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Abstract 

  Coal-fired power plants are the major source of CO2 emission which contributes 

significantly to global climate change. An effective way to reduce CO2 emission in coal-fired 

power plants is post-combustion carbon dioxide (CO2) capture (PCC) with chemical 

absorption. The aim of this project is to carry out some research in model development, 

process analysis, controller design and process optimization for reliable, optimal design and 

control of coal-fired supercritical power plant integrated with post-combustion carbon capture 

plant. In this thesis, three different advanced neural network models are developed: bootstrap 

aggregated neural networks (BANNs) model, bootstrap aggregated extreme learning machine 

(BAELM) model and deep belief networks (DBN) model. The bootstrap aggregated model 

can offer more accurate predictions than a single neural network, as well as provide model 

prediction confidence bounds. However, both BANNs and BAELM have a shallow 

architecture, which is limited to represent complex, highly-varying relationship and easy to 

converge to local optima. To resolve the problem, the DBN model is proposed. The 

unsupervised training procedure is helpful to get the optimal solution of supervised training. 

The purpose of developing neural network models is to find a best model which can be used 

in the optimization of the CO2 capture process precisely.  

  This thesis also presents a comparison of centralized and decentralized control structures for 

post-combustion CO2 capture plant with chemical absorption. As for centralized 

configuration, a dynamic multivariate model predictive control (MPC) technique is used to 

control the post-combustion CO2 capture plant attached to a coal-fired power plant. When 

consider the decentralized control structures based on multi-loop proportional-integral-

derivative (PID) controllers, two different control schemes are designed using relative 

disturbance gain (RDG) analysis and dynamic relative gain array (DRGA) analysis, 

respectively. By comparing the two control structures, the MPC structure performs better in 

terms of closed-loop settling time, integral squared error, and disturbance injection.  
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 Introduction 

1.1 Background 

  Until now, fossil fuel, especially coal, plays a vital role in electricity generation worldwide. 

Specifically, as seen from figure 1.1, coal-fired power plants currently supply 40% of global 

electricity (EIA, 2016). As reported, China and Southeast Asia have added a large number of 

coal-fired power plants from 1990-2040 (Minchener, 2016). This is because coal is 

characterized as an inexpensive and affordable power source. Beyond that, coal-fired power 

plants can offer some advantages to operators, such as its flexible operation to changes in 

supply and demand (Lawal et al., 2010). However, the process of burning coal would possibly 

release a large amount of hazardous gas emissions, such as sulphide, nitride and carbide etc. 

Especially, the amount of CO2 emission per unit of electricity released by coal-fired power 

plants is twice as much as their natural gas counterparts (Lawal et al., 2009b). Proverbially, 

CO2 is considered as the main component of GHG gas, which leads to the global climate 

change. 

 

Figure 1.1: World net electricity generation by fuel, 2012-2040. (Unit: trillion kilowatt-hours) 

(EIA, 2016). 

  Global climate change, especially temperature increase, has become a key concern of our 

society. Due to the accelerated build-up of greenhouse gas (GHG) emission in atmosphere, 

people have to take steps to prevent the situation. In the past a few decades, numerous climate 

change policies were launched, but nonetheless as it can be seen from figure 1.2, annual GHG 
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emission increased by 1.0 GtCO2-eq (Giga-tons carbon dioxide equivalent) (2.2%) per year 

from 2000 to 2010, compared to 0.4 GtCO2-eq(1.3%) per year, from 1970 to 2000(Anderson, 

2016). A rapidly growing population plus industrialization, with corresponding increase in 

energy demand, is likely to lead to increasing amount of GHG emission. Under the 

circumstances, the Intergovernmental Panel on Climate Change advocated that, compared to 

the emission levels in 1990, a 50% reduction of CO2 emission is needed in 2050. (Metz and 

Intergovernmental Panel on Climate Change. Working Group III., 2007).  

 

Figure 1.2: Total annual anthropogenic GHG emission by gases 1970-2010 (Anderson, 2016). 

  As mentioned above, the main source of worldwide CO2 emission is the combustion of coal 

in coal-fired power plants. To prevent greenhouse effect, it is necessary to seek suitable 

technologies to reduce the CO2 gas emission produced from coal-fired power plants. Carbon 

capture and sequestration (CCS) is explored as a unique and important technique for the 

sustainability of coal-fired power plant, because of  its  efficiency and effectiveness in 

reducing CO2 emission (Metz and Intergovernmental Panel on Climate Change. Working 

Group III., 2005). As can be seen from figure 1.3, CCS is generally consisted of three 

components: capture, transportation and storage. Firstly, capture technologies separate CO2 

from gases produced in industrial processes by one of three methods: post-combustion, pre-

combustion and oxyfuel combustion. Then CO2 is transported by pipeline or ship for safe 

storage. A large amount of CO2 is transported annually for commercial purposes by pipeline, 
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ship and road tanker. Lastly, CO2 is stored carefully several kilometres below the earth 

surface. Recently, CCS has been making significant gains in the world. In Norway, CCS 

technology has been applied to reduce CO2 for 20 years and it permanently and safely stores 

17 million tons of CO2 deep under the North Sea. In Australia, the first geosequestration 

project was launched by an industrial plant in April 2008, owned by a non-profit research 

collaboration. It has stored 65000 tonnes of carbon dioxide approximately two kilometres 

below the surface. According to the International Energy Agency (IEA), approximately 570 

GW of global coal-fired power plants will be integrated with CCS in 2050 and 40GtCO2 will 

be captured in the period to 2050 (Naceur and McCulloch, 2016). 

 

Figure 1.3: A simple schematic diagram of CCS. 

  Amongst the capture technologies, amine-based post-combustion CO2 capture process is 

now treated as the first choice for large scale CO2 capture. This is because this technology can 

retrofit the exiting power generation plants easily and capture low partial pressure of CO2 in 

flue gas (Biliyok et al., 2012a). However, it still has some disadvantages, one of which is the 

large energy requirement for absorbent regeneration. In industrial scale, the thermal energy 

for regeneration usually comes from extracted team from the low pressure steam turbines of 

upstream power plant, which will reduce the efficiency of the coal-fired power plant. As a 

result, a slight adjustment of capture efficiency will affect the thermal consumption in the 

process and thus the profitability of upstream power plants. Tock and Marechal (2014) have 
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attempted to maximise the overall capture efficiency and concurrently minimise the electricity 

production costs. They indicated the trade-off between the capture efficiency (from 75% to 

90%) and electricity production costs. 

  The energy requirement in the regeneration unit is strongly influenced by CO2 capture target, 

operation conditions and equipment dimensions. As a result, the exploration of relationships 

between the process variables appears much significant for the selection of control structures. 

The developed models and selected control structures can then be used in the optimisation of 

CO2 capture process integrated with coal-fired power plants. 

1.2 Motivation  

  Although the carbon capture process has been extensively researched in last few decades, the 

issue of process optimisation is still the focus of most concern. Finding the trade-off between 

energy consumption and CO2 capture efficiency is significant in process optimisation. This is 

because, if the energy consumption is high, the electricity production costs will be high as 

well. The low energy consumption will possibly reduce the capture efficiency.  Therefore, the 

basic suggested question is what and how process variables affect carbon capture efficiency?  

What is the relationship between energy consumption and capture efficiency? Consider the 

selection of control structures, what is the best one to control? 

  The development of modelling techniques is significant to explore the intrinsic features of 

process and determine the control structures, thereby optimizing the carbon capture process. 

A number of attempts to CO2 capture process modelling have been conducted by three 

different ways: mechanistic, statistic and neural networks. However, the techniques still need 

further improvements, regarding computational time and model generalization capability. 

  This thesis concentrates on the development of novel methods to model and optimize CO2 

capture process integrated with coal-fired power plant by applying advanced modelling and 

control techniques. Development of reliable and accurate data driven models is the focus in 

this research. 

1.3 Aims and Objectives 

  This project is aimed to develop efficient operating techniques for CO2 capture process 

integrated with coal-fired power plant. 

  The main objectives are: 
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 Developing rigorous data-driven models of post-combustion carbon capture with 

chemical absorption. 

 Process analysis, optimal design and operation of post-combustion carbon capture 

with chemical absorption. 

 Control structure selection, system identification and control system design of post-

combustion with chemical absorption. 

1.4 Contribution  

  This thesis contributes to developing different modelling techniques and control strategies to 

improve capture efficiency of post-combustion carbon capture process. The post-combustion 

carbon capture process is targeted because of its unique effective application to current coal-

fired power plant and its excellence use to improve climate change. 

  In last few decades, the study of carbon capture process focused on traditional modelling 

techniques, such as mechanistic, statistical and single-hidden layer neural network models. 

This study goes a further step to use advanced data-driven modelling methodologies, such as 

bootstrap aggregated neural networks (BA-NNs), bootstrap aggregated extreme learning 

machine (BA-ELM) and deep belief networks (DBNs), to improve the capture efficiency of 

carbon capture process. 

   

  This study also demonstrates the comparison of decentralized control strategy (PID based 

control) and centralized control strategy (MPC-based control) in designing post-combustion 

carbon capture process. MPC is indicated as more advanced control methodology to improve 

the efficiency of the carbon capture process. 

  Furthermore, three first-author papers have been published on the relevant journals, which is 

detailed in the following section. 

1.5 Structure of the thesis 

  In charter 2, the general literature review of separation technologies, the solvents used for 

chemical absorption, the modelling technologies, and the controllability and optimisation 

analysis on post-combustion carbon capture process is presented.  The knowledge gap related 

to the research is also highlighted  
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  Chapter 3 presents a study of modelling post-combustion CO2 capture process using 

bootstrap aggregated neural networks. The multiple feedforward neural networks models are 

developed from bootstrap re-sampling replications of the original training data and are 

combined, thereby enhancing model accuracy and reliability. Both static and dynamic models 

are developed and they offer accurate predictions on unseen validation data. In addition, the 

optimisation problem of the CO2 capture process, which is based on the neural network static 

model, is solved.   

  Chapter 4 is focused on modelling of post-combustion CO2 capture process using bootstrap 

aggregated extreme learning machine (ELM). In this chapter, the weights between input and 

hidden layers are randomly assigned and the weights between the hidden layer and output 

layer are obtained using principal component regression (PCR). ELM can provide fast 

learning speed and good generalisation performance. 

  In Chapter 5, a neural network with multiple hidden layers, called deep belief network 

(DBN), is explained. The hidden layer of restricted Boltzmann Machine (RBM) is able to 

extract a deep hierarchical representation of training data. Two stages are included in DBN 

technique: an unsupervised pre-training phase and a supervised back-propagation phase. A 

greedy layer-wise unsupervised learning algorithm is introduced to optimize DBN, which can 

bring better generalization than a single hidden layer neural network. 

  In chapter 6, the efficient decentralized control strategy based on general relative disturbance 

gain (GRDG) and dynamic relative gain array (DRGA) is discussed. Then, the centralized 

control scheme, model predictive control (MPC), is presented and compared to decentralized 

control structure for their performance.  

  Chapter 7 is focused on highlighting the conclusions from the research and 

recommendations for future work. 

1.6 Publications 

Book chapter 

1. Bai Z, Li F, Zhang J, Oko E, Wang M, Xiong Z, Huang D. ‘Modelling of a Post-

combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning 

Machine’. Computer Aided Chemical Engineering, vol 38, 2007-2012.   

Published journal papers: 
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1. Li F, Zhang J, Oko E, Wang M. ‘Modelling of a Post-combustion CO2 Capture 

Process Using Neural Networks’. Fuel 2015,151, 156-163.  

2. Li F, Zhang J, Oko E, Wang M. ‘Modelling of a Post-combustion CO2 Capture 

Process Using Extreme Learning Machine’. International Journal of Coal Science & 

Technology, 2017, 4(1), 33-40. 

3. Li F, Zhang J, Shang C, Huang D, Oko E, Wang M. ‘Modelling of a Post-combustion 

CO2 Capture Process Using Deep Belief Network’. Applied Thermal Engineering, 

130,997-1003.   

Peer reviewed conference paper 

1. Li F, Zhang J, Oko E, Wang M. ‘Modelling of a Post-combustion CO2 Capture 

Process Using Extreme Learning Machine’. In: 2016 21st International Conference on 

Methods and Models in Automation and Robotics (MMAR). 29 August – 1 

September, 2016, Miedzyzdroje, Poland: IEEE, 1252-1257 

Conference Presentations: 

1. Fei Li and Jie Zhang (2014) ‘Modelling of a Post-combustion CO2 Capture Process 

Using Neural Networks’, 10th European Conference on Coal Research and its 

Applications, 15th-17th September, 2014, Hull, UK. 

2. Fei Li and Jie Zhang (2015) ‘Steady-state and dynamic models of post-combustion 

CO2 chemical absorption process for coal-fired power plants’. 29th May, 2015, 

Newcastle University, UK. 

3. Fei Li and Jie Zhang (2016) ‘Controllability analysis and control system design for a 

post-combustion CO2 capture plant based on centralized and decentralized control 

techniques’.3rd June, 2016, Newcastle University, UK. 
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 Literature review 

2.1 Separation technologies of Post-combustion CO2 capture 

  The flue gas exhausting from coal-fired power plants are approximately consisted of 76-77% 

N2, 12.5-12.8% CO2, 6.2% H2O, 4.4% O2 and a small amount of CO, NOx and SO2 gases. 

Post-combustion CO2 capture process is able to remove CO2 emission after the combustion of 

the fossil fuel in combustor. The advantage comes at easy retrofitting of the most existing 

coal-fired plants for NOx, SOx and CO2 capture.  The large energy consumption in the 

regenerator unit accounts for 75% - 80% of the total cost of CCS (Davison, 2007). A number 

of separation technologies can be employed for post-combustion CO2 capture process. In 

details, they are adsorption, physical absorption, chemical absorption, cryogenics separation 

and membranes respectively. A brief introduction of these technologies will come as follows. 

2.1.1 Adsorption 

  Adsorption is a physical process that adopts adsorbents to attach CO2 to its surface. The 

physical conditions, including temperature, vacuum and pressure swing operations, will 

impact the regeneration of adhered gas.  Figure 2.1 indicates the simple CO2 adsorption 

process, which is consisted of adsorption and desorption steps. The flue gas is pumped 

through the column, meanwhile, the sorbents will adsorb CO2 in flue gas. After that, CO2 

desorption from the sorbents can be achieved with a pressure swing or temperature swing 

cycle. The affinity between the sorbents and CO2 is the key factor to determine adsorption 

performance. However, if the affinity is strong, it is difficult to desorb CO2 due to the 

requirement of large energy consumption. Therefore, the selection of suitable sorbents which 

can carefully balance adsorption and desorption steps, seem more important. Recently, solid 

adsorbents, such as Metal Organic Frameworks (MOF), mesoporous silicates, zeolites, 

alumina and activated carbons have been extensively applied for gas mixer separation. New 

adsorbents such as monolithic carbon fibre adsorbents (Thiruvenkatachari et al., 2009), MgO 

material ball-milling treated for 2.5 hours (MgO-BM2.5h) (Elvira et al., 2016), have been 

researched with post-combustion CO2 capture process. On the other side, a suitable 

replacement strategy of sorbents also appears rather significant to capture efficiency, because 

it is able to maintain the plant performance. Under the circumstance, a novel removal strategy, 

based on density separation, was suggested (Colantuono and Cockerill, 2017). Specifically, 

the removed sorbents was sorted by their density, in which the lower density represents the 

lower capture capacity of older particles. Then the older fractions of separated sorbents are 

replaced by the fresh materials.  However, when integrate carbon capture plant with large 
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scale power plant, adsorption is not viable because of its limited adsorption capacity of most 

available sorbents.  

 

Figure 2.1: Post-combustion carbon capture by physical adsorption. 

2.1.2 Physical absorption 

  Based on Henry’s Law, CO2 is physically absorbed by some solvents, such as dimethyl 

ethers of polyethylene glycol and methanol. Absorption occurs with increasing pressure and 

with decreasing temperature, whilst regeneration of solvents takes place with heat, pressure 

reduction or both. The typical physical solvents are including cold methanol (Rectisol 

process), dimethyl ether of polyethylene glycol (Selexol process), N-methyl-2-pyrrolidone 

(Purisol process) and propylene carbonate (Fluor Solvent process). The absorption capacity of 

absorbents is related to CO2 partial pressure. The advantage of physical absorption is the 

relative little energy consumption, but CO2 partial pressure needs to be high. Therefore, the 

main challenge of physical absorption in post-combustion carbon capture process is the high 

cost of treating low CO2 partial pressure (<15 vol %) in flue gas (Wang et al., 2011). 

2.1.3 Cryogenics separation 

  The cryogenics separation of CO2 from exhausting flue gas is processed in ultra-low 

temperature. As well known, the critical temperature and triple point of CO2 are 31.1°C and -
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56.6°C. In other words, the physical state of CO2 may change to liquid or solid under the 

according operations. Figure 2.2 provides a detailed schematic diagram of post-combustion 

CO2 capture process with cryogenics separation.  The flue gas is cooled in condensing heat 

exchanger by exchanging heat and dried before compression. Following that, the treated gas is 

further cooled in heat recovery heat exchanger to separate different contaminates. Lastly, the 

remaining light gas is expanded to further cool to extract the solid CO2.  Some researchers 

have focused on the development of cryogenics separation of CO2 in carbon capture process, 

by application of multi-compression stages along with the intercooler (Meisen and Shuai, 

1997; Zanganeh et al., 2009). To further improve this technology, Hart and Gnanendran 

(2009) has proposed Cryocell technique, based on a clear understanding of the vapour-liquid-

solid thermodynamic equilibrium (VLSE) across a Joule-Thomson valve, to remove CO2 

from natural gas. The pre-cooling temperature and the isenthalpic flash pressure are 

significant control variables in the process. The gas feeding into the Cryocell separator is 

supposed to be pre-treated to have certain CO2 and ethane plus composition specifications. 

The advantage of cryogenics separation is its disposal ability with high CO2 concentration and 

high CO2 recovery, while the disadvantage is inherent energy intensive. Besides, cryogenics 

separation is further used in combination with membrane technology, which will be 

introduced next. 

 

Figure 2.2: Post-combustion carbon capture with cryogenics separation. 
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2.1.4 Membrane absorption 

  Membrane absorption applies membrane only as a contact device between gas and liquid, 

while the membrane cannot provide supererogatory selectivity. As shown in figure 2.3, flue 

gas will be feed through a bundle of membrane tubes, while the solvents such as amine pass 

through the shell side of the bundle. The gas-liquid contactors are mainly porous hydrophobic 

membranes. CO2 was physically absorbed by solvent according to its diffusion through the 

membranes and desorbed from solvent by heat. Therefore, the parameters affecting mass 

transfer between two phases seems particularly important. As mass transfer is taking place at 

the pores of membranes, the properties of membranes, such as pore size, pressure, 

temperature, porosity and flow rates of absorbents and flue gas, draws attention of 

researchers. Recently, the studies about membrane absorption is mainly focused on mass 

transfer, membrane wetting, membrane development and absorbent selection (Favre and 

Svendsen, 2012; Mosadegh-Sedghi et al., 2014; Sreenivasulu et al., 2015; Zaidiza et al., 

2016; Abdulhameed et al., 2017). The outstanding point of this method is the membranes are 

more compact so that they will not be influenced by flooding, entrainment, channelling or 

foaming. In addition, membrane absorption has high operation flexibility and extremely high 

interfacial area, which result in low costs and high efficiency. Nevertheless, extra mass 

transfer resistance from membrane and membrane wetting will increase mass transfer 

resistance. In this case, the requirement of high CO2 partial pressure is of great importance. In 

other words, membrane absorption is more suitable for high concentration of CO2 in flue gas, 

such as the flue gas coming from oxyfuel process.  

 

Figure 2.3: The schematic diagram of membrane gas absorption. 
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2.1.5 Membrane-based gas seperation 

  Gas separation membrane allows preferential selective permeation of gas mixture. The 

structure of membranes for gas separation is usually formed as tube-and-shell configuration 

(see figure 2.4). The main types of membrane materials are polymer. In details, the membrane 

applied in this method can determine the selectivity, which means the permeation exists in the 

gas mixture due to partial pressure of different constituent species. The reason why this 

method is superior is there is no requirement of a separation agent because of non-

regeneration stages. In addition, it is suitable for retrofitting applications due to its compact 

and lightweight characters, as well as low maintenance requirement. However, the separation 

capacity is too low as stated in International Energy Agency. and Organisation for Economic 

Co-operation and Development. (2004). This is because the membrane selectivity depending 

on materials for separation of CO2 and N2 is larger than any other existing applications, such 

as O2 and N2, CO2 and CH4. Therefore, balancing between selectivity and permeability is 

becoming the main concern as to membrane-based gas separation. 

 

Figure 2.4: The schematic diagram of membrane absorption. 
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2.1.6 Chemical absorption 

  The post-combustion carbon capture with chemical absorption is a widely used technology 

to remove CO2 from exhausting flue gas. It is a chemical reaction process in which the 

chemical solvent is used to react with CO2 to form a new intermediate compound with weak 

band, and then CO2 is regenerated in the circumstance of high temperature. The high 

selectivity and final pure CO2 stream make chemical absorption being widely used for CO2 

capture of industrial flue gas. 

  The flue gas from the power plant should be pre-treated before sending to the system units 

(Wang et al., 2011). The reason is that SO2 and NO2 involved in flue gas can react with amine 

solution and form heat stable salts, which decrease the regeneration capacity of lean amine 

solution. Thus, SO2 is removed by Flue Gas Desulphurization (FGD) unit. NOX is removed by 

applying Selective Catalytic Reduction (SCR), Selective Noncatalytic Reduction (SCNR) or 

low NOx burner. In addition, the particulate matter such as fly ash could cause foaming in the 

absorber and regenerator, which affects the performance of the CO2 capture system. Fly ash is 

removed by ether electrostatic precipitators (ESP) or filters. The oxygen, which could cause 

corrosion and degradation of alkanolamies, is removed by Fluor Daniel ECONAMINETM 

process. Lastly, the temperature of flue gas should be maintained between 45°C and 50°C, as 

it is helpful for improving CO2 absorption and reducing solvent loss. 

  As described in figure 2.5, one of the widely used technologies for CO2 capture with 

chemical absorption is mainly consisted of two parts: the scrubbing column (absorber) and 

regeneration column (regenerator), which are both packed columns. The flue gas from power 

plant is fed into the bottom of absorber and contacted counter-currently with lean amine 

solution from the top side. The lean amine solution chemically reacts and absorbs CO2 in flue 

gas. Then the treated gas stream containing much lower CO2 contents is generated and leaves 

from the top of absorber. The amine solution of much more CO2 (now rich amine), coming 

from the bottom of absorber, is pumped to the stripper unit after preheating in cross heat 

exchanger. In the stripper, the absorber amine solution is regenerated by heating rich amine in 

a reboiler. The low-pressure steam from power plant is used in reboiler to maintain the 

operating condition, resulting in large energy consumption. In details, the heat supplied in the 

reboiler is used for increasing the rich solution coming from the absorber, desorption heat 

required for separating CO2 in rich amine, and vaporization of gas in stripper (Mores et al., 

2012b). After that, the vapour is cooled in condenser and returned to the regenerator, while 

CO2 leaves the condenser and is compressed for storage. In addition, the amine solution 
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coming from the regenerator (now lean amine) is cooled in cross heat exchanger by 

exchanging heat with rich amine and pumped back to absorber for absorption. Therefore, 

from the view point of the process system, the performance is strongly influenced by the 

operating conditions, such as temperature and pressure in absorber, stripper, reboiler and 

condenser. On the other hand, the conditions of flue gas and amine solution (temperature, 

pressure, composition and flow rate) are necessary to be investigated for their impacts on the 

process performance. 

 

Figure 2.5: Simplified process flow diagram of chemical absorption process for post-

combustion capture. 

2.1.7 Summary 

  Chemical absorption is selected as the most efficient and economical way to capture CO2 in 

the stream.  The reason why this technology is superior is it can easily retrofit current existing 

power plants and capture low partial pressure CO2 in flue gas stream. Besides, this system can 

be operated at ordinary temperature and pressure. However, there are several disadvantages 

for using chemical absorption technology. In details, the scrubbing solvents will be degraded 

at high temperature, resulting in a corrosion of the regeneration system. As well, the 
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regeneration of the scrubbing solvents requires a large amount of energy, which leads to a 

costly operation. The application of various solvents to post-combustion carbon capture 

system with chemical absorption will be discussed in the next section. 

2.2 Solvents of post-combustion CO2 capture with chemical absorption 

  The scrubbing solvents react with CO2 chemically in absorber and a new bond between the 

two components is formed, while during regeneration, the bond is broken by heat and high 

concentration of CO2 is yielded. The main challenge of post-combustion carbon capture 

system with chemical absorption is the selection of suitable solvents, which are regenerated 

with minimal energy. 

2.2.1 Amines 

  Amines, especially alkanolamines, are widely used as absorbents to treat the flue gas stream 

in post-combustion CO2 capture process.  The commonly used amines are classified into three 

categories: Primary amine (RNH2), secondary amine (R2NH) and tertiary amine (R3N) 

(Kenarsari et al., 2013). Figure 2.6 presents the molecular structures of these three categories 

of amines. In details, primary amines arise when one of three hydrogen atoms in ammonia is 

replaced by an alkyl or aromatic. Whereas secondary amines have two organic substitutes 

(alkyl, aryl or both) and one hydrogen atom connected with nitrogen. Lastly, tertiary amines 

have three organic substitutes bound to the nitrogen atom. 

 

Figure 2.6: Molecular structures of primary amine, secondary amine and tertiary amine. 
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  As to CO2 reactions with amines, there are three different mechanisms to describe the 

pathways according to the distinct molecular structures of amines. It is theoretically 

summarized as follows: 

(1) Zwitterion Mechanism 

  Zwitterion mechanism usually describes the CO2 reaction with primary, secondary and 

sterically hindered amines. It was proposed originally by Caplow (1968), which suggested 

that zwitterion is formed as an intermediate by the reaction between CO2 and amine (AH)  and 

the reaction is separated into two steps.  

                                                      CO2 + AH      
𝐾1
↔    AH+COO-                                      2-1 

                                                   AH+ COO-   +  B  
𝐾𝐵
→     ACOO- + BH+                                          2-2 

  The reaction 2-2 describes the intermediate AH+COO- is deprotonated by a base (B), thereby 

forming the carbamate ACOO-. If the base B is the amine itself, the reaction 2-2 can be 

described instead as:  

                                                AH+COO- + AH     →     ACOO- + AH2
+                              2-3 

  Therefore, the overall reaction of CO2 with primary or secondary amines is the sum of 

reactions 2-1 and 2-2: 

                                               CO2 + 2AH       ↔      ACOO- + AH2
+                                   2-4 

  However, if the amine is sterically hindered, the reaction of intermediate and water is easier 

to arise, rather than reaction 2-3. 

                                            AH+COO- + H2O     →     AH2
+ + HCO3

-                                 2-5 

  Under the circumstances, the reaction 2-6 occurs for bicarbonate formation. 

                                             CO2 + AH + H2O       ↔      HCO3
- + AH2

+                            2-6 

  This is because the steric effects will result in the reduced stability of carbonate, which is as 

stable as zwitterion. In this case, the carbonates in reaction 2-3 may also perform a hydrolysis 

reaction, forming bicarbonates and releasing free amine molecules. 

                                              ACOO- + H2O       →        AH + HCO3
-                                2-7 
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  The reproduced free amine molecules will react with CO2 again. As a result, the amount of 

bicarbonates will be much more than carbonates. In addition, the following reactions may also 

appear simultaneously in the solution. 

                                          AH + H2O      ↔      AH2
+ + OH-                                                  2-8 

                                              H2O          ↔       H+ + OH-                                                                        2-9 

                                                 CO2 + H+       ↔       HCO3
-                                                           2-10 

                                           CO2 + H2O      ↔       HCO3
- + H+                                           2-11                                                         

  Based on zwitterion mechanism, MEA, DGA, DEA and DIPA are applied as absorbents to 

capture CO2. The chemical reactions with solvent MEA in absorber unit are considered as 

following: 

                                            2H2O ↔ H3O
+ + OH-                                                                                              2-12                             

                                        2H2O + CO2 ↔ H3O
+ + HCO3

-                                                    2-13                                          

                                        H2O + HCO3
- ↔ H3O

+ + CO3
2-                                                    2-14                            

                                     H2O + MEAH+ ↔ H3O
+ + MEA                                                     2-15                                            

                                    MEAH + HCO3
- ↔ H2O + MEACOO-                                                                2-16                                  

                                    MEA + CO2 +H2O ↔ MEACOO- + H3O
+                                           2-17                                                      

                                              CO2 + OH- ↔ HCO3
-                                                                                             2-18                   

  The reactions 2-17 and 2-18 are assumed to appear in liquid film, which are kinetically 

controlled reactions. The reactions 2-12 to 2-16 are assumed to be in chemical equilibrium. A 

few problems will appear during the chemical absorption process, such as emulsion, foaming, 

unloading and flooding when the two fluid phases contact (Gabelman and Hwang, 1999), 

solvent degradation, the energy consumption of regeneration and corrosion (Davidson, 2007). 

With consideration to degradation problem specifically, two reaction types were identified: 

oxidative degradation and thermal degradation (S. B. Fredriksen1, 2013). The oxidative 

degradation including two distinct ways such as autoxidation pathways and oxidation in the 

presence of metal ions, shown in figure 2.7. The primary products are ammonia, organic acids 

and aldehydes. The organic acid will form heat-stable salts, leading to a reduction in CO2 

absorption capacity. The amides are produced by reaction of acids and the amine function of 
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MEA or amines together with water elimination or by reaction of the amine function with 

formaldehyde in the presence of oxygen. Figure 2.8 shows the thermal degradation in the 

presence of CO2 at high temperature in cross heat exchanger and regenerator, thereby forming 

large polymeric compounds during the reaction (Davis and Rochelle, 2009).  

 

Figure 2.7: Primary oxidation pathways for MEA (S. B. Fredriksen1, 2013). (a) Autoxidation 

pathways; (b) Oxidation in the presence of metal ions. 

 

Figure 2.8 Thermal degradation pathways for MEA (S. B. Fredriksen1, 2013). 



19 

 

  Sexton and Rochelle (2009) carried out an experiment at 55°C and discovered the dissolved 

metals catylized MEA degradatin in the order copper ˃ chromium/nickel ˃ iron ˃ vanadium. 

In addition to the catylist, a 100:1 ratio of ethylenediaminetetracetic acid (EDTA) to Fe is able 

to inhibit the oxidation of MEA. That is to say, MEA loss and oxidative degradation products 

cannont be observed in this condition. They also found that adding formaldehyde, formate or 

sodium sulfite would increase the degradation rate of MEA.  

  Zoannou et al. (2013) tested the effect of CO2 concentration on thermal degradation at 

160 °C, ranging from 0.19-0.37mol of CO2/mol of MEA. They found that when the initial 

molar CO2-loading was 0.37, MEA loss was 20% greater than others. (Davis and Rochelle, 

2009) also pointed that the amine concentration had a higher effect than CO2 loading and 

MEA degradation was reduced obviously when the temperatures in stripper units were kept 

below 110 °C. 

  The post-combustion carbon capture process using DEA has been identified to have gain in 

power output and reduction in capital cost, due to its lower reboiler heat duty (Lee et al., 

2013). In other words, less steam is required to regenerate DEA solution, resulting in more 

steam available for power generation. The result showed that DEA has the large potential to 

be the best absorbent compared with MEA. (von Harbou et al., 2013) have explored a new 

solvent of secondary amine purchased from Sigma-Aldrich (≥98%) and compare its reboiler 

heat duty with MEA. They found that the optimal reboiler heat duty was reduced by 16% and 

the numbers for optimum L/G (liquid to gas) ratio was lower than for MEA by 37%, while the 

overall mass transfer kinetic was similar with that of MEA. 

(2) Termolecular mechanism 

  Termolecular mechanism was firstly suggested by Crooks and Donnellan (1989), which is 

considered as the limiting case of Zwitterion mechanism for  k-1 ≥ kB. This is a single-step 

reaction, producing a loosely-bound encounter complexes instead of a zwitterion. The 

reaction can be represented as follow: 

                                         CO2 + AH…B ↔ ACOO- …BH+                                                2-19 

  A large fraction of complexes are broken up to form reagent molecules again, while the 

remaining is reacting with second molecule of amine or water molecule to form ionic 

products. 
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(3) Base-Catalysed Hydration Mechanism 

  The tertiary amine, excluding from hydrogen atoms, cannot react with CO2 directly 

(Donaldson and Nguyen, 1980). However, amines are usually dissolved in aqueous solution 

as weak bases, which is protonated to combine with hydrogen ion. Simultaneously, CO2 is 

combined with hydroxyl ion. The reaction is believed as follows: 

                                         R3N + H2O + CO2      →       R3N
+H + HCO3

-                                       2-20 

  If the pH value is higher than 12, a direct reaction between tertiary amine and CO2 may still 

take place and then monoalkylcarbonate will be formed. The typical tertiary amines, such as 

MDEA and DEMEA, are recently studied. Compared to MEA, the typical tertiary amines 

have low reactivity due to their own characteristics (Davidson, 2007).  However, they need 

lower energy for regeneration and the capacity of absorbing CO2 is higher.  Furthermore, the 

tertiary amines have low level of degradation and corrosion (Kenarsari et al., 2013).  

  Different mechanisms lead to the discrepancies of the reaction rate coefficients for CO2 

absorption. Aroonwilas and Veawab (2007) have used blended MEA-MDEA with appropriate 

mixing ratio in the simulation of the integration of CO2 capture unit. It was found that the 

energy penalty was reduced ranging from 6% - 12% and more CO2 captured per energy 

penalty. However, the application of MEA-MDEA should require much more capital cost, as 

a result of taller absorber and regenerator. Vaidya and Kenig (2007) has investigated the 

effects of amine-blend solvents on CO2 reaction, and found that, the reaction of CO2 with 

tertiary and sterically hindered amines (MDEA, AMP) was promoted by the addition of 

MEA, DEA and PZ, because MEA, DEA and PZ can facilitate zwitterion deprotonation. The 

amine-blend solvents have been further studied by Adewale Adeosuna (2013). They have 

tested DEA-AMP, DEA-MDEA, MEA-AMP and MEA-MDEA at different mixing ratio, 

while all the total amine blends concentration was kept at the value of 30wt%. The result 

shows that MEA require more energy than DEA when they are considered as activating 

agents. DEA/AMP proved to be the best blending mixture, due to its lower energy penalty. 

Besides, 5wt% DEA/25% AMP mixture performed better than any other mixtures, in the 

respects of reboiler duty, solvent rate and cycling load.` 

2.2.2 Aqueous ammonia 

  The reaction of aqueous ammonia and CO2 is also apparently a ternary system. A number of 

ionic species are formed during the reaction CO2 – NH3 – H2O as a result of hydrolysis, such 

as H+, OH-, NH4
+, NH2COO-, HCO3

- and CO3
2- .  
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                                                             H2O ↔ H+ + OH-                                                      2-21 

                                                             NH3 + H+ ↔ NH4
+                                                    2-22 

                                                           CO2 + OH- ↔ HCO3
-                                                  2-23 

                                                        OH- + HCO3
- ↔ H2O + CO3

2-                                        2-24    

                                                       NH3 + HCO3
- ↔ NH2COO- + H2O                                 2-25 

  The significantly lower heat is generating during the reaction than amine-based systems, as 

well as higher CO2 capture capacity. The degradation problem can be neglected, so that the 

oxygen is allowed in the flue gas. However, it still exists some problems, for instance, it is 

necessary to cool the flue gas to 60 – 80 °F to enhance the CO2 absorptivity and minimize 

ammonia vapour emission during the absorption stage. Besides, during regeneration step, the 

ammonia will be vaporized to loss at the elevated temperature.  

2.2.3 Ionic liquids 

  Ionic liquids (ILs) have attracted much attention as absorbents for CO2 capture, due to their 

favourable properties such as easy regeneration, low vapour pressure, moderate viscosity, 

high thermal stability, high CO2 solubility and selectivity (de Riva et al., 2017). In addition, 

they have suggested other criteria to select ILs, such as CO2 mass transfer kinetics for 

physical absorption and influence of ILs nature in ILs regeneration. Figure 2.9 shows the 

commonly used anions and cations of ion liquids to chemically capture CO2 in carbon capture 

process.  Recently, imidazolium-based ionic liquids, consisted of anions such as BF4
-, PF6

- 

and TF2
N-, have been employed extensively as CO2 is very soluble in these liquids. This is 

because imidazolium-based ionic liquids have their unique properties such as higher reaction 

velocity and selectivity, negligible vapour pressure, higher chemical and thermal stability, less 

expensive, high efficiency and non-inflammability.  The absorption performance of an ionic 

liquid, 1-Butyl-3-methylimidazolium, was compared with that of MEA and it was concluded 

that the energy loss and cost of IL process was reduced by 16% and 11% than MEA, 

respectively (Shiflett et al., 2010). However, as the future price of ILs most suited for CO2 

separation is increased to 10-30 €/kg (Meindersma and de Haan, 2008), the extension of the 

ILs lifetime has been a challenge. 
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Figure 2.9: Commonly used anions and cations of ionic liquids. 

2.2.4 Potassium-based solvents 

  The potassium-based solvents was also studied as absorbents due to their low cost, low 

toxicity, low solvent losses, low enthalpy requirements and high degradation resistance 

(Sreedhar et al., 2017). With comparison to MEA, the heat of absorption by K2CO3 solution is 

only one third of MEA, so that the required regeneration energy in K2CO3 is less than amine 

based system. However, the main challenge is the low rate of mass transfer with pure K2CO3. 

To remedy this shortcoming, the promoters such as inorganic salts, biological enzymes 

organics and alkaline amino acids are employed in the carbon capture process.  Lee et al. 

(2006) have compared the performance of activated carbon (AC), AL2CO3, MgO and TiO2 as 

promoters for 30 wt. % K2CO3. Amongst the promoters, MgO supporting on K2CO3 has the 

highest capture capacity of 119 mg CO2/g K2CO3 and capture 99.4% CO2. Table 2.1 shows 

the CO2 capture capacity of various promoters supporting on K2CO3.  
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Promoter Concentration 

(wt %) 

K2CO3 concentration 

(wt %) 

Temperature 

(K) 

Acceleration* 

MEA 

 

MEA 

0.5 1.8 291 0.2 

5 30 336 15 

10 30 336 45 

5 25 294 6 

DEA 5 25 294 2.6 

- - 363 4-5 

2 20 353 1.6 

2 25 323-363 -3 

5 25 323-363 -6 

PZ 5 20 333 10 

MDEA 5 25 294 1 

Arginine 0.077 M 35 322 0.44 

0.387 M 35 322 1.35 

Histidine 0.104 M 35 322 1.54 

Glycine 1 M 30 333 22 

Sarcosine 1 M 30 333 45 

Proline 1 M 30 333 14 

Carbonic 

Anhydrase 

300 mg/L 20 298 8.8-11.3 

300 mg/L 20 313 5.2-6.4 

300 mg/L 20 323 3.4-4.0 

300 mg/L 20 313-333 2-6 

55 mg/L 30 313 0.3 

300 mg/L 20-30 298 6-20 

300 mg/L 20-30 323 2-8 

*Acceleration = (Absorption rate promoted K2CO3 solution) / (Absorption rate in                                   

unprompted K2CO3 solution at same operating conditions). 

Table 2.1: Summary of various promoters. 

2.2.5 Summary  

  The ideal scrubbing solvents for post-combustion carbon capture with chemical absorption 

should satisfy the following requirements: minimum energy demand, a high level of CO2 

capture and minimum liquid and gas contaminant. (Sharma and Azzi, 2014). Aaron and 

Tsouris (2005) have concluded that the current most preferable solvents to capture CO2 is 30 

wt% aqueous MEA. This is because MEA is nontoxic and biodegradable (Shao R, 2009), as 

well as its cheap price and regeneration with commercial availability (Rao, 2004). In addition, 

the high enthalpy of MEA solution with CO2 results in a high rates of dissolution process. 
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2.3 Modelling of post-combustion CO2 capture with chemical absorption: a state-of-

the-art review. 

  The thermal energy for MEA regeneration usually comes from extracted steam from the low 

pressure steam turbines, whereas it may reduce the efficiency of the coal-fired power plant. In 

order to optimize the process performance, the construction of an accurate model is as a 

priority. Since the post-combustion CO2 capture process with chemical absorption is non-

linear and cannot be solved with an easy analytical formulation, the model establishment of 

process performance is appeared to be of great significance. Generally, the models explored 

by a tremendous amount of researches can be categorized into three groups: mechanistic, 

regression and artificial intelligence based models. The specific details of those models will 

be given as below. 

2.3.1 Mechanistic models 

(1) Model complexity 

  Post-combustion CO2 capture with chemical solvent is a reactive absorption, including two 

simultaneous phenomena in the process. One is mass transfer of CO2 from the bulk vapour to 

the liquid solvent and the other one is chemical reaction between CO2 and the solvent. To 

design an appropriate mechanistic process model, Kenig et al. (2001) have proposed a level of 

process complexity, as well as feasibility for simulation. Fiure 2.10 displays the details about 

the different levels of modelling complexity. Specifically, models 4 is an equilibrium stage 

model, based on an assumption of no chemical reaction in the packed column and fast mass 

transfer in single stage. Model 5, which bulk phase reaction kinetics or both the bulk and film 

reaction kinetics are taken into account, is more accurate than model 4. Moving upwards, 

models 1, 2 and 3 are called rate-based models, which consider the mass transfer kinetics. In 

details, model 1, with the lowest level of complexity, assumes that chemical reactions are at 

equilibrium. It can be accurate only when CO2 and solution reacts very fast.  An enhancement 

factor, representing the effects of chemical reaction on mass transfer rates, is employed in 

model 2, to increase the model accuracy. The chemical reactions are assumed to be in liquid 

film while the bulk fluid remains chemical equilibrium. However, the enhancement factor can 

only describe the effect of a single irreversible chemical reaction on mass transfer, while is 

not accurate in case of several parallel and consecutive reversible reactions (Kucka et al., 

2003). To overcome this limitation, model 3, with a consideration of mass transfer 

resistances, electrolyte thermodynamics, the reaction system and column configuration, is 
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employed.  As the process hydrodynamic is involved in model 3, it is able to relate the 

column outputs with operation conditions, thus making most accurate and reliable predictions.  

 

Figure 2.10: Level of complexity. Source: Kenig et al. (2001). 

  On the whole, figure 2.10 shows the models are categorized into two groups, such as 

equilibrium stage models and rate-based models. The significant difference between them is 

the consideration of interfacial mass transport by using rate-based model.  Two-film theory 

and penetration theory are employed as using rate-based models (Wang et al., 2011). As 

shown in figure 2.11 for two-film theory, there is an assumption that the liquid and vapour 

phases are both consisted of two regions: bulk and film. The effects of heat and mass transfer 

resistances are taken into account only in the laminar film regions. The mass transfer rates in 

the liquid and vapour film is estimated using Maxwell-Stefan theory. As stated by Kenig et al. 

(2001), mass transfer rate contributes a lot to reactive absorption design. The relationship 

between transport and reaction rate will determine where the species can react, such as in the 

bulk phase, or in the bulk and interfacial regions, or purely in the interfacial layers.  The 

penetration theory assumes the exposure time between every element on surface of liquid and 

the vapour phase is same. The exposure time affects mass transfer coefficient significantly, 

because it can imply the effects of hydrodynamic properties of the system.  



26 

 

 

Figure 2.11: A diagram of two-film theory. 

  Firstly, the steady-state performance which is most often encountered in absorption units of 

post-combustion carbon capture plant is considered. Abu-Zahra et al. (2007) has developed an 

equilibrium-stage mathematical model (Model 5) for steady-state complete process 

performance in Aspen Plus. An enhancement factor was brought in the mathematic model to 

represent the effects of chemical reaction. The results showed that, without the consideration 

of corrosion and solvent degradation, the minimum thermal energy requirement (3.0 GJ/ton 

CO2) is under the condition of 0.3 lean loading, 40 wt% MEA concentration and stripper 

operating pressure of 210 kpa. Pintola (1993) proposed a rate-based model (Model 2) for 

steady-state absorption process performance, thereby predicting the profiles of components 

concentrations and absorber temperature. The enhancement factor was calculated according to 

the expression by WeRek et al. (1978). It is worth mentioning that the variation of 

enhancement along the absorber column affects the liquid mass transfer coefficient 

significantly. The evaporation and condensation of water, the variations in physical properties 

and heat of chemical reaction all play a vital role to build a reliable model. A further study on 

modelling complete steady-state recycling process (Model 2) was implemented by Alatiqi et 

al. (1994). The enhancement factor of absorption reaction is from Decoursey and Thring 

(1989),while the desorption enhancement factor derives from Astarita and Savage (1980). The 

reason to adopt different enhancement factor expressions is that the elevated temperature in 

regenerator makes the reversible reactions instantaneous. Both enhancement factors were 

introduced to mass transfer rates through the interface to build rate-based mathematical 
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models. The effects of operating conditions on process performance, such as type and 

concentration of amines, flow rate and composition of inlet flue gas on solution circulation 

and reboiler duty was investigated. They found using AMP instead of MEA resulted in high 

partial pressure of CO2 in outlet gas of regenerator. Besides, the increase in CO2 loading 

capacity of solvent leads to a decrease in the solvent circulation rate, thereby reducing 

required energy.   A rate-based model (Model 3) for steady-state process was further proposed 

with consideration of relevant reaction, diffusion kinetics and specific features of electrolyte 

solutions  (Kucka et al., 2003). Instead of enhancement concept, this model considers the 

precise description of the accelerating effects from chemical reactions. It is found out, the 

simulated data has a good agreement with the experimental data. 

  However, steady-state models are not sufficient to understand the impacts of post-

combustion capture on the operability of the power plant. For instance, what is the response 

of post-combustion capture plant when the power plant is operating with a varying load? Will 

modifications (flooding and higher pressure drop) occur during transient conditions, such as 

start-up and shutdown procedures? What is the effect of heat integration between power plant 

and capture plant on their operation (Kvamsdal et al., 2009)? Therefore, the dynamic 

modelling is considered as next step towards the deep process analysis. 

  The dynamic equilibrium-based (Model 4) and rate-based models (Model 1) were developed 

with an assumption of chemical reaction equilibrium (Lawal et al., 2009a). With respect to 

testing the dynamic performance, the scenario of reducing power plant load and increasing 

lean MEA solution loading is regarded as disturbances, and the parameters of liquid to gas 

ratio is adjusted. Form their results, it was found that the rated-based model gave better 

performance than the equilibrium-based approach. However, at the final section of research, 

they also suggested that the rate-based mass transfer model would be improved by 

considering kinetic and equilibrium reactions in liquid film. Following that,  Kvamsdal et al. 

(2009) has developed a dynamic rate-based model (Model 2) for absorber by taking an 

enhancement factor into account to represent liquid film reactions. The prior to adopt the 

enhancement factor in the expression is that the physical mass transfer coefficient is large 

enough. Two different transient operation scenarios were performed to demonstrate the 

dynamic model, such as start-up and load change in an upstream power plant. The dynamic 

analysis of regeneration process is also implemented by Ziaii et al. (2009).The dynamic rate-

based model (Model 1) of regeneration with reaction equilibrium was created in ACM. The 

dynamic behaviours, such as reducing reboiler steam rate with and without adjusting the rich 

solvent rate. By adjusting the ratio of rich solvent rate to steam rate, the lean loading and 
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temperature remained constant, as well as less response time for the system. They suggested 

that the residence time in the reboiler at the final steady state condition could be a dominant 

factor in the response time of the regeneration section. The dynamic rate-based model (Model 

2) of the amine regeneration unit with an enhancement factor to represent the influence of the 

reactions on the CO2 mass transfer was also developed by Mores et al. (2012b).The proposed 

mathematical model in this study was formulated as Neuro Linguistic Programming (NLP) 

model, which was associated with continuous variables and highly non-linear and non-convex 

restrictions. In this study, different correlations were used in the mathematical model to 

compute the specific area for mass transfer in different section of the stripper, which were 

Bravo’s correlation at the bottom of the regenerator and Onda correlation from the middle to 

the top of the unit. The results showed that the combination of two correlations would give 

better predictions for temperature profiles and CO2 loading of the stripper. It is not enough if 

only look at the individual unit. As absorber and regenerator are linked together with a recycle 

loop in capture plants, it is necessary to analyse the dynamic complete process. In this case, 

Lawal et al. (2010) has dynamic rate-based model (Model 1) for integrated columns in 

gPROMS, with the assumption of reaction equilibrium. With the comparison of stand-alone 

model, the results showed that the dynamic integrated model predicted the temperature profile 

better than stand-alone model. Besides, the parameter water balance was found to affect the 

performance of the system significantly. For instance, if water was lost by evaporation in the 

absorber, the CO2 loading would increase followed by a maximum value. Simultaneously, the 

capture level would be initially reduced and then increased. It was also found out that the 

performances of absorber and regenerator were affected by molar L/G ratio, reboiler duty and 

CO2 concentration of flue gas to the absorber column. In the study by Gaspar and Cormos 

(2011), a rated-based dynamic model (Model 2) of the complete absorber/desorber was 

developed to evaluate the operational challenges, with an enhancement factor involved, and 

model simulation was carried out using  Matlab-Simulink. Two simulations of different 

scenarios have been performed, including changing the power plant load and decreasing the 

temperature of rich amine stream. The results showed that the deceased power plant load lead 

to an increase of CO2 capture rate, while the decreased rich amine temperature resulted in an 

reduction of CO2 capture rate. The important finding in this research is that the capture 

performance has a higher sensitivity to changes in rich amine temperature compared to the 

L/G ratio. In another study by Lawal et al. (2012), a rate-based model (Model 1) was 

developed to analyse two dynamic cases, including reducing power plant loading and 

increasing capture level set point to 95%. They summarized that the CO2 capture plant had a 

slower response than power plant. It was further explored how capture level affects the power 
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plant loading and difficulties to achieve a steady power plant output quickly. Three further 

cases were considered by Biliyok et al. (2012a): a conventional capture process with a step 

decrease in lean amine flow rate into the absorber, an intercooled process with falling flue gas 

flow rate into the absorber and an intercooled process with a step decrease in the return 

temperature of the intercooled solvent. The rate-based dynamic model was developed, 

assuming all chemical reactions were at equilibrium (Model 1). It was observed that a higher 

moisture content affected capture level a little, while influenced the temperature profile 

significantly. When the intercooler is located close to the temperature bulge, it will improve 

the absorber performance a lot. This means the mass transfer, rather than chemical kinetics, is 

an important factor for chemical absorption CO2 capture with MEA. 

  All these mechanistic models, based on chemical-, fluid mechanic- and thermodynamic 

laws, require extensive knowledge and underlying physics of the process. Even though they 

can provide advanced features such as customizing component models for the application in 

hand, there are still limitations to carry out complicated simulations. On the one hand, it is 

difficult to identify which underlying theory and assumption result in the rising uncertainties 

of the simulation model. On the other hand, the solution of these simulators is very complex 

and time consuming. Therefore, the other two types of model techniques such as multiple 

regression models and artificial intelligence based models are taken into account. 

2.3.2 Regression model 

  Recently, Zhou et al. (2009) have proposed a multiple linear regression (MLR) model of 

carbon dioxide capture process, in which the outcome variable is predicted from the 

combination of all the input variables multiplied by their respective coefficients. 

                                         Y= β0 + β1X1 + β2X2 + … + βnXn + εi                                          2-26 

where Y is outcome variable, βn is the coefficient of nth input variable Xn, and εi is the 

difference between predicted and actual values of Y. 

  Prior to statistical analysis, they suggested four assumptions: (1) randomly distributed 

residuals, (2) normal distribution of residuals, (3) respective linear relation between each 

input variable and predicted variable, and (4) non-multicollinearity between the input 

variables. The reasons of non-multicollinearity between the input variables are explained as 

follows: (1) if the input variables are highly correlated, it is difficult to identify the importance 

of an input variable; (2) the variance of regression coefficients will be increased within 

multicollinearity. Under this circumstance, the removal of correlated input variables appears 
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to be important before the embellishment of regression models. In their study, the 

establishment of regression model is divided into three steps: correlation analysis, regression 

analysis and model assessment. Firstly, the correlation between each input variable and 

predicted variable is identified as Eq.2-27. 

                   𝑟Xi/Yj =  
n∑ (Xi)k(Yj)k−∑ (Xi)k ∑ (Yj)k

n
k=1

n
k=1

n
k=1

√n∑ (Xi)k
2−(∑ (Xi)k)

n
k=1

2n
k=1

√n∑ (Yj)k
2−(∑ (Yj)k)

n
k=1

2n
k=1

                                     2-27 

where 𝑟𝑋𝑖/𝑌𝑗 is correlation coefficient between ith input variable Xi and jth outcome variable 

Yj, which in the range of 0 and 1. If the value is close to 1, the input variable and outcome 

variable are highly correlated. However, if the correlation coefficient value is small, the input 

variable should be removed for more accuracy. 

  Following the first step, the regression model is conducted according to Eq. 2-26. The 

indicators of R, R2 and adjusted R2 are significant to analyse the regression model. R represent 

how much the combination of input variables correlates with the outcome variables, while R2 

indicates the proportion of variance in outcome variables that is explained by combined input 

variables. The adjusted R2 represents the accuracy of model across different samples. In 

addition, F-ratio is an important indicator to identify whether the regression model is good or 

not. The expression is seem as follows: 

                                                       F = 
𝑅2/ 𝑘2

(1−𝑅2)/(𝑛−𝑘−1)
                                                         2-28 

where R is multiple correlation coefficient, k is the number of input variables, n is the number 

of samples. F can explicitly indicates what extent of accuracy the model has improved. The 

large values of F means a good established model.t test is also adopted to analyse the 

regression model, as it can demonstrate the contribution of each input variable to the predicted 

variable.  

                                                               t = 
𝛽𝑡

𝑆𝛽𝑡
                                                                     2-29 

where 𝛽𝑡 is the regression coefficient and 𝑆𝛽𝑡 is the standard error of the respective 

coefficients. The large value of t means that input variable contributes a lot to predicted 

variable. 

  In the study by Zhou et al. (2009), CO2 production rate, heat duty, CO2 absorption efficiency 

and CO2 lean loading were selected as consequent variables, while the reboiler pressure, 

steam pressure to reboiler, steam rate to reboiler, amine circulation rate, amine concentration, 
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absorber off-gas were considered as predictor parameters. The correlation between 

consequent variables of CO2 absorption efficiency and CO2 production rate and the two 

predictors of reboiler pressure and amine concentration was not showed in the result, which 

was different from the operators’ knowledge. The advantage of the statistical model is 

analysing and modelling the relationships among parameters without understanding the 

theoretical relationships. However, it is unable to represent the non-linear relationships among 

the parameters and the selection of input variables strongly relies on the experts’ knowledge. 

2.3.3 Artificial intelligence based models 

  To overcome the shortcomings of mechanistic and statistical models, artificial intelligence 

(AI) based model techniques are employed to assess the process performance. In this section, 

various AI based models, such as artificial neural networks, neuro-fuzzy and fuzzy logic, are 

briefly introduced with their important mathematical aspects and previous applications to 

post-combustion carbon capture process. 

(1) Artificial neural network (ANN) 

  Unlike regression model, ANN model requires no pre-assumption and relationship between 

predicted and response variables. In other words, the built-up process of ANN model appears 

to be more convenient and efficient. The foremost character is to map non-linear systems with 

high interpolation capacity. Among various types of ANNs, one of the simplest and most 

widely used ANN models is single hidden-layer feedforward neural networks (SHLFNNs), in 

which data moves forward through all networks in only one direction. Figure 2.12 

demonstrates the structure of SHLFNNs. It is consisted of three layers: input layer, hidden 

layer and output layer. The input layer is responsible for accepting input signals, while the 

output layer is exporting the outcomes. The hidden layer contains sufficient hidden nodes 

with activation functions, which converts a neuron's weighted input to its output activation. In 

details, for N arbitrary distinct samples (xj, tj), j =  1,⋯ ,𝑁, where xj = [𝑥𝑗1, 𝑥𝑗2, ⋯ , 𝑥𝑗𝑛]
𝑇 ∈ 𝑅𝑛 

is a vector of network inputs and tj = [𝑡𝑗1, 𝑡𝑗2, ⋯ , 𝑡𝑗𝑚]
𝑇 ∈ 𝑅𝑚 is a vector of the target values 

of network outputs. The output of a standard SLFNs,  𝑜𝑖 = [𝑜𝑗1, 𝑜𝑗2, ⋯ , 𝑜𝑗𝑚]
𝑇 ∈ 𝑅𝑚 with Ñ 

hidden nodes and activation function g(x) is shown in the following equation: 

                         𝑜𝑗 = ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 ,       𝑗 = 1,⋯ ,𝑁                        2-30 

where 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, ⋯ ,𝑤𝑖𝑛]
𝑇 is a vector of the weights between the ith hidden node and the 

input nodes, bi is the bias of the ith hidden nodes, xj is the jth input sample, 𝛽𝑖 ∈ 𝑅
𝑚 is the 
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weight linking the ith hidden node and the output node. The output node is chosen to have 

linear activation function in this paper. 

  In theory, the standard SLFNs can approximate any continuous nonlinear functions with 

small error, which means ∑ ||𝑜𝑗 − 𝑡𝑗|| = 𝜀𝑗
𝑁̃
𝑗=1 . Specifically, there exits 𝛽𝑖, 𝑤𝑖 and 𝑏𝑖 to make: 

                ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 − 𝑡𝑗 = 𝜀𝑗 ,                                                                 2-31 

  Since the error is pretty small, it can be assumed  as zero when train the parameters. 

Therefore, 

                                ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 = 𝑡𝑗,                𝑗 = 1,⋯ ,𝑁                              2-32 

  The above equation can be written as Hβ=T, where: 

H(𝑤1, ⋯ ,𝑤𝑁̃ , 𝑏1,⋯ , 𝑏𝑁̃ , 𝑥1, ⋯ , 𝑥𝑁̃) = [
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥1 + 𝑏𝑁̃)

⋮ ⋱ ⋮
𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥𝑁 + 𝑏𝑁̃)

]

𝑁×𝑁̃

      2-33  

                                     𝛃 = [
𝛽1
𝑇

⋮
𝛽𝑁̃
𝑇
]

𝑁̃×𝑚

 and  𝐓 = [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
]

𝑁×𝑚

                                 2-34 

  In the above equations, H is called hidden layer output matrix of the neural network and the 

ith column of H is the ith hidden node output with respect to inputs x1, x2, …, xN. Training of 

SLFNs can be done through finding the minimum value of E=min ǁHN×ÑβÑ×m-TN×mǁ. 

  SLFNs are usually trained based on a cost or error function, which is normally the least 

mean square error (MSE) function of ǁHN×ÑβÑ×m-TN×mǁ. There are two advantages for MSE: It 

is the most appropriate cost function to be incorporated with the learning algorithm and the 

learning rate is very fast. The MSE expression is as follows: 

                                  MSE = 
1

𝑁×𝑚
∑∑ ǁ𝐻N×ÑβÑ×m − TN×mǁ

2                                            2-35 

  The update process of weights and bias is generally based on back propagation (BP) 

algorithms, which typically need many iterations and typically slow. BP algorithm repeats 

two phase cycle: propagation of error signal and parameter update. It is used in conjunction 

with various optimized methods, such as gradient decent, Gaussian-Newton method and 

Levenberg-Marquardt (LM) algorithm. From the structure perspective, ANN is particularly 

sensitive to the number of hidden neurons. Too few hidden neurons could possibly result in 
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under-fitting, while too many neurons may lead to overfitting. In the situation of overfitting, 

the model is unable to predict unknown data accurately, even though the training error is 

small. To avoid this, three methods, for instance training with Bayesian regulation, a 

modification of Levenberg-Marquardt (LM) algorithm and early stopping are normally 

employed in ANN training routines. 

 

Figure 2.12: The schematic structure of SHLFNNs. 

  As to exploration of ANN models on post-combustion CO2 capture process,  Wu et al. 

(2010) has proposed a feedforward ANN model and compare it with regression model. The 

ANN model was based on gradient decent algorithm. To compare ANN model with 

regression model, an indicator of R-value was introduced, which represents the amount of 

variation in the consequent variable that is accounted for by the model. It has shown that 

ANN model has higher accuracy than regression model. However, the standard back-

propagation with gradient decent method still exits some limitations, such as slow 

convergence and possibility to fall into local minima. Sipocz et al. (2011) has developed an 

ANN model in conjunction with two other training algorithms of Scaled Conjugate Gradient 

(SGC) and the Levenberg-Marquardt (LM) on the complete recycle process. The data was 

collected from CO2SIM simulator and divided into three groups: training data, validation data 
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and testing data. The results have shown that ANN trained with LM algorithm has better 

prediction accuracy than SGC algorithm. Furthermore, compared to rigorous rate-based 

model, it was also proved that ANN model is able to predict the outcomes faster with high 

accuracy.  

(2) Neuro-fuzzy technology 

  As ANN model has no ability to interpret the relationship between input variables and 

response variables, Zhou et al. (2010a) has further proposed a new technology on post-

combustion CO2 capture process, called adaptive-network-based fuzzy inference system 

(ANFIS). Like feedforward back propagation ANN model, the consequent variables in 

ANFIS is also calculated forward and the parameters are updated backward. However, it has 

more layers than back propagation ANN model. Figure 2.13 indicates the structure of ANFIS 

contains 5 layers, namely, a fuzzy layer, a product layer, a normalized layer, a defuzzy layer 

and a total output layer. Specifically, Layer 1 is the fuzzification layer, with the function as 

follows: 

                                              O1, i = μAi (m),               i = 1, 2                                               2-36 

                                               O1, j = μBj (n),               j = 1, 2                                               2-37 

where m, n are inputs to Layer 1, Ai and Bi are the linguistic labels associated to inputs m and 

n, O1, i and  O1, j represent the degree to which the inputs m and n are related to Ai and Bj, 

respectively. The node functions used in this layer are normally determined by the type of the 

membership function, such as triangular, trapezoid and Gaussian functions. In this study, 

Gaussian function was selected, as it can demonstrate response of output variables sensitively 

when input variables varies. The expression of Gaussian function is as follows: 

                                   μAi (m) = exp[- (m – ci)
2/ai

2]                                                            2-38 

                                   μBj (n) = exp[- (n – ci)
2/ai

2]                                                              2-39 

where ci and ai denote the centre and width of the Gaussian function, respectively. The values 

of parameter set (ci, ai) will be tuned during the learning process. 

  Layer 2 is a production layer, which multiplies the outputs of previous layer and send them 

out to layer 3. The node function is expressed as follows: 

                                    O2, i = wi = μAi (m) × μBj (n)                                                          2-40 
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  Layer 3 is the normalization layer, which indicates the ratio of ith rule’s firing strength to the 

sum of all rule’s firing strength. The output of Layer 3 is coming up with follow expression. 

                                    O3, i = ŵi = 
𝑤𝑖

𝑤1+ 𝑤2
                                                                              2-41 

  Layer 4 is a defuzzification layer, in which two fuzzy rules are applied to fuzzy sets to obtain 

output variables. 

                        Rule 1: if m is A1 and n is B1, then f1 = 𝑝1m + 𝑞1n + 𝑟1                               2-42 

                        Rule 2: if m is A2 and n is B2, then f2 = 𝑝2m + 𝑞2n + 𝑟2                               2-43 

where 𝑝1, 𝑝2, 𝑞1 and 𝑞2 are linear parameters, and A1, A2, B1 and B2 are nonlinear parameters. 

  Layer 5 is the total output layer, which sums all the inputs and computes the overall outputs. 

                                   O5, I = ∑ ŵi𝑓i𝑖  = 
∑ ŵi𝑓i𝑖

∑ ŵi𝑖
                               i=1, 2                               2-44 

  The learning rule adopted in this research is a hybrid learning algorithm, which can decrease 

the time consumption of learning process with comparison of gradient decent algorithm.  

 

Figure 2.13: Architecture of ANFIS. 

  From the results of predicting output variables, such as CO2 production rate, heat duty, 

absorption efficiency and lean loading, it appears high accuracy. Specifically, in predicting 

CO2 production rate, 120 out of 150 tuples of data have more than 95% accuracy. 112 out of 
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150 tuples of data are accurate over 95% in predicting heat duty. In the prediction of 

absorption efficiency, 111 out of 150 tuples of data have accuracies more than 95%. Lastly, in 

modelling lean loading, 69 out of 150 tuples of data have accuracies over 95%. Later, they 

compared the performance of ANFIS with that of feedforward back propagation ANN model, 

and concluded that ANFIS had average higher accuracy for predicting dependent variables 

(Zhou et al., 2010b). 

2.4 Process Control 

  As the upstream power plant is usually operating with a varying load or transient conditions, 

the flexible operation of PCC plant plays a vital role to cope with the dynamic loading. 

Hence, the strategies of control systems design of PCC plant is of great importance.  In recent 

years, a number of studies have focused on control system design of MEA-based PCC 

process. The process controllability analysis is mainly consisted of several steps explained in 

figure 2.14. Firstly, the process control goals are specified. Secondly, sensitivity analysis is 

used to identify the manipulated variables (MVs) and controlled variables (CVs). Then a 

suitable control scheme is selected. The control schemes are mainly categorized into two 

groups: decentralized configuration (PI, PID controller) and centralized configuration (MPC 

controller). MPC-based control structure can achieve the goal of online tracking and 

estimation.  Next, as to centralized control scheme, a model between CVs and MVs is 

established, while the pairs selection between CVs and MVs are determined regarding to 

decentralized configuration. Further, the parameters for each control scheme are adjusted. 

Lastly, the accomplished control scheme is evaluated with its performance. 

  

Figure 2.14: Flow chart of controllability analysis. 
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2.4.1 Decentralized Control strategy 

  It is estimated that only 5%-10% of control loops cannot be controlled by single-input 

single-output (SISO) controllers(Koivo and Tanttu, 1991). 

2.4.1.1 Pair selection between MVs and CVs 

  As to the decentralized control strategy, the main challenge is the design of single input 

single output (SISO) control loop that accounts for the interaction among the other control 

loops. Therefore, the first step is to determine SISO control loops through the manipulated 

and controlled variable pair selection, thereby minimising the interaction between SISO loops 

and achieving an acceptable control performance.  

  The relative gain array (RGA), introduced by Bristol (1966), has been widely used for over 

50 years, especially after the issue of closed loop stability was resolved by using Niederlinski 

Index (NI) as a stability criteria. To measure the interaction between each control loop, the 

process steady state gain is used. For a 2×2 process gain matrix with elements 𝐾𝑖𝑗, the RGA is 

calculated as follows: 

                                      RGA = [
𝜆11 𝜆12
𝜆22 𝜆22

] = [
𝜆11 1 − 𝜆11

1 − 𝜆11 𝜆11
]                                      2-45 

where 

                                                         𝜆11 = 
1

1−
𝐾12𝐾21
𝐾11𝐾22

                                                               2-46 

  In practice, there may be some uncertainties in system, due to the process model mismatch, 

operating condition variation, and drift of physical conditions or parameters. The uncertainty 

bounds, including lower and upper bounds of 𝜆ij, should be considered on RGA analysis. To 

calculate them, Chen and Seborg (2002) have introduced an analytical expression for 

uncertainty bounds of steady state gains as below: 

                                                               A.X ≤ b                                                                   2-47 

where A is an appropriate matrix of size (2n2) × (n2) satisfying Eq. 2.47, b is a vector of size 

(2n2)×1 containing the lower and upper bounds of K, and X is a vector of size n2×1 containing 

all elements of K as its elements: 

                                                         X = [𝐾11  …  𝐾𝑛𝑛]T                                                      2-48 
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  Therefore, the lower and upper bounds of 𝜆ij can be expressed as: 

                                                  Lower bounds: min
𝑋
𝜆ij = 𝑓(𝑋)                                           2-49 

                                                  Upper bounds: max
𝑋
𝜆ij = 𝑓(𝑋)                                           2-50 

  However, RGA is considered to have some deficiencies as it does not take process 

disturbance and dynamic into account. Stanley et al. (1985) has proposed a method called 

relative disturbance gain (RDG), which considers the process disturbance. Specifically, the 

multivariate process is expressed as Eq. 2.51 

                                                                 y = Gu + 𝐺dd                                                        2-51 

where y is a vector of controlled variables, u is a vector of manipulated variables, d is a 

disturbance, G is the process gain matrix, and 𝐺d is the disturbance gain matrix. Hence, the ith 

element of RDG is denoted as: 

                                                            𝛽𝑖 = 

[
Ə𝑢𝑖
Ə𝑑
]
𝑦𝑗

[
Ə𝑢𝑖
Ə𝑑
]
𝑦𝑗,𝑢𝑗, 𝑗≠𝑖

                                                         2-52 

  The vector of RDG can be arranged as: 

                                                 RDG{G, 𝐺𝑑𝑖𝑎𝑔, 𝐺𝑑  }= (𝐺−1𝐺𝑑) ÷ (𝐺𝑑𝑖𝑎𝑔)
-1𝐺𝑑                    2-53 

where ÷ denotes element by element and 𝐺𝑑𝑖𝑎𝑔 defines a diagonal matrix of G. 

  According to the above formulas, relative disturbance gain array (RDGA) is expressed as 

follows:  

                                                    B = [𝐺−1𝑑𝑖𝑎𝑔𝐺𝑑]
-1[𝑑𝑖𝑎𝑔(𝐺−1𝐺𝑑)]                                 2-54 

  Agustriyanto and Zhang (2007) have also come up with lower and upper bounds of RDGA 

elements for uncertainty process models.  In details, assume an n×n system containing steady 

state gain and disturbance gain: 

                                                              K = [𝐾𝑖𝑗]n×n                                                            2-55 

                                                              𝐾𝑑= [𝐾𝑑𝑗]n×1                                                          2-56 

  The relationship between RDGA and RGA is: 
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                                                    𝛽𝑖𝑗 = 𝜆ij + ∑
𝐾𝑖𝑗Ḱ𝑗𝑘𝐾𝑑𝑘

𝐾𝑑𝑖

𝑛
𝑘=1,𝑘≠i                                             2-57 

where Ḱ𝑗𝑘 is the jkth element of 𝐾−1, 𝛽𝑖𝑗 is a function of K and 𝐾𝑑. 

  According to Eq. 2.57, for RDGA, A is an appropriate matrix of size (2(n2 + n)) × (n2 + n) 

satisfying the inequalities, b is a vector of size (2(n2 + n)) × 1 consisted of lower and upper 

bounds of X, and X is a vector of size (n2 + n) × 1 containing elements of K and 𝐾𝑑 as  

                                                         X = [𝐾11  …  𝐾𝑛𝑛  𝐾𝑑1  …  𝐾𝑑𝑛]T                              2-58        

  Hence, the expression of lower and upper bounds of 𝛽𝑖𝑗 is: 

                                                   Lower bounds: min
𝑋
𝛽ij = 𝑓(𝑋)                                        2-59                              

                                                   Upper bounds: max
𝑋
𝛽ij = 𝑓(𝑋)                                        2-60 

  To overcome the limitation of dynamic by RGA rule, a new approach called dynamic 

relative gain array (DRGA) was firstly proposed, in which the demonstrator of DRGA 

achieve perfect control at all frequencies while the numerator was only the open loop transfer 

function (Witcher and Mcavoy, 1977).  Mc Avoy et al. (2003) also published an approach to 

calculate DRGA, which was based on the proportional output optimal controller gain matrix.  

In this research, they assumed a linear state space process model as: 

                                                                  dx/dt = Ax + Bu                                                  2-61 

                                                                        y = Cx                                                           2-62 

where y, u is denoted as the measurements and manipulated variable respectively. The first 

step is to scale y and u to ỹ and ữ by their operating ranges or steady state values. The 

controller gain K is calculated based on dynamic model of the process, which means the 

dynamic information is involved. Therefore, the i,jth element of the DRGA is defined as: 

                                                                𝜆Dij = 
Ə𝑢𝑖/Ə𝑦𝑖⃒𝑢𝑗 ≠0,𝑘≠i

Ə𝑢𝑖/Ə𝑦𝑖⃒𝑢𝑗 =0,𝑘≠i
                                            2-63 

  The numerator gives the change in manipulated variable to the change in controlled variable, 

in the case where the optimal controller is bringing the system back to the origin starting from 

a random initial state on the unit sphere.  The demonstrator is obtained by optimal controller 

gain matrix. Eq. 2.63 can be transformed into as follows 
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                                                                𝜆Dij = 
−𝐾𝑖𝑗

−1/Ḱ𝑗𝑖
 = 𝐾𝑖𝑗Ḱ𝑗𝑖                                             2-64 

  The rule to select best pairs of MVs and CVs by using RGA, RDGA and DRGA methods is 

the value of elements in these matrix is positive and close to 1. 

2.4.1.2 Controller tuning  

  PID controller is the most widely used controller for SISO control loop today. Theoretically, 

the PID controller is continuously calculate error e(t) as the difference between a desired set 

point and a measured process variable and applies a correction based on proportional (P), 

integral (I) and derivatives terms (D) (Eq. 2.65). This error signal e(t) will be sent to the PID 

controller, and the controller computes both the derivative and the integral of the error signal. 

The control signal u(t) to the plant is equal to the proportional gain 𝐾𝑝 times the magnitudes 

of the error plus the integral gain 𝐾𝑖 times the integral of the error plus the derivatives gain 𝐾𝑑 

times the derivatives of the error. 

                                     u(t) = 𝐾𝑝e(t) + 𝐾𝑖 ∫ e(t)dt
𝑡

0
 +  𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
                                             2-65 

  This error is simply multiplied by one, two or all of the calculated P, I and D actions. Hence, 

there are three modes used in different combinations, such as proportional (P) controller, 

proportional integral (PI) controller and proportional integral derivative (PID) controller. 

Eq.2.65 can be transformed to an expression of Laplace domain for P, PI, and PID controllers 

as follows: 

                                                  U(s) = 𝐺𝑐(s) E(s)                                                                 2-66 

where 𝐺𝑐(s) is PID controller transfer function 

  A simplified block diagram of SISO feedback control system is shown in figure 2.15. 𝑦𝑠𝑝 is 

the desired output, while y is the controlled output. u is the controller output/manipulated 

input, and e is the difference between 𝑦𝑠𝑝 and y. the load difference is entered into the process 

input, and the feedback signal is corrupted by random measurement noise n at the process 

output. 𝐺𝑝(s) is representing the process dynamic function. This is usually a first-order plus 

dead time (FOPDT) function model (Eq. 2.70), as high order and even slightly nonlinear 

behaver in experimental data are often represented by FOPDT model to facilitate the 

controller design. 

                                                        𝐺𝑝(s) = 
𝐾𝑒−Ɵ𝑠

𝜏𝑠+1
                                                                 2-67 
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Figure 2.15: A simplified block diagram of SISO feedback control system. 

  The PID-based control loop is tuned by trial and error of changing one or more of 

proportional, integral and derivatives. Hence, controller tuning process is to find the optimal 

values of three parameters: 𝐾𝑐, 𝜏𝑖, and 𝜏𝐷. According to the statistics, 293 out of 408 sources 

of tuning rules have been reported since 1992, reflecting many attentions to the PID controller 

in past decades (O'Dwyer, 2009). Amongst them, the PID controller tuning rules may be 

classified as follows(O'Dwyer, 2003): 

 Tuning rules based on measured step response. 

 Tuning rules based on minimising an appropriate performance criterion. 

 Tuning rules that gives a specified closed loop response. 

 Robust tuning rules, with an explicit robust stability and robust performance criterion 

built into the design process. 

 Tuning rules based on recording appropriate parameters at the ultimate frequency. 

  The first four tuning rules require the process model parameters while the last one does not. 

Several tuning methods have been applied extensively in last decades, such as process 

reaction curve and ultimate cycle tuning rule (Ziegler and Nichols, 1942). The outstanding 

point of process reaction curve tuning strategy is its requirement of only one single 

experimental test, while the load changes may occur to affect the process model accuracy 

(O'Dwyer, 2006). However, as to applying the ultimate cycle tuning rule, there are still some 

disadvantages. For example, the system must be generally unstable under proportional 

control. An attempt of several trials should be made to determine the ultimate gain. Besides, 
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the disturbance may result in some negative effects on process quality. The possibility of 

misunderstanding the limit cycle is detrimental to obtaining the parameters. Therefore, it is 

usually impossible to get a precise optimum settings of controllers.  Some actions are taken to 

address these disadvantages, such as a modification of the rule and the combination with 

biggest modulus tuning (BLT). The flow chart for the ultimate cycle tuning procedure is 

shown in figure 2.16. 

 

Figure 2.16: Ultimate cycle tuning procedure. Source: (Love, 2007). 
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2.4.1.3 An overview of decentralized control strategy on post-combustion CO2 capture plant 

  Lawal et al. (2010) has presented a heuristic decentralized control structure of post-

combustion CO2 capture plant using PID controllers. It was revealed that CO2 capture 

performance was more sensitive to L/G ratio than individual flow rate. Besides, the 

appropriate water balance in the absorber was shown to be of great importance. Panahi and 

Skogestad (2011) developed three different control structures using self-optimising method to 

find best CVs for three active constraints regions of the flue gas flow rate. With application of 

self-optimising control structure, the process will be not re-optimized when the disturbance 

occur. Later, Nittaya et al. (2014) compared the performance of three control structures based 

on RGA (control structure A) and heuristic approaches (control structure B and C), by using 

PI controllers. 6 manipulated variables and 6 controlled variables are selected for building 

SISO control loops (table 2.2). The details of control loops between MVs and CVs for three 

control structures are shown in table 2.3. Through sensitivity analysis, as V1 has faster effect 

on %CC than Qreb, control structure B is determined. With respect to control structure C, V2 

is used to control the reboiler temperature by adjusting the rich amine solution entering into 

the regenerator. In this case, the reboiler temperature could decrease slowly to heat the rich 

amine solution to set point of reboiler temperature. The response of control loop V2 - Treb is 

faster than control loop Qreb - Treb.  The parameters of PI controllers in control structure A and 

C are adjusted using Internal Model Control (IMC), while those in control structure B are 

tuned by process insights. It was concluded that control structure B and C have better 

performance than control structure A, as RGA did not consider process dynamics. Recently, 

Manaf et al. (2016) have proposed two decentralized control structures using PID controllers, 

which are based on RGA and Morari index of integral controllability (MIC) approaches. RGA 

analysis suggested capture efficiency (%CC) was controlled by lean solvent flow rate (V1) 

and energy performance (EP) was controlled by reboiler heat duty (Qreb), which is similar to 

the findings by Nittaya et al. (2014). However, by using MIC approach, the opposite control 

loop, %CC- Qreb and EP-V1, was determined. This control structure will not hurt the 

robustness and stability of existing closed loop system. 

 Variable  Variable 

MV1 Reboiler heat duty (Qreb) CV1 Condenser temperature (Tcond) 

MV2 Condenser heat duty (Qcond) CV2 lean amine stream temperature 

(Ttank) 
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MV3 Buffer tank heat duty (Qtank) CV3 Reboiler temperature (Treb) 

MV4 Outlet valve position of the buffer 

tank (V1) 

CV4 Percentage of CO2 removal 

(%CC) 

MV5 Outlet valve position of the 

absorber sump tank (V2) 

CV5 Liquid level in absorber sump 

tank (L1) 

MV6 Outlet valve position of the reboiler 

surge tank (V3) 

CV6 Liquid level in reboiler surge tank 

(L2) 

Table 2.2: List of manipulated variables and controlled variables. Source: (Nittaya et al., 

2014). 

 Control structure A Control structure B Control structure C 

Tcond Qcond Qcond Qcond 

Ttank Qtank Qtank Qtank 

Treb V1 Qreb V2 

%CC Qreb V1 Qreb 

L1 V2 V2 V1 

L2 V3 V3 V3 

Table 2.3: Control loops of three control structures. Source: (Nittaya et al., 2014). 

2.4.2 Centralized control strategies 

  Multivariate controller such as MPC is widely used in chemical process as an advanced 

centralized control technique.  Two attractive features such as operation of MIMO systems 

consistently and explicit consideration of constraints actions on controllers, were indicated by 

Prolss et al. (2011).  In specific details, the future process behaviour over several future finite 

time intervals is optimized by MPC algorithm known as the prediction horizons. The process 

dynamics is expressed by linear or non-linear process models. In this case, the present and 

future M control actions is anticipated by process models. After taking Mth control actions, 

the constraints are assumed to be 0. The process only accepts the first of optimal input 

sequence and the entire process will be repeated at each time interval. With the application of 

MPC control strategy, only one MPC controller is adopted. The main issue of MPC control 
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strategy is the appropriate choice of process model representation. According to the intrinsic 

nature of process dynamics, MPC controllers are categorized into two groups: linear MPC 

controllers (LMPC) and non-linear MPC (NMPC) controllers. 

  LMPC controllers have been extensively used in MPC control schemes to date. All the 

process linear model forms can be derived from a state space model, which linearize about an 

operating point: 

                                      𝒙𝑘+1 = A𝒙𝑘 + B𝒖𝑘+ C𝒗𝑘+ 𝒘𝑘                                                       2-68 

                                      𝒛𝑘 = D𝒙𝑘                                                                                         2-69  

                                     𝒚𝑘 = D𝒙𝑘+ ε𝑘                                                                                  2-70 

where 𝒙𝑘, 𝒖𝑘, 𝒗𝑘 and 𝒘𝑘 denote the vector of state variable, MVs, measured disturbance 

variables (DVs) and unmeasured DVs, respectively. ε𝑘 is a vector of measurements noise. 

  According to the indication by Kailath (1980), the above discrete-time transfer function 

model can be written equivalently in a form of matrix fraction expression. 

            𝒚𝑘 = [1 − 𝚽𝑦(𝑞
−1)]−1[𝚽𝑢(𝑞

−1)𝐮𝑘 + 𝚽𝑣(𝑞
−1)𝐯𝑘 + 𝚽𝑤(𝑞

−1)𝐰𝑘] + ɜ𝑘              2-71   

             𝒚𝑘 = 𝚽𝑦(𝑞
−1)𝒚𝑘+ 𝚽𝑢(𝑞

−1)𝐮𝑘 + 𝚽𝑣(𝑞
−1)𝐯𝑘 + 𝚽𝑤(𝑞

−1)𝐰𝑘 + 𝛿𝑘                      2-72 

                                                 𝛿𝑘 = [1 − 𝚽𝑦(𝑞
−1)] ɜ𝑘                                                     2-73 

where 𝑞−1 is a backward shift operator. 

  Besides, the Box-Jenkins model form combines the error terms together into one term ε𝑘: 

        𝒚𝑘 = [1 − 𝚽𝑦(𝑞
−1)]−1[𝚽𝑢(𝑞

−1)𝐮𝑘 + 𝚽𝑣(𝑞
−1)𝐯𝑘 ]+ [𝛩ε(𝑞

−1)]−1𝚽ε(𝑞
−1) + ε𝑘   2-74             

  If the system is stable, the finite impulse response (FIR) model is expressed as an 

approximation to Eq. 2-75: 

                   𝒚𝑘 = ∑ 𝐻𝑖
𝑢𝐍𝑢

𝑖=1 𝐮𝑘−𝑖 + ∑ 𝐻𝑖
𝑣𝐍𝑣

𝑖=1 𝐯𝑘−𝑖 + ∑ 𝐻𝑖
𝑤𝐍𝑤

𝑖=1 𝐰𝑘−𝑖 + ɜ𝑘                              2-75 

  However, in most cases, the process dynamic of chemical engineering systems is appeared to 

be nonlinear. A number of nonlinear modelling techniques, such as differential equations, 

differential-algebraic equations, discrete time algebraic descriptions, Wiener models and 

neural networks, etc., have been proposed with specific details in the open literature (Morari 

and Lee, 1999; Qin and Badgwell, 2003).  



46 

 

  The parameters of linear and nonlinear models are estimated by minimizing the following 

least-squares criterion: 

                                                       J = ∑ ‖𝑦𝑘 − 𝑦𝑘
𝑚‖2𝐿

𝑘=1                                                      2-76 

where 𝑦m is the predicted outputs. 

  There are two approaches to estimate the model parameters, one is called equation error 

approach, and the other one is called output error approach. As to the former, the past output 

measurements are fed back to calculate current output, while regarding to the latter, the past 

model output estimates are fed back to calculate current output. In other words, the former is 

called one-step ahead prediction and the latter is called long range prediction. 

  A multi-level control scheme of post-combustion CO2 capture process based on LMPC 

approach was indicated by Arce et al. (2012), which included high-level and low-level control 

loops. The high-level control loop has reduced the operating cost associated with regeneration 

system by as much as 10%, while the low-level control loop has shown the good performance 

of LMPC control, with comparison to PID based control. Sahraei and Ricardez-Sandoval 

(2014) have introduced a multivariable LMPC scheme on post-combustion carbon capture 

process, with both energy and environments constraints.  In their study, the linear transfer 

functions were firstly obtained from sensitivity analysis and then transformed into discrete 

linear state-space model. The prediction horizon and control horizon were valuable 

parameters, which were also determined by sensitivity analysis. LMPC controller tuning 

parameters were set by several tests. With the comparison of the performance between LMPC 

controller and PI controller, they have concluded that, when deal with load changes and set-

point tracking, LMPC control strategy was better to maintain MVs with their feasible limits 

and perform faster response. Zhang et al. (2016) proposed a LMPC controller for CO2 capture 

rate and reboiler temperature in the case of disturbances in flue gas flow rate and CO2 

composition of flue gas. In addition, they also compared the performance between LMPC and 

PID controller and found LMPC controller was able to avoid overshoot scenario and achieve 

settling time very shortly. However, a few contributions in the literature present the 

performance of NMPC control architecture for post-combustion CO2 capture process. To 

compensate the limitations of LMPC control scheme, Akesson et al. (2012) have suggested a 

NMPC controller for online optimisation of post-combustion CO2 capture under dynamic load 

change conditions. The nonlinear dynamic model applied in their study was derived from first 

principles and determined as differential-algebraic expressions.  The results showed that 
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NMPC control system had fast response to changes in operation conditions of upstream 

power plant. 

2.5 Process optimisation 

  To maximize profitability within a set of given constraints, process optimisation and control 

is required. The typical objective function is denoted as the economic model of the process, 

which is shown as below (Darby and White, 1988): 

                         Objective = Productive value – Feed costs – Utility costs  

                                            + Other variable economic effects                                            2-77 

  The constrained optimisation problem is usually expressed as the following form of 

mathematical equations. 

                                                       min 
𝑋
𝐹(𝑥)                                                                       2-78 

                                                       subject to: ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0                                     2-79 

where 𝐹(𝑥) is linear or nonlinear objective function, h and g are defined constraints. 

  The optimisation problem solvation is to estimate the derivatives of objective function 

regarding to operating variables. In this case, the optimisation should be continuous. 

  Two technologies of real-time dynamic optimisation are proposed: dynamic real-time 

optimisation (D-RTO) working together with MPC and economic model predictive control 

(EMPC). The former is to send the target trajectory calculated by RTO to MPC controller, 

acting as two-layer architecture.  The optimized operation point is obtained by a rigorous 

plant model in the upper layer, while the MPC controller maintains the manipulated variables 

as close as their set point (optimized operation point) in the lower layer.  The details is 

specifically shown in figure 2.17.  RTO system is consisted of steady-state detection, data 

reconciliation, process model updating, optimisation calculation and command conditioning 

to advanced controller (Sequeira et al., 2002). Specifically, the process should be firstly 

detected when the steady state is reached. The data under steady state process is collected and 

validated to implement corrective actions to fix the gross errors found in data, as well as to 

ensure the consistency for model updating. Then the measurements are used to establish the 

model which represent the plant dynamic correctly at the current operation point. Lastly, the 

optimum set point of controller is calculated by optimisation algorithms and transferred to the 

control system. However, there are several main drawbacks with the application of RTO 
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system. In details, the models between RTO and MPC controller are usually mismatched, 

resulting in a situation that the desired operation point calculated by RTO is unreachable by 

feedback control layer. Wang et al. (2017) have presented a global RTO method without 

mismatch models between optimisation and control layers. The dynamic model equations 

were transformed into a nonlinear algebraic model by using trapezoidal formula, which was 

applied in both two layers. The modified normalized multi-parametric disaggregation 

technique (NMDT) was used to as a global optimization algorithm to solve dynamic RTO 

layer. The result has shown that the problems of unreachability and infeasibility of set point in 

control layer was not appeared. Besides, since the optimisation is complete after the process 

reach steady state, the computation of new optimized condition will be delayed which affect 

the process performance. A solution was proposed to solve the problem, which optimise the 

problem with a high frequency (Sequeira et al., 2002). However, it will lead to a unstable 

closed-loop system (Engell, 2007). The two-layer strategy has been applied successfully in 

optimisation of distillation column system (Zhu et al., 2004) and polymerization process 

(Pontes et al., 2015).  

 

Figure 2.17: Schematic representation of the closed loop system of RTO and MPC controller. 

Source: Sequeira et al. (2002). 
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  As explained by Ellis et al. (2014), EMPC approach is to integrate the economic process 

optimisation and MPC control into one layer, which allows detecting process improvement 

and operation to be consistent. The cost function for direct or indirect flection of process 

economics will be incorporated into MPC formulation. It can be expressed as below: 

                                               min
𝑢∈𝑆(∆)

𝑙𝑒(𝑥̃ (𝑡), 𝑢(𝑡))𝑑𝑡                                                          2-80 

                                               subject to 𝑥̇̃ = 𝑓(𝑥̃(𝑡), 𝑢(𝑡), 0)                                               2-81 

                                               𝑥̃(0) = 𝑥(𝜏𝑘)                                                                         2-82 

                                               𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0,⍱𝑡 ≤ [0, 𝜏𝑁)                                           2-83 

                                               𝑔𝑒(𝑥(𝑡), 𝑢(𝑡)) ≤ 0                                                                2-84 

where 𝑙𝑒 is the economic cost function, 𝑥̃(𝑡) is the open-loop predicted state trajectory, 𝑢(𝑡) 

is manipulated variable. Eq. 2-85 is a continuous-time, time-invariant nonlinear dynamic 

process. Eq. 2-86 is the initialization of state measurements, where 𝜏𝑘 is the sequence 

equivalent to 𝜏0 + 𝑘∆. 𝑘 is the time step of the discrete model and ∆ is the sampling period. 𝑔 

denotes the process constraints including state and manipulated variable. Eq. 2-88 is 

economic-based constraints. Firstly, the current state measurement of process system  𝑥(𝜏𝑘) is 

used to initialize EMPC. The optimal input trajectory according to optimisation problem 

(Eq.2-82) over the prediction horizon [𝜏𝑘, 𝜏𝑘+𝑁] is calculated by Eq.2-85 in real-time. Then 

the first control action is implement to controller over the period [𝜏𝑘, 𝜏𝑘+1]. EMPC is solved 

repeatedly following above steps at the next sampling period. Several issues of EMPC 

approach should be considered, such as the feasibility of the optimisation problem and closed-

loop performance using EMPC (Ellis et al., 2014). 

  Another problem for process optimisation is considered, which in details, the process model 

is rarely accurate and reliable. Optimisation using an inaccurate model will possibly lead to 

the infeasible operations. In this case, two main optimisation technologies have been proposed 

for handling the model uncertainty, which are robust optimisation in the absences of 

measurements and adaptive optimisation in the presence of measurements respectively 

(Chachuat et al., 2009). 

  The most widely used optimisation algorithm to solve the optimisation problem is Sequential 

Quadratic Programming (SQP) approach.  With application of this approach the objective 

function is approximated by a quadratic function, and the constraints is evaluated by a linear 
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function. In this case, quadratic programing can be used recursively to find a search direction 

of minimizing the objective function. 

  A number of literatures has paid their attentions on optimisation of post-combustion CO2 

capture process. Mac Dowell and Shah (2013) has stated an optimising method for cost- 

optimal degree problems of CO2 capture plant integrated with a 660MW sub-critical power 

plant, which use dynamic non-equilibrium model to describe the capture process. In their 

study, they take the trade-off between cost of CO2 emission to atmosphere and energy 

consumption coming from the power plant into account. The results showed that the cost-

optimal CO2 capture rate is 95% with regard to the integration of a 660MW subcritical coal-

fired power plant. Using the optimisation method is able to reduce the specific energy 

required per tonne of CO2 recovered by between 10% and 25%. For the goal of  minimizing 

energy consumption of CO2 capture, Chu et al. (2016) have found the optimal height of 

absorber is 8 m and the optimal operating pressure for columns is the atmospheric pressure. In 

addition, the surface are per unit volume and the porosity of packing materials is as big as 

possible.  According to the CO2 capture community, it is commonly accepted that the CO2 

capture level is targeted as 90% or above. The most concerned issues of post-combustion CO2 

capture plant is the large energy consumption for regenerating the scrubbing solution in the 

stripper column. In terms of capital intensity, this deficiency will result in a costly operation. 

Hence, several articles have been contributed to optimize the operation conditions, in order to 

minimum the operation cost and meet the CO2 capture target as well. For example, Rao and 

Rubin (2006) performed an integrated modelling framework (IECM-cs) to evaluate the 

performance and cost of post-combustion carbon capture plant integrated with 1000 MW and 

650 MW coal-fired power plant. They examined the cost-effectiveness of PCC plant under 

varying CO2 capture efficiency and found there was a nonlinear relationship between them. 

However, it was shown that the cost-optimal degree of capture target (90%) was not achieved. 

For 1000 MW and 650 MW power plants, the cost optimal levels of capture was 81% and 

87% respectively. The IECM model was also used by other researches, such as Klemes et al. 

(2007) who presented a techno-economic model of CO2 capture process in coal-fired power 

plants ranges being 300-2000 MW. The capital expenses, operation cost, sorbent cost, steam 

cost and electricity cost were taken into account. The interesting finding was the absorber 

vessel was the largest cost item, which accounted for 30% of the total system cost. The results 

showed that, as plant size and capture level increases, the cost of CO2 avoided decreases. For 

instance, the cost of capturing 95% of CO2 from 600MW power plant was is approximately 

14% cheaper than that of capturing 85% of CO2. Recently, Mores et al. (2012a) have 
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presented an optimisation study in order to specify the operation conditions of cost-optimal 

design of amine based post-combustion CO2 capture plant. Again, they also found that the 

absorber column is the most costly piece of capital cost. The important finding in their study 

is that, the annualised cost was increasing linearly with CO2 capture level to 80%, and then 

exponentially to 95%. 

2.6 Conclusions  

  The MEA-based post-combustion CO2 capture process is considered as the most advanced 

and convenient technology to remove and store CO2 coming from coal-fired power plants, as 

it can capture the low partial pressure of CO2 and retrofit the existing power plants easily. 

However, there is still a concerned disadvantage, that it consumes a lot of energy for 

regenerating circulate solvent in regenerator. Therefore, to find the trade-offs between 

operation costs and capture efficiency appears to be important when apply this capture 

technology. In this case, it is required to develop an appropriate model for the capture process. 

As reported in the previous literatures, the computational intelligence based model has a 

better performance than mechanistic model and statistical model, in terms of calculation speed 

and generalisation ability. Meanwhile, the controllability analysis of post-combustion CO2 

capture process has also attracted a number of attentions in the past, such as application of 

PID-based and MPC based control schemes. With respect to the former control scheme, RGA, 

GRDG and DRGA are usually used to determine the appropriate control loops. On the other 

hand, the centralized control structure, such as MPC scheme, is based on the linear and 

nonlinear transfer models. In this study, it is aimed at controlling and optimizing the post-

combustion MEA-based CO2 capture plant integrated with coal-fired power plants using more 

advanced computational intelligence modelling techniques and control strategies. This is 

proved as a novel way for maximizing the CO2 capture efficiency, as well as minimizing the 

capital cost. 
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 Modelling of a Post-combustion CO2 Capture Process Using 

Bootstrap Aggregated Neural Networks 

3.1 Introduction 

  Due to the limitations in training data and training algorithms, it is generally not possible to 

obtain a perfect neural network model. For example, neural network training might be trapped 

in a poor local minimum or the trained network might over fit noise in the training data. 

Several techniques have been developed to improve neural network generalisation capability, 

such as regularisation (Bishop, 1991), early stopping (Bishop, 1995), Bayesian learning 

(MacKay, 1992), training with both dynamic and static process data (Zhang, 2001), and 

combination of multiple networks (Wolpert, 1992). By training with regularisation, the 

magnitude of network weight is introduced as a penalty term in the neural network training 

objective function with the purpose of avoiding unnecessarily large network weights which 

usually leads to poor generalisation. By training with early stopping, neural network 

performance on the testing data is continuously monitored during the training process and the 

training process stops when the neural network prediction errors on the testing data start to 

increase. Among these techniques, combination of multiple networks has been shown to be a 

very promising approach to improving model predictions on unseen data.  

  It is generally considered that a given network architecture cannot represent the inherent 

nature of the data-generating process. Different neural networks training on different subsets 

of input space are capable of approximating different classes of functions. Bates and Granger 

(1969) have initially indicated a point that the model prediction accuracy could be improved 

by the combination of several individual forecasting models. To improve the accuracy of 

ANN model, especially with a limited amount of experimental data patters, the combination 

of several single neural networks is recommended (Wolpert, 1992)  Later, in the study by 

Sridhar et al. (1996), a linear combination of neural networks has been proposed to model 

chemical process. The individual neural network was trained using different training data set.  

In addition, they implemented performance comparison between BA-NNs (bootstrap 

aggregated neural networks) model and ANN model selected using the cross validation 

scheme, and found the performance of BA-NNs model was better. The results have shown 

that, the smaller the sample size was, the larger improvement using the BA-NNs was. 

Following with that, Zhang et al. (1998) have presented a BA-NNs model to predict 

trajectories of polymer quality variables in batch polymerisation reactors from batch recipes 

with linear combination of multi networks, The BA-NNs model was developed based on 
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bootstrap re-sampled training data. The prediction confidence bounds were also applied to 

BA-NNs model for process control and monitor. The results have shown that the 

generalisation ability is improved by the combination of neural networks. BA-NNs model has 

already been applied in various aspects, such as estimation of polymer properties (Zhang et 

al., 1997), fault diagnosis (Zhang, 2002), prediction of chemical reaction yield (Monemian et 

al., 2010) and word recognition (Ebrahinpour et al., 2011). 

  The vast majority of the total annualised cost is associated to the operating cost, which is 

mainly consisted of the solvent regenerating cost. Then, Mac Dowell and Shah (2013) 

presented an optimisation study to identify the cost-optimal degree of CO2 capture with 

660MW sub-critical coal fired power plant. They have addressed the optimisation problems 

about trade-offs between cost of CO2 emission to atmosphere and cost related to electricity 

output reduction from power plant, by using a dynamic, non-equilibrium model. 95% capture 

level was identified as the optimum cost-optimal degree for 660 MW sub-critical coal-fired 

power plant. More interesting, more than 50% energy cost in the system was associated to the 

cost of solvent regeneration, which accounts for most parts of total annualised cost. Therefore, 

seeking for the optimal operation conditions with minimum energy consumption and satisfied 

capture degree appears much more important in designing a PCC plant, while non researches 

focus on this target before. Lawal et al. (2010) have identified that the liquid to gas (L/G) 

molar flow ratios for the absorber had a large effects on heat requirements for capture. The 

low L/G ratio means lean solvent is contact with significantly more CO2 in the flue gas and 

capture more CO2 yielding higher rich loading. In the stripper, more CO2 is vaporized with a 

constant reboiler duty (387K). Thus, the low L/G ratio will result in a low heat duty 

requirement for capture (MJ/kg CO2). As a result, in this chapter, the system operation 

conditions were designed to keep the lean solvent flow rate to the absorber as low as possible 

under the assumed capture level and constant conditions of inlet flue. 

  This chapter is organised as follows. Section 3.2 presents an overview of CO2 capture 

processes, including equipment size, parameter selection and data description. Section 3.3 

presents the establishment details of BA-NNs and the results of static model and dynamic 

model of a CO2 capture process using BA-NNs is detailed. Section 3.4 briefly defined the 

optimisation problem statement, which lower the energy requirement, as well as meet the 

designed capture degree. In addition, the results of system operation conditions by using BA-

NNs model are also presented in this section. Finally, Section 3.5 describes the conclusions 

and future works. 
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3.2 Overview of post-combustion CO2 capture plant 

3.2.1 gPROMS simulator description 

  The CO2 capture Process considered here is through chemical absorption.  Detailed 

mechanistic model for this process was developed by Lawal et al. (2010) and a simulator 

based on the mechanistic model was developed in gPROMS at the University of Hull, shown 

in figure 3.1. The process conditions is described in table 3.1. Simulated static and dynamic 

process operation data is generated using the simulator. 90 patterns of data is generated from 

gPROMS simulator when the process reaches steady state after a variable step change. As to 

dynamic process, an amount of 660 data patterns from 7 runs with different variables step 

changes were produced by simulator gPROMS with sampling interval of 1 second, while, to 

reduce the repetition of data information, the samples with sampling interval of 5 seconds 

were used to develop the model, shown in table 3.2. 

 

Figure 3.1: Simplified process flow diagram of chemical absorption process for post-

combustion capture. 
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Description Value unit 

Column internal diameter 0.427 m 

Height of packing 6.1 m 

Nominal packing size  0.0381 m 

Packing specific area (absorber)  145 m2/m3 

Packing specific area (regenerator) 420 m2/m3 

Cross sectional area  0.1432 m2 

Reboiler volume  1 m3 

Condenser volume  2 m3 

Solvent MEA 30wt% 

Table 3.1: Equipment Specification. 

Run NO. Samples from gPROMS 

simulator 

Samples to develop the stacked neural 

network model 

Sampling rate 

(second) 

Number of 

samples 

Sampling rate 

(second) 

Number of samples 

1 1 518 5 104 

2 1 512 5 103 

3 1 415 5 83 

4 1 521 5 105 

5 1 311 5 63 

6 1 515 5 103 

7 1 492 5 99 

Table 3.2: The dynamic sampling information from simulator and to develop BANN model. 
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3.2.2 Variables selection 

  The objective of this study is to develop a BA-NNs model for assessing the process 

efficiency and plant performance. Among hundreds of parameters in the post-combustion CO2 

capture process, two parameters were taken into account for reflecting plant efficiency. They 

are CO2 production rate and CO2 capture level, which were defined as dependent variables in 

this study. 

(1) CO2 production rate is the amount of CO2 extracted from the flue gas and amine 

solvent shown in Equation 3.1. It is measure at the top of regenerator as below: 

                                                         ɳ𝐶𝑂2= 𝑚𝐶𝑂2× 𝑣𝐶𝑂2                                                          3-1 

where ɳ𝐶𝑂2 is CO2 production rate, 𝑚𝐶𝑂2is CO2 mass fraction, and 𝑣𝐶𝑂2 is gas flow 

rate out of regenerator. 

(2) CO2 capture level is the amount of CO2 extracted from the inlet flue gas in absorber 

column. It is calculated as follows: 

                                             𝛿𝐶𝑂2 = 1- 
ḿ𝐶𝑂2×ṽ𝐶𝑂2

ṃ𝐶𝑂2×ṿ𝐶𝑂2
                                                        3-2 

where 𝛿𝐶𝑂2 is the CO2 capture level, ḿ𝐶𝑂2and ṃ𝐶𝑂2 denote CO2 mass fraction in gas 

out of absorber and inlet flow gas of absorber, ṽ𝐶𝑂2 and ṿ𝐶𝑂2 represent gas flow rate 

out of absorber and inlet flow gas rate, respectively. 

  Notably, the CO2 capture level is a total different parameter comparing with CO2 production 

rate. In details, CO2 capture level is the percentage of CO2 initially extracted from inlet flue 

gas. It is measured in the absorber column in the process and is an indicator for performance 

of the absorber. The extracted CO2 will be further processed after absorption, which will be 

regenerated during regeneration process from MEA solution. It is cooled in the condenser and 

compressed to become the final product. The CO2 production rate represents the amount of 

CO2 product after condenser. This parameter is an indicator for the whole process because it 

is not affected by a single component of the process. Both CO2 capture level and CO2 

production rate were selected as model inputs. 

  The input variables of static neural network model were selected as inlet gas flow rate, CO2 

mass fraction in inlet flow gas, inlet gas flow pressure, inlet gas flow temperature, lean 

solvent circulation rate, MEA concentration and lean solution temperature (7 variables). 

However, in dynamic neural network model ,there were selected as inlet flow gas rate, CO2 

concentration in inlet flue gas, inlet gas temperature, inlet gas pressure, MEA circulation rate, 
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lean loading, lean solution temperature and reboiler temperature (8 variables) (Lawal et al., 

2009a; Lawal et al., 2010; Biliyok et al., 2012a; Biliyok et al., 2012b; Mac Dowell and Shah, 

2013). 

3.3  BANN model 

3.3.1 Construct of BA-NNs models with sensitivity analysis (SA).  

 The static BA-NNs model with sensitivity analysis is adopted to develop a model that 

indicates the relationships between 7 independent variables described in section 3.2.2 and 

capture level. It is consisted of four steps: (1) construct the BA-NNs model, (2) apply 

sensitivity analysis to the modelling results, (2) validate the results with experts, (4) 

reformulating and reapplying the stacked neural network models to the data and generating 

results. The process steps are shown as a flow diagram in figure 3.2. 

 

Figure 3.2 BA-NNs model establishment process. 

  The general form of nonlinear static model was proposed as below: 

                                                      ŷ𝑠= f (𝑢1, 𝑢2,… 𝑢7)                                                           3-3 
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where ŷ𝑠 is the capture level, u is the process inputs, f ( ) is the nonlinear function represented 

by neural network. 

  The nonlinear dynamic one-step-ahead prediction and multi-step-ahead predictions of 

capture level and CO2 production rate by using 8 variables detailed in section 3.2.2 can be 

expressed by the first-order equations (Eq.3-4 and 3-5), as they are simple to calculate and 

accurate enough. 

                                 ŷ𝑜𝑑 (t) = f(y(t-1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1),… 𝑢8(𝑡 − 1))                          3-4                 

                                ŷ𝑚𝑑 (t) = f(ŷ𝑚𝑑  (t-1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1),… 𝑢8(𝑡 − 1))                   3-5         

where t is the discrete time. ŷ𝑜𝑑 (t) is one-step-ahead prediction, which is predicted by the 

measured output at time t-1, y(t-1). ŷ𝑚𝑑 (t) is the multi-step-ahead prediction, which is 

predicted by the predicted output at time t-1, ŷ (t-1). 

  Figure 3.3 shows a BA-NNs model, where several neural network models are developed to 

model the same relationship. These individual networks are trained on bootstrap replications 

of the original training data. Instead of selecting a “best” single neural network model, these 

individual neural networks are combined together to improve model accuracy and robustness. 

The overall output of the aggregated neural network is a weighted combination of the 

individual neural network outputs: 

                                        f X w f X
i i

i

n

( ) ( )



1

                                                                          3-6 

where f(X) is the aggregated neural network predictor, fi(X) is the ith neural network, wi is the 

aggregating weight for combining the ith neural network, n is the number of neural networks 

to be combined, and X is a vector of neural network inputs. Since the individual neural 

networks are highly correlated, appropriate aggregating weights could be obtained through 

principal component regression (Zhang et al., 1997). Instead of using constant aggregating 

weights, the aggregating weights can also dynamically change with the model inputs (Ahmad 

and Zhang, 2005). Another advantage of bootstrap aggregated neural network is that model 

prediction confidence bounds can be calculated from individual network predictions (Zhang, 

1999). The standard error of the ith predicted value is estimated as: 
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where y(xi; .) =  

n

b

b

i nWxy
1

/);(  and n is the number of neural networks in an aggregated 

neural network. Assuming that the individual network prediction errors are normally 

distributed, the 95% prediction confidence bounds can be calculated as y (xi; .)  1.96e. A 

narrower confidence bound, i.e. smaller e, indicates that the associated model prediction is 

more reliable. Thus, model prediction associated with a narrow prediction confidence bounds 

is preferred and is considered to be reliable. On the other hand, model prediction with a wide 

confidence bound is unreliable and should not be trusted.  

 

Figure 3.3: An aggregated neural network. 

  Prior to modelling, the data were pre-screened in case of missing values and outliers. Since 

the data collected in the process has different physical units, each variable should be rescaled 

by centring with respect to their means. Next, these pre-processed data has been divided into 

three sets: training data (56%), test data (24%) and validation data (20%). The activation 

function used in the output layer of the neural networks is linear activation function while that 

used in the hidden layer is the sigmoidal function expressed in Eq. 3-8.    

                                                       𝑔(𝑥) = 1/(1 + exp(−𝑥))                                               3-8 
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  The number of hidden neurons for individual neural network was determined through cross-

validation. In other words, the neural network which gives the lowest mean square error 

(MSE) on the validation data was considered to have the appropriate number of hidden 

neurons, as they were trained on different replication of training data.  In same way, the 

number of combined networks is also determined by MSE on validation data. The number of 

combined networks which has the lowest MSE is used to construct the stacked neural network 

model. To develop stacked neural network models, bootstrap re-sampling with replacement 

was used to generate 30 replications of the training data for each combined neural network. 

Then determined number of neural networks were combined linearly, shown in Equation 2.8. 

In this study, the aggregating weights were obtained by the simple method, which means the 

stacked neural network output is an average of individual neural network outputs. Lastly, run 

2, 6 and 7 are also used to validate the model developed in this study. 

  The impacts of the independent parameters on dependent parameters can be identified by 

sensitivity analysis (SA). The prediction model can be more accurate by cutting one 

insignificant predictor. In details, there are two ways for implementing the sensitivity analysis 

in the neural network models, namely equation method and the variable perturbation method 

(Wu et al., 2010).  

  With respect to equation method, it is based on Sheriff’s theory, which indicates that the 

effects of input variables can be reflected by the derivative of the ANN’s model dependent 

variables with respected to the independent variables. The formula is shown as follows: 

                                                                          3-9 

where O is the value of output node, ℎ𝑘
𝑛 is the input sum value of the (n-1)th layer to the kth 

node in the nth layer; 𝑉𝑗
𝑛 is the output value of jth node in the nth layer after applying the 

activation equation to the sum value from previous later; Ii the Ith input to the network; 𝑤𝑗𝑘
𝑛  is 

the connection weight between the jth node in layer n-1 and kth node in layer n; Si the 

sensitivity result to the ith input.  
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  However, the variable perturbation method is based on the perturbation of one input variable 

at a time and calculating the variations of outputs. There are two ways of adding perturbation, 

shown as Eq.3-10 and 3-11. 

                                                             In = In + ơ                                                                  3-10 

                                                             In = In × ơ                                                                  3-11 

where In represents the nth input and ơ is the perturbation introduced to the input variable. 

The output changes are collected from each run and an averaged value is calculated. The 

average value reflects the impacts of inputs on the outputs. This step will repeat on each input 

variables. 

  In this study, for sensitivity analysis, the MSE values of the actual and predicted outputs 

before and after removing an assumed input variable are calculated.  Then, compare both 

MSE values, if the latter one is less than the former one, it means the assumed input variable 

affects output variable significantly. 

3.3.2 Results and discussions of static model 

  As to steady state model, only the absorber is modelled. The trajectories for simulated static 

process operation data using first principal model developed in Lawal et al. (2009b) are 

shown in figure 3.4. The process variables that are selected as model input variables are: inlet 

flue gas flow rate, CO2 concentration in inlet flue gas, pressure of flue gas, temperature of flue 

gas, lean solvent flow rate, MEA concentration and temperature of lean solvent. They are 

shown in plots (a) to (g) respectively in figure 3.4. CO2 capture level, shown in plot (h) in 

Figure 3, is taken as the model output variable. Considering that static data is usually not 

abundant in practice as a process is usually operated in just a few steady states, a small 

number of data samples are produced as shown in figure 3.4. It can be seen clearly that, the 

step changes occur on each input variable and the output variable (CO2 capture level) was 

significantly affected by those input variables. From the correlation assessment of the input 

variables, it was found that there was no linear relationship between these input variables, 

which means that they are mutually independent. Therefore, the neural network model is 

constructed according to Eq. 3-3. 
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Figure 3.4:  Static process operation data (inlet gas flow rate (a), CO2 mass fraction in inlet 

flow gas (b), inlet gas flow pressure (c), inlet gas flow temperature (d), lean solvent 

circulation rate (e), MEA concentration (f), lean solution temperature (g) and capture level 

(h)). 

  The generated 90 samples of static data is split into training data (56%), testing data (24%), 

and unseen validation data (20%). The data is scaled to zero mean and unit variance before 

they are used for network training. A bootstrap aggregated neural network consists of 30 
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individual networks is developed. For the development of an individual network, a replication 

of the training and testing datasets is generated through bootstrap re-sampling with 

replacement (Efron, 1982) and the network is developed on each bootstrap replication. Each 

single hidden neural network is a single hidden layer feedforward neural network. The 

number of hidden neurons in each neural network is determined through cross validation. A 

number of neural networks with different numbers of hidden neurons (between 3 and 30) are 

trained on the training data and tested on the testing data. The network with the lowest mean 

squared errors (MSE) on the testing data is considered to have the appropriate number of 

hidden neurons. Each network was trained using the Levenberg-Marquardt optimisation 

algorithm (Marquardt, 1963) with regularisation and cross-validation based “early-stopping”.  

  Figure 3.5 shows the number of hidden neurons in the individual neural networks. It can be 

seen that number of hidden neurons vary a lot with different training and testing data sets. 

This indicates that the “best” neural network structure depends on the model building data and 

slight variation in the model building data can lead to different neural network structure. The 

individual networks are then combined through averaging.  

 

Figure 3.5: Number of hidden neurons in individual neural networks. 

  Figure 3.6 shows the mean squared errors (MSE) on training and testing data (top) and on 

unseen validation data (bottom) from the 30 different single neural networks. Figure 3.6 

shows these from aggregated neural networks with different numbers of constituent networks. 
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It is clearly seen that single neural networks give inconsistent performance on the model 

building data (training and testing data) and the unseen validation data. For instance, the 14th 

and 17th networks are among the few best networks in terms of performance on the model 

building data, but their performance on the unseen validation data is not among the best. The 

non-robustness of single neural networks is clearly indicated by the difference in performance 

of individual neural networks on model building data and unseen validation data. Figure 3.7 

clearly indicates that the bootstrap aggregated neural networks give consistent performance on 

the model building data and on the unseen validation data. In figure 3.7, the first bar in each 

plot represents the first single neural network shown in figure 3.6, the second bar represents 

combining the first two single neural networks, and the last (30th) bar represents combining all 

the 30 networks. It can be seen from figure 3.7 that as more networks are combined, the MSE 

values on both model building data and unseen validation data decrease and converge to 

stable values. Furthermore, bootstrap aggregated neural networks give much more accurate 

prediction performance than most of the individual networks. This demonstrates that 

bootstrap aggregated neural networks reliable and accurate prediction performance than single 

neural networks. 

 

Figure 3.6: MSE of CO2 capture level for individual neural networks. 
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Figure 3.7: MSE of CO2 capture level for aggregated neural networks. 

 

Figure 3.8:  Static model predictions for CO2 capture level on unseen validation data. 
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  Figure 3.8 shows the actual values, predictions, and 95% confidence bounds of CO2 capture 

level on the unseen validation data. Clearly, the predictions by using aggregated neural 

networks are close to the actual values but not extremely accurate. This is because the amount 

of training data is not enough so that the data feature cannot be learned precisely. The 

prediction confidence bounds offer extra information to the process operators on the 

prediction reliability, such as rejection or acceptation of a particular prediction from the 

stacked neural network model. A prediction with narrow prediction confidence bounds is 

considered to be reliable while, on the other hand, a prediction with wide prediction 

confidence bounds is considered to be unreliable. Figure 3.8 shows that the model prediction 

confidence bounds are quite narrow for almost all samples, except for 2nd, 10th, 11th, and 12th 

samples. Therefore, extra care needs to be taken when using predictions for these samples. 

3.3.3  Results and discussions of dynamic BANN model        
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Figure 3.9: The time series plot of input variables (inlet gas flow rate, CO2 mass fraction in 

inlet flow gas, inlet gas flow temperature, inlet gas flow pressure, lean solvent circulation rate, 

lean solvent temperature, reboiler temperature, lean loading). 

 

0 200 400 600 800
0.7

0.72

0.74

0.76

0.78

le
a
n
 
s
o
lv

e
n
t
 
c
ir
c
u
la

t
io

n
 
r
a
t
e
(
k
g
/
s
)

sample NO.

0 200 400 600 800
300

310

320

330

L
e
a
n
 
s
o
lv

e
n
t
 
t
e
m

p
e
r
a
t
u
r
e
(
K

)

sample NO.

0 200 400 600 800
380

390

400

410

R
e
b
o
il
e
r
 
t
e
m

p
e
r
a
t
u
r
e

sample NO.

0 200 400 600 800
0.26

0.27

0.28

0.29

0.3

L
e
a
n
 
lo

a
d
in

g

sample NO.



68 

 

 

Figure 3.10: The time series plots of output variables (CO2 capture level and CO2 production 

rate). 

  Figure 3.9 and 3.10 illustrate the trajectories for input variables (inlet flow gas rate, CO2 

concentration in inlet flue gas, inlet gas temperature, inlet gas pressure, MEA circulation rate, 

lean solution temperature, reboiler temperature and lean loading) and output variables ( CO2 

capture level and CO2 production rate. It is clear to see, when one input parameter was step 

changed, the other input parameters were kept constant. Furthermore, it should be emphasised 

here that CO2 production rate fluctuated significantly during the operation, shown in figure 

3.10.  This output variable was calculated by gas flow rate out of stripper and CO2 

concentration in outlet gas of stripper, which has been mentioned in Section 3.2. By exploring 

the original data, it was found that, the values of outlet gas flow rate of stripper were almost 

ignorable at the start-up of each run.  The reason is that, the response time for outlet gas flow 

rate of stripper existed when implementing the process operation. By calculating the 

correlation coefficients of each input variables, it was found that there was no linear 

relationship between the input variables. That is to say, these input variables are mutually 

independent. 

  The generated 690 patterns of data were split into training data (56%), testing data (24%), 

and unseen validation data (20%). The data were scaled to zero mean and unit variance before 

they were used for neural network training. Two multi-inputs single output (MISO) first order 

dynamic nonlinear models were developed for CO2 capture level and CO2 production rate 

using bootstrap aggregated neural networks. 



69 

 

  Each of the nonlinear dynamic models is developed using a bootstrap aggregated neural 

network consisting of 30 individual neural networks. These individual neural networks are 

single hidden layer feedforward neural networks. The number of hidden neurons in each 

network was determined through cross validation. Each network was trained using the 

Levenberg-Marquardt optimisation algorithm (Marquardt, 1963) with regularisation and 

cross-validation based “early-stopping”. 

  Figure 3.11 shows the MSE values on model building (training and testing) data and unseen 

validation data from individual neural networks. It can be seen from Figure 8 that the 

individual networks give various prediction performance. Furthermore, their performance on 

the training and testing data is not consistent with that on the unseen testing data. For 

example, network 15 is among the worst performing networks on the training and testing data. 

However, it offers the best performance on the unseen data. This clearly demonstrates the 

non-robust nature of single neural networks. Figure 3.12 shows the MSE values on model 

building data and unseen validation data from different aggregated neural networks. In figure 

3.12, the horizontal axes represent the number of individual networks contained in an 

aggregated neural network. The first bar in figure 3.12 represents the first individual neural 

network shown in figure 3.11 and second bar in figure 3.12 represents combining the first two 

individual networks shown in figure 3.11. The last bar in figure 3.12 represents combining all 

the 30 neural networks. It can be seen from figure 3.12 that bootstrap aggregated neural 

networks give much more consistent performance on model building data and unseen 

validation data. The MSE values of aggregated neural networks generally decrease as more 

networks are combined and converge to a stable level. This occurs in both the model building 

and unseen data sets. In addition to robustness, Figure 3.12 also indicates that aggregated 

neural networks give more accurate performance than individual neural networks. Figure 3.13 

shows the one-step-ahead predictions and multi-step-ahead predictions of CO2 production rate 

on 7th batch (492 samples) using aggregated neural networks. It is clearly seen that the 

predictions are very close to the actual values, except for a few samples where the CO2 

production rates are very high or very low. The slightly larger prediction errors at these 

samples are likely due to the fact that training data is scare at these extreme operating points. 

The accurate multi-step-ahead predictions are very encouraging indicating that the model has 

captured the underlying dynamics of the process. The long range predictions are very accurate 

till about 90 step-ahead predictions. Such accurate long range predictions are more than 

sufficient for model predictive control and real-time optimisation applications. 
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Figure 3.11: MSE of CO2 production rate for individual neural networks. 

 

Figure 3.12: MSE of CO2 production rate for aggregated bootstrap neural networks. 
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Figure 3.13: Dynamic model prediction of CO2 production rate by BA-NNs on 7th batch. 

 

Figure 3.14: Dynamic model prediction of CO2 capture level by BA-NNs on 2nd batch. 
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  The dynamic BA-NNs predictions of CO2 capture level on 2nd batch (512 samples) are also 

accurate as shown in figure 3.14. It can be seen that the long range predictions are accurate 

until 82-steps-ahead predictions. Again such long prediction horizon is generally adequate for 

many applications such as model predictive control and real-time optimisations.  

3.4 Optimisation of CO2 capture plant 

3.4.1 Optimisation problem statement 

  Figure 3.15 indicates the typical flow sheet of the CO2 capture process by chemical 

absorption constructed in Aspens Hysys, which is similar to the gPROMS model used by 

Lawal et al. (2010). The previous literature has specified the numerical values of the design 

and operating parameters, shown in table 3.1. One of the important sections in the PCC 

system is the reboiler unit, which provides heat to the stripper for vaporizing purity CO2 from 

rich solution.  The heat in the reboiler is generated by the low pressure steam from the coal-

fired power generation plant. For the PCC process, several trade-offs are existing such as CO2 

capture level, heating utility required by reboiler, electricity power consumption by 

compressor, blower and CO2 pumps. Particularly, the main concern is the large amount of 

energy consumption for amine regeneration section. As reported by Lawal et al. (2010), L/G 

ratio is the effective indicator to reflect the energy consumption. The capture system is 

treating the inlet flue gas with constant conditions, such that 0.12 kg/s of flue gas flow rate, 

0.25 CO2 mass fraction, 320 K of temperature and 1.01 bar of pressure. Hence, to minimize 

lean solvent flow rate 𝑣𝐿 as far as possible will minimize the energy consumption in the 

regenerator. 

 

Figure 3.15: Steady-state flow sheet in Aspens Hysys.  
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  In this section, the proposed optimisation problem (OP) consists on the minimization of lean 

solvent flow rate at the absorber inlet (𝑣𝐿) with several constraints. It can be formally stated as 

below: 

                                                         To Minimize:  𝑣𝐿                                                         3-12 

subject to the process constraints and operation conditions: 

                                                     0.3 kg/s ≥ 𝑣𝐿 ≥ 0.8 kg/s                                                  3-13 

                                                       25%  ≥ 𝐶𝑀𝐸𝐴 ≥ 35%                                                     3-14   

                                                                𝛿𝐶𝑂2 ≥ 90%                                                          3-15                     

where 𝐶𝑀𝐸𝐴 denotes the MEA concentration in lean solvent and  𝛿𝐶𝑂2 represents the capture 

level. Eqs. 3-13, 3-14 and 3-15 refer to a set of the inequality constraints defined in order to 

circumscribe a feasible operation region.  

  The MEA concentration and inlet solvent temperature at the absorber  were commonly 

determined with set points at approximately 30 wt% and 313.15k, respectively (Arias et al., 

2016). The BA-NNs model was used in solving the optimisation problem. The sequential 

quadratic programming (SQP) method implemented in the MATLAB Optimisation Toolbox 

was used to solve the optimisation problem 

3.4.2 Optimal operation 

  For the optimal operation of an assumed coal-fired power plant integrated with PCC plant it 

is necessary to explore the optimal values of lean solvent flow rate at a specific optimal 

capture level. In this case study, the constraint on capture level given by Eq. 3-16 was varied 

for the following specific values: 

                                              𝛿𝐶𝑂2 = {90%, 92%, 94%, 96%, 98%}                                  3-16 

  The optimal values of lean solvent flow rate at different capture level were displayed in 

figure 3.16. The corresponding L/G ratios are 4.75, 4.93, 5.13, 5.35 and 5.63, respectively. It 

demonstrates that the more CO2 it captures, the higher L/G ratio the plant should be 

controlled. As shown in figure 3.16, the more solvent is required for absorbing more CO2 at 

higher capture level. However, it will result in an increasing heat requirement for lean solvent 

regeneration. To achieve the target which capture level is no less than 90%, the optimal 

operation of lean solvent flow rate is 0.5698.  
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Figure 3.16. Optimal lean solvent flow rate at different capture level. 

3.5 Conclusions 

  The neural network static and dynamic models of CO2 production rate and CO2 capture level 

are developed and they are shown to be able to give accurate predictions. The aggregated 

neural networks model is found to be the useful tool to predict the post-combustion CO2 

capture process, which is more accuracy and reliable than the traditional neural network 

models. Bootstrap aggregated neural networks give consistent performance on the model 

building data and unseen validation data. Furthermore, bootstrap aggregated neural networks 

can give model prediction confidence bounds, which are a very useful measure on the 

prediction reliability and can be incorporated in the optimisation framework to give reliable 

optimisation results (Zhang, 2004). Reliable optimisation of the CO2 capture process using the 

developed neural network models will be studied in the future. 

  In addition, the optimal operation of coal-fired power plant integrated with PCC plant was 

also investigated. The objective function is to minimize the lean solvent flow rate to low the 

energy consumption in the process system. The optimal operation studies were carried out for 

the optimal different carbon capture levels. For the low energy consumption in the regenerator 

with target (𝛿𝐶𝑂2 ≥ 90%), the optimal lean solvent flow rate at absorber is set as 0.5698. The 

future study could be concentrated on the techno-economic evaluation of PCC plant, with a 

consideration of market price.  
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 Modelling of a Post-combustion CO2 Capture Process Using 

Extreme Learning Machine 

4.1 Introduction 

  As stated in Chapter 2, SLFNNs trained by the back propagation (BP) learning algorithm 

have experienced some issues: firstly, the most appropriate learning rate is difficult to 

determine; secondly, the presence of local minima affects the modelling results; then, 

networks would possibly be over trained because of too many hidden neurons, leading to poor 

generalization performance; lastly, it is also time-consuming when applying gradient based 

learning. As all the parameters of SLFNNs are required to be adjusted randomly, the training 

procedures of SLFNNs with traditional method may takes several hours, several days or even 

more time. 

  To address the issue of slow training in traditional SLFNNs, Huang et al. (2004) has firstly 

proposed a new method called extreme learning machine (ELM). The structure of ELM is 

similar to SLFNNs, while their ways of parameters updating are different. Specifically, the 

weights between the input and hidden layers are randomly assigned instead of tuned, while 

the weights between the hidden and output layers are determined in a one-step regression type 

approach using Moore-Penrose (MP) generalised inverse. In this case, an ELM can be built 

very quickly and the generalisation performance is better. As the weights between the input 

and hidden layers are randomly assigned, correlations can exist among the hidden neuron 

outputs and variations in model performance. Later, they extended ELM from SLFNNs to 

radial basis function (RBF) case, which arbitrarily assigns the kernels instead of adjusting 

them (Huang and Siew, 2004). It was compared to support vector machine (SVM) and the 

regression results showed that the learning speed of ELM was faster and the generalisation 

performance was as good as SVM. However, as the inputs weights and hidden biases are 

randomly assigned, there may exist dissatisfied and unnecessary selections. As a result, ELM 

requires more hidden neurons than traditional tuning-based SLFNs, which may make ELM 

response slowly to testing data. To make up for the deficiency, Zhu et al. (2005) have used 

the modified differential evolution (DE) to determine optimal input weights and hidden 

biases, in which both validation fitness and the norm of output weights are used as selection 

criteria. In details, when the difference of the RMSE between different sets of inputs weights 

and hidden biases is small, the one resulting in smaller norm of output weights is selected. 

This type of ELM, called E-ELM, has a faster response speed to unknown testing data and 

better generalisation performance than original ELM. It is noted that E-ELM is not suitable 
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for data sets with a large amount of features, because DE algorithm takes much time to search 

for optimal input weights and hidden biases.  Huynh et al. (2008) used a fast regularized least-

squares scheme to replace DE. It can achieve higher generalisation performance and faster 

learning speed in both small and large number of inputs features. ELM has been applied in 

various aspects, such as fault diagnosis (Hu et al., 2008), forecasting (Sun et al., 2008), 

regression (Frenay and Verleysen, 2016), and classification (Iosifidis et al., 2015). 

  In this chapter, principal component regression (PCR) is used to obtain the output layer 

weights, instead least square algorithms. It is able to overcome the correlation issues among 

hidden neuron outputs. Besides, the multiple ELMs are built on bootstrap re-sampling 

replications of the original training data and then combining these ELMs in order to enhance 

model accuracy and reliability. The proposed method is applied to the dynamic model 

development of the whole post-combustion process plant.  

  This chapter is structured as follows: Section 4.2 briefly presents the BA-ELM and a method 

for calculating output layer weights in BA-ELM using PCR, as well as aggregating multiple 

ELM. Application results and discussions are presented in section 4.3. Section 4.4 draws 

some concluded remarks. 

4.2 Development of BA-ELM 

4.2.1 Single hidden neural networks 

  Figure 4.1 shows the structure of a single hidden layer feedforward neural network (SLFN). 

For N arbitrary distinct samples (xj, tj), 𝑗 = 1,⋯ ,𝑁, where xj =[𝑥𝑗1, 𝑥𝑗2, ⋯ , 𝑥𝑗𝑛]
𝑇 ∈ 𝑅𝑛 is a 

vector of network inputs and t = [𝑡𝑗1, 𝑡𝑗2, ⋯ , 𝑡𝑗𝑚]
𝑇 ∈ 𝑅𝑚 is a vector of the target values of 

network outputs. The output of a standard SLFNs,  𝑜𝑖 = [𝑜𝑗1, 𝑜𝑗2, ⋯ , 𝑜𝑗𝑚]
𝑇 ∈ 𝑅𝑚 with Ñ 

hidden nodes and activation function g(x) is shown in the following equation: 

                  𝑜𝑗 = ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 ,   𝑗 = 1,⋯ ,𝑁                    4-1  

where 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, ⋯ ,𝑤𝑖𝑛]
𝑇 is a vector of the weights between the ith hidden node and the 

input nodes, bi is the bias of the ith hidden nodes, xj is the jth input sample, 𝛽𝑖 ∈ 𝑅
𝑚 is the 

weight linking the ith hidden node and the output node. The output node is chosen to have 

linear activation function in this paper. 

  In theory, the standard SLFNs can approximate any continuous nonlinear functions with 

small error, which means ∑ ||𝑜𝑗 − 𝑡𝑗|| = ɛ𝑗
𝑁̃
𝑗=1 . Specifically, there exits 𝛽𝑖, 𝑤𝑖 and 𝑏𝑖 to make: 
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                            ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 − 𝑡𝑗 = ɛ𝑗 ,                                                           4-2 

  To obtain the values of network parameters, the small error was assumed to be ignored. 

Hence, 

                        ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 = 𝑡𝑗,             𝑗 = 1,⋯ ,𝑁                                           4-3  

  The above equation can be written as Hβ=T, where: 

H(𝑤1, ⋯ ,𝑤𝑁̃ , 𝑏1,⋯ , 𝑏𝑁̃ , 𝑥1, ⋯ , 𝑥𝑁̃) = [
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥1 + 𝑏𝑁̃)

⋮ ⋱ ⋮
𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥𝑁 + 𝑏𝑁̃)

]

𝑁×𝑁̃

        4-4  

                             𝛃 = [
𝛽1
𝑇

⋮
𝛽𝑁̃
𝑇
]

𝑁̃×𝑚

 and  𝐓 = [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
]

𝑁×𝑚

                                                4-5 

  In the above equations, H is called hidden layer output matrix of the neural network and the 

ith column of H is the ith hidden node output with respect to inputs x1, x2, …, xN. Training of 

SLFNs can be done through finding the minimum value of E=min ǁHN×ÑβÑ×m-TN×mǁ. 

 

Figure 4.1: The structure of single hidden layer feedforward networks. 

  SLFNs are usually trained by gradient-based learning algorithms, such as BP algorithm, 

which typically need many iterations and typically slow. The process of training is to search 
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the minimum value of ǁHN×ÑβÑ×m-TN×mǁ by numerical optimisation methods. In this 

procedure, the parameters 𝜽 = (𝛃, w, b) is iteratively adjusted as below: 

                                       𝜽 = 𝜽k-1 - η
𝜕𝐸(𝜽)

𝜕𝜽
                                               4-6 

where η is the learning rate. By using BP algorithm, the parameters are updated by error 

propagation from the output layer to the input layer.  

4.2.2 BA-ELM 

  Huang et al. has proved that, if the activation function g(x) is infinitely differentiable in any 

interval and the number of hidden nodes is large enough, it is not necessary to adjust all the 

weighting parameters of the network (Huang et al., 2006). In other words, the weights and 

biases between the input and hidden layers can be randomly chosen. In order to get good 

performance, the required number of hidden nodes is not more than the number of input 

samples. Huang et al. have used a method of finding a least square solution of the linear 

equation Hβ=T to obtain the weights between the hidden and output layers.  

                                                                𝛃 = 𝐇†𝐓      4-7 

where 𝐇† is the generalised inverse of H. 

  However, as the hidden layer outputs can be collinear, the modelling performance would be 

poor by using least square solution to find the weights between the hidden and output layers. 

This would be especially true for ELM as they have randomly assigned hidden layer weights 

and typically large number of hidden neurons are required. In this paper, PCR is used to 

obtain the weights between the hidden and output layers to overcome the multicollinearity 

problems. Instead of regressing H and T directly, the principal components of H matrix are 

used as regressor.  

  The matrix H can be decomposed into the sum of a series of rank one matrices through 

principal component decomposition. 

                            
T

NN

TT
pupupuH  ...2211                       4-8 

  In the above equation, ui and pi are the ith score vector and loading vector respectively. The 

score vectors are orthogonal, likewise the loading vectors, in addition they are of unit length. 

The loading vector p1 defines the direction of the greatest variability and the score vector u1, 

also known as the first principal component, represents the projection of each column of H 
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onto p1. The first principal component is thus that linear combination of the columns in H 

explaining the greatest amount of variability (u1=Hp1). The second principal component is 

that linear combination of the columns in H explaining the next greatest amount of variability 

(u2=Hp2) subject to the condition that it is orthogonal to the first principal component. 

Principal components are arranged in decreasing order of variability explained. Since the 

columns in H are highly correlated, the first a few principal components can explain the 

majority of data variability in H.  

                                                      EpuEPUH  


k

i

T

ii

T

kk

1

                4-9 

where Uk = [u1 u2 ... uk], Pk = [p1 p2 ... pk], k represents the number of principal components 

to retain, and E is a matrix of residuals of unfitted variation.  

  If the first k principal components can adequately represent the original data set H, then 

regression can be performed on the first k principal components. The model output is obtained 

as a linear combination of the first k principal components of H as 

                                              wHPwUT kk ˆ                                                         4-10 

where w is a vector of model parameters in terms of principal components. 

  The least squares estimation of w is: 

                            TUUUw
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1)(                4-11 

  The model parameters in Eq.4-6 calculated through PCR are then given by the following 

equation: 

                                   wPβ k  THPHPHPP
TT

kk

TT

kk

1)(                 4-12 

  The number of principal components, k, to be retained in the model is usually determined 

through cross-validation (Wold, 1978).  The data set for building a model is partitioned into a 

training data set and a testing data set. PCR models with different numbers of principal 

components are developed on the training data and then tested on the testing data. The model 

with the smallest testing errors is then considered as having the most appropriate number of 

principal components. 
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  As indicated in Chapter 3, combining several networks can improve the prediction accuracy 

on unseen data and give a better generalization performance. The bootstrap re-sampling 

replication of the original training data is used for training individual networks and the overall 

output of the stacked neural networks is a weighted combination of the individual neural 

networks (Fig. 3.1). 

  Therefore, the procedure of building bootstrap aggregated ELM model can be summarized 

as follows: 

  Given a activation function g(x), and number of hidden nodes Ñ, 

Step1: Apply bootstrap re-sampling to produce n (e.g. n=50) replications of the original 

training data, (xi, ti)1,…, (xi, ti)n|xi ∈ 𝑅𝑛, 𝑡𝑖 ∈ 𝑅
𝑚, i=1,…, N. 

Step 2: On each bootstrap replication of the original training data, build an ELM model: 

 Step 2(a): Randomly assign hidden layer weights wi and bias bi, i=1… Ñ. 

 Step 2(b): Calculate the hidden layer output matrix H. 

 Step 2(c): Calculate the output weights 𝛃 by PCR. 

Step 3: Combine the n (e.g. n=50) ELM models by averaging their predictions. 

  It has been also suggested that, the model prediction confidence bounds can be calculated 

from individual predictions by using bootstrap aggregated neural networks. The standard error 

of the ith predicted value is detailed in Eq.3-2. A narrower confidence bound is preferred as it 

indicates the associated model prediction is more reliable. 

4.2.3 Characteristic comparison between SLFNNs and ELM 

  With the comparison to SLFNNs, ELM has several advantages due to its ways to get output 

layer weights. Due to its fast training speed, the training time will be reduced a lot. Further, 

the generalisation performance is better than SLFNNs, which can be reflected by MSE values. 

Besides, ELM is able to overcome the shorcomings of SLFNNs such as local minimum, 

improper learning rate and overfitting problems. Mostly important, the activation function in 

ELM can be either differential or non-differentia, while for SLFNNs, it can be only 

differential. However, there are still existing some problems. The number of hidden nodes 

needs to be large enough. 
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4.3 Performance evaluation of static BA-ELM model 

  As same to Chapter 3, 90 patterns of static data including 56% training data, 24% testing 

data, and 20% unseen validation data (20%) are used to build BA-ELM static model. the data 

pre-process steps are taken as same as mentioned in Chapter 3. The output CO2 capture Level 

is predicted by BA-ELM model using same 7 input variables in Section 3.2.2 to compare the 

performance with BA-NNs model. 

 

Figure 4.2: MSE of CO2 capture level for individual ELM. 
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Figure 4.3: MSE of CO2 capture level for aggregated ELM. 
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than 20, there is no much improvement for accuracy both for training & testing data and the 

unseen validation data. When aggregate the 30 single ELM together, the MSE values on 

unseen validation data are similar as those by BA-NNs model. In other words, the 

generalisation performance of BA-ELM model is as good enough as BA-NNs model.  

 

Figure 4.4: Static BA-ELM model predictions for CO2 capture level on unseen validation 

data. 
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output value is not big, except for 2nd, 9th, and 12th samples. This result appears to be similar 

to that predicted by BA-NNs model, while their MSE values by BA-ELM model are smaller  

4.4 Performance evaluation of dynamic BA-ELM model 

  The simulated dynamic process operation data and same 8 variables in section 3.2.2 were 

used to build data-driven models. The simulated data were generated from the mechanistic 

model implemented in gPROMS at University of Hull with a sampling time of 5 seconds. The 

data were divided into three groups as same as Chapter 3: training data (56%), testing data 

(24%), and unseen validation data (20%).  The completed model used the input data of the 7th 

batch (492 samples) in which the reboiler temperature has a step change, to verify its accuracy 

for predicting CO2 production rate. Then, the 2nd batch (512 samples) is used to verify the 

model accuracy by predicting CO2 capture level, in which there is a step change of the lean 

solution flowrate. To demonstrate the good performance of bootstrap aggregated ELM, its 

results are compared with those from Chapter 3. Before training, the data should be scaled to 

zero mean and unit variance. Both bootstrap aggregated neural network (BA-NNs) and BA-

ELM models combine 30 neural networks. In addition, the numbers of hidden neurons used in 

BA-NNs and BA-ELM are selected within the range of 2-20 and 40-100 respectively. All 

models with the number of hidden neurons in the above ranges are developed and tested on 

the testing data. The models give the smallest mean squared errors (MSE) are considered as 

having the appropriate number of hidden neurons. The reason for ELM having more hidden 

neurons is due to the random nature of hidden layer weights in ELM and small number of 

hidden neurons would usually not be able to provide adequate function representation. The 

form of the dynamic model is shown in Eqs.3-6 and 3-7.  

  From the development procedures of these two models, it is clearly recognised that BA-

ELM model is very fast because its training only needs one iteration. The performance details 

of the bootstrap aggregated neural networks and bootstrap aggregated ELM is shown in table 

4.1. The training CPU time of BA-ELM is 163.4422 s, approximately 9 times lower than that 

of BA-NNs. The verifying time by BA-ELM is 0.7176 s, while by BA-NNs is only 0.2964s. 

This is because the number of hidden neurons in ELM is more than that in SLFNNs, which 

leads to the computation more complex. With respect to MSE comparison, the MSE value on 

training data by suing BA-ELM is 0.0488, which is bigger than that with application of BA-

NNs (0.0219). The reason resulting in this situation is that BA-NNs normally over-fit the 

training data, so that the MSE value is much smaller. Regarding to model performance on 

unseen validation data, MSE value of BA-NNs is much bigger than that from BA-ELM, 
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which means the generalisation performance of BA-ELM is better. It is concluded that BA-

ELM is able to train faster and perform better than BA-NNs.   

Learning 

Algorithm 

Time (CPU time, s) 

Training time       Verifying time                                                         

(2nd batch) 

Training 

accuracy(MSE) 

Validation 

accuracy(MSE) 

    

BA-ELM 163.4422                0.7176 

 

0.0488 0.0441 

 

BA-NNs 

 

1726.4                     0.2964 

 

 

0.0219 

 

0.0771 

    

Table 4.1: Performance comparison of BA-ELM and BA-NNs for CO2 production rate.   

  The MSE values of individual ELM model for predicting CO2 production rate can be seen in 

figure 4.5. The performance on the unseen validation data is not in accordance with that on 

the training and testing data. For instance, the prediction on the unseen validation data by the 

20th ELM is the worst, however, its performance on the training and testing data is better than 

many of the individual ELM models. This clearly demonstrates that single network has non-

robust nature. Nevertheless, when several individual networks are combined together to build 

the model, the weakness can be addressed easily. Figure 4.6 indicates the MSE values on 

model building data by aggregating different numbers of ELM models. The first bar in figure 

4.6 represents the first individual ELM model shown in figure 4.5, the second bar represents 

the combination of the first two individual ELM models, and the last bar represents 

combining all the individual ELM models. Look into the trends of top and bottom plots in 

figure 4.6, the prediction performance of bootstrap aggregated ELM on the unseen validation 

data is consistent with that on the training and testing data. In other words, combining several 

ELM models is able to get more accurate predictions on the training and testing data, as well 

as on the unseen validation data, than single ELM models. Furthermore, the MSE values in 
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Figure 4.6 indicates that, the aggregated ELM model  provides more accurate predictions than 

single ELM models, when comparing with the MSE values in figure 4.5. 

 

Figure 4.5: MSE of CO2 production rate for individual ELM models on training & testing data 

(a) and validation data (b). 
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Figure 4.6: MSE of CO2 production rate for bootstrap aggregated ELM training & testing data 

(a) and validation data (b). 
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(a) 

 

(b) 

Figure 4.7: Dynamic model predictions of CO2 production rate on Batch 7 using BA-ELM (a) 

and BA-NNs (b). 
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Figure 4.8: MSE of CO2 capture level for individual ELM models on training & testing data 

(a) and validation data (b). 

 

Figure 4.9: MSE of CO2 capture level for individual ELM models on training & testing data 

(a) and validation data (b). 
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  Figures 4.8 and 4.9 show the MSE values of the 30 single ELM neural network models and 

the 30 continuously aggregated models for CO2 capture level. The result is almost similar 

with other dynamic model. From the 30 single ELM neural network models, there is a big 

difference between the MSE values of each model. This also shows that there is a big 

difference between the accuracy of the model. But in the stacked models, with the increase of 

the number of the stacked model, the accuracy of the model is gradually stabilized around a 

constant value. 

  Figure 4.10 shows the performance comparison of one-step-ahead predictions and multi-

step-ahead predictions of CO2 capture level using BA-ELM and BA-NNs models. It is clear 

seen from the bottom graph both one-step-ahead predictions and multi-step-ahead predictions 

from BA-NN are reasonably accurate though some errors are observable, but the long range 

predictions (green line) are not accurate after 82 steps (410 s). However, in the top graph, the 

accurate one-step-ahead predictions and multi-step-ahead predictions from BA-ELM are very 

encouraging, indicating that the model has captured the underlying dynamics of the process. 

Such accurate long range predictions can be further used for model predictive control and 

real-time optimisation applications. 
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(b) 

Figure 4.10: Dynamic model prediction of CO2 capture level using BA-ELM (a) and BA-NNs 

(b). 
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been proved in (Huang et al., 2006). 
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Learning Algorithm Time/CPU time 

Training time      Verifying time                                       

(2nd batch) 

Training 

accuracy(MSE) 

Validation 

accuracy(MSE) 

    

Bootstrap 

Aggregated ELM 

(BA-ELM) 

  292.8919            0.8112     

 

0.0034 0.00043 

 

Bootstrap 

Aggregated Neural 

Networks (BA-

NNs) 

 

  1902.1                 0.5148 

 

 

0.0030 

 

0.0015 

    

Table 4.2: Performance comparison of BA-ELM and BA-NNs for CO2 capture level. 

4.5 Conclusions 

  From the theoretical ELM algorithm, we have built two types of BA-ELM models such as 

static and dynamic models. Two indicators represent the performance of post-combustion 

 CO2 capture process, such as CO2 capture rate and CO2 capture. In this chapter, all of the BA-

ELM models indicate good model accuracy and generalisation ability. Also, the BA-ELM 

model has a good stability in both one-step ahead prediction and multi-steps ahead prediction. 

Compared with the traditional SLFNNs model, the advantages of ELM model are very 

prominent. The main point is the training speed improved with thousand times. Not only the 

training speed increases, but also the good generalization performance could be achieved by 

the ELM model. Especially for multi-steps ahead prediction, BA-ELM model have a better 

generalisation ability. Therefore, BA-ELMs is demonstrated as a powerful tool to model the 

post-combustion CO2 process, which can be trained much faster and is more accurate than the 

BA-NNs models. It gives a good generalization performance on unseen data, because the 

aggregation of multiple ELM can make the model avoid being trapped into local minima and 

over-trained problems. The model will be used to optimize the CO2 capture process in the 

future. 
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  Nevertheless, the BA-ELM still exits some problems. For instance, the number of hidden 

neurons is quite large, which may affect the model accuracy. If outliers appear in the input 

data, the model would become unreliable. The BA-ELM model needs a further improvement, 

as a result of these shortcomings. 
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 Modelling of a Post-combustion CO2 Capture Process Using 

Deep Belief Network 

5.1 Introduction 

  To improve prediction accuracy and generalization ability, Chapter 3 have presented a BA-

NNs model, which aggregates several single neural networks to model post-combustion CO2 

capture process. The modelling technique was found to be able to model the post-combustion 

CO2 capture process with higher accuracy and reliability than traditional neural network 

models. In order to increase training speed and generalisation ability, Chapter 4 has shown a 

new modelling algorithm, called BA-ELM, which modify the way of calculating output layer 

weights in SLNNs. Both BANNs and BA-ELM can give model prediction confidence bounds, 

which is a useful tool to measure prediction reliability.  However, the above mentioned 

learning algorithms have a shallow architecture, i.e., the networks have only one hidden layer. 

This is because, there is no successful training strategy for NNs with multiple hidden layers 

before 2006.  As reported, there are several deficiencies for shallow neural networks. For 

examples, the shallow neural networks are limited to represent complex, highly-varying 

relationship between input and output variables, and easy to converge to local optima (Bengio 

and LeCun, 2007). Under such circumstances, the deep multi-layer neural networks model 

was proposed, which was inspired by the structure of human brain. However, due to poor 

results from gradient-based methods with random initialization the deep multi-layer neural 

networks have not been applied successfully before 2006. Hence, to develop the training 

algorithms of deep architecture networks appears to be a challenging problem. To solve the 

problems, Hinton et al. (2006) have put forward a greedy layer-wise unsupervised learning 

algorithm for Deep Belief Networks (DBN), which pre-train one layer at a time in a greedy 

way. With the comparison of random initialization, the results of DBN show that the initial 

parameters of networks are much closer to optimal solutions. Since then, increasing attention 

has been paid to deep learning and it contributes a lot to image recognition (Liao et al., 2015) 

and time series forecasting (Ren et al., 2017). However, the application of DBN model on 

regression of CO2 capture process has not yet been much exploited. 

  In this work, a 3-layer DBN which is consisted of two restricted Boltzmann machines 

(RBMs) is proposed to modelling the inherent process relationship of post-combustion CO2 

capture plant. Theoretically, according to Hinton et al. (2006) and Bengio and LeCun (2007), 

the visible layer of RBM receives the high dimension data and then the hidden layer extracts 

the features of data between different classes by the connection weights. 
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  The rest of this chapter proposed is arranged as follows. Section 5.2 presents the theoretical 

knowledge of DBNs and their component layers, Restricted Boltzmann Machines (RBM).  

Section 5.3 introduces the details of the DBN model for a post-combustion CO2 capture plant. 

Then, the comparative result analysis between single-hidden layer feedforward neural 

networks (SLNNs) and DBNs is revealed in Section 5.4. Finally, Section 5.5 gives 

conclusions and future works. 

5.2 Deep Belief Networks  

  Many researches have shown that DBNs can produce models with more accuracy and 

precision, especially with respect to audio and image classification (Liao et al., 2015; Ren et 

al., 2017; Uddin and Kim, 2017). In this paper, DBNs integrated with neural network model 

is used to model a post-combustion CO2 capture process.  

5.2.1 Restricted Boltzmann Machines 

  DBNs are consisted of several Restricted Boltzmann Machines (RBMs), which is a single 

layer of hidden units that are not connected to each other and have undirected connections to a 

layer of vision units (see figure 5.1). Theoretically, it is a special type of generative energy 

based model which can learn probability distribution over its inputs. As there are no 

connections between hidden units in RBMs, it has an advantage that the hidden unit is 

conditionally independent to each other. Both hidden units (v) and hidden units (h) are 

stochastic binary variable nodes and hypothesis that the joint probability distribution of (v, h) 

fits Boltzmann distribution. v is connected to h through undirected weighted connections. The 

reason why they are restricted is that, there is no connection between hidden variables or 

visible variables. A probability distribution p(v,h) is defined via an energy function (E(v, 

h; 𝜃)), which can be written as: 

                                     -log P(v, h) ∝ E(v, h; 𝜃) =-bTv - cTh - hTWv                                      5-1 

where 𝜃 = (w, b, c) is the parameter set, W is the weight vector between visible units and 

hidden units, and b and c are their bias vectors, respectively. Due to the configuration of 

RBMs, it is possible to compute the conditional probability distribution, when v and h are 

given, as  

                                                 P(hj|vi, 𝜃)=sigm(   ∑ 𝑊𝑖𝑗𝑣𝑖
|𝑣|
𝑖=1 +bj)                                          5-2 

                                                P(vi|hj, 𝜃) = sigm(   ∑ 𝑊𝑖𝑗ℎ𝑗
|ℎ|
𝑗=1  + ci)                                       5-3 
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where sigm(x)= (1/(1 + e-x)) is the sigmoid function. The parameter 𝜃 = (w, b, c) can be 

calculated using contrastive divergence effectively. 

  However, the RMBs with binary nodes can only deal with discrete inputs. When inputs are 

continues values, Gaussian RBMs are suitable to apply (Shang et al., 2014) as shown in Eq. 

5-4. 

                                                     E(v, h; 𝜃) = ∑
(𝑣𝑖−𝑎𝑖)

2

2𝜎𝑖
2𝑖  – cTh – hTWv                                 5-4 

where ai and 𝜎𝑖 are mean and standard deviation respectively of the Gaussian distribution for 

visible unit i, v is the continuous valued input layer, and h is the binary layer.  

  In some particular situations, since the input data is commonly normalized to zero mean and 

unit variance, the Gaussian RBMs (Eq. 5-4) is simplified as normalized Gaussian RBMs: 

                                                     E(v, h; 𝜃) =
1

2
 𝐯𝑇𝐯–𝒃𝑇𝐯 cTh – hTWv                                   5-5                     

 

Figure 5.1: The structure of Restricted Boltzmann Machines. 
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5.2.2 Learning algorithm for RBMs 

  As to a RBMs model, v is given and h is to be estimated. Therefore, learning RBM means to 

make the probability distribution represented by RBMs (P(v)) maximally coincide with 

training input data, by adjusting parameters 𝜃 = (w, b, c).  

  For S={𝑣1, 𝑣2, … 𝑣𝑛𝑠}, 𝑛𝑠 is the number of training inputs, 𝑣𝑖 = (𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑛𝑣
𝑖 )T, 

i=1,2,…, 𝑛𝑠, and they are independent and identically distributed. The objective of training 

RBM is to maximise the below likelihood function: 

                                                            ln ʟ𝜃,𝑠=∑ 𝑃(𝑣𝑖
𝑛𝑠
𝑖=1 )                                                       5-6 

  Gradient ascend is a typical method to maximize Eq.5-6 It approaches the optimum via 

iterations, which can be formed as below:  

                                                             𝜃 ≔ 𝜃 + 𝜂
𝜕ln (ʟ𝜃)

𝜕𝜃
                                                       5-7 

where  𝜂 is learning rate. In Eq.5-7, the calculation of the gradient 
𝜕𝑙𝑜𝑔 (ʟ𝜃)

𝜕𝜃
 is particularly 

important. To better understand this, the gradient of likelihood function at a single data point 

v is calculated as: 

                              
𝜕ln (𝑃(𝑣))

𝜕𝜃
 = 

𝜕

𝜕𝜃
(ln∑ 𝑒−𝐸(𝑣,ℎ)ℎ ) - 

𝜕

𝜕𝜃
(ln∑ 𝑒−𝐸(ṽ,ℎ)𝑣,ℎ ) 

                                            = - 
1

∑ 𝑒−𝐸(𝑣,ℎ)ℎ
∑ 𝑒−𝐸(𝑣,ℎ)ℎ

𝜕𝐸(𝑣.ℎ)

𝜕𝜃
 + 

1

∑ 𝑒−𝐸(ṽ,ℎ)𝑣,ℎ
∑ 𝑒−𝐸(ṽ,ℎ)𝑣,ℎ

𝜕𝐸(ṽ,ℎ)

𝜕𝜃
 

                                            = -∑ 𝑃(ℎ|𝑣)ℎ
𝜕𝐸(𝑣.ℎ)

𝜕𝜃
 + ∑ 𝑃(ṽ, ℎ)𝑣,ℎ

𝜕𝐸(ṽ,ℎ)

𝜕𝜃
                                  5-8 

  Note that there are two terms called negative term and positive term in Eq.5-8. The negative 

term represents the conditional expectation of  
𝜕𝐸(𝑣.ℎ)

𝜕𝜃
, given the visible unit v, which is easy 

to compute.  

  For binary RBM, the conditional probabilities 𝑃(ℎ|𝑣) and 𝑃(𝑣|ℎ) are expressed as below: 

                                              𝑃(ℎ𝑗 = 1|𝑣) = 
𝑒
𝐶𝑗+𝑊𝑗𝑽

1+𝑒
𝐶𝑗+𝑊𝑗𝑽

 = sigm(𝐶𝑗 +𝑊𝑗𝑽)                            5-9 

                                               𝑃(𝑣𝑗 = 1|ℎ) = 
𝑒𝑏𝑖+𝑊𝑖

𝑇𝒉

1+𝑒𝑏𝑖+𝑊𝑖
𝑇𝒉

 = sigm(𝑏𝑖 +𝑊𝑖
𝑇𝒉)                             5-10 
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where 𝑊𝑗 is the jth row of W, 𝑊𝑖 is the ith column of W, and sigm(v) = 1/[1+exp(-v) is the 

sigmoid function. The inputs v and hidden unites h of binary RBM is symmetrical. 

  For Gaussian RBM, the conditional probabilities 𝑃(ℎ|𝑣) and 𝑃(ℎ|𝑣) are stated as below: 

                                       𝑃(𝑣𝑖|ℎ)=
1

√2𝜋
exp{-

1

2
(𝑣𝑖 − 𝑏𝑖 −𝑊𝑖

𝑇𝒉)2} ~N(𝑏𝑖+𝑊𝑖
𝑇𝒉,1)               5-11 

  However, the computation of the positive term, which is expectation of 
𝜕𝐸(ṽ,ℎ)

𝜕𝜃
 for joint 

distribution 𝑃(ṽ, ℎ), is an intractable problem. It is causally linked to (2𝑛𝑣  + 𝑛ℎ) items in 𝛴v,h, 

giving rise to computation complexity of 𝑂(𝑛𝑣  + 𝑛ℎ). Therefore, Gibbs Markov Chain on the 

pair of variables is usually considered to resolve the problem. However, it is still intricate, 

because a large quantity of frequency samples is always required to guarantee the precision. 

Hinton et al. (2006) proposed an idea of Contrastive Divergence, which takes initial sample 

𝑣0 = x sampled from the training distribution and arrives the distribution of RBMs with k 

small steps. 

  The contrastive divergence (CD) deals with the approximation of positive terms of Eq. 5-8: 

∑𝑃(ṽ, ℎ)

𝑣,ℎ

𝜕𝐸(ṽ, ℎ)

𝜕𝜃
 

  The two –stage Gibbs sampler is used as an effective approximation approach. The Gibbs 

Markov chain (v,h) is constructed by repeating the following steps: 

1. Sample 𝒉(𝑡) from 𝑃(𝒉|𝒗 = 𝒗(𝑡−1)); 

2. Sample 𝒗(𝑡) from 𝑃(𝒗|ℎ = 𝒉(𝑡)). 

where 𝒗(0)= 𝒗. The chain will converge to the true joint distribution 𝑃(𝒗, 𝒉) if aperiodic and 

irreducible. That is to say, the 𝒗(∞) and 𝒉(∞)are ideally sampled from the joint distribution 

𝑃(𝒗, 𝒉). However, the Gibbs sampling must be performed all the time to compute new 

gradients. Figure 5.2 shows the flow chart of Markov chain in two-stage Gibbs sampler and 

CD for training RBM. For instance, to obtain{𝒗(1), 𝒉(1)}, second-order approximation of the 

positive term is adopted by CD algorithm. 
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Figure 5.2: Markov chain in two-stage Gibbs sampler and CD for training RBM. 

  For both binary and Gaussian RBMs, the term 
𝜕𝐸(ṽ,ℎ)

𝜕𝜃
 is expressed as below: 

                                                                
𝜕𝐸(𝑣,ℎ)

𝜕𝑊𝑖𝑗
 = ℎ𝑗𝑣𝑖                                                          5-12 

                                                                
𝜕𝐸(𝑣,ℎ)

𝜕𝑏𝑖
 = 𝑣𝑖                                                             5-13 

                                                                
𝜕𝐸(𝑣,ℎ)

𝜕𝐶𝑗
 = ℎ𝑗                                                             5-14 

  The gradient of the log-likehood function can be stated as : 

∆𝑊𝑖𝑗 = 
𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑊𝑖𝑗
 = ∑ 𝑃(𝒉|𝒗) ∙ℎ ℎ𝑗𝑣𝑖 - ∑ 𝑃(ṽ, ℎ)𝑣,ℎ ℎ𝑗ṽ𝑖≈ 𝐸(𝒉𝑗

(0)|𝒗(0)) ∙ 𝑣𝑖
(0)-ℎ𝑗

(1)𝑣𝑖
(1) ≈ 

 𝐸(𝒉𝑗
(0)|𝒗(0)) 𝑣𝑖

(0)-𝐸(𝒉𝑗
(1)|𝒗(1)) ∙ 𝐸(𝒗𝑖

(1)|𝒉(0)) = sigm(𝐶𝑗 +𝑊𝑗𝒗
(0))  ∙ 𝑣𝑖

(0)-sigm(𝐶𝑗 +

𝑊𝑗𝒗
(1)) ∙ sigm(𝑏𝑖 +𝑊𝑖

𝑇𝒉(0))                                                                                               5-15 

∆𝑏𝑖=
𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑏𝑖
 = ∑ 𝑃(𝒉|𝒗)ℎ ∙ ℎ𝑗 - - ∑ 𝑃(ṽ, ℎ) ∙𝑣,ℎ ṽ𝑖 ≈ 𝑣𝑖

(0) - 𝐸(𝒗𝑖
(1)|𝒉(0)) = 𝑣𝑖

(0) - sigm(𝑏𝑖 +

𝑊𝑖
𝑇𝒉(0))                                                                                                                                5-16 
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∆𝑐𝑗=
𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑐𝑗
 = ∑ 𝑃(𝒉|𝒗)ℎ ∙ ℎ𝑗 - - ∑ 𝑃(ṽ, ℎ) ∙𝑣,ℎ ℎ𝑗 ≈  𝐸(𝒉𝑗

(0)|𝒗(0)) - 𝐸(𝒉𝑗
(1)|𝒗(1)) = 

sigm(𝐶𝑗 +𝑊𝑗𝒗
(0))  - sigm((𝐶𝑗 +𝑊𝑗𝒗

(1))                                                                            5-17 

where 𝒉(0), 𝒗(1)) and 𝒉(1)) are sampled from the one-step Markov chain, as shown in Fig.5.2. 

in the above equations, the conditional expectation is used instead of the binary states sampled 

from the one-step Markov chain. 

5.2.3 Unsupervised pre-training and supervised fine tuning of DBN 

  As the inputs in our case are continuous-valued and not limited to a certain range, the 

structure of DBN was designed as in figure 5.3. The bottom RBM layer was selected as 

Gaussian units and the remaining layers are Binary units. The output of each RMB was the 

extracting feature of previous output. In other words, the high level RMB represents the most 

representative feature of input data, and the low level RMB is the low-level extraction of 

input data.  

  Unsupervised pre-training of DBN is important to improve the model performance. It was 

interpreted by Bengio and LeCun (2007) as follows: injecting unsupervised training may help 

to put the parameters of that layer towards the better direction in the parameter space. A 

greedy layer-wised training algorithm was proposed to train each layer at one time. 

Specifically, start to learn from the lowest weight matrices and keep all the higher weight 

matrices tied. In this work, RBM is used to pre-train each layers of DBN networks to lead the 

initial weights to optimum solution. After the unsupervised steps of DBN are finished, the 

supervised fine-tuning by back-propagation method is conducted to modify the weights 

between each different layers. Hinton et al. (2006) proposed an idea of wake-up algorithm, 

which has capability to fine-tune the parameters of all layers together.  

  In general, the sampling rate of quality variables in chemical process is much slower than 

process variables, which is shown in figure 5.4. On account of unsupervised pre training, the 

fast-sampled process data can be fully utilized in building DBN model.  With respect to the 

traditional models such as PLS, SVM and ANN, the numbers of process samples and quality 

samples should be equal to each other. In other words, only a small number of process 

samples are used and the rest amount of fast-rate process samples keep unused. However, for 

DBN model, the process samples abandoned by the traditional models can be used for 

unsupervised pre-training to extract the latent feature, thereby facilitating the supervised back-

propagation process. Therefore, the more process data is used by the DBN model, the more 

accurate model would be obtained. 
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Figure 5.3: The structure of DBN with continuous-valued inputs. 

 

 

Figure 5.4: Multi-rate sampling in soft sensor modelling. Source: Shang et al. (2014). 
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5.3 Case study: Post–combustion CO2 capture plant with chemical absorption 

  An amount of 690 data samples were collected from the gPROMS based simulator at 

University of Hull. The samples with sampling interval of 5 seconds are used to develop the 

model. The nonlinear dynamic models in this study are developed as following form: 

                                       y(t)=f[u(t), u(t-1), u(t-2), y(t-1), y(t-2)]                                          5-18            

where y is the process output variables (CO2 capture level and CO2 production rate), u 

represents the process input variables mentioned above, t is discrete time, and f [ ] is the 

nonlinear function represented by the neural network. 

  Prior to building the model, the data should be pre-processed to avoid missing values and 

outliers. As the data has different physical units, each variable should be scaled to zero mean 

and unit variance. In developing DBN model, all the input data is used for unsupervised 

training process to extract their feature, which is stated in section 2.3. Then, the data samples 

are split into three sets: training data (64%), test data (16%) and validation data (20%). To 

evaluate the performance of the continuous process, the data of Batch 1 are used to predict 

CO2 production rate and CO2 capture level, specifically. Accordingly, two DBN models are 

constructed for the quality predictions of CO2 production rate and CO2 capture level. Cross-

validation is used to select the network architecture and both models is found to have the 

structure of 26-20-17-1. There are 26 input nodes, 20 hidden nodes in the first hidden layer, 

17 hidden nodes in the second hidden layer, and 1 output layer node. As the neural network 

learning is a random process, it is necessary to repeat the training procedure for several times 

and the result with least training error is selected. In this study, the training procedure is 

repeated for 20 times. 

5.4 Results and discussions 

  In this study, the performance of DNB modelling technique is compared with traditional 

neural network modelling technique, namely, single-hidden layer neural network (SLNN). As 

mentioned above, the structure of 2 hidden layer is determined for DBN, in which the bottom 

hidden layer is Gaussian RBM and top hidden layer is binary RBM. The neurons in these two 

hidden layers are 20 and 17 respectively. The learning rates of unsupervised training and 

supervised training for DBN are selected same as 0.1, to avoid low learning speed and local 

optimisation. To compare their performance, the learning rate of SLNNs is also set as 0.1, and 

the hidden layer is consisted of 20 hidden neurons.  
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  As to predicting CO2 production rate, the mean squared errors (MSE) values on training, 

validation and testing data of 1st batch are given in table 5.1. In details, the MSE values on 

training, validation, testing data are 0.0007 kg/s, 0.00047 kg/s and 0.0024kg/s by DBN model, 

while they are 0.0152kg/s, 0.0411 kg/s and 0.0372 kg/s by SLNNs model. It clearly shows 

that, DBN model gives much lower MSE values than SLNNs model, when predicting the 

quality variables. As a result, DBN model has ability to predict more accurately than the 

SLNN model. This is because DBN can extract the data characteristics by unsupervised 

learning, thereby accelerate the learning convergence and avoid local minimum. To further 

prove this point, the data of 1st batch is used to verify the DBN model. Figure 5.5 compares 

the one-step-ahead prediction performance on CO2 production rate by SLNN model (top) and 

DBN model (bottom). The red dashed line represents the prediction values, while the blue 

solid line represents actual values. It can be seen clearly that the predictions from the DBN 

model are closer to the actual values than the SLNN model. The MSE values of DBN on 1st 

batch is 0.0012 kg/s, while that of SLNNs model is 0.0018 kg/s which is slightly higher. 

When consider long term prediction, figure 5.6 shows their performance comparison on the 

data of 1st batch. Obviously, both models can predict the quality variables long steps ahead, 

but DBN model perform much better. The predictions by DBN model are much closer to the 

actual values, in which the MSE value is only 0.0027 kg/s. Compare to the MSE value of 

short term prediction, it is not different a lot. However, as to the long term prediction by 

SLNNs model, the MSE value is 0.009 kg/s, which is 4 times higher than that of short term 

prediction. This demonstrates that DBN model can not only give the accurate short term 

predictions, but also predict the long term values with high performance. 

 DBN SLNNs   

Training MSE (kg/s)  0.0007 0.0152   

Validation MSE (kg/s) 0.00047 0.0411   

Testing MSE (kg/s) 0.0024 0.0372   

 

Table 5.1: Comparison of modelling results of DBN and SLNNs on CO2 production rate. 
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Figure 5.5: One-step-ahead predictions of CO2 production rate by SLNNs (top) and DBN 

(bottom). 

0 20 40 60 80 100 120 140 160 180
0.015

0.02

0.025

0.03

0.035

0.04
one-step-ahead prediction of CO2 production rate

Samples

C
O

2
 p

ro
d
u
c
ti
o
n
 r

a
te

 (
k
g
/s

)

 

 

Actual values

Predicted values

0 20 40 60 80 100 120 140 160 180
0.015

0.02

0.025

0.03

0.035

0.04
one-step-ahead prediction of CO2 production rate

Samples

C
O

2
 p

ro
d
u
c
ti
o
n
 r

a
te

 (
k
g
/s

)

 

 

Actual values

Predicted values



105 

 

 

 

Figure 5.6: Multi-step-ahead predictions of CO2 production rate by SLNNs (top) and DBN 

(bottom). 
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  The MSE values of CO2 capture level prediction by DBN and SLNNs models are given in 

table 5.2. As can be seen clearly, the MSE values on training, validation and testing data by 

DBN model are 0.0121%, 0.0171% and 0.0175% respectively. However, as to SLNNs model, 

the MSE values of all 3 sets are much higher. Especially, the MSE values on validation and 

testing data by SLNNs model are approximately 10 times higher than those by DBN model. 

This indicates that DBN model has a better generalisation ability than SLNNs model. The 

reason is that, the unsupervised training procedure is using principal component analysis 

(PCA) to analyse the underlying structure of the input data, in which the reduced-

dimensionality feature is captured. Therefore, it can extract the most important feature of data 

and works well in modelling variables.  

  The one-step-ahead prediction performance comparison of SLNNs and DBN models on 1st 

batch is shown in figure 5.7. The red dashed line (predictions) is almost identical to the blue 

solid line (true values) in both plots. However, slightly large prediction errors are seen clearly 

in the top plot when there are step changes in inputs. Specifically, the MSE values of SLNNs 

and DBN models are 0.0170% and 0.0141%, respectively, which are not different a lot. This 

demonstrates that the DBN is able to catch the underlying feature of the data and represent the 

dynamics of process accurately. Turn to figure 5.8, it shows the long range predictions of CO2 

capture level by SLNNs and DBN models. It can be seen clearly from the top graph, the 

multi-step-ahead predictions of SLNNs model are not accuracy as a result of extremely large 

errors. However, in the DBN technique, the long range predictions are much closer to the 

actual values of CO2 capture level. In details, the MSE values of long term predictions by 

SLNNs and DBN models are 0.1929% and 0.0485%, respectively. The latter one is 4 times 

lower than the former one. It further proves that DBN model is able to predict with higher 

generalization ability than SLNNs model. For model predictive control and real-time 

optimisation applications, the long range prediction ability is generally more than significant. 

 DBN SLNNs   

Training MSE (%) 0.0121 0.0803   

Validation MSE (%) 0.0171 0.2004   

Testing MSE (%) 0.0175 0.1400   

 

Table 5.2: Comparison of modelling results of DBN and SLNNs on CO2 capture level. 
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Figure 5.7: One-step-ahead predictions of CO2 capture level by SLNNs (top) and DBN 

(bottom). 
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Figure 5.8: Multi-step-ahead predictions of CO2 capture level by SLNNs (top) and DBN 

(bottom). 
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5.5 Conclusions  

  The deep learning technique is employed as a new modelling method for post-combustion 

CO2 capture plant. It is identified to be more accurate than the traditional neural networks as a 

result of their multi-layer structure. The advantages and characteristics of DBN is analysed, 

and stated in details in this chapter. The results indicated that DBN can extract nonlinear 

latent variables, making the neural networks as a latent variable model. Nevertheless, it still 

exits some problems. For instance, the training of DBN procedure requires much more time 

than SLNN. In addition, the modelling parameters is expected to be adjusted for the further 

results improvement. 
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 Post-combustion CO2 capture plant control structure selection 

6.1 Introduction 

  In this project, the post-combustion CO2 capture (PCC) plant is integrated with the 

supercritical coal-fired power plant, which would possibly be operated at full load in peak 

hours and part load in off peak hours. These circumstances will lead to changes in inlet gas 

flow rate. In addition, the upstream power plants are also subjected to shut-up and shut-down 

scenarios.  Due to the aforementioned transient changes in the power plant operation 

conditions, the performance of PCC process will be affected negatively. In order to cope with 

the above phenomenon and gain the insights on the transient behaviour of PCC process, a 

flexible effective operation strategy of PCC plant is required. 

  In past decades, a large amount of controllability studies have been developed for PCC plant 

(see section 2.4).  Harun et al. (2012) and Lin et al. (2012) both suggested that CO2 removal 

efficiency and lean loading were key parameters to represent the performance of PCC plant, 

which have been treated as CVs. So, they should be maintained as close as possible to their 

set-points. In these studies, the results showed the two CVs were controlled by adjusting the 

lean solvent flow rate and reboiler duty, respectively. Lawal et al. (2010) have raised an 

opinion that the CO2 removal efficiency is more sensitive to L/G ratio (the ratio of lean amine 

flow rate to flue gas flow rate) and, therefore L/G ratio should be maintained at a specific 

value to achieve a desired CO2 removal efficiency. However, the settling time to reach the 

desired set point of CO2 removal efficiency will be longer by suing L/G ratio controller 

(Gaspar et al., 2015). Nittaya et al. (2014) have presented three 6×6 control structures based 

on RGA and heuristic approaches. By using heuristic approach, CO2 removal efficiency was 

paired with reboiler heat duty and reboiler temperature was paired with the rich solvent flow 

rate, thereby reducing the settling time. Panahi and Skogestad (2012) used RGA and dynamic 

RGA to determine the control loops. The performance of four proposed control structures 

were evaluated by changing flue gas flow rate. In their study, they also compared the 

performance of decentralized control structures with a 2×2 MPC. Further, Sahraei and 

Ricardez-Sandoval (2014) compared a RGA-based control structure to 6×6 MPC schemed, 

under the step changes in flue gas flow rate, set-point tracking of CO2 capture level, and 

constrained heat supply. The results showed that MPC-based control scheme was able to 

response to disturbance with faster speed and minimum deviation.  The variable of energy 

performance (specific heat duty) was introduced as a key indicator for PCC plant (Luu et al., 

2015). They developed three control schemes: a standard PID feedback control scheme, a 
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cascade-PID control scheme and a MPC control scheme. The performance of these three 

control schemes were evaluated by set-point tracking and disturbance rejection. Conclusively, 

MPC strategy was found to be the best control structure to regulate the operation, economic 

and environmental constraints. In addition, the performance of MPC scheme under the 

oscillated changes in upstream plant load was investigated by He et al. (2016), and an optimal 

operation scenario was concluded. 

  This chapter is to apply new methods of GRDA and DRAG to determine the control loops of 

decentralized control structure, and compare to a model-based MPC scheme. It is consisted of 

following sections: the system identification introduced in Section 2; the results and 

discussion of GRDA and DRGA based control loops are presented in Section 3; the results of 

MPC scheme is discussed in Section 4. Finally, the conclusion is drawn in Section 4. 

6.2 Multivariate decentralized control analysis 

  From the PCC system, the variables to be controlled were selected as CO2 capture level (𝑦1) 

and lean loading (𝑦2), while the manipulated variables were selected as lean solvent flow rate 

(𝑢1) and reboiler temperature (𝑢2). It is a 2×2 system shown in figure 6.1. 

 

 

 

 

 

 

 

Figure 6.1: A simplified PCC block diagram. 

6.2.1 RGA range analysis via optimisation 

  The transfer function obtained by Matlab coding is shown as follows: 

                  G(s) = [

135.9

𝑠3+0.7988𝑠2+4.963𝑠+1.912
𝑒−𝑠

0.06245

𝑠+0.1248
𝑒−3𝑠

0.0005328 𝑠2+0.004752𝑠+0.00003363

𝑠3+0.4361𝑠2+0.3351𝑠+0.01602
𝑒−𝑠

−0.001015

𝑠+0.06413
𝑒−3𝑠

]                             6-1 
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  The nominal steady state gain matrix K is given as: 

                                                    K = G(0) = [
71 0.5

0.0022 −0.0158
]                                        6-2 

  The expression to obtain RGA from steady state gain matrix K is shown as: 

                                                             RGA = K K-1)T                                                      6-3 

where represents multiplication of element by element. 

  According to the above equation, RGA values are: 

                                                       RGA = [
0.999 0.001
0.001 0.999

]                                                   6-4 

  The RGA values suggest the diagonal paring control structure (𝑦1- 𝑢1, 𝑦2- 𝑢2) is selected, 

because all the diagonal values are positive and close to 1. 

  As RGA is calculated by the steady-state gains, the model uncertainties will result in the 

uncertainties of RGA. In this chapter, the worst-case bound has been applied to describe the 

RGA uncertainties. 

  According to Chen and Seborg (2002), the expression of uncertainty for each steady state 

gain is assumed as: 

                                                                 |∆𝐾𝑖𝑗| ≤α|𝐾̂𝑖𝑗|                                                         6-5 

Case 1: α = 0.01 

  The uncertainty ranges of RGA elements are calculated by optimisation method according to 

Section 2.4.1, which are show as below: 

                                   [
0.99899 ≤ 𝜆11 ≤ 0.99905 0.00095 ≤ 𝜆12 ≤ 0.00101
0.00095 ≤ 𝜆21 ≤ 0.00101 0.99899 ≤ 𝜆22 ≤ 0.99905

]               6-6 

  From Eq.6-6, the pair selection is 𝑦1- 𝑢1, 𝑦2 - 𝑢2, which is similar to the above conclusion. 

Table 6-1 shows the steady state gains K corresponding to their maximum and minimum 

values of RGA elements, within constraint α = 0.01. 
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𝝀𝒊𝒋 K 

𝝀𝟏𝟏min = 0.99899 [
71 0.5050

0.002222 −0.015642
] 

𝝀𝟏𝟏max = 0.99905 [
71 0.4950

0.002178 −0.015958
] 

𝝀𝟏𝟐min = 0.00095 [
71 0.4950

0.002178 −0.015958
] 

𝝀𝟏𝟐max = 0.00101 [
71 0.5050

0.002222 −0.015642
] 

𝝀𝟐𝟏min = 0.00095 [
71 0.4950

0.002178 −0.015958
] 

𝝀𝟐𝟏max = 0.00101 [
71 0.5050

0.002222 −0.015642
] 

𝝀𝟐𝟐min = 0.99899 [
71 0.5050

0.002222 −0.015642
] 

𝝀𝟐𝟐max = 0.99905 [
71 0.4950

0.002178 −0.015958
] 

Table 6.1: Lower band and upper band of RGA and their corresponding steady state gains for 

α = 0.01. 

Case 2: α = 0.1 

  The uncertainty ranges of RGA elements calculated via optimisation method are show as 

below: 

                            [
0.9987 ≤ 𝜆11 ≤ 0.9993 0.0007 ≤ 𝜆12 ≤ 0.0013
0.0007 ≤ 𝜆21 ≤ 0.0013 0.9987 ≤ 𝜆22 ≤ 0.9993

]                               6-7 

  As to 0.1 uncertainty range of model, the values of RGA elements suggest the sample pair 

selection as mentioned above. Again, the steady state gains K corresponding to lower band 

and upper band of RGA is shown in Table 6-2. 
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𝝀𝒊𝒋 K 

𝝀𝟏𝟏min = 0.9987 [
71 0.5500

0.00242 −0.01422
] 

𝝀𝟏𝟏max = 0.9993 [
71 0.4500

0.00198 −0.01738
] 

𝝀𝟏𝟐min = 0.0007 [
71 0.4500

0.00198 −0.01738
] 

𝝀𝟏𝟐max = 0.0013 [
71 0.5500

0.00242 −0.01422
] 

𝝀𝟐𝟏min = 0.0007 [
71 0.4500

0.00198 −0.01738
] 

𝝀𝟐𝟏max = 0.0013 [
71 0.5500

0.00242 −0.01422
] 

𝝀𝟐𝟐min = 0.9987 [
71 0.5500

0.00242 −0.01422
] 

𝝀𝟐𝟐max = 0.9993 [
71 0.4500

0.00198 −0.01738
] 

Table 6.2: Lower band and upper band of RGA and their corresponding steady state gains for 

α = 0.1. 

Case 3: α = 0.25 

  The uncertainty ranges of RGA elements calculated via optimisation method are show as 

below: 

                            [
0.9980 ≤ 𝜆11 ≤ 0.9996 0.0004 ≤ 𝜆12 ≤ 0.0020
0.0004 ≤ 𝜆21 ≤ 0.0020 0.9980 ≤ 𝜆22 ≤ 0.9996

]                               6-8 

  As to 0.25 uncertainty ranges of model, the ranges of RGA elements are wider, while it is 

still recommended that the pairs selection is determined as  𝑦1- 𝑢1, 𝑦2 - 𝑢2. The details of 

steady stated gains corresponding to the RGA bonds are shown as below: 
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𝝀𝒊𝒋 K 

𝝀𝟏𝟏min = 0.9980 [
71 0.625

0.00275 −0.01185
] 

𝝀𝟏𝟏max = 0.9996 [
71 0.3750

0.00165 −0.01975
] 

𝝀𝟏𝟐min = 𝟎. 𝟎𝟎𝟎𝟒 [
71 0.3750

0.00165 −0.01975
] 

𝝀𝟏𝟐max = 𝟎. 𝟎𝟎𝟐𝟎 [
71 0.625

0.00275 −0.01185
] 

𝝀𝟐𝟏min = 𝟎. 𝟎𝟎𝟎𝟒 [
71 0.3750

0.00165 −0.01975
] 

𝝀𝟐𝟏max = 𝟎. 𝟎𝟎𝟐𝟎 [
71 0.625

0.00275 −0.01185
] 

𝝀𝟐𝟐min = 0.9980 [
71 0.625

0.00275 −0.01185
] 

𝝀𝟐𝟐max = 0.9996 [
71 0.3750

0.00165 −0.01975
] 

Table 6.3: lower band and upper band of RGA and their corresponding steady state gains for 

α = 0.25. 

6.2.2 RDGA range analysis via optimisation  

  The step change of flue gas flow rate is introduced as a disturbance to the system. The 

disturbance transfer function obtained by Matlab coding, 𝐺𝑑(s), is expressed as below 

                                            𝑮𝑑(s) = [

−48.23

𝑠+0.9619

−0.003255 𝑠2+0.005436𝑠+0.0001026

𝑠3+0.3887𝑠2+0.2659𝑠+0.005797

]                                   6-9 

  The steady state vector gain matrix can be obtained as: 

                                                        𝑲𝑑 = 𝑮𝑑(0) = [
−50.1403
0.0177

]                                            6-10    

  The nominal RDGA can be calculated according to Eq. 2-52 and 2-53: 

                                                       RDGA = [
0.9879 0.0121
−0.0867 1.0867

]                                       6-11  
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  Also, the three cases of uncertainty bounds was considered for RDGA matrix, which is 

similar to RGA analysis.  

Case 1: α = 0.01 

                                      [
0.9877 ≤ 𝛽11 ≤ 0.9880 0.012 ≤ 𝛽12 ≤ 0.0123
−0.0903 ≤ 𝛽21 ≤ −0.0833 1.0833 ≤ 𝛽22 ≤ 1.0903

]             6-12 

Case 2: α = 0.1 

                                      [
0.9864 ≤ 𝛽11 ≤ 0.9892 0.0108 ≤ 𝛽12 ≤ 0.0136
−0.13 ≤ 𝛽21 ≤ −0.0577 1.0577 ≤ 𝛽22 ≤ 1.13

]                 6-13 

Case 3: α = 0.25 

                                      [
0.9840 ≤ 𝛽11 ≤ 0.9920 0.008 ≤ 𝛽12 ≤ 0.016
−0.2334 ≤ 𝛽21 ≤ −0.034 1.034 ≤ 𝛽22 ≤ 1.2334

]                 6-14 

  To measure the interaction for each loops with the disturbance injection, GRDG was applied. 

It is able to evaluate the load effect under a specific controller structure (closed-loop load 

effect) over the open load effect. 

                                                         δ𝑖 = ∑ 𝛽𝑖𝑗𝛾𝑖𝑗
𝑛
𝑗=1                                                              6-15 

where 𝛽𝑖𝑗 is the element of RDGA matrix and  𝛾𝑖𝑗 is the element of a structure election 

matrix, Г, shown as below: 

                                                          Г = [

𝛾11 ⋯ 𝛾1𝑛
⋮ ⋱ ⋮
𝛾𝑛1 ⋯ 𝛾𝑛𝑛

]                                                     6-16 

where 

                                     𝛾𝑖𝑗 = 1, element is picked up for the controller structure 

                                     𝛾𝑖𝑗 = 0, element ignored. 

  For this process, the structure selection matrix Г is specified as: 

 Г1 =[
1 0
0 1

],  GRDG=[0.9879, 1.0867]T        

 Г1 =[
0 1
1 0

],  GRDG=[0.0121, -0.0867]T       
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  According to GRDG rule, the small positive value of elements is preferable because it is the 

ratio of net load effect over the open loop load effect. Therefore, the pairs of 𝑦1- 𝑢1 and 𝑦2- 

𝑢2 are selected, which is same as RGA. 

6.2.3 DRGA analysis 

  On many occasions, the steady state RGA has no access to the dynamic information for the 

control structures. Hence, it is extended to frequency-dependent RGA in a straightforward 

way, shown as: 

                                                 DRGA(s) = K(s) K(s)-1)T                                                6-17 

  The definition here is exactly the same as Eq.6-3, except that DRGA is a function of 

frequency by setting s=𝑖𝑤. The perfect control is assumed in the situation as same as RGA.  

 

Figure 6.2: Frequency-dependent RGA analysis. 

  The magnitudes of the RGA generated at different frequencies are depicted in figure 6.2. 

The solid line represents the RGA value of diagonal pair, while the dashed line is the RGA 

value of off-diagonal pair. From figure 6.2, the frequencies in the rage 1<ω<102 are of 

particular interest. For the post-combustion CO2 capture process, the possible pairing 

recommendations are given in the following table. It is demonstrated that DRGA suggests 
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same paring as steady-state RGA at low frequencies, while at high frequencies the pairing 

changes corresponding to different closed-loop characteristics (see table 6.4). 

Frequency range (rand/min) Steady-state RGA Dynamic RGA 

Low (ω<102) 𝑦1- 𝑢1,  𝑦2- 𝑢2 𝑦1- 𝑢1,  𝑦2- 𝑢2 

High (ω>102) 𝑦1- 𝑢1,  𝑦2- 𝑢2 𝑦1- 𝑢2,  𝑦2- 𝑢1 

Table 6.4: Recommended pairing for a frequency range. 

6.3 Results and analysis of decentralized control structure 

 

Figure 6.3: The control structure based on RGA analysis using PID controller. 

  Figure 6.3 shows the selected closed loop control structure based on GRDG and DRGA 

analysis using PID controllers in Matlab, within step changes in the set points of the carbon 

capture level and lean loading.  The controllers were tuned using Ziegler-Nichols tuning 

combined with the BLT tuning method. In details, the controller were first tuned using the 
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loop interactions and then detuned using BLT tuning method to consider control loop 

interactions. For BLT tuning method, a factor 𝐹 was introduced to modify P, I and D 

parameters. The updated gains of all controllers 𝐾𝑐𝑖 are calculated as: 

                                                              𝐾𝑐𝑖= 
𝐾𝑍𝑁𝑖

𝐹
                                                                  6-18 

where 

                                                                𝐾𝑍𝑁𝑖= 
𝐾𝑢𝑖

2.2
                                                                6-19 

  The updated reset time 𝜏𝐼𝑖 is shown as below: 

                                                                𝜏𝐼𝑖 = 𝜏𝑍𝑁𝑖 𝐹                                                            6-20 

where 

                                                                 𝜏𝑍𝑁𝑖= 
2𝜋

1.2𝑤𝑢𝑖
                                                           6-21 

  Thus, the closed-loop system is described as: 

                                                             𝑿 = 𝐆𝐌 = 𝑮𝑩(𝑿𝒔𝒆𝒕- 𝑿)                                            6-22  

                                                             𝑿 =(1 + 𝑮𝑩)−1𝑮𝑩𝑿𝒔𝒆𝒕                                           6-23 

  As stated by Luyben (1986), a multivariable closed-loop log modulus 𝐿𝑐𝑚 was defined to 

obtain the suitable factor 𝐹 (Eq.6-24) 

                                                               𝐿𝑐𝑚= 20 𝑙𝑜𝑔 |
𝑊

1+𝑊
|                                                 6-24     

where 

                                                       𝑊(𝑠) =−1 + det (𝐼 + 𝑮𝑩)(𝑠)                                      6-25 

  By varying 𝐹 factor, the suitable biggest log modulus 𝐿𝑐𝑚 
𝑚𝑎𝑥 is determined as: 

                                                                        𝐿𝑐𝑚 
𝑚𝑎𝑥= 2N                                                 6-26 

where N is number of square matrix of control structure. 

  In this case study, as the control structure is previously selected as 2×2, the biggest log 

modulus   𝐿𝑐𝑚 
𝑚𝑎𝑥 is determined as 4. From figure 6.4, the magnitude reached to 4 when F 

factor is 2.1. Therefore, F factor (2.1) was introduced to adjust the P, I and D parameters. 
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Figure 6.4: Magnitudes of 𝐿𝑐𝑚 
𝑚𝑎𝑥 with different frequencies. 

  In order to validate the RGA, GRDA and DRGA results, the closed loop response of the 

control structure (𝑦1- 𝑢1, 𝑦2- 𝑢2)  to set point changes in CO2 capture level and lean loading 

were performed. The set point positive changes of CO2 capture level were introduced to the 

system at 100 seconds. These scenarios represent a decrease demand of power plant. When 

the upstream power plant encounter an off-peak duration, The energy it supplies to capture 

plant could be increased. The positive changes of capture level and lean loading will be 

achieved. As shown in figure 6.5a, the response of CO2 capture level requires apporximately 

50 seconds to attain the new set point. In addition, it  has little interaction on lean loading, as 

there is no change on the manitude at 100s on figure 6.5b.  
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                                                            (a) 

  

                                                            (b) 

Figure 6.5: Response to set point changes in CO2 capture level at 100s. 
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                                                                       (a) 

 

                                                                       (b) 

Figure 6.6: Response to set point changes in lean loading at 200s. 
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  At 200s,a 50% increase in the set point of lean loading will changes both CO2 capture level 

and lean loading with respect their base conditions. Figure 6.6a indicates the actual value of 

CO2 capture level has experienced a 3% decrease and then reach its set point with 70 seconds. 

It reflects the control loop (𝑦2- 𝑢2) affects the control loop (𝑦1- 𝑢1) a lot. This is because, 

once the CO2 concentration in lean MEA solution increases, the absorption capacity of lean 

solution will decrease. In this case, the CO2 capture level will be reduced temporarily and then 

recover by control loop. As shown in figure 6.6b, it takes 50 seconds to allow the actual lean 

loading achieve its new set point, with 5% excess. 

  A disturbance of inlet flue gas flow rate, 0.05 kg/s increase, was introduced to the system at 

100s, which is a common scenario in the operation of the power plant. For instance, when the 

upstream power plant is at the stage of start-up, or at the peak duration, the inlet flue gas 

flowrate coming from the power plant will be increased. Figure 6.7a shows the operation 

performance of CO2 capture level and lean loading under the disturbance. The CO2 level is 

decreasing and then reached to the set point with control action, which requires about 50 

seconds. The reason is that, the CO2 composition is increased with the increasing inlet flue 

gas flow rate, while the absorption capacity in the column is unchanged. Hence, the removing 

percentage of CO2 is decreasing.  Figure 6.7b states the lean loading is almost unchanged with 

the increasing inlet flue gas flow rate. 
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                                                                      (b) 

Figure 6.7: Response of CO2 capture level (a) and lean loading (b) to disturbance in inlet flue 

gas flowrate. 

6.4 MPC control analysis 

6.4.1 State space model for MPC controller 

  To obtain the suitable MPC controller, the s-domain transfer functions should be 

transformed into state space form. It is extended from Eqs.2-72, 2-73 and 2-74 that, an 

integrator is introduced by using the differentiated state vector as below: 

                                                             ∆𝑘= 𝒙𝑘 - 𝒙𝑘−1                                                           6-27 

  By integrating with the controlled output 𝒛𝑘of Eq.2-73: 

                                    |
∆𝑥𝑘+1
𝑧𝑘+1

| = |
𝐴 0
𝐷𝐴 𝐼

| |
∆𝑥𝑘
𝑧𝑘
|+|
𝐵
𝐷𝐵
| ∆𝑢𝑘+|

𝐶
𝐷𝐶
| ∆𝑣𝑘+|

𝐼
𝐷
| ∆𝑤𝑘                6-28 

                                                            𝑧𝑘= |0 𝐼| |
∆𝑥𝑘
𝑧𝑘
|                                                        6-29 

                                                            y𝑘= 𝑧𝑘 + ɜ𝑘                                                                6-30 

  The above Eqs.6-28, 6-29 and 6-30 can be written as: 
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                                                  𝑥̂𝑘+1 = 𝐴̆𝑥̂𝑘 + 𝐵̆∆𝑢𝑘+ 𝐶̆∆𝑣𝑘+ ∆𝑤̆𝑘                                      6-31                                           

                                                      𝑧𝑘 = 𝐷̆𝑥̂𝑘                                                                          6-32 

                                                      𝑦𝑘 = D𝑥𝑘+ ɜ𝑘                                                                   6-33     

  A state observer is used to estimate the state vector, which is shown as below: 

                                                       𝛽𝑘 = 𝑦𝑘- 𝐷̆𝑥̂𝑘|𝑘−1                                                            6-34 

                                                  𝑥̂𝑘+1|𝑘= 𝐴̆𝑥̂𝑘|𝑘−1 + 𝐵̆∆𝑢𝑘+ 𝐶̆∆𝑣𝑘+E𝛽𝑘                                6-35     

  The above equations give one-step ahead predictions of state vector. Z is predicted by 

multiplication 𝐷̆ with estimated state. The output vector can be predicted with p samples 

ahead (prediction horizon) and control actions are taken into account for m samples (control 

horizon), which denotes m ≤ p. It is simplified as: 

                                                  𝒖𝑘= |

𝑢𝑘
⋮

𝑢𝑘+𝑚−1
|,                𝒛𝑘= |

𝑧𝑘
⋮

𝑧𝑘+𝑝−1
|                               6-36 

  The MVs over the control horizon and process variables over prediction horizon are 

collected in above expressions. Based on these, the predicted process variables over the 

prediction horizon are: 

                                 𝑧𝑘+1|𝑘 = |
𝐷𝐴̆̆ 
⋮
𝐷̆𝐴̆𝑝

| 𝑥̂𝑘|𝑘−1 + [
𝐷𝐵̆̆ ⋯ 0
⋮ ⋱ ⋮

𝐷̆𝐴̆𝑝−1𝐵̆ ⋯ 𝐷̆𝐴̆𝑝−𝑚𝐵̆

] ∆𝒖𝑘 

                                               +|
𝐷𝐶̆̆
⋮

𝐷̆𝐴̆𝑝−1𝐴̆

| ∆𝑣𝑘+|
𝐷𝐸̆̆
⋮

𝐷̆𝐴̆𝑝−1𝐸̆

| 𝛽𝑘                                              6-37        

  The feedback error 𝛽𝑘 is based on the most recent measurement of 𝑦𝑘. 

  The control error over the prediction horizon is the difference between predictions and the 

set points. 

                                                       𝐸𝑘+1 = 𝑧𝑘+1|𝑘- 𝑅𝑓𝑘+1                                                     6-38 

  It is consisted of three parts, such as set-point error, feed forward error and remaining error, 

which is sum up to∆𝒖𝑘, the increments of MVs.   The optimisation process of MPC controller 

is to find the minimum values of increments of each manipulate variables. 
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6.4.2 Objective function 

  The performance criteria of control scheme is determined by the plant operation 

requirements. The criteria can be expressed by a mathematical term. In MPC, a quadratic 

objective function is used which can be introduced as following form: 

             𝑚𝑖𝑛
∆𝑢(𝑘)

∑ ‖Ʈȴ
𝑦
[𝑦(𝑘 + ȴ|𝑘) − 𝑅(𝑘 + ȴ)]‖

2𝑝
ȴ=1 +∑ ‖Ʈȴ

𝑢[∆𝑢(𝑘 + ȴ|𝑘)]‖
2𝑚

ȴ=1                   6-39 

                   constraints: 𝑐𝑢∆𝑢(𝑘)  ≧ 𝑐(𝑘 + 1|𝑘)                                                                     6-40 

where 

                                                 Ʈ𝑢 = diag {Ʈ1
𝑢, ⋯Ʈ𝑚

𝑢 }                                                           6-41                           

and 

                                                 Ʈ𝑦 = diag {Ʈ1
𝑦
, ⋯ Ʈ𝑝

𝑦
}                                                           6-42 

are the weight matrices in block diagonal form, and  

                                               𝑅(𝑘 + 1) = [
𝑟(𝑘 + 1)

⋮
𝑟(𝑘 + 𝑝)

]                                                           6-43 

is the vector of reference trajectory. 

  The criteria minimize the sum of squared deviations of the predicted CV values from a time-

varying reference trajectory or setpoint 𝑟(𝑘 + ȴ) over p future time steps. 

6.4.3 Tuning rules of MPC 

  The parameters tuning method is of great importance in designing MPC controllers. The 

following steps are detailed to achieve a satisfied MPC. The first step is to determine the 

suitable sampling time conforming to the actual plant process. There is an agreement that less 

sampling time result in more unknown disturbance rejections and more computational efforts. 

In this case study, the sampling time is 1 second. Then, the prediction horizon (p) was 

concluded as 40 because it should be twice or triple greater than the dominant time constant 

of the process (Love, 2007). According the tuning rules of MPC, the control horizon (m) is 

determined between inherent time delay and prediction horizon. It is because, if the control 

horizon is higher than the prediction horizon, some changes of MVs which perfect the 

predictions, will not be considered. Eq.6-1 indicates the highest delay time is 3, hence the 

control horizon was determined as 5 in this case.                    



127 

 

6.5 Results and analysis of MPC control                                              

 

Figure 6.8: Simulink model with MPC controller. 

  Figure 6.8 shows the simplified graph of MPC control structure in Matlab. It can be seen 

clearly that, unlike PID control structure, the MVs are centralized controlled by MPC 

controller. Here, the same actions, such as set point changes of CO2 capture level, lean 

loading, and step change in inlet gas flow rate, were taken to evaluate the performance. 
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Figure 6.9: Response to set point changes in CO2 capture level at 100s by MPC control. 

Blue: Set point; Green: Actual. 

  Firstly, the set point change of CO2 capture level at 100s was implemented to the system, 

which was same as PID control structure. From figure 6.9, the actual value arrives its new set 

point values with only 5 seconds, while the lean loading is almost keep steady at same time. 

Compare figure 6.9 with figure 6.5, the rising time by MPC controller is less than that by PID 

controller. Furthermore, the changes in manipulated variables (lean flowrate and reboiler 

temperature) are shown in figure 6.10. Specifically, in the top graph, the lean flow rate is 

increasing to provide more amount of lean solution, thereby capturing more CO2 every 

second. With the operation, it is steady at a new point. In the bottom graph, the reboiler 

temperature is initially increased as well to meet the new set point of CO2 capture level but 

finally reduced to its set point. This is because, the increasing reboiler temperature will result 

in more CO2 vaporising from solution in stripper and then generate less lean loading for the 
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solution for the complement of capturing more CO2 in the absorber. However, due to the 

unchanged set point of lean loading, the reboiler temperature is reverted to its original state. 

 

Figure 6.10: Changes in manipulated variables during the set point changes of CO2 capture 

level. 

  Figure 6.11 indicates the performance of outputs while the set point change of lean loading 

was introduced to the system at 200s. It can be seen clearly that the CO2 capture level remains 

almost steady and the lean loading is increasing to its new set point within 50 seconds. 

Compare figure 6.11 with figure 6.6, the MPC controller performs better as it can keeps CO2 

capture level unchanged and lean loading not exceeding its set point. The settling time by 

MPC controller and PID controller are almost same. Figure 6.12 shows the changes of 
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manipulated variables corresponding to the set point change of lean loading at 200s. In 

details, the increasing lean loading will lead to the reduced absorption capacity of solution.  In 

this case, the lean solvent flow rate should be increased to keep the capture level unchanged. 

To achieve the larger lean loading, the reboiler temperature is operated to reduce for 

vaporising less CO2 from rich solution in the stripper. All these two MVs were changed to 

new points to satisfy this action. 

 

Figure 6.11: Response to set point changes in lean loading at 200s by MPC control. 

93

94

95

96

97

98

C
a
p
tu

r
e
 l
e
v
e
l,
 %

0 50 100 150 200 250 300 350 400 450 500

0.2

0.25

0.3

0.35

le
a
n
 l
o
a
d
in

g

Plant Outputs

Time (seconds)



131 

 

 

Figure 6.12: Changes in manipulated variables during the set point changes of lean loading. 

  Figure 6.13 shows the performance of CO2 capture level and lean loading under a 

disturbance of inlet gas flow rate. The CO2 capture level is first reduced and then recovered to 

its set point within only 5 seconds. The lean loading experience slightly fluctuation during the 

period of disturbance rejection. Compare figure 6.13 with figure 6.7, the setting time of CO2 

capture level by MPC controller is less than that by PID controller (50s), while the output of 

lean loading performs similar. This is to say, the MPC controller has a higher controlling 

capacity than PID controller. To keep the outputs at their set points, the manipulated variables 

will be changed with operation corresponding to the disturbance. As the inlet gas flow rate is 

increased, the CO2 component to the system will be increased as well. Therefore, the lean 

solvent flow rate should be operated to increase for absorbing more CO2, as well as the 
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reboiler temperature. However, since the set point of lean loading is unchanged, the reboiler 

temperature which can take a great impact on lean loading, is recovered to its original value at 

last.  

 

Figure 6.13: Response to step change in inlet flow gas rate at 100s by MPC control. 
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Figure 6.14: Changes in manipulated variables during the set point changes of inlet flow gas 

flow rate. 

  To sum up, MPC controller is demonstrated as a better choice to establish an effective 

control system for post-combustion CO2 capture plant. In addition, it is also proved that the 

system including time delay and high order can be handled by MPC control structure. 
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6.6 Conclusions 

  In this work, two types of control structures (decentralized and centralized) for MEA-based 

post-combustion CO2 capture plant were presented. For decentralized control structure, the 

general relative disturbance gain (GRDG) and dynamical relative gain array (DRGA) analysis 

represent the base for the design of the control schemes. It was determined to pair CO2 

capture level and lean solvent flow rate as a control loop, as well as lean loading and reboiler 

temperature.  The Ziegler-Nichols rules integrated with BLT tuning method are used to tune 

PID parameters. For centralized control structure, MPC controller was used to design the 

control scheme. The effect of step change disturbance in inlet gas flow rate, set point tracking 

of CO2 capture level and lean loading for the plant were studied for the controllability 

analysis. The results shows that the multi-variable MPC-based control scheme recover faster 

(short closed-loop settling time) when implement disturbance and set point change to the 

system with minimum deviation regarding to the plants set-point than PID-based control 

scheme. In addition, the constraints of manipulated variables can be applied to MPC 

controller to keep them under feasible limits, while PID controller would possibly violate the 

saturation limits on those variables for the same change in the plant’s operating conditions.  

All these indicate MPC control scheme is more preferable choice for post-combustion CO2 

capture plant to main the dynamic operability and controllability in the presence of the 

process disturbance and set-point tracking.   
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 Conclusions and Recommendations for Future Works 

7.1 Conclusions 

  MEA-based post-combustion CO2 capture process plays a vital role in removing CO2 

emissions coming from coal-fired power plants, as it has capacity of capturing the low-

pressure CO2 in flow gas and retrofitting the existing power plants easily. The modelling and 

optimisation of this process has been treated as a main target to improve the capture 

performance such as CO2 capture level and energy consumption. In previous research, more 

attentions were paid to mechanistic model analysis, which need a deepened knowledge of 

process underlying physics. It would possibly result in some time issues, even though the 

process input-output relationships could be expressly represented by the mechanistic model. 

However, in this research, the computational intelligence techniques, including BA-NNs, BA-

ELM and DBN models, were applied instead of mechanistic strategies to model the post-

combustion CO2 capture process. Furthermore, the BA-NNs model was used in the process 

optimisation for energy efficiency operation.  Following this part, the decentralized and 

centralized control schemes with the aim of enhancing energy efficiency were presented with 

the application of post-combustion CO2 capture plant. 

  In order to model the post-combustion CO2 capture process integrated with power plant, a 

majority of computational intelligent models were explored. In this work, they were 

categorized into two groups: static model and dynamic model. For static model, seven 

parameters of the process, namely inlet gas flow rate, CO2 mass fraction in inlet flow gas, 

inlet gas flow pressure, inlet gas flow temperature, lean solvent circulation rate, MEA 

concentration and lean solution temperature, were investigated as input variables, while one 

parameter, capture level, was treated as output variable. As to dynamic model, eight key 

process variables, such as inlet gas flow rate, CO2 mass fraction in inlet flow gas, inlet gas 

flow temperature, inlet gas flow pressure, lean solvent circulation rate, lean solvent 

temperature, reboiler temperature and lean loading, were considered as input variables, while 

CO2 capture level and CO2 production rate were adopted as output variables. 

  ANNs were found to be the appropriate technology to model the process no matter how 

complicated the underlying process relationships will be. Seven  To improve model accuracy 

and reliability, multiple feedforward neural network models were developed from bootstrap 

re-sampling replications of the original training data and were combined. BA-NNs model can 

offer more accurate predictions than a single neural network according to MSE values of 

testing data, as well as provide model prediction confidence bounds. The model prediction 
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confidence bounds reflect the reliability of model. The computational intelligence based 

model was further employed to save the energy consumption in the regenerator column. With 

the profound understanding of the post-combustion CO2 capture process, the energy 

efficiency is improved as the lean solvent flow rate is reduced. Therefore, the lean solvent 

flow rate was minimized as the optimisation objective, as well as the CO2 capture level was 

operated above 90%. The optimisation technique based on BA-NNs model is presented in this 

work. The optimum operating condition of lean solvent flow rate was found as  0.5698 kg/s.  

  To further improve the learning speed and generalization performance, the BA-ELM was 

used in this work. The input weights and biases were randomly assigned, while the weights 

between the hidden layer and output layer were obtained using regression type approach in 

one step. This feature allows the BA-ELM  to be developed very quickly. This work proposes 

principal component regression to calculate the weights between the hidden layer and output 

layer to address the collinearity issue among hidden neuron outputs. Since the input weights 

and biases were randomly assigned, the BA-ELM model had variations in performance. By 

comparing the training time between BA-ELM and BA-NNs models, it was found that the 

former CPU time  was several times less than the latter one. In addition, the prediction 

accuracy for unseen testing data by BA-ELM model was better than that by BA-NNs model, 

which presented a better generalisation performance. The one-step ahead and multi-steps 

ahead predictions by BA-ELM model were also conducted, which appear to be both better 

than those by BA-NNs model. The problems of local minima and over-trained encountered by 

BA-NNs model could be resolved by the implementation of BA-ELM model.   

  However, both of the two above mentioned neural networks have only one hidden layer, 

which are narrow neural networks.  More hidden layers constitute the neural networks, more 

accurate relationships between input and output it can represent. Therefore, DBN model with 

many layers of RBM were proposed then. By using DBN model, a deep hierarchical 

representation of training data was extracted in unsupervised pre-training stage. A greedy 

layer-wise unsupervised learning algorithm is used to obtain initial weights of the subsequent 

supervised phase. This can result in global optimum, which gives better generalisation than 

the single hidden layer neural network. Then, the network weights were fined tuned in a 

supervise manner by the supervised back-propagation phase. With comparing the MSE values 

of unseen testing data between SLFN model and DBN model, it was found that the former 

one was much larger than the latter one. This indicates that the multiple hidden layer neural 

networks have the capacity to catch the underlying feature of the data more easily, thereby 

achieving the better generalisation ability 
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  The controllability analysis of post-combustion CO2 capture process is implemented 

following the model developments. Two key process variables, lean solvent flow rate and 

reboiler temperature, were considered as manipulated variables, while the CO2 capture level 

and lean loading were used as control variables. As to decentralized scheme, the control 

structure selection for the process was determined with application of GRDG and DRGA in 

addition to RGA for operability analysis. GRDG was developed from analysing the process 

disturbance, inlet flue gas flow rate, showing the same result of control structure selection to 

RGA. With a consideration of dynamic information, DRGA was employed in this work. It 

was a frequency-dependent  RGA analysis, which indicated the different result as RGA 

analysis. In details, at low frequencies, the same paring was suggested as steady-state RGA, 

while at high frequencies, it was found the opposite pair selections. The uncertainty ranges of 

RGA, GRDG and DRGA were calculated, as there could possibly exit model uncertainties. 

The PID controllers in decentralized control structures were tuned using Ziegler-Nichols 

tuning combined with the BLT tuning method. With respect to centralized control strategy, 

MPC based control structure was applied in this research, with the adjustment of prediction 

horizon and control horizon. Finally, to compare the performance of PID-based and MPC-

based control structures, the closed loop response to set point changes and disturbance was  

presented. The results have shown MPC-based control scheme is more appropriate to control 

the dynamic process in presence of the process disturbance and set-point change. 

7.2 Recommendations for future work 

  The data used for developing the model was generated from the gPROMs software in Hull 

University. The dynamic models in gPROMs were developed using the rate-based approach. 

However, they assumed that all chemical reactions attained equilibrium. To improve the 

accuracy of the model, the reaction kinetics could be involved (moving from model 2 to 

model 3 in Fig. 2.10). 

  In ELM model, the weights and bias between hidden layer and output layer was calculated 

by principal component regression method. To further explore ELM algorithms, partial latent 

square method could be used. With respect to DBNs model, it only accounted for individual 

DBNs model in this project. Next, the bootstrap aggregated DBN model could be developed 

to compare with BA-NNs and BA-ELM. 

  The model techniques developed in this work were limited to feedforward neural networks, 

which take no consideration of sequential information. With the inclusion of a ‘memory’ 

which captures information about what has been calculated so far, the accuracy of dynamic 



138 

 

models could be improved. Therefore, it should be interesting to apply recurrent neural 

networks (RNNs) to model the post-combustion CO2 capture process. In addition, to process 

high-dimensional input signals and extract complex features, another new method, slow 

feature analysis (SFA), could be further used to learn invariant or slow varying features from 

the input signal. With respect to DBNs model, it only accounts for individual DBNs model in 

this project. Next, the bootstrap aggregated DBN model could be developed to compare with 

BA-NNs and BA-ELM. 

  The main focus of optimisation was on energy efficiency. The further work could be 

concentrated on the other possible consideration of optimisation objectives and real time 

optimisation.   

  The transfer function for control studies are linear and in future nonlinear dynamic process 

model should be used to test control performance. The decoupler was not introduced to the 

PID control scheme, which would result in the interference between control loops. To 

eliminate the interference, the decoupler could be considered.  The MPC control scheme in 

this project also used the linear transfer function. To improve control performance, the neural 

network models developed here could be used in MPC controller design in the future 

  There are only two controlled variables and two manipulated variables considered in this 

project. It is far too simplified to apply the control schemed to a real post-combustion carbon 

capture plant. The control of reboiler heat duty, the temperature pf absorber column, the inlet 

temperature of lean solvent L/G ratio could be considered in the future to develop the control 

structure. 

  Some chemical reaction phenomenon, such as solvent degradation, have been ignored in this 

project. It is necessary to investigate the effect of varying compositions of O2, SO2 and NOx. 

O2 and SO2 should be separated before capture technology. However, extracting O2 from flue 

gas is much more difficult. Under such circumstance, it is necessary to study the effect of O2 

on capture process, as it may result in the degradation of solvent.    
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