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Disclaimer 
 

This thesis is submitted for the degree of PhD in nanoscience and technology nanomaterials 

from Newcastle University, in the school of Chemical Engineering and Advance Materials. All 

my work was done under supervision from Dr Adrian Oila and Professor Steve Bull. 

Neither the author nor the Newcastle University at Newcastle upon Tyne accepts any liability 

for the contents of this document. The novelty in this work, is using the PolyHIPE after 

sulphonation as an ion exchanger to remove heavy metals from waste water which no one has 

used before. The reason for using this material is its low weight and its highly porous structure 

which means high efficiency, and it could be put under a regeneration process to be reused 

again. In addition to the cost of the material and its processing is relatively low. Its results   show 

good performance for this material to remove the heavy metals from water to low levels meeting 

WHO values. 
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Abstract 
 

Materials which have structural dimensions between 1 nm and 100 nm are called nanomaterials. 

These materials have unique geometric, physicochemical and mechanical properties. As a result 

of their properties, nanomaterials can be tailored for specific applications. Polymers 

Synthesized from High Internal Phase Emulsions (PolyHIPEs) are a type of porous material 

with high specific surface area due to their nanoscale structure which have the ability to function 

as ion exchange media that can remove contaminants from water. PolyHIPEs can therefore be 

used in ion exchange modules to remove metals from wastewater. The advantage of using 

PolyHIPEs is that fewer steps are necessary compared with traditional filtration methods, and 

they are more economic and more selective than the traditional materials. 

A high internal-phase emulsion (HIPE) contains both oil and aqueous or dispersed phases. The 

oil phase has monomers such as styrene, a cross-linker such as Divinylbenzene (DVB), and 

non-ionic surfactants while the aqueous phase consists of deionized water and polymerisation 

initiators such as potassium pyrosulphate. The emulsion is subjected to the polymerization 

process, usually at 60˚C and pores are produced within the polymer due to the presence of the 

aqueous phase. The polyHIPE is then washed with propanol to release the residual surfactant 

and unreacted monomer. In this work, we used different HIPE mixing times (10, 15, 20, 25, 

and 30 minutes, respectively) in order to change the pore size distribution. After synthesis the 

PolyHIPEs are subjected to a sulphonation process which changes the PolyHIPE character from 

hydrophobic to hydrophilic. Finally, ion exchange experiments have been conducted by using 

sulphonated PolyHIPE beads as is and coated with iron oxide. As simulated contaminated water 

nickel and copper solutions were used during this process.  The results show the removal 

efficiency of the metal ion from solution was much higher with sulphonated beads at range of 

pH (6, 7, 8 and 9). Changing the pH allowed the metals to be removed from the PolyHIPE for 

recovery and filter regeneration but the amount of metals after the regeneration process is low 

compared with initial concentration. 
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1. General Background and Motivation 

 

 In this chapter an introduction to the traditional methods for waste water treatment is given, 

and this is compared with the novel method which is used in this work. Then an explanation for 

the effect of heavy metals in waste water and its influence on human health is given, including 

the effect of nickel and copper metal ions which are used in the current experiments. Moreover, 

the availability of these heavy metal around the world in different places is discussed. The 

advantages for using these heavy metals in different application depends on their properties and 

price and the cost of removal of such metals from wastewater may be mitigated by income from 

selling the metals recovered if the quality is suitable. Different techniques that have been used 

to remove these heavy metals from waste water are discussed such as the adsorption, chemical 

precipitation and ion exchange etc. to give clear idea about the differences between these 

methods and the advantages and disadvantages for each. The adsorption process and ion 

exchange process are used in this work when we use the PolyHIPE after coating with iron oxide 

and after sulphonation during the filtration process. Thus the advantages for using the PolyHIPE 

as a media for water treatment will be identified and what are the specific properties for this 

material which make it preferable to use it in waste water treatment. Iron oxide, which is used 

in the coating process to enable the adsorption process, is discussed in addition to the use of 

styrene-based polymers rather than other polymers systems as the basis for the filter material. 

Finally, a thesis structure completes this chapter.    

1.1. Introduction 

Wastewater treatment is used to remove toxic metals and bacteria that are present in 

groundwater sources because these impurities have an adverse effect on human health 

(Lettinga, 1995) due to accumulation inside the body cells, (Boujelben et al., 2009). Generally, 

the treatment is divided in primary and secondary steps as shown Figure 1-1. In the primary 

treatment, screens with different pore size supported by iron or steel bars are used over settling 

tanks to release the solid material which is available inside the wastewater. The diameter of the 

screen holes is relatively large, in the order of 10 millimetres. Ninety percent of the solid 

material may be removed by the primary treatment but not all the waste can be removed during 

this stage (Lettinga, 1995, Karvelas et al., 2003, Brix, 1993). 
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In the secondary step of wastewater treatment, bacteria are used to remove the pollutants which 

remain from the primary step. Finally, fast spinning centrifuges are used to separate solids from 

the liquid. The resulting water is disinfected by using chlorine, ozone, or ultraviolet light 

(Cheremisinoff, 2002a). In the tertiary step the dissolved materials such as organic chemicals, 

nutrients, phosphorus and nitrogen are removed by using  physical, chemical and biological 

processes (Karvelas et al., 2003, Lettinga et al., 1980, Cheremisinoff, 2002c).  

During the chemical methods chemical components like iron salts are added to the water to 

make large size complexes (i.e., iron may be added to the wastewater to react with specific ions 

such as phosphate). Another method for the purification of water is called the attached growth 

process and it takes place at the surface of the filtration media stone or plastic filters for instance 

allowing microbial growth inside the waste water. These bacteria can consume the organic 

material that is available in wastewater before they are removed by physical filtration. 

Similarly, the suspended growth methods are used to release biodegradable organic material by 

microbial growth in suspension. This process allows the microbes to consume the organic 

matter which is removed with them by further filtration (Cheremisinoff, 2002b, Karvelas et al., 

2003, Loukidou and Zouboulis, 2001, Lee et al., 2001).  

There are some contaminants, such as dissolved metal ions, in the water which must be removed 

by other methods to meet water purity targets as shown in Table 2-1. Such other methods 

include ion exchange columns. PolyHIPEs can be used as ion exchange modules to remove 

metals from wastewater in the second step because, due to their structure with small size of 

Figure 1-1. Diagram showing the steps of normal type of water treatment mechanism, 

screening, Primary Sedimentation and secondary Sedimentation (Karvelas, Katsoyiannis, & 

Samara, 2003) 
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pores, they could be completely closed by large particles and are unsuitable for the first stage. 

The advantage of using PolyHIPEs is the more efficient removal of selected species compared 

to the traditional materials (Katsoyiannis and Zouboulis, 2002). PolyHIPEs are porous materials 

with micro and nano-pores generated in the internal structure after the polymerisation process 

(Krajnc et al., 2005a). In the preparation step the material consists of a dispersed phase (internal 

phase) and a continuous phase (external phase) and the ratio of oil to aqueous phase should be 

at least 76% , more than this ratio the droplets generate in polyhedral and non-uniform shape 

(Busby et al., 2001, Cameron, 2005b, Busby et al., 2002); (Hayman et al., 2004).  

In this study PolyHIPEs prepared using different mixing times have subsequently been exposed 

to sulphonation using sulphuric acid and then coated with iron oxide. The procedure of 

PolyHIPE preparation consists in the gradual addition of the aqueous phase by means of a pump 

to the stirred reactor which contains the oil phase. The mixing continues while the droplet size 

reduces. The aqueous phase consists of distilled water, an initiator, and certain additives (Krajnc 

et al., 2005b, Calkan, 2007). The oil phase consists of a monomer, surfactant, and a cross linker  

(Tai et al., 2001). 

Supplementary pores between the neighbouring pores can be generated in the PolyHIPEs after 

the washing process which removes the aqueous phase, the surfactant and the unreacted 

monomer following the polymerization process as show in Figure 1-2. In addition, the mixing 

processes helps to put the continuous phase, which is located between the droplets, in a low 

energy state creating a thin film between these droplets. During the polymerization process, the 

contraction that takes place in the oil phase leads to the formation of interconnecting pores, the 

final film structure contains the styrene monomer and divinylbenzene cross-linker (see Figure 

1-3)   (Jimat, 2011). This is subsequently polymerised. 
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Figure 1-3.  The chemical interaction between the styrene/DVB chains to form the 

PolyHIPE(Jimat, 2011). 

 

Generally, a PolyHIPEs structure is considered an open structure with different small pores 

inside windows of interconnected larger pores. The pore size depends on the emulsion stability. 

Increased stability leads to small droplet size due to large interfacial area while in low stability 

emulsions, the droplets tend to coalesce therefore large pores will form (Hasan, 2013). The 

stability of the emulsion also has a strong influence on the structure of the PolyHIPE. For 

example, it was found that for an oil phase consisting of styrene monomer and divinylbenzene 

Figure 1-2. Diagram showing the preparation PolyHIPEs: (Emulsion, polymerization and solidification  

,(Byron, 2000). 
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(DVB) as cross-linker which has high hydrophobicity, the  stability of the emulsion is increased  

so the PolyHIPE structure has smaller pore dimeter (Barbetta et al., 2000, Williams et al., 1990) 

(Cameron, 2005b). 

The structure of the resulting PolyHIPE also has an effect on the washing process which is used 

to remove the surfactant and the residual monomer from the internal structure. It was observed 

that 20% shrinkage occurs during the drying process compared with the original volume. This 

is attributed to the presence of closed pores inside the structure which prevent the removal of 

the residual monomer and surfactant,  because the solvent used in washing process cannot reach 

the entire structure due to these closed pores compared with the open structure (Wu et al., 2013). 

It was suggested that, the shrinkage process did not occur during the polymerization process 

because the polymer network prevents the collapse of the PolyHIPE structure (Menner and 

Bismarck, 2006). 

The solvent which is used for the washing process has an important effect on the stability of the 

PolyHIPE. It was found that when using swelling solvents (such as tetra hydro furan (THF)) 

some pores were destroyed due to capillary forces arising from the solvent filling these pores. 

Therefore, a solution was suggested to solve this problem by putting the PolyHIPE in non-

swelling solvents (ethanol) (Jerábek et al., 2008). 

According to Boujelben et al. (2009) the following requirements must be met in the preparation 

and modification of PolyHIPEs:  

1. PolyHIPEs should have suitable internal structure and morphology, such as the size of 

the pores and the degree of interconnection between them.  

2. The PolyhHIPEs should have the ability to form a monolithic structure. 

3. The PolyHIPE chemistry should be sustainable as should the modifications to the 

PolyHIPE structure to promote the required performance. 
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1.2  Heavy Metals in waste water 

There are many heavy metals which may be present in waste water such as nickel, cadmium 

and arsenic with different concentrations which are naturally available or which come from 

industry processes(Kadirvelu et al., 2001b) . The atomic weight of these heavy metals is 

between 63.5 and 200.6 (Srivastava and Majumder, 2008) and their concentrations can be above 

the acceptable limit which determined by the World Health Organization Guideline. The 

concentration of nickel originally from industry may reach 800mg/l (Rajic et al., 2010) while 

the acceptable  limit for the nickel in  waste water is approximately  5mg/l (Ismail et al., 2012, 

Barakat, 2011) and its concentration in drinking water should be not more than 0.07mg/l 

(Edition, 2011). When the concentration of heavy metals in drinking water is more than the 

concentration limit determined by the World Health Organization Guidelines, it will affect 

human health  (Molinari et al., 2008). Therefore, many different methods were developed to 

remove heavy metals such as  arsenic, barium, cobalt, cadmium, chromium, copper, lead, 

manganese, mercury, nickel, selenium, silver, and tin from waste water (Periasamy and 

Namasivayam, 1995). 

The importance of the development of a new methods to supply clean and safe water for people 

is justified by the large number of people dying each year due to polluted water (El-Dessouky 

and Ettouney, 2002). It estimated that nearly 5,000 to 6,000 children die every day due to 

contaminated drinking water (Ashbolt, 2004, Hutton et al., 2007). It has been estimated that 

0.78 billion people in the world do not have safe water (Unicef and World Health, 2014). It is 

also estimated that in a few decades the amount of safe water will reduce by one-third (Amin 

et al., 2014). Thus there is a driving force to develop new methods to improve the quality and 

safety of drinking water. 

The mechanism of the interaction between heavy metals and body cells has been explained by 

many researchers. Heavy metals have the ability to bond with cells in the human body by 

electrophilic attraction. This process is approximately similar to the bond between heavy metals 

and functional groups (carboxylic acids, amines, thiols etc.) which are at the surface of many 

materials. The interaction between heavy metals and functional groups come from the tendency 

of these heavy metals to attract toward functional groups with high electron density to make 

chemical bonds. Additionally, bonding between the strong positive ionic charge and multiples 

functional group may occur at the same time (Rivas et al., 2003). 
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In addition to that, they have high ionic radius and average charge more than +1, therefore 

making bonds with from 4-10 coordinated ligand groups. The size and the charge of the metal 

plays an important role in determination of the number and the strength of these bonds, and 

there can be differences in toxicity and chemistry between these metals which are significant.  

The influence of heavy metals becomes significant at higher concentrations in the human body 

because of the electrophilic behaviour, so bonding with the functional groups in the body cells 

occurs more readily which may destroy these cells and cause many diseases as shown in Table 

1-1. Some functional groups such as carboxylic acids (-COOH), amines (-NH2), thiols (-SH) 

have high electron density, and they have the same effect as heavy metals by bonding with 

proteins and destroying them (Järup, 2003, Davidson, 2010, Kurniawan et al., 2006). 

Table 1-1: Different Heavy Metal Toxicities (Kurniawan et al., 2006, Davidson, 2010, 

Järup, 2003). 

Heavy Metal Toxicities 

Arsenic Gastrointestinal, cardiovascular, nervous system disruption, bone 

marrow, depression, haemolysis, hepatomegaly, melanosis, 

polyneuropathy and encephalopathy, death 

Cadmium Kidney damage, renal disorder,   carcinogenic 

Chromium Headache, nausea, diarrheal, vomiting, carcinogenic 

Copper Liver damage, Wilson disease, insomnia 

Gold Autoimmunity 

Lead Autoimmunity, headache, irritability, abdominal pain, 

various nervous system and psychological disturbances, 

retardation 

Mercury Tremors, changes in personality, restlessness, anxiety, 

sleep disturbance, depression, autoimmunity, death 

Nickel Dermatitis, nausea, chronic asthma, coughing, 

Carcinogenic 

Zinc Depression, lethargy, seizures, ataxia, thirst 
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The concentration limits of heavy metals in potable water are specified by the World Health 

Organization Guidelines as given in  Table 1-2 (Pergolizzi et al., 2008).  

Table 1-2:- World Health Organization's Guideline values for heavy metals (Edition, 2011). 

Heavy Metal Guideline Value (mg/l) 

Arsenic 0.01 

Barium 0.7 

Cadmium 0.003 

Copper 2 

Manganese 0.4 

 

The methods used for heavy metal removal from waste water depend on their concentration. 

The origin of the heavy metal contamination is also important and also the location where the 

contamination is generated. For instance, Table 1-3 gives the definition for discharge and 

effluent discharge  (Furse et al., 2006) in the USA and China. Somewhat surprisingly the 

maximum discharge limits are lower in China but those limits are better policed in the USA 

where water quality prosecutions are much more common. 

Table 1-3:- show Maximum Effluent Discharges for the Electroplating Industry in the 

USA and PRC. Where EPAa Environmental Protection Agency, USA, b Ministry of 

Environmental Protection, PRC. 

Heavy Metal EPAa Max. Effluent 

Discharge (mg/l) 

MEPb Max. Effluent 

Discharge (mg/l) 

Silver 0.7 0.3 

Copper 2.7 0.5 

Nickel 2.6 0.5 

Chromium 4.0 1.0 
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1.2.1 Copper in wastewater  

 

Copper is widely used in different applications such as in water pipes but still has an effect on 

human health as shown in Table 1-1. Copper ions (Cu2+) in waste water can have a significant 

effect on the human health after ingestion because it can cause different health problems such 

as impairments, carcinogenicity and mutagenesis in many parts in the body. Therefore different 

technologies, such as activated carbon, are used to remove it to reach the limit specified by the 

World Health Organization which is 2mg/l (Edition, 2011). Agricultural waste was used as the 

best adsorbate for this ion due to its high uptake and low cost as well as  flexibility of usage 

enabling it to remove single and multi-metals at the same time (Bilal et al., 2013). 

An increase in the amount of copper in drinking water also leads to mutagenesis in humans 

when its concentration is above the  permissible limit of 1.3 mg/l in industry effluents, a value  

determined by the United States Environmental Protection Agency (Shawabkeh et al., 2004). 

In addition to all the problems which heavy metals may  cause when entering the human body 

by ingestion, skin contact can occur and this might cause skin cancer  (Vieira et al., 2010).  

1.2.2 Nickel in wastewater  

  

Nickel is one the most widely used in industry for design products because it have many 

properties as listed below. 

• Its melting point is high (1453 °C) 

• It has good resistance to Corrosion  

• Because the internal structure face-centred cubic so it consider as a ductile material and it 

could be used as catalyst 

 

Nickel is used in synthesis of non-ferrous alloys and super alloys; electroplating processes, 

catalysts; nickel–cadmium batteries; coins, welding, pigments and electronic products (Cavallo 

et al., 2003). Household applications use nickel in about 8% (Nieboer et al., 1999). Food 

supplements can also contain of nickel (Ruhrberg, 2006). 

Nickel can be easily  deposited on a  reuse of substrates, so it can be used in different 

applications such as computer hard disks, kitchen utensils, medical devices, automobile trim, 

and bathroom fixtures (Davidson, 2010). Nickel can be recovered by using it and it can be used 

again in last applications due to its physicochemical properties as listed below (World Health, 

2005). 
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Nickel has two electrons in the valence band, and +1, +3, or +4 oxidation states may be 

available. Metallic nickel does not react with water, but it has the ability to react with 

hydrochloric, sulfuric or nitric acid. While nickel salts such as acetate, chloride, nitrate, and 

sulphate are soluble in water, carbonates and hydroxides have lower solubility in water. 

Sulfides, disulphides, sub sulfides, and oxides are insoluble in water (Haudrech et al., 1994, 

Morgan and Flint, 1989). 

Natural water commonly contains a nickel component [Ni (H2O) 6]
2+ at the pH range between 

5 and 9. Nickel can form complexes with many chemical components such as OH-, SO4
2-, 

HCO3
-, Cl-, and NH3 at different pH values (Nieboer et al., 1999). Nickel can enter water via 

metallurgical (Rule et al., 2006), electronic industries (Veglio et al., 2003), and electroplating 

(Castelblanque and Salimbeni, 2004).  

The concentration of nickel in groundwater depends on parameters such as the depth of the 

water, the pH and the kind of soil. Therefore, its concentration varies from area to area around 

the world. For instance, the concentration of nickel in the Netherlands is between 7.9 μg/litre 

in urban areas to 16.6 μg/litre in rural areas.  Additionally, it was reported that acid rain (low 

pH) increases nickel mobility in the soil which might lead to an increase in its concentration as 

well (Nieboer et al., 1999). Smoking is another source of nickel because cigarettes give between 

0.04–0.58 μg of nickel to the atmosphere per cigarette (Nieboer et al., 1999).   

This removal of copper and nickel ions from wastewater is a significant requirement and it is a 

challenge to reduce concentrations down to Wold Health Organization Guideline limits. 

Heavy metals such as nickel can be adsorbed by intestines a mechanism of adsorption which is 

not clear right now. It was estimated that, reducing iron in the intestines lead to increasing nickel 

adsorption, while intestinal mucosal cells absorbed nickel partially with the transfer system of 

iron  (Tallkvist et al., 1994).   
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1.3  Wastewater Treatment Techniques 

Among many industry processes that take place across the world each day, some products like 

algal blooms, detergents, fertilizers, pesticides, and chemicals generate many heavy metal 

compounds with different chemical structures. New technologies and new materials with low 

cost and high efficiency to remove these heavy metals from waste water are widely investigated 

(Boujelben et al., 2009). For instance, metal oxides show better performance in adsorption 

processes than other materials such activated carbon, magnetite, fly ash, or calcined phosphates,  

because they have higher affinity towards metal cations (Varma et al., 2013). 

Heavy metals from different industry processes can have a significant  effect on human health 

(Inglezakis et al., 2003), because they are toxic materials which can accumulate (Seiler et al., 

1988). Therefore, methods such us ion exchange, membrane technology, 

precipitation/coagulation and adsorption are used to remove these metals from waste water 

(O’Connell et al., 2008). In the following sections the technologies most widely used to remove 

heavy metals from waste water are briefly discussed. 

1.3.1 Adsorption 

 

Adsorption processes have many advantages compared with other methods in terms of 

simplicity, efficiency and convenience (Stafiej and Pyrzynska, 2007, Afkhami et al., 2007, 

Yabe and de Oliveira, 2003, Cervera et al., 2003).  In these processes the contaminant is 

adsorbed from solution onto the surface of a suitable material where it remains trapped until the 

material is removed from the process stream or the surface is regenerated. Most  adsorption 

processes involve the use of polymers coated with different materials (Gupta et al., 2009). The 

filtration process efficiency using this techniques depends on many parameters such as pH; the 

amount of adsorbate; the contact time between the adsorbate and the heavy metal ion, and the 

concentration of the material used in the coating. These parameters also have an influence on 

the regeneration processes which are used after filtration to regenerate the adsorbate surface in 

order to reuse it  (Adeli et al., 2012). 

Different materials have been used as adsorbants in filtration processes. It was found that low 

cost fly ash materials which came from the sugar industry in Egypt were effective to adsorb 

many heavy metals such as Cu2+, Zn2+ and Cr3+ which are found in waste waters from industry. 

The results showed that it was an active material to remove approximately 95% of these ions 

after changing different parameters such as pH, adsorbant dose, metal ion concentration, and 

shaking time. Activated carbon is an expensive adsorbant with high efficiency in removing 
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heavy metals (Gupta et al., 1998a, Gupta and Ali, 2000, Gupta et al., 1998b, Gupta et al., 1997a, 

Gupta et al., 1997b).   

Clinoptilolite powders (natural zeolite containing silica and alumina), activated alumina, silica 

gel, and activated carbon are effective in removing different heavy metals like nickel from 

waste water. All these adsorbants can be made more efficient by increasing their surface area  

(Ismail et al., 2012). Iron oxides are also considered as important adsorbant materials which 

have been studied for removing the heavy metals  (Lo and Chen, 1997, Diz and Novak, 1999).   

Generally, the adsorption process consists of two steps (1) a transfer process for heavy metal 

ions from the solution to the adsorbant surface (2) adsorption at active sites on the surface of 

the adsorbant, (Barakat, 2011). The demand for using natural materials as adsorbants to remove 

heavy metals from waste water has recently increased since it is sustainable alterative to 

synthetic materials. For instance, chitosan was used to remove Cu (II) (Ngah et al., 2002), and 

cross-linked starch gel (Zhang and Chen, 2002), to remove Pb (II) ions. Polysaccharides showed 

excellent performance during  filtration  compared to activated Carbon (Crini, 2005). 

Additionally, it was reported that, the chemical structure and complexing group was the most 

important factor to determine the removal efficiency for polysaccharides (O'Connell et al., 

2008). 

1.3.2 Ozonation, Reverse Osmosis and Nanomaterials Techniques  

 

In ozone treatment, ozone from a generator is bubbled through the contaminated water and 

oxidises organic chemicals within it. There may be some oxidation of metal ions as well. 

Ozonation has two disadvantages which are high cost and short life of the ozone generator (von 

Gunten, 2003). Although this method does not have sufficient efficiency to remove high 

concentrations of micro pollutants it is still considered as an advanced method to remove heavy 

metals at low concentration. In contrast, Reverse Osmosis (RO) is considered better than other 

techniques to remove low concentrations of contaminants but it needs more energy (Braeken et 

al., 2006). Adsorbant nanomaterials technology needs lower energy than RO and it has many 

advantages such as good reactivity, high adsorption due to high surface area (Qu et al., 2013, 

Alivisatos, 1996, Rosenthal, 2001). 
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1.3.3 Chemical Precipitation 

 

Trapping contaminants in insoluble precipitates can be used when concentrations are high 

enough. The mechanism of this technology depends on the interaction between a chemical and 

heavy metals ions to produce an insoluble complex, according to reaction Eq 1-1.It is complex 

will fall to the bottom of the container then it can be separated from the water by filtration or 

sedimentation.  

𝑀2+  + 2(𝑂𝐻)− ↔ 𝑀(𝑂𝐻)2 ↓ 

 

Eq 1-1 

 

Here M2+ represents the heavy metal in ion form, while M (OH) 2 refers to the hydroxide in 

insoluble form. 

A compound that forms a soluble hydroxide on addition to water is required to start the 

interaction such as calcium and iron hydroxide. There are many advantages for using this 

process such as simplicity, safety during operation and low cost (Kurniawan et al., 2006). 

Sulphides are widely used in this technology to form hydroxide precipitation (Fu and Wang, 

2011). 

1.3.4 Activated Carbon and carbon-based Adsorbants 

 

Activated carbon adsorbants have been used many times in filtration processes for removing 

heavy metals from waste water, because their structure consists of both micropores and 

mesopores which results in high surface area (Jusoh et al., 2007, Kang et al., 2004). Many 

additives such as alginate (Park et al., 2007), tannic acid (Üçer et al., 2006), magnesium 

(Yanagisawa et al., 2010), surfactants (Ahn et al., 2009), were added to activated carbon to 

improve its performance toward adsorbing the heavy metals from waste water. However, it is 

still considered as high cost adsorbant (Fu and Wang, 2011).  

According to  (Iijima, 1991), since 1991 carbon nanotubes (CNTs) have been used in many 

trials and they showed very good properties which make them suitable for different 

applications. One of these application was removing  heavy metals from waste water e.g 

removing  lead (Wang et al., 2007, Kabbashi et al., 2009), and cadmium (Kuo and Lin, 2009).  

The results from the last few decades have shown that, the CNTs have good efficiency to 

remove heavy metals. CNTs are divided into two kinds, (1) single-walled carbon nanotubes 

(SWCNTs) and (2) multi-walled carbon nanotubes (MWCNTs) (Odom et al., 1998). Both types 
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of CNTs attract the heavy metals from waste water by different mechanism such as electrostatic 

attraction, adsorption precipitation and interaction with  functional groups which attract metal 

ions (Rao et al., 2007). CNTs were used to remove heavy metals from waste water but they 

showed low adsorption capacities. After oxidation by different solutions such as HNO3, NaClO 

and KMnO4 their performance increased (Fu and Wang, 2011). Wang et al. (2007) have used 

MWCNTs to remove Pb (II) from waste water, with an  adsorption capacity of approximately 

75.3% (Fu and Wang, 2011). 

In another study Li et al. (2010), used three adsorbents (activated Carbon (AC), 

unfunctionalised (MWCNTs) and functionalised (MWCNTs)) to remove Cr (VI) from waste 

water. It was reported that, unfunctionalised MWCNTs had the highest removal efficiency of   

98% for a 100 ppb Cr (VI) solution. While AC shows less removal efficiency than non-

functionalised and functionalised MWCNTs. Li et al. (2010) reported that, CNTs immobilized 

by calcium alginate (CNTs/CA) were used to reach 67.9% mg/g adsorption capacity (Fu and 

Wang, 2011). 

Multi-walled carbon nanotubes (MWCNTs) were also used   to remove nickel from waste water 

before and after the oxidation process with nitric acid at 150 ◦C. The filtration process was done 

by changing many parameters such as pH and initial concentration and contact time at room 

temperature. The results showed that, oxidized CNTs have better removal efficiency than non-

oxidized CNTs; the removal capacity was 18 and 49mg/g, respectively. The adsorption process 

for the oxidized CNTs was complete at a shorter time than non-oxidized CNTs (Kandah and 

Meunier, 2007).   

1.3.5 Low-Cost Adsorbents 

 

The most important factors in choosing between different adsorbants is the cost of the 

adsorbant, the type of the adsorbant how many processes are required before the adsorbant 

filtration process and material availability. Thus, low cost adsorbants which require few 

preparation processes and are available naturally or from industry processes are favoured 

(Bailey et al., 1999).   It was reported that, agricultural wastes, kaolinite and montmorillonite 

all have good performance to remove the heavy metals from waste water (Sud et al., 2008).   
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1.3.6 Chemical Modification of Adsorbants 

 

Chemical modification by an acid is considered as an effective method to remove heavy metals 

from waste water. For instance, montmorillonite clay was subjected to acidic treatment to 

decompose its  structure; hydrochloric acid was used for this process (Vengris et al., 2001). The 

results showed an increase in the capacity to remove many heavy metals such as nickel, copper 

and zinc to concentrations which are admissible by the Wold Health Organization Guideline 

(Vengris et al., 2001). The filtration process was done by using solutions with different pH 

values (between 6.2 and 6.8) since copper hydroxide Cu (OH) 2 precipitates at higher pH. The 

acceptable limit of theses metals in pure water (Ni=0.5mg/l, Cu=1mg/l, Zn=1mg/l) could be 

achieved  (Vengris et al., 2001). 

In another study, Orange peel was modified with sodium hydroxide and calcium chloride, 

which resulted in increased the adsorption capacity towards  many metals ion such as  Cu (II), 

Pb (II) and Zn (II) with an increase of up to 59.7%, 84.8% and 164% respectively (Feng and 

Guo, 2012). There are many disadvantages in using this technology, because of the huge 

amount of chemicals required to remove the heavy metals from the waste water and a large 

amount of sludge is produced during this process. Further processes are needed to remove this 

and this increases the cost of this method. Furthermore, the metal precipitation mechanism is 

slow, and the precipitates are small leading to poor settling (Aziz et al., 2008) and limited metal 

recovery.  

Thus, it is clear that chemical treatments may improve the adsorption capacity of a particular 

adsorbant but the cost can be high and the ease of recovery of the metals may be compromised 

if the polymer substrate is unsuitable. 

1.4 PolyHIPEs as Filtration Media  

It has previously been shown that PolyHIPE can used as a filter material either as a physical 

filter or a substrate for an ion exchanger. PolyHIPEs have nano and micro pores and they can 

be functionalised by coating with suitable material to enhance this. PolyHIPEs contain a Nano–

structured surface that reacts with contaminants and can be considered as nanomaterials which 

have different physical properties compared conventional materials. Nanostructured materials 

have new properties such us high surface area, antifouling surfaces, strong adsorption and easy 

fictionalisation which could be used to remove range of metals from waste water (Qu et al., 

2013, Rickerby and Morrison, 2007, Vaseashta et al., 2007). 
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Traditional methods for waste water treatment do not have the same removal efficiency as  

nanomaterials  (Amin et al., 2014). For example the biological methods cannot be used to 

remove certain contaminants because many of them are soluble in the solution (Ozaki, 2004, 

Urase and Kikuta, 2005). The ozonation method is considered expensive and it is effective only 

for short times (Adams et al., 2002, Boujelben et al., 2009).   

Functionalised nanostructured materials have been shown to be more efficient in removal of 

heavy metals (Vörösmarty et al., 2000). It was also found a polymer adsorbant (the main 

structure for the PolyHIPE) was effective for removing heavy metals when it  was combined  

with ultrafiltration   (Bodzek et al., 1999, Rivas et al., 2003). Therefore  PolyHIPE coated  with 

a specific adsorbant could be used in an ion–exchange process as an effective method for 

removing heavy metals from waste water when its concentration is low (Bilal et al., 2013). 

1.4.1 Polymer Selection  

 

Many researchers have used polymers as a host for different adsorbants to remove heavy metals 

from waste water because both polymers and the metals could be reused after removing the 

heavy metals in a regeneration process. The polymer provides a physically robust substrate for 

the adsorbant layer which is stable during both filtrations and regeneration. This regeneration 

is economically desirable to reduce the cost of the purification processes. The regeneration 

process could be achieved by changing the pH or use of electrochemical or thermal pathways 

(Molinari et al., 2008, Geckeler and Volchek, 1996, Molinari et al., 2004, Tavares et al., 2002). 

Polymers can be the substrate the adsorbant or may directly attract contaminates to their surface 

functional groups. Polymeric chains contain charged functional groups, which allow heavy 

metals to penetrate deeply inside their structure according to the Donnan membrane principle 

(Cumbal and SenGupta, 2005, Pan et al., 2010, Su et al., 2009, Pan et al., 2009b, Zhang et al., 

2009). For instance hydrous manganese dioxide was used as hybrid adsorbent after  deposition  

onto a porous polystyrene substrate to use it as a cation exchanger (Su et al., 2009). The polymer 

could be used as a host for different oxides such as ferric oxides, manganese oxides, aluminium 

oxides, titanium oxides, magnesium oxides and cerium oxides, and it was used to remove lead 

from a standard solution showing good performance with a removal capacity of 395 mg/g. 

These results were obtained in the presence of other metals such as Ca2+ , Mg2+ , and Na+ and  

the concentration of lead was reduced from 1 mg/l to less than 0.01 mg/l which is below the 

acceptable limit according to the drinking water standard recommended by WHO (Hua et al., 

2012).   
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Thus, polystyrene is a suitable filter substrate polymer as it is relatively cheap and easy to 

process and has therefore been used as filter substrate but other polymer systems could also be 

used. 

1.4.2 Metal Oxide Nanoparticles  

Metal oxides such as nano-sized ferric oxides, manganese oxides, aluminium oxides, titanium 

oxides, magnesium oxides and cerium oxides have good performance when used to remove 

heavy metals from aqueous systems due to their high surface area and they have good 

adsorption efficiency toward the heavy metals (Hua et al., 2012). It was reported that, they 

could be used with another material as a host. For instance, PolyHIPE as a porous host which 

support the metal oxide (Hua et al., 2012) especially when the metal oxides show high  sorption 

because of their high capacity and selectivity, which leads to higher removal efficiency 

(Deliyanni et al., 2009).    

Iron oxides with nanostructure have high surface energy which makes them active towards the 

adsorption of heavy metals but it makes them less stable, and they can agglomerate due to  van 

der Waals forces (Pradeep, 2009). Due to its weak mechanical strength, iron oxide has to be   

supported on different materials with a porous structure such as activated carbon, natural 

materials, and synthetic polymers (Pan et al., 2009a). 

Factors such as, size, stability and shape of the particles have a huge effect on the adsorption 

process. Therefore, the morphology, size, crystal structure, surface area and the pH of zero point 

of charge (pH pzc) have been studied to improve the adsorption performance of metal oxides. 

Regardless of its structure, there are two methods to produce metal oxide with nanostructure 

and high stability (1) physical methods which include inert gas condensation, severe plastic 

deformation, high-energy ball milling, ultrasound shot peening, and (2) chemical method such 

as reverse micelle (or micro emulsion) controlled chemical co-precipitation, chemical vapour 

condensation, pulse electrode deposition, liquid flame spray, liquid-phase reduction, and gas-

phase reduction (Li et al., 2006). 

Iron oxide is considered friendly to the environment, so it has been widely used to remove 

secondary contaminants (Deliyanni et al., 2004). Many studies were done to remove  heavy 

metals from waste water by using nanosized iron oxide in different forms such as goethite 

(FeOOH), haematite (Fe2O3) (Grossl et al., 1994, Chen and Li, 2010), amorphous hydrous Fe 

oxides (Fan et al., 2005), maghemite (Fe2O3) (Hu et al., 2006), magnetite (Fe3O4) (Mahdavian 

and Mirrahimi, 2010, Wang et al., 2010, Badruddoza et al., 2011) and iron/iron oxide 

(Macdonald and Veinot, 2008, Guan et al., 2007).   
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This project will assess the effect of the PolyHIPE supported iron oxide nanoparticles as an 

adsorption filter based on these results. 

1.5  Aims and Objectives  

The aim of this work is to synthesis PolyHIPE with a defined structure (nano and micro pores 

with interconnect between them) by controlling the preparation conditions (mixing time) and 

then assess its performance as an ion exchanger and adsorbant after sulphonation with sulphuric 

acid and a coating process with iron oxide. The resulting structure will be used to remove nickel 

and copper ions from simulated waste water.  

The objectives s of this study were to identify the polyHIPE parameters which we could change 

to improve the filtration process to reach the discharge limit for nickel and copper in water.   

PolyHIPE materials were used because they have a porous structure with different pore size 

and this porous structure gives iron oxide nanoparticles the opportunity to enter to the entire 

structure; therefore more iron oxide will loaded in the water coating layer of the material and 

this means increasing the number of active sites which are used in the filtration processes. Thus  

the removal efficiency will increase (Katsoyiannis and Zouboulis, 2002). An additional 

objective was  to find cheap materials for use in the filtration processes rather than using high 

cost adsorbant (Kratochvil and Volesky, 1998, Bailey et al., 1999). 

1.6  Structure of the thesis 

Chapter 1 introduces the project and gives general information about reasons for using 

PolyHIPEs as filtration media and the most important methods that are used to remove heavy 

metals from waste water.  

Chapter 2 contains the literature review and discusses the parameters which can be changed to 

produce a suitable PolyHIPE for filtration studies.   

Chapter 3 gives the experimental methodology for the work undertaken, including the 

PolyHIPE preparation, filtration studies and the equipment which was used for 

characterization of the materials and filtration solutions during the project.  

Chapter 4 details results of the PolyHIPE polymer (PHP) synthesis and how the sample 

structure depends on processing using the results from a range of test methods including 

SEM, BET and FTIR.  

Chapter 5 discusses the filtration performance of post sulphonated PolyHIPE as an ion 

exchanger to remove nickel and copper from wastewater.  



19 
 

Chapter 6 discusses improvements to the use of the PolyHIPE after sulphonation in order to 

remove more nickel and copper from the standard solutions.  

Chapter 7 give the results for using PolyHIPE after coating with iron oxide as an adsorbant 

filter. 

Chapter 9 investigates the regeneration processes that might be used to recover the heavy metals 

from the PolyHIPE after the filtration process. 

Finally Chapter 10 summarises the work undertaken and suggests the future work which might 

be done to increase the removal efficiency of polyHIPE-based adsorbants for heavy metal 

contamination in wastewater. 

1.7  Summary   

This chapter has summarised the background material and justification for the choice of 

functionalised PolyHIPE as a new material for removing the heavy metals from waste water 

based on its unique properties such as high surface area and porosity and the ability to tailor its 

performance by controlling the functionalisation process. Therefore it has the potential to be 

more efficient that the traditional methods and more selective due to the fact that it can be 

fictionalised with different specific materials to be suitable for removing different heavy metals. 

Both industrial and natural weathering processes can lead to water contamination with heavy 

metals and these can have a significant effect on human health. Thus further work is needed to 

develop improved technologies for use in waste water treatment preferably by using cheap 

material with high performance. In this thesis the use of polyHIPE will be investigated for such 

application and its processing and how it might be optimised to improve performance is 

discussed in the next chapter.    
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2. Structure and Chemistry of PolyHIPE 

 

In this chapter the most important factors such as cross linker, surfactant etc. which can be 

changed to produce PolyHIPE with better mechanical and physical properties like surface area 

and pore size are introduced. These processing changes can have a huge effect on the resulting 

structure of the PolyHIPE which influences its properties, therefore the performance of this 

material in an application can be optimised by changing these parameters. Functionalisation 

can further improve properties and the sulphonation process is explain in more details due to 

its priority in this work where it was used it to change the PolyHIPE from hydrophobic to 

hydrophilic by addition of SO3H groups to the PolyHIPE structure. This functional group can 

be used as strong cation exchanger with the heavy metals such as nickel and copper. The ion 

exchange mechanism is explained in this chapter. In addition, the parameters used to increase 

the removal efficiency for heavy metals from waste water are explained such as pH, temperature 

the amount of adsorbant. The use of PolyHIPE as an ion exchanger is analysed to estimate the 

benefit of using it in the filtration process. Finally the mechanism of regeneration and measuring 

zero of point charge is explained. The first is used in this work to recover the heavy metals from 

PolyHIPE after the filtration process and the second is to determine the value of pH in which 

the iron oxide should be used in the coating process to give zero surface charge which is 

important if the material is to be used to adsorb heavy metals from wastewater without ion 

exchange.          
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2.1. Factors Affecting PolyHIPE Structure 

There are many  factors which determine the final structure of the PolyHIPEs such as the pore 

size, the ratio of interconnections between pores and the total surface area (Zhou et al., 2007). 

At the same time, these factors can be changed by changing the ratio of the materials through 

the preparation step or by changing the preparation conditions such as mixing time and mixing 

speed (Walsh et al., 1996). Below the most important factors are briefly discussed. 

2.1.1. Cross-Linker    

    

Williams et al. (1990) Considered the cross-linker as one of the most important parameters 

which influences the morphology of the PolyHIPE. They discovered that the emulsion became 

more stable by using Divinylbenzene (DVB) rather than using styrene alone. This is because it 

is difficult to create open cell pores inside the PolyHIPE structure without a cross-linker. 

The cross linker is added to the emulsion as a stabilizer, therefore if the amount of the cross 

linker is insufficient the PolyHIPE product may appear as powder (Normatov and Silverstein, 

2007b, Akay et al., 2005a). The cross linker forms a network inside the polymers which 

prevents the collapse of the PolyHIPE structure  (Barbetta et al., 2000). 

The ratio of cross-linker in the oil phase also has significant effect on the pore size of the 

resulting PolyHIPE  (Williams et al., 1990). It was found that, the average pore size was reduced 

from 15 to 5 μm by increasing the styrene/DVB ratio. As a result, the stability of the structure 

increases by reducing the pore size.  

2.1.2. Surfactant 

 

A surfactant contains both, polar and non-polar groups which interact at the interface between 

the oil and aqueous phases and this leads to the formation of a interfacial film which increases 

the stability of the emulsion (Hauthal, 1990). Adding the surfactant to the oil phase has an effect 

on the morphology of the resulting PolyHIPE as well. It was found by Williams et al. (1990) 

that when the ratio of the surfactant was 4% the PolyHIPE produced consisted of large pores, 

whereas when the ratio increased up to 5% smaller pores appeared on the surface, and when the 

ratio increased up to 8% the resulting surface had fine pores. At 30% surfactant the surface was 

very smooth (Williams et al., 1990). 

In a study conducted by Williams and Wrobleski (1988)  it was found that when the surfactant 

is low (i.e. <5% related to the oil phase ) closed pores will be formed in the PolyHIPE structure 
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but when the concentration of the surfactant is high (i.e. >7%) open cells were generated. This 

is because the thickness of the monomer film located between the droplets increases when the 

surfactant concentration increases and a window appears in the cell walls during 

polymerization. At low concentration the droplet may shrink to give a closed structure(Hasan, 

2013). It was also observed that, increasing the surfactant concentration compared with the 

monomer leads to the reduction of the pore size due to reduced interfacial tension between these 

two phases.  

The surfactant may help in creating new pores inside the PolyHIPE structure therefore the 

morphology might be changed by increasing the surfactant ratio in the oil phase. It was 

suggested that the surfactant tail group may be attracted by another group which is located in 

the same region and agglomerate to form a new phase, and after removing the surfactant through 

the washing process a new pore might be generated (Bhumgara, 1995). Some polymers can act 

as co-surfactants. Vinyl benzyl chloride (VBC) which has polar and non-polar groups can be 

absorbed at the interface of the emulsion increasing the stability of the emulsion by reducing 

the tension at the interface area (Barbetta et al., 2000). 

2.1.3. Mixing Time/Dosing Time 

   

The emulsion which results from mixing the oil and the aqueous phase is less stable because of 

the high interfacial tension. The droplets tend to accumulate and coalesce and this produces 

large pores inside the structure. This can be controlled to a certain extent by putting energy into 

the system from the mixing process. This depends on the time for which mixing occurs. The 

total mixing time is calculated from..Eq 2-1 .In general an increased mixing time will reduce the 

droplets to a smaller size therefore the pore size will decrease. As a result, the emulsion will be 

more stable  (Walsh et al., 1996). The mixing process supplies the energy to the droplets so 

when the energy is high the droplet can be broken into smaller droplets (Jimat, 2011).  

 

𝑇𝑡 =  𝑡𝐷 + 𝑡𝑀 ..Eq 2-1 

where tD is the dosing time and tM is mixing time. 
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2.1.4. Moulding Type 

 

The type and shape of the material which is used as a container for the emulsion has a strong 

influence on the morphology of the PolyHIPE (Cameron, 2005a). It was observed that when a 

glass mould was used, a weak physical bonding between the sample surface and the container 

surface takes place. It was also observed that a polyvinyl chloride (PVC) mould has a negative 

effect on the stability of the PolyHIPE because the HIPE reacts with the container (Cameron, 

2005a). 

2.2. PolyHIPEs Surface Area  

PolyHIPEs can be tailored for many applications (Wakeman et al., 1998) because it is relatively 

easy to control the pore size range (Zheng et al., 2014). The surface area depends on the pore 

size. For instance, PolyHIPEs with a surface area of 10 m2/g have been obtained when the pore 

size range was between 3-7 µm (Krajnc et al., 2005b). A significant number of published studies 

have been carried out with the aim to increase the surface area by changing process parameters 

or by adding new materials. A porogenic solvent was found to produce small pores inside the 

walls which separate the larger pores and this leads to an increase in surface area (Hainey et al., 

1991). The addition of toluene resulted in PolyHIPEs with a considerable increase in surface 

area (from 3 to 350 m2/g according to (Williams et al., 1990)). 

2.3. Mechanical Properties 

Generally, PolyHIPEs have poor mechanical properties being brittle. It was suggested (Wu et 

al., 2013) that increasing the organic phase is one of the solutions to improve the mechanical 

performance of the these materials. Certain additives may be used to change the mechanical 

properties and make PolyHIPEs suitable for specific applications (Zheng et al., 2014). Cameron 

(2005b) showed that by adding Kevlar fibres to a styrene/DVB PolyHIPE significantly 

influenced both the morphology and the mechanical properties increasing the compressive and 

flexural modulus and also the toughness (Hayward et al., 2013). Silica added to the emulsion 

leads to an increased Young’s modulus by up to 280% (Haibach et al., 2006). The type of cross 

linker also has an effect on the mechanical properties. It was found that the PolyhHIPE 

brittleness was reduced when using polyethylene glycol dimethacrylate (PEGDMA) as the 

cross-linker (Menner et al., 2006).  
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2.4. Chemical Modification of PolyHIPEs by Sulphonation 

The PolyHIPE prepared with polystyrene contains phenyl groups which are classified as active 

sites. This allows for additional reactions with various chemical components to produce 

PolyHIPEs with specific reactive sites for a given application. The hydrophilic properties of 

PolyHIPEs can be controlled through the sulphonation process which takes place on these 

groups (Cameron, 2005b). 

The sulphonation process is considered as one of the most important chemical treatments 

applied to PolyHIPEs in order to increase the capacity of PolyHIPE to absorb water. The 

hydrophobic character can be changed to hydrophilic by  adding the sulphonate group (SO3H) 

as shows in Figure 2-1 and Figure 2-2 (Yee et al., 2013). The PolyHIPEs can be functionalized 

with specific ions that can be used in ion exchange removing processes for wastewater treatment 

(Wakeman et al., 1998). The process of sulphonation consists in heating the PolyHIPEs with 

concentrated sulphuric acid at a temperature of 40 °C, for 24 to 112 hours or by using  

microwave radiation to drive the chemical reaction (Yee et al., 2013). 

Because the most reactive sites are available inside the structure of the PolyHIPE, the following 

factors contribute to the degree of sulphonation: the solvent; the swelling process; and the 

compatibility of the solvent. The solvent used should swell the PolyHIPE structure to give the 

ability to the solvent to enter into the structure and to attach to the active sites. The swelling 

process should continue for the entire time of sulphonation. The solvent should be compatible 

with the polymer considering the hydrophobic character of the polymer  (Cameron et al., 1996). 

This chemical process can be modified by controlling some factors through the preparation 

steps. For example, a high degree of sulphonation and better control on the porosity may be 

obtained through synthesis of PolyHIPEs from styrene/DVB, by increasing the ratio of the 

cross-linker up to 20%. As a result, the degree of sulphonation increases due to an increase of 

the active sites inside the PolyHIPE, whereas, swelling processes during the sulphonation 

reduce with increasing the pore volume. This affects the amount of sulphuric acid that reaches 

the reactive sites inside the structure of the PolyHIPE hence the degree of sulphonation will 

reduce (Ahmed et al., 2004, Wakeman et al., 1998).  
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Figure 2-1. The chemical interaction between the (styrene/DVB) chains and sulphuric acid 

through the sulphonation process for  PolyHIPEs (Jimat, 2011). 

 

 

Figure 2-2. The internal chains and the shape of external structure of PolyHIPE after the 

sulphonation process,(Ordomsky et al., 2012). 

After the sulphonation process the PolyHIPE becomes acidic due to the SO3H in its structure. 

The SO3H group joins the benzene ring of the styrene and the degree of sulphonation depends 

on how many sulphuric groups will attach to the ring (Bhumgara, 1995). Because of the high 

concentration of the sulphuric acid it is difficult to obtain uniform swelling. In order to remove 

the air from the structure the PolyHIPEs are treated in vacuum before the sulphonation 

(Wakeman et al., 1998). It was reported that the adsorption capacity of a carbonaceous material 

was increased after the sulphonation process (Adams et al., 1988). 
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2.5. Ion Exchange and Adsorption Filtration Mechanisms 

2.5.1 Mechanism of ion exchange  

 

Ion exchange processes occur in natural and in manufactured materials. These materials consist 

of a negative or positive charge group surrounded by ions with a different charge. These ions 

could be replaced with similarly charged ions from other materials. Organic materials are 

widely used as ion exchange media (Wakeman et al., 1998). 

The mechanism of the ion exchange process depends on replacement between the heavy metal 

ion and an ion (from the resin) with the same charge, and these processes could be designed to 

be selective for a specific metal by adding ligands. Although these advantages in ion exchange 

processes have been demonstrated, it is still not a favourite way to remove the heavy metals 

from waste water, because it requires pre-treat processes to prevent resin contamination and not 

all the heavy metals could be removed by this method (Tan et al., 1985). However, there are 

many advantages which make this method widely used in purification processes, such as its 

high capacity, quick kinetics and high removal efficiency (Kang et al., 2004). So, it is 

considered an effective method to remove heavy metals from waste water (Alyüz and Veli, 

2009). For instance, acidic resin with sulphonate groups (e- SO3H) or carboxylic acids 

(eCOOH) could be used as an exchanger to remove cations from aqueous solution after 

exchange with hydrogen ions, when the solution was passed through a column containing this 

exchanger in the form of beads according to the chemical reaction in  Eq 2-2 below (Fu and 

Wang, 2011). 

𝑁𝑅 − 𝑆𝑂3𝐻 + 𝑀𝑛+  → (𝑅 − 𝑆𝑂3)𝑛 𝑀𝑛+  + 𝑛𝐻+  Eq 2-2 

It was reported by these researchers that, in addition to the influence of these functional groups 

in the removing process, there are many factors that should be taken into account to get better 

removal such as (1) active site numbers, (2) chemical situation of these sites (3) if there is 

affinity between the heavy metal and the active sites (Park et al., 2010).  More control of all 

these parameters may lead to high removal efficiency. For instance, Dowex HCR S/S was used 

as a cation exchanger, and it shows high removal efficiency for many metals  such as nickel 

and zinc at about  98 %  (Alyüz and Veli, 2009)  

Generally, There are many parameters which determine the ion exchange efficiency of any 

resins such as pH, temperature , the concentration of initial metals and the contact time between 

heavy metals and the exchanger (Gode and Pehlivan, 2006). In addition to that, many natural 

materials such as zeolites and silicate minerals, are considered low cost exchangers and could 
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be used after changing these parameters. It was found by different researchers that, zeolites 

have good capacities with different conditions and show selectively for heavy metals (Motsi et 

al., 2009, Ostroski et al., 2009, Taffarel and Rubio, 2009). While others reported that,  

clinoptilolite shows better performance when it is loaded with Fe-oxide; the exchange capacity 

to remove Cu, Mn and Zn was increased (Dimirkou and Doula, 2008, Doula, 2009). Potato 

peeling were used to remove the heavy metals from waste water after treat it with nitric acid, 

when the shaking technique was increased contact between heavy metals and the exchanger. A 

decrease in pH value after filtration was reduced which was attributed to an increase in the 

concentration of hydrogen ions which came from the ion exchange process (Panda et al., 2008, 

Aman et al., 2008). Ion exchange was used as the removing process for Cu (II) and Pb (II) from 

waste water by using pine cone powder after treating it with KOH (Ofomaja et al., 2010).  

2.5.2 Mechanism of Adsorption filtration  

Adsorption is the retention of gas, liquid or solid on a surface due to positive interaction 

(attraction) between the surface and the atoms or molecules of the adsorbed material. 

Adsorption filters have a high surface area able to adsorb a large amount of substances. The 

adsorbed substances can be removed from the adsorption filter by a subsequent desorption 

process. In adsorption filtration the species to be filtered is just adsorbed onto the surface of a 

filtration material and there is no exchange of ions. The surface chemistry can be tuned to 

remove selected contaminants from wastewater. 

The number of surface active functional groups is critical to the performance of an adsorption 

(or ion exchange) filter material. For instance,  it was estimated that the increase in removal 

efficiency for oxidized CNTs was due to CNTs containing many functional groups over their 

surface resulting from oxidation, and this enhanced its hydrophilic properties and exchange 

capability (Li et al., 2002). Furthermore, the surface area of the adsorbate increased during the 

oxidation process, hence the number of active site increase, so the adsorption capacity increased  

(Dabrowski and Curie, 1999). In the oxidation process done by soaking CNTs in nitric acid for 

2 hours , to release Carbon and iron, the samples was washed many times until the pH showed 

no differences so ion exchange is not a major contributor to the process (Kandah and Meunier, 

2007). 

Surface area can be increased by breaking down a material structure by chemical treatment as 

in the case of the acid treatment of clays. For instance, exfoliation (breaking up of the material 

into individual silicate layers) of the montmorillonite structure occurs after acid treatment, 



28 
 

therefore its uptake capacity increases. Thus acid-modified clay was used to remove copper, 

nickel and zinc from waste water (Vengris et al., 2001).  

2.5.3 PolyHIPEs in Ion Exchange  

 

The PolyHIPEs structure consists of large porosity with interconnected pores. This micro-nano 

open structure makes the PolyHIPE suitable for certain applications such as filtration 

(Normatov and Silverstein, 2007a, Cameron, 2005b, Cameron and Sherrington, 1997)). 

PolyHIPE combined with a suitable ion exchanger could be used for selective ion exchange 

applications because they have a three dimensional network and an irregular high surface area 

structure after the sulphonation process and it gave better contact area between the solution 

and resin (Wakeman et al., 1998).  

There are many factors which influence the efficiency of the ion exchange capacity when using 

a polymer as an exchanger media. The amount of cross-linker determines the distance between 

the chains (a few Angstrom for high ratio cross- linker and hundreds of Angstroms for low 

ratios). The cross-linker also determines the mobility of the counter ions inside the PolyHIPE 

structure (Wakeman et al., 1998). The pore volume has a significant effect on the ion exchange 

capacity per unit volume. It was found that it decreases when the pore volume increases up to 

pore volume 0.14 ml (Malik et al., 2010). The initial concentration of the metal which is 

intended to be removed from the wastewater is also important, as well as the contact time 

between the wastewater and the filtration media (Alikhani and Moghbeli, 2014). 

In addition for all these parameters which could be changed to improve the removal efficiency 

for an ion exchanger, many additives could be used to enhance its ability to remove the heavy 

metals. For instance, Polyvinyl-alcohol has been used to remove fluoride and arsenic from a 

standard solution after the application of a coating containing Fe and Al (Alexandratos, 2009). 

Another example was a PolyHIPE material which contain a porous structure, so it widely use 

as the ion exchange media for removing heavy metals from waste water. For instance, Piperzine 

moieties generated by the polymerization of 4-nitrophenylacrylate have been used to remove 

atrazine (class of nitrogen-containing heterocycles) from waste water. The same amount of 

atrazine was removed from an aqueous solution at room temperature after 24 hours by a highly 

porous PolyHIPE and after 72 hours by a low porosity PolyHIPE (Pulko et al., 2007).    
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2.5.4 PolyHIPEs as adsorbants 

 

Additionally, PolyHIPEs are considered as potential adsorbents due to their high surface area 

about 10m2/g (Hasan, 2013), which provides better contact area with the wastewater. This gives 

PolyHIPEs the ability to treat a large amount of liquid as it penetrates through the internal 

structure, in addition to the interaction with the reactive groups which are available inside its 

structure  (Pulko et al., 2007, Moine et al., 2003). Furthermore, using PolyHIPEs in filtration 

processes has many advantages compared with the traditional methods: no toxic sludge 

generated, higher efficiency and selectively (Katsoyiannis and Zouboulis, 2002). 

2.6. Factors Affecting Adsorption Filtration Processes 

 To remove metals from the waste water generally requires ‘‘adsorptive filtration’’. The 

mechanism of this technique depends on the attachment processes between a heavy metals and 

absorber materials which are used to coat a porous sorbant such as PolyHIPE. This modification 

layer gives a chance to remove the cation or anion from the liquid depending on type of 

absorbed materials (Benjamin et al., 1996, Lo et al., 1997, Huang and Liu, 1997, Lo and Chen, 

1997). There are many parameters that have effect on this process as listed below. 

2.6.1. Contact Time 

 

Normally, with an increase in the contact time between heavy metals and the absorber, the 

removal efficiency would be increased. It was observed that, the removal of nickel from waste 

water increases with an increase in the contact time up to 60min. With increasing contact time 

above this a dynamic equilibrium process occurred, so the removal then goes very slowly 

(Varma et al., 2013). 

In addition to that, it was reported that the removal processes do not necessarily need a long 

contact time if the adsorbant has enough reaction efficiency. For instance, by using microalgae 

the concentration of the nickel decreased from 30 to 0.9 mg/l in only 5min contact time which 

represented approximately 97% Ni removal efficiency and after 90 min the remaining 

concentration was reduced to 0.4 mg/l(Roy et al., 1993).  With another competitive metal like 

zinc in the water the ratio of removal was at 98% for Ni and Zn. High removal efficiency might 

be attributed to high surface area for this adsorbate and high binding ability with these heavy 

metals (Roy et al., 1993). But, after continuing to increase the contact time from 90 up to 300 

min there were no changes in the amount of nickel which was removed from the waste water  

(Chong et al., 2000). This suggests saturation of all the available removal sites.  
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The removal efficiency changes with changing the metals, so not all the heavy metals have the 

same removal efficiency at the same contact time for a given adsorbant. For instance, it was 

found by supplying different metals to the filtration process that, after 50min the adsorption 

capacities were 2.35 mg/g (94.0%), 2.41 mg/g (96.41%), and 2.39 mg/g (95.6%), respectively 

for Ni2+ , Cu2+ , and Zn2+ while in the case of Cr3+ the adsorption capacity was (2.38 mg/g; 

95.2%) after 70-min (Taha, 2006).   

2.6.2. The influence of the pH 

 

The pH is considered one of the most important factors which influences the removal processes 

for heavy metals from waste water. For instance, the removal processes of cadmium and nickel 

were better at pH > 6 than pH <4 because after pH 6 hydrolysis of nickel and cadmium happen 

(Gupta et al., 2003). Furthermore, changing the pH of the solution may lead to the creation of  

new compounds such as nickel hydroxide at pH 8.2, which leads to a reduction in removal 

efficiency (Gupta et al., 2003). In addition to that, changing the pH of the solution changes the 

surface charges of the adsorbant and determines the point of zero charge (PZC). For instance, 

pure iron oxide, whether crystalline or not, has PZC between pH7 and pH9 (Benjamin et al., 

1996). At a higher pH than this value, iron oxides are anionic [Fe (OH) 4
-] and can be used for 

adsorbing cationic metals, while below that value it present as cationic (Fe (OH) 2+). The pH 

value not only has effect on the material which is used in the removing process, but also it has 

influence on the behaviour of the heavy metal itself in the solution, because heavy metals can 

have a different charge with different pH range. For example, arsenate As (V) at pH 3 it is 

available in anionic forms, while after pH 7 it is cationic (Katsoyiannis and Zouboulis, 2002) 

Furthermore, the removal efficiency changes with changing the pH. It was found that,  nickel 

can be removed by iron oxide at pH 7 (Malandrino et al., 2006), but it was also reported that,  

nickel removal from waste water increases with increasing the pH of the solution (Rajapaksha 

et al., 2012). Also, gibbsite, laterite and goethite showed an increase in nickel adsorption with 

increasing the pH from 4.0 to 6.8 and the increase was by 4-5 times when the pH increased 

from 6 to 8   (Rajapaksha et al., 2012).  

Additionally, it was reported that the removal efficiency depends on the structure of the material 

used as adsorbant in addition to the pH value. For instance, at pH range from 1-8 the adsorption 

for many heavy metals such as As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni and  Zn by montmorillonite 

was better than kaolinite (Bhattacharyya and Gupta, 2008). And the same behaviour was shown 

with goethite and hematite (Beukes et al., 2000). Additionally, Basaldella et al. (2007), found 

that the pH has influence on the adsorption process for many heavy metals. For instance Cr (III) 
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was removed by using NaA zeolite at neutral pH, while Barakat (2008) used 4A zeolite to 

remove Cu (II) and Zn (II) at neutral and alkaline pH . In another study Nah et al. (2006) 

modified zeolite with iron oxide to remove Pb (II) ion from waste water and it showed excellent 

adsorption capacity at the pH range between 5 and 11. Pb(II), Cu(II), and Zn(II) can be removed 

by calcined phosphate at pH5 (Aklil et al., 2004).   

Adsorption and precipitation processes may happen at high pH at the same time. For nickel in 

high pH solution it was found that there may be the formation of nickel hydroxide (Ni (OH) 2). 

But it was reported for nickel removal that, at very high pH close to 9.5, the amount of nickel 

in a very dilute solution was not enough for the precipitation process, because the precipitation 

process required a certain concentration of metal (Arai, 2008, Eick and Fendorf, 1998, 

Rajapaksha et al., 2012). It was reported that copper at pH between  6.2–6.8 forms copper 

hydroxide Cu(OH)2, when potato peels were used to remove Cu (II) from waste water, therefore 

the results showed a reduction in removal efficiency at a pH value more than 6.0 due to the this 

(Nguyen et al., 2013). 

Before the precipitation process, it was found that the removal efficacy increases with 

increasing the pH. The reason for this increase in the removal of nickel at a high pH was due to 

reducing the competition between H+ and the active sites, which have negative or neutral 

charge, when using clinoptilolite to remove nickel. The removal efficiency increased with 

increasing the pH from 6 to 8  (Ismail et al., 2012). It was also found that the surface at pH 6 

was full of H+ ions which participate in the ion exchange process between the active site and 

the Ni2+.  Basically increasing the pH leads to an increase in the surface acidification, as a result 

of  proton release from available active sites (Adams et al.). 

In addition to that, the pH could determine the mobility of the heavy metals in the solution. For 

example, nickel that came from  ground water after rain was more soluble because this heavy 

metal normally has more mobility at low pH (less than 6.5 (Prows et al., 2003)). Other heavy 

metals like iron, copper, zinc, manganese, and cobalt behave similarly at low pH  (Dean et al., 

1972). Furthermore it was argued that, sometimes many parameters could be changed with pH 

such as contact time and solution composition to reach the better adsorption conditions. For 

instance, when grape residue was used as an adsorbant for nickel and copper from waste water 

which came from wine production the results after 60 min contact time showed that the pH 

between 5.5–6.0 was effective and gave the best adsorption behaviour (Villaescusa et al., 2004). 

In the binary system when more than one metal needs to be removed from waste water, the 

removal efficiency will change approximately in the same way as with a single metal system. 
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It was reported that, the absorption of both nickel and copper (the concentration was 10mg/l) 

changed with changing the value of pH, when the uptake was zero at pH 1 and then increased 

up to 78% at pH 5.5. It was estimated that, this increment comes from reducing the 

concentration of H+ with increasing the pH which basically means less competition between 

the these metals and the hydrogen ions (Villaescusa et al., 2004). When membrane technology 

was used for water  purification, pH had no effect on the membrane removal efficiency until 

nickel hydroxide was formed at  pH  9 (Davidson, 2010). 

2.6.3. Effect of Agitation Speed  

 

In order to get good contact between the adsorbant and the liquid and ensure that the mass 

transport from the liquid to the surface is optimised it can be necessary to agitate the system to 

mix the adsorbant particles in the solution. This can be achieved by stirring or shaking or other 

mechanical methods or controlling slow in the filter system. The Agitation speed has huge 

effect on the contact time between the adsorbent and the heavy metals in solution, so the 

removal efficiency increases with increasing rate. For instance, it was found that, the removal 

efficiency was increased by 10% when the agitation (stirring) speed increased from 250 to 

500rpm, when the concentration of nickel was 25mg/l and the contact time was 60 min. This 

increase was attributed to an increase in the collision between the adsorbant and the Ni (II) ions. 

After filtration reaches saturation the removal rate became constant because of steady-state 

movement of the heavy metal (Ni++) between the solution and the active sites  (Ismail et al., 

2012). In the same study, it was reported that flow rate is another factor which is important to 

determine the removal capacity, where it was reported that increasing flow rate increased the 

time to treat the standard solution to the same extent. This decrease was attributed to decreasing 

the time of contact between the adsorbant and the ions in the solution. For instance, it was 

reported that increasing flow rate from 240 ml/h to 500 ml/h leads to a decrease in the removal 

efficiency from 80 to 60% (Ismail et al., 2014). 

2.2.4. Shaking Time 

In some adsorption filtration studies a fixed amount of asdorbant is added to a flask with a fixed 

amount of standard solution to be treated and the closed flask is then shaken to enhance contact. 

Sometimes the effect of the shaking time and the pH is studied together and it gives better 

results when both are considered. It was found that, the shaking process helped to remove 1.42 

mg/g (97.7%), 1.40 mg/g (93.0%), 1.41 mg/g (94.0%), and 1.43 mg/g (95.3%), of Ni2+, Cr3+, 

Cu2+, and Zn2+  from solution respectively by using fly ash (Taha, 2006).The efficiency was 

larger than in the absence of shaking in all cases.  
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2.4.5. Initial Concentration and Competitive Adsorption Reactions 

 

 The initial concentration of the metal in the waste water may determine the removal efficiency 

for a heavy ions. It was found that the arsenic removal process was faster when its concentration 

was less than 50 mg/l compared with higher concentrations (200 mg/l), when the experiment 

was done at pH 5.0. In addition, many anionic and cationic metals may exist in the waste water 

with heavy metals, which may reduce the effectiveness of the adsorption process by interaction 

with available adsorption sites. For instance, many anionic and cationic species such as 

phosphates, carbonates, chlorides and nitrates are present in waste water which interact with 

adsorption sites and reduce the removal efficiency. 

Initial concentration is considered as the driving force for the transportation of the heavy metals 

from the standard solution to the active sites (Sahmoune et al., 2011, Taha et al., 2011). It was 

found that, the adsorption capacity increased with an increase in initial concentration (Kumar 

et al., 2012). But, in some cases the removal efficiency decreases with increasing the initial 

concentration, because the active sites of the adsorbant saturated quickly. Additionally, it was 

reported that the decrease of removal efficiency was because the transport process of heavy 

metals to the surface from the solution was slow (Kumar et al., 2012).   

It was found that a concentration of phosphates in the range 20–50 mg/l has  huge effect on the 

removal processes for As (V) from ground water when iron hydroxides were used as the 

adsorbant, due to  making surface complexes with the hydroxyl groups (Meng et al., 2001). 

Phosphate concentrations at more than 200 μg/l show a negative effect on the removal 

efficiency for arsenic from waste water, but when their concentration was low, the removal 

efficiency was not changed. Carbonates, chlorides and nitrates showed a strong competition 

with arsenic toward the active site (Katsoyiannis and Zouboulis, 2002). Furthermore organic 

materials such as humic substances (the major organic components of soils) may also exist in 

waste water and are considered a challenge for the removal process. It was found that the 

influence of  humic substances was high at the pH range of 4-6, while at pH over 8 it was 

negligible (Boujelben et al., 2009). 

In another study the effect of competitive metals on removal efficiency of nickel has been 

studied by using range of heavy metal ions (chromium, mercury and lead) in the form of 

sulphates, fluorides and arsenates with different concentration in the range 5 to 500 mg/l. It was 

reported that, the removal efficiency decreased with increasing the sulphate concentration up 

to 20 mg/l, after that concentration the increase does not show any effect on the removal 
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process. Until the availability of fluoride ions with 200mg/l concentration the nickel removal 

efficiency remains the same at about 93%.  

In nickel removal from a mixed ion contaminated water increasing the concentration of lead 

from 5 to 100mg/l lead to a decreasing of the removal efficiency. The removal processes totally 

stopped when the concentration of lead was 100 mg/l (Pandey et al., 2007). It was also reported 

that the removal efficiency was higher when using a single metal than when using many metals 

together; using a standard solution containing nickel and zinc gave less removal efficiency than 

single ion systems at the same concentration. However, the overall removal efficiency for all 

these metals together was higher than the single metal alone; also in comparison the removal 

efficiency for nickel was higher than for zinc and copper.  It was found that copper hydroxide 

generation was the reason for poor copper removal (Vengris et al., 2001). 

Table 2-1. Physical and chemical properties of well water, (Meng et al., 2001) 

 
Well 

water 

Filtered 

water 

As (μg/L) 158 12 

pH 7.4 6.9 

Turbidity (ntu) 0.6 0.15 

Total alkalinity (mg CaCO3/L) 234 135 

Total hardness (mg CaCO3/L) 210 207 

Electrical conductivity (μs) 496 531 

Residual chlorine (mg/L) 0 0.5 

Fe (mg/L) 4.1 0.13 

Mn (mg/L) 0.26 0.25 

Mg (mg/L) 34.8 34.7 

Ca (mg/L) 26.6 25.6 

Na (mg/L) 14.5 13.7 

K (mg/L) 26.5 20.6 

Cl (mg/L) 30 30 

I (mg/L) 0.68 0.11 

SO4 (mg/L) 12 60 

PO4 (mg-P/L) 2.7 0.04 

SiO2 (mg-Si/L) 14.5 13.1 

F (mg/L) <0.1 <0.1 
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These competitive metals may interact with the adsorbant in different ways. For instance, many 

researchers reported that there are complexes that form between Fe (III) and phosphates (PO4
-3 

or HPO4
-2) depending on the ratio [OH -]/ [PO4

-3] or [HPO4
-2] when iron oxide was used to 

remove arsenate and phosphates in a competitive manner. It was reported that removal 

efficiency was reduced by decreasing the pH due to increasing the possibility for phosphate 

entering in the sheath of the Fe(III) ion  (Stumm and Morgan, 1981). Bicarbonates also had 

adverse effects on the removal processes by reducing the adsorption process when iron oxide 

was used as adsorbant (Pirnie, 1999). Since phosphates, carbonates, chlorides and nitrates are 

normally available in ground water, together with the nickel, they may also have the effect on 

the removal efficiency, however, the concentration of these compounds in drinking water 

should be not more than the concentrations shown in Table 2-1. (Meng et al., 2001).  

The concentrations of these metals are not the same in different places around the world. For 

instance nickel concentration is different between different places, groundwater, seawater and 

surface water (Andersen et al., 1996). With change of pH the concentration of nickel changes 

as well, at pH < 6.2, but the nickel concentration was higher in groundwater at ~980μg /l in 

most cases. However, less than 1 to 87 μg /l nickel concentration was found in urban storm 

water (Tchounwou et al., 2012).  

Changing the removal efficiency sometimes comes from chemical blocking by some 

competitive chemical groups. For example, it was reported that the reduction in the removal 

efficiency for many metals such as Cd (II), Cu (II), and Zn (II) by 32.8%, 58.5% and 65.3% 

respectively occurs because of chemical blocking after pre-treatment by carboxyl groups. The 

reduction was attributed to OH groups which came from alkaline pre-treatments (Nguyen et al., 

2013). This adverse effect of OH groups is because they also participate in the removal process 

by making bonds with the heavy metals but do not trap them on the surface dues to the solubility 

of metal hydroxides at the operating pH. It was reported by Kumar et al. (2012) that carboxyl 

and hydroxyl groups which are available in cashew nut shells play an important role in 

removing Cd (II) from waste water. Also, it was reported by (Lasheen et al., 2012) that, 

carboxylic groups participated in removing Pb (II) using orange peel after a chemical 

modification process. Furthermore, FTIR results indicated the involvement of functional groups 

such as hydroxyl, amine, carboxyl, and carbonyl in the removal process for nickel Ni (II) using 

Caesalpinia bonducella seed powder (Gutha et al., 2011). Orange peel after grafted 

polymerization was used as an  adsorbant to remove heavy metals by chemical groups such as 

carboxyl and hydroxyl in the removal process (Feng et al., 2011). 
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The behaviour of the heavy metal itself has an effect on the removal efficiency. For instance, 

at pH  between 4-8 the removal capacity for solutions containing the same concentrations of 

nickel, copper and zinc was about 75, 150 and 300 mg/l respectively, and the results show that 

these metals are  completely removed after 20, 40 and 50 minutes, whilst chromium removal 

takes a longer time which was about 80 min. Other metals  reached an acceptable limit after 60 

min (Dermentzis et al., 2011). Eventually, the initial metal concentration determines the speed 

of uptake which is necessary to deliver discharge concentration. For instance, it was reported 

that 40 min was enough to remove Cu (II) ions while removing Ni (II) ions takes 400 minutes 

when the pH of the solution was between (4 -5.5) (O'Connell et al., 2008).   

2.6.4. Effect of Adsorbant Mass 

 

Another factor which has significant effect on the filtration processes is the amount of adsorbant 

which is used during the filtration process, also called the adsorption mass. Normally the 

removal efficiency increases with increasing the adsorption mass. This is because there is an 

excess of easily accessible adsorption sites when the adsorbant mass is high. For instance, it 

was found that, the nickel removal efficiency increases with increasing the mass of the 

adsorbate from 68 to 72% at constant pH. Removal efficiency increases when the concentration 

of adsorbant poly(acrylic acid sodium salt) (PAANa) is high and the concentration of nickel is 

low, which may be attributed to increasing the number of  active  sites for adsorption compared 

to the amount of material to be removed  (Davidson, 2010). The same behaviour was shown 

when cashew nut shell was used to remove coper from waste water. Increasing the amount of 

the adsorbant leads to a rapid increase in the removal efficiency of Cd (II); maximum removal 

percentage was at 3 g/ l, and it was reported this increase may be due to a high number of active 

sites achieved at a high amount of adsorbant. In contrast Boota et al. (2009)  observed a decrease 

in the removal efficiency of Cu(II) and Zn(II) with increasing the amount of Lignocellulosic 

fibre, which may be attributed to decreasing the surface area and reducing the number of active 

adsorbant sites.   

2.6.5. Effect of Temperature  

 

 The temperature of the solution which is used during the filtration process plays a significant 

role in determining the amount of the heavy metals which are removed from waste water, 

because it determines many parameters such as the diffusion rate for metal ions in the solution 

and also the solubility of these ions (Park et al., 2010). In addition Sahmoune et al. (2011) found 

that, the functional group activity of the adsorbant depends on the temperature. For instance,  
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when (Zea mays) stalk sponge was used as an adsorbant to remove Pb (II) and Cd (II) from 

waste water, the removal efficiency increased by 1.1 to 1.8 times when the temperature 

increased by from 20 oC to 40 oC (García-Rosales and Colín-Cruz, 2010). The same behaviour 

was observed by using watermelon shell to remove Cu (II) from waste water (Banerjee et al., 

2012). This increase was attributed  to a reduced thickness of boundary layer which surrounds 

the absorbant  (Nguyen et al., 2013). Also, it was reported that when the adsorption capacity 

increases with increasing temperature, this may be attributed to the endothermic behaviour of 

the adsorption process (Gupta et al., 2003). 

2.6.6. The Amount of Iron Hydroxides Coated on the Surface 

 

Iron oxide is considered as one of the most important materials that is used as an adsorbant for 

removing heavy metals  (Boujelben et al., 2009). Its concentration when used through the 

coating method is considered an important factor which has influence on heavy metal removal 

efficiency. It was found that the removal efficiency increases by increasing the amount of iron 

oxides in the coating layer (Meng et al., 2001). PolyHIPE was used as a host for iron oxide due 

to its highly connected porous structure, so iron oxide has the opportunity to enter to the internal 

structure. As a result of the coating  thickness increase  the removal efficiency increased  

(Hering et al., 1997). 

2.6.7. Effect of Surface Area  

 

Increasing the surface area of the adsorbant leads to enhanced adsorption efficiency due to 

reducing the competition between heavy metals towards the active sites by increasing surface 

site numbers. For instance, by using natural clay to remove many heavy metals such as copper, 

nickel and zinc, using a hydrochloric acid exfoliation treatment increased  the uptake capacity 

of the adsorbant for nickel, copper due to an increase in the surface area  (Vengris et al., 2001). 

2.7. Regeneration 

Regeneration is the reverse process in which the heavy metals are removed from an adsorbant 

after use. This is often achieved by changing the pH of the solution flowing past the adsorbant 

(Brown et al., 2000). The reusability test gives an estimation for how much metal was removed 

and how much can be reclaimed. This process takes place after the solution concentration has 

been reduced to the breakthrough limit (acceptable limit by the World Health Organization). 

For instance a strongly alkaline solution (pH>10) was used in the regeneration process for 

arsenic from iron oxide which does not dissolve at that pH but its surface charge is changed. In 
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this situation, the arsenic could separate from the iron oxides. This process had to be repeated 

five times before the regeneration process was completely finished. In addition to that, different 

solutions like HCl, HNO3, CH3COOH, NaOH were used for regeneration processes. HCl and 

HNO3 were more efficient than the other solvents such as acetic acid and sodium hydroxide 

(Katsoyiannis and Zouboulis, 2002). 

 It was found that the value of pH which should be used for the regeneration process depends 

on the chemical composition of the adsorbant. For instance, it was reported that pH1 was 

enough to regenerate the cellulose-g-GMA-imidazole from different ions with 100% recovery. 

Increasing the pH up to 2 reduced the recovery of these metals to near 30%, and this behaviour 

continued with increasing the pH value. Furthermore, the adsorbant could be reused but it 

showed lower removal efficiency to re-adsorb the metal ions from waste water (O'Connell et 

al., 2008). It is clear that removing all metal from the adsobant after regeneration is difficult 

and re-used material is not as effective at metal ion removal.   

Summarizing,  there are two reasons for the regeneration processes, firstly  to reuse the 

adsorbant and secondly to extract the heavy metal after a purification processes for use in 

different applications, for instance nickel could be used in electroplating and storage batteries 

(Kadirvelu et al., 2001a, Meena et al., 2005).   

2.8. Point of Zero Charge (PZC) 

The Point Zero charge determines the surface adsorption behaviour of materials. For instance,   

pure iron oxide, whether crystalline or  non-crystalline, has zero surface charge at pH around 7 

to 9 (Wilkie and Hering, 1996, Benjamin et al., 1996). Over these PZC values, iron oxides are 

present in the singly-charged anionic form (Fe(OH)4
-) and hence inappropriate for adsorbing 

anionic components but attractive to cations (Katsoyiannis and Zouboulis, 2002). It was 

reported that iron oxide surface complexes could make bonds with arsenic at high pH (Edwards, 

1994, Dzombak and Morel, 1990). Furthermore, it was observed that precipitation interaction 

takes place between the iron(III) and nickel(Il) hydroxides to produce nickel ferrite NiFe2O4 at 

high pH, when  iron oxide was in the anionic form (Pandey et al., 2007). 
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2.9. Summary 

Absorbant materials can remove heavy metals by direct adsorption or ion exchange and can be 

considered as cheap, high capacity adsorbants if based on a cheap substrate material. PolyHIPEs 

have open structure and high surface area and can be processed relatively inexpensively and 

could therefore be good candidate adsorbant materials. They can also be functionalized for good 

removal for the heavy metals from waste water. There are many parameters like pH and 

temperature that can be changed to enhance the removal process. Additionally, regeneration 

processes can be applied to the adsorbant after the filtration process to recover the metal for 

reuse and regenerate the filter so it can be used it again. Changing the processing of the material 

to produce a polyHIPE with better properties and morphology for filtration is thus the goal of 

this project. The experimental approaches used to achieve this are presented in the next chapter.  
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3. Experimental Methods  

In this chapter the methods which were used to prepare the PolyHIPE samples and the processes 

take place using theses sample such as sulphonation with sulphuric acid and coating with iron 

oxide are explained. Techniques that were used to determine the PolyHIPE surface morphology 

and composition are then introduced. The filtration test procedures and the techniques used to 

measure the concentration of heavy metals which were used for the filtration process are then 

introduced. Finally, how to make the regeneration process and measure the zero of point charge 

iron oxide to assess its suitability as an adsorbant is explained.  

3.1. Sample Preparation  

PolyHIPEs have been prepared using a method described in a previous publication (Akay et al., 

2005b).  The PolyHIPE were prepared by mixing an aqueous phase and an oil phase each with 

several constituents (Figure 3-1):  

•Aqueous phase: 1% potassium persulphate as free radical initiator and 5% sulphuric acid for 

in situ sulphonation. 

• Oil phase: 76w/w% styrene, 14w/w% divinylbenzene (DVB) crosslinker, 10w/w% sorbitan 

monolete (Span 80) non-ionic surfactant with low HLB (hydrophilic-lipophilic balance). This 

is used to prevent the phase separation process between the oil and aqueous phases (Hayward 

et al., 2013). 

     

 

Figure 3-1. The chemical structure of the PolyHIPE components. 

Polysorbate 80 
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To make the HIP the oil phase was added to the tank of a stirred tank reactor as shown in Figure 

3-2 and the stirrer was started at a stirrer speed of 300 rpm. The aqueous phase was then slowly 

added to the oil phase using a peristaltic pump under continuous stirring. After this dosing was 

complete the HIPE was subjected to various mixing times (10, 15, 20, 25, 30 minutes. Then the 

emulsion was transferred to a container (a falcon tube) of 50 ml capacity with a diameter of 2.6 

cm. Subsequently, the container was placed inside an oven and the temperature was increased 

to 60 °C. The polymerization of the oil phase then took place overnight. Samples of 5-7 mm 

thickness as shown in Figure 3-3, were cut out of the monolith removed from the tube and they 

were dried resting on a paper towel overnight in a fume cupboard.   

 

 

  

Figure 3-2.  Schematic diagram of the apparatus used for PHP preparation. 
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Figure 3-3. Disc samples after polymerization  

 

 

3.2. Washing Process  

The final step in the preparation of the PolyHIPEs was washing in order to release the surfactant 

and residual aqueous phase. This is necessary because they have a negative effect on the 

windows available in the PolyHIPEs reducing the interconnecting pores. The samples were 

washed using a soxhlet as shown in Figure 3-4, with 2-propanol solvent and distilled water for 

3 hours. After that the samples were placed in a fume cupboard overnight to dry. After drying 

the samples were placed inside an oven at 60 °C to drive off any remaining water or solvent  

(Hasan, 2013). 

 

 

 

Figure 3-4. Schematic diagram of the socxhlet used for polymer washing process. 
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3.3. The Sulphonation Process 

The sulphonation process includes in soaking the samples in concentrated sulphuric acid 

(H2SO4 from Sigma Aldrich), for three hours followed by treatment of the soaked samples in a 

microwave oven for 60 seconds as shown in Figure 3-5. The samples were placed on the 

microwave platen and subjected to 15s bursts of microwave energy before being turned over 

and the process repeated. This was done four times. The samples were then washed with 

deionized water by using the soxhlet as shown in Figure 3-4 then dried in oven at 60 °C, Figure 

3-6 show the PolyHIPE beads after sulphonation which were used during the filtration process 

 

 

 

 

 

 

 

Figure 3-5. The mechanism of sulphonation process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  The PolyHIPE beads after sulphonation process 
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3.4. Coated PolyHIPEs and Standard Solution Preparation  

For pure adsorption studies poly HIPE was coated with iron oxide nanoparticles. The 

suspension of iron hydroxides (hydrous ferric oxides (HFO)) for the coating process was 

prepared by using Fe (NO3)3.9H2O (Merck) dissolved in diluted de-ionized water. The pH was 

adjusted to 5.0 by adding  Na OH (1N)  because ferric oxides were practically insoluble at this 

pH value  (Hering et al., 1997, Katsoyiannis and Zouboulis, 2002) with continuous stirring to 

get a homogenous solution as shown in Figure 3-7(a). PolyHIPE was added to the solution in 

the form of  beads which have diameters between 3-5mm. An overhead stirrer was used in order 

to avoid settling of the particles during the coating process ( Figure 3-7(b)) which lasted for 

three hours to get a uniform coating layer. Then, these beads were washed  with deionized water 

several times, to remove unattached iron oxide, then dried in an oven at 80̊C for 6 hours. Figure 

3-8 shows the PolyHIPE beads after the coating process with iron oxide.  

 

 

 

 

 

 

(a)                                                                                           (b) 

Figure 3-7. Figures (a) refer to preparation the stock solution (b) refer to the coating processes 

 

 

 

 

 

 

 

 

 

 
Figure 3-8.  PolyHIPE beads after coating with iron oxide 
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3.5. Filtration   

The filtration process (Figure 3-22) was done by passing a standard  nickel solution through a 

plastic column which contains the PolyHIPE beads after coating with iron oxide or after 

sulphonation. The stock solutions of nickel used in the filtration processes had different 

concentration, (16, 100, 20 mg/l) after dissolving Ni (NO3)2 . 2H2O from Sigma Aldrich in 

doubly distilled water, while the copper chloride standard solution with 20 mg/l concentration 

was prepared by using copper sulphate. The pH of the solutions was adjusted by dropwise 

addition of sodium hydroxide  (NaOH (1N)), or hydrochloric acid (HCl (1M)) solutions (Adeli 

et al., 2012).    

3.3. Analytical Methods 

3.3.1. Scanning Electron Microscopy (SEM) 

 

Scanning electron microscopy (SEM) was used to investigate the morphology of the 

PolyHIPEs. The samples were coated with gold by using a Polaron e1500 Sputter Coater and 

then examined using a Philips Field Emission Gun (FEG) electron microscope. The SEM image 

is produced as a result for the interaction between an electron beam and the sample as shown 

in Figure 3-9. There are two kinds of interaction elastic and inelastic interactions. Elastic 

interaction takes place when electrons emitted by the electron gun are defected by the sample 

surface, as result of this process backscattered electrons (BSE) are generated. Inelastic 

interactions occur between the incident electrons and the sample electrons and atoms, when 

some of the incident electron energy transfers to sample electrons causing excitation of these 

electrons which form secondary electrons (SE). X-rays, Auger electrons, and 

cathodluminescence can also be generated by these interactions.  (Zhou et al., 2006). The 

secondary signal was used to determine surface topography and quantitative compositional 

information was obtained from the x-rays generated. Schematic of the SEM structure Figure 

3-9, when in the first part in the top there is electron gun which is used to generate the electrons 

and accelerate it to 0.1-0.3 keV by using Alignment coil. Then this electron beam is directed to 

the sample by electromagnetic lenses and apertures. High-vacuum is used to avoid any 

scattering for the electron beam by the air. The specimen stage, electron beam scanning coils, 

signal detection, and processing system are used to form the image for the sample. 
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Figure 3-9. FEG-Philips electron microscope schematic  (Zhou et al., 2006). 
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Figure 3-10: Diagram for scanning electron microscope  (Zhou et al., 

2006) 
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3.3.2. Fourier Transform Infrared Spectroscopy (FTIR) 

 

The polymer materials and any contamination phases were identified by using FTIR 

spectroscopy. In this method infrared radiation penetrates the sample and part of the radiation 

will be adsorbed by the sample. FTIR gives information about the functional groups present in 

the structure. A Varian 800 FT-IR spectrometer system was used to analyse the samples Figure 

3-11. The machine produces spectra between 4000 cm-1 and 400 cm-1 from solid, liquid and oil 

samples. In conventional IR spectroscopy a monochromatic radiation penetrates the sample 

through a slit which collects and focuses the light towards the sample. Fourier transform 

spectroscopy is a less intuitive way to obtain the same information. Rather than shining a 

monochromatic beam of light at the sample, this technique shines a beam containing many 

frequencies of light at once, and measures how much of that beam is absorbed by the sample. 

Next, the beam is modified to contain a different combination of frequencies, giving a second 

data point. This process is repeated many times. Afterward, a computer takes all this data and 

works backward to infer what the absorption is at each wavelength. 

 

Polymers contain many functional groups, each infrared absorption bands correspond to a 

functional group, for instance different chemical bonds in a molecule have different vibrational 

states and each motion absorbs infrared light at a certain wavelength. This selectivity allows 

this technique to detect different chemical components in one sample. Groups with a strong 

dipole (i.e. with polar bonds) have strong IR absorption. With IR range between 4,000–1,000 

cm-1, there are two kinds of vibrations that can be detected, stretching vibration which depend 

on bond length and bending which depend on bond angles changing (Berthomieu and 

Hienerwadel, 2009). 

Unknown samples can be identified by using FTIR, to measure the quantity of different 

components of their structure. This test can also generate a fingerprint on the sample and each 

fingerprint corresponding to a molecular structure.  For thin layers an attenuated total 

reflectance (ATR) detector may be used - A Pike Technologies diamond crystal plate ATR 

detector is used in this machine. The ATR crystal reflects the IR beam to the sample many times 

to maximise the signal for analysis. 
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Figure 3-11. TIR which used in Fourier Transform Infrared Spectroscopy 

equipment,(Sarojam, 2010). 

 

3.3.3. Compression Test 

 

Compression tests were performed with a Tinius-Olsen mechanical testing machine (see Figure 

3-12). Different tests for the materials could be done by using this machine such as tension, 

compression, flexure and shear but in this work compression tests have been used to assess the 

mechanical properties of the PolyHIPE materials. Parallel-sided disc shape samples (Figure 

3-3) were cut from the monoliths polymerized in the falcon tubes and compressed between two 

steel plates. A 5kN load cell was used to measure compressive force which was converted to 

engineering stress by dividing by the original cross-sectional area of the sample. The 

displacement of the cross head was divided by the original sample thickness to determine 

engineering strain. This was done using the Tinius Olsen Horizon software. All tests were done 

at room temperature at a cross head displacement rate of 1mm/minute. Tests were stopped when 

the PolyHIPE had been compressed to about less than half its original thickness. 
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Figure 3-12.  Tinius-Olsen mechanical testing equipment. 

 

3.3.4. Surface Area and Pore Size 

 

The surface area was determined using a Brunauer-Emmet-Teller (BET) machine (see Figure 

3-13). This machine uses the gas adsorption technique to measure the surface area and the pore 

size distribution. Nitrogen gas is used as the adsorbate. The pore size distribution calculated 

from the adsorption or desorption data depends on the amount of the gas adsorbed. The machine 

measurement depends on the different Gas Sorption processes occurring and can determine the 

surface area and pore size in the range 0.4 to 200 nm.  The BET machine makes a physical 

measurement for the sample surface structure by using nitrogen gas with known size that is 

adsorbed at constant temperature on the sample surface. Different amounts of nitrogen are 

added and an isotherm is formed from the amount of adsorbed gas and the sample pressure. 

This adsorption isotherm can be used to determine different surface properties by applying well-

known standard analysis techniques – this is done in the control computer and in this study the 

BET analysis method was adopted throughout. Generally adsorbate molecules cover the sample 

surface during the adsorption process. These may be retained by physisorption or chemisorption 

processes and this leads to desorption at different pressures and hysteresis in the 

adsorption/desorption isotherm. Since nitrogen is inert to the surfaces tests here the analysis is 

based on the physisorption process having taken place in the calculation for the pore size and 

surface area. 
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Figure 3-13.  BET machine used to measure the surface area and pore size. 

 

3.3.5. Adsorption and Desorption Isotherm 

The results obtained from the BET machine consist of adsorption and desorption isotherms. 

The adsorption data gives information about the surface area, while the pore size can be 

measured using adsorption or desorption data or both of them. At constant temperature the 

amount of nitrogen gas adsorbed increases with an increase in pressure of nitrogen and this 

determines the adsorption isotherm. Figure 3-14 shows the different types of isotherms that can 

be observed depending on the structure of the material; the isotherm is determined by plotting 

the volume adsorbed (cc/g) against relative pressure, where the relative pressure is determined 

by dividing the measured sample pressure by the saturation vapour pressure. The saturation 

vapour pressure is calculated from the boiling pressure of the adsorbing gas in the liquid form. 

The pressure in a closed sample vial was measured for each data point and this was used to 

determine the volume of gas adsorbed by the surface of the sample. The amount of adsorbed 

gas is calculated by subtracting the free space of the tube from the volume of gas which was 

dosed to the sample. The sample pressure divided by the saturation vapour pressure determines 

the relative pressure which is plotted on the x-axis (Hasan, 2013).  

Pore size was calculated using the method BET as classified by the International Union of Pure 

and Applied Chemistry (IUPAC) (Sing, 1985): 

(i.) Pores with dimeter up to 50 nm (0.05 μm) are called macropores; 

(ii.) Pores with dimeter between 2 nm and 50 nm are called mesoporous; 

(iii.) Pores with dimeter less than 2 nm are called micropores. 
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According to (Brunauer et al., 1940), there are five different types of isotherm for different 

solids depending on the van der Waals adsorption of gases Figure 3-14.   

1. Oxygen on charcoal at -183 °C for Type I (Langmuir adsorption), 

2. Nitrogen on iron catalysts at -195 °C for Type II (S-shaped/sigmoidal), 

3. Bromine on silica gel at 79 °C for Type III, 

4. Benzene on ferric oxide gel at 50 °C for Type IV, 

5. And water vapour on charcoal at 100 °C for Type V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this initial work it has been determined that physisorption isotherms and their hysteresis 

behaviour can be classified in six different groups as outlined below show in Figure 3-3-15 and 

Figure 3-16. 

1- Type I isotherm is concave to the quantity of adsorbed gas (na) and p/po, and reaches a 

limiting value as p/po → 1. This kind of curve is given by microporous solids which 

have small surface area such as activated carbons, molecular sieve zeolites and certain 

porous oxides. The limitation in uptake depends on micro pore volume instead of 

internal surface area. 

2- Type II isotherm arising from non-porous or macroporous adsorbent refers to 

unrestricted monolayer and the multilayer growth of adsorbates, the linear line in the 

Figure 3-14. The isotherms are categorised into six different types, (Sing, 1985).  
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middle after Point B is when multilayer coverage is observed. At point B there is 

complete monolayer coverage but multilayer coverage has just started. 

3- The third type of isotherm III forms an increasing adsorption over its total range, so 

point B does not exist; it is not a common type but it appears with some materials such 

as nitrogen on polyethylene, in which isotherm consist on indistinct Point B and gradual 

curvature. Multilayer coverage occurs early in the adsorption isotherm. 

4- Type IV isotherms contain a hysteresis loop related to capillary condensation in 

mesopores, but show limited uptake at high p/po. The main cause of this isotherm is 

monolayer-multilayer adsorption, as shown by mesoporous industrial adsorbents. The 

strength of interaction between the adsorbant and the absorbate is similar to that of 

adsorbates with each other. 

5-  V type isotherm is not common, and the interaction between adsorbant and adsorbate 

is considered weak, it appears in very porous adsorbants.  

6- Type VI isotherms occur for multilayer adsorption on a non-porous surface. This 

involves layer by layer growth of adsorbates and relatively strong van der walls forces 

between the adsorbate and the surface compared to the adsorbate-adsorbate interactions. 

Despite this, there are considerable numbers of isotherms that do not match any of the 

classifications listed above  (Pendleton et al., 1997). 

 

Not only do isotherms have different types, but the hysteresis also has variety. According 

to (Sing, 1985), there are four kinds which are H1, H2, H3 and H4. In mesoporous materials 

hysteresis is generated in multilayer physisorption and it is always related with capillary 

condensation. H1 and H4 are most common while H2 and H3 are represented intermediates 

as shown in Figure 3-16 
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Figure 3-3-15. Types of physisorption isotherms. Adapted from (Sing, 1985). 

Figure 3-16. Hysteresis cycle for the adsorption desorption isotherm 

(Sing, 1985)    
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3.3.6. Inductively Coupled Plasma Mass Spectrometry 

 

The concentration of nickel in solution was measured by using a PerkinElmer Optima™ 7300 

DV ICP-OES instrument (PerkinElmer, Inc. Shelton, CT, USA) equipped with WinLab32™ 

for ICP Version 4.0 software for simultaneous measurement of all analytic wavelengths of 

interest as shown in Figure 3-17. The Optima 7300 DV was modified to accelerate analysis, by 

joining an SCD detector and an echelle optical system. The Optima 7300 DV has the ability to 

measure all elements simultaneously. The wavelength can be changed according to the element 

to detect. Different solutions (10, 20, 40, 80 and 100 mg/l) were used for the calibration curve. 

The instrument can be used to measure the concentration of metals in a solution down to parts 

per trillion, the metal analysis procedure has many steps such as ion generation, skimmer 

orifices, extraction, and transfer of the ions by ion optics to the detector. A low flow 

GemCone™ nebulizer and cyclonic spray chamber are used as a sample introduction unit in 

which the productivity is improved by providing high transfer for the sample to the plasma then 

good transfer to the ion optics and detector, the results are collected from the computer software  

(Agatemor and Beauchemin, 2011, Sarojam, 2010).   

 

 

 

 

 

  

                         Figure 3-17. PerkinElmer Optima 7300 DV ICP-OES 
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3.3.7. XRF Spectrometry  

 

The concentration of metals adsorbed onto the surface of PolyHIPEs were measured by x-ray 

fluorescence (XRF) spectroscopy since this is sensitive to concentrations which are less than 1 

wt%. XRF spectrometers are robust elemental composition analysis instruments that are used 

in industry and research as positive materials identification, and concentration measurement 

tools. An XRF spectrometer provides simultaneous analysis of a wide range of elements, and 

can be used as either a qualitative screening tool or a fully quantitative elemental analysis 

instrument, as shown in Figure 3-18. The diagram in Figure 3-19  shows the electromagnetic 

radiation spectrum and the regions where excitation of a material by a radiation to produce a 

measurable signal may occur (Pete, 2010). When a sample is put under any type of radiation 

such as (X-rays, γ-rays, electrons, protons), its electrons adsorb some of the incident energy. 

As a result the excited electron can jump between energetic levels. When the radiation is 

removed the atom tries to lose this energy by another transition to its original orbital with 

emission of a photon of energy equal to the differences between the two states. The energy 

difference in most materials between such states will generate x-rays. XRF is a method which 

utilizes the properties of a photon detector, by detecting the radiation emitted from the sample 

for different wavelengths (Jenkins, 2000).  The precise x-ray energy detached depends on the 

element which emitted the photon. 

Spectro X-Lab 2000 with X-ray fluorescence analysis and a new x-ray tube was used to measure 

the concentration of the elements on the PolyHIPE surface after filtration with different standard 

solution of nickel and copper. This equipment has an X-Ray tube in which an electron beam is 

used to generate x-rays which impinge on the sample surface. After the interaction between the 

x-ray beam and the sample a spectral background forms, and it is collected by a detection system 

which is well off the axis of the original x-ray beam. This system has a semiconductor detector 

synthesised from Si (Li) and it has good sensitivity for low and high x-ray energies. This system 

linked with integrated software to analyse the results – standard samples with known concentration 

have been used to calibrate the x-ray intensities produced for all major elements. 

 

 

 



57 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-18.  Spectro X-lab 2000 equipment 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-19. Light wavelength range  

http://www.equipxonline.com/ProductImages/112823/lg_add882_md_50eb97_Spectro 2000.JPG
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3.3.8. Ion Chromatography (IC) 

 

Ion chromatography (IC) was used to measure the concentration of anionic species in the 

standard solutions in this study. The IC instrument used in this work was a Dionne ICS-1000 

with an AS40 auto sampler. The column is an Ionpac AS14A, 4x250mm analytical column. 

The flow rate was 1ml/min and the eluent is an 8.0mM Na2CO3/1.0mM NaHCO3 solution. 

Injection loop is 25l. The ICS-1000 integrated system performs isocratic ion chromatography 

(IC) separations and was used to measure the concentration of anions in the solution after 

filtration and regeneration processes. This machine is linked with an Eluent Regeneration 

(RFIC-ER™system); a single eluent preparation was used to allow a continuous operation. 

Additionally, it has a dual-piston pump, thermally controlled conductivity cell, and auto 

suppression service (SRS 300 electrolytic suppressor). Automation gives full control and the 

data is collected and analysed by a control PC, as shown in Figure 3-20  below. The sample 

solution enters the machine by a valve injector, then the pumping system transfers the eluent and sample 

to a column, it passes through the column and then it is transferred to a detection system after a 

conversion process of the sample to corresponding acid or base The machine was calibrated by using 

Fluoride as a reference as shown in Figure 3-21 below.  

In the solvent degasser the air and gases are removed from the solvent, then the solution is 

transferred to the pump to give uniform flow for the solution. The Injector is used to put the 

sample into the high pressure flow line in a narrow band. After that a filter is used to remove 

any particulate or chemical components which may be damage the machine. Due to influence 

of solution temperature on the resulting peaks, a Pre-Column Heat Exchanger is used to control 

the temperature of the solution, then the solution goes through a the compartment for the ion 

separation process and a Post-Column Heat Exchanger to cool down the solution before 

entering the detector as shown in Figure 3-20. 
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Figure 3-20. Ion Chromatography (IC) System. 
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Calibration Details Fluoride
Calibration Type Lin Offset (C0) 0.0000

Evaluation Type Area Slope (C1) 0.1183

Number of Calibration Points 1 Curve (C2) 0.0000

Number of disabled Calibration Points 0 R-Square n.a.

Calibration Results Fluoride
Injection Name Calibration X Value Y Value Y Value Area Height 

Level µS*min µS

ECD_1 ECD_1 ECD_1 ECD_1 ECD_1

Fluoride Fluoride Fluoride Fluoride Fluoride

Standard New 1 5.0000 0.5917 0.5917 0.592 1.554

Figure 3-21. The fluoride calibration curve for the equipment. 
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3.4. Filtration Experiments  

The adsorption experiment was done by using a plastic column 7 mm diameter and 70 mm 

length. PolyHIPE pellets, as shown in Figure 3-6 and Figure 3-8, were placed inside. Then the 

standard solutions (50 ml) of nickel and copper with different concentrations (20,100,160 ppm) 

were passed through the beads by using peristatic pump for 8 hours with speed (5 rpm). The 

outlet from the column was fed into the reservoir for the pump so the liquid was recirculated 

through the filter many times. Different pH was used during the filtration process (6, 7, 8 and 

9). The removal efficiency of nickel and copper was determined by using Eq 3-1 (Adeli et al., 

2012).    

Removal efficiency (%) =
Ci−Cf

Ci
× 100   Eq 3-1 

 

Ci: - Initial concentration of metal (mg/l) 

Cf: - Final concentration of metal (mg/l). 

Table 3-1. The procudure of the filtaration process with different parametres  

Type of filtration  Sample  Reducibility  Temperature  

Shaking when the 

samples in vertical 

direction  

Both sample after 

sulphonation and 

samples coated with 

iron oxide  

2 times  Room temperature  

20̊C 

Stand filtration  Both sample after 

sulphonation and 

samples coated with 

iron oxide 

2 times Room temperature  

20̊C 

Shaking when the 

samples in horizontal  

direction 

Both sample after 

sulphonation and 

samples coated with 

iron oxide 

2 times Room temperature  

20̊C 
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Two types of filtration were performed cycling static and shaking filtration with different 

parameters such as temperature and shaking time as shown in figures (Figure 3-22 ). In the 

shaking filtration the filter bed was filled with the standard solution and the system sealed so 

no recycling occurred but a smaller volume of solution was required by the test and both shaking 

and cycling filtration happen in the same time. In addition to that, all standard solutions were 

filtered through a 0.45m membrane filter (MFS) before using any machine to remove unwanted 

particulates. 

     

Figure 3-22.The cyclic filtration process 

 

 

 

 

 

 

Figure 3-23. The filtration processes with shaking 
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3.5. Zero point of Charge Measurement 

Zero of point charge for iron oxide was measured from solutions with different pH between 5 

and 11 made by adding 0.1M NaOH to distilled water, and then adding 0.1 g of the iron oxide 

(from the coating layer) to each solution with shaking for 2 hours in ultrasonic bath to prepare 

the suspensions. All these solutions were analysed with a zeta potential equipment to get surface 

charge data as a function of pH (Boujelben et al., 2009, Bouzid et al., 2008).  Zero point of 

charge (ZPC) is used to determine ions potential to interact with the surface based on surface 

charge. When a sample dissolves in a solution it gives both positive and negative ions with 

different concentrations, and at a specific value of pH the surface of the solid become 

electrically neutral; this pH corresponds to the zero point of charge. At pH higher than this the 

surface will have negative charge. In contrast, with lower pH value than zero point charge the 

solution will be acidic (Somasundaran and Agar, 1967) 

This system has many parts. A laser illuminates the material particles, as result most of the laser 

penetrate the sample and some of it is scattered. The scattered beam intensity is measured by a 

detector. To avoid detector overloading when the light is too much an attenuator is used to 

decrease the light intensity. A correlator (digital signal processing board) is used to determine 

the rate at which the intensity is varying, then the computer analyses the data take place and the 

final results are collected (Instruments, 2004). The zetasizer used here can measure both particle 

size and surface charge by using different software. Zeta potential is measured by an accessory 

Figure 3-24.  The filtration processes with shaking but with different orientation 
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well when the samples put between two electrodes ,then when the electric field is applied the 

sample particles is modified  the pattern, this is measured zeta potential at a number of distances 

from the material particles surface  by the detector. 

 

 

 

 

 

3.6. Regeneration 

The regeneration process was done by passing a solution with different pH (3, 5, and 11) 

through the plastic column which contains the PolyHIPE beads after the filtration process with 

solutions containing nickel, copper and a binary system between nickel and copper respectively. 

0.01M NaOH or HCl were used to prepare these solutions. The plastic column and the peristatic 

pump were used during the regeneration process to wash the PolyHIPE beads for 8 hours by 

using cycling filtration. The amount of beads in each column was 3 gm of PolyHIPE beads the 

same as during the filtration process (Pandey et al., 2007). 

Figure 3-25. Zetasizer Nano S for measuring zeta potential,(Instruments, 2004). 
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4. PolyHIPE Characterization 

 

In order to be a good filter substrate material PolyHIPEs must have certain important 

characteristics. They must have connected porosity to allow mass transport, they must have a 

high surface area with a large number of active sites for ion exchange or adsorption, and they 

must be chemically stable in water and mechanically robust enough to withstand manufacturing 

and use. This chapter reports the characterisation of PolyHIPE materials under different 

processing conditions in order to select an optimum material for filtration. 

Three types of samples have been developed (see chapter 0)    

- In situ sulphonation PolyHIPEs with different structures. 

- Post-sulphonation PolyHIPEs with different structures 

- Sulphonated and non-sulphonated PolyHIPE coated with iron oxide nanoparticles 

4.1. Microstructure 

From the SEM images shown in Figure 4-2, the typical PolyHIPE structure is obtained and it 

can be seen that there are primary pores and secondary pores as well as interconnections 

between them. There are large walls in some regions, while the image for the sample with 20min 

mixing time shows few interconnects between the pores. At higher magnification we can see 

smaller pores inside the structure; pores which are inside the walls which seperate the large 

pores. Figure 4-2 shows the number of pores inside the wall for a sample with 15 min mixing 

time is more than in the sample with 30 min mixing time, therefore the surface area for the 

sample with 15 min mixing time is higher as shown in section 4.2. 

4.1.1 Pore size distribution 

 

The average pore size and pore size distribution was calculated by processing the SEM images 

using Image J software and a manual method of identifying pore diameter; the results are shown 

in Figure 4-3. It can be concluded that the pore size reduces with increasing mixing time due to 

decreased water droplet size in the HIPE (see Figure 4-3) (Walsh et al., 1996, Bhumgara, 1995). 

After reaching a minimum  pore size there is an increase with increase mixing time which may 

be due to droplet coalescense. This would reduce the stability of the emulsion and, ultimately, 

increase the micro and nano pore size as shown in Figure 4-3 and Figure 4-16 (Jimat, 2011).  
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Interconnect between pores 

Figure 4-1. Plan view SEM images of the PolyHIPEs structure with different mixing time  (a 10, 

b15, c20, d25 and  d30 min)  
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 The distribution of pore size for PolyHIPE samples with different mixing times (10, 15, 20, 25 

and 30 min) was determined by analysing figures Figure 4-2 using Image J software. The 

diameter of a large number of pores was analysed for each sample (46, 63, 63, 63 and 82 

respectively). The Histograms of pore size are plotted in Figure 4-4 to Figure 4-8 and show the 

micropore size distribution for each PolyHIPE sample. The figures show that the majority of 

micropores are between 10 and 30 micron diameter, but the samples with 15 and 20 min mixing 

time have smaller average pore sizes. 

Figure 4-2. The SEM images of the PolyHIPEs structure: (a) 15 minutes, (b) 30 minutes mixing 

time with higher magnification 

Figure 4-3. Average Pore size for PolyHIPE with different mixing time (10, 15, 20, 25 

and 30 min) determined from SEM images using Image J. 
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Figure 4-4. Pore size histogram from PolyHIPE sample with 10 min mixing time 

 

Figure 4-5. Pore size histogram from PolyHIPE sample with 15 min mixing 

time 
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Figure 4-6. Pore size histogram from PolyHIPE sample with 20 min mixing time 

 

Figure 4-7. Pore size histogram from PolyHIPE sample with 25 min mixing time 
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Figure 4-9 show the standard error for all samples and it show that the sample with 10 min 

mixing time has the hightest varasion range  in the pore size diameter , so it used in the 

filtaration process. 

 

Figure 4-8. Pore size histogram from PolyHIPE sample with 30 min mixing time 

 

Figure 4-9. Show the Standard error for the pore size masurements from PolyHIPE 

sample with different mixing time  
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4.2. BET Analysis 

Samples were tested for pore size and surface area using the adsorption-desorption isotherm. 

Isotherms were analysed by the BET method. The porosity measured by BET in the 

nanoporosity which are present in the walls of microporous PolyHIPE revelled in SEM analysis.  

4.2.1. Adsorption desorption isotherm  

 

Figure 4-10 to Figure 4-14 show the volume adsorbed against relative pressure, where relative 

pressure was calculated by dividing sample pressure (ps) by the saturation pressure (po). They 

show the adsorption desorption isotherm for PolyHIPE samples obtained with different mixing 

times (10, 15, 20, 25 and 30 min). From the shape of the adsorption desorption isotherms the 

adsorption process takes place on a macro porous structure when we compare it with the 

standard diagram as shown in Figure 3-14 especially for the PolyHIPE samples with 15 and 20 

min mixing time  (Sing, 1994). From that figure we could conclude that the adsorption 

desorption isotherm follows the Type II isotherm and it appears from the first part of the 

isotherm that the adsorption process for nitrogen is initially monolayer and then multilayer. In 

all samples the isotherm is reversible and no hysteresis was observed as compared with the 

standard diagram in Figure 3-16 (Sing et al., 1985; Gregg and Sing, 1982). 

 

When adsorption hysteresis occurs for a solid with pores it shows the difference between the 

mechanisms of adsorption and desorption. All figures show that the adsorption isotherm is 

rapidly increasing which is related to macropores of large size, and there is no hysteresis in any 

isotherm due to the macropores being more significant than mesopores which agrees with SEM 

images as shown in Figure 4-2and Figure 2-1.  (Sing et al., 1985).   
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Figure 4-10. Isotherm plot for surface area and pore size analysis for PHP sample 

produced with 10 (min) mixing time after sulphonation, when Relative pressure is 

sample pressure (ps) over saturation pressure (po) 

Figure 4-11. Isotherm plot for surface area and pore size analysis for PHP sample 

produced with 15 mixing time, when Relative pressure is sample pressure (ps) 

over saturation pressure (po) 
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Figure 4-12. Isotherm plot for surface area and pore size analysis for PHP sample 

produced with 20 mixing time, when Relative pressure is sample pressure (ps) over 

saturation pressure (po) 

 

Figure 4-13. Isotherm plot for surface area and pore size analysis for PHP sample 

produced with 25 mixing time, when Relative pressure is sample pressure (ps) over 

saturation pressure (po) 
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4.2.2. BET Analysis  

 

The adsorption isotherm were used to determine the surface area and porosity of the sample 

using the BET method (Sing, 1985). The varation of pore volume, pore size and surface area 

for the samples as a fuction of stirring time is shown in Figure 4-15 to Figure 4-17. The pore 

volume, pore size and surface area are approximentally constant except for the case of the 

sample which was stirred for 15 minutes which has a higher surface area and larger pore volume. 

An area of 10 m2/g is reasonable for the required filtaration behaviour so any of the materials 

would be sutable. The surface area for the sample with 15 min mixing time is highest due it 

having lower pore size as shown in Figure 4-16.  

 

 

 

 

Figure 4-14.  Isotherm plot for surface area and pore size analysis of PHP sample 

produced with 30 mixing time, when Relative pressure is sample pressure (ps) over 

saturation pressure (po) 
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Figure 4-15. Average pore volume of PolyHIPE structure determined from BET analysis, 

the figure plotted from single data   
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Figure 4-16. Surface area determined from BET analysis. The 

figure plotted from single data   

Figure 4-17. Average pore size determined from BET analysis. 

The figure plotted from single data   
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4.3. FTIR Analysis 

It is essential to determine the composition and stability of the materials so that suitable 

materials can be selected for filtration studies. Accordingly, FTIR analysis was undertaken to 

see it stirring affects the structure of the material which was sulphonated in situ.                       

Figure 4-18 to             Figure 4-22 show the FTIR spectra for the samples prepared with different 

mixing time (10, 15, 20, 25 and 30 min). While Table 4-1 lists the major peaks identified in 

each spectrum and their chemical origin. From these figures it can be seen that the structure is 

the same with changing the mixing time, since the bonds which represent the vinyl ring and the 

benzenesulphonicacid group appear in all figures. These come from styrene and sulphuric acid 

which was added to the aqueous phase during in situ sulphonation.  

 

                      Figure 4-18. FTIR spectrum for the PolyHIPE with 10 minutes mixing time. 
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Figure 4-19.  FTIR spectrum for the PolyHIPE with 15 minutes mixing time. 

 

 

        Figure 4-20.  FTIR spectrum for the PolyHIPE with 20 minutes mixing time. 
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The intensity of the peaks at 3300cm-1 varies between samples; this is associated with water 

and OH bonds in the structure and suggests a different amount of drying of the samples has 

occurred during processing.   

 

 

Figure 4-21.  FTIR spectrum for the PolyHIPE with 25 minutes mixing time. 
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             Figure 4-22.  FTIR spectrum for the PolyHIPE with 30 minutes mixing time. 

As shown in Table 4-1 there are small differences in the minor peaks from FTIR spectroscopy 

for the samples with different mixing time but with predominantly the same structure. Direct 

comparison of the spectra (Figure 4-22) shows that the same peaks are present for all samples 

but their intensity varies. This due to the variability is sample processing and drying and the 

sampling of different volumes of material for FTIR analysis.  The high intensity peak in each 

sample (C-H bending of the aromatic ring) is characteristic of the styrene monomer.  
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Figure 4-23. FTIR spectra for all PolyHIPE samples. 
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Table 4-1. The functional groups from FTIR. 

Number  Sample 

peak cm-

1 with 10 

min  

Sample 

peak cm-

1 with 15 

min 

Sample 

peak cm-

1 with 20 

min 

Sample 

peak cm-

1 with 25 

min 

Sample 

peak cm-

1 with 30 

min 

Peak name   References  

1 696.5 696.3 696.9 696.5 696.4 C–S stretching  (Stuart, 2005) 

2 755.3 755 756.5 755.4 755.6 out of plane 

bending (C–H of 

Aromatic group) 

 (Stuart, 2005) 

3 838.7

  

- 839.8 836.5 841.4 C=C phenyl ring,  (Pretsch et al., 

2009) 

4 902.7 904.1 905.5 902.6 - C=C phenyl ring, 

  

 (Pretsch et al., 

2009) 

8 1029.2 1028.6 1028.4 1029.2 1029.5

  

S=O stretching (Stuart, 2005) 

9 1049.5 1052.9 - 1050.3 1045.4 S=O stretching (Stuart, 2005) 

11  1155.1

  

- - - Symmetric SO2 

stretching 

 

12 1180.2

  

1181.6 1180.6 1180.4 1172.4 sulfonic acid group, 

–S=O 

(Stuart, 2005) 

13 - - 1372.4 1372  Methyl symmetrical 

C–H bending 

(Stuart, 2005) 

14 1452 1452.1 1451.8 1452 1451.9

  

Carbonyl group (Stuart, 2005) 

15 1492.8 1492.9 1492.7 1492.8 1492.8

  

bands of C=C in 

benzene ring    

(Burrows et al., 

2013) 

16 1601.6 1601.7

  

1601 1601.6 1601.5

  

 bands of C=C in 

benzene ring    

(Burrows et al., 

2013) 

22 1740.7 1740.7 1741.6 1739.4 1739.5

  

Attributed to C=C 

bond of vinyl ring 

subsisted with 

sulphuric group    

(Pretsch et al., 

2009) 

25 2852.9 2852.3

  

2851.2 2852.6 2851.9 Methylene symmetric 

C–H stretching 

(Stuart, 2005) 

26 2923 2922.8

  

2922.1 2922.9 2922.4 Methylene 

asymmetric C–H 

stretching 

(Stuart, 2005) 

27 3025.6 3025.8 3025.2 3025.5 3025.5  benzyl CH group 

 

(Stuart, 2005) 

29 3060.1

  

3060.4 3059.3 3060.1

  

3060.1 C-H stretching (Burrows et al., 

2013) 
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4.4. Compression Test  

Mechanical properties of the PolyHIPE are important for the filter material is to be healable or 

to withstand the fluid pressures achieved in filtration if used as a bead or monolith. PolyHIPEs 

with different stirring time were compressed between the platens of a mechanical test machine. 

A typical stress-strain curve for each sample type is shown in Figure 4-25 to Figure 4-29  and 

the tangent to the curve at zero strain was used to measure the Young’s Modulus of the material 

assuming the time-dependent deformation was minimal. 

The compression test was performed for three samples from each mixing time and the average 

and the standard error were computed as shown in Figure 4-24. The Young’s modulus depends 

on the pore size of the PolyHIPE. Its seems to be that, Young’s modulus decreases with 

increasing the pore size (Alikhani and Moghbeli, 2014). There is a small decrease in the 

Young’s Modulus at the 20, 25, 30 minutes mixing times which is due to the formation of larger 

pores (in Na no scale) as shown from the BET measurement as shown in Figure 4-17. 

 

 

 Figure 4-24.  Young’s Modulus for PolyHIPE with different mixing times (10, 15, 20, 25, 30 

min) 

There was a small of time-dependent elastic recovery at the end of the test once the load was 

removed but viscoelastic behaviour was not significant as test speed did not affect the measured 

results. There was no evidence of fracture in the compression test samples.  
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Figure 4-25. Stress strain curve for PolyHIPE sample with 10 min mixing time 

 

 

Figure 4-26. Stress strain curve for PolyHIPE sample with 15 min mixing time 
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Figure 4-27. Stress strain curve for PolyHIPE sample with 20 min mixing time 

 

 

Figure 4-28. Stress strain curve for PolyHIPE sample with 25 min mixing time 
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Figure 4-29. Stress strain curve for PolyHIPE sample with 30 min mixing time 

 

 

4.5. Summary  

In summary the PolyHIPE produced in this work has a hierarchical structure with many nano 

and micro pores in its structure and good surface area which will help in the filtration and iron 

oxide coating process where it will allow the nanoparticles to enter into the internal structure 

leading to an increase in total iron oxide surface area. Additionally, it might be has many 

functional groups like SO3H which help to use the polyHIPE as an ion exchange material. All 

the results in this chapter show that a PolyHIPE with a well-defined structure has been produced 

but it still has a hydrophobic surface, so its water uptake is low and might be not enough to use 

it as a filter for water treatment. Thus post sulphonation is required as this will convert its 

surface structure to hydrophilic as demonstrated in the next chapter. 
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5. PolyHIPE after Post Sulphonation 

Two types of sulphonation were investigated in this study. In situ sulphonation where 5% 

sulphuric acid was added to the aqueous phase during PolyHIPE manufacture and post 

sulphonation where the PolyHIPE was soaked in concentrated sulphuric acid and microwaved 

to functionalise the surface after polymerisation. This chapter describes material produced by 

the second method. 

5.1. Microstructure  

Figure 5-1 shows the effect of the sulphuric acid on the morphology of the PolyHIPEs structure 

after post sulphonation. The PolyHIPEs have smooth and granular areas due to the deposition 

of the sulphate on the surface (Fleming, 2012). The images show interconnected pores and also 

the increase in the wall thickness (Shakorfow, 2012) which is due to the sulphonation process. 

In addition there are more pores in the walls compared with the samples before the sulphonation 

(see   Figure 4-2and Figure 4-2) which may be due to creation new pores during the sulphonation 

process. It is clearly seen that the surface is much smoother after post sulphonation as well. 

FTIR analysis shows that there is more sulphur in the structure after post sulphonation (Figure 

5-2 to Figure 5-6) 
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Figure 5-1.  SEM images of PolyHIPEs after sulphonation: (a) 10 minutes mixing time, (b) 15 

minutes mixing time, (c) 20 minutes mixing time, (d) 25 minutes mixing time, (e) 30 minutes 

mixing time, x100Mag. 
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5.2. FTIR Spectroscopy after Sulphonation 

Figure 5-2 to Figure 5-6 show the FTIR spectra for the PolyHIPE samples with different stirring 

time after the post sulphonation process. There are differences in the intensity of some peaks 

and also fewer peaks appear in some samples. For instance, the difference in intensity for the 

peak at 696 cm-1 (C–S stretching) for the samples with (10, 20, 25 min) is larger than for the 

other samples which may be due to a better degree of sulphonation. The groups that appear 

around 1150cm-1 are due (S=O) stretching. The (S=O) stretching peaks for post sulphonated 

PolyHIPE are much higher intensity than the samples with in situ sulphonation (see Figure 4-18 

to Figure 4-23) due to the increased concentration of sulphuric acid in contact with the polymer 

during post rather than in situ sulphonation. Because of the sulphuric acid in the aqueous phase 

(5% concentration) the peaks which come from the sulphonate group appear before and after 

the post sulphonation process. Thus there are very strong peaks for sulphur containing groups 

in post sulphonated material as well as a variable intensity peaks at 3320 cm -1 due to water and 

OH groups in each sample.  

 

 

Figure 5-2. FTIR spectrum for PolyHIPE with mixing time 10 min 
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Figure 5-3. FTIR spectrum for PolyHIPE with mixing time 15 min 

 

                           Figure 5-4. FTIR spectrum for PolyHIPE with mixing time 20 min 
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Figure 5-5. FTIR spectrum for PolyHIPE with mixing time 25 min 

                  

 

                     Figure 5-6. FTIR spectroscopy for PolyHIPE with mixing time 30 min 
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It is clear that post sulphonation increases dramatically the amount of sulphur functionality at 

the PolyHIPE surface which is expected to make the surface more hydrophilic. This has been 

assessed in water uptake tools in the next section.    

5.3. Water Uptake  

Water uptake was measured for the PolyHIPE samples before and after post sulphonation, by 

immersing the samples in water and measuring the weight before and after immersion. The 

samples were kept in water for 48 hours until the saturation state was achieved. The water 

uptake was calculated using Eq 5-1. 

𝑤𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒 = (𝑤𝑓 − 𝑤𝑖)/𝑤𝑖 ∗ 100 

  

 Eq 5-1 

 

wf = final weight of PHPs    

wi = initial weight of PHPs 

 

 

 

 

 

 

 

 

Figure 5-7. Water uptake function of the mixing time before the sulphonation. 

 

For the in situ sulphonation samples the water uptake decrease with mixing time and then rises 

Figure 5-7. Water uptake thus increases with an increase in the pore size (Feuerabendt et al.) 

and the size and amount of interconnects between them. But, after post sulphonation the water 

uptake increases as shown in Figure 5-8 due to the surface conversion from hydrophobic to 

hydrophilic (Yee et al., 2013). These results agree with the FTIR results (see Figure 5-2 to 

Figure 5-6) which demonstrate the increasing in the sulphur content after post sulphonation 
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which leads to an increase in the hydrophilicity of samples, and thus the water uptake increases. 

The increase in sulphur content between in situ and post sulphonation has been confirmed by 

energy dispersive x-ray microanalysis (EDX) in the scanning electron microscope.  

 

 

 

 

 

 

 

 

 

 

Figure 5-8.  Water uptake before and after sulphonation. 

 

Water uptake appears to be dependent on the macropore structure and surface chemistry of the 

sulphonated PolyHIPE but nano porosity may also have an effect. Thus adsorption isotherms 

and BET analysis have been carried out on the post sulphonated material (see next).   

5.4. Can we measure sulphur content and heavy metal removal from contaminated 

solutions? 

Filtration trials were undertaken to determine what analysis techniques would be required to 

assess the effectiveness of polyHIPE as an adsorbant filter material. Figure 5-9 shows the EDX 

spectrum for the PolyHIPE samples with 10 min mixing time after the filtration process (see 

Chapter 6) when the concentration of nickel in the standard solution was increased to a very 

high level (160 mg/l). It shows the peaks of elements such as S which originates from the 

sulphonation process, Na comes from the ion exchange between sodium ions from sodium 

hydroxide which was used to fix the pH of the solution and H+ ions from the benzensulphonic 

acid group according to Eq 5-2, but EDX couldn’t detect the nickel ions which mean the 

concentration of nickel less than 1%. 
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𝑁𝑅 − 𝑆𝑂3𝐻 + 𝑀𝑛+  → (𝑅 − 𝑆𝑂3)𝑛 𝑀𝑛 +  +𝑛𝐻+ Eq 5-2 

 

 

 

 

Thus nickel needs a more sensitive analysis method and tests have been done to determine if 

XRF analysis is suitable as discussed in the next section.  

 

5.5.  XRF Analysis  

X-ray fluorescence measurement has been done to determine the concentration of nickel in the 

solid beads from the trial experiment when 0.6136 g from the whole sample (which is 3g) was 

taken for analysis. The results are shown in Table 5-1 and the concentration is presented in 

terms of arbitrary units. Standard samples with known concentration can be used to convert this 

to real concentrations and this has been done for nickel and copper here – the reliability of these 

standards is a significant source of error which may be as high as 25%. The data in Table 5.1 

indicate there is 0.26 g of nickel in the PolyHIPE sample demonstrating that the material has 

acted as an adsorber. Signals from many elements were present in the analysis data – the 

erroring the analysis is ±20 units so anything with a lower concentration is likely to be 

experimental error. Concentrations in the range 20-200 units come from environmental 

contamination. Clearly the most significant element in the analysis is sulphur showing that the 

Figure 5-9: Figure: - EDX images for the sample after sulphonation and 

filtration 
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sulphonation process has been successful. There are also significant amounts of phosphorus in 

the material as well as nickel, calcium, potassium and iron. The potassium comes from the 

polymerisation initiator (potassium persulphate). The nickel comes from the filtration but the 

phosphorus and iron are likely contaminants that arise from the fact that the stirred tank used 

in polyHIPE manufacture has been used to make polyHIPE containing phosphoric acid 

previously. 

Table 5-1. X-ray fluorescence test to measure the concentration of metal in polyHIPE beads 

 

N Symbol. Name C.ppm 

0 L.O.I. Loss of Ignition 906216.6 

1 Si Silicon 86.3 

2 P Phosphorus 743.1 

3 S Sulfur 90502.1 

4 Cl Chlorine 52.2 

5 K Potassium 282.7 

6 Ca Calcium 166.9 

7 Ti Titanium 4.5 

8 Fe Iron 278.6 

9 Ni Nickel 434 

10 Zn Zinc 402.5 

 

XRF appears to be a suitable method for metal analysis in the polyHIPE samples to be tested 

in the next chapter. 

5.6. Adsorption Desorption Isotherm and BET analysis 

Figure 5-10 to Figure 5-13 show the adsorption desorption isotherms for PolyHIPE samples 

with different mixing time after the post sulphonation process. The form of the curve is same 

as for the sample before the sulphonation process as show in Figure 4-10 to Figure 4-14.  Type 

II isotherms are observed with initial monolayer adsorption followed by multilayer adsorption 

at higher pressures of nitrogen. All samples show a reversible isotherm and no hysteresis in any 

of them, except with sample with 15 min mixing time which has hysteresis due to capillary 

condensation at mesopores, which corresponds to a type IV isotherm in the IUPAC 

classification (Sing et al., 1985; Gregg and Sing, 1982). Capillary condensation processes 
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happen on the PolyHIPE surface at a lower pressure than that which is required to reach the 

saturation state for the surface by vapor. As a result, capillary walls are covered with a liquid 

layer. Normally adsorption hysteresis occurs on solids with pores which give different 

mechanisms of adsorption and desorption. 

 

The isotherm shows that the structure has mesopores where physisorption happens and it is in 

condition capillary condensation and monolayer-multilayer adsorption. All samples show that 

the adsorption isotherm was rapidly increasing which is due to macropores of large size which 

agrees with the SEM images as shows in Figure 5-1.  All the samples, except the sample with 

15 min mixing time (see Figure 5-11), show that there is no hysteresis in the isotherm due to 

the macropores dominating mesopores which agrees with the SEM images as show in Figure 

5-1(Sing et al., 1985). 

 

 

 

 

   

   

 

 

 

 

 

 

 

 

 

Figure 5-10. Isotherm plot for surface area and pore size analysis of PHP with 10 mixing time 

after sulphonation, when Relative pressure is sample pressure (ps) over saturation pressure 

(po) 
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Figure 5-11. Isotherm plot for surface area and pore size analysis of PHP 

with 20 mixing time after sulphonation, when Relative pressure is sample 

pressure (ps) over saturation pressure (po) 

Figure 5-12.  Isotherm plot for surface area and pore size analysis of PHP 

with 25 mixing time after sulphonation, when Relative pressure is sample 

pressure (ps) over saturation pressure (po) 
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 Figure 5-14, Figure 5-15 and Figure 5-16 show the average pore size, the average pore volume 

and the average surface area measured by BET from the adsorption isotherm for polyHIPE after 

post sulphonation. Before sulphonation the surface area was 10 m²/g and the pore volume was 

0.0129 cm³/g but after sulphonation the surface area increased up to 11.9 m²/g and the pore 

volume to 0.0156 cm³/g  

It clearly shown that the adsorption process take place in the macroporous structure of 

PolyHIPE  and the adsorbate-absorbant and adsorbate–adsorbate interaction was strong and 

weak respectively when we compare it with standard curves Figure 3-14 as explained in chapter 

three (Sing, 1994). Figure 5-14, Figure 5-15 and Figure 5-16 show that the sample with 15 min 

mixing time has higher surface area and smaller pore size and pore volume than the others 

which means the behavior after the post sulphonation process is approximately the same as 

before; these results show no large differences  before and after sulphonation which agrees with 

research done previously (Hasan, 2013). In addition to that these figures clearly show that the 

sample with 10 min mixing time after sulphonation has larger pore volume and surface area 

and pore size, which explains the water adsorption value as shown in Figure 5-8 so it was used 

for the filtration process assessment in the next chapter. 

 

 

 

Figure 5-13. Isotherm plot for surface area and pore size analysis of PHP with 30 mixing 

time after sulphonation, when Relative pressure is sample pressure (ps) over saturation 

pressure (po) 
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Figure 5-14.  Average pore size for PolyHIPE structure determined from BET. The figure 

plotted from single data   

Figure 5-15. Average pore size for PolyHIPE structure determined from BET. The figure 

plotted from single data   
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5.7. Summary  

Post sulphonation has increased the water uptake by converting the PolyHIPE structure from 

low hydrophilic to high hydrophilic. This is clear from FTIR results by the increase in the 

sulphonate peaks intensity compared with the PolyHIPE samples with in situ sulphonation. 

Additionally, more (SO3H) groups are added to the structure, which are considered as strong 

cation exchangers and thus can be used to remove heavy metals such as nickel and copper from 

water as shown in next chapter.  
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6. Filtration studies 

The previous chapter has shown that the surface area of PolyHIPE is not changed very much 

by processing but the macropore structure and water transport into the material is controlled by 

mixing time and the sulphonation method. Water penetrates the PolyHIPE and there is large 

surface area for ion exchange or adsorption. Thus filtration studies were undertaken with 3 g of 

the PolyHIPE beads after the sulphonation process placed in plastic tube, then the solution was 

passed through the samples by a pump for 8 hours.  

6.1. Removal Efficiency 

The removal efficiency was calculated after filtration by using PolyHIPE beads after 

sulphonation with three solutions containing (Ni+2 (20mg/l), Cu+2 (20 mg/l) and (Ni+2 (10mg/l) 

+ Cu+2 (10 mg/l)) respectively. Each system will be discussed in individual sections where the 

removal efficiency was calculated according to Eq 6- below. 

Removal efficiency (%) =
Ci − Cf

Ci
× 100 

Eq 6-1 

 

  Ci: - Initial concentration of metal (mg/l) 

Cf: - Final concentration of metal (mg/l). 
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6.2. Nickel Removal Efficiency  

Benzenesulfonic acid groups as shown in Figure 6-1, might be present in the PolyHIPE 

structure after sulphonation and are a strong cation exchanger, so are widely used in removing 

cations from waste water. They have strongly acidic behavior. The SO3H can lose H+ ion and 

thus act as an exchanger for metal cations (Kearney and Rearick, 2003).    

 

 

 

 

 

Post sulphonated PolyHIPE samples with 10 (min) mixing time were washed twice by using 

the soxhlet as shown in chapter three (3.2) and were then used for the removal efficiency 

analysis.  From Figure 6-2, it can be seen that the removal efficiency is constant with increasing 

the pH from 6 to 8. It might be expected that increasing removal of nickel with increasing pH 

would occur due to the reduced concentration of hydrogen ions with the increasing the pH 

value. As a result of that, the competition between H+ and nickel ions towards the active sites 

(SO3H) groups available in the PolyHIPE structure reduces (Ismail et al., 2012). However, it 

seems from the results here that the dominant factor is the number of available sites and there 

are plenty to exchanging with the metal. 

Furthermore, changing the pH of the solution may lead to new compound formation such as 

nickel hydroxide at pH 8.2, which  precipitate at the bottom of  the container  (Gupta et al., 

2003). Therefore the removal efficiency decreases after pH 8 as is observed to a small extent in 

Figure 6-2. The interaction mechanism between Benzenesulfonic acid groups and nickel could 

follow Eq 6-2 and Eq 6-3 (Cheremisinoff, 2001).  The best removal efficiency was at pH 8 

(0.83) but this was still above the acceptable limit specified by the world Health Organization 

which is about 0.07 mg/l (Edition, 2011). 

 

Figure 6-1. Structure of Strong Acid Cation Exchange Resin (Kearney and Rearick, 2003) 
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2(𝑅 − 𝑆𝑂3𝐻) + 𝑁𝑖𝑆𝑂4 → (𝑅 − 𝑆𝑂3)2𝑁𝑖 + 𝐻2𝑆𝑂4 Eq 6-2 

 

 𝑁𝑅 − 𝑆𝑂3𝐻 + 𝑀𝑛+  → (𝑅 − 𝑆𝑂3)𝑛 𝑀𝑛+  + 𝑛𝐻+ 

 

Where R is the monomer , N is number of unit , n 

atomic number  

Eq 6-3 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2 and Table 6-1 shows the remaining concentration of nickel ions in solution (as 

determined by ICP) as a function of pH. The lowest concentration is achieved at pH 8. This 

may be attributed to the high concentration of H+ ions at pH6. The interaction between heavy 

metals and functional groups is due to the tendency of these heavy metals to be attracted towards 

functional groups with high electron density (Benzenesulfonic acid) to make chemical bonds. 

Additionally, bonding between the strong positive charge and the multiple functional group 

may be arising in the same time (Rivas et al., 2003). The concentration of nickel before and 

after filtration Table 6-2. The ICS-1000 (Ion Chromatography System) was used to measure the 

concentrations of other anions after the filtration process with (20mg/l) of nickel solution, and 

the results (see Table 6-1,  Figure 6-4 and Figure 6-5) show that, the concentrations of all of these 

ions is below the acceptable limits determined by the World Health Organization,(Edition, 

2011).  

Table 6-1.  Concentration of anions in water after filtration 

Figure 6-2. Removing efficiency versus pH for PolyHIPE sample after sulphonation and 

filtration with 20 ppm nickel solution. 
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PH Fluoride Chloride Nitrite Bromide Sulphate Nitrate Phospate 

6 0.346 18.81 2.81 3.55 426.54 161.28 6.51 

7 0.174 3.70 1.20 1.76 168.06 67.63 1.20 

8 0.176 4.52 1.28 1.58 256.87 98.78 2.62 

9 0.172 3.32 0.95 1.12 179.53 53.75 2.13 

c. in 

deionised 

water  

n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Acceptable  

Limit(mg/l) 

Not 

concern 

70 mg/L 3 Not 

concern 

Not 

concern 

50 Not 

concern 
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Figure 6-3. Show the change in the concentration of Nickel ions before and after filtration 
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Figure 6-5 shows the results from Ion chromatography on the filtered solution that shows that the 

sulphate peak was highest when compared with other anions which may be due to unreacted sulphuric 

acid within PolyHIPE structure and the release of sulphate groups from the material during filtration.  

Figure 6-4 show the change in the concentration of anions before and after 

filtration 

Figure 6-5.  IC for anions is a Dionex ICS-1000 with an AS40 auto sampler for the 

samples after filtration with PolyHIPE beads after sulphonation. 
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6.3. Removal Efficiency after Total Washing 

The washing process for PolyHIPE beads was repeated many times to reduce the concentration 

of sulphate in the solution after filtration. The process was repeated until the pH of the deionised 

water which was used for washing was the same pH value before and after washing. The 

removal efficiency was increased as shown in Figure 6-6 compared with the last results (see 

Figure 6-2), which may be attributed the effect of unreacted sulphuric acid, when it reacted with 

the Ni2+ shown in..Eq 6-4 below (Fierro et al., 2008) but the compound is removed after 

filtration. However, the removal efficiency for nickel ions by PolyHIPE after sulphonation still 

has maximum value at pH 8 as in last results which were obtained after twice washing as shown 

in Figure 6-2. Then it plateaus it due to the formation of nickel hydroxide at pH 8.2 because of 

the decrease in the concentration of free nickel ions in the solution (Gupta et al., 2003).  

𝑁𝑖 +  𝐻2 𝑆𝑂4 → 𝑁𝑖𝑆𝑂4 +  𝐻2 

 

..Eq 6-4 

 

   

 

 

 

 

 

 

 

 

 

 

  

Figure 6-3 and figures Figure 6-7 to Figure 6- show the concentration of anions in the solution 

after the washing and filtration process with a nickel standard solution of 20mg/l. The 

concentration is reduced to an average value of approximately 157 mg/l, which is below the 

acceptable limit determined by The World Health Organization (see Table 6-1). This filtration 

was done after total washing for PolyHIPE beads after sulphonation process, until the pH for 

distilled water was the same before and after the washing process, while the concentration of 

Figure 6-6.Removal efficiency for Nickel with the pH after total washing 

of the sample  
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sulphate after only twice washing was approximately 2248 mg/l Table 6-2. This means that the 

PolyHIPE beads need complete washing until the pH is the same for the solution before and 

after washing it they are to be used. The concentration of other anions is considered low in both 

cases which means it came with the distilled water and equipment that was used to prepare the 

nickel standard solution and not from PolyHIPE structure itself. 

 

 

 

 

 

 

 

 

 

 Table 6-2. Ion chromatography measurement for the solution after total washing and filtration 

with 20mg/l nickel solution with different pH 

 

 

 

 

 

 

 

 

 

 

 

 

No.  
Peak 
Name Amount  Amount  Amount  Amount  

c.anions 
in 

deionised 
water  

    ppm ppm ppm ppm  

ECD_1 ECD_1 pH6 PH7 PH8 pH9  

       

       

1   Fluoride 0.76 0.09 0.39 0.15 n.a. 

2   Chloride 3.62 1.24 11.14 2.06 n.a. 

3   Nitrite n.a. 0.58 n.a. n.a. n.a. 

4   Bromide n.a. n.a. n.a. n.a. n.a. 

5   Nitrate 58.68 109.27 57.10 74.99 n.a. 

6   Phosphate n.a. n.a. n.a. n.a. n.a. 

7   Sulphate 133.29 141.41 191.08 165.33 n.a. 
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Figure 6-7. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel solution at pH6  

Figure 6-8. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel solution at pH7 
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Figure 6-10. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel solution at pH9 

 

 

Figure 6-9. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel solution at pH8 
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Figure 6-7 to Figure 6- show the peaks for many anions like nitrate, chloride and sulphate etc. 

These peaks represent the anion concentrations in the water after the filtration process with 

nickel standard solution by PolyHIPE after post sulphonation. The results show that nitrate and 

sulphate have the highest concentration due to using nickel nitrate in the preparation step for 

the nickel standard solution, while the sulphate comes from unreacted sulphuric acid within the 

PolyHIPE beads. Other anions are shown in Table 7-3  which come from the deionized water 

since the PolyHIPE after sulphonation is considered as a strong cation exchanger, so these 

anions do not have the ability to react with it, and therefore are still in the water after the 

filtration process. 

6.4. X-ray fluorescence 

In the filtration process 50ml of nickel solution with 20mg/l concentration was used, and in the 

previous section the ICP test shows that the majority of the nickel bonds with the PolyHIPE 

beads after the sulphonation process. Therefore, XRF has been used to measure the 

concentration of nickel in the solid beads when 1.216 mg from the whole sample (which is 3g) 

was analysed. The results shown in there is Table 6-3 1.22 mg of nickel in the PolyHIPE sample, 

this confirms the ICP results which show that most of the nickel bond with the beads. A simple 

calculation would indicate for 100% nickel removal there should be 1mg of nickel in the 3g 

sample so these results suggest that that complete removal has taken place. The fact that XRF 

indicates more nickel that was in the standard solution implies that there are other sources of 

nickel which contribute to the results (e.g. from corrosion of the stainless steel mixing chamber 

during PolyHIPE preparation with acid in the aqueous phase) or may be due to experimental 

scatter in the XRF measurements. The nickel concentration in the beads used in this test may 

not be uniform. Excess nickel may also come from the tools which were used to set up the 

experiment. However the amount of nickel in this sample higher than the sample with single 

washing as mentioned in section 6.1.This results agree with increasing the removal efficiency 

for the sample after total washing. In addition to that there are many metals in the solution 

which come from deionized water such as calcium and there may be some nickel in this as well. 
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Table 6-3. X-ray fluorescence test to measure the concentration of metal in polyHIPE beads 

after total washing with distilled water. 

N Symbol. Name C.ppm 

1 S Sulfur 62164.1 

2 Cl Chlorine 29.4 

3 K Potassium 271.7 

4 Ca Calcium 176.1 

5 Ti Titanium 4 

5 Cr Chromium 6.5 

6 Mn Manganese 10.2 

8 Ni Nickel 552.1 

 

6.5.  Copper Removal Efficiency   

 

The removal of copper after post sulphonation follows the mechanism shown in equation Eq 6-

3, in that Benzenesulfonic acid replaces two hydrogen ions (H+) with copper ions. However, 

from Figure 6-8 it can be seen that, the removal efficiency increases with increasing the pH and 

the maximum value was at pH 9 and it reaches values specified by the World Health 

Organization acceptable concentration Guideline value which is (2mg/l) (Edition, 2011). At the 

pH range 6.2 to 6.8 copper hydroxide (Cu (OH)2) starts to form (Vengris et al., 2001). 

Therefore, the removal efficiency decreases above pH 7. The high removal efficiency at pH 9 

might be due an insufficient amount of copper in solution for precipitation processes (Arai, 

2008, Eick and Fendorf, 1998, Rajapaksha et al., 2012). However, there are enough free ions in 

the solution to participate in the ion exchange process. 

  

 

 

 

 

 

 

 

 

 

 

 Figure 6-8. Removal efficiency of copper with pH 
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  Table 6-4 and figures Figure 6-7 to Figure 6-  show the concentration of anions in the solution 

after the filtration process with copper standard solution of 20mg/l concentration. The 

calculation of sulphate anions is higher than the nickel ions and represents material not 

completely washed from the PolyHIPE. This filtration was done after total washing of the 

PolyHIPE beads after the post sulphonation process, when the pH for the distilled water wash 

was the same before and after the washing process. The concentration of other anions is 

considered low in both cases which means it came with the distilled water that was used to 

prepare the nickel standard solution and not from the PolyHIPE structure itself. 

Table 6-4. Ion chromatography measurement for the solution after total washing and filtration 

with 20mg/l copper solution with different pH 

 

No.  
Peak 
Name Amount  Amount  Amount  Amount  

c.anions  
in 

deionised  
water  

    ppm ppm ppm ppm  

    pH6 pH7 pH8 pH9  

1   Fluoride 0.6888 0.0805 0.5979 0.5588 n.a. 

2   Chloride 137.5765 53.9419 181.2654 156.0115 n.a. 

3   Nitrite 15.1404 20.7777 22.0251 17.8086 n.a. 

4   Bromide n.a. n.a. n.a. n.a. n.a. 

5   Nitrate 22.7443 9.0026 4.1526 6.3466 n.a. 

6   Phosphate n.a. n.a. n.a. n.a. n.a. 

7   Sulphate 140.2268 374.6893 226.2583 66.9112 n.a. 
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Figure 6-9. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l copper solution at pH9 

 

 

Figure 6-12. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l copper solution at pH9 
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Figure 6-13. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l copper solution at pH9 

 

 

Figure 6-14. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l copper solution at pH9 

Figure 6-7 to Figure 6-14 show the peaks for many anions like nitrate, chloride and sulphate 

etc. This peaks represent the anions concentrations in the water after the filtration process with 

nickel standard solution by PolyHIPE after sulphonation. The results show that chloride, nitrate 

and sulphate have the highest concentration due using nickel nitrate in the preparation step for 
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the nickel standard solution, while the sulphate comes from unreacted sulphuric acid within the 

PolyHIPE beads. Other anions such as chloride as show in Table 7-3  come from the deionized 

water. Due PolyHIPE after sulphonation being considered as a strong cation exchanger, so these 

anions do not have the ability to react with it, therefore are still in the water after the filtration 

process. 

6.6. X-ray fluorescence 

In the filtration process 50ml of copper solution with 20mg/l was used. The ICP test shows that 

the majority of copper is bound with the PolyHIPE beads after the sulphonation process. 

Therefore X-ray fluorescence analysis has been done to measure the concentration of copper in 

the solid beads when 0.25 g from the whole sample (which is 3g) was taken for the test. The 

results shown in Table 5-1 indicate there is 1.44 g of copper in the total PolyHIPE sample, this 

supports the ICP results which show that most of the copper is bound with the beads. As in the 

case for nickel the amount of copper in the sample is greater than the total amount in the solution 

(1g) probably due to a combination of experimental error and other sources of copper 

contamination. 

Table 6-6.  X-ray fluorescence test to measure the concentration of metal in polyHIPE beads 

after total washing with distilled water. 

N Symbol. Name C.ppm 

0 L.O.I. Loss of 
Ignition 

980463.8 

1 S Sulfur 12825.6 

2 Cl Chlorine 37.6 

3 K Potassium 44.6 

4 Ca Calcium 80.4 

5 Ti Titanium 1.8 

6 Cr Chromium 7.6 

7 Mn Manganese 4.1 

8 Fe Iron 184.4 

9 Ni Nickel 45.1 

10 Cu Copper 3183.8 
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6.7.  Binary System (Nickel and Copper) Removal Efficiency   

In this experiment both nickel and copper ions were in the solution before filtration and the 

ratio was 50/50 for each one (10mg/l Ni ++ and 10 mg/l Cu++). The removal efficiency behaviour 

of the two metals is shown in Figure 6-10 and follows approximately the behaviours as the 

same single metal ion system when the concentrations of these metals was 20 mg/l as shown in 

Figure 6-6 and Figure 6-8, except at pH 8 when the removal efficiency for nickel is at minimum 

value instead of constant in the single system which may be attributed to the formation of cooper 

hydroxide at pH between 6.2 and 6.8, which is less than the pH required to form nickel 

hydroxide (pH=8.2) (Vengris et al., 2001, Gupta et al., 2003). This copper hydroxide may act 

as barrier between nickel and the active sites. At pH higher than 8 and close to 9.5 the amount 

of nickel and copper in solution may not be enough for the precipitation processes, because the 

precipitation process required a certain minimum concentration of metal in the water to occur 

(Arai, 2008, Eick and Fendorf, 1998, Rajapaksha et al., 2012, Gupta et al., 2003, Ismail et al., 

2012). Thus there were more free ions in the solution which participate in the ion exchange 

process leading to an increase of the removal efficiency. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10. Removal efficiency of copper and nickel in a binary system 

with pH     
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 Table 6-5 and figures Figure 6-7 to Figure 6- show the concentration of anions in the solution 

after the filtration process with the mixed solution. This filtration was done after total washing 

for PolyHIPE beads after the post sulphonation process, when the pH for distilled water was 

the same before and after washing process. The sulphate concentration is lower than for either 

of the single metal ion cases. The concentration of other anions is considered low in both cases 

which means it came with the distilled water that was used to prepare the nickel and copper 

standard solutions and not from the PolyHIPE structure itself. 

 

Table 6-5. Ion chromatography measurement for the solution after total washing and filtration 

with 20mg/l nickel-copper solution with different pH 

 

 

 

 

 

 

 

 

 

 

No.  
Peak 
Name Amount  Amount  

Amount 
ppm Amount  

Deionised 
water   

    ppm ppm   ppm  

    PH6 PH7 Ph8 pH9  

1   Fluoride 0.2843 0.2772 n.a. 0.3641 n.a. 

2   Chloride 76.2304 77.0584 5424 82.5840 n.a.   

4   Nitrite 10.2637 7.3523 n.a. 8.4178 n.a. 

5   Bromide n.a. n.a. n.a. n.a. n.a. 

6   Nitrate 20.6539 22.6833 5036 25.1010 n.a. 

7   Phosphate n.a. n.a. n.a. n.a. n.a. 

8   Sulphate 116.4835 82.3613 58.93 91.7272 n.a. 

Figure 6-11. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel-copper solution at pH6 
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Figure 6-13. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel-copper solution at pH8 

Figure 6-12. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel-copper solution at pH7 
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Figure 6-7 to Figure 6-18 show the peaks for many anions like nitrate, chloride and sulphate 

etc. These peaks represent the anions concentrations in the water after the filtration process with 

the mixed standard solution by PolyHIPE after post sulphonation. The results show that 

chloride, nitrate and sulphate have the highest concentration due using nickel nitrate in the 

preparation step for the nickel standard solution, while sulphate comes from unreacted sulphuric 

acid within the PolyHIPE beads. Other anions such as chloride as show in Table 7-3  which 

come from the deionized water. PolyHIPE after sulphonation is considered a strong cation 

exchanger, so these anions do not have the ability to react with it, therefore are still in the water 

after the filtration process. 

 

 

 

 

 

 

 

Figure 6-14. Ion chromatography measurement for the solution after total washing and 

filtration with 20mg/l nickel- copper solution at pH9 



119 
 

6.8. X-ray fluorescence  

 

X-ray fluorescence data is shown in Table 6-6 in test have done for the PolyHIPE beads after 

filtration with the solution containing the binary system nickel-copper (10mg/l each). The 

results show after simple calculation 0.054gm from the sample contains equal amounts of nickel 

and copper (1.44gm of nickel and 1.40 of copper respectively) which may be due to the removal 

efficiency being approximately the same and no selectivity occurring during the filtration 

process as mentioned in the last section. Again the total mass of metal in solution is 1g so these 

results indicate complete adsorbing of metal ion including those from other sources of 

contamination. In addition to that there is many elements in the solid which come from the 

deionized water such as chlorine and calcium or the other metals which come from the tools 

which were used in the experiment such as titanium and iron etc.  

Table 6-6. X- Ray fluorescence test to measure the concentration of metal in polyHIPE beads 

after total washing with distilled water 

N Symbol. Name C.ppm 

0 L.O.I. Loss of 

Ignition 

7141966 

1 Si Silicon 0 

2 S Sulfur 265481.3 

3 Cl Chlorine 389.412 

4 K Potassium 38498.08 

5 Ca Calcium 860.884 

6 Ti Titanium 55.204 

7 Cr Chromium 151.438 

8 Mn Manganese 85.044 

9 Fe Iron 6061.25 

10 Ni Nickel 481.916 

11 Cu Copper 727.35 
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6.9. SEM Analyses after Sulphonation and Filtration 

After the sulphonation process the PolyHIPE becomes acidic due to SO3H in its structure. The 

SO3H group joins the benzene ring and the degree of sulphonation depends on how many 

sulphuric groups will attach to the ring (Bhumgara, 1995), therefore the morphology changed 

as well. The Sample obtained after 10 min mixing time was used for the filtration experiments 

(a)                                                                                      (b) 

The stability and structure of the materials before and after filtration was assessed using SEM 

images. There are many small pores in the wall between the large pores due to the treatment 

process with the sulphuric acid, but there are no differences between the samples after 

sulphonation and after filtration with the nickel standard solution. This is due to the  low amount 

of nickel which was less than 1%, so it was not detected by the SEM and EDX analysis as 

shown in  Figure 5-9 (Yabe and de Oliveira, 2003).  

 

 

 

 

 

Figure 6-15. SEM images for PolyHIPE (a) after sulphonation (b) after sulphonation and 

filtration with 10 min mixing time 
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6.10. Summary  

From the previous results, we can conclude that the PolyHIPE after the post sulphonation 

process could be used as ion exchanger to remove heavy metals from waste water. The 

functional group (SO3H) can be added to the PolyHIPE structure by bin situ or post 

sulphonation processes which can be used as a strong cation exchanger to remove the heavy 

metals. XRF and EDX results show the high concentration of the sulphur in the PolyHIPE 

structure due to a good degree of sulphonation and show sulphur concentration after the post 

sulphonation process. BET measurements show there is no huge difference in the surface area 

and pore size for the sample before and after the post sulphonation process. However, it was 

good enough to get excellent removal efficiency for all systems but the amount of nickel and 

copper remaining in solution is still above the acceptable limit which is determined by World 

Health Organization Guidelines, so we are looking for another method to improve this. Using 

PolyHIPE coated with iron oxide nanoparticles to reach this limit is discussed in the next 

chapter.      
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7. PolyHIPE coated with Iron Oxide nanoparticles for filtration 

 

Iron oxide nanoparticles have been found to be an excellent absorber for heavy metal ions 

(Boujelben et al., 2009). In this chapter PolyHIPE has been coated with iron oxide nanoparticles 

and its filtration performance tested to remove the nickel from waster with a concentration of 

100 mg/l. The coated material has been characterised by SEM, BET and EDX to determine the 

morphology of the PolyHIPE after the coating process and its surface area, pore size and pore 

volume. In addition the presence of iron over the surface was confirmed by these tests. In this 

chapter high level of nickel concentration is used in the filtration process to give the coated 

PolyHIPE a high driving force for the interaction with the metal. In addition the zero of point 

charge is measured to determine the pH value which is required to make the surface charge for 

the iron oxide has zero value. This sets the conditions where metal ion removal by adsorption 

is most effective. 

7.1. Scanning Electron Microscopy    

Figure 7-1, shows SEM images of the coated PolyHIPE structure obtained after 10 min mixing 

time for the sulphonated and non sulphonated samples. All samples were in situ sulphonated to 

make the surface hydrophilic so the iron oxide containing solution could penetrate but the water 

uptake was increased by subsequent post sulphonation. The concentartion of iron oxide which 

was used during the coating process was 200g/l . 

From Figure 7-1, we can conclude from the surface of the PolyHIPE after sulphonation and 

coating that, due to the hydrophilic behaviour of the sulphonated sample the iron oxide coating 

solution goes into the internal structure of the polyHIPE and it does not accumulate on the 

surface as in samples without sulphonation, therefore there are many open pores still on the 

surface. Figure 7-1 (c) shows that iron oxide agglomerates on the surface due to its high surface 

energy.  This tends to close up small surface pores and reduce the amount of iron oxides 

available for adsorption. The agglomeration is also the result of Van der Waals  attraction 

between oxide particles  (Pradeep, 2009). 
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                                       (a)                                                                                 (b) 

 

 

 

 

 

 

(c) 

 

 

 

 

 

Figure 7-1. SEM images for the coated polyHIPE. (a), Post sulphonation, coating and 

filtration. (b), after sulphonation and coating, (c) after coating and filtration but without 

sulphonation. 
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7.2. Adsorption Desorption Isotherm  

The adesorption desorption isotherm in Figure 7-2 shows a monolayer-multilayer physisorption 

process (Hasan, 2013) similar to the other PolyHIPE tested in this project. It clearly shows that 

the adsorption process takes place in a macroporous structure of PolyHIPE and the adsorbate –

adsorbant and the adsorbate-adsorbate interaction was strong and weak respectively (Sing, 

1994). However, the Iron oxide structure consists on both micropores and mesopores which 

means it has higher surface area. The surface area after coating with iron oxide was 50 m2/g 

which means that coating with iron oxide increases the surface area of this polyHIPE 

considerably (see Figure 4-16) (Jusoh et al., 2007, Kang et al., 2004, Hua et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

7.3. XRF Analysis 

As shown in Table 7-1, three samples from each post sulphonated and in situ sulphonated 

samples after coating with iron oxide and filtration with nickel solution with concentration 160 

mg/l were analysed by XRF, to determine the ratio of elements in the PolyHIPE samples 

surface. From the results we can conclude that, the amount of the nickel absorbed by the in situ 

sulphonated sample was more than the amount of nickel absorbed by the post sulphonated 

sample. This may be because the in situ sulphonated samples have a more uniform distribution 

of internal active sites which can bind to iron oxide nanoparticles. This is supported by the 

higher iron content of the in situ sulphonated samples (Table 7.1). In addition to that, samples 

coated with iron oxide have higher surface area than the post sulphonated sample and would 

attract more nickel if the amount of iron oxide is increased.                                   
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Figure 7-2:- Isotherm plot for surface area and pore size analysis of PHP with 10 (min) 

mixing time after coating with iron oxide. 
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   Table 7-1. XRF analysis for the PolyHIPE samples after filtration for PolyHIPE sample 

after coating with iron oxide and after sulphonation and coating  
 

Values (Wt. %) 
 

Sample Fe Ni 

Post 

Sulphonated 1 

93.65 0.34 

Post 

Sulphonated 2 

92.21 0.72 

Post 

Sulphonated 3 

92.07 0.55 

insitu 

Sulphonated 1 

96.07 1.09 

insitu 

Sulphonated 2 

93.81 2.37 

insitu 

Sulphonated 3 

95.67 1.32 

 

7.4. Removal Efficiency  

To assess removal efficiency the filtration process has been done by using nickel standard 

solution with different concentrations (160, 100, and 20 mg/l). The measurement of the nickel 

concentration in solution by ICP shows there is low reduction in nickel concentration with 

removal efficiency 11% at high concentration as shown in  

Table 7-2. Medium and low nickel concentrations did not show any difference in nickel 

concentration before and after the filtration process as shown in Table 7-3; in fact there is some 

increase in the nickel concentration above the standard in some samples after filtration which 

may be attributed to measurement error and other sources of nickel contamination. These results 

suggest a higher driving energy for interaction between the active sites and nickel ions at high 

concentrations, so iron oxide is suitable as an adsorber to remove high concentrations of heavy 

metals rather than low concentration used in the previous chapter as has been observed 

previously (Sahmoune et al., 2011, Taha et al., 2011). It was found by many  others that the 

adsorption capacity increased with increasing in initial concentration for iron oxide adsorption 

systems (Kumar et al., 2012). 
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Table 7-2. Parameters (pH, contact time, amount of the iron oxide used in the coating 

processes) changed to get better absorption for the nickel from the standard solution. 

The 

sample 

mixing 

time  

Sample type Amount 

of the 

adsorbate 

g  

Amount 

of the 

liquid  

Ph.  The 

concentration 

before the 

filtration 

processes  

The 

contact 

time  

The 

concentration 

of iron oxide  

The 

concentration 

after the 

filtration 

process 

mg/l% 

10 min  

 

Sulphonated 

and coated 

with iron 

oxide 

Second 

filtration   

80g 100 ml  5 160 mg/l  25 min 

cycle  

10% 134.6 

 

10 min  

 

Coated with 

iron oxide    

80g 100 ml 5 160 mg/l 25 min 

cycle 

10% 141.8 

 

10 min 

 

Coated with 

iron oxide 

second 

filtration  

80g 100 ml  5 160 mg/l 25 min 

cycle 

10% 141.2 

 

10 min  

 

Coated with 

iron oxide 

80g 100 ml 5 160 mg/l 25 min 

cycle 

10% 142 

 

 

Table 7-3. The concentrations of nickel before and after filtration with PolyHIPE beads 

coated with iron oxide at low concentration. 

C. 

before 

filtration  

C. after 

filtration 

mg/l  

Time 

(hour) 

amount of 

adsorbate  

20 13.8 8 3 g 

20 27.6 8 3 g 

20 30.6 8 3 g 

20 27.7 8 3 g 

20 23.6 8 3 g 

20 24.1 8 3 g 
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7.5. EDX Analysis                                                                                          

Figure 7-3 show the EDX spectra obtained from were performed for all PolyHIPE samples after 

filtrations for both the sulphonated sample and non sulphonated samples.  From Table 7-3 and 

figures Figure 7-5 and Table 7-4we can clearly see that the nickel does not appear in the results 

because the concentration of the nickel was less than 1% but there is a measurable iron content 

from the iron oxide particles. The sodium may be from the NaOH which is used in the 

preparation step of the iron oxide to change the pH. The predominant elements present are 

carbon from the PolyHIPE and oxygen from the iron oxide and SO3H groups. There is more 

oxygen measured than can be accounted and sulphur present which suggest that the PolyHIPE 

surface may also have oxidised or that there is significant water retention within the PolyHIPE.               

 

 

Figure 7-3. EDX for PHP sample with 10 min mixing time after sulphonation and 

coating. 
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Figure 7-5. EDX analysis for PHP sample with 10 min mixing time. After coating and 

filtration but for the all surface. 

Figure 7-4. EDX analysis after sulphonation and coating for PHP sample with 

10 min mixing time.  

Na Fe S Na Fe 

Fe s Na Fe 



129 
 

Table 7-4. EDX results for the element concentration on the surface of PolyHIPE after coating 

with iron oxide.  

 

Element C .wt.%   C. At % 

Sodium 0.56      0.33 

Sulphur 2.93      1.26 

Iron 4.14      1.02 

Oxygen 30.55     26.35 

Carbon 61.82     71.03 

 

 

 

 

 

7.6. Zero point of Charge  

Different solutions with pH between 5 and 11 were prepared after shaking iron oxide powder 

with deionised water and adjusting the pH with HCl and NaOH solutions added in a dropwise 

fashion. The iron oxide powder was taken from the coating layer on a PolyHIPE sample. The 

test was repeated three times for each sample assess experimental scatter. The zeta potential 

was then measured with the Malvern Zetasizer. The results show the iron oxide zero point 

charge was at pH 8.6 as shown in Figure 7-6 ( b ), and this result agrees with many studies that 

reported that iron oxide with crystalline or amorphous structure has zero point of charge 

between pH7 and 9 (Wilkie and Hering, 1996, Benjamin et al., 1996). At higher pH than this 

value, iron oxides become anionic [Fe (OH)4
-] and can be used for adsorbing cationic metals 

such as nickel. While below that value it is cationic (Fe(OH)2
+). It was found by previous 

research that, the highest adsorption for the nickel by iron oxide was at pH 7 (Malandrino et al., 

2006).This probably reflects an ion exchange reaction between Fe and Ni  In addition to that, 

the physicochemical properties of iron oxides such as point of zero charge are not affected by 

the coating process (Katsoyiannis and Zouboulis, 2002). 

The fact that the filtration studies undertaken in this work were at a pH lower than 7 will thus 

clearly contribute to the low removal efficiency for cationic species. This is difficult to change 

since the sulphonation processes creates acidic conditions within the PolyHIPE during filtration 

studies and a different method of functionalisation would be necessary to support the iron oxide 

nanoparticles if PolyHIPE is to operate at neutral pH. 
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(a)                                                                                                 (b) 

 

 

7.7. Summary  

Iron oxide coating can be done both on both in situ and post sulphonation PolyHIPE. However, 

the iron oxide can only be used to remove nickel from high concentration solutions. The Zero 

point of charge at the expected value and a higher pH is expected for the adsorption reaction 

which cannot be achieved using sulphonated PolyHIPE as a support material. When we 

compare the removal efficiency for the PolyHIPE in this case with removal efficiency with 

PolyHIPE after sulphonation the results show that the sulphonation of PolyHIPE alone is a 

better filter medium for the ion exchange process. But it remains to be seen if a regeneration to 

recover the metals from the PolyHIPE beads is possible to make it more economically 

favourable as investigated in the next chapter.   

 

 

 

 

 

 

 

 

 

Figure 7-6. The value of the zero of point charge   
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8. Regeneration 

Regeneration experiments have been done for the PolyHIPE beads after the post sulphonation 

and filtration processes with different heavy metals like nickel and copper and the binary 

system. Many regeneration solutions with different pH values are used during this process. ICP 

is used to measure the concentration of the heavy metals in solution after regeneration. The IC 

test is used to determine the concentrations of anions in the solution after the regeneration as 

well.  

8.1 Nickel Regeneration  

Three different solutions containing distilled water with different pH were used to regenerate 

the PolyHIPE beads from nickel after the filtration process using different pH (1, 5, and 11). 

Anion concentrations were measured by the ICS-1000 (Ion Chromatography System) in the 

solution after regeneration. The results show that the anion concentration is below the 

assessable limit specified by the World Health Organization Guideline as shown in Table 8-1 

and figures Figure 8-2. The measured peaks contain contribution from a number of anions 

which are quantified by fitting the results from standard pure solution. The sulphate which came 

from unreacted sulphuric acid during the sulphonation process and nitrate came from nickel 

nitrate which was used to prepare nickel standard solution. Both remain the same after 

regeneration. However, Figure 8-1 shows that, with solution pH 5 the highest amount of nickel 

was recovered from the PolyHIPE which was about 0.5 mg/l but it is still a low value compare 

with the estimated value if all nickel in the bead is removed  which is approximately 16.46 mg/l. 

 

 

 

 

 

 

 

 

 

 

Figure 8-1. The ratio of nickel which is removed during regeneration compared to the 

initial nickel concentration for PolyHIPE beads at different pH. The figure plotted 

from single data 
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Table 8-1.  The concentration of anions in the solution after regeneration process with 

different pH   

Peak 

Name 

Amount 

ppm at 

pH 11  

Amount 

ppm at 

pH 5  

Amount 

ppm at 

pH 1  

Fluoride 0.20 0.20 2.85 

Chloride 5.58 3.97 1.85 

Nitrite 0.67 0.64 0.39 

Bromide 3.39 1400 411 

Sulphate 24.64 0.00676 0.01 

Nitrate 70.60 176 77.7 

Phospate 7.98 1.49 0.45 

 

 

It is unlikely that this filter can be regenerated and reused given any of these concentrations. 

The filters will be single use and another method to recover the nickel needs to be developed 

as most of it remains trapped in the PolyHIPE. 

 
Figure 8-2. IC for anions which give the concentration of anions in the solution after 

regeneration process with different pH 5. 
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Figure 6-7 to Figure 8-4 show the peaks for many anions like Nitrate, chloride and sulphate etc. 

The peaks represent the anion concentrations in the water after the regeneration process. The 

results show that nitrate and sulphate have the highest concentration due using nickel nitrate in 

the preparation step for the nickel standard solution, while sulphate come from unreacted 

sulphuric acid with the PolyHIPE beads. Other anions as show in Table 7-3  come from the 

deionized water.  

8.2 Copper Regeneration 

Regeneration experiments for copper were done by solutions with different pH values (3 and 

11) than was used to recover the nickel from PolyHIPE beads after filtration. From Table 8-2, 

the amount of copper in solution regenerated at high pH is higher than at low pH but it is still 

very low compared with an estimation for the copper inside PolyHIPE beads which if it were 

all to be removed would be about 16.50 mg/l when the initial concentration for the copper 

before filtration was 20 mg/l. 

Table 8-2. The concentrations of copper in (mg/l) after regeneration with high and low pH 

solution. 

pH C.Cu 

before 

filtration 

C.Cu after 

regeneration 

at pH 11 

C.Cu after 

regeneration 

at pH 3 

6 20 0.653  0.818  

7 20 0.227 2.641  

8 20 0.142 0.568 

9 20 0.131  0.249 

 

As with Nickel there is not much copper removal from the PolyHIPE during regeneration so 

this would suggest it is only suitable for a single use filter. An alternative method to extract 

copper from the PolyHIPE needs to be developed. 

8.3.  Binary System (Nickel and Copper) Regeneration 

The regeneration process for the PolyHIPE beads after filtration was done by using solutions 

with different pH values (11 and 3), and because the initial concentration for both metals was 

less than single system which is (10 mg/l) so the amount of nickel and copper which is recovered 

from the beads was less as well as shown in Table 8-1,Table 8-2 and Table 8-3, and is still a 

low value compared with the initial concentration of the metals. 
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Table 8-3. The concentrations of nickel and copper in (mg/l) after regeneration with high and 

low pH solution for the binary system. 

Sample 

number  

C. 

before 

filtration 

C.After 

regeneration 

for nickel  

C.After 

regeneration 

for copper 

(ppm) 

pH 

1 20 0.15 0.01 3 

2 20 0.14 0.004 3 

3 20 0.10 0.02 3 

4 20 0.24 0.01 3 

5 20 0.12 0.01 11 

6 20 0.14 0.01 11 

7 20 0.26 0.05 11 

8 20 0.14 0.02 11 

 

Although nickel is preferentially removed from the PolyHIPE the amount removed is small so 

this method of recovery is not suitable to extract the metal from the PolyHIPE and the filter 

would be single use as stated previously   

8.4. X-ray fluorescence  

X-ray fluorescence analysis has been done for the PolyHIPE beads after filtration with the 

solution containing binary system nickel-copper 10mg/l each and subsequent regeneration. The 

results show after simple calculation for 0.772 g of the sample a content of 0.82 g of nickel and 

1.37g of copper which shows the regeneration efficiency is greater for nickel than copper 

process as mentioned in last section. In addition to that there is many elements in the solution 

which come from deionized water such as chlorine and calcium or the other metals which come 

from the tools which used in our experiment such as titanium and iron etc.as shown in Table 

8-4. 
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Table 8-4. X-ray fluorescence test to measure the concentration of metal in polyHIPE beads 

after total washing with distilled water 

N Symbol. Name C.ppm 

15 P Phosphorus 537.2 

16 S Sulphur 76891.4 

17 Cl Chlorine 75 

19 K Potassium 204.4 

20 Ca Calcium 152.7 

24 Cr Chromium 6.8 

25 Mn Manganese 7.9 

26 Fe Iron 208.5 

28 Ni Nickel 272.1 

29 Cu Copper 1413.6 

 

8.5. Summary  

In summary the regeneration process was done by using many solution with different pH values 

to recover the heavy metals from the PolyHIPE structure after the sulphonation and filtration to 

remove heavy metals. The results show that the amount of the heavy metals recovered was low 

compared with the initial concentration which was used for the filtration process. Therefore 

further study is needed to improve the regeneration process.   

 

 

 

 

 

 

 

 

 



136 
 

9. Conclusions and Further Work 

9.1. Conclusions 

 

- PolyHIPE materials produced at low mixing times contain larger and more interconnected 

pores that have higher water uptake and are most suitable for filtration media trials. After 

sulphonation there is much less difference in morphology between the samples with different 

mixing times. 

- The water uptake measurements show differences for the samples with instu sulphonation and 

post sulphonation due an increase in the amount of sulphur groups introduced during the post 

sulphonation process. The post-sulphonated material is more effective as an ion exchanger to 

remove nickel and copper from a solution. This may be because it has a high concentration of 

benzenesulphonic groups which are the active sites for heavy metal removal. 

- Compression tests show that the samples have sufficient stiffness to washstand the solution 

flow rate and sufficient strength to not break during the filtration process. 

- BET measurements show that PolyHIPE samples with 10 min mixing time have the best 

combination of surface area, pore size and pore volume to use for the filtration process. 

- Small differences in pore size, water uptake, surface area, and pore volume do not show any 

major influence on removal efficiency which is controlled by surface chemistry.  

- Post-sulphonation is the best surface chemistry treatment developed so far since filtration trials 

show both Ni and Cu can be removed from solution with high efficiency. In contrast, PolyHIPE 

samples coated with iron oxide show only 11% removal efficiency for nickel at high 

concentration, and did not show any change in removal efficiency at low concentration.   

- Regeneration studies using these materials were less successful; the amount of nickel and 

copper in the solution after regeneration is less than its concentration before filtration and the 

majority of the metals remain attached to the polyHIPE surface. Further studies are needed to 

improve the regeneration process to make this method for removing heavy metals more viable.  

- Thus PolyHIPEs are a good substrate for ion exchange water filtration and can be 

functionalised to aid metal ion removal.  
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 9.2 Future work  

Only basic filtration studies were undertaken in this project and the long term performance of 

these materials in the filtration environment has yet to be assessed. A more controlled filtration 

rig with in situ analysis of metal concentration in required to quantitatively assess the ability of 

different PolyHIPE structures to remove dissolved metal ions and organic particles from more 

realistic wastewater compositions. In addition, PolyHIPE samples with higher mechanical 

stiffness could be produced by increasing the oil content of the emulsion and the effect of 

sulphonation on their physical properties and filtration performance should be assessed. The 

aim is to optimise the PolyHIPE composition and processing for filtration. 

Furthermore, the effect of different PolyHIPE structures where water  is forced to flow through 

the PolyHIPE could be assessed to determine the effect of morphology on the filtration process, 

and the study could done at different temperatures. Changing the functionalisation to increase 

the amount of different adsorbants, and the use of different standard solutions could help to 

determine optimum surfaces for different contaminant metals. In addition to that, many factors 

could be changed to get better degree of sulphonation for the sulphonated samples such as, 

using sulphuric acid with different concentration or soaking the samples inside the sulphuric 

acid for different times. As a result, the number of active sites in the samples could be increased 

which would mean increasing the removal efficiency for the metal ions from the waste water 

and better life of the filter.   

Finally, other methods for filter regeneration, such as different acids used in the regeneration 

solution should be studies further as, at present, there is no good way to regenerate the filter 

and they would be single use and relatively high cost. 

9.2. Summary and Future Outlook 

PolyHIPE can be made with different pore size controlled by mixing time. Additionally 

PolyHIPE can be made hydrophilic by sulphonation; in situ does not introduce as much sulphur 

functionality as post sulphonation. High water uptake and ion exchange capability have been 

demonstrated for removal of heavy metals at low ion concentration. Coating with iron oxide 

nanoparticles does not improve filtration performance probably because the acidic conditions 

generated by sulphonated polyHIPE do not give the best pH conditions for nickel removal by 

adsorption on iron oxide. The Filtration efficiency depends basically on pH in all cases. 

It remains a distinct possibility that the functionalisation of polyHIPE can be optimised to 

improve adsorption of heavy metals. This should be a focus of future projects. 
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