crude oil blends which represented 

the five blends from the refinery recipe cluster. The study consisted of blending the five crudes 

in different blend ratios (1nn01 – 1nn05) to create a designed experiment which allowed the 

generation of coefficients to describe the interactions and stability parameters of each crude 

within the blend (the mathematics of which is explained in section 4.3.1). The physical 

properties of each blend can then be seen to the right (API, Sulphur, TAN etc.) 

 

Other areas outlined as coloured squares are then a further set of example blends which the 

refinery could possible process and in the future would need to be checked and evaluated based 

on NIR spectra, typical blend properties and constraints if the refinery decided to process those 

ratios.  
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 Experimental Results from Blend Titration 

Through a series of crude titrations, the onset of organic deposition is measured at different 

recipes of neat crudes. The results are summarised as the titration number (i.e. 111) against the 

percentage of each crude within the blend. 

 

Figure 4-13 below shows the observed organic deposition and the organic deposition predicted 

by the Intertek blend stability algorithm. This is measured at both time 0 hours (D0) and time 

24 hours (D24) and expressed in terms of observed instability (r) and no observed instability 

(g) 

 

Figure 4-13 - Example Experimental Results from Matrix Blend Algorithm 

 

The top summary table shows the range of percentages of the neat crudes in the blends including 

Minimum, Maximum Average and Span. 

 

The Intertek Blending Algorithm Stability prediction is generated using Blending Stability 

Coefficients (BSC) and Blending Instability Coefficient (BIC), the calculation of which is 

described in section 4.3.1. These coefficients calculated to quantify the effect of neat crude 

interaction at time 0 hrs. and +24 hrs. 

Crude_01 Crude_02 Crude_03 Crude_04 Crude_05

Min 0% 1% 0% 4% 30%

Max 52% 13% 8% 38% 90%

Average 21% 5% 3% 13% 58%

Span 52% 13% 8% 34% 60%

D0 D24

Blend

Titration
Crude_01 Crude_02 Crude_03 Crude_04 Crude_05

Spectra / 

Observation

Intertek 

Blending 

Algorithm

Spectra / 

Observation

Intertek 

Blending 

Algrithm

Comments from Microscopy

111 52.1% 3.3% 3.3% 11.4% 30.0% g g r r

112 44.7% 2.8% 2.8% 9.8% 40.0% g g r r

113 37.2% 2.3% 2.3% 8.1% 50.0% g g g r

114 29.8% 1.9% 1.9% 6.5% 60.0% g g g g

115 22.3% 1.4% 1.4% 4.9% 70.0% g g g g

121 1.7% 8.6% 1.7% 37.9% 50.0% g g r r

122 1.4% 6.9% 1.4% 30.3% 60.0% g g r r

123 1.0% 5.2% 1.0% 22.8% 70.0% g g r r

124 0.7% 3.4% 0.7% 15.2% 80.0% g g g g

125 0.3% 1.7% 0.3% 7.6% 90.0% g g g g

131 50.9% 1.3% 3.8% 14.0% 30.0% g g r r

132 43.6% 1.1% 3.3% 12.0% 40.0% g g r r

133 36.4% 0.9% 2.7% 10.0% 50.0% g g r r

134 29.1% 0.7% 2.2% 8.0% 60.0% g g g r

135 21.8% 0.5% 1.6% 6.0% 70.0% g g g g

141 40.0% 13.3% 8.3% 8.3% 30.0% g g r r

142 34.3% 11.4% 7.1% 7.1% 40.0% g g r r

143 28.6% 9.5% 6.0% 6.0% 50.0% g g r r

144 22.9% 7.6% 4.8% 4.8% 60.0% g g r r

145 17.1% 5.7% 3.6% 3.6% 70.0% g g g r

151 3.7% 11.1% 3.7% 31.5% 50.0% g g r r

152 3.0% 8.9% 3.0% 25.2% 60.0% g g r r

153 2.2% 6.7% 2.2% 18.9% 70.0% g g r r

154 1.5% 4.4% 1.5% 12.6% 80.0% g g g g

155 0.7% 2.2% 0.7% 6.3% 90.0% g g g g
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 Blend Evaluation Report 

The experimental results and calculations from the Blend Recipe Evaluation are used to 

generate a set of blend reports for target Crude Distillation Unit (CDU) recipes. Figure 4-14 

shown below gives an example of the blend stability calculator and contains three main 

elements: New Blend Recipe, Calculated Blend Stability and Blend Stability Coefficients from 

the Matrix Blending Algorithm.  

 
Figure 4-14 - Example Blend Evaluation Report 

 New Blend Recipe 

The blend recipe shows the % volume of the crudes in the blend. The % volume of each crude 

in this blend can be changed to evaluate changing blend recipes for organic deposition. The 

degrees of freedom of the volume percentages of the individual crudes are determined by the 

refinery blend optimiser. 

 Calculated Blend Stability 

The ultimate function of the calculator is to give the refinery an assessment of the blend stability 

for the current recipe and at all time periods of interest.  In Figure 4-14 blend recipe stability is 

shown at 0 h (BSC-D0) and +24 h (BSC-D24). 

 

In this example, the Stability Coefficient (BSC) at 0 hrs (60 for this blend recipe of crudes) is 

greater than the Instability Coefficient (BIC) (45 for this group of crudes) and thus the blend is 

stable at 0 hrs. However, the BSC at 24 hrs (45 for this blend recipe of crudes) is less than the 

BIC (60 for this group of crudes), hence the blend is unstable at 24 hrs. 
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 Calculated Blend Stability Coefficients from the matrix blending algorithm 

This section details the calculated coefficients at time 0 and 24 hours for each of the crudes 

assessed. 
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 Case Study 2: Assessment of Heavy Fuel Oil Blending in a Refinery  

 

This work forms the final deliverable to a refinery customer for the characterisation of the 

stability of heavy fuel oil blends. The customer was an early adopter of the patented 

methodology and as such this was the first application of the patented approach to a heavy fuel 

blending process. 

 

The client had experienced significant organic deposition with 1.8% sulphur blended Heavy 

Fuel Oil. This initial study was aimed at assessing the stability of 1.8% sulphur Heavy Fuel 

(HFO) when it is produced by blending 3.0% sulphur HFO from the refinery CDU with 1% 

sulphur HFO bought in from an external supplier. It is also noted that an additional blend 

component of Heavy Virgin Naphtha (HVN) also from the CDU is sometimes used to control 

viscosity of the blend. 

  

The assessment used an Intertek proprietary methodology under patent GB2516126 / 

P130065WO “Method and System for Analysing a Blend of two or more Hydrocarbon Feed 

Streams”. By blending the actual hydrocarbon streams the interactions that affect stability are 

observed. The samples received from the client were as follows: 

 

August 2014: 

• 1% Sulphur Heavy Fuel Oil (HFO) 

• 1.8% Sulphur HFO (Blended at the refinery but not sold to a customer) 

• 1.8% Sulphur Used HFO (Sent back by the refinery’s customer due to observed stability 

issues) 

• 3% Sulphur HFO 

 

December 2014: 

• 3% Sulphur HFO (not used in study) 

• Heavy Virgin Naphtha (HVN) 

 

  



   

109 

 Methodology 

The customer refinery produces 3% HFO from the CDU which is stored in heated tanks at 40-

50°C. 1% Sulphur HFO is bought in to blend with the 3% HFO to meet the specification of 

1.8% Sulphur HFO. They also produce HVN which can be blended with the 3% HFO to control 

viscosity. The table below shows the testing matrix carried out.  

 

Table 4-4: Showing the Full set of blend tested 

Test 1% HFO 1.8% HFO 
1.8% Used 

HFO 
3% HFO HVN 

Reference 

Crude 

Time Periods 

(hours) 

1 100%       

2  100%      

3   100%     

4    100%    

5     100%   

6 100% - 30%     0% - 70% 0, 72 

7  100% - 30%    0% - 70% 0, 72 

8   100% - 30%   0% - 70% 0, 72 

9    100% - 30%  0% - 70% 0, 72 

10 100% - 30%    0% - 70%   

11    100% - 30% 0% - 70%   

12 70%   30%   0, 24, 48, 72, 96 

13 65%   35%   0, 24, 48, 72, 96 

14 60%   40%   0, 24, 48, 72, 96 

15 55%   45%   0, 24, 48, 72, 96 

16 50%   50%   0, 24, 48, 72, 96 

17 60%-57%   40%-38% 0% - 5%  0, 24, 48, 96 

18    100%-60% 0% - 40%  0, 24, 48, 96 

19 100% - 50%    0% - 50%  0, 72 

20  100% - 50%   0% - 50%  0, 72 

21   100% - 50%  0% - 50%  0, 72 

22    100% - 50% 0% - 50%  0, 72 
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 NIR Spectroscopy 

The stability of the sample was assessed using an ABB MB3600 NIR spectrometer and high-

pressure cell. All scanning was carried out at 60°C. Samples were assessed for both 

instantaneous stability (i.e. as materials are added) and time dependent (over a period of five 

days) stability. 

 

 Microscopy 

Microscopy was performed on the samples to validate spectral observations; this was 

undertaken on both a Nikon 90i laser microscope and a Nikon Eclipse LV100ND.  

 

Microscopy was carried out in the following forms: 

• Transmitted light: Shows sample magnified under normal light, asphaltenes show as 

black particles, wax appears as light coloured, translucent aggregates. 

• Cross Polar: Subjects the samples to polarised light, wax crystals appear as bright star 

like objects on a black background. 
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 Physical Property Testing 

Alongside NIR and microscopy, physical properties testing were carried out as per the proposal 

issued to the client, this included testing of Density, Sulphur, Total Acid Number, Wax Content 

and Asphaltene Content. Additionally, to determine the nature of the crystalline material in the 

samples Energy Dispersive X-ray Analysis (EDAX) was also carried out on the samples. Table 

4-5 below shows the measured physical properties for each sample as supplied to the client. 

Table 4-5: HFO Physical Properties 

Test Units Method 1% HFO 1.8% Used HFO 1.8% HFO 3% HFO 

Density g/cm3 
ASTM 

D5002 
0.9639 0.9713 0.9661 0.9678 

Total Acid 

Number 

mgKOH/

g 

ASTM 

D664 
0.55 1 0.55 0.7 

Sulphur %wt 
ASTM 

D4294 
1 1.69 1.71 2.49 

Wax Content %wt CBA4 3.8 2.6 3.7 1.7 

Asphaltene 

Content 
%wt 

ASTM 

D6560 
4.6 6.2 6.1 6.9 

Sodium 

mg/kg 
CBA21 

(EDAX) 

8.8 21.2 7.5 6.7 

Calcium 8.7 14.1 6.1 2.5 

Barium 1.4 0.9 1 0.4 

Magnesium 0.9 1.4 0.7 0.3 

Potassium 0.5 3.1 0.3 0.3 

Iron 11.6 10.8 7.9 2.3 

Silicon 1.3 1.7 1.2 0.5 

Phosphorus 0.3 1.5 0.3 0.4 

Aluminium 3.4 4.8 2.1 0.4 

Zinc 1.4 1.6 0.8 0.3 

Sulphur 8.9 16.3 4.6 1 

Nickel 54.8 32.4 50.5 38 

Vanadium 80.7 129 132 188 
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 Microscopy 

Microscopy images taken of the all four HFO samples using the Nikon 90i Eclipse laser 

microscope. In these images, the wax particles in the crude oil appear as glowing white shapes 

on the dark background whereas the asphaltenes are much darker particles. 

NOTE: The scale bar represents 10 microns. 

a. 

 

1% Sulphur HFO 

b. 

 

1.8% Sulphur HFO  

c. 

 

1.8% Sulphur Used HFO 

d. 

 

3% Sulphur HFO 

Figure 4-15: HFO Laser Microscopy 1% Sulphur HFO (a), 1.8% Sulphur HFO (b), 1.8% Sulphur Used HFO (c) and 3% 

Sulphur HFO (d) 

 

It can be seen that the 1% Sulphur HFO is waxier than the 3% sulphur HFO and the 1.8% 

Sulphur used HFO has much larger waxy agglomerates that the 1.8% HFO. 
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 Optical Microscopy – Transmitted Light – Neat HFO 

Microscopy images of the 4 HFO samples were also taken using a Nikon Eclipse LV100ND 

microscope in both transmitted and polarised light. For a full set of microscopy images please 

see Appendix A for additional microscopy. 

NOTE: The scale bar represents 250 microns. 

a. 

 

1% Sulphur HFO 

b. 

1.8% Sulphur HFO 

c. 

1.8% Sulphur Used HFO 

d. 

 

3% Sulphur HFO 

Figure 4-16: HFO Microscopy with Transmitted Light on 1% Sulphur HFO (a), 1.8% Sulphur HFO (b), 1.8% Sulphur Used 

HFO (c) and 3% Sulphur HFO (d) 

 

1.8% Sulphur Used HFO shows slightly more precipitated asphaltenes (black occlusions) 

present than in the 1.8% Sulphur HFO sample. However, no obvious bulk asphaltene instability 

was observed in any of the neat HFO samples. 
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 Optical Microscopy – Transmitted Light - HVN Time Lapsed Titrations 

HVN diluent was then added to the samples and left for a period of 72 hours to allow for 

observation of any time dependent blend stability issues. Figure 4-17 below shows a classic 

bulk asphaltene precipitation phenomenon after 72 hours with HVN diluent. 

NOTE: The scale bar represents 10 microns. 

a. 

 

0 hours 

b. 

 

72 hours 

Figure 4-17: 1.8% Used Sulphur HFO with 50% HVN at time 0 hrs (a) and time 72 hours (b) 

 

In Figure 4-17 1.8% used HFO exhibited different behaviour and showed significant 

precipitation of asphaltene after 72 hours with 50% HVN. No bulk organic deposition was 

observed in the 1.8% sulphur sample made at the refinery but not marketed. This indicates a 

difference in the stability of the blend of 1.8% sulphur HFO sent back by the refinery’s customer 

versus that made up at the refinery but not marketed. 

 

No bulk organic deposition observed for the 3% sulphur blend component with HVN even at 

50% HVN after 72 hours. This indicates that neither blend component nor the 1.8% blend from 

the refinery exhibit blend stability problems with HVN. However, the sample sent back to the 

refinery with observed stability issues did precipitate asphaltenes. This indicates a difference in 

the blend chemistry and thus its stability. 
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 Optical Microscopy – Cross Polar – Neat HFO 

Cross polar microscopy uses polarised light to highlight crystalline structures in the crude 

sample. These can be wax, salt and sand and each has a different visual morphology. Waxes 

tend to form irregular aggregates, salt and crystals are more regular in shape and tend to be 

isolated.  

a. 

 

1% Sulphur HFO 

b. 

 

1.8% Sulphur HFO 

c. 

 

1.8% Sulphur Used HFO 

d. 

 

3% Sulphur HFO 

Figure 4-18: Cross Polar Microscopy 1% Sulphur HFO (a), 1.8% Sulphur HFO (b), 1.8% Sulphur Used HFO (c) and 3% 

Sulphur HFO (d) 

 

Under cross polar microscopy it is obvious that the 1% Sulphur HFO bought in is far more 

waxy than the 3% Sulphur HFO produced by the refinery. It can also be seen that the 1.8% 

Sulphur Used HFO contains waxier agglomerates than the 1.8% Sulphur HFO sample.  
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 Neat HFO Blend Tests 

 

1% Sulphur HFO and 3% Sulphur HFO were blended to make 1.6%, 1.7%, 1.8%, 1.9% and 

2% Sulphur HFO to test the effects of varying the blend ratios without addition of HVN. These 

blends were scanned at time 0, +24, +48 and +96 hours to check time dependent sample 

stability. 

 

All the spectra show change in stability with time, Figure 4-19 and Figure 4-20 shows the time 

dependent stability test for a blended 1.8% Sulphur HFO with no HVN and a 3% Sulphur HFO 

with 20% HVN diluent respectively. It can be seen that although there is some spectral 

movement (circa 0.04AU) at the 5000cm-1 region for the 1.8% Sulphur HFO this less is than 

half the movement from the HFO with diluent (circa 0.1AU). 
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a. 

 

b. 

 

 

Figure 4-19: Showing full spectra for 1.8% Sulphur Blend (a) and 9000 wavenumber region (b) 
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a. 

 

b. 

 

Figure 4-20: Showing full spectra for 20% HVN titration (a) and 9000 wavenumber region (b) 
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 HVN Titrations (Instantaneous) - Observations 

No bulk instability was observed with an instantaneous titration of both 1% and 3% Sulphur 

HFO with HVN. 

 HVN Titrations (Time Dependent) - Observations 

A change in stability was observed with a time dependent titration of 1% increments from 1% 

- 5% HVN in 1.8% Sulphur HFO over a period of 96 hours. A change in stability was also 

observed with titration of 10%, 20%, 30% and 40% HVN in 3% Sulphur HFO over a period of 

96 hours.  

 

 Reference Crude Titrations 

The HFOs were also titrated with Intertek proprietary reference crude. This is a blend of 

consistent set of hydrocarbons used to check the relative stability of neat HFO samples. 

 

Table 4-6: Percentages of Reference Crude (RC) around the point of instability 

Sample Stable (% RC) Unstable (%RC) 

1% Sulphur HFO 40 50 

1.8% Sulphur Used HFO 40 50 

1.8% Sulphur HFO 40 50 

3% Sulphur HFO 50 60 

 

Table 4-6 shows the percentages of reference crude needed to make the sample go unstable. All 

samples except the 3% Sulphur HFO were stable at 40% reference crude and unstable at 50% 

reference crude. The 3% Sulphur HFO however was stable at 50% reference crude and unstable 

at 60% reference crude.  This suggests that the 3% Sulphur HFO is more stable than the 1% 

Sulphur HFO. 

 

In the blend of 1.8% Sulphur HFO the 1% Sulphur HFO has a higher leverage at 60%wt 

compared to the leverage of 3% Sulphur HFO at 40%wt. Therefore, the stability of the 1.8% 

Sulphur HFO blend is more dependent on the stability of the 1% Sulphur HFO. 

 

 Conclusions 

Observations of stability of HFO blends was undertaken using the proprietary stability 

methodology developed as part of the Eng.D project. Based on the set of samples studied it was 
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concluded that a change in stability was observed in all blends made from blending 1% Sulphur 

HFO and 3% Sulphur HFO in the range 1.6% to 2.0% Sulphur. 

 

The change in stability occurred at the time that the HFO was blended. The sample instability 

worsened over time i.e. from blending (0 hours) to the end of monitoring (96 hours). 

 

It was suspected that the paraffinic HVN diluent would cause instability problems and indeed 

increasing the amount of HVN in the blend increased the tendency for instability. The 1.8% 

Sulphur Used HFO sample (returned by the customer’s customer) was the only one exhibiting 

instability when blended with HVN after 72 hours. Instability with HVN was not observed with 

1% Sulphur HFO, 1.8% Sulphur HFO or 3% Sulphur HFO. 

 

It can be concluded that 1.8% Sulphur Used HFO and 1% Sulphur HFO are more unstable than 

1.8% Sulphur HFO and 3% Sulphur HFO. Coefficients of blend stability for 1.8% Sulphur HFO 

were not calculated as the sulphur constraint did not cover a region that exhibited both stable 

blends and gross unstable blends within 96 hours from blending. 

 

Figure 4-21 below shows a line diagram of the physical property measurements from the 

customer sample. 

 

Figure 4-21: Comparison of physical properties to average 

 

It can be seen that the density of 1.8% Sulphur Used HFO is the highest of all customer sample 

densities. The 1.8% Sulphur HFO will have been made from blending 1% Sulphur HFO and 
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3% Sulphur HFO in the ratio 60:40 and therefore the density must be between the density of 

the two blend components. As the density is higher than 3% Sulphur HFO the blend components 

of the 1.8% Sulphur Used HFO must be different from the samples tested. 

 

After further discussion of the results with the customer it was determined that the 1% sulphur 

HFO blend component was sourced from different suppliers. The two 1.8% Sulphur HFO 

samples were made with different 1% Sulphur blend components and it was thus determined 

that 1% Sulphur blend component from a particular supplier was not compatible with the 

customer 3% Sulphur HFO. 

 

1% Sulphur HFO is waxier than 3% Sulphur HFO and the EDAX results in conjunction with 

the physical properties analysis and cross polar microscopy suggest the crystalline material to 

be predominantly organic in nature. 

 

From the microscopy observations, it was determined that the 1% Sulphur HFO is less stable 

than 3% Sulphur HFO when blended with reference crude and bulk organic deposition was only 

observed with 1.8% Sulphur Used HFO with 50% HVN after 72 hours but not with 1% Sulphur 

HFO, 1.8% Sulphur HFO or 3% Sulphur HFO. 

 

1% Sulphur HFO is less stable than 3% Sulphur HFO when blended with reference crude and 

blends of 1.6% to 2% Sulphur HFO without HVN exhibit a change in stability with time. 

However, 3% Sulphur HFO with HVN does exhibit change in stability with time. Blends of 

1.8% Sulphur HFO made from 3% and 1% Sulphur HFO and HVN from 0% to 5% do exhibit 

a change in stability with time. 

 

 Recommended action: 

• Blend order and mixing is critical to prevent bulk instability when blending with HVN. At 

the point of mixing there is the potential for a local high concentration of HVN. 

• Establish the level and quality of HVN, 1% Sulphur HFO, and 3% Sulphur HFO, storage 

times and the blend order that have been associated with customer issues. 

• Monitor quality of blend components and evaluate blend stability before making up 

batches of 1.8% Sulphur HFO 

• Monitoring the quality of 1.8% Sulphur HFO is critical based on the significant difference 

between 1.8% Sulphur HFO and 1.8% Sulphur Used HFO.  

• Establish the critical processing parameters for the customer i.e. the level of organic 

deposition that can occur whilst the HFO remains usable. 
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Case Study 3 – Assessment of Blends of Marine Fuels 

 

This application of the organic deposition programme was directed at solving issues 

experienced with deposition in the marine fuels industry. This can cause major issues because 

if asphaltene precipitates whilst fuels are blended on board they can block fuel filters and 

potentially shut down the engines. 

 

This issue arises because ships have two tanks of fuel on board. One containing a high sulphur 

(residual) fuel oil and one containing a low sulphur (distillate) marine diesel. It is necessary for 

ships to transition between fuels when passing through Emission Control Areas (ECAs). 

Currently the global Sulphur cap is 3.5% however in European waters (Baltic, North Sea and 

English Channel) this drops to 0.1% (Commission, 2016). This blending within the fuel line 

can cause stability problems when the paraffinic diesel is mixed with the highly asphaltenic 

duel oil. 

 

This study saw intensive collaboration with both marine operatives and refineries producing 

the fuel. Furthermore, studies have been undertaken with additive manufacturers to assess the 

levels and efficacy of additives used to help prevent these problems occurring. 

 Part 1 – Characterisation and Feasibility Phase 

This details the results of blending marine fuel oils. The assessments focused particularly on 

the linearity of spectral blending of fuel oils and the stability of blended fuel oils 

  

The work was initiated following a discussion between Intertek and a spectrometer 

manufacturer regarding the possibility of installing a spectrometer in a ships fuel line to monitor 

the progression from Heavy Fuel Oil (HFO) to Marine Diesel Oil (MDO). This monitoring is a 

value-added service to shippers in ECAs.  

 

A selection of samples of HFO and MDO were selected for testing in the Intertek laboratory. 

Testing work was carried out in April - June 2015 with various blend recipes assessed using 

Near Infrared (NIR) spectroscopy and microscopy. 

 

Blends were made up at 10% increments of the following pairs of samples: 

• Blend 1: DL231202 – HFO (3.43% Sulphur) / DL231229 – MDO (0.03% Sulphur) 

• Blend 2: DL231193 – HFO (3.30% Sulphur) / DL231311 – MDO (0.04% Sulphur) 
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• Blend 3: DL231210 – HFO (1.96% Sulphur) / DL231232 – MDO (0.10% Sulphur) 

 

 Methodology 

To undertake the study, the Intertek marine specialist division (Shipcare) supplied samples of 

High Sulphur Fuel Oil (HSFO) and Ultra Low Sulphur Gas Oil Equivalent), The physical 

properties for the samples are shown in Table 4-7 below.  

 

Table 4-7: Physical Properties for Samples 

Lab Ref Fuel Type 
Density 

(g/cm3) 

Viscosity 

(Centipoise) 

Water 

(%m/m) 

Micro Carbon Residue 

(%m/m) 

Sulphur 

(%m/m) 

DL231202 HSFO .987.5 285.4 0.15 10.9 3.43 

DL231193 HSFO 990.6 302.3 0.15 15.4 3.30 

DL231210 HSFO 988.7 303.3 0.15 13.7 1.96 

DL231232 ULSGOE 887.7 5.4 0.05 0.04 0.10 

DL231311 ULSGOE 839.9 2.9 0.05 0.01 0.04 

DL231229 ULSGOE 832.1 2.7 0.05 0.06 0.03 

 

 NIR Spectroscopy 

The assessment was carried out with an ABB MB3600 NIR spectrometer and high-pressure 

cell, scanning at 60°C with manual injection using a syringe. Samples were assessed for both 

instantaneous stability (i.e. as materials are added) and time dependent (over a period of five 

days) stability. 

 

Organic deposition occurs when the spectra detect wax and asphaltene agglomerates, thus linear 

blending is no longer applicable. This is termed the “inflection” point as seen in Error! 

Reference source not found. PT5Technology aggregate plot.  
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Figure 4-22: Showing the an inflection point 

 

 Microscopy 

Microscopy was performed on the samples to validate spectral observations; this was 

undertaken on both a Nikon 90i laser microscope and a Nikon Eclipse LV100ND.  

 

Microscopy was carried out in the following forms: 

• Transmitted light: Shows sample magnified under normal light, asphaltenes show as 

black particles, wax appears as light coloured, translucent aggregates. 

• Cross Polar: Subjects the samples to polarised light, wax crystals appear as bright star 

like objects on a black background. 
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 Results 

Blends were made up at 10% increments of the following pairs of samples: 

• Blend 1: DL231202 – HFO (3.43% Sulphur) / DL231229 – MDO (0.03% Sulphur) 

• Blend 2: DL231193 – HFO (3.30% Sulphur) / DL231311 – MDO (0.04% Sulphur) 

• Blend 3: DL231210 – HFO (1.96% Sulphur) / DL231232 – MDO (0.10% Sulphur) 

 Sulphur Assessments 

Figure 4-23 shows a PT5 aggregate plot of the sample spectra. It can be seen from these plots 

that as the percentage of MDO is increased from neat HFO (yellow) to neat MDO (red) that the 

spectra blend linearly (i.e. form a straight line).  

 

The aggregate values (LIN1 and LIN2) are proprietary to Intertek, and were constructed as 

described earlier in the thesis. The intention of these aggregates was to select sections of the 

spectra which linearised the aggregate plot and were not affected by the non linearites caused 

by the depositon of particulate material. 

 

 

Figure 4-23: Linear Spectral Blending 

 

Figure 4-24 shows that linear blending is interrupted on organic deposition aggregates at the 

point of 60% MDO in HFO, however, it is possible to construct linear aggregates to 

accommodate this effect shown in Figure 4-23. This is critical to implementing this customer 

application as the instrument was intended to monitor percentage Sulphur in the blend online 

and thus cannot be affected by any particulate precipitation. 

 Instability 

Using spectroscopy and organic deposition aggregates the point of inflection due to instability 

can be seen at 60% MDO in HFO for both blends 1 and 2 (Figure 4-24 a and b) 
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Characteristic behaviour of the point of instability is the deviation of the spectra from a straight 

line. If no deposition occurs the spectra blend linearly and straight line is observed between the 

two pure components.  

 

The aggregate values on this axis are once again constructed from spectra using principles 

discussed earlier. KARO selects wavenumbers of the spectra related to the aromaticity of the 

hydrocarbon material, an important factor given that increasing aromaticity would indicate a 

tendency for the blend to solubilise any precipitated asphaltene. 

 

Deposition Aggregate 10 (DA10) is a further development of the organic deposition aggregates 

discussed in section 4.2 and takes wavenumbers within the spectra which relate to the 

deposition of particulate material, specifically in blends of marine fuels. 

 

a.

 

b.

 

Figure 4-24: Blend 1 (a) and Blend 2 (b) aggregate plots 

  

0% MDO 

100% MDO 

0% MDO 

100% MDO 
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 Microscopy 

Microscopy images of the samples were taken using a Nikon Eclipse LV100ND microscope 

with transmitted illumination. The images are used to validate the organic deposition results 

from spectroscopy. Both blends show that organic deposition occurs in a blend with greater 

than 50% MDO in HFO. 

 

Blend 1 was made up of DL231202 – HFO (3.43% Sulphur) and DL231229 – MDO (0.03% 

Sulphur) 

 

a.

 

0% MDO in HFO 

b. 

 

30% MDO in HFO 

c. 

 

60% MDO in HFO 

d. 

 

90% MDO in HFO 

Figure 4-25: Blend 1- MDO in HFO at 0% (a), 30% (b), 60% (c) and 90% (d) 

Figure 4-25 shows how the blend precipitates asphaltenes quite severely at 60% MDO in HFO. 
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Blend 2 was made up of DL231193 – HFO (3.30% Sulphur) and DL231311 – MDO (0.04% 

Sulphur). 

 

 

0% MDO in HFO 

 

30% MDO in HFO 

 

60% MDO in HFO 

 

90% MDO in HFO 

Figure 4-26: Blend 2 - MDO in HFO 

From Figure 4-26 it can be seen that Blend 2, although not as severely as Blend 1, still 

precipitates asphaltenes at 60% MDO in HFO. 
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 Part 2 – Additive Efficacy Assessments 

Part 2 goes on to show the results of blending marine fuel oils and additives. The assessments 

focused particularly on the stability of blends of fuel oils containing Marine Diesel Oil (MDO) 

and Heavy Fuel Oil (HFO) with and without an additive. 

  

The project work was initiated following discussions between Intertek Process Assurance 

Group and Intertek Shipcare. Part 1 of the study demonstrated that blends of HFO and MDO 

precipitate asphaltenes both instantaneously and over time. 

 

Following on from further discussions there was significant interest in assessing the effects of 

investigating a solution to the problem in the form of asphaltene stabilising additives. The 

ability to quantify the effects of additives on fuel oil blend stability will allow Intertek to offer 

solutions to customers experiencing these issues. 

 

A selection of samples including HFO and MDO were selected for testing in the laboratory. 

Testing work was carried out in September - November 2015 with various blend recipes 

assessed using Near Infrared (NIR) spectroscopy and microscopy. The oils were blended at 

predetermined ratios (shown below) and tested with and without additive. 

  

Blends were made up at 20% ratios of the following pairs of samples: 

• Blend 1 DL242838 – HFO (2.57% Sulphur) / DL243169 – MDO (0.076% Sulphur) 

• Blend 2 DL242840 – HFO (2.49% Sulphur) / DL243094 – MDO (0.083% Sulphur) 

• Blend 3 DL242837 – HFO (2.41% Sulphur) / DL243017 – MDO (0.083% Sulphur
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 Physical Properties 

The physical properties for the samples provided by Shipcare are shown in Table 4-7 below. 

 

Table 4-8: Physical Properties for Samples 

Lab Ref Grade Dens Visc H2O MCR SUL 

DL242838 HSFO 988.4 378 0.25 10.6 2.57 

DL242840 HSFO 991 405.5 0.15 16.2 2.49 

DL242837 HSFO 989.8 344.8 0.2 15.1 2.41 

DL243017 ULSGOE 908.7 82.7 0.05 4.6 0.083 

DL243094 ULSGOE 908.7 82.2 0.05 5.2 0.083 

DL243169 ULSGOE 862.5 21.66 0.05 0.1 0.076 

 

 The blends were assessed under the same regime as the feasibility study by using microscopy 

and NIR spectroscopy. 

 Results 

Blends were made up at 20% increments of the following pairs of samples: 

• Blend 1 DL242838 – HFO (2.57% Sulphur) / DL243169 – MDO (0.076% Sulphur) 

• Blend 2 DL242840 – HFO (2.49% Sulphur) / DL243094 – MDO (0.083% Sulphur) 

• Blend 3 DL242837 – HFO (2.41% Sulphur) / DL243017 – MDO (0.083% Sulphur)  

 

Table 4-9 (below) is a summary table showing laboratory observations of the blends analysed. 

 

  



   

131 

Table 4-9: Summary table 

Blend 

Number 
Date Fuels in blends 

Additive 

amount (g) 

Comments 

Microscopy Spectroscopy 

1a 02/10/2015 
80% of DL242838 and 

20% of DL243169 
0.02123 No change No change 

1b 02/10/2015 
60% of DL242838 and 

40% of DL243169 
0.00764 No change No change 

1c 02/10/2015 
40% of DL242838 and 

60% of DL243169 
0.00828 No change No change 

1d 02/10/2015 
20% of DL242838 and 

80% of DL243169 
0.01965 No change No change 

2a 03/11/2015 
80% of DL242840 and 

20% of DL243094 
2.2 

Additive shows 

improvement 

Spectra confirms 

additive improves 

2b 03/11/2015 
60% of DL242840 and 

40% of DL233094 
2.2 

Additive shows 

improvement 

Spectra confirms 

additive improves 

2c 03/11/2015 
40% of DL242840 and 

60% of DL243094 
2.2 

Additive shows 

improvement 

Spectra confirms 

additive improves 

2d 03/11/2015 
20% of DL242840 and 

80% of DL243094 
2.2 

Additive shows 

improvement 

Spectra confirms 

additive improves 

3a 06/11/2015 
80% DL242837 and 20% 

DL243017 
4 No change No instability 

3b 06/11/2015 
60% DL242837 and 40% 

DL243017 
4 No change No instability 

3c 06/11/2015 
40% DL242837 and 60% 

DL243017 
4 No change No instability 

3d 06/11/2015 
20% DL242837 and 80% 

DL243017 
5 No change No instability 

 

As seen in the table, the additive improved a number of samples including blend 2a, b, c and d. 

All blends with the exception of blend 3 showed instability at certain blend ratios.  
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 Blend

a. 

Blend 1b (80% HFO/ 20% MDO) 

With additive 

b. 

 

Blend 1b (80% HFO/20% MDO)  

Without additive 

c. 

Blend 1c (60% HFO/40% MDO) 

With additive 

d. 

Blend 1c (60% HFO/40% MDO) 

Without additive 

Figure 4-27: Showing  blends with additive (a) and (c) and without additive (b) and (d) 

In blend 1 the additive did not improve the stability of the blend, the blend was equally as 

unstable without the additive as it was with the additive. 
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 Blend 2 (DL242840/DL243094) 

a. 

 

Blend 2b (80% HFO/ 20% MDO) 

With additive 

b. 

Blend 2b (80% HFO/20% MDO) 

Without additive 

c. 

Blend 2c (60% HFO/40% MDO)  

With additive 

d. 

Blend 2c (60% HFO/40% MDO)  

Without additive 

Figure 4-28: Showing  blends with additive (a) and (c) and without additive (b) and (d) 

 

In blends 2b and 2c (above) it can be seen that the additive has made a difference to the stability 

of the blends, if the a photo is considered, it can be seen that there is no particulate deposition, 

however, looking at the d photo, the black precipitated asphaltene particulates can be seen. 

 

Appendix B contains the results for blends 3b and 3c in which it can be seen that the additive 

has not made a difference to the stability of the blends, this is because no instability was 

observed in the blends before addition of additive. The spectroscopy validates these findings. 
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 Additive 

 

Additive 

Figure 4-29: Neat Additive 

 

By scanning and taking microscope pictures of the additive,  validation of the physical effects 

of the additive on the crude blend is possible i.e. the additive does not contain (in itself) 

particulate asphaltene or waxy agglomerates which would affect spectra.  
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 Conclusions 

From the assessment of marine fuels it is clear that the methodology developed can also deal 

with instability problems in the marine industry. This has the potential to be developed into a 

ship fuel monitoring service to profile sulphur levels as the transition occurs from HFO to MDO 

when passing through SECA’s. 

 

It was also proved that the chemometric modelling technique discussed in 0 can be applied to 

monitor sulphur transition during marine fuels blending. This has the potential to be rolled into 

an online service which can be placed on board a ship to monitor both Sulphur transition and 

blend stability. 

 

Furthermore the case study demonstrated the applicability for the technique to assess the 

efficacy of additives on blends of marine fuels. A capability that can be applied in other areas 

of the hydrocarbon processing sector. 

 

Intertek can offer this as a service to additive manufacturers to assess efficacy of additives and 

provide them value added information to take to the marketplace. 
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Chapter 5. Troubleshooting Upstream Process Issues with Data Analytics 

As part of the provision of chemometric modelling services to clients of Intertek, it was a logical 

next step to widen the modelling capability of the PT5 toolbox and provide troubleshooting for 

client issues based on data other than NIR spectra. 

 

The process industry in general has a multitude of online instrumentation, interfaced to process 

data historians (such as PI). Contained within these datasets is valuable information and 

knowledge that, when coupled with domain expertise, can be used to achieve a variety of 

benefits including: more efficient maintenance scheduling, improved performance, reduced 

downtime and maximised margins. 

 

However, this valuable information is hidden in the quantity of data and further compounded 

by dataset issues such as the noise from unrepresentative operation such as process upsets and 

malfunctioning instrumentation. Hence, to simplify analytics, operators usually focus on time 

series trending and first order effects. 

 

Much work has been undertaken on the application of multivariate data analytics to process 

data, particularly for its applications in Process Analytical Technology (PAT) and Quality by 

Design (QbD). A review of these approaches to bioprocess datasets was undertaken by (Mercier 

et al., 2014) with the conclusion that data analytics in this industry, although implemented, is 

still in its infancy and much more development work is required to achieve wider marketplace 

penetration 

 

Furthermore, applications are also implemented in the pharmaceutical industry, (Rioloa et al., 

2017) undertook a review of the applications of data analytics for PAT within the 

pharmaceutical industry, with a specific focus on Raman spectroscopy.  

 

However, the drivers for development of this technology in food and pharmaceuticals is clear, 

these are tightly regulated industries producing goods generally for human consumption and 

thus the margin for error is very slim. Very little has been written on the implementation within 

the oil and gas industry however, this is due to a traditional mindset and an attitude that the 

status quo works and thus the balance should not be upset. 

 

During the course of the Eng.D project, an opportunity was identified with an upstream client 

experiencing problems with two pumps on an offshore installation. Pump failure not only 
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resulted in maintenance costs to repair the pump but also deferred production costs, i.e. the cost 

associated with not producing oil. This problem was not new however and pump failures had 

been plaguing the installation for many years.  

 

The Eng.D project was focussed on working as part of an engineering solutions team to identify 

the root cause of pump failure and thus develop a novel solution which could be implemented 

to monitor the issue and mitigate the problem to the greatest extent possible. 

 

The problem was suspected to be caused as a function of the ratio of gas:liquids in the stream 

to the pump, affected by the well configuration. Therefore, this fits well with the theme 

throughout the Eng.D programme which has focussed on blended hydrocarbon streams. 

 

 Case Study 4: Offshore Data Analysis 

 

A client has experienced operational issues with regard to two pumps installed on a platform. 

There has been a significant history of issues including vibration and other mechanical 

problems. Although remedial work has been carried out performance remains less than optimal.  

In the last one – two years however one of the major failure points of the pump has been the 

process seals. Below is a schematic diagram showing the basic process flow: 

 

 

Figure 5-1: Process Flow Diagram 

 

It can be seen that the crude oil flows from several wells into a manifold where it goes to a 

buffer tank. This is intended to control the consistency of the fluids entering the pump. Fluids 

go through the pump and onto a recycle control where some flow is diverted back to the 

Well #1

Well #2

Well #3

Manifold
Buffer 
Tank

Pump Recycle 
Control

Recycle

To Export 
Pipeline
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manifold prior to the buffer tank and some is sent to export. This is controlled based on the flow 

rate of the wells. 

 

Figure 5-2 below shows a basic schematic of the pump. The arrangement is twin screw with 

two rotating shafts. These are sealed at each end however there is movement, thus the shafts 

are able to oscillating both horizontally and vertically (z axis displacement). 

 

Figure 5-2: Pump Schematic 

They have an expected (and historical) life of approximately 18months, however recently the 

client experienced failure after much shorter operational intervals. It is unknown at this time if 

this is as a result of a historical project to minimise vibration or if there has been a major change 

in process conditions, the goal of the data analysis is to understand the process and what factors 

from the process can indicate or cause the seal failure noted in recent years. 

 

The client supplied Intertek with the following 5 datasets: 
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Period 

number 

Time period summary Length Interval Usage 

1 Smooth operation - no 

failures 

14 days 5 mins Used as steady 

state indicator 

2 Failed control attempt 1 ~1 hour 10 sec Low variability 

3 Failed control attempt 2 ~1 hour 1 sec Low variability 

4 Failure Period A 7 days 5 mins Analysed in depth 

5 Failure Period B 7 days 5 mins Analysed in depth 

 

 Data Pre-Processing 

Prior to carrying out any data analysis a number of pre-processing steps were made to ensure 

that the data was fit for use, this involved searching the data set for incomplete ranges, text in  

place of numbers. 

 

In period 4 and 5 there was a regular I/0 error which appeared in two separate groups, one group 

had the error in the first row of data the other in the 15th row., these I/0 errors had to be removed 

prior to data analysis.  

 Univariate Analysis – Pump A 

The customer noted that the change in axial displacement was a likely cause of the seal failure, 

going on to discuss that the magnitude of displacement was not high compared to normal 

operation. This prompted initial observations of not just the magnitude but also the rate of 

change of axial displacement across the time period in question and across time period 1 as it 

was considered a good indication of ‘normal’ operation.  

 

Focusing on period 1, 4 and 5 for the rate of change charts below, the rate of change is simply 

the current time period minus the next one, as these data points are 5 minutes it was not deemed 

necessary to smooth this by using a pre-processing algorithm. 
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As can be seen below, when looking at ZI-37261A (z axis displacement sensor), throughout 

period 1 (Figure 5-3) and period 4 (Figure 5-4) pump A has a very small rate of change of axial 

displacement, the blue line is the rate of change and the red is the actual value of the sensor.  

 

The only exception to this small rate of change is noted at the end of period 4 when there is a 

sudden change in axial displacement caused by pump B shutting down due to seal failure. This 

change is so large that the shaft actually moves past its calibrated 0 and hence shows as a 

negative displacement.  

 

This also demonstrates that the two pumps interact with one another to a certain extent and this 

could be due to a number of factors including the physical proximity of the two units or (more 

likely) the common discharge.  
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Figure 5-3: Pump A throughout time period 1 
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Figure 5-4: Pump A throughout period 4
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In Figure 5-5 which examines ZI-37261A (z axis displacement sensor) for pump A in period 5  

there only one pump in operation (pump A), however, towards the end of the period pump A is 

initially shut down and attempts are made to restart B which ultimately are unsuccessful. After 

this A is brought back online again but subsequently suffers a seal failure and has to be shut 

down. As only one pump is online throughout time period 5 it may have slightly different 

characteristics to a time when both pumps are running. 

 

In Figure 5-5 there are three clear periods where there is a sudden change in the axial 

displacement as shown by high values on the rate of change plot (blue). Event 3 is the point 

where the pump shuts down due to the failure of the seal.  
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Figure 5-5: Pump A throughout Period 5
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Focusing in on the second event there are some large fluctuations noted in the axial 

displacement of the shaft as shown on Figure 5-5 and Figure 5-6. 

 

Figure 5-6: Axial Displacement 

When this change in axial displacement occurs it is also noted a subsequent disturbance in the 

level of the buffer tank. As seen in Figure 5-7, there is a sudden drop in level (LI-37202A) at 

the buffer tank for pump A, as the distance between the tank and pump is short it is a safe 

assumption that these two events are linked. This drop in level is also an indicator of lean (high 

gas flow) and thus potentially a slug of gas moving through the system. 

 

Figure 5-7: Buffer Tank Level 
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This coincides with the phenomenon of slugging wells, a common offshore phenomenon and 

one that is well known for causing a range of process issues. Liquid slugs in particular would 

be seen in the data as a peak in torque and flow rate. 

 

Looking at the flowrate to the pump (FI-37216A) and torque (JI-37219A) throughout the event 

2 this behaviour is not seen, rather there is an erratic torque value (red) but ultimately a drop 

accompanied with a sudden drop in flowrate (blue) over the period of increased axial 

displacement.  

 

 

Figure 5-8 Flow Rate and Torque 

 

As this behaviour is opposite to that associated with a liquid slug and the fact that there is a 

drop in liquid level in the buffer tank (Figure 5-7), It is suspected that this behaviour is actually 

indicating a period when overall less mass is entering the pump. This shows   that during this 

period of time the liquid content of the incoming fluids was lower than normal. 

 

The gas slug theory is further justified if the inlet temperature to the pump is taken as an 

indicator of composition of the stream entering it. If it is assumed that the heat extraction 

capability of the inlet cooler is near to constant (a safe assumption as the cooling utility would 

not change significantly over a short period of time) then any change is due to process 

fluctuations. 
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Therefore, an increase in temperature would show that the incoming energy from the system ad 

also increased and this could be caused by one or a combination of the following: a general 

temperature increase of the fluids, an increase in total flowrate or an increase in the liquid 

fraction. Conversely if a temperature drop was noted it would indicate a combination of a 

reduction in specific heat capacity of the fluid (i.e. more gaseous), a drop in temperature for the 

system or an overall reduction in flowrate. 

 

Figure 5-9 shows the DP vs inlet temperature for pump A in period 5, coloured by events. Event 

1 is the large axial displacement change noted at the beginning of the period, event 2 is the 

event discussed in detail earlier.  

 

As can be seen event 2 begins in the main cluster, then moves to an area of lower temperature 

and DP, indicating a reduction in flowrate or a reduction in specific heat capacity, showing 

either a disruption in flow or a change in density and then returning to the cluster which 

indicates normal operation. Event 1 goes through a very similar process but with much lower 

temperatures. Event 3 is the actual failure event, again is very similar to the two others, but 

most closely resembles event 1.  
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Figure 5-9: Inlet Temperature vs DP
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All three of these events were similar as they all had a high rate of change in axial displacement 

of the pump. In conclusion, the failure event can be categorised by a large change in axial 

displacement in the pump, the cause of this will require further investigation using multivariate 

analysis.  
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 Univariate Analysis – Pump B 

 

Following on from the investigation of pump A a further investigation was undertaken of the 

parallel pump B. It was noted in a customer report that seals on pump B also experiences failure. 

To validate the earlier theory from pump A the customer noted a sudden change in axial 

displacement prior to the failure, this was thought to be caused by a liquid slug. As with pump 

A the failure was accompanied by a significant drop in the level of seal oil. 

 

A similar approach was taken with B where rate of change of axial displacement was plotted 

through time period 1 and 4. In this case period 5 has been omitted as it does not include a long 

period of operation for analysis of pump B.  

 

As before the change in axial displacement is relatively small throughout the entirety of time 

period 1 showing the pump is not going through any major disruptions. In time period 4 it is 

observed that there are two clear events where there was sudden change in axial displacement 

(Figure 5-11). 

  

Event 1 results in a shutdown of the pump and subsequent restart, there is a large amount of 

axial displacement during event 2 as it is the event which coincides with the failure of pump B 

(noted in customer reports). It should be noted that in the analysis of pump A a period of sudden 

axial displacement was seen to result in seal failure, and this event looks very similar. 
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Figure 5-10: Axial Displacement of MPP B through time period 1 
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Figure 5-11: Axial displacement of MPPB throughout time period 4
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As with pump A period 4 was analysed  to try and correlate any commonalities between the 

high periods of change in axial displacement (noted in event 1 and 2 in period 4).  

 

Figure 5-12: Pump B event 1 period 4 

The correlation between z axial displacement of B and buffer tank level of B (LI-37202B) was 

also undertaken (Figure 5-13). It is observed that, once again, at the point where seal failure is 

noted, there is again a drop in level, indicating lean (high gas) flow. 

 

 

Figure 5-13: Buffer tank level through event 1 
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The correlation between torque (JI-37219B) and flow rate (FI-37216B) is shown in (Figure 

5-14). 

 

Figure 5-14: Flow and Torque through event 1 

 

As can be seen from Figure 5-14 there is an obvious shutdown in this period where both the 

flowrate and torque values reach a ‘zero’ there is then subsequent period which is distinctly 

noisy where the pump is once again started. 

 

Figure 5-15: Pump B event 2 period 4 Torque and DP over the venturi 

 

-200

0

200

400

600

800

1000

1200

-5000

0

5000

10000

15000

20000

25000

JI
-3

7
2

1
9

B
 T

o
rq

u
e

 (
N

m
)

FI
-3

7
2

1
6

B
 F

lo
w

 R
at

e
 (

m
3
/h

r)

Time Index

Showing Flow Rate (m3/hr) and Torque (nm) against Time

JI-37219B

FI-37216B

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-5000

0

5000

10000

15000

20000

25000

10/08/2015 10/08/2015 10/08/2015

P
D

I-
3

7
2

1
1

B
 -

D
e

lt
a 

P
re

ss
u

re
 (

B
ar

)

JI
-3

7
2

1
9

B
 -

To
rq

u
e

 (
N

m
)

Time Index

Showing Torque and Delta Pressure v Time Index

JI-37219B

PDI-37211B



 

156 

Similar results are observed when examining event 2. The other interesting correlation is that 

torque does follow differential pressure (PDI-3721B) as shown in Figure 5-15 and this linearity 

is even more apparent if they are plotted on a scatter graph Figure 5-16. 

 

 

Figure 5-16: Venturi DP vs Torque 

At this stage it is not possible to hypothesize on what caused the failure of pump B due to the 

lack of resolution in the data, to allow further analysis data with higher resolution has been 

requested. It has also been requested that a member of the Intertek team is given access to the 

PI server to allow the speedy recovery of data. 

  General Observations and Future analysis  

 

Through working with this data set a number of things came to light which could also give an 

indication of how the pump is operating. 

 Axial Displacement 

Throughout this analysis Axial displacement has been the focus, the hypothesis being that a 

sudden change in axial displacement is the mode of seal failure, indeed it has been demonstrated 

during times of seal failure there is a corresponding sudden change in axial displacement. 

 

However building on this it may actually be possible to determine what gas/liquid ratio is 

flowing through the pump during certain time periods. An off state can clearly be seen when 

the axial displacement goes to zero, and a normal operating zone can also be seen when axial 
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displacement is around 0.2mm. At the time of the suspected  slug displacement goes above 

0.2mm and when it is suspected that fluids are leaner the displacement is lower, with more 

information it may be possible to categorize the operation into zones. 

 Lean fluid periods 

Another area of interest for future analysis would be periods where the fluids are leaner and 

lower in liquid. According to the customer they are working on a mostly gas service when they 

had originally designed the pump to work on more of a 60/40 split gas/liquid. 

 

It is believed that a drop in liquid content of the incoming fluids could result in a drop in liquid 

level in the buffer tank, a reduction in torque and drop in volumetric flowrate, however, all three 

of these things can also categorize simply low flow, therefore more information will be 

required, section 5.2.3 discusses other ways of determining density, this would give a much 

better understanding of low flow versus lean flow. 

 Density 

The biggest challenge faced in this analysis has been the lack of information on the density of 

the fluid. Using other measurements it will be possible to understand mass flow. The inlet 

temperature to the pump is a very constant figure around about 33oC, there are however a 

number of occasions however when it goes lower than 33oC.  

 

As discussed earlier if a constant cooling load is assumed these points of low temperature can 

be categorized as low flow periods, whether that low flow is due to change in density or just a 

reduction in flow needs to be further analysed with more data, well online or offline information 

would aid greatly in this.  

 Torque and pump power 

Finally, the torque of the pump is one of the best measurements of what is flowing through the 

pump. For example. if it is flowing a lot of mass it will have to work a lot harder to achieve the 

same pressure increase, using a combination of sensors with torque again an estimation of what 

the fluids are made up of can be made. 
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 Multivariate Data Analysis 

 

In other sections of this report variables were investigated singly and in combination by plotting 

and manually observing coinciding trends and events. By applying statistical tests relationships 

can more rapidly be identified between the variables and groups of variables, search for similar 

events, and quantify the significance of those events.  

 

Human intuition often produces false positives, and comparing observations against a 

significantly large dataset can inform us if they are true, false, or somewhere in between. Going 

forward the results of these tests can lead to diagnostics and software solutions based on 

engineering knowledge.   

 

 Data Cleansing 

In order to perform multivariate analysis the dataset has to be prepared to ensure that the values 

are both complete and comparable. The following steps were performed before proceeding with 

the analysis. 

a) The dataset was time aligned. 

b) A joint dataset of all the periods was constructed for use in certain analysis. 

c) All non-numeric and empty values in the data received was converted to nulls 

d) Empty variables were removed 

e) All samples containing a variable with one or more null value were removed. 

f) A scaled dataset was created (referred to as ‘scaled data’). 

g) Variables with constant values were removed. 

 

  Investigation of Variables 

After this the first step in the analysis workflow was to study the sensor variables in isolation, 

comparing variables with themselves at different times, rather than to other variables or as part 

of a multivariate group. These steps are undertaken first so that data with outliers or data that 

doesn’t change can be excluded from later analysis. If this stage revealed that all sensors of one 

type produced the same results, they could safely be removed from analysis, or combined as an 

average so as not to provide any significant bias to the dataset. 

 

 Interpolation during Data Export 

Before covering the results themselves it is important to mention a feature of the received 

dataset that may have significant impact on the analysis. The five periods received were 
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produced using PI queries with a start time, an end time, and a set length of interval. However 

OSIsoft PI historian will not necessarily be logging values at exactly that time. Indeed, 

depending on how the system has been configured it will not be storing data at set intervals at 

all and instead is logging data only when a change in the sensor above a certain threshold occurs.  

 

Given this the PI historian will interpolate (either directly or via a smoothing function) between 

the values it does have to produce an estimate for the exact time that has been queried. Therefore 

it has to be considered that: 

a) Events that happen faster than the interval are lost 

b) Interpolation can produce unrealistic values (i.e. a binary value that can only be 0 or 1 

but could be interpolated as 0.6 if the time when it changes isn’t aligned with the query 

interval) 

c) Interpolation can distort the true distribution of the variables values (a distribution may 

be observed when the variable is in fact only shifting between two values). 

 

Figure 5-17: Example of Interpolation histogram 

In the example above interpolation can be seen in a histogram of the values for a  sensor during 

period 5. The actual sensor reading will be a certain value as seen by the peaks at the fraction 

of interval values, but there are additional values between these peaks. Where these come from 

can be shown by focusing on a particular section of the sensor log (Figure 5-18).  
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Figure 5-18: Close examination of interpolation 

 

The actual values the historian has recorded internally would be 26.8°C at time index 506 and 

28.2°C at time index 511. However it was queried at four intervals between these records and 

thus interpolated a temperature estimate (red dots). The difference between each of the points 

in the period is the same which would not be expected of noisy physical phenomena. Although 

unavoidable this phenomenon must be given consideration when drawing conclusions from the 

data. 

 

 Variable Statistics 

Before comparing variables, summary statistics were generated for each sensor’s values for 

both observing anomalies and constructing further statistics. The summary statistics were: 

• Mean and standard deviation of the variables 

• Kurtosis – this measures the ‘tailedness’ of the distribution, if there more or less 

values than expected outside the primary normal distribution of the data. Taken with 

skew this gives a guide to if the data can be treated as a normal distribution. 

• Skewedness – is the measure of the asymmetry of the distribution, if it spikes above its 

normal values or spikes below it. It is related to kurtosis but includes direction as well 

magnitude. Both skewedness and kurtosis have trouble with trending data, when the 

mean of the variable changes over time skew will be overestimated if the mean is 

assumed constant. 

From the summary statistics the useful observations are: 
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a) The values for sensors  of motor RPM and torque on both pumps have zero standard 

deviation and do not change within the dataset. They are therefore not useful for 

statistical analysis and have been discarded 

b) Period 3 is only for 1 hour and as a consequence many variables do not change over 

its time. This suggests period 3 is less useful for statistical analysis. 

c) Periods 1 and 5 had the most skewedness results for pump A, this implies either that in 

these periods the pump was more unstable or saw a significant shift in operation. 

Period 4 is similar for pump B. Although the events causing these are known  (A shuts 

down in period 5, B in period 4, and A is turned down in period 1) it is useful to see 

how high level summary statistics can quickly categorise and compare the data. 

d) Period 4 has the lowest kurtosis, suggesting the values for the sensors are the closest to 

a normal distribution during this period, with fewer large outliers or data trending.  

 Variable Histograms 

Following from summary statistics, particularly after observing the high skew value of some 

variables, distributions can then be directly visualised. Producing histograms of the frequency 

of the values for the variables in each period will provide a way to spot interpolation, outlier 

events, and the overall differences between the periods. 

 

For example in the histogram of a  temperature sensor from pump B (Figure 5-19) it can be 

seen that periods 1 and 4 are broadly comparable with one or more outliers of lower temperature 

in period 4. It can also be seen that period 5 is substantially different, and periods 2 and 3 are 

both small samples of the larger distribution seen in period 1 & 4.  
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Figure 5-19: Example frequency histogram 

A summary of the observations of the distributions is shown in Table 5-1. The majority of the 

variables appeared to be normally distributed in at least some of the periods provided, or 

normally distributed with long outlying tails. This implies that the variables are recording a 

‘standard’ operation in at least some of these periods, and that divergences from normal 

operation may be of statistical significance.  

 

Table 5-1: Summary of histogram observations 

Observed in 

Histogram 
Normal Distribution 

Normal distribution 

with Long tails 

Appearance of 

Interpolated Data 

Number of 

Occurrences 
19 53 12 

 

 Variable Autocorrelation 

The summary statistics and examination of the histograms indicates there are excursions from 

the distribution of the variables (the long tailed distributions and the high skew values). It is 

possible these excursions or other features of the data may be periodic in nature (shift or daily 
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changes, or shorter time cycles emerging from feedback by control systems). To test for 

underlying patterns an autocorrelation algorithm was therefore applied to each of the variables. 

 

Autocorrelation is the comparison of a variable with itself at different points in time; the 

similarity between measurements a set time-lag apart. The null hypothesis of no autocorrelation 

would see 100% correlation with no time lag that smoothly decreases to the noise threshold, 

whilst a cycle with a frequency of one day would see a correlation peak at the 1-day interval. 

In the example in Figure 5-20 it is demonstrated how a shutdown every 24 hours would appear 

in the autocorrelation graph – as a peak above the significance threshold. 

  

 

Figure 5-20: Example Autocorrelation plot 
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Figure 5-21: Autocorrelation plot for buffer tank percentage in pump A 

 

An autocorrelation graph was produced for each variable. Due to covering only a small amount 

of time and containing little variation, periods 2 and 3 were excluded from the analysis as they 

only covered a very short (1 hour) time period. In the example in Figure 5-21 showing a level 

sensor it can be seen that even though there is not an obvious strong periodicity it can still be 

seen that periods 4 and 5 feature significant shifts in the value recorded by the sensor as 

correlation between times falls off rapidly. In comparison period 1 is more stable with a possible 

slight periodic event early on. 

 

Other features can be observed with autocorrelation: as shown in Figure 5-22. The temperature 

of the inlet pipe during period 4 has periodicity in the 8 to 16 hour window – with warm days 

in august the morning and afternoon will be similar temperatures 8 hours apart whilst being 

dissimilar to noon and night-time temperatures. Axial vibration during period 1 shows a 

reversion to 0 correlation as time interval increases but changes to negative correlation, 

indicating this sensor is recording a general in movement over this period. 
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Figure 5-22: Inlet Temperature (left) and axial vibration (right) 

 

It was noted that other sensors also demonstrated some periodic correlation including additional 

temperature sensors showing periodic variation in line with ambient temperature flow sensors 

of a pump exhibiting autocorrelation with its partner suggesting interaction when the two pumps 

are flowing. 

 Comparison of Variables 

The second step in the analysis workflow was to compare the sensor variables with each other 

(a ‘pairwise’ comparison). With the less statistically interesting variables excluded by the first 

stage and a greater understanding of the ranges and periods, pairwise comparison bridges the 

gap between univariate and multivariate analysis. Sets of variables with high correlation and 

even collinearity will be examined and combined or removed as appropriate prior to the 

multivariate analysis, it is also of note that the pairwise comparisons can yield important 

discoveries on their own.  

 

Correlation is variables co-varying and indicates some kind of dependent relationship between 

the variables. Correlations are useful for grouping variables and developing predictive 

relationships to work out the unknown values from known. 

 

Since the previous statistical tests revealed each period is substantially different rather than 

forming a continuum of values, it was therefore decided that correlation tests should be 

performed on the periods separately and then the results aggregated.  
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Pearson’s correlation was chosen for this as it is more appropriate for datasets containing 

interval values. Figure 5-23 shows the Pearson’s heatmap which correlates each variable in the 

study against every other variable. Red is assigned a value of 1 denotes a 100% positive 

correlation (i.e. variables A and B increase directly proportionally). Blue is assigned a value of 

-1 denotes a 100% negative correlation (i.e. as variable A increases variable B decreases directly 

proportionally). 

 
Figure 5-23: heatmap of mean Pearson’s correlation coefficient across the longer time periods (1, 4, 5) 

 

From the figure several interesting structures can be observed, with varying degrees of 

confidence.  

a) The majority of temperatures sensors form a highly correlated block. Driven and Non-

Driven mechanical temperatures, Lube temperatures, Seal oil temperatures, and 

cooling air temperature – these components are closely connected so heat transfer 

correlation is to be expected. 

b) The displacement sensors also form a block, albeit less tightly coupled. These sensors 

measure displacement of various components on the XYZ axis so their correlation is 
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understandable. Also, linking this displacement to heat is a sensible assumption as 

more energy will drive vibration and cause components to expand. 

c) Flow and Torque are correlated with each other and broadly with the temperature 

sensors. 

d) Several of the pressure sensors are strongly correlated with other pressure sensors in 

both pumps, for example lube oil pressure with the pressure of the lube oil pump and 

lube oil seal are all correlated. 

e) The Seal Oil pressure appears to have negative correlation with nearly all the other 

variables within the same pump. This is an interesting relationship as it seems unclear 

why the seal oil pressure should vary against all the other values. 

f) The controller for Seal Oil Pressure appears to have strong positive correlation with 

nearly all the other variables within the same pump, but only in pump A. This 

behaviour not being as noticeable in both pumps is interesting and indicates the 

correlation is due to outliers. 

g) When comparing between pumps, the sensors for non driven end have positive 

correlation. This may be due to vibration within the structure of the platform affecting 

both pumps at the same time. 

h) When comparing between pumps there is a general negative correlation between the 

pressures and flows of one pump and the other. This is likely due to two of the periods 

provided having one pump shut down whilst the other is turned on. 

Correlations within the pump and between the pumps were investigated even though they are 

operated independently there may still be feedback or other interaction between the pumps via 

the surrounding infrastructure or human operators. 

 Partial least squares regression 

The crucial choice in a PLS investigation is what to use as the objective measurement; in other 

invesitgations measures such as production volumes, profit, or composition have been used. 

 

In this study the client emphasised stability as one measure (without an overt quantification) 

and seal wearing on the Non-Driven End of the shaft. If stability was to be measured by 

frequency of failure events, there aren’t a sufficient number of samples to attempt to fit a PLS 

model. One possible proxy for wear on the seals is when the shaft is closer to the end of the 

pump – the Z-axis displacement, so a PLS analysis was performed on how the value of Z-axis 

displacement varied against all the other non-temperature sensors, with results shown in Figure 

5-24. 

 

For pump A in the Z-axis displacement the first two components explain 24% of the variance 

in the axial displacement; this is a weak relationship and suggests high variability in the dataset. 

The second component features the on/off state of the data, whilst the first component is 

composed of the other displacement measures, the pump speed (and pump speed controller), 
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the flow measurement, and the gearbox accelerometer. If it is assumed the other displacements 

are co-varying with the Z-axis rather than driving it the it can be theorised that the axis is 

moving as the motor works harder.   

 

For pump B in the Z-axis displacement the first two components explain 52% of the variance 

in the axial displacement; this is stronger than for pump A and indicates that the variability is 

more homogenous and thus more was explained. As with A the second component features the 

on/off state of the data, whilst the first component is composed of the other displacement 

measures, the pump speed (and pump speed controller), and the gearbox accelerometer. If it is 

assumed the other displacements are co-varying with the Z-axis rather than driving it can be 

theorised that the axis is moving as the motor works harder.  

 

Figure 5-24: PLS Loadings for each pump’s non-temperature sensors against the pump’s Z-axis displacement as an objective 

function. 

 Part 3 – Dimensionality Reduction by Principal Component Analysis 

 

Having considered variables by themselves and in relation to other variables, the analysis can 

proceed to considering large groups of variables at once in a multivariate analysis. Therefore 

the key technique in this multivariate analysis is dimensionality reduction via finding principal 

components for the dataset. 

  

As discussed earlier the current understanding of the dataset supports performing analysis on 

the Pumps separately and both with and without temperature data. Also due to their greater 
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variability and similar time intervals the analysis will only use data from the longer periods (1, 

4, and 5). 

 Pump A PCA 

Figure 5-25, Figure 5-26 and Figure 5-27 summarise the PCA analysis of pump A. From the 

cumulative variance it can be seen that the first three components explain over 80% of the 

variance and the subsequent components explain increasingly less, imply the first three are good 

‘aggregates’ of sensors and as a consequence the first three were retained and the remaining 

discarded from analysis, 

 

 

Figure 5-25: Variance explained by the Principal Components fitted to the dataset. 
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.   

Figure 5-26: Plotting the individual time points by their position each principle component, coloured by the period of origin. 

 

. 
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Figure 5-27: Bar plots of how each sensor value contributes to the first 3 principal components in the PCAs with (above) and 

without (below) temperature sensors. 

 

It is clear to see that the first principal component is driven by the Pump being active or inactive; 

in normal operations there is not much change in component 1 until the end of period 5 when 

the pump is shut off and moves across component 1 to its off state. This is confirmed by the 

loadings – comp1 is driven by the negative of nearly all variables except for Seal Oil pressure 

and recycle percentage. When recycle and seal oil pressure go up and all other variables go 

down, comp1 increases.  

 

The second principal component is driven positively by buffer tank pressure/percentage and 

Non-Driven End axial displacement, and negatively by Driven end displacement. It is an 

aggregate quality of the displacement and buffer pressures, and perhaps indicates how the shaft 

is sitting in the Pump. The periods overlap in terms of component 2 (though inclusion of 
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temperature separates the generally warmer period 4 out), though it is interesting that period 5 

is nearest the off state. 

 

The third principal component also emerges from Non-Driven End displacement, but in 

combination with Venturi Pressure differential and discharge flow rather than the buffer tanks. 

Although the other components explain more variance, it is possibly component 3 that is most 

interesting in terms of best operation during normal circumstances. Again the periods overlap 

in terms of component 3, suggesting a ‘normal’ operational envelope.  

 

In the aggregate plot of component 2 against component 3 it can be seen that the various 

structures of the periods operation – period 1 begins at higher flow (similar to period 5) before 

being moved to a lower flow rate making its values move positive in terms of component 3. 

The period 4 cloud has a clear separation between most of the period and the end (when pump 

B turns off and more stress is put on pump A), and that ending sees a decrease in component 3. 

It is possible that component 3 can be taken as a measure of the ‘stress’ the pump is undergoing. 

 

Taking these components, the path of the pumps variables through the component space over 

the course of the periods was investigated. Period 5 data points projected against components 

1 and 3 are shown in Figure 5-28, coloured by time. It can be clearly seen that the Pumps state 

moves through the ‘normal’ region over time, with numerous excursions at different points over 

the seven days, before eventually moving away from the normal region of components 1 and 3 

when it reaches the shutdown period in the last half a day. This may provide useful diagnostic 

tools if the excursions from the normal can be tied to particular events, and if further data reveals 

whether or not that their frequency and structure precedes other shutdowns. 
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Exceptions 

Shutdown 

Normal 

Figure 5-28: Operating Regions PCA 
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 Pump B PCA 

Figure 5-29, Figure 5-30 and Figure 5-31 summarise the PCA analysis of pump B. Due to 

period 5 being very different for Pump B than the other periods a PCA was performed including 

all periods and another including only periods 1 and 4 to observe the magnitude of effect of 

period 5. Although (as with pump A) analysis was also performed both with and without the 

temperature sensors, the plots including temperatures are not shown here because, much like 

the analysis Pump A, the inclusion of temperature data did not significantly change the loadings 

of the principal components. 

 

The cumulative variance explained by each successive principal component is shown in Figure 

5-29. It can be seen that the with all the data the first three components explain over 80% of the 

variance (Figure 5-29a), or just under 80% of the variance (Figure 5-29b) when period 5 is 

removed, and the subsequent components explain increasingly less as a consequence the first 

three have been retained.  

 

The fact that omitting period 5 decreased the explanatory power of the first component was 

very interesting, implying that the brief shutdown of the pump at the end of period 4 didn’t 

contain enough data to properly characterise an on/off spectrum. 

a. 

 

b. 

 

 

Figure 5-29: Variance explained by the Principal Components fitted to the dataset with temperature sensors (a) and without 

temperature sensors and period 5 (b) 
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Figure 5-30: Plotting the individual time points by their position each principle component, coloured by the period of origin. 

 

 The shutdown in period 4 and the activation in period 5 can clearly be observed affecting 

component 1 in both analyses. Omission of period 5 does not appear to significantly improve 

the discriminatory power of the components, and indeed overly weights the shutdown in period 

4 on all three components rather than concentrating its loading on component 1. This 

demonstrates how more data can strengthen PCA analysis. 
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Figure 5-31: Bar plots of how each sensor value contributes to the first 3 principal components in the PCAs where period 5 is 

included and excluded. 

When period 5 is included the first component is much more similar to the first component of 

the PCA on Pump A than when it is excluded. 

 

It is clear to see that the first principal component of the analysis that included period 5 is driven 

by the Pump being active or inactive, much like the first component of the PCA for Pump A.  

 

When period 5 is removed from the analysis, several displacement measures join these two 

variables in loading component 1 – possibly the ‘off’ time at the end of period 4 has this 

displacement and it is being incorrectly loaded in with the recycle and seal oil. Due to this 

observation it was decided to continue the process by only looking at the analysis that includes 

period 5, as it can better be compared with the analysis of pump A. 

 

The second principal component is loaded positively by Non-Driven End axial displacement, 

Seal Oil pump pressure, Lube Oil pump pressure, and negatively by Seal Oil tank percentage. 
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This is both overlapping and different to the sensors that load the second component for pump 

A. It is possible that more data will uncover which are correctly connected to the Non-Driven 

End axial displacement, though both indicate how the shaft is sitting in the pump. 

 

The third component is also driven by Non-Driven End axial displacement, but instead 

combined negatively with the driven end motion detectors positively with Lube Oil Pump 

Pressure, Seal Oil Tank Pressure, and Buffer Tank pressure. This makes the 3rd principal 

component for pump B most similar to the second principal component for pump A. 

 Linking Univariate with Multivariate 

The final and most import use for the PCA aggregate plots is to highlight the position of 

identified events within that aggregate space. This is critical to develop a solution for the 

customer because if operating regions can be identified for normal and abnormal operation this 

can inform customer decisions.  

 

Two events prior to shutdown were identified in univariate analysis for Pump A in period 5, 

and these are projected in the aggregate space in Figure 5-32 and Figure 5-33. It is clearly shown 

how these events leave the normal operational region but not towards the shutdown states. 

 

Figure 5-32: Projecting the data values of an event noticed in the technical analysis event 2 in period 5 for Pump A 

. 
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Figure 5-33: Projecting the data values of an event noticed in the technical analysis (event 1 in period 5 for Pump A 

. 

  Conclusions 

 

Overall there are number of solid conclusions that can be drawn from the statistical analysis 

a) There are a number of technical issues with the dataset received, both in scope and 

content. 

b) There are statistically significant relationships between the sensors within and between 

the two multiphase pumps. 

c) These dependencies can take longer to propagate than the time step of the dataset. 

d) Overall the failure periods for each pump (Pump A – 5 and Pump B -4) prior to failure 

are statistically different from the non-failure periods of presumed normal operation. 

(See rate of change and PCA analysis). 

e) Exceptional events occur in the run up to the failure in the failure periods, and do not 

occur in the periods of presumed normal operation. These exceptional events have 

similarities with each other but are not identical.  

f) Aggregate plots can be developed to identify regions of normal and abnormal 

operation which can help provide solutions to customers. 

g) Based on the hypotheses of flow it is suspected that seal failure is caused when high 

proportions of gas flow through the pump and cause large axial vibration resulting in 

damage. 
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 Future directions 

Further work will be dependent on data with both greater scope and types beyond the small 

number of time periods and sensors provided. 

If additional data and resources were available, there are a number of immediate steps to be 

taken with the aim of producing additional diagnostic tools and operational insight: 

a) With access to the PI historians direct values the analysis can be repeated with greater 

certainty in the outcome.  

b) Hypotheses can be strengthened or rejected for the operating regions in aggregate 

space, and better define their borders if they are confirmed. 

c) Furthermore, measures of composition and/or well status would be ideal to align and 

characterise the sensor data. Compositional data may help to explain the differences 

over time, and diagnostics may need to vary based on which wells are feeding the 

pumps.  

d) Additional data could help to test if excursions from presumed normal region do occur 

prior to failures in a statistically significant manner or not. 

e) Further to (a) and (b) software tools could be developed using existing technology to 

integrate with the data historian that would identify when excursions are occurring and 

offer predictive insights into pump failure probability. 
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Chapter 6. Conclusion 

 

The Eng.D project was directed at addressing problems in the hydrocarbon-processing sector, 

this was undertaken through both the development and implementation of tools to address 

identified needs. At the start of the thesis a set of objectives for the research were established 

and now the approaches and solutions developed to address each of these objectives will be 

examined. 

 

The first two objectives were to develop a methodology for rapid identification of crude oil 

composition both online and offline and then implement a tool to facilitate optimisation of crude 

blending performance utilising the information from the first objective. 

 

These objectives 1 were met in case study 1 where the application of chemometric modelling 

software based on NIR spectra was applied to a major Asian refinery. This was an innovative 

approach as successful implementation of NIR in a refinery for gasoline blending was well 

understood (Balabin and Safieva, 2008; Balabin, Safieva and Lomakina, 2010) however crude 

compositional analysis is not covered in literature sources. This is because of the highly variable 

nature of crude oil and the difficulty this brings in developing an appropriate chemometric 

model. 

 

The case study demonstrated that whole crude property measurements (i.e. API gravity and 

Sulphur) are not a conclusive method of characterising a crude type to give a refinery the real 

value of each crude delivery, they are also not sufficient to inform blend optimisation decisions. 

A crude oil family was examined and whole crude property measurements suggested one 

sample to be of higher value than the rest of the family. 

 

However, implementation of PT5Technology and the chemometric modelling approach 

allowed the refiner to quickly and easily assess not only API gravity and Sulphur but also the 

distillation properties for this oil. Application of netback calculations to value this crude oil 

demonstrated that the refiner was losing >$1/bbl. on each barrel refined given the deviation in 

quality. 

 

Using the updated quality information the refinery was able to use the predicted TBP, API 

gravity, Sulphur, Pour Point and TAN to update the crude blend properties and perform more 

effective economic optimisation. 
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The next objective was to develop an approach to characterise the stability and compatibility of 

blended hydrocarbon streams 

 

To meet this objective a new approach was developed to characterise the stability of blended 

hydrocarbon streams. Firstly previous work was critiqued, particularly the current ASTM 

methodologies (D7060, D7112 and D7157) and the work of Wiehe & Kennedy 1999a and 

Wiehe & Kennedy 1999b. This was deemed to be not fully appropriate to addressing the 

compatibility issues experienced in blended hydrocarbon streams. 

 

The methodologies use pure materials (such as heptane and toluene) to assess blend stability 

and do not blend the oils, hence no account is taken for unexpected interactions between crude 

oils when blended. Another major drawback is there is no provision for time dependent blend 

stability, which is a well-known phenomenon when dealing with colloidal systems. 

 

The methodology developed was patented and has been granted by the UKIPO. The novel 

methodology utilises crude oils in the blend to undertake stability assessments and is able to 

assess any time periods of interest. 

 

The method was applied in two case studies. Firstly for blended Heavy Fuel Oil in a Refinery 

where observations of stability of HFO blends was undertaken using the proprietary stability 

methodology developed as part of the Eng.D project. Based on the set of samples studied it was 

concluded that a change in stability was observed in all blends made from blending 1% Sulphur 

HFO and 3% Sulphur HFO in the range 1.6% to 2.0% Sulphur. 

 

The change in stability occurred after the time that the HFO was blended and it was shown that 

although the sample appeared stable initially, the instability worsened over time. This ability to 

characterise time dependent stability is a key feature of the innovative approach. 

 

It was also suspected that a paraffinic HVN diluent would cause instability problems and indeed 

increasing the amount of HVN in the blend increased the tendency for instability. The 1.8% 

Sulphur Used HFO sample (returned by the customer’s customer) was the only one exhibiting 

instability when blended with HVN after 72 hours. Instability with HVN was not observed with 

1% Sulphur HFO, 1.8% Sulphur HFO or 3% Sulphur HFO. 
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Secondly blended marine fuels were assessed for stability which was detected using NIR and 

microscopy. Once characterised the sample was then additised to assess the effects of additive 

on sample stability. It was shown that at certain blend ratios the additive was effective and at 

others it was not. This was the first test of the methodology in blends containing additives. 

 

The final objective was to implement a novel application of data analytics approaches to solve 

historical hydrocarbon processing issues 

 

This objective was addressed by applying the PT5Technology big data analytics tool to an 

upstream client experiencing problems with two pumps on an offshore installation. This 

problem was historic and pump failures had been plaguing the installation for many years.  

 

The Eng.D project was focussed on working as part of an engineering solutions team to identify 

the root cause of pump failure and thus develop a novel solution which could be implemented 

to monitor the issue and mitigate the problem to the greatest extent possible. 

 

Through application of data analytics the problem was found to be caused by the ratio of 

gas:liquids in the stream to the pump, specifically gas slugs hitting the pump caused large axial 

vibration effects, which would cause cumulative damage to the pumps.  

 

Thus through application of four case studies each of the objectives set out at the start of the 

thesis were addressed. 
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Chapter 7. Future Work 

 

All applications developed as part of the Eng.D project have been commercialised and projects 

are ongoing in all three areas discussed above. To give an example of an ongoing application 

of PT5Technology Case Study 5 discussed the application of PT5Technology in the Forties 

Pipeline System (FPS) for quality bank analysis. 

 

A current application of PT5Technology is on the Forties Pipeline System (FPS) in the North 

Sea. A map of FPS is shown below. FPS consists of over seventy platforms and hundreds of 

individual wells with an API gravity range of ~18 – 70. 

 

 
Figure 7-1: Forties Pipeline System (FPS) North Sea taken from Subsea (2017) 

 
FPS is allocated based on the properties and the flow rate of the oil from each platform that 

each producer puts into the pipeline.  Weekly samples are sent from offshore in pressurized 

piston cylinders and the samples are scanned by NIR at a pressure above the bubble point of 

the crudes and condensates to ensure no light ends are lost, thus making sure the sample is 

representative of the production of each platform. Using PT5Technology both the light ends 

(C1 – C7+) and the full properties (TBP, cut molecular weights and cut densities) are predicted 

on a weekly basis (Table 7-1) from the NIR scan to give the value of the crude oil from the 

platform. 
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Table 7-1: Showing properties measured for the FPS Application on Whole crude (Left) and Light Ends 
(Right) 

 

 

 

Using PT5Technology quality tracking functionality, crudes can be quickly assessed and 

monitored for changing quality using NIR spectra and the PT5 aggregate plot (Figure 7-2). Each 

point on the plot represents the NIR spectra of an individual sample from a platform. On this 

plot there are several oil types (indicated by the boxes for crudes 1 – 6) and it can be seen that 

they are clustered by boxes. From a quality monitoring perspective it would be expected that 

the crudes always fall in their appointed boxes. If crude falls outside the box the quality has 

changed and additional analysis must be performed. 

 

If crude 1 is taken as as an example it can be seen that this is quite a large box with many 

samples. This is because this application uses clustering to simplify the analysis. The crude 1 

box represents a cluster of fields that have similar properties and are therefore grouped into one 
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box. This is representative of how the clustering would take place for the Customer application. 

Other crudes (such as crudes 4 and 5) are relatively new crudes and as such have only a few 

samples currently in the model. However, as the application progresses these boxes will be built 

up as more samples are added to the model 

 

 
Figure 7-2: North Sea Fields Aggregate Plot 

 

As well as the chemometrics and modelling, the patented approach to assessing stability has 

been applied with an upstream client bringing online a new well. The well has considerably 

different properties to the existing crude oil blend and thus the client has concerns about the 

compatibility of the oils in the process. This concern is further compounded by the fact that the 

oil is stored on the facility and discharged by tanker every few weeks. 

 

The approach will be applied to assess the stability of the blends of wells at different 

configuration not only at time 0 but also after 28 days to mimic the time the blend will be stored 

at the facility. This represents an application where the ASTM methodology could not be 

applied because of the time dependent requirement. 
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Appendix A - Additional Heavy Fuel Oil Assessment Results 

 1% Sulphur HFO 

 

Time 0 Time +72 

Figure A-1: 1% Sulphur HFO - 5% HVN 

 

 

Time 0 

 

Time +72 

Figure A-2: 1% Sulphur HFO - 10% HVN  

 

 

Time +72 

 

Time 0 

Figure A-3: 1% Sulphur HFO - 50% HVN  
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It can be seen that no bulk organic deposition observed with HVN even at 50% HVN after 
72 hours. 

 1.8% Sulphur HFO 

 

Time 0 

 

Time +72 

Figure A-4: 1.8% Sulphur HFO - 5% HVN  
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Time +72 

Figure A-5: 1.8% Sulphur HFO - 10% HVN 
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Time +72 

Figure A-6: 1.8% Sulphur HFO - 50% HVN 
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Once again no bulk organic deposition observed with HVN even at 50% HVN after 72 
hours. 

 

 1.8% Used Sulphur HFO 

 

Time 0 

 

Time +72 

Figure A-7: 1.8% Used Sulphur HFO - 5% HVN 
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Time +72 

Figure A-8: 1.8% Used Sulphur HFO - 10% HVN (left) and (right) 
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  3% Sulphur HFO 

 

Time 0 

 

Time +72 

Figure A-9: 3% Sulphur HFO - 5% HVN 
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Time +72 

Figure A-10: 3% Sulphur HFO - 10% HVN 
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Time +72 

Figure A-11: 3% Sulphur HFO - 50% HVN 
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Appendix B – Additional Marine Fuel Blending Results 

 Blend 3 (DL242837/DL243017) 

 

Blend 3b (80% HFO/ 20% MDO)  

With additive 

Blend 3b (80% HFO/20% MDO)  

Without additive 

Blend 3c (60% HFO/40% MDO)  

With additive 

Blend 3c (60% HFO/40% MDO)  

Without additive 

Figure B-1: Marine Fuel Blends 
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Appendix C - Algorithms 

 Principal Components Analysis 
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 Principal Components Analysis 

 


