
 

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING 

 

ELECTRIC POWER SYSTEMS GROUP 

An Evaluation of Dynamic Thermal 

Ratings for Load Accommodation in 

Power Distribution Networks 
 

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY  

 

 

 

Peter James Davison 

 

 

 

November 2017 
 

 

 

 

 

 

 

 

 

 

 



ii 

 

 



iii 

 

Declaration 

 

I declare that this thesis is my own work and that I have correctly 

acknowledged the work of others. This submission is in accordance with University 

and School guidance on good academic conduct  

 I certify that no part of the material offered has been previously submitted 

by myself for a degree or other qualification in this or any other University.  

 



iv 

 

 

 

Abstract 

This thesis presents an evaluation of the use of Dynamic Thermal Ratings 

(DTRs) to provide additional network headroom for load consumer connections in 

electrical power distribution networks. The requirement for additional headroom 

can come from a number of sources including, limitations in the current network 

configuration, the need to provide connections to new consumers at minimal cost 

and to provide additional capacity in the transition to the low carbon economy.  

DTRs are a method by which the current carrying capacity of power system 

components such as transformers and overhead lines can be estimated in real-time 

through analysis of the surrounding meteorological conditions. The use of this 

technique has typically shown significant increases in available network capacity, 

however much of this work has considered such benefits in the context of 

increasing the capacity for wind generation connections. This research differs in 

its analysis of such benefits with regards to customer connection.  

Analysis of the present overhead line rating standards in the UK has shown 

that the system potentially over estimates the level of risk at which the network is 

operated. A set of adjusted ratings which meet these criteria are presented in this 

thesis. 

A generic, temperature sensitive load synthesis method is presented in order 

to estimate the benefits of DTRs within distribution networks. Through the use of 

such time-series load profiles the additional requirements of such an approach are 

exposed and analysed. 

Implementation of such a system has been shown to deliver additional 

network capacity for customer connections in both fit and forget and active network 

management scenarios.  
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1 Introduction 

 Background 

The transition to the ‘low carbon economy’ [1] will have substantial impacts 

on the transmission and distribution of electrical power [2, 3]. The requirement to 

balance supply and demand for electricity in a system with an increasing 

penetration of variable output generation sources such as wind [4, 5] and solar [6, 

7]  and other low carbon technologies (LCTs) whilst decommissioning existing fossil 

fuel generation plant present significant challenges to network owners and 

operators [8, 9]. In addition to the challenges presented by the low carbon 

transition with regards to technologies, there is also considerable variability as to 

the estimated speed of the transition itself. In an attempt to categorise this, 

National Grid, the Transmission System Operator in the UK has outlined a series 

of Future Energy scenarios (FESs) [10]. Figure 1-1 shows a diagrammatic 

representation of these scenarios.  

 

Figure 1-1 – National Grid Future Energy Scenarios [10] 
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In addition to these scenario descriptions, National Grid has also estimated 

the total UK energy usage from the present day to 2035 and beyond, dependent 

upon the particular ‘transition path’ followed by the UK as a whole.  

 

Figure 1-2  - UK Future Energy Scenario Energy consumption values [10] 

As can be seen in Figure 1-2 each of the scenarios with the exception of the 

‘slow progression’ model shows increasing energy requirements with reference to 

2015 values towards 2030, with all scenarios forecast to result in increased 

consumption by 2040.  

Whilst these ‘low carbon’ transitions will place additional demands on the 

existing network infrastructure, the need to provide increased network capacity 

for additional consumer connections in the present day should not be overlooked. 

The requirements of current planning standards [11] must still be met and there 

are various scenarios in which the present system cannot supply all of the required 

electrical demand.  In [12, 13] RTTRs are presented as an option to provide 

network support coincident with an N-2 circuit outage scenario in rural Northern 

England. In such a scenario, the present OHL circuit is unable to supply all of the 

required demand with the present OHL circuit ratings in place. These papers 

examine the potential of RTTRs to deliver the required increase in circuit capacity 

to maintain supply to the affected customers.  The business as usual (BaU) 

approach to ensure that grid infrastructure has the required capacity for these 
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transition scenarios would be to upgrade or reinforce the existing network assets 

however this approach faces considerable challenges in the future.  

Firstly, whilst previous network price control periods for Distribution 

Network Operators (DNOs) [14] have given considerable weight to their asset base, 

the introduction of RIIO-ED1 (Revenue = Incentives + Innovation + Outputs) [15] 

by the industry regulator Ofgem (Office of Gas and Electricity Markets), shifts the 

focus for revenue collection away from traditional asset ownership, towards 

achieving the same network security of supply level, at a lower cost, through the 

use of innovative techniques and technologies. This model has been in place as of 

the 31st of April 2015. It is also important to consider the potential difficulties that 

network reinforcement may encounter, for example, planning restrictions, 

customer interruptions and the inflation of raw material prices, all of which 

represent barriers to implementation [16].  

Furthermore, as shown in Figure 1-2, there is clear variability in the energy 

requirements of each of the respective ‘transition pathways’ [17]. New 

infrastructure is currently sized such that it can support required demand over a 

particular asset lifetime, and such that peak network capacity can be 

accommodated. Depending upon the nature of the transition pathway followed by 

the UK, it is therefore particularly difficult for the asset to be optimally sized. 

Additionally, the asset must be sized such that is capable of supporting network 

peak loading conditions, however the occurrences of peak loading typically 

constitute a small fraction of the year-round load cycle. The question must 

therefore be raised as to whether networks sized for such a loading pattern are an 

efficient and cost-effective use of capital. Once new physical assets such as 

overhead lines (OHLs) have been installed, there is also a limited potential for re-

deployment.   

An alternative approach would be to utilise network ancillary services in 

combination with techniques such as voltage control or power flow management 

[18]. In these cases the capacity requirements of assets such as OHLs, power 

transformer (PTRs) and underground cables (UGCs) would be reduced.  The 

consideration of such services and their potential contributions to network security 

of supply is being currently undertaken in the UK [19].   
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In addition to the use of network ancillary services, another solution to 

provide additional system capacity is to examine if the capacity of currently 

installed assets can be increased above their present ratings. In the context of the 

assets previously discussed these are referred to as Dynamic and Real-Time 

Thermal Ratings (DTRs and RTTRs). Within this work is the consideration that 

dynamic thermal ratings can be used to alleviate network problems. Much of the 

literature to date has considered an integrated RTTR system as a way of deferring 

or negating the need for network reinforcement and thus providing additional 

capacity for variable output, embedded generation sources. There are a number of 

reasons as to why this approach has often been taken: 

 An increase in renewable or less carbon intensive generation sources 

is necessary, to meet both national and international commitments to 

climate change. 

 Such new generation sources are often located at both geographically 

distant and electrically weak sections of the country.  

 The electrically weak nature of the network would traditionally lead to 

a network reinforcement solution in order to give the requisite capacity 

increase, however the geographic consideration brings with it 

significant planning, economic and potential timescale problems, as 

seen in the case of the Beauly-Denny transmission line upgrade in 

Scotland [16, 20].  

 Since RTTR requires no upgrades to existing infrastructure, merely the 

installation of small-scale monitoring equipment and sensors a 

significant proportion of the problems detailed above can be bypassed.    

In a scenario where increased levels of variable generation sources are 

connected to the UK network, RTTRs have been shown to allow significant 

increases in connection capability due to their gains over traditional static asset 

ratings.  

 Dynamic and Real-Time Thermal Ratings 

The capacity ratings of network assets in the UK and beyond presently use a 

series of worst case scenario conditions intended to result in minimal risk of a 
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thermal overload [21, 22]. High ambient temperatures and low wind speeds tend 

to give low ratings in the case of OHLs, with the converse of both parameters 

yielding higher ratings. 

In the case of OHLs, high conductor temperatures can lead to increased sag 

and violation of ground clearance limits. For PTRs and UGCs greater than 

stipulated internal temperatures can violate winding temperature limits leading 

to increased thermal stress and can reduce the strength of various dielectric 

materials. Derivation of an assets’ capacity is carried out through use of the 

relevant heat balance equation.  Equation (1) shows the overall heat balance 

equation for OHLs.  

 𝑄𝑗𝑜𝑢𝑙𝑒 + 𝑄𝑠𝑜𝑙 =  𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑         (1) 

Where: 

  𝑄𝑗𝑜𝑢𝑙𝑒   is the Joule heating (I2R loss) 

𝑄𝑠𝑜𝑙   is the heating due to solar radiation 

𝑄𝑐𝑜𝑛𝑣   is the convective cooling 

𝑄𝑟𝑎𝑑   is the radiative cooling 

 

Each term of the heat balance equation with the exception of the Joule 

heating contains an input from a meteorological variable. It is these conditions 

which are currently used in their ‘worst case’ in order to derive asset ratings.  The 

techniques of DTRs and RTTRs have been investigated previously as methods to 

increase the load transfer capacity of assets such as OHLs [23], PTRs [24, 25] and 

UGCs [26] by exploiting available differences between the real-time and relevant 

worst case scenario conditions. In the context of OHLs which will be focussed upon 

in this thesis, RTTR values represent the maximum possible conductor loading 

based on a set of observed conditions, such that a particular thermal limit is not 

violated. This is typically the present circuit rated temperature [27]. The DTR 

calculates the resultant conductor temperature over time based on a particular 

value of loading, which acts as an input as opposed to an output of the model.  

Figure 1-3 shows an example of RTTR values in addition to the presently used 

conductor seasonal ratings. As can be seen, there are clearly significant periods of 

time for which the conductor’s potential capacity is far greater than its current 
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rating. There are also periods during which the RTTR values are lower than the 

seasonal ratings, based on ‘worst case’ scenario conditions.  

 

 

Figure 1-3 – Example of Overhead Line RTTR and the currently used seasonal line ratings 

It is important however to consider the loading of the conductor during these 

periods, since the present line ratings are not simply a function of ambient 

meteorological conditions. The currently implemented standard will be discussed 

in greater detail in Chapter 4 of this thesis.  As an additional contribution this 

research will also consider the validity of these present ratings as suitable 

reference values. 

Considering real-time operation of the network, the RTTR provides visibility 

as to the current state of the available capacity. With an increasing need to provide 

additional network capacity, it is this visibility which will support the efficient and 

economic utilisation of existing asset capacities. Whilst there is the potential for 

periods of reduced capacity over the present method, this visibility also indicates 

significant periods at which capacity is shown to be far greater.  

 The majority of previous work on the use of RTTRs and DTRs have focussed 

upon increasing network capacity for embedded or distributed generation (EG / 

DG) sources and in particular, upon increasing the ratings of overhead lines.  

RTTR and DTR systems have often been investigated as a method to improve 

capacity for wind generation connections [28-30], since as an additional benefit 

wind provides the dominant cooling factor for overhead lines [31]. This technique 
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has also been considered as part of wider active network management (ANM) 

schemes [32-34] .  

Whilst some research has considered the potential for RTTRs to provide a 

network benefit towards load accommodation [35, 36] such analyses have assumed 

that load is independent from the resultant RTTRs and also have used  typical load 

duration curves in order to probabilistically examine the resultant Expected 

Energy Not Supplied (EENS) figures.   

Whilst the mutual benefit between Aeolian cooling of the OHLs in conjunction 

with high wind turbine outputs has been discussed [31], in a similar way, usage of 

DTRs allows for exploration of the correlation between electrical network demand 

and the variability of the derived DTR values. An understanding of how the same 

ambient conditions affect both the power system components and the demand 

served by the component allows us to ascertain a clearer estimation of the assets’ 

true latent capacity and to assist with the making of network planning and 

operation decisions [37]. Similar analysis concerning the rating of PTRs and the 

coincidence of loading conditions with transformers was carried out in [38].  Here, 

loading conditions are related to hot spot temperatures within low voltage 

distribution networks.  

Therefore, the research in this thesis will use DTRs in conjunction with feeder 

load profiles in order to evaluate the potential to increase the number of load 

consumer connections and also to examine the potential for network ancillary 

services. In order to comprehensively evaluate this potential, the impact of 

ambient temperature on feeder load profiles needs to be accurately modelled which 

requires development of an appropriate method for synthesising network feeder 

loads.  

 

 Distribution network feeder load synthesis 

Within distribution networks typical load flow calculations are typically 

carried out using maximum demand or fixed load estimations [39, 40]. In addition 

to new techniques which will enhance the visibility and capacity of existing 

techniques, there is also a requirement to model demand within distribution 

networks with increased accuracy in order to complement such developments. As 



8 

 

a means of contributing to this domain this thesis will outline a new method for 

deriving accurate temperature sensitive distribution network feeder load profiles.  

Whilst typical load flow calculations and other such studies often use point 

load estimates, time-series load profiles have also been examined, often in the 

domain of load forecasting. In [41] electrical load is broken down into three 

components, the expected demand, temperature sensitive demand and a stochastic 

element. As such, many load forecasting approaches have included weather 

variables, typically ambient temperature. A review of such schemes can be found 

in [42] which clearly shows ambient temperature as the second most considered 

model input after values of the load itself.  

The relationship between electricity demand and ambient meteorological 

parameters such as air temperature have been well documented [43-46]. The main 

aspect of this research however is its consideration of the relationship for national 

demand, or for the modelling of individual consumers. In this research the 

relationship between load and temperature is considered at the intermediary 

levels of grouped electrical loads, within the distribution network of the UK. These 

relationships will be used as part of the new temperature-sensitive feeder load 

synthesis method proposed in this thesis.  

In order to credibly evaluate the capabilities of DTRs for load accommodation, 

this thesis will model loading scenarios based on recently observed actual network 

loads, and evaluate the capability of DTRs for OHLs to safely accommodate 

additional customers, which would normally trigger the requirement for network 

reinforcement based on the current planning standard.  A factor in the decision to 

model additional present network consumers as opposed to those with LCTs is the 

speed at which DTR technologies can be deployed on active networks. In almost 

any location where network reinforcement is being considered to provide thermal 

headroom, DTR equipment can be installed and operational long before planning 

or investment plans have been finalized, and at a considerable reduction in capital 

cost. If the decision is taken to reinforce at a later date, the original 

instrumentation can be re-deployed and put to use again.   

As opposed to generation growth, demand increases can also be considered as 

uncontrolled with limited visibility from the point of view of the network operator. 

Visibility of the actual network capacity is therefore a crucial factor in ensuring 
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that the network can cope with these increased demand levels, whether due to LCT 

growth or other factors. Limiting the number of customer connections due to a 

perceived lack of network capacity should be avoided.  

Since both the DTR of the OHL and the load profile have a temporal function, 

there are likely to be periods for which the DTR may be unable to support a 

particular set of connected customers. These events may be limited at present but 

are likely to increase in frequency in the future due to load growth.  

By comparison of the resultant DTR and feeder load profiles, both the total 

probability of inability to supply customers and the times of day at which this is 

most likely to occur can be derived. This method will be compared against previous 

methods of assessment as shown in [35, 36, 47, 48] which have typically used real-

time as opposed to dynamic thermal ratings. In addition to exposing these 

probabilities, the required power and energy of network ancillary services from 

sources such as Demand Side Response (DSR) or Electrical Energy Storage (EES) 

can also be estimated such that conductor temperatures are maintained within the 

present network limits.   

 Network Ancillary Services  

Network ancillary services such as demand side response will be a key 

component of the smart grid [49-51]. The term demand side response in this 

research relates to services provided by consumers such as automated [52, 53] or 

participatory [54] load control techniques and to services procured from devices 

such as Electrical Energy Storage (EES) [18]. These services are important in the 

context of DTRs for load accommodation due to the nature of the network control 

actions which will be required. In the scenario where RTTRs are used to increase 

network capacity for variable generation sources such as wind power, respective of 

the contract between the generation owner and the DNO, a control scheme can be 

put in place to potentially curtail the generation output as and when required with 

no effect on end consumers. When considering the potential for load connections, 

the same requirement for control exists only such that now in the potential absence 

of generation, control must be resourced either from consumers themselves or as 

previously noted from a source such as EES. DNOs have commented upon the 

scenarios in which they would consider the use of DSR in [55]. Scenarios such as 
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post-fault load reduction and the creation of network headroom are commented 

upon as potential uses, both of which could be thought of as a form of network 

control to mitigate an event where conductor temperatures are likely to exceed 

their rated limits.  

 Research Objectives 

The most significant contribution of this research is in its evaluation of the 

capabilities of DTRs to increase the number of potential customer connections in 

distribution networks. As a means to deliver this overall contribution the research 

work in this thesis required successful completion of the following key research 

activities.   

1. Analysis of the available real world data to determine the ‘worst case’ 

scenario for DTR and therefore provide generalised findings. In this 

context, ‘worst-case’ represents the OHL data monitoring location 

which results in the smallest potential uplift from the use of real-time 

or dynamic thermal ratings. Since the overall findings from this 

research will be delivered as a function of the selected monitoring site, 

the assumption has therefore been made that this provides an 

adequate representation of an OHL section which provides a reduced 

increase in network capacity from the introduction of DTRs and 

RTTRs.   

2. Examine the present OHL rating standards in the UK and determine 

if they are fit for purpose in order to establish a correct baseline for 

assessment. 

3. Investigate the influence of meteorological variables on aggregated 

distribution network load groups. 

4. Develop suitable models of aggregate load profiles to act as inputs to 

the DTR model. 

5. Examine the requirement for additional network ancillary services to 

mitigate conductor thermal overloads.    
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 Thesis Contributions 

 This thesis contributes analysis of a novel ambient parameter dataset 

at sheltered and non-sheltered rural 20kV OHL monitoring sites. 

RTTR values for these sections of OHL have been derived in addition 

to the meteorological analysis. Analysis at this voltage level represents 

a novel piece of analysis.  

 Re-examination of the presently implemented method for the 

derivation of seasonal OHL ratings. New seasonal ratings have been 

derived using this method and new real-world monitoring site data to 

allow for direct comparison.  

 Development of a method to deliver new socio-demographically 

grouped After Diversity Demand profiles, such as those presented by 

Elexon, with the ability to scale to a user defined as opposed to fixed 

number of consumers. This work builds upon previous work from the 

community which considered annual energy demands, but not time 

series demand profiles as a function of the same socio-demographic 

classification scheme.  

 Much of the existing literature discussing the relationship between 

electrical demand and temperature considers the relationship at either 

the individual, or large area (country) level. The research presented 

here represents a novel contribution due to its analysis of the load-

temperature relationship for grouped electrical consumers at 

distribution network aggregation levels. Linear correlation values 

have been implemented previously to describe this relationship, 

however this research provides contribution in its development of a 

generalised model to derive these correlation values as a function of 

the consumers within the electrical demand group. The use of the 

DBSCAN clustering algorithm with this dataset in order to analyse the 

variability of the relationship within a half hourly period also 

represents the first introduction of this algorithm to this type of 

analysis.  

 This relationship has been extended beyond derivation of correlation 

values to develop a demand group load-synthesis method which takes 
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into account the relative sensitivities to temperature from the 

constituent components of the demand group.  

 In order to test the ability of Dynamic Thermal Ratings to provide 

increased accommodation for demand beyond the present seasonal 

ratings, a series of generic distribution network load groups have been 

derived. These groups represent a contribution since they are based on 

group composition only. This deviates from previous work in this field, 

which has considered only LV networks and also included network 

parameters within its analysis.  

 A contribution has been made through the use of DTRs and synthesised 

load profiles to demonstrate the potential benefits of this network 

technique. Much of the literature in this domain considers the use of 

RTTRs as opposed to DTRs and as an enabler of network headroom for 

generation connections as opposed to demand. Where DTRs have been 

considered, they have not been considered in the same manner 

regarding time series profiles as within this research. A key 

contribution is in the use of dynamic as opposed to real-time thermal 

ratings in combination with time series load profiles. This approach 

takes into account the time-coincident correlation between ambient 

parameters, electrical demand and the ratings of overhead lines. This 

approach also allows for critical evaluation of the required network 

ancillary services required to mitigate against conductor thermal 

overloads.  
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 Thesis Outline 

 

Figure 1-4 – Thesis Structure Block Diagram 

Figure 1-4 shows a block diagram of the connections between the main thesis 

components. Within each chapter an additional block diagram is presented which 

provides greater details as to the inputs and outputs of each chapter. Concerning 

the research objectives and given the available data there are some limitations to 

the findings within the research presented in this thesis. Monitoring data used for 

testing and model selection procedures within this research are from real-world 

sites but represent a selection in themselves from a wider set of potential OHL 

monitoring points, or distribution network substations. Where possible, wider, 

publically available datasets have been integrated into the research, such as in the 

case of deriving the socio-demographically grouped demand profiles in Chapter 5, 

to provide a greater contribution to knowledge.  

Chapter 2 discusses the use of RTTR and DTR technologies in the literature 

followed by a description of the modelling differences between the real-time and 

dynamic approaches. 

Chapter 3 outlines a description of the available data from the test monitoring 

sites, including assessments of data quality and analysis of the ambient 

meteorological conditions. These are used to inform selection of the ‘worst case’ site 

to be used in further analysis steps. A verification study was also carried out to 
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ensure that the chosen DTR model provides sufficiently accurate results against 

data gathered at the sites. 

Chapter 4 provides a discussion on the currently used OHL rating standard 

used in the UK. A recreation of the experimental method used to derive the ratings 

is carried out using the measured data gathered in the field. A set of new rating 

values are derived which meet the same level of network risk as is currently 

required. 

Chapter 5 outlines a series of After Diversity Demand (ADD) models in order 

to derive expected demand values for any given number of consumers. These are 

informed by a series of socio-demographic indicators. 

Chapter 6 discusses the relationship between ambient temperature and load 

for groups of distribution network consumers. In particular the correlation 

between these two variables is examine and is noted to be both time variable and 

also a significant function of the type of consumers within the group. The impact 

of a lack of correlation knowledge is also discussed. A generalised model is proposed 

for derivation of correlation coefficients for user-defined load group compositions. 

The accuracy of this model is discussed and its potential impact on the overall 

system error is also considered.  

Chapter 7 builds on the temperature relationship work of Chapters 5 and 6 

and presents a generalised temperature-sensitive MV feeder load synthesis 

method.  These synthesised models are then used in conjunction with the DTR 

model discussed in Chapter 2 to determine the potential number of consumer 

connections, in comparison to the presently employed network rating standard. 

Based on these analyses the required energy and capacity budgets for network 

ancillary services are derived based on the season and time of day. A zonal method 

is proposed to categorise the resultant services.  

Chapter 8 presents a clustering study of load group classifications carried out 

to determine a generic set of consumer load groups in order to test the capabilities 

of DTRs across a range of loading scenarios.  

Chapter 9 presents an evaluation of the use of DTRs for load accommodation 

at the OHL monitoring site selected in Chapter 3. This Chapter utilises the 

temperature-sensitive load modelling procedure discussed in the previous 

Chapters.  
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Chapter 10 provides a discussion of the findings in the research and outlines 

the broader context into which they can contribute. Further work is also detailed 

and outlines some potential ways to extend and enhance the work presented in 

this thesis. 

Chapter 11 gives the overall conclusions from the research presented in this 

thesis 

 Note on the Customer-Led Network Revolution Project 

The network monitoring and additional data presented in this thesis was 

gathered as part of the Customer-Led Network Revolution Project. This project 

was funded by Ofgem through the Low Carbon Networks Fund and represented a 

consortium between Northern Powergrid (UK DNO), British Gas (UK Energy 

Supplier) and the universities of Newcastle and Durham.  
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2 Dynamic and Real-Time Thermal Ratings 

 Introduction 

As discussed in the previous Chapter, the techniques of RTTRs and DTRs 

have been shown to deliver increased network capacities. This Chapter provides 

additional information as to the available methods used to derive these ratings and 

the monitoring equipment which is required to do so. The concept of calculating 

the thermal behaviour of overhead lines is nothing new. Each OHL rating system 

currently employed throughout the world is fundamentally based on the same set 

of heat balance equations albeit with some variations. The key area in which 

present approaches differ from historic works is in the use of real-time monitoring 

equipment to subsequently deliver ratings in real time.   

A series of British and International standards provide calculation 

methodologies for the thermal behaviour of various power system network 

components. In this thesis ratings of OHLs only will be considered, although 

similar methods for UGCs [56] and PTRs [57] are also available.  

Whilst such methods outline the particular methods by which the thermal 

behaviour of components can be calculated, they do not constitute electrical 

standards for use by distribution or transmission network operators on their own. 

For this, in the UK, a series of Engineering Recommendations published by the 

Energy Networks Association (ENA) have been produced. These are ER P17 [58-

60] and ER P27 [21], for UGCs and OHLs respectively. As of 2016 the standard for 

PTRs, ENA ER P15 [61] has been withdrawn. These documents provide the various 

‘nameplate’ ratings which can be applied to the relevant components within 

distribution networks.  Since asset longevity and security are seen as priority 

considerations the rating methodologies deliver highly conservative capacity 

ratings.  

A set of seasonal ‘worst case’ meteorological conditions are used to derive the 

ratings for overhead lines, with a series of thermal insulation limits defining the 

rating ceilings for transformers and cables. For OHLs these conditions are 

intended to provide a statistically low level of risk, and to minimise the number of 

‘conductor temperature excursions’. An excursion is defined as the percentage of 
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time for which a continuously loaded conductor may exceed its design temperature. 

The research of Price and Gibbon [22, 62] forms the basis of the ratings shown in 

ER P27 and attempts to statistically model various weather parameters and their 

influence upon the excursion of overhead conductors. A further discussion of the 

methods used in ER P27 can be found in Chapter 4.  

 Chapter Outline Block Diagram 

Figure 2-1 a block diagram of the inputs, methods and outputs for this 

chapter. Since this chapter is concerned with background literature and definitions 

of the rating methods, the block diagram shows the differences between the 

dynamic and real-time thermal rating methods. Ambient meteorological 

parameters serve as inputs to the OHL thermal model delivering a maximum 

theoretical conductor loading at a particular point in time. In the dynamic 

implementation, synthesised or real values of electrical demand serve as inputs 

alongside the meteorological parameters in order to model the thermal response of 

the OHL to these inputs.  

 

Figure 2-1 – Chapter 2 Block Diagram 

 Dynamic or Real-Time Thermal Ratings? 

The terms Dynamic Thermal and Real-Time Thermal Ratings are often used 

interchangeably in the literature. The term ‘concurrent cooling’ has also been used 
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[63]. In this research, the following definitions have been used. The DTR can be 

represented as a differential equation modelling the components’ reaction to step 

changes in variables with time. RTTRs provide a snapshot of the conductor’s 

maximum possible current carrying capacity at that moment in time. The thermal 

time constant of the component is an important characteristic to consider when 

employing either methodology. The time constant of overhead lines is in the order 

of minutes, whereas the time constant of underground cables is in the order of 

many hours, if not days [64].  

 Conductor Thermal Rating Equations  

The following sections outline the calculation methods used to determine both 

dynamic and real-time ratings of overhead lines. A series of potential methods have 

been developed for the derivation of such ratings, the most popular of which are 

the IEEE [65], IEC [66] and CIGRÉ [67] methods. In the IEC method no 

considerations are made with regard to wind direction incident upon the conductor; 

similarly natural convection is not taken into account. Work at Durham University 

modified the IEC method to take these factors into account [68]. As in multiple 

previous studies the CIGRÉ rating method will be used in this thesis. An 

evaluation of the differences between each methodology can be found in [69].  

 

 Heat Balance Equation 

Solution of equation (3)  gives the maximum steady state rating of the 

conductor for a specific set of meteorological conditions, termed the RTTR. 

Rearrangement of equation (4) gives the dynamic implementation of the heat 

balance equation and gives the temperature response of the conductor as a function 

of step changes in the input values and therefore the DTR.  

 

 𝑄𝑗𝑜𝑢𝑙𝑒 + 𝑄𝑠𝑜𝑙 =  𝑄𝑐𝑜𝑛𝑣 +𝑄𝑟𝑎𝑑        (2) 

 
𝐼𝑚𝑎𝑥 = [

(𝑄𝑟𝑎𝑑 + 𝑄𝑐𝑜𝑛𝑣 − 𝑄𝑠𝑜𝑙)

𝑅𝑇
]

1/2

 

 

(3) 
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𝐼2𝑅 =  𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑 − 𝑄𝑠𝑜𝑙 +𝑚𝐶𝑝  

𝑑𝑇

𝑑𝑡
 (4) 

 

Where:  

 Qjoule  is the heat generated by the Joule effect (W/m) 

 Qsol  is the solar heat gain by the conductor surface (W/m) 

 Qrad  is the heat loss by radiation of the conductor (W/m) 

 Qconv  is the convective heat loss (W/m) 

  m  is the mass of the conductor per metre (kg/m) 

  Cp  is the specific heat (J/kgoC) 

  RT is the electrical resistance of the conductor at a temperature T      

  (Ω/m) 

 I  is the conductor current (A) 

  T is the conductor temperature (oC) 

 Heating elements 

The heating elements within the heat balance equation are derived from the 

Joule effect, and the heat gain from incident solar irradiance upon the surface of 

the conductor.  

2.4.1.1 Joule effect 

The joule heating of the conductor is the product of the conductor’s resistance 

and the square of the current supplied by the conductor. 

 𝑄𝑗𝑜𝑢𝑙𝑒 = 𝑅𝑇 ∙ 𝐼2  (5) 

2.4.1.2 Solar Heat Gain 

The solar heat gain at the conductor surface is the product of solar intensity 

at the conductor, the rate of absorption of the incident solar irradiance and the 

outer diameter of the conductor.  

 𝑄𝑠𝑜𝑙 =  𝛼 ∙ 𝑆𝑟 ∙ 𝐷  (6) 

Where: 

α is the solar radiation absorption coefficient 
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 Sr  is the intensity of solar radiation (W/m2) 

 D is the conductor outer diameter (m) 

 

 Cooling elements 

The cooling elements of the heat balance equation are composed of both 

radiative and cooling elements. The radiated heat loss is a function of the 

emissivity of heat from the surface of the conductor, and the convective cooling of 

the conductor. This convection is either natural, at null or low wind speeds, or is 

modelled as forced convection for wind speeds above 0.5m/s. 

2.4.2.1 Radiated Heat Loss 

 
𝑄𝑟𝑎𝑑 =  𝜀 ∙ 𝜎𝑆−𝐵[(𝑇𝑠 + 273)

4 − (𝑇𝑎 + 273)
4] ∙ 𝜋 ∙ 𝐷 (7) 

Where: 

 σS-B is the Stefan-Boltzmann constant (5.67 x 10-8 W/m2/K4) 

 ε is the emissivity coefficient with respect to a black body 

Ta is the ambient temperature (oC) 

 Ts is the Conductor Surface Temperature (oC) 

 

2.4.2.2 Convection Heat Loss 

Equation (8) shows the overall calculation of the convective heat loss from the 

conductor. This requires the parameter of the dimensionless Nusselt number. The 

Nusselt number is calculated based upon the incident wind speed to the conductor. 

If the wind speed is equal to 0m/s then natural convection occurs at the conductor 

surface. If the wind speed is greater than 0m/s then forced convection occurs. For 

wind speeds < 0.5m/s an iterative procedure is carried out which will be detailed.  

 

 𝑄𝑐𝑜𝑛𝑣 =  𝜋 ∙ 𝑁𝑢 ∙ 𝜆𝑓(𝑇𝑐 − 𝑇𝑎) (8) 

 𝜆𝑓 = 2.42 ∙ 10
−2 + 7.2 ∙ 10−5  ∙  𝑇𝑓 (9) 
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 𝑇𝑓 = 0.5(𝑇𝑠 + 𝑇𝑎) (10) 

Where: 

 Nu is the Nusselt Number  

λf is the thermal conductivity of the air film in contact with the 

conductor (W/mK) 

Tf is the average conductor temperature (0C) 

 

2.4.2.2.1 Forced Convection 

 

 
𝑁𝑢 = 𝐵1(𝑅𝑒)

𝑛  (11)  

 

𝑅𝑒 =
𝜌𝑟 ∙ 𝑊𝑠 ∙ 𝐷 

𝜈
  (12)  

 
𝜌𝑟 = exp (−1.16 ∙  10

4  ∙ 𝑦) (13) 

Where: 

 B1 is a constant 

n   is a constant  

𝜌𝑟 is the relative air density at conductor height (y)  

y is the conductor height above sea level (m) 

Re is the Reynolds number  

Ws is the wind speed (m/s) 

𝜈 is the kinematic viscosity of the air (m2/s) 

 

The values of B1 and n are determined by the conductor surface roughness Rf.  

 𝑅𝑓 = 𝑑/[2 (𝐷 − 2𝑑)] (14) 

Where: 

  Rf  is the conductor surface roughness 

    d is the diameter of the conductor strands (m) 

 



22 

 

Surface 
Re 

B1 n 
From To 

Stranded all surfaces 102 2.65 ∙ 103 0.641 0.471 

Stranded Rf ≤ 0.05 >2.65 ∙ 103 5 ∙ 103 0.178 0.633 

Stranded Rf > 0.05 >2.65 ∙ 103 5 ∙ 103 0.048 0.800 

Table 2-1 – Table of B1 and n constants as a function of the Reynolds number and Conductor 

roughness values (Rf) 

2.4.2.2.2 Correction of the Nusselt number for wind direction 

The calculated Nusselt number must be corrected to take into account the 

incident wind direction. This is carried out as follows: 

 

 𝑁𝑢𝛿 = 𝑁𝑢𝛿=90 [𝐴1 + 𝐵2 (sin 𝛿)
𝑚1  ] (15) 

Where: 

𝛿  is the incident angle of wind speed upon the conductor (0) 

 

𝛿 
A1 B2 m1 

From To 

0 24 0.42 0.68 1.08 

24 90 0.68 0.58 0.90 

Table 2-2 – Selection of A1 B2 and m1 constants based on the incident wind direction 

2.4.2.2.3 Natural Convection  

 𝑁𝑢 = 𝐴2(𝐺𝑟 ∙ 𝑃𝑟)
𝑚2  (16) 

 
𝐺𝑟 =

𝐷3(𝑇𝑠 − 𝑇𝑎)𝑔

(𝑇𝑓 + 273)𝜈2
 (17) 

 
𝑃𝑟 = 0.715 − 2.5 ∙ 104  ∙ 𝑇𝑓 (18) 

Where: 

  A2 is a constant 
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 m2 is a constant 

 Gr is the Grashof Number 

 Pr is the Prandtl Number 

 g is the gravitational acceleration (m/s2) 

  

𝐺𝑟 ∙ 𝑃𝑟 
A2 m2 

From To 

102 104 0.850 0.188 

104 106 0.480 0.250 

Table 2-3 – Selection of A2 and m2 constants based on the value of Gr ∙ Pr 

2.4.2.2.4 Selection of the Nusselt Number 

Where the wind speed lies between 0 and 0.5 m/s an iterative procedure is 

carried out to determine the correct Nusselt number.  Three values of the 

parameter are calculated with the largest then chosen from the derived values [67].  

No incident wind direction is considered beyond that of 45o in this case and 

the first value is calculated at this wind direction using (15). In the second case a 

corrected value is calculated of 0.55 ∙ Nu, calculated in (11). Finally the natural 

convection is calculated (16). 

 

 Additional parameters 

2.4.3.1 AC Resistance 

The effective AC resistance is calculated from knowledge of the DC resistance 

at 20OC and compensating through equation (19). 

 

 𝑅𝑇2 = 𝑅𝑇1[1 +  𝛼(𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 20)] (19) 

Where: 

 RT1  is the DC resistance at temperature T1 (20OC) 

 RT2 is the DC resistance at temperature T2 

 α is the temperature coefficient of electrical resistance at T1 
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  for A1 Aluminium:   α=0.00403 K-1 

  for A2/A3 Aluminium:  α=0.00360 K-1 

for Copper:    α=0.00381 K-1 

 

The DC resistance is converted to the AC resistance by taking into account 

the skin effect. For non-ferrous conductors such as those at the OHL monitoring 

sites, the recommended value of kj, the skin effect factor is 1.0123.  

 𝑅𝐴𝐶 = 𝑘𝑗  ∙ 𝑅𝐷𝐶 (20) 

 Iterative calculation of the conductor surface temperature 

Due to the radial temperature distribution of the conductor, an iterative 

procedure is used within the CIGRÉ heat balance model in order to correctly 

determine the conductor surface temperature. An initial guess is made as to the 

conductor surface temperature as a result of the line loading and ambient 

conditions. The radial temperature distribution is then calculated and alterations 

made to the final result.  

 Conductor Sag 

Since the limiting factor of OHLs is maintaining the minimum required 

ground clearance, methods have been developed in order to determine the line sag 

and therefore the available ground clearance [70] [71]. Since in this research the 

conductor temperature limits which are currently in place have not been exceeded 

the sag of the conductor was not calculated. The equations to derive this parameter 

are detailed in [68]. 
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 CIGRÉ Rating Model Sensitivity Analysis 

 

Figure 2-2 – CIGRÉ model input parameter sensitivity analysis 

Figure 2-2 shows the results of a sensitivity analysis study on the CIGRÉ 

heat balance model.  Previously, similar analyses have been presented in a tabular 

form [68], however it was felt that a graphical representation aids understanding 

of the influence of each meteorological input parameter on the CIGRÉ model. When 

considering the effect of each input parameter independently, all other parameters 

are fixed at a chosen representative value: 

 Wind Speed – 4m/s 

 Wind Direction – 45o 

 Solar Radiation – 500 W/m2 

 Ambient Temperature – 10oC 

As can be seen in Figure 2-2 wind speed has the greatest overall influence on the 

resultant values of RTTR, with solar radiation exhibiting the least overall effect.  

 Overhead Line Rating Literature  

Some of the earliest work on the calculation of real-time thermal ratings of 

overhead lines can be found in [72, 73]. These papers provide highly detailed 

information on components of the conductor heat balance equation in addition to 

theoretical diagrams for wide-area system implementation. Davis outlines his 

justification for adoption of the RTTR methodology in [14], defines the heat balance 
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equation in [15] and provides a complete methodology for calculating the effects of 

solar radiation on thermal rating in [16]. Similar presentations of heat balance 

equations in both the real-time and dynamic forms can be found in [74]. The work 

of Morgan [75-77] also provides detailed information on convective and conductive 

heat transfer at the conductor surface. This work heavily influenced that of Price 

and Gibbon [62].  

 Categorisation of RTTR Technologies 

Within the field of DTRs and RTTRs there a number of potential technologies 

and method which have been used for their derivation. Jupe [78] and Fernandez 

[23] have provided state of the art reviews of the various techniques to calculate a 

real-time thermal rating in the case of overhead lines.  

 Weather monitoring 

As shown in equations (2) to (18) the convective and radiative cooling and 

solar heating elements of the OHL rating are functions of the ambient 

temperature, wind speed, wind direction and incident solar radiation surrounding 

the conductor. By placing monitoring instruments at OHL spans, determination of 

the rating can be made through the use of equations (2)-(20). Such methods are 

categorised as weather derived ratings.  

The majority of research concerning RTTRs and DTRs has used this method, 

although it is not the only available method as will be shown. Work carried out at 

Durham University analysed such an approach on a section of 132kV OHL in 

North Wales. This study analysed the potential benefits that an RTTR system 

could bring to increasing the network’s capacity for wind generation connections 

as has been a typical implementation of this technology [28, 79, 80]. Due to the 

variability of weather conditions over a typical area of distribution network, a 

number of potential methods have been proposed. The simplest, however also 

representing the highest capital cost would be to implement monitoring equipment 

at each span of the desired OHL section.  

Alternatively, inverse distance interpolation methods have been used in [32, 

68]  to make estimations of ratings across a wide area are made. In [81] 

assumptions are made that over wide areas, a particular span will be oriented 
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parallel to incident wind speeds at any one point, resulting in minimum ratings. 

The ratings for a set of spans along a line can therefore be reduced to one single 

estimate using appropriate weather distributions.  

Foss and Maraio [82] outline two differing deterministic approaches to 

calculating the real-time rating of an overhead conductor; weather derived and 

conductor temperature derived. The advantages and disadvantages of each 

methodology are commented upon in [21]. Weather derived ratings are stated to 

rely heavily on wind speed data where errors in measurement at low wind speeds 

have significant effects upon the rating. However, the weather derived method 

delivers a greater accuracy of rating at higher wind speeds. Conductor temperature 

ratings are inaccurate under low loading and/or if the difference between conductor 

and ambient temperature is small. The implications of conductor temperature 

monitoring may be more applicable to the calculation of the critical span of a 

particular section of overhead line. This information would undoubtedly be useful 

to network planners/operators.   

McElvain and Mulnix have attempted to refine the traditionally implemented 

seasonal static ratings through generation of probability and cumulative density 

functions of conductor ratings for a singular site-trial network [83]. In particular 

they draw attention to the fact that statistical approaches as such those developed 

by Price and Gibbon were carried out in a period of reduced computational ability, 

therefore with the more advanced techniques now available, increased levels of 

analysis are possible.  

 Conductor Temperature and tension monitoring  

A number of systems exist which can be attached to the OHL itself to deliver 

values of conductor temperature directly. An early implementation of such 

technologies can be found in [84]. As noted in [23] only one commercial system 

exists which uses tension directly as a measure of available capacity [85]. Devices 

are located at both ends of the conductor span which is to be rated. The mechanical 

tension in the conductor is measured from which a conductor temperature and 

therefore sag, can be calculated. This system has potential benefits over 

alternatives since it is insensitive to ambient measurement or modelling errors.  
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 Sag monitoring 

Since the limiting factor of OHLs is in maintaining spans which do not sag 

below the minimum required ground clearance, a number of methods have been 

proposed which determine this component directly. Perhaps the most commonly 

implemented version of this solution is that of the Ampacimon system [86-88]. This 

system uses vibrational harmonics to determine the conductor span directly, with 

this information being directly related to a network operator as part of an 

automated system. Sag has also been determined through the use of GPS 

techniques as in [89].  

 

 Real-Time Thermal Ratings as part of an ANM scheme 

Whilst RTTRs have been shown to deliver improvements over the presently 

implemented static thermal rating assumptions such improvements cannot exist 

in isolation. The purpose of the presently implemented standards is such that they 

are essentially fit and forget. The level of expected risk in exceeding a conductor 

thermal limit is such as to be considered negligible. If RTTRs and DTRs are to be 

utilised fully in the modern power system, additional methods of network control 

will be required. RTTRs have been studied as part of a wider Active Network 

Management (ANM) scheme in [33, 34] and in [90, 91].  

 

 Real-Time Thermal Ratings for increased system reliability  

The potential for the use of RTTRs as a method to increase system reliability 

has been considered in [35, 36, 47, 48, 92]. Two common methodologies have been 

presented for the assessment of RTTRs in their ability to supply load. These are 

the Loss of Load Expectation (LOLE) [35] and Expected Energy not Supplied 

(EENS) [36, 47, 48]. The use of these methods have shown considerable 

improvements over the presently implemented seasonal circuit ratings. These will 

be discussed in greater detail in Chapter 9.  

As discussed in the Introduction section of this thesis, whilst Real-Time and 

Dynamic ratings have been shown to deliver increased network headroom, there 

is also the potential that due to their real-time nature, combined with the 
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assumptions of the presently implemented planning standard, that ratings have 

been observed which are lower than the presently implemented ratings. In the case 

of EENS, some OHL sections have shown ≈25% decreases in performance against 

the current OHL rating standard [47]. 

 

 Load Modelling in Real-Time Thermal Rating analyses 

In [35, 36] a Monte Carlo type simulation has been carried out to predict 

network load values and determine the EENS and LOLE figures in these cases. 

These simulations have been noted as not taking into account the true correlation 

between load and the resultant thermal ratings. [47] tests the impact of loads 

significantly increased over those which are expected in order to test the potential 

capacity increases of RTTRs in various simulated network failure states.   

In [93] an Autoregressive model with exogenous inputs (ARX) is used to 

forecast feeder loads as part of an assessment of RTTR capabilities, though the 

core aspect of this research is in its analysis of the potential network benefits for 

DG.  

The research in this thesis will contribute towards a greater understanding 

of the benefits of Dynamic and Real-Time Thermal Ratings where time-series 

models as opposed to pure forecasts of feeder loads are used as inputs.  

 Forecasting of DTRs and RTTRs 

As discussed previously, RTTRs and DTRs cannot exist in isolation. Whilst 

studies such as those  in [35, 36] outline the potential benefits of such a system in 

the planning domain, real-time operation of the power system must also be 

considered. In real-time operation as conditions vary, forecasting of the RTTRs, 

will assist economic scheduling and operation of the power system.  Examples of 

forecasting RTTRs have typically made use of publically available forecasts [94-

96] [97, 98], as opposed to development of a stand-alone forecasting method.   

 Real-Time Thermal Ratings as a response to Climate Change 

As climate scenarios such as those in the UKCP09 predictions [99] predict 

increases in both ambient temperature and wind speeds RTTRs have also been 
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considered as a method to remove the potential risks of the continued 

implementation of historical standards [100, 101]. 

 Conclusions 

This Chapter has provided an outline of the meaning behind the terms of 

Real-Time and Dynamic thermal ratings for OHLs. The fundamental processes 

used to derive these ratings have also been shown.  

Details have been provided as to the current state of the art in this field of 

research to which this thesis will contribute. Predominantly these techniques have 

been used to enable additional network capacity for wind generation connections. 

This research differs in both its examination of the use of dynamic thermal ratings 

to deliver additional capacity for load, and also in the approach taken with regards 

to the modelling of network loads.  
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3 Overhead Line Monitoring Site Analysis 

 Introduction 

In this research, meteorological and line data parameters have been gathered 

from five OHL monitoring sites installed as part of the CLNR project. These sites 

were installed on a radial 20kV distribution line of wood pole construction. A 

preliminary assessment of the meteorological and conductor parameters of the 

available OHL monitoring sites was made in order to: 

 Determine the worst case scenario monitoring point from those 

available 

 Validate the chosen dynamic thermal ratings approach 

Before the commencement of this research a study was carried out to 

determine the locations for installation of the OHL monitoring equipment on the 

test network. This analysis was carried out prior to the commencing of this 

research by a consultancy, EA Technology. Locational decisions were made based 

on the relative degree of shading of the OHL but also in relation to the issue of site 

access. In order to install and maintain the equipment, OHL spans close to roads 

or access tracks were necessary.  

In order to critically evaluate the potential of RTTRs and DTRs in the 

distribution network it is important to ensure that the data used as inputs to any 

models or simulations are of a worst-case scenario as is possible. In this context, 

the worst-case scenario refers to a geographic location along the length of the OHL 

which is likely to be unfavourable to capacity increases from either RTTRs or 

DTRs. This is likely to be a location with a high degree of shading, thus resulting 

in minimal cooling from incident wind speeds and potentially high ambient 

temperatures as a result of the reduced air flow.  

 Within the domain of RTTRs and DTRs for OHLs there is often a reference 

to the critical span of a network section. This can refer to the OHL span which has 

typically experiences the lowest rating, or can refer simply to the span with the 

lowest rating at a singular point in time. Clearly within the second definition of 

this parameter, there is the potential that the critical span can change as a 
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function of time. Since this research does not intend to contribute to the particular 

field of determining the critical span of a network section, the site which shows the 

worst-case potential from those available has been estimated and then used in the 

subsequent analyses.   

Some of the content of this chapter is publically available as an output report 

from the Customer Led Network revolution project in [102].  

 Chapter Goals / Objectives and Contributions  

 Goals / Objectives 

 Analyse data from the 20kV Overhead Line monitoring sites from the 

CLNR project 

 Determine the site which presents the smallest uplift from the 

utilisation of RTTRs in order to provide inputs to a critical evaluation 

of the technique for load introduction.   

 Transition from existing literature and research / Contribution 

Previous academic literature has not examined the potential uplifts from the 

introduction of RTTRs at the 20kV rural distribution level. This Chapter provides 

this analysis and contributes additional research in its data analysis of the 

available ambient monitoring parameters.  

 Attainment of Goals 

Data analysis showed interesting results given the potential increases over 

the existing OHL ratings. The most sheltered site was identified from the data 

analysis carried out to provide suitable inputs to the further analysis within this 

research.  

 Chapter Outline Block Diagram 

Figure 3-1 a block diagram of the inputs, methods and outputs for this 

chapter. The red-dashed box represents the use of existing methods but utilising 

new monitored data. The use of this new dataset (analysis of OHL RTTRs for a set 

of 20kV rural monitoring sites) introduces a piece of novel analysis representing a 
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contribution to the wider community. As seen in the diagram key, boxes with a 

solid red outer line represent the contributions to knowledge made within the 

Chapter. This approach of identification has been continued within the block 

diagrams for each of the following chapters.  

 

Figure 3-1 – Chapter 3 Block Diagram 

 Site Description 

 

Figure 3-2 – OHL MV monitoring site locations  
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Figure 3-2 shows the location of the OHL monitoring sites on the MV system 

overlaid on an Ordnance Survey map of the wider area. The monitoring sites are 

shown as red dots. The area is predominantly rural with the significant load groups 

being found in Alnwick, shown just below centre in Figure 3-2 and Wooler towards 

the NW of the map.  

 Overhead Line Construction 

At all of the 20kV monitoring sites the overhead lines construction is of the 

same type, a 0.1in2 Copper conductor. This conductor is made up of 7 strands and 

is homogenous throughout, i.e. there are no dissimilar core materials. Table 3-1 

shows the relevant conductor parameters used in (20) in order to calculate the 

conductor thermal ratings. The emissivity and absorptivity values were not known 

for the conductor exactly. The worst case conditions have therefore been 

implemented for both parameters.  

 

Conductor Parameters Values 

Outer Diameter (mm) 10.4 

Wire Diameter (mm) 3.45 

Number of Strands 7 

m  0.7552 

Cp 383 

DC Resistance (Ω) (@20oC) 0.000273 

Emissivity (ε) 0.9 

Absorptivity (α) 0.9 

Table 3-1 – OHL Conductor Parameters 

 Site Monitoring Equipment 

At each of the RTTR monitoring sites a series of sensors to gather both 

conductor and ambient meteorological parameters have been installed. The 

ambient conditions monitored are: 

 Air Temperature (OC) 

 Wind Speed (m/s) 
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 Solar Radiation (W/m2) 

 Wind Direction (O) 

Three measurements are made using equipment installed on the span itself: 

 Conductor core temperature (OC) 

 L1,2,3 Phase currents (A) 

 Conductor surface temperature (OC) 

The ambient sensors at the 20kV locations are installed on the circuit’s 

wooden pole at a height of roughly 10m. The conductor parameters are measured 

using clamp located on the OHL span itself. The conductor core measurements are 

taken by drilling into the conductor and securing a probe as close as possible to the 

core. The surface temperature measurements are taken using a probe bonded to 

the surface with an exposed section to ensure an accurate reading 

The ambient monitoring equipment is powered from a solar panel mounted 

to the top of the sensor cabinet. The conductor sensor is powered from the line 

itself. Figure 3-3 shows an example of one of the monitoring sites. Information from 

the sensors was relayed to a central server via GPRS which collated all of the 

monitoring data from the CLNR project.  
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Figure 3-3 – An example of an HV Thermal rating monitoring site. Note the clamps attached 

to the OHL itself recording phase current and conductor core and surface temperatures 

 Monitoring Instrumentation Accuracy 

Each of the ambient monitoring sensors has associated with it a particular 

measurement error value. These are as follows: 

 Ambient Temperature  ± 0.1oC 

 Wind Speed  ± 1m/s 

 Wind Direction  ± 4o 

 Solar Radiation ± 5% 

These impact of these tolerances will be commented upon when the DTR 

implementation of the OHL model is used in the Chapter 9 of this thesis. For all 
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other analyses the measured data has been used as inputs to the models with no 

upper and lower bounds regarding the measurements.  

 Monitoring Sites 

 

 

Figure 3-4 – HV RTTR Monitoring Locations 

The RTTR monitoring devices installed on the HV system are located at 5 

separate spans along the length of the overhead line. Only four of the devices 

record data at any point in time. As detailed in the introduction, the device at the’ 

Eglingham’ span was relocated to ‘Earle Mill’ roughly 14 months into the trial 

period. Within the context of this thesis the term ‘open’ refers to the site being ‘non-

sheltered’. 

 

 Broxfield Whitehouse Eglingham Scar Brae Earle Mill 

Conductor 

Height above 

Sea Level (m) 

100 85 130 65 75 

 

Table 3-2 – HV Conductor Heights 

Table 3-2 shows the relative heights of the conductor monitoring sites above 

sea level. These values are used in equation (13) in order to correctly model the 

relative air density at each site. Data from the HV RTTR trials covers the period 

March 2012 - end June 2014 with observations recorded at 5 minute intervals. The 

relocation of the ‘Eglingham site took place in April 2013.  
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 Winter Spring / Autumn Summer 

HV Overhead Line P27 Static Rating (A) 296 275 237 

Table 3-3 – HV overhead line P27 static ratings 

Table 3-3 shows the presently used P27 static overhead line thermal ratings 

and the seasonal periods for which they are valid. The months in each of these 

seasonal periods are as follows: 

 Winter  - December, January, February 

 Spring Autumn –March, April, September, October, November 

 Summer – May, June, July, August 

 These ratings are derived from work at CERL in the late 1970’s [103]. This 

method generates ratings based on a probabilistic method related to the risk of 

conductor’s exceeding their circuit rated temperature as a result of increased loads. 

This method will be discussed in greater detail in Chapter 4.  

 Validation – Data Quality and Instrumentation 

Data quality is an important aspect of RTTR or DTR system implementation. 

Ratings will be used to inform both operational and planning decisions; errors in 

these decisions due to poor data quality are likely to incur significant, avoidable 

costs and could lead to under or over estimation of the capabilities of the system.  

Three states of operation have been defined for the monitoring sites during 

each sampling period, these so-called ‘site states’ are: 

1. All possible measurements are recorded 

2. Some but not all measurements are recorded 

3. No data is recorded 

These states can be further broken down into the number of measurements 

made for both the ambient and line parameters separately. Since the two systems 

are not physically connected there is the potential for one of the sensors to 

malfunction whilst the other remains operational. For the purposes of this analysis 

sites are analysed both independently and also as a complete set. I.e. in the best 

case scenario for data quality (as far as measurements recorded is concerned) all 4 

sites record all of their possible measurements at each sampling period. The 
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purpose of presenting such analysis is to infer the availability of real-time or 

dynamic thermal ratings. Since such ratings are derived as a function of available 

measurements, if there are significant periods in time where instrumentation has 

failed to record data, then additional research may be required as to methods to 

compensate for these periods, in order to deliver a reliable, available increase in 

network headroom. This analysis could also impact the requirements for 

redundancy when considering implementing such a system as part of business as 

usual network operation.  

There is a wider point to be made in that if one site along the line can generate 

a rating, this could potentially be used with some interpolation to ‘fill the gaps’ at 

the remaining sites such as in [68], or if the single site recording data was 

considered to be the ‘critical span’ of the overhead line, then this rating should 

simply be the limiting factor for the circuit. These issues will not be considered 

within this work as they have been declared as out of scope. Since there are 4 

monitoring sites for each of the systems and there are 3 possible states of operation, 

there are potentially 81 possible combinations of all the sites together i.e. 

 All sites record all measurements 

 3 sites record all measurements; one site records some data 

 3 sites record all measurements; one site records no data etc… 

The combinations of ‘site states’ can be further grouped to infer various ‘system 

states’ as a whole.  

 All data is recorded at all of the sites. 

 Some or all data is recorded for at least one site (i.e. the only combination 

not included is a total lack of data at all sites) 

 Where no data is recorded at all of the sites, a total mobile network failure 

(i.e. GPRS) has occurred, all sites are out for maintenance, or a problem 

exists with the server which is to receive the measurements.   

 Where some data is recorded, either at all sites or some of the sites, a local 

equipment failure is most likely, leading to a lack of particular 

measurement(s). 

 Where no data is recorded at one or more (but not all) sites, a local mobile 

network failure is most likely. A total failure of all measurement devices 

was thought to be unlikely, though this may be an erroneous conclusion.  

Clearly there is likely to be some overlap when considering the breakdown 

of sites into categories. Where a local equipment failure occurs at one site, the 
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remaining sites could record all, some or no measurements, and will therefore 

be included when considering those permutations. However the overall 

percentages remain accurate and are intended to provide a guide as to the 

quality of the data recorded.  

 Data Quality Study Results – Missing Parameter Values 

 Ambient Monitoring Parameters 

Table 3-4 shows the results of the ambient parameters data quality study. 

There are 5 ambient parameter measurements, Ambient Temperature, Wind 

Speed, Average Wind Speed, Solar Radiation and Wind Direction. As can be seen, 

the number of data points at which all 5 measurements are not recorded is 

significantly higher than the times where only 1 or two measurements are not 

recorded.  

Parameters Missing 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 

Broxfield (Site 1) 0.010 0 0 0 8.927 

Whitehouse (Site 2) 0.026 0 0 0 25.614 

Eglingham (Site 3) 0.005 0 0 0 17.005 

Scar Brae (Site 4) 0.003 0 0 0 19.912 

Earle Mill (Site 5) 0.004 0.001 0 0 68.413 

 

Table 3-4 – Data Quality Study Results – Ambient Monitoring Parameters 

In order to allow for a more visual representation of these findings, this data 

is also shown as a histogram in Figure 3-5. This histogram clearly highlights the 

significant result that the most typical system failure state regarding the ambient 

monitoring parameters, is where all measurements have failed to be recorded.   
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Figure 3-5 – Histogram of percentage missing ambient monitoring points 

 Line monitoring parameters 

Table 3-5 shows the same analysis carried out as previously but for the line 

monitoring parameters, these are the average line phase current, and the surface 

and core temperature measurements of the conductor. In the case of the line 

parameters it is shown that is more likely for one or all of the measurements to not 

be recorded with the instances of two measurements being made being far lower. 

 

Parameters Missing 1 (%) 2 (%) 3 (%) 

Broxfield (Site 1) 40.227 1.280 8.813 

Whitehouse (Site 2) 24.322 1.444 25.437 

Eglingham (Site 3) 17.752 2.237 15.711 

Scar Brae (Site 4) 33.975 2.031 19.782 

Earle Mill (Site 5) 26.544 0.147 48.561 

Table 3-5 - Data Quality Study Results – Line Monitoring Parameters 

Again as per the ambient monitoring failure states, this information is shown as a 

histogram in Figure 3-6. For data concerning line parameter measurement 
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failures, the most common states are clearly shown as where either one or three 

parameters have failed to be recorded.  

 

Figure 3-6 – Histogram of percentage missing line monitoring poin
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 Data Quality Study Results – Site States 

 

 
Scar Brae Earle Mill 

 All 

Data 

Some 

Data 

No 

Data 

All 

Data 

Some 

Data 

No 

Data 

Winter 86.9 86.9 13.1 0.1 0.1 99.9 

Spring/Autumn 74.8 74.8 25.2 20.5 20.5 79.5 

Summer 82.5 82.5 17.5 60.2 60.2 39.8 

 

Table 3-6 shows the three system states analysed per P27 seasonal rating 

period. As can be seen, significant quantities of data are not monitored at the Earle 

Mill site. It was known that after relocation from Eglingham that the site 

malfunctioned and large quantities of measurements were lost or not recorded. For 

the purposes of the final stage of the data quality analysis this site was therefore 

excluded from further analysis regarding the total number of measured 

parameters across each site.   

 

 Broxfield Whitehouse Eglingham 

 
All 

Data 

Some 

Data 

No 

Data 

All 

Data 

Some 

Data 

No 

Data 

All 

Data 

Some 

Data 

No 

Data 

Winter 76.9 76.9 23.1 86.1 86.2 13.8 86.7 86.7 13.3 

Spring/Autumn 91.2 91.2 8.8 66.8 66.8 33.2 75.8 75.8 24.2 

Summer 99.8 99.8 0.2 76.6 76.6 23.4 91.8 91.8 8.2 

 

 
Scar Brae Earle Mill 

 All 

Data 

Some 

Data 

No 

Data 

All 

Data 

Some 

Data 

No 

Data 

Winter 86.9 86.9 13.1 0.1 0.1 99.9 

Spring/Autumn 74.8 74.8 25.2 20.5 20.5 79.5 

Summer 82.5 82.5 17.5 60.2 60.2 39.8 

 

Table 3-6  - Seasonal Data Quality at all HV RTTR Monitoring points 
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 Data Quality Study Results – System States 

Figure 3-7 shows the percentages of total missing parameters when 

considering the system as a whole. Zero parameters missing refers to all sites 

monitoring data at a particular point in time. These results differ from those 

previously presented in as such that now all sites are now considered in 

combination, with the maximum possible number of missing monitoring 

parameters being twenty at any point in time. The probability of all sites 

monitoring all data at the same point in time is shown as being lower, and in some 

cases significantly lower than the percentage of a particular seasonal period for 

which each individual site measures and records all possible data.  

 

 

Figure 3-7 – Total number of missing ambient parameters at all sites at the same points in 

time 

The peaks in Table 3-7 are directly influenced by the information shown in 

Figure 3-5 which shows that the most likely states for missing parameters is to 

either have one parameter or all parameters missing. As was also shown in Figure 

3-5 the percentage of times where one parameter is missing relative to all missing 

is exposed by the significant peaks at multiples of 5 in Figure 3-7 with almost no 

data in between.  
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Total number of Ambient Parameters 

Missing 

Percentage of total data monitoring 

period (%) 

0 60.1075 

1 0.0234 

2 0.0000 

3 0.0000 

4 0.0000 

5 24.1924 

6 0.0129 

7 0.0004 

8 0.0000 

9 0.0000 

10 9.0744 

11 0.0038 

12 0.0000 

13 0.0000 

14 0.0000 

15 5.9005 

16 0.0004 

17 0.0000 

18 0.0000 

19 0.0000 

20 0.6843 

Table 3-7 - Percentage of total period for which combinations of ambient parameters are 

missing at each sample point 

Figure 3-8 shows the same analysis as carried out previously but for the line 

parameters. As can be seen, the percentage of data points for which one or three 

parameters are missing was typically between 15 and 40% of the monitored period 

(excluding the site at Earle Mill). Since these percentages are relatively high, their 

coincidence results in greater percentage combinations of missing parameters. 

Again as per the ambient parameter measurements, the largest data spike occurs 

when all data points are measured at all sites.  
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Figure 3-8 – Total number of missing line parameters across all monitoring sites 

As opposed to the ambient measured parameters, combinations of one, or all 

line parameters not being recorded have almost equal likelihood.  Since Figure 3-8 

represents a combination of missing parameters across all sites, the trends 

observed in Figure 3-8 are somewhat different. The dominant failure states 

regarding ambient parameters results in obvious peaks at multiples of all ambient 

parameters not being present. Where line parameters are concerned, the trend is 

less clear, although there are peaks where combinations of one or all line 

parameters were not recorded.  

Total number of Line Parameters Missing Percentage of total data monitoring period (%) 

0 38.29 

1 0.60 

2 0.07 

3 25.57 

4 5.26 

5 10.52 

6 6.48 

7 3.91 

8 0.734 

9 5.96 

Table 3-8 – Percentage of total period for which combinations of line parameters are missing 

at each sample point 
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 Conclusions of Data Quality Analysis 

This data analysis study has shown that the most commonly occurring 

failures to measure data points concerning ambient and line parameters using the 

FMC Tech system affect either one or all of the parameters. Failure to monitor all 

measurements is likely to be a function of the local network system as opposed to 

intermittent failures of each independent monitoring device.  

Provision of reliable communications infrastructure is key to delivery of the 

smart grid transition. As shown in Figure 3-5 the highest numbers of times for 

which all monitoring points are missing are at the sheltered sites. Since these are 

likely the results of GPRS network ‘drop outs’ as opposed to common mode sensor 

failures, careful consideration must be made as to the available GPRS network 

strengths at each location for which a DTR solution is considered, or as to whether 

such a data transfer solution is suitable to ensure overall reliability of the system.  

  Weather Parameter Distributions 

In this section, the distribution of the observed weather parameters used to 

derive the RTTR values will be discussed.  In the case of the ambient temperature 

and wind speed values these are shown as probability distributions. For wind 

direction a series of wind roses have been produced. Since the wind roses also 

provide distributions of wind speed values, the results shown in Sections 3.9.1.1 to 

3.9.1.3 are simply to represent the distributions according to the line rating 

periods.  

It is important to note that since the wind directions used by the RTTR 

calculations are concerned only with the direction of the wind incident on the 

conductor, the angles shown in the wind roses are relative to the individual spans 

where the monitoring devices are located as opposed to relative to 00.  

For solar radiation, the 5th, 50th and 95th percentiles of the observed solar 

radiations at each measurement sampling period have been generated; again for 

each of the P27 rating periods. Due to the number of combinations of monitoring 

sites, percentiles and rating periods, a sample of the derived results for solar 

radiation are presented in this section. The remaining results can be found in the 

accompanying appendices.  
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 HV OHL Monitoring Sites – Wind Speed 

In each of the wind speed probability distributions the bin width was set to 

0.5m/s. 

3.9.1.1 Winter 

Figure 3-9 shows the wind speed distribution for each of the OHL monitoring 

sites. The highest observed wind speeds across the dataset were observed during 

the Winter period, with the lowest wind speed values being observed at the 

sheltered sites as expected.  

 

Figure 3-9 – Winter Wind Speed Probability Distribution – All HV Sites 

3.9.1.2 Spring / Autumn  

As per the Winter analysis, wind speeds are observed as smallest during the 

Spring / Autumn period at the most sheltered sites. This seasonal period also 

shows the introduction of data from the monitoring site at Earle Mill. The 

probability of observing a wind speed of 0m/s is roughly 0.3 at the site of Scar Brae, 

resulting in a high probability of reduced potential uplift from RTTR at this site.  
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Figure 3-10 – Spring / Autumn Wind Speed Probability Distribution – All HV Sites 

3.9.1.3 Summer 

The smallest range of wind speeds is observed during the Summer period 

across all monitoring sites. The probability of 0m/s wind speeds exceeds 0.3 at both 

the Scar Brae and Earle Mill monitoring sites.   

 

Figure 3-11 - Summer Wind Speed Probability Distribution – All HV Sites 
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 HV Monitoring Sites – Ambient Temperature 

3.9.2.1 Winter 

As expected, within the Winter period, the maximum recorded ambient 

temperature values are at a minimum across the set of rating periods. The 

sheltered monitoring sites show ambient temperature values which are typically 

increased over those open sites, reinforcing their candidacy for the most reduced 

uplift from RTTRs. These high temperatures are likely as the result of the 

coincident low wind speeds leading to stagnation.  

 

Figure 3-12 - Winter Ambient Temperature Probability Distribution – All HV Sites 

3.9.2.2 Spring / Autumn 

As in the case of the Winter period, ambient temperature values are typically 

observed to be higher at the sheltered sites in the Spring / Autumn period. The 

Eglingham monitoring site in particular has significant probability of low 

temperatures during this period.  
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Figure 3-13 – Spring / Autumn Ambient Temperature Probability Distribution – All HV Sites 

3.9.2.3 Summer 

The largest ambient temperatures are, as expected, observed during the 

Summer seasonal period. As in each of the remaining seasonal periods, the 

sheltered sites display a typically increased temperature when measured against 

the non-sheltered sites.  

 

Figure 3-14 – Summer Ambient Temperature Probability Distribution – All HV Sites 
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 HV Monitoring Sites – Wind Direction 

This section shows the wind speeds and wind directions observed at each of 

the sites, represented as wind roses. For this analysis, the datum of 00 incident 

angle is relative to the span of the conductor, not to the cardinal point of North. 

I.e. an angle of 0o or 180o refers to wind travelling along the length of the conductor.  

3.9.3.1 Broxfield 

At the Broxfield HV site, it is clear that the majority of incident wind speeds 

are from the 0-180o range.  In this range the dominant angles are at around 50o 

and 150o. Figure 3-16 shows the orientation of the wind rose relative to the 

conductor span. As can be seen, there is shading present from the collection of trees 

close to the OHL monitoring site. However, the distance of the OHL site from the 

trees, in combination with the relatively high wind speeds results in relatively good 

performance in terms of network uplift at this site.  

 

 

 

Figure 3-15 – Wind Rose for Broxfield HV Site 
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Figure 3-16 –Orientation of Broxfield HV Wind Direction Monitoring 

3.9.3.2 Whitehouse 

At the Whitehouse site, very few wind speeds are observed between ≈150-

270o. As the orientation of the measurement devices is in line with the span this is 

most likely to be caused by the heavily wooded area behind the monitoring site. 

This is shown in Figure 3-18. 

 

 

Figure 3-17 - Wind Rose for Whitehouse HV Site 
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Figure 3-18 – Whitehouse Wind Rose with site satellite image 

 

3.9.3.3 Eglingham 

Observed wind speeds at the Eglingham site appear to be in a singular 

corridor across the conductor. Very few wind speeds are recorded outside of these 

incident angles.  The overlay of the wind rose on a satellite image of the site is 

shown in Figure 3-20.  

 

 

Figure 3-19 - Wind Rose for Eglingham HV Site 
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Figure 3-20 - Eglingham Wind Rose with site satellite image 

 

3.9.3.4 Scar Brae 

The Scar Brae HV monitoring site is highly sheltered as can be seen in the 

very low observed wind speeds. Figure 3-22 shows the wind rose overlaid on the 

site satellite image. As per the Whitehouse and Broxfield monitoring sites the 

surrounding trees shelter the OHL site, however the sheltering here as opposed to 

the Broxfield site is such that the incident wind speeds are relatively low at this 

site.  

 

 

Figure 3-21 - Wind Rose for Scar Brae HV Site 
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Figure 3-22 – Scar Brae Wind Rose with site satellite image 

 

3.9.3.5 Earle Mill 

Earle Mill has significant shading on one side of the monitoring location, and 

almost no shading on the alternate side. Again, as per Scar Brae, the sheltering of 

the site is shown in the relatively low observed wind speeds. The reduced 

sheltering on one side is the likely reason for the occasionally observed high wind 

speeds.  

 

 

Figure 3-23 - Wind Rose for Earle Mill HV Site 
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Figure 3-24 – Earle Mill Wind Rose with site satellite image 

 

 Solar Radiation Percentiles 

Figure 3-25 shows a time series profile sample of the available solar radiation 

percentiles. The 5th, 50th (median) and 95th percentile values of solar radiation seen 

at each sampling point during the day (288 possible measurement points of 5 

minute intervals), have been generated.  

Figure 3-25 shows results for the Eglingham HV monitoring site in Summer. 

The typical sinusoidal curvature of the solar radiation curve is clearly present 

within each of the percentile curves. 95th percentile solar radiation values at this 

site typically peak at around 1000 W/m2. 

As shown in Section 2.4.6 the influence of solar radiation is the smallest of 

the influential weather parameters. Similar solar radiation results have been 

observed at all sites. On a limited number of occasions there are examples of site 

specific shading which result in lower solar radiations at certain times of day. 
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Figure 3-25 – Example Solar Radiation Percentile Plot at the Eglingham HV Monitoring Site – 

Summer 

It is therefore felt that in future systems, a typical 95th percentile curve for 

each season could be used in an attempt to reduce parameter measurement 

numbers. In cases where shading is present, the use of a standard curve does not 

affect the rating significantly, when compared to the effect of the remaining 

ambient parameters. 

 

 Real-Time and Dynamic Thermal Rating Validation 

To calculate all ratings in this study an offline conductor thermal model has 

been developed based on the CIGRÉ standard [67]. The model is capable of 

calculating three separate values of thermal rating, based on different 

combinations of available inputs. 

 The real-time thermal rating (RTTR) (maximum current carrying 

capacity) using the conductor maximum temperature and the 

measured meteorological conditions, 

 The conductor surface temperature using the measured current and 

weather variables 

 The dynamic response of the conductor over time to a step change in 

the input parameters 
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Each of these three model outputs will be discussed in further detail in this 

section. 

 Dynamic Conductor Response  

The dynamic implementation of the CIGRÉ model as shown in (4) can be used 

to calculate the conductor thermal response with respect to time. Since the 

conductor’s thermal response is non-instantaneous we can calculate the length of 

time which is required for the conductor to reach the steady-state equilibrium and 

also the time constant of the conductor (the time taken to reach 63% of the final 

steady-state value), which is often discussed.  

The implementation of the CIGRÉ equation involves utilising the dynamic 

format of the IEEE standard [65] whilst maintaining the CIGRÉ heat balance 

calculation methods. This represents a small contribution since it combines the 

iterative procedure for calculation of the effective conductor temperature 

distribution as detailed previously and removes the need for the magnetic heating 

term found within the standard dynamic implementation of the CIGRÉ rating 

method. 

The dynamic behaviour of the conductor temperature, in response to step 

increase in current of both 2.5 and 10A respectively is shown in Figure 3-26. The 

figure of 2.5A represents the average difference in conductor loading over a five 

minute period from the monitoring site. 10A represents a value taken at the 99th 

percentile of loading differences. This percentile has been chosen to remove the 

effect of data capture errors resulting in atypical loading differences. If all of the 

remaining parameters (ambient) are held at a constant value, Figure 3-26 shows 

the conductor increasing in temperature as a function of time as expected, due to 

the increased joule heating. Since the ambient meteorological parameters remain 

constant over this period, the time constant is shown to be the same in both 

scenarios. This is in line with the result shown from the dynamic conductor 

response shown in [65]. The time constant for the conductor in this case is 5.995 

minutes. The time constant is itself not a constant value, since the prevailing 

conditions will alter the rate of heat transfer away from the surface, and therefore 

affect the time taken to reach the equilibrium point. This has also been shown in 

Figure 3-26, where a 2.5A step change in current has been modelled at an 
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increased value of incident wind speed. Since the rate of heat transfer at the 

surface is greater, the incident cooling results in a lower value of conductor 

temperature which occurs at a faster rate.  

 

Figure 3-26 – Dynamic response of Conductor to step change in current 

 Conductor Surface Temperature 

Equation (4) can also be rearranged to make the conductor surface 

temperature the subject. The additionally required parameter for this will be the 

measured line current. It should be noted that the RTTR monitoring devices 

average the three individual phase currents to determine the ‘average’ line 

current. If no data is measured from one of the three phases the average is 

calculated from the remaining phases. Whilst this is acceptable where the phases 

are similarly loaded, there can be large discrepancies between the actual average 

values, and the calculated values if a particular phase was heavily loaded and then 

suffered a loss of data.  
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Figure 3-27 - MV Conductor surface temperature 

The same iterative procedure as referred to in Section 2.4.4 is used to derive 

the conductor surface temperature. Figure 3-27 shows the calculated surface 

temperature values against those measured by the RTTR monitoring devices.  

In [104] a conservative use of the CIGRÉ rating methodology resulted in 

conductor temperature model errors of between 3.4oC and 11.1oC, while the 

accuracy of the actual CIGRÉ method is within  ± 2oC  of a tested reference value 

for 99.4% of the monitoring period. In an earlier work, Bush [105] notes the 

performance of a regime which predicted conductor temperatures as being within 

± 10oC of the measured values.  

A study was carried out to determine the accuracy of the CIGRÉ surface 

temperature model using the parameters shown in Table 3-1 over a randomly 

selected data sample. Conductor surface temperature values were calculated for 

the complete data monitoring period and a random sample of 10000 data points 

were selected. The Mean Absolute Error (MAE) between the two datasets was 

calculated as follows: 

𝑀𝐴𝐸 = 
1

𝑛
 ∑| 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖

𝑛

𝑖=1

− 𝐶𝐼𝐺𝑅𝐸 𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖 |   𝑛 =  10000 

The MAE was found to be 1.346oC and therefore this value will be applied 

where future conductor temperature values are derived.   
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This value is also within the bounds of the quoted accuracy of the measured 

conductor line temperatures. This figure is quoted as being ± 2oC [106].  

 RTTR Monitoring Site Results 

When implementing an RTTR system, it is seldom used as a stand-alone tool. 

More often than not, the RTTR is proposed as an additional input into a wider 

ANM control scheme. As a comparison to the present seasonal circuit ratings, the 

percentage of time for which a particular RTTR can be implemented, without risk 

of over-stating the span’s current carrying capacity has been determined. The 

following statistics have been derived for each of the OHL monitoring sites  

 Percentage of observed RTTRs above the static P27 Rating 

 Percentage of observed RTTRs below the static P27 Rating 

 Percentage of possible RTTRs calculated within each period 

The last of these statistics is related to the previous data quality study. In 

this section, no interpolation of the raw ambient data has been carried out and 

therefore, where ambient monitoring parameters are missing, no RTTR value has 

been calculated. 

 

 Winter Results 

Figure 3-28 shows the cumulative distribution functions of the observed 

RTTRs during the Winter rating period.  No data is shown for the Earle Mill 

monitoring site as this site was not installed in Winter 2012 and for Winter 2013 

failed to record any meaningful data. In addition to the RTTRs from each site, and 

for each of the following seasonal RTTR CDF plots, the relevant P27 seasonal line 

rating has also been shown.  

The observed RTTRs are in general greater at the open sites as expected. The 

open and sheltered sites also show similar characteristics within their categories. 

The lowest ratings on average are observed at the Scar Brae site. The maximum 

calculated RTTR value in this period is observed at the Eglingham site.  
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Figure 3-28 – Winter RTTR CDF for all Sites 

Around 20% of ratings observed at the sheltered sites are lower than the 

presently implemented P27 static ratings. Since the present distribution network 

planning standard calls for N-1 circuit security at this level [11], these periods of 

low ratings would also have had to be combined with appropriate network outage 

conditions to have any significant effect on the  conductor temperatures. 

Additionally the cumulative distribution functions shown here make no reference 

towards the duration of the observed RTTRs. RTTRs lower than the static rating 

may have been observed for only a single 5 minute period at a time. The importance 

of this fact will be discussed in the sections of this thesis concerning the use of 

Dynamic as opposed to Real-Time thermal ratings.  

 

 Broxfield Whitehouse Eglingham Scar Brae Earle Mill 

Percentage of RTTR > 

P27 Static Rating 
95.8 80.9 94.0 80.4 N/A 

Percentage of RTTR < 

P27 Static Rating 
4.2 19.1 6.0 19.6 N/A 

Percentage of possible 

RTTRs calculated 
76.9 86.1 86.7 86.9 N/A 

Table 3-9 – Winter RTTR Statistics – All HV Sites 
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 Spring / Autumn Results 

In the Spring/Autumn period the Earle Mill site displays a high correlation 

with the RTTRs observed at the non-sheltered sites. The observed ratings appear 

to be somewhat similar to the Winter ratings at first examination, however the 

slope of the CDF shows that the ratings are generally smaller than those observed 

in the Winter period. A rating of 300A is valid for around 75% of the Spring period 

at the Whitehouse site, whereas this rating is valid for around 80% of the Winter 

period at the same site.   

 

Figure 3-29 – Spring/Autumn RTTR CDF for all Sites 

The percentage of ratings greater than the static rating also increases in 

comparison to the Winter period. Roughly 20% of the ratings at the Scar Brae site 

still remain below the P27 rating. 

 

 Broxfield Whitehouse Eglingham Scar Brae Earle Mill 

Percentage of RTTR > 

P27 Static Rating 
97.7 89.2 97.3 81.1 94.4 

Percentage of RTTR < 

P27 Static Rating 
2.3 10.8 2.7 18.9 5.6 

Percentage of possible 

RTTRs calculated 
91.2 66.8 75.8 74.8 20.5 

Table 3-10 – Spring / Autumn RTTR Statistics – All Sites 
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 Summer Results 

As expected, the observed RTTRs are at their minimum in the Summer 

period. Increased ambient temperatures and reduced wind speeds result in lower 

RTTRs due to the degree of atmospheric heating and the reduction in convective 

cooling.  

The Earle Mill site here displays greater similarity to the sheltered sites, as 

opposed to during the Spring / Autumn period. It also shows the greatest 

percentage of ratings below the static rating. The percentage of ratings greater 

than the P27 rating is also at a maximum in this period. Suggesting that the 

ratings are perhaps somewhat overly pessimistic in the Summer period, and are 

generous in the Winter period.  

 

 

Figure 3-30 - Summer RTTR CDF for all HV Sites 

In the Spring / Autumn period the difference between the observed ratings at 

the sites is more pronounced than in the Winter period. Again a very high 

percentage of ratings are greater than the static rating. Also the percentage of 

ratings which were able to be calculated is high.  
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Broxfield Whitehouse Eglingham Scar Brae Earle Mill 

Percentage of RTTR > 

P27 Static Rating 
99.3 96.4 99.7 94.0 86.3 

Percentage of RTTR < 

P27 Static Rating 
0.7 3.6 0.3 6.0 13.7 

Percentage of possible 

RTTRs calculated 
99.8 76.6 91.8 82.5 60.2 

Table 3-11 - Summer RTTR Statistics – All Sites 

 OHL monitoring site conclusions 

As discussed previously the findings of these data quality results are useful 

in as such that DTRs and RTTRs need to be reliable for implementation within 

power networks. As has been shown, for certain sites good data quality is present, 

e.g. 99.8% of possible data measurements are made, and also that the coincidence 

of ‘wide area’ problems, such as server malfunction are relatively limited. The more 

critical factor however is in the percentage of missing parameters when 

considering the sites as a whole. If the system is to be implemented across a large 

area, potentially using interpolation to deliver network ratings unserved by 

monitoring equipment, a drop out in measurements could have a serious effect on 

the reliability of the resultant ratings.   

 Selection of the ‘Critical Span’ 

The final section of this Chapter is a determination of the ‘critical span’ of the 

available monitoring points. A method for selection of the critical span has been 

commented upon in [107]. Here, a wide area meteorological method is used  Since 

a direct contribution to the field of critical span selection was beyond the scope of 

this research, the following method has been used in order to determine the ‘critical 

span’ from the available monitoring sites. 

As the results of Section 2.4.6 show, wind speed is the predominant variable 

which affects the overall thermal performance of overhead lines and is therefore a 

dominant characteristic when choosing the overall critical span. The thermal 

performance of the OHL is governed by the balance between heating and cooling 

elements. Wind speed is the dominant variable when concerning cooling, and 
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ambient air temperature is dominant when considering heating. Combination of 

these two elements results in a worst case scenario where cooling is at a minimum 

and air temperature heating is at a maximum.  

Therefore when selecting the site which is deemed to be the overall ‘critical 

span’ of those available, the decision was made to consider the distribution of air 

temperature values when wind speeds tend towards 0m/s. For the purposes of this 

analysis, low wind speeds are those defined as below 1m/s. Within this analysis, 

due to the relocation of the Eglingham OHL site to Earle Mill, both these sites were 

removed from the analysis this was for two reasons: 

 In order to give the highest number of data points for analysis 

 Eglingham was considered as a non-sheltered site and was therefore 

unlikely to be the critical span 

 After replacement, the site at Earle Mill was significantly more 

unreliable with regards to gathering data than the other sites.  

Figure 3-31 and Table 3-12  and show the results of this analysis. 

 

 

Figure 3-31 – Empirical CDF of Ambient Tempeatures at low wind speeds 
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Site Broxfield Whitehouse Scar Brae 

Average Temperature (oC) 8.5 7.8 8.7 

99th percentile Temperature (oC) 18.4 20.1 20.2 

Maximum Temperature (oC) 23.5 26.6 28.2 

Table 3-12 – Average, 99th percentile and Maximum Ambient Temperature values at low wind 

speeds 

As can be seen in Table 3-12 the Scar Brae site exhibits the highest ambient 

temperature in each of the test cases at low wind speeds. This site was therefore 

selected as the 'worst-case’ scenario of the available monitoring sites and used in 

all further analysis.  

 Conclusions 

This section has provided information as to the RTTRs at the available 

monitoring sites. Significant increases in network capacity over the existing P27 

rating standard have been shown even at the most sheltered available site. Ratings 

have conversely been shown to also be lower than expected at all sites. Though this 

is potentially a function of missing data, even at the non-sheltered sites where data 

monitoring was on the whole of higher quality, periods of RTTR values lower than 

the seasonal static ratings have been observed.  

Since the network is presently operated with N-1 security i.e. a level of 

redundancy whereby the network must be capable of supporting demand when a 

particular asset is not in service, in this case 1 asset, the levels of line utilisation 

are low in comparison to the seasonal rating and the observed conductor 

temperatures do not exceed the circuit rated temperature.  

At the sheltered site there is however the potential that in a scenario whereby 

the feeder on which the monitoring devices are located is carrying increased load 

due to a network outage and the meteorological conditions are unfavourable, this 

could potentially result in the line loading exceeding the RTTR.  
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4 Examining the accuracy of the presently used UK overhead line 

rating standard  

 Introduction 

In order to accurately evaluate the potential benefits that DTRs and RTTRs 

can bring to distribution networks, an understanding of the current method used 

to rate OHLs in the UK is required. This Chapter gives details of a series of 

analyses intended to evaluate the present OHL rating method and draw 

conclusions as to its effectiveness.  

The foundation of the existing P27 method lies in an experiment carried out 

at the Central Electricity Research Laboratory (CERL) in Leatherhead, Surrey 

during the years 1975-77. The aim of this experiment was to quantify acceptable 

ratings for all overhead lines in the UK regardless of construction type or location. 

In this context, construction type refers to the type of pole or support mechanism 

used to carry the OHL and the material composition of the line itself. This work 

built on previous studies of overhead lines in wind tunnels, and definition of the 

conductor’s heat balance equation based on its conductor type.  

The results of this experiment are detailed in CERL Report RD/L/N 129/79 

[22]. Further information on the experiment, in particular the experimental 

method is detailed in a later paper by Price and Gibbon [62].  There are a number 

of points within these reports which are crucial to the understanding of overhead 

line ratings in the UK and to allow comparison with the results which will be 

discussed in Chapter 9, therefore a description will be detailed here.   

 Chapter Goals / Objectives and Contributions 

 Goals / Objectives 

Given the newly available datasets provided by the CLNR projects, to 

examine the suitability of P27 to describe line ratings for such monitoring sites. 

Based upon this information, evaluate if P27 represents a credible baseline against 

which to evaluate the potential uplifts from techniques such as RTTR and DTR.  
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 Transition from existing literature and research / Contribution 

Most of the existing literature in this field is related directly to the derivation 

of the present seasonal line ratings. The main contribution from this section is in 

its derivation of updated OHL rating values using the P27 method based upon the 

real-world monitoring site data.  

 Attainment of Goals 

The introduction of new monitoring site data to the existing P27 conductor 

rating method allowed for evaluation of the present P27 ratings. This evaluation 

was determined the ability of the existing ratings to match the required levels of 

network risk, and delivered updated ratings where required.  

 Chapter Outline Block Diagram 

Figure 4-1 a block diagram of the inputs, methods and outputs for this 

chapter. The introduction of monitoring data from the CLNR project into a 

recreation of the CERL experimental method represents a contribution from this 

chapter. The use of this method delivers a new dataset in the form of a set of newly 

calculated seasonal ratings. These allow for direct comparison against the existing 

seasonal ratings.  

 

Figure 4-1 – Chapter 4 Block Diagram 
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 Price and Gibbon Heat Transfer Model 

The Price and Gibbon model is similar in a number of ways to the CIGRÉ 

method chosen for calculation of the real-time and dynamic thermal ratings. There 

are however small differences between the methods used to derive the various 

coefficients and an outline of the model is detailed below. 

 AC Resistance 

The effective AC resistance is calculated from knowledge of the DC resistance 

at 20OC and compensating through equation (21) 

 𝑅𝑇2 = 𝑅𝑇1[1 + 0.5 ∙  𝛼(𝑇𝑐 + 𝑇𝑠 − 40)] (21) 

Where: 

 RT1  is the DC resistance at temperature T1 (20OC) 

RT2 is the DC resistance at temperature T2 (This value is used to replace 

RT in equation (4)) 

Tc is the core temperature of the conductor (K) 

Ts is the surface temperature of the conductor (K) 

 α is the temperature coefficient of electrical resistance at T1 

  for Copper:   α=0.00381 K-1 

  

 Cooling elements 

4.3.2.1 Radiated Heat Loss 

 
𝑃𝑅 =  𝜀 ∙ 𝜎𝑆−𝐵(𝑇𝑠

4 − 𝑇𝑎
4) ∙ 𝜋 ∙ 𝐷 (22) 

 

𝑇𝑠 = 𝑇𝑐
𝐼2𝑅 [1 + 𝛼 (

𝑇𝑐 + 𝑇𝑠 − 40
2 )]

4𝜋𝐾𝑟
 

(23) 

Where: 

  𝑃𝑅  is the radiated heat loss (W/m) 

 𝜎𝑆−𝐵  is the Stefan-Boltzmann constant (5.67 x 10-8 W/m2/K4) 

 ε is the emissivity coefficient with respect to black body 

 Ta is the ambient temperature (K) 

 D is the outer diameter of the conductor (mm) 
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 d is the core diameter of the conductor (mm) 

 I is the initial guess of the final design current (A) 

 Kr is the radial thermal conductivity of the conductor (W/moC) 

  

The surface temperature of the conductor is calculated through an iterative 

process. Initially a guess is made that the surface temperature is equal to the core 

or design temperature. A guess is also made that the final design current is 1000A. 

After all additional calculations have been made such as those for joule heating 

and convective heat loss, a single iteration of (8) is carried out.  

The updated 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 allows a new value of the surface temperature to be 

generated. The new values of 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 and Ts are then input to the equations as 

necessary and another iteration is carried out. This process is repeated until the 

estimate for 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 and the calculated value has a difference of less than 0.01. 

Typical differences between the surface and core temperatures range from 0.5 to 

7OC [3. The emissivity of the conductor is pre-determined and has a value of 0.9. 

The radial thermal conductivity of the conductor is assumed to be 4 W/moC. 

 

4.3.2.1.1 Convection Heat Loss 

 
𝑃𝐹 =  𝜋 ∙ 𝑁𝑢 ∙ 𝑘𝑓(𝑇𝑠 − 𝑇𝑎) (24) 

 
𝑘𝑓 = [2.42 + 0.007 (

𝑇𝑠 + 𝑇𝑎
2

)] 𝑥 10−2 (25) 

 
𝑅𝑒 =

𝑢 ∙ 𝐷

1000 ∙ 𝜐𝑓
 (26)  

 𝜐𝑓 = [132 + 0.48(𝑇𝑠 + 𝑇𝑎)] 𝑥 10
−7 (27) 

 
If    {

𝑅𝑒 < 3200 𝑁𝑢 = 𝑌 ∙ (0.034 + 0.034𝑅𝑒0.487)

𝑅𝑒 > 3200 𝑁𝑢 = 𝑌 ∙ (0.071 + 0.901𝑅𝑒0.715)
  (28)  

Where: 

   PF is the loss due to Forced Convection (W/m) 

Re is the Reynolds number and is calculated from equation (25). 

 Nu is the Nusselt Number and is calculated from equation (28).  
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kf is the thermal conductivity of the air film in contact with the 

conductor W/m/ deg C 

u is the wind speed in m/s 

Y is the yaw factor of the wind 

υf  is the kinematic viscosity of the air film at the conductor surface 

(m2/s) 

The yaw factor of the wind, is a function of the angle of attack of the incident 

wind speed on the conductor. In [62] the yaw factor is stated as 0.55 however no 

explanation of how this figure was arrived at is given. A study was carried out in 

order to determine the conditions in which the value of 0.55 can be obtained. The 

final conclusions of this study were that the incident angle of wind speed against 

the conductor should be around 12.5o. It appears that this value is taken from the 

earlier work of Morgan [76]  in which he discusses the effect of wind being 

channelled across the surface of a conductor when it’s angle of attack approaches 

the lay angle of the conductor. The lay angle of the conductor refers to the angle 

made to the vertical plane of the helical stranding of the wires used to make up the 

bundled conductor. 

The heat transfer effect of the wind in cooling the OHL is reduced as the wind 

passes through the channel resulting in a reduced cross sectional area over which 

the wind is acting. This effect was found to result in a minimum cooling effect 

where the angle of attack is around 12.5o. It is presumed that this angle has been 

used in order to result in a worst case cooling scenario for the OHL.  

 CERL Experimental Procedure 

Prior to the work of Price and Gibbon in the CERL experiment, a number of 

studies had previously been carried out with regards to the rating of OHLs. These 

studies fall into two categories. The first relates to investigating the thermal 

properties of OHLs in largely static scenarios with constant wind speeds and 

angles of attack relative to the conductor. Meteorological studies were also carried 

out, with the main conclusion from these experiments being that values of 

maximum ambient air temperature rarely coincide with low values of wind speed. 

The work of Price and Gibbon aimed to combine these two strands of research by 

performing similar constant conductor loading tests as those found in the first set 
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of experiments but in open, exposed conditions. In order to do this a section of 

400mm2 Aluminium Conductor Steel Reinforced (ACSR) conductor (commonly 

referred to as a ‘Zebra’ conductor) was loaded with various constant current values 

throughout the experiment and ambient meteorological conditions were recorded 

throughout at a 6 minute time interval on a series of punch tape recordings. The 

meteorological monitoring equipment was installed on a 10m high wood pole close 

to the OHL to measure, wind direction, wind speed, ambient temperature and solar 

radiation.  

Prior work, from a CEGB report of 1974 details constant current values 

intended to result in a particular conductor temperature based on the prevailing 

conditions. It is these constant current values which Price and Gibbon now 

proceeded to load their conductor with. There are three values covering the annual 

period, divided into seasonal categories. The seasons are denoted as Winter, 

Normal and Summer. In most literature, including the P27 technical report itself, 

the Normal period is referred to as the ‘Spring/Autumn’ period, so this will be used 

for future reference.  

 As stated previously the experiment ran for a total of three years in the 

period of 1975-77. In the first year of the experiment the conductor was loaded for 

each of the three seasonal rating periods with a constant current value which was 

designed to be representative of a 50oC conductor temperature. In the second year, 

the constant current value was altered to now be representative of a 75oC 

conductor temperature. The final year of the experiment saw the conductor loaded 

with a constant value of 1020A for all of the seasonal rating periods. 

Analysis was then carried out to determine the number of 6 minute periods 

in which the conductor temperature was observed within a particular range. These 

varied from 45-90oC in 5oC bands. Within the original CERL experiment, 

temperature values below 45oC were not analysed. This is likely to be as a result 

of 45oC representing a minimum circuit rated temperature value for OHLs in the 

UK. Within each of these bins, the lower temperature i.e. 45oC is used as the 

reference circuit temperature. A circuit rated temperature is set for a particular 

circuit such that the magnitude of the conductor’s sag will not exceed the minimum 

required ground clearance at a particular point determined along the length of the 

circuit. This is important to refer to in future calculations. Temperatures above the 
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circuit temperature are referred to as excursions, and it is this concept which is 

central to the analysis carried out by Price and Gibbon and forms the foundation 

of the current P27 rating methodology.  

 

Figure 4-2 – Correlation of Zebra temperature excursion data for the seasons and for various 

design temperatures, recreated from [62] 

The temperature frequency bins are converted into the scatter plot shown in 

Figure 4-2 using the following method. Firstly the frequency counts are converted 

into values of percentage ‘excursion time’ per seasonal period above the conductor 

rated temperature (Te). The log of these values is then taken and it is these values 

which are used to derive the line of best fit and extrapolate the results.  

For each temperature bin, the value of the Correlation Term or CT is 

calculated using (29). 

 
𝐶𝑇 = 

𝐼2𝑅 (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

(𝑃𝐹 + 𝑃𝑅) (𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
                        (29) 

 

 

𝐼 =  √
𝐶𝑇(𝑃𝐹 + 𝑃𝑅)

𝑅
 (30) 

 
𝐼𝑑𝑒𝑠𝑖𝑔𝑛 = 

𝐼𝑁𝑃𝐺

√0.912
 (31) 

 

For the original experiment the CT values are: 
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Excursion Time % (Te) Correlation Term (CT) Selected Best Fit Correlation 

Term (CT) 

0.001 0.912 0.788 

0.01 0.930 0.883 

0.1 0.980 0.988 

0.2 1 1.022 

0.3 1.018 1.043 

0.4 1.030 1.058 

0.7 1.063 1.088 

1.0 1.085 1.108 

2.0 1.135 1.148 

3.0 1.170 1.175 

6.0 1.245 1.233 

10.0 1.315 1.300 

14.0 1.382 1.362 

20.0 1.475 1.468 

30.0 1.640 1.674 

40.0 1.860 1.920 

Table 4-1 – Correlation Terms (CT) as quoted in [62] and results from the line of best fit 

The values shown as being from the selected best fit method will be 

commented upon further in Section 4.4.1. Values are shown in Table 4-1 to allow 

for direct comparison upon review of the method and to remove the need for further 

replication of the table.  

For a pre-determined circuit rated temperature, and through rearrangement 

of (29) in the form of (30) the constant current value for the circuit rating can be 

derived. The final parameter required for calculation of these current values is a 

specific value of CT and thus by definition and allowable conductor percentage 

excursion. At present in UK distribution networks the allowable risk is set at 

0.001% for single circuit supply and at 3% for double circuits. For reference, the 

figure for National Grid circuit ratings is set to 12%. These percentages refer to 

the total time per seasonal rating period, and for reference a value of 0.001% of a 

seasonal period relates roughly to one, 6 minute period.  
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The values of 𝑃𝐹 and 𝑃𝑅 are calculated at the circuit temperature values 

discussed previously, whilst the value of R is calculated at the constant current 

value I which is already known. A line of best fit is generated in [62] for the scatter 

plot shown in Figure 4-2, and is used to generate the series of CT values for the set 

of design conditions. Through rearrangement of (31) the value of Idesign can be 

modified according to the chosen risk factor (CT).  

These design conditions will be discussed in more detail in sections 4.4.3 and 

4.4.4 but fundamentally the conditions refer to a set of seasonal weather conditions 

intended to be coincident with times of conductor temperature excursions. Analysis 

of the meteorological data from the Price and Gibbon found that where the 

conductor temperature was measured as exceeding 45oC, this commonly coincided 

with the following weather conditions:  

 Wind Speed – 0.5 m/s 

 Ambient Temperature  

o Winter – 2oC 

o Spring / Autumn – 9oC 

o Summer – 20oC 

 Solar Radiation – 0 W/m2 

These conditions are used when calculating the values of 𝑃𝐹 and 𝑃𝑅. In order 

to ensure that the baseline comparison of the benefits of DTR over existing network 

practice was suitably accurate, an evaluation of the presently implemented OHL 

rating method was carried out at the ‘critical span’ selected in 3.13 and at a 

relatively non-sheltered site for comparison.   

 Recreation of the CERL experimental procedure 

The experimental procedure has been recreated through use of the 50oC 

circuit rated temperature values as detailed in the Northern Powergrid tables for 

OHL loading. As a precursor to this step, the Price and Gibbon conductor heat 

balance model as detailed in [62] was recreated in MATLAB in order to determine 

the correct 50oC values of 𝑃𝐹 and 𝑃𝑅. This model was verified through use of the 

original CT values found in [62] and the constant current ratings for the OHL at 
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the case study site 𝐼𝑁𝑃𝐺, in the single circuit primary supply case from [108] were 

used.  

 

 DNO Circuit Rating @ 

0.001 % Excursion 

(INPG) 

Design Current @ 

50oC (Idesign) 

MATLAB 

Implementation 

Winter 296 309.95 308.79 

Spring / Autumn 275 287.96 286.67 

Summer 236 247.12 247.02 

Table 4-2 – Circuit rating values, their equivalent design currents and the results of the 

MATLAB implementation 

Good agreement was found between the MATLAB model and the circuit rated 

values as shown in Table 4-2, therefore we can have confidence in the calculated 

values of 𝑃𝐹 and 𝑃𝑅.  

 Correlation Term line of best fit 

In addition to the values of CT quoted in [22, 62]  Table 4-1 refers to newly 

derived values from the same data. In order to evaluate the results generated by 

the CERL experiment recreation, knowledge of the method behind the derivation 

of these best fit values was required.  No details in [62] give the equation used to 

generate the line of best fit and therefore an approximation has been made using 

a series of proposed equations to describe the curve. The lack of a known method 

is also commented upon indirectly in [109]. Here a linear approximation is made 

between the CT and Te values as quoted in [22]. A series of limits are also noted 

which bound these results (32).  

 

 
𝑇𝑒 = {

0.00001 𝑖𝑓 𝐶𝑇 ≤ 0.9
40 𝑖𝑓 𝐶𝑇 ≥ 1.860

 (32) 

 Figure 4-3 shows the nature of this relationship as shown in [109] 
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Figure 4-3 – Interpolated Linear Relationship between CT and Te  from [109] 

 

 

 

Figure 4-4 – CT values as quoted in [22] with theoretical linear fits 

Based on the approach taken in [109], Figure 4-4 shows an example of two 

potential linear approximations to the original quoted CT values. As can be seen 

an overall fit of ‘Linear A’ is poor and the lower bounded value of Te = 0.00001% for 

CT ≤ 0.9 is not adequately accounted for by the fit. Whilst an upper bound of Te = 

40% is quoted in [109] and no reference is made to a linear fit which is not made 
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for all available data, the maximum value of Te permitted within distribution 

systems (for Multi-Circuit Primary Supply distribution) is 3% and therefore it is 

potentially more likely to make a linear approximation at this level. Linear fits ‘B 

and C’ have therefore been made in a two section piecewise linear fit to the data.  

These approximate the data with far greater accuracy than a single linear fit 

and the relationships could be approximated as being linear over these individual 

regions. These relationships are also far closer to that as shown in Figure 4-3.  

However, no comments are made as to a ‘two stage’ piecewise fit and therefore it 

must be assumed that the fit as according to ‘Linear A’ has been used. As a 

refinement to all three of these linear fits, a piecewise linear fit between all of the 

values quoted in [22] has been made and evaluated against a series of alternate 

potential fits as shown in (33) and (34)  

Four potential forms of equation were considered which gave the best overall 

performance. These will be referred to as Fits A, B, C and D. In Fits A, B and C the 

equation has been rearranged so as to make CT the subject. In Fit D due to the 

power relationship this was not possible and therefore a relationship was fitted in 

the format as presented in Figure 4-2.  

 

Fit A: 𝐶𝑇 =  𝑎𝑒𝑏(log𝑇𝑒) + 𝑐𝑒𝑑(log𝑇𝑒) (33) 

Fit B: 𝐶𝑇 =  𝑎𝑒
𝑏(log𝑇𝑒) (34) 

Fit C: 𝐶𝑇 =  𝐴 log 𝑇𝑒
2 + 𝐵 log 𝑇𝑒 + 𝐶 (35) 

Fit D: log 𝑇𝑒 =  𝑎𝐶𝑇
𝑏 + 𝑐 (36) 

 

 

 Piecewise Linear Fit A Fit B Fit C Fit D 

Coefficient of 

determination  

(R-Square) 

0.948 0.9560 0.7258 0.8403 0.8734 

Table 4-3 – Performance of Line of Best Fit equations 

As can be seen in Table 4-3 the performance of Fit A exceeds that of Fits B, 

C, D and the piecewise linear approximation from the original data points. This 

equation was therefore used to derive a series of CT values for comparison with 



81 

 

those quoted in [62]. In addition to their improved accuracy over the piecewise 

approximation these fits also by definition have a known equational format and 

can therefore be used for generalisation by the wider community. From Fit A the 

parameters are a, b, c and d are shown in Table 4-4. 

Fit A Parameters a b c d 

Value 1.106 0.113 0.001238 3.853 

Table 4-4 – Parameters for Fit A choice for CT line of best fit 

As can be seen in Table 4-1 the best fit results do not match those as quoted 

in [22, 62]. As commented upon in [83] experimental methods such as those carried 

out at CERL were in an age of reduced computational ability. When analysing the 

accuracy of the originally quoted CT values against the originally measured data, 

the R-Square value was found to be 0.9563. This value is very close to that of the 

derived values using the Fit A model presented here (0.9560). Whilst the accuracy 

of these individual data fits is almost identical, there are some notable 

discrepancies between the values derived from each fit. This is particularly 

noticeable in the derived value at 0.001% Te, where a difference of 0.124 exists 

between the quoted value of 0.912 and the value derived from the line of best fit 

(0.788). If the newly derived values of CT were to be used as opposed to those shown 

in [62] this would clearly have an effect on the values used by DNOs today. Table 

4-5 shows the influence of these new CT values on the current single circuit supply 

values as used at the OHL monitoring locations.  

 

 Rating @ new 0.001 % 

Excursion  

(Table 4-1 values) 

 INPG 
Design Current @ 

50oC (Idesign) 

Winter 275.14 296 309.95 

Spring / Autumn 255.62 275 287.96 

Summer 219.37 236 247.12 

Table 4-5 – Newly derived seasonal ratings in comparison to the presently implemented 

ratings and their associated ‘design’ currents 

The results shown in Table 4-5 note that reductions of around 20A are 

necessary to conform to the newly derived CT values. As a result of these findings, 
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analysis was carried out to investigate other aspects of the P27 rating method. 

These aspects entail the number of actual conductor temperature excursions 

observed at the OHL monitoring locations and also as to the distribution of 

ambient conditions at times of conductor excursions. Whilst in [22, 62] it is stated 

that during conductor excursions there are a set of typical weather conditions, the 

distribution of these variables is not given. The next section of this Chapter will 

determine these distributions and will investigate the accuracy of P27 at both 

sheltered and non-sheltered monitoring sites for comparison.  

 Use of the CIGRÉ rating method to generate conductor temperatures 

Since the Price and Gibbon model has been formulated to derive a current 

value which will result in a specific conductor core temperature, a significant 

reworking of the model would be required in order to derive new values of joule 

heating at deviations away from the design conditions, i.e. where the core 

temperature of the conductor is not equal to the circuit rated temperature. 

Therefore the decision was taken to use the validated CIGRÉ conductor 

temperature model to derive the new Joule heating values. To ensure that the 

calculations were consistent with those from the Price and Gibbon model, the 

CIGRÉ model was used with the design currents from Table 4-5 and ‘worst case’ 

ambient conditions as described previously in order to determine the surface 

temperature of the conductor at the design conditions. 

 

 CIGRÉ model Surface Temperature (oC)  

Winter 49.0300 

Spring / Autumn 49.1700 

Summer 49.3800 

Table 4-6 – Verification of the CIGRÉ dynamic model surface temperature calculation 

In [67] it is stated that the difference between the surface and core 

temperature of a conductor is typically between 0.5 and 7oC, therefore the results 

in Table 4-6 show that the CIGRÉ modelled surface temperatures are within the 

range that would result in a conductor core temperature of 50oC. As a means of 

determining the accuracy of P27 at the chosen sites a two stage method was carried 
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out. Firstly the present seasonal rating values are used as inputs to the CIGRÉ 

DTR model in order to derive conductor temperature values. The number of 

excursions per rating period was then derived. Figure 4-5 and Table 4-7 show the 

results of this analysis at the sheltered site.  

 

 

Figure 4-5 – Conductor Temperatures due to constant loading at the P27 seasonal rating 

values 

As can be seen when using the current seasonal rating values a significant 

number of conductor temperature values exceed the circuit rated temperature 

value of 50oC. The most likely causes of this result being that the coincidence 

between low wind speed and high ambient temperatures appear with greater 

frequency than previously considered, and also that the average temperature 

values in each of the seasonal periods do not accurately represent those which are 

observed. In particular during the Spring / Autumn period the recorded ambient 

temperature values often exceed the value of 9oC. The number of excursions per 

seasonal rating period are shown in Table 4-7. 

Seasonal Period Number of Excursions % of Period 

Winter 7090 13.68 

Spring / Autumn 11096 10.57 

Summer 2209 2.67 

Table 4-7 Number of five minute periods and percentage per period for which conductor 

temperature exceeds circuit rated temperature 
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As can be seen the percentage excursions per period are significantly greater 

than those stipulated by the P27 regulations (0.001%). This prompted the second 

part of this investigation, to examine the potential reductions required to deliver 

the same level of risk as is currently stipulated in P27. In order to evaluate this, 

reductions were made to the present seasonal P27 circuit rating values in single 

ampere steps in order to derive similar results to those found in [62]  and to derive 

a new set of temperature excursion correlation curve as shown in Figure 4-2. The 

results of this analysis are shown in Figure 4-6. 

 

Figure 4-6 – Newly derived Temperature exceedance plots in line with those found in [62] 

From the data shown in Figure 4-6 new constant circuit rated currents can 

be derived from a line of best fit, fitted to the data using the format of equation (33) 

albeit with newly derived parameters. This gives a new set of CT values and as a 

result, a new set of seasonal circuit ratings.  

 

 New P27 Seasonal Ratings 

(Non-Sheltered Site) 

New P27 Seasonal Ratings 

(Sheltered Site) 

Winter 278.64 230.37 

Spring / Autumn 258.63 213.83 

Summer 222.81 184.21 

Table 4-8 – Newly derived P27 seasonal line ratings for Sheltered and Non-Sheltered example 

sites 
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At the non-sheltered site the newly derived seasonal ratings, whilst being 

lower than the presently used ratings have been shown to be in line with those 

derived from the new line of best fit as detailed in Section 4.4.1. At the sheltered 

site, the new circuit ratings have been shown to be significantly lower than these 

values. In order to examine the reasons as to why the new circuit ratings are lower 

than expected an analysis similar to that of Price and Gibbon has been carried out 

to determine the typical ambient meteorological parameters which coincide with 

conductor excursion events.  

 Excursion Ambient Temperature  

Figure 4-7 and Figure 4-8 show empirical CDFs of ambient temperature 

values at times where the conductor temperature was observed as exceeding the 

circuit rated temperature. 

 

Figure 4-7 – CDFs of ambient temperature values during conductor temperature excursions – 

Non-Sheltered Site 
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Figure 4-8 - Ambient temperature values during conductor temperature excursions –

Sheltered Site 

Table 4-9 details the mean, 99th percentile and maximum excursion ambient 

temperature values observed along with the stipulated P27 ambient values used 

to derive the ratings during each seasonal period.  

 

Rating Period  P27 (OC) Non-Sheltered Site (OC) Sheltered Site (OC) 

Winter 

Mean 

2 

4.7 8.8 

99th 

percentile 
10.0 12.2 

Max 10.3 12.6 

Spring  / Autumn 

Mean 

9 

12.1 15.6 

99th 

percentile 
17.7 22.3 

Max 18.1 22.7 

Summer 

Mean 

20 

18.4 22.6 

99th 

percentile 
18.7 28.2 

Max 18.7 28.3 

Table 4-9 – Ambient temperature values during conductor temperature excursions 

As can be seen, at all sites, the mean ambient temperature value at times of 

conductor temperature excursion with the exception of the Summer period at the 

non-sheltered site are greater than the values quoted in P27. For the rest of the 

potential combinations of season and monitoring site there are demonstrated 

increases in temperature from the quoted P27 values.  
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At the sheltered site the mean ambient temperature in the Spring / Autumn 

and Winter periods is roughly 7oC greater than the value outlined in P27. At the 

non-sheltered site for the same periods this increase is roughly 3oC.  

These differences will play a significant role in overestimating the cooling 

capacity of the OHL in these periods and leads to the need for a reduction of static 

seasonal rating during these periods. One caveat is that as shown in the data 

quality study, the percentage of readings taken during these periods is not 100%. 

This may account for some discrepancies in the mean temperature due to the 

limited dataset. Though, as shown around 82.5% of the dataset was still monitored 

at the sheltered site. 

 

 Excursion Wind Speeds 

 

Figure 4-9 - Wind Speed values during conductor temperature excursions – Non-Sheltered 

Site 
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Figure 4-10 – Wind Speed values during conductor temperature excursions – Sheltered Site 

Figure 4-10 show histograms of the observed wind speeds during times of 

conductor temperature excursions. As can be observed, a significant number of 

wind speeds have a value of 0m/s. Whilst this does not on the surface seem to be a 

significant deviation from the P27 figure of 0.5 m/s, the difference is such that the 

conductor surface moves from free to forced convection at this boundary. Forced 

convection offers increased cooling over free convection and therefore the lower 

wind speeds will result in lower than expected line ratings. 

 

Rating Period  P27 (m/s) Non-Sheltered Site (m/s) Sheltered Site (m/s) 

Winter 

Mean 

0.5 

0.112 0.000 

99th 

percentile 

1.300 0.000 

Max 1.700 0.000 

Spring  / Autumn 

Mean 

0.5 

0.153 0.065 

99th 

percentile 

1.180 0.800 

Max 1.300 1.300 

Summer 

Mean 

0.5 

0.400 0.258 

99th 

percentile 

0.400 1.300 

Max 0.400 1.300 

Table 4-10 – Wind speed values during conductor temperature excursions 

Table 4-10 shows the overall seasonal results for both the sheltered and non-

sheltered sites. At both sites, whilst the maximum observed wind speed at times 
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of excursions was in some cases greater than the quoted figure of 0.5 m/s the mean 

value is smaller in all seasonal periods.  

 Conclusions 

In this section, an analysis of the present P27 method for the rating of OHLs 

in the UK has shown that for specific sites there is the potential requirement for a 

de-rating factor to be applied. In particular at the sheltered Scar Brae site, 

significant reductions were necessary to the present seasonal ratings in order to 

deliver the required level of network risk. Since no equations are provided as to 

determination of the line of best fit of CT values as shown in Figure 4-2 a series of 

potential equations have been proposed in order to replicate these results. When 

selecting the line of best fit which minimises the total error significant deviations 

have been found from those values quoted in the relevant sources.  

Analysis from the ‘critical span’ has shown that for the majority of times 

where the conductor had a temperature greater than the circuit rated temperature 

the wind speed was at 0m/s. Due to the threshold in the heat transfer equations at 

0.5 m/s this result has a significant impact on the overall heat balance of the 

conductor. Ambient temperatures in the Winter and Spring / Autumn (Normal) 

seasonal rating periods have also been demonstrated as being significant higher 

than those as quoted in [62]. These factors when coupled together have shown that 

in particular for the case of highly sheltered locations de-rating from the present 

circuit ratings is required, if the same level of network risk is required.  

 

 

 

 



90 

 

5 HV Feeder Load Synthesis: After Diversity Demand  

  Introduction 

The following three Chapters outline the procedures required for 

development of feeder load profiles at the MV level of the distribution network to 

act as inputs to the DTR model.  

When modelling the resultant loads there are a number of factors which need 

to be taken into account: 

 The number and type of consumers within the group 

 How does electrical diversity affect each consumer group? 

 What is the response of those consumers to external influences such as 

ambient temperature?  

The aggregation level at which the total profile is required can greatly affect 

the type of modelling required. When considering the modelling of load at the 

national level, often a multiple linear regression model or similar is used whereby 

the expected load is modelled as a function of parameters such as days of the week, 

ambient air temperature, humidity and economic factors such as GDP.  

At the lowest level of aggregation, models for individual domestic 

consumption such as the model outlined in [110] use a combination of expected 

appliance usage, income, number of occupants and daylight hours in order to 

construct a highly accurate expected demand output.  

The aim of the load synthesis method developed in this work is to deliver 

suitable profiles at the MV feeder level, in order to evaluate the capabilities of 

DTRs for load accommodation at this level. At this level, the decision was taken to 

ignore high level economic factors such as GDP to focus on more specific aspects of 

consumer’s reaction to ambient meteorological conditions (more specifically 

ambient temperature) and on electrical diversity.  This represents an assumption 

regarding suitable modelling inputs. At the aggregation level which this research 

considers, it has been assumed that the load group customer composition and 

ambient temperature values are of greater significance than parameters such as 

national GDP. GDP has often been included as a parameter within national 
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demand modelling, which represents an altogether different modelling problem. 

Whilst GDP has not been taken into account as a direct parameter, relative income 

has been taken into account through the use of national socio-demographic 

classifiers which have been used as a method to classify different domestic 

consumer attributes. This Chapter will firstly outline the rationale for deviation 

away from the presently used Elexon After Diversity Demand (ADD) consumer 

profiles, particularly when modelling consumer load groups of various sizes. The 

ADD has been used in this research as opposed to the After Diversity Maximum 

Demand (ADMD) since the requirement of the final feeder load profiles is to model 

the typically expected demands for load groups, as opposed to their maximum 

value. This is in line with the approach taken in [111]. 

A series of socio-demographically informed ADD profiles and a method for 

their derivation are then provided as a contribution from this thesis. These profiles 

will then be utilised in the following chapters as part of the overall load synthesis 

method to provide inputs to the DTR OHL model 

In order to train and test the approaches outlined in this chapter, data from 

multiple monitoring points within the CLNR project was used. These monitoring 

sites were located at different points within the Northern Powergrid DNO area.  

 Chapter Goals / Objectives and Contributions 

 Goal / Objective 

Since dynamic, as opposed to real-time thermal ratings will be used in this 

research, a suitable representation of demand group loads expressed as a time 

series is required to provide inputs to the thermal conductor model. The goal of 

this chapter is to develop a method of delivering such profiles, with the additional 

capability that the profiles must be capable of representing a demand group of any 

given size and combination of consumers. The effect of temperature on these 

demand groups must also be taken into account. This chapter will attempt to 

derive after diversity demand profiles which do not explicitly take into account 

temperature, but do so on a seasonal basis as per the presently used Elexon 

consumer demand profiles. The following chapters present a method to derive 

temperature sensitivities for these consumer groups and a method to combine each 

of these factors into an overall temperature sensitive demand group profile.  
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 Transition from existing literature and research / Contribution 

Existing research in this field typically delivers demand profiles for large 

areas, or countries. After Diversity Demand profiles, such as those presented by 

Elexon, present demand profiles for individuals, however these represent a profile 

for a specific number of consumers. The ability to scale to any number of 

consumers, represents a key contribution of this chapter. An update to the existing 

profiles using a newly available public dataset also represents a contribution of 

this chapter, in addition to the ability to differentiate the expected demand profiles 

for consumers based on a set of socio-demographics, again a contribution of this 

chapter, building on previous work which considered annual energy demands as a 

function of the same socio-demographic classification scheme.  

 Attainment of Goals 

 A socio-demographically grouped method for determining a more accurate 

representation of demand is presented in this chapter. This method has been 

tested against real-world measured data to determine its overall accuracy.  

 Chapter Outline Block Diagram 

Figure 5-1 a block diagram of the inputs, methods and outputs for this 

chapter. The combination of socio-demographics, publically available datasets 

regarding energy and the existing Elexon After diversity profiles represents a 

contribution in its selected sampling method from the newly presented DECC 

dataset. The derivation of new socio-demographically grouped ADD profiles 

represents the key contribution from this chapter, in addition to their testing 

against the available real-world monitoring data.  
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Figure 5-1 – Chapter 5 Block Diagram 

 

 Parameter Monitoring Data 

 Overall Primary Substation Descriptions 

Denwick Primary Substation 

 66/20kV Primary substation 

 Rural / Semi Rural 

 HV feeders mostly of OHL construction 

 Local Authority Area: Northumberland 

Rise Carr Primary Substation 

 33/6kV Primary Substation 

 Urban 

 HV feeders mostly of UGC construction  

 Local Authority Area: Darlington 

 Network Monitoring 

These data range from monitoring at the LV Substation to HV feeder level. 

Data from each of the substation monitoring points comprised of: 
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 Three phase Real and Reactive power measurements 

 Three phase voltages 

 For some sites, ambient temperature. 

At the primary substation level: 

 ‘Real and Reactive’ current values 

 Line voltage 

 Ambient temperature 

The values of real and reactive current at the primary substation levels are 

proxy measurements for real and reactive power and have therefore been 

converted using the measured voltage values in order to be directly comparable to 

the data from the LV substations. Ambient temperature monitoring was installed 

at each of the primary and secondary substations in the project. Again as per the 

electrical data, values were recorded at one minute intervals. The purpose of these 

sensors was for investigation of the ambient thermal conditions for distribution 

transformers and therefore some were located inside buildings. Due to the thermal 

effect of the transformer loading on the ambient temperature within the building, 

these sensors could not be used as they are not representative of the external air 

temperature. In these cases the closest ambient temperature sensor geographically 

was used as an indicative temperature value.  

The monitored data was recorded at one minute intervals at all sites other 

than some ambient temperature values which were recorded at five minute 

intervals. Data in this research covers the period from 1/10/2013 to 30/09/2015. 

A selection of 8 customer groups have been taken from the available data sources. 

These 8 were selected as a subset due to a number of factors. The most common 

was in relation to the number of missing data points within the datasets. Another 

significant factor was the presence of clear measurement errors as a function of 

the monitoring equipment used at the sites. These constitute profiles from 

customers located at Secondary substations (LV/MV) and from direct MV feeder 

monitoring at Primary substations. These monitoring points also represent a wide 

variety of customer compositions, with high concentrations of Industrial and 

Commercial customers, Economy 7 customers and typical residential customers. 
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Since the RTTR monitoring equipment is located on the 20kV network and some 

of the load data comes from the LV network, firstly a step must be taken to ensure 

all data is comparable. Information provided by Northern Powergrid concerning 

the transformer tap ratio and an estimation of the transformer losses on load allow 

us to make all data appear as if it were connected directly to the 20kV MV network.  

 Load Group consumer data 

In addition to electrical and meteorological information gathered from the 

monitoring points, information on the type and number of consumers supplied at 

each of the monitoring points was made available by Northern Powergrid. The type 

of consumer refers to the Elexon profiling class to which they belong. An 

explanation of these profiling classes is provided below.  

 Elexon Profiling  

Elexon governs the balancing of supply and demand within the UK electrical 

power system. Within their role, they have defined eight classes (k) of electrical 

consumer for the purposes of profiling and billing. They are as follows:  

 Class 1: Domestic Unrestricted 

 Class 2: Domestic Economy 7 

 Class 3: Non-Domestic Unrestricted 

 Class 4: Non-Domestic Economy 7 

 Class 5: Non-Domestic Maximum Demand with Peak Demand Load Factor 

< 20% 

 Class 6: Non-Domestic Maximum Demand with Peak Demand Load Factor 

> 20% < 30% 

 Class 7: Non-Domestic Maximum Demand with Peak Demand Load Factor 

> 30% < 40% 

 Class 8: Non-Domestic Maximum Demand with Peak Demand Load Factor 

> 40% 

For each of these classes an average demand profile also exists in the public 

domain [112]. These profiles are sub-divided into five seasonal categories, Winter, 

Autumn, Spring, Summer, High Summer and three daily periods, Weekday, 

Saturday and Sunday. When combined they give the ‘After Diversity Demand’ 

(ADD) values for each class throughout the year. These will be referred to as Ek 
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and the number of customers in each Elexon class for each load group will be 

referred to as 𝑁𝑘 . The seasonal and daily periods will be referred to as: 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑠 =

{
 
 

 
 

1 = 𝐴𝑢𝑡𝑢𝑚𝑛
2 = 𝐻𝑖𝑔ℎ 𝑆𝑢𝑚𝑚𝑒𝑟
3 = 𝑆𝑢𝑚𝑚𝑒𝑟
4 = 𝑆𝑝𝑟𝑖𝑛𝑔
5 = 𝑊𝑖𝑛𝑡𝑒𝑟

                𝐷𝑎𝑖𝑙𝑦 = 𝑑 =  {  

 1 = 𝑊𝑒𝑒𝑘𝑑𝑎𝑦
2 = 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦
3 = 𝑆𝑢𝑛𝑑𝑎𝑦

    

 

Elexon currently states that on average for their demand profiling work their 

aim is for 2500 customers in each class [113] , the number of customers used to 

compile the publically available dataset is unknown, however the assumption has 

been made in this research to consider the profile as a representative of a number 

of customers beyond which a significant change in the observed profile is not 

expected. This assumption has an impact upon the overall accuracy of the final 

method testing, however the profiles derived within this chapter are still able to 

provide an alternate method to those of the singularly available Elexon profiles in 

the public domain. Figure 5-2 and Figure 5-3 show the Elexon profiles for domestic 

and non-domestic consumers in the Winter weekday period. 

 

Figure 5-2 – Domestic Elexon ADD Profiles 
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Figure 5-3 – Non-Domestic Elexon ADD Profiles 

 Electrical Diversity 

Whilst the Elexon ADD profiles are useful for understanding the contribution 

of a particular load class to the overall load, the profiles used are representative of 

the ADD for group of roughly 2500 customers. As the number of customers tends 

towards one, the maximum demand or MD figure of the consumer is derived. For 

the purposes of deriving a load synthesis method which is applicable for any 

number of customers a method has been derived to deliver maximum ADD values 

as a function of the number of customers.   

In 2015, the Department for Energy and Climate Change (DECC) released 

experimental figures which quantified the total electrical energy usage per full 

postcode in the UK (for example (NE1 7RU, as opposed to an ‘outer’ postcode such 

as NE1) [114]. The number of electrical energy consumers is also tabulated 

allowing calculation of the average energy usage per household, per postcode. 

Additional data was also released which quantified the percentage breakdown of 

Class 1 and Class 2 Elexon customers, although this dataset gives information at 

the local authority (LA) level [115]. An assumption has been made that the 

merging of these datasets in this way does not adversely affect the overall impact 

of the findings. Additional data regarding the breakdown at a lower level of 

aggregation was not possible, and represents a candidate for further work to 

extend the findings shown in this research. In line with this assumption, data at 

the LA level has also been used in the generic correlation and load synthesis 
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models proposed in this thesis to allow for recreation by members of the 

community, removing the requirement for non-publically available datasets as 

inputs.  

Since data is available for the entirety of the UK it would be possible to derive 

more accurate UK profiles for both Class 1 and 2 customers beyond those found in 

the publically available Elexon profiles (which were gathered in 1997). This work 

however, aims to advance this potential work by deriving both socio-

demographically categorised load profiles, and also for a range of final customer 

numbers when grouped together.   

 Socio-Demographics and the Output Area Classification 

Since electrical energy data is available per postcode, we can also categorise 

the data based on socio-demographic identifiers. The chosen categories in this work 

are based on those of the Output Area Classification (OAC) [116] derived from the 

UK national census of 2011. The rationale for the choice of the OAC is as follows, 

prior literature [117, 118] has utilised the OAC in analysis of energy consumption 

whilst examining degrees of social deprivation, and also the OAC is publically 

available and widely used within the social science community. Additionally the 

use of socio-demographically informed demand side response capabilities have also 

been explored in a pure power systems context in [119]. This work considered the 

potential DSR resource from consumers as a function of socio-demographics and 

its ability to provide ancillary network services to the distribution network. The 

research in this thesis examines the modelling of domestic consumer loads as a 

function of socio-demographics as opposed to assessing their flexible demand 

characteristics. Although the OAC classifiers have been used previously to model 

differences in energy consumption, there is an assumption within this work that 

this method is also valid for the classification of time series demand profiles.  

The OAC categorises based on deviation away from the national average for 

a number of markers such as number of children per household, percentage of 

owner-occupiers and income level. A series of K-means clustering algorithms are 

used to divide the available census data and to derive the overall socio-

demographic groupings.  



99 

 

Figure 5-4 and Figure 5-5 show maps of the Rise Carr primary substation are 

with the relevant OAC categories overlaid. The red dot denotes the location of the 

primary substation. 

 

Figure 5-4 – Map of the Rise Carr Primary Substation with the OAs and their respective 

OACs 

 

Figure 5-5 – A close up of the area surrounding the Rise Carr Primary Substation 

The OAC is split into a number of categories and sub categories, however to 

ensure that the results have the highest possible generalisation capabilities, data 
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was sub-divided at the highest possible level, that of the ‘Supergroup’. There are 8 

high level supergroups within the OAC categorisation, which are as follows: 

1. Rural  

2. Cosmopolitans 

3. Ethnicity Central 

4. Multicultural Metropolitans 

5. Urbanites  

6. Suburbanites 

7. Constrained city dwellers 

8. Hard-pressed living 

These categories will be referred to as 𝑂𝐴𝐶𝑗  𝑗=[1⋯8]. The first stage of deriving 

updated Elexon profiles was therefore to group the electrical energy values per 

postcode according to their OAC supergroup. The second stage of the analysis 

involves use of the current Elexon Class profiles. Since the Elexon profiles are 

provided in kW, the sum of each class profile over the course of a year gives a figure 

for the total energy consumption in kWh. After grouping energy values per OAC 

Supergroup, average annual consumption figures per customer for each 

Supergroup can be derived and compared with those of the average Elexon profiles 

themselves. Table 5-1 shows the results of this analysis.  

 
Class 1 Energy 

Consumption (kWh) 

Class 2 Energy 

Consumption (kWh) 

Elexon Profile 3915 6929 

OAC1 4667 8260 

OAC2 3504 6202 

OAC3 3049 5396 

OAC4 3341 5913 

OAC5 3544 6273 

OAC6 3842 6799 

OAC7 2924 5175 

OAC8 3303 5845 

Table 5-1 – Elexon Annual Consumption Vs. OAC Supergroup consumption 

Table 5-1 shows that rural consumers found in OAC1 areas are typically the 

highest consumers in both the Class 1 and 2 categories. Constrained city dwellers 
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on average consume the minimum electrical energy across both domestic 

categories, which is perhaps as to be expected due to the increased number of flats, 

and therefore reduced living space combined with the constraints relating to 

income. This analysis was also carried out at the Group and Subgroup levels and 

the derived energy consumption statistics can be found in Appendix 1.  

If the original Elexon profiles (𝐸𝑘) are then normalised (𝐸𝑘𝑁𝑜𝑟𝑚) to their peak 

power i.e.: 

 
 𝐸𝑘𝑁𝑜𝑟𝑚 = 

𝐸𝑘
𝐸𝑘𝑚𝑎𝑥  

 (37) 

 

A trapezoidal method such as that detailed in [111] can be used whereby the 

area under the curve (i.e. the annual energy consumption) is no longer that of the 

original Elexon profile, but is the energy value per postcode within each OAC 

Supergroup.  

Before carrying out the area filling step, the final data pre-processing lies in 

proportionally assigning the energy values per postcode to Class 1 and 2 depending 

on the relative numbers in each class per postcode. Figures for this breakdown 

were unknown for each postcode therefore the percentage at the Local Authority 

was used.  

After dividing the total number of consumers per postcode according to the 

Class1 to Class 2 ratio, the average energy per consumer is calculated based on the 

ratio between the original Elexon annual consumption values i.e. 6929 / 3915 = 

1.77. Therefore on average Class 2 consumers consume 1.77 times those in Class 

1.    

Whilst the original numbers of consumers per postcode range from 6 (since 

DECC were required to remove postcodes with fewer than 6 customers in total to 

preserve a relative level of anonymity) up to 434, with a mean of 234, after 

subdividing each postcode per the ratio between Class 1 and 2 consumers, clearly 

there will be numbers per postcode lower than the original value of 6 per postcode.  
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Figure 5-6 – Frequency count of number of customers per Elexon class in DECC postcode 

dataset 

Figure 5-6 shows frequency counts of the numbers of consumers per class 

after the processing step detailed previously is carried out. As can be seen, whilst 

the maximum number of consumers per postcode was 434 prior to processing, the 

distribution of data shows that these numbers approach a minima after around 80 

customers for Class 1 and around 30 for Class 2. This can be seen more clearly in 

the empirical CDF of the data shown in Figure 5-7. 

 

Figure 5-7 – Empirical CDF for all data 

 The customer numbers were evaluated at the 99th percentile level for each of 

the OAC super groups in order to minimise the amount of erroneous data located 
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in the tails of the distribution. At this level the total number of customers used for 

sampling are shown in Table 5-2. Numbers of consumers for Class 2 are lower than 

those for Class 1 due to the number of consumers with an Economy 7 tariff being 

typically lower than those with a standard unrestricted tariff.  

99th percentile (Customers) Class 1 Class 2   

OAC1 46.0 19.4 

OAC2 85.0 22.2 

OAC3 78.3 19.0 

OAC4 58.2 18.8 

OAC5 59.0 19.1 

OAC6 55.2 18.8 

OAC7 69.0 19.9 

OAC8 58.1 19.1 

Table 5-2 – 99th percentile of customers per OAC Supergroup and per Elexon consumer class 

The values found in Table 5-2 were used as the maximum customer numbers 

in the subsequent calculation steps. Using the trapezoidal area filling procedure, 

the new maximum ADD values per consumer class can be derived for each 

postcode. Customers were grouped into bins ranging from one customer to the 

maximum number values in steps of two customers.  

Figure 5-8 and Figure 5-9 show the distribution of maximum ADD values for 

a small subset of customer number bins. Data is shown for both Class 1 and 2 

consumers. Both sets of histograms are shown here for the Rural (OAC1) 

Supergroup.  
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Figure 5-8 – Elexon Class 1 consumer Maximum ADD values for different custoemr number 

bins 

 

Figure 5-9 - Elexon Class 2 consumer Maximum ADD values for different custoemr number 

bins 

In line with typical After Diversity Maximum Demand (ADMD) curves, as 

shown in [120], the mean value of the maximum ADD values is shown to decrease 

for an increase in customer numbers. In order to generalise the findings of this 

research, a series of ADD curve parameters were generated using this information. 

Due to the similarity in the trends between ADMD and ADD, the same power 

modelling approach as found in [120] was used, in the form of (38): 

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝐷𝐷 = 𝐴 ∙ 𝑁𝑘
𝐵 (38) 
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This approach was modified in order to take into account the socio-

demographics of the data and therefore the calculation becomes as follows: 

 

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝐷𝐷𝑂𝐴𝐶𝑘 = 𝐴𝑂𝐴𝐶𝑗  ∙ 𝑁𝑘
𝐵𝑂𝐴𝐶𝑗  (39) 

Based on these distributions, a representative value was taken from each of 

the binned frequency distributions. This was in order to derive an overall 

relationship for maximum ADD value as a function of the number of customers. 

A series of tests was carried out to determine the correct value to take from 

each of the customer bins for combination overall. Percentiles were taken from 

each of the customer bin ADD distributions and a series of A and B coefficients 

derived for each OAC Supergroup. Percentile values were chosen at the 50th, 80th, 

90th, 95th 99th and 99.9th level. In this analysis step the procedure is as follows: 

1. Values are sampled from the Maximum ADD customer distributions 

as shown in Figure 5-8 and Figure 5-9 according to the percentile value 

being tested.  

2. A curve of Maximum ADD values per customer and per OAC 

Supergroup is then derived.  

3. These curves are then used to scale the normalised Elexon ADD 

profiles per domestic consumer class relative to the total number of 

consumers within that class per load group. 

4. Overall group load profiles are then synthesised using a model which 

will be outlined below 

5. The accuracy of the finally derived group profiles are assessed and the 

sampling percentile which results in the minimum total error is 

selected.    

For comparison, load profiles were also synthesised using the original Elexon 

profile values, scaled according to the number of customers (𝑁𝑘). As a first phase 

of the process, half hourly seasonal and daily average profiles were derived for each 

of the monitored load groups; in line with the half hourly average seasonal and 

daily individual profiles as detailed previously and was in order to provide an 
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adequate test of the accuracy of the OAC derived ADD (Pk) values in comparison 

to the original Elexon ADD values.  

The socio-demographic makeup of the local area where the load group data 

was observed is used in generating the new OAC ADD domestic component. This 

is carried out by calculating the relative maximum ADD values for the OAC 

supergroups 𝑃𝑘(𝑂𝐴𝐶)𝑗𝑚𝑎𝑥  and then calculating a weighted mean based on the 

actual OAC composition in the area under examination. The percentage 

representation of each OAC supergroup (j) within the demand group (i) is 

represented as: 

 
𝑅𝑂𝐴𝐶𝑗𝑖 =

𝑁𝑂𝐴𝐶𝑗
∑ 𝑁𝑂𝐴𝐶𝑗
𝑁
𝑗=1

 
(40) 

Where 𝑁𝑂𝐴𝐶𝑗 represents the number of consumers having each OAC 

supergroup j within demand group i. 

The final effective maximum ADD value for each domestic customer group is 

therefore calculated by: 

 

 𝐴𝐷𝐷𝑘𝑚𝑎𝑥 = ∑[𝑃𝑘(𝑂𝐴𝐶)1𝑚𝑎𝑥   ∙ 𝑅𝑂𝐴𝐶𝑗𝑖⋯ 𝑃𝑘(𝑂𝐴𝐶)8𝑚𝑎𝑥 ∙ 𝑅𝑂𝐴𝐶8𝑖]  

 

(41) 

 
 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑘 = {

𝑃𝑘𝑁𝑜𝑟𝑚  ∙   𝐴𝐷𝐷𝑘𝑚𝑎𝑥 ∙  𝑁𝑘  𝑘 = 1,2   

              𝐸𝑘  ∙  𝑁𝑘                 𝑘 = 3…8
 (42) 

 

 

For non-domestic loads the original Elexon profile values have been used, 

scaled by the number of customers. The rationale behind this modelling approach 

is due to the reduced effect of diversity from non-domestic loads. This represents 

an assumption that the Elexon profiles adequately represent these loads and that 

diversity has a minimal effect on the ability to scale consumer profiles. This 

assumption has a potentially lower impact on the results of this research, since the 

relative percentage of industrial and commercial loads is low within the data from 

the available monitoring sites. This load synthesis method may therefore require 

suitable modifications if additional datasets with higher penetrations of industrial 

and commercial consumers become available.  
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 Allowable Deviation from the Northern Powergrid Elexon Customer 

Compositions 

During the course of this work, differences became apparent in the Elexon 

customer number composition values supplied by Northern Powergrid. Since the 

accuracy of the ADD values derived from the DECC postcode dataset will be tested 

against the monitoring data gathered during the CLNR project it is important that 

the classification breakdown per load group is as accurate as possible. Table 5-3 

shows the variation in customer numbers according to various sources made 

available during the course of the research. As can be seen, the greatest potential 

for variation of the various class numbers occurs in Elexon classes 1-3. Additional 

variations are shown for some of the industrial customers though are typically 

limited to differences of 1 total customer per class. These variations and the ratio 

of variations between larger and smaller consumers is perhaps as to be expected 

since the time at which the information, and the period at which the information 

is updated would allow for non-observed switching between Economy 7 and 

unrestricted tariffs, or vice versa and the opening or closing of unrestricted small 

industrial consumers.  

 

Substation No. per Elexon Class 

Elexon Class 1 2 3 4 5 6 7 8 

Wooler St Mary 163 38 23 2 0 0 2 0 

Wooler St Mary 173 36 18 2 0 0 1 0 

Wooler St Mary 161 36 17 2 0 0 1 0 

Alnwick St James 106 0 20 2 1 0 0 0 

Alnwick St James 92 0 17 3 1 0 0 0 

Darlington Melrose 279 15 0 0 0 0 0 0 

Darlington Melrose 254 13 0 0 0 0 0 0 

Table 5-3 – Original Consumer Breakdowns per load group from Northern Powergrid  

The deviations of potential customer numbers per class were therefore 

converted to a percentage allowable difference from the quoted figures for each of 

the CLNR monitored load groups. This was carried out by calculating the 

maximum percentage differences between the customer number values per class 
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shown in Table 5-3. These were used as upper and lower bounds for potential 

customer number variations when selecting the most accurate percentiles from the 

ADD distributions as detailed previously. This was carried out for only Elexon 

classes 1-3 and in all future simulations and experiments the number of consumers 

in categories 4-8 remain as quoted by Northern Powergrid.  The reason for the 

upper and lower values not having the same absolute value is that percentages are 

modelled as a difference for each of the possible class number combinations, i.e. 

173 customers as a percentage increase over 161 represents an increase of 7.45% 

whereas a decrease from 173 would represent a decrease of 6.93%. Whilst the 

values for the subset of monitoring locations presented here have shown variations 

in customer numbers, an assumption has been made in this research that similar 

differences are possible across all of the available monitoring sites. Since the 

selected ADD modelling procedure will be tested against real-world data from 

these sites, these percentage deviations represent a wider tolerance for the 

successful fitting of the final model, which could have unwanted effects when 

deriving the A and B parameters in (39) 

 

Elexon Class 1 2 3 

Max Customer % Increase 13.21 13.33 26.09 

Max Customer % Decrease -15.22 -15.38 -27.78 

Table 5-4 – Maximum percentage customer deviations from the original quoted values 

 Test Case 

Since detailed information as to the exact OAC composition for the load group 

is unlikely to be available to those without access to a DNO, the decision was taken 

to additionally model the accuracy of the procedure outlined above through use of 

publically available socio-demographic information. Since exact information as to 

the OAC breakdown was not available for all load groups, and also due to this being 

the more likely scenario for general users of this method, it is the results from this 

level which will be used for the overall load synthesis method.  

 For the purposes of this analysis, each UK postcode was assigned to its 

appropriate OAC Supergroup. Each postcode is then tied to a particular Local 
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Authority and therefore the percentage breakdown per OAC Supergroup can be 

determined for this level.   

For this work, the Local Authorities (LAs) of Northumberland and Darlington 

were used as these are the locations of the primary substation networks upon 

which the monitoring points were located. These LAs have the following OAC 

group composition: 

 

OAC Supergroup Northumberland % Darlington % 

1 7 27 

2 1 0 

3 0 0 

4 1 0 

5 22 14 

6 32 20 

7 15 9 

8 22 30 

Table 5-5 – Percentage of OAC groups per network area 

The total error was then calculated using the Root Mean Square (RMSE) 

method and is calculated as the total error between the two profiles normalised to 

the total number of domestic customers, since the method for calculating the profile 

of non-domestic customer is the same for both approaches. As can be seen the OAC 

ADD values show improvement over the original Elexon profiles.  
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Percentile 
Total RMSE Error per 

Domestic Consumer 

Total Elexon RMSE Error per 

Domestic Consumer 

 Average Minimum Average Minimum 

50 1.8879 1.7551 1.8700 1.7354 

80 1.8113 1.6836 1.8741 1.7311 

90 1.7898 1.6751 1.8668 1.7350 

95 1.7939 1.6903 1.8702 1.7389 

99 2.0178 1.9178 1.8734 1.7355 

99.9 2.7819 2.6877 1.8668 1.7348 

100 3.0436 2.9377 1.8719 1.7303 

Table 5-6 Average profile RMSE per customer using both original Elexon and OAC ADD 

values 

 Results show that the 90th percentile of the distribution resulted in the 

lowest total error, as shown in Table 5-6. Therefore this percentile has been taken 

from each of the binned distributions when calculating the overall A and B 

coefficients. An example of the resultant data used to derive the coefficients and 

the resultant lines of best fit are shown in Figure 5-10 and Figure 5-11.  

 

 

Figure 5-10 – Maximum ADD customer number relationship for Class 1 customers 
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Figure 5-11 – Maximum ADD customer number relationship for Class 2 customers 

 Final OAC ADD Model Parameters 

The finally derived values of A and B for each OAC Supergroup generated at 

the 90th percentile level can be found in Table 5-7. The value of parameter B for 

OAC 2 appears to represent an outlier relative to the parameters for the remaining 

OAC supergroups. This is potentially as a function of reduced data for this OAC 

supergroup when deriving the overall parameters.  

 Class 1 Class 2 

Model Parameter A B A B 

OAC 1 2.270 -0.149 4.965 -0.134 

OAC 2 1.310 -2.9^10-10 3.902 -0.099 

OAC 3 1.186 -0.031 3.038 -0.031 

OAC 4 1.380 -0.095 3.179 -0.095 

OAC 5 1.579 -0.112 3.557 -0.114 

OAC 6 1.691 -0.127 3.664 -0.116 

OAC 7 1.133 -0.047 2.841 -0.042 

OAC 8 1.287 -0.083 2.963 -0.054 

Table 5-7 – Final A and B parameters for derivation of maximum ADD values for each of the 

OAC Supergroups 

Similar values to those shown in Table 5-7 could also be derived at each of 

the grouping levels within the OAC classification. As discussed in [113] a value of 
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2500 customers is typically used when calculating a representative profile for a 

consumer group. In line with these numbers, Figure 5-12 and Figure 5-13 show 

the profile for 2500 customers of the OAC7 Supergroup shown relative to the 

original Elexon profile for the same period. Here data is shown for the Winter 

Weekday period.  

 

Figure 5-12 – Elexon and OAC ADD profiles for Class 1 consumers 

 

Figure 5-13 - Elexon and OAC ADD profiles for Class 2 consumers 

Results for both Class 1 and 2 consumers have shown a decrease in their 

expected profiles for the OAC7 supergroup. This is for a number of potential 

reasons. The Elexon profiles can be considered somewhat historic for profiling 

purposes, whilst the energy information used in the derivation of the new profiles 
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has been gathered relatively recently. Another potential reason for this reduction 

is that OAC group 7 represents a socio-demographic of relatively constrained 

circumstances against the remaining classifications. These constraints have been 

shows to result in typically reduced energy demands as in [118]. 

 Test Case Results 

Figure 5-14 shows a bar plot of the RMSE error when estimating the group 

ADD profile using both the OAC and Elexon only methods. As can be seen, as in 

the first test case, improvements over the Elexon method are made for each of the 

load groups. Significant improvements over the Elexon method are shown for load 

groups 4, 6 and 8. As in the first test case, additional refinements have been made 

to the original group consumer breakdown information supplied by Northern 

Powergrid. 

 

Figure 5-14 – RMSE Error using the OAC ADD and Elexon only methods 

Table 5-8 shows the final consumer breakdowns according to their Elexon 

classification.  
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Elexon Class 1 2 3 4 5 6 7 8 

Group 1 145 17 3 0 0 0 0 0 

Group 2 385 14 1 0 0 0 0 0 

Group 3 201 10 2 2 0 0 0 0 

Group 4 1032 75 8 3 1 0 1 0 

Group 5 893 45 36 3 3 3 0 1 

Group 6 2424 284 53 5 1 6 2 3 

Group 7 705 60 36 3 3 1 3 0 

Group 8 2333 207 76 9 2 3 3 2 

Table 5-8 – Final Elexon consumer class breakdown for load groups 

 Conclusions 

The rationale for deviations away from the presently used Elexon ADD values 

has been made in this chapter. In order to accurately modify the expected demand 

for load groups of varying sizes, clearly those values which are quoted for static 

customer numbers will not apply. Whilst similar analysis has been carried out in 

the case of ADMD calculations, to date no such estimations have taken place for 

ADD values. As commented upon previously, increasing requirements will be made 

on load modelling at the distribution level to ensure efficient and economic 

operation of the power system. In this chapter it has been shown that by not taking 

into account the variations in maximum ADD according to customer numbers can 

result in significant under or over estimations of total group load.  

 In addition to variations according to customer number, key differences have 

been outlined according to the annual consumption of consumers according to their 

socio-demographic classification. The impact of these variations will be commented 

upon in the discussion section of this thesis.  
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6 HV Feeder Load Synthesis: Load-Temperature Relationship  

 Introduction 

This Chapter will examine the relationship between load and temperature for 

the grouped loads outlined previously. This topic is of importance to the power 

system since ambient temperature alongside time of day, represents the most 

commonly used influential variable on electrical demand [42]. Understanding the 

nature of this relationship at the distribution level has been hitherto relatively less 

investigated than at higher and indeed the lowest levels of aggregation.  

One of the key aspects of the research presented in this thesis is the 

determination of available network headroom. Such headroom can be considered 

as a function of asset capacity minus the load supplied. Whilst RTTRs and DTRs 

have been discussed as a method to increase an asset’s capacity, accurate 

knowledge of the supplied load is required to allow true estimation of the overall 

headroom.  

Since ambient temperature represents a key influence, understanding how 

this relationship varies based on time of day, day of week, season, and also on the 

composition of consumers within the group will give increased accuracy when 

modelling load at the distribution level.  

 Chapter Goals / Objectives and Contributions 

 Goals / Objectives 

Develop a method capable of determining the sensitivity of consumer groups 

to ambient temperature to allow for modification of expected demands based on 

measured temperature values 

 Transition from existing literature and research / Contribution 

Much of the existing literature discussing the causal links between electrical 

demand and ambient temperature have done so either in highly detailed models of 

end-consumer consumptions, sometimes involving building thermal efficiency 

models; or have considered the relationship at the national demand level. This 

chapter provides a contribution in its assessment of the relationship at smaller 
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levels of demand group aggregation, those found at the distribution system level, 

up to and including the primary MV feeder level (33kV and below). The research 

presented here represents a novel contribution given the context of the work, 

although the use of linear correlation values to describe a relationship between 

demand and ambient temperature has been presented previously. The method to 

derive a causal link between consumer types, temperature sensitivities and the 

overall demand groups’ relationship with temperature also represents a 

contribution of this chapter.  

 Attainment of Goals 

A series of temperature sensitivity coefficients have been presented for 

consumer types to allow for derivation of total demand group’s correlation with 

temperature. This method has been shown to deliver good accuracy when tested 

against real-world data, and presents a development over the use of ADD profiles 

such as those from Elexon. 

 Chapter Outline Block Diagram 

Figure 6-1 a block diagram of the inputs, methods and outputs for this 

chapter. Real-world monitored ambient temperature and electrical data is 

clustered using the pre-existing DBSCAN clustering algorithm to expose the 

existing seasonal relationships and to allow for determination of the correlation 

between load and temperature. These correlation values serve as testing outputs 

for the proposed generalised correlation model, which uses the socio-demographic 

ADD profiles derived in Chapter 5 as additional inputs. The outputs from this 

chapter are both the assessment of clustered load-temperature values, the 

generalised correlation model and the derived correlation sensitivity coefficients 

for domestic class consumers.  
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Figure 6-1 – Chapter 6 Block Diagram 

 Background 

The relationship between electrical demand and ambient weather 

parameters is one which has been studied at length [43-45, 121, 122]. The 

significant factor in this research however is that analysis has typically been 

carried out using national, large area or individual consumer level data. The 

motivation for such research has been to forecast [123] or model the response of 

load to temperature, in order to ensure economic and reliable operation of the 

power system [124] or to accurately model individual consumer loads [122].  There 

is however, a space within this area of research which has not been well 

documented. This is when examining the effect of weather variables on grouped 

electrical loads at distribution substations and feeders. 

Chapter 7 of this thesis will outline a temperature sensitive method for group 

load synthesis, with this Chapter acting as a prior study to examine how the 

relationship varies according to the day, time and seasonal factors discussed 

previously.   

A number of potential methods for assessing this relationship exist, however 

these typically fall into two main categories, linear and non-linear models. In the 

case of linear models, a linear regression function is often fitted to the resultant 
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load and temperature parameters, often in the case of a multiple linear regression 

(MLR) model [45, 46, 125-129] .  

 In [126] as in [45, 130-132] the concept of cooling degree and heating degree 

days are used as part of an MLR modelling structure. Cooling and heating degree 

days (CDDs and HDDs) refer to the amount of heating required relative to a series 

a series of threshold temperatures. In the UK the threshold for heating is defined 

as 15.5OC [131] above which it is theorised that there is no requirement for heating 

demand.  

In [131] HDDs and CDDs have been used to linearize a load temperature 

relationship in order to provide inputs to a proposed MLR model however this 

research examined data at the monthly as opposed to half hourly level. The 

relationship between CDDs and load for UK data at this level has also been shown 

to have a very limited relationship, due to the minimal demand for air 

conditioning.  HDDs and CDDs have not been used in this research since these add 

an additional source of variability over the use of ambient temperatures. In [131] 

one threshold value is used to compute the HDD values of data at the national 

level. Whilst this assumption is potentially valid for large groups of consumers, 

there is the potential for such a threshold to inaccurately estimate the behaviour 

of consumers based on either tariffs or socio-demographics [133]. An investigation 

of such thresholds based on these variables was beyond the scope of this research, 

however this is a potential topic for further work to extend the approach taken in 

in this thesis. An additional factor which has not been taken into account within 

this research is the nature of temporal lag. Ambient temperature has been 

discussed as displaying something of a lagged relationship with electrical demand, 

in effect the causality of the relationship between ambient temperature and 

demand is not immediate. This represents a limitation of the findings within this 

research since models have considered the observed ambient temperatures and 

electrical demands as time-coincident. The rationale behind this approach was to 

determine if such relationships could be modelled accurately, and also reduce the 

overall complexity when considering the coincidence between the observed loads 

and asset capacities delivered by dynamic thermal ratings. 

Non-linear models are proposed for the load temperature relationship in [43, 

121, 134]. Such non-linear models take the form of multiple order polynomial 
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relationships as in [121] which also comments on the use of non-parametric 

methods. A non-linear model is often used in scenarios where demand increases as 

temperature tends towards the extremes, however as noted previously, the 

demand for cooling electrical loads in the form of air conditioning in the UK is 

reduced from that of countries such as Spain [44] and the USA [46]. The decision 

was therefore taken in this research to model load as a linear function of 

temperature. The time period over which each relationship will be examined was 

also a significant factor in the selection of a linear approximation, since it will be 

shown that for a singular half hour period a linear approximation is valid.  

Having selected a linear approximation method to examine the half hourly 

load temperature relationships, two sets of parameters can be investigated. 

Firstly, the gradient and y-intercept of the resultant linear approximation and also 

the normalised parameter of the correlation coefficient.  In [135-138] a series of 

correlation coefficients and linear regression coefficients are derived for a series of 

wide area load groups, however due to the aggregation level at which the loads are 

monitored no causal model of the type proposed in this Chapter is presented.    

Use of the correlation coefficient to describe the overall relationship at a 

particular point in time is beneficial for a number of reasons. Firstly, the 

parameter by definition is normalised and therefore inferences as to the variability 

of load due to temperature can be made independent of a particular load group. A 

significant area in which knowledge of the correlation of a particular load group 

can be beneficial is in load forecasting and modelling. Or more particularly in the 

case of understanding the impact of input errors to the overall forecast or synthesis 

model. As noted in [42] whilst many models take into account the influence of 

weather variables such as ambient temperature [123, 139-141] few take into 

account the forecasting accuracy of the input variables used. The influence of these 

errors is discussed in [142] and the conclusion is made that forecasting error of 

ambient variables affects the resultant load forecast differently at different times 

of year. [143] uses a perturbation of input forecast variables to show that their 

method is robust to forecast methods although this data was for a large 

metropolitan area.  

Secondly, from an overall system operation perspective, knowledge of a 

group’s correlation between load and temperature can be used in economic 
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dispatch scenarios. In [144] a scenario is considered whereby through available 

interconnection between areas, power can be shifted from locations according to 

their correlation with weather systems and their resultant probabilities of 

reaching peak demand. At the distribution level, the problem could be formulated 

as one of identifying the requirement for ancillary network services due to the 

probability of peak network demands. As the requirement for flexible resources 

increases, the economic considerations of such resources will become more central 

in day to day operation of the power system [8]. Knowledge of a groups’ correlation 

will also prove to be useful when considering the potential variability in the 

requirement of such network services to mitigate against a shortfall. In a scenario 

where such services have been scheduled, likely as the result of a forecast or load 

model, the impact of a deviation away from the forecasted conditions can be said 

to be a function of the correlation between load and temperature at that particular 

point in time, and the resultant impact on the required service is identified.  

 Outline of the work in this chapter 

Firstly as a method of exposing the complex and time varying relationships 

between load and temperature when examined at this level, a density based 

clustering algorithm (DBSCAN) has been used to examine the raw data. Secondly 

a series of model structures to derive the correlation between load and temperature 

for a given load group are proposed and tested. 

Finally in this Chapter the same modelling structures as proposed previously 

are used to derive a series of coefficients in order to suitably modify the ADD 

profiles generated in the previous Chapter. Again these coefficients are 

performance tested against synthesis methods which do not correct the typical 

ADD profiles for both diversity and temperature sensitivity dependent upon the 

time of day.  

The purpose of this work is to examine the variability in the relationship 

between grouped electrical loads and ambient temperature due to composition of 

those groups. As discussed previously the nature of the model required to deliver 

the appropriate level of accuracy varies considerably depending upon the 

aggregation level at which it is required. At high levels of aggregated the functions 

of load and temperature are simplified from those at the lower levels. At this level 
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of aggregation the composition of the group, the day of the week and the time of 

day have been shown to significant impacts on the resultant relationship. In order 

to demonstrate this, the DBSCAN clustering algorithm outlined previously has 

been used to determine the number of load-temperature relationships in a half 

hourly period, dependent upon the day of the week. 

As can be seen in Figure 6-2 at some time periods, multiple relationships can 

exist whereby at the same external air temperature, significantly differing values 

of resultant load are observed. The cluster shaded in orange represents the section 

of data which has been identified as a separate cluster within the overall dataset.  

 

 

Figure 6-2  - Examples of half hourly load and temperature values and the resultant DBSCAN 

derived clusters 

 

This is inherently due to the composition of the group itself. For example, 

Class 2 consumers (Economy 7) are those with electric storage heating in their 

homes. The results in Figure 6-2 show that at points where the storage heating 

load is not present, the resultant load is significantly diminished, therefore this 

must be taken into account when simulating the overall group load at this level.  

 DBSCAN Clustering Algorithm 

The DBSCAN clustering algorithm [145] represents a different class of 

clustering algorithm as opposed to those such as hierarchical or K-means as the 
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number of clusters is derived as a function of the algorithm as opposed to a 

manually specified limit.  The DBSCAN algorithm has been used for this reason, 

since the relationships are unknown, but also since the DBSCAN algorithm takes 

into account the natural noise within the load-temperature relationships.  

This algorithm will be used to determine the number of potential load-

temperature relationships as a function of time of day, seasonality and group 

composition. The DBSCAN algorithm begins by randomly selecting a starting 

point within the dataset. All data points within a particular neighbourhood of the 

original start point, defined as the ‘Eps’ are added to the cluster, however a 

minimum number of data points must be within the original Eps distance 

otherwise the point is rejected. Clearly if no points are ‘reachable’ from the initial 

starting point, the process is iterated until a suitable starting point is located. 

There is of course the possibility that this point could be added into the cluster 

once more points have been located, but for the initial iteration the minimum 

number of points must be achieved. The search is continued however now, any 

points which are within the Eps neighbourhood of any of the points already added 

to the cluster can be added. These points are said to be ‘density reachable’ from the 

cluster. 

This process is carried out until no further points are with the density 

reachable domain of the cluster. If all data has been assigned to a cluster, the 

process ends, however if data still remains, the process is simply repeated with a 

newly chosen starting point. 

A number of parameters must be defined for usage of the algorithm. One, the 

number of minimum points per cluster has already been discussed and in this 

research this number has been set to 4. The additional required parameter is that 

of the Eps.  

 Automated determination of the Eps 

The first stage of the DBSCAN method requires a k-nearest neighbour (KNN) 

search of the entire dataset. The KNN searches the dataset to locate the ‘k’ closest 

points within the dataset to some predefined test point. Neighbours are located 

due to their distance from the selected test points. A number of distance metrics 
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are available to generate the KNN search, here the standard Euclidean distance 

metric has been used.  

The choice of ‘k’ in the context of DBSCAN has been debated [145] where 

significant improvements in performance of the algorithm were not achieved by 

increasing the value of ‘k’ beyond 4. This is value which has been chosen for all 

clustering using the DBSCAN algorithm.  

The knn search results in a series of distances between points which is then 

sorted. An example of these sorted distances is shown in Figure 6-3.  

 

Figure 6-3 – Example of the Sorted KNN distances from the DBSCAN clustering algorithm 

inputs 

Figure 6-3 shows the sorted ‘4-dist’ values calculated from the input data. A 

‘knee point’ can clearly be observed in the data samples at around 20 samples. It 

is this knee point which is used within the DBSCAN algorithm to define the typical 

neighbourhood or Eps in which the algorithm should search for similar data. The 

data to the left of the knee point represents noise in the dataset which could distort 

the end clustering results and reduce performance in determining the correct 

partitions in the data. In [145] determination of the knee point is done manually, 

however in this research the ‘Kneedle’ method [146] has been used to automate 

this process. Whilst the use of the DBSCAN algorithm itself does not represent a 

contribution to knowledge, automation of this knee-point determination using the 

‘Kneedle’ method does represent a contribution to use of the DBSCAN method.  
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6.5.1.1 Kneedle’ method 

The parameter of Eps is required as an input to the DBSCAN algorithm but 

varies based on the dataset which is being clustered. The knee point of the sorted 

distance plot can be used a proxy measure for the ‘true’ value of Eps. An automated 

method of determining this parameter is therefore of importance, particularly 

when clustering large quantities of datasets, where visual inspection would be 

considerably time consuming. The choice of the ‘Kneedle’ method allows for such 

automation. This method first calculates the differences between all points in the 

dataset. Each data point is then analysed to determine if a local maximum exists.  

These maximums are then referenced to a data derived threshold.  If at a 

particular data point, is found to be below the threshold, before the next local 

maximum value a knee point is estimated. Since for the difference data considered 

in here there is typically a single knee point, the index of the first determined knee 

point has been used to estimate the Eps.    

 DBSCAN Results 

Figure 6-4 shows an example of the input data to the DBSCAN clustering 

algorithm. In this case, non-normalised load and normalised ambient temperature 

values are provided as inputs. In this section as in each of the following Chapters, 

ambient temperature values have been normalised to the maximum observed UK 

air temperature to date (38.5oC) [147]. The use of normalised air temperature data 

has an impact on the final clustering selections and the representation of the load-

temperature relationship in general. Since the data range of ambient temperature 

values within each half-hourly period is not constant throughout the course of a 

day (i.e. there are very few high ambient temperature values in the early morning), 

a correlation represented as a function of raw as opposed to normalised data 

results in differing values of correlation. The use of normalised data allows for 

comparison between different half hourly time periods directly since the 

normalisation value is independent of time. Since the correlation between load and 

temperature is derived for each demand group separately, normalising the 

electrical demand from each load group would have no effect on the half hourly 

correlation values.  
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Figure 6-4 – Original half hourly input data 

Figure 6-4 shows the presence of two distinct clusters, one at around 55kW 

and the other at around 80kW.  Figure 6-5 shows the results of the DBSCAN 

clustering algorithm when used upon the data presented in Figure 6-3. In addition 

to the more prominent clusters noted previously the algorithm also identifies the 

data in between the two clusters as an independent set.  

 

 

Figure 6-5 – DBSCAN derived clusters within the input dataset 
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 Load-Temperature correlation 

When determining the group’s correlation between load and temperature, the 

procedure is as follows. In this research, the commonly implemented Pearson 

Correlation Coefficient has been used (41).  

 
𝐶(𝐿𝑜𝑎𝑑, 𝑇𝑎) =

𝑐𝑜𝑣(𝐿𝑜𝑎𝑑, 𝑇𝑎)

𝜎𝐿𝑜𝑎𝑑𝜎𝑇𝑎
= 

𝐸 [(𝐿𝑜𝑎𝑑 − 𝜇𝑙𝑜𝑎𝑑)(𝑇𝑎 − 𝜇𝑇𝑎)]

𝜎𝐿𝑜𝑎𝑑𝜎𝑇𝑎
 

(43) 

Where cov is the covariance, 𝜎 is the standard deviation, E is the expectation 

and 𝜇 is the mean.  

Firstly the data is organised according to daily period as per the Elexon time 

periods and then by half hourly time step. The DBSCAN algorithm is then applied 

to this data to determine the possible number of load and temperature 

relationships within the period. Each load temperature data point, whilst being 

assigned to a particular day also belongs to each Elexon seasonal period.  

An additional factor to this study is to determine if load temperature 

correlation varies significantly as a function of seasonality. This represents a 

research contribution due to its implementation of clustering to determine these 

relationships, as opposed to manually separating the data based on seasonality or 

monthly period.  

It is important to note that this is subtly different to the wider relationship of 

demand varying based on temperature values. The correlation refers to the 

strength of the relationship, i.e. whether the same external stimuli have the same 

effect on demand for the entire annual period. Within each Elexon seasonal and 

half hourly period, the modal DBSCAN cluster is identified, along with each 

clusters’ load temperature correlation value. The maximum number of 

relationships exposed by the algorithm was 5, i.e. one relationship per seasonal 

period. The breakdown of relationship numbers is shown in Table 6-1.  

 

Number of Load-Temperature relationships 1 2 3 4 5 

Percentage of Half Hourly periods with N 

relationships (%) 
28.2 30.5 28.5 11.9 0.9 

Table 6-1 - Number of Load-Temperature relationships per half hourly period 
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If this correlation value has a p-value below the accepted threshold then the 

correlation value is assigned to that particular season and half hourly period. Here 

the typical p-value of 0.05 has been used. If the correlation value does not meet the 

p-value criteria then this correlation value is rejected.  

 Group Correlation Profiles 

 

Figure 6-6  - Examples of Group Correlation Profiles 

Figure 6-6 shows examples of correlation profiles for two selected load groups. 

In order to deal with potentially missing correlation values as a result of their p-

value rejection, the resultant correlation profile is firstly linearly interpolated. 

Since most correlation values (99.95%) meet the p-value criteria the number of 

correlation values which have to be linearly interpolated are minimal.  

An additional process to reduce some of the apparent variability in the final 

correlation values as shown in Figure 6-6 was to pass a smoothing filter over the 

values. This was of the moving average type with a sliding window of 6 values 

(equivalent to 3 hours). A number of sliding window lengths were considered for 

the implementation of this smoothing process. Clearly as the sliding window length 

is increased, some features of the correlation can be removed, resulting in an over-

smoothed profile. 3 hours was found to present the best trade-off between having 

the shortest window possible and being able to deliver accurate results when 

developing the final generalised correlation model. The implementation of this 

smoothing window represents an assumption that this is the best approach 
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possible, and that the original half hourly correlation values have not been 

adversely modified such that they no longer represent the original data 

sufficiently.   

 

 

Figure 6-7 – Load Temperature correlation profile after smoothing 

As can be seen in Figure 6-7, each group displays differing relationships with 

temperature over time. For reference, 05/08 refers to the 05/08/2014 which was a 

Tuesday with 9/08/14 therefore being a Saturday.  

Group 8 shows much stronger correlation in the early morning period as 

opposed to Group 3. This is likely as a result of the relative percentage of Economy 

7 customers in this load group as opposed to Group 3. 

 Analysis of Correlation Error 

Examples of the finally chosen data clusters for a randomly selected group at 

two half hourly time periods are shown in Figure 6-8. The correlation of the group 

at 17:00 is clearly shown to be stronger than that of the group at 03:00. This is as 

to be expected for this particular group since no Economy 7 consumers are present 

within this load group, therefore during the early hours of the morning 

consumption is typically at a minimum. For consumers in the Economy 7 class, 

this relationship is more likely to demonstrate a stronger correlation.  As an 

additional piece of analysis, the impact of a potential forecasting or modelling error 

was examined. In this analysis it has been assumed that based on an appropriate 
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forecasting model using exact information as to the ambient temperature, true 

estimation of the resultant group demand can be made. 

 

 

Figure 6-8 – Examples of half hourly correlation values 

 As can be seen in Figure 6-8 if for example the temperature value was 

forecast at a value of 7.7oC (0.2 when normalised against the maximum value of 

38.5), and the time of day was 03:00 then the resultant impact of a forecasting 

error would be relatively minimal since the set of demand values is relatively 

similar across the range of normalised ambient temperature values. However it 

can also be seen that at 17:00 the same forecasting error would not result in the 

same error in the resultant load. In [148] a Mean Absolute Error (MAE) value for 

forecasting of ambient temperature was calculated as between 1.15 and 1.75oC 

based on the time over which the forecast is made. These would relate to a 

deviation of 0.03 and 0.045 when normalised to 38.5oC respectively. For 

completeness in this analysis a potential deviation of 0.05 or 1.925oC from a 

hypothetical forecasted ambient temperature value has been considered. The 

resultant analysis gives an estimation of the impact of such an error as a function 

of a groups’ correlation.  
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Figure 6-9 – Percentage Load Error due to ambient temperature error as a function of 

correlation 

Figure 6-9 shows the variation in percentage error as a function of correlation. 

Positive correlation data on the right hand side of the graph is relatively limited, 

since there are limited time periods where demand groups observe a positive 

correlation with ambient temperature. As can be seen, the percentage error in 

demand estimation increases as the correlation tends towards its minima as is to 

be expected. This is as shown in Figure 6-9 whereby an error in temperature 

estimation, essentially a shifting to the left or right along the x-axis, would result 

in a more significant deviation in the expected demand for the group at 17:00 as 

opposed to 03:00.  The original data from the analysis is shown alongside a fitted 

piecewise linear function: 

 

 
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  {

−6.797 𝑖𝑓 𝑟 < 0
6.797  𝑖𝑓 𝑟 > 0

 (44) 

 

This function can therefore be used to determine the potential envelope of 

group demand values at a particular point in time.   
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Figure 6-10 – Upper and Lower bounds of demand group load based on ‘forecast error’ 

Figure 6-10 shows the resultant upper and lower bounds of group load based 

on the assumed forecast error modelled previously. Between 00:00 and 06:00 the 

error is at a minima due to the reduced correlation at this time as represented by 

the narrowing of the upper and lower bounds. The envelope increases as the 

correlation increases in strength towards 12:00. 

 Generalised Correlation Model 

The final output of this section is to deliver a series of correlation sensitivity 

coefficients (CSCs) for each of the domestic Elexon classes related to the overall 

correlation of the load group with temperature. The coefficients given will allow 

for derivation of a group’s correlation with temperature regardless of load group 

size or composition.  

The correlation model presented in this chapter has two main components. 

Each kth class of consumer (i.e. residential or industrial), can be thought of as 

contributing to the overall demand of group i (Li), as a function of both their 

expected real power demands (Pk) and the number of consumers in each class. This 

contribution can be expressed either as raw value, or can be normalised against 

the group demand and therefore expressed as a percentage. It is this normalisation 

which allows for the model to generalise across multiple customer combinations 

not found within the training dataset. In addition to these demand contributions, 

each class also has associated with it a particular sensitivity to ambient 
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temperature. The correlation model presented here attempts to determine this 

sensitivity to allow for derivation of the overall load groups’ sensitivity.  

The socio-demographic makeup of the local area where the load group data 

was observed is used in generating the domestic components of the overall load 

group. This is carried out by calculating the relative maximum ADD values for the 

OAC supergroups and then calculating a weighted mean based on the actual OAC 

composition in the area under examination. In order to test this approach, two test 

cases were used. The first uses accurate knowledge of the relative OAC 

percentages of the given test area, in this case an LV substation located on the 

Denwick Primary substation was used. In the second case, the average percentages 

in each OAC Supergroup category were calculated at the Local Authority (LA) 

aggregation level.  The Denwick Primary substation lies in the Northumberland 

LA area and the Rise Carr Primary lies in the Darlington LA.  When synthesising 

load profiles using this method, the percentage OAC breakdown statistics as shown 

in Table 6-2 were used.  

 

OAC Supergroup Northumberland (%) Darlington (%) 

1 7 27 

2 1 0 

3 0 0 

4 1 0 

5 22 14 

6 32 20 

7 15 9 

8 22 30 

Table 6-2 – Percentage of OAC groups per network area 

In order for the finally selected correlation model to be able to generalise across a 

wide range of potential load groups, the ADD profiles acting as model inputs need 

to be normalised. As a precursor to the normalisation step however, a selection 

must be made as to whether the overall group demand represents the most 

accurate form of normalisation available. This normalisation could be carried out 

against either the overall group maximum demand regardless of time, as a 
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function of the overall group demand at that particular point in time, or as a 

function of some subgroup demand, such as the total domestic (LDom) or Industrial 

and Commercial (LI&C) load. These represent some of the potential methods by 

which this normalisation can be carried out. As part of the model testing, one of 

these candidates will be selected as the most appropriate. The normalised demand 

profiles Pk will then be referred to as 𝑃𝑘𝑛𝑜𝑟𝑚post-normalisation.  

 

Table 6-3 shows the proposed candidate methods for normalisation: 

 

 

Table 6-3 – Load group normalisation candidate methods 

Where k is the class of consumer, Pk is the total real power demand for the 

number of consumers of class k within the overall load group (Nk), t is the half 

hourly period (1-48) and LDom is the total demand profile from domestic consumers 

within the group, derived as shown in (42) where 𝐾𝐷𝑜𝑚 is the total number of 

domestic consumer classes and n is the total number of half-hourly data sample 

points: 

 

𝐿𝑖𝐷𝑜𝑚 
= ∑ 𝑃𝑘1⋯𝑛

𝐾𝐷𝑜𝑚

𝑘=1

 (45) 

 

In methods B and D the component of group demand LDom has been isolated 

from the overall group demand. There is no corresponding isolation of the demand 

from industrial and commercial customers LI&C for two reasons. Firstly due to the 

relative percentage of industrial consumers in each of the test load groups there 

was insufficient data in order to accurately determine the required model outputs. 

Normalisation Candidate Method 

A 
𝑃𝑘(𝑡)

𝐿𝑖𝑚𝑎𝑥
 

B 
𝑃𝑘(𝑡)

𝐿𝑖𝐷𝑜𝑚𝑚𝑎𝑥
 

C 
𝑃𝑘(𝑡)

𝐿𝑖(𝑡)
 

D 
𝑃𝑘(𝑡)

𝐿𝑖𝐷𝑜𝑚(𝑡)
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Secondly, the temperature sensitivity of industrial and commercial loads has been 

discussed as being lower than that of domestic loads [149]. Therefore, though this 

scoping decision makes an assumption of the relative temperature independence 

of industrial and commercial loads, the choice not to model these consumers 

directly as being significantly temperature and therefore correlation sensitive was 

deemed appropriate. This represents an additional area for further work to 

develop, or investigate the need for additional sensitivity coefficients for these 

consumers based upon the monitoring of suitable network demand groups. 

The proposed model will provide a series of correlation sensitivity coefficients 

(CSCs) which can be used in conjunction with the selected normalisation format in 

order to derive the overall group load-temperature correlation (C). These CSC 

values will be provided for domestic consumers only for the reasons discussed 

previously. In addition to the normalised consumer class profiles a number of 

additional model inputs were considered. A value was proposed which takes into 

account the ratio between the domestic and non-domestic loads (R) at a point in 

time. This is calculated as follows (43): 

 

 
𝑅𝑘(𝑡) =

𝑃𝑘(𝑡)

𝐿𝐼&𝐶(𝑡)
 (46) 

 

Where LI&C is the total demand profile from Industrial and Commercial 

consumers within the group derived as shown in (44) and 𝐾𝐼&𝐶 is the total number 

of Industrial and Commercial consumer classes: 

 

 

𝐿𝐼&𝐶 = ∑ 𝑃𝑘1⋯𝑛

𝐾𝐼&𝐶

𝑘=1

 (47) 

 

The final proposed model inputs proposed are the number of domestic 

consumers within each class (Nk), and the total number of domestic consumers 

(∑Nk). Both ordinary and weighted least squares type models were considered in 

order to derive the CSC values. Weights (w) were considered as functions of the 

derived correlation p_values. These values refer to the ability to reject a null 

hypothesis of correlation. If the p_value falls below a particular threshold, the null 
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hypothesis can be rejected and a correlation is said to be present between the two 

variables. In order to provide weights to the least-squares algorithm, the value of 

1 − 𝑝_𝑣𝑎𝑙𝑢𝑒 was used. The least-squares algorithm is solved in the usual manner, 

with firstly the formation of the correlation vector C and the weight vector W: 

 𝐶 = [𝑐 (1), 𝑐(2)⋯  𝑐(𝑛)]𝑇 (48) 

 𝑊 = [𝑤 (1),𝑤(2)⋯  𝑤(𝑛)]𝑇 (49) 

 

The format of the input rows of the matrix H, hj will be determined by testing 

the proposed model structures against the real-world monitored data. The 

proposed structures for the rows of H are shown in Table 6-4: 

 

 𝐻 = [ℎ1, ℎ2⋯ 𝑙𝑛]
𝑇 (50) 

 

Correlation Model Method 

1 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

] 

2 

ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

,

𝑁𝑘, ⋯ , 𝑁𝐾𝐷𝑜𝑚] 

3 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

∑ 𝑁𝑘

𝐾𝐷𝑜𝑚

𝑘=1

] 

4 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

, 𝑅𝑘, 𝑅𝐾𝐷𝑜𝑚] 

Table 6-4 – Proposed Correlation Model Structures 

 
𝐶 =  𝐻 ∙  𝐶𝑆𝐶 (51) 

 𝐶𝑆𝐶 =  (𝐻𝑇 𝐻)−1 𝐻𝑇𝐶 (52) 

 𝐶𝑆𝐶𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (𝐻
𝑇 𝑊 𝐻)−1 𝐻𝑇 𝑊 𝐶 (53) 

Values of 𝐶 were calculated for each of the load groups available from the 

monitored data. These were then combined to provide the maximum possible 

training dataset for the model.  
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Tests were carried out using the principle of Leave one out Cross Validation 

(LOOCV) in which the entire set of load groups are used to train the model, except 

that which is used for testing. This is a specific form of k-fold validation [150]. This 

process was carried out for all groups and the model which minimised the error 

across the total set is chosen as the final model.  
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Table 6-5 shows the sum of the Root Mean Square error values for each of the models against the testing data. 

 

 

ADD Inputs 
Normalisation 

Candidate 

Model 1 Model 2 Model 3 Model 4 

NW W NW W NW W NW W 

OAC ADD 

1 2.12031 2.12108 2.42222 2.42250 2.23650 2.23719 4.07277 4.07484 

2 1.78190 1.78294 1.90954 1.90957 1.78166 1.78250 2.83679 2.83741 

3 2.12715 2.12729 2.35592 2.35583 2.16704 2.16736 6.31042 6.31142 

4 1.32490 1.32480 1.48627 1.48574 1.35223 1.35233 2.30172 2.30129 

Elexon ADD 

1 2.09023 2.09108 2.38695 2.38725 2.21203 2.21278 3.90770 3.90975 

2 1.78209 1.78313 1.90757 1.90758 1.77881 1.77963 2.92749 2.92793 

3 2.03207 2.03224 2.30695 2.30684 2.12620 2.12652 5.84697 5.84770 

4 1.32529 1.32519 1.48564 1.48513 1.34947 1.34959 2.40292 2.40214 

 

Table 6-5 – Total correlation estimation error for all input models 
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The results show that the weighted version of Model 1 gives the smallest error 

when estimating the load group temperature correlation. After the LOOCV stage 

was used to determine the model which gives the best overall accuracy, all 

available training data was used for derivation of the final set of CSC values. 

 

Figure 6-11 - Correlation sensitivity Coefficients for Elexon Class 1 consumers 

Coefficients for Elexon Class 1 consumers in the Weekday, Saturday and 

Sunday periods are shown in Figure 6-11, and the full table of coefficients are 

located in Appendix 2. The resultant sensitivities are shown to be strongest around 

midday on Sundays. All sensitivities are shown as similar in the 9pm-Midnight 

time period, most likely due to the typical occupancy rates of domestic properties 

at this time. Sensitivities are shown at a minimum on Saturday afternoons, again 

a likely result of the reduced occupancies at these times.  

Figure 6-12 shows a plot of the true correlation for a randomly selected load 

group and the estimated correlation. These results are taken from the LOOCV 

phase of testing.  
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Figure 6-12 – Actual and Synthesised Correlation using the finally selected method 

As shown in Figure 6-12 agreement between the synthesised and actual group 

correlation values is good. As a final stage of the analysis the impact of the 

correlation modelling error was examined. The Mean absolute error (MAE) values 

from the LOOCV testing phase ranged from 0.1251 to 0.1906, with mean value of 

0.1535. As was previously shown in Figure 6-9 the effect of a theoretical 

temperature error has a varying effect dependent upon the correlation, however 

these figures assume exact knowledge of the group correlation. A study was carried 

out to determine the impact of correlation errors in comparison to the temperature 

errors as shown in Figure 6-10. Since the estimated correlation values have a 

typical error value, the resultant upper and lower potential correlation values each 

have associated with them a particular percentage error value.  

Figure 6-13 shows an example of this. In this example a theoretical 

correlation value of -0.4 is assumed. Using the mean MAE value of 0.1535 the 

resultant correlation and percentage error values are shown. The red lines are the 

upper and lower bounds of both the correlation estimation and the percentage error 

estimation.  
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Figure 6-13 – Upper and Lower correlation estimation bounds and the resultant effect on 

overall percentage error 

Analysis was carried out to determine the typical deviation away from the 

‘true’ percentage error as a function of error in the correlation estimation. The 

results of this analysis are shown in Table 6-6. 

Group 

% Difference between 

original percentage error 

Upper Bound 

% Difference between 

original percentage error 

Lower Bound 

1 0.512 0.553 

2 0.471 0.507 

3 0.402 0.434 

4 0.536 0.571 

5 0.563 0.611 

6 0.666 0.714 

7 0.633 0.686 

8 0.560 0.601 

Average 0.543 0.585 

Table 6-6 – Percentage differences bewteen ‘temperature forecast’ error bounds and those 

added as a result of the chosen correlation model  

As can be seen in Table 6-6 the correlation estimation method outlined in this 

section adds around 0.6% to the overall percentage error as a function of the 

theoretical temperature estimation error. Whilst estimation of the correlation adds 
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an additional error to any potential modelling scheme, estimation of the correlation 

increases knowledge of the overall impact of a forecast.  

 Conclusions 

This chapter has provided an investigation into the relationships between 

load and temperature for grouped distribution system loads. The correlation 

between these two factors has shown to vary based upon time of day, seasonality 

and on the composition of the group. A generalised model to determine these 

correlations has been proposed along with a study which outlines the influence of 

errors when forecasting load as a function of the correlations and also the impact 

of the resultant modelling errors in the correlation values themselves.   
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7 HV Feeder Load Synthesis – Temperature Sensitive Load 

modelling 

 Introduction 

Since power system assets in the UK such as OHLs are currently utilised 

based on their requirement to support the requirement for N-d security [11], the 

level of asset utilisation is relatively low in comparison to both the present line 

rating standard and in particular, the increased capacities delivered by RTTRs and 

DTRs.  

When attempting to critically evaluate the capability of such techniques to 

contribute to additional network headroom for load, the low network utilisation 

factors require us to either synthesise data of increased loads, or utilise existing 

available data, such that detailed assessment can be carried out. Once such data 

is available, the question of how to demonstrate the potential benefits of RTTRs 

and DTRs remains.  

In [35-37] methods such as Loss of Load Expectation (LOLE) and Expected 

Energy Not Supplied (EENS) have been used to determine the potential 

probabilistic increases which RTTRs can offer for load accommodation, however in 

all of these studies the electrical demand and RTTRs have been assumed to be 

independent, and loads have been randomly synthesised using random number 

generation and an appropriate probability density function. This assumption of 

independence is commented upon as an area for improvement in [37], with 

particular reference to the requirement to examine the correlation between 

demand and RTTRs in more detail. In each of these studies a load duration curve 

(LDC) has been used in conjunction with a derived cumulative distribution 

function of RTTR values in order to determine the probability of an inability to 

supply consumers. After derivation of new group load profiles or through the use 

of existing data, such LDCs could be derived and a similar method applied to the 

data presented in this thesis. This work however extends this method by taking 

into account the temporal profile nature of the resultant demand.  

Whilst the methods discussed in [35-37] provide useful information as to the 

potential benefits of RTTR, the work outlined in this thesis provides an 
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enhancement in three key areas. Firstly, through the use of temporal profiles, the 

times of day, seasons and days of the week at which OHL conductor temperature 

excursions occur are exposed. This is useful when considering the network in both 

the planning and operational timescales, particularly in the case of the scheduling 

of services. Secondly, the use of temporal load profiles in conjunction with ratings 

ensures that the existent correlation between the two parameters is fully exploited 

as opposed to the assumption of independence. Finally, through the use of temporal 

profiles and the use of Dynamic thermal ratings as opposed to real-time thermal 

ratings means that the potential requirement of services to mitigate against OHL 

thermal overloads can be identified.  

In order to generalise the findings of this research, and to provide a more 

significant contribution to knowledge a temperature sensitive load synthesis 

method capable of deriving accurate profiles for demand groups of any composition 

has been developed. These load profiles will be used as inputs to the validated 

dynamic conductor model outlined previously.  

 Chapter Goals / Objectives and Contributions 

 Goals and Objectives 

To develop a suitable method for taking into account the temperature 

sensitivity of distribution network load groups to increase accuracy against 

seasonal ADD profiles.  

 Transition away from existing literature / Contributions 

As discussed in Chapter 6 typical models which describe the load-

temperature relationship for electrical loads are typically at either the individual 

or large area levels. A causal model has not been presented which relates 

temperature sensitivity to components of a wider load group using this method 

which has been developed in this research.  

 Attainment of Goals 

A set of temperature sensitivity coefficients have been developed which 

quantify the relative sensitivity of load group consumers to temperature. A 
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generalised synthesis model, building upon the correlation model presented in 

Chapter 6 has been developed and tested against real-world measured data.  

 Chapter Outline Block Diagram 

Figure 7-1 a block diagram of the inputs, methods and outputs for this 

chapter. This chapter has a very similar block diagram to that of the previous 

chapter. Here, the generalised correlation model is replaced with that of the 

generalised temperature synthesis model. Outputs from this chapter are the linear 

fitting parameters derived from each of the load-temperature clusters, the 

generalised load temperature synthesis model in order to derive representative 

time-series profiles of aggregated demand groups, and the temperature sensitivity 

coefficients for each of the domestic consumer classes.  

 

Figure 7-1 – Chapter 7 Block Diagram 

 Background 

Previously in this work a method for derivation of more accurate load group 

ADD profiles has been proposed, however an additional enhancement of this work 

is to modify such loads according to their real-time reaction to ambient 

temperature values.  

To date there have been few pure modelling studies carried out to derive 

temperature sensitive temporal profiles of grouped electrical loads, as most 



145 

 

research has been concerned with the forecasting of demand. Pillai [151] notes the 

recent shifts towards the modelling of group loads as profiles, as opposed to more 

traditional forecasting as methods. In [151], Pillai outlines a series of generic 

representative load group profiles for both group loads and residential consumers 

using publically available datasets. Whilst profiles for wide area loads in Norway 

and Finland are produced, only residential models for the UK are provided. In 

[152] load profiles for a wide area of Taiwan are produced through aggregation of 

individual load class data which are determined through  data analysis of multiple 

load class types.  

Whilst clearly modelling plays a key part in such forecasting studies, the 

analysis of data at the national, or individual levels means that the nature of such 

models need refinement in order to develop inputs to the DTR OHL model as 

required in this research. Where models have been derived for more similar wide 

area loads such as those in [152] models are typically fitted to individual datasets 

with no statements as to their transferability to other systems. The work of 

Charytoniuk in [153] has close resemblance to the temperature sensitive load 

synthesis method outlined in this section of the thesis.  

In this work, a series of conditional probability density functions (PDFs) are 

estimated for the conditional relationship between demand and temperature. 

These PDFs are estimated using non-parametric kernel density techniques. The 

PDFs are then used to deliver estimates of demand for particular day and seasonal 

periods, in a similar way to as presented in this thesis. These demand estimates 

combined with a suitable forecast of monthly energy demand are then used as part 

of an overall Autoregressive Integrated Moving Average (ARIMA) forecasting 

model.  
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Figure 7-2 – Example of Conditional PDF for example load group at 00:00 

Figure 7-2 shows an example of such conditional probability distributions for 

one of the sample monitored load groups at 00:00. 

 

 

Figure 7-3 – PDFs evaluated at specific ambient temperatures for example load group at 

17:00 

Figure 7-3 shows the conditional PDFs for the sample load group at specific 

ambient temperature values at 17:00. Both Figure 7-2 and 7-3 show the resultant 

relationship for the Weekday, Autumn Elexon period. Each of these plots 

represents an example of those found in [153].  
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In this work, there is one significant reason as to why this approach has not 

been investigated further. In [153] suitably homogenous datasets of consumer class 

load profiles were available. For each of these load groups the procedure as 

discussed previously can be carried out and a suitable conditional PDF derived. 

The resultant E(Load|T) values can then be determined and aggregated for a 

particular load group composition. Since in this research such homogenous data 

was not available it would not be possible to implement this method for the sample 

data in this research. Since a suitably accurate causal model for deriving 

temperature synthesised time-series profiles has been proposed in this research it 

is presented as an alternate method to the one proposed in [153]. Investigation of 

this approach if such data was to be made available represents an area for 

potentially extending the research in this thesis, in additional to the investigation 

of multivariate kernel density estimation models as opposed to the bivariate 

approach of [153].  The performance results of [153] will be used as a comparison 

to the results of the model proposed in this thesis. In addition to these results, 

those from [154] will also be used for comparison. In this work a multi order 

polynomial is used to ‘de-trend’ a feeder load profile and the overall procedure 

combines the polynomial coefficients with the significant signal amplitudes 

identified by a Fourier analysis of the raw data. This approach was not considered 

due to its non-real-time consideration of temperature variations, however it is 

noted that a typical modelling error of around 5% is allowable at the network 

feeder level. It is also unknown as to the number and type of consumers which 

were modelled in this work.  

Following the work of Asbury [130], Meldorf [41] and Corpening [155] the 

total observed demand can be said to be a function of the expected (base) load and 

the temperature sensitive load.  

 𝑇𝑜𝑡𝑎𝑙 𝐺𝑟𝑜𝑢𝑝 𝐿𝑜𝑎𝑑

= 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒 𝐿𝑜𝑎𝑑 (𝑁𝑜𝑛

− 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒)

+ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐿𝑜𝑎𝑑 

(54) 
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Asbury [130] additionally breaks down the expected base load elements into 

subgroups according to residential and industrial demands, each with their own 

specific temperature sensitive element.  

Meldorf makes an additional comment as to the presence of stochasticity in 

the load, however in this research this element has not been included as in [130] 

and [155]. Estimation of the truly non-temperature sensitive base load for the 

groups analysed in this thesis was not possible, therefore an approximation of the 

relationship shown in ((54) has been proposed. The original Elexon ADD profiles 

[156] have been derived for a set of 10 year average temperature values, however 

in real time conditions will deviate from these and will therefore have a resultant 

impact on the loads.  As such ((54) has been modified to the form shown in (55). 

 𝑇𝑜𝑡𝑎𝑙 𝐺𝑟𝑜𝑢𝑝 𝐿𝑜𝑎𝑑

= 𝐴𝑓𝑡𝑒𝑟 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑃𝑟𝑜𝑓𝑖𝑙𝑒

+ 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 

(55) 

 

The additionally temperature sensitive element accounts for real-time 

differences from the expected 10 year average temperature conditions. The newly 

proposed OAC ADD group load method proposed in Chapter 5 will be used to 

deliver the appropriate After Diversity demand element of (55) whilst this Chapter 

will outline a new method for determination of the additionally temperature 

sensitive element of the group’s total electrical demand.  

The authors of [157] consider the variation of load and temperature with a 

UK focus. In this work the influence of variations in ambient temperatures on 

grouped loads is investigated and as per the cases shown in Chapter 6 a linear 

relationship between the two has been shown to be appropriate.  

 Load Synthesis Method 

In order to increase their accuracy when tested against actual measured data, 

a series of coefficients have been derived to modify the original ADD profiles 

relative to their sensitivity to actual air temperature in additional to their seasonal 

compensation, calculated from the 10 year average data. These coefficients have 

been derived for domestic customers only as in the case for derivation of the 

correlation values in Chapter 6 [149].  
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When the method is used to synthesise profiles to test performance, the ADD 

profiles will be the OAC and Elexon group ADD profiles as discussed in Chapter 5. 

For the purpose of deriving the test inputs themselves the original group ADD 

profiles will be represented in the form of the half hourly average seasonal group 

profiles also derived in Chapter 5.  

The additionally temperature sensitive load is calculated by subtracting the 

ADD profile from the original group load values. In order to generalise the results, 

these temperature sensitive elements are normalised to the peak load of the group 

ADD profile. The rationale for this choice of normalisation is due to the final use 

of the model. When the model is used for testing and for deriving new profiles for 

unseen groups, it is likely that only an estimate of the maximum group ADD value 

is known, through use of the method shown in Chapter 5. Therefore when using 

the model in this format, the normalised temperature sensitive elements can 

therefore be transformed using the maximum of the estimated group ADD values.  

After normalisation the relationship between the derived elements and 

temperature for each seasonal, day and time of day period is examined. The same 

Elexon periods as per the correlation model outlined in Chapter 6 are used.  

 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑠 =

{
 
 

 
 

1 = 𝐴𝑢𝑡𝑢𝑚𝑛
2 = 𝐻𝑖𝑔ℎ 𝑆𝑢𝑚𝑚𝑒𝑟
3 = 𝑆𝑢𝑚𝑚𝑒𝑟
4 = 𝑆𝑝𝑟𝑖𝑛𝑔
5 = 𝑊𝑖𝑛𝑡𝑒𝑟

        𝐷𝑎𝑦 = 𝑑 = {  

 1 = 𝑊𝑒𝑒𝑘𝑑𝑎𝑦
2 = 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦
3 = 𝑆𝑢𝑛𝑑𝑎𝑦

 

 

Figure 7-4 shows an example of the additionally temperature sensitive 

elements for a randomly selected seasonal, daily and half hourly period. The linear 

approximation to the relationship is also shown. This data represents that which 

will be used to modify the after diversity demand group load profile. The gradient 

and y-intercept parameters derived for each half hourly, seasonal and day of week 

period will be estimated by the finally chosen model structure. As per the 

correlation method, these parameters will be generated through the use of a set of 

temperature sensitivity coefficients TSCs.  
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Figure 7-4 – Additionally Temperature Sensitive element and linear fit 

After use of the respective gradient and y-intercept TSCs, the resultant 

estimates of the gradient and y-intercept parameters can be used with the 

normalised ambient temperature values to generate estimates of the additionally 

temperature sensitive elements. Once combined with an estimate of the group 

ADD profile, an overall estimate of the final group load can be made.   

In order to derive the TSCs and test the overall accuracy, as previously, two 

least squares approaches have been taken, weighted and non-weighted. The 

potential inputs to the model are the candidates outlined in Chapter 6 and are 

detailed for completeness below.  
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Table 7-1 – Load group normalisation candidate methods 

 
𝐶 = [𝑐 (1), 𝑐(2)⋯  𝑐(𝑛)]𝑇 (56) 

 𝑊 = [𝑤 (1),𝑤(2)⋯  𝑤(𝑛)]𝑇 (57) 

 

As per the derivation of the generalised correlation model, the format of the 

input rows of the matrix H, hj will be determined during the testing phase. The 

proposed structures for the rows of H are shown in Table 7-2: 

 𝐻 = [ℎ1, ℎ2⋯ 𝑙𝑛]
𝑇 (58) 

 

Correlation Model Method 

1 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

] 

2 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

, 𝑁𝑘, ⋯ , 𝑁𝐾𝐷𝑜𝑚] 

3 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

∑ 𝑁𝑘

𝐾𝐷𝑜𝑚

𝑘=1

] 

4 ℎ𝑗
𝑇 = [𝑃𝑘𝑛𝑜𝑟𝑚 , ⋯ , 𝑃𝐾𝐷𝑜𝑚𝑛𝑜𝑟𝑚

, 𝑅𝑘, 𝑅𝐾𝐷𝑜𝑚] 

Table 7-2 – Proposed Correlation Model Structures 

 
𝐶 =  𝐻 ∙  𝑇𝑆𝐶 (59) 

Normalisation Candidate Method 

A 
𝑃𝑘(𝑡)

𝐿𝑖𝑚𝑎𝑥
 

B 
𝑃𝑘(𝑡)

𝐿𝑖𝐷𝑜𝑚𝑚𝑎𝑥
 

C 
𝑃𝑘(𝑡)

𝐿𝑖(𝑡)
 

D 
𝑃𝑘(𝑡)

𝐿𝑖𝐷𝑜𝑚(𝑡)
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 𝑇𝑆𝐶 =  (𝐻𝑇 𝐻)−1 𝐻𝑇𝐶 (60) 

 𝑇𝑆𝐶𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (𝐻
𝑇 𝑊 𝐻)−1 𝐻𝑇 𝑊 𝐶 (61) 

 

 

 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑒𝑑 𝐺𝑟𝑜𝑢𝑝 𝐿𝑜𝑎𝑑

= 𝐺𝑟𝑜𝑢𝑝 𝐴𝐷𝐷 𝑃𝑟𝑜𝑓𝑖𝑙𝑒

+ [(𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑇𝑆𝐶 ∙ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑇𝑒𝑚𝑝)

+ (𝑌 − 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑇𝑆𝐶 ∙ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑇𝑒𝑚𝑝) ] 

(62) 

 

The same LOOCV approach has been taken as to testing the model outputs 

to ensure the selected model is not biased due to a particular set of input values. 

The results of this analysis are shown in Table 7-3. The best performing models 

are highlighted in bold.  



153 

 

 

 

ADD 

Inputs 

Normalisation 

Candidate 

Model 1 Model 2 Model 3 Model 4 

NW W NW W NW W NW W 

OAC 

ADD 

 

1 935.419 934.482 932.579 931.693 928.437 928.061 963.615 971.377 

2 932.414 931.152 928.256 927.953 924.447 923.675 971.510 977.658 

3 930.423 929.854 931.254 931.731 924.102 923.825 973.081 976.947 

4 941.945 941.362 941.236 940.858 935.448 935.355 969.818 975.793 

Elexon 

ADD 

 

1 1075.148 1075.780 1075.546 1076.413 1074.830 1075.311 1095.842 1105.187 

2 1072.491 1073.693 1079.042 1081.034 1070.448 1071.187 1099.338 1106.889 

3 1074.438 1075.041 1068.885 1070.425 1065.016 1065.405 1105.998 1110.104 

4 1075.427 1075.920 1071.542 1072.683 1059.143 1059.311 1098.370 1105.030 

 

Table 7-3 – Total correlation estimation error for all input models 



154 

 

 

As can be seen in Table 7-3 the OAC models of overall temperature-corrected 

show improved performance over those for the Elexon ADD models. Model 

structure 3 with normalisation method 2 as inputs in the weighted form performs 

the best for the OAC models and the non-weighted version of Model 3 with 

normalisation method 3 as inputs performs best for the Elexon model.   

Figure 7-5 shows the resultant Gradient TSC values for Class 1 and 2 

consumers for the Weekday period. As can be seen, Class 1 displays a reduced 

influence with regards to temperature when considered against Class 2. This is 

potentially as a result of the relatively high ratio between peak and off peak tariffs 

regarding electricity usage for these customers.  

 

 

Figure 7-5 – Temperature Sensitivity Coefficients for the Weekday period 

Table 7-4 shows the temperature sensitive modelling error in comparison to 

the synthesised OAC ADD group profiles which have not been modified for 

temperature. At all sites, excluding in the case of Group 2, the temperature 

corrected model out performs the non-temperature corrected model. This Group 

also has the highest RMSE value expressing that there is a potentially poor fit 

from the original non-temperature corrected model. This is perhaps as a result of 

deviations in customer numbers beyond those taken into consideration, represents 

an outlier in terms of overall model accuracy, or is as a result of the assumptions 

made within this thesis. 
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Here the term RRMSE has been used as in [153] and RMSE has been 

expressed as a percentage as in [154] to allow for direct comparison. The RRMSE 

is defined as: 

 

 

𝑅𝑅𝑀𝑆𝐸 =  √
∑ (𝐿𝑜𝑎𝑑(𝑡) − 𝐿𝑜𝑎�̂�(𝑡))

2𝑁
𝑡=1

∑ (𝐿𝑜𝑎𝑑2(𝑡))𝑁
𝑡=1

 (63) 

 

Performance 

Metric 
RMSE %  RRMSE 

 
Temperature 

Corrected 

Non 

Temperature 

Corrected 

Temperature 

Corrected 

Non 

Temperature 

Corrected 

Group 1 10.508 10.870 0.1976 0.2016 

Group 2 19.329 19.123 0.3438 0.3481 

Group 3 8.962 9.245 0.3533 0.3620 

Group 4 7.239 7.260 0.1817 0.1775 

Group 5 17.230 17.520 0.2842 0.2854 

Group 6 10.287 10.488 0.1781 0.1805 

Group 7 11.100 11.421 0.2171 0.2174 

Group 8 5.894 6.014 0.1136 0.1119 

Table 7-4 – Temperature sensitive load synthesis results shown in comparison to the group 

ADD profiles developed in Chapter 5 

In [154] the maximum RMSE% error is shown as 6.99% for the finally 

presented model. As noted previously, the number and type of consumers supplied 

is not known and the results are also per-unitised, the load profiles show a 

somewhat smooth profile in comparison to those of the sample load profiles in this 

research however, and can therefore be assumed to tend towards increased 

numbers of customers. Groups 6 and 8 represent the largest numbers of customers 

and are therefore more typical of the results shown in [154]. The overall errors of 

these load groups have shown to have good performance when compared to those 

in [154]. In [153] RRMSE values are shown to vary from 0.099 to 0.538 dependent 

upon the number of customers. The results shown here are within this range 
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however the groups of customers in this research are significantly greater than 

those, with results also being presented for a single month as opposed to the 10000 

randomly selected half hourly data points as used in this research.   

As can be seen, there is improvement over the non-temperature sensitive 

group ADD profiles. Whilst the improvement does not represent a particularly 

significant improvement over the non-temperature corrected profiles, even 

marginal improvements in forecasting and modelling errors have been shown to 

reduce costs in the overall operation of the power system [158]. Since the OAC ADD 

group profiles already represent a significant improvement over the Elexon ADD 

group profiles, this can be viewed of as an additional enhancement. If temperature 

data is not available for a particular test case, then use of the OAC ADD profiles 

would not be an inappropriate estimation of group demand.  

 

Figure 7-6 – Original and final synthesised group load profile 

Figure 7-6 shows an example of the finally synthesised group load profiles 

and the original group load. For reference, the group shown in Figure 7-6 is Group 

8 in Table 7-4.  

 Conclusions 

In this Chapter a temperature sensitive load modelling method has been 

outlined. This method has shown increases accuracy over the use of non-

temperature corrected models such as the OAC ADD and Elexon ADD methods 

discussed in Chapter 6.  
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The results show good accuracy when compared to those of comparable 

research studies although direct comparisons cannot be made since research on 

UK data at these aggregation levels has not been carried out previously.  

A linear approximation has been shown to be suitable in order to describe the 

additional relationship between load and temperature on a half hourly basis 

beyond that which is already approximated by the present UK ADD profiles.  

The use of the normalisation method in order to estimate the temperature 

sensitive components of group load has shown to also be a suitable approach and 

allows for derivation of a causal model which can relate variations in response to 

external temperature to the contributions of individual domestic consumer classes. 

This information has the potential to inform network operators of the impact of 

future customer tariffs for both new and existing customers and can assist in 

determining the required flexibility in contracted network services.  



158 

 

8 Load Group Classification and combination with Dynamic 

Thermal Ratings 

 Introduction 

Classification of consumers is carried out for a variety of reasons within the 

power system, though the core activities are for network modelling purposes and 

also for consumer billing [159]. Classifications can be used to segment customers 

based on factors such as overall load shape, tariffs, electrical parameters such as 

load factor or a combination of each of these.  In the transition to the smart grid, 

new methods are being investigated as to how to classify customers. Chicco [160] 

outlines a number of potential benefits which can be delivered by improving the 

accuracy of consumer classifications. These range from improving generation 

management strategies for network operators, through to enhancing the offers 

which can be made available to end consumers by supply companies.  

Whilst classification techniques have typically been investigated in order to 

classify individual end users [159-163], recently a number of studies have 

investigated the classifying of groups of consumers. In [164, 165] a series of generic 

LV network classifications are proposed in order to assist in the development of 

smart grid technologies at the lower voltage levels of the distribution system. It is 

to this field of classifying overall load groups to which the study presented in this 

thesis contributes. A number of methods for clustering consumers have been 

presented in the literature ranging from artificial neural networks and self-

organising maps, in addition to more traditional clustering techniques such as the 

K-Means and Hierarchical methods. Since the output of this section is intended to 

be a set of generic load groups in order to test the capabilities of DTRs, no 

contribution to the field of clustering algorithms is intended and the commonplace 

K-Means++ and Hierarchical clustering approaches have been used.  

The main contribution from this section is a set of generic distribution 

network load groups intended as being separate from voltage level, and as such 

can be used to inform similar DTR analyses with alternate components such as 

PTRs and UGCs or can be used to as example load groups in distribution network 

studies.  
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 Chapter Goals / Objectives and Contributions 

 Goals / Objectives 

 After development of a suitable load synthesis method to act as inputs to the 

dynamic thermal ratings model of the overhead conductor, a series of 

representative load groups are required for testing purposes. The goal of this 

chapter is to deliver a series of representative groups based on composition alone. 

This is to allow for generalisation of the results for overhead lines presented in this 

thesis, to other power system components such as power transformers and 

underground cables.  

  Transition from existing literature and research / Contribution 

The development of these representative load groups represents the key 

contribution from this chapter. The literature to date has presented somewhat 

similar demand groups using clustering methods, however these have been 

presented for LV networks only and take into account network parameters in their 

classification.  

 Attainment of Goals 

A set of representative load groups have been determined which differ from 

those presently found in the literature. 

 Chapter Outline Block Diagram 

Figure 8-1 a block diagram of the inputs, methods and outputs for this 

chapter. Information regarding the composition of DNO demand groups serves as 

the input to this chapter. A series of clustering algorithms are used to determine 

the potential generic demand groups which represent the output from this chapter.  
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Figure 8-1 – Chapter 8 Block Diagram 

 Chosen Clustering Approach 

After formulation of the temperature sensitive load synthesis method, a 

series of generic load groups are required in order to test the potential benefits of 

a DTR system for load accommodation across a range of scenarios. In order to 

provide such load groups, clustering analysis has been performed on a set of group 

Elexon composition data. The results of this clustering process are a set of generic 

load groups based on their composition of consumers. Load profiles will then be 

derived for each of these load groups across a range of total customer numbers.  

In [164] and [165] representative LV feeders are derived using clustering 

algorithms which focussed on various network parameters such as overall feeder 

length, maximum demand etc. This work aims to develop a series of representative 

load groups based only on composition, since the aim of the final clusters is to 

determine the capability of RTTR to provide additional headroom for increased 

loads. These representative groups can be used at any aggregation level and thus 

the performance of a power system component at any level can be assessed.  

In order to carry out this synthesis all load groups ranging from LV feeders 

to HV feeders from the case study networks were tabulated. In total this led to 

1415 individual load groups for clustering.  
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Distribution Network Voltage Level Total Sample Size 

LV Feeders 856 

LV Substations 543 

HV Feeders 16 

Total 1415 

Table 8-1  - Clustering Algorithm Sample Sizes 

Two approaches were taken to derive representative composition groups.  

 A top-down approach whereby clusters were firstly generated from all 

the available data. 

  A bottom up approach where data is clustered at each individual 

aggregation level and then tested against the overall dataset. 

In order to cluster the composition data methods from three different 

clustering categories were used, and a ‘scorecard’ type method used to determine 

the clustering method with the greatest accuracy. The two methods used and their 

respective categories are: 

 Hierarchical Agglomerative (Connectivity) 

 K-Means++ (Centroid) 

For each of the chosen clustering methods other than the DBSCAN approach 

the number of clusters (k) to be derived acts as an input. This is due to their 

performance in partitioning the data to a given number of sections as opposed to 

truly determining the actual number of clusters in the dataset. For this, there is 

no real ‘correct’ answer as to the number of clusters, but the following approach 

has been taken to minimise the number of clusters accordingly, whilst maintaining 

a true estimation of existing partitions in the datasets.  

Therefore, in order to test each method appropriately, each clustering method 

was used to populate a set of clusters with 𝑘 ∈ 𝐾   𝐾 = 1…25.  

The widely used K-means++ and Hierarchical clustering algorithms [165] 

were used to cluster the group composition data and two approaches were tested 

when considering the levels at which to cluster the data. The DBSCAN algorithm 
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showed poor performance on this clustering task in initial tests and was therefore 

not considered as a potential clustering solution in this case.   

The first approach involves clustering data from all voltage levels together, 

hereby referred to as the ‘top-down’ approach; the second relates to clustering of 

the composition data at each voltage level individually. The accuracy of these top 

down and bottom up clusters was tested using a series of widely known criteria. 

 Hierarchical Clustering 

Hierarchical clustering uses a distance metric to continuously combine 

similar features until only a single unified cluster remains. A number of distance 

metrics have been used within the literature, with the Euclidean and Ward 

distance criteria being typically the most commonly deployed. For the Hierarchical 

clustering method, the Euclidean distance metric was used along with both the 

Ward and Average linkage methods. For each of the methods, the maximum 

number of specified clusters was set to 25. Figure 8-2 shows the results of 

hierarchically clustering all of the available composition data using the average 

linkage criteria.  

 

 

Figure 8-2  - Dendrogram of all data – Average linkage method 
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 K-means and K-means++ 

The K-means algorithm is also a distance based metric. As per hierarchical 

clustering a number of distance criteria are available. K-means partitions the 

dataset with a particular number of predetermined cluster numbers. Cluster 

‘centroids’ are found which minimise the distance between the centroid and its 

associated data points.  

The K-means++ algorithm makes an initial estimate of the cluster centroids 

in order to improve accuracy and reduce computational time.  

 Accuracy criteria 

Each clustering method is likely to result in slightly differing clustering 

partitions. In order to assess the results of such algorithms, a number of accuracy 

criteria metrics exist [160]. Five of these criteria have been calculated for the 

clusters derived using both the top down and bottom up approaches.  

 

 Mean Index Accuracy (MIA) 

The Mean index Adequacy (MIA) is the average value of the distances 

between the members of a cluster and its generated centroid.  The MIA is 

calculated as: 

 

𝑀𝐼𝐴 =  √
1

𝐾
∑𝑑2(𝑐(𝑘), 𝐶(𝑘))

𝐾

𝑘=1

 (64) 

 

Where d represents the Euclidean distance, c denotes the derived cluster 

centroids, C represents the members of the found cluster k and K is the total 

number of clusters.  

 

 Similarity Matrix Indicator (SMI) 

The SMI as defined in [161] is a function of the distance between centroids of 

derived clusters. It is calculated as follows, where 𝑖, 𝑗 = 1⋯𝐾. 
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𝑆𝑀𝐼 =  max

𝑖>𝑗
{(1 − 

1

ln[𝑑(𝑐(𝑖), 𝑐(𝑗))]
)
−1

} (65) 

 

 

 Average Silhouette and Global Silhouette Coefficients (AvgSC and 

GSC) 

The silhouette coefficient represents the level of appropriateness with which 

a cluster member has been categorized. Here, the average and global silhouette 

coefficients as in [165] have been used, whereby values closer to 1 represent that 

the cluster members have been appropriately assigned and tend towards -1 where 

poor clustering has occurred.  

 

 Within Cluster between Cluster Ratio (WCBCR) 

The WCBCR represents the ratio between the within cluster errors, i.e. the 

distances between the clusters members’ and its representative centroid and the 

distances between the overall cluster centroids. The WCBCR can be calculated as 

a function of the MIA as follows [160]:  

 

 

𝑊𝐶𝐵𝐶𝑅 = 𝐾 ∙ 𝑀𝐼𝐴(𝐾)2( ∑ 𝑑2(𝑐(𝑖), 𝑐(𝑗))

1 ≤ 𝑖 ≤ 𝑗

)

−1

 (66) 

 

Each of these accuracy criteria functions similarly, with the exception of the 

SC and GSC in that they tend towards a minima as the adequacy of the derived 

clusters improves. With an increasing number of clusters however comes greater 

computational time and an increasingly large set of representative load feeders. In 

order to minimise the total number of representative feeders whilst maintaining a 

suitable level of dissimilarity between the feeders a ‘knee-method’ has been used 

in line with previous work [166] to determine the point at which the accuracy 

criteria values no longer decrease at a significant rate. The WCBCR method has 

been used to determine the overall clustering accuracy across each method as in 

[166]. A number of methods exist for determination of the knee point but in this 
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section, as per the DBSCAN knee point determination, the ‘Kneedle’ method [146] 

has been used.   

 Representative Distribution Network Cluster Group Results 

Table 8-2 shows the results of each of the clustering algorithms for both data 

aggregation approaches. As can be seen, the Hierarchical clustering method with 

average linkage generates the clusters with the minimum WCBCR. This clustering 

method was therefore used when determining the final chosen representative load 

group composition clusters.  
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Table 8-2 – Clustering Algorithm Results for all data aggregation levels 

In order to test the overall accuracy of each of the derived cluster sets, each 

of the derived sets was used to classify data from the alternate aggregation levels, 

apart from the case of the clusters previously derived for all data. This was in order 

to remove any bias due to having previously clustered the data at the same level. 

 
Clustering 

Method 
AvgSC GSC SMI MIA WCBCR 

LV Feeder 

Kmeans++ 0.5303 0.6184 1.7385 0.5665 0.2120 

Hierarchical 

Ward 
0.5138 0.4876 1.8524 0.3317 0.0690 

Hierarchical 

Average 
0.5707 0.5524 1.2745 0.4143 0.0668 

LV Substation 

Kmeans++ 0.5160 0.6042 1.7256 0.5665 0.2536 

Hierarchical 

Ward 
0.5390 0.4767 1.7730 0.3612 0.0824 

Hierarchical 

Average 
0.6637 0.6007 1.3584 0.3262 0.0524 

MV Feeder 

Kmeans++ 0.9092 0.8981 2.5467 0.3575 0.1568 

Hierarchical 

Ward 
0.9092 0.8981 2.5467 0.1330 0.0217 

Hierarchical 

Average 
0.9092 0.8981 2.5467 0.1330 0.0217 

All Data 

Kmeans++ 0.5376 0.6068 1.7434 0.5891 0.2583 

Hierarchical 

Ward 
0.4551 0.5141 1.9718 0.3410 0.0858 

Hierarchical 

Average 
0.5717 0.5515 1.3925 0.4009 0.0678 
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A k-nearest neighbour search was used to classify the data using the appropriate 

centroids.  

Table 8-3 shows the accuracy criteria calculated for each of the possible 

combinations. The centroids formed at the LV substation level have the highest 

adequacy for both the GSC and WCBCR criteria. The AvgSC value is the second 

highest and the SMI value is the second lowest. As discussed previously the 

WCBCR has been detailed as more accurate than the MIA and since overall the 

LV substation centroids perform well across all the possible data combination 

these centroids have been used.  

 

Assessment Metric LV  

Feeder 

LV Substation MV Feeder All  

Data 

AvgSC 0.4354 0.5708 0.5353 0.5717 

GSC 0.5097 0.7026 0.5066 0.5514 

SMI 1.2745 1.3584 2.5467 1.3925 

MIA 0.3657 0.3117 0.2534 0.4009 

WCBCR 0.0521 0.0479 0.0788 0.0678 

Table 8-3 – Adequacy criteria for chosen clustering algorithm in each of the test cases 

 Derived Generic Customer Load Groups 

The resultant load groups which will be used to determine the capacity of 

RTTR for load accommodation are shown in Table 8-4. 

 

Elexon Class 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 

1 0.0 0.0 33.3 0.0 0.0 66.7 0.0 0.0 

2 16.4 0.0 6.9 0.0 43.7 23.0 0.0 10.0 

3 18.5 64.1 13.0 3.7 0.2 0.4 0.0 0.1 

4 73.4 14.5 8.6 2.5 0.5 0.2 0.2 0.1 

5 20.2 0.1 68.3 7.2 1.7 1.7 0.5 0.3 

6 0.0 7.6 0.0 80.4 3.7 0.0 0.0 8.3 

Table 8-4 – Clustering Results – Percentage Elexon Class per representative load group 
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 Conclusions 

This chapter has presented a set of generic distribution network demand 

groups based on consumer compositions. These demand groups will be used in 

combination with the temperature sensitive load synthesis method presented in 

the preceding chapter to provide inputs to the analysis presented in the following 

chapter. These generic demand groups represent a contribution to the community 

since they are based on composition alone. Such groups are useful since they are 

independent of voltage level within the distribution system and can therefore by 

deployed when considering any study which involves a requirement to model a set 

of potential demands for a given network scenario.  
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9 Analysis of the requirements for the use of Dynamic Thermal 

Ratings in Electrical Distribution Networks 

 Introduction 

In this Chapter the synthesised temperature sensitive load profiles for each 

of the generic compositions discussed in the previous Chapter will be used as 

inputs to a conductor model which uses meteorological data from the selected 

‘critical span’. Both the Dynamic and Real-Time implementations of the CIGRÉ 

OHL model will be used to examine the differences between each approach.  

The resultant conductor temperatures from use of the DTR method are 

evaluated using a similar method to that in [22] in as such that excursions are 

referred to as 5 minute periods for which the conductor temperature exceeds that 

of the circuit rated temperature. In this case the circuit rated temperature is held 

at the present value of 50oC. National Grid has outlined the potential for increasing 

such temperatures for certain OHL sections, where ground clearances permit 

[167]. A similar technique would also be the re-tensioning of existing OHLs to 

increase the present level of ground clearance. Such practices have been considered 

beyond the scope of this thesis and therefore the original circuit rated temperature 

values have been maintained.  

In [47], the impact of allowing conductor temperatures greater than the 

circuit rated temperature is examined. The additional ageing of the asset due to 

these temperatures is quantified and taken into account when considering the 

overall capacity increases available through the use of Dynamic ratings.  In this 

research, this phenomena has not been considered, and the circuit rated 

temperature has been used as an absolute figure. This is in order to provide a direct 

comparison with the present line rating method which quantifies the exceeding of 

the stipulated circuit rating temperature as opposed to allowing significantly 

increased operating temperatures.  

 

As discussed in previous Sections, there are periods at which the RTTR or 

DTR of a particular line section may not be able to support the required load at a 

period in time. In [35-37] a Monte Carlo type random simulation of conductor 
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loadings has been carried out to determine the likelihood of these events and their 

associated levels of network risk. In [37] such simulations are noted as not 

adequately taking into account the time variable correlation between the loads 

supplied by the line, and the line rating itself. This in an area in which the research 

presented in this thesis can directly contribute. In the case of events where the 

RTTR or DTR cannot support the required load, two metrics of assessment have 

been commonly used to probabilistically analyse such periods. These are the Loss 

of Load Expectation (LOLE) [35] and the Expected Energy Not Supplied (EENS) 

[36, 47]. In the case of RTTRs, the inability to support demand is represented as a 

function of the line loading exceeding the RTTR at a particular point in time. For 

DTRs, such periods will be represented as those where the estimated conductor 

temperature due to the level of line loading exceeds that of the circuit rated 

temperature.  

Whilst calculation of such metrics gives an indication as to the annual 

probability of being unable to provide headroom for load accommodation there are 

additional factors to take into account. The most significant of these are the times 

of day and seasons in which these events occur, which have not been explored 

previously. Through the use of the time-series load profiles developed in this thesis, 

in conjunction with dynamic conductor models, these factors can be determined.  

In addition to identifying these points, as discussed previously there is the 

option to contract additional network services to offset potential conductor thermal 

overloads. Such services however represent an economic cost to the operation of 

the network, either in the form of service payments, or in energy not supplied to 

consumers. A Cost Benefit Analysis of such services was considered beyond the 

scope of this research, however to inform future analysis by the wider community 

the required magnitude of such services, their distribution throughout the day and 

the probability and cumulative distribution functions of these services have been 

developed. 

As a reference case, the LOLE and EENS values for both the RTTR and DTR 

methods at the sheltered OHL site will be calculated. In this research following 

the work in [35], two definitions of the LOLE have been made. The first follows the 

same approach for determining the LOLE for RTTRs (LOLERTTR), and an alternate 

method has been proposed for assessment of the LOLE for DTRs (LOLEDSR): 
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𝐿𝑂𝐿𝐸𝑅𝑇𝑇𝑅 = 

∑  𝑃(𝑅𝑇𝑇𝑅𝑡
𝑛
𝑡=1 < 𝐼𝑡) 

𝑛
 (67) 

 

 
𝐿𝑂𝐿𝐸𝐷𝑇𝑅 = 

∑  𝑃(𝐷𝑆𝑅𝑡
𝑛
𝑡=1 > 0) 

𝑛
 (68) 

 

Where: 

  I    is the Line Current (A) 

  RTTR   is the Maximum Line Rating (A) 

t   is the time step 

  n   is the total number of timesteps 

DSR  is the required service in order to mitigate a conductor 

thermal excursion at time step t (A).  

   

Since in this research, the monitoring period was greater than one year, the 

results have been normalised such that the values are in line with those shown in 

[35]. The EENS has been defined as the total sum of the energy not supplied over 

the period n. As per the LOLE, the EENS has been modified somewhat for the DTR 

analysis.  

 

 𝐺𝑡 = 𝑅𝑇𝑇𝑅𝑡 − 𝐿𝑖𝑡   (69) 

 
𝐸𝐸𝑁𝑆𝑅𝑇𝑇𝑅 = ∑ (𝑅𝑇𝑇𝑅𝑡

𝑛

𝑡=1

− 𝐿𝑖𝑡) ∆𝑡  ∀ {𝐺𝑡| 𝐺𝑡  <  0} 
(70) 

 
𝐸𝐸𝑁𝑆𝐷𝑇𝑅 = ∑ (𝐷𝑆𝑅𝑡

𝑛

𝑡=1

) ∆𝑡  ∀ {𝐷𝑆𝑅𝑡| 𝐷𝑆𝑅𝑡 >  0} 
(71) 

Where 𝐺𝑡 is the difference between the RTTR at time t and the circuit loading from 

demand group Li. 

 Outline of the work in this chapter 

In this chapter the capabilities of DTRs will be evaluated against the present 

UK line rating standard and the potential for increasing the number of consumer 
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connections will be outlined where possible. In addition to determining the number 

of possible consumer connections at the same level of thermal overload risk as is 

currently implemented, an additional increase of connections is examined, coupled 

with an estimation of the required network ancillary services in order to mitigate 

against a thermal overload.  A novel zonal method based on the duration of the 

required services is proposed to categorise these requirements.  

As noted in [36] additional network constraints such as voltage limits will 

have an effect on the total number of possible connected customers. In this research 

it has been assumed that either the customer numbers capable of being supplied 

in each of the service duration zones is possible without additional control 

techniques, or that in the future development of the smart grid, such techniques 

will be available. 

 Chapter Goals / Objectives and Contributions 

 Goals / Objectives 

To critically evaluate the benefits of dynamic thermal ratings for load 

accommodation. This evaluation includes determining the number of consumer 

connections capable of being supported through the use of dynamic thermal ratings 

in scenarios where ancillary network services are both available and unavailable. 

Where such services are considered to be available, the energy requirement, 

magnitude, duration and time period between service requirements should be 

determined.  

 Transition from existing literature and research / Contribution 

A contribution has been made through the use of DTRs and synthesised load 

profiles to demonstrate the potential benefits of this network technique. Much of 

the literature in this domain considers the use of RTTRs as opposed to DTRs and 

as an enabler of network headroom for generation connections as opposed to 

demand. RTTRs have been used in combination with LOLE and EENS, however 

such analysis has utilised load duration curves (LDCs) as opposed to the use of 

time-series demand profiles.  

A key contribution from this chapter is therefore its combination of dynamic 

thermal ratings with time series load profiles, taking into account the correlation 
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between the observed ambient parameters, electrical demand and OHL ratings.  

This approach allows for critical evaluation of the required network ancillary 

services required to mitigate against conductor thermal overloads.  

 Attainment of Goals 

Results have been presented which comment upon the ability of dynamic 

thermal ratings to provide additional network headroom for load accommodation. 

These results show the potential number of customers for the previously derived 

demand groups capable of being supported, with and without access to ancillary 

network services. Where such services are necessary in order to maintain thermal 

network limits, the duration, magnitude and energy requirements of these services 

have been derived. The ability to derive such values is as a direct function of the 

approach taken in this thesis. 

 Chapter Outline Block Diagram 

Figure 9-1 shows a block diagram of the inputs, methods and outputs for this 

chapter. This chapter utilises the outputs from each of the preceding chapters. The 

temperature sensitive load model is used to synthesis profiles for each the generic 

demand groups derived in the previous chapter. These then serve as inputs to the 

dynamic line rating thermal model, using meteorological inputs from the site 

selected in Chapter 3. These deliver a conductor temperature profile which may, 

or may not violate the circuit rated temperature, depending upon the number of 

consumers within the group. Where this limit is exceeded, the network ancillary 

services required to reduce the OHL temperature to below the circuit limit is 

estimated.  
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Figure 9-1 – Chapter 9 Block Diagram 

 Verification of Derived Conductor Temperatures using the DTR Method 

Prior to synthesising load profiles for the groups outlined in the previous 

chapter, a study was carried out to determine the accuracy of the synthesis method 

when presented as an input to the DTR OHL model in comparison to the original 

group feeder loads. In order to do this the original monitored load profile for a test 

load group was used as an input to the DTR model coupled with meteorological 

data from the selected sheltered site.  

In addition to the use of the measured ambient values directly a series of 

upper and lower bounds were placed on the resultant conductor temperature 

values by taking into account the relative upper and lower bounds of measurement 

error on each of the individual ambient parameters. As noted in Chapter 3, the 

quoted measurement errors of the ambient sensors are as follows.  

 

 Ambient Temperature  ± 0.1oC 

 Wind Speed  ± 1m/s 

 Wind Direction  ± 4o 

 Solar Radiation ± 5% 
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The sensitivity analysis shown in Chapter 2 was used in conjunction with 

these measurement errors in order to determine the correct upper and lower bound 

ambient values at each time period. The meaning of this selection process is as 

follows.  

For parameters such as ambient temperature wind speed and solar radiation 

selection of the upper and lower bound values is simple since each of the 

parameters has a monotonically increasing or decreasing function as shown in 

Figure 2-2. In the case of wind direction an alternative procedure must be used. As 

the conductor incident wind speed angle approaches 90o, increasing or decreasing 

the wind direction by the stipulated 4o value will have opposite effects depending 

upon whether in the range 0-90o or 91-180o. The same procedure is replicated for 

the ranges 181-270 and 271-360o.  

The final stage of selecting the upper and lower bounds is to determine the 

best and worst case scenarios regarding the ambient measurements. For this the 

thermal balance equations (2-20) must be considered. The best and worst case 

scenarios for ambient measurement errors are: 

 Worst case  

o Upper bound Ambient Temperature 

o Upper bound Solar Radiation 

o Maximum wind direction using the method as discussed 

previously 

o Lower bound wind speed 

 Best case  

o Lower bound Ambient Temperature 

o Lower bound Solar Radiation 

o Minimum wind direction using the method as discussed 

previously 

o Upper bound wind speed 

After selection of the appropriate total upper and lower bound ambient 

measurements the measured loads for the sample test group as shown in Figure 

7-6 were use as inputs to the DTR OHL model for the following test cases of worst 

case, best case and actual measured parameters. The results of this test gave the 
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upper and lower ‘real’ bounds of conductor temperature based on ambient 

measurement errors alone. After use of the synthesised load profile with the actual 

measured parameters, a comparison of the resultant conductor temperatures was 

made.  

 

Percentage of values 

within upper and lower 

bounds 

Mean error 

outside of 

bounds (oC) 

99th percentile 

error outside 

bounds (oC) 

Maximum 

error outside 

bounds (oC) 

81.8% 0.343 0.980 1.180 

Table 9-1 – Conductor Temperature estimation accuracy of synthesised load group 

Whilst Table 9-1 shows that ≈82% of values are within bounds, the significant 

factors for reference are the mean, 99th percentile and maximum errors. In actual 

operation of a DTR solution, conductor temperature values will likely be verified 

through use of a conductor temperature sensor, as in this case of the monitoring 

sites used in this research. As noted previously in Chapter 3 the accuracy of the 

conductor temperature measurement system used is quoted at ± 2o [106]. The 

results of this analysis have shown that the maximum error as a function of 

ambient temperature values only is 1.18oC and is therefore within the additional 

bounds which will be added when verifying against the measured conductor 

temperature error values.  

 Customer Numbers supported by the present UK OHL rating standard. 

As noted in Chapter 4 the presently used OHL circuit ratings do not deliver 

the same level of risk as is currently thought to exist, particularly at the sheltered 

sites discussed in Section 4.4.2. Therefore as an assessment method the newly 

derived P27 seasonal ratings as shown in Table 4-8 will be used as the baseline 

comparison of the benefits a DTR solution can make to load accommodation.  

Assessing the potential number of consumers supported by P27 is a non-

trivial task. Whilst P27 makes reference to a seasonal continuous load condition, 

clearly continuous load conditions do not actually occur in day to day network 

operation. This is taken into account by two methods outlined in  [109]. 
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For multi-circuit primary supply systems, a procedure involving the expected 

load duration curve of a particular demand group is used in conjunction with the 

CT factors shown in Table 4-1. For single circuit supply systems, as in the case of 

the OHL monitoring points within the test network an alternate procedure is 

described. For such systems, the three hours of peak loading conditions are said to 

be equivalent of the continuous load conditions. Therefore when determining the 

number of consumers capable of being supported by P27, the following method has 

been used: 

1. Synthesise the group load profile using the method outline in Chapter 

7. 

2. Using a sliding window of length three hours, determine the peak 

loading condition in each window, and for each seasonal rating period. 

3. If the maximum demand in the peak three hour window exceeds the 

newly derived P27 seasonal rating value, this customer increase is 

rejected, and the number supported by P27 defaults to the previous 

total number of customers in the load group. If the number does not 

exceed the rating, increase the total number of customers until this 

number cannot be supported. 

In each iteration of the sliding window approach, the total number of 

consumers was increased by 50 and distributed proportionally according to their 

composition within the load group. Also there is no requirement to violate the P27 

seasonal ratings in all periods, since thermal violations could occur within any 

seasonal period. If the maximum observed loads are greater than the seasonal 

rating for just one of the periods, again, this customer number increase is rejected.  

 

Load group Number of Customers Supported by P27 

1 150 

2 150 

3 2350 

4 3650 

5 900 

6 450 
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Table 9-2 – Number of customers per generic load group supported by revised P276 seasonal 

ratings 

Table 9-2 shows the number of customers which can be supported through 

use of the modified P27 seasonal ratings. As can be seen, there are significant 

variations in the total number of customers which can be supported according to 

the particular load group composition. Load groups 3 and 4 contain the highest 

percentages of domestic consumers as shown in Table 8-4 and therefore as 

expected are those for which the highest numbers of consumers can be connected. 

The increased number of Economy 7 consumers in Group 3 as opposed to 4 results 

in fewer total customers being able to be supported by this rating method.  

 Comparison against N-d scenarios 

The numbers of total customers shown in Table 9-2 represent the maximum 

possible numbers able to be supported by P27. In actual network operation 

however the network will not be operated at this level in order to provide circuit 

security of supply for additional feeders. In this case, as the system is of single 

circuit design it must be capable of supporting the required N-1 feeder switching 

scenario and must therefore not be utilised fully. In this thesis the consideration 

of DTRs for such scenarios are not considered. The rationale for this approach is 

that as the present distribution planning standards are under review [19] the 

requirement to provide constant N-1 capabilities may no longer be required. The 

results presented in this section are intended to demonstrate the overall 

capabilities of DTRs and outline the potential services required to operate at such 

levels.  

 Zonal Analysis 

In addition to determining the number of customers supported by the present 

risk of thermal overload, load profiles for increased numbers of customers have 

been synthesised in order to determine the potential requirements for such 

increases. For the purposes of this analysis a zonal method relating to the time of 

required service has been proposed. In order to provide an upper limit to the service 

analysis, the decision has been taken to limit the maximum duration of a required 

response to a period of 4 hours. This duration limit is designed to be cognisant of 
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the four hour tariff period in the wider CLNR project, and represents the typical 

duration of network peak demand (4pm to 8pm) in the UK. An assumption has 

been made regarding the 4 hour limit which will clearly impact upon the 

magnitudes and durations of the required services. There is the potential to utilise 

the method presented in this thesis with any given upper service duration limit, 

however the purpose of the results presented in this thesis is to demonstrate the 

abilities of DTRs to provide additional headroom as opposed to providing a finite 

assessment of DTRs in all potential network scenarios.  

Any form of DSR which is required to last for longer than 4 hours is deemed 

to be represent an unfeasible number of additional customer connections.  

 Zone A  

Zone A acts as an extension to the current thermal overload risk as outlined 

by P27. In P27 the thermal excursion risk is set to a 0.001% probability of 

exceeding the circuit rated temperature and is equivalent to roughly one five 

minute period per seasonal rating period. In a Zone A scenario this is simply 

extended in order to cover any excursions which occur for one 5 minute period. 

These can have any number of occurrences over a particular seasonal period, 

however the requirement is such that any thermal overload must be followed by a 

period below the circuit rated temperature.    

 Zone B 

Zone B relates to the first zone for which some form of ancillary network 

service such as DSR or EES is required in order to mitigate a thermal overload and 

return the conductor to a temperature value below that of the circuit rated value. 

In this research, the assumption has been made that where a service is required, 

it has been introduced into the network and the conductor temperature returned 

to below the circuit limiting temperature. If at the next analysis time step an 

additional service is required this is acting from a starting point of the temperature 

achieved by the previous service.  This represents an assumption regarding the 

magnitudes of the required services, since each can act as a function of a previous 

service, however the aim of the method implemented in this research is to develop 

a profile of required services; and therefore as a network operator, the magnitude 
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and duration of the services outlined in this chapter are those required in order to 

maintain the network within its present operating characteristics.  Consecutive 

excursions from 10 minutes up to the maximum DSR duration limit (in this case 4 

hours) are defined as being within Zone B. Figure 9-2 shows an example of a service 

requirement categorised as type Zone B.  

 

 

Figure 9-2 – Example of a Zone B service requirement 

In this zone, whilst a consecutive excursion exceeding the DSR duration 

threshold is forbidden, there is the potential scenario with this approach that 2 or 

more multiple 4 hour service periods could be separated by a single 5 minute 

window. Clearly in practice this scenario would result essentially in services which 

exceed the threshold and is a limitation of this method. In order to investigate this 

aspect in more detail a study was carried out to determine the cumulative 

distribution functions of both the observed DSR service durations and the time in 

between required services. This analysis is shown in Section 9.9.3.  

Figure 9-3 shows an example of load group temperatures both before and after 

the required service has been supplied. As can be seen the conductor temperatures 

are limited to 50oC in the case where network ancillary services have been 

introduced to compensate for the increased temperatures.  
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Figure 9-3 – Example of conductor temperatures before and after provision of network 

services. Original conductor temperature for actual network loads shown for comparison 

 Zone C  

Zone C services are required where consecutive conductor temperature 

excursions exist for a period greater than 4 hours. In effect, Zone C does not 

actually represent a zone since by definition such service durations have been 

deemed as non-possible.  Within this research these have been identified as being 

greater than the required duration threshold and therefore analysis for this Zone 

has not been carried out. Clearly this duration threshold has been defined here, 

however could be extended if such resources were available. This period has been 

selected simply as an example in this research. The potential to extend this aspect 

and the requirements for doing so are commented upon in the Discussion section 

of this thesis.  
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Figure 9-4 – Example of a Zone C service requirement which exceeds the duration threshold 

 Examining the capabilities of a Dynamic Thermal Rating Solution for Load 

Accommodation  

After synthesis of each group’s load profile it is used alongside the 

meteorological inputs from the ‘critical span’ and the resultant set of conductor 

temperature values are obtained. As per the analysis to determine the number of 

customers able to be supported by the present P27 rating standard, for each load 

synthesis iteration the total number of customers is increased by 50 each time and 

then proportionally weighted according to the composition of the overall group.  

As a means of presenting an AC current to the DTR model the real power 

values have been combined with a power factor estimate of 0.95 in order to deliver 

average feeder current values. This value of 0.95 is in line with the estimations of 

Elexon in [168] as reactive power synthesis for the overall load groups was 

considered out of scope for this research. This is considered as a potential method 

for extending the research and is discussed as such in the further work section of 

this thesis.   

 Loss of Load Expectation (LOLE) 

As discussed in the Introduction to this chapter, LOLE values have been 

previously derived for a set of RTTR values and comparisons drawn against similar 

values derived for the present static ratings. In [35] results are presented for 

varying values of load factor. In this research, the same analysis will be presented 
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for both RTTRs and DTRs as a function of the total number of consumers in each 

of the derived generic consumer groups.  

 

 

Figure 9-5 – LOLE Values for the RTTR, DTR and P27 rating cases 

Figure 9-5 shows the LOLE values for generic load group 3 when evaluated 

against the RTTR, DTR and P27 seasonal rating values. As was shown in [35] the 

P27 rating values result in significantly increased probabilities of periods of lost 

load. Use of the DTR method shows improved performance, in terms of decreased 

LOLE values, in comparison to the use of the RTTR. This is due to the fact that in 

cases where the RTTR cannot support demand these are considered as periods of 

lost load. In the DTR case, the impact of these lost loads is also a function of the 

inherent correlation between the DTR and the load itself and the thermal history 

of the conductor over time, therefore not all events where the RTTR offers less 

network capacity than the demand have the same impact on conductor 

temperatures.  This will be discussed further in Section 9.7.2.1.  

 

 Expected Energy Not Supplied (EENS) 

Figure 9-6 shows the EENS for the same load group as in Figure 9-5, for the 

RTTR, DTR and P27 cases. As in the case of the LOLE the EENS for the RTTR 

and DTR cases is significantly lower than that for the P27 case for all total 

consumer numbers. The EENS in the RTTR case, as with the LOLE values, has 
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been shown to be greater than that of the DTR, though this relationship has been 

shown to be non-linear.  This is as a result of fundamental differences between the 

RTTR and DTR approaches.  

 

 

Figure 9-6 – EENS Values for the RTTR, DTR and P27 cases 

9.7.2.1 Ratio between EENS for RTTR and DTR cases 

Figure 9-7 shows the ratio between the EENS values in the RTTR and DTR 

cases for the same load group as shown in Figure 9-6. The ratios are expressed as 

a percentage of the DTR EENS values. As can be seen the values exponentially 

decay towards a value of 1. The reason behind this is as follows. The RTTR 

represents the maximum conductor loading value such that in after thermal 

equilibrium has been achieved, the conductor will operate at its maximum 

allowable temperature. In this case, the circuit rated temperature of 50oC. 

Therefore if the conductor was to be loaded with the RTTR at the correct intervals 

as a function of the conductor’s time constant, the theoretical conductor 

temperature would be constant at 50oC. If the conductor was then to be 

additionally loaded, this would be classified as being EENS due to the thermal 

overload.  
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Figure 9-7 – Ratio between resultant EENS values for the RTTR and DTR cases, for Load 

group 3 

In the DTR case, since the decision has been taken to model the required 

reductions in load (i.e. EENS) the resultant conductor temperatures are also 50oC 

after the correct network service has been applied. When the conductor is lightly 

loaded, the available thermal headroom is greater than that considered by the 

RTTR minus load case, since the EENS essentially acts as a linear function. The 

inadequacy of this method for such a purpose is discussed in [36] where a risk 

methodology is presented to take into account the likely severity of an EENS event. 

Analysis of the differences between the DTR and RTTR did not form a part of this 

study.  

As the conductor becomes more heavily loaded and the requirement for 

services become more frequent, the conductor will tend towards constant operation 

at the circuit rated temperature. At this equilibrium point, the requirements for 

both DSR services to mitigate thermal overload, and the EENS as a function of the 

RTTR minus the load become the same. Up to this point however, the DTR has 

been shown to have improvements in the EENS over the use of RTTR.  

Beyond this point, by default, the same EENS will be required for both the 

DTR and RTTR cases.  The thermal time constant of OHLs has been discussed as 

being typically in the range of ≈10 – 20 minutes. In this research however, due to 

the relative construction of the OHL, the thermal time constants are closer to five 

minutes. In the five minute data used in this research represents a good 
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approximation of the time constant of the conductor [36]. The graph as shown in 

Figure 9-7 is unlikely to tend exactly to one, since the thermal time constant is not 

exactly equal to five minutes in all cases and therefore a small modelling error is 

present in the resultant conductor temperatures.  

 Zonal Analysis of Dynamic Thermal Ratings  

Table 9-3 shows the total number of consumers per load group which are 

capable of being accommodated through the use of DTRs. Numbers have been 

shown for both the Elexon and OAC temperature sensitive load synthesis methods. 

In addition to the previously provided total numbers based on the revised P27 

support calculations, the numbers for each of the DSR zones has also been derived. 

As can be seen, for all load groups other than groups 3 and 4, the number of 

customers supported in the Zone A case is equal to that of the P27 support case. 

For all load groups in the Zone B case, additional numbers of customers can be 

supported, where in some cases such as groups 3 and 4, significant customer 

increases can be made, albeit with the requirement for additional DSR services.  

 

Group 

Number Supported 

by revised P27 

ratings 

Elexon OAC 

Zone A Zone B Zone A Zone B 

1 150 150 250 150 250 

2 150 150 250 150 250 

3 2350 2500 3500 3200 4400 

4 3650 3550 4750 3800 5400 

5 900 900 1250 900 1250 

6 450 450 650 450 650 

Table 9-3 – Total customer numbers per load group in each of the support cases 

Group 3 shows the potential for significant increases in Zone A connections 

over P27 in comparison to Group 4. Figure 9-8 shows an example of the two load 

profiles for these groups to outline the potential reasons behind this.  
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Figure 9-8 – Examples of Group Load Profiles 

Although for large periods of time the observed load of group 3 is greater than 

Group 4, 600 additional customers can be connected with Zone A excursions over 

Group 4. This is a direct function of the correlation between the load profile and 

the thermal behaviour of the conductor. Since the majority of the load increases 

over Group 4 occur in the early morning (due to the high Economy 7 percentages 

in this group) these are at periods where the air temperature is likely to be lower 

and therefore the potential for thermal headroom increased. Whilst it is not within 

the scope of this thesis to examine the additional network requirements for LCTs 

such as Electric Vehicles (EVs), this period of correlation could provide useful 

information into the design of tariffs considering the charging of vehicles 

overnight.  

 Comparison of Loss of Load Expectation values  

Table 9-4 shows the LOLE values for both the Zone A and Zone B customer 

numbers for each group. In the Zone A cases the LOLE values are small by default 

for the RTTR and DTR cases. Since Zone A allows for any number of five minute 

conductor excursions, significant gains against the P27 ratings are shown for 

Groups 3 and 4. For Zone B numbers, again significant increases are shown against 

the present line ratings. The percentage improvement in terms of reduced LOLE 

hours/year when comparing the RTTR and DTR methods is also shown. Peak 

improvement represents a 38% reduction in the expected loss of load when using 
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the DTR as opposed to the RTTR as a method of assessment. The minimum 

demonstrated improvement is 18.9%.  

 

Zone Rating Method 1 2 3 4 5 6 

Zone 

A 

P27 0.00 0.00 379.86 47.04 0.00 0.00 

RTTR 0.15 0.00 0.44 0.48 0.26 0.18 

DTR 0.00 0.00 0.04 0.07 0.00 0.00 

Zone 

B 

P27 2074.47 1105.26 2946.96 2342.70 1444.44 1511.77 

RTTR 97.34 25.00 257.04 167.30 64.44 74.09 

DTR 70.51 15.50 208.46 131.37 45.87 48.84 

DTR/RTTR (%) 27.56 38.01 18.90 21.48 28.81 34.09 

Table 9-4 – LOLE in hours/year at the Zone A and B total number of customers supported per 

group 

 Comparison of EENS values  

Table 9-5 shows the EENS values in MWh per year for both the Zone A and 

Zone B customer numbers for each group. As in the case of the LOLE 

improvements are shown against the static rating and also against the use of 

RTTRs as opposed to DTRs. Minimum improvement in terms of EENS is 8.30%, 

with a maximum of 26.94%.  

 

Zone Rating Method 1 2 3 4 5 6 

Zone 

A 

P27 0.00 0.00 311.37 8.66 0.00 0.00 

RTTR 0.05 0.00 0.30 0.29 0.12 0.15 

DTR 0.00 0.00 0.01 0.02 0.00 0.00 

Zone 

B 

P27 3274.20 1226.60 5391.67 4119.81 1994.43 2107.66 

RTTR 63.94 11.47 341.95 146.10 41.98 39.80 

DTR 52.26 8.38 313.56 128.71 34.74 31.11 

DTR/RTTR (%) 18.28 26.94 8.30 11.90 17.25 21.85 

Table 9-5 - EENS in MWh/year at the Zone A and B total number of customers supported per 

group 
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 Cumulative Distribution Functions of the Required DSR Services 

The following section provides information as to the nature of the required 

services through the use of cumulative distribution functions. The magnitude, 

duration and time between required services are shown here. The following section 

contains information as to the typical times of day at which the services are 

required, and gives examples for certain load groups. In each of the following 

analyses, the load profile for the maximum number of customers in the Zone B case 

for each group has been used. This is in order to determine the distributions of the 

maximum requirements in the scenario where the greatest number of customers 

can be accommodated, whilst maintaining the upper duration limit of the service 

requirement. 

 Cumulative Distribution Function of Required DSR Service Magnitudes 

Figure 9-9 and Table 9-6 show the empirical CDFs of the required DSR 

service magnitudes. Whilst the maximum required service is 4.88 MW, at the 99th 

percentile level the peak value is significantly reduced to 1.6 MW.  

 

 

Figure 9-9 – Empirical CDF of the required DSR service magnitudes 
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Load Group 1 2 3 4 5 6 

Maximum Required DSR Service (MW) 2.34 1.70 4.88 3.14 2.20 2.44 

99th Percentile (MW) 1.44 1.16 1.60 1.36 1.38 1.18 

95th Percentile (MW) 0.84 0.85 1.46 0.92 0.74 0.72 

90th Percentile (MW) 0.66 0.46 1.40 0.80 0.62 0.56 

80th Percentile (MW) 0.48 0.33 1.06 0.66 0.52 0.40 

Table 9-6 – Maximum and percentiles of required DSR services 

The OHL ratings presented in Table 3-3 have been converted to MVA ratings 

to allow for comparison with this maximum service requirement. These MVA 

ratings are shown in Table 9-7.  

 

 Winter Spring / Autumn Summer 

HV Overhead Line P27 Static Rating (MVA) 10.3 9.5 8.2 

Table 9-7 – HV overhead line P27 static ratings (MVA) 

As can be seen in Table 9-7 the maximum required service is smaller than the 

presently implemented circuit ratings, though does have the potential to exceed 

the Summer rating if N-1 circuit security was to be maintained. The magnitude of 

the service requirement is also closely related to the particular load group. As 

noted previously, each of the load groups analysed here represents that which is 

the maximum possible without violating the 4 hour service duration limit, however 

the maximum required service for Group 2 is ≈ 35% of that required for Group 3. 

Accurate knowledge and modelling of the loads under analysis is therefore of 

importance in order to adequately estimate the required services and thus contract 

them accordingly in each scenario.  

 Cumulative Distribution Function of Required DSR Energy Values 

Figure 9-10 and Table 9-8 detail the CDF and percentiles of the required DSR 

service energy values respectively. As can be seen, the maximum required service 

is 3.69 MWh for load group 3. At the 99th percentile level, thus requirement is 

reduced to 3.31 MWh and there is a significant decrease towards the 95th percentile 

and below. To mitigate against 80 percent of all required DSR services a maximum 
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energy capacity of 0.51 MWh is required, representing a significant decrease 

against the capacity required to provide services in each case. Clearly given the 

temporal distribution of required services, there is the potential that consecutive 

services could require an energy capacity greater than the maximum, however this 

represents a topic considered out of scope within this research, with a potential 

method of mitigating against this scenario coming from the ability to contract DSR 

from multiple potential sources.  

 

Figure 9-10 - Empirical CDF of the required DSR Energy service values 

Load Group 
1 2 3 4 5 6 

Maximum Required DSR Service (MWh) 1.83 1.83 3.69 3.42 3.42 3.42 

99th Percentile (MWh) 1.07 1.11 3.31 2.53 2.56 2.60 

95th Percentile (MWh) 0.50 0.48 2.02 1.19 1.07 1.03 

90th Percentile (MWh) 0.36 0.34 1.08 0.71 0.67 0.58 

80th Percentile (MWh) 0.19 0.19 0.51 0.39 0.31 0.30 

Table 9-8 – Maximum and percentiles of required DSR Energy services 

 Cumulative Distribution Functions of DSR Service Durations and Times 

between Services 

The CDFs shown in Figure 9-11 and Figure 9-12 are intended to be considered 

together. As discussed in Section 9.6.2 due to the nature of the zonal system 

presented in this thesis, there is the potential for multiple services to be spaced by 
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a single five minute window, thus effectively ‘chaining’ them together to make one 

larger service. One benefit of this strategy however is that it allows for analysis of 

the temporal spacing between these services. As the CDF in Figure 9-11 shows, 

whilst the maximum DSR duration threshold has been set to 4 hours, the slope of 

the CDF is such that a very limited number of services are of this duration.  At the 

80th percentile level, all required services are less than one hour in duration.  

 

 

Figure 9-11– Empirical CDF of the required DSR service durations 

Load Group 
1 2 3 4 5 6 

99th percentile  3.33 2.63 3.75 3.42 3.25 2.16 

95th percentile 1.50 1.34 2.37 2.10 1.58 1.17 

90th percentile 0.95 0.92 1.58 1.49 1.04 1.00 

80th percentile 0.67 0.50 0.83 0.83 0.67 0.67 

Table 9-9 – Percentiles of DSR service durations 
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Figure 9-12– Empirical CDF of the time between required DSR services 

Table 9-10 shows the percentiles in minutes of the times between the required 

services. In this case, the 1st, 5th, 10th and 20th percentiles have been show since 

these represent the distribution of the minimum times between required services, 

which is likely to be of more interest with regards to scheduling.   As discussed 

previously it is important to consider these CDFs together. If the typical times 

between required services is low, however at the same time the typical service 

durations are also low, this will be of less impact than long duration services which 

occur closer together.  

 

Group 1 2 3 4 5 6 

1st percentile (mins) 10 3.9 10 10 10 10 

5th percentile (mins) 10 15 10 10 10 15 

10th percentile (mins) 15 17 10 15 15 15 

20th percentile (mins) 20 25 15 15 20 20 

Table 9-10 – Percentiles of time between DSR services 

There is however clearly a trade-off requirement. As the number of customers 

grows, the available thermal headroom offered by the DTRs is reduced. Services of 

greater durations are therefore required to mitigate an increased number of 

thermal excursions, and by default these will occur at smaller and smaller time 

intervals between services.  
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This point is shown by two estimates of the multivariate CDF between the 

univariate service duration and time between service CDFs. The same kernel 

density estimation method as in Figure 7-2 has been used to develop these 

multivariate CDFs. Figure 9-13 shows these example joint CDFs for load group 3 

and for a total of 3750 and 4400 customers in the group. As can be seen, in the 

4400 customer case the time interval between services has reduced significantly 

from that of the 3750 customer case. The probability of larger services occurring at 

these smaller time intervals is also shown, as expected. 
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Figure 9-13 – Examples of joint CDFs between service duration and time between services 
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 Percentage of Conductor Thermal Excursions per Zone  

Figure 9-14 shows the percentage of required DSR services in each duration 

zone. Results are shown for load group 3 across a range of total customer numbers. 

For reference, the number of customers supported by the current line rating 

procedure for this group is 2350. The relationships between the zonal percentages 

have been shown to be non-linear, i.e. the percentage of customers supported does 

not transfer linearly between the zones. 

 

Figure 9-14 – Zonal Results for Load Group 3 

This is partly due to a function of the load profiles’ relationship with the 

resultant DTRs, but also due to the inclusion of DSR services within zone B. As 

DSR services in this research have been modelled as being constantly available 

and used where necessary, the resultant conductor temperature profile becomes a 

function of both the services and the actual conductor loading. 

Therefore in certain scenarios the use of a service could result in a single five 

minute excursion occurring where previously there was no such excursion or vice 

versa.  

 Example Profiles of Required DSR  

In addition to exposing the CDFs of duration, magnitude and time between 

services, the profile of required services throughout the day can also be derived. 

This has not been analysed in previous studies. The aim of this approach is to 
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provide useful information for both network planners and operators, in addition to 

further research considering the optimal scheduling of such services in the future 

smart grid.  

 

Figure 9-15 – Average and 99th percentile profiles of required services for Group 3 – Winter 

Weekday 

 

Figure 9-16 - Average and 99th percentile profiles of required services for Group 4 – Winter 

Weekday 

Figure 9-15 and Figure 9-16 show two examples of the required DSR services 

shown as a function of time. In both these cases service profiles are provided for 

the Winter Weekday scenario. For group 3 loads, as a result of the increased 

percentages of Economy 7 customers, there is a greater requirement for DSR 

services in the morning period.  
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 Conclusions 

This chapter has investigated the use of DTRs as a method to provide 

additional network headroom for the accommodation for increased consumer 

numbers. Two methods of analysis, the LOLE and the EENS have been used to 

investigate the potential benefits that DTRs can deliver, compared to the presently 

used line rating method and the use of the RTTR as opposed to the DTR. 

Improvements of up to 38 and 27% in the resultant LOLE and EENS values 

respectively have been shown when comparing the use of DTRs against RTTRs for 

the test cases explored in this chapter. Significant increases in network headroom 

have also been shown against the present line UK line rating standard, as 

previously discussed in [36]. The use of the Dynamic as opposed to Real-Time 

thermal ratings not only exposes the correlation between the load profile and the 

resultant conductor temperatures, but also exploits the thermal history of the 

conductor.  

Whilst a new series of reduced seasonal line ratings have been developed in 

this thesis as discussed in Chapter 4, for 4 of the 6 general load groups, no 

improvement was possible through the use of the DTR over the present line ratings 

when considering the newly proposed Zone A period. Such excursions did not occur 

for these load groups since by default the shape of their load profile is such that it 

leads to excursions greater than five minutes.  

This has been shown to typically occur for those load groups which have high 

percentages of industrial loads and therefore a ‘flatter’ load profile throughout the 

day. The shape of the load profile is therefore of importance when considering the 

nature of such thermal excursions and therefore their required services.  

The CDFs of the required service magnitudes have shown that whilst the 

maximum required service has a peak of 4.88 MW (in the worst case presented 

here), at the 99th percentile level of required response, the requirement has a 

maximum value of 1.60 MW. Whilst this percentile value does not provide the same 

operational risk as those of the thermal conductor excursions i.e. a 99.999% 

reliability it provides an indication as to the potential trade-offs in providing 100% 

or 99% of the required service magnitude.  

This is particularly important when considering that the service requirement 

is not evaluated against the entire yearly period. Whilst 99% of a yearly period 
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represents a potential 87.6 hours per year where some shortfall is present, 99% of 

the LOLE per year represents 1% of 208.46 hours or ≈ 2 hours.   
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10 Discussion 

 Introduction 

In this section of the thesis, the findings from each of the Chapters presented 

in this research will be discussed. Chapter 3 presents analysis of the meteorological 

and conductor parameters for the OHL monitoring sites. The most sheltered OHL 

site is determined in addition to derivations of the RTTRs for the available sites. 

Chapter 4 details a review of the presently implemented OHL rating standard in 

the UK. Chapter 5 presents derivation of a new series of ADD profiles, informed 

by the OAC socio-demographic classification scheme. Chapter 6 investigates the 

relationship between load and temperature for grouped electrical loads. Chapter 7 

provides a novel temperature-sensitive load modelling procedure in order to 

develop suitable feeder load models to act as inputs to a DTR model of an OHL. 

Chapter 8 details a clustering study carried out in order to determining a series of 

generic load groups based on their composition of Elexon class consumers. Chapter 

9 presents an evaluation of the use of the DTR model with time-series load profiles 

and exposes the differences between this method and those which have been 

previously carried out.  

 In addition to outlining the limitations of this work, potential areas or 

methods which could be used to extend the work are also discussed in this Chapter. 

The areas of further work detailed in this section are both in addition to and 

complimentary to, the areas of further work discussed in the main body of the 

thesis.  

 Current UK network rating practice 

The currently implemented UK standard for the rating of overhead lines has 

been examined as a base case in demonstrating the potential headroom increase 

through the use of DTRs. Limitations in the current standard have been exposed 

through the use of real world monitoring data installed at a series of test sites in 

the North of England. The results of this analysis have been shown largely to be 

dependent upon the selection of suitable ‘best fit’ procedures from the presented 

experimental results. Whilst admittedly, such research was carried out in a period 
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of reduced computational ability and allowances can be made for estimation errors, 

the fundamental factor from this analysis is not the derivation of new seasonal 

rating factors but is moreover the impact of using a worst case methodology as 

shown in P27.  

For conductors to be rated as a potential worst case scenario it has been 

shown in Chapter 4 that wind speeds need to be categorised as null. At this value, 

free as opposed to forced convection occurs and line ratings are therefore reduced. 

Ambient temperature values have also been demonstrated as differing from those 

quoted in the current standard. As shown in climate change predictions such as 

those in the UKCP09 scenarios, ambient temperatures and wind speeds are likely 

to deviate even further from the stipulated conditions. It has been noted that as 

part of the review of the current distribution network planning standard the 

technique of RTTRs and DTRs will play a role. This thesis has shown that their 

inclusion is important not only for increasing network capacity at lower costs than 

reinforcement but also since the present line rating standard may not adequately 

provide the level of risk which is currently assumed.  

 Socio Demographics and Residential demand side response 

In Chapter 5 results have shown that the present energy assumptions of the 

Elexon ADD profiles whilst being useful for overall power system planning, vary 

from those derived as a function of socio-demographics. The findings of this 

analysis have impact when considering the growth of techniques such as 

residential DSR [169] [170] [171, 172] or when examining differential charging 

methods for consumer connections to the distribution network [173].  

When considering a form of DSR from consumers, factors such as the number 

of requests and subsequent rewards for such services are those in which the socio-

demographics discussed here could provide input. Requests for services could be 

made based on electrical or non-electrical factors. In the context of Power Flow 

Sensitivity Factors (PFSFs) [174], some customers could provide greater impact on 

the network by their response than others, however continual calls for service from 

particular consumers could lead to DSR ‘fatigue’.  

Energy based socio-demographics could also be used as a method to 

proportionally rewards consumers for their services. Considering two domestic 



202 

 

electrical consumers each of whom provide a response of 1kW to the low voltage 

network with the same (PFSF). Each consumer provides the same response 

however one consumer would be classified as socially constrained in their usage, 

whilst the other has a much higher overall consumption. Whilst electrically these 

consumers are the same, the relative proportion of their response to their total 

consumptions are dissimilar. This could be said to be an adaptation of the 

proportional generation control schemes as presented in [174]. Here the two most 

appropriate methods for comparison are the ‘Egalitarian’ broadcast and the 

‘Technically most appropriate’.  In the Egalitarian case, generators are controlled 

proportional to their relative PFSF as opposed to calling upon those which can 

simply offer the greatest impact. This approach could be modified in order to take 

into account the relative PFSFs of consumers and their expected power and energy 

consumptions based on socio-demographics.  

Whilst in this research the OAC socio-demographic classification method has 

been used, additional classification schemes such as MOSAIC  [175] could also be 

used to develop alternative annual energy values and compared against those 

using the OAC.  

 Investigating the relationship between load and temperature for grouped 

electrical loads 

Chapter 6 presented novel analysis of the relationship between ambient 

temperature and load for groups of consumers at the distribution network level. 

This analysis was carried out in order to examine the requirements for the accurate 

modelling of consumers at the MV network level of the distribution network. As 

such, the nature of these relationships may be different for consumers at higher or 

lower voltage levels. Whilst a linear approximation has been made in this research, 

at lower voltage levels in particular an alternative modelling approach may be 

necessary.  

The correlations examined in this research are thought to be useful since they 

give information as to the relative impact of not only temperature on demand, but 

also on temperature estimation errors. As the move towards the smart grid is 

made, the economics of the power system will become more complex and the 

minimising of wasted costs is a key topic.  
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The potential impact of an example forecasting error has been demonstrated 

although as a potential piece of further work, examining how this relationship 

varies according to differing values of forecasting error would be useful to 

generalise these findings further.  

A new modelling technique has been proposed which can be used to derive 

estimates of these correlation values.  

 Temperature Sensitive Load Synthesis 

Previous work has considered the temperature sensitive elements of electrical 

load in order to derive more accurate forecasts or models of such loads, typically in 

wide area of national studies. This research has presented a causal model which 

can be used to develop accurate load profile time-series for end-user specified 

groups. As per the correlation model, a new technique has been developed in order 

to modify existing or newly derived ADD values of group demand as a function of 

temperature. As in the case of the correlation models, coefficients for the 

modification of domestic consumers only was considered. A potential aspect for 

further work would be to investigate the causal link between ambient temperature 

and non-domestic loads in greater detail.  

As climate change affects electrical demand in the future shifts away from 

the linear approximation as taken in this research are likely to occur. As shown in 

additional work from countries where the prevalence for air conditioning is higher, 

there is likely to be a shift towards a more non-linear relationship. As noted in the 

introduction to this thesis, RTTRs and DTRs are an available solution to network 

operators at present and there are network scenarios in which such solutions could 

deliver benefits to the network.  

This factor has significantly influenced the nature of load synthesis in this 

research and has therefore an effect on the choices with regards to the loads 

modelled, and their relationship with temperature. Whilst LCTs are likely to 

influence network loading significantly in future they have not been considered in 

this research. This is perhaps the key area to consider as a method for expanding 

on the research presented in this thesis. Following a similar approach as presented 

here, the influence of temperature on consumers with EVs, Air or Ground Source 

Heat Pumps and photovoltaic generation could be estimated.  
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 Consumer Load Group Classifications 

In order to generalize the findings from this research, a group composition 

clustering study has been carried out to determine a set of ‘typical’ consumer load 

groups across the LV and MV levels of distribution networks.  

Whilst these classes have been derived based on composition alone, this was 

to serve a specific purpose within this research. As in other clustering studies, 

there is the potential to classify load groups according to their profile. This could 

be carried out using two differing sets of profiles: 

1. Classifications could be made according to the load profile time-series 

of the groups 

2. Classification could be performed on the resultant network service 

requirement profiles.  

The intention of a combined load and DTR solution is such that consumers 

are connected for the maximum possible period of time and as the research in this 

thesis has shown, for certain load groups significant customer number increases 

are possible beyond the current rating standard in a ‘fit and forget’ type scenario. 

The use of time-series load profiles in conjunction with DTRs has estimated the 

requirement for potential services where necessary in order to provide the same 

level of network risk regarding thermal overloads. There is the potential that after 

such service determination that classification can be made according to the 

magnitude and duration of the required services as opposed to the load groups 

which are actually served.  

 

 Identification of the potential network service requirements 

In Chapter 9 the synthesised temperature sensitive load profiles for each of 

the identified consumer load groups is used in conjunction with a DTR model using 

meteorological information from a highly sheltered site. A novel service-duration 

based zonal method is proposed which ranks the number of potential consumer 

connections based upon the duration of the network services which are required to 

mitigate conductor temperature excursions. 
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 In this research a stipulated four hour limit has been placed on the duration 

of available responses to mitigate thermal overload conditions for an OHL. An 

extension of this work would be to consider a network model such as the UK GDS 

or IEEE test networks and to consider the potential connections of EES and DSR 

resources available to the network operator and optimise the available responses 

according to network costs and aspects such as power flow sensitivity factors. In 

this research the requirements from some form of network ancillary services has 

been discussed.  

 Network Risk  

Where a requirement has been made on such services they have been 

assumed to be available at all times in order to develop a suitable overall profile of 

required response. Clearly in the real-time operational power system, taking into 

account reliability and economic variables, a 100% secure source of network 

services is unlikely to be available. As in [36] a similar risk method could be 

examined which combines the probability of being unable to deliver a service at a 

particular point in time, with its resultant effect on conductor thermal behaviour.  

There is also the potential to follow the procedure discussed in [47] whereby 

the conductor would be allowed to exceed the circuit rated temperature, and the 

effects of these increases calculated. This would potentially allow for increased 

connection capacities, although the level of risk of operation in this mode must be 

clearly quantified accurately so as not to accelerate the ageing of conductors too 

rapidly.  

Since studies in [47] were carried out on an IEEE test network, the current 

state of real network assets is not discussed. As shown in Chapter 4 of this thesis, 

there is the potential that for certain OHL sites, the conductor may, in network 

fault scenarios be operating at higher temperatures than previously thought. The 

lack of knowledge of these events at present being as a result of the lack of 

monitoring at this level. It is therefore vital if exploitation of the ageing of the 

conductor is to be carried out, that a line study is carried out prior to 

implementation to determine the correct state of the asset’s existing health.  
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 Issues with Demand Side Response as a Control Technique 

As noted throughout this thesis the concept of demand side response has not 

been made specific as to a single source. In the case of EES the resource is clearly 

independent of any social or personal function, although is not completely 

dependable in its service provision due to state of charge and its potential 

additional requirements to provide network services such as frequency response. 

If DSR is examined as being supplied by residential consumers there are a number 

of factors which should be considered. It has been commented that DSR can 

reduced the natural diversity of demand, therefore impacting upon the load 

modelling methods outlined in this thesis. Strbac in [52] outlines a potential 

scenario whereby cold appliances such as fridges and freezers are automatically 

switched off as the result of a DSR call. At the start of the call each of the 

appliances will have differing thermal states.  Depending upon the duration of the 

DSR period, all of the appliances could approach their maximum threshold 

temperature and require power for cooling at the end of the period. This issue of 

payback is one which will require careful management when considering a 

combined DTR and load accommodation strategy to prevent thermal overloads 

upon load reintroduction. Techniques such as phasing in loads to prevent surges 

in demand could play a key role in such systems. Also payback is clearly a function 

of the demands use to provide the DSR. Kirschen in [176] notes that lighting is an 

example of one load reduction which has little if any payback.  

The potential for unwanted peak shifting is also of importance for 

investigation and is subtly different to the nature of payback. The pure reduction 

of loads as a result of a network requirement is clearly beneficial. The management 

of payback is possible through techniques such as those outline previously, 

however the reintroduction of load at unfavourable times as a result of energy 

practice ‘shifts’ [177] is one which could have significant impacts on the power 

system if not understood correctly.  

 Forecasting 

This research has predominantly analysed the capabilities of DTRs in the 

network planning domain. In the operational domain, clearly meteorological 



207 

 

conditions will vary from those outlined in this research and in real-time, 

operational decisions will be required as to the scheduling of the services discussed 

in this thesis. Forecasting of both the meteorological conditions in order to derive 

conductor ratings, and also the resultant load will ensure that economic operation 

of the power system is improved. Services can be deferred, contracted or negated 

based on such forecasts.  

Regarding the issue of network services, in this work where a requirement 

for such services has been made, these have been provided such as to reduce the 

conductor temperature below the circuit rated temperature however no lower. If a 

forecasting scheme was to be made used in conjunction with this scheme then more 

efficient services can be scheduled as a function of, for example availability. 

Forecasts of network service availability could inform the scheduling of increases 

services at a particular point in time in order to mitigate against a lack of available 

resources at a time where a conductor temperature excursion is forecast in the 

future.  

A lack of suitable forecasting techniques has been cited as a key barrier to the 

implementation of RTTRs and DTRs in BaU system operation. Without such 

visibility, confidence in these systems is potentially below that in order to deploy 

these systems on a wider scale. Since the present network standard essentially 

uses similar methods as to that taken in this research to evaluate the level of 

allowable network risk, it is felt that this research has contributed towards the 

inclusion of such systems as more typical BaU schemes. A network operator is 

likely to have information as to the consumer types connected to a particular area 

and if typical weather data for the potential DTR site was available, an estimation 

of the required services for the proposed connection numbers can be made.  
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11 Conclusions 

In this research, the potential benefits of DTRs for load accommodation have 

been evaluated. Improvements have been shown over the present line rating 

standard used in the UK, in addition to improvements against the use of RTTRs. 

A time-series load modelling approach as opposed to those used in other studies 

has exposed the thermal history of the conductor, and has shown this to be 

important when considering the capabilities of this technique for load 

accommodation in particular.   

 RTTRs for Sheltered OHL sites 

Whilst this work utilises the RTTR approach of some previous work, the study 

of highly sheltered OHLs at this particular voltage level has not been carried out 

previously. This work has shown that although for certain seasonal periods at 

sheltered OHL sites, the observed rating can be below that of the presently used 

circuit ratings, there are still appreciable increases in network headroom available 

for around 80% of the period.  

 Presently Implemented UK Line Rating Standard 

Presently the rating of OHLs in the UK stipulates the use of single seasonal 

conductor ratings, with a set of a worst case scenario meteorological conditions 

intended to result in a minimal risk of exceeding a conductor’s maximum rated 

temperature. This work has shown not only that there is the potential for these 

ratings to overstate the capacity of existing assets but also shows that RTTRs even 

at sheltered locations are capable of providing significant capacity increases above 

the existing methods with and without the need for network interventions.  

The analysis presented in Chapter 4 of this thesis has examined the current 

UK OHL rating standard. Since no statement is made as to the method used to 

describe the relationship between the percentages of conductor thermal excursions 

and continuous line ratings a review of the line of best fit values was undertaken. 

Whilst small improvements have been shown over the stated values using a new 

approach, perhaps the most important conclusion from these findings is that these 

small improvements can lead to significant differences in the estimated ratings 
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when the approach used in [21] is used. Two OHL monitoring sites representing a 

sheltered and non-sheltered location were also used to assess the validity of the 

assumptions made in the standard. Good agreement was shown between the newly 

estimated circuit ratings and those derived as a result of the new line of best fit 

approach, whilst at the sheltered site, significant reductions in the seasonal circuit 

ratings were required. The effect of these potential de-ratings is unlikely to have 

significant effects on network operation on a day-to-day basis since both the RTTR 

and the nature of typical line loading is such that thermal events are unlikely. The 

main aspect of these findings is in the difference in the perceived level of risk which 

is presently thought to exist within these networks.  

 Socio-Demographic ADD Modelling 

Chapter 5 demonstrated the variability in annual energy consumption values 

as a function of the OAC socio-demographic classifications. The use of this socio-

demographics based modelling approach has shown improvements in the 

modelling of ADDs for grouped loads over the use of Elexon ADD profiles.   

 Load-Temperature Relationship for Distribution Network Load groups 

The relationships between load and temperature for distribution network 

load groups have been shown as highly time variable and dependent upon day of 

week and as a function of the consumers within the load group. The use of the 

DBSCAN clustering algorithm has exposed the fact that these relationships for the 

same group are also variable depending upon the seasonal periods used in this 

research. A linear approximation as to this relationship has been used in this work, 

although in future, the potential increase in the use of air conditioning loads in the 

UK will likely require that these relationships be re-evaluated. The speed at which 

and RTTR or DTR solution can be implemented is the main rationale for 

investigating the present load-temperature relationships, as opposed to those 

predicted in various climate change scenarios.  

 Time-Series Feeder Load Modelling 

A novel temperature-sensitive method has been proposed in order to deliver 

accurate load group representations over time. The purpose of this modelling 
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strategy is to deliver load inputs to a DTR model at the MV level of distribution 

networks, therefore a temperature sensitive adaptation of an ADD method for load 

estimation was taken. For assessment at lower or higher voltage levels in the 

distribution network it is likely that alternate methods may result in 

representative models with increased performance over the generalised models 

and methods presented in this research.  

 Evaluation of the benefits of DTRs for Load Accommodation  

Results have been demonstrated for a sheltered test location and as such the 

results presented in this thesis are thought to be suitably generalised as to 

alternate network locations in which such a system may be implemented. RTTRs 

have been analysed in this research in addition to DTRs for load accommodation. 

As has been shown previously, significant increases in asset capacity in terms of 

the LOLE and EENS can be made over the presently used rating methods. The use 

of time-series load profiles in comparison to the real-time ambient conditions also 

takes into account the correlation between the demand and the asset’s thermal 

capabilities.  Where time-series load profiles are compared to the dynamically 

calculated behaviour of the asset the thermal history of the conductor is taken into 

account. Since this thermal history is not taken into account through the use of an 

RTTR method, improved values of EENS and LOLE have been demonstrated in 

this case.  

The typical temporal and seasonal periods at which potential network 

ancillary services may be necessary to support customer connections are also 

exposed through the analysis of load profiles in conjunction with the DTR. These 

have been demonstrated as highly related to the composition of the load groups 

which are under investigation. The typical distributions of network service 

durations and magnitudes have also been examined, in addition to the typical 

distributions of times between the required services. This analysis aims to provide 

useful inputs as to the scheduling and operation of the required services.   
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Appendix 1 – OAC Annual Consumption Values  

OAC Group Energy Consumption Statistics 

OAC Group 

Classification 

Class 1 Energy 

Consumption (kWh) 

Class 2 Energy 

Consumption (kWh) 

Elexon Profile 3915 6929 

1a 
4980.712 8814.987 

1b 4472.885 7916.222 

1c 4666.919 8259.629 

2a 3349.828 5928.609 

2b 3692.962 6535.896 

2c 3061.061 5417.541 

2d 3859.308 6830.299 

3a 3074.9 5442.034 

3b 2860.637 5062.826 

3c 2798.154 4952.243 

3d 3228.361 5713.632 

4a 3197.924 5659.765 

4b 3242.586 5738.809 

4c 3666.15 6488.444 

5a 3374.314 5971.944 

5b 3726.25 6594.81 

6a 4200.52 7434.184 

6b 3567.611 6314.047 

7a 3000.593 5310.524 

7b 2612.166 4623.076 

7c 2962.035 5242.284 

7d 2804.238 4963.01 

8a 3380.13 5982.238 

8b 3228.115 5713.199 

8c 3283.555 5811.317 

8d 3290.473 5823.56 
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Subgroup OAC Energy Consumption Statistics 

 

OAC Subgroup 

Classification 

Class 1 Energy 

Consumption (kWh) 

Class 2 Energy 

Consumption (kWh) 

Elexon Profile 3915 6929 

1a1 4912.028 8693.43 

1a2 5182.946 9172.907 

1a3 5191.55 9188.133 

1a4 4114.837 7282.541 

1b1 4096.718 7250.473 

1b2 5007.776 8862.885 

1b3 4153.226 7350.481 

1c1 5249.413 9290.541 

1c2 4172.318 7384.271 

1c3 4676.524 8276.628 

2a1 3826.195 6771.694 

2a2 3419.06 6051.138 

2a3 3216.806 5693.182 

2b1 2953.745 5227.611 

2b2 4173.001 7385.48 

2c1 3232.529 5721.009 

2c2 2628.151 4651.366 

2c3 2971.742 5259.462 

2d1 3716.056 6576.768 

2d2 3912.423 6924.303 

2d3 3925.721 6947.839 

3a1 2994.218 5299.241 

3a2 3173.497 5616.534 

3b1 2722.817 4818.91 

3b2 2739.99 4849.303 

3b3 3141.038 5559.087 

3c1 2865.18 5070.866 

3c2 2455.169 4345.219 

3d1 3268.399 5784.493 
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3d2 3258.57 5767.098 

3d3 3159.888 5592.449 

4a1 3198.319 5660.464 

4a2 3088.931 5466.867 

4a3 3334.208 5900.964 

4b1 3296.98 5835.077 

4b2 3171.592 5613.161 

4c1 3626.4 6418.092 

4c2 3603.833 6378.152 

4c3 3751.219 6639 

5a1 3348.638 5926.503 

5a2 3572.449 6322.608 

5a3 3207.505 5676.721 

5b1 4097.633 7252.092 

5b2 3721.613 6586.602 

5b3 3520.17 6230.083 

6a1 4643.811 8218.732 

6a2 4294.911 7601.24 

6a3 3835.051 6787.369 

6a4 4311.323 7630.286 

6b1 3622.361 6410.944 

6b2 3644.301 6449.775 

6b3 3433.381 6076.483 

6b4 3578.83 6333.902 

7a1 3034.552 5370.625 

7a2 2992.166 5295.61 

7a3 2991.492 5294.416 

7b1 2682.381 4747.344 

7b2 2578.633 4563.729 

7b3 2584.334 4573.819 

7c1 2930.328 5186.167 

7c2 2978.968 5272.25 

7c3 2974.196 5263.805 

7d1 2877.216 5092.169 

7d2 2495.34 4416.314 
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7d3 2990.351 5292.396 

7d4 2412.542 4269.776 

8a1 3409.594 6034.383 

8a2 3335.479 5903.214 

8b1 3173.606 5616.727 

8b2 3308.648 5855.728 

8c1 3294.072 5829.93 

8c2 3391.614 6002.562 

8c3 3175.496 5620.071 

8d1 3317.482 5871.362 

8d2 3302.454 5844.766 

8d3 3228.756 5714.331 
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Appendix 2 - Correlation Sensitivity Coefficients 

 
Class 1 CSC Class 2 CSC 

 W Sa Su W Sa Su 

00:30 -0.3773 -0.2586 -0.2859 -0.5567 -0.9740 -0.5462 

01:00 -0.4064 -0.2972 -0.2908 -0.3519 -0.4045 -0.4159 

01:30 -0.4332 -0.3067 -0.2910 -0.2488 -0.2637 -0.3766 

02:00 -0.4610 -0.3449 -0.2903 -0.2424 -0.2214 -0.3558 

02:30 -0.5018 -0.3949 -0.3220 -0.2471 -0.2285 -0.3690 

03:00 -0.5122 -0.4230 -0.3316 -0.2678 -0.2553 -0.4142 

03:30 -0.5118 -0.4274 -0.3273 -0.3059 -0.2914 -0.4783 

04:00 -0.5304 -0.4378 -0.3097 -0.3815 -0.3226 -0.5026 

04:30 -0.5311 -0.4507 -0.3193 -0.4695 -0.3249 -0.4918 

05:00 -0.5257 -0.4587 -0.3266 -0.5727 -0.2781 -0.4822 

05:30 -0.5442 -0.4711 -0.3319 -0.6251 -0.2371 -0.4665 

06:00 -0.5498 -0.4859 -0.3593 -0.6243 -0.2080 -0.3931 

06:30 -0.5532 -0.4870 -0.4220 -0.5644 -0.2281 -0.3033 

07:00 -0.5441 -0.4826 -0.4718 -0.5767 -0.3098 -0.2081 

07:30 -0.5628 -0.5102 -0.4916 -0.6196 -0.3514 -0.1594 

08:00 -0.5919 -0.5120 -0.5340 -0.6516 -0.4192 -0.0548 

08:30 -0.6026 -0.5316 -0.5724 -0.9053 -0.4459 0.0149 

09:00 -0.6148 -0.5862 -0.5834 -1.3193 -0.0818 0.0591 

09:30 -0.6501 -0.6122 -0.5783 -1.3906 0.1004 -0.0768 

10:00 -0.6555 -0.5908 -0.6035 -1.5247 -0.0106 -0.0325 

10:30 -0.6780 -0.6135 -0.6477 -1.2691 0.1131 0.2959 

11:00 -0.6932 -0.6081 -0.6462 -0.9748 -0.0842 0.2821 

11:30 -0.6899 -0.5614 -0.6511 -1.0433 -0.4663 0.3252 

12:00 -0.6713 -0.5315 -0.6694 -1.1494 -0.6811 0.4897 

12:30 -0.6644 -0.5426 -0.7099 -1.2326 -0.6353 0.6120 

13:00 -0.6328 -0.5220 -0.6999 -1.6237 -0.8826 0.3200 

13:30 -0.6301 -0.5372 -0.7242 -1.9418 -0.5957 0.4939 

14:00 -0.6201 -0.5626 -0.7186 -2.0530 -0.6063 0.4040 

14:30 -0.6454 -0.5621 -0.7096 -1.7371 -0.6568 0.0924 

15:00 -0.6562 -0.5865 -0.6808 -1.6500 -0.5592 -0.0454 

15:30 -0.6931 -0.6027 -0.6917 -1.1538 -0.3945 0.0865 

16:00 -0.6718 -0.5795 -0.6800 -1.1895 -0.7354 0.1602 

16:30 -0.6858 -0.6039 -0.6804 -0.9990 -0.3117 0.3739 

17:00 -0.6693 -0.5955 -0.6660 -1.0539 -0.1766 0.4634 

17:30 -0.6673 -0.5628 -0.6808 -0.5939 -0.2282 0.7264 

18:00 -0.6036 -0.5469 -0.6274 -0.9099 -0.2202 0.6177 

18:3 -0.5792 -0.5429 -0.5842 -0.6638 -0.1546 0.4646 
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19:0 -0.5518 -0.5170 -0.5272 -0.6572 -0.3593 -0.0650 

1930 -0.5329 -0.5396 -0.5090 -0.7930 -0.1590 -0.1147 

2:00 -0.5007 -0.5147 -0.4599 -1.2029 -0.4059 -0.3750 

0:30 -0.5397 -0.5351 -0.4585 -0.9082 -0.2235 -0.3917 

21:00 -0.5504 -0.5431 -0.4813 -1.2035 -0.0851 -0.2924 

21:30 -0.5444 -0.5377 -0.5104 -1.2709 0.0055 0.0939 

22:00 -0.5396 -0.5084 -0.4847 -1.0156 -0.1140 -0.0280 

22:30 -0.5012 -0.5146 -0.4437 -1.1050 0.2916 -0.3974 

23:00 -0.4213 -0.4518 -0.4093 -1.5158 -0.0383 -0.4722 

23:30 -0.3926 -0.4065 -0.3898 -1.1971 -0.2149 -0.5823 

00:00 -0.3685 -0.3236 -0.3666 -0.7952 -0.5419 -0.5036 
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Appendix 3 - Temperature Sensitivity Coefficients 

 
Class 1 Gradient Coefficient Class 2 Gradient Coefficient ∑ 𝑁𝑗

2
𝑗=1  Gradient Coefficient 

 W Sa Su W Sa Su W Sa Su 

00:30 -0.164210 -0.143856 -0.159481 -0.155100 0.049780 -0.531468 0.000019 0.000009 0.000040 

01:00 -0.181614 -0.308666 -0.136963 -0.205077 0.654590 -0.283277 0.000017 0.000020 0.000023 

01:30 -0.127541 -0.251793 -0.300362 -0.686285 -0.181790 0.032978 0.000013 0.000019 0.000027 

02:00 -0.145597 -0.384410 -0.306997 -0.493404 -0.014549 0.054987 0.000019 0.000014 0.000004 

02:30 -0.188039 -0.166259 -0.386501 -0.345045 -0.536069 -0.251311 0.000015 0.000012 0.000033 

03:00 -0.135673 -0.355294 -0.498172 -0.520049 -0.197839 -0.088248 0.000020 0.000018 0.000024 

03:30 -0.103444 -0.296823 -0.448651 -0.795760 -0.249641 -0.531810 0.000025 0.000006 0.000047 

04:00 -0.042844 -0.257750 -0.264251 -1.116896 -0.470474 -1.677593 0.000034 0.000005 0.000068 

04:30 -0.006382 -0.240946 -0.241438 -1.010824 -0.627623 -1.483290 0.000023 0.000019 0.000053 

05:00 -0.092994 -0.424423 -0.382020 -0.888216 -0.198356 -0.854346 0.000025 0.000006 0.000038 

05:30 -0.088750 -0.326215 -0.583157 -0.873381 -0.530562 -0.006460 0.000022 0.000017 0.000030 

06:00 -0.178330 -0.277620 -0.368431 -0.761750 -0.499452 -0.874783 0.000031 0.000013 0.000038 

06:30 -0.219531 -0.352135 -0.456423 -0.331507 -0.103656 -0.241674 0.000025 0.000023 0.000024 

07:00 -0.322652 -0.415720 -0.579318 0.295033 0.339242 0.348884 0.000024 0.000013 0.000033 

07:30 -0.299252 -0.397736 -0.417732 0.338803 0.528382 0.703350 0.000027 0.000021 0.000024 

08:00 -0.183704 -0.154225 -0.283942 -0.573926 -0.076684 0.545204 0.000047 0.000009 0.000010 

08:30 -0.166601 -0.250798 -0.195471 -0.529828 0.074528 0.257297 0.000041 0.000031 0.000015 

09:00 -0.162536 -0.206115 -0.237716 -1.249807 -0.340634 -0.100465 0.000042 0.000028 0.000049 

09:30 -0.070835 -0.282972 -0.321404 -2.519157 -0.497805 0.993017 0.000044 0.000066 0.000026 

10:00 -0.249800 -0.280197 -0.280404 -0.779225 -0.919492 0.512643 0.000035 0.000056 0.000037 
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10:30 -0.178173 -0.329689 -0.350648 -1.614090 -0.100436 0.993454 0.000036 0.000058 0.000026 

11:00 -0.212784 -0.380784 -0.409295 -1.411941 1.272337 1.012580 0.000029 0.000032 0.000032 

11:30 -0.247364 -0.438895 -0.274291 -1.629651 0.755212 -0.303411 0.000037 0.000053 0.000028 

12:00 -0.308651 -0.379285 -0.420099 -0.994501 0.589469 -0.138997 0.000032 0.000039 0.000063 

12:30 -0.320540 -0.377587 -0.387089 -0.321043 1.191082 0.817593 0.000029 0.000026 0.000026 

13:00 -0.257414 -0.385343 -0.348854 -1.356866 1.615443 0.007545 0.000030 0.000018 0.000043 

13:30 -0.240591 -0.344920 -0.377236 -1.614269 1.325655 0.565065 0.000039 0.000012 0.000035 

14:00 -0.311853 -0.342799 -0.518319 -0.656554 0.363757 1.776533 0.000026 0.000021 0.000045 

14:30 -0.354505 -0.370386 -0.638887 -0.486420 0.552967 2.252632 0.000025 0.000030 0.000018 

15:00 -0.388552 -0.407687 -0.540649 0.024767 0.183389 0.639077 0.000018 0.000041 0.000056 

15:30 -0.356825 -0.319778 -0.486430 0.142151 -0.167849 0.944402 0.000019 0.000027 0.000017 

16:00 -0.320571 -0.356391 -0.491596 -0.520973 0.281101 1.771838 0.000030 0.000039 0.000018 

16:30 -0.269789 -0.448636 -0.463615 0.041890 1.137569 2.368313 0.000012 0.000035 -0.000003 

17:00 -0.211663 -0.280507 -0.254165 -0.154133 0.835027 0.603573 0.000017 0.000009 0.000005 

17:30 -0.208111 -0.184938 -0.343685 0.491557 -0.425511 0.919853 0.000010 0.000015 0.000030 

18:00 -0.187744 -0.158753 -0.236540 -0.196271 0.130600 0.195537 0.000018 -0.000004 0.000023 

18:30 -0.140947 -0.231916 -0.217054 -0.592963 0.552702 0.568713 0.000026 0.000014 0.000018 

19:00 -0.166710 -0.296346 -0.269402 -0.054906 1.293191 0.904858 0.000016 0.000009 0.000025 

1930 -0.181548 -0.201818 -0.156450 0.195622 0.636695 0.133159 0.000019 0.000016 0.000016 

20:00 -0.173324 -0.204525 -0.192761 0.012705 0.725749 -0.251692 0.000032 0.000022 0.000046 

20:30 -0.170757 -0.181198 -0.237682 -0.117670 -0.061886 0.567534 0.000037 0.000039 0.000021 

21:00 -0.175376 -0.220372 -0.237845 0.385569 0.849145 -0.019401 0.000021 0.000022 0.000045 

21:30 -0.154008 -0.191558 -0.261163 0.177113 0.259893 0.783404 0.000017 0.000011 0.000021 

22:00 -0.143524 -0.136713 -0.198944 0.179427 -0.495185 0.162950 0.000021 0.000048 0.000022 

22:30 -0.156004 -0.199961 -0.224435 0.428436 0.430096 1.000817 0.000017 0.000040 0.000007 

23:00 -0.117233 -0.230193 -0.256751 -0.243792 0.611449 1.013495 0.000028 0.000041 0.000012 

23:30 -0.126518 -0.173943 -0.346622 0.011839 0.459740 2.148800 0.000018 0.000030 0.000009 

00:00 -0.104351 -0.190694 -0.228475 -0.202683 0.178451 0.518302 0.000023 0.000034 0.000011 
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 Class 1 Y-Intercept Coefficient Class 2 Y-Intercept Coefficient ∑ 𝑁𝑗
2
𝑗=1  Y-Intercept Coefficient 

 W Sa Su W Sa Su W Sa Su 

00:30 0.035478438 0.034402074 0.038563146 0.095422406 -0.026954618 0.215979464 -4.28E-06 -5.28E-07 -9.81E-06 

01:00 0.044478378 0.090622358 0.034300027 0.054838599 -0.224017518 0.114836499 -3.74E-06 -4.44E-06 -5.37E-06 

01:30 0.035667325 0.056928162 0.084139058 0.114449849 0.099998298 -0.106671127 -2.33E-06 -5.45E-06 -3.93E-06 

02:00 0.032353702 0.113353675 0.087670155 0.098643584 -0.03825087 -0.050633496 -2.58E-06 -2.33E-06 1.05E-06 

02:30 0.048966975 0.022517978 0.102984394 0.055919625 0.147200089 0.016892827 -2.67E-06 -8.08E-07 -6.24E-06 

03:00 0.043450451 0.08092459 0.144926519 0.063122982 0.066491637 -0.095883569 -2.00E-06 -4.28E-06 -2.12E-06 

03:30 0.017620466 0.059504232 0.105932306 0.175678575 0.094590855 0.094782091 -4.54E-06 -6.52E-07 -8.46E-06 

04:00 0.010514643 0.072044561 0.051289674 0.244517451 0.113016025 0.411564971 -6.52E-06 -1.99E-06 -1.46E-05 

04:30 -0.003808852 0.053757436 0.0349891 0.230251985 0.161629137 0.370937095 -4.37E-06 -5.15E-06 -9.60E-06 

05:00 0.017251447 0.096238531 0.087605277 0.2107723 0.061566051 0.130835974 -4.83E-06 -1.97E-06 -6.16E-06 

05:30 0.017464308 0.067021035 0.11786054 0.194938541 0.136565955 0.03957558 -4.24E-06 -3.39E-06 -6.18E-06 

06:00 0.029892875 0.045521838 0.070098701 0.200242377 0.181104412 0.261611949 -6.83E-06 -3.27E-06 -8.31E-06 

06:30 0.038761692 0.080851627 0.09331417 0.099619135 0.034726626 0.074342102 -5.03E-06 -5.19E-06 -4.92E-06 

07:00 0.064019815 0.102438895 0.114359422 -0.043832264 -0.090126685 -0.006634525 -5.15E-06 -2.26E-06 -7.57E-06 

07:30 0.054170104 0.107932564 0.110775027 -0.015990818 -0.196152717 -0.223477011 -5.93E-06 -3.62E-06 -5.25E-06 

08:00 0.03936242 0.033406687 0.066820131 0.185218323 0.072022079 -0.096343068 -1.18E-05 -3.08E-06 -2.99E-06 

08:30 0.034015966 0.061991654 0.052945748 0.216317127 0.042805944 -0.033383871 -1.12E-05 -8.74E-06 -5.00E-06 

09:00 0.035760822 0.04331401 0.051012492 0.448182799 0.232456427 0.2028133 -1.16E-05 -8.32E-06 -1.51E-05 

09:30 0.012731531 0.078554204 0.091177291 0.865416048 0.208800113 -0.237920628 -1.41E-05 -1.98E-05 -7.58E-06 

10:00 0.064983202 0.086218578 0.080388576 0.376537521 0.369402193 -0.097369041 -1.16E-05 -1.96E-05 -1.15E-05 

10:30 0.043698477 0.105500112 0.106348532 0.628909415 0.033797292 -0.250489422 -1.12E-05 -1.82E-05 -9.25E-06 

11:00 0.059313777 0.126245243 0.121589295 0.584568088 -0.316149359 -0.173122455 -9.84E-06 -1.24E-05 -1.19E-05 

11:30 0.071707166 0.156596735 0.073327435 0.700184529 -0.280430051 0.292299898 -1.37E-05 -1.95E-05 -8.31E-06 

12:00 0.098182968 0.131330455 0.135674306 0.442133833 -0.172829287 0.110211536 -1.12E-05 -1.43E-05 -2.15E-05 
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12:30 0.099011692 0.125050994 0.120032329 0.2941852 -0.401541373 -0.117522145 -1.12E-05 -7.27E-06 -1.03E-05 

13:00 0.069587366 0.137843345 0.114709649 0.696835816 -0.592142394 0.014715804 -1.01E-05 -5.48E-06 -1.21E-05 

13:30 0.073368596 0.107801334 0.112071943 0.665175313 -0.229387052 -0.0014944 -1.40E-05 -5.38E-06 -1.35E-05 

14:00 0.110908443 0.141928599 0.174205401 0.134497225 -0.335584157 -0.545636657 -7.26E-06 -6.87E-06 -1.65E-05 

14:30 0.126001555 0.118796071 0.211542292 0.132546013 -0.120407538 -0.59672485 -8.15E-06 -8.48E-06 -8.24E-06 

15:00 0.134683245 0.14389041 0.178546282 -0.021860858 -0.140775474 0.039487147 -4.57E-06 -1.18E-05 -2.31E-05 

15:30 0.122082142 0.11145598 0.162309819 -0.09947279 0.056560901 -0.110250696 -4.57E-06 -6.56E-06 -9.11E-06 

16:00 0.093429736 0.138876663 0.155636618 0.353286949 -0.227351346 -0.425130344 -1.12E-05 -1.43E-05 -8.19E-06 

16:30 0.084074439 0.168268081 0.147481949 -0.143071364 -0.565573167 -0.836416008 8.67E-07 -1.11E-05 3.73E-06 

17:00 0.055017177 0.078508399 0.072050628 0.034924536 -0.126922913 -0.11556294 -1.05E-06 -2.34E-06 -3.42E-06 

17:30 0.053934096 0.053911207 0.08913183 -0.131739646 0.088849225 0.00706941 -1.39E-06 -7.59E-07 -1.50E-05 

18:00 0.052663105 0.031611553 0.070406094 0.124445587 0.056172247 0.010787884 -6.58E-06 4.46E-06 -1.02E-05 

18:30 0.027968952 0.056544885 0.058053079 0.309081921 -0.044408945 -0.081904712 -8.64E-06 -3.23E-06 -4.79E-06 

19:00 0.038457212 0.086217071 0.077732242 0.131448442 -0.326416126 -0.196498779 -5.00E-06 -3.20E-06 -7.68E-06 

1930 0.04683368 0.053708011 0.042110179 -0.019423641 -0.160909347 0.015684694 -4.80E-06 -3.49E-06 -4.27E-06 

2:00 0.04193874 0.053444096 0.057018806 0.073083067 -0.178647596 0.014472254 -9.15E-06 -4.91E-06 -1.08E-05 

0:30 0.040283647 0.051760051 0.057935301 0.126933703 0.055198727 -0.063076258 -1.06E-05 -1.23E-05 -4.90E-06 

21:00 0.039583501 0.056535848 0.065666723 -0.010748728 -0.203083658 -0.028256322 -7.11E-06 -5.56E-06 -1.06E-05 

21:30 0.037372561 0.052587545 0.07441063 0.010312475 -0.072354681 -0.259715097 -4.70E-06 -3.14E-06 -4.81E-06 

22:00 0.032804066 0.032981353 0.035144618 0.009482348 0.190724011 0.178515368 -5.88E-06 -1.29E-05 -7.19E-06 

22:30 0.037800154 0.055339264 0.054644226 -0.074511139 -0.151449843 -0.20244661 -4.09E-06 -9.66E-06 -2.38E-06 

23:00 0.027735265 0.058364586 0.053992393 0.077534524 -0.143885081 -0.151992864 -6.53E-06 -1.02E-05 -2.09E-06 

23:30 0.031812983 0.035676999 0.084054177 0.003658019 -0.029940305 -0.504316505 -4.54E-06 -7.05E-06 -1.80E-06 

00:00 0.026350046 0.0451217 0.044264481 0.061580863 -0.010695048 -0.023281798 -5.68E-06 -8.31E-06 -2.52E-06 

 


