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Abstract 

The interest in ad hoc Wireless Sensor Networks (WSN) has been growing rapidly in 

the past few years due to its wide range of applications in Environment Monitoring and 

Forecasting, Health and Medical Care, Underwater Communications, Smart Energy, 

and Building and Home Automation industries. The performance of different network 

protocols, as well as their sensitivity and the effect of different network parameters, 

needs to be studied and evaluated for the implementation of WSN with the right 

protocols and optimal parameters. 

With the increasing deployment of unmanned and energy-constrained sensor devices 

in large-scale wireless sensor networks, energy efficiency and network lifetime have 

become key considerations in designing WSN routing protocols. In this work, we 

propose a fully distributed, multi-path load-balancing routing protocol based on 

Dynamic Source Routing (DSR) to improve network lifetime performance. The new 

protocol is simulated in ns-2 and compared with the commonly used Destination-

Sequenced Distance Vector (DSDV), Ad hoc On-Demand Distance Vector (AODV) 

and DSR protocols. The simulation results show that the new routing protocol improves 

network lifetime significantly without sacrificing packet delivery performance. 

Another major source of energy wastage is the idle listening of sensor nodes in the 

MAC layer. Different variants of synchronous duty-cycle MAC protocols have been 

designed for WSNs to reduce MAC layer energy consumption. However, the 

synchronisation process of theses protocols remains a significant contributor to the 

energy consumption. Energy consumption models of duty-cycle MAC protocols in 

single-hop neighbourhoods are first developed and analysed. A new synchronisation 

algorithm, 1-Sync, is proposed to address the high energy consumption problem of the 

existing fixed periodic synchronisation (F-Sync) algorithm, and the Intelligent Network 

Synchronisation (INS) algorithm. The analysis and simulation results have shown that 

the proposed 1-Sync algorithm yields better energy performance than the F-Sync and 

INS algorithms in both low and high density neighbourhoods.     
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In large multi-neighbourhood networks, the above synchronisation algorithms are 

inadequate in handling high density, high drift, and low duty-cycle operations. An 

adaptive energy-efficient synchronisation algorithm referred to as C-Sync, is proposed. 

C-Sync reduces energy consumption by adaptively regulating the synchronisation traffic 

and the wakeup period based on the changing network neighbourhood conditions 

through counter-based and exponential-smoothing algorithms.  Extensive simulations of 

multi-hop multi-neighbourhood network scenarios are performed using ns-2; the 

simulation results have shown that C-Sync outperforms F-Sync and 1-Sync in energy 

efficiency, packet delivery ratio, and end-to-end packet delay over a wide range of node 

densities, drift rates and duty cycles.  
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Wireless Sensor Network has the potential for many applications [3][4]: e.g. for 

military purpose, it can be used for monitoring, tracking and surveillance of military 

targets; in industry for factory instrumentation; in large cities to monitor traffic density 

and road conditions; in construction to monitor buildings structures; in environment to 

monitor forest, oceans, volcanoes, etc. The sensor nodes, which are often deployed in 

large numbers, and are typically deployed in difficult-to-access locations, sensed data 

are transferred to a base station via wireless communication. Battery is the main power 

source in a sensor node. Secondary power supply that harvests power from the 

environment may be added to the sensor node if the deployment environment is 

appropriate. Energy harvesting involves nodes replenishing its energy from an energy 

source such as solar cells, vibration, RF, acoustic noise, etc. However, power supply 

sources often exhibit a non-continuous behaviour so that an energy buffer (a battery) is 

needed as well. In any case, energy is a very critical resource and therefore, energy 

conservation is a key issue in the design of systems based on wireless sensor networks. 

Different applications used different architecture models to achieve their intended 

objectives. Home control, industrial and building automation applications typically use 

single hop network architecture. In the single hop architecture, sensor nodes do not 

support communications on behalf of other sensor nodes. They are directly connected 

with a cluster head or forwarding node which will forward the data to the terrestrial 

network. Military and environmental monitoring applications typically use multi-hop 

network architecture to extend the coverage area of the applications. In the multi-hop 

architecture, sensor nodes have an additional role of forwarding data from other sensor 

nodes towards their final destinations, i.e. performing a routing function [5].  

WSNs are also considered as one of the key enablers for the Internet-of-Things (IoT) 

paradigm. Diverse WSN and IoT devices, including sensors and actuators, smart meters 

and industrial machines are increasingly being interconnected and integrated with the 

Internet to form a converged network infrastructure. With such convergence, the 

massive amount of data generated from these heterogeneous devices can be harnessed 

for new business applications such as monitoring and tracking, smart grid energy 

management, supply chain management, surveillance, etc. [6].     



 

its

no

ar

fa

te

co

tra

W

th

1

In

ar

The operat

s researcher

odes are typ

re non-retrie

actor, proce

erms of hard

In terms of

ommunicati

aditional ne

WSN protoc

he cost of lo

.2  WSN

 

n general, a

rea of opera

tional enviro

rs and deve

pically depl

evable, the 

essing capab

dware. 

f communic

ion protoco

etworks aim

ols focus o

ower through

N Protoco

a WSN com

ation to colle

Source: I. F. 
“W
vo

Fig

onment of W

elopers, as c

loyed in lar

cost and th

bility, mem

cations, one

ls is the low

m to achieve

on efficient 

hput and lon

ol Stack

mprises a lar

ect location

Akyildiz, W. S
Wireless senso
l. 38, pp. 393–

g. 1.1 Gener

3 

WSNs pose

compared to

rge quantiti

he operation

mory size, a

e of the key

w power co

e high throu

energy con

nger networ

 

rge number

n specific da

Su, Y. Sankara
or networks: a
–422, 2002. [4

ric protocol st

es additiona

o traditiona

ies in unma

nal consider

and battery 

y design con

onsumption 

ughput and 

nsumption a

rk delays. 

r of sensor 

ata and route

asubramaniam
a survey,” Com
4] 

tack for senso

al constraint

l wireless n

anned areas,

rations limi

power of t

nsiderations

requiremen

high qualit

and a long 

nodes that 

e it back to 

 
m, and E. Cay
mputer Netwo

r networks 

Introduc

ts and chall

networks. A

, and in mo

it the physi

the sensor n

s for sensor 

nt. Therefor

ty of servic

network lif

are scattere

a central st

yirci, 
orks, 

ction  

lenges to 

As sensor 

ost cases 

cal form 

nodes in 

network 

re, while 

e (QoS), 

fetime at 

ed in the 

tation for 



Introduction  

4 

 

processing, analysing and decision making. Due to the absence of an infrastructure, the 

data is routed back via the sensor nodes themselves in a multi-hop operation.  

Fig. 1.1 shows the generic protocol stack used by sensor nodes with five protocol 

layers. Different types of application software can be built and used at the application 

layer depending on the WSN applications. The Transport layer maintains the flow of 

data if the sensor networks application requires it. The Network layer determines the 

optimal paths to be taken by the data.  The Media Access Control (MAC) layer protocol 

provides error control and recovery schemes for data transmission in a noisy wireless 

medium. The Physical layer takes care of the modulation and coding, transmission and 

receiving techniques. The power management, mobility management, and task 

management planes work together to help the sensor nodes coordinate the sensing task 

and lower the overall power consumption [4]. 

1.3  Energy Efficient WSN Protocols 

There are three major subsystems in a sensor node, the computation subsystem, the 

communication subsystem and the sensing subsystem. In general, the communication 

subsystem has much higher energy consumption than the computation subsystem [7]. 

Depending on the specific application, the sensing subsystem might be another 

significant source of energy consumption, so its power consumption has to be reduced 

as well. There is a plethora of research studies conducted on improving the energy 

efficiency in the communication sub-system of WSNs, ranging from optimizations of 

the physical layer radio to techniques for the application layer data reduction. 

In the Physical layer, the coding and modulation schemes, transmission power control 

and antenna configurations are some of the radio parameters that can be optimised for 

energy consumption efficiency. In the MAC layer, the most common approach is to put 

the nodes into a Sleep mode when possible to save energy. This includes duty-cycling 

schemes, separate low power wake-up radio, and topology control, to minimize the 

number of active nodes.  Network layer routing is another source that drains the energy 

reserves of the sensor nodes. In particular, in multi-hop networks, energy consumption 

is uneven among the different nodes. Nodes that need to route more packets will have 

their energy depleted in a shorter amount of time. Energy-aware routing schemes 
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include clustering techniques, energy-aware routing metrics, multi-path routing, etc. In 

the Application layer, data reduction techniques are generally used. These include data 

aggregation, adaptive sampling, network coding, and data compression. These solutions 

effectively reduce the data traffic in the sensor network and hence prolong the network 

lifetime [1].  

Over the years, there have also been an increasing number of papers that focus on the 

cross-layer development of WSN protocols. The cross-layer design typically focuses on 

pairing two or more layers, and exploits the dependencies and interactions across these 

layers for joint optimisation. Among them, cross-layer interactions between the MAC 

and the Network layers are most commonly exploited in multi-hop WSNs. However, 

while most of these cross-layer solutions may yield performance improvements, these 

results are often obtained at the expense of decreasing the architectural modularity, 

which  restricts further development and improvements [8][9].  

1.4  Objectives and Methodology 

The main objective of this work is to design and develop energy-efficient algorithms for 

multi-hop WSNs that are capable of supporting a wide range of application scenarios. 

Energy consumption in the Network and MAC layers are the key contributors to the 

total communication energy consumptions of the sensor nodes and will be the key focus 

of this work.  

In this work, existing Network and MAC layer energy-efficient protocols are first 

studied and analysed to identify the areas where energy efficiency can be improved. 

Network models for the proposed new protocols and algorithms are then developed, and 

their performances are evaluated against the existing protocols through mathematical 

models and simulations. 

Network Simulator ns-2 [10] developed through the VINT project by University of 

Southern California and its collaborative partners, is used extensively in this study.  ns-2 

is an open-source event driven simulator designed specifically for research in computer 

communication networks, and is by far the most popular simulator used in ad-hoc and 

sensor network simulations due to its flexibility and modularity [11]. It provides 
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substantial support for the simulation of TCP, routing, and multicast protocols over both 

wired and wireless networks and is widely used by the researchers to simulate a wide 

variety of networking protocols.  

In the Network layer, routing algorithms are responsible for delivering the data from 

the source nodes to the destination node along selected paths. In this work, a new 

routing algorithm is proposed to optimize the network lifetime of WSNs by distributing 

the data load among different intermediate sensor nodes so that the energy consumption 

is more evenly distributed in these nodes. The distribution of energy consumption based 

on the energy levels of each node prevents early exhaustion of some sensor nodes, 

which might otherwise segment the network and lower the data delivery performance.  

In the MAC layer, sensor nodes spend most of the time idling and sensing the radio 

channel for data signals.  This idle sensing is the dominant source of energy consumption in 

the MAC layer.  Duty cycling is one of the key mechanisms used in the MAC layer to 

reduce energy wastage stemming from idle listening and thus improve network lifetime. 

On the other hand, energy consumed for the synchronisation process in duty-cycle 

MAC protocols is substantial; therefore, an energy-efficient synchronisation algorithm 

can improve energy performance significantly. In this work, new synchronisation 

algorithms are proposed to optimize the energy performance of duty-cycle MAC layer 

protocols. Performance evaluation criteria include packet delivery ratio, end-to-end 

network delay, and algorithm stability, in addition to energy consumption. 

To test the proposed protocols and algorithms, new modules in the Network and 

MAC layers are developed and incorporated into the existing protocols in ns-2. This 

integration enables the simulations of the different protocols of interest using the same 

network environment, topology, and parameters, so that the performance of these 

protocols can be compared fairly. A wide range of network scenarios with different 

network sizes, data loads, traffic patterns, network densities, and duty cycles are 

simulated and their performance analysed.  

1.5  Contributions 

The main contributions of this work are summarised as follows: 
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 A new energy-balanced routing protocol is proposed. The proposed routing 

protocol, which is termed Energy-balanced Dynamic Source Routing (EB-

DSR), has the ability to perform multi-path routing dynamically based on the 

node energy status to maximize the network lifetime of WSNs [12]. 

 An energy monitoring and distribution mechanism is needed for the 

communication of node energy status among different sensor nodes in energy-

aware routing protocols. This mechanism will consume additional energy and 

bandwidth but has not been considered in the proposals of many existing 

energy-aware routing protocols. On the other hand, we have designed and 

integrated the energy monitoring and distribution mechanism into the 

proposed routing protocol without generating substantial bandwidth and 

energy overheads [12].  

 A new and energy-efficient synchronisation algorithm that integrates well with 

synchronous duty-cycle MAC protocols is proposed. This approach offers the 

synchronous duty-cycle MAC protocols a new dimension in reducing energy 

consumption, in addition to the existing energy-efficient data algorithms in the 

MAC layer [13][14]. 

 Analytical models for energy consumption behaviour, as well as 

synchronisation performance of the existing and proposed synchronisation 

algorithms in single-hop neighbourhoods, are developed for both unsaturated 

and saturated neighbourhoods. The analytical models are validated via 

network simulations [13].  

 To address the different synchronisation challenges posed by the wide range 

of network densities in WSNs, an adaptive synchronisation algorithm is 

developed. This algorithm effectively reduces congestion and collisions when 

synchronisation (sync) packet traffic is high, and maintains synchronisation 

performance when sync packet traffic is low. The algorithm enables the duty-

cycle MAC protocols to support a wide range of WSN networks and 

applications. Even within a single large multi-hop WSN, different 
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neighbourhoods will have different densities; an adaptive synchronisation 

algorithm will thus be desirable to deliver better energy performance [14]. 

 For the first time, end-to-end multi-hop network simulations are performed 

against sensor nodes with different clock drifts and duty cycles to analyse the 

sensitivity and stability of the synchronisation algorithms. Energy 

performance and data performance including packet delivery ratio and packet 

delay are evaluated and analysed [14]. 

 The new synchronisation algorithm successfully lowers the duty-cycle limit of 

synchronous MAC protocols, extending the effectiveness of synchronous 

MAC protocols to a wider range of applications [14]. 

 

1.6  Thesis Overview 

The remainder of this thesis is organised into the following chapters. 

Chapter 2 introduces the different energy efficient WSN protocol implementations 

and provides a brief description of related work in each of these implementations. 

Chapter 3 is dedicated to the Network layer of WSNs. The challenges of extending 

network lifetime in heterogeneous, multi-hop WSNs are identified and a new energy-

balanced routing metric is proposed to improve network lifetime performance. A new 

dynamic source routing protocol incorporating an energy-balanced routing metric is 

implemented in ns-2, and the simulation results are examined and compared with the 

performance of existing routing protocols. 

Chapter 4 focuses on the MAC layer of WSNs and addresses time synchronisation 

issues in duty-cycle WSNs. Synchronisation needs and processes in duty-cycle MAC 

protocols are discussed. Energy consumption models for the existing and proposed 

duty-cycle MAC synchronisation algorithms in single-hop neighbourhoods are also 

developed and analysed. The analytical models are then validated using ns-2 

simulations and the results are discussed in detail. 
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In Chapter 5, the study of network synchronisation is extended to multi-hop multi-

neighbourhood WSNs of different densities, clock drifts, and duty cycles. An adaptive 

synchronisation algorithm is designed to address the high energy consumption issues in 

high density networks. In addition to energy consumption, effects of the synchronisation 

algorithms on performance such as packet delivery ratio and end-to-end packet delay are 

also studied. 

Finally, Chapter 6 concludes this thesis, and describes the directions for future 

research work in this area. 
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balancing algorithms are traditionally employed to address network congestion 

problems; however, the effect of distributing data transmission along multiple paths 

improves the network lifetime to some extent (section 2.4.3).   

Section 2.5 discusses duty-cycle MAC protocols, in which sensor nodes alternate 

between active and sleep periods to conserve energy. There are two types of duty-cycle 

MAC protocols: synchronous and asynchronous. Synchronous duty-cycle MAC 

protocols (section 2.5.3) make use of a MAC layer synchronisation algorithm (section 

2.5.2) to synchronise sensor nodes in the same neighbourhood, so that they can wake up 

at the same time to exchange sensor data. On the other hand, asynchronous duty-cycle 

MAC protocols (section 2.5.4) do not use a synchronisation algorithm. Depending on 

the protocol, acknowledgement from either the transmitter or the receiver is needed to 

start the data transmission.  

 Section 2.6 discusses data-centric protocols, which are commonly used to remove 

data duplication and hence reduce data transmission in query-response based WSNs.  

Finally a summary of this chapter is provided in section 2.7. 

2.2  Background 

WSNs are one of the first real-world examples of integrating the digital and physical 

world. The combination of distributed sensing, computing, and wireless 

communications enables a broad range of applications that are not seen in a purely 

digital world.  WSN is also considered as one of the key enablers for the Internet-of-

Things (IoT) paradigm which has garnered significant media attention in recent years. 

According to a report by Gartner, 20.8 billion heterogeneous devices embedded with 

electronics, software and sensors will be connected by 2020, up from 6.4 billion devices 

in 2016 [15]. 

There are three key areas in the studies of energy efficiency in IoT, namely IoT 

communication protocols, low power wide area networks (LPWANs) and WSNs. 

i. IoT communication protocol: This is the application layer protocol used by 

the IoT software applications. Due to the constraints of limited bandwidth and 

energy capacities of IoT network devices, lightweight communication 
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protocols such as Constrained Application Protocol (CoAP) [16], Message 

Queuing Telemetry Transport (MQTT) [17], and others have been designed 

[18]. Experimental results in [19] have shown that CoAP is more efficient in 

terms of energy consumption and bandwidth usage while MQTT provides 

high reliability. Both protocols possess the low overhead for header parsing; 

however optimized encoding for payload compression is a further challenge to 

be resolved. 

ii. LPWANs: LPWANs provide long range, low data rate, and energy efficient 

wireless communication to complement traditional cellular and short range 

wireless technologies in addressing diverse requirements of IoT applications. 

A very long range of LPWAN technologies enables devices to spread and 

move over large geographical areas. IoT devices connected by LPWAN can 

be turned on anywhere and anytime to sense and interact with their 

environment instantly.  

Two leading examples in this area are SigFox, which uses an ultra-

narrowband (UNB) solution and LoRa, which uses a chirp spread spectrum 

(CSS) solution [20][21]. By using UNB, SigFox utilizes bandwidth efficiently 

and experiences very low noise levels, resulting in high receiver sensitivity, 

ultra-low power consumption, and inexpensive antenna design. However, 

these benefits come at the expense of maximum throughput of only 100 bps. 

LoRa supports multiple spreading factors for the trade-off between range and 

data rate based on application needs. The data rate ranges from 300 bps to 

37.5 kbps depending on spreading factor and channel bandwidth [21]. In 

addition to SigFox and LoRa, a number of other LPWAN technologies are 

also surveyed in [22]. To achieve low energy consumption, the 

communication bandwidth of the LPWAN solutions is usually narrow and 

hence the data rate of the current LPWAN solutions is low. The trade-off 

among energy efficiency, data rate and communication range remain a key 

challenge in this area [22]. 

iii. WSNs: Design and implementation of WSN applications have to address 

different dimensions of challenges which include sensor node computation 
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and storage capabilities, cost and size of each node, wireless communications, 

sources of energy, protocols for data dissemination and communication, 

applications and management tools, etc. A typical and widely deployed 

application category is one that uses battery-powered sensor nodes [3], 

untethered sensor nodes are commonly used in these deployments to facilitate 

mobility and deployment in hard-to-reach locations. A major limitation of 

these sensor nodes is finite battery capacity. This implies finite lifetime of the 

applications or additional cost and complexity to change batteries regularly. 

A comparative review of several commonly used wireless sensor network 

motes is presented in [23]. The power consumption of the radio modules in 

these sensor motes is in the range of 10 – 60mA for transmission mode, 74µA 

– 40mA for idle and reception mode, and 20nA – 1.4mA for sleep mode. 

These motes typically use AAA batteries, AA batteries or 750 mAh 

rechargeable lithium ion batteries. It is clear that the batteries will not last for a 

very long time if the sensor motes are operating in the active modes 

continuously.   

There are two fundamental approaches to address the issue of limited battery 

capacity. The first approach is the use of energy harvesting. Energy harvesting 

refers to harnessing energy from the environment and converting it to 

electrical energy. If the harvested energy source is large and continuously 

available, a sensor node can be powered perpetually. The second is to reduce 

the energy consumption of WSN through the use of low-power hardware and 

energy-efficient communications. 

2.2.1  Energy Harvesting in WSNs 

In general, energy harvesting can be divided into two architectures: Harvest-Use and 

Harvest-Store-Use architectures [24]. In the Harvest-Use architecture, the harvesting 

system directly powers the sensor node.  For the sensor node to be operational, the 

power output of the harvesting system has to be continuously higher than the minimum 

operating power. The node will be disabled if sufficient energy is not available. The 

Harvest-Store-Use architecture consists of a storage component that stores harvested 
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energy and also powers the sensor node. Energy storage is useful when the harvested 

energy available is more than its current usage. Energy stored can then be used later 

when either there is no harvesting opportunity or energy usage of the sensor node has to 

be increased to improve capability and performance parameters. 

A critical component of energy harvesting architecture is the energy source. Energy 

sources that can be harvested from the ambient environment can be broadly classified 

into mechanical energy, radiant energy, thermal energy and fluid flow [25]. Mechanical 

energy is based on kinetic energy or motion of an object, which include vibrations, 

pressure, and human activity. The kinetic energy arises from these sources can be 

converted to electrical energy using a converter such as piezoelectric, electrostatic, or 

electromagnetic converters. Radiant energy comes from electromagnetic waves such as 

sunlight and radio frequency (RF) signal. Solar energy has gained popularity in energy 

harvesting since solar energy is readily available and can be harvested using 

photovoltaic or solar cells. An RF energy harvesting device can harvest the energy from 

the signal emitted by a dedicated RF transmitter or from the ambient source such as the 

base station antenna, radio and TV signal, WiFi [26], and mobile devices. Thermal 

energy is based on the temperature gradient of the environment. Thermoelectric and 

pyroelectric transducers are typically used to convert thermal energy to electrical [27]. 

The Wind and water flow energy can be classified under fluid dynamic or fluid flow. 

Energy from these sources can be harvested using turbine or piezoelectric converters 

[28][29]. 

Energy sources have different characteristics such as controllability, predictability and 

magnitude [30]. A controllable energy source can harvest sufficient energy whenever it 

is needed, energy availability need not be predicted before harvesting. For non-

controllable energy sources, energy must be simply harvested whenever available. In 

this case, if the availability of the energy source is predictable, a prediction model can 

be used to indicate the time of next recharge cycle. 

A WSN with the capability of energy harvesting sensor nodes to supplement the 

battery energy supply can potentially operate in the energy neutral mode in which the 

system uses only as much energy as is available from the environment to sustain its 

operation. In the case that this is not achievable, energy harvesting can be used to 
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improve the lifetime of the WSN by incorporating a prediction model and power 

management techniques into the design [25][30]. 

2.2.2  Energy-efficient Communications in WSN 

In general, energy efficiency in WSN communication can be accomplished in three 

ways: 

i. Multi-hop Communication: Since the energy required for wireless 

communications increases as a power law over distance, multi-hop 

communication is adopted to reduce the transmission range without sacrificing 

network reachability [31]. Routing is an essential component to support self-

organising, multi-hop communications. 

ii. Low duty-cycle operation: The basic idea of the low duty-cycle operation is 

to reduce power consumption by putting a sensor node to sleep when there is 

no data to transmit or receive [32]. Duty-cycle is measured as the percentage 

of active period in a complete cycle which includes the sleep period. A small 

duty-cycle means that a node is asleep most of the time; however, it also 

increases end-to-end delay and a balanced approach is needed to meet 

application specific requirements.   

iii. Data-centric protocols: Data-centric or data aggregation protocols are 

commonly used in query-response WSNs, where multiple source nodes are 

available to provide responses to a single query.  When the source nodes send 

their data to the sink, intermediate sensor nodes can perform some form of 

aggregation on the data originating from multiple sources and send the 

aggregated data toward the sink. The aggregation process helps to eliminate 

redundancy, minimise the number of transmissions and therefore reduce 

energy consumption [33]. This is different from the traditional address-centric 

approach of finding short routes between pairs of two end nodes. 

The data-delivery model of WSN from source to sink can be continuous, event-

driven, query-driven, or a hybrid of the latter two, depending on the application.  The 

choice of routing and MAC protocols is highly influenced by the data-delivery model, 
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especially with regard to energy efficiency and route stability. For an environmental 

monitoring application where data is periodically transmitted to the sink, a hierarchical 

routing protocol with data-processing capability is the most efficient approach.  This is 

because such an  application  generates  a significant amount of  redundant  data  that  

can  be  aggregated  along the routed path, thus reducing traffic and energy. For event-

based data-delivery models, a contention based duty-cycle protocol is a good fit [34], 

since data is generated infrequently. 

 

2.3  Multi-hop Routing in WSNs 

Routing is the process of determining an optimal path to transport data information, in 

the form of packets, to traverse a network between a source and a destination. Routing 

protocols use metrics, a form of measurement, to determine the best paths among 

multiple alternatives. To aid the process of path determination, routing tables, which 

contain network route information, are built and maintained by routing protocols. To 

keep the route information up to date, routing update messages are sent either 

periodically or when a change in the network topology is detected, depending on the 

routing protocols. 

The key design goals of routing protocols/algorithms can be summarised as follows: 

i. Optimisation: This is the capability of the algorithm to select the best route 

based on the selected metrics used in the calculations.  

ii. Simplicity: An efficient routing algorithm should have minimum CPU time, 

memory and bandwidth overhead. This is important so that it can be scaled to 

large networks. 

iii. Rapid convergence: When there is a change in network topology due to some 

network events, convergence measures how fast the routing protocols can 

obtain updated route information to re-establish network connectivity. Routing 

protocols that converge slowly can cause data loss and affect packet delivery 

ratio.  
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iv. Robustness and Stability: A routing algorithm should perform correctly in 

unusual or unforeseen circumstances, such as overload conditions and node 

failures. 

 The development of routing in wireless networks led to the emergence of Mobile Ad 

Hoc Networks (MANETs). MANETs share many properties with WSNs and have 

substantially influenced the development of WSN routing protocols. There are three 

major groups of multi-hop MANET routing protocols: proactive routing protocols, 

reactive routing protocols and hybrid routing protocols [35][36]. 

2.3.1  Proactive Routing Protocols 

A proactive routing protocol is also known as table-driven routing protocol. Each node 

in a proactive routing network maintains routing information to every other node in the 

network.   The routes to the other nodes are usually determined at the start up, and 

maintained using a periodic route update process. Alternatively, the routes are updated 

when the network topology changes. In general, proactive routing protocols come with 

higher overhead in most scenarios because of frequent updates. However, they have 

lower latency of packet forwarding compared to reactive protocols because the route is 

available when it is needed. A comprehensive survey of proactive routing protocols can 

be found in [36]. 

2.3.1.1 Destination-sequenced Distance Vector Routing Protocol (DSDV) 

DSDV [37] is a hop-by-hop distance routing protocol based on the Bellman-Ford 

algorithm. Every node periodically transmits routing updates to maintain the routing 

table consistency. The key difference between DSDV and traditional distance-vector 

routing protocols is that the route entries are tagged by a sequence number assigned by 

the destination nodes in order to guarantee loop-free routing in the wireless 

environment. The sequence number indicates the freshness of routes with the same 

destination; a higher sequence number is more favourable compared to a lower 

sequence number.  In the event that two routes have the same sequence number, the 

route with the smaller metric is used.  
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A routing table update generates a lot of overhead traffic; DSDV addresses this 

problem by using two types of routing update packets. The first is known as a full 

dump, which carries all routing table information. These packets are large and 

transmitted relatively infrequently if the network is stable. The second type of updates 

uses smaller incremental packets that consume less bandwidth to relay only the 

information that has changed since the last full dump. 

2.3.1.2 Optimized Link State Routing Protocol (OLSR)  

OLSR[38][39] is a table-driven, proactive routing protocol, which uses Hello and 

Topology Control (TC) messages to discover and then disseminate link state 

information throughout the mobile ad-hoc network. The protocol inherits the stability of 

a link state algorithm and being a proactive protocol, it has the advantage of having 

routes readily available when needed. Being a link-state protocol, OLSR consumes a 

reasonably large amount of bandwidth and CPU power for optimal path computation. 

OLSR uses the concept of multipoint relays (MPRs) to minimise the overhead of 

flooding messages in the network by reducing redundant retransmissions in the same 

region. OLSR makes use of "Hello" messages to find its 1-hop and 2-hop neighbours 

through their responses. A subset of the 1-hop neighbours is selected as MPRs to 

retransmit the messages. The MPR set of a node N is selected in such a way that all the 

2-hop neighbours of N are within 1-hop distance of the MPRs, as shown in Fig. 2.1. The 

smaller the MPR set is, the more optimal the routing protocol. The neighbours of node 

N which are not in its MPR set receive and process broadcast messages received from 

node N,  but do not retransmit them.  
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choice in wireless sensor networks due to their simplicity and support for data on-

demand. 

2.3.2.1 Dynamic Source Routing Protocol (DSR) 

DSR [42] is an efficient reactive routing protocol designed specifically for use in multi-

hop wireless ad hoc networks.  "Route Discovery" and "Route Maintenance" are two 

main processes in the protocol that work together in order to allow nodes to discover 

and maintain routes to arbitrary destinations in the ad hoc network. An advantage of 

DSR is that nodes can store multiple routes in their route cache.  If a valid route is found 

in a node’s route cache, there is no need for route discovery and this saves a 

considerable amount of bandwidth in the network, especially in a low mobility network.  

DSR uses source routing; when a new data packet is generated, the source node 

determines the complete route to the destination. It places the hop-by-hop information 

in the packet header and the intermediate nodes simply forward the packet based on this 

routing information. With multiple routes in the route cache, the source node is able to 

select and control the routes used in routing its packets, an ability which can be used in 

load balancing or for increased robustness. Other advantages of DSR include the 

support of unidirectional links, as well as rapid discovery when routes in the network 

change.  

2.3.2.2 Ad hoc On-Demand Distance Vector Routing (AODV) 

AODV [43] is an on-demand routing protocol which uses a similar route discovery 

procedure as that in DSR. However, AODV has a very different mechanism to maintain 

routing information. It uses traditional routing tables, one entry per destination, and uses 

hop-by-hop routing. In DSR, however, multiple route cache entries for each destination 

are maintained and end-to-end routes are determined by the source. Similar to DSDV, 

AODV uses sequence numbers maintained at each destination to determine the 

freshness of the routes and to prevent routing loops. 

The advantage of AODV is that it is adaptable to high mobility networks. However, 

large delays may be experienced by sensor nodes during route construction and link 

failure may trigger another route discovery, which introduces extra delays and 

consumes more bandwidth. 
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2.3.3  Hybrid Routing Protocols 

Hybrid routing protocols constitute both proactive and reactive routing processes. These 

protocols are designed to increase scalability by allowing nodes in close proximity to 

work together to form some sort of a backbone.  Nodes that are nearby maintain routes 

proactively to reduce the route discovery overheads. Routes to nodes that are far away 

are determined by a route discovery process, similar to a reactive protocol.  

2.3.3.1 Zone Routing Protocol (ZRP)  

In ZRP [44], each node has a routing zone, which defines a range (in hops) in which 

each node is required to proactively maintain network connectivity. For nodes within 

the routing zone, the Intra Zone Routing Protocol (IARP) implements link-state routing 

that provides a complete view of network connectivity. Therefore, routes are 

immediately available within the routing zone. Outside the routing zone, routes are 

determined on-demand, and any on-demand routing protocol can be used to determine a 

route to the required destination.  

The advantage of ZRP is that the amount of routing overhead is significantly reduced 

compared to pure proactive protocols. By enabling routes to be discovered faster, the 

delays are also reduced in the ZRP in contrast with pure reactive protocols. To 

determine a route to a node outside the routing zone, ZRP uses the bordercasting 

process for its inter-zone routing protocol (IERP). Bordercasting is a process that allows 

a node to send packets to its peripheral nodes (nodes on the routing zone boundary). 

Route discovery is efficiently done by bordercasting a route query to all the peripheral 

nodes of the source node, which in turn bordercast the query to their own peripheral 

nodes and so on. Once the destination is found, a route reply is sent back to the source 

node. The routing path, which consists of a list of peripheral nodes between the source 

and the destination, will be stored in the packet header or cached in the queried 

peripheral nodes [45]. Fig. 2.3 shows an example of IERP from the source node S to the 

destination node D.   
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2.3.3.3 Distributed Dynamic Routing Protocol (DDR) [47] 

Similar to ZRP and ZHLS, DDR is a hybrid hierarchical routing protocol based on 

zones. Unlike ZRP, the zones in DDR do not overlap, and each node needs to know 

only the next hop to all the nodes within its zone. Unlike ZHLS, DDR does not need 

location information for routing, and each node keeps only the zone connectivity of its 

neighbouring zones whereas in ZHLS, each node maintains the zone connectivity of the 

whole network.  

DDR executes a six-phase process to build a two-level forest and tree structure: 

preferred neighbour election, forest construction, intra-tree clustering, inter-tree 

clustering, zone naming and zone partitioning. During the initial phase, each node 

carries out the preferred neighbour election algorithm, choosing a neighbour that has the 

most number of neighbours as its preferred neighbour. Next, a forest is constructed by 

connecting each node to its preferred neighbour. After that, the intra-tree clustering 

algorithm is executed to form a tree structure within a zone and build the intra-zone 

routing table. The inter-tree clustering algorithm is then executed to determine the 

connectivity with the neighbouring zones. Finally to complete the process, each tree is 

assigned with a name by executing the zone naming algorithm. After the structure is 

completed, hybrid ad hoc routing protocols (HARP) [48] will use the intra-zone and 

inter-zone routing tables created by DDR to determine a stable path between the source 

and the destination. 

2.4  Energy-efficient Wireless Routing Protocols 

A WSN is a network of sensor nodes connected via wireless communications. These 

sensor nodes often have limited energy capacities; therefore one of the most important 

considerations of a routing protocol in WSN is the energy consumption efficiency and 

the extension of the network’s lifetime. Most commonly used ad hoc routing protocols 

such as DSDV, ADOV, DSR and other routing protocols described in the previous 

section use hop-count as the metric for route selection which does not take into account 

energy consumption. With the rapid increase in the demand of WSN applications, many 

energy-efficient routing protocols have since been proposed for WSNs. 
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2.4.1  Energy-aware Routing  

Energy-aware routing is a class of routing protocols that makes use of energy 

information to make routing decisions, in order to improve the energy performance of 

the network. 

An on-demand Minimum Energy Routing Protocol (MER) [49] uses a transmission 

power control approach to determine the minimum energy route. MER implements the 

transmission power control mechanism in DSR and modifies the header of the Route 

Request packet to include the power used by the sender to transmit the packet. The 

receiving node uses this information, as well as the received power level, to compute the 

minimum power required for successful transmission in this link. The power 

information (per hop) is appended at each intermediate node towards the destination. 

This power information is sent back to the source node in the Route Reply packet along 

the reversed links. In this way, the source node and all the intermediate nodes along the 

path are able to transmit data packets with the minimum transmit power.   

To differentiate between reliable and unreliable transmission links, a new link cost 

metric that is a function of both the energy required for a single transmission attempt 

across the link as well as the link error rate is defined in [50]. The link error rate factors 

in the potential retransmission cost needed for reliable data delivery. There are two 

operating models in this retransmission-aware algorithm, end-to-end retransmissions 

(EER) and hop-by-hop retransmissions (HHR). The EER model applies in the scenarios 

where the individual links do not provide link-layer retransmissions, and 

retransmissions due to errors are only initiated by the source node. The HHR model 

caters for networks where each individual link provides reliable forwarding via 

localised packet retransmissions.  

The retransmission-aware algorithm proposed in [50] has only considered the energy 

cost of exchanging data packets, although common wireless protocols also require 

control packets for reliable data delivery. A more accurate energy model that accounts 

for total energy consumption of data packets, control packets and retransmissions is 

proposed in [51], and simulation results show that the energy performance is better 

using this more accurate energy model. 
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Energy efficiency in these variations of energy-aware routing protocols has improved. 

However, for a network with stationary nodes, these routing protocols almost always 

select the same path, which is the lowest cost path, for the same source-destination pair.  

The static behaviour of the path selection means that wireless nodes along the selected 

path have to work harder and consume more energy than those that are not on the 

selected path. The energies of these overworked nodes will naturally be depleted much 

faster than the other nodes. When this happens, there is a high possibility that the 

network will be partitioned, making some destination nodes unreachable. In wireless 

sensor network (WSN) applications, the exhausted sensor nodes are no longer able to 

perform their sensing function even if the network is not segmented. This reduces the 

effectiveness of the WSN. 

An ant-based energy-aware routing (ABEAR) protocol based on the Ant Colony 

Optimization (ACO) is proposed in [52]. ABEAR is a multi-path protocol that considers 

the link-quality, congestion metrics and the remaining energy of the next hop to 

compute the routing path. Simulations results show that ABEAR performs better than 

AODV in network lifetime. However, ABEAR requires a proactive neighbour 

maintenance process which will increase its control overhead rapidly as the network 

density increases.  

 

2.4.2  Maximum Lifetime Routing 

There is another class of routing algorithms that aims to maximise the network lifetime. 

In [53][54],  maximum network lifetime routing is modelled as a linear programming 

problem with the objective of maximising network lifetime, which can also be 

interpreted as maximizing the amount of information transfer between the origin and 

destination nodes given the limited energy. This translates into a shortest cost path 

routing whose link cost is a combination of transmission and reception energy 

consumption and the residual energy levels at the two end nodes.  In [55], the model is 

extended to take into the consideration of energy-harvesting capability of the WSNs. 

In [56], a heuristic max-min zPmin algorithm that combines path power consumption 

and path minimal residual energy is offered. Intuitively, to maximise network lifetime, 
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routes should avoid nodes whose energy level is low because overuse of these nodes 

will deplete their battery reserves. However, the strategy of routing data along the path 

with the maximum minimum residual energy (known as max-min path) could lead to 

very poor results as shown in the example given in [56]. Also, routing along max-min 

path could be expensive compared to the path with the minimum power consumption. 

The proposed max-min zPmin algorithm relaxes the power consumption requirement 

along the selected path to be zPmin, where Pmin is the power consumption along the 

minimum power consumption path and z is to be computed adaptively based on the 

algorithm. The author has simulated the algorithm with mathematical networks and has 

obtained good empirical results.  

In [57], NCE-DSR(Number of times nodes send Constraint Energy DSR) protocol is 

proposed to prolong its network lifetime. NCE-DSR uses the number of messages that 

has been transmitted by a node i (Ni) as a proxy for the node residual energy based on 

the inverse relationship between the two. The routing metric used in this protocol is a 

combination of maximum (N_max) and average (N_ave) values of Ni along the routing 

path. Simulation results have shown that NCE-DSR has improved network lifetime 

compared to DSR. 

Energy Dependent DSR (EDDSR) protocol proposed in [58] attempts to prolong its 

network lifetime by discouraging nodes with short lifetime from participating in the 

route discovery process. When a node has enough residual energy, it participates in the 

network activities behaving exactly as a DSR node. When the node’s residual battery 

capacity falls below a threshold, it delays rebroadcasting of a received RREQ by a time 

period that is inversely proportional to its predicted lifetime. The protocol has obtained 

some success in the scenarios simulated. 

An Energy-efficient DSR (E-DSR) protocol proposed in [59] uses a metric that is  

based on a combination of node transmission power cost, path energy cost and link 

availability for route selection. Simulation results have shown that E-DSR has a better 

lifetime performance than DSR in networks with mobile nodes. However, the 

assumption that each node knows it coordinates and mobility is a major limitation of 

this protocol. 
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A conditional max-min battery capacity routing (CMMBCR) algorithm, using a 

different combination of power consumption and node residual energy, is proposed in 

[60]. Selection of routes in this scheme is conditioned on the minimum battery capacity 

of the nodes along the paths between a source and a destination. A path with minimum 

total transmission power is selected if routes exist that have the minimum battery 

capacity above some threshold value; otherwise, a path with maximum-minimum 

battery capacity will be selected. The algorithm is simulated with a simplified routing 

scheme to study the effects of the threshold value to network lifetime. [61] and [62] 

provide other variations of maximum lifetime routing algorithms.  

Most of the maximum lifetime routing algorithms require accurate residual power 

information of all nodes in the network for route selection. However, the 

communication of such information could generate substantial overhead that consumes 

additional energy, and is not addressed in these algorithms. 

2.4.3  Load Balancing Algorithms 

Load balancing algorithms are traditionally employed to address network congestion 

problems to improve packet delivery ratio and reduce packet delay. There are single 

path and multi-path load balancing routing algorithms. Single path routing may discover 

multiple paths from a source to a destination but will only use the best path, according 

to the metric, for data forwarding. Load balancing is achieved over multiple flows that 

avoid using the same paths or nodes. Multi-path routing, on the other hand, distributes 

data packets over different paths for a single flow.  

An example of single path load-balancing is the Load-Balanced Ad hoc Routing 

(LBAR) algorithm proposed in [63], which uses node traffic activity as a metric to 

distribute the load and to avoid routing via heavily loaded nodes. In LBAR, routing 

information on all paths from source to destination is forwarded through setup messages 

to the destination. Setup messages include nodal activity information of all nodes on the 

traversed path. With the collection of all nodal activity information, the destination 

makes a selection of the lowest cost path and sends an acknowledgement back to the 

source node. Simulation results in the paper have shown that LBAR has better packet 

delivery performance under high traffic conditions. However, as efficient energy 



Background and Related Work 

29 

 

performance is not its priority, LBAR utilises a substantial amount of control messages 

to achieve its objective. 

Load Balanced Congestion Adaptive Routing (LBCAR) [64] is proposed to avoid 

congestion and increase the throughput of the network. LBCAR is a route selection 

algorithm using traffic load intensity and link cost as the routing metric. Simulation 

results in the paper have shown that LBCAR is able to reduce the end-to-end delay and 

enhance the throughput through balancing the load in the network.  

The Multipath Routing Protocol (MSR) [65] is based on DSR and uses Round Trip 

Time (RTT) to measure delays for different paths, which form the basis of the routing 

metric. A source node then employs a weighted-round-robin scheduling to distribute the 

load. Using this scheme, both average RTT and throughput has shown improvements 

over the original DSR protocol.  

A load balancing algorithm can be used to improve the network lifetime of WSN if an 

energy-aware metric is included as part of the route selection criteria.  The idea of this 

approach is that while the total energy consumed in the network may not be reduced, 

total energy consumption is spread over a larger number of sensor nodes and thus the 

energy draining rate for individual nodes is slowed down. Load balancing algorithms 

for WSNs typically use combinations of new parameters such as transmit and receive 

energy costs, residual node energy, and link reliability to the routing metric in addition 

to the traditional hop count or link cost.  

Traffic Load and Lifetime Deviation Based Power-Aware Routing Protocol (TDPR) 

proposed in [66] is a single path load balancing algorithm to prolong network lifetime. 

Path selection in TDPR is done by the destination node only during the route discovery 

process. The absence of an energy monitoring mechanism in this protocol during the 

data transmission phase limits its effectiveness in balancing node residual energy in the 

network. 

2.5  Duty-cycle MAC Protocols 

The main objective of the MAC protocol is to coordinate access to and transmission 

over a medium common to several nodes. In the wireless context the common medium 
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is the wireless channel which is broadcast in nature. Any ongoing transmission will 

interfere with any other transmission within the communication range. Interference may 

lead to packet losses and retransmission mechanisms need to be catered for. To 

minimize interference and packet collisions, appropriate MAC rules have to be put in 

place.  

To reach the agreement as to which node can access the communication channel at 

any given time, the nodes must exchange some amount of coordinating information. 

However, the exchange of information requires the use of the communication channel 

itself. This recursive aspect of the multi-access medium problem increases the 

complexity and overhead of the MAC protocol.  

The key design goals of MAC protocols can be summarised as follows: 

i. Delay: Delay refers to the amount of time spent by a data packet in the MAC 

layer before it is transmitted successfully. 

ii. Throughput: Throughput is defined as the rate at which messages are 

serviced by a communication system. It is usually measured either in 

messages per second or bits per second. 

iii. Robustness: Robustness, defined as a combination of reliability and 

availability requirements. It reflects the degree of the protocol insensitivity to 

errors. 

iv. Stability: Stability refers to the ability of a communications system to handle 

fluctuations of the traffic load over sustained periods of time. 

v. Energy efficiency:  This is one of the most important issues in the design of 

MAC protocol for wireless sensor nodes. Energy-efficient MAC protocols 

achieve energy savings by controlling the radio to eliminate or reduce energy 

wastage such as collisions, idle listening, management and control packet 

overhead, etc. 

Although a variety of MAC protocols have been developed for wireless networks, 

many are not suitable for WSNs because they were not designed with energy 

conservation as a primary goal [67]. 
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A typical WSN generates very light traffic and sensor nodes spend most of the time 

listening to the radio channel and idling. This idle listening is the dominant source of 

energy consumption in WSNs. Duty-cycling is a common approach used in the MAC 

layer to reduce energy consumption due to idling, where sensor nodes alternate between 

active and sleep periods. Sensor nodes schedule the transmission and reception of data 

during active periods, and switch the radio off completely during sleep periods to 

conserve energy. References [68]–[70] provide comprehensive reviews of  duty-cycle 

MAC protocols for WSN.  

In addition to idle listening, overhearing of uninteresting packets, management packet 

overheads and collisions also waste power. It is important to identify these causes 

because while attempting to reduce idle listening, duty-cycling can increase the collision 

rates and introduce more management traffic, hence increasing energy consumption and 

reducing the effectiveness of the duty-cycle mechanism designed to reduce energy 

consumption.  

2.5.1  Challenges of Duty-cycle MAC Protocols 

Many different duty-cycle MAC protocols have been proposed during the last decade 

and new ones are still being published. Researchers aim to achieve very low duty cycles 

for energy conservation. However, this goal is achieved with the trade-off of other 

network performance parameters such as end-to-end delay, throughput or robustness. As 

WSN applications have diverse network performance requirements, one duty-cycling 

mechanism designed for a specific application may not work well with another. Some of 

the challenges of duty-cycle MAC are summarised as follows [32]: 

i. End-to-end Delay: Data traversing a duty-cycle multi-hop network will 

potentially encounter a situation in which the next hop is sleeping, and will 

have to wait for it to wake up. This may add significant latency to the packet 

delivery time which is not tolerated by some applications such as surveillance, 

where a given event needs to be communicated in a timely fashion.  

ii. Collision Rate: With duty-cycling, transmission and reception windows are 

shortened. If a contention-based MAC is used, these smaller time windows 

will increase the probability of collisions, reducing throughput and increasing 
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latency further. If TDMA is used, a more precise clock synchronisation 

process will be needed, which means an increase in control traffic and an 

increase in energy consumption for transmitting and receiving such traffic. 

iii. Management Traffic Overhead: Duty-cycling may require additional 

management traffic. The most common source of this overhead is 

synchronisation. Fine-grained synchronisation requires frequent 

resynchronisation to deal with clock skews. Protocol designers need to ensure 

that the energy saved from duty-cycling is not drained by the additional 

management traffic overhead. 

There are two main categories of duty-cycle MAC protocols. The synchronous duty-

cycle [71] approach makes use of a MAC layer synchronisation algorithm to 

synchronise sensor nodes in the same neighbourhood, so that they can wake up at the 

same time to exchange sensor data. On the other hand, the asynchronous or preamble 

sampling approach [72] does not use a synchronisation algorithm, but places the burden 

of data delivery on the senders. When a sensor node has data to send, it has to first 

transmit a preamble that is longer than the sleep period of the receiver so that the 

receiver will be able to detect it. Once the preamble is detected, the receiver will stay 

awake to receive the data. This approach may also increase the delay significantly as the 

sender has to meet the receiver’s active schedule. B-MAC [73], X-MAC [74], and 

WiseMAC [75] are some examples of asynchronous duty-cycle MAC protocols. 

Synchronous duty-cycle MAC protocols reduce idle listening time, but the required 

synchronization introduces extra overhead and complexity, and a node may need to 

wake up multiple times if its neighbours are on different schedules.  Asynchronous 

duty-cycle MAC protocols remove the synchronization overhead, which also means that 

they could support applications that require very low duty cycle (<0.1%) [76].  

However, they are mainly optimized for light traffic loads and become less efficient in 

latency, power efficiency, and packet delivery ratio as traffic load increases. 

2.5.2  Synchronisation in WSNs 

There are several different needs for synchronisation in WSNs. First, there are many 

application areas where sensor nodes need to collaborate to achieve a complex sensing 
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task. Data fusion is an example in which data sensed at different nodes is collected and 

aggregated into meaningful results. For example, in a vehicle tracking application, 

different sensor nodes report the location and time at which they sense the vehicle to a 

base station where different pieces of information are processed to estimate the location 

and velocity of the vehicle. If the sensor nodes lack a common timescale (i.e., are not 

synchronised), the estimate will be inaccurate. 

Synchronisation is also used by energy-saving mechanisms to increase network 

lifetimes, such as in duty-cycle protocols, in which sensor nodes may sleep by turning 

off their sensors and/or transceivers at appropriate times, only waking up when 

necessary. The nodes need to sleep and wake up at coordinated times, so that the 

receiver of a sensor node is not turned off when there is data directed to it. This requires 

precise timing between sensor nodes within the same neighbourhood. 

Scheduling algorithms such as TDMA, which enable multiple sensor nodes to share 

the transmission medium in the time domain to eliminate collisions and conserve 

energy, have a very stringent requirement on synchronisation for their operations. 

Clock synchronisation has been studied thoroughly in the areas of Internet and Local 

Area Networks (LANs) [77][78]. Many existing synchronisation algorithms rely on the 

Global Positioning System (GPS) to work. However, GPS is not widely available in 

many WSN application areas, such as those underwater, indoors and underground. It 

also requires a relatively high-power receiver, which is not possible in tiny and low cost 

sensor nodes. 

Network Time Protocol (NTP), a software-based protocol, is the default protocol used 

for maintaining synchronisation in computer networks due to its ubiquitous deployment, 

scalability, and robustness related to failures. However, NTP is not suitable for WSNs 

due to many challenges, such as limited energy and bandwidth, latency, dynamic 

topology and multi-hopping. Therefore, clock synchronisation algorithms which are 

different from the conventional protocols are needed to deal with the challenges specific 

to WSNs. 

Different WSN applications have different synchronisation requirements. The 

requirements can be broadly classified into three categories. The first is event ordering; 
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many applications of sensor networks rely on the chronological order of event 

occurrences to obtain useful information from sensed data. For such applications, clocks 

are normally unsynchronised; time reference normalisation is only performed when an 

event of interest occurs [79]. The second is the maintenance of relative clock 

synchronisation. In this category, each node records the relative offset between its clock 

and the clocks of other nodes in the network. Relative clock synchronisation can be 

further divided based on the scope of synchronisation needs. For some applications, it is 

enough to synchronise only a subset of the network at a time (cluster-based 

synchronisation), whereas for others,  network-wide synchronisation might be required 

[80].  The third category is that every node maintains a clock that is synchronised to a 

reference node. A global time scale throughout the network is maintained. 

Time synchronisation in WSN is typically achieved by exchanging timing messages 

among the sensor nodes. There are broadly three approaches for time synchronisation in 

WSNs. They are one-way message dissemination (or unidirectional reference 

broadcast), sender-receiver synchronisation and receiver-receiver synchronisation and 

[80]–[83].  

In the unidirectional reference broadcast approach [84][85], a single message 

broadcast carrying a reference clock signal is used to achieve local synchronisation with 

the participating nodes in the sender neighbourhood. Due to its simplicity, 

unidirectional reference broadcast approach is suitable for applications that requires 

high energy efficiency but less stringent synchronisation. On the other hand, both 

sender-receiver and receiver-receiver synchronisations use multiple message exchanges 

to achieve pair-wise synchronisation with high accuracy, however, to achieve this they 

need higher bandwidth and higher energy consumption. A comprehensive comparison 

and review of different synchronisation algorithms in WSNs can be found in  [80]. 

2.5.2.1 Unidirectional Reference Broadcast 

Unidirectional reference broadcast is a simple synchronisation mechanism in which a 

reference node simply broadcasts a reference clock signal to other nodes. The receiving 

nodes will then synchronise their times with the reference clock. 
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As shown in Fig. 2.4,  TPSN relies on the two-way message exchange scheme to 

acquire the synchronisation between two nodes A and B. Assuming that the clock drift 

and the propagation delay do not change in this short span of time, node A can calculate 

the clock drift and propagation delay d as: 

 
2

)34()12(
,

2

)34()12( TTTT
d

TTTT 



 , (2.1) 

TPSN is scalable and the synchronisation precision does not deteriorate significantly 

as the size of the network increases. However, it is not energy efficient and does not 

support dynamic topologies since it requires a hierarchical infrastructure. 

Other examples of sender-receiver synchronisation algorithms include mini-sync and 

tiny-sync [87], Maximum Likelihood Estimator (MLE) [88], [89], and Lightweight 

Time Synchronisation (LTS) [90]. 

2.5.2.3 Receiver-receiver Synchronisation 

The main idea of receiver-receiver synchronisation algorithms is that when a node 

broadcasts a timing reference beacon to its neighbours, the receivers will get the 

message at approximately the same time. Instead of the traditional synchronisation 

algorithms that try to synchronise between the sender and receiver, the receivers will try 

to synchronise with one another. 
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Unidirectional reference broadcast such as FTSP utilizes less network resources than 

both RBS (receiver-receiver synchronisation) and TPSN (sender-receiver 

synchronisation). Assuming all three algorithms use the same synchronisation period, 

each node sends 1 message in FTSP, 2 messages in TPSN (1 message to parent and 1 

response), and 1.5 messages in RBS (0.5 for a reference broadcast and 1 for a time-

stamp exchange message) in 1 synchronisation period. 

2.5.2.4 Synchronisation in synchronous duty-cycle MAC 

The classic synchronous duty-cycle MAC protocol S-MAC follows a SYNC-DATA-

SLEEP 3-phase operational cycle. During SYNC windows, sensor nodes broadcast 

synchronisation packets (sync) periodically to synchronise the clocks of the 

neighbouring nodes. During DATA windows, sensor nodes send out data packets from 

the higher layers based on some contention mechanisms to avoid collisions. Later 

developments of synchronous MAC protocols such as DW-MAC, AS-MAC and SEA-

MAC focus on improving the energy efficiency, throughput and delay performance by 

implementing changes in the scheduling and transmission of data packets, leaving the 

synchronisation algorithm largely unchanged. 

The synchronisation algorithm adopted by the above synchronous MAC protocols is 

based on fixed, periodic synchronisation packet broadcast algorithms [95] in SYNC 

windows. This algorithm works fine when the network is sparse. When the network is 

dense however, there are many unnecessary transmissions that cause collisions and 

consume excess energy.  Energy consumption for the synchronisation process in SYNC 

windows is not insignificant as for most of the synchronous MAC protocols, the ratio of 

SYNC window to DATA window is about 1:2. Energy efficiency for the 

synchronisation process will be examined in Chapters 4 and 5. 

2.5.2.5 Effect of clock drift on synchronisation 

Every sensor node has a local clock that is based on a crystal oscillator which provides a 

local time for each node. The time reference in a sensor node is just a counter that gets 

incremented with interrupts from the oscillator. Due to the imperfections of crystal 

oscillators, the time maintained by each sensor node will drift away from the ideal time, 
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as well as from one another, over time. As discussed in [81], the clock function of a 

node i can be generally modelled as 

 tftC ii  )( , (2.2) 

where and fi are the clock offset (phase difference) and clock drift rate (frequency 

difference) respectively. Therefore if two nodes A and B are initially synchronised with 

each other, the time difference between the two clocks in time t can be shown as 

 tfftCtC BABA  )()()( , (2.3) 

which is proportional to the time elapsed since the last synchronisation. Periodic re-

synchronisation is thus required to prevent the continuing increase of clock offsets that 

will affect communication reliability and energy consumption efficiency. 

A typical crystal-quartz oscillator commonly used in sensor networks has a drift rate 

of up to 40 parts per million (40 ppm) [81]. In addition, external factors such as 

temperature, voltage changes and hardware aging also add to the clock drift. Therefore a 

duty-cycle MAC protocol and its synchronisation algorithm must be able to handle 

different levels of clock drifts and still provide good energy and data performance. 

2.5.2.6 Effect of duty cycle on synchronisation 

Duty cycling is one of the key mechanisms in WSNs to reduce energy wastage in idle 

listening and improve network lifetime. In general, lower duty-cycle networks, with 

longer sleep time, have lower energy consumption albeit at the expense of longer packet 

delivery times. With longer sleep periods and longer frame times in low duty-cycle 

operations, sync packet inter-arrival times are longer even when the number of frames in 

the synchronisation period is kept constant, which makes clock synchronisation a 

greater challenge. For example, a 20 kbps S-MAC frame is about 8.0 seconds and 1.6 

seconds in 2% and 10% duty-cycle (dc) networks respectively. With a 10-frame 

synchronisation period, a sensor node in a 2% dc network will schedule a sync packet 

every 80 seconds compared to just 16 seconds in a 10% dc network. Therefore in 

comparing different synchronisation algorithms, it is important to evaluate the stability 

of their performance in different duty-cycle operations. 
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clustering structure and the need for tight, global synchronisation make the network not 

scalable. In addition, the high transmission power required for direct communication 

between cluster heads and the base station may dominate the total energy consumption 

since every sensor node must have enough power to reach the base station if selected as 

a cluster head. 

2.5.3.2 Sensor MAC (S-MAC) 

S-MAC [97][95] is a synchronous duty-cycle MAC protocol primarily designed for  

energy conservation and self-configuration. Unlike LEACH, S-MAC adopts a virtual-

cluster approach to support a flat, multi-hop network topology.  Neighbouring nodes 

form virtual clusters based on common sleep/wakeup schedules to reduce latency and 

control overhead. 

S-MAC introduces several novel features for energy-efficient operation. The first 

feature is a periodic sleep and listen schedule. In the listen period, sensor nodes wake up 

to listen and communicate with other nodes. The listen period is further divided into 

SYNC and DATA periods. Only synchronisation frames are allowed in SYNC periods 

for the purpose of synchronising the neighbourhood, and Data frames follow a 

contention procedure to access the media during the DATA periods.  In a sleep period, 

the nodes will try to sleep by turning off their radios. In this way, the time spent on idle 

listening can be significantly reduced. 

S-MAC is a contention-based protocol. To avoid collisions, S-MAC has adopted both 

physical and virtual carrier sensing, which is similar to the Distributed Coordination 

Function (DCF) protocol in IEEE 802.11 standards. The sequence of 

RTS/CTS/DATA/ACK is used to avoid collisions due to hidden nodes. 

The periodic sleep and listen scheme, however, increases latency in multi-hop 

networks. S-MAC implements an adaptive-listening technique [97] to reduce the 

latency that could be caused by the periodic sleep of intermediate nodes. 
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2.5.4  Asynchronous Duty-cycle MAC Protocols 

Unlike the synchronous protocols, asynchronous duty-cycle MAC protocols do not 

require prior knowledge on the timing information and schedules of neighbouring nodes 

for data communication. They are not impacted by clock drift and hence do not require 

a synchronisation protocol to operate.  

Asynchronous duty-cycle MAC utilizes a frequent channel sampling mechanism 

known as low power listening (LPL) to detect possible starting transmissions in the 

network. The sender first transmits a preamble packet to signal that there is data to be 

transmitted. Upon receiving the preamble packet, the receivers wake up to wait for the 

arrival of data packets. However, the long preamble packet size of this transmitter-

initiated approach in asynchronous WSNs contributes to the higher transmission energy 

used in the network. Other approaches such as receiver-initiated and redundant 

transmission of preamble packets are explored to reduce the burden on the transmitter 

[72]. In addition, frequent channel sampling also contributes to higher start-up costs; 

proper measures must be taken to ensure the optimal wake-up period is implemented. 

 

2.5.4.1 Berkeley MAC (B-MAC) 

B-MAC [73] is a variant of CSMA with a preamble sampling mechanism. To achieve a 

low power operation, B-MAC employs an adaptive preamble sampling scheme to 

reduce the duty cycle and minimise idle listening. Upon waking up, the sensor nodes 

use Low Power Listening (LPL) to check for activity above the estimated noise floor. 

The nodes will go into a full active state and wait for data packets only if activity is 

detected. If it is a false-positive and no packet is received, the nodes will go back to 

sleep after a timer time-out. The basic operation of B-MAC is shown in Fig. 2.14. 
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2.6.1  Sensor Protocol for Information via Negotiation (SPIN) 

SPIN [107] is a negotiation-based information dissemination protocol suitable for 

WSNs.  Negotiation and resource-adaptation are two key mechanisms used in SPIN that 

contribute to its energy efficiency.  

To overcome the problems of implosion, SPIN nodes negotiate with the neighbouring 

nodes to eliminate the transmission of redundant data messages. To eliminate overlap, 

SPIN uses meta-data as the descriptors of the data for negotiation, allowing the nodes to 

name the portion of the data that they are interested in obtaining. In this way, nodes do 

not waste energy for the unnecessary data transmission.  

The SPIN protocols are resource aware and resource adaptive. Each sensor node has 

its own resource manager to compute the energy required to process, send, and receive 

data over the network.  The resource manager also keeps track of the energy 

consumption, which helps the sensors to monitor and adapt to any change in their own 

resources. Whenever their resources are low, nodes are able to cut back on their 

activities to increase their lifespan.   

However, SPIN does not specify a format for meta-data; therefore, SPIN applications 

must define a meta-data format that takes into account the costs of storing, retrieving, 

and managing the data in order to be effective. The cross-layer dependency of SPIN 

also makes it less flexible to support different WSN implementations.   

2.6.2  Directed Diffusion 

Directed Diffusion [108] is a data-centric protocol designed for sensor query, data 

dissemination and processing. The protocol uses attribute-value pairs for naming the 

data and diffuses the named data through sensor nodes. The main reason behind using 

such a scheme is to get rid of unnecessary operations of network layer routing in order 

to save energy. 

A sink node using directed diffusion creates a query by broadcasting an interest 

message with a list of attribute-value pairs. The dissemination of interest message sets 

up gradients along multiple paths within the network. Specifically, the gradient 

direction is set towards the neighbouring node that sends the interest. Initially, when a 
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2.7  Summary 

The market potential and rapid development of IoT applications has generated strong 

research interests in the related component areas such as IoT communication protocols, 

LPWANs and WSNs, and energy efficiency is always a key consideration in the design 

of these components. Within the area of WSNs, node to node communications 

contributes to a significant amount of sensor node energy consumption. To minimise 

energy consumption and maximise network lifetime, various techniques are used in the 

design of sensor nodes which include energy harvesting, data centric protocols, routing 

algorithms and duty-cycle operations. In this chapter, we have reviewed and discussed 

the various state of the art ad-hoc routing and duty-cycle MAC protocols in detail. We 

have identified the gaps in the areas of energy monitoring and distribution mechanism 

in routing and synchronisation algorithm in duty-cycle MAC and will present our 

proposals in the next few chapters.
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naturally be depleted much faster than the other nodes. When this happens, there is a 

high possibility that the network will be partitioned, making some destination nodes 

unreachable. 

There is another class of routing algorithms that aims to maximize network lifetime as 

proposed in [56]–[62]. Most of these maximum lifetime routing algorithms require 

accurate residual power information of all nodes in the network for route selection. 

However, the communication of such information could generate substantial overhead, 

which consumes additional energy and is not addressed in these algorithms. 

In recent years, Internet of Things (IoT) application scenarios are rapidly gaining 

traction. The majority of these application scenarios consist of interconnected 

heterogeneous devices such as wireless sensors, smart-phones, as well as network-

enabled embedded systems such as controllers, actuators and RFID devices. The 

heterogeneity of WSN nodes further increases the complexity of optimising the network 

lifetime of a WSN.  

In this chapter, we describe a routing protocol that is computationally efficient, fully 

distributed, with energy-aware multi-path balancing for heterogeneous WSNs. The new 

routing protocol enhances the existing stable Dynamic Source Routing (DSR) protocol 

with an energy-balancing feature to improve network lifetime which we refer to as 

Energy-balanced Dynamic Source Routing (EB-DSR). 

3.2  DSR Overview 

DSR [42][111] is an efficient routing protocol designed specifically for multi-hop 

routing in a wireless ad hoc network. A wireless ad hoc network is built spontaneously 

when a collection of wireless mobile hosts connects to one another for data 

communications without the aid of any established network infrastructure or centralised 

administration. 

DSR is a reactive routing protocol, which means routing activities are only initiated in 

the presence of data packets in need of a route. The key benefit of reactive or on-

demand protocols is the reduction of routing overhead and energy consumption. For 

sensor network applications, high routing overhead consumes additional network 
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capacity and energy, which could significantly impact the data performance and lifetime 

of the WSN. 

DSR uses source routing, i.e. the source node determines the complete route to the 

destination when a new data packet is generated. It places the hop-by-hop information 

in the packet header so that the intermediate nodes can simply forward the packet based 

on the routing information in the packet header. Normally, the source node obtains the 

routing information by searching for routes it previously learned from its route cache. If 

no route is found in its cache, a route discovery process is initiated to find a new route 

to the destination node. 

While a host is using any source route, it continues to monitor the correctness of the 

route. If any node along the route moves out of transmission range of its next or 

previous hop neighbour along the route, the route can no longer be used to reach the 

destination and is considered invalid. A route will also become invalid if any of the 

nodes along the route is powered off or fails due to other reasons. A route maintenance 

process is used to monitor of the validity of a route. 

3.2.1  Route Discovery Process 

To initiate route discovery, a source node S broadcasts a Route Request (RREQ) packet, 

which is received by all the neighbouring nodes within wireless transmission range of S. 

Each RREQ identifies the source node S and the destination node D, and also contains a 

unique request identification (ID). When an intermediate node receives the RREQ for 

the first time, it rebroadcasts the RREQ packet after adding its address to the source 

route. The intermediate node discards the RREQ if the message contains the same ID 

that it has received before, or if its address is already in the source route of the message. 

This process continues until the RREQ reaches the destination node D. 

 When the destination node D receives the RREQ, it will simply reverse the sequence 

of hops in the route record and use this as the source route for the Route Reply (RREP) 

message back to node S if the MAC protocol requires bidirectional frame exchange for 

unicast packets.  Otherwise, it will examine its own route cache for a route back to S. It 

will use this route as the source route for delivery of the Route Reply (RREP) message 

back to node S. If no such route is found, it will piggyback the RREP on its own RREQ 
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lifetime unnecessarily. A new routing protocol that is aware of the energy status of the 

sensor nodes in the WSN and a new routing metric that uses the updated node energy 

information is needed to improve network lifetime performance. 

The proposed EB-DSR protocol has the following characteristics: 

 It is reactive; a route discovery process is initiated by the source node 

only when there is data to be routed and no existing route is found in its 

route cache. 

 The forwarding path is determined at the source (i.e. Source Routing 

Protocol). 

 Within a single flow between the same source and destination pair, 

forwarding paths can vary from time to time dynamically based on the 

residual energies of the intermediate nodes along the paths. 

 Multi-path routing results in balancing node remedial energies and hence 

extends the network lifetime. 

EB-DSR protocol uses DSR as a base for source routing and adds 3 new features and 

enhancements for multi-path energy-aware routing. 

3.3.1  New Energy-balanced Metric 

One key feature of EB-DSR is the introduction of a new energy-balancing metric M. 

The new metric incorporates the traditional link cost elements (distance, bandwidth, 

QoS, etc.) as well as the residual node energies along a given path. In this section, we 

discuss the derivation and the properties of this new metric. 

 

 
Fig. 3.3  Cost and remedial node energy information along a 

network path P. 
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With reference to Fig. 3.3, for any path P from a source to a destination, the path-cost 

metric is defined as: 

 



i

PP i
c C )( , (3.1) 

where 
iPc  denotes the cost of link i along path P. Using only the path-cost metric, 

between two paths P and Q, path P is preferred to path Q  if: 

    Qp CC  ,  or  1  
Q

p

C
C

. (3.2) 

Similarly, the minimum-node-energy metric of path P is defined as: 

  })min({  
jPP eE  , (3.3) 

where 
jPe  denotes the residual energy of intermediate nodes j along path P. Using only 

the minimum-node-energy metric, between two paths P and Q, path P is preferred to 

path Q  if: 

    Qp EE  ,  or  1  
Q

p

E
E

. (3.4) 

We can combine the two metrics, giving equal weight to each of them. The resulting 

parameter CP / EP satisfies the property of a path metric such that path P is preferred to 

Q if: 

 
Q

p

Q

p

E
E

C
C

  , or 
Q

Q

P

p

E
C

E
C

 .   (3.5) 

Thus, CP / EP, which considers both path cost and node energy, can be used as a new 

metric for route selection. Among all possible paths from a source to a destination, a 

path Pi with minimum ii
pp EC  /

 will be selected as the best path. 

Various path energy metrics have been explored for minimum energy routing [49]–

[51]. However, for such metrics to be effective there is a need for frequent updates of 

node- and link-related information from the neighbours, which will consume additional 

bandwidth and energy. We will leave the cost-benefit analysis of implementing such 

metrics for future work. 
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In this work, we focus on a metric that is practical and easily implementable in a real 

energy-constrained WSN. We simplify the path cost component of the metric to the 

number of links (hop count) along the path to be similar to the three other established 

routing protocols DSDV, AODV, and DSR, and investigate the effectiveness of the path 

minimum-node-energy component. The new routing metric along a path P, MP, used in 

the simulation is given as: 

 
P

P
p E

LM   (3.6) 

where LP is the number of links along path P. 

Route selection between candidate paths based on this simplified metric is illustrated 

in the following four cases:  

i. Directly Connected Path:  

For a direct connected (single-hop) path P between source and destination, there 

is no intermediate node, which means Ep is not defined. Provision is made in the 

algorithm to select the direct path since the direct path is the more desirable path 

where no intermediate node is needed.  

 

ii. Equal minimum-node-energy paths P and Q (EP = EQ):  

In this case, the metric M reduces to the simple hop-count metric for shortest 

path routing. If LP < LQ, the shorter path P will be selected. However, it should 

be noted that the shortest path routing can only happen for a short duration. 

After some data packets are routed, node energies along the selected path are 

consumed, increasing the value of MP. If the increase results in MP > MQ, then 

path Q will be selected next. 

 

iii. Equal hop count paths P and Q (LP = LQ):  

In this case, the metric M reduces to the minimum-node-energy metric. If EP > 

EQ, which implies that MP < MQ, then path P with higher minimum-node-energy 

will be selected. After some data packets are routed, node energies along the 

selected path are consumed, decreasing the value of EP. If the decrease results in 

MP > MQ, then path Q will be selected next. 
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iv. Paths P and Q with different  hop count and minimum-node-energy:  

This is most general and the scenario for most cases. Based on the metric, path P 

will be selected if EP > (LP / LQ) * EQ, i.e. the minimum-node-energy for path P 

must be greater than that of path Q by a ratio of (LP / LQ). Data will be sent along 

path P and all nodes along this path will consume their energies for transmitting 

and receiving data packets. Path P will continue to be the preferred path until the 

energy consumption along path P results in EP < (LP / LQ) * EQ, and path Q will 

be selected next. Similarly, the switching of the preferred path from Q to P will 

happen when EP > (LP / LQ) * EQ. The alternate selection of path P and Q by this 

metric has the energy-balancing effect of maintaining a constant minimum-

node-energy ratio between the two paths, i.e. 

 

 QPQP LLEE /   /  . (3.7) 

3.3.2  Transport and Storage of Node Energy Information 

To incorporate the proposed energy-balancing metric effectively, the sensor nodes that 

make the routing decision must be provided with the updated residual node energy 

information of all nodes along the possible paths. Efficient transport and storage of the 

residual node energy information must be considered in the new protocol.   

In the DSR protocol, a source node selects the best end-to-end route to the destination 

node. It provides an address list of the intermediate nodes through which the packets are 

forwarded in order to reach the destination. In EB-DSR, additional node energy fields 

associated with the corresponding intermediate nodes are added to the source route 

headers of RREQ and RREP packets. Each intermediate node, upon receiving these 

control packets, will first update this field with its current node energy level before it 

forwards the packets downstream. By piggybacking energy information on the source 

route headers, node energy information is communicated with minimum added 

overhead.  

During the route discovery process, RREQ carries the energy information from data 

source to data destination, and RREP carries the energy information in the other 
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Each EB-DSR node maintains a node-energy table that stores the residual node 

energy level of other nodes in the network by reading them from the source route 

headers it receives. When data packets need to be routed, the table is referenced by the 

Route Discovery Process  

 
received DATA from application : 
 if (route_to_destination exists) { 
  route_selection()   // perform route selection using the routing metric 
  send_DATA()    // send DATA packet out using the selected route 
 } 
 else { 
  buffer_DATA()   // put DATA packet in the data buffer 
  construct_RREQ()   // construct RREQ packet  
  broadcast_RREQ()  // broadcast RREQ packet with empty source route header 
 } 
 
received RREQ (S → D): 
 cache_route (SRHeader)   // copy route from source route header into route cache 
 cache_node_energy (SRHeader)  // copy node energy info into node energy table  
 if (myNodeId == destination) {   // RREQ targeted at me 
  process_RREQ()    // process the RREQ packet 
  construct_RREP()    // construct RREP packet 
  send_RREP()     // send RREP packet back to source 
 } 
 else  if (RREQ is new) {       // this is  a new RREQ for the intermediate node 
  append_SRH (myNodeID, myNodeEnergy)  // append myNodeEnergy to source route header 
  set_next_alert (energy_level, D)   // set next alert energy level to node D in alert table 
         broadcast_RREQ()      // broadcast RREQ with updated source route header 
 } 
 else  { 
  discard(RREQ)    // procedure to discard RREQ 
 } 
 
received RREP (D → S): 
 cache_route (SRHeader)   // copy route from source route header into route cache 
 cache_node_energy (SRHeader)  // copy node energy info into node energy table  
 if (myNodeId == destination) {   // RREP targeted at me 
  process_RREP()    // process the RREP  packet 
  route_selection()    // perform route selection using the routing metric 
  send_bufferedDATA()    // send out DATA packet in the data buffer using selected route 
 else  { 
  set_next_alert (energy_level, S) // set next alert energy level to node S in alert table 
  forward_RREP()    // forward RREP packet using the source route header 
 } 
 

 

Fig. 3.5  Pseudo-code of EB-DSR route discovery process 
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routing algorithm in order to compute the energy-balanced metric M for all available 

candidate paths before the path with the lowest M is selected.   

Energy entries in the node energy table are updated with the following considerations: 

i. An intermediate node may receive multiple packets with node energy 

information for the same nodes, and the sequence of packet arrival may not be 

the same as the time sequence of the node energy updated by the originating 

nodes. In our simulations, we have assumed that there is no energy harvesting 

capability in the network and node energy is a strictly decreasing function 

with time, a node-energy table entry will only be updated if the energy state in 

the source route header for that particular node is lower. In the case of an 

energy harvesting network where nodes may be recharged, the assumption 

could be removed and node energy could be updated accordingly. 

ii. To reduce the memory requirements of the sensor node, the size of the node-

energy table may not be able to accommodate all the nodes in the network. 

When the table is full and there is energy information for a new node, the 

highest energy entry in the table is discarded. This is because the lower energy 

nodes are more important in the computation of energy-balancing metric M.  

3.3.3  Energy Alert Mechanism 

Obtaining node energy status from the initial Route Discovery process is not sufficient. 

Energy entries in the table become outdated after some time and need to be updated. To 

reduce the routing and energy overhead, we use an energy-efficient algorithm that keeps 

the sending of energy alert packets to the minimum.  

As described in section 3.2.2, RERR packets are used for route maintenance in DSR. 

RERR packets in DSR are sent when a node detects a link failure. The RERR packet 

header contains an “Error Source Address” and an “Error Destination Address” which 

specify the nodes at the two ends of the broken link. A new type of RERR is defined in 

EB-DSR to carry out the energy alert function. To differentiate Energy Alert packets 

from normal RERR packets, the Energy Alert packet header contains the address of the 

alerting node for both the Error Source and Destination addresses. Fig. 3.6 illustrates the 
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3.4  Simulation Setup 

3.4.1  Network Model 

An ad hoc network is set up with 50 nodes randomly located within a square grid of 

500m x 500m.  These 50 nodes are divided into two groups, with 25 high-energy nodes 

and 25 low-energy nodes. The high-energy nodes have sufficient energy to last the 

whole simulation while the low-energy nodes will be exhausted before the end of 

simulation. The heterogeneous network models a large scale WSN that consists of 

multiple types of sensor nodes with different sensing functions and energy capacities 

working together. The source and destination nodes are located at equal distance at both 

Energy Alert Process  

 
received DATA (S → D) from neighbour : 
 cache_route (SRHeader)    // copy route from source route header into route cache 
 cache_node_energy (SRHeader)   // copy node energy info into node energy table  
 if (myNodeId == destination) {   // DATA packet is for me 
  process_DATA() 
 } 
 else  { 
  update_SRH (myNodeID, myNodeEnergy)  //update myNodeEnergy to source route header 
  forward_DATA()      // forward DATA packet using the source route header 
  alert_level = alert_look_up (S)   // look up alert level to S  from the alert table 
   
  if ((myNodeEnergy < alert_level ) && (minEnergy_in_SRHeader == true)) { 
   send_energy_alert (myNodeEnergy, S)  // send Energy Alert packet to source node S 
  } 
 } 
 

received RERR(Energy Alert):  
 cache_route (SRHeader)    // copy route from source route header into route cache 
 cache_node_energy (SRHeader)   // copy node energy info into node energy table 
 update_EA()       // update alert_node energy info  into node energy table  
 if ((myNodeId == destination) && (Databuffered)) { // energy alert for me and more data to send 
  route_selection()    // re-compute route using the routing metric 
  send_bufferedDATA()    // send out DATA packet in the data buffer using selected route 
 } 

 

Fig. 3.7  Pseudo-code of EB-DSR energy alert process 
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ends of the grid as shown in Fig. 3.8. The source and destination nodes are also high-

energy nodes so that no packets are lost due to their exhaustion. 

We have used constant bit-rate (CBR) traffic of 1 packet per second with fixed length 

packets of 512 bytes. For physical layer, we have used the two-ray ground reflection 

propagation model which considers both the direct path and a ground reflection path, 

with ns-2 (version 2.35) default carrier sensing range of 550m and packet reception 

range 250m (ns-2 uses binary decision for packet reception). We have also used a 

simple energy model, in which node energy is only consumed when transmitting, 

receiving and overhearing packets.  

 

As the power consumption ratio for transmitting and receiving packets (tx_rx_ratio) 

varies across different hardware and applications [112][113], and experimental 

measurements [114] have shown that actual energy consumptions are very different 

from the hardware specifications, the performance of the four routing protocols DSDV, 

AODV, DSR, EB-DSR are evaluated with different values of tx_rx_ratio in the static 

network simulations. It has to be emphasized that the relative results are more important 

 
Fig. 3.8 Network model for ns2 simulation 
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than the absolute numbers. Table 3.1 shows the parameters used in the simulations of 

the 4 routing protocols under study.  

The ability to respond to topology changes due to node mobility is also one of the 

most important design criteria of WSN routing protocols. In the second part of our 

simulations, the performance of the routing protocols are compared in mobile network 

scenarios, in which each intermediate node moves independently with a random 

velocity, which changes the network topology over time.  

 

3.4.2  Performance Metrics 

3.4.2.1  Network Lifetime 

The primary performance metric of interest to us is network lifetime. There are different 

definitions of network lifetime available in the literature. In [115], the definitions can be 

categorised as follows: 

i. Time to which a pre-defined fraction of nodes is exhausted; 

ii. Time to which emergence of first partition in the network occurs; and 

Table 3.1   WSN simulation parameters for ad-hoc routing protocols 

Parameter Value 

Grid size 500m x 500m 

Number of intermediate nodes 25 (high-energy),  

25 (low-energy) 

Number of source-destination pairs 5 

Data rate (CBR) 1 packet/s 

Packet size 512 bytes 

Interface queue length 50 packets 

MAC protocol IEEE 802.11 

Simulation time 500s 

Simulated routing protocols DSDV, AODV, DSR, EB-DSR 

Propagation model Two-ray ground reflection 

Carrier sensing range  550m 

Transmission range 250m 
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iii. Time to which packet delivery rate drops below a pre-defined value. 

 

In our simulations, the 25 high-energy nodes remain alive until the end of the 

simulations. They keep the network connected and the packet delivery rate remains 

high. Therefore, the first category of the definitions is appropriate. For a simple 

comparison among different routing protocols, we adopt the most common definition 

for network lifetime within the first category, which is the duration from the beginning 

of the network operation to the first node failure. 

3.4.2.2  Data Load Ratio on Low-energy Nodes (DLRle) 

This metric is defined as the ratio of the number of CBR data packets transmitted and 

received by the low-energy nodes to the total number of data packets transmitted and 

received by all the intermediate nodes.  A lower ratio indicates that the routing protocol 

is more effective in diverting data packets away from the low-energy nodes and is 

therefore more energy-balanced: 

 %100
)(

)(

_

_ 









nodesall
rxtx

nodesle
rxtx

le CBRCBR

CBRCBR

DLR  (3.8) 

 

3.4.2.3  Packet Delivery Ratio (PDR) 

PDR is the ratio of the total number of data packets received at the destination nodes to 

the total number of CBR data packets generated at the source nodes. A higher value of 

PDR indicates that the routing protocol is more successful in delivering the data packets 

from the source nodes to the destination nodes. This metric characterizes both the 

correctness and the reliability of a routing protocol:  

 %100

_

_ 




nodessrc
tx

nodesdest
rx

CBR

CBR

PDR  (3.9) 
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3.4.2.4  Average End-to-end Packet Delay (AvDelay) 

AvDelay measures the average time taken for a data packet to be successfully delivered 

to its destination. Delays in WSNs are caused by buffering during route discovery, 

waiting at the interface queue, MAC retransmission, and propagation and transmission 

delays. AvDelay is computed by summing up the end-to-end delay of each CBR data 

packet and dividing it by the total number of successfully delivered data packets. The 

lower the end-to-end delay, the better the application performance: 

 
rxtotal

CBR

CBR

eCBRsentTimeCBRrecvTim

AvDelay

rxtotal

_

1

_

)( 
  (3.10) 

 

3.4.2.5  Average Hop-count 

Average hop-count of data packets is defined as the average number of routers (hops) a 

data packet needs to traverse the network to reach its destination. In general, a lower 

hop-count contributes to lower packet delay and lower energy consumption. In a mobile 

network, this metric also measures how well a routing protocol adapts to network 

topology changes.  

3.4.2.6   Normalised Routing Overhead (NRO) 

Normalised routing overhead is also known as normalized routing load. It is defined as 

the number of routing packets (RREQ, RREP, and RERR) transmitted per data packet 

delivered to the destination. Each hop-wise transmission of a routing packet is counted 

as one transmission. Routing overhead measures the scalability of a routing protocol, 

the ability to function in congested or low-bandwidth environments, and the efficiency 

in terms of node energy consumption. Protocols with high routing overhead could also 

increase the probability of packet collisions and increase data packet delays. A routing 

protocol with a lower normalised routing overhead is considered to have better 

performance: 
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3.5  Simulation Results – Static Network Scenarios 

The simulations are performed for DSDV, AODV, DSR and EB-DSR routing protocols 

with tx_rx_ratio taking the values of 2, 4, 6, 8 and 10.  Twenty independent runs are 

simulated for each protocol for each scenario and the average values of each 

performance parameter are presented. In all our scenarios, it is observed that average 

lifetime, PDR, DLRle, and average hop-count performances have small standard 

deviations of less than 2%. For AvDelay and normalised routing overhead, the standard 

deviations are larger and will be plotted together with the averages.  

3.5.1 Network Lifetime Performance 

Fig. 3.9 shows the lifetimes of each of the 25 low-energy nodes. All 25 low-energy 

nodes are depleted well before the completion of 500s simulation time. We compare the 

network lifetimes of each protocol, which is the time to first node failure as defined in 

the previous section.  

 

 

Table 3.2   Lifetime performance (static network) 

Routing  
Protocol 

 tx_rx_ratio =  
2 

4 6 8 10 

Network Lifetime – First Node Failure (s) 

DSR 277.6 236.2 203.3 187.3 160.3 

DSDV 262.4 248.3 233.5 221.4 211.2 

AODV 278.4 230.4 202.7 179.3 167.1 

EB-DSR 292.7 284.6 288.3 278.6 289.1 

Standard Deviation of Node Lifetime (s) 

DSR 12.3 19.6 30.6 33.8 42.4 

DSDV 8.0 8.7 12.7 13.0 15.2 

AODV 14.8 21.5 29.4 37.2 42.0 

EB-DSR 13.3 11.9 13.8 11.0 11.3 
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3.5.4  Average End-to-end Packet Delay 

As shown in Fig. 3.12 (bottom), both DSR and EB-DSR have the lowest end-to-end 

delays under 20ms in all scenarios. DSR and EB-DSR nodes maintain multiple route 

entries in their route cache. When a selected route fails, the source node is able to 

quickly find an alternative route to the destination, reducing the end-to-end delay. This 

proves to be useful in the static heterogeneous network scenarios, in which route 

failures are generally due to energy depletion of low-energy nodes. DSDV also has a 

good delay performance as it is a proactive protocol, with quick notifications about link 

failures through routing updates.  Upon receiving failure notifications, other nodes in 

the network will be able to compute new routes and update their routing tables.    

AODV has the worst delay performance, with an average at around 40ms. The 

variations are also large across different scenarios. This is because AODV maintains 

only a single route to a destination; a new route discovery process has to be initiated 

when the original route fails, and this process introduces additional packet delay. 

3.5.5  Average Hop-count 

As shown in Fig. 3.13 (top), average hop-counts vary within a narrow range of between 

3.08 and 3.33 among the four routing protocols. DSDV has the lowest average hop-

count due to its proactive nature. The shortest paths to the destinations are maintained 

and updated periodically. For reactive protocols, longer routes will be taken by 

intermediate nodes to salvage data packets when they encounter link failures. 

In DSR and EB-DSR, routes may be shortened if one of the intermediate nodes 

becomes unnecessary. If a node overhears a packet carrying a source route, in which the 

address of the node appears in the later portion of the packet’s source route, it infers that 

the intermediate nodes before itself in the source route are no longer needed in the route. 

It can then send a "gratuitous" RREP to the original sender of the packet, shortening the 

original source route. This automatic route shortening feature results in a better hop-

count performance for DSR and EB-DSR, compared to AODV. 
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3.6  Simulation Results – Mobile Network Scenarios 

The same 500m x 500m grid network with 50 intermediate nodes is used for mobile 

network simulations. While the source and destination nodes remain stationary at both 

ends of the grid, the intermediate nodes are given freedom to move randomly within the 

grid. Node mobility provides additional challenges to the routing protocols because the 

topology of the network changes constantly. Route entries in the routing table become 

stale quickly and more routing overhead is generated to update the link status and 

maintain the correctness of the routes.  

Table 3.4 shows the parameters used in the mobile network simulations: 

 

The Random Waypoint model [116] is used to model  node mobility in our 

simulations. Mobile nodes that follow this model move independently to randomly 

chosen destinations with randomly selected velocities. The nodes then remain stationary 

for a period of time known as pause time before continuing the random movement. This 

process repeats until the simulation ends. There are two key parameters in modelling 

Table 3.4   WSN simulation parameters for mobility 

Parameter Value 

Grid size 500m x 500m 

Number of intermediate nodes 25 (high-energy),  

25 (low-energy) 

Number of source-destination pair 5 

Data rate (CBR) 1 packet/s 

Packet size 512 bytes 

Interface queue length 50 packets 

Node speed U(1m/s, 10m/s) 

Pause time 100s, 200s 300s, 400s, 500s 

tx_rx_ratio 6 

MAC protocol IEEE 802.11 

Simulation time 500s 

Simulated routing protocols DSDV, AODV, DSR, EB-DSR 

Propagation model Two-ray ground reflection 

Carrier sensing range  550m 

Transmission range 250m 
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lifetime performance in all mobility scenarios simulated. The relative lifetime 

performance of EB-DSR gets better with lower mobility (larger pause time). It is also 

apparent that energy consumptions among the low-energy nodes in EB-DSR are more 

balanced, which can be seen from the narrow ranges of its low-energy node lifetimes.   

 

 

3.6.2  Data Load on Low-energy Nodes 

Similarly to the static network scenarios, the effectiveness of EB-DSR in routing data 

packets away from low-energy nodes is clearly demonstrated as shown in Fig. 3.15.  

Less than 6% of the total data load is routed through the low-energy nodes in EB-DSR. 

The other 3 protocols do not differentiate between high-energy and low-energy nodes in 

making routing decisions, and therefore they have significantly higher percentages of 

data load routed through the low-energy nodes, ranging from 21% to 28%.  

 

Table 3.5   Lifetime performance (mobile network) 

Routing  
Protocol 

Pause Time = 
500 

400 300 200 100 

Network Lifetime – First Node Failure (s) 

DSR 199.8 195.3 196.4 185.0 182.3 

DSDV 224.4 219.2 226.5 212.1 201.2 

AODV 194.6 200.3 192.9 206.3 198.6 

EB-DSR 279.0 268.1 266.8 244.4 213.7 

Standard Deviation of Node Lifetime (s) 

DSR 28.4 26.7 26.5 18.8 13.3 

DSDV 11.7 11.3 9.8 9.1 8.5 

AODV 26.8 25.8 26.3 22.1 15.5 

EB-DSR 11.4 11.6 8.5 6.2 6.7 
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route entries are encountered. It does not try to salvage these packets as in the other 

three protocols, which results in the increase of average hop-counts. 

DSR and EB-DSR have better hop-count performance than AODV in general due to 

the route shortening feature present in both protocols. All three protocols record higher 

hop-counts with higher mobility as links are broken more frequently. 

 

3.6.6  Normalised Routing Overhead 

Normalised routing overhead increases with an increase in mobility for all four routing 

protocols as shown in Fig. 3.17(bottom).  EB-DSR has the lowest normalised routing 

overhead in all cases. DSDV has the highest normalised routing overhead in most of the 

cases due to its proactive nature.  

As mobility increases, more links are broken and route discovery process becomes 

more frequent in reactive protocols. However, as the route discovery process in AODV 

is dominated by RREQ which is broadcast in nature, routing overhead increases more 

rapidly than EB-DSR and DSR, in which route discovery is dominated by unicast 

RREP. At a high mobility of 100s pause time, AODV records the highest routing 

overhead among the four protocols. 

3.7  Chapter Summary 

In this chapter, we discussed the issue of network lifetime performance in wireless 

sensor networks caused by the unbalanced routing of data traffic. We proposed a multi-

path Energy-balanced Dynamic Source Routing (EB-DSR) protocol that is fully 

distributed and computationally efficient.  The proposed protocol also provides a novel 

energy update mechanism to delivery node energy information through the network 

efficiently. 

Simulations of four routing protocols, DSDV, AODV, DSR and the proposed EB-

DSR are run and their performances in various static and mobile network scenarios are 

compared. Performance metrics used for comparison include network lifetime, data load 
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on low-energy nodes, packet delivery ratio, average end-to-end packet delay, average 

hop-count and normalised routing load. 

Results from the simulations have shown that EB-DSR is able to prolong the network 

lifetime effectively through an energy-balanced, multipath approach, while maintaining 

high packet delivery ratio in both static and mobile heterogeneous WSNs. The results 

have also shown that the relative performance of EB-DSR in terms of data load 

distribution and normalised routing overhead are much better than the other protocols in 

the study. EB-DSR also has lower end-to-end packet delays than the other two reactive 

protocols in most of the cases. 
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network is sparse. However, when the network is dense, the energy performance of INS 

converges with F-Sync. 

In this chapter, a new synchronisation algorithm, referred to as 1-Sync, is proposed. 1-

Sync conserves energy by turning off the radios of sensors nodes in the SYNC windows 

after they receive one valid sync packet in the neighbourhood. The nodes will wake up 

periodically when transmission or reception of sync packets is necessary. The analytical 

energy consumption models and synchronisation performance of the three 

synchronisation algorithms are also presented and they are validated through extensive 

simulations. Both analysis and simulation results show that 1-Sync has better energy 

efficiency compared to F-Sync in all cases. Compared to INS, 1-Sync also has better 

energy efficiency except in very sparse network scenarios.  

4.2  Existing Synchronisation Algorithms for Synchronous 
Duty-Cycle MAC 

The listen period in synchronous duty-cycle MAC protocols is much longer than the 

clock drift. As such, a much looser synchronisation among neighbouring nodes is  

required compared with TDMA schemes with very short timeslots [95]. In addition, as 

the frame structure of synchronous duty-cycle MAC protocols provide only small time 

windows for exchanging timing messages, unidirectional single message broadcast is 

the most appropriate and energy efficient among the three approaches for synchronizing 

sleep/wakeup schedules of the sensor nodes. 

4.2.1  Frame Structure 

Synchronous duty-cycle MAC protocols such as S-MAC, DW-MAC and their 

derivatives divide their operating cycles into listen and sleep periods. A complete cycle 

of a listen and sleep period is called a frame. As shown in Fig. 4.1, the listen period, 

during which the node’s radio is active, is further divided into SYNC and DATA 

windows.  

SYNC windows are meant for the broadcast of sync packets to synchronise the clocks 

of neighbouring nodes so that they can be awake simultaneously. Data packets from 

upper layers, if any, will be sent after the start of DATA windows. A sensor node turns 
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packet, it will schedule a new sync packet and follow a contention procedure for the 

transmission of the packet. It first starts a carrier sense timer and selects a random 

timeslot to sense the medium. If there is no transmission by the end of that timeslot, it 

wins the contention and starts sending its sync packet. During the contention window, if 

the medium is busy, it will revert to packet receiving mode and postpone the sync 

transmission to the next SYNC window. Upon receiving a sync packet, it re-

synchronises its sleep/wakeup schedule with the time information given in the sync 

packet received. It stays idle for the entire SYNC window if there is no packet to 

transmit or receive. At no time will a sensor node go to sleep during SYNC windows. 

The detailed procedure of the proposed F-Sync algorithm is shown in Fig. 4.2. 

 

 

Each node stays awake in the SYNC windows to ensure it receives the sync packets 

from all its neighbours. As the number of nodes in the 1-hop neighbourhood (node 

density) increases, there are more sync packets scheduled and transmitted within the 

F-Sync Algorithm 

 
initialization: 
 nextTxSync = NSP 
sync window begins: 
 wakeup() 
 if (nextTxSync != 0) { 
  nextTxSync --  // not time to send sync yet    
 } 
 else { 
  send_sync()  //  procedure to send sync packet 
  if (send_sync_successful) { 
   nextTxSync = NSP // schedule next sync transmission 
  } 
 } 
 if (sync_ received) { 
  synchronise_node() //  procedure to synchronise clock 
 } 
sync window ends: 
 

 

Fig. 4.2  F-sync algorithm with fully awake sensor nodes 
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neighbourhood, and hence the number of sync packets received by a sensor node within 

the NSP period increases, reducing sync inter-arrival times. For WSNs with different 

densities, there could be a wide variation of sync inter-arrival times among the sensor 

nodes. However, sensor nodes in a WSN typically have similar clock drifts and require 

similar synchronisation time intervals. If NSP is selected to ensure proper 

synchronisation in low density networks, then the sensor nodes in high density networks 

will receive more sync packets than necessary and thus more energy is consumed 

unnecessarily. In fact, for most of the sensor network setups, node densities vary across 

the entire network and F-Sync will not be effective for all neighbourhoods. Multi-

neighbourhood network performance will be studied in Chapter 5. 

4.2.3  The Operation of INS 

In F-Sync networks, each node wakes up in every SYNC window. When there is no 

sync packet transmission in the network, which is quite often the case in a sparse 

network, these nodes will just be idling and consuming energy. Intelligent Network 

Synchronisation (INS) [117] attempts to  improve energy efficiency in the 

synchronisation process by exploiting the periodic nature of sync packet transmission in 

F-Sync.  

In INS networks, each node maintains a counter for each of its neighbours. Each 

counter is increased by one after every cycle. When a node receives a sync packet from 

its neighbour, the corresponding counter will be reset to zero. By examining the list of 

its counters, the node is able to determine whether there will be a sync packet arriving in 

the current SYNC window. If any of the counter values is greater than or equal to NSP, 

the node wakes up in the current window as it is expecting a sync packet to arrive. It 

will otherwise go to sleep to conserve energy.  INS was simulated and evaluated over a 

linear network and a sparse grid network with good energy performances. However, in a 

dense network where collisions frequently occur, the periodicity of sync from each 

neighbour cannot be guaranteed and therefore INS faces the same energy inefficiencies 

as F-Sync in high density neighbourhoods. 
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4.3  Proposed Energy Efficient Synchronisation Algorithm 

Similar to both F-Sync and INS, the proposed 1-Sync integrates well with synchronous 

duty-cycle MAC with SYNC, DATA and sleep periods.  The algorithms operate in the 

SYNC periods of the MAC protocols which are independent of the DATA and the sleep 

periods. The optimization of energy performance of the synchronisation algorithm thus 

provides a new and added dimension of overall energy performance of the MAC 

protocols it integrates with without compromising their delay and throughput 

performance.  

The objective of the proposed 1-Sync algorithm is to reduce the energy consumption 

of the sensor nodes in SYNC windows by allowing them to go to sleep during these 

windows as much as possible. By design, NSP is chosen such that the sensor nodes need 

to receive just one sync packet within the time period TSP, known as the synchronisation 

period, for synchronisation regardless of node density. Any other sync packets received 

in this period could be discarded. However, in some networks, multiple schedules could 

exist in the different neighbourhoods of border nodes. For these border nodes, sync 

packets are also used to maintain multiple schedules. Border nodes with multiple 

schedules spend more time listening and sending data than other nodes and are therefore 

highly energy inefficient. To eliminate multiple schedules, Global Schedule Algorithm 

(GSA) is proposed in [103]. Experimental results in [103] and our simulations have both 

shown that the nodes converge to a single schedule very quickly within a few listening 

periods.  

1-Sync is activated after the schedule has converged using GSA. Similar to both F-

Sync and INS, a sensor node using the 1-Sync algorithm sends out sync packets at a 

regular interval TSP (synchronisation period), which can be obtained as: 

 SP
TSDWSW

SP N
D

tnn
T

)( 
 , (4.1) 

where nSW and nDW denote the lengths of SYNC and DATA window in terms of 

timeslots, tTS is the duration of a timeslot, and D is the duty cycle. 

 After a sync packet is sent, the sensor node stays awake during the subsequent SYNC 

windows and waits for a valid sync packet from its neighbours. Once a valid sync packet 
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is received, the node goes into a synchronised state and will go to sleep in subsequent 

SYNC windows. The sensor node will only turn its radio on when it is ready to transmit 

its sync packet and the cycle repeats. Fig. 4.3 illustrates the proposed 1-Sync algorithm. 

 

The key improvement of 1-Sync over F-Sync and INS is that it is able to sleep in the 

SYNC windows to conserve energy after a sensor node receives its first valid sync 

packet within the synchronisation period. This is especially important in high density 

neighbourhoods where both F-Sync and INS nodes are fully active, and are hence likely 

to receive large numbers of corrupted sync packets due to collisions. 

1-Sync Algorithm 

 
initialization: 
 nextTxSync = NSP 
 state = unsynchronised 
sync window starts: 
 if (nextTxSync != 0 and state == synchronised) { 
  nextTxSync --  //  not time to send sync, continue sleeping 
 } 
 else { 
  wakeup() 
  if (nextTxSync != 0) { 
   nextTxSync -- 
  } 
  else { 
   send_sync()    //  procedure to send sync packet 
   if (send_sync_successful) { 
    nextTxSync = NSP // schedule next sync transmission 
    state = unsynchronised 
   } 
  } 
  if (sync_ received) { 
   synchronise_node()  //  procedure to synchronise clock 
   state = synchronised 
  } 

 } 
sync window ends: 
 

 

Fig. 4.3  1-sync algorithm puts sensor node to sleep after receiving a valid 
sync packet 
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4.4  Performance Metrics and Analysis 

4.4.1  Performance Metrics 

In this chapter, we study the energy and synchronisation performance of the 

synchronisation algorithms in single hop neighbourhoods. Data performance in multi-

hop neighbourhoods will be studied in the next chapter. 

i. Average Node Energy Consumption (ANEC): Node energy consumption is 

a key performance parameter in duty-cycle WSN.  ANEC is computed by 

dividing the total energy consumed by all the nodes in the network by the total 

simulation time and the number of nodes. 

ii. Sync Packet Inter-arrival Time: Inter-arrival time between consecutive valid 

sync packets received is another important performance parameter for 

synchronisation.  The longer the inter-arrival time between two consecutive 

sync packets, the worse the phase offset is and the higher the chances of the 

nodes getting out of synchronisation. The tolerance of the phase offset of a 

wireless sensor node is dependent on various factors including the protocol it 

runs, the data rate of the network, and the clock drift specifications of the 

sensor node. Based on the S-MAC testbed measurements in [92], the 

synchronisation update period can be in the order of tens of seconds. 

iii. Average Waiting Period for Sync Packet Transmission (AWPST): In high 

density neighbourhoods, it is common to have multiple sync packets scheduled 

in the same SYNC window and some of them will not have the chance to be 

transmitted immediately. As such, they will be postponed until the next 

window. AWPST is the number of frames a node needs to wait from the time 

a sync packet is scheduled to the time it is transmitted.  A higher AWPST 

means that the sensor nodes have less sleep time in SYNC windows and hence 

have higher energy consumption for the synchronisation process. 
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4.4.2  Energy Consumption Analysis with Low Neighbourhood Density (N 

< NSP) 

In this section, the energy consumption of the sensor nodes in single hop, unsaturated 

neighbourhoods for F-Sync, INS and 1-Sync are analysed. Analysis on saturated 

neighbourhoods is provided in the next section. 

The operation cycle of a duty-cycle MAC protocol can be divided into three distinct 

intervals, namely the SYNC window, the DATA window and the sleep period. The total 

energy consumption for each node, Etotal, is simply the sum of energy consumptions in 

the three sub-intervals as follows: 

 SLPDWSWtotal  + E + E= EE  , (4.2) 

where ESW, EDW, and ESLP denote the total energy consumed in SYNC windows, DATA 

windows and sleep periods respectively. 

In the SYNC windows, each node transmits one sync packet per synchronisation 

period TSP. As node density increases, the total number of sync packets to be transmitted 

within a synchronisation period increases. The number of frames in one synchronisation 

period, NSP, can be considered as the saturation point for the node density N, above 

which there are more sync packets to be sent than the number of SYNC windows 

available in one synchronisation period. This saturation effect will increase the sync 

packet transmission interval and the probability of a sync packet collision. In this 

section, we focus on energy consumption in the case of low density neighbourhoods (N 

< NSP).  

Fig. 4.4 illustrates the sync packet transmission scenario in a low density N-node 

neighbourhood. Each SYNC window allows only a single sync packet to be transmitted. 

As the number of SYNC windows in one synchronisation period NSP is greater than the 

node density N, and each node only transmits one sync packet per synchronisation 

period; each node will be able to schedule and transmit its sync packet in its respective 

SYNC window in the steady state with no collision.  
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where Pslp denotes the power consumption in the sleep state. 

For the 1-Sync algorithm, each node transmits one sync packet and receives one sync 

packet within the time interval TSP. The transmission and the reception of sync packets 

take place in two different SYNC windows. On average, each node stays idle for 

N

NN SP )(   SYNC windows before receiving a sync packet.  It will be in the sleep state in 

the other ]2[ )(
N

NN
SP

SPN   SYNC windows. The average energy consumption in the 

SYNC windows  1-SyncESW  in time T can be obtained as: 

 

  
  

.

2

)(2

)()(

SP

SPSP

T
T

TS

slpSWN
NN

SPidleSWN
NN

idlesyncSWrxsynctxsyncSW

t

PnNPn

PnnPnPn1-SyncE

 



 (4.5) 

4.4.2.2  Energy Consumption in DATA Windows 

Node energy consumption in DATA windows is dependent on its data load. In this 

chapter, the focus is on the comparison of energy consumptions attributed to the 

different synchronisation algorithms, therefore we consider only scenarios where there 

is no data traffic. With no data traffic, sensor nodes remain idle throughout DATA 

windows. Energy consumptions in DATA windows for all three synchronisation 

algorithms are the same and can be expressed as: 

 ,
SPT
T

TSidleDWSPDW tPnNE   (4.6) 

where nDW denotes the length of DATA window in terms of timeslots. 

4.4.2.3  Energy Consumption in Sleep Periods 

The length of a sleep period, nSLP, is determined by the selection of the duty-cycle D as: 

 )()1(
DWSWD

D
SLP nnn   . (4.7) 

The smaller the duty-cycle, the longer is the sleep period compared to the listen period. 

Energy consumption in sleep periods is the same for all three synchronisation 

algorithms and can be expressed as: 
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.)1( TPD

tPnNE

slp

T
T

TSslpSLPSPSLP
SP




 (4.8) 

4.4.3  Energy Consumption Analysis with High Neighbourhood Density (N 

> NSP) 

Consider an N-node single-hop neighbourhood in the absence of hidden or exposed 

terminals. When the density is low (N < NSP), there are more SYNC windows available 

than the number of nodes in the neighbourhood. There could be some collisions in the 

initial periods when the nodes schedule their sync transmission in the same window. 

However, in the steady state, each node eventually settles into its own unique window 

for periodic sync packet transmissions with no collision.  

In a high density neighbourhood i.e. N > NSP, the number of sync packets scheduled to 

be transmitted within the synchronisation period is more than the number of SYNC 

windows available. Consequently, one of the following three scenarios may occur when 

a sensor node is trying to broadcast a sync packet:  

i. Only one sync packet is scheduled in the current window and it is transmitted 

successfully. 

ii. Two or more nodes transmit their sync packets in the same timeslot in the 

current window, resulting in a sync packet collision. 

iii. The sync packets are scheduled in different timeslots, and those scheduled in 

later timeslots will postpone their sync packet transmissions to the next SYNC 

window upon detection of the first sync packet transmission.  

The last two scenarios together affect the frequency of sync packet transmission and 

the energy consumption in high density neighbourhoods.  

Sync packet transmission scenario in a single saturation neighbourhood from the 

perspective of a sensor node is illustrated in Fig. 4.5. The window with successful sync 

packet transmission is denoted as T. In between two sync packet transmissions, the 

sensor node could receive either one valid sync packet (denoted as R), or corrupted sync 

packets (denoted as Co) due to multiple transmissions in each SYNC window. In the 

case of 1-Sync, the senor node goes to sleep (denoted as S) after it receives the first 
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of successful sync packet transmission ps and collision pc in the neighbourhood are 

given as: 

 )0|1()0( 
11

,  


jj

n

j
j

n

j
jss VUPVPpp

CWCW

, (4.9) 

 )0|1()0( 
11

,  


jj

n

j
j

n

j
jcc VUPVPpp

CWCW

, (4.10) 

where ps,j and pc,j are the successful sync packet transmission and collision probabilities 

in timeslot j respectively. 

The probabilities of the two events Uj and Vj are dependent on the number of 

contending nodes, Nc, that have their sync packets scheduled in the current window and 

can be computed as: 
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The average number of contending nodes in the steady state is in turn dependent on the 

mean number of sync packet transmissions in a SYNC window U , which can be seen 

as the expected number of sync packets scheduled on timeslot j with no sync packet 

scheduled before that. The mean number U can be computed as: 

 )0|()0(  
0 1

  
 

jj

N

k

n

j
jU VkUPVPk

c CW

 . (4.13) 

In a period of NSP SYNC windows, there are SPU N  sync packets transmitted on 

average; )( SPU NN  sync packets are therefore postponed to the next SYNC window 

for transmission. In the next SYNC window, there will be an average of U new sync 
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packets joining the contention since these nodes have successfully transmitted their sync 

packets in this window in the previous synchronisation period. Therefore Nc can be 

computed as: 
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UspUc

NN

NNN




 (4.14) 

4.4.3.2  Energy Consumption in SYNC Windows 

While the energy consumption behaviour in the DATA and sleep windows remain 

unchanged in high density neighbourhoods, the occurrences of sync packet collision and 

postponement affect the frequency of sync packet transmission and therefore node 

energy consumption in SYNC windows. The average number of SYNC windows 

elapsed for all N nodes to transmit one sync packet each, N’SP can be obtained as: 

 USP NN ' . (4.15) 

The corresponding time interval, which is referred to as the effective synchronisation 

period, T’SP, can be obtained as: 

 SP
TSDWSW

SP N
D

tnn
T '

)(
'


 . (4.16) 

As there are sync packets in practically all SYNC windows in high density 

neighbourhoods, there is no opportunity for INS nodes to go to sleep in these windows. 

Therefore, INS nodes display the same energy consumption behaviour as F-Sync nodes. 

In both cases, the average node energy consumption for high density neighbourhoods 

 F-SyncE SW'  and  INSE SW'  are the same and can be obtained as: 
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. (4.17) 

For the 1-Sync algorithm, each node wakes up every NSP period to schedule a sync 

packet transmission but on average only transmits successfully every N’SP period. The 

average waiting period before successful transmission is (N’SP – NSP) windows. After its 

sync packet transmission, it will wait for a valid sync packet before it goes to sleep. 
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Since the probability of successful sync packet transmission in the neighbourhood is ps, 

the average waiting time to receive a valid sync packet is 1/ps frames. Since there are 

sync packet transmissions effectively in every frame in the saturated neighbourhood, 

each node will receive (N’SP – NSP + 1/ps) collision-free and corrupted sync packets. The 

average energy consumed,  1-SyncE SW' , can thus be obtained as: 
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 (4.18) 

4.4.4  Sync Packet Inter-arrival Time 

In low density neighbourhoods, each node in an F-Sync or INS network receives (N – 1) 

sync packets in one synchronisation period of TSP seconds. There is no sync packet 

collision in the steady-state and the sync packets received are all valid, therefore the 

average inter-arrival times, )(F-SyncW  and )(INSW , between two consecutive sync 

packets can be obtained as: 

 
)1(

)()(



N

T
INSWF-SyncW SP . (4.19) 

In the case of 1-Sync, each node receives only one sync packet per synchronisation 

period and the inter-arrival time   )1( -SyncW  can be obtained as: 

 SPT-SyncW )1( . (4.20) 

In high density neighbourhoods, the effective synchronisation period is T’SP as 

defined in section 4.4.3.2, and each node in an F-Sync or INS network receives (N’SP – 

1) sync packets in this period (Fig. 4.5). However, due to collisions, there are only ps 

(N’SP – 1) valid sync packets on average. Therefore the average sync packet inter-arrival 

times in high density neighbourhoods, )(' F-SyncW  and )(' INSW , can thus be obtained 

as: 
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Energy-efficient Synchronisation Algorithms for Duty-cycle MAC 

107 

 

In the case of 1-Sync, as illustrated in Fig. 4.5, on average, each node receives (N’SP – 

NSP + 1/ps) collision-free and corrupted sync packets in the period T’SP, out of which, 

(N’SP – NSP)ps + 1 are collision-free. Therefore, the average sync packet inter-arrival 

time for 1-Sync in high density neighbourhoods, )1(' -SyncW , can be obtained as: 
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SPSPs

SP

NNp

T
SyncW . (4.22) 

4.5  Performance Evaluation 

In this section, we compare and evaluate the energy and synchronisation performance of 

the F-Sync, INS and 1-Sync algorithms.  The F-Sync and 1-Sync algorithms are 

simulated in ns-2, and their results are compared with the analytical models.  INS 

algorithm is designed for nodes to sleep only when no sync packet is expected, they will 

always wake up to receive all expected sync packets.   Therefore, for non-energy related 

performance parameters such as sync packet inter-arrival time and collision probability, 

there is no difference in INS and F-Sync algorithms by design. The performance results 

of such parameters from F-Sync simulations can therefore also serve as good indicators 

of INS performance. 

4.5.1  Simulation Setup 

An ad hoc network within a grid of 100m x 100m is set up to simulate a single-hop 

neighbourhood. We have selected S-MAC, which is integrated in ns-2 version 2.35, as 

the representative protocol for synchronous duty-cycle MAC protocols in our 

simulation. GSA is used to enable the nodes in the simulated network to converge to a 

single schedule. In the simulations, active neighbour discovery (once in every 22 

frames) is disabled for both algorithms for comparison with and validation of the 

analytical model. In the case of the 1-Sync algorithm, we still let the network run in 

default F-Sync mode for 3 TSP to achieve a steady state before the 1-Sync algorithm is 

activated. Simulations are run over a period of 9050s where the statistics are collected 

for the 9000s of steady-state period after the initial 50s period. 
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As the length of the sleep period varies with duty-cycle D, and the power 

consumption for the sleep state Pslp is very low for most of the hardware today, we have 

chosen the value zero for Pslp in our comparisons to eliminate the dependency on the 

choice of duty-cycles. However, both the analytical model and the simulations are able 

to handle the most general cases. The effect of duty-cycles on synchronisation 

performance will be investigated in Chapter 5. 

For each scenario, 30 independent simulation runs are performed. In the single hop 

single neighbourhood scenarios, we focus on the study of synchronisation performance. 

Data delivery is generally not a problem in a 1-hop network and therefore the 

simulations are without data load. Data performance will be evaluated for multi-hop 

networks in Chapter 5. Parameters used in the simulations are shown in Table 4.1: 

 

 

4.5.2  Simulation Results 

The simulations are performed using the F-Sync and 1-Sync algorithms within the 

SYNC windows of S-MAC protocol with no data load. INS performance is based on the 

analytical models developed in the previous sections. 

Table 4.1 Single-hop Network Simulation Parameters 

Parameter Value 

grid size 100m x 100m 

channel data rate 20 kbps 

duty-cycle, D 10% 

simulation time 9000s 

NSP 10 frames 

nCW 32 

Ptx, Prx, Pidle, Pslp 36 mW, 14 mW, 14 mW, 0 mW 

nsync, nSW, nDW 10 TS, 55 TS, 105 TS, 

tTS 1 ms 

propagation model two-ray ground reflection 

carrier sensing range 550m 

transmission range 250m 
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4.5.2.1 Sync Packet Collision Probability 

Fig. 4.6 shows the results of sync packet collision fractions for the algorithms. From the 

analysis, all three algorithms have the same sync packet collision probabilities since 

they have the same algorithm for sync packet transmission. However, only F-Sync 

collision statistics are collected in the simulations because 1-Sync nodes could be in the 

sleep state when some of the collisions occur, and therefore they would not be able to 

sense all the collisions that occurred. 

In the low density region, we do not expect any sync packet collisions in the steady 

state, which is also observed in the simulations. In the high density region, simulation 

results show that the probabilities of sync packet collision increase quite rapidly with 

increasing node densities, and agree well with the analytical model that we have 

developed. The Sync packet collision probability reaches almost 16% at N=20. This 

high collision rate is undesirable and impacts the synchronisation performance. 

It is interesting to note that when clock drifts of 40 ppm (parts-per-million) and 80 

ppm are introduced in the simulations, sync packet collision fractions drop drastically to 

almost zero. In a single neighbourhood with no hidden nodes, collisions occur when 

multiple sync packets are transmitted simultaneously in the same timeslot. Due to 

random clock drifts in different nodes, sync packet transmission from a node with a 

faster clock will be detected by nodes with slower clocks through carrier sensing even 

when the sync packets are scheduled to be transmitted in the same timeslot. Nodes with 

slower clocks will then postpone their sync packet transmissions, if any, to the next 

SYNC window; thereby preventing a collision from occurring. It is noted that the 

reduction of collisions only occurs in the SYNC windows of a single neighbourhood 

network for the broadcast sync traffic. For unicast data packets, the presence of 

RTS/CTS and retransmission mechanisms has a much greater effect on the data 

delivery. Data performance in multi-hop networks will be discussed in Chapter 5.    
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In the low density region where N < NSP, as node density increases, more sync packets 

are received in a single synchronisation period of NSP frames for an F-Sync network, 

which results in a substantial reduction in both the maximum and average received 

inter-arrival times. In the case of 1-Sync, only one sync packet is received in a single 

synchronisation period, which is independent of node density. Both the average and the 

maximum received intervals are very close to each other and stay at NSP frames. 

Although F-Sync, which has shorter update intervals, provides better synchronisation 

performance, 1-Sync provides a consistent level of performance near the desired 

interval NSP frames.   

In the high density region where N > NSP, both F-Sync and 1-Sync display substantial 

variations in their maximum and average received intervals. This is mainly due to the 

increasing sync packet collision rates at higher node densities. On average, both 

algorithms have shorter sync packet received intervals in the high density region than in 

the low density region. In the worst case comparison considering maximum packet 

inter-arrival time, both algorithms have the received sync intervals that increase 

gradually with node density. 

It is interesting to note that with drifts, maximum sync received intervals drop 

drastically in the high density region in both algorithms as shown in Fig. 4.11, which 

corresponds to the drop in collision rates as shown in Fig. 4.6.  For the 1-Sync 

algorithm, the intervals drop to the desirable level of NSP frames.  
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In the high density region where N > NSP, AWPST for both algorithms increases 

rapidly as node density increases. This is because many of the sync packets scheduled 

have to be postponed to later SYNC windows due to the congestion of sync traffic in the 

network. For the 1-Sync algorithm, because the sensors nodes have to stay awake while 

waiting for their sync packet transmissions, an increase in AWPST also means an 

increase in energy consumption (Fig. 4.9).    

There is little difference in AWPST performance between the two algorithms as 

expected since both F-Sync and 1-Sync algorithm use the same sync transmission 

algorithm and face the same sync congestion problem in high density neighbourhoods. 

With drifts added, sensor nodes with slower clocks are able to detect sync packet 

transmission of a faster node in the same timeslot, which reduces the probability of 

collision. However, the postponement of sync transmission contributes to a higher 

AWPST.  

4.6  Chapter Summary 

This chapter presents a new synchronisation algorithm, 1-Sync, to improve the energy 

performance of synchronous duty-cycle MAC protocols. Node energy consumptions for 

single neighbourhood networks using F-Sync, INS, and 1-Sync are modelled and 

analysed against different node densities. From the analysis and simulations, the 

proposed 1-Sync algorithm yields better energy performance than the F-Sync algorithm 

in all node densities, and better than the INS algorithm for node densities N4.  

In terms of sync inter-arrival time performance, simulation results show that 1-Sync 

provides a consistent interval in a single synchronisation period in the unsaturated 

region. Although this is higher than F-Sync and INS, the consistency enables network 

designers to fine tune the synchronisation period based on the hardware clock 

specifications and network node densities.  

However, although the 1-Sync algorithm has better energy performance than F-Sync 

in high node density regions where N > NSP, the increase in energy consumption with 

increasing network densities due to sync packet collision and postponement is not 

desirable. In addition, the large variation in sync packet inter-arrival time could result in 
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nodes drifting out of synchronisation, and affecting the data transfer performance. This 

leads us to design an improved, adaptive synchronisation algorithm in the next chapter 

to address these issues.   

The analytical energy and synchronisation performance models and simulation results 

in single neighbourhood networks provide us with valuable insights into the behaviour 

of the synchronisation algorithms under different density scenarios. In the next chapter, 

the study of network synchronisation will be extended to multi-hop multi-

neighbourhood WSNs of different densities, clock drifts, and duty cycles.  
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evaluation. Effects of drift and duty-cycling on both the energy and data performance 

are also studied.  

5.2  Duty-cycle MAC in Multi-hop Networks 

The design goal of the proposed C-Sync algorithm is to offer energy consumption 

efficiency while providing good data performance, including packet delivery ratio and 

end-to-end packet delay, across a wide range of multi-hop WSNs. In this chapter, we 

will study the performances of the C-Sync algorithm against the F-Sync and 1-Sync 

algorithms in WSNs with different network densities, clock drifts and duty cycles for 

multi-hop networks. We will also compare the robustness and stability of these three 

synchronisation algorithms by examining individual node energy performance under a 

wide range of network scenarios.  

5.2.1  Need for Adaptive Synchronisation Algorithm 

An analysis of single-hop neighbourhoods in Chapter 4 indicates that in the saturation 

region, sync packet broadcast traffic increases rapidly as neighbourhood density 

increases. The increase in sync packet traffic increases the probabilities of sync packet 

collision, and sync packet postponement.  

Both sync packet collisions and sync packet postponements are undesirable as they 

increase the time intervals between consecutive sync packets received, which lowers the 

synchronisation performance of the network. Sync packet collisions corrupt the sync 

packets transmitted in the neighbourhood, reducing the number of valid sync packets 

and therefore increasing the synchronisation time of the sensor nodes in the 

neighbourhood. In the case of sync packet postponement, due to a sync packet 

transmission in one neighbourhood, sensor nodes scheduled for sync packet 

transmissions have to postpone their transmissions, which could affect synchronisation 

in other neighbourhoods.   

For 1-Sync, both sync packet collisions and sync packet postponements cause another 

undesirable effect: an increase in energy consumption. This is because 1-Sync nodes 

have to stay active while waiting for their sync packet transmission and reception, when 

they can go to sleep otherwise.  
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To reduce energy consumption, both 1-Sync and INS modify the sync packet 

reception process, enabling sensor nodes to sleep during the SYNC windows when they 

do not require synchronisation or do not expect sync packets to arrive. However they 

make no changes to the sync packet transmission process.  As a result, they face the 

same sync packet congestion problem as F-Sync in high density neighbourhoods. 

In addition, in a multi-hop sensor network, there are multiple synchronisation 

neighbourhoods with additional complexities listed as follows: 

i. Sensor nodes in different regions of the network are in neighbourhoods of 

different densities. Inter-arrival times between sync packets received by each 

node can have large variations. 

ii. As discussed in Chapter 4, due to the sync packet postponement effect, sync 

packet transmission is not periodic in high density neighbourhoods. In a multi-

hop multi-neighbourhood network, aperiodic sync packet transmission in high 

density neighbourhoods can affect the periodicity of sync packet transmission 

in low density neighbourhoods due to interactions among different 

neighbourhoods. Therefore sync packet periodicity is not guaranteed even in 

low density neighbourhoods.  

iii. Sync packet collision is unavoidable even at unsaturated neighbourhoods due 

to the “hidden node” or “hidden terminal” problem. The hidden node problem 

occurs when a node is within the neighbourhood of a receiver, but is not 

visible to some other nodes in the neighbourhood of the same receiver.  As the 

hidden node is unable to detect the transmissions of the other nodes, a 

collision will occur at the receiving node when the hidden node has an 

overlapping sync packet transmission with one of the other nodes.  

 

It is therefore desirable to have an adaptive synchronisation algorithm that enables 

sensor nodes to dynamically adjust their sync packet transmissions in the different 

density neighbourhoods to reduce sync packet collision and sync packet postponement, 

and at the same time, maintain an optimum level of synchronisation and energy 

performance. 
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5.2.2  Sync Scheduling and Broadcast Methods 

The overloading of sync traffic in high density neighbourhoods is similar to the well-

known broadcast storm problem [118]. The key difference is that the former is due to 

the generation and transmission of new single-hop broadcast packets and the latter is 

due to the retransmission of the same multi-hop broadcast packets.  

The broadcast storm problem is primarily caused by simple flooding of broadcast 

packets to reach all nodes in the network. In a simple flooding algorithm, each node 

tries to forward all unseen broadcast packets it receives to all its neighbours, except the 

source node. This results in the packets being delivered to all nodes in the network 

eventually.  This algorithm is simple to implement, but it causes serious redundancy, 

contention and collision problems, especially in dense networks.  

As radio signal propagation is omnidirectional, a wireless node within the 

transmission range of multiple nodes will receive many redundant packets when these 

nodes rebroadcast the same packet. Heavy contention could also exist because these 

rebroadcasting nodes are likely to be close to one another. In addition, as the timings of 

rebroadcasts are highly correlated and RTS/CTS exchange is not applicable for 

broadcast, collisions are more probable.   

Different broadcasting methods are developed to reduce broadcast storms in ad hoc 

wireless networks [119]. They can be broadly classified into probabilistic-based, area-

based, neighbour knowledge and multipoint relay methods.   

The key objective of area-based methods is to transfer the packets to the downstream 

areas and to minimise the repetition of these packets within the same area. Therefore the 

decision to rebroadcast is based on a valuation of the additional coverage area of the 

given node. Area-based methods require the nodes to have estimations of distances to, 

or locations, of the neighbours. 

 Neighbour knowledge methods evaluate the necessity of rebroadcasting the packets 

based on whether they can be transmitted to at least one new node. These methods 

require the nodes to collect information about the neighbours via periodic Hello packets. 
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 Multipoint relay (MPR) methods identify a subset of 1-hop neighbours to be 

responsible for retransmission of the broadcast packets to all the 2-hop neighbours of 

the original nodes. These methods are not applicable to single hop broadcasts.  

There are two approaches in probability-based methods: the use of a probability value 

p and the use of counter-value c for re-transmission decisions. The counter-based 

approach [120], when adapted to our sync packet scheduling, has the desirable 

characteristic of automatically regulating sync packet traffic transmission with different 

neighbourhood densities. 

5.3  C-Sync Algorithm Design 

The proposed C-Sync algorithm operates in the SYNC windows of a synchronous duty-

cycle MAC protocol. There are two sub-algorithms in C-Sync, a counter-based sync 

transmission algorithm that reduces sync packet load and energy consumption when the 

network neighbourhood is dense, and an adaptive exponential-smoothing sync reception 

algorithm that improves sync performance when the network is sparse. 

5.3.1  Counter-based Algorithm for Sync Transmission 

Similar to F-Sync and 1-Sync, a C-Sync node schedules the next sync packet NSP frames 

after a successful transmission of the current sync packet. However, when the sync 

transmission is unsuccessful, the F-Sync and 1-Sync algorithms will attempt to transmit 

the scheduled sync packets in every subsequent SYNC window until they are 

successfully transmitted. In a high density neighbourhood where the number of sync 

packets scheduled is more than the number of SYNC windows available in a 

synchronisation period, many sync packets scheduled will be withheld and congestion 

remains a problem. C-Sync, on the other hand, provides a mechanism to cancel the 

scheduled sync packets when transmission is unsuccessful, reducing the traffic load 

when the neighbourhood gets congested.  

When a sync packet is first scheduled, a C-Sync node initiates a counter csn to count 

the number of valid sync packets received while waiting for its turn to transmit. The 

sensor node attempts to transmit its scheduled sync packet following a contention 

procedure. If it is unsuccessful, the counter csn is incremented by 1 whenever a valid 
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from its neighbours before its own successful sync packet transmission. This will trigger 

the algorithm to cancel the scheduled sync and allows the node to go to sleep in the 

subsequent SYNC windows. This process reduces the sync packet load in the 

neighbourhood, shortens the active waiting periods for sync packet transmission, and 

lowers the energy consumption of the sensor nodes. 

 

5.3.2  Exponential-smoothing Algorithm for Sync Reception 

A key mechanism of energy conservation algorithms for synchronisation is the ability to 

go to sleep in the SYNC windows as long as clock drift is within the tolerance limit of 

the synchronisation. As the sync packet traffic load varies with neighbourhood density, 

sensor nodes that wake up to receive a sync packet will have to wait for different time 

intervals before they receive a valid sync packet. The waiting interval tends to be longer 

when the density is low and this will affect the synchronisation performance.  

The proposed C-Sync algorithm enables a sensor node to adjust its wakeup time 

dynamically to compensate for the waiting time it takes to receive a valid sync packet so 

that it has a higher chance of receiving a valid sync packet within a desired number of 

frames NRP under different density and traffic conditions. A C-Sync node maintains a 

counter, wwk, the number of SYNC windows it should be sleeping in before waking up 

to receive sync packets. Upon waking up, it stays active in all the subsequent SYNC 

windows until a valid sync packet is received, after which it will go to sleep. The 

waiting period from the time the node wakes up to the time a valid sync packet arrives is 

denoted as wa (frames). To maintain the received synchronisation interval close to NRP, 

wwk should be compensated with wa as follows: 

 aRPwk wNw  . (5.1) 

The waiting interval wa varies over time and is dependent on both the node density and 

the collision level in the neighbourhood. Therefore it is necessary to forecast the next 

waiting time for the computation of the next wake-up interval in order to keep the 

received synchronisation within a tight range. As the waiting time is not expected to 

show any trend, a simple exponential smoothing technique is appropriate and used in 
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5.4  Performance Evaluation 

In this section, we evaluate and compare the synchronisation, energy and data 

performance of C-Sync against F-Sync and 1-Sync using ns-2 version 2.35. 

C-Sync Algorithm 

 
initialization: 
 syncTxCounter = NSP 
 nextRxWkUp = int (NRP / 2) 
 rxWkUpCounter = nextRxWkUp 

 syncWaitCounter = 0 
 syncRecvCounter = 0 

 

sync window begins: 
 if (syncTxCounter == 0 or rxWkUpCounter == 0) {   // time to wake up 
  wakeup() 
  if (syncTxCounter == 0) { 
   send_sync()        // procedure to send sync packet 
   if (send_success) { 
    syncTxCounter = NSP 
    syncRecvCounter = 0 
   } 
  } 
  if (rxWkUpCounter == 0) { 
   if (sync_ received) { 
    synchronise_node()     // procedure to synchronize clock 

    nextRxWkUp = int ( * (NRP – syncWaitCounter)  

          + (1 - nextRxWkUp) 
    rxWkUpCounter = nextRxWkUp 
    syncWaitCounter = 0 
    if (syncTxCounter == 0) { 
     syncRecvCounter++    // count number of sync packets received 
     if (syncRecvCounter == Cthres) { 
      syncTxCounter = NSP  // cancel scheduled sync packet 
      syncRecvCounter = 0 
     } 
   } 
   else syncWaitCounter ++    // increment sync waiting period counter 
  } 
 } 
 else { 
   if (syncTxCounter != 0) syncTxCounter --  // transmit counter countdown 
  if (rxWkUpCounter != 0) rxWkUpCounter -- //receive wakeup counter countdown 
sync window ends: 
 

 
Fig. 5.3  Adaptive C-sync algorithm with counter-based sync transmission and exponential-

smoothing sync reception sub-algorithms 
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Networks with different drift scenarios are also simulated. For each drift scenario, 

each sensor node has an independent local clock with a drift rate that is uniformly 

distributed between ±f, where f ranges from 0 ppm to 80 ppm. Simulations are also 

performed at four different duty cycles of 20%, 10%, 5% and 2%.  

For each scenario, 30 independent simulation runs are performed over a period of 

9000s. Constant bit rate (CBR) data traffic at 1 packet per minute is sent from the 

source node at one corner of the grid to the destination node at the diagonally opposite 

corner of the grid. The source node starts the data traffic at 100s after the start of the 

simulations to allow the MAC layer protocol to stabilize, and stops the data traffic 60s 

before the simulation ends. The size of the data packet and S-MAC protocol data unit 

(PDU) used are 100-byte and 120-byte respectively so that each data packet can fit into 

a single PDU without fragmentation.  

The key parameters used in the simulations are summarised in Table 5.1. 

 

5.4.2  Performance Metrics 

The following two synchronisation performance metrics in the SYNC windows are first 

evaluated.  

Table 5.1 Grid Network Simulation Parameters 

 

Parameter Value Parameter Value 

grid size 500m x 500m data rate (CBR) 1 pkt / min 

bandwidth 20 kbps packet size 100B 

simulation time 9000s routing fixed 

tx power 36 mW no. of hops 4 

rx power 14 mW retry limit 5 

idle power 14 mW NSP 10 frames 

sleep power   0 mW NRP 10 frames 

propagation 2-ray ground 
reflection  

 0.5 

CS range 550m Cthres 3 

tx range 250m   
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5.4.2.1 Average Waiting Period for Sync Packet Transmission (AWPST) 

In high density networks, it is common to have multiple sync packets scheduled in the 

same SYNC window; hence, some of them will not have the chance to be transmitted 

immediately. Instead, they will be postponed till the next window. AWPST is the 

number of frames a node needs to wait from the time a sync packet is scheduled to the 

time it is transmitted. Higher AWPST means that the sensor nodes have less sleep time 

in SYNC windows and hence have higher energy consumption for the synchronisation 

process. 

5.4.2.2 Fraction of Desired Sync Inter-arrival Time (FDSIT)  

FDSIT is the fraction of sync packet received intervals that are smaller than NRP, the 

desired sync received interval. Higher FDSIT means that the probability of sensor nodes 

getting out of synchronisation is higher and data performance will be affected. 

These two metrics are the direct outcomes of the different sync packet scheduling, 

transmission and reception mechanisms in the synchronisation algorithms.  

In addition, the energy and data performances of the sensor networks with different 

synchronisation algorithms can also be evaluated using the following three performance 

metrics: 

5.4.2.3  Packet Delivery Ratio (PDR) 

PDR is the ratio of the total number of CBR data packets generated at the source node 

Ns to the total number of data packets received at the destination node Nd. As fixed 

routing with the same number of hops (4 hops) are used in all the scenarios, a higher 

value of PDR indicates that the data delivery performance of the underlying MAC 

protocol is better. In our simulations, the same S-MAC data protocol is used in DATA 

windows, alongside the three synchronisation algorithms in SYNC windows for 

comparison. Thus, a higher PDR values indicates that the synchronisation algorithm 

used is more reliable, which results in a better performance. 

5.4.2.4 Average End-to-end Packet Delay (AvDelay) 

AvDelay measures the average time taken for a data packet to be successfully delivered 

from the source node Ns to the destination node Nd. AvDelay is computed by summing 
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up the end-to-end delay of each CBR data packet and dividing it by the total number of 

successfully delivered data packets. The lower the end-to-end delay, the better the 

application performance. 

In a multi-hop network using contention-based MAC protocols, a packet experiences 

the following delays at each hop [95]:  

i. Carrier Sense Delay is introduced when the sensor node performs carrier 

sense, and is dependent on the size of the contention window. 

ii. Back-off delay occurs if the sensor node detects a transmission or collision in 

the medium during carrier sense.  

iii. Transmission delay is determined by channel bandwidth, packet length, as 

well as coding scheme. 

iv. Propagation delay is determined by the distance between the transmitting and 

receiving nodes. It is negligible in WSN compared to the other components. 

v. Processing delay is the time needed to process the packet before forwarding it 

to the next hop. This delay mainly depends on the computing power of the 

node. 

vi. Queuing delay depends on the traffic load. 

The above delays are all present in the contention-based MAC protocols, including 

the S-MAC data protocol used in the simulations; statistically, they should contribute to 

the same amount of delay. In duty-cycle MAC protocols, the key differences in the 

delay performance attributed to the different synchronisation algorithms are sleep delay 

and retransmission delay. Sleep delay is the time spent in waiting for the receiver to 

wake up.  Retransmission delay occurs when a packet is not correctly received by the 

receiving node and retransmission is required. In general, if sensor nodes are out of 

synchronisation, both sleep and retransmission delays will increase.    

A lower duty-cycle WSN will have a higher end-to-end packet delay compared to a 

higher duty-cycle network due to longer sleep periods. To compare AvDelay 

performance across different duty-cycle networks meaningfully, it is normalised by 

dividing the actual delay in seconds by the amount of time it takes to transmit a frame.  
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5.4.2.5 Average Node Energy Consumption (ANEC):  

Node energy consumption is a key performance parameter in duty-cycle WSN.  ANEC 

is computed by dividing the total energy consumed by all the nodes in the network by 

the total simulation time and the number of nodes. Although energy performances are 

compared among the different synchronisation algorithms, node energy consumption 

values are collected for the entire simulation duration for two reasons. First, ns-2 is a 

discrete event simulation tool; the computation of energy consumption in ns-2 is based 

on events (transmit, receive, idle, and sleep), and node energy consumption cannot be 

accurately obtained based on the S-MAC frame structure (SYNC, DATA, and SLEEP). 

Second, the performance of synchronisation algorithms affects data performance and 

hence the energy consumption in DATA windows. 

5.4.2.6 Individual Node Energy Consumption 

While ANEC measures network-wide average energy consumption, it is also important 

for energy consumption to be evenly distributed among individual nodes in the network. 

As discussed in Chapter 3, network lifetime will be impacted if some of the sensor 

nodes consume more energy than the others. These nodes will be depleted faster and 

will cause network segmentation. 

Individual nodes in the simulated grid networks are labelled with node identifiers 

(Node IDs) based on their positions on the grid. The source node at the lower left corner 

of the grid is assigned a Node ID of ‘0’ and it is incremented rightward and upward. The 

destination node at the upper right corner will have the largest Node ID. An example of 

the Node ID assignment for a 5 x 5 grid network is shown in Fig. 5.5.  

The energy consumption for each node in the respective position is averaged over the 

simulation runs. The variation of individual node energy consumptions in the network 

will be measured using the standard deviation.    
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case of Cthres = 4 is the lowest among all. It is also the worst performer for all three 

metrics in high density 7x7 grid networks. For the case of Cthres = 1, it has the worst 

AvDelay performance for most of the scenarios and the highest energy consumption in 

low density networks.   Between Cthres = 2 and Cthres = 3, Cthres = 2 has better PDR 

performance in low density networks, while Cthres = 3 has better energy consumption 

and AvDelay performances in most of the scenarios. We will therefore use Cthres = 3 in 

the subsequent simulations for comparison among the different synchronisation 

algorithms in this work.  

5.5.2  Variation of Smoothing Factor () 

The smoothing factor in the exponential-smoothing algorithm represents the 

weighting applied to the most recent data. Values of  that are close to one have less of 

a smoothing effect and are more responsive to recent changes in the data, while the 

opposite is true for values of  closer to zero.  

To study the effect of we use three different values of  at 0.25, 0.50 and 0.75 for 

the same grid network scenarios used in the previous section.  The results of PDR, 

AvDelay and energy consumption are shown in Fig. 5.7. 

The results of the simulations show that each of the three values has its strength in 

different scenarios for different metrics. At 10% dc, PDR and AvDelay for all three  

are similar. In terms of energy consumption, the case of  = 0.75 has the best 

performance in low density 3x3 grid networks while the case of  = 0.25 has the best 

performance in high density 7x7 grid networks. At 2% dc, the case of  = 0.50 has the 

best performances in all the three metrics measured in high density 7x7 networks. In 

6x6 grid networks, it also has the best performance in energy consumption while 

maintaining similar performance on PDR and AvDelay as the other two values of .  

The above results have shown that the selection of Cthres = 3 and  has close to 

optimum performance and will be used for subsequent simulations.    
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to be transmitted in the next SYNC window, which increases the number of sync 

packets transmitted in the network. The increase in the number of sync packets 

improves the FDSIT performance in the low density low duty-cycle networks. In the 

3x3 grid network at 2% dc, FDSIT improves from 63% to 83% for 1-Sync, and from 

64% to 95% for C-Sync. 

5.6.2  Performance against Network Densities 

The energy and data performance of the three synchronisation algorithms in different 

density networks are shown in Fig. 5.10. The clock drift rate for these scenarios is fixed 

at 40ppm.  

As shown in Fig. 5.10(a), all 3 algorithms have similar PDR performance at 10% dc, 

and higher density networks have a better performance than the lower density networks. 

At 2% dc, C-Sync has the best PDR performance among the 3 algorithms ranging from 

90.8% to 98.1%. 

Fig. 5.10(b) shows the AvDelay performance. Similarly, there is no significant 

difference in AvDelay performance at 10% dc. At 2% dc, AvDelay performance 

deteriorates for F-Sync and 1-Sync when density increases, reaching 5.3 and 7.0 frames 

respectively. C-Sync, on the other hand, has a consistent performance of AvDelay less 

than 3.2 frames. 

As shown in Fig. 5.10(c), C-Sync is the most energy efficient algorithm except in a 

very sparse network of 3x3 grid at 10% dc. As network density increases, the relative 

efficiencies of C-Sync become better. For the 7x7 grid network at 2% dc, average 

energy consumptions for F-Sync and 1-Sync nodes are 135% and 141% higher than C-

Sync nodes. 
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energy performance, consuming 4% to 9% lower energy than C-Sync. For the 7x7 grid 

network, C-Sync has the best energy performance, consuming 9% to 142% lower 

energy than 1-Sync.  

Under normal circumstances, energy consumption in a low dc network is lower than 

in a high dc network due to the existence of longer sleep periods. However, the results 

show that energy consumptions of F-Sync and 1-Sync in the 7x7 grid network are 

higher at 2% dc than at 5% dc, which indicate that these two synchronisation algorithms 

may not be functioning well and are not suitable to operate in low dc, high density 

networks.  

5.6.4  Performance against Clock Drifts 

The energy and data performance of the 3 synchronisation algorithms in 3x3 and 7x7 

grid networks with different clock drift rates are shown in Fig. 5.12. The duty cycle for 

these scenarios is fixed at 2%.  

As shown in Fig. 5.12(a), in the dense 7x7 grid network, PDR decreases as clock drift 

increases. This is expected because network synchronisation becomes more challenging 

when clock drift increases, leading to more errors in data transmission and reception. 

However, the opposite trend is seen in the sparse 3x3 grid network. When there is no 

drift, sync packets are few and far between in a sparse network. The presence of clock 

drift could trigger the generation of more sync packets in the network as explained in 

section 5.6.1. The increase in the number of sync packets improves the FDSIT 

performance shown in Fig. 5.9, which also improves the PDR performance in the low 

density low duty-cycle 3x3 network.  However, AvDelay is not improved because it is 

measured based on the delivered sync packets only. Similarly, energy consumption 

increases because more sync packets are transmitted with increasing drift. 

Comparing the algorithms, C-Sync has the highest PDR ranging from 83.5% to 93.1% 

in the 3x3 grid network. In the 7x7 grid network, both C-Sync and 1-Sync have similar 

PDR ranging from 93.4% to 98.3%, which is marginally higher than F-Sync from 

92.8% to 98.1%. 
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with the analysis of the sync packet congestion problem of the two algorithms in 

saturated networks. The large variations in node energy consumption will result in some 

nodes becoming depleted of energy in much shorter times than the others, which will 

impact the connectivity and shorten the lifetime of the WSN. On the other hand, the 

counter-based sync packet transmission and sync packet cancellation sub-algorithm 

implemented in C-Sync has effectively removed this problem, as shown by the 

consistency in node energy consumption across different network densities.  

 

 

5.6.5.2 Effect of Duty Cycle 

Low duty-cycle operations prove to be a great challenge for F-Sync and 1-Sync. As 

shown in Fig. 5.14 and Table 5.3, F-Sync and 1-Sync perform well in networks with 

duty cycles at 5% and higher. At 2% dc, both F-Sync and 1-Sync networks display large 

variations in node energy consumption. At higher duty cycles with shorter sync packet 

intervals, a certain number of sync packet collisions and sync postponements can be 

tolerated. However, at lower duty cycles, sync packet collisions and sync postponements 

contribute to higher probabilities of asynchronous nodes, which cause instability in the 

networks and high variations in the node energy consumption.  

Table 5.2  Means and standard deviations of node energy consumption for 
different network densities 

 

Synchronisation 
Algorithm 

grid = 
4 x 4 

5 x 5 6 x 6 7 x 7 

Node Energy Consumption - Mean (mW) 

F-Sync 5.602 6.215 10.310 13.167 

1-Sync 5.346 6.188 9.641 13.592 

C-Sync 5.243 5.527 6.061 5.627 

Node Energy Consumption - Std. Dev.  (mW) 

F-Sync 0.507 0.768 2.827 3.367 

1-Sync 0.532 0.906 2.757 4.398 

C-Sync 0.415 0.554 0.750 0.581 
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5.7  Chapter Summary 

In this chapter, an adaptive synchronisation algorithm for duty-cycle MAC protocols, C-

Sync is proposed. C-Sync reduces energy consumption by adaptively regulating the 

synchronisation traffic and synchronisation wakeup period based on the changing 

network neighbourhood conditions through counter-based and exponential smoothing 

algorithms. The combination of counter-based sync packet transmission and 

exponential-smoothing sync packet reception algorithms effectively reduces congestion 

and collision when sync traffic is high and maintains synchronisation performance when 

sync traffic is low.  

Extensive simulations of multi-hop multi-neighbourhood grid network scenarios are 

performed using ns-2. From the results of the simulations, C-Sync consistently 

outperforms F-Sync and 1-Sync in terms of packet delivery ratio, average packet delay 

and energy consumption in most of the scenarios. The relative energy performance of 

C-Sync is also significantly better in the more challenging scenarios of high density, 

high drift and low duty-cycle networks.    

Table 5.4  Means and standard deviations of node energy consumption for 
different drift rates 

 

Synchronisation 
Algorithm 

drift = 
0 ppm 

20 ppm 40 ppm 80 ppm 

Node Energy Consumption - Mean (mW) 

F-Sync 5.697 7.301 13.167 17.792 

1-Sync 5.528 7.544 13.592 17.316 

C-Sync 4.512 5.248 5.627 8.213 

Node Energy Consumption - Std. Dev.  (mW) 

F-Sync 0.716 1.157 3.367 6.341 

1-Sync 0.747 1.378 4.398 5.591 

C-Sync 0.754 0.683 0.581 0.970 
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performance of EB-DSR in terms of data load distribution and normalised routing 

overhead, are much better than the other protocols in the study. 

Duty-cycle protocols are commonly used to reduce energy consumption in the MAC 

layer. However, the synchronisation algorithm adopted by the current synchronous 

MAC protocols is not energy-efficient. Node energy consumption behaviours of current 

synchronisation algorithms, such as F-Sync and INS as well as the proposed 1-Sync, are 

first modelled and analysed for single neighbourhood networks in Chapter 4. Analysis 

and simulations have shown that the proposed 1-Sync algorithm yields better energy 

performance than F-Sync in all node densities, similarly besting INS for node densities 

N4.  Although the 1-Sync algorithm has better energy performance than F-Sync, the 

increase in energy consumption due to sync packet collision and postponement in high-

density, saturated neighbourhoods is undesirable. To address the issues of sync packet 

collision and postponement, an adaptive synchronisation algorithm C-Sync is proposed 

in Chapter 5.  

C-Sync reduces energy consumption by adaptively regulating the synchronisation 

traffic and synchronisation wakeup periods based on the changing network 

neighbourhood conditions through counter-based and exponential-smoothing 

algorithms. The combining of the counter-based sync packet transmission and the 

exponential-smoothing sync packet reception algorithms has effectively reduced 

congestion and collision when sync packet traffic is high and maintains the 

synchronisation performance when sync packet traffic is low. Extensive simulations of 

multi-hop multi-neighbourhood grid networks with different densities, clock drift rates 

and duty cycles have been performed. The results of the simulations have shown that C-

Sync consistently outperforms F-Sync and 1-Sync in terms of packet delivery ratio, 

average packet delay and energy consumption in most of the scenarios tested. 

6.2  Future Work 

There is a wide scope of research that can be done as part of the next step for this work. 

Areas for further research could include:  

i. interaction of routing protocols with the proposed synchronisation algorithm; 
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ii. performance of synchronisation algorithms with the effect of node mobility;  

iii. automatic tuning of counter threshold (Cthres) and smoothing factor () in the 

C-Sync algorithm; and  

iv. implementation of the proposed synchronisation algorithm with other duty-

cycle MAC protocols. 

We have simulated the proposed C-Sync algorithm on fixed routing grid networks for 

performance comparisons across different network densities. Going forward, the 

performance of the C-Sync algorithm with different dynamic routing protocols could be 

investigated. This is because dynamic routing provides additional challenges for MAC 

layer protocols in terms of variations in traffic load and packet delay requirements.  

With dynamic routing, the performance of C-Sync on mobile WSNs can also be 

studied further. The mobility of sensor nodes produces network neighbourhoods with 

changing densities.  It would be interesting to study the adaptive behaviour of the C-

Sync algorithm in mobile sensor networks. 

The results in Chapter 5 have shown that the performance of the C-Sync algorithm 

could be further improved if the two parameters Cthres and could be tuned 

automatically to accommodate different network scenarios. An algorithm that is able to 

adjust the two parameters dynamically would have the potential to further optimise the 

energy and data performance of the networks.    

In our current study, C-Sync has been paired with S-MAC, which is available in ns-2. 

S-MAC is one of the earliest synchronous duty-cycle MAC protocols, and forms the 

basis in the studies of energy-efficient MAC layer protocols. Subsequently, protocols 

such as DW-MAC and AS-MAC have made several enhancements to S-MAC data 

scheduling and transmission algorithms to improve energy consumption, data delivery 

and latency performance. The implementation of C-Sync with DW-MAC or AS-MAC 

is thus a natural next step to further improve the performance of these two protocols. 

 

 



 References 

151 

 

 

References 

[1] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless sensor 
networks: A top-down survey,” Computer Networks, vol. 67, pp. 104–122, 2014. 
 

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” 
Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008. 
 

[3] K. Sohraby, D. Minoli, and T. Znati, Wireless sensor networks: technology, 
protocols, and applications. John Wiley & Sons, 2007. 
 

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor 
networks: a survey,” Computer Networks, vol. 38, pp. 393–422, 2002. 
 

[5] A. K. Singh, S. Rajoriya, S. Nikhil, and T. K. Jain, “Design constraint in single-
hop and multi-hop wireless sensor network using different network model 
architecture,” in Communication Automation International Conference on 
Computing, 2015, pp. 436–441. 
 

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): 
A vision, architectural elements, and future directions,” Future Generation 
Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013. 
 

[7] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation 
in wireless sensor networks: A survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–
568, May 2009. 
 

[8] W. Fang, Z. Liu, and F. Liu, “A cross-layer protocol for reliable and efficient 
communication in wireless sensor networks,” International Journal of Innovative 
Computing, Information and Control, vol. 8, no. 10, pp. 7185–7198, 2012. 
 

[9] T. Melodia, M. C. Vuran, and D. Pompili, “The state of the art in cross-layer 
design for wireless sensor networks,” in Wireless systems and network 
architectures in next generation internet, Springer, 2006, pp. 78–92. 
 

[10] “The Network Simulator - ns-2.” [Online]. Available: 
http://www.isi.edu/nsnam/ns/. 
 

[11] M. I. A. Khan and M. Atif, “An Overview of Mobile Ad-hoc Network 
Simulators and Associated Simulation Techniques,” International Journal of 
Computer Science and Telecommunications, vol. 3, no. 6, Jun. 2012. 
 

[12] K.-P. Ng and C. Tsimenidis, “Energy-balanced dynamic source routing protocol 
for wireless sensor network,” in IEEE Conference on Wireless Sensors 



 References 

152 

 

(ICWISE), 2013, pp. 36–41. 
 

[13] K.-P. Ng, C. C. Tsimenidis, and W. L. Woo, “Energy-efficient synchronization 
algorithm for duty-cycle MAC protocols,” in IEEE Asia Pacific Conference on 
Wireless and Mobile (APWiMob), 2015, pp. 255–260. 
 

[14] K.-P. Ng, C. Tsimenidis, and W. L. Woo, “C-Sync: Counter-based 
Synchronization for Duty-cycled Wireless Sensor Networks,” Ad Hoc Networks, 
vol. 61, pp. 51–64, 2017. 
 

[15] “Gartner says 6.4 billion connected ‘Things’ will be in use in 2016, up 30 
percent from 2015,” Gartner Press Release, November 10, 2015. [Online]. 
Available: http://www.gartner.com/newsroom/id/3165317. 
 

[16] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for 
billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–
67, 2012. 
 

[17] A. Banks and R. Gupta, “MQTT Version 3.1. 1,” OASIS standard, vol. 29, 2014. 
 

[18] D. H. Mun, M. L. Dinh, and Y. W. Kwon, “An Assessment of Internet of Things 
Protocols for Resource-Constrained Applications,” in IEEE 40th Annual 
Computer Software and Applications Conference (COMPSAC), 2016, vol. 1, pp. 
555–560. 
 

[19] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet protocols for 
web enablement of sensors using constrained gateway devices,” in International 
Conference on Computing, Networking and Communications (ICNC), 2013, pp. 
334–340. 
 

[20] K. E. Nolan, W. Guibene, and M. Y. Kelly, “An evaluation of low power wide 
area network technologies for the Internet of Things,” in International Wireless 
Communications and Mobile Computing Conference (IWCMC), 2016, pp. 439–
444. 
 

[21] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area 
Networks: An Overview,” IEEE Communications Surveys Tutorials, vol. 19, no. 
2, pp. 855–873, 2017. 
 

[22] H. Wang and A. O. Fapojuwo, “A Survey of Enabling Technologies of Low 
Power and Long Range Machine-to-Machine Communications,” IEEE 
Communications Surveys Tutorials, vol. PP, no. 99, pp. 1–1, 2017. 
 

[23] M. Johnson et al., “A comparative review of wireless sensor network mote 
technologies,” in IEEE Sensors, 2009, pp. 1439–1442. 
 



 References 

153 

 

[24] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and 
Implications,” IEEE Communications Surveys Tutorials, vol. 13, no. 3, pp. 443–
461, 2011. 
 

[25] K. Z. Panatik et al., “Energy harvesting in wireless sensor networks: A survey,” 
in IEEE 3rd International Symposium on Telecommunication Technologies 
(ISTT), 2016, pp. 53–58. 
 

[26] Z. Zeng, X. Li, A. Bermak, C. Y. Tsui, and W. H. Ki, “A WLAN 2.4-GHz RF 
energy harvesting system with reconfigurable rectifier for wireless sensor 
network,” in IEEE International Symposium on Circuits and Systems (ISCAS), 
2016, pp. 2362–2365. 
 

[27] X. Lu and S.-H. Yang, “Thermal energy harvesting for WSNs,” in IEEE 
International Conference on Systems, Man and Cybernetics, 2010, pp. 3045–
3052. 
 

[28] Deepti and S. Sharma, “Energy harvesting using piezoelectric for Wireless 
Sensor Networks,” in IEEE 1st International Conference on Power Electronics, 
Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–3. 
 

[29] Y. Wu, W. Liu, and Y. Zhu, “Design of a wind energy harvesting wireless sensor 
node,” in IEEE Third International Conference on Information Science and 
Technology (ICIST), 2013, pp. 1494–1497. 
 

[30] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in 
energy harvesting sensor networks,” ACM Transactions on Embedded 
Computing Systems (TECS), vol. 6, no. 4, p. 32, 2007. 
 

[31] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” 
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000. 
 

[32] R. C. Carrano, D. Passos, L. Magalhaes, and C. V. Albuquerque, “Survey and 
taxonomy of duty cycling mechanisms in wireless sensor networks,” IEEE 
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 181–194, 2014. 
 

[33] D. Goyal and M. R. Tripathy, “Routing protocols in wireless sensor networks: a 
survey,” in Advanced Computing & Communication Technologies (ACCT), 
Second International Conference, 2012, pp. 474–480. 
 

[34] I. Stojmenović and S. Olariu, “Data-centric protocols for wireless sensor 
networks,” in Handbook of sensor networks: algorithms and architectures, 
Wiley, 2005, pp. 417–456. 
 

[35] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing protocols 
for mobile ad hoc networks,” Ad hoc networks, vol. 2, no. 1, pp. 1–22, 2004. 
 



 References 

154 

 

[36] A. Koliousis and J. Sventek, “Proactive vs reactive routing for wireless sensor 
networks,” Department of Computing Science, University of Glasgow, Glasgow, 
2007. 
 

[37] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers,” in ACM SIGCOMM computer 
communication review, 1994, vol. 24, pp. 234–244. 
 

[38] T. Clausen and P. Jacquet, “RFC 3626: Optimized link state routing protocol 
(OLSR),” IETF, October, vol. 4, 2003. 
 

[39] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, 
“Optimized link state routing protocol for ad hoc networks,” in IEEE INMIC 
Multi Topic Conference Proceedings, 2001, pp. 62–68. 
 

[40] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable routing 
strategies for ad hoc wireless networks,” IEEE Journal on Selected Areas in 
Communications, vol. 17, no. 8, pp. 1369–1379, 1999. 
 

[41] M. Gerls, “Fisheye State Routing (FSR) for ad hoc networks,” Internet Draft, 
draft-ietf-manet-fsr-03. txt, 2002. 
 

[42] D. Johnson, Y. Hu, and D. Maltz, “RFC 4728: The Dynamic Source Routing 
Protocol (DSR) for Mobile Ad Hoc Networks for IPv4.” Feb-2007. 
 

[43] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector 
(AODV) routing (RFC 3561),” IETF MANET Working Group, 2003. 
 

[44] Z. J. Haas, M. R. Pearlman, and P. Samar, “The zone routing protocol (ZRP) for 
ad hoc networks,” Internet Draft, draft-ietf-manet-zone-zrp-04.txt, 2002. 
 

[45] Z. J. Haas and M. R. Pearlman, “The performance of query control schemes for 
the zone routing protocol,” IEEE/ACM Transactions on Networking (TON), vol. 
9, no. 4, pp. 427–438, 2001. 
 

[46] M. Joa-Ng and I.-T. Lu, “A peer-to-peer zone-based two-level link state routing 
for mobile ad hoc networks,” IEEE Journal on Selected Areas in 
Communications, vol. 17, no. 8, pp. 1415–1425, 1999. 
 

[47] N. Nikaein, H. Labiod, and C. Bonnet, “DDR: distributed dynamic routing 
algorithm for mobile ad hoc networks,” in Proceedings of the 1st ACM 
international symposium on Mobile ad hoc networking & computing, 2000, pp. 
19–27. 
 

[48] N. Nikaein, C. Bonnet, and N. Nikaein, “Harp-hybrid ad hoc routing protocol,” 
in Proceedings of international symposium on telecommunications (IST), 2001, 



 References 

155 

 

pp. 56–67. 
 

[49] S. Doshi, S. Bhandare, and T. X. Brown, “An on-demand minimum energy 
routing protocol for a wireless ad hoc network,” SIGMOBILE Mob. Comput. 
Commun. Rev., vol. 6, no. 3, pp. 50–66, Jun. 2002. 
 

[50] S. Banerjee and A. Misra, “Minimum energy paths for reliable communication in 
multi-hop wireless networks,” in Proceedings of the 3rd ACM international 
symposium on Mobile ad hoc networking & computing, New York, USA, 2002, 
pp. 146–156. 
 

[51] J. Zhu, C. Qiao, and X. Wang, “On Accurate Energy Consumption Models for 
Wireless Ad Hoc Networks,” Trans. Wireless. Comm., vol. 5, no. 11, pp. 3077–
3086, Nov. 2006. 
 

[52] J. Ren, Y. Tu, M. Zhang, and Y. Jiang, “An ant-based energy-aware routing 
protocol for ad hoc networks,” in International Conference on Computer Science 
and Service System (CSSS), 2011, pp. 3844–3849. 
 

[53] J.-H. Chang and L. Tassiulas, “Routing for Maximum System Lifetime in 
Wireless Ad-hoc Networks,” in 37th Annual Allerton Conference on 
Communication, Control, And Computing, 1999. 
 

[54] B. K. Cetin, N. R. Prasad, and R. Prasad, “A novel linear programming 
formulation of maximum lifetime routing problem in wireless sensor networks,” 
in International Wireless Communications and Mobile Computing Conference, 
2011, pp. 1865–1870. 
 

[55] G. Martinez, S. Li, and C. Zhou, “Multi-commodity online maximum lifetime 
utility routing for energy-harvesting wireless sensor networks,” in IEEE Global 
Communications Conference, 2014, pp. 106–111. 
 

[56] Q. Li, J. Aslam, and D. Rus, “Online Power-aware Routing in Wireless Ad-hoc 
Networks,” in MOBICOM, 2001, pp. 97–107. 
 

[57] L. Sheng, J. Shao, and J. Ding, “A Novel Energy-Efficient Approach to DSR 
Based Routing Protocol for Ad Hoc Network,” in International Conference on 
Electrical and Control Engineering, 2010, pp. 2618–2620. 
 

[58] J. E. Garcia, A. Kallel, K. Kyamakya, K. Jobmann, J. C. Cano, and P. Manzoni, 
“A novel DSR-based energy-efficient routing algorithm for mobile ad-hoc 
networks,” in IEEE 58th Vehicular Technology Conference, 2003, vol. 5, pp. 
2849–2854 Vol.5. 
 

[59] Y. Luo, J. Wang, and S. Chen, “An energy-efficient DSR routing protocol based 
on mobility prediction,” in International Symposium on a World of Wireless, 



 References 

156 

 

Mobile and Multimedia Networks (WoWMoM), 2006, p. 3 pp.–446. 
 

[60] C. K. Toh, “Maximum Battery Life Routing to Support Ubiquitous Mobile 
Computing in Wireless Ad Hoc Networks,” IEEE Communications Magazine, 
Jun. 2001. 
 

[61] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor 
networks,” IEEE/ACM Trans. Netw., vol. 12, no. 4, pp. 609–619, Aug. 2004. 
 

[62] A. Sankar and Z. Liu, “Maximum Lifetime Routing in Wireless Ad-hoc 
Networks,” in INFOCOM, 2004, pp. 1089–1097. 
 

[63] H. Hassanein and A. Zhou, “Routing with load balancing in wireless Ad hoc 
networks,” in Proceedings of the 4th ACM international workshop on Modeling, 
analysis and simulation of wireless and mobile systems, New York, USA, 2001, 
pp. 89–96. 
 

[64] G. S. Tomar, L. Shrivastava, and S. S. Bhadauria, “Load Balanced Congestion 
Adaptive Routing for Randomly Distributed Mobile Adhoc Networks,” Wireless 
Pers Commun, vol. 77, no. 4, pp. 2723–2733, Aug. 2014. 
 

[65] L. Wang, L. Zhang, Y. Shu, and M. Dong, “Multipath source routing in wireless 
ad hoc networks,” in Canadian Conference on Electrical and Computer 
Engineering, 2000, vol. 1, pp. 479–483. 
 

[66] D. Kim, R. Ha, and H. Cha, “Traffic load and lifetime deviation based power-
aware routing protocol for wireless ad hoc networks,” in Proceedings of the 4th 
international conference on Wired/Wireless Internet Communications, Berlin, 
Heidelberg, 2006, pp. 325–336. 
 

[67] Y. Z. Zhao, C. Miao, M. Ma, J. B. Zhang, and C. Leung, “A survey and 
projection on medium access control protocols for wireless sensor networks,” 
ACM Computing Surveys, vol. 45, no. 1, p. 7, 2012. 
 

[68] N. K. Ray and A. K. Turuk, “A review on energy efficient MAC protocols for 
wireless LANs,” in IEEE International Conference on Industrial and 
Information Systems (ICIIS), 2009, pp. 137–142. 
 

[69] M. R. Ahmad, E. Dutkiewicz, and X. Huang, “A Survey of low duty cycle MAC 
protocols in wireless sensor networks,” in Emerging Communications for 
Wireless Sensor Networks, InTech, Croatia, 2010, pp. 69–90. 
 

[70] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The Evolution of MAC 
Protocols in Wireless Sensor Networks: A Survey,” IEEE Communications 
Surveys Tutorials, vol. 15, no. 1, pp. 101–120, 2013. 
 



 References 

157 

 

[71] M. Doudou, D. Djenouri, N. Badache, and A. Bouabdallah, “Synchronous 
contention-based MAC protocols for delay-sensitive wireless sensor networks: A 
review and taxonomy,” Journal of Network and Computer Applications, vol. 38, 
pp. 172–184, 2014. 
 

[72] M. Doudou, D. Djenouri, and N. Badache, “Survey on latency issues of 
asynchronous MAC protocols in delay-sensitive wireless sensor networks,” 
IEEE Trans. on Communications Surveys Tutorials, vol. 15, no. 2, pp. 528–550, 
2013. 
 

[73] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless 
sensor networks,” in Proceedings of the 2nd international conference on 
Embedded networked sensor systems, 2004, pp. 95–107. 
 

[74] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble 
MAC protocol for duty-cycled wireless sensor networks,” in Proceedings of the 
4th international conference on Embedded networked sensor systems, 2006, pp. 
307–320. 
 

[75] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An ultra low power MAC 
protocol for multi-hop wireless sensor networks,” in Algorithmic Aspects of 
Wireless Sensor Networks, Springer, 2004, pp. 18–31. 
 

[76] W. Pak, K.-T. Cho, J. Lee, and S. Bahk, “W-MAC: Supporting Ultra Low Duty 
Cycle in Wireless Sensor Networks,” in IEEE Global Telecommunications 
Conference, 2008, pp. 1–5. 
 

[77] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE 
Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, Oct. 1991. 
 

[78] D. L. Mills, “A Brief History of NTP Time: Memoirs of an Internet 
Timekeeper,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 2, pp. 9–21, Apr. 
2003. 
 

[79] J. Elson and D. Estrin, “Time synchronization for wireless sensor networks,” in 
Proceedings of the 15th international parallel and distributed processing 
symposium, 2001, vol. 1, pp. 1965–1970. 
 

[80] S. Youn, “A Comparison of Clock Synchronization in Wireless Sensor 
Networks,” International Journal of Distributed Sensor Networks, 2013. 
 

[81] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock Synchronization of Wireless 
Sensor Networks,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 124–
138, Jan. 2011. 
 

[82] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization for 
wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3, pp. 281–323, 



 References 

158 

 

2005. 
 

[83] S. El Khediri, N. Nasr, A. Kachouri, and A. Wei, “Synchronization in wireless 
sensors networks using balanced clusters,” in 6th Joint IFIP Wireless and Mobile 
Networking Conference (WMNC), 2013, pp. 1–4. 
 

[84] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The Flooding Time 
Synchronization Protocol,” in Proceedings of the 2nd International Conference 
on Embedded Networked Sensor Systems, New York, NY, USA, 2004, pp. 39–
49. 
 

[85] J. Shannon, H. Melvin, and A. G. Ruzzelli, “Dynamic Flooding Time 
Synchronisation Protocol for WSNs,” in IEEE Global Communications 
Conference (GLOBECOM), 2012, pp. 365–371. 
 

[86] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync Protocol for 
Sensor Networks,” in Proceedings of the 1st International Conference on 
Embedded Networked Sensor Systems, New York, NY, USA, 2003, pp. 138–149. 
 

[87] M. L. Sichitiu and C. Veerarittiphan, “Simple, accurate time synchronization for 
wireless sensor networks,” in IEEE Conference on Wireless Communications 
and Networking, 2003, vol. 2, pp. 1266–1273. 
 

[88] D. R. Jeske, “On maximum-likelihood estimation of clock offset,” IEEE 
Transactions on Communications, vol. 53, no. 1, pp. 53–54, 2005. 
 

[89] Q. M. Chaudhari, E. Serpedin, and K. Qaraqe, “On maximum likelihood 
estimation of clock offset and skew in networks with exponential delays,” IEEE 
Transactions on Signal Processing, vol. 56, no. 4, pp. 1685–1697, 2008. 
 

[90] J. Van Greunen and J. Rabaey, “Lightweight time synchronization for sensor 
networks,” in Proceedings of the 2nd ACM international conference on Wireless 
sensor networks and applications, 2003, pp. 11–19. 
 

[91] I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, and Y.-C. Wu, “Clock synchronization in 
wireless sensor networks: An overview,” Sensors, vol. 9, no. 1, pp. 56–85, 2009. 
 

[92] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization 
using reference broadcasts,” ACM SIGOPS Operating Systems Review, vol. 
36(SI), pp. 147–163, 2002. 
 

[93] W. Su and I. F. Akyildiz, “Time-diffusion synchronization protocol for wireless 
sensor networks,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp. 
384–397, 2005. 
 

[94] F. Gong and M. L. Sichitiu, “CESP: A power efficient, accurate coefficient 
exchange synchronization protocol,” in IEEE International Conference on 



 References 

159 

 

Wireless for Space and Extreme Environments (WiSEE), 2013, pp. 1–6. 
 

[95] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for 
wireless sensor networks,” in Proceedings of Twenty-First Annual Joint 
Conference of the IEEE Computer and Communications Societies, 2002, vol. 3, 
pp. 1567–1576. 
 

[96] M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hämäläinen, M. Hännikäinen, and 
T. D. Hämäläinen, “MAC Protocols,” in Ultra-Low Energy Wireless Sensor 
Networks in Practice, John Wiley & Sons, Ltd, 2007, pp. 73–89. 
 

[97] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control With Coordinated 
Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM Transactions on 
Networking, vol. 12, no. 3, pp. 493–506, Jun. 2004. 
 

[98] Y. Sun, S. Du, O. Gurewitz, and D. B. Johnson, “DW-MAC: a low latency, 
energy efficient demand-wakeup MAC protocol for wireless sensor networks,” 
in Proceedings of the 9th ACM international, 2008. 
 

[99] Y. Z. Zhao, M. Ma, C. Y. Miao, and T. N. Nguyen, “An energy-efficient and 
low-latency MAC protocol with Adaptive Scheduling for multi-hop wireless 
sensor networks,” Computer Communications, vol. 33, no. 12, pp. 1452–1461, 
2010. 
 

[100] Y. Z. Zhao, C. Y. Miao, and M. Ma, “An Energy-Efficient Self-Adaptive Duty 
Cycle MAC Protocol for Traffic-Dynamic Wireless Sensor Networks,” Wireless 
Personal  Communications, vol. 68, no. 4, pp. 1287–1315, Feb. 2013. 
 

[101] K. Nguyen, Y. Ji, and S. Yamada, “Low overhead MAC protocol for low data 
rate wireless sensor networks,” International Journal of Distributed Sensor 
Networks, vol. 2013, 2013. 
 

[102] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks,” IEEE Trans. 
onWireless Communications, vol. 1, no. 4, pp. 660–670, 2002. 
 

[103] Y. Li, W. Ye, and J. Heidemann, “Energy and latency control in low duty cycle 
MAC protocols,” in IEEE Wireless Communications and Networking 
Conference, 2005, vol. 2, pp. 676–682. 
 

[104] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials for 
wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol. 12, 
no. 2, pp. 222–248, 2010. 
 

[105] N. Salman, I. Rasool, and A. H. Kemp, “Overview of the IEEE 802.15.4 
standards family for low rate wireless personal area networks,” in IEEE 7th 
International Symposium on Wireless Communication Systems (ISWCS), 2010, 



 References 

160 

 

pp. 701–705. 
 

[106] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a receiver-initiated 
asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless 
sensor networks,” in Proceedings of the 6th ACM conference on Embedded 
network sensor systems, 2008, pp. 1–14. 
 

[107] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-based protocols for 
disseminating information in wireless sensor networks,” Wireless networks, vol. 
8, no. 2/3, pp. 169–185, 2002. 
 

[108] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, 
“Directed Diffusion for Wireless Sensor Networking,” IEEE/ACM Transactions 
on Networking, vol. 11, no. 1, 2003. 
 

[109] D. Braginsky and D. Estrin, “Rumor routing algorithm for sensor networks,” in 
Proceedings of the 1st ACM international workshop on Wireless sensor networks 
and applications, 2002, pp. 22–31. 
 

[110] I. Dietrich and F. Dressler, “On the lifetime of wireless sensor networks,” ACM 
Transactions on Sensor Networks (TOSN), vol. 5, no. 1, p. 5, 2009. 
 

[111] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless 
networks,” in Mobile computing, Springer, 1996, pp. 153–181. 
 

[112] S. Chiaravalloti, F. Idzikowski, and Ł. Budzisz, “Power consumption of WLAN 
network elements,” TKN Technical Report Series, no. TKN-11–002, 2011. 
 

[113] S. Climent, A. Sanchez, J. V. Capella, N. Meratnia, and J. J. Serrano, 
“Underwater acoustic wireless sensor networks: advances and future trends in 
physical, MAC and routing layers,” Sensors, vol. 14, no. 1, pp. 795–833, 2014. 
 

[114] L. M. Feeney and M. Nilsson, “Investigating the Energy Consumption of a 
Wireless Network Interface in an Ad Hoc Networking Environment,” in In IEEE 
Infocom, 2001, pp. 1548–1557. 
 

[115] N. H. Mak and W. K.-G. Seah, “How Long is the Lifetime of a Wireless Sensor 
Network?,” in International Conference on Advanced Information Networking 
and Applications, 2009, pp. 763–770. 
 

[116] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance 
comparison of multi-hop wireless ad hoc network routing protocols,” in 
Proceedings of the 4th annual ACM/IEEE international conference on Mobile 
computing and networking, 1998, pp. 85–97. 
 

[117] P. Sthapit and J.-Y. Pyun, “Intelligent network synchronization for energy saving 
in low duty cycle MAC protocols,” in IEEE International Symposium on a 



 References 

161 

 

World of Wireless, Mobile and Multimedia Networks Workshops, 2009, pp. 1–6. 
 

[118] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The Broadcast Storm 
Problem in a Mobile Ad Hoc Network,” Wireless Networks, vol. 8, no. 2–3, pp. 
153–167, Mar. 2002. 
 

[119] D. Koscielnik and J. Stepien, “The methods of broadcasting of information in ad-
hoc wireless networks with mobile stations,” in IEEE International Symposium 
on Industrial Electronics (ISIE), 2011, pp. 2043–2048. 
 

[120] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih, “Adaptive approaches to relieving 
broadcast storms in a wireless multihop mobile ad hoc network,” IEEE 
Transactions on Computers, vol. 52, no. 5, pp. 545–557, May 2003. 
 

 

 


