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Abstract 
 

Salmonella enterica is considered zoonotic pathogen with capability to colonies on 

range of plants and animals allowing transmission between them. Whole genome 

sequence analysis of S. enterica generates a phylogenetic tree comprising of three 

clades: A1, A2 and B. These 3 clades encompass the known 2,600 serovars used to 

type S. enterica during clinical outbreaks of salmonellosis. S. enterica exploits the 

bacterial flagellum to be motile in liquid environments and over surfaces. The genetic 

regulation of flagellar assembly is an elegant and harmonious system driving 

assembly of the flagellum from the base upwards.  

We surveyed the response and changes to flagellar regulation in a cohort of S. 

enterica serovars. Our analysis encompassed examining phenotypic motility, flagellar 

gene expression and flagellar abundance depending on nutrient composition. We 

demonstrated that the timing of flagellar gene expression is consistent across the 

species but the magnitude of flagellar gene expression varies significantly. The S. 

enterica flagellar system is bistable, producing a heterogeneous population of motile 

cells. Our data suggested that population heterogeneity plays a role in the adaptation 

of S. enterica serovars with respect to motility.  

The great similarity of the flagellum systems between S.enterica and E.coli gave 

us a reason to study why flagellar regulation in S.enterica differed from E. coli. 

Indeed, we replaced the master flagellar regulators, flhDC from E.coli into the S. 

enterica. We found a significant variation in FlhD4C2 activity through mixing flhD and 

flhC between both organisms. In conclusion, the diversity and changes we observe in 

just a small subset of S. enterica serovars and by introducing flhDC homologues has 

made us reconsider a number of assumptions we make about the regulation of the 

flagellar system based on model-domesticated strains of S. enterica. 
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 شكر وتقدير

 بسم الله الرحمن الرحيم
َ لهَُمْ أنََّهُ الْحَقُّ  )  ( سَنُريِهِمْ آيَاتنَِا فيِ الآْفَاقِ وَفيِ أنَفُْسِهِمْ حَتَّى يتََبَينَّ

 
تقدم بجزيل الشكر الى كل شخص في مركز افي البداية نشكر الله تعالى على توفيقه على اتمام هذا العمل حيث 

لبكتيرية / كلية الطب / جامعة نيوكاسيل في بريطانيا واخص بالامنتنان والعرفان الى الدكتور البيولوجيا الخلوية ا
فيل الدريج الذي شرفنا بقبوله الاشراف على اطروحة الدكتوراه فله منا كل التقدير والاحترام، حيث كان له الاثر 

 الكبير في توجيهه ودعمه المتواصل للوصول الى اهداف البحث. 

الثلاث سنوات الماضية.  يلةلشكر والتقدير الى السادة رتشارد دانيل و كيفن ولتون على متابعتنا طاضافة ا  

بالتوجيه والمساعدة بالمختبر. و الدكتور جاد ساسين  توم اوين، كنت محضوضاً بالتعرف على الدكتور أيضا  

لي طيلة فترة الدراسة لما دعاءهما  شكر خاص موصول بالفخر الى والدي ووالدتي العزيزين على قلبي الذي لو لا
. لا ننسى ايضاً شكري وتقديري الى وانعام اسراء اسامه، ارقم، خواتي واخصكان هذا الانجاز، اضافة الى اخوتي وا

 عمي د. عبد المنعم الليلة وعمتي نجوى الدباغ دعمهم المتواصل والدعاء لنا. 

ى المشهداني رئيس قسم علوم البيئة اضافة الى الاستاذ الدكتور أبي شكر خاص ايضاً يمله المحبة والامتنان الى د. يحي
لما كنت درست الدكتوراة في بريطانيا.  وه جي رئيس جامعة الموصل، الذي لولا دعمهمالدي  

اخيراً، انا مدين بعمق وشعور بالامنتنان الخاص الى زوجتي العزيزة اسيل دعمها وحثها المتواصل لي طيلة فترة 
يث كانت الاب والام والاخ والصدر الحنون هنا في بريطانيا.دراستي، ح  

شكر خاص الى بلدي العراق الذي اعطاني الفرصة للدراسة والمتمثل بوزارة التعليم العالي والبحث العلمي والى 
 الملحقية العراقية في لندن لدعمها المتواصل طيلة ايام الدراسة. 

 

2017يمن محمد جبر البنا، اب أ  
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1.1 History of Salmonella 
  

Salmonellosis has been considered a health problem for years, being a significant 

economic burden in relation to illness and death. In 1880 Karl Joseph Eberth was the 

first bacteriologist to recognize Salmonella under the microscope naming the cells he 

observed “typhoid bacilli” (Marineli et al.). In 1884, Georg Gaffky was the first to 

describe Salmonella enterica serovar Typhi, identifying his observations as ‘’bacillus 

typhus’’ (Gaffky, 1884). Later in 1886, the veterinarian D. Salmon and his colleague 

T. Smith discovered the main cause of swine fever (hog cholera) in the United States 

(Salmon, 1886). In 1900, the bacterial species was subsequently named Salmonella 

to reflect who discovered it (Salmonella Subcommittee of the Nomenclature 

Committee of the International Society for, 1934). Further investigation by White in 

1925 proposed an antigenic diagram for the classification of Salmonellae based on 

somatic and flagella antigens. Consequently, scientist Kauffmann developed the 

Salmonella serological scheme defined as the Kauffmann-White chart including 2540 

serovars that is still used to this day (Kauffmann, 1947).  

1.2 Features of the Genus Salmonella 
 

Salmonella is a Gram-negative, facultative anaerobic, motile, non-spore forming 

bacterium. Salmonella are rods in shape ranging in length between 2-5μm with a 

diameter of 0.7-1.5 μm. Salmonella are attributed to the family called 

Enterobacteriaceae (Fàbrega and Vila, 2013). Typically, Salmonella are motile in 

liquid and on semi-solid media because they have flagella. However, some serotypes 

are non-motile such as serovars Gallinarum and Pullorum (Holt et al., 1986). In 

principle, Salmonella has been divided into two species: bongori and enterica based 

upon the hypothesis suggested by White in 1929 (Murray, 2009). Subsequently 

Kauffmann amended the Salmonella serotyping scheme in 1966 to include more than 
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2,600 serovars (Popoff et al., 1998). Salmonella serovars are determined depending 

upon the expression of flagellar (H) and somatic lipopolysaccharide (O) antigens. 

After development of methods including DNA-DNA hybridisation (Brenner et al., 

2000), it was found that most serotypes could be further collated as subspecies 

(Reeves et al., 1989). Recently, The World Health Organization (WHO), based on the 

Kauffmann-White scheme, has updated the Genus of Salmonella (Grimont and Weill, 

2007) Salmonella is therefore divided into two species, S. enterica and S. bongori. S. 

enterica is then further divided to six subspecies: S. enterica subsp. enterica, S. 

enterica subsp. salamae, S. enterica subsp. arizonae, S. enterica subsp. diarizonae, 

S. enterica subsp. houtenae and S. enterica subsp. indica. (Guiney and Fierer, 2011) 

(figure1). Over the last century, microbiologists have used nutritional and serological 

properties to characterize bacteria (Urwin and Maiden, 2003). At the present time, 

new systems for the diagnosis are slowly being adopted. One example is based on 

Multi-locus Sequence Typing (MLST) as a substitute to describe Salmonella enterica 

(Achtman et al., 2012a). MLST is described as sequencing gene fragments from 

seven housekeeping genes in order to identify and catalogue organisms (Maiden, 

2006). Recently, using MLST instead of serotyping for identification of Salmonella 

species provides a more accurate diagnosis and rapid epidemiological tracking. 

MLST has given us a better appreciation of Salmonella diversity and accurate 

epidemiology, although not strictly direct diagnosis of cases (Achtman et al., 2012a). 
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1.3 Animal Reservoirs for Salmonella and Routes of Transmission 
  

Salmonellosis is spread through various forms of transmission. Contamination of 

environmental sources are the most common associated with Salmonella infection 

(figure 2). For example, farms, water and direct contact with animals colonised with 

Salmonella (Pui et al., 2011). Salmonellosis is conveyed across to humans mainly via 

contaminated or undercooked meats from poultry, cattle, sheep, pigs as they are the 

most predominant reservoirs (Samuel, 1996). Salmonella are able to survive many 

years in the soil compared to months in water if the environmental circumstances are 

suitable (Todar, 2015). We as hosts are also considered a reservoir permitting person 

to person transmission (Mermin et al., 2004). 

1.3.1 Salmonellosis in Poultry  
 

Poultry are considered one of the biggest and most crucial reservoirs of Salmonella 

compared to other animals (Khan, 1969). The prevalent serotypes are carried in the 

poultry reservoir worldwide: Typhimurium, Enteritidis, Gallinarum and Pullorum 

respectively (Wallis, 2006). For Typhimurium and Enteritidis, infection starts in the 

digestive system by overrunning and colonising intestinal cells. The consequence is a 

severe systemic infection in small chicks (Kaiser et al., 2000). As the physiological 

nature of poultry means that they share the digestive tract and reproductive organ, 

eggs will be contaminated with Salmonella and thus allow direct transmission to the 

developing chick (Howard et al., 2012). Gallinarum is a source of adult chicken fowl 

typhoid disease, characterized by an acute septicaemia and haemorrhages 

(Shivaprasad et al., 2013). For Pullorum infection, chicks develop white diarrhoea 

and egg infection as Pullorum colonizes the reproductive tract with great efficacy 

(Wigley et al., 2001; Haider et al., 2014). Salmonella in the poultry industry is 

considered a serious economic burden by decreasing production via mortality and 



6 
 

the associated high cost of treatment prevention. There is also a significant impact on 

public health as a result of the ease of transmission via food to the human population 

(McEntire et al., 2014).  

1.3.2 Salmonellosis in Cattles  
 

Salmonella in cattle causes fever, decrease production of milk, loss of appetite and 

severe diarrhoea. The most common Salmonella serovars that infect cattle are 

Typhimurium and Dublin (Wallis, 2006). With respect to Typhimurium infection is 

frequently associated with indigestion, inflammation of the digestive system, bloody 

diarrhoea, anaemia, dehydration and death (Elvidge, 2013). Moreover, in Vietnam, 

Typhimurium is associated with human infectious disease especially via consumption 

of infected meat (Vo et al., 2006). Occasionally, Typhimurium in the cattle might be 

an intermediate host (carrier and latent) without any clinical signs. The carrier state is 

still considered dangerous due to pathogen shedding and the subsequent 

environmental spread. Shedding has also been implicated with atypical livestock 

infection routes such as via the respiratory tract and conjunctiva (Wallis and Barrow, 

2005). For serovar Dublin, systemic infections in particular in pregnant cows can lead 

to neonatal infection (Hall and Jones, 1977). The main route of infection is through 

oral transmission by contaminated fields due to faecal matter (Pell, 1997). Once 

more, the associated public health problems of Salmonella disease among cattle is a 

significant economic threat especially, like in poultry, the high cost of treatment, 

increase in the percentage of abortion, decrease a meat production and reduced milk 

yield (Visser et al., 1997).  
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Figure 2. The Salmonella life cycle and infection, adapted from (Torrence and 
Isaacson, 2008).  
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1.3.3 Salmonellosis in Pigs  
 

The Salmonella serovars infectious for the pig are divided into two categories: host-

restricted and ubiquitous. The predominant serovar in pigs is Choleraesuis and 

considered the main problem for pig breeding (Sojka et al., 1977; Wallis and Barrow, 

2005). The clinical signs start with general weakness, fever, respiratory infection, 

digestive infection (enterocolitis), lymphatic infection associated with splenomegaly, 

hepatomegaly, septicaemia and death (Fedorka-Cray et al., 2000). In contrast, 

ubiquitous infections include Typhimurium and Derby serovars and are most common 

in young piglets and very rarely happen in the adult pigs (Wallis, 2006). The 

pathogenesis of the disease commences from contamination of food and the bacteria 

enter through the oral cavity directly to infect the tonsils and may cause tonsillitis 

(Wood, Pospischil et al. 1989). The respiratory system can also become infected 

leading to inflammation of alveolar cells (pneumonia) resulting in difficulty breathing 

and, without treatment, death. Occasionally the disease goes to the digestive system 

causing enteritis (Wood et al., 1989; Fedorka-Cray et al., 1995; Boyen et al., 2006). 

1.3.4 Salmonellosis in Pets 
 

Salmonellosis in dogs and cats have rarely taken place even though Salmonella is 

isolated from pet faeces (Stevenson and Hughes, 1988). The clinical signs of the 

disease are uncommon. However, inflammation for the digestive system (enteritis) is 

thought to be common in puppies and kittens (Carter and Quinn, 2000). On the other 

hand, pets are considered a reservoir for Salmonella serovars and shedding is a key 

transmission route for the pathogen to human and other animals (Van Immerseel, 

2004). Recently, Salmonella serovars are being isolated frequently from reptiles like 

domestic snakes. Once more this is not a recognized transmission route to infect the 

human being. Java, Stanley, Marina, Poona and Pomona serovars have been 
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identified in reptiles but they are not considered serovar specific for these animals 

(D'Aoust et al., 1990; Warwick et al., 2001).  

1.3.5 Salmonellosis in Human 
 

Salmonellosis in humans is considered a heavy burden for public health, due to the 

bacteria having the ability to achieve high-level shedding from infected patients in 

case of chronic disease (Gordon, 2008b). Shedding has been implicated as being a 

key means of transmission among a population especially in developing countries. 

Incidences of non-typhoidal Salmonella are the most common human infectious 

disease caused by Salmonella. Where the incoming Salmonella servoar invades 

endothelial intestinal cells causing enteritis, enterocolitis and severe diarrhoea. In 

particular for children this can lead to passing through to the bloodstream causing 

bacteraemia (Huang et al., 2004; DuPont, 2009). Furthermore, Salmonellosis is 

considered a big problem especially in elderly people and immunocompromised 

patients, associated with increased mortality rate (Celum et al., 1987). For example, 

in Africa, Salmonella infections are increasingly being observed in association with 

HIV, causes severe clinical symptoms and leading to death (Graham, 2010). 

Salmonella serovars identified in humans include, Arizonae, Choleraesuis, 

Enteritidis, Typhi, Paratyphi and Typhimurium (Farmer et al., 1984). Non-typhoidal 

Salmonella disease significantly impacts our economy, especially related to 

foodborne disease resulting from contaminated food requiring increased food security 

and the associated healthcare costs of treating Salmonella infections (Rabsch et al., 

2001). The clinical signs in adults on a primary infection irrespective of the invading 

Serovar are associated with the onset of disease during 6–72 hours, then developing 

a fever, abdominal pain, nausea, diarrhoea, dehydration and occasional vomiting 

(Yates, 2011).  
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1.4 Salmonella and the Public Health 
 

Salmonellosis is a significant international public health issue causing subclinical 

morbidity, and consequently also has an important economic influence. In spite of 

Salmonellosis being considered a self-limited disease causing mild and moderate 

infection, severe infections occasionally occur and may lead to morbidity (Jones, 

2005). Although strict laws are associated with public health and hygiene issues like 

hazard analysis and critical control points (HACCP) that are updated periodically 

especially related to food processing and education of customers, the problem of 

foodborne Salmonellosis is still globally prevalent (De Buck et al., 2004; Food and 

Drug, 2012). Animals are defined as the final host of the disease that have the ability 

to transmit the pathogenic bacteria to human via the environment and consumer 

markets (Solari et al., 2003; Martins et al., 2013). Even in developed countries, foods 

are identified as the most repeated problem, ultimately causing a huge financial 

impact on society (De Jong and Ekdahl, 2006). For example, in the United States of 

America, there were 1.4 million reported cases of non-typhoidal Salmonella infection 

annually and the expenses for treatment close to 3 billion dollars (Domınguez et al., 

2002). Another burden responsible with epidemiological transmission in Salmonella is 

the emergence of antimicrobial resistance (Ohl and Miller, 2001).  

1.5 Pathogenicity 
  

S. enterica is considered part of the zoonotic bacteria with the ability to be 

transmitted across a broad scale of animals. Zoonotic or zoonosis is a Greek word 

derived from zoo- ‘of animals’ and nosos ‘the disease’ defining a disease that is 

naturally passed between animals, whether domestic or wild, and humans, with or 

without the need of a vector (Palmer et al., 1998). For example, human infection can 
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results from the consumption of contaminated water and/or food (Murray, 2009). The 

pathogenesis of S. enterica is dependent on the kinetics of progression in the body 

and whether it is acute, chronic and / or recurrent. In general, after S. enterica enters 

the digestive system, it can cross directly into the lymphatic system via the small 

intestine and then into the bloodstream, this systemic infection in humans is called 

Typhoid fever (Gordon, 2011). This systemic infection of Salmonella, if allowed to 

persist in the lymphatic system will allow colonization of the liver, spleen and kidney 

(Voedisch et al., 2009). Symptoms are associated with the production of endotoxins 

that act on the vascular and nervous systems represented by vasodilation leading to 

a blood rash accompanied with fever, vomiting and diarrhoea (da Silva et al., 1993). 

Salmonellosis, also causes general dehydration leading to increased viscosity of 

blood, hypertension and septic shock. Thus the systemic infection is considered 

dangerous stage in the severe disease because will leading to for example, kidney 

failure, hypoxia and death (Ryan and Ray, 2004; Coburn et al., 2007). 

1.5.1 Acute Systemic Disease 
 

There are a small number of serovars able to cause systemic Salmonellosis in 

humans. This subset of serovars colonise the healthy adult but, exhibit a limited host 

range compared to the rest of known serovars. The route of transmission is usually 

by consumption of contaminated food or water via a faecal to oral route. Bacterial 

proliferation exploits macrophages which are largely exploited to achieve 

dissemination around the body by S. enterica (Gyles et al., 2008). In acute systemic 

disease, S. enterica passes through the small intestinal epithelium to the reticulo-

endothelial system allowing the bacteria to migrate and colonise hepatic cells, the 

spleen, the kidneys, the lymph nodes, the gallbladder, the lungs and bone marrow. 

During systemic infection S. enterica crosses into the blood stream resulting in 

bacteraemia (Blackwell et al., 2001; Valdez et al., 2008). Usually bacteraemia without 
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related enteric symptoms is itself a serious illness and might be fatal especially in 

immunocompromised patients (Acheson and Hohmann, 2001). Complications in 

Salmonellosis particularly in immunocompromised patients, include meningitis 

(Varaiya et al., 2001), pneumonia (Samonis et al., 2003), neonatal septic arthritis 

(Sarguna and Lakshmi) and osteomyelitis (Kamel, 2006).  

1.5.2 Gastroenteritis  
 

Gastroenteritis is typically related with enterocolitis, as a result of consumption 

food or water which was contaminated with Salmonella (Mead et al., 1999). The 

incubation period of S. enterica that caused gastroenteritis is short between 6-72 

hours. The dose require to cause disease in healthy people is greater than 106 cells 

(Blaser and Newman, 1982). S. enterica has the ability to tolerate the acidity of the 

stomach through high population numbers and the bacteria passages through to 

reaches the intestine. The clinical signs that accompany this localized disease are 

sudden abdominal pains, cramp, nausea, vomiting, headaches and diarrhoea. The 

clinical signs of the disease last several days until recovery. Treatment and recovery 

are also depend on host factors including the immune system, health and age (Fluit, 

2005). 

1.5.3 The Carrier State 
 

Patients may suffer from recurrent infection of Salmonella which are associated with 

repeated enteric fever and thus systemic Salmonellosis (Glaser et al., 1985). The 

chronic state of S. enterica is known to be as a result of a systemic infection (Worley 

et al., 2006). Chronic carriage of Salmonella has a historical place in our experience 

of Salmonella infections relating to the case of Typhoid Mary. Mary was a household 

cook at the turn of the 19th/20th century who is now accepted to have been an 

asymptomatic carrier of Salmonella (Pui et al., 2011). Even today there are strict 
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recommendations that known carriers do not work within a food preparation 

environment (Bhan et al., 2005). 

It is documented that 2 to 5% of typhoid cases can lead to a chronic carriage of S. 

enterica Typhi (Bhan et al., 2005). Not all carriers remain asymptomatic and clinical 

signs of recurrent fever, muscle pains, headache and general weakness have been 

reported in carriers (Acheson and Hohmann, 2001). Serovar Typhi is isolated 

frequently over a period of three months from the stool of people recovering from an 

acute systemic infection. The carrier state, however, is associated with Typhi being 

shed in stool samples for over 12 months. 

Chronic carriage of Typhi, and potentially other serovars, is associated with biofilm 

growth in specific niches of our bodies (Gunn et al., 2014). There is strong evidence 

that infection of the gall bladder and attachment to gall stones plays a crucial role in 

the chronic carriage of Tyhpi (Adcox et al., 2016)Gall bladder infection occurs during 

an acute phase of infection. The route of infection is primarily via the liver during a 

systemic infection, although direct infection via an ascending route can potentially 

occur (Gunn et al., 2014).  

The carrier state is very similar to accepted nature of Salmonella as a zoonotic 

bacterial species. Similar carrier states are well established in animals of significant 

economic impact thus driving public and veterinary health initiatives to deal with the 

control of Salmonella infections. Chronic carriage of Salmonella in livestock is 

associated with abortion and a high rate of neonatal Salmonella infections. 

Consequently, new-born animals typically suffering from gastroenteritis and / or 

severe systemic diseases such as fever and loss of appetite leading finally to death 

(Uzzau et al., 2000). One example is in pigs, where serotype Choleraesuis is 
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associated with infected female pigs leading to high rates of mortality in newborn 

piglets (Uzzau et al., 2000). 

1.5.4 An Africa Issue 
 

Salmonella disease is considered a global problem because of the increasing 

number of cases. The annual incidence for the disease is estimated at approximately 

22 million cases including 216510 fatalities, according to a survey in 2000 (Crump et 

al., 2004). It has also been observed that the morbidity rate in African countries are 

significantly higher compared to other continents. (Okoro et al., 2012). Non-typhoidal 

Salmonellosis is extremely prevalent across Africa (Graham, 2010; Reddy et al., 

2010). However, non-typhoidal systemic Salmonellosis is associated with other 

diseases such as severe anaemia, malaria, malnutrition and HIV in adults (Gordon et 

al., 2002; Berkley et al., 2009; Graham, 2010). The clinical signs of non-typhoidal 

systemic Salmonella disease is distinguished by a fever, which cannot be 

differentiated from malaria and other causes of diarrhoea (Kingsley et al., 2009). The 

researchers found that the mortality rate for non-typhoidal systemic Salmonella 

infection in both adults and children reached (22 – 45%) particularly in those suffering 

from HIV disease (Cheesbrough et al., 1997; Gordon, 2008a; Gordon et al., 2008). 

Obviously there is a strong correlation between HIV and non-typhoidal systemic 

Salmonella disease as well as the rise of mortality rate (Okoro et al., 2012).   

1.6 The Life-cycle of a Salmonella infection 
 

On infection with non-typhoidal Salmonella (NTS) or invasive serovars such as Typhi 

the early stages of the pathogenicity cycle are very similar. The outcome of this initial 

phase, after ingestion, is inflammatory diarrhea. Inflammatory diarrhea is the 

outcome of an immune reaction to the invading pathogen (Tsolis et al., 2008). In 

contrast, diarrhea associated with, for example, Vibrio cholera is defined as secretory 
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via the action of the cholera toxin on the gut epithelia(Faruque et al., 1998).  For NTS 

these early stages of host-pathogen interaction are associated with innate immune 

recognition of pathogen associated molecular patterns, such as lipopolysaccharide 

and flagellin (to be discussed later in Section 1.10) (Gunn et al., 2014). The resulting 

production of the inflammatory cytokine IL-8 and the net influx of neutrophils plays a 

key role in fluid accumulation (Zhang et al., 2003). Although this is occurring within 

even 6 hours of ingestion of NTS serovars, for Typhi diarrhea onset is delayed and 

only occurs in up to a third of cases (Gunn et al., 2014). 

The resulting diarrhea symptoms stems from how Salmonella interacts and ultimately 

crosses the intestinal epithelial layer. On reaching the small intestine Salmonella 

exploits the natural properties of a subset of epithelial cells known as M (microfold) 

cells (Sansonetti, 2002). M cells have the ability to take up bacterial cells and 

antigens via, for example, phagocytosis. They are found within regions of the small 

intestine epithelial layer known as Peyer patches. Traversing the epithelial barrier via 

M cells by Salmonella can be either an active process requiring a key virulence factor 

encoded by the Salmonella pathogenicity island 1 (SPI-1 – see section 1.8.1 later) or 

allowing the M cells to naturally phagocytosis the bacterial cells. The net result is that 

both NTS and Typhi servoars cross the epithelial layer. Typhi exploits this process to 

then go on to establish a systemic infection often by either gaining entry to the blood 

stream or hijacking macrophages surviving in vacuoles via the action of the second 

Salmonella pathogenicity island SPI-2 (Tsolis et al., 2008). 

Localised infection of the small intestine results also from NTS serovars escaping M 

cells and subsequently invade adjacent epithelial cells from the basal side. However, 

apical invasion has been implicated in the process of establishing the localized 

infection. These early stages of host-pathogen interaction provide evidence that NTS 

is not evading the immune system. Immune evasion becomes important during 
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invasive systemic infection of other sites within the body. Other than macrophage 

vacuole survival via the action of SPI-2 invasion of dendritic cells also found within 

the basolateral face of the small intestine is another means to transduce to other 

organs. A key step in the pathogenicity cycle of Typhi is a bacteremia that is 

associated with enteric fever. NTS serovars are reported to have the ability to also 

achieve access to the blood stream. However, Typhi possess further virulence 

factors such as the Vi antigen that increases its survival chances during this phase 

while our immune system can to an extent overcome NTS bacteremia (Tsolis et al., 

2008). A key issue rising globally is the impact NTS strains have especially in 

immunocompromised individuals that are unable to combat the entry of Salmonella 

into the blood stream. 

1.7 Bacterial Motility 
 

Bacterial movement is principally driven by the bacterial flagellum (Bray, 2001). 

However, less than 50 % of the bacterial kingdom encode the flagellar system 

(Faulds-Pain et al., 2011). Even though bacteria lack a flagellum this does not mean 

these species are non-motile as other types of motility, such as sliding, gliding, 

swarming and twitching exist (Kearns, 2010).  

Firstly, swarming is a particular form of movement related to the arrangement 

rows of bacteria moving together exploiting flagellar (Harshey, 2003; Partridge and 

Harshey, 2013). In comparison, swimming differs from swarming in that the bacterial 

cells run through liquid media as individuals (Kearns, 2010). However, swarming is a 

harmonic translocation of groups of bacteria, usually as rafts, across a wet surface. 

Swarming is also a slower means of translocation than swimming. For example, the 

range of speeds measured for swarming are between 2-10 µm/s (Fraser and 

Hughes, 1999; Männik et al., 2009; Mayola Coromina et al., 2014). In contrast, 
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swimming speeds have been measured between 20-50 µm/s within the liquid media 

(Männik et al., 2009; Kearns, 2010). Interestingly, it has been noted that increasing 

the number of flagellar per cell drives the swarming phenotype (Wang et al., 2004). 

Even though flagellar drives swimming and swarming motility, there are other means 

for cells to drive motility over surfaces. The other types of motility kinetics include 

twitching, gliding and sliding (figure 3). 

Twitching, sometime called social gliding, is the movement facilitated by type IV 

pili stretching and shrinkage thus pulling cells across a surface. Twitching movement 

is typically defined as very slow movement with a speed of 0.06-0.3 µm/s over the 

surface. Twitching and gliding occurs in certain species like Streptococcus, 

Pseudomonas, Pasteurella and Actinobacteria (Harshey, 2003; Kaiser, 2007). The 

behaviour of twitching mechanism resembles swarming motility, because it is a group 

movement consisting of extremely organized rafts of attached cells. 

Gliding, can also describe adventurous gliding, defined as an energetic motility 

and moving smoothly through the axis of the bacteria which is not using flagella or pili 

at all (Yu and Kaiser, 2007). It is a mode of movement found originally in 

Flavobacterium, Myxobacteria and Cyanobacteria (Hoiczyk, 2000; Wolgemuth et al., 

2002; McBride, 2004). The average speed of gliding is also broader ranging between 

0.1-10 µm/s across a solid surface (Harshey, 2003). Gilding typically represents the 

motion of the entire cell body on a mucous coated surface central body of the 

bacterial cell to slip across allowing the surface and this movement acting as the 

momentum for motility (Bardy et al., 2003; Kearns, 2010).  

In terms of the sliding phenotype or spreading, this is defined as a bacterial cell 

movement across the solid surface, based on surfactant force through helping reduce 

molecular tension outside of the bacteria cell wall (Martínez et al., 1999). This motion 
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is not dependent on the flagella. Instead type II protein secretion plays a significant 

role is secreting surfactants of proteineous nature that facilitate this mode of 

movement. One example is surfactin production by Bacillus subtilis, which is capable 

sliding out from a growing colony in a thin layer across a surfactin covered surface 

(Stewart et al., 2009). Furthermore, sliding motility is generated from the internal 

generated by the growing colony. Similar to twitching this sliding movement is slow 

with an a speed of 0.3-6 µm/s (Murray and Kazmierczak, 2008). Salmonella, is 

another example that can exploit sliding movement in particular through low-level of 

magnesium environments and the surface protein PagM (Park et al., 2015; Shrout, 

2015).  
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Figure 3. Classification of bacterial motility based on the nature of environment 
condition, adapted from (Kearns, 2010) 
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1.8 Virulence Factors  
 

1.8.1 Salmonella Pathogenicity Island (SPI)  

Pathogenicity Islands are specific areas of a bacterial chromosome that encode 

virulence factors (Groisman and Ochman, 1996). There is strong evidence that many 

pathogenicity islands are the result of horizontal gene transfer. A typical SPI has a 

differential GC content than the flanking DNA sequence. Typical events associated 

with the acquisiation of SPIs have been identified from bioinformatics analysis include 

transposon insertions and / or bacteriophage integration events (Groisman and 

Ochman, 1996). These observations are further strengthened by flanking genes and 

some of internal SPI genes showing similarity to phage genes. S. enterica has been 

defined to have up to seven SPIs (Ochman and Groisman, 1996). Here 2 key SPIs 

are discussed in relation to their roles in localized and systemic Salmonella 

infections. 

a) Salmonella Pathogenicity Island 1(SPI1) 

SPI1 is composed of approximately 29 genes which include different elements 

required to create a type III secretion system (figure 4) (Collazo and Galán, 1997). 

SPI1 is essential for invasion of intestinal epithelia and commencement of 

enteropathogenesis. This involves the secretion of 13 effectors proteins into non-

phagocytic intestinal epithelial cells (Zeng et al., 2003). The effector proteins 

intentionally modulate cellular functions such as the actin cytoskeleton leading to 

changes in the host membrane and subsequently invasion of S. enterica into the 

intestinal epithelial cells (Willse et al., 2004; Zhang et al., 2004).  

b) Salmonella Pathogenicity Island 2 (SPI2) 

SPI2 has been identified to a particular region of the Salmonella chromosome. SPI2 

is a 39.8 Kb that was first identified through signature-tagged transposon (STM) 
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mutagenesis. STM analysis uses pools of transposon mutants for pathogenicity 

experiments where the pool of mutants is compared to what is extracted from the 

model organism after a given period of time (Martinez-Argudo and Jepson, 2008). 

SPI2 has the capability to encode a second T3SS. This time SPI2 controls S. 

enterica intracellular pathogenesis playing a role in colonization of the host and 

systemic infections (figure 4) (Hensel, 2000). SPI2 is essential in order for Salmonella 

to survive in a vacuole (Salmonella Containing Vacuole) and within incidence 

synchronization of infection (Ochman et al., 1996; Cirillo et al., 1998; Karasova et al., 

2010). SPI2 has 44 genes (Schmidt and Hensel, 2004; Thomson et al., 2008). SPI2 

contributes to survival and proliferation of bacteria intracellular existing in tissues 

such as liver and spleen thus is needed during systemic infection (Gyles et al., 2008). 

1.8.2 Flagella  
 

Flagella have a pivotal role in pathogenesis within the host not just through motility 

but as well as by different pathways including:  

i. Enhancing the ability of bacteria to adhere on host cells (Arora et al., 1998).  

ii. Encouraging bacterial to create a biofilm allowing the pathogen to persist 

within the host (O'Toole et al., 2000).  

iii. Potentially deliver effector proteins from the bacteria (Konkel et al., 2004). 

iv. Cause a pro-inflammatory immune response for the host by recognition via 

Toll-like receptor 5 (TLR5) (Hayashi et al., 2001).  

v. Flagellin has the ability trigger a adaptive immunity (Honko and Mizel, 2005).    
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1.8.3 Fimbriae 
  

Fimbriae, also known as pili, are usually between 0.5-10 µm in length and ~8 nm in 

width that protrude from the cell surface (Townsend et al., 2001). Fimbriae functions 

are significant for many bacteria involved in biofilm formation bacterial survival in 

different circumstances, and also play a pivotal role in adhesion on to the eukaryotic 

cell (Zeiner et al., 2012). In Salmonella serovars, thirteen fimbrial operons have been 

identified (fim, pef, lpf, bcf, saf, sef, stb, stc, std, stf, sth, sti, stj and csg) (Betancor et 

al., 2012). They all contribute to adherence and colonization of epithelial intestinal 

cells (De Buck et al., 2005; Clayton et al., 2008). For example, the SEF14 fimbriae 

has been identified in Berta, Gallinarum, Enteritidis and Dublin serovars. SEF14 

plays an important role in bacterial adhesion, in particularly it has high affinity for cells 

within the reproductive tract (Turcotte and Woodward, 1993; Doran et al., 1996). In 

spite of Salmonella fimbriae playing a role in the colonization of specific cells (Klemm, 

1994; Collinson et al., 1996) the pathogenesis pathway of the Salmonella fimbriae is 

still opaque and unclear partly as a result of encoding for so many variants (Lockman 

and Curtiss, 1992; Van Der Velden et al., 1998; Folkesson et al., 1999; Edwards et 

al., 2000).  

1.8.4 Toxins 
 

In Salmonella toxins are classified into endotoxin and exotoxin, which contribute to 

pathogenicity (Ashkenazi et al., 1988). Endotoxins are components of the cell wall 

and outer membrane of Gram-negative bacteria represented by lipid and 

lipopolysaccharide. They also elicit different immune responses (Hitchcock et al., 

1986). During Salmonellosis, endotoxins contribute to the adherence of bacteria to 

particular tissues (epithelial tissues), resistance to phagocytosis and withdrawal of 

water from the epithelial cells (Todar, 2009). 
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In contrast, exotoxins, including enterotoxins and cytotoxins, have the capability to 

disable functionality of eukaryotic cells (Ashkenazi et al., 1988). Salmonella encodes 

an exotoxin operon across a limited small area of the genome. One example of a 

Salmonella toxin is the Cytolethal Distending Toxin (CDT) produced by Serovar Typhi 

(Spanò and Galán, 2008). CDT is produced by a diverse range of bacteria including 

Salmonella. CDT interaction with host cells provokes a dramatic cellular distension 

leading to cell cycle arrest and apoptosis (Gelfanova et al., 1999; Lara-Tejero and 

Galán, 2002; Heywood et al., 2005; Shenker et al., 2006). Part of the CDT complex is 

encoded by cdtB which has been shown to exhibit similarity to DnaseI. Recently Gao 

et al., (2017) have proposed that Salmonella CDT genes of Typhi have evolved from 

the artAB locus identified in a wider range of serovars (Gao et al., 2017). There is 

supporting evidence that CDT plays an important role in the acute phase of Typhoid 

fever and potentially establishing the carriage state (Galán, 2016). Interestingly many 

exotoxins produced by pathogens are secreted into the in vivo environment and thus 

are able to attack host cells. There is strong evidence that for the Typhi CDT 

secretion requires host cell invasion by Typhi (Haghjoo and Galán, 2004). Galan 

(2016) even proposes this may have been one reason why it took researchers a long 

time to discover this toxin and its role in Typhi pathogenesis (Galán, 2016).  

1.8.5 Virulence Plasmids 
 

Some Salmonella virulence genes are encoded by plasmids (Figueiredo, 2016). 

Plasmids have been classified that included virulence genes significant for invasion 

and colonization of the disease (Gulig, 1990). These plasmids have been identified in 

many Salmonella serovars, particularly in Typhi, Typhimurium, Dublin, Enteritidis, 

Gallinarum, and Choleraesuis (Rotger and Casadesús, 2010). Usually, virulence 

plasmids are low copy number plasmids of a size between 30 and 100 kb depending 

on serovar (Gulig et al., 1993). For example, the spv region (7.8 kb) is a plasmid 
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encoded locus that is important for infectious disease in the reticuloendothelial 

system in the rodents. Otherwise, in humans, the mechanisms of action of virulence 

plasmids for digestive system disease is still indistinct. However, researchers referred 

to the probability that the virulence plasmid (spvABCD) is involved in invasion and 

bacterial spread into the human endothelial tissue of the intestine (Guerra et al., 

2002; Raupach et al., 2003). 

1.8.6 Other Virulence Factors 
 

In Salmonella, there are several of the other virulence factors that participate in 

invasion and resistance of bacteria against the immune system. Surface 

polysaccharides play a role for adhesion and settle down bacteria on to intestinal cell 

(Foley et al., 2013). These cases have been identified in the intestinal cells of some 

calves and chickens infected with Salmonellosis (Turner et al., 1998; Morgan et al., 

2004). On the other hand, some prophages encode and leading to integrated with 

Salmonella chromosome and consequences raising the ferocity of bacteria like gifsy-

1, gifsy-2 and gtgE regions contributed in prevention against oxidative stress (De 

Groote et al., 1997; Farrant et al., 1997; Figueroa‐Bossi et al., 2001; Ho et al., 

2002). 

1.9 The Bacterial Flagellum 
 

1.9.1 Flagellum Biogenesis Pathways  
 

1.9.1.1 Stages Assembly of the MS Ring and Export Apparatus 
 

Flagella are nanomachines possessed by approximately 50% of sequence bacteria 

helping them in locomotion and colonisation (Faulds-Pain et al., 2011). The base of 

flagellum is located within the cell envelope, it is able to rotate via energy supplied by 

either sodium or proton motive force (Terashima et al., 2008). Each flagellum 
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consists of three parts: a basal body, hook and filament (figure 5). However, every 

part has a function and requires specific proteins to create it (Macnab, 2003). 

Generally, the construction of the flagellum is from inside the bacteria starting from 

the basal body and extending to the outside with the filament. 

The first section of each flagellum to be constructed is the MS ring and proximal rod 

(Ueno et al., 1992). The MS ring is the base of the rotor and is sits in the inner 

membrane of the Gram-negative bacteria (figure 5). The MS-ring consists of a 

multimeric complex of 26 subunits of the single protein FliF. In contrast the axial 

framework leading into the filament has 5.5 subunits per rotation of the basic helix 

(Ueno et al., 1994). The MS-ring is then used as the foundation for the rest of the 

basal body. Under the MS ring, on its cytoplasmic face, the C-ring is assembled. The 

main components of the C-ring are two proteins FliM and FliN (Francis et al., 1994; 

Zhao et al., 1996). The C-ring interacts with the MS ring via FliG, that participates as 

part of the rotary system (Thomas et al., 2006). The role played by FliG was defined 

using genetic fusions of FliF and FliG in both E. coli and Caulobacter crescentus. 

Such chimeric fusions produce a functional flagellum emphasizing the interaction 

interface of the MS and C-ring (Francis et al., 1992; Jenal and Shapiro, 1996).   

On generating a MS-C ring complex, the flagellar associated Type III export 

apparatus system assembles within the C-ring inner space making contact to the 

underside of the MS-ring. From this point onwards, during assembly, the majority of 

flagellar proteins will be synthesized in the cytoplasm and then exported via the 

flagellum base into the periplasmic space and outside the cell until completion of the 

flagellum through the structure itself (Macnab, 2004). The export apparatus is 

comprised of six proteins, FlhA, FlhB, FliO, FliP, FliQ, and FliR that generate an 

export gate/channel in the MS-ring body. Three cytosolic proteins FliH, FliI, and FliJ 

are for export specificity, efficiency and delivery of the flagellum components 
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participating transiently as part of the export apparatus (table 1). Structural biology 

resolution of the FliH, FliI and FliJ structures has identified significant structural 

similarity to the Sec system and F0F1-ATPase (Kishikawa et al., 2013). This has led 

to the proposal that the export apparatus for Type II secretion has evolved from these 

two ancestral and essential cellular macromolecular structures (Imada et al., 2016).  

           FliI is an ATPase and is a member of the Walker-type ATPase family (Fan and 

Macnab, 1996). FliI creates a hexameric ring- for protein export (Claret et al., 2003; 

Minamino et al., 2006). The ATPase FliI is negatively regulated through FliH 

interactions creating a complex with FliH2FliI1 stoichiometry (Minamino and Macnab, 

2000a). FliH also interacts with FliN via a hydrophobic patch, this interaction 

functions to localize Flil within the C-ring (Minamino and Macnab, 2000a; Fraser et 

al., 2003a). Recently, Minamino (2008) was able to show that FliI and FliH were not 

strictly essential for flagellar assembly, as previously assumed (Minamino and 

Namba, 2008). A ∆fliHI deletion assembled one flagellum inefficiently if the strain 

carried a third mutation in a third export protein, FlhB. This led to the proposal that 

the role of the ATPase FliI was to drive efficient export rather than the export process 

itself (Minamino and Namba, 2008). 

FlhA and FlhB are membrane associated components of the Type III export channel 

that possess a large cytoplasmic C-termini domains(Macnab, 2004). This was 

imaged how the export apparatus embedded inside the C-ring by using freeze-

fracture technique (Katayama et al., 1996). It is believed they play a significant role in 

providing a location for the other components to interact with (Minamino and Macnab, 

2000). FlhB has been shown to undergo a self-regulated proteolytic cleavage in 

response to flagellar assembly (Fraser et al., 2003). This cleavage event is 

associated with substrate specificity regulation (see later). Importantly the cleavage 

of FlhB and the net outcome has led to the proposal that FlhAB form the self-
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regulating gate that controls protein export via the flagellar associated Type III 

secretion apparatus (Minamino, 2014).  

  

1.9.1.2 Assembly the Flagellar Rod 

On completing the MS/C-ring structure, the continuation of flagellar assembly 

requires the addition of the majority of the subsequent proteins at the growing tip until 

completion (Karlinsey et al., 2000a). Above the MS ring the proximal and distal rod 

are next to be assembled (figure 5). The first secreted subunit utilizing the type III 

pathway is thought to be FliE. FliE protein is a special protein that is proposed to form 

the linker between the rod and the MS-ring protein FliF (Müller et al., 1992). The 

presence of some type of connection region between the MS ring and the axial 

proteins appears in the top view of annular symmetry and is required to allow the 

generation of the helical foundation that can be traced right through the rest of the 

structure from the rod in to the external filament (Müller et al., 1992). As well as 

needing to generate a transition between the MS-ring and the rod assembly from this 

point onwards requires a capping structure. There are five proteins associated with 

rod assembly: FlgB, FlgC, FlgF,FlgG and FlgJ (Homma et al., 1990; Nambu et al., 

1999). One of these proteins, FlgJ, is the rod cap during assembly through the 

periplasmic gap (Kubori et al., 1992b). As well as acting as a cap, FlgJ has the 

essential function to permit the rod to perforate the peptidoglycan layer by 

hydrolyzing it (Hirano et al., 2001). FlgJ achieves this role by possessing a protein 

domain with muramidase activity (Hirano et al., 2001a). Rod length is assumed to be 

dictated by the size of the periplasmic space and is assumed not to be controlled 

directly as is hook-length-control (Kubori et al., 1992a). The actual rod structure is 

built from FlgB, FlgC, FlgF and FlgG, where FlgBC form the proximal rod closest to 

the MS-ring and FlgFG are the distal rod proteins (Macnab, 2003). 
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1.9.1.3 Assembly of P and L Ring 

The FlgI protein assembles the P-ring around the distal rod. Thereafter, FlgH forms 

the L-ring on the P-ring around the distal rod (figure 5) (Chevance et al., 2007). FlgI 

and FlgH are the only two flagellar subunits not secreted by the type III secretion 

system (Macnab, 2003). Instead they are secreted by the sec pathway into the 

periplasmic space so they can assemble around the growing structure. Researchers 

believe these two proteins are produced and secreted early before rod assembly. 

However, they must be held in a monomeric state until the suitable time to assemble 

around the growing rod. As these subunits are usually in the periplasmic space 

where proteolysis is used to prevent unwanted proteins in this space FlgH and FlgI 

require protection (Minamino et al., 2008). FlgI has been proposed to work as the 

FlgH/I chaperone in the periplasmic state (Nambu and Kutsukake, 2000).  

1.9.1.4 Assembly of Hook 

Approximately 120 units of FlgE forms the hook with assembly coordinated by the 

hook cap protein, FlgD (Hirano et al., 1994) (figure 5). The optimal length of the hook 

is 55 nm, this length is required in order to generate a hook structure that can 

function correctly to convert the rotational forces into the need torque to drive motility 

by spinning the filament (Hirano et al., 1994). Two proteins determine the length of 

hook FliK and FlhB (Vogler et al., 1991). Mutants in fliK have a much broader hook 

length range althought the majority of observed hooks are shorter than the optimal 

length (Williams et al., 1996). In contrast, if a mutant of flhB is present substrate 

specificity is unable to be switched leading to a greater number of cells with longer 

hooks (Macnab, 2003).  

1.9.1.5 Junction Proteins Assembly 

When hook assembly is complete, the cap protein FlgD is swapped with a complex 

that includes three proteins defined as the hook-associated proteins. These three 
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proteins are the first to be secreted after the FlhB/FliK induced substrate specificity 

switch. Two short segments consist of HAP1 (FlgK) and HAP3 (FlgL) (Ikeda et al., 

1989). The 3rd HAP is the filament-capping protein HAP2 (FliD), FilD subunits form a 

pentameric complex revealed by electron microscopy (Ikeda et al., 1996). HAP1 and 

HAP3 generate a transitional zone that acts to allow flagellin subunit incorporation to 

continue until a mature filament exists. Interestingly, the structural detail of FlgK and 

FlgL has shown that FlgK is more hook like while FlgL is more filament like further 

exemplifying their role as transitional proteins (Samatey et al., 2004). 

1.9.1.6 Assembly of Filament 

Ultimately, the filament (flagellin) is assembled from at least 20,000 subunits of FliC 

or FljB (Yonekura et al., 2002; Adkins et al., 2006). Flagellin subunit incorporation is 

controlled by FliD, the filament cap at the distal end of the growing filament (figure 5 

and 6) (Yonekura et al., 2000). The filament does not possess a length-control 

mechanism as seen for hook assembly. This in part is to allow for a long filament to 

drive efficient motility (Macnab, 2003). The mechanism of action of FliD can be 

argued to act by knitting flagellin monomers into a filament (Yonekura et al., 2000). 

The filament can be fragile and easily broken, however, the flagellar system is 

coordinated to allow immediate rebuilding by further delivery of FliD and flagellin 

monomers through a filament permissive flagellum structure (Homma and Iino, 

1985). This is assumed to be on further explanation why the flagellar assembly 

substrate specificity switch exists. 

1.9.1.7 Assembly of Mot proteins  

Two further accessory proteins MotA and MotB associate with the outer face of the 

C-ring. These proteins form the flagellar stator (Armstrong and Adler, 1967). MotA 

and MotB are responsible for the torque-generating movement of the flagellum via 

confirmation changes in MotA versus MotB allowing the uptake protons to generate 



31 
 

the power stroke triggering the motion of the flagellum (Zhou et al., 1998; Braun et 

al., 1999). MotA and MotB are 8 complexes distributed around of the flagellar motor 

system, but could accommodate 2 or 3 more (Thomas et al., 2006). FliG is proposed 

to be a key interaction site for MotA to produce torque (Garza et al., 1995). The 

current model argues that FliG/MotA interact allowing the stators to sit in the vicinity 

of the FliM/N section of the C-ring. Conformational changes due to proton flux then 

allows MotA/B to transiently interact with FliM/N thus rotating the flagellum basal 

body(Kojima and Blair, 2004). Overall, the membrane proteins MotA and MotB play a 

vital role in the flagellar movement.  
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Table 1. The flagellum proteins assembly, functions and locations.  

Name of protein  Functions Location 

MotA Stator protein; exerts torque against 
rotor/switch 

Cytoplasmic 
membrane 

MotB Stator protein; converts proton energy into 
torque 

Cytoplasmic 
membrane 

FliF MS-ring protein; mounting flange for rotor/
switch and rod; housing for export apparatus 

Cytoplasmic 
membrane 

FliI ATPase; drives type III flagellar export Cytoplasm 
FliH  Negative regulator of FliI Cytoplasm 
FliJ General chaperone Cytoplasm 
FlgN FlgK-, FlgL-specific chaperone Cytoplasm 
FliS FliC-specific chaperone Cytoplasm 
FliT FliD-specific chaperone Cytoplasm 
FliG Rotor/switch protein; torque generation;

strong interaction with MS ring 
Peripheral 

FliM C ring; rotor/switch protein; target for CheY-P 
binding 

Peripheral 

FliN C ring; rotor/switch protein Peripheral 
FlhA Export component; target for soluble export 

complex 
Center of MS ring 

FlhB Export component; substrate specificity 
switch; target for soluble export complex 

Center of MS ring 

FliO Export component Center of MS ring 
FliP Export component Center of MS ring
FliQ Export component Center of MS ring
FliR Export component Center of MS ring
FliE MS-ring rod junction protein; export gate Periplasmic space 
FlgB Rod protein; transmission shaft Periplasmic space
FlgC Rod protein; transmission shaft Periplasmic space
FlgF Rod protein; transmission shaft Periplasmic space
FlgG Distal rod protein; transmission shaft Periplasmic space
FlgJ Rod capping protein; muramidase Periplasmic space
FlgI P-ring protein; part of bushing; internal 

disulfide bridge 
Periplasmic space 

FlgA Chaperone for P-ring protein Periplasmic space 
FlgH L-ring protein; part of bushing; lipoprotein Outer membrane 
FlgD Hook-capping protein Outside cell  
FlgE Hook protein Outside cell  
FliK Hook-length-control protein Outside cell  
FlgK HAP1; first hook-filament junction protein Outside cell  
FliD HAP2; filament-capping protein; flagellin 

folding chaperone 
Outside cell  

FlgL HAP3; second hook-filament junction protein Outside cell 
FliC  Filament protein; flagellin Outside cell 
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Figure 6. Paradigm description of the whole flagellum structure, embedded into 
the gram-negative bacteria cell wall, the structure are divided into the three 
sections: Starting from the basal body, hook and filament. Adapted and modified 
from (Pallen et al., 2005).  
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1.9.2 The Flagella Regulon 
 

Sixty genes are responsible for S. enterica assembling it's flagella, their function and  

chemotaxis (figure 7) (Chilcott and Hughes, 2000). Constructional genes have been 

described as three assembly phases: early genes, middle genes and late genes 

based on when their products are needed in flagellar assembly (Chilcott and Hughes, 

1998). Moreover, there are three classes of promoters driving expression flagellar 

genes: class I, class II, and class III depending on their chronological expression after 

stimulation by the flagellar regulon (Karlinsey et al., 2000b). The chronological 

activation of flagellar promoters generates a transcriptional hierarchy. In the upper 

part of the hierarchy is the master operon of the flagellar system, flhDC. FIhDC 

serves to coordinate making the ultimate decision for flagellar production. 

1.9.2.1 The Master Regulator FlhD4C2 
 

In S. enterica and E. coli, the master regulator is encoded by the flhDC operon. The 

flhDC operon is found in the family with the phyla defined by the gamma 

Proteobacteria known as the Enterobacteriacae that includes S. enterica and E. coli 

(Kutsukake et al., 1990; Liu and Matsumura, 1994). The flhDC operon can also be 

found in members of the betaproteobacteria such as the genus Burkholderia 

(Aldridge and Hughes, 2002). The flhDC operon plays an essential role in motility for 

S. enterica and E. coli. Without expression of flhDC no flagella genes will be 

transcribed. It is not surprising then that the ultimate output of FlhDC activity is 

regulated at multiple stages during its expression. Furthermore, FlhDC itself is an 

uncommon transcriptional activator found across the bacterial kingdom. The majority 

of transcriptional regulators found across the bacterial kingdom are homodimers of a 

one protein produced by a single gene (Wang et al., 2006). In contrast FlhDC forms a 
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heteromeric complex that on resolution of the protein structure was defined as a 

FlhD4C2 complex.  

Original biochemical studies of the FlhDC complex presented a strong case for a 1:1 

interaction generating an FlhD2FlhC2 complex (Liu and Matsumura, 1994; Claret and 

Hughes, 2002). However, the solving the crystal structure of the FlhDC complex 

identified the known accepted form as a hexameric FlhD4C2 complex (figure 7). Both 

FlhD and FlhC are alpha-helical structures with FlhC possessing a special zinc 

binding domain (Wang et al., 2006). Interestingly Wang et al (2006) proposed FlhD 

as the DNA binding component, however, biochemical data of the DNA binding ability 

of the complex and individual components argued for FlhC to be the DNA binding 

factor of the complex (Claret and Hughes, 2002; Aldridge et al., 2010). 

FlhD4C2 interacts with DNA sequences 28-88 bp upstream of transcription start site 

of FlhD4C2-dependent promoters thus flanking the -35 promoter region (Liu and 

Matsumura, 1994). There is a conserved FlhD4C2 binding site comprised of a 17-18 

bp imperfect palindrome with a spacer region of either 10 or 11 bp (Claret and 

Hughes, 2002). When bound to its DNA binding sites, FlhD4C2 interacts with the C-

terminal domain of RNA polymerase α helical subunit as a class I transcriptional 

activator (Ishihama, 1993). This class of activators directly interact with σ70-RNA 

polymerase holoenzyme ,unwinding the DNA promoter to initiate the transcription 

(Liu et al., 1995; Wang et al., 2006). The FlhD4C2 complex activates the genes that 

encode the flagellar protein export system apparatus, basal body, hook and the main 

regulatory proteins FliA and FlgM (Gillen and Hughes, 1993; Liu et al., 1995; Prüß et 

al., 2001; Frye et al., 2006). These gene represent the middle genes of the flagellar 

regulon. 
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FlhD4C2 is also considered a global transcription activator as it has affinity to 

promoter regions of others genes not related to flagella synthesis. Examples include, 

anaerobic aspiration using dimethyl sulfoxide, nitrate as terminal electron stimulation 

and the gene wzz (Prüß et al., 2001; Stafford et al., 2005). FlhD4C2 binds and 

stimulates transcription directly non-flagellar genes via an identical mechanism as 

seen for the flagella gene hierarchy. However, the activity is not as robust as seen for 

flagellar genes (Stafford et al., 2005). An important gene of the flagellar system 

dependent on FlhD4C2 transcriptional activation is fliA, that encodes the sigma factor 

σ28. FliA protein activates transcription from class III promoters that drive expression 

of late genes including is fliC (see later) (Kutsukake et al., 1990; Ohnishi et al., 1990). 

There are very important differences between when considering the transcription of 

flhDC in E.coli versus S. enterica based on the number of promoters that transcribe 

flhDC. E.coli has a single promoter upstream of flhD. In contrast, in S. enterica there 

are seven promoters that have the potential to drive transcription of flhDC (Mouslim 

and Hughes, 2014). Further dissection of the PflhDC  region from S. enterica has 

subsequently shown that two of the seven promoters are the primary source of flhDC 

transcription. flhDC transcription is controlled by many regulators (figure 8) inclusive 

of, however not restricted to, the heat shock proteins (DnaK, DnaJ and GrpE), which 

stimulated by changes in temperature (Li et al., 1993; Shi et al., 1993). Furthermore, 

there are others cues that dictate flhDC expression such as quorum sensing 

(Sperandio et al., 2002). As well as environmental inputs, flhDC expression is 

regulated via cell cycle inputs (Smith and Hoover, 2009). E.coli mutants in flhD were 

observed have an altered phenotype during stationary phase (Prüß and Matsumura, 

1997). Recently Sim et al (2017) revealed a relationship between the growth rate and 

flagellar assembly in E. coli using steady-state chemostat conditions. Previous 

studies using microarray analysis have argued that E. coli prefers low nutrient slow 
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growth conditions for optimal flagellar gene expression (Wada et al., 2011). However, 

using steady-state growth kinetics Sim et al (2017) observed the opposite that fast 

growing E. coli produced more flagellar per cell, while in slow growth only a small 

proportion of cells produce a flagellar. This suggests that growth kinetics impacts the 

regulation flhDC transcription (Sim et al., 2017). 

External regulatory cues include osmolality represented by control of flhDC 

transcription by OmpR. Osmolality have been shown to negatively affect flhDC 

expression in particular when it increases in the surrounding medium (Shin and Park, 

1995). OmpR has been shown to interact with the flhDC promoter region in both E. 

coli and S. enterica (Shin and Park, 1995). Temperature also plays an important role, 

controlling the levels of the FlhD4C2 production via three heat shock proteins (DnaK, 

DnaJ and GrpE). Temperature regulation is more pronounced in E.coli strains 

compared to S. enterica. A number of model strains of E. coli are only motile at 30°C 

while S. enterica is motile at both 30 and 37°C (Soutourina et al., 2002). As well as 

downregulation of the flhDC operon, leading to a decrease in flagellar gene 

expression, positive regulatory stimuli also impact flhDC transcription (Chilcott and 

Hughes, 2000). Two examples of regulation include the input of the cyclic AMP 

catabolite activator protein (CAP) and Histone-like nucleoid-structuring protein (H-

NS) (Soutourina et al., 1999; Soutourina et al., 2002). flhDC production is very 

susceptible to the availability of carbon sources, based on cyclic AMP catabolite 

activator protein (CAP) which induces flhDC expression (Kutsukake, 1997; 

Soutourina et al., 1999). For S. enterica specifically flhDC transcription is also 

regulated by LrhA, RtsB, HilD, RcsB and FimZ (Wozniak et al., 2009). RtsB and HilD 

link flhDC transcription to SPI1 expression. This dual regulatory loop allows S. 

enterica to coordinate movement with the desire to also invade host-cells during host-

pathogen interactions. Similarly, FimZ and FlhD4C2 counter regulate each other's 
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system to either promote movement (flagella) and inhibit adherence (fimbrae) or vice 

versa (Clegg and Hughes, 2002). 

1.9.2.2 Regulation of FlhD4C2 Activity 
  

The flagellar master regulator flhDC is essential for driving the whole of flagellar 

system and thus is considered as an important regulatory target for many flagellar 

regulatory genes. Other than multiple transcription regulatory inputs the FlhDC 

proteins themselves are controlled by a range of regulators which exert either a 

positive or negative impact on the function of FlhD4C2. These include direct 

regulation via the proteins FliT, FliZ, YdiV and ClpP. 

The ATP-dependent protease ClpP functions as a negative regulator of the 

FlhD4C2 protein by degrading the complex (Tomoyasu et al., 2003). In clpP mutants 

the flagellar system is overproduced due to increased FlhD4C2 activity driving 

transcription of flagellar genes. For example, FliC subunit production exhibits a 

fourfold increase compared to clpP+ (Tomoyasu et al., 2002). Moreover, the ClpP 

protein is working high efficient against of DNA‐bound FlhD4C2 complex in particular 

in cohort with the YdiV protein (Takaya et al., 2012). 

Nutrient availability regulation via YdiV acts to down-regulate class II promoter 

activity via preventing FlhD4C2 activity, especially in low nutrient conditions (Takaya 

et al., 2012). ydiV is considered a non-flagellar gene but it represents a pivotal control 

point for the quantity of FlhD4C2 activity through the repressing the FlhD4C2 function. 

ydiV expression is sensitive and affected by low nutrient media and consequences, 

allowing increase the FlhD4C2 activity, thus significantly impact the whole flagellar 

system (Wada et al., 2011). In contrast, when absent FlhD4C2 activity will be 

increased and the flagellar system significantly impacts the activity, and also YdiV 

when missing into the bacteria lead to decrease the growth proliferation into the poor 
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medium because of YdiV responsible directly with growth control (Takaya et al., 

2012). YdiV acts by interacting with both FlhD4C2 and ClpXP. The model argues that 

YdiV will bind to FlhD4C2 then the YdiV:FlhD4C2 complex is able to interact with a 

ClpXP complex more efficiently than FlhD4C2 itself. The net result is a rapid turnover 

of FlhD4C2 (Takaya et al., 2012). 

In S. enterica, FlhD4C2 regulation occurs via the flagellar specific regulators FliZ 

and FliT. FliZ is considered a positive regulator for the FlhD4C2 network, acting as a 

DNA-binding protein as a negative regulator of ydiV expression (figure 8) (Koirala et 

al., 2014a). FliT has been defined as a negative regulator of class II promoter activity, 

via measurement of PfliA activity (Kutsukake et al., 1999). Through fliT deletion, the 

strains are more motile, because FliT is unable to downregulate FlhD4C2 activity 

(Aldridge and Hughes, 2002; Yamamoto and Kutsukake, 2006a). Like YdiV, FLiT can 

interact with the FlhD4C2 complex via direct interactions with FlhC. Aldridge et al 

(2010) showed that addition of FliT to FlhD4C2 complexes led to the disruption of the 

complex releasing FlhD and FlhC. The mechanism of action for FliT has recently 

been shown to focus on FlhD4C2 not bound to DNA. Aldridge et al (2010) showed that 

FlhD4C2 bound to DNA is resistant to FliT regulation. This is different from YdiV 

regulation, where interaction with FlhD4C2:DNA complexes leads to FlhD4C2 falling 

off the DNA (Takaya et al., 2012). When not bound to the DNA, FliT interaction with 

FlhD4C2 the result of the complex falling apart reduces its availability to bind DNA 

until it can reform the FlhD4C2 complex. Moreover, FliT protein act as a chaperone for 

the filament capping protein (FliD) across binding together to prevent oligomerization 

before export out of the flagellum export passage (Fraser et al., 1999; Bennett et al., 

2001). Overall, FliT protein has dual function either acting as an anti-FlhDC factor by 

interaction with FlhC and disruption the flagellar master regulator or as an export 
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carrier for FliD protein and contributes to filament assembly (Yamamoto and 

Kutsukake, 2006a; Sato et al., 2014). 
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Figure.7  Pardigm of FlhD4C2 complex by using crystallography technique. 
Adapted from S.Wang et. al (2006).  
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1.9.2.3 The FliA and FlgM regulatory feedback loop 

In the Salmonella flagellar system, expression from class III flagellar promoters 

requires the alternative sigma factor σ28 (FliA). The flagellar protein export system 

plays a vital role in directing σ28 action. The activity of σ28 is dependent upon the 

flagellar substrate specificity switch regulated by FlhB and FliK (Minamino et al., 

1999). On the export system switch the flagellum gains increased affinity for the 

filament type substrates, which contain the filament cap protein, flagellins and the 

regulatory protein FlgM (Chilcott and Hughes, 1998). FlgM acts as an anti-σ28 factor 

preventing the system making late subunits until the hook-basal body complex has 

been completed (Kutsukake and Iino, 1994).  

σ28 is encoded by the flagellar gene fliA and is transcribed from a class II and class III 

promoter defining it as a middle flagellar gene. Expression from both promoters 

generates an auto-regulatory feedback loop that allows, when σ28 becomes active, 

fliA expression to be increased further. The net result is the strong induction of class 

III promoters allowing strong expression of late genes such as fliC that encodes the 

flagellin. σ28 recognises -35 and -10 sequences that differentiate its target promoters 

from the major sigma σ70 (Kutsukake et al., 1990). The consensus sequence for a σ28 

promoter is TAAA-N15-GCCGATAA, that generates a short -35 region and a long -10 

recognition site (Chilcott and Hughes, 2000). 

flgM gene is also expressed from a class II and class III promoter. Class II 

promoter produced FlgM protein acts as an internal checkpoint. The result of the 

FlgM / σ28 interaction is an essential component of the flagellar system to establish 

the transcriptional hierarchy. When the HBB structure is completed, FlgM expressed 

from the class III promoter has an increase opportunity to inhibit σ28 to counteract the 

auto-regulatory feedback loop σ28 generates, thus modulating σ28 activity (Hughes et 

al., 1993; Kutsukake, 1994; Chevance and Hughes, 2008).  
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The regulatory mechanism dictated by FlgM has been studied in some detail. When 

present in the cytoplasm FlgM binds to free σ28 molecules (Karlinsey et al., 2000). 

FlgM has a very strong affinity to σ28 leading to two outcomes a) rapid binding to free 

σ28 and b) FlgM can out compete RNA polymerase for σ28 (Chadsey and Hughes, 

2001). These properties and nature of FlgM's actions means that sensing of flagellum 

status can be rapidly feedback into the system via a quick shutdown of σ28 activity. 

FlgM is a small protein approximately 10kDa in size. Surprisingly structural analysis 

has shown that the N-terminal region possesses very little defined structure, while the 

C-terminal region forms non-rigid α-helices (Daughdrill et al., 1998). It is this C-

terminal region that defines the binding site of FlgM to σ28 (Daughdrill et al., 1997). 

The structural analysis using NMR of FlgM:σ28 complexes showed that FlgM wraps 

itself around σ28 interacting with sequences in the sigma factor 2.1, 3.1, 4.1 and 4.2 

(Kutsukake et al., 1994; Chadsey and Hughes, 2001). 

The interaction between FlgM and σ28 has two further functions, as well as inhibiting 

σ28 sigma factor activity (Aldridge et al., 2006b). The first of these roles is the Type III 

chaperone activity of σ28. Using point mutations in σ28 Aldridge et al (2006) showed 

that the FlgM/ σ28 interaction was required for efficient secretion of FlgM. A key group 

of mutants in σ28 used in defining it as the T3S chaperone of FLgM were all in region 

4 that prevented σ28 acting as a sigma factor but still were effienct at facilitating FlgM 

secretion (Chadsey and Hughes, 2001; Aldridge et al., 2006). The second role of the 

FlgM/σ28 interaction functions to modulate the degradation of both proteins 

(Barembruch and Hengge, 2007). In the absence of FlgM, σ28 is degraded more 

rapidly arguing that FlgM protects σ28. In contrast, loss of σ28 argues that FlgM would 

be more stable, however loss of σ28 also reduces FLgM secretion. Overall, the 

FlgM/σ28 has an intricate interplay of modulating σ28 activity by sensing the assembly 
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status of FlgM while modulating the availability of both proteins either via protein 

secretion or protein degradation. 
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1.10 Flagella Immune Response Adaptive versus Innate Recognition  
 

Salmonella has two key antigens associated with the flagella encoded by the flagellin 

genes fliC and fljB. The flagellins are recognised by both the innate and adaptive 

arms of the immune system during infection (Salazar-Gonzalez and McSorley, 2005). 

Flagellin triggers three inducers of alternative immune system signaling pathways: 

Toll-like receptor 5 (TLR5), the cytosolic proteins Birc1e/Naip5, and the NOD-like 

receptor (Sun et al., 2007). 

Flagellin innate immune response is stimulated by Toll-like receptor TLR5 

recognition which activates pro-inflammatory gene expression (Gewirtz et al., 2001). 

Furthermore, flagellin proteins released into dendritic cells are directly sensed via the 

NLR receptor (figure 9). NLR recognition directs the splenic dendritic cell to activate 

the inflammasome complex (NALP), leading to production of pro-inflammatory 

interleukins (IL-1 and IL18). IL-18 plays a role to trigger cytotoxic T cell (CD8+ T) via 

interaction with the IL-18 receptor (figure 9). Subsequently, the cytotoxic T cell 

produces IFN-λ which is bactericidal to Salmonella growth (figure 9) (Ayres and 

Vance, 2012; Kupz et al., 2012). Flagellin represents a class of pathogen produced 

molecules defined as pathogen-associated molecular patterns (PAMPs) when 

considering the ability of our immune system to recognize invading pathogens. Other 

PAMPs include for example lipopolysaccharides and peptidoglycan, both 

components of the bacterial cell wall. Indeed, flagellin, LPS and peptidoglycan all 

have been implicated in the stimulated immune defence responses of animal host-

pathogen interactions, as well as human infections (McDermott et al., 2000; Eaves-

Pyles et al., 2001; Sierro et al., 2001). Interestingly, with respect to flagellin, not all 

flagellin types are recognised by TLR-5 and thus bacterial pathogens possessing 

such derivatives are able to avoid recognition by the innate immune response. For 
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example, Campylobacter jejuni and Helicobacter pylori avoid TRL5 recognition 

having evolved a sequence change in the TLR5 recognition motif found within region 

D1 of their flagellins (Andersen-Nissen et al., 2005). 

1.11 Summary 
  

In summary, Salmonella serovars are considered a key pathogen and involved in 

public health implications. Transmission occurs across a wide range of different hosts 

causing a variety of diseases from localized infection of the intestine which in time 

can become systemic. The flagellar system generates a rotational nanomachine via 

the highly coordinated process. In this study our attention focussed on the flagella by 

studying how flagellar gene expression varies across the S. enterica species. 

In the following chapters, different Salmonella serovars were assessed for 

flagellar gene expression and motility to assess the diversity among them. The 

results have shown how that all serovars regulate the temporal activation of flagellar 

gene expression. However, serovars can be differentiated by the magnitude of gene 

expression. Data suggests that the change in magnitude is in part a result of 

population heterogeneity. Subsequently, we utilized our knowledge of flhDC 

regulation for E.coli and S. enterica to swap flhDC between them using S. enterica as 

our chosen model. This process allowed the investigation on how this key regulatory 

complex responds in different species. 
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Figure 10. In-depth, the pathway of innate immune response of the flagellin 
starting from bacterial invasion the mammalian host and inducing the immune 
response via Toll-like receptor has located on splenic dentric cell and then 
triggered the inflammasome complex (NALP) to producing IL18 and thus goes to 
killer cell (CD8+ T) to induce IFN-λ, this is act as inhibition of Salmonella 
proliferation, adapted from (Ayres and Vance, 2012).   
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Chapter Two: Aims of study  
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2.1 Aim of study  
 

Flagella are one of the best examples to study evolution and the self-assembly of a 

complex organelle. A previous PhD thesis, in the Aldridge laboratory, has shown that 

when growth is controlled by continuous culture in a chemostat E.coli and S. enterica 

respond in a similar manner with respect to the output of the flagellar system. 

Interestingly, at the fast growth rate, 15 % of the S. enterica population did not 

produce a flagellum while in an E.coli population the response was homogenous. 

This important observation has led to the crucial question: why does S.enterica 

behave in this way? 

On the other hand, a significant foundation of our understanding on flagellar 

gene expression in S. enterica is biased towards results obtained for the serovar 

Typhimurium. Therefore, a number of key conclusions and assumptions made with 

respect to flagellar regulation and output are assumed to hold for all serovars of S. 

enterica. Previous studies have shown that the majority of Typhimurium isolates are 

motile. Indeed, S. enterica exhibits a robust motility phenotype in that many strains 

are declared motile. We therefore aimed to ask the second question: do a range of 

serovars isolated from different hosts isolated from around the world reflect the 

robustness of their motile phenotype when considering flagellar gene expression 

activation and magnitude? 

To achieve the two aims of this study the objectives included 

1) Define the method of use for the tetracycline inducible system 

2) Characterise flagellar gene expression with respect to its temporal activation 

and magnitude in S. enterica serovars 
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3) Replace flhDC from S. enterica with flhDC from E. coli on the chromosome 

to investigate the impact of the output of the flagellar system and the growth 

rate control of motility. 

In the following result chapters, we present the data generated from the projects 

aims and objectives. We will show that while all motile, some serovars do indeed 

have a different response with respect to flagellar gene expression. Further 

investigation leads us to explore the impact of population heterogeneity across the 

serovars. While replacing flhDC between E. coli and S. enterica we further explore 

the impact of replacing each gene individually and how known regulators of FlhD4C2 

perceive flhDC homologues from the close relative E. coli. 
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  Chapter Three: Methodology 
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3.1 Bacterial Growth Conditions  
 

All strains used in this study are from a lab TPA collection stored within the Centre for 

Bacterial Cell Biology. All strains were frozen at -80 °C in 10 % DMSO. Bacterial 

strains were activated on Luria Bertani (L.B) medium and where needed specific 

antibiotics were added to conserve plasmids. Strains were incubated at either 30°C 

or 37°C depending on the plasmid. The plasmids pKD46 and pWRG99 are 

temperature sensitive, growth at 30 °C will allow replication of these plasmids.. 

Antibiotics used during this study included Ampicillin, Chloramphenicol, Tetracycline 

and Kanamycin (table 1).  

Table 2: Antibiotic concentrations profile 

 

3.2 Techniques Associated with DNA 
 

3.2.1 Genomic DNA Extraction 
 

Bacterial DNA was isolated using Sigma-Aldrich genomic DNA kit according to the 

manufacturer’s protocol. After overnight incubation at appropriate temperatures, 1.5 

ml culture was centrifuged at 12000 rpm for 2 minutes. The supernatant was 

discarded and the pellet was re-suspended thoroughly in 180 μl of Lysis solution 

T/buffer. To suspension was added 20 μl of Proteinase K and incubated for 30 

minutes at 55 °C. Two hundred microliters of Lysis solution C was then added. After 

vortexing for 15 seconds, the mixture was incubated at 55 °C for further 10 minutes. 

A 200 μl of ethanol 100% was added into the mixture and vortexed for 5-10 seconds. 

Antibiotic  Stock Con. Final con. Add to 100 ml 
Ampicillin 20 mg /ml 100 μg/ml 50μl 
Chloramphenicol 2.5 mg/ml 12.5 μg/ml 50μl 
Tetracycline 2.5 mg/ml 12.5 μg/ml 50μl 
Kanamycin 10 mg/ml 50 μg /ml 200μl 
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The mixture was transferred to a column and centrifuged at 6500 rpm for 1 minute. 

The column was washed with 500 μl of Wash solution 1 and centrifuged for 1 minute 

at 6500 rpm. A second wash with 500 μl of Wash solution followed, but centrifuged 

for 3 minutes at 12000 rpm. The genomic DNA was eluted by using 200 μl of the 

sterile Milli-Q filtered PCR water. Finally, DNA quantification was determined via a 

Nanodrop NA-1000 spectrophotometer and genomic DNA was kept at -20 °C.   

3.2.2 Plasmid Extraction 
 

   A. Extraction of Plasmid Using Miniprep Kit  

The procedure was used the Sigma-Aldrich NA0150 GenElute HP Plasmid Kit 

according to manufacturer’s protocol. A single colony was picked from a freshly 

streaked plate into the 5 ml LB broth with the appropriate antibiotic and incubated an 

overnight with shaking. The culture was centrifuged for 10 minutes at 4500 rpm. The 

supernatant was discarded, the pellet was suspended with 200 μl Resuspension 

Solution and mixed well by vortex. A 200 μl of Lysis buffer was added into the 

suspension and directly inverted until the solution became clear and slimy. 

Neutralization/Binding Buffer (350 μl) was then added and inverted eight times to 

precipitate the cell debris. The mixture was centrifuged at 12000 rpm for 10 minutes. 

The cleared lysate was transferred directly into the column and centrifuged for 1 

minute at 12000 rpm. The column was washed with 500 μl Wash Solution 1 and 

centrifuged for 1 minute at 12000 rpm. The column was washed again with 750 μl 

Wash Solution 2 and centrifuged at 12000 rpm for 1 minute. The column was further 

centrifuged for 2 minutes at 12000 rpm in order to remove residual Wash Solution 2. 

The plasmids were eluted by using 100μl sterile Milli-Q filtered PCR water. Plasmid 

DNA concentration was quantified (Nanodrop NA1000) and the sample was stored at 

-20 °C.   
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B. Extraction of Plasmid Using Midiprep Kit 

The aim of using this kind of kit to get a high quantity of plasmid. The procedure was 

used the Sigma-Aldrich NA0200 GenElute HP Plasmid Kit according to 

manufacturer’s protocol. All chemicals solutions and reagents were prepared as 

described in the manufacturer's booklet.  

3.2.3 Gel Electrophoresis  
 

DNA was verified by using 1% agarose gel electrophoresis. Four grams of agarose 

powder was dissolved within 400 ml 1X TAE buffer and added 9 µl DNA-stain Nancy-

520. On melting, molten agarose was kept at 60°C until use it if necessary. DNA 

samples were diluted 5:1 in 6 X Loading Dye (Promega). All DNA samples were 

assessed against a DNA ladder (Promega 1kb or 100bp) as a control. Typically, the 

power conditions used were: constant voltage of 120 V, electrical charge of 400 MA 

and a time between 40-50 mins. Gels were imaged via a UV-Transilluminator cabinet 

(Syngene Ingenius) and Genesnap software.  

3.2.4 Amplification Of DNA By Using Polymerase Chain Reaction (PCR)  
 

PCR was conducted using Q5 High-Fidelity DNA Polymerase (N.E.B.) and used by 

manufacturer’s standard protocols. Primers were synthesized by Integrated DNA 

Technologies (IDT) design utilizing Serial Cloner 2.6.1. The reactions were performed 

using a Biometra T3000 thermocycler. To determine the proper reaction annealing 

temperature (TM) forward and reverse primers were input information: 

http://tmcalculator.neb.com/#!/.  The total volume of all PCR reactions was 50μl 

(Table 2, 3).  
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                       Table 3: PCR temperature condition and cycle timings 

 
 
 
 
 
 
 
 
 
 
 
                                     Table 4: PCR reaction components 

 

3.2.5 Purification PCR DNA Fragment  
 

PCR DNA fragments were purified to remove impurities such as oil, salt, primers and 

nucleotides via a PCR Clean up Kit. The kit used was the Sigma-Aldrich NA1020 

GenElute Clean up Kit according to the manufacturer’s protocol.  

3.2.6 DNA Gel Extraction  
 

A UV-Transilluminator (Syngene) was used to determine the desired DNA fragment 

on gel. The correct DNA fragment within an agarose gel was cut out and solubilized 

and extracted by using a Sigma-Aldrich Gel Extraction Kit in accordance with the 

manufacturer’s protocol.  

Cycling Step Temperature(°C) Time  # of Cycles  
Initial Denaturation  92°C 2 min 1 
Denaturation 92 °C 30 sec 30 
Annealing 50-65 °C 30 sec 30 
Extension  72 °C 2:30 min 30 
Final Extension  72 °C 5 min 1 
Hold 4 °C Pause 1 

Ingredients list Volume (μl)  
(5xQ5) Reaction buffer  10  
dNTP mix          2mM 5 
Forward Primer 20 pmol / μl 2.5  
Reverse Primer 20 pmol / μl 2.5  
Template DNA  VARIED 
High Fidelity DNA Polymerase 0.5 
H2O  To final volume of 50  
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3.2.7 Ethanol Precipitation Of DNA Fragment 
 

Ethanol precipitation technique was used to concentrate PCR DNA fragments and 

plasmids. For example, a 50 μl PCR DNA solution was mixed with 5 μl 3M NaAc (pH 

5.2) and 140 μl 100 % ethanol. The mixture was left at room temperature for 30 mins 

before spinning at 13000 rpm for 15 minutes. The supernatant was disposed and the 

pellet washed with 500 μl 70 % ethanol followed by centrifugation at 13000 rpm for 

10 min. The pellet was dried using a vacuum evaporator (Scanvac) under pressure at 

a temperature of -104°C. Finally, the pellet was resuspended in required volume of 

sterile filtrated Milli-Q H2O. 

3.2.8 DNA Sequencing  
 

The sequencing of DNA was performed by Source Bio-Science Company. Each 

reaction required a 5 µl PCR fragment (1ng/µl per 100bp) and specific primers 

3.2pmol/ µl. 

3.3 Real Time Quantitative Polymerase Chain Reaction 
  

Real time-qPCR was used to define ratio of reporter plasmids for pRG51 and pRG39 

to chromosomal DNA content per cell.  

3.3.1 Isolation Condition Genomic / Plasmid DNA 
 

All cultures were inoculated from a single colony in 5 ml of L.B medium and 

incubated at 37 °C overnight with shaking. The next day cultures were diluted OD600 

of 0.05 in 5ml fresh L.B medium and grown up until reached OD600 of 0.5. In order to 

growth inhibit, all strains were treated with 0.25 % Sodium azide (NaN3). Genomic 

and plasmid DNA were extracted using Sigma-Aldrich genomic DNA kit in 

accordance with the manufacturer’s protocol. The DNA concentration was quantified 

by using a Spectrophotometer (Nanodrop NA1000).  
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3.3.2 Determination Standard Curve 
 

A standard curve was determined by using different serial dilutions of genomic and 

plasmid DNA (Table 5), in order to define a template DNA concentration inside the 

linear zone for quantification (figure11). Quantification analysis of unknown samples 

used ∆∆CT qPCR relative DNA quantification technique based on the initiation 

frequency of template of DNA deletion (Lee et al., 2006).   

3.3.3 Samples analysis 
 

Experiments were performed using a Calibration Robot (Qiagen) and a Qiagen-Rotor 

gene Q real time PCR machine. The final reaction volume was 20 µl that included 0.5 

µl of each forward and reverse primer (20 pmol / µl), 9 µl SYBR Green qPCR Master 

Mix (Promega) and 10 µl chromosome or plasmid template. The rotor disc was 

sealed with heat sealing film via a Rotor disc heat sealer (Qiagen) before reactions 

were placed in the thermocycler qPCR machine. All qPCR experiments were 

repeated as biological triplicates.  

3.3.4 Statistical Data Analysis for qPCR 
 

Standard curves were designed in order to plot unknown samples versus threshold 

cycle (CT) (figure 11), resulting from the reference gene or target gene for a 

comparison of PCR amplification efficiencies. Finally, the data were analysed by 

finding a ratio between reference gene and target gene via simple equation depend 

upon (Pfaffl, 2012) as a following:-  

ratio ൌ
ሺEtargetሻ	∆CP	target	ሺMEAN	control	– 	MEAN	sampleሻ
ሺERefሻ	∆CP	Ref	ሺMEAN	control	– 	MEAN	sampleሻ

 

Tukey multiple comparison test was used for statistical analysis of data.   
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Solution 

number  

Dilution 

factor  

µl H2O 

PCR  

Final concentration 

 

1 1 1 1 
2 5 1 0.2 
3 25 1 0.04 
4 125 1 0.008 
5 625 1 0, 0016 
6 3125 1 0.00032 

Table 5: The serial dilution of Genomic DNA and plasmid to create 
standard curve 

Figure 11. A standard curve produced from the serial dilutions of Genomic 
DNA data. The slope of the heel up line is represented the points of gathering 
between the concentrations of the DNA upwards.  
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3.4 Micro-plate Assay to Measure The Activation Of Flagellar Gene 
Expression 

 

Depending on the necessities of each experiment, strains were streaked out at 37°C 

or 30°C on a selective antibiotic plate. Overnight cultures were inoculated in test 

tubes and incubate with rigorous shaking. Pre-cultures were prepared to start growth 

at an OD600 = 0.02 in 3 ml of liquid media and permitted to grow until reaching OD600 

= 0.15. Each microplate well was prepared with 10 µl tetracycline (50 µg / ml), the 

tetracycline acted as an inducer for the tetRA promoter to initiate flhDC operon 

transcription. Growing cultures were aliquoted as 200 µl volumes into the 96 well flat-

bottomed plate taking care and consideration that no bubbles were present. The 

plate was sealed using a gas-permeable membrane. The plate reader (Fluostar-

Omega) was configured with two protocols measuring optical density and 

luminescence using the BMG LABTECH’s computer’s software. All experiments were 

performed at 30°C in LB media unless specifically stated in the figure legend. Finally, 

the results were analysed by using a Microsoft Excel 2013.  

3.5 Chromosomal Mutagenesis and Modification of Salmonella 
Strains 
  

In order to knock-out and knock-in desirable genes into the chromosome, The 

Lambda Red recombination system was exploited. Lambda Red is considered a 

robust technique for insertion of heterologous DNA into the chromosome designed 

originally by Datsenko & Wanner, (2000). Knock-out steps for the Lambda Red 

recombination system are shown in Figure 12. The pKD46 plasmid was introduced 

into the bacteria cells by electroporation (BIORAD MicroPulser electroporator). 

Bacteria were recovered in LB media at 30°C for one hour with shaking and plated 

LB plate / ampicillin for 24 hours at 30°C. One colony was picked into a 30 ml LB / 

ampicillin and 0.1% arabinose culture. The culture incubated at 30°C with shaking 
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until it was reached an OD600 = 0.6-0.8.  The cells were pelleted and washed with 

cold sterile filtrated Milli-Q water after centrifugation at 4500 rpm for 15 minutes twice. 

PCR products were transformed into the bacteria via electroporation (BIORAD 

MicroPulser electroporator) and recovered the cells were plated out onto specific 

antibiotic agar as described above. The antibiotic resistance cassette was removed 

via transforming a FLP plasmid into the cell using electroporation or transduction. 

Transformations were plated out on to ampicillin LB plates at 30°C. Eight colonies 

were randomly picked on to LB plates (No antibiotics) and grown at 42 °C overnight 

in order to induce plasmid loss. Colonies were screened on LB with a specific 

antibiotic to ensure the colonies were sensitive for the antibiotic, that meant the 

antibiotic cassette had been removed all constructs were confirmed using PCR.    
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Figure 12. Strategic way to remove the gene precisely. R1 and R2 indicate to the 
homology sites. P1 and P2 indicate to primers regions. Adapted and modified from 
(Datsenko & Wanner, 2000).     
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In order to replace certain genes with other gene on the chromosome, the Blank et al 

(2011) protocol was used. The method was followed by using the specific plasmid 

pWRG100 a derivative of pkD3 which encoded the chloramphenicol antibiotic 

cassette and the I-SceI-XbaI-rev enzyme restriction sites (figure 13). The I-SceI 

enzyme is encoded by the pWRG99 plasmid, under control of tetracycline induction. 

The rationale of the Blank et al system is that when I-SceI is expressed from 

pWRG99 in cells in which the pWRG100 cassette has been inserted into the 

chromosome, the double stranded break produced is lethal. However, if a PCR 

product is introduced and swapped successfully using lambda red recombination for 

the region deleted by pWRG100, the cells will grow as a normal cell colony and be 

sensitive to chloramphenicol. This means that the chromosome has already disposed 

of I-SceI restriction site with chloramphenicol cassette and replaced the region with 

the desirable gene. We have confirmed gene substitution via sequence analysis. All 

steps of this gene replacement strategy are described in figure 13.  
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3.6 DNA Molecular Cloning 
  

In order to a clone certain gene into the certain plasmid, we have used Gibson 

cloning technique. It included preparation material and reagents according to 

manufacturer’s standard protocols. Primers designed for each DNA and vector 

fragments. We have calculated the quantities as flowing the NEB equation to make 

the balance of concentration between DNA or vector fragments. The DNA and vector 

amplified have mixed with Gibson Assembly Master Mix at 50°C /fifteen minutes to 

one hour in order to give the compatibility being completed. Then transformed into 

the NEB 5 alpha competent E.coli and plated it out on specific antibiotic LB at a 

certain temperature overnight. Finally, we have checked the cloned plasmid via 

sequencing them as we mentioned earlier.   

 

3.7 Preparation of Competent Cells  
 

A single colony of DH5α E. coli was inoculated into the 200 ml LB media Erlenmeyer 

flask at 37°C on an orbital shaker. The bacterial culture was grown to an OD600 = 0.1-

0.2. Bacterial cells were decanted into a 50 ml falcon tube and chilled on ice for 15 

min and centrifuged at 4500 rpm for 10 minutes at 4°C. The bacterial pellet was 

resuspended in 40 ml pre-chilled CaCl2 100mM and chilled on ice for 40 minutes. The 

pellet resuspended again in 1ml pre-chilled CaCl2100mM with 0.1% glycerol and was 

centrifuged at 4500 rpm for 10 minutes at 4°C. Aliquots of 100 μl in 1.5 ml Eppendorf 

tubes and placed in liquid nitrogen and stored at -80°C.  

 

3.8 Transformation Techniques 
 

Different techniques was used for transformation bacteria either using DNA 

fragments or plasmids to create mutant bacteria or new strains.  
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3.8.1 Electroporation  
 

Cells were grown overnight in 5 ml LB-media with a specific antibiotic, if necessary, 

and required temperature. Overnight cells were diluted to OD600 = 0.05 into 30 ml of 

LB media with antibiotics if needed. The culture was harvested at mid-log phase by 

centrifugation at 4500 rpm for 10 min. cells were washed twice with cold sterile 

filtrated Milli-Q water and the supernatant discarded. The DNA was added into a 50 

µl suspension of vortexed cells and carefully pipetted into the electroporation cuvette. 

Bio-Rad MicrioPluser electroporator on a channel one which suitable pulses for S. 

enterica and E. coli cells. After electroporation, the cells were recompensed by using 

1 ml LB and transferred to a 1.5 ml Eppendorf tube for incubation for one hour at 

30°C or 37°C. The cells were the cultured on the LB plates with a specific antibiotic.   

3.8.2 Heat Shock  
 

For transformation, 100 μl of competent DH5α E. coli cells were thawed on ice then 

the desirable plasmid added and mixed gently before placing on ice for 30 minutes. 

Cells were heat-shocked in a 42-45oC water bath for 50 seconds and then 

transferred directly on ice for 2 minutes. Then, 900 µl LB medium was added to the 

pellet and incubated at 30 / 37°C for 1h with shaking. Finally, the culture was plated 

out on LB agar with suitable antibiotic at 30 / 37°C. 

3.8.3 Transduction 
   

Phage stocks were prepared from 5 ml LB medium at 37°C overnight cultures. 1ml of 

bacterial culture was added to 4 ml phage buffer and incubated at 37°C for 8-16 

hours. The mixture was centrifuged at 4500 rpm for 10 minutes. The supernatant 

transferred into a new tube and 500 µl chloroform was added. The mixture was 

vortexed and left one hour for settlement. The phage solution was diluted into serial 

dilution to 1X10-3 , considered the stock of the certain phage ready to use for 
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transduction. For transduction, we were took 200 µl of the culture OD600= 0.6-0.8 and 

mixed with the 200 µl phage stock and incubated one hour at 37°C. For a controls, 

phage stock was mixed with LB broth and 200 µl culture was added to 200 µl saline 

to make sure the phage stock and culture were not contaminated. Transductions 

were plated on to specific antibiotic LB plates and incubated overnight at 30 / 37°C. 

 

3.9 Motility Assay 
 

All strains were examined in semisolid agar in order to define bacterial motility. The 

concentration of agar approximately 0.3%. One colony was picked via sterile wooden 

sticks from freshly grown colonies (LB plate) and stabbed directly into the centre of 

the motility agar and incubated for 6-8 hours at 37°C. The motility diameter was 

visualized using a Syngene Bioimaging cabinet. ImageJ software program was used 

to measuring the diameter of the bacterial swim. All experiments were done in 

triplicate.   

 

3.10 Fluorescent Microscopy 
 

500 µl molten 1% agarose was placed onto Multi-spot microscope slide and covered 

with a plain microscopic slide to get a flat clear surface. 1 µl bacterial culture at OD600 

= 0.6-0.8 was pipetted on the slide and after drying at 42°C covered with a cover slip. 

A Nikon-Ti inverted microscope was used to acquire two different types of a pictures: 

a phase contrast image (100 ms) and Green fluorescent light GFP (500 or 1000ms). 

All images were acquired via MetaMorph v7.7.80 software and processed using 

ImageJ software to merge the images into one RGB image.   
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3.11 Matlab software for Image analysis 
 

3.11.1 Microbetracker  
 

Mirobetracker software was downloaded from the http://microbetracker.org/ website. 

Phase contrast images were used to determine the outside border of each cell 

leading to cell numbers being calculated. The options have used in the program 

including load phase, contour-green-phase for displaying image, join-refine-split-add 

for manual improving image, and particular parameter has loaded (alg4ecoli.set for E. 

coli detection) are showing in figure 14. ‘’This frame’’ option started the image 

analysis process. After process, save analysis was chosen leading to the analysed 

image being saved within a mesh image (figure 14). 
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3.11.2 Spot-finder  
 

GFP images were uploaded directly after phase contrast analysis image (mesh) 

using Spot-finder Z in software to count and recognizing GFP flagellar foci. All 

options were setup on in program (figure 15).       

 

3.11.3 Export file  
 

All mesh matlab files were exported to Microsoft excel files via the ‘’exportlgthxls’’ 

option responsible for exporting cell length data and a ‘’exportspots2xls’’ option 

regarding to flagellar foci. 

 

3.11.4 Intensity image analysis 
  

Mirobetracker software was used to recognizing GFP Intensity for each cell. After 

boarded and counted a GFP image was uploaded using the signal 1 option and the 

‘’subtract bgrnd’’ option selected. Analysis used the options ‘’Resue mesh’’ option 

and ‘’compute signal one’’. Analysed GFP intensity for each cell and exported as an 

excel file (exportcells2xls). The analysis used either Excel of R program.   
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Figure 15. Image caption how to setup properly Spot-Finder 
option into the Matlab program.  
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3.12 Freezing Strains 

One colony was picked from fresh LB agar plates and inoculated into 5 ml LB media 

with or without antibiotic if necessary and grown at 30 or 37°C overnight with 

shaking. 150 µl sterile DMSO was added into 1.5 ml of culture and then mixed them 

and placed directly into the -80°C freezer.  

3.13 Techniques Associated With Protein-Protein Interaction 
 

3.13.1 Overexpression FlhDC 
 

A 5ml LB media overnight culture was used to inoculate a 1 litter LB with kanamycin 

calculate at an OD600 = 0.05 and incubated with shaking at 30°C. When the culture 

reached OD600 = 0.6, 1ml 1M of IPTG was added as an inducer to produce the 

FlhDC protein complexes and incubated for a further three hours. The culture was 

centrifuged at 7000 rpm for 15 minutes. The pellets resuspended with 25 ml sterile 

LB media and centrifuged at 4500 rpm for 10 minutes. The pellet was kept directly at 

-80°C. The pellet was resuspended in 25 ml His-Loading buffer, and the bacterial 

cells lysed via a Cell Disruptor under pressure a 25Kp, in order to release all 

proteins. The protein sample was centrifuged at 18000 rpm for 40 min using JA25.50 

rotor (Beckman coulter centrifuge) at 4°C. The supernatant was directly loaded onto 

the Äkta purification column. 

3.13.2 Purification of FlhDC Procedure 
 

The Äkta Prime machine was used to purify the His-FlhDC protein complexes. 20% 

ethanol was injected through the Äkta Prime System in order to remove protein 

debris, bubbles and wash the system. The Äkta Prime was prepared with a His-Trap 

column and equilibrated with His-loading buffer. The protein sample was uploaded 

into the system and monitored using the analogue chart recorder (Biotech). After His-

loading buffer was used to re-equilibrate system collected of the His-FlhDC protein 
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complexes as 2ml fractions via injection of fractions were His-elution buffer as a 0-

100% concentration gradient. Tricine SDS gel was used to visualise all purified 

proteins by mixing 10 µl sample with 5 µl SDS buffer (10%) and prepared at 100°C 

for 5 minutes. Samples were loaded on SDS gel electrophoresis at 40 volts for 45 

minutes.  

3.13.3 Heparin-affinity chromatography 
 

The aim of using heparin column was to isolate mimics DNA to ache FlhDC 

complexes as heparin. The Heparin column was connected to the Äkta Prime and 

equilibrated Heparin loading buffer. Cell lysates were loaded into the Äkta Prime 

system and loading equilibrated using fresh Heparin loading buffer. Samples were 

eluted by injecting Heparin elution buffer using a 0-100% can concentration gradient 

over 30 tubes, 2 ml each fraction.  

3.13.4 Protein Gel Staining  
     

After completed migration of protein on a SDS gel staining used a Coomassie Blue 

solution for 30 minutes. The gel was destained in the Destaining solution tray for 30 

minutes. After that, the SDS gel was transferred into sterile Mill-Q water for 1 hour. 

Finally, the gel was visualized using a scanner digital (Epson 3490). 

3.13.5 Electrophoretic Mobility Shift Assay (EMSA)  
  

Purified proteins were serial diluted 10 times then mixed with same quantity of DNA 

fragment. The reactions were loaded after added 1µl DNA stain into a acrylamide gel 

(40%), and 1% TBE running buffer was used into the electrophoresis tray at 60 v for 

3 hours at 4 °C. The acrylamide gel was stained by adding 1µl DNA stain into 50ml 

sterile H2O with shaking 1 hour. The gel was filmed a UV Transilluminator cabinet 

(Syngene Ingenius). ImageJ software was used to quantification the DNA bond with 

the protein.  
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Chapter Four: Evaluation of Flagellar 
Gene Expression in Salmonella 

enterica Serovars 
   



77 
 

4.1 Introduction 
 

This chapter will describe how to control flagellar gene expression through different 

inducible promoters. The tetracycline inducible system is able to drive the entire the 

flagellum transcription via an on and off switch system (Karlinsey et al., 2000). There 

are different regulatory structures and functional outputs of the tetracycline system 

based on the orientation of the tetR and tetA genes. tetR and tetA are transcribed 

from divergent promoters PtetR and PtetA (figure 16). TetR is the repressor of the 

system when tetracycline is not available. The gene tetA encodes the resistance 

gene and acts as an efflux pump (Hillen and Berens, 1994). The scenario for 

promoter activation starts with TetR binding to both PtetR / PtetA until tetracycline is in 

the environment / cell. On binding tetracycline, TetR is unable to stay bound to the 

DNA. Loss of the TetR:DNA interaction allows for transcription from both promoters 

(figure 16). Importantly PtetA is fourfold stronger than PtetR, leading to strong 

expression of the efflux pump (Wray et al., 1981; Bertrand et al., 1983; Saini et al., 

2008). This study will exploit the advantage that the tetracycline system is titratable 

(Gossen and Bujard, 1992). Furthermore, the tetracycline system is able to respond 

not just to tetracycline but also tetracycline structural derivatives such as 

anhydrotetracycline (figure 17). This allows us to control the magnitude of flhDC 

expression by different concentrations of antibiotic inducer and promoter orientation, 

without the stress of antibiotic activity playing a role (Koirala et al., 2014b). 

We have measured the motility phenotypes of S. enterica serovars when flhDC 

are under control of their native promoter and the tetracycline promoters, comparing 

class 2 and class 3 promoter activity. We have determined a change in the 

magnitude of gene expression contributing to flagellar assembly in multiple serovars 

of S. enterica. The activity of FlhD4C2 is tightly regulated and is considered the main 
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regulator of the flagellar system. FlhD4C2 with σ70 act together to operate the class 2 

promoters of middle genes (Chilcott and Hughes, 2000). The middle genes are 

responsible for producing the hook and basal body. In addition FlhD4C2 with σ70 drive 

expression of σ28 (fliA) that specially activates the transcription of class 3 promoters. 

In this chapter we complimented gene expression assays by counting flagellar 

numbers per cell using fluorescence microscopy. Having observed different 

magnitudes of flagellar gene expression across the S. enterica serovars, we correlate 

the phylogeny of the flagellar system, using bioinformatics analysis, for all serovars in 

order to identify varieties and patterns with respect to the Salmonella species 

phylogenetic tree. 
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Figure 17. Chemical structures of tetracycline compared to 
anhydrotetracycline. The difference between the two forms are highlighted in 
red where tetracycline possesses one hydroxyl group more than 
anhydrotetracycline. Anhydrotetracycline has one more hydrogen group and 
missing one hydroxyl group. 
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4.2 Tetracycline Inducible System 
 

4.2.1 Comparison the Motility Output Between PtetRA and PtetAR 
 

Previous studies have used the tetracycline inducible promoter to control and drive 

the flagellar system in order to determine the temporal activation of flagellar gene 

expression (Karlinsey et al., 2000b; Brown et al., 2008). We have replaced PflhDC from 

S. enterica with the two promoters PtetRA and PtetAR, to define the effect on the 

flagellar system when driving the expression at different levels and how this impacts 

the motility output phenotype. 

The motility assay was an obvious starting point to compare between the strains 

that have different promoters. Promoter activities of the PtetRA and PtetAR were 

quantified by measuring the movement of bacteria through semi-sold agar 0.3% 

(figure 18). No significant variation was found across the strains tested with respect 

to their motility phenotype in motility agar (P=0.22). However, even though the strains 

were comparable, the weaker PtetAR showed an expected drop in motility. This 

suggests that in general the two promoters are able to sustain motility in S. enterica. 

 

4.2.2 Stimulation of Flagellar Gene Expression by Different Types of 
Tetracycline Promoters 
 

The tetracycline promoter system used for this study is derived from Tn10 and has 

been used previously to control flagellar gene expression (Karlinsey et al., 2000b). 

The T-POP transposon designed from Tn10dTc was the original method of driving 

flagellar gene expression (Rappleye and Roth, 1997). T-POP was modified to allow 

transcription out of the transposon cassette. We have exploited this technology to 

measure the punctuality of flagellar gene expression activation and the magnitude of 

expression. The genetic design of the tetracycline systems used in this study remove 
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the IS elements of T-POP (figure 19). This is because T-POP has additional 

sequences downstream of tetA and tetR (Rappleye and Roth, 1997). 

A comparison was carried out between the three promoters (PtetRA, PtetAR and 

TPOP-PtetRA), driving transcription of flhDC (figure 19). Interestingly, flagellar gene 

promoter activity changes with respect to timing and magnitude for the synthetic 

constructs correlating to PtetRA being stronger. In contrast, PtetAR behaved similar to T-

POP-PtetRA (figure 20). Here the flagellar gene expression for both promoters are 

comparable to each other with respect to timing and magnitude level. These results 

suggests that the extra DNA in T-POP reduces transcription activity of PtetRA. In turn 

this impacts both the timing and magnitude of flhDC dependent activation of the 

flagellar system. 

The data shown in figure 20, and all subsquent expression figures, use the plasmid 

based bioluminescnce reporter system derived from pSB401 (Goodier and Ahmer, 

2001; Brown et al., 2008). The plasmids used have a selection of flagellar promoters 

driving the lux operon situated within pSB401. The source of the flagellar promoters 

is the S. enterica serovar Typhimurium strain 14028s (Goodier and Ahmer, 2001). As 

will become clear later in this chapter using these promoters in different strains is 

feasible due to the high level of conservation observed amongst class II and class III 

promoters across the species S. enterica. Furthermore, this collection of plasmids 

have been used regualry in a range of studies (Brown et al., 2008; Aldridge et al., 

2010).  
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Figure 18. Motility quantified for S. enterica under control of the tetracycline 
system PflhDC::tetRA and PflhDC::tetAR. (A) Images of examples of the motility 
phenotype produced by S. enterica PflhDC::tetRA. (B) Image of S. enterica 
PflhDC::tetAR. All strains were grown at 37°C for 6-8 hours in motility agar (0.3% 
agar). (C) Quantification of the motility phenotype measured by the diameter of 
the observed outer swimming ring from three repeats. Strains used in this 
experiment where: PflhDC::tetRA = TPA3959 and PflhDC::tetAR =TPA3789.  
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Figure 19. Overview of the genetic differences between the three promoters: 
TPOP-PtetRA, PtetAR and PtetRA. The designation of each promoter based on the 
direction of tetA and tetR genes, with or without Tn10-encoded is emphasised. 
For PtetR and PtetA the relative strength is also indicated. 
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Figure 20. Experimental data, illustrating the variation of class III gene 
expression for S. enterica (LT2) by using different promoters (T-POP-PtetRA, 
PtetAR and PtetRA). The expression behavior of T-POP compared to PtetAR were 
identical with respect to the timing and magnitude. In contrast, PtetRA expression 
of flhDC led to expression at an earlier time point and a stronger magnitude 
compared to the other promoters. Experimental data represents a minimal of 
three independent repeats. Strains used in this experiment where: PflhDC::tetRA 
= TPA3967, PflhDC::tetAR = TPA3803 and PflhDC::T-POP = TPA86. 
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4.2.3 Comparison A Titration Of Class II Gene Expression Activity Between 
Tetracycline And Anhydrotetracycline Under Control tetRA and tetAR 
promoters  
 

Having the master regulators of flagellar biosynthesis under control of the 

tetracycline inducible system, we are able to synthetically change the transcription of 

flhDC gene expression taking advantage of the fact that the tetracycline inducible 

system is titratable. Previous research has indicated that levels of tetracycline 

concentrations have a titration impact on gene expression (Hamann et al., 1997; 

Bateman et al., 2001). For all strains in this section, flhDC are expressed using 

variable concentrations of either tetracycline or anhydrotetracycline in order to 

generate titration curves of flhDC activity (figures 21 and 22). The maximum 

concentrations used for induction were for tetracycline 2.5 µg/ml and 

anhydrotetracycline 100 ng/ml based on previous studies (Brown et al., 2008; Koirala 

et al., 2014b). A clear significant change between PtetRA and PtetAR was observed 

(figures 21C and 22C). For tetracycline the serial dilution range of 2.5 down to 0.0025 

µg/ml was compared to no antibiotic (figure 21A). In contrast, the anhydrotetracycline 

range used was 100 down to 1 ng/ml (figure 22). These ranges show a similar 

response profile in terms of induction for both PtetRA and PtetAR (figures 21C and 22C). 

Levels of flagellar gene expression gradually increased with increasing 

concentrations of inducer (figures 21 and 22). The results revealed that maximum 

activity of PtetRA was stronger than PtetAR regardless of which inducer was used 

(figures 21C and 22C). Finally, for both constructs a 50% maximum of activity for 

PtetAR compared to PtetRA was observed. In contrast, tetracycline was a more efficient 

inducer producing a higher level of flagellar gene expression in comparison to 

anhydrotetracycline for both PtetRA and PtetAR (figure 23 A and B).  

One of the more significant findings to emerge from this analysis is that when 

compared, the titration of the flagellar gene expression is different dependent on the 
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inducer used. We found the relative maximum activity of expression for PtetRA is 

higher compared to PtetAR. Furthermore, tetracycline can be considered a more 

powerful inducer of flagellar gene expression than anhydrotetracycline. For example, 

the PtetRA titration curves look very similar. However, PtetAR curves have a different 

shape exemplifying the differences between inducers and system dynamics (figure 

21C and 22C). 
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Figure 21. (A & B) Gradual influence of different concentrations of tetracycline for 
class III gene expression in both promoter PtetRA and PtetAR respectively. The 
magnitude of flhDC expression was affected directly proportional to the 
concentration of tetracycline. (C) Comparison the relative maximum activity 
between strains being driven by different promoters (PtetAR, PtetRA). The data 
further strengthens the argument that PtetRA is fourfold stronger than PtetAR. For 
tetracycline, a concentration of 0.3125 µg/ml has given the highest level of 
flagellar gene expression for PtetRA, while, for PtetAR (red line) maximal flagella gene 
expression has been reached at 1.25 µg/ml tetracycline. Experiment represents a 
minimal of three independent repeats. Strains used in this experiment where: 
PflhDC::tetRA = TPA3967 and PflhDC::tetAR =TPA TPA3803. 



89 
 

   

Figure 22. (A & B) Gradual influence of different concentrations of 
anhydrotetracycline for class III gene expression in both promoter PtetRA and PtetAR 
respectively. (C) Comparison the relative maximum activity between PtetRA versus 
PtetAR. The highest level of expression at for PtetRA (blue line) was between 25-50 
ng/ml anhydrotetracycline. In contrast, for PtetAR (red line) maximum activity may 
not have been reached even with 100 ng/ml. Experiment represents a minimal of 
three independent repeats. Strains used in this experiment where: PflhDC::tetRA = 
TPA3967 and PflhDC::tetAR = TPA3803. 
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Figure 23. Efficiency comparison between tetracycline and anhydrotetracycline as 
inducer of flagellar gene expression where flhDc is expressed from either PtetRA or 
PtetAR. Tetracycline shows a more effective impact on flagellar gene expression 
than anhydrotetracycline in spite of promoter type. Experiment represents a 
minimal of three independent repeats. Strains used in this experiment where: 
PtetRA = TPA3967 and PtetAR = TPA3803. 
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4.2.4 Comparison Of Flagellar Foci Using Tetracycline And Anhydrotetracycline 
Induction Of The Flagellar System 
 

To count flagellar numbers per cell previous studies have exploited a strategy 

based on a flagellar protein being tagged with green fluorescent protein (GFP) and 

examined under the fluorescent microscope (Aldridge et al., 2006a). Aldridge et al 

(2006) focused on FliM-GFP fluorescent foci as a foundation of counting flagellar 

numbers per cell. The maximum activity of flagellar gene expression is during the late 

stages of exponential growth phase (Saini et al., 2010). Flagellar numbers were 

determined by counting flagellar using MicrobeTracker program to automatically 

assess florescent foci (FliM-GFP) instead of manually counting (Sliusarenko et al., 

2011; Sim et al., 2017). This section computes the number of flagellar foci for the two 

strains PtetRA::flhDC and PtetAR::flhDC induced with tetracycline and 

anhydrotetracycline. 

The experiment used three concentrations of tetracycline (0.025, 0.25 and 2.5 

µg/ml) in comparison for the two different promoters (figure 24). The flagellar foci 

average for PtetAR was between 1 foci / cell for 0.025 µg/ml and 2 foci /cell for 2.5 

µg/ml. While, the average of flagellar foci for PtetRA was between 8-10 foci / cell at all 

concentrations. These data for tetracycline show that flagellar foci change relatively 

little with a gradual increase in tetracycline, regardless of which promoter was used. 

However, there is a significant difference in the average of flagellar foci when PtetRA is 

compared to PtetAR. This can be explained by PtetRA being stronger than PtetAR. In the 

other words, there was a direct correlation between the strength of the tetracycline 

system and flagellar foci per cell. However, this does not correlate to motility and 

flagellar gene expression. 
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Figure 24. The impact on flagella numbers using different concentrations of 
tetracycline for both PtetRA and PtetAR driven systems. The curves indicate the 
average flagellar foci per cell. Blue line: Average foci for PtetRA when considering 
only cells with foci (fla+) (8-10 flagellar foci); Green line: average foci per cell 
using the total population; Yellow line: fla+ average foci for the PtetAR strain; 
Purple line: Average foci per cell when consdieirng the total population for the 
PtetAR driven system. Note that for PtetAR the heterogeneity in the population 
impacts the average foci per cell, while for PtetRA the majority of cells possess at 
least one foci. Experiment represents a minimal of five independent repeats 
(n=5). Strains used in this experiment where: PflhDC::tetRA = TPA3959 and 
PflhDC::tetAR =TPA3789. 
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With respect to anhydrotetracycline induction, the flagellar foci per cell average 

was again between 7-10 foci/cell for 5, 10 and 25 ng/ml in the case of PtetRA. 

However, the average of flagellar decreased radically in PtetAR. This time, however, 

the increase was gradual from 1 foci/cell at 5 ng/ml to 3 foci/cell for 25 ng/ml (figure 

25). 

Interestingly, the calculated averages took in to consideration the total 

population. When flagellar foci were quantified only in fla+ cells for PtetAR strains it 

was clear that for tetracycline and anhydrotetracycline induction flagellar foci per cell 

was between 1 and 4 foci per cell, which reflected the images captured for the 

analysis (Figures 24 and 25). This therefore suggests that the sensitivity of 

transcriptional changes via PtetAR on flhDC expression using these two inducers can 

influence the output of the flagellar system. 
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Figure 25. The impact on flagella numbers in terms different concentration of 
anhydrotetracycline by using both promoters tetRA and tetAR.  The curves 
indicate the average flagellar foci per cell. Blue line: Average foci for PtetRA when 
considering only cells with foci (fla+) (8-10 flagellar foci); Green line: average foci 
per cell using the total population; Yellow line: fla+ average foci for the PtetAR 
strain; Purple line: Average foci per cell when consdieirng the total population for 
the PtetAR driven system. Like for tetracylince induction the impact of PtetAR 
expression is eveident in average foci per cell counts when comparing the total 
population to just fla+ cells. Experiment represents a minimal of five independent 
repeats (n=5). Strains used in this experiment where: PflhDC::tetRA = TPA3959 and 
PflhDC::tetAR =TPA3789. 
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4.3 Determination Of Flagellar Gene Expression In Salmonella 
enterica Serovars Identifies Species Wide Differences In Flagellar 
Gene Regulation 
 

The biosynthesis and function of the flagellar system demand the expression of 

almost 60 genes that are organised across 17 operons, which provides a framework 

for regulation of flagellar assembly (Macnab, 1996). The regulation of these genes is 

coordinated by different responses such as environmental signals. Even strains 

within the same species may have special cues which eventually contribute to the 

extent of flagellar assembly and movement. We wanted to inspect flagellar gene 

regulation across serovars to define comprehensively the motility phenotype and 

flagellar gene expression. 

4.3.1 Comparing Motility Phenotype across Salmonella serovars  
 

The motility assay is always the initial step used to appreciate motility 

phenotypes. Several studies have compared the swimming motility phenotypes for 

strains of specific S. enterica serovars. For example, they have considered bacterial 

movement with strains of serovar Typhimurium based on flagellin (FliC) classification 

(Martins et al., 2013; Bogomolnaya et al., 2014). A subset of S. enterica serovars 

were quantified for motility using semisolid agar 0.3% in comparison to serovar 

Typhimurium strains (figure 26).  

We first looked at the S. enterica serovars under control of the native flagellar 

promoter PflhDC. Typhimurium strain LT2 was considered the control which all others 

were compared to. The Typhimurium strains 14028s, SJW1103, Typhimurium and 

ST4/74 had a similar motility phenotype in comparison with LT2. However, the 

motility of SL1344 was dramatically decreased (P<0.001, figure 26). In contrast, the 

movement of Java was also reduced compared to the control (P<0.001, figure 26). 
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In terms of PtetAR control, 14028s, SJW1103, SL1344, ST4/74, Typhimurium and 

Javiana all had a statistically significant increase compared to LT2 (P<0.05, figure 

27). However, Berta and Zanzibar were comparable to LT2 (P=0.14). Interestingly, 

Java had a consistent response for PtetAR compared to PflhDC driven expression, 

showing a reduced swim compared to LT2-PtetAR (P<0.01, figure 27). 

This investigation showed the diversity and robustness of the movement 

phenotype for each serovar. Interestingly, SL1344 strain behaved differently from 

other serovars especially with respect to PtetAR. The movement of SL1344 was clearly 

increased compared to the native promoter. In general, even though these strains 

were motile, the main interest was to ask how do these strains behave with respect to 

changes in flagellar gene expression and the temporal activation of their flagellar 

system (section 4.4). 

4.3.2 Flagellar Gene Expression Levels Between Salmonella Serovars 
 

Flagellar gene expression in Salmonella has been frequently monitored via the 

activation and magnitude of the flagellar promoter activities in Typhimurium (Brown et 

al., 2008). Therefore, the nine strains/serovars were tested in comparison to 

Salmonella Typhimurium strain LT2. The strains were investigated for the activity of 

the class 2 (flgA) and class 3 (fliC) flagellar promoters. This would lead to an 

understanding of the kinetics of flagellar assembly according to the chronology and 

magnitude of flagellar gene expression. A micro-plate assay was used for detection 

of PfliC  and PflgA  activity via the expression of the luxABCDE operon that leads to 

bioluminescence (Goodier and Ahmer, 2001; Brown et al., 2008) (figure 28). The 

orginal source of the reporter promoters was the strains 14028s, as previously 

mentioned (Goodier and Ahmer, 2001). Phylogentic analysis (see section 4.x) argues 

that this will provide a robust output as the flagellar promoters show a significant level 
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of identity. PflgA expression comes on at 30 min (figure 28A), while PfliC expression is 

detected at 60 min (figure 28B). This implies that the timing of flgA and fliC gene 

expression does not change. This data particularly correlates to Salmonella strains 

used previously (Brown et al., 2008). However, the magnitude of flgA and fliC gene 

expression compared to the control varies across all strains tested (figure 28). For 

example, the expression of PflgA  for SWJ1103 was at an intermediate value of 25000 

RLU compared to PfliC that possessed the highest activity (40000 RLU) of all strains 

tested (figure 28). Conversely, the control LT2 strain possessed high expression of 

PflgA and intermediate PfliC  activity. Berta and Zanzibar also behaved differently 

exhibiting the same level PfliC  activity but greater variation for PflgA . Interestingly, 

Java exhibited a reciprocal and significant reduction in the magnitude of flagellar 

gene expression even though it is motile (figure 26 and 27).  
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Figure 26. The quantification of motility among Salmonella serovars under control 
of PflhDC. The motility phenotype behaved similar in SJW1103, Typhimurium, 
ST4/74, Javiana and Berta compared to LT2. For SL1344 the movement was 
dramatically decreased. In contrast, Java and Zanzibar were slightly reduced. 
Quantification based on three repeats. * = P<0.05; ** = P<0.01; *** = P<0.001; NS 
= Not significant (P>0.05). Strains used in this experiment where: LT2 = TPA1, 
14028s = TPA277, SJW1103 = TPA788, Typhimurium = TPA2735, ST4/74 = 
TPA3690, Java = TPA2734, Javiana = TPA2739, Berta = TPA2740 and Zanzibar 
= TPA2741. 
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Figure 27. The quantification of motility among Salmonella serovars under control 
of PtetAR. Significant changes compared to LT2 are shown using statistical 
annotation. Quantification is based on three repeats. * = P<0.05; ** = P<0.01; NS 
= Not significant (P>0.05). Strains used in this experiment where: LT2 = TPA3789, 
14028s = TPA3790, SJW1103 = TPA3791, Typhimurium = TPA3794, ST4/74 = 
TPA3798, Java = TPA3793, Javiana = TPA3795, Berta = TPA3796 and Zanzibar 
= TPA3797. 
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Figure 28. Comparison of flagellar gene expression (PflgA, PfliC) across of Salmonella 
serovars. A positive response with respect to levels of expression was showed for all 
serovars compared to LT2 except Java. Interestingly, Java has very low gene expression, 
but is still motile. In contrast, for flagellar gene expression in all other serovars PflgA and 
PfliC were expressed at 30, 60 mins respectively. The chronological expression was not 
changed when compared to Brown et al (2008). Experiment represents a minimal of three 
independent repeats (n=3). (A) pRG51 was transformed into the strains used in Figure 28 
for PflgA detection generating the following strains LT2 = TPA3804, 14028s = TPA3806, 
SJW1103 = TPA3810, Typhimurium = TPA3816, ST4/74 = TPA3819, Java = TPA3830, 
Javiana = TPA3833, Berta = TPA3836 and Zanzibar = TPA3839. (B): pRG38 was 
transformed into the above strains for PflhDC detection. 



101 
 

4.4 Investigation With Other Salmonella Serovars Isolated From 
Around The World And From Different Organisms 
 

4.4.1 Correlation Between Motility Phenotype and PflhDC Expression 
  

For this section, a wider range of S.enterica serovars, fifteen in total, were used in 

order to increase our appreciation of flagellar regulation and expression in 

Salmonella as a species compared to LT2, considered as the control. The serovars 

were examined for motility under control of the native flhDC promoter (figure 29A). All 

S.enterica serovars were motile (figure 29), except for Gallinarum which is a known 

non motile serovar (Hossain et al., 2006). Gallinarum, therefore, acts as a negative 

control for this study. The average diameter of Lexington, Montevideo, Limete and 

Abony were not significantly different when compared to LT2 (figure 29). However, 

for Panama, Indiana and Vinohrady, the average diameter was greater than LT2. For 

all other serovars an obvious drop in motility was observed (figure 29A).  

The transcription of PflhDC was assessed using the plasmid pRG38 

(PflhDC::luxCDABE) in order to appreciate flhDC gene expression levels across the 

Salmonella serovars. The PflhDC activity for Othmarschen, Emek, Alachua, 

Senftenberg, and Simsbury were between 10000-12000 RLU. However, Lexington, 

Panama, Indiana, Montevideo, Limete and Vinohrady were behaved like LT2. Abony 

and Vilvoorde were increased, although no statistical significance compared to LT2 

was observed. Interestingly, Vilvoorde exhibited a similar phenotype to Haifa. Both 

serovars have reduced motility but comparable PflhDC activity to LT2. Finally, 

Gallinarum did not express flhDC, consistent with the non-motile phenotype (figure 

29B). This data provides evidence with respect to each S. enterica serovar and their 

capability to move with the magnitude of flhDC gene expression. 
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Figure 29. (A) The average swim diameter for Salmonella serovars under control of 
PflhDC compared to LT2. (B) The magnitude of flhDC gene expression in the serovars 
tested. flhDC gene expression levels fluctuate between Salmonella serovars some such 
as Haifa and Vilvoorde exhibit normal flhDC expression but lower motility. Quantification 
based on three repeats. * = P<0.05; ** = P<0.01; NS = Not significant (P>0.05). Strains 
used in this experiment were, (A): LT2 = TPA1, Gallinarum = TPA4273, Senftenberg= 
TPA4272, Othmarschen = TPA4274, Emek = TPA4275, Lexington = TPA4276, Haifa = 
TPA4277, Simsbury = TPA4278, Panama = TPA4279, Indiana =TPA4280, Montevideo 
= TPA4281, Limete = TPA4284, Abony = TPA4285, Vinohrady = TPA4286, Alachua = 
TPA4287 and Vilvoorde = TPA4288. (B): pRG38 was transformed into the above strains 
for PflhDC detection. 
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4.4.2 Impact of tetAR and tetRA Promoters On Motility Phenotype And Flagellar 
Gene Expression  
 

The Fifteen S.enterica serovars were investigated further with respect to motility and 

gene expression under the control of PtetRA and PtetAR. For PtetAR::flhDC expression, 

the motility pattern of the majority of the Salmonella serovars followed a similar 

pattern to PflhDC analysis (figure 29 and 30). Two key differences were observed for 

Alachua and Vilvoorde that showed low motility for PflhDC expression. However, for 

PflhDC::tetAR motility swims were comparable to LT2 (figure 30A). 

The activity of PflgA  and PfliC  showed consistent magnitudes across the majority 

of serovars. One difference was seen for Haifa and Emek that had increased PfliC  

activity compared to their expression of PflgA  (figure 30B, C). This is consistent to the 

analysis of the original strains tested where PflgA  and PfliC  activity did not always 

correlate (figure 28). Interestingly, two phenotypes were observed with respect to 

PflgA and PfliC  activity. Five serovars had activity similar to LT2 for PflgA . In contrast, 

the rest had very low activity even though all strains showed robust motility 

phenotypes (figure 30). This suggests that flagellar gene expression and motility 

phenotype may not always correlate. 

Using PtetRA, with respect to motility, the swim diameter of all S. enterica 

serovars were altered producing a much more uniform response. One exception was 

Emek that had a comparable swim diameter of 6.5 cm to LT2 while all others were 

reduced. With respect to flagellar gene expression, the majority of serovars 

expressed flagellar genes stronger compared to PtetAR data (figure 31). Senftenberg, 

Haifa and Montevideo were significantly increased between 45000-60000 RLU in 

particular compared to LT2. In contrast, Emek and Abony serovars were decreased 

which was unexpected especially when compared to the motility phenotype, PflhDC 

and PtetAR data (figures 29 to 31). 
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Taken together, it is clear there are cases that exist where little correlation 

between flagellar gene expression, swim diameter and responses to changes in 

flhDC expression amongst the serovars tested. This suggests potential differential 

regulation of the flagellar systems across serovars. A plausible working hypothesis 

that explains the observed changes is explored in chapter 5. 

  



105 
 

   

 

        

 

Figure 30. (A) Swimming motility analysed on 0.3% agar for Salmonella serovars under 
control of PtetAR. Maximal PflgA (B) and PfliC  (C) activity under control tetAR promoter. 
Quantification based on three repeats. * = P, 0.05; NS = Not significant (P>0.05). Strains 
used in this experiment were, (A): LT2 = TPA3789, Gallinarum = TPA4327, 
Senftenberg= TPA4326, Othmarschen = TPA4328, Emek = TPA4329, Lexington = 
TPA4330, Haifa = TPA4331, Simsbury = TPA4332, Panama = TPA4333, Indiana 
=TPA4334, Montevideo = TPA4335, Limete = TPA4336, Abony = TPA4337, Vinohrady = 
TPA4338, Alachua = TPA4339 and Vilvoorde = TPA4340. (B): pRG51 was 
transformed into the above strains and for PflgA  detection. (C): pRG39 was 
transformed into the above strains and for PfliC  detection.  
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Figure 31. (A) Swimming motility analysed on 0.3% agar for Salmonella serovars under 
control of PtetRA. Maximal PflgA (B) and PfliC  (C) activity under control tetRA promoter. 
Quantification based on three repeats. NS = Not significant (P>0.05). Strains used in this 
experiment were, (A): LT2 = TPA3959, Gallinarum = TPA4342, Senftenberg= TPA4341, 
Othmarschen = TPA4343, Emek = TPA4344, Lexington = TPA4345, Haifa = TPA4346, 
Simsbury = TPA4347, Panama = TPA4348, Indiana =TPA4349, Montevideo = TPA4350, 
Limete = TPA4351, Abony = TPA4352, Vinohrady = TPA4353, Alachua = TPA4354 and 
Vilvoorde = TPA4355. (B): pRG51 was transformed into the above strains and for 
PflgA  detection. (C): pRG39 was transformed into the above strains and for PfliC  
detection. 
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4.4.3 Activation Of Flagellar Gene Expression In Selected Serovars 
 

Using a selection of serovars we find that dependent on the transcription of flhDC a 

diverse range of responses is observed when comparing motility, PflgA  and PfliC  

activity. A key aspect of the flagellar system is its temporal activation. We were 

therefore interested in how different serovars respond to activation of the flagellar 

system. The observations to this point suggested very little change in timing but 

greater changes in the magnitude of gene expression would be detected.  

Eight S. enterica serovars were chosen for analysis (figure 32). The expression 

of PflgA  and PfliC  activation were dramatically different in Emek, Java, Lexington and 

Abony (figure 32). This pattern was most obvious in Java when compared to the 

control LT2 (figure 32F). The activity of PflgA  and PfliC  were radically decreased even 

though this strain is still motile (figure 26 and 27). Meanwhile, flagellar gene 

expression for Indiana, Vinohrady and Alachua had profiles comparable to LT2 

although clear differences were still evident (figure 32A to D). In the case of PtetAR 

expression in Indiana, Vinohrady and Alachua all had lowered activity (figure 32). 

Overall, it is apparent from the results presented that the magnitude of PflgA  and PfliC  

does not always correlate with the PtetAR or PtetRA driven activation. We have noticed 

for some serovars motility is comparable to LT2, but illogically they were not 

expressing flagellar gene expression consistently with respect to their motile 

phenotype. For example, Emek, Lexington, Java and Abony consistently exhibit low 

expression. Another example is Indiana that PtetAR dynamics suggests correct timing 

but lower activity of PflgA / Pflic. In contrast motility of Indiana is robust across all 

strains. 
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Figure 32. Flagellar genes expression (PflgA , PfliC) profiles of Salmonella serovars 
under control of PtetAR and PtetRA. The promoter activity for Emek, Lexington, Java 
and Abony were lower compared to LT2. While, Indiana, Vinohrady and Alachua 
expressed flagellar genes comparable to LT2 in terms of PtetRA but for PtetAR they 
were all exhibited reduced activity. Data represents the average activity of a 
minimal of 3 independent repeats. Strains used are those generated for figures 31 
and 32. 
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4.5 Phylogenetic tree among Salmonella serovars based on flagellar 
promoters 
 

The genus Salmonella has two species S. enterica and S. bongori.  However, S. 

enterica is known to be a complex species which can be phylogenetically organized 

into 3 clades A1, A2 and B. In order to understand the basis of Salmonella evolution 

and adaptation especially based on the observed response of the flagellar system 

across serovars of S. enterica we performed a phylogenetic analysis. We exploited 

recent developments in sequencing technologies to assist us in obtaining sequence 

data for examples of each serovar from the database Enterobase, except serovar 

Simsbury (https://enterobase.warwick.ac.uk/). The aim was to use sequenced data 

available to gain insight into genetic similarity rather than sequence all strains 

directly. 

Timme et al. (2013) have reported and compared whole genome sequences 

between an extensive range of the Salmonella serovars (Timme et al., 2013). The 

analysis for this section focused on the DNA sequences used to type Salmonella 

strains via multi-locus sequence typing (MLST) (Achtman et al., 2012b), the PflhDC, 

PflgAB and PfliC  regions. Our results suggest some serovars differ with respect to 

flagellar gene expression and motility phenotypes. The data argues for these 

differences to be based on transcription which requires DNA:Protein interactions. 

This means it is more logical to focus on DNA phylogenetics rather than look at 

protein sequences. Furthermore, MLST analysis focusses strictly on variation in DNA 

sequences of specific housekeeping genes. 

MLST sequences were concatenated and used to generate a S. enterica 

phylogenetic tree (figure 33A). This tree shows that our choice of strains reflected the 

A and B clades of S. enterica. Comparing the MLST tree in terms of PflhDC sequence 

analysis surprisingly differentiated the clade A / B structure better than MLST (figure 
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33B). Using Timme et al (2013) as a foundation to declare clade members PflhDC 

analysis identified four serovars from A1 and clade B respectively, compared to 10 

serovars in clade A2. However, MLST analysis only split clade B from A. A matrix 

analysis of the two trees showed that the sequence variation between serovars was 

between 98 and 100% identity. This was irrespective of the PflhDC DNA fragment 

being 836 bp long compared to a concatenated MLST sequence of 3336 bp long. 

Mouslim and Hughes have shown that transcription of PflhDC in S. enterica strain LT2 

has 6 putative -10 regions based on primer extension mapping or RNAseq analysis 

(Mouslim and Hughes, 2014). This study has further shown that of the six -10 regions 

only that of P1 and P5 are the major contirbutors to PflhDC transcription. Analysis of 

the phylogenetic data identifies the majority of changes that influence the phylogeny 

of PflhDC are within the vicinity of P5 or sit within the LrhA binding site where P3 and 

P6 are located (figure 34). Interestingly, all of the identified variation are single base 

changes, for example 9 serovars have a 'G' instead of an 'A' at base -117 from the 

flhD ATG. However, based on the phylogeny and data presented in figures 30 to 33 

these base changes do not correlate with a specific response of the flagellar systems 

that can be explained by a change in flhDC transcription. 

In contrast, PflgAB sequence analysis created a tree where most serovars are 

organized into two main groups exhibiting 100% identity irrespective of the clade 

source (figure 35). The PflgAB region is 162 base pairs long and identity analysis 

showed greater conservation across serovars between 99 and 100% identity. The 

significant grouping of Alachua to Zanzibar, for example, differs from the rest by a T 

to C change at position 109 in the sequence analysed. This base change sits in the 

spacer region between the -35 and -10 regions of the PflgA  promoter used for gene 

expression studies. In comparison to dynamic data the low activity serovars: Emek, 

Java, Lexington and Abony did not cluster phylogenetically for PflgAB. Interestingly, 
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these four serovars do exhibit some relationship when considering the MLST tree 

(figure 33A). However, PflhDC analysis splits these four away from each other (figure 

33B). Importantly, even though there is one base change that leads to the PflgAB 

phylogeny the FlhD4C2 binding site is strictly conserved across the serovars, 

argueing that irrespective of the source of the PflgA  promoter binding will be identical. 

This argues that variation in activity is the result of upstream regulation via either 

flhDC transcription, translation or post-translational regulation of FlhD4C2 activity. 

In PfliC sequence analysis, a similar trend as seen for PflgAB was observed (figure 

36). The majority of the Salmonella serovars grouped in two 100% identical groups. 

These groupings, however, did not strictly correlate to PflgAB which may reflect the 

ability of S. enterica to vary fliC sequences due to immune pressure in the host. 

Interestingly, for PflgAB clade B serovars Panama, Montevideo and Othmarschen did 

cluster but for PfliC  analysis these three integrated across the other groups (figure 

36). Further analysis showed that the class III promoter and the fliC untranslated 

region were strictly conserved across all serovars and the phylogenetic architecture 

is driven by single nucleotide polymorphisms upstream of the promoter region (data 

not shown). These changes however could potentially impact fliD transcription as 

they all sit within a region where the PfliD class II and class III promoters would be. 

By investigation the phylogeny of PflhDC, PflgAB and PfliC, we recognized that the 

master regulator of flagellar systems produced a triple grouping that reflected the 

clade structure (A1, A2 and B2). However, it was very difficult to correlate the 

expression and motility data to specific clade groupings. The closest evidence for a 

relationship being the possible MLST cluster of the four low activity serovars Emek, 

Java, Lexington and Abony. 



112 
 

  

 

 

Figure 33. Phylogenetic comparison of MLST (A) sequences and PflhDC (B) from 
serovars used in this chapter. The colouring of the serovar names is based on the 
clade foundation declared by Timme et al (2013). Red: Clade A2; Green: Clade 
A1; and Black: Clade B.  
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  cttcgtttttccagtttacgtatcgtcgcgagtctgtaatacctgtaacactgcatattgcgtcggagggtgactctaag 
           90        100       110       120       130       140       150  
 
                                                              <P1-10        
                                    RcsB                      | 
  gccttacacgtttacatcaatttttacaaatgcctaagatttttcctaattcgacgcaactctactcgtcagcttcgtga  < 240 
  cggaatgtgcaaatgtagttaaaaatgtttacggattctaaaaaggattaagctgcgttgagatgagcagtcgaagcact 
           170       180       190       200       210       220       230  
 
                                 <P2-10                 <P6-10           <P3-10        
                                 |      cAMP-CRP       A|     A   LrhA   T| 
  catacaacggagcgggacggcgattttagaaaatatgtgatgcagatcacatattttaacggaatacttacgataaaacc  < 320 
  gtatgttgcctcgccctgccgctaaaatcttttatacactacgtctagtgtataaaattgccttatgaatgctattttgg 
           250       260       270       280       290       300       310  
 
                                                        <P4-10        
                                                        | 
  atcagcatggcttttactttgtttaattaataacctaatgttcactttttctattccacactgctgaataggggtacgtc  < 400 
  tagtcgtaccgaaaatgaaacaaattaattattggattacaagtgaaaaagataaggtgtgacgacttatccccatgcag 
           330       340       350       360       370       380       390  
   
 
  aacaccaaattcttttttgtttctctctgttaaaataacgccaggataatagataacaggctattatttctattttagaa  < 480 
  ttgtggtttaagaaaaaacaaagagagacaattttattgcggtcctattatctattgtccgataataaagataaaatctt 
           410       420       430       440       450       460       470  
 
                                                                      <P5-10        
     A  C                      G                                       | 
  acgcttttattttacctttagtaaacagtagcttaaatattaaacgttattaattaatctcgtcacagcatacgccctcc  < 560 
  tgcgaaaataaaatggaaatcatttgtcatcgaatttataatttgcaataattaattagagcagtgtcgtatgcgggagg 
           490       500       510       520       530       540       550  
 
 A/T                                       A          G       A 
  gctgttaaaaataagctcatttgatttaacttttagctttccttgttcacccatttaaatgaagcatccgggtggtgtgt  < 640 
  cgacaatttttattcgagtaaactaaattgaaaatcgaaaggaacaagtgggtaaatttacttcgtaggcccaccacaca 
           570       580       590       600       610       620       630  
  
  
  aaaaagtgtcttatgccacgattctttacataagaataattaatgattaattatgatgtccttcacattaatgtggcatt  < 720 
  tttttcacagaatacggtgctaagaaatgtattcttattaattactaattaatactacaggaagtgtaattacaccgtaa 
           650       660       670       680       690       700       710  
 
                     C 
  agcgcattgcagaaatgcgataaacagagtaaagctaaagcacaatctcatattcttgcaatcaaggagcgagtt  < 795 
  tcgcgtaacgtctttacgctatttgtctcatttcgatttcgtgttagagtataagaacgttagttcctcgctcaa 
           730       740       750       760       770       780       790  

 

 

  

Figure 34. S. enterica PflhDC region of serovar Typhimurium strain LT2. 
Sequence is annotated based on the promoter -10 regions defined by Mouslim 
and Hughes (2014) Overlaid on the sequence is then the bases that showed 
variation across the serovars used in Figure 33B. The majority of changes are 
upstream of the second key promoter P5. Three changes sit across P6 and P3 
and it cannot be ruled out that these changes may impact the utilisation of 
these promoters or the binding affinity of the regulatory LrhA. Importantly the 
regions surrounding P1 and P5 are strictly conserved across all serovars. The 
binding sites for the regulators RcsB, cAMP-CRP and LrhA are shown as 
highlighted text in the upper strand. 

 



114 
 

  

 

 

Figure 35. Phylogenetic tree designed from PflgAB sequences of the derived from 
genomic DNA sequences from examples of the serovars used in this chapter. The 
colouring of the serovar names is based on the clade foundation declared by 
Timme et al (2013). Red: Clade A2; Green: Clade A1; and Black: Clade B.  
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Figure 36. Phylogenetic tree designed from PfliC sequences of the derived from 
genomic DNA sequences from examples of the serovars used in this chapter. The 
colouring of the serovar names is based on the clade foundation declared by 
Timme et al (2013). Red: Clade A2; Green: Clade A1; and Black: Clade B.  
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4.6 Summary 
 

This chapter has revealed the robustness of the inducible tetracycline system and its 

impact on flagellar gene expression and functional output as motility. Focussing on 

anhydrotetracycline and tetracycline activity, tetracycline was more efficient as an 

inducer. Different experiments were performed in order to emphasis the similarity in 

antibiotic induction. The data suggested that although both PtetRA and PtetRA could 

drive motility when care was taken to drive flhDC expression a difference between 

expression, motility and flagellar foci was observed.  

Further investigation of this chapter focused on the activation of flagellar gene 

expression in different Salmonella serovars. The data has provided a real visibility 

about the variation of the magnitude in flagellar gene expression across serovars. 

Furthermore, like careful expression of flhDC using the tetracycline system, we could 

identify serovars where the motility phenotype did not always correlate with flagellar 

gene expression. The majority of Salmonella serovars behaved similarly with respect 

to motility output. Unexpected results, for example, for Java could also not be 

explained via a phylogenetic analysis of MLST data versus PflhDC, PflgAB and PfliC 

evolution. However, the phylogenetic analysis did suggest that the key source of 

serovar variation would poetnitally be changes to the DNA sequence within the PflhDC 

region. This analysis identified 3 base changes thatdictated the phylogeny structure 

that sat within the biding site of the regulator LrhA and overlapped two minor 

promoter -10 regions (P3 and P6). Importantly the data suggests the two major 

promoters of P1 and P5 are conserved across all serovars. This all suggests that a 

different level of flagellar regulation exists. For example, the observed response of 

Java could be due to post-transcriptional regulation such as protein degradation after 

translation or regulation of translation itself. The flhDC transcript does encode a 
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significant untranslated region that could be subject to regulation at the RNA level via 

small regulatory RNAs or the global regulator Hfq (Sittka et al., 2008). An alternative 

explanation could be the presence of motile and non-motile cells generating what is 

known as population heterogeneity. These two plausible reasons for our 

observations are to be investigated in chapter 5. 
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Chapter Five: Population Heterogeneity 
Underpins Motility Robustness across 

Salmonella enterica serovars 
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5.1 Introduction 
 

In the previous chapter we defined the flagellar gene expression with respect PflgA 

and PfliC  activity for twenty-three strains representing nineteen Salmonella serovars. 

Most serovars had a strong correlation between the magnitude of flagellar gene 

expression and motility. However, Java, for example, had a normal motility phenotype 

although it exhibited a significantly lower magnitude and temporal pattern of flagellar 

gene expression when compared to LT2. As Java is still motile this leads to the 

question: what is the difference in flhDC regulation leading to the reduced gene 

expression activity in Java? This chapter focuses on this question regarding the 

mysteries of the behaviour associated with Java. Following investigation of Java, 

other serovars were included identifying a potential species wide regulatory 

mechanism of flagellar gene expression.  

The first part of this chapter focuses on the hypothesis that in Java FlhD4C2 

activity was strongly influenced by post-transcriptional regulation, such as protein 

degradation. The proteins FlhD and FlhC exhibit strict conservation across S. 

enterica, reflected by the conservation of class II FlhD4C2-dependent promoters 

(figure 35). Using the tetracycline system, the differences between LT2 and Java 

flagellar gene expression were investigated in detail. The FlhD4C2 protein complex in 

Java was then over-expressed using pSE-flhDC and PflgA and PfliC activity measured. 

To rule out artifacts leading to the observed Java related phenotypes, and across S. 

enterica serovars, reporter plasmid copy number was quantified. 

The Java data suggested that protein stability was a key factor in the response 

we observed. We know that protein stability, via the action of ClpXP and YdiV, drives 

a level of heterogeneity in the Typhimrium flagellar system (Koirala et al., 2014b). 

Therefore, the hypothesis that cell heterogeneity played a role in associated 
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differences across different serovars with respect to flagella gene expression was 

investigated. This data suggests that Java, and other serovars, exhibit significant 

heterogeneity while maintaining a motile phenotype.  

 

5.2 Quantification Of Motility for Java Serovar Under-control 
Tetracycline Inducible System tetRA & tetAR 
 

Here the objective was to compare the flagellar system from Java under control of 

PflhDC, PtetAR and PtetRA. The aim of this experiment was to increase the transcriptional 

output of flhDC and ultimately induce a positive response of flagellar gene 

expression. Motility assays were performed for Java and LT2 using the tetracycline 

system for expression (figure 37). The average diameter of swimming zones for Java 

in both tetracycline derivatives were comparable to PflhDC driven expression (figure 

26). While, the average swim diameter of LT2 under control PtetRA appears greater 

than PtetAR control there is no statistical difference (P=0.3) (figure 37 and mentioned 

in chapter 4). This was surprising as in spite of PtetRA being stronger than PtetAR, Java 

was still less motile compared to LT2 (P=0.001). This suggests that Java has 

decreased FlhD4C2 activity.  

 

5.3 Transcription Activity of PflhDC For Java.  
 

In chapter 4 we quantified PflhDC activity for serovars using plasmid pRG38. 

pRG38 has PflhDC from the Typhimurium strain 14028s driving transcription of the 

luciferase operon. The maximum PflhDC activity for Java was dramatically decreased 

compared to LT2 (figure 38). A logical conclusion for this result suggests that Java 

has both altered flhDC transcription and lower FlhD4C2 activity. The phylogenetic 

analysis of PflhDC placed Java close to Typhimurium with having only 2 nucleotide 
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changes compared to that of Typhimurium (figures 34 and 35). However, the drop in 

PflhDC activity does not correlate well with flhDC tetracycline dependent expression in 

these strains. One explanation focuses on the impact of several proteins that act as 

anti‐FlhD4C2 factors. Might it be that these proteins have affected directly or 

indirectly flhDC transcription and activity in Java (Yamamoto and Kutsukake, 2006a)? 

The changes identified in the PflhDC DNA sequence for Java compared to 

Typhimurium can also not be ruled out as a reason for the low activity. However, 

further assessment identifies other serovars with the same changes but comparable 

activities to Typhimurium. 
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Figure 37. Data shows the average swim diameter of Java and LT2 Salmonella serovars 
under control of PtetRA and PtetAR. There were no significant differences between Java 
strains under control of the different promoters. However, there was a significant increase 
in the swim diameter for LT2 comapred to Java. This represents 3 biological replicates. 
Strains used in this experiment where, LT2 PflhDC ::tetAR = TPA3789, LT2 PflhDC ::tetRA = 
TPA3959, Java PflhDC ::tetAR = TPA3793 and Java PflhDC ::tetRA = TPA3963.  
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5.4 Titration Of Flagellar Gene Expression in Java  

 

We asked: what is the response of PflgA and PfliC  in Java during titration of the 

tetracycline system to drive flhDC expression? To compare Java and LT2 flhDC 

under the control of PtetRA induction was used. The decision to do this related to PtetRA 

being the stronger of the two promoters, potentially driving greater levels of flhDC 

transcription. Anhydrotetracycline concentrations were used from 100 ng/ml down to 

1 ng/ml. Focusing first on PflgA, the percentage of relative activity for Java increased 

slightly reaching a maximum of 40% of LT2 activity with 100ng/ml 

anhydrotetracycline (figure 39A). In contrast, LT2-PflgA activity reached a plateau at 

80-95% relative activity for concentrations greater than 2.5 ng/ml (figure 39A). 

However, at the same concentration of anhydrotetracycline the relative activity of 

Java- PflgA  was approximately 5 %. 

Interestingly, even though Java- PflgA  activity was low, anhydrotetracycline at 

100ng/ml showed that temporal activation was comparable to LT2 (figure 39B and 

C). Consistently, 100ng/ml anhydrotetracycline drove measurable PfliC  gene 

expression for Java reaching a relative maximum of 20% (figure 39D). Conversely, 

the PfliC  flagellar gene expression for LT2 reached a maximum activity of 90% 

between 25-50 ng/ml. Furthermore, temporal activation was again comparable for 

both serovars when considering PfliC  activity (figure 39E and F). Taken together, in 

spite of the ability to titrate the tetracycline system, flagellar gene expression for Java 

was still relatively low even with higher concentrations of anhydrotetracycline when 

was compared to LT2. These data are consistent with the hypothesis that FlhD4C2 

from Java has low activity. We can rule out protein sequence differences as we know 

that FlhD and FlhC show extensive conservation across S. enterica (data not shown).  
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Figure 38. Comparison of PflhDC transcriptional activity for Java and LT2 serovars. 
The maximum activity for the transcription of the flagellar master regulator operon 
was dramatically decreased for Java. This experiment was repeated biologically 
three times with Standard Deviation error bars displayed for comparison. Strains 
used in this experiment were, LT2 =TPA4219 and Java = TPA4221 transformed 
with the plasmid pRG38 for PflhDC detection  
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Figure 39. Titration of flhDC transcription monitored by flagellar gene expression from 
PflgA and PfliC  in Java and LT2 serovars by using different concentrations of 
anhydrotetracycline. A) Relative MAX activity of PflgA  plotted against anhydrotetracycline 
concentration. Analysis shows that at all concentrations Java has reduced PflgA activity. B) 
Temporal activity of PflgA  with increasing concentrations of anhydrotetracycline. C) 
comparative induction data for LT2. Compared to (B) the temporal activation of Java and 
LT2 was very similar, while the magnitude was significantly different. D) Titration plot for 
relative MAX activity of PfliC  E) Temproal induction of PfliC  in Java. F) Temporal induction 
of PfliC  in LT2. Here again temporal activiation in both strains reflects the PflgA data, while 
LT2 has stronger magnitude of expression. Experimental data represents a minimal of 
three independent repeats (n=3). Strains used in this experiment were, (A to C) LT2 flgA 
= TPA3968 and Java flgA = TPA 3974. (D to F) LT2 fliC = TPA3967 and Java fliC = TPA 
3973. 
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5.5 Effects Of FlhDC Overexpression In Java Serovar On Class II 
And Class III Flagellar Genes Expression 
 

As changing flhDC expression did not significantly impact flagellar output, we asked 

whether overexpressing the flagellar master operon from LT2 via plasmid based 

expression using pSE-flhDC would increase flagellar gene expression activity. pSE-

flhDC, containing flhDC from LT2, was introduced into Java and LT2. Flagellar gene 

expression was determined based on the activity of PflgA and PfliC (Brown et al., 

2008). As a control, the flhDC operon was also deleted from Java and LT2 to 

eliminate flhDC expression from the chromosome. All strains were compared to 

flhDC+ Java and LT2 wild type (figure 40). 

For Java a slight increase in flagellar gene expression was observed in 

particular compared to Java wild type (figure 40A). Consistently the ∆flhDC Java 

mutant showed no activity. LT2, as expected, exhibited a much stronger response. 

However, in LT2 ∆flhDC pSE-flhDC could only compliment the flhDC deletion, not 

increase promoter activity further. Our data therefore suggested that expression of 

flhDC from pSE backbone was not strictly the overexpression we had assumed as 

promoter activity was not increased in either LT2 pSE-flhDC or ∆flhDC pSE-flhDC 

compared to LT2 without pSE-flhDC. We can conclude that expression of flhDC from 

a plasmid in Java leads to reduced activity compared to LT2. However, expression of 

flhDC from pSE-flhDC in Java is much more efficient than in LT2 as unlike LT2 we 

observed a 3 to 4-fold increase in flagellar gene expression when pSE-flhDC was 

present. This is further evidence that FlhD4C2 activity is repressed in Java compared 

to LT2 and is consistent with data in chapter 4 where we show that low transcription 

of flhDC can lead to significant changes in the output of the flagellar system. What 

this data is unable to explain is why when flagellar gene expression is low does a 

serovar like Java possess a robust motility phenotype in motility assays? 
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Figure 40. Characteristics of flagellar genes expression activity after plasmid based flhDC 
expression in (A) Java compared to (B) LT2. Expression of flhDC on a plasmid imporved flagellar 
gene expression in Java, although still not to the levels measured for LT2. Having pSE-flhDC as 
the only source of flhDC did not improve or alter the observed response. Importantly, pSE-flhDC in 
both Java and LT2 could compliment the ∆flhDC mutant. Experiment represents a minimal of three 
independent repeats (n=3). Strains used in this experiment were, (A PflgA) W.T pSE-flhDC = 
TPA4265, W.T = TPA 3974, ∆-flhDC pSE-flhDC = TPA4268 and ∆-flhDC = TPA 3974. (A PfliC) 
W.TpSE-flhDC = TPA4264, W.T = TPA3973, ∆-flhDC pSE-flhDC = TPA4267 and ∆-flhDC = TPA 
3973. (B PflgA) W.TpSE-flhDC = TPA4227, W.T = TPA3968, ∆-flhDC pSE-flhDC = TPA4232 and 
∆-flhDC = TPA4255. (B PfliC) W.TpSE-flhDC = TPA4226, W.T = TPA3967, ∆-flhDC pSE-flhDC = 

TPA4232 and ∆-flhDC = TPA4254.  
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5.6 Quantifying Plasmids Reporter Copy Number for PflgA and PfliC 
via qPCR In Selected serovars  
 

A quantitative real time PCR, based on SYBR Green detection, was established to 

validate the ratio between copy numbers of the luminescence reporter plasmids PflgA  

and PfliC  compared to the chromosome. Our method was based on previous 

experimental designs (Lee et al., 2006). The aim of this experiment was to measure 

plasmid copy number to rule out any changes in S. enterica serovars. This was an 

important control especially for serovars such as Java that possess very low 

expression for flagellar genes but still are motile. Differences in numbers of the 

reporter plasmid among S. enterica serovars will affect the magnitude of flagellar 

gene expression, leading to a false impression of expression, especially as these 

reporters are very sensitive to low levels of expression (Hakkila et al., 2002). 

Five S. enterica serovars were examined using two chromosomal target genes 

and two reference genes on the vector backbone of the reporter plasmid pSB401. A 

chromosome and plasmid dilution series were used as standard curves to define a 

middle point dilution for test experiments. The plasmid-genome ratio for PflgA and PfliC 

plasmids exhibited no significant differences between S. enterica serovars (figure 

41A and 42A). In the other words, the copy numbers of the PflgA  and PfliC  reporter 

plasmids have similar ratios in all S. enterica serovars tested (LT2, Indiana, 

Vinohrady, Java and Lexington). Statistical analysis using Tukey's method of 

comparison defined no significant difference between data sets (figure 41B and 42B). 

Taken together, we established an assay that compared different serovars with LT2 

in order to emphasise no variation in copy number of the plasmid reporter system. 

Consequently, this data argues that there are biologically relevant explanations 

behind the low level of flagellar gene expression observed in Java and other serovars 

compared to LT2. 
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Figure 41. Evaluation of the ratio between the copy number of the reporter plasmid 
harboring PflgA  compared to a genomic target using real-time PCR target. A) The 
calculated ratio of report plasmid to genomic DNA content for the indicated serovars. 
There were no significant differences between between Salmonella serovars. B) 
Statistical analysis data (Tukey method) emphasized the robustness of plasmid copy 
number across Salmonella serovars when compared to LT2 (p. 0.01). Experiment 
represents a minimal of three independent repeats (n=3). Strains used in this experiment 
were, LT2 = TPA3968, Lexington = TPA4415, Indiana =TPA4441, Vinohrady = TPA4486 
and Java = TPA3974.  
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Figure 42. Evaluation of the ratio between the copy number of the reporter plasmid 
harboring PfliC  compared to a genomic target using real-time PCR target. A) The 
calculated ratio of report plasmid to genomic DNA content for the indicated serovars. 
There were no significant differences between between Salmonella serovars. B) 
Statistical analysis data (Tukey method) emphasized the robustness of plasmid copy 
number across Salmonella serovars when compared to LT2 (p. 0.01). Experiment 
represents a minimal of three independent repeats (n=3). Strains used in this experiment 
where, LT2 = TPA3967, Lexington = TPA4414, Indiana =TPA4440, Vinohrady = TPA4485 
and Java = TPA 3973.  
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5.7 Comparison The Phenotypic Heterogeneity Of The Salmonella 
Serovars Based On The Flagellum, Class II And Class III Proteins 
Synthesis 
 

In order to ascertain why Java and some other Salmonella serovars have a low-

output with respect to flagellar gene expression meanwhile still exhibiting robust 

motile phenotype, we proposed that phenotypic heterogeneity was a key player. 

Heterogeneity would generate a subpopulation of motile cells with typical flagellar 

gene expression. However, in a population assay we measure the whole population. 

To investigate heterogeneous flagellar gene expression, PflgA  and PmotA GFP reporter 

plasmids were used to measure transcription per cell. Fluorescence microscopy 

images were analysed using the Microbetracker program to differentiate between 

cells which are flagella-ON from flagella-OFF. Six S.enterica serovars were tested in 

comparison to LT2. Serovar choice was based on the temporal dynamics observed in 

figure 32 taking three examples of each subset of strains to compare to LT2. In terms 

of PflgA, phenotypic heterogeneity between serovars was significant (figure 43). For 

example in Java, Lexington and Alaucha a noticeable decline in PflgA transcription 

among the population is evident when compared to LT2 (figure 43). This is seen by 

the strong clustering of the data at the bottom of the distribution plots. In comparison 

for LT2 the distribution of the data produced a larger and stronger cloud (figure 43). 

In contrast, Emek, Indiana and Vinohrady increased the response of PflgA in 

comparison to LT2. Importantly these three serovars exhibited a much stronger split 

between cells with PflgA activity versus cells with no activity. The strongest examples 

being Emek and Indiana. 

A similar response was measured for PmotA, an alternative class 3 promoter 

(figure 44). All serovars exhibited a stronger split between PmotA active cells than 

seen for LT2. The data strongly suggests that the behaviour of Java and other 
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serovars is the result of population heterogeneity. The nature of phenotypic 

heterogeneity creates a subpopulation of cells among Salmonella serovars that are 

motile. This observation argues that motility agar should be considered as a positive 

selection for motile sub-populations. 
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Figure 43. Comparison of population heterogeneity between Salmonella serovars, based on a 

PflgA -GFP transcriptional fusion. The activity of PflgA was significantly changed in Java, Emek, 
Lexington and Alaucha when compared to LT2. Experiment represents the total cell count derived 
from 5 fields of view from three biological independent repeats (n=3). Strains used in this 
experiment were, LT2= TPA5135, Java= TPA5129, Emek=TPA5130, Lexington =TPA5131, 
Indiana = TPA5132, Vinohrady = TPA5133 and Alchua =TPA5134. 
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Figure 44. Comparison of population heterogeneity between Salmonella serovars, based on a 
PmotA-GFP transcriptional fusion. The activity of PmotA was significantly changed in all serovars 

when compared to LT2. Importantly the data for PmotA correlates to PflgA  activity in these 
populations. Experiment represents the total cell count derived from 5 fields of view from three 
biological independent repeats (n=3). Strains used in this experiment were,, LT2= TPA5128, Java= 
TPA5122, Emek=TPA5123, Lexignton =TPA5124, Indiana = TPA5125, Vinohrady = TPA5126 and 
Alchua =TPA5127.    
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5.8 Summary 
  

This chapter has revealed that most S.enterica serovars which are consistently motile 

exhibit several factors that impact the activity of the underpinning flagellar system. In 

the previous chapter we observed Java had a low magnitude of flagellar gene 

expression but was still motile. In this chapter we investigated why Java behaved like 

this. We found that flhDC-Java was lower than flhDC-LT2 activity. However, in 

motility assays, Java with two different promoters (PtetRA and PtetAR) driving flhDC 

transcription were still decreased compared to LT2. Titration of flhDC expression in 

Java still exhibited a significant decrease when compared to LT2. However, high 

concentrations of inducer did identify correct temporal activation of the flagellar 

system. Furthermore, attempts to increase flhDC transcription activity by using an 

overexpression plasmid, unfortunately, did not improve Java's flagellar gene 

expression. 

We questioned whether the reporter plasmid copy number was responsible for 

giving us the low signal for flagellar gene expression, as a reason for the Java 

phenotype. Real-time PCR suggested that the plasmid reporter in Java, LT2 and 

other serovars were comparable. This result has a wider implication in supporting the 

use of reporter plasmids to measure flagellar gene expression. 

Finally, the last experiment was able to provide some evidence to the mystery 

of Java’s behavior. Exploring phenotypic heterogeneity provided evidence to suggest 

a variation in subpopulations of S. enterica serovars expressing flagella. We 

conclude that the underpinning regulation of flagellar system across serovars leads to 

population heterogeneity with respect to motility. Our data suggests that motility in 

agar possibly selects for propagation of the motile population providing a biased 

opinion of a motility phenotype. 
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Chapter Six: Synthetically Engineering 
FlhD4C2 from Escherichia coli RP437 

into Salmonella enterica and its Impact 
on Motility Phenotype and Flagellar 

Gene Expression 
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6.1 Introduction  
 

In chapter six we focus our research to expanding up on a previous project (Sim, 

2014), where flagellar assembly was compared to the growth rate between two 

different Enterobacteriaceae species E. coli and S. enterica. The high similarity of the 

flagellar systems for E. coli and S. enterica represents a crucial point of correlation. 

For example in FlhD and FlhC only sixteen amino acids are unique to the indivdual 

proteins (figure 45). Previous data suggests that both E. coli and S. enterica respond 

similarly to growth conditions controlled using a chemostat (Sim et al., 2017). 

However, when at a fast growth rate, S.enterica generates a subpopulation of non‐

motile cells while E.coli exhibits a homogeneous population (figure 46). The 

hypothesis to be tested argues that the difference between FlhD and FlhC in these 

two species is key to the responses observed with respect growth rate (Sim et al., 

2017). To test this hypothesis, we will generate a S. enterica system driven by flhDC-

E. coli from the flhDC chromosomal locus, so that we can measure the impact of 

physiological signals on flagellar gene expression.  

We quantified the motility phenotype of the S.enterica flhDC(ec) strain compared 

to wild type (flhDC(st)) by using the tools and assays introduced during chapters 4 and 

5. We determined flagellar gene expression to look at the magnitude of PflgA and PfliC 

activity. We investigated the impact of growth rate on flagellar abundance. The 

tetracycline system was used to titrate transcription controlling the levels of flagellar 

gene expression. Studying the response to flhDC(ec) switch led to the creation of two 

further S. enterica strains replacing just flhD or flhC separately from E.coli. Through a 

comparison of all four strains we show a key difference between FlhD and FlhC 

activity during flagellar gene expression.  
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Figure 46. The abundance of flagellar numbers per cell for S. enterica (A) versus 
E.coli (B) in terms of two growth conditions fast (blue) and slow (red). In the slow 
growth condition S. enterica and E. coli had similar response of reduced flagellar 
per cell. In contrast, in the fast growth conditions for S. enterica approximately 15 % 
of the cells were Fla-, while 100% of the E. coli population produced flagella. These 
results are adapted from Sim (2014) and Sim et al (2017).  
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6.2 Swapping flhDC in Salmonella enterica (LT2) With flhDC From E. 
coli (RP437) 
 

We swapped flhDC from E.coli into the flhDC S.enterica loci by manipulating the 

Salmonella genome following methods described previously (Blank et al., 2011). This 

allows for the precise deletion of flhDC(ST) from the genome, and swapping it with 

flhDC(ec) from strain RP437, using λ Red recombination (Datsenko and Wanner, 

2000). All mutants strains were checked by sequencing to ensure that the flhDC-

E.coli replacement was correct. We then examined the strains comparing to wild type 

flhDC(ST). 

6.2.1 Quantification Of Motility Phenotype  
 

The motility phenotype was measured exploiting three different types of promoters 

(PflhDC, PtetRA and PtetAR) to assess the motility of flhDC(ec) in comparison to wild-type. 

In terms of the native promoter, the average swim diameter was not significantly 

different from wild type (P = 0.780). For PtetRA, a slight but not significant increase 

compared to wild-type was observed (P = 0.610). However, for PtetAR, the swim 

diameter was lower than wild-type but still not significant (P = 0.266) (figure 47). 

Overall, the motility phenotype for the new strain was comparable to wild-type 

regardless of which kind of the promoter was used. 

In contrast, when flhDC(ec) was compared across the different promoters (PflhDC, 

PtetRA and PtetAR), the average swim diameter for PtetAR was significantly decreased 

compared to PflhDC and PtetRA (P<0.05). No significant difference for PtetRA versus 

PflhDC were observed. An implication of these findings is that the motility phenotype of 

the flhDC(ec) strain behaved almost exactly as wild-type (LT2) in spite of the flagellum 

system being under control of a different master regulator (figure 47). This is similar 

to what we previously observed for a number of serovars in chapter 4. 
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Figure 47. Quantification of motility for different strains: ST is S. enterica (wild-type) and EC is S. 
enterica with flhDC from E.coli. This experiment was repeated in triplicate and statistical significance 
is mentioned in the main text where appropriate. Strains used in this experiment were, LT2 (also 
defined as S.T.) PflhDC = TPA1107, LT2 PflhDC::tetRA = TPA4028, LT2 PflhDC::tetAR = TPA4029, 
E. coli (also defined as E.C.) PflhDC = TPA3997, E. coli PflhDC::tetRA = TPA4022 and E. coli 
PflhDC::tetAR = TPA4096. 
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6.2.2 Impact of Growth Rate Control On Flagellar Abundance 
 

Sim et al (2017) and during the thesis of Sim (2014) a correlation between flagellar 

numbers and the growth-rate of the bacteria depending on the growth conditions 

used was identified (Sim et al., 2017). The prime aim for the creation of flhDC(ec) was 

to compare flagellar numbers per cell in different growth environments to flhDC(ST). 

This was achieved using a FliM-GFP reporter fusion as a biosensor for flagellar 

production. Each FliM-GFP foci in the bacterial cell can be used as a proxy for a 

single flagellum using fluorescence microscopy (Aldridge et al., 2006a; Sim et al., 

2017). This allowed the numbers of flagella per cell to be quantified using the 

MicrobeTracker (Sliusarenko et al., 2011). 

The flagellar numbers of flhDC(ec) versus flhDC(ST) were measured during fast 

and slow batch growth conditions. The work of Sim (2014) exploited chemostat 

growth conditions, however, both this study and the work of Sim are based on the 

growth control in S. enterica from Aldridge et al (2010). These two studies show that 

the methods used are comparable. For the fast growth condition, the percentage 

distribution of flagellar foci per cell for flhDC(ec) was not significantly different 

compared to flhDC(ST) (figure 48A). The range of flagellar per cell for both strains was 

0-15 foci. Conversely, with respect to slow growth conditions, the distribution of 

flagellar foci per cell was between 0-6 foci per cell (figure 48B). 

There was no impact on effectiveness in terms of fast and slow growth 

conditions on the distribution of flagellar numbers per cell in spite of the genetic 

differences. This is in agreement with the strains motility phenotype. Sim et al (2017) 

has shown that in fast growing conditions 100% of the population is motile. However, 

unlike in E.coli, flhDC(ec) in S. enterica produced a proportion of cells with no flagellar 

at the fast growth rate (figure 48A). This suggests the control leading to this Fla- 
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population can be derived from flhDC transcription control, leading to some cells not 

expressing the flhDC operon. Alternatively, the regulatory input that leads to this sub 

population of non-motile cells is unable to differentiate between the S. enterica and 

E. coli FlhD4C2 complex. 

 

6.2.3 Determination Class II and Class III Flagellar Gene Expression 
 

Flagellar gene expression has been extensively studied in chapter 4 and chapter 5 

exploiting the tetracycline system to activate flagellar gene expression. To measure 

promoter activity, we used a reporter plasmid encoding the luciferase operon 

(luxCDABE) originally from Photorhabdus luminescens (Winson et al., 1998). The 

luxCDABE operon was transcribed from flagellar class II or class III promoters 

derived form the S. enterica serovar Typhimurium strain 14028s. Phylogenetic 

analysis validated this choice as the PflgAB FlhD4C2 binding was conserved across all 

serovars as was the σ28 promoter sequence of PfliC. 

In this section, we have measured the dynamics of flagellar gene expression for 

PflgA and PfliC, comparing the activity for flhDC(ST) and flhDC(ec) (figure 49). The 

activities in PflgA and PfliC in flhDC(ec) were less efficient than flhDC(ST), most notably 

for PtetAR driven expression of flhDC (figure 49B). However, the induction time for 

flhDC(ST)  and flhDC(ec) were similar. Furthermore, for PtetRA, induction and magnitude 

were significantly faster and higher when compared to PtetAR. We attribute this to the 

promoter activity (mentioned chapter 4). Consistently, differences in activity are 

clearer when using PtetAR as was seen for the comparison of serovar dynamics. 
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Figure 48. The distribution of FliM–GFP foci per cell in ST (wild type: Salmonella 
enterica) versus EC (flhDC(ec)) in two different conditions. (A) Fast Growth: MinE 
media 0.2% Glucose with 3g/L Yeast Extract; (B) Slow Growth: MinE media 0.2% 
Glucose without Yeast Extract (Aldridge et al., 2010). Experiment represents total 
cell populations derived from a minimal of five independent repeats (n=5). Strains 
used in this experiment were Salmonella = TPA 1107 and E. coli = TPA 3997.  
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Figure 49. Kinetic comparison of the flagellar gene expression for PflgA (solid) and PfliC (dashed) 
between ST (flhDC(ST)) and EC (flhDC(ec)) under control of tetracycline inducible promoters. (A) 
PtetRA and (B) PtetAR. Data represents the average activity calculated from a minimum of three 
independent repeats. Strains used in this experiment were (A) PflhDC::tetRA/PflgAEC= TPA4032, 

PflhDC::tetRA/ PflgA ST= TPA4050, PflhDC::tetRA/PfliCEC= TPA4031 and PflhDC::tetRA/PfliCST= 

TPA4049. (B) PflhDC::tetAR/ PflgAEC= TPA4099, PflhDC::tetAR/P PflgA ST= TPA4053, 
PflhDC::tetAR/PfliCEC= TPA4098 and PflhDC::tetAR/PfliCST= TPA4052. 
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6.2.4 The impact of Titrating flhDC transcription on Flagellar Gene Expression 
and flagellar numbers  
 

Motility and induction experiments have shown how comparable flhDC from E.coli 

and S. enterica are in relation to driving the S. enterica flagellar system. In chapter 4 

and 5, we have used titration of PtetRA and PtetAR to investigate the impact of flhDC 

transcription. This identified an interesting disparity between flagellar gene 

expression and flagellar numbers. Therefore, we asked whether titration experiments 

would show a similar or a different response when comparing flhDC(ec) output to 

flhDC(ST). 

In terms flagellar gene expression titration, the highest expression for flhDC(ec) 

was at 50 ng/ml with respect to PtetRA, while for flhDC(ST) it was 10 ng/ml for both PflgA 

and PfliC activity (figure 50A). In contrast, for flagellar numbers an increased average 

of flagellar foci was seen for flhDC(ec) over flhDC(ST) with 9 foci per cell at 25 ng/ml 

anhydrotetracycline concentration (figure 50C). However, for PtetAR, the peak activity 

of flagellar gene expression for flhDC(ec)  was 15000 RLU at 100 ng/ml 

anhydrotetracycline, while the same level of activity for flhDC(ST) was reached 

between 25 and 50 ng/ml (figure 50B). This is a 2-fold reduction in activity requiring 

significantly higher inducer concentrations. However, this equated to a 5-fold 

difference in the average flagella foci per cell when similar anhydrotetracycline 

concentrations were tested (figure 50D). 

To conclude, the activity of flagellar gene expression and flagellar numbers per 

cell in titration assays show that flhDC(ec) and flhDC(ST) were clearly comparable, 

regardless which promoters were used to drive flhDC i (figure 50). This emphasises 

the difference but not the reciprocal changes in output because the efficiency of 

flhDC transcription is key in maintaining flagellar gene expression at a rate that 

sustains optimal flagellation. 
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Figure 50. Titration of flagellar gene expression comparing flhDC(ec) and flhDC(ST) activity when 
expression is driven by PtetRA (A) or PtetAR (B). ST: flhDC(ST); EC: flhDC(ec). (C and D) The impact on 
flagellar numbers comparing flhDC(ec) and flhDC(ST) activity in terms of different concentrations for 
anhydrotetracycline. Average flagellar numbers were comparable for the two flhDC variants for 
each promoter variant. Experiment represents a minimal of three independent repeats (n=3). 
Strains used in this experiment where (A and C) PflhDC::tetRA/PflgAEC= TPA4032, PflhDC::tetRA/ 
PflgA ST= TPA4050, PflhDC::tetRA/PfliCEC= TPA4031 and PflhDC::tetRA/PfliCST= TPA4049. (B and D) 

PflhDC::tetAR/PflgAEC= TPA4099, PflhDC::tetAR/PflgAST= TPA4053, PflhDC::tetAR/PfliCEC= TPA4098 
and PflhDC::tetAR/PfliCST= TPA4052. 
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6.3 Swapping flhD or flhC in Salmonella enterica (LT2) With flhD or 
flhC from E. coli (RP437) 
 

At the top of the flagellar gene hierarchy is the flhDC operon. It consists of the two 

genes flhD and flhC (Bartlett et al., 1988). FlhD and FlhC act together as the flagellar 

transcriptional activator (Kutsukake, 1997). At this point, all analysis has used a clean 

flhDC swap. Therefore, we inquired what happens with respect to motility and 

flagellar gene expression if substitution of either flhD or flhC from E. coli separately 

into S. enterica was performed. The two S. enterica strains created flhD-S.enterica 

with flhC-E.coli (flhD(s)flhC(e)) and flhD-E.coli flhC-S.enterica (flhD(e)flhC(s)) were 

generated using the scarless mutagenesis technique (figure 51) (Blank et al., 2011). 

In order to ensure the proper gene recombination, we analysed flhDC by sequencing 

to confirm 100% correct sequence integration. 

 

6.3.1 Phenotypic Motility For flhD or flhC from E. coli RP437 
 

We have investigated the strains flhD(s)flhC(e) and flhD(e)flhC(s) under control of the 

Salmonella PflhDC and the tetracycline-inducible promoter system (figure 52). The 

single gene switch strains were compared to flhDC(ec) and flhDC(ST), through testing 

for motility with and without tetracycline. The results reveal, the average swim 

diameters varied significantly. For example, for PflhDC dependent expression in terms 

of flhD(e)flhC(s) a significant increase compared to wild-type and flhDC(ec) was 

observed (P = 0.01). In contrast, for flhD(s)flhC(e), the average swim diameter was 

dramatically decreased from the control (P = 0.001). For PtetRA, flhDC expression, 

motility increased in all strains. However, flhD(s)flhC(e) was still noticeably impaired 

for motility. 
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The generation of the combination complexes flhD(e)flhC(s) and flhD(s)flhC(e) 

altered the motility phenotype of S. enterica in an unexpected manner. It had been 

assumed that based on the flhDC(ec) and flhDC(ST) data that a comparable output 

would have been detected. Altering the operon structure of flhDC may have been on 

eexplanation for the observed outcome of these two single replacements. Especially 

as the strongest negative phenotype was for the construct replacing the second gene 

in the operon, flhC. Further investigation was required to define the mechanistic 

source of the observed reduction in motility relating to FlhC(e). 

 

6.3.2 Determination Of Class II & Class III Flagellar Gene Expression  
 

At this point, we have compared flagellar gene expression for PflgA and PfliC in all 

strains of S. enterica: flhD(s)flhC(e), flhD(e)flhC(s) and flhDC-E.coli(ec) compared to 

wild-type. Astonishingly, we observed a stronger maximum increase for flagellar gene 

expression in the flhD(e)flhC(s) than flhDC(ec) when compared to wild-type (figure 53). 

However, flhD(s)flhC(e) exhibited a sharp decline in flagellar genes expression, 

consistent with its motility phenotype. Furthermore, with respect to PfliC flhD(s)flhC(e) 

possessed a notably stronger reduced activity compared to PflgA (figure 53B). These 

data indicate that introducing flhD from E.coli potentially increases flagellar gene 

expression and motility. In contrast, when introducing flhC from E.coli decreases PfliC 

activity and negatively affects the phenotypic motility output. This leads to the 

conclusion that the flhD(s)flhC(e) combination is unable to drive the whole flagellar 

system efficiently. In contrast, the flhD(e)flhC(s) combination had a harmonious effect 

on the whole flagellar system of S. enterica producing a more robust output.  
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Figure 52. The comparison of the average swim diameter among S. enterica (st), S. enterica with 
flhDC E.coli (ec), flhD(s)flhC(e) and flhD(e)flhC(s). In terms of PflhDC, there was a dramatic drop 
for flhD(s)flhC(e) when compared to wild-type (st) while, flhD(e)flhC(s) was slightly increased. 
However, in PtetRA, there is a significant variation between strains and still flhD(s)flhC(e) is less 
efficient that wild-type(st). Experiment represents a minimal of three independent repeats (n=3). 
Strains used in this experiment where, flhDC(st) = TPA1107, S.TPflhDC::tetRA = TPA4028, 
E.CPflhDC = TPA3997, E.CPflhDC::tetRA = TPA4022, flhD(s)flhC(e)PflhDC = TPA4128, 
flhD(s)flhC(e)PflhDC::tetRA= TPA4193, flhD(e)flhC(s)PflhDC = TPA4135 and 
flhD(e)flhC(s)PflhDC::tetRA= TPA4194.  
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Figure 53. Kinetic comparison of class II (PflgA) (A) and class III (PfliC) (B) flagellar gene 
expression for flhD(s)flhC(e), flhD(e)flhC(s), flhDC (ec) compared to wild type. Reporter 
plasmids pRG51 and pRG39 were used to measure flagellar gen expression as in 
previous experiments. The data is consistent with the motility phenotypes. Interestingly for 
flhD(s)flhC(e) a further drop in PfliC activity was measured in comparison to PflgA activity. 
Experiment represents a minimal of three independent repeats (n=3). Strains used in this 
experiment were (A) PflgA Wlid Type= TPA4050, PflgA flhDC(ec)= TPA4032, PflgA 
flhD(s)flhC(e)= TPA4215 and PflgA flhD(e)flhC(s)= TPA4218. (B) PfliC Wild Type= 
TPA4049, PfliC flhDC(ec)= TPA4031, PfliC  flhD(s)flhC(e)= TPA4214 and PfliC  
flhD(e)flhC(s)= TPA4217. 
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6.3.3 Titration Of Class II & Class III Flagellar Genes Expression   
 

In order to manipulate the levels of flagellar gene expression all strains were tested 

using titration of PtetRA activity using different concentrations of anhydrotetracycline. 

Interestingly, flhD(e)flhC(s), exhibited the highest relative activity for PflgA (figure 54A). 

In contrast, the maximum activity of PfliC expression was comparable for 

flhD(e)flhC(s) and flhDC(ST) (figure 54B).  

With respect to flhD(s)flhC(e) strain, the PflgA expression reached a peak at 100 

ng/ml, but still was lower than the control at 60% maximum expression. This 

response is similar to the profile for Java, further supporting the proposed argument 

that flhDC in Java is less active and suggesting reduced activity for the flhD(s)flhC(e) 

combination. In contrast, however, very little PfliC expression was observed for 

flhD(s)flhC(e) with a dramatic decrease (10%) even at 100ng/ml inducer compared to 

the controls (figure 55B). 

Collectively, the ascending concentrations of anhydrotetracycline impacted 

flagellar gene expression magnitude in all strains especially in flhD(s)flhC(e). This 

experiment has observed that generally, flhD and flhC from E. coli individually 

generate different outputs with respect to flagellar gene expression when combined 

with flhD or flhC from S. enterica. These differences are observed even though these 

proteins are over 94 % identical.  
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Figure 54. Titrated levels of flagellar genes expression for (A) PflgA and (B) PfliC between 
flhD(s)flhC(e), flhD(e)flhC(s), flhDC(ec) compared to wild-type. Surprisingly, the strongest 
response was associated with flhD(e)flhC(s) for both PflgA and PfliC. Interestingly, a 
stronger reduction in PfliC was observed for flhD(s)flhC(e) that would have been predicted. 
Experiment represent a minimal of three independent repeats (n=3). Strains used in this 
experiment were (A) flhDC(st) = TPA4050, flhDC(ec)= TPA4032, flhD(s)flhC(e)= 
TPA4215 and flhD(e)flhC(s)= TPA4218. (B) flhDC(st) = TPA4049, flhDC(ec)= TPA4031, 
flhD(s)flhC(e)= TPA4214 and flhD(e)flhC(s)= TPA4217. 
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6.3.4 Impact Of Promoters Source On Flagella Abundance Output. 
 

The FliM protein was visualized under the microscope exploiting the FliM-GFP 

reporter fusion (Aldridge et al., 2006a). All strains were screened under the 

fluorescent microscope at mid log phase (OD600 = 0.6). All pictures were analysed for 

flagellar foci per cell using MicrobeTracker. With regards to the flhDC promoter, the 

proportion of the population possessing flagellar foci for flhD(s)flhC(e) strain was 

clearly decreased in particular compared to other strains, where they were similar 

(figure 55). In contrast, with respect to PtetRA, all strains and wild-type expressed FliM-

GFP foci fivefold higher than PflhDC strains (figure 55B). Astonishingly, flagellar 

abundance of all strains regardless of the promoter were relatively comparable with 

the average motility diameter (figure 52).  
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Figure 55. Comparison of flhD(s)flhC(e), flhD(e)flhC(s), flhDC(ec) and wild-type based on 
(A) the number of FilM-GFP foci per cell and (B) the flagellated population. There were 
similar responses for flhD(e)flhC(s), flhDC(ec) and wild-type in terms of PflhDC and PtetRA. 
While, for flhD(s)flhC(e) was significantly decreased in respect of PflhDC but, tetRA 
promoter did increase the percentage of cells that had flagellar foci. Note: the data was 
presented as a 3D bar chart to display and compare results of the flhD(s)flhC(e) strain. 
Experiment represents a minimal of three independent repeats (n=3). Strains used in this 
experiment were, S.T PflhDC  = TPA1107, S. PflhDC ::tetRA = TPA4028, E.C PflhDC = 
TPA3997, E.C PflhDC ::tetRA = TPA4022, flhD(s)flhC(e) PflhDC  = TPA4128, flhD(s)flhC(e) 
PflhDC ::tetRA= TPA4193, flhD(e)flhC(s) PflhDC  = TPA4135 and flhD(e)flhC(s) 
PflhDC ::tetRA= TPA4194. 

A 

B 
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6.4 Summary 
 

In this chapter, we posed a question regarding the changing behaviours of the S. 

enterica flagellar system when driven by FlhD4C2 from E. coli versus S. enterica. The 

intent was to measure the impact of this genetic modification had upon flagellated 

cellular population present under fast growth control. Where up to 15% of the S. 

enterica population did not have a flagellum, previous data suggests E.coli produces 

are more homogenous response.  As E. coli and S. enterica are very similar 

genetically, we asked what will happen in S.enterica if flhDC from E.coli replaced the 

S.enterica coding regions? 

These genetic manipulations have allowed for a comparison of the motility 

phenotypes and flagellar gene expression between differing flhD and flhC 

combinations. The motility phenotypes were not significantly different for flhDC(ec) 

versus wild-type regardless of the power of promoter driving flhDC expression. 

Measuring flagellar gene expression showed a slight difference, especially compared 

to wild-type if flhDC transcription was low, via PtetAR driven trasncription. However, the 

number of flagellar per cell in fast and slow growth control were comparable. 

Importantly we still observed a fraction of cells producing no flagella. This suggested 

that the control of the flagellar system leading to a marked non-motile sub-population 

was not strictly dependent on the activity of the FlhD4C2 complex. We know that the 

activity of this complex is dictacted by transcriptional, translationa dnpost-

transcriptional regulatory inputs. For example, there is strong evidence that protein 

stability and its regulation via YdiV/ClpXP help drive population heterogeneity in the 

S. enterica system (Koirala et al., 2014). The data presented here argues, however, 

that the generation for the non-motile subpopulation is via a system that is unable to 

differentiate the source of flhDC. Even though protein stability is a feasible argument 
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the data was unable to delineate whether the regulation leading to this response was 

via transcription of flhDC, a second input pathway that would not directly differentiate 

between flhDC from E. coli versus S. enterica. 

With respect to motility, the flhC(e) strain exhibited a dramatic change. Flagellar 

gene expression for all strains also reflected the motility phenotype. The flhD(e) 

behaved like wild-type for PflgA or PfliC expression, while, flhC(e) was remarkably 

decreased especially for PfliC expression. 

Taken together, we were surprised especially when comparing the motility 

phenotype, flagellar number and flagellar gene expression for all strains with wild-

type. Having observed these difference between the strains activity, we expect that 

the FlhD(e) has interacted properly with FlhC(s) and produced a robust FlhD4C2 

complex with the capability to drive the flagellar system in the right way. In contrast, 

for FlhC(e) we predict has not interacted well with FlhD(s) and the consequence 

produces an unstable complex or a complex with reduced FlhD4C2 activity both 

models, however, impact negatively on the flagellar system output. One explanation 

for the observed reduction in activity of this one complex will be investigated in 

chapter 7. Namely the direct ability of FlhD4C2 combinations to recognise a S. 

enterica class II FlhD4C2 DNA binding site. 

The operon structure and its impact on translation of flhDC cannot be ruled out 

as a potential source of the reduced activity of the flhD(s)flhC(e) combination. For 

example, this specific construct has had the second gene of the operon replaced. It is 

plausible that this destablises the flhDC transcript, while the flhD switch has stabilised 

the RNA. Testing RNA stability of the constructs was beyond the scope of the project, 

however, these are feasible additional experiments to compliment the flagellar 

system output assays performed. Furthermore, complimenting RNA experiments with 
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the protein work to be presented in chapter 7 would provide a fuller picture of the 

impact of the genetic manipulations. 
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7.1 Introduction  
 

In this chapter, we focus on how the FlhD and FlhC proteins from E. coli and S. 

enterica interact. This study follows the hypothesis generated in chapter six arguing 

that the low activity observed for flhD(s)flhC(e) is a result of an unstable FlhD4C2 

complex being formed. The hypothesis is derived from the motility phenotype and 

flagellar gene expression output driven by flhD(s)flhC(e) in comparison to the 

combinations: flhD(s)flhC(e), flhDC(ec) and flhDC(st). Furthermore, the data with respect 

to motility and flagellar gene expression for serovars such as Java agrees with the 

flhD(s)flhC(e) exhibiting low activity. 

In order to determine in vitro FlhD4C2 combinations functionality, we cloned the 

four flhDC operons into the expression plasmid pET-28a. This allowed us to 

overexpress the FlhD4C2 complexes, purify them and after assess complex isolation 

and function (figure 56). Apart from His-tag based isolation of complexes, complex 

integrity and function was assessed using a second purification method. Heparin 

column purification was used to mimic the structure of DNA allowing functional 

complex isolation. An electrophoretic mobility shift assay (EMSA) was used to 

evaluate FlhD4C2 functionality using the flgAB promoter region after obtaining each 

pure complex. This chapter will provide strong supporting evidence for our hypothesis 

that FlhD and FlhC from E. coli have different interaction properties when combined 

with FlhD or FlhC from S. enterica. Furthermore, DNA binding affinities suggest a 

difference between E. coli and S. enterica correlates with the source of FlhC and 

flagellar gene expression profiles. 
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Figure 56. Schematic diagram for the stages of purification of FlhD4C2 complexes. 
The process starts with cloning the flhDC operons into pET28a. Transformation 
into BL21 allowed for overexpression and processing to get the pure protein at the 
last stage by using ÄKTA protein purification systems. Strains used in this 
experiment were, FlhDC(st) = TPA640, FlhDC(ec) = TPA4594, 
FlhD(s)FlhC(e)=TPA4592 and FlhD(e)FlhC(s)=TPA4593.  
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7.2 Over-Expression and Protein Purification 
 

7.2.1 Biochemical description of Protein-Protein Interactions 
 

We inserted flhD(s)flhC(e), flhD(e)flhC(s), flhDC(ec) and flhDC(st) DNA fragments into 

pET28a plasmid using Gibson assembly. All constructs were confirmed for the 

precise insertion by restriction digest and sequencing analysis. The diagnostic 

digests verified the flhDC fragment inserted into the the pET28a plasmid using 

BamHI and SacI enzymes, which have restriction sites outside the flhDC fragment 

(figure 57). 

All plasmids were electroporated into the protein expression E. coli strain BL21. 

All strains were grown in LB media with IPTG induction. Growth and expression was 

monitored using samples at 90 and 180 minutes to identify the ideal time, which gave 

high levels of FlhD and FlhC expression (figure 58). All inductions were compared to 

the strains left un-induced as a negative control (figure 58). On induction, the FlhD 

and FlhC proteins were produced at 90 minutes after IPTG add induction and 

reached suitable levels of expression at 3 hours. Each of the flhDC(st), flhDC(ec) and 

flhD(e)flhC(s) cells produced identifiable bands for FlhC (22kDa) and FlhD (13kDa) 

respectively (figure 58). However, for flhD(s)flhC(e) only the FlhD protein was 

observed while, the FlhC protein was not detected by SDS-PAGE-gel. In contrast, the 

control samples did not produce bands of similar sizes to the induction samples 

(figure 58). 

These findings suggest that flhDC(st), flhDC(ec) and flhD(e)flhC(s) are being 

expressed effeciently and these proteins exhibited similar predicted sizes as 

indicated in previous studies (Campos and Matsumura, 2001). In contrast, the 

flhD(s)flhC(e) construct is either not being expressed correctly or FlhC is degraded 

compared to the other constructs. FlhD and FlhC are targets of rapid protein 
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Figure 57. The Restriction digestion gel image includes a1kb DNA ladder (lane1). 
The digested pET28plasmid has total backbone size of 5.3kb with 0.9kb each of 
flhDC(st), flhDC(ec), flhD(e)flhC(s) and flhD(s)flhC(e) (lane 2 to 5 respectively). The 
plasmid was digested with 2 specific enzymes (BamHI and SacI). Lane 6 
comprising of uncut plasmid (pET28a with flhDC fragment) representative intact 
plasmid.  
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degradation (Tomoyasu et al., 2003). This data, although suggesting a weak 

interaction, cannot rule out that FlhC expression is causing the observed phenotype 

in S. enterica. It was decided to continue with purification as a means of defining 

which of these possibilities is the stronger explanation for reduced FlhD(s)FlhC(e) 

activity. 

7.2.2 Purification Of FlhDC(st), FlhDC(ec), FlhD(s)FlhC(e) and FlhD(e)FlhC(s)  
 

The flhDC(st), flhDC(ec), flhD(s)flhC(e) and flhD(e)flhC(s) constructs were tagged 

with N-terminal His-x6 protein sequence to flhD allowing for Nickel affinity (Hi-Trap) 

purification (Aldridge et al., 2010). The Hi-Trap column has an ability to bind directly 

with the histidine (x6) protein sequence, trapping any tagged protein. The FlhD4C2 

complexes were purified and eluted in 2 ml fractions. Elution profiles were recorded 

using absorbance at 280 nm (figure 59 to 62). In terms of flhDC(st), fractions 18-27 

were the highest absorbance peak and compared to clear protein bands when 

loaded on Tricine SDS-PAGE-gels (figure 59). However, for flhDC(ec) and 

flhD(e)flhC(s), the highest absorbance peak shifted to fractions 15-20 confirmed by 

FlhD and FlhC visualisation on the Tricine SDS-PAGE-gel (figures 60 and 61). In 

contrast, flhD(s)flhC(e) eluted between fractions 20-24 comparable to Tricine SDS-

PAGE-gel analysis (figure 62). On normalising to protein concentration the 

differences between purified complexes were compared to two concentrations (figure 

63). For flhD(s)flhC(e) production, FlhC was observed but at reduced levels 

compared to the other three complexes. This suggests the flhD(s)flhC(e) does 

produce the FlhD4C2 complex but FlhC levels are much lower. This assay cannot 

differentiate between low expression and complex stability. 
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Figure 58. Expression test for the four-flhDC operons. Total protein samples were separated 
by SDS-PAGE-gel and stained with Coomassie brilliant blue. Cells lysates for each operon 
flhDC(st), flhDC(ec), flhD(e)flhC(s) and flhD(s)flhC(e) after adding IPTG inducer and sampling at 
three times 0, 90 and 180 minutes respectively. The same cells were used without adding the 
IPTG inducer and considered as a negative control. M: protein marker. Strains used in this 
experiment were, flhDC(st) = TPA640, flhDC(ec) = TPA4594, flhD(s)flhC(e)=TPA4592 and 
flhD(e)flhC(s)=TPA4593.  
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Figure 59. Purification of FlhC and FlhD from flhDC(st) using Nickel affinity column 
chromatography (Hi-Trap). Fractions 18-27 showed the highest peak at the 
absorbance λ=280 nm. All fractions were loaded on the Tricine SDS-PAGE gel 
(12 %) and visualized. M: protein markers. FT: flow-through. Experiment 
represents a minimal of three independent repeats (n=3). The strain used in this 
experiment was, FlhDC(st) = TPA640.  



168 
 

Figure 60. Purification of FlhC and FlhD from flhDC(ec) using Nickel affinity 
column chromatography (Hi-Trap). Fractions 15-19 showed the highest peak 
at the absorbance λ=280 nm. All fractions were loaded on the Tricine SDS-
PAGE gel (12 %) and visualized. M: protein markers. FT: flow-through. The 
strain used in this experiment was, FlhDC(ec) = TPA4594  
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Figure 61. Purification of FlhC and FlhD from flhD(e)flhC(s) using Nickel affinity 
column chromatography (Hi-Trap). Fractions 16-19 showed the highest peak at 
the absorbance λ=280 nm. All fractions were loaded on the Tricine SDS-PAGE gel 
(12 %) and visualized. M: protein markers. FT: flow-through. Elution section 
indicates the fractions comprising of FlhC (22kDa) and FlhD(13kDa). Experiment 
represents a minimal of three independent repeats (n=3). The strain used in this 
experiment was, FlhD(e)FlhC(s) = TPA4593. 

 



170 
 

  

Figure 62. Purification of FlhC and FlhD from flhD(s)flhC(e) using Nickel affinity 
column chromatography (Hi-Trap). Fractions 20-24 showed the highest peak at 
the absorbance λ=280 nm. All fractions were loaded on the Tricine SDS-PAGE gel 
(12 %) and visualized. M: protein markers. FT: flow-through. Elution section 
indicates the fractions comprising of FlhC (22kDa) and FlhD(13kDa). Experiment 
represents a minimal of three independent repeats (n=3). The strain used in this 
experiment was, FlhD(s)FlhC(e) = TPA4592 
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Figure 63. Comparison of normalized protein samples for complexes: FlhDC(st), 
FlhDC(ec), FlhD(e)FlhC(s) and FlhD(s)flhC(e) by using two concentrations 0.25 and 
0.1 mg/ml. The protein signal for FlhC (22 kDa) and FlhD (13 kDa) are higher at 
0.25mg/ml concentration than in 0.1 mg/ml. M: protein marker to identify the 
precise molecular weight of samples. Strains used in this experiment were, 
FlhDC(st) = TPA640, FlhDC(ec) = TPA4594, FlhD(s)FlhC(e)=TPA4592 and 
FlhD(e)FlhC(s)=TPA4593.  
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7.3 Examination Binding Activity For The FlhD4C2 Mutants Protein 
 

7.3.1 Protein-DNA binding assay by using Heparin column  
 

In order to screen FlhD4C2 functional activity through the ability to bind DNA, we used 

Heparin affinity chromatography column purification (Liu and Matsumura, 1994; 

Aldridge et al., 2010). Heparin has for some time been considered as a DNA 

substitute, having a high-affinity to DNA binding proteins. Therefore, the mechanism 

of DNA interacting proteins with heparin gives us an indication about the functionality 

of the protein or complex via its ability to be captured in-vitro (Poonchareon, 2013).  

We eluted flhDC(st), flhDc(ec), flhD(e)flhC(s) and flhD(s)flhC(e) samples through 

ÄKTA based Heparin purification. The results were visualized on SDS-PAGE-gel 

using Coomassie brilliant blue stain. With respect to flhDC(st), flhDc(ec) and 

flhD(e)flhC(s), all three complexes possessed a significantly similar Heparin elution 

pattern leading to the isolation of FlhD4C2 complexes (figures 64 to 66). However, for 

the flhD(s)flhC(e) sample, the Heparin column failed to bind significant quantities of 

the FlhD4C2 complex and as a consequence the FlhD and FlhC bands were not clear 

compared to other 3 combinations (figure 67). 

Comparison of Histidine versus Heparin elution further exemplifies the 

characteristics of the FlhD4C2 complexes especially for flhD(s)flhC(e) (figure 68). 

Normalisation of protein concentration provided evidence to suggest weak or no 

isolation of the FlhD(s)FlhC(e) complex using Heparin purification. This suggests our 

hypothesis is feasible as the complex can be purified, at a low yield, using Histidine 

(x6) purification. In contrast, FlhD4C2 purified from flhDC(ec) and flhD(e)flhC(s) using 

Heparin showed strong recovery of FlhD and FlhC (figure 68).  
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Figure 64. ÄKTA purification using Heparin to assess the DNA binding 
properties of the FlhD4C2 complex for flhDC(st). Fractions 1 to 32 were eluted 
with a linear NaCl gradient (0 -100%). The FlhC and FlhD proteins were 
identified in fractions 12-22 by SDS-PAGE-gel (12%). The dashed lines 
represents the concentration gradient of NaCl (%). The absorbance was 
monitored at λ=280 nm. M: protein markers. The strain used in this experiment 
was, FlhDC(st) = TPA640 
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Figure 65. ÄKTA purification using Heparin to assess the DNA binding 
properties of the FlhD4C2 complex for flhDC(ec). Fractions 1 to 32 were eluted 
with a linear NaCl gradient (0-100%). The FlhC and FlhD proteins were identified 
in fractions 9-19 by SDS-PAGE-gel (12% with a peak at fraction 15). The dashed 
lines represents the concentration gradient of NaCl (%). The absorbance was 
monitored at λ=280 nm. M: protein markers. The strain used in this experiment 
was, FlhDC(ec) = TPA4594 
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Figure 66. ÄKTA purification using Heparin to assess the DNA binding properties 
of the FlhD4C2 complex for FlhD(e)FlhC(s). Fractions 1 to 32 were eluted with a 
linear NaCl gradient (0-100%). The FlhC and FlhD proteins were identified in 
fractions 10-19 by SDS-PAGE-gel (12%) peaking between fraction 15 and 16. 
The dashed lines represents the concentration gradient of NaCl (%). The 
absorbance was monitored at λ=280 nm. M: protein markers. The strain used in 
this experiment was, FlhD(e)FlhC(s) = TPA4593. 
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Figure 67. ÄKTA purification using Heparin to assess the DNA binding properties 
of the FlhD4C2 complex for FlhD(s)FlhC(e). Fractions 1 to 32 were eluted with a 
linear NaCl gradient (0-100%). Significant quantities compared to other 
combinations of the FlhC and FlhD proteins were not identified in any fraction by 
SDS-PAGE-gel (12%). Based on the profiles in figures 63 to 64 and the ABS280 
profile a peak of protein should be identifiable in fractions 15 to 18, but this was 
not visible. The dashed lines represent the concentration gradient of NaCl (%). 
The absorbance was monitored at λ=280 nm. M: protein markers. The strain used 
in this experiment was, FlhD(s)FlhC(e) = TPA4592 
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Figure 68. SDS-PAGE-gel comparing the two isolation methods for FlhDC 
purification. In terms of Heparin purification, FlhDC(st), FlhDC(ec) and 
FlhD(e)FlhC(s) were clearly identified. In contrast, the FlhD and FlhC proteins 
bands for all combinations, including FlhD(s)FlhC(e), were identifiable with respect 
to His-trap purification. M: protein markers. Strains used in this experiment to 
purify the complexes were, FlhDC(st) = TPA640, FlhDC(ec) = TPA4594, 
FlhD(s)FlhC(e)=TPA4592 and FlhD(e)FlhC(s)=TPA4593.  
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7.3.2 Electrophoretic Mobility Shift Assay (ESMA)  
 

In order to test the functionality of the isolated complexes, an electrophoretic 

mobility shift assay was used to estimate the activity of the FlhD4C2 complexes ability 

to recognize the flgAB S. enterica promoter region. The FlhD4C2 complexes were 

mixed with PflgAB-DNA at varying concentrations of protein (100 to 700 nM) (Wang et 

al., 2006). A substantial change in the shift of FlhD4C2-DNA (PflgAB) complexes using 

FlhDC(st) was observed (figure 69). FlhDC(ec) affinity to PflgAB exhibited an altered 

pattern compared to FlhDC(st) (figure 69). Surprisingly, the FlhD(e)FlhC(s) exhibited 

no significant difference and possessed an almost identical binding pattern in 

comparison with FlhDC(st) (figure 69A and B). In contrast, the FlhD(s)FlhC(e) complex 

bound PflgAB the weakest, based on unbound DNA remaining (figure 69A). 

When quantified using the unbound DNA band intensity as 100% an interesting 

profile of complex activity was observed (figure 69B). It was noted that the amount of 

unbound DNA remaining for FlhDC(ec) and FlhD(s)FlhC(e) were very similar. In 

contrast, both complexes with FlhC(s) also exhibited a similar binding profile (figure 

69B). This is consistent with chapter 6 in-vivo analysis that the E. coli derived 

complexes have lower flagellar gene expression (figure 53). Our data also argues 

that it is the stability or availability of the FlhD(s)FlhC(e) complex that drives its 

observed in-vivo phenotype. This statement is derived from the observation 

quantification of FlhD(s)FlhC(e) complex binding DNA was comparable to the 

FlhDC(ec) complex. 

In this investigation the aim was to assess the different FlhD4C2 complexes for 

DNA-binding activity using the PflgAB promoter region. Interestingly, the FlhDC(ec) 

protein has a different affinity to PflgAB from FlhDC(st). However, the FlhD(e)FlhC(s) 

protein has a similar activity compared to FlhDC(st) to interact with PflgAB. Consistently, 
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the FlhD(s)FlhC(e) complex, once isolated, interacts with PflgAB in a similar to 

FlhDC(ec). However, it is clear that the EMSA profile suggests the FlhD(s)FlhC(e) 

complex exhibits a weaker interaction with DNA (figure 69A). We conclude that in 

vivo a combination of factors defining the output efficiency of FlhD(s)FlhC(e) plays a 

role in the measured reduction in the output of the flagellar system driven by this 

cross-species hybrid complex. 

 

7.4 Summary 
 

The results displayed in this chapter characterize the nature of FlhD4C2 DNA binding 

activity compared to the wild-type FlhDC(st) complex. We succeeded in the purification 

of all four FlhD and FlhC complexes. In general, the complex yield reflected the in-

vivo data with flhD(s)flhC(e) being the hardest to isolate. In order to confirm this, we 

used Heparin purification of FlhD4C2 complexes. Predictably, all FlhD4C2 complexes 

were trapped by Heparin except the FlhD(s)FlhC(e) complex. We confirmed the DNA 

activity further by using an Electrophoretic Mobility Shift Assay. 

These data potentially strengthen the model based on the phenotypic 

characterization of the in vivo activity of each complex in chapter 6. The data would 

suggest that the weak response of the flagellar genes expression and phenotypic 

motility output for flhD(s)flhC(e) is a combination of its weaker ability to bind DNA and 

an instable complex. However, there are alternative explanations for the low 

abundance of FlhC during the purification process that cannot be ruled out as playing 

a role in defining the functionality of this complex. Firstly there is the translation of the 

flhD(s)flhC(e) operon in pET28a. Ways to control for this would be to clone the flhDC 

operons into alternative expression vectors generating a C-terminal HISx6tag on 

flhC. However, previous work has shown that this is an inefficient way to isolate the 
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complex with the N-terminal Hisx6 tagging of FlhD being the better option. An 

alternative approach would be to isolate each protein individually and reconsititute 

the complexes before EMSA analysis. However, this would overcome a translational 

impact and focus once more of the activity of the complex formed. The data 

presented in this chapter and in chapter 6 are consistent that, even if multiple factors 

lead to lower availability of FlhD(s)FlhC(e) complex, the overall outcome is reduced 

flagellar gene expression and motility phenotype. 
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Figure 69. An Electrophoretic Mobility Shift Assay (ESMA) was carried out by titration of 
the various FlhD4C2 complexes at concentrations ranging from 100, to 700 nM. The ability 
to shift the PflgAB DNA fragment was visualised using conventional DNA staining 
techniques. (A) Representative EMSA gels for each complex. (B) Average quantification 
of three independent repeats where the unbound DNA fragment intensity was calculated 
using ImageJ. Strains used in this experiment were, FlhDC(st) = TPA640, FlhDC(ec) = 
TPA4594, FlhD(s)FlhC(e)=TPA4592 and FlhD(e)FlhC(s)=TPA4593.  
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Chapter Eight: The Influence of FliT, 
ClpP, YdiV and FliZ Regulators on 

FlhD4C2 Activity  
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8.1 Introduction  
 

In chapter seven we investigated the activity of FlhD4C2 combinations in vitro 

compared to wild-type FlhDC(st). The biochemical analysis correlated to the observe 

in vivo phenotypes of the different complexes. Introducing just flhC led to a dramatic 

drop in FlhD4C2 activity that correlated to low yield during purification and changes in 

PflgAB DNA binding assays. However, the binding profile matched that of FlhDC(ec), 

arguing that FlhC from E. coli recognises DNA independent of FlhD. Importantly, we 

know that the FlhD4C2 complex is tightly regulated. It was therefore of interest to ask: 

how do the combination complexes react to the key regulators of FlhD4C2 activity? To 

develop this question, we assayed the FlhD4C2 activity in deletion mutants of fliT, fliZ, 

clpP and ydiV, all four of which have significant impact on the flagellar master 

regulator activity. Each protein has a specific function toward FlhD4C2, for ClpP and 

YdiV, these two proteins act as negative regulators by repressing FlhD4C2 activity via 

protein degradation (Takaya et al., 2012). FliT is also a negative regulator of FlhD4C2 

by reducing the availability of free FlhD4C2 complexes to bind class 2 promoters by 

disrupting the complex (Aldridge et al., 2010). In contrast, FliZ is a positive regulator 

of FlhD4C2 activity via regulating YdiV expression and activity (Kutsukake et al., 

1999) (figure 70). Using all the tools available to assess the expression, assembly 

and output of the flagellar system we have assessed the impact of deletion mutants 

in each of these regulatory genes. 
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Figure 70. System regulatory network that modulates flagellar gene expression in 
S. enterica via FlhD4C2 activity. FliZ regulatory protein is helping to sustain 
FlhD4C2 activity, acting as a negative regulator of YdiV which in turn acts as a 
negative regulator of FlhD4C2. FliT has two functions: the T3S chaperone of FliD 
and repression of FlhD4C2 (Soutourina and Bertin, 2003). Finally, ClpP is a 
negative regulator of FlhD4C2 activity reducing the master protein concentrations 
via protein degradation (Smith and Hoover, 2009).  
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8.2 Effects the Motility Output Each Of ∆fliT, ∆clpP, ∆ydiV and ∆fliZ 
On FlhD4C2  
 

There are many proteins that intervene with FlhD4C2 activity and therefore will affect 

the motility output. What happens, however, if those proteins are missing in the 

FlhD4C2 combination strains: flhDC(ec), flhD(e)flhC(s) and flhD(s)flhC(e)? To answer 

this question, we deleted ydiV, clpP, fliT and fliZ genes individually in all S. enterica 

flhDC strains and Wild-type. Motility assays were used to investigate motility output 

quantifying swim diameter for each mutant strain and compared to the parental 

strains (figures 71-73).  

For flhDC(ec), the average swim diameter for ∆clpP and ∆ydiV were significantly 

increased when compared to the parental strain (P-value = 0.038 and 0.003) (figure 

71). The swim diameter for ∆fliZ was decreased, consistent with FliZ positively 

improving FlhD4C2 activity. Surprisingly, the swim diameter in ∆fliT was obviously 

decreased when compared to wild-type and the flhDC(st) ∆fliT strain (P-value = 

0.025). Motility is supposed to be increased as FliT acts as a repressor of FlhD4C2 

activity. This is seen when deleting fliT in the FlhD4C2(st) strain as an increase in 

motility (Aldridge et al., 2010) (figure 71). 

With respect to flhD(e)flhC(s) strains, the average of the swim diameter in ∆clpP 

and ∆ydiV were also markedly increased showing a similar response of ∆clpP and 

∆ydiV mutants in flhDC(st) and the flhDC(ec) strains (figure 72). flhD(e)flhC(s) ∆fliT 

possessed a slight decrease in its motility phenotype when compared to other 

strains. Furthermore, the flhD(e)flhC(s) ∆fliZ strain also behaved in a similar manner 

exhibiting a swim diameter that was clearly decreased compared to the intact fliZ+ 

strain (figure 72). Interestingly, with regard to flhD(s)flhC(e) strains, the average swim 

diameter increased in the ∆fliT, ∆clpP and ∆ydiV mutants (P-value <0.05) when 

compared to the parental strains (figure 73). However, this improvement in the 
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motility is still significantly lower than observed for the corresponding flhDC(st) strains 

(figure 73). This data is consistent with our conclusions from chapter 7 that the 

flhD(s)flhC(e) generates an active but inefficient FlhD4C2 complex. As removing 

levels of negative regulation improve motility with this flhDC combination. 

The results presented in these assays gave us a brief picture of the impact of 

the regulatory mutants of FlhD4C2. The results of all strains in terms of ∆clpP, ∆ydiV 

and ∆fliZ were as expected based on the function of each protein interaction with the 

FlhD4C2 complex. Unexpectedly, the motility for flhDC(ec) ∆fliT and flhD(e)flhC(s) ∆fliT 

strains were significantly decreased. This is in contrast to how FliT acts on FlhD4C2(st) 

and suggests that instead of working in a negative manner, FliT behaves as a 

positive regulator. Noticeably this is just when flhD from E. coli is present. 

Astonishingly, even though the swim diameter in flhD(s)flhC(e) was dramatically 

decreased compared to flhDC(st), the results of ∆fliT, ∆clpP, ∆ydiV and ∆fliZ were 

relatively identical to the expected out comes. Thus, the FliT, ClpP, YdiV and FliZ 

proteins can differentiate between the source of FlhD and FlhC. 
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Figure 71. Comparison of the motility phenotypes between flhDC(ec) and flhDC(st) in with 
respect to FliT, ClpP, YdiV and FliZ regulation. The motility assay was performed on the 
0.3% agar and incubated at 37 ᵒC between 6-8 hours. Error bars refer to the calculated 
standard deviations. Experiment represents a minimal of three independent repeats (n=3). 
Strains used in this experiment were, flhDC(st) W.T= TPA1107, flhDC(st) ∆fliT = TPA20, 
flhDC(st) ∆clpP = TPA2546, flhDC(st) ∆ydiV = TPA3356, flhDC(st) ∆fliZ = TPA3369, 
flhDC(ec) W.T= TPA3997, flhDC(ec) ∆fliT = TPA4576, flhDC(ec) ∆clpP = TPA4579, 
flhDC(ec) ∆ydiV = TPA4582 and flhDC(ec) ∆fliZ = TPA4585.  
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Figure 72. Comparison of the motility phenotypes between flhD(e)flhC(s) and flhDC(st) 
with respect to FliT, ClpP, YdiV and FliZ regulation. The motility assay was performed on 
0.3% agar and incubated at 37ᵒC for between 6-8 hours. Error bars refer to the calculated 
standard deviations. Experiment represents a minimal of three independent repeats (n=3). 
Strains used in this experiment were, flhDC(st) W.T= TPA1107, flhDC(st) ∆fliT = TPA20, 
flhDC(st) ∆clpP = TPA2546, flhDC(st) ∆ydiV = TPA3356, flhDC(st) ∆fliZ = TPA3369, 
flhD(e)flhC(s) W.T= TPA4135, flhD(e)flhC(s) ∆fliT = TPA4575, flhD(e)flhC(s) ∆clpP = 
TPA4578, flhD(e)flhC(s) ∆ydiV = TPA4581 and flhD(e)flhC(s) ∆fliZ = TPA4584.  

 



189 
 

  

Figure 73. Comparison of the motility phenotypes between the flhD(s)flhC(e and flhDC(st) 
with respect to FliT, ClpP, YdiV and FliZ regulation. The motility assay was performed on 
0.3% agar and incubated at 37ᵒC for between 6-8 hours. Error bars refer to the calculated 
standard deviations. Experiment represents a minimal of three independent repeats (n=3). 
Strains used in this experiment were, flhDC(st) W.T= TPA1107, flhDC(st) ∆fliT = TPA20, 
flhDC(st) ∆clpP = TPA2546, flhDC(st) ∆ydiV = TPA3356, flhDC(st) ∆fliZ = TPA3369, 
flhD(s)flhC(e) W.T= TPA4128, flhD(s)flhC(e) ∆fliT = TPA4574, flhD(s)flhC(e) ∆clpP = 
TPA4577, flhD(s)flhC(e) ∆ydiV = TPA4580 and flhD(s)flhC(e) ∆fliZ = TPA4583.  
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8.3 Determination The Flagellar Gene Expression Class II and Class 
III  
 

Motility is only one way to measure the impact on FlhD4C2 activity. Therefore, 

flagellar gene expression (PflgA / PfliC) for the mutants and flhDC combinations was 

quantified. All strains were compared to LT2 (figure 74 to 77). With respect to LT2-

∆fliT, ∆clpP and ∆ydiV, flagellar gene expression was clearly increased. Consistently, 

flagellar gene expression in LT2-∆fliZ was decreased (figure 74). In terms of flhDC(ec) 

strains, the flagellar genes magnitude in ∆fliT and ∆fliZ were reduced in comparison 

the magnitude of ∆clpP and ∆ydiV (figure 75). For flhD(e)flhC(s), flagellar gene 

expression was twofold increased in terms of ∆clpP and ∆ydiV (figure 76). For 

flhD(e)flhC(s) ∆fliT the motility phenotype was reflected in reduced expression. Figure 

77 shows the flagellar gene expression for flhD(s)flhC(e) strains, Consistently, ∆fliT, 

∆clpP and ∆ydiV exhibited a rise in gene expression compared to flhD(s)flhC(e). In 

contrast, ∆fliZ, like its motility phenotype produced an expected decrease in flagellar 

gene expression.  

When comparing the percentage of maximum activity for flagellar gene 

expression the bar chart gave us an overview of the impact of each regulatory mutant 

(figure 78). In particular, for strains that possess flhD from E.coli when missing the 

FliT protein, the maximum activities were significantly decreased compared to the 

strains that have flhD from S.enterica (figure 78). These findings indicate the impact 

of losing ClpP, YdiV, FliZ and FliT regulation upon FlhD4C2 and its E. coli / S. 

enterica combinations. Interestingly, even though FliT is a negative regulator of 

FlhD4C2(st), the FlhD4C2(ec) complex and the FlhD(e)FlhC(s) complex did not react to 

the loss of FliT. Previous studies have shown FliT interacts with FlhC (Kutsukake et 

al., 1999; Imada et al., 2010). However, our data suggests a key role for FlhD in FliT 
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regulation, as the two complexes that do not respond to ∆fliT both include FlhD from 

E.coli. 
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Figure 74. Kinetic comparison of the flagellar gene expression in terms class II (PflgA) and class III (PfliC) in 
flhDC(st) (∆fliT, ∆clpP, ∆ydiV and ∆fliT). All mutant strains under control tetracycline inducible system (tetRA 
promoter), the differences of flagellar gene expression magnitudes based on the mechanism of action of each 
regulator which consequences directly affected in FlhD4C2 activity.  In terms of ∆fliT, ∆clpP and ∆ydiV the 
flagellar gene expression were significantly increased from wild-type, while, ∆fliZ was dramatically dropped.  
Experiment represents a minimal of three independent repeats (n=3). Strains used in this experiment where, 
(A) PflgAflhDC(st) W.T= TPA4050, PflgAflhDC(st) ∆fliT = TPA4662, PflgAflhDC(st) ∆clpP = TPA4711, 
PflgAflhDC(st) ∆ydiV = TPA4666, PflgAflhDC(st) ∆fliZ = TPA4647. pRG51 was transformed into the above 
strains and for PflgA detection. (B) PfliCflhDC(st) W.T= TPA4049, PfliCflhDC(st) ∆fliT = TPA4661, 
PfliCflhDC(st) ∆clpP = TPA4710, PfliCflhDC(st) ∆ydiV = TPA4665 and PfliCflhDC(st) ∆fliZ = TPA4646. pRG39 
was transformed into the above strains and for PfliC detection.  



193 
 

   

Figure 75. Kinetic comparison of flagellar gene expression for PflgA and PfliC in flhDC(ec) 
∆fliT, ∆clpP, ∆ydiV and ∆fliT mutants. All mutant strains are under control of the PtetRA 
tetracycline inducible system. Experimental data represents a minimal of three 
independent repeats. Strains used in this experiment were, (A) flhDC(ec) W.T= TPA4032, 
flhDC(ec) ∆fliT = TPA4639, flhDC(ec) ∆clpP = TPA4715, flhDC(ec) ∆ydiV = TPA4660, 
flhDC(ec) ∆fliZ = TPA4645. pRG51 was transformed into the above strains for PflgA  
detection. (B) flhDC(ec) W.T= TPA4031, flhDC(ec) ∆fliT = TPA4638, flhDC(ec) ∆clpP = 
TPA4714, flhDC(ec) ∆ydiV = TPA4659 and flhDC(ec) ∆fliZ = TPA4644. pRG39 was 
transformed into the above strains for PfliC  detection. 
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Figure 76. Kinetic comparison of flagellar gene expression for PflgA and PfliC in 
flhD(e)flhC(s) ∆fliT, ∆clpP, ∆ydiV and ∆fliT mutants. All mutant strains are under control of 
the PtetRA tetracycline inducible system. Experimental data represents a minimal of three 
independent repeats. Strains used in this experiment were, (A) pRG51 was transformed 
into the following strains for PflgA detection: flhD(e)C(s) W.T= TPA4218, flhD(e)C(s) ∆fliT = 
TPA4637, flhD(e)C(s) ∆clpP = TPA4717, flhD(e)C(s) ∆ydiV = TPA4658, flhD(e)C(s) ∆fliZ = 
TPA4643. (B) pRG39 was transformed into the following strains for PfliC detection: 
flhD(e)C(s) W.T= TPA4217, flhD(e)C(s) ∆fliT = TPA4636, flhD(e)C(s) ∆clpP = TPA4716, 
flhD(e)C(s) ∆ydiV = TPA4657 and flhD(e)C(s) ∆fliZ = TPA4642. 
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Figure 77. Kinetic comparison of flagellar gene expression for PflgA and PfliC in 
flhD(s)flhC(e) ∆fliT, ∆clpP, ∆ydiV and ∆fliT mutants. All mutant strains are under control of 
the PtetRA tetracycline inducible system. Experimental data represents a minimal of three 
independent repeats. Strains used in this experiment were, (A) flhD(s)C(e) W.T= 
TPA4215, flhD(s)C(e) ∆fliT = TPA4635, flhD(s)C(e) ∆clpP = TPA4713, flhD(s)C(e) ∆ydiV 
= TPA4656, flhD(s)C(e) ∆fliZ = TPA464. pRG51 was transformed into the above strains 
for PflgA detection. (B) flhD(s)C(e) W.T= TPA4214, flhD(s)C(e) ∆fliT = TPA4634, 
flhD(s)C(e) ∆clpP = TPA4712, flhD(s)C(e) ∆ydiV = TPA4655 and flhD(s)C(e) ∆fliZ = 
TPA4640. pRG39 was transformed into the above strains and for PfliC detection.  
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Figure 78. Percentage of maximum activity for PflgA and PfliC flagellar gene expression between 
FlhD4C2 complex combinations and ∆fliT, ∆ydiV, ∆clpP and ∆fliZ mutants. The profiles of response 
for flhDC(st) and flhD(s)flhC(e) were similar, even though the later had reduced FlhD4C2 activity due 
to the biochemical properties of the complex. In contrast, a surprising but consistent result based 
on motility assays was observed for the ∆fliT mutant in flhDC(ec) and flhD(e)flhC(s) strains. Here the 
magnitude of actvity were decreased compared to the parental strains. Experiment represents a 
minimal of three independent repeats. Strains and dat used for this analysis is derived from Figures 
74 to 77. 
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8.4 Impact Growth Rate Control of Flagellar Abundance at Fast and 
Slow Growth Conditions 
 

We examined all flhDC(st), flhDC(ec), flhD(e)flhC(s) and flhD(s)flhC(e) strains with and 

without the regulators FliT, ClpXP, YdiV and FliZ by using a high nutrient media 

(MinE 0.2% Glucose with 3g/L Yeast Extract) to mimic fast growth and low nutrient 

media (MinE 0.2% Glucose with without Yeast Extract) for slow growth (Aldridge et 

al., 2010). An alternative method to appreciate the impact on flagellar foci is to plot 

cell length against flagellar (FliM-GFP) foci (figures 79 to 83). This comparative 

method also allows for the identification of flhDC combinations versus regulatory 

mutants that do not behave as expected. For example, analysis of flhD(s)flhC(e) in 

comparison to flhDC(st) exemplifies the dramatic drop in motility and flagellar gene 

expression for flhD(s)flhC(e) (figure 79 to 83). In contrast, the flagellar foci per cell in 

flhDC(ec), flhD(e)flhC(s) strains are comparable to flhDC(st) in both growth conditions 

(figure 79). 

Deletion of fliT altered the distribution of flagellar per cell in flhDC(ec), 

flhD(e)flhC(s) (figure 80). This is seen for flhDC(ec) having lines closer together for 

both growth conditions compared to flhDC(st) ∆fliT and flhDC(st) fliT+ (figures 79A, 80 A 

and 80C). However, for flhD(e)flhC(s) the impact of ∆fliT is only noticeable at the fast 

growth condition (figure80D).  

In terms of deletion the clpP and ydiV, the distribution of the flagellar per cell for 

all mutants strains (flhDC(st), flhDC(ec), flhD(e)flhC(s) and flhD(s)flhC(e)) were 

noticeably changed in fast and slow growth conditions (figure 81, 82). However, it is 

still possible to differentiate flhDC(st) from the other combinations with respect to 

∆ydiV. flhDC(st) exhibited a similar slope using this plot method with respect to ∆ydiV. 

In contrast, while slow growth flagellar foci were increased for flhDC(ec) and 

flhD(e)flhC(s) a clear difference is seen for fast and slow growth. Interestingly this is 
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not apparent in the mutant of the target for YdiV regulation, ClpP. Once more these 

observations associate with the presence of FlhD from E. coli further strengthening 

the argument for a key regulatory role of this complex subunit. 

Finally, with regard to deletion of fliZ, the patterns produced for flhDC(st), 

flhDC(ec) and flhD(e)flhC(s) strains are consistent with FliZ acting as a positive 

regulator of the system with a noticeable drop in foci numbers in fast growth 

conditions (figure 83).  

Taken together, these results are consistent with the motility and flagellar gene 

expression data. However, here the analysis of flagellar foci in different growth 

conditions highlights the impact of either FlhD or FlhC in the regulation of the FlhD4C2 

activity by the four key regulators. With respect to flagellar gene expression in 

relation to FliT regulation, assaying flagellar foci further predicts a role for FlhD. This 

time, however, the impact is when YdiV regulation is lost. Suggesting, a change in 

degradation kinetics. 
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8.5 Summary  
 

In this chapter, we focussed on the impact on FlhD4C2 activity by the regulators, FliT, 

ClpP, YdiV and FliZ. This analysis used all standard techniques which have been 

utilized to assess the flagellar systems response to changes. There was a strong 

correlation among the flagellar output via quantification of phenotypic motility, 

determination of the flagellar gene expression and distribution of the flagellar foci in 

the population. Although a unpredictable result associated with ∆fliT for flhDC(ec) and 

flhD(e)flhC(s) was observed that led us to argue that FliT regulation was altered 

when FlhD from E. coli was present. Furthermore, assessment of the regulatory 

impact on flagellar foci again highlighted a role for FlhD. Flagellar foci changes 

correlated for FliT but we also observed a change in response when assessing ∆ydiV 

impact. Here potentially the strongest phenotype was observed when comparing the 

response of flhDC(st) to the two flhD(e) combinations. These observations are 

consistent with the knowledge that YdiV interacts with FlhD4C2 via contact with FlhD 

(Wada et al., 2011). 
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Chapter Nine: General Discussion  
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9.1 Introduction 
 

In this study, we have made a comprehensive survey among Salmonella serovars, 

originally isolated from around the world and from different hosts, with respect to 

flagellar system output. Secondly, we have tested the hypothesis that an observed 

growth control of flagellar abundance in S.enterica (LT2) is due to the genetic nature 

of flhDC by replacing these two key flagellar genes with their E. coli (RP437) 

homologues. This analysis has been underpinned by a set of experimental tools that 

allow the measurement of motility, flagellar gene expression dynamics, and flagellar 

abundance. 

A significant finding from both sides of this study has been the impact the rate of 

flhDC transcription has upon the flagellar system. We found that a motile phenotype 

does not always correlate to the assumed level of flagellar gene expression and 

flagellar numbers seen for domesticated strains such as our control strain S. enterica 

serovar Typhimurium LT2. An important aspect of our experimental design that 

allowed us to come to this conclusion has been the exploitation of the tetracycline 

system to either induce or titrate flhDC expression. 

9.2 Dynamics of Flagellar Regulation Controlled by the Tetracycline 
Inducible System 
  

The first task of this study was to determine the ideal conditions for usage of the 

tetracycline system. This included exploring which orientation of the tetRA system 

was our baseline to control the flagellar system for the rest of this project. It has been 

previously demonstrated that the tetracycline system output is dependent on the 

orientation of the two divergent promoters PtetR and PtetA (Meier et al., 1988). We 

compared PtetAR, PtetRA, and PtetRA from within the transposon Tn10 derivative T-POP 

via flagellar output. The PtetRA promoter was the ideal orientation to drive the flagellar 
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system strongly when compared to PtetAR. Surprisingly, we found PtetAR, and PtetRA-T-

POP promoters possessed a similar flagellar output response. This suggests that 

although T-POP was designed to allow transcription to exit the transposon, the 

additional sequences that allow T-POP to move, via transposition, has a negative 

impact on PtetRA to transcribe downstream genes. These findings and conclusions 

therefore led us to focus on PtetRA and PtetAR usage taken out of the context of T-POP 

to use in our study of the flagellar system. Using both promoters allowed for a degree 

of flexibility in flhDC expression while investigating different aspects of the project. 

9.3 Comparison Between Tetracycline and Anhydrotetracycline as 
an Inducer. 
 

Anhydrotetracycline is a derivative of tetracycline that possesses no antibiotic activity. 

It was constructed to be employed when desiring tetracycline-controlled gene 

expression in the molecular biology field (Berens, 2003). In our project, we compared 

the activities of the two inducers with respect to flagellar gene expression. 

Tetracycline was significantly better, possessing a stronger activity than 

anhydrotetracycline with respect to flagellar output (chapter 4 figure 23). These 

results contradict the original findings that anhydrotetracycline is a better inducer 

being 50- to 100-fold more effective than tetracycline (Moyed et al., 1983; Smith and 

Hoover, 2009). However, it is important to recognise that we have used 

anhydrotetracycline in the ng/ml range while we used µg/ml for tetracycline. 

Interestingly, increasing the concentration of anhyrdotetracycline above 25 ng/ml did 

not improve flagellar gene expression and was comparable to the concentration 

range used for tetracycline. Our conclusions, however, are derived from the level of 

maximal activity we achieve with tetracycline compared to anhydrotetracycline for the 

flagellar system. Therefore, we argue that as an inducer, tetracycline generates a 

more robust induction while similar results can be achieved with very low 
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concentrations of its derivative anhydrotetracycline. As a result, we used both 

inducers at times in our studies taking in to account the differences of their induction 

profiles and the tetracycline promoter driving flhDC expression. 

9.4 Heterogeneity of The Flagellar System Output within Salmonella 
serovars  
  

S. enterica serovars were determined to exhibit variation in their motility phenotype 

and flagellar gene expression. Motility assays are considered the primary evaluation 

of motility in the flagellar field. We went further and examined flagellar gene 

expression for each tier of the flagellar transcriptional hierarchy assessing PflhDC, PflgA 

and PfliC activity. With respect to the timing of PflgA and PfliC activation on induction 

using the tetracycline system, the period of expression for all serovars was between 

30 – 60 mins. These timings are comparable to previous studies such as Brown et al 

(2008). In contrast, serovars exhibited a greater fluctuation in the magnitudes of 

expression. Furthermore, some serovars showed mid-range PflgA activity but high PfliC 

activity while others the opposite. 

We had assumed, based on the literature, that as the transcription of flagellar genes 

is hierarchical that an increase in PflgA would lead to an increase in PfliC. This 

assumption has been proved wrong by our results. What could be the reason behind 

this? Considering the flagellar system specifically, one explanation could be genetic 

variation amongst the multiple flagellar specific regulatory components, including the 

promoter regions that drive flagellar gene expression. However, phylogenetic 

analysis of the promoter regions for PflhDC, PflgAB and PfliC did not identify a specific 

group of serovars with a specific flagellar gene expression profile or motility 

phenotype. The closest correlation was when considering the phylogeny derived from 

concatenated MLST sequences where four serovars with low PflgA and PfliC activity 

may cluster (Chapter 4 figures 33, 34, 35 and 36). This cluster is lost for PflhDC and 
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the PflgAB and PfliC promoters exhibited too high a degree of conservation to 

differentiate specific serovars. Therefore, we conclude that external regulatory inputs 

dictate the variation we have observed within the flagellar systems of the S. enterica 

serovars tested. This conclusion is supported by the variation identified across the 

PflhDC promoter region. Transcription of flhDC in S. enterica is complex with 6 

potential -10 regions existing that have accompanying evidence that they are utilised 

by RNA polymerase and s70 to activate transcription (Mouslim and Hughes, 2014). 

However, Mouslim and Hughes (2014) have shown in vivo that only 2 of the six 

promoters drive flhDC transcription. Interestingly, some variation is located around 

the binding sites of two known transcriptional regulators that impacts P1 actvity 

(Mouslim and Hughes, 2014). This suggests that changes in flagellar output across 

serovars is predominately dependent on integration of regulatory signals that impact 

flhDC transcription. The use of PtetRA and PtetAR to drive flhDC transcription supports 

this conclusion as we did measure changes in some serovars but not all. 

Surprisingly, the serovar Java behaved very differently from others as there was 

a little to no detectable activity for PflgA and PfliC, but Java was motile. At this point, we 

asked why Java behaved like this, and are there any other serovars that behaved like 

Java? Indeed, we found Emek, Abony and Lexington to behave similarly to Java. 

Replacing PflhDC with PtetRA did not improve flagellar gene expression and motility. 

However, titration using anhyrdotetracycline did achieve a detectable level of activity 

in Java at high concentrations. In doing so we observed that once more timing of 

activation was not effected just magnitude. Using plasmid based expression of flhDC 

could also improve flagellar gene expression but not to levels comparable with LT2. 

This supports the argument for flhDC transcription playing a significant role in 

dictating flagellar output. It did not, however, completely explain the Java motility 

phenotype when considering motility versus flagellar gene expression. 
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Koirala et al (2014) demonstrated that the serovar Typhimurium flagellar system 

is bistable generating population heterogeneity. A conclusion based on Java and 

other serovars was that FlhD4C2 activity was in some ways being repressed in these 

serovars. An outcome of reduced FlhD4C2 activity is that a greater degree of 

heterogeneity occurs. Therefore, we tested the hypothesis that the measured 

flagellar output was a result of population heterogeneity. Indeed, our data analysis 

suggested that heterogeneity varies significantly between the Salmonella serovars 

especially for Java, Emek, and Lexington. 

So why then are these serovars producing good swims on motility agar? We argue 

that motility agar is a positive selection for the motile subpopulation. Either by 

selection or a genetic switch when we observe motility in agar we are potentially 

seeing cells derived from the initial motile population. This explanation and 

conclusion is consistent with population heterogeneity being the output of a strong 

regulatory network driving FlhD4C2 activity (Koirala et al., 2014b). In this study the 

mechanistic source of the heterogeneity was not investigated. Koirala et al (2014) 

has shown the impact of YdiV regulation on heterogeneity. It is feasible to argue that 

YdiV regulation will differ across serovars leading to the diversity we observed in our 

experiments. However, it is also plausible that the mechanistic source of 

heterogeneity comes from an alternative regulatory input. For example, in Java 

specifically, the inability to significantly raise flagellar output by expressing flhDC from 

a plasmid or the PtetRA system argues for post-transcriptional regulation, such as lead 

by YdiV. However, it is feasible to argue that translational control also plays a role in 

driving the population heterogeneity and variation in flagellar gene expression noted 

in this study. One source of translational regulation is via small regulatory non-coding 

RNA molecules (Kröger et al., 2012; Westermann et al., 2016). Importantly, 

transcription from the mapped P1 and P5 promoters in the PflhDC region generate long 
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untranslated regions that are a feature of systems regulated by small RNA molecules 

at the translational level. However, the PtetRA data in Java and other serovars 

removes these untranslated regions without significantly improving flagellar output. 

Therefore, we conclude that translational regulation is a feasible source of the 

observed variation, however, the data also strongly argues for post-transcriptional 

regulation playing a major role in the system. 

9.5 The Outcome of Replacing flhDC in S. enterica with their E. coli 
Homologues. 
 

This study elucidates how different flhDC combinations, when considering the S. 

enterica and E. coli homologues, operate to drive motility in S.enterica Typhimurium. 

A previous thesis project has shown that E. coli and S. enterica respond to growth 

conditions in a similar manner. However, one noticeable difference was the presence 

of non-motile cells when S. enterica was grown at a fast growth rate, while E. coli 

was 100% motile. One hypothesis drawn from these growth experiments was that the 

genetic variation between flhDC is a driver to the observed response for E. coli and 

S. enterica. Therefore, this study planned to replace flhDC from E. coli in S. enterica 

and ask: do we lose the non-motile cells at fast growth? When replaced FlhDC(ec) 

supported motility allowing us to conclude that the system was complimented. This 

then enabled us to investigate the initial question where we demonstrated that 

FlhDC(ec) did not impact the growth rate response of S. enterica. This argues that the 

generation of a subpopulation of cells at a fast growth rate in S. enterica is dictated 

by factors other than FlhD4C2 itself. Evidence from previous studies, and the arm of 

this study that focussed on serovar variation, argues that a significant impact on 

population heterogeneity is not via the nature of the FlhD4C2 complex but the level of 

activity the intercellular pool of this complex has in each cell. 
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Purposefully, we examined the flagellar system output with our complete toolkit 

of standard assays for motility, flagellar gene expression and flagellar numbers for 

the flhDC switched strain. To further emphasise the role of flhDC, we replaced flhD 

and flhC individually. On examining the flagellar system output the consequence of 

altering the source and format of the FlhD4C2 complex generated a series of 

interesting observations. Surprisingly, the data argues that the hybrid FlhD(e)FlhC(s) 

complex exhibited a more robust phenotype. In contrast FlhD(s)FlhC(e), was a very 

inefficient complex showing low output in all assays. Surprisingly, although FlhDC(ec) 

drove motility when measuring flagellar gene expression a noticeable difference was 

evident in comparison to the other complexes tested. Indeed, one conclusion from 

this analysis was the importance of FlhD to influence flagellar system output. 

Furthermore, a comparison of the data sets to the serovar data argued that the 

FlhD(s)FlhC(e) complex had low activity either by its reduced ability to form a 

complex or to bind DNA. 

In chapter 7 we purified the four complexes to explore the biochemical explanation of 

the FlhD(s)FlhC(e) complex activity. Our results provided on insight in to the 

functionality of the protein-protein interactions and also the ability of the complexes to 

binding DNA. Importantly, FlhC(e) was purified with FlhD(s) but only in detectable 

amounts when using His-tag purification. Using Heparin to mimic DNA led to only 

FlhD(s) being isolated from this complex. In comparison the other three complexes 

were all efficiently purified using the heparin method. The purification data could not 

rule out the possibility that the flhD(s)flhC(e) operon was not being transcribed or 

translated efficiently. The net outcome, however, is that this weak complex can be 

formed, can activate the flagellar system but the interactions between FlhD and FlhC 

are weak. A weakness of our analysis is the difficulties associated with detecting 

FlhD and FlhC in vivo using immunoblot technology. Antibodies to both FlhD and 
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FlhC exist and have a high level of specificity for both proteins as determined against 

purified complexes(Poonchareon, 2013). However, Claret and Hughes (2000) have 

shown that FlhD and FlhC are rapidly turned over in vivo with a half-life of 

approximately 2 mins. The result of this is that the detectable levels of FlhD and FlhC 

in S. enterica are kept very low, meaning that detection in lysates of S. enterica 

samples is very difficult (Poonchareon, 2013). Some studies have worked around this 

by using C-terminal protein tags to detect these proteins, however, this has the net 

effect of stabilising the proteins and altering flagellar output itself (Saini et al., 2008). 

If these technical and biological aspect were overcome, then it was a feasible option 

for further study to correlate the findings of this study with in vivo protein level 

detection to determine the impact of the genetic manipulations made on FlhD and 

FlhC protein levels. Furthermore, this analysis could be widened to encompass the 

serovar experiments to assess FlhD and FlhC availability in serovars and whether 

this would also aid our understanding of the variation we observed across the S. 

enterica species. 

We used the ESMA assay to look at the ability of DNA:complex formation. All 

complexes were able to shift PflgAB DNA in a predictable fashion. For FlhD(s)FlhC(e) 

complex this did require high concentrations of the protein complex. Previous work 

on the FlhD4C2 complex argued that FlhC was the DNA binding protein (Claret and 

Hughes, 2000a). Our data was consistent with this previous conclusion as 

quantification of the DNA binding activity differentiated between which FlhC protein 

was present. Interestingly, this was also seen for FlhD(s)FlhC(e) arguing further that 

the low efficiency of this complex is not its ability to bind DNA but the efficency of 

complex formation, leading to apparent low activity. 

 



214 
 

9.6 Regulating the Activity of FlhD4C2 Complex Combinations. 
 

FlhD4C2 activity is tightly regulated by four factors ClpP, YdiV, FliZ and FliT. ClpP and 

YdiV regulate the protein stability of FlhD and FlhC. FliZ regulates FlhD4C2 indirectly 

in S. enterica regulating ydiV expression, while FliT interacts directly with FlhD4C2 to 

disrupt the complex reducing its availability to bind DNA. Surprisingly, ∆fliT strains 

behaved differently with respect to if E. coli or S. enterica flhDC was present. We 

found that ∆fliT impact on FlhDC(ec) suggested that FliT may positively regulate 

FlhD4C2 activity if FlhD or both FlhD and FlhC from E.coli were present. This is 

entirely different from how FliT negatively regulates the S. enterica FlhDC complex by 

reducing its concentration via disrupting the complex (Yamamoto and Kutsukake, 

2006a; Aldridge et al., 2010). Furthermore, the S. enterica data has clearly 

demonstrated that FliT interacts with FlhC, while our interpretation of our data argues 

the case for FlhD playing a regulatory role in dictating FliT impact on E. coli 

containing combinations. This is strong evidence that E. coli perceives FliT differently 

even though the two flagellar systems show significant similarity at the protein level of 

FlhD, FlhC and FliT. 

In contrast, our results that related to ∆clpP, ∆ydiV and ∆fliZ were more in 

agreement with them acting in a consistent manner irrespective of the flhDC source. 

Interestingly, one observation argued a consistency with the FliT data with respect to 

a response associated with YdiV. Once more when FlhD(e) was present flagellar foci 

could differentiate between the source of FlhD. YdiV does however interact with 

FlhD, while FliT interacts with FlhC. Furthermore, Wada et al (2011), have shown that 

while ydiV is expressed in S. enterica expression and potentially the mode of action 

in E coli is different (Wada et al., 2012). This argues that FlhD(e) may have evolved 

in the absence of YdiV regulation. This argues that for both species although 

regulation of FlhD4C2 activity is shared there are some aspects of the interactions 
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between these known regulators that differ leading to clear changes in the 

downstream response of the flagellar system. 

9.7 Conclusions  
 

In conclusion, this project has provided an insight in to the fine details of how the 

species E. coli and S. enterica control FlhD4C2 activity. We have based our findings 

of the response to changes in the genetic makeup of flhDC in S. enterica. Our data, 

however, is consistent with other studies arguing a case for the observed details to 

hold when considering flagellar gene regulation in E. coli as a species. We recognise 

that it would now be of interest to potentially confirm some of our findings, especially 

detailing around the role of FlhD, by exploring the response of the E. coli flagellar 

system to similar or more specific genetic manipulations. In general, this project has 

provided the following points to note: 

 

 Salmonella enterica serovars conserve the timing of flagellar gene activation 

but magnitude of expression varies. 

 Data from Java suggests post-transcriptional regulation is key to the observed 

variation. 

 There is evidence that the potent nature of phenotypic heterogeneity dictates 

the output of the flagellar system across the species S. enterica. 

 Transcriptional activity/efficiency of flhDC is a key player in dictating a 

response to signals with respect to flagellar abundance in both S. enterica and 

E. coli. 

 FlhD4C2 -E.coli can sustain motility in S.enterica, but has an altered activity as 

a transcriptional activator. 
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 Our data suggests that FlhC is a key driver in FlhD4C2-dependent promoter 

selectivity. In contrast, FlhD plays a key role in FlhD4C2 activity 

 The regulation of FlhD4C2 activity by FliT differs in E. coli versus S. enterica.  

 

Based on these observations and the conclusions drawn from our data we 

argue the importance in our current research climate to take into consideration the 

species not only the strains we regularly work with. The diversity we observe in just a 

small subset of S. enteria serovars that describe neatly this species has made us 

reconsider a number of assumptions we make about the regulation of the flagellar 

system. This study has made us aware that this variation impacts how the flagellar 

system is exploited by specific strains and potentially its role during environmental 

and host-bacterial interactions. 
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10.1 Bacterial growth media  
 

All bacterial growth media suspended in Milli-Q water and send to an autoclave 

centre for sterilization. Filtered antibiotics and growth complements were added after 

the temperature media was reduced less than 40 ᵒC.  

Table 6: Luria-Bertani (LB) broth media 

Luria-Bertani (LB) broth media / 1 litre 
Tryptone  10 g  Bacto  
Yeast Extract  5 g  Bacto  
Sodium Chloride NaCl 5 g  Melford  
Water Up to one litre 

 

Table 7: Luria-Bertani (LB) agar 

Luria-Bertani (LB) agar / 1 litre 
Tryptone  10 g  Bacto  
Yeast Extract   5 g  Bacto  
Sodium Chloride  NaCl 5 g  Melford  
Agar  15 g Bacto 
Water Up to one litre 

 

Table 8: Motility agar  

Motility agar / 1 litre 
Tryptone  10 g  Bacto  
Sodium Chloride NaCl 5 g  Melford  
Agar  3 g Bacto 
Water Up to one litre 

 

Table 9: Minimal media 3gram  

Minimal media 3gram / 1 litre 
2x Minimal E salts  50 ml  Bacto  
Bacto Yeast Extract 25g/L 12ml  Bacto  
50% Glucose  0.4 ml  Sigma-Aldrich 
Water  Up to one litre  

 

Table 10: Minimal media 1gram  

Minimal media 1gram / 1 litre 
2x Minimal E salts  50 ml  Bacto  
Bacto Yeast Extract 25g/L 4 ml  Bacto  
50% Glucose  0.4 ml  Sigma-Aldrich 
Water  Up to one litre  
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Table 11: Minimal media 0.2gram  

Minimal media 0.2gram / 1 litre 
2x Minimal E salts  50 ml  Bacto  
Bacto Yeast Extract 25g/L 0.8ml  Bacto  
50% Glucose  0.4 ml  Sigma-Aldrich 
Water  Up to one litre  

 

Table 12: Minimal media 0.04gram 

Minimal media 0.04gram / 1 litre 
2x Minimal E salts  50 ml  Bacto  
Bacto Yeast Extract 25g/L 0.16 ml  Bacto  
50% Glucose  0.4 ml  Sigma-Aldrich  
Water  Up to one litre  

 

Table 13: P22 phage Buffer  

P22 phage Buffer 
LB liquid medium  100 ml  
50x Minimal E salts  2 ml  
20 % glucose  1 ml  

 

Table 14: Green agar 

Green agar / 1 litre 
D-Glucose  7.4 g  Sigma-Aldrich 
Tryptone  7.8 g  Bacto 
Yeast-Extract  1 g  Bacto 
Sodium Chloride NaCl 5 g  Melford  
Agar  15 g  Bacto 
Methyl Blue  0.07 g  Sigma-Aldrich 
Alizarin Yellow  0.6 g  Sigma-Aldrich 
Water  Up to one litre  

 

 

10.2 Agarose Gel Electrophoresis  
 

Table 15: 10 x DNA Loading Buffer 

10 x DNA Loading Buffer 
Tris Acetate 200 mM Sigma-Aldrich 
EDTA (PH 8.0) 5 mM Sigma-Aldrich 
Glycerol 50% Sigma-Aldrich 
Bromophenol Blue 0.1% BIO-RAD 
Xylene Cyanole FF 0.1% Sigma-Aldrich 
Orang G 0.2% Sigma-Aldrich 
Sterile Water  Up to 50 ml  
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Table 16: Agarose Gel 1% 

Agarose Gel 1% 
Agarose  4 g Peqlab 
DNA Nancy-520 stain 9µl Sigma-Aldrich 
TAE buffer 1X Up to 400 ml  Sigma-Aldrich 

  

 

10.3 Tricine SDS-polyacrylamide Gel Electrophoresis  
 

Table 17: Tricine Gel Buffer pH=8.45 

Table 15: Tricine Gel Buffer pH=8.45 
Tris Base 3M Peqlab 
Tris.Hcl 3M Sigma-Aldrich 
Sodium Dodecyl Sulphate SDS 0.6g Sigma-Aldrich 
Water  Up to 200 ml   

 

Table 18: SDS gel (Separating Gel12%) 

SDS gel (Separating Gel12%) 
Separating Acrylamide (49.5 % - 16.5 % T 3 % C)  3.6 ml  Severn Biotech LTD 
Ammonium Persulphate APS (10 %)  75 μl  Sigma-Aldrich 
Tetramethylethylenediamine TEMED  7.5 μl  BDH 
Glycerol (50 %)  5 ml  Sigma-Aldrich 
Tricine Gel Buffer  5 ml  
Sterile water  1.4 ml  

 

Table 19: SDS gel (Stacking Gel 3.96%) 

SDS gel (Stacking Gel 3.96%) 
Stacking Acrylamide (49.5 %-4 % T 3 % C)  1 ml  Severn Biotech LTD 
Tricine Gel Buffer  3.1 ml  Sigma-Aldrich 
Ammonium Persulphate APS (10 %) 100μl  Sigma-Aldrich 
Tetramethylethylenediamine TEMED 10 μl  BDH 
Sterile water  8.4 ml  

 

Table 20: Anode Running Buffer X10 pH=8.9 

Anode Running Buffer X10 pH=8.9 
Tris Base 2 M  Sigma-Aldrich 
Tris-Hcl 38.4g Sigma-Aldrich 
Sterile water  100 ml of buffer Up to one litre  
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Table 21: Cathode Running Buffer X10 pH=8.25 

Cathode Running Buffer X10 pH=8.25 
Tris Base  1 M  Sigma-Aldrich 
Tricine  1 M  Sigma-Aldrich 
SDS  100ml 10 %  Sigma-Aldrich 
Sterile water  Up to one litre 

 

Table 22: Coomassie Blue Stain 

Coomassie Blue Stain 
Ethanol  50 %  University Stores 
Acetic Acid  5 %  VWR 
Coomassie Blue  0.02 %  Fluka 
Sterile water  Up to 1 litre  

 

Table 23: Destaining Solution 

Destaining Solution 
Ethanol  50 %  University Stores 
Acetic Acid  5 %  VWR 
Sterile water  Up to 1 litre  

 

10.4 Protein Purification 
 

Table 24: His-Chelating Loading Buffer pH=7.5 

His-Chelating Loading Buffer pH=7.5 
Hepes  50mM Sigma-Aldrich 
Sodium Chloride NaCl 150mM  Melford  
Imidazole 20mM Sigma-Aldrich 
2-Mercaptoethanol 2mM VWR 
Sterile water Up to 1 litre 

 

Table 25: His-Chelating Elute Buffer pH=7.5 

His-Chelating Elute Buffer pH=7.5 
Hepes  50mM Sigma-Aldrich 
Sodium Chloride NaCl 150mM Melford  
Imidazole 1M Sigma-Aldrich 
2-Mercaptoethanol 2mM VWR 
Sterile water Up to 1 litre 

 

Table 26: Stripping Buffer pH=7.4 

Stripping Buffer pH=7.4 
Sodium Phosphate 20 mM Sigma-Aldrich 
Sodium Chloride NaCl 500mM Melford 
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Ethylenediaminetetraacetic EDTA 50 mM Sigma-Aldrich 
Sterile water Up to 1 litre 

 

Table 27: Nickel solution  

Nickel solution 
NiCl2 0.1M Sigma-Aldrich 
Sterile water  Up to one litre  
  

 

Table 28: Heparin Loading Buffer pH=7.9 

Heparin Loading Buffer pH=7.9 
Tris (Trizma Base) 10mM Sigma-Aldrich 
Sterile water  Up to one litre  

 

Table 29: Heparin elution Buffer pH=7.9 

Heparin elution Buffer pH=7.9 
Tris (Trizma Base) 10mM Sigma-Aldrich 
Sodium Chloride NaCl 1M Melford 
Sterile water  Up to 1 litre  

 

Table 30: Changing buffer pH=7.9 

Changing buffer pH=7.9 
Tris Base 10 mM Sigma-Aldrich 
Sodium Chloride NaCl 300mM Melford 
Dithiothreitol DTT 1 mM Melford 
Sterile water Up to 1 litre  

 

Table 31: TBE buffer X10 

TBE buffer X10 
Tris Base 89 mM Sigma-Aldrich 
Boric acid 89mM Sigma-Aldrich 
0.5M EDTA(pH8.0) 40ml Sigma-Aldrich 
Sterile water Up to 1 litre  

 

Table 32: ESMA gel 

ESMA gel 
40% Acrylamide 2.5ml Merck 
Tetramethylethylenediamine TEMED 13 µl BDH 
Ammonium Persulphate APS (10%) 150 µl Sigma-Aldrich 
10X TBE buffer 750µl 
Sterile water  11.69 ml  
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10.5 Table Of Plasmids 
 

Table 33: Plasmid Feature(s) 

Plasmid 
name 

plasmid feature(s) Reference 

pKD46 λRed-expression under control of arabinose-inducible promoter, 
temperature-sensitive, Ampr 

(Datsenko and Wanner 
2000) 

pWRG99 pKD46 with I-SceI endonuclease under control of tetracycline-inducible 
promoter (PtetA), temperature-sensitive, orientation 2 (5’-.3’: I-SceI-tetR), 
Ampr 

(Blank, Hensel et al. 
2011) 

pWRG100 I-SceI recognition site, Cmr (Blank, Hensel et al. 
2011) 

pKD3 Red template plasmid, suicide vector (ori R6K), Ampr , Cm Barry L. Wanner 

pKD4 Red template plasmid, suicide vector (ori R6K), Ampr , kan Barry L. Wanner 

pACYC184-
motA 

pRG19::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge’s lab 

pACYC184-flgA pRG39::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge’s lab 

pACYC184-fliC pRG51::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge’s lab 

pACYC184-flhD pRG38::FCF/ (PflhD-luxCDABE TcR) Aldridge’s lab 

pSE380 trc_promoter, lac operator, superlinker multiple cloning site, AMP 
resistance gene. 

Invitrogen 

pSE380-flhDC3 pSE380-flhDC3 ∆flhDC7011::FCF Aldridge’s lab 

pET28a mod Bacterial expression vector with T7lac promoter, adds N-terminal His 
tag, thrombin cleavage site 

Novagen 

pET28a-flhDsCe pET28a-flhD(S. enterica)-flhC(E.coli437) This study 

pET28a-flhDCe pET28a-flhDC(E.coli 437) This study 

pET28a-flhDeCs pET28a-flhD(E.coli 437)-flhC(S.enterica) This study 

pET28a-flhDCs pET28a-flhDC(S.enterica) This study 

pCP20 FLP, chloramphenicol and ampicillin resistant genes, and temperature 
sensitive replication. 

(Cherepanov 
&Wackernagel,(1995) 

 

10.6 Oligonucleotides  
 

Table 34: Primers sequences 

Primer 
Number 

Primer Name Primer Sequence (5’ to 3’) 

981 pTetR_flhD_F(LT2)  aactcgctccttgattgcaagaatatgagattgtgctttaCTAAGCACTTGTCTCCTG  
982 pTetA_flhD_R (LT2)  caactttatttttgtgcgacgtagccgcaccccgtgatgtTTAAGACCCACTTTCACA  

1083 oAJ1 pWRG100_F  tgtcatatttactccttgcacagcgtttgatcgtccaggacaaagCGCCTTACGCCCCGCCCT
GC  

1084 oAJ2 pWRG100_R  cagcatctcgggaaagtttacgtctttttactgcgcgggatggcgCTAGACTATATTACCCTGT
T  

1085 oAJ3 flhD-e.coli F  acatcacggggtgcggctacgtcgcacaaaaataaagttggttattctggatgcatacctCCGAGTT
GCTG  

1086 oAJ4 flhC e.coli R  gcagcggtaatgacttaccgctgctggagtgtttgtccacaccgtttCGGTTAAACAGCCTGTA
CTCTCTG  

471 flhD-42FEco  gcggaattcGGGTGCGGCTACGTCGCAC  
467 flhC+616REco  gcggaattcCGCTGCTGGAGTGTTTGTCC  

1166 WRG_flhD+6F 
tgcggctacgtcgcacaaaaataaagttggttattctggatgggaCGCCTTACGCCCCGCCC
TGC 

1167 WRG_flhC+579R gacttaccgctgctggagtgtttgtccacaccgtttcggttaaacCTAGACTATATTACCCTGTT 
1168 flhD-125F cgtcacaatgtccataatgtc 
1169 flhC+744R ccgataaccaccaggtaacc 
405 tetA+3ndeIR gcgcatatgacttttctctatcactgatag 
4 flgN+532R gagtttgttcgccggacg 
5 flgM-82F gattttgtcgcggctgcc 

25 fliA-118F ggcgctacaggttacataag 
26 fliA+765R tagtctatacgttgtgcggc 

1179 PflhDC-786_tetR aactcgctccttgattgcaagaatatgagattgtgctttattaagacccactttcaca 
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Primer 
Number 

Primer Name Primer Sequence (5’ to 3’) 

1180 PflhDC-50_tetA caactttatttttgtgcgacgtagccgcaccccgtgatgtctaagcacttgtctcctg 
1182 fliC+633R accaagaccagtagccgagg 
1183 fliD+585R gatcttcatcgtattgtcgg 
1181 flgB+413R ctgtagcacattcatcatgc 
37 flgN+435ScR ccgagctccatccggcaatgattagatag 
258 fliC-247F ggtcttgcgcgatggtac 

983 pTetRA-flhD-
1035chkF 

agtttgttcaatcggataatccgcc 

1184 RP_flhd-59FOR 
Acatcacggggtgcggctacgtcgcacaaaaataaagttggttattctggatgggaacaatgcatacctc
cgagttgctg 

404 tetR+SpeIF ggcactagtctaacatctcaatggctaagg 

1225 WRG_flhD+R 
GCGAGCTTCCTGAACAATGCTTTTTTCACTCATTATCATGCCCTTCTAGA
CTATATTACCCTGTT 

1226 WRG_flhC+F 
GCTCAATGAAGTGGACGATACGGCGCGTAAGAAAAGGGCATGATACGC
CTTACGCCCCGCCCTGC

1227 flhD-e.coli R 
TGGATATCGCGAGCTTCCTGAACAATGCTTTTTTCACTCATTATCATGCC
CTTTTCTTGCGCAGCGCTTC 

1228 flhC-e.coli F 
CGCGTCTGCTCAATGAAGTGGACGATACGGCGCGTAAGAAAAGGGCAT
GATAGAAAAAAGCATTGTTCAG 

27 fliA+1043R tatcgaaaaaatcactctgc 
469 flhD-866FEco gcggaattcGCGATAGAGACCGCTTTAGCC 
531 flhDB2H(n)R ggcgagctca 

1178 RP_flhD-11_DELR 
CATAAATGTGTTTCAGCAACTCGGAGGTATGCATTATTCCCACCCCTAG
ACTATATTACCCTGTT 

1165 RP_yecG-40_DELF 
tcataacctgttccttattctgtgaacttcaggtgacattaaagcCGCCTTACGCCCCGCCCTG
C 

1229 RP_flgE+675_WRG
_F 

TACACCCAGGATAGCAGTGATCCAAACAGCATTGCGAAGACAGCGctag
actatattaccctgtt 

1233 RP_flgE+690_WRG
_R 

gatattattcgccatcgcaccatccactaatgtgccattagcattCGCCTTACGCCCCGCCCT
GC 

1247 RP_flgE-155CHK gtacacaactggttgcccagccgc 
1248 RP_flgE+1375CHK aagcccttccactggcaccgcgcg 
1249 flgB+104R gtatcggcattggcgatattcgccg 
23 fliT-138F ctatatgattcgccgtttac 
24 fliT+481R taataccagtggaagtactg 
533 flhDB2H(c)R ggcggtaccTCATGCCCTTTTCTTACG 
126 flhD+1FBam ggatccATGGGAACAATGCATACATC 
127 flhC+616RSc CCGAGCTCCGCTGCTGGAGTGTTTGTCC 

1268 flhDEC+1Bam ggatccATGCATACCTCCGAGTTGCT 
1291 pET28a_SacI_F GGACAAACACTCCAGCAGCG GAGCTCCGTCGACAAGCTTG 
1292 pETSacI_flhC+616R CAAGCTTGTCGACGGAGCTC CGCTGCTGGAGTGTTTGTCC 

1293 pETBam_ECflhD+1
F 

GCCTGGTGCCGCGCGGATCC ATGCATACCTCCGAGTTGCT 

1294 pETBam_ECD_R AGCAACTCGGAGGTATGCAT GGATCCGCGCGGCACCAGGC 
1295 pETBam_STflhD+1F GCCTGGTGCCGCGCGGATCC ATGGGAACAATGCATACATC 
1296 pETBam_STD_R GATGTATGCATTGTTCCCAT GGATCCGCGCGGCACCAGGC 
753 YdiV-510chk CCAGAATCGATAAAGATGAATTGC 
754 YdiV+1221chk CGCGCGCGTAGTGGGAATACCC 

1307 LT2_clpP_P1 
GTACAGCAGATTTTTTCAATTTTTATCCAGGAGACGGAAATGTCAgtgtagg
ctggagctgcttc 

1308 LT2_clpP_P2 
AAGGATGAAGTGTATAGCGGCACACTTGCGTCCAGGGCATCAATTcatat
gaatatcctccttag 

1309 LT2_clpP_chkF tgatggacaatatgcgtaacg 
1310 LT2_clpP_chkR ttgtgccgcacacgacgacgc 
1327 flgA+108R cagacgctgggaaaaccacgtggtc 
1328 qPCR_aF ctcgcctgaaagagttgacc 
1329 qPCR_aR ccgatttttcatctgggaga 
1330 qPCR_bF attaaagttcgccacggttg 
1331 qPCR_bR tcgttgaccagattgagcag 
1332 pSB401_qPCR1F caacctccccaattttctca 
1333 pSB401_qPCR1R tatgcagcagcgacataagg 
1334 pSB401_qPCR2F tctgacgctcaaatcagtgg 
1335 pSB401_qPCR2R aggcgtggaatgagacaaac 
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10.7 Strains Background of Genotype 
 

Table 35: Strains Numbers 

 
Strain number  
 

 
Species 

 
Background of Genotype 

 
Reference 

TPA1 ST LT2 (wild-type)(from S.Roth stab) Aldridge's Lab 
TPA2 EC DH5α (ph1-80dlacdm15 enda1 reca1 hsdr17 supe44 tth-1 gyra96 

rela12  dlacu169 
Aldridge's Lab 

TPA11 ST    fliY5221::Tn10dTc  Aldridge's Lab 
TPA18 EC BW25141/pKD4  Aldridge's Lab 
TPA19 ST  LT2/pkD46  Aldridge's Lab 
TPA22 EC  pkD3 in E.Coli (strain unknown)  Aldridge's Lab 

TPA323 ST  LT2/pCP20 (CmR AmpR)  Aldridge's Lab 
TPA277 ST S.enterica sv. Typhimurium 14028s (USA patho) Aldridge's Lab 
TPA788 ST SJW1103 (Japanese Wild Type) Nao/Tohru 

TPA1147 ST SL1344 (Berlin) J. Vogel 
TPA2734 ST  Salmonella java J. Perry 
TPA2735 ST Salmonella typhimurium J. Perry 
TPA2737 ST Salmonella oranienburg J. Perry 
TPA2738 ST Salmonella tennessee J. Perry 
TPA2739 ST  Salmonella javiana J. Perry 
TPA2740 ST Salmonella berta J. Perry 
TPA2741 ST Salmonella zanzibar J. Perry 
TPA2742 ST Salmonella meleagridis J. Perry 
TPA3690 ST ST4/74(Salmonella typhimurium W.T) Jay Hinton 
TPA3789 ST PflhDC7128::tetAR (LT2) This study 
TPA3790 ST PflhDC7129::tetAR (14028s) This study 
TPA3791 ST PflhDC7130::tetAR (SJW1103) This study 
TPA3792 ST  PflhDC7131::tetAR (SL1344) This study 
TPA3793 ST PflhDC7132::tetAR (java) This study 
TPA3794 ST PflhDC7133::tetAR (typhimurium) This study 
TPA3795 ST PflhDC7134::tetAR (javiana) This study 
TPA3796 ST PflhDC7135::tetAR (berta) This study 
TPA3797 ST PflhDC7136::tetAR (zanzibar) This study 
TPA3798 ST PflhDC7137::tetAR (ST4/74) This study 

TPA74 ST pRG19::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge's Lab 
TPA86 ST pRG39::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge's Lab 
TPA94 ST pRG51::FCF/ P(flhDC)5451::Tn10dTc[del-25] Aldridge's Lab 

TPA3802 ST pRG19::FCF / PflhDC7128::tetAR This study 
TPA3803 ST pRG39::FCF / PflhDC7128::tetAR This study 
TPA3804 ST pRG51::FCF / PflhDC7128::tetAR This study 
TPA3805 ST pRG19::FCF / PflhDC7129::tetAR This study 
TPA3806 ST pRG39::FCF / PflhDC7129::tetAR This study 
TPA3807 ST pRG51::FCF / PflhDC7129::tetAR This study 
TPA3808 ST pRG19::FCF / PflhDC7130::tetAR This study 
TPA3809 ST pRG39::FCF / PflhDC7130::tetAR This study 
TPA3810 ST pRG51::FCF / PflhDC7130::tetAR This study 
TPA3811 ST pRG19::FCF / PflhDC7131::tetAR This study 
TPA3812 ST pRG39::FCF / PflhDC7131::tetAR This study 
TPA3813 ST pRG51::FCF / PflhDC7131::tetAR This study 
TPA3814 ST pRG19::FCF / PflhDC7133::tetAR This study 
TPA3815 ST pRG39::FCF / PflhDC7133::tetAR This study 
TPA3816 ST pRG51::FCF / PflhDC7133::tetAR This study 
TPA3817 ST pRG19::FCF / PflhDC7137::tetAR This study 
TPA3818 ST pRG39::FCF / PflhDC7137::tetAR This study 
TPA3819 ST pRG51::FCF / PflhDC7137::tetAR This study 
TPA3828 ST pRG19::FCF / PflhDC7132::tetAR This study 
TPA3829 ST pRG39::FCF / PflhDC7132::tetAR This study 
TPA3830 ST pRG51::FCF / PflhDC7132::tetAR This study 
TPA3831 ST pRG19::FCF / PflhDC7134::tetAR This study 
TPA3832 ST pRG39::FCF / PflhDC7134::tetAR This study 
TPA3833 ST pRG51::FCF / PflhDC7134::tetAR This study 
TPA3834 ST pRG19::FCF / PflhDC7135::tetAR This study 
TPA3835 ST pRG39::FCF / PflhDC7135::tetAR This study 
TPA3836 ST pRG51::FCF / PflhDC7135::tetAR This study 
TPA3837 ST pRG19::FCF / PflhDC7136::tetAR This study 
TPA3838 ST pRG39::FCF / PflhDC7136::tetAR This study 
TPA3839 ST pRG51::FCF / PflhDC7136::tetAR This study 
TPA3800 EC pWRG100 / DH5α K. Gerdes 
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Strain number 

 

 
Species 

 
Background of Genotype 

 
Reference 

TPA3426 EC RP437 J. Armitage 
TPA2390 ST fliM5978-gfp ∆fliT::km Aldridge's Lab 
TPA3799 EC pWRG99 / DH5a [AmpR grow at 30°C] K. Gerdes 
TPA3846 ST pWRG99 / LT2 This study 
TPA3847 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF [pWRG100 template] This study 
TPA3848 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF [pWRG100 template] This study 
TPA3855 ST fliM5978-gfp ∆fliT::km ∆flhDC::FICF [pWRG100 template] This study 
TPA3855 ST fliM5978-gfp ∆fliT::km ∆flhDC::FICF [pWRG100 template] This study 
TPA3856 ST fliM5978-gfp ∆fliT::km ∆flhDC::FICF [pWRG100 template] This study 
TPA1107 ST fliM5978 (FliM-(GAGAGA)-GFP2+(-14bp from fliN AUG)(Mot+) Kelly 
TPA3879 ST fliM5978-gfp ∆flhDC::flhDC(EC) [has 18aa at end of flhC = ST]2 This study 
TPA3880 ST fliM5978-gfp ∆flhDC::flhDC(EC) [has 18aa at end of flhC = ST]3 This study 
TPA3881 ST fliM5978-gfp ∆flhDC::flhDC(EC) [has 5aa at end of flhC = ST]4 This study 
TPA3875 ST fliM5978-gfp ∆flhDC::FICF [pWRG100 template] This study 
TPA3876 ST fliM5978-gfp ∆flhDC::FICF [pWRG100 template] This study 
TPA3878 ST fliM5978-gfp ∆flhDC::flhDC(EC) [has 18aa at end of flhC = ST]1 This study 
TPA3902 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF [pWRG100 template]1 This study 
TPA3903 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF [pWRG100 template]4 This study 
TPA3904 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF [pWRG100 template]12 This study 
TPA3905 ST fliM5978-gfp ∆flhDC::FICF [pWRG100 template]7 This study 
TPA3906 ST fliM5978-gfp ∆flhDC::FICF [pWRG100 template]12 This study 
TPA3907 ST fliM5978-gfp ∆flhDC::FICF [pWRG100 template]14 This study 
TPA3935 ST PflhDC::tetAR (java) [981/982 remakes] This study 
TPA3936 ST PflhDC::tetAR (oranienburg) This study 
TPA3937 ST PflhDC::tetAR (tennesse) This study 
TPA3938 ST PflhDC::tetAR (D23_africa) This study 
TPA3874 ST SSS18 [KanS, CmS, AmpS, tetS, D23580 variant] (D23_africa) Aldridge's Lab 
TPA3939 ST pRG19::FCF / PflhDC::tetAR (java) This study 
TPA3940 ST pRG39::FCF / PflhDC::tetAR (java) This study 
TPA3941 ST pRG51::FCF / PflhDC::tetAR (java) This study 
TPA3942 ST pRG19::FCF / PflhDC::tetAR (oranienburg) This study 
TPA3943 ST pRG39::FCF / PflhDC::tetAR (oranienburg) This study 
TPA3944 ST pRG51::FCF / PflhDC::tetAR (oranienburg) This study 
TPA3945 ST pRG19::FCF / PflhDC::tetAR (tennesse) This study 
TPA3946 ST pRG39::FCF / PflhDC::tetAR (tennesse) This study 
TPA3947 ST pRG51::FCF / PflhDC::tetAR (tennesse) This study 
TPA3948 ST pRG19::FCF / PflhDC::tetAR (D23_africa) This study 
TPA3949 ST pRG39::FCF / PflhDC::tetAR (D23_africa) This study 
TPA3950 ST pRG51::FCF / PflhDC::tetAR (D23_africa) This study 
TPA3951 ST pRG19::FCF / PflhDC7132::tetAR (Java) This study 
TPA3952 ST pRG39::FCF / PflhDC7132::tetAR (Java) This study 
TPA3953 ST pRG51::FCF / PflhDC7132::tetAR (Java) This study 
TPA3954 ST PflhDC::tetAR (melagridis) This study 
TPA3955 ST pRG19::FCF / PflhDC::tetAR (melagridis) This study 
TPA3956 ST pRG39::FCF / PflhDC::tetAR (melagridis) This study 
TPA3957 ST pRG51::FCF / PflhDC::tetAR (melagridis) This study 
TPA4003 ST fliM5978-gfp ∆flhDC::FICF / pWRG99 This study 
TPA4004 ST fliM5978-gfp ∆fliT::Km ∆flhDC::FICF / pWRG99 This study 
TPA3959 ST PflhDC::tetRA (LT2) [note tetRA spelling! PCR1179/1180] This study 
TPA3960 ST PflhDC::tetRA (SSS18) [note tetRA spelling! PCR1179/1180] This study 
TPA3963 ST PflhDC::tetRA (java) [note tetRA spelling! PCR1179/1180] This study 
TPA3961 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template PCRoAJ3/oAJ4] 

NO RBS! 
This study 

TPA3962 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) [RP437 template 
PCRoAJ3/oAJ4] NO RBS! 

This study 

TPA3964 ST fliM5978-gfp ∆PflhDC::tetRA ∆flhDC::flhDC(EC) [PCR1179/1180] 
NO RBS! 

This study 

TPA3965 ST fliM5978-gfp ∆fliT::km ∆PflhDC::tetRA ∆flhDC::flhDC(EC) 
[PCR1179/1180] NO RBS! 

This study 

TPA3966 ST pRG19::FCF / PflhDC::tetRA (LT2) This study 
TPA3967 ST pRG39::FCF / PflhDC::tetRA (LT2) This study 
TPA3968 ST pRG51::FCF / PflhDC::tetRA (LT2) This study 
TPA3969 ST pRG19::FCF / PflhDC::tetRA (SSS18) This study 
TPA3970 ST pRG39::FCF / PflhDC::tetRA (SSS18) This study 
TPA3971 ST pRG51::FCF / PflhDC::tetRA (SSS18) This study 
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Strain number 

 

 
Species 

 
Background of Genotype 

 
Reference 

TPA3972 ST pRG19::FCF / PflhDC::tetRA (java) [note tetRA spelling! 
PCR1179/1180] 

This study 

TPA3973 ST pRG39::FCF / PflhDC::tetRA (java) [note tetRA spelling! 
PCR1179/1180] 

This study 

TPA3974 ST pRG51::FCF / PflhDC::tetRA (java) [note tetRA spelling! 
PCR1179/1180] 

This study 

TPA3975 ST pRG19::FCF / fliM5978-gfp ∆PflhDC::tetRA ∆flhDC::flhDC(EC) This study 
TPA3976 ST pRG39::FCF / fliM5978-gfp ∆PflhDC::tetRA ∆flhDC::flhDC(EC) This study 
TPA3977 ST pRG51::FCF / fliM5978-gfp ∆PflhDC::tetRA ∆flhDC::flhDC(EC) This study 
TPA3978 ST pRG19::FCF / fliM5978-gfp ∆fliT::km ∆PflhDC::tetRA 

∆flhDC::flhDC(EC) 
This study 

TPA3979 ST pRG39::FCF / fliM5978-gfp ∆fliT::km ∆PflhDC::tetRA 
∆flhDC::flhDC(EC) 

This study 

TPA3980 
 

ST pRG51::FCF / fliM5978-gfp ∆fliT::km ∆PflhDC::tetRA 
∆flhDC::flhDC(EC) 

This study 

TPA3981 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA3982 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA [18aa] This study 
TPA3983 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA [5aa] This study 
TPA3984 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA3985 ST pRG19::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 

∆PflhDC::tetRA 
This study 

TPA3986 ST pRG39::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA3987 ST pRG51::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA3988 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[18aa] 

This study 

TPA3989 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[18aa] 

This study 

TPA3990 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[18aa] 

This study 

TPA3991 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[5aa] 

This study 

TPA3992 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[5aa] 

This study 

TPA3993 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA 
[5aa] 

This study 

TPA3994 ST pRG19::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA3995 ST pRG39::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA3996 ST pRG51::FCF / fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA3997 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 
PCR1184/1086]1 

This study 

TPA3998 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 
PCR1184/1086]2 

This study 

TPA3999 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 
PCR1184/1086]3 

This study 

TPA4000 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC)[RP437 template 
PCR1184/1086]1 

This study 

TPA4001 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC)[RP437 template 
PCR1184/1086]2 

This study 

TPA4002 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC)[RP437 template 
PCR1184/1086]3 

This study 

TPA4022 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4023 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4024 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4025 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4026 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4027 ST fliM5978-gfp ∆fliT::km ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4028 ST fliM5978-gfp ∆PflhDC::tetRA This study 
TPA4029 ST fliM5978-gfp ∆PflhDC::tetAR [NOTE THE TETRA/AR Directions] This study 
TPA4030 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4031 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4032 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4033 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4034 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4035 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4036 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
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TPA4037 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4038 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetRA This study 
TPA4039 ST pRG19::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 

∆PflhDC::tetRA 
This study 

TPA4040 ST pRG39::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4041 ST pRG51::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4042 ST pRG19::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4043 ST pRG39::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4044 ST pRG51::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4045 ST pRG19::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4046 ST pRG39::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4047 ST pRG51::FCF / fliM5978-gfp ∆fliT::Km ∆flhDC::flhDC(EC) 
∆PflhDC::tetRA 

This study 

TPA4048 ST pRG19::FCF / fliM5978-gfp ∆PflhDC::tetRA This study 
TPA4049 ST pRG39::FCF / fliM5978-gfp ∆PflhDC::tetRA This study 
TPA4050 ST pRG51::FCF / fliM5978-gfp ∆PflhDC::tetRA This study 
TPA4051 ST pRG19::FCF / fliM5978-gfp ∆PflhDC::tetAR This study 
TPA4052 ST pRG39::FCF / fliM5978-gfp ∆PflhDC::tetAR This study 
TPA4053 ST pRG51::FCF / fliM5978-gfp ∆PflhDC::tetAR This study 
TPA4096 ST fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetAR This study 
TPA1690 ST fliM5978::GFP PflhDC5451::Tn10[del-25] Aldridge's Lab 
TPA4097 ST pRG19::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetAR This study 
TPA4098 ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetAR This study 
TPA4099 ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) ∆PflhDC::tetAR This study 
TPA4114 ST fliM5978-gfp ∆flhD::FICF This study 
TPA4115 ST fliM5978-gfp ∆flhD::FICF This study 
TPA4116 ST fliM5978-gfp ∆flhC::FICF This study 
TPA4117 ST fliM5978-gfp ∆flhC::FICF This study 
TPA4128 ST fliM5978-gfp ∆flhC::flhC437 This study 
TPA4129 ST fliM5978-gfp ∆flhC::flhC437 This study 
TPA4130 ST fliM5978-gfp ∆flhC::flhC437 This study 
TPA4131 ST fliM5978-gfp ∆flhC::flhC437 This study 
TPA4134 ST fliM5978-gfp ∆flhD::flhD437 This study 
TPA4135 ST fliM5978-gfp ∆flhD::flhD437 This study 
TPA4136 ST fliM5978-gfp ∆flhD::flhD437 This study 
TPA4137 ST fliM5978-gfp ∆flhD::flhD437 This study 
TPA4219 ST LT2/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4220 ST S.enterica sv. Typhimurium 14028s/ pRG38(PflhD-luxCDABE 

TcR) 
This study 

TPA4221 ST Salmonella java / pRG38(PflhD-luxCDABE TcR) This study 
TPA4193 ST fliM5978-gfp ∆flhC::flhC437::tetRA This study 
TPA4194 ST fliM5978-gfp ∆flhD::flhD437::tetRA This study 
TPA4213 ST pRG19::FCF / fliM5978-gfp∆flhC::flhC437::tetRA This study 
TPA4214 ST pRG39::FCF / fliM5978-gfp∆flhC::flhC437::tetRA This study 
TPA4215 ST pRG51::FCF / fliM5978-gfp∆flhC::flhC437::tetRA This study 
TPA4216 ST pRG19::FCF / fliM5978-gfp∆flhD::flhD437::tetRA   This study 
TPA4217 ST pRG39::FCF / fliM5978-gfp∆flhD::flhD437::tetRA This study 
TPA4218 ST pRG51::FCF / fliM5978-gfp∆flhD::flhD437::tetRA   This study 
TPA2456 ST pSE-flhDC3 / ∆flhDC7011::FCF Aldridge's Lab 
TPA1835 ST LT2 / pSE380 Aldridge's Lab 
TPA4222 ST pRG19::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/ pSE-flhDC3 
This study 

TPA4223 
ST pRG39::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/ pSE-flhDC3 
This study 

TPA4224 
ST pRG51::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/ pSE-flhDC3 
This study 

TPA4225 ST pRG19::FCF / fliM5978-gfp ∆PflhDC::tetRA/ pSE-flhDC3 This study 
TPA4226 ST pRG39::FCF / fliM5978-gfp ∆PflhDC::tetRA/ pSE-flhDC3 This study 
TPA4227 ST pRG51::FCF / fliM5978-gfp ∆PflhDC::tetRA/ pSE-flhDC3 This study 

TPA4228 
ST pRG19::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/  pSE380 
This study 

TPA4229 
ST pRG39::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/  pSE380 
This study 
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TPA4230 
ST pRG51::FCF / PflhDC::tetRA (java) [note tetRA spelling! 

PCR1179/1180]/  pSE380 
This study 

TPA4231 ST pRG19::FCF / fliM5978-gfp ∆PflhDC::tetRA/  pSE380 This study 
TPA4232 ST pRG39::FCF / fliM5978-gfp ∆PflhDC::tetRA/  pSE380 This study 
TPA4233 ST pRG51::FCF / fliM5978-gfp ∆PflhDC::tetRA/  pSE380 This study 
TPA4250 ST pRG19::FCF / LT2 / pSE380 This study 
TPA4251 ST pRG39::FCF / LT2 / pSE380 This study 
TPA4252 ST pRG51::FCF / LT2 / pSE380 This study 
TPA4253 ST pRG19::FCF / pSE-flhDC3 / ∆flhDC7011 This study 
TPA4254 ST pRG39::FCF / pSE-flhDC3 / ∆flhDC7011 This study 
TPA4255 ST pRG51::FCF / pSE-flhDC3 / ∆flhDC7011 This study 
TPA4261 ST Salmonella java / pSE-flhDC3 This study 
TPA4262 ST Salmonella java / pSE380 This study 

TPA66 ST pRG19::FCF (CmR TcR)/LT2 Aldridge's Lab 
TPA69 ST pRG39::FCF (CmR TcR)/LT2 Aldridge's Lab 
TPA71 ST pRG51::FCF (CmR TcR)/LT2 Aldridge's Lab 

TPA4269 ST pRG19::FCF (CmR TcR)/LT2/ pSE-flhDC3 This study 
TPA4270 ST pRG39::FCF (CmR TcR)/LT2/ pSE-flhDC3 This study 
TPA4271 ST pRG51::FCF (CmR TcR)/LT2/ pSE-flhDC3 This study 
TPA4263 ST pRG19::FCF /Salmonella java / pSE-flhDC3 This study 
TPA4264 ST pRG39::FCF /Salmonella java / pSE-flhDC3 This study 
TPA4265 ST pRG51::FCF /Salmonella java / pSE-flhDC3 This study 
TPA4266 ST pRG19::FCF /Salmonella java / pSE380 This study 
TPA4267 ST pRG39::FCF /Salmonella java / pSE380 This study 
TPA4268 ST pRG51::FCF /Salmonella java / pSE380 This study 
TPA4272 ST Salmonella senftenberg Aldridge's Lab 
TPA4273 ST Salmonella gallinarum Aldridge's Lab 
TPA4274 ST Salmonella othmarschen  Aldridge's Lab 
TPA4275 ST Salmonella emek Aldridge's Lab 
TPA4276 ST Salmonella lexington Aldridge's Lab 
TPA4277 ST Salmonella haifa Aldridge's Lab 
TPA4278 ST Salmonella simsbury Aldridge's Lab 
TPA4279 ST Salmonella panama Aldridge's Lab 
TPA4280 ST Salmonella indina Aldridge's Lab 
TPA4281 ST Salmonella montevideo Aldridge's Lab 
TPA4284 ST Salmonella limete Aldridge's Lab 
TPA4285 ST Salmonella abony Aldridge's Lab 
TPA4286 ST Salmonella vinhrady Aldridge's Lab 
TPA4287 ST Salmonella alchua Aldridge's Lab 
TPA4288 ST Salmonella vilvoorde Aldridge's Lab 
TPA4296 ST Salmonella senftenberg/pRG38(PflhD-luxCDABE TcR) This study 
TPA4297 ST Salmonella gallinarum/pRG38(PflhD-luxCDABE TcR) This study 
TPA4298 ST Salmonella othmarschen /pRG38 (PflhD-luxCDABE TcR) This study 
TPA4299 ST Salmonella emek/pRG38(PflhD-luxCDABE TcR) This study 
TPA4300 ST Salmonella Lexington/pRG38(PflhD-luxCDABE TcR) This study 
TPA4301 ST Salmonella Haifa/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4302 ST Salmonella simsbury/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4303 ST Salmonella panama/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4304 ST Salmonella indina/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4305 ST Salmonella montevideo/pRG38(PflhD-luxCDABE TcR) This study 
TPA4306 ST Salmonella limete/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4307 ST Salmonella abony/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4308 ST Salmonella vinhrady/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4309 ST Salmonella alchua/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4310 ST Salmonella vilvoorde/ pRG38(PflhD-luxCDABE TcR) This study 
TPA4326 ST Salmonella senftenberg/ PflhDC::tetAR This study 
TPA4327 ST Salmonella gallinarum/ PflhDC::tetAR This study 
TPA4328 ST Salmonella othmarschen / PflhDC::tetAR This study 
TPA4329 ST Salmonella emek/ PflhDC::tetAR This study 
TPA4330 ST Salmonella lexington/ PflhDC::tetAR This study 
TPA4331 ST Salmonella haifa/ PflhDC::tetAR This study 
TPA4332 ST Salmonella simsbury/ PflhDC::tetAR This study 
TPA4333 ST Salmonella panama/ PflhDC::tetAR This study 
TPA4334 ST Salmonella indina/ PflhDC::tetAR This study 
TPA4335 ST Salmonella montevideo/ PflhDC::tetAR This study 
TPA4336 ST Salmonella limete/ PflhDC::tetAR This study 
TPA4337 ST Salmonella abony/ PflhDC::tetAR This study 
TPA4338 ST Salmonella vinhrady/ PflhDC::tetAR This study 
TPA4339 ST Salmonella alchua/ PflhDC::tetAR This study 
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TPA4340 ST Salmonella vilvoorde/ PflhDC::tetAR This study 
TPA4341 ST Salmonella senftenberg/ PflhDC::tetRA This study 
TPA4342 ST Salmonella gallinarum/ PflhDC::tetRA This study 
TPA4343 ST Salmonella othmarschen / PflhDC::tetRA This study 
TPA4344 ST Salmonella emek/ PflhDC::tetRA This study 
TPA4345 ST Salmonella lexington/ PflhDC::tetRA This study 
TPA4346 ST Salmonella haifa/ PflhDC::tetRA This study 
TPA4347 ST Salmonella simsbury/ PflhDC::tetRA This study 
TPA4348 ST Salmonella panama/ PflhDC::tetRA This study 
TPA4349 ST Salmonella indina/ PflhDC::tetRA This study 
TPA4350 ST Salmonella montevideo/ PflhDC::tetRA This study 
TPA4351 ST Salmonella limete/ PflhDC::tetRA This study 
TPA4352 ST Salmonella abony/ PflhDC::tetRA This study 
TPA4353 ST Salmonella vinhrady/ PflhDC::tetRA This study 
TPA4354 ST Salmonella alchua/ PflhDC::tetRA This study 
TPA4355 ST Salmonella vilvoorde/ PflhDC::tetRA This study 
TPA4356 ST pRG19::FCF / Salmonella senftenberg/ PflhDC::tetAR This study 
TPA4357 ST pRG39::FCF / Salmonella senftenberg/ PflhDC::tetAR This study 
TPA4358 ST pRG51::FCF /Salmonella senftenberg/ PflhDC::tetAR This study 
TPA4359 ST pRG19::FCF / Salmonella gallinarum/ PflhDC::tetAR This study 
TPA4360 ST pRG39::FCF / Salmonella gallinarum/ PflhDC::tetAR This study 
TPA4361 ST pRG51::FCF /Salmonella gallinarum/ PflhDC::tetAR This study 
TPA4362 ST pRG19::FCF / Salmonella othmarschen / PflhDC::tetAR This study 
TPA4363 ST pRG39::FCF / Salmonella othmarschen / PflhDC::tetAR This study 
TPA4364 ST pRG51::FCF /Salmonella othmarschen / PflhDC::tetAR This study 
TPA4365 ST pRG19::FCF / Salmonella emek/ PflhDC::tetAR This study 
TPA4366 ST pRG39::FCF / Salmonella emek/ PflhDC::tetAR This study 
TPA4367 ST pRG51::FCF /Salmonella emek/ PflhDC::tetAR This study 
TPA4368 ST pRG19::FCF /Salmonella lexington/ PflhDC::tetAR This study 
TPA4369 ST pRG39::FCF / Salmonella lexington/ PflhDC::tetAR This study 
TPA4370 ST pRG51::FCF /Salmonella lexington/ PflhDC::tetAR This study 
TPA4371 ST pRG19::FCF / Salmonella haifa/ PflhDC::tetAR This study 
TPA4372 ST pRG39::FCF / Salmonella haifa/ PflhDC::tetAR This study 
TPA4373 ST pRG51::FCF /Salmonella haifa/ PflhDC::tetAR This study 
TPA4374 ST pRG19::FCF / Salmonella simsbury/ PflhDC::tetAR This study 
TPA4375 ST pRG39::FCF / Salmonella simsbury/ PflhDC::tetAR This study 
TPA4376 ST pRG51::FCF /Salmonella simsbury/ PflhDC::tetAR This study 
TPA4401 ST pRG19::FCF /Salmonella senftenberg/ PflhDC::tetRA This study 
TPA4402 ST pRG39::FCF / Salmonella senftenberg/ PflhDC::tetRA This study 
TPA4403 ST pRG51::FCF /Salmonella senftenberg/ PflhDC::tetRA This study 
TPA4404 ST pRG19::FCF /Salmonella gallinarum/ PflhDC::tetRA This study 
TPA4405 ST pRG39::FCF / Salmonella gallinarum/ PflhDC::tetRA This study 
TPA4406 ST pRG51::FCF /Salmonella gallinarum/ PflhDC::tetRA This study 
TPA4407 ST pRG19::FCF /Salmonella othmarschen / PflhDC::tetRA This study 
TPA4408 ST pRG39::FCF / Salmonella othmarschen / PflhDC::tetRA This study 
TPA4409 ST pRG51::FCF /Salmonella othmarschen / PflhDC::tetRA This study 
TPA4410 ST pRG19::FCF /Salmonella emek/ PflhDC::tetRA This study 
TPA4411 ST pRG39::FCF / Salmonella emek/ PflhDC::tetRA This study 
TPA4412 ST pRG51::FCF /Salmonella emek/ PflhDC::tetRA This study 
TPA4413 ST pRG19::FCF /Salmonella lexington/ PflhDC::tetRA This study 
TPA4414 ST pRG39::FCF / Salmonella lexington/ PflhDC::tetRA This study 
TPA4415 ST pRG51::FCF /Salmonella lexington/ PflhDC::tetRA This study 
TPA4416 ST pRG19::FCF /Salmonella haifa/ PflhDC::tetRA This study 
TPA4417 ST pRG39::FCF / Salmonella haifa/ PflhDC::tetRA This study 
TPA4418 ST pRG51::FCF /Salmonella haifa/ PflhDC::tetRA This study 
TPA4419 ST pRG19::FCF /Salmonella simsbury/ PflhDC::tetRA This study 
TPA4420 ST pRG39::FCF / Salmonella simsbury/ PflhDC::tetRA This study 
TPA4421 ST pRG51::FCF /Salmonella simsbury/ PflhDC::tetRA This study 
TPA4427 ST pRG19::FCF /Salmonella indina/ PflhDC::tetAR This study 
TPA4428 ST pRG39::FCF / Salmonella indina/ PflhDC::tetAR This study 
TPA4429 ST pRG51::FCF /Salmonella indina/ PflhDC::tetAR This study 
TPA4430 ST pRG19::FCF /Salmonella abony/ PflhDC::tetAR This study 
TPA4431 ST pRG39::FCF / Salmonella abony/ PflhDC::tetAR This study 
TPA4432 ST pRG51::FCF /Salmonella abony/ PflhDC::tetAR This study 
TPA4433 ST pRG19::FCF /Salmonella alchua/ PflhDC::tetAR This study 
TPA4434 ST pRG39::FCF / Salmonella alchua/ PflhDC::tetAR This study 
TPA4435 ST pRG51::FCF /Salmonella alchua/ PflhDC::tetAR This study 
TPA4436 ST pRG19::FCF /Salmonella vilvoorde/ PflhDC::tetAR This study 
TPA4437 ST pRG39::FCF / Salmonella vilvoorde/ PflhDC::tetAR This study 
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TPA4438 ST pRG51::FCF /Salmonella vilvoorde/ PflhDC::tetAR This study 
TPA4439 ST pRG19::FCF /Salmonella indina/ PflhDC::tetRA This study 
TPA4440 ST pRG39::FCF / Salmonella indina/ PflhDC::tetRA This study 
TPA4441 ST pRG51::FCF /Salmonella indina/ PflhDC::tetRA This study 
TPA4442 ST pRG19::FCF /Salmonella montevideo/ PflhDC::tetRA This study 
TPA4443 ST pRG39::FCF / Salmonella montevideo/ PflhDC::tetRA This study 
TPA4444 ST pRG51::FCF /Salmonella montevideo/ PflhDC::tetRA This study 
TPA4445 ST pRG19::FCF /Salmonella abony/ PflhDC::tetRA This study 
TPA4446 ST pRG39::FCF / Salmonella abony/ PflhDC::tetRA This study 
TPA4447 ST pRG51::FCF /Salmonella abony/ PflhDC::tetRA This study 
TPA4448 ST pRG19::FCF /Salmonella alchua/ PflhDC::tetRA This study 
TPA4449 ST pRG39::FCF / Salmonella alchua/ PflhDC::tetRA This study 
TPA4450 ST pRG51::FCF /Salmonella alchua/ PflhDC::tetRA This study 
TPA4451 ST pRG19::FCF /Salmonella vilvoorde/ PflhDC::tetRA This study 
TPA4452 ST pRG39::FCF / Salmonella vilvoorde/ PflhDC::tetRA This study 
TPA4453 ST pRG51::FCF /Salmonella vilvoorde/ PflhDC::tetRA This study 
TPA4466 ST pRG19::FCF /Salmonella montevideo/ PflhDC::tetAR This study 
TPA4467 ST pRG39::FCF / Salmonella montevideo/ PflhDC::tetAR This study 
TPA4468 ST pRG51::FCF /Salmonella montevideo/ PflhDC::tetAR This study 
TPA4469 ST pRG19::FCF /Salmonella limete/ PflhDC::tetAR This study 
TPA4470 ST pRG39::FCF / Salmonella limete/ PflhDC::tetAR This study 
TPA4471 ST pRG51::FCF /Salmonella limete/ PflhDC::tetAR This study 
TPA4472 ST pRG19::FCF /Salmonella limete/ PflhDC::tetRA This study 
TPA4473 ST pRG39::FCF / Salmonella limete/ PflhDC::tetRA This study 
TPA4474 ST pRG51::FCF /Salmonella limete/ PflhDC::tetRA This study 
TPA4475 ST pRG19::FCF /Salmonella panama/ PflhDC::tetAR This study 
TPA4476 ST pRG39::FCF / Salmonella panama/ PflhDC::tetAR This study 
TPA4477 ST pRG51::FCF /Salmonella panama/ PflhDC::tetAR This study 
TPA4478 ST pRG19::FCF /Salmonella panama/ PflhDC::tetRA This study 
TPA4479 ST pRG39::FCF / Salmonella panama/ PflhDC::tetRA This study 
TPA4480 ST pRG51::FCF /Salmonella panama/ PflhDC::tetRA This study 
TPA4481 ST pRG19::FCF /Salmonella vinhrady/ PflhDC::tetAR This study 
TPA4482 ST pRG39::FCF / Salmonella vinhrady/ PflhDC::tetAR This study 
TPA4483 ST pRG51::FCF /Salmonella vinhrady/ PflhDC::tetAR This study 
TPA4484 ST pRG19::FCF /Salmonella vinhrady/ PflhDC::tetRA This study 
TPA4485 ST pRG39::FCF / Salmonella vinhrady/ PflhDC::tetRA This study 
TPA4486 ST pRG51::FCF /Salmonella vinhrady/ PflhDC::tetRA This study 
TPA1944 EC DH5a / pBluescriptKSII Aldridge's Lab 
TPA1071 EC DH5a / pET28aMod Aldridge's Lab 
TPA4517 ST pRG39::FCF / Salmonella senftenberg This study 
TPA4518 ST pRG39::FCF / Salmonella gallinarum This study 
TPA4519 ST pRG39::FCF / Salmonella othmarschen  This study 
TPA4520 ST pRG39::FCF / Salmonella emek This study 
TPA4521 ST pRG39::FCF / Salmonella lexington This study 
TPA4522 ST pRG39::FCF / Salmonella haifa This study 
TPA4523 ST pRG39::FCF / Salmonella simsbury This study 
TPA4524 ST pRG39::FCF / Salmonella panama This study 
TPA4525 ST pRG39::FCF / Salmonella indina This study 
TPA4526 ST pRG39::FCF / Salmonella montevideo This study 
TPA4527 ST pRG39::FCF / Salmonella limete This study 
TPA4528 ST pRG39::FCF / Salmonella abony This study 
TPA4529 ST pRG39::FCF / Salmonella vinhrady This study 
TPA4530 ST pRG39::FCF / Salmonella alchua This study 
TPA4531 ST pRG39::FCF / Salmonella vilvoorde This study 
TPA4532 ST pRG51::FCF /Salmonella senftenberg This study 
TPA4533 ST pRG51::FCF /Salmonella gallinarum This study 
TPA4534 ST pRG51::FCF /Salmonella othmarschen  This study 
TPA4535 ST pRG51::FCF /Salmonella emek This study 
TPA4536 ST pRG51::FCF /Salmonella lexington This study 
TPA4537 ST pRG51::FCF /Salmonella haifa This study 
TPA4538 ST pRG51::FCF /Salmonella simsbury This study 
TPA4539 ST pRG51::FCF /Salmonella panama This study 
TPA4540 ST pRG51::FCF /Salmonella indina This study 
TPA4541 ST pRG51::FCF /Salmonella montevideo This study 
TPA4542 ST pRG51::FCF /Salmonella limete This study 
TPA4543 ST pRG51::FCF /Salmonella abony This study 
TPA4544 ST pRG51::FCF /Salmonella vinhrady This study 
TPA4545 ST pRG51::FCF /Salmonella alchua This study 
TPA4546 ST pRG51::FCF /Salmonella vilvoorde This study 
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TPA20 ST LT2/fliT::Km Aldridge's Lab 
TPA2546 ST LT2/ fliM::gfp ∆fliT ∆clpP::Cm Aldridge's Lab 
TPA3356 ST LT2/∆ydiV:FCF Aldridge's Lab 
TPA3369 ST LT2/fliM5978-gfp ∆fliZ7070::FKF Aldridge's Lab 
TPA4574 ST fliM5978-gfp ∆flhC::flhC437/ fliT::Km This study 
TPA4575 ST fliM5978-gfp ∆flhD::flhD437/ fliT::Km This study 
TPA4576 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/ fliT::Km 
This study 

TPA4577 ST fliM5978-gfp ∆flhC::flhC437/ fliM::gfp ∆fliT ∆clpP::Cm This study 
TPA4578 ST fliM5978-gfp ∆flhD::flhD437/ fliM::gfp ∆fliT ∆clpP::Cm This study 
TPA4579 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/ fliM::gfp ∆fliT ∆clpP::Cm 
This study 

TPA4580 ST fliM5978-gfp ∆flhC::flhC437/∆ydiV:FCF This study 
TPA4581 ST fliM5978-gfp ∆flhD::flhD437/∆ydiV:FCF This study 
TPA4582 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆ydiV:FCF 
This study 

TPA4583 ST fliM5978-gfp ∆flhC::flhC437/∆fliZ7070::FKF This study 
TPA4584 ST fliM5978-gfp ∆flhD::flhD437/∆fliZ7070::FKF This study 
TPA4585 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆fliZ7070::FKF 
This study 

TPA4588 EC DH5a/ pET28aMod/flhDsCe(4128) This study 
TPA4589 EC DH5a/ pET28aMod/flhDCs(1107) This study 
TPA4590 EC DH5a/ pET28aMod/flhDeCs(4135) This study 
TPA4591 EC DH5a/ pET28aMod/flhDCe(3997) This study 
TPA342 EC BL21 mark banfield 

TPA4592 EC BL21/pET28aMod/flhDsCe(4128) This study 
TPA4593 EC BL21/pET28aMod/flhDeCs(4135) This study 
TPA4594 EC BL21/pET28aMod/flhDCe(3997) This study 
TPA4599 ST fliM5978-gfp ∆flhC::flhC437/∆ydiV:FCF:FRT This study 
TPA4600 ST fliM5978-gfp ∆flhD::flhD437/∆ydiV:FCF:FRT This study 
TPA4601 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆ydiV:FCF:FRT 
This study 

TPA4626 ST fliM5978-gfp ∆flhC::flhC437/ fliT::Km/ PflhDC::tetRA This study 
TPA4627 ST fliM5978-gfp ∆flhD::flhD437/ fliT::Km/ PflhDC::tetRA This study 
TPA4628 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 

templatePCR1184/1086]1/fliT::Km/PflhDC::tetRA 
This study 

TPA4629 ST fliM5978-gfp ∆flhC::flhC437/∆fliZ7070::FKF/ PflhDC::tetRA This study 
TPA4630 ST fliM5978-gfp ∆flhD::flhD437/∆fliZ7070::FKF/ PflhDC::tetRA This study 
TPA4631 ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆fliZ7070::FKF/ PflhDC::tetRA 
This study 

TPA4632 ST LT2/fliM5978-gfp ∆fliZ7070::FKF/ PflhDC::tetRA This study 
TPA4650 ST ∆ydiV::FCF ∆fliA5647:FCF:FRT This study 
TPA4634 ST pRG39::FCF / fliM5978-gfp ∆flhC::flhC437/ fliT::Km/ PflhDC::tetRA This study 
TPA4635 ST pRG51::FCF /fliM5978-gfp ∆flhC::flhC437/ fliT::Km/ PflhDC::tetRA This study 
TPA4636 ST pRG39::FCF / fliM5978-gfp ∆flhD::flhD437/ fliT::Km/ PflhDC::tetRA This study 
TPA4637 ST pRG51::FCF /fliM5978-gfp ∆flhD::flhD437/ fliT::Km/ PflhDC::tetRA This study 

TPA4638 
ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) RP437 template 

PCR 1184/1086] 1/fliT::Km /PflhDC::tetRA 
This study 

TPA4639 
ST pRG51::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) RP437 template 

PCR 1184/1086] 1/fliT::Km /PflhDC::tetRA 
This study 

TPA4640 
ST pRG39::FCF / fliM5978 gfp ∆flhC::flhC437 /∆fliZ7070::FKF/ 

PflhDC::tetRA   
This study 

TPA4641 
ST pRG51::FCF/ fliM5978 gfp ∆flhC::flhC437 /∆fliZ7070::FKF/ 

PflhDC::tetRA    
This study 

TPA4642 
ST pRG39::FCF / fliM5978-gfp ∆flhD::flhD437 /∆fliZ7070::FKF/ 

PflhDC::tetRA 
This study 

TPA4643 
ST pRG51::FCF  / fliM5978-gfp ∆flhD::flhD437 /∆fliZ7070::FKF/ 

PflhDC::tetRA 
This study 

TPA4644 
ST pRG39::FCF / fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆fliZ7070::FKF/ PflhDC::tetRA 
This study 

TPA4645 
ST pRG51::FCF /fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆fliZ7070::FKF/ PflhDC::tetRA 
This study 

TPA4646 ST pRG39::FCF / LT2/fliM5978-gfp ∆fliZ7070::FKF/ PflhDC::tetRA This study 
TPA4647 ST pRG51::FCF /LT2/fliM5978-gfp ∆fliZ7070::FKF/ PflhDC::tetRA This study 
TPA4651 ST fliM5978-gfp ∆flhC::flhC437/∆ydiV:FCF:FRT/ PflhDC::tetRA    This study 
TPA4652 ST fliM5978-gfp ∆flhD::flhD437/∆ydiV:FCF:FRT/ PflhDC::tetRA    This study 

TPA4653 
ST fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1/∆ydiV:FCF:FRT/ PflhDC::tetRA    
This study 

TPA4654 ST fliM5978-gfp ∆fliT::km/ PflhDC::tetRA    This study 
TPA4650 ST ∆ydiV::FCF ∆fliA5647:FCF::FRT This study 
TPA4664 ST ∆ydiV::FCF ∆fliA5647:FCF::FRT/ PflhDC::tetRA    This study 
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TPA4655 ST Prg39 ::FCF /fliM5978-gfp ∆flhC::flhC437 /∆ydiV:FCF:FRT/ 
PflhDC::tetRA    

This study 

TPA4656 ST pRG51::FCF /fliM5978-gfp ∆flhC::flhC437 /∆ydiV:FCF:FRT/ 
PflhDC::tetRA    

This study 

TPA4657 ST pRG39::FCF /fliM5978-gfp ∆flhD::flhD437 /∆ydiV :FCF:FRT/ 
PflhDC::tetRA    

This study 

TPA4658 ST pRG51::FCF /fliM5978-gfp ∆flhD::flhD437 /∆ydiV :FCF:FRT/ 
PflhDC::tetRA    

This study 

TPA4659 ST pRG39::FCF /fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 
PCR1184/1086]1/∆ydiV:FCF:FRT/ PflhDC::tetRA    

This study 

TPA4660 ST pRG51::FCF /fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 
PCR1184/1086]1/∆ydiV:FCF:FRT/ PflhDC::tetRA    

This study 

TPA4661 ST pRG39::FCF /fliM5978gfp∆fliT::km/PflhDC::tetRA     This study 
TPA4662 ST pRG51::FCF /fliM5978gfp∆fliT::km/PflhDC::tetRA     This study 
TPA4664 ST ∆ydiV::FCF ∆fliA5647:FCF::FRT/PflhDC::tetRA     This study 
TPA4665 ST pRG39::FCF /∆ydiV::FCF ∆fliA5647: FCF::FRT/ PflhDC::tetRA     This study 
TPA4666 ST pRG51::FCF /∆ydiV::FCF ∆fliA5647: FCF::FRT/ PflhDC::tetRA     This study 
TPA4670 ST ∆clpP::FCF/fliM5978 (FliM-(GAGAGA)-GFP2+(-14bp from fliN 

AUG)(Mot+) 
This study 

TPA4678 ST ∆clpP::FCF/fliM5978 (FliM-(GAGAGA)-GFP2+(-14bp from fliN 
AUG)(Mot+):FCF::FRT 

This study 

TPA4679 ST ∆clpP::FCF fliM5978-gfp∆flhC::flhC437FCF::FRT  This study 
TPA4680 ST ∆clpP::FCF fliM5978-gfp ∆flhDC::flhDC(EC) [RP437 template 

PCR1184/1086]1 FCF::FRT 
This study 

TPA4681 ST ∆clpP::FCF fliM5978-gfp∆flhC::flhD437FCF::FRT  This study 
TPA640 EC pPA158 (flhDC+) / BL21 Aldridge's Lab 

TPA4706 ST ∆clpP::FCF/fliM5978 (FliM-(GAGAGA)-GFP2+(-14bp from fliN 
AUG)(Mot+):FCF::FRT/PflhDC::tetRA     

This study 

TPA4707 ST ∆clpP::FCF fliM5978-gfp∆flhC:: flhC437FCF :: FRT / 
PflhDC::tetRA      

This study 

TPA4708 ST ∆clpP::FCF fliM5978-gfp ∆flhDC::flhDC(EC) [ RP437template 
PCR1184/1086]1 FCF::FRT / PflhDC::tetRA     

This study 

TPA4709 ST ∆clpP::FCF fliM5978-gfp∆flhC:: flhD437FCF:: FRT/PflhDC::tetRA     This study 
TPA4710 ST pRG39::FCF/∆clpP::FCF/fliM5978 (FliM-(GAGAGA)-GFP2+(-14bp 

from fliN AUG)(Mot+) :FCF::FRT / PflhDC::tetRA     
This study 

TPA4711 ST pRG51::FCF /∆clpP::FCF/fliM5978 (FliM-(GAGAGA)-GFP2+(-
14bp from fliN AUG)(Mot+) :FCF::FRT / PflhDC::tetRA     

This study 

TPA4712 ST pRG39::FCF /∆clpP::FCF fliM5978-gfp∆flhC:: flhC437FCF :: FRT / 
PflhDC::tetRA      

This study 

TPA4713 ST pRG51::FCF /∆clpP::FCF fliM5978-gfp∆flhC:: flhC437FCF :: FRT / 
PflhDC::tetRA      

This study 

TPA4714 ST pRG39::FCF /∆clpP::FCF fliM5978-gfp ∆flhDC :: flhDC(EC) 
[ RP437template PCR1184/1086]1 FCF::FRT / PflhDC::tetRA     

This study 

TPA4715 ST pRG51::FCF /∆clpP::FCF fliM5978-gfp ∆flhDC :: flhDC(EC) 
[ RP437template PCR1184/1086]1 FCF::FRT / PflhDC::tetRA     

This study 

TPA4716 ST pRG39::FCF /∆clpP::FCF fliM5978-gfp∆flhC::flhD437FCF:: 
FRT/PflhDC::tetRA      

This study 

TPA4717 ST pRG51::FCF /∆clpP::FCF fliM5978-gfp∆flhC::flhD437FCF:: 
FRT/PflhDC::tetRA      

This study 

TPA4843 ST LT2/∆ thrW locus::I-SceI cmR  This study 
TPA4844 ST java/∆ thrW locus::I-SceI cmR This study 
TPA4845 ST indina/∆ thrW locus::I-SceI cmR This study 
TPA4846 ST limete/∆ thrW locus::I-SceI cmR This study 
TPA4847 ST vinhrady/∆ thrW locus::I-SceI cmR This study 
TPA4848 ST alchua/∆ thrW locus::I-SceI cmR This study 
TPA4849 ST LT2/∆ I-SceI::Ptr-nt kan R This study 
TPA4850 ST java/∆ I-SceI cmR::Ptr-nt kan R This study 
TPA4851 ST indina/∆ I-SceI cmR::Ptr-nt kan R This study 
TPA4852 ST limete/∆ I-SceI cmR::Ptr-nt kan R This study 
TPA4853 ST vinhrady/∆ I-SceI cmR::Ptr-nt kan R This study 
TPA4854 ST alchua/∆ I-SceI cmR::Ptr-nt kan R This study 
TPA4855 ST LT2/ pPROmotA This study 
TPA4856 ST Java/ pPROmotA This study 
TPA4857 ST Emek/ pPROmotA This study 
TPA4858 ST Lexington/ pPROmotA This study 
TPA4859 ST Indina / pPROmotA This study 
TPA4860 ST Vinhrady / pPROmotA This study 
TPA4861 ST Alachua / pPROmotA This study 
TPA4862 ST LT2 / pPROflgB This study 
TPA4863 ST Java / pPROflgB This study 
TPA4864 ST Emek / pPROflgB This study 
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TPA4865 ST Lexington / pPROflgB This study 
TPA4866 ST Indina / pPROflgB This study 
TPA4867 ST Vinhrady / pPROflgB This study 
TPA4868 ST Alachua / pPROflgB This study 
TPA4869 ST LT2 / pPROflgA5 This study 
TPA4870 ST Java / pPROflgA5 This study 
TPA4871 ST Emek / pPROflgA5 This study 
TPA4872 ST Lexington / pPROflgA5 This study 
TPA4873 ST Indina / pPROflgA5 This study 
TPA4874 ST Vinhrady / pPROflgA5 This study 
TPA4875 ST Alachua / pPROflgA5 This study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Eleven: Bibliography 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



236 
 

Acheson, D. and Hohmann, E.L. (2001) 'Nontyphoidal salmonellosis', Clinical 
Infectious Diseases, 32(2), pp. 263-269. 
 
Achtman, M., Wain, J., Weill, F.-X., Nair, S., Zhou, Z., Sangal, V., Krauland, M.G., 
Hale, J.L., Harbottle, H. and Uesbeck, A. (2012a) 'Multilocus sequence typing as a 
replacement for serotyping in Salmonella enterica', PLoS Pathog, 8(6), p. e1002776. 
 
Achtman, M., Wain, J., Weill, F.-X., Nair, S., Zhou, Z., Sangal, V., Krauland, M.G., 
Hale, J.L., Harbottle, H. and Uesbeck, A. (2012b) 'Multilocus sequence typing as a 
replacement for serotyping in Salmonella enterica', PLoS pathogens, 8(6), p. 
e1002776. 
 
Adkins, J.N., Mottaz, H.M., Norbeck, A.D., Gustin, J.K., Rue, J., Clauss, T.R.W., 
Purvine, S.O., Rodland, K.D., Heffron, F. and Smith, R.D. (2006) 'Analysis of the 
Salmonella typhimurium proteome through environmental response toward infectious 
conditions', Molecular & Cellular Proteomics, 5(8), pp. 1450-1461. 
 
Aldridge, C., Poonchareon, K., Saini, S., Ewen, T., Soloyva, A., Rao, C.V., Imada, K., 
Minamino, T. and Aldridge, P.D. (2010) 'The interaction dynamics of a negative 
feedback loop regulates flagellar number in Salmonella enterica serovar 
Typhimurium', Molecular microbiology, 78(6), pp. 1416-1430. 
 
Aldridge, P. and Hughes, K.T. (2002) 'Regulation of flagellar assembly', Current 
opinion in microbiology, 5(2), pp. 160-165. 
 
Aldridge, P., Karlinsey, J.E., Becker, E., Chevance, F.F.V. and Hughes, K.T. (2006a) 
'Flk prevents premature secretion of the anti‐σ factor FlgM into the periplasm', 
Molecular microbiology, 60(3), pp. 630-643. 
 
Aldridge, P.D., Karlinsey, J.E., Aldridge, C., Birchall, C., Thompson, D., Yagasaki, J. 
and Hughes, K.T. (2006b) 'The flagellar-specific transcription factor, σ28, is the type 
III secretion chaperone for the flagellar-specific anti-σ28 factor FlgM', Genes & 
development, 20(16), pp. 2315-2326. 
 
Andersen-Nissen, E., Smith, K.D., Strobe, K.L., Barrett, S.L.R., Cookson, B.T., 
Logan, S.M. and Aderem, A. (2005) 'Evasion of Toll-like receptor 5 by flagellated 
bacteria', Proceedings of the National Academy of Sciences of the United States of 
America, 102(26), pp. 9247-9252. 
 
Arora, S.K., Ritchings, B.W., Almira, E.C., Lory, S. and Ramphal, R. (1998) 'The 
Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin 
adhesion', Infection and immunity, 66(3), pp. 1000-1007. 
 
Ashkenazi, S., Cleary, T.G., Murray, B.E., Wanger, A. and Pickering, L.K. (1988) 
'Quantitative analysis and partial characterization of cytotoxin production by 
Salmonella strains', Infection and immunity, 56(12), pp. 3089-3094. 
 
Ayres, J.S. and Vance, R.E. (2012) 'Cellular teamwork in antibacterial innate 
immunity', Nature immunology, 13(2), pp. 115-117. 
 
Bardy, S.L., Ng, S.Y.M. and Jarrell, K.F. (2003) 'Prokaryotic motility structures', 
Microbiology, 149(2), pp. 295-304. 



237 
 

Barembruch, C. and Hengge, R. (2007) 'Cellular levels and activity of the flagellar 
sigma factor FliA of Escherichia coli are controlled by FlgM‐modulated proteolysis', 
Molecular microbiology, 65(1), pp. 76-89. 
 
Bartlett, D.H., Frantz, B.B. and Matsumura, P. (1988) 'Flagellar transcriptional 
activators FlbB and FlaI: gene sequences and 5'consensus sequences of operons 
under FlbB and FlaI control', Journal of bacteriology, 170(4), pp. 1575-1581. 
 
Bateman, B.T., Donegan, N.P., Jarry, T.M., Palma, M. and Cheung, A.L. (2001) 
'Evaluation of a tetracycline-inducible promoter inStaphylococcus aureus in vitro and 
in vivo and its application in demonstrating the role of sigB in microcolony formation', 
Infection and Immunity, 69(12), pp. 7851-7857. 
 
Bennett, J.C.Q., Thomas, J., Fraser, G.M. and Hughes, C. (2001) 'Substrate 
complexes and domain organization of the Salmonella flagellar export chaperones 
FlgN and FliT', Molecular microbiology, 39(3), pp. 781-791. 
 
Berens, C. (2003) 'Gene expression by tetracyclines. Constraints of resistance 
regulation in bacteria shape TetR for application in eukaryotes', Eur. J. Biochem., 15, 
pp. 3109-3121. 
 
Berkley, J.A., Bejon, P., Mwangi, T., Gwer, S., Maitland, K., Williams, T.N., 
Mohammed, S., Osier, F., Kinyanjui, S. and Fegan, G. (2009) 'HIV infection, 
malnutrition, and invasive bacterial infection among children with severe malaria', 
Clinical infectious diseases, 49(3), pp. 336-343. 
 
Bertrand, K.P., Postle, K., Wray, L.V. and Reznikoff, W.S. (1983) 'Overlapping 
divergent promoters control expression of Tn10 tetracycline resistance', Gene, 23(2), 
pp. 149-156. 
 
Betancor, L., Yim, L., Martínez, A., Fookes, M., Sasias, S., Schelotto, F., Thomson, 
N., Maskell, D. and Chabalgoity, J.A. (2012) 'Genomic comparison of the closely 
related Salmonella enterica serovars Enteritidis and Dublin', The open microbiology 
journal, 6(1). 
 
Bhan, M.K., Bahl, R. and Bhatnagar, S. (2005) 'Typhoid and paratyphoid fever', The 
Lancet, 366(9487), pp. 749-762. 
 
Blackwell, J.M., Goswami, T., Evans, C.A.W., Sibthorpe, D., Papo, N., White, J.K., 
Searle, S., Miller, E.N., Peacock, C.S. and Mohammed, H. (2001) 'SLC11A1 
(formerly NRAMP1) and disease resistance', Cellular microbiology, 3(12), pp. 773-
784. 
 
Blank, K., Hensel, M. and Gerlach, R.G. (2011) 'Rapid and highly efficient method for 
scarless mutagenesis within the Salmonella enterica chromosome', PloS one, 6(1), p. 
e15763. 
 
Blaser, M.J. and Newman, L.S. (1982) 'A review of human salmonellosis: I. Infective 
dose', Review of infectious diseases, 4(6), pp. 1096-1106. 
 
Bogomolnaya, L.M., Aldrich, L., Ragoza, Y., Talamantes, M., Andrews, K.D., 
McClelland, M. and Andrews-Polymenis, H.L. (2014) 'Identification of novel factors 



238 
 

involved in modulating motility of Salmonella enterica serotype Typhimurium', PloS 
one, 9(11), p. e111513. 
 
Boyen, F., Pasmans, F., Van Immerseel, F., Morgan, E., Adriaensen, C., 
Hernalsteens, J.-P., Decostere, A., Ducatelle, R. and Haesebrouck, F. (2006) 
'Salmonella Typhimurium SPI-1 genes promote intestinal but not tonsillar colonization 
in pigs', Microbes and infection, 8(14), pp. 2899-2907. 
 
Braun, T.F., Poulson, S., Gully, J.B., Empey, J.C., Van Way, S., Putnam, A. and 
Blair, D.F. (1999) 'Function of proline residues of MotA in torque generation by the 
flagellar motor of Escherichia coli', Journal of bacteriology, 181(11), pp. 3542-3551. 
 
Bray, D. (2001) Cell movements: from molecules to motility. Garland Science. 
 
Brenner, F., Villar, R., Angulo, F., Tauxe, R. and Swaminathan, B. (2000) 'Salmonella 
nomenclature', Journal of clinical microbiology, 38(7), pp. 2465-2467. 
 
Bronze, M.S. and Greenfield, R.A. (2005) Biodefense: principles and pathogens. 
Horizon Bioscience. 
 
Brown, J.D., Saini, S., Aldridge, C., Herbert, J., Rao, C.V. and Aldridge, P.D. (2008) 
'The rate of protein secretion dictates the temporal dynamics of flagellar gene 
expression', Molecular microbiology, 70(4), pp. 924-937. 
 
Brown, P.N., Mathews, M.A.A., Joss, L.A., Hill, C.P. and Blair, D.F. (2005) 'Crystal 
structure of the flagellar rotor protein FliN from Thermotoga maritima', Journal of 
bacteriology, 187(8), pp. 2890-2902. 
 
Campos, A. and Matsumura, P. (2001) 'Extensive alanine scanning reveals protein–
protein and protein–DNA interaction surfaces in the global regulator FlhD from 
Escherichia coli', Molecular microbiology, 39(3), pp. 581-594. 
 
Carter, M.E. and Quinn, P.J. (2000) 'Salmonella infections in dogs and cats', 
Salmonella in domestic animals, pp. 231-244. 
 
Celum, C.L., Chaisson, R.E., Rutherford, G.W., Barnhart, J.L. and Echenberg, D.F. 
(1987) 'Incidence of salmonellosis in patients with AIDS', The Journal of infectious 
diseases, 156(6), pp. 998-1002. 
 
Chadsey, M.S. and Hughes, K.T. (2001) 'A multipartite interaction between 
Salmonella transcription factor σ 28 and its anti-sigma factor FlgM: implications for σ 
28 holoenzyme destabilization through stepwise binding', Journal of molecular 
biology, 306(5), pp. 915-929. 
 
Cheesbrough, J.S., Taxman, B.C., Green, S.D.R., Mewa, F.I. and Numbi, A. (1997) 
'Clinical definition for invasive Salmonella infection in African children', The Pediatric 
infectious disease journal, 16(3), pp. 277-283. 
 
Chevance, F.F.V. and Hughes, K.T. (2008) 'Coordinating assembly of a bacterial 
macromolecular machine', Nature Reviews Microbiology, 6(6), pp. 455-465. 
 



239 
 

Chevance, F.F.V., Takahashi, N., Karlinsey, J.E., Gnerer, J., Hirano, T., Samudrala, 
R., Aizawa, S.-I. and Hughes, K.T. (2007) 'The mechanism of outer membrane 
penetration by the eubacterial flagellum and implications for spirochete evolution', 
Genes & development, 21(18), pp. 2326-2335. 
 
Chilcott, G.S. and Hughes, K.T. (1998) 'The type III secretion determinants of the 
flagellar anti‐transcription factor, FlgM, extend from the amino‐terminus into the anti‐
σ28 domain', Molecular microbiology, 30(5), pp. 1029-1040. 
 
Chilcott, G.S. and Hughes, K.T. (2000) 'Coupling of Flagellar Gene Expression to 
Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli', 
Microbiology and Molecular Biology Reviews, 64(4), pp. 694-708. 
 
Cirillo, D.M., Valdivia, R.H., Monack, D.M. and Falkow, S. (1998) 'Macrophage‐
dependent induction of the Salmonella pathogenicity island 2 type III secretion 
system and its role in intracellular survival', Molecular microbiology, 30(1), pp. 175-
188. 
 
Claret, L., Calder, S.R., Higgins, M. and Hughes, C. (2003) 'Oligomerization and 
activation of the FliI ATPase central to bacterial flagellum assembly', Molecular 
microbiology, 48(5), pp. 1349-1355. 
 
Claret, L. and Hughes, C. (2000a) 'Functions of the subunits in the FlhD 2 C 2 
transcriptional master regulator of bacterial flagellum biogenesis and swarming', 
Journal of molecular biology, 303(4), pp. 467-478. 
 
Claret, L. and Hughes, C. (2000b) 'Rapid Turnover of FlhD and FlhC, the Flagellar 
Regulon Transcriptional Activator Proteins, duringProteus Swarming', Journal of 
bacteriology, 182(3), pp. 833-836. 
 
Claret, L. and Hughes, C. (2002) 'Interaction of the atypical prokaryotic transcription 
activator FlhD 2 C 2 with early promoters of the flagellar gene hierarchy', Journal of 
molecular biology, 321(2), pp. 185-199. 
 
Clayton, D.J., Bowen, A.J., Hulme, S.D., Buckley, A.M., Deacon, V.L., Thomson, 
N.R., Barrow, P.A., Morgan, E., Jones, M.A. and Watson, M. (2008) 'Analysis of the 
role of 13 major fimbrial subunits in colonisation of the chicken intestines by 
Salmonella enterica serovar Enteritidis reveals a role for a novel locus', BMC 
microbiology, 8(1), p. 228. 
 
Coburn, B., Grassl, G.A. and Finlay, B.B. (2007) 'Salmonella, the host and disease: a 
brief review', Immunology and cell biology, 85(2), pp. 112-118. 
 
Collazo, C.M. and Galán, J.E. (1997) 'The invasion-associated type-III protein 
secretion system in< i> Salmonella</i>–a review', Gene, 192(1), pp. 51-59. 
 
Collinson, S.K., Liu, S.-L., Clouthier, S.C., Banser, P.A., Doran, J.L., Sanderson, K.E. 
and Kay, W.W. (1996) 'The location of four fimbrin-encoding genes, agfA, fimA, sefA 
and sefD, on the Salmonella enteritidis and/or S. typhimurium XbaI-BlnI genomic 
restriction maps', Gene, 169(1), pp. 75-80. 
 



240 
 

Crump, J.A., Luby, S.P. and Mintz, E.D. (2004) 'The global burden of typhoid fever', 
Bulletin of the World Health Organization, 82(5), pp. 346-353. 
 
D'Aoust, J.Y., Daley, E., Crozier, M. and Sewell, A.M. (1990) 'Pet turtles: a continuing 
international threat to public health', American journal of epidemiology, 132(2), pp. 
233-238. 
 
da Silva, A.M.T., Kaulbach, H.C., Chuidian, F.S., Lambert, D.R., Suffredini, A.F. and 
Danner, R.L. (1993) 'Shock and multiple-organ dysfunction after self-administration of 
Salmonella endotoxin', New England Journal of Medicine, 328(20), pp. 1457-1460. 
 
Datsenko, K.A. and Wanner, B.L. (2000) 'One-step inactivation of chromosomal 
genes in Escherichia coli K-12 using PCR products', Proceedings of the National 
Academy of Sciences, 97(12), pp. 6640-6645. 
 
Daughdrill, G.W., Chadsey, M.S., Karlinsey, J.E., Hughes, K.T. and Dahlquist, F.W. 
(1997) 'The C-terminal half of the anti-sigma factor, FlgM, becomes structured when 
bound to its target, σ28', Nature Structural & Molecular Biology, 4(4), pp. 285-291. 
 
Daughdrill, G.W., Hanely, L.J. and Dahlquist, F.W. (1998) 'The C-terminal half of the 
anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring 
helical conformations', Biochemistry, 37(4), pp. 1076-1082. 
 
De Buck, J., Van Immerseel, F., Haesebrouck, F. and Ducatelle, R. (2004) 
'Colonization of the chicken reproductive tract and egg contamination by Salmonella', 
Journal of Applied Microbiology, 97(2), pp. 233-245. 
 
De Buck, J., Van Immerseel, F., Haesebrouck, F. and Ducatelle, R. (2005) 
'Protection of laying hens against Salmonella Enteritidis by immunization with type 1 
fimbriae', Veterinary microbiology, 105(2), pp. 93-101. 
 
De Groote, M.A., Ochsner, U.A., Shiloh, M.U., Nathan, C., McCord, J.M., Dinauer, 
M.C., Libby, S.J., Vazquez-Torres, A., Xu, Y. and Fang, F.C. (1997) 'Periplasmic 
superoxide dismutase protects Salmonella from products of phagocyte NADPH-
oxidase and nitric oxide synthase', Proceedings of the National Academy of 
Sciences, 94(25), pp. 13997-14001. 
 
De Jong, B. and Ekdahl, K. (2006) 'The comparative burden of salmonellosis in the 
European Union member states, associated and candidate countries', BMC Public 
Health, 6(1), p. 4. 
 
Domınguez, C., Gomez, I. and Zumalacarregui, J. (2002) 'Prevalence of Salmonella 
and Campylobacter in retail chicken meat in Spain', International journal of food 
microbiology, 72(1), pp. 165-168. 
 
Doran, J.L., Collinson, K.S., Clouthier, S.C., Cebula, T.A., Koch, W.H., Burian, J., 
Banser, P.A., Todd, E.C.D. and Kay, W.W. (1996) 'Diagnostic potential ofsefADNA 
probes toSalmonella enteritidisand certain other O-serogroup D1Salmonella 
serovars', Molecular and cellular probes, 10(4), pp. 233-246. 
 
DuPont, H.L. (2009) 'Bacterial diarrhea', New England Journal of Medicine, 361(16), 
pp. 1560-1569. 



241 
 

Eaves-Pyles, T., Murthy, K., Liaudet, L., Virág, L., Ross, G., Soriano, F.G., Szabó, C. 
and Salzman, A.L. (2001) 'Flagellin, a novel mediator of Salmonella-induced 
epithelial activation and systemic inflammation: IκBα degradation, induction of nitric 
oxide synthase, induction of proinflammatory mediators, and cardiovascular 
dysfunction', The Journal of Immunology, 166(2), pp. 1248-1260. 
 
Edwards, R.A., Schifferli, D.M. and Maloy, S.R. (2000) 'A role for Salmonella fimbriae 
in intraperitoneal infections', Proceedings of the National Academy of Sciences, 
97(3), pp. 1258-1262. 
 
Elvidge, J.L. (2013) 'Identification and characterisation of Salmonella enterica serovar 
Typhimurium factors playing a role in the colonisation of the porcine gut'. 
 
Erhardt, M., Mertens, M.E., Fabiani, F.D. and Hughes, K.T. (2014) 'ATPase-
independent type-III protein secretion in Salmonella enterica', PLoS Genet, 10(11), p. 
e1004800. 
 
Fàbrega, A. and Vila, J. (2013) 'Salmonella enterica serovar Typhimurium skills to 
succeed in the host: virulence and regulation', Clinical microbiology reviews, 26(2), 
pp. 308-341. 
 
Fan, F. and Macnab, R.M. (1996) 'Enzymatic characterization of FliI an ATPase 
involved in flagellar assembly in Salmonella typhimurium', Journal of Biological 
Chemistry, 271(50), pp. 31981-31988. 
 
Fan, F., Ohnishi, K., Francis, N.R. and Macnab, R.M. (1997) 'The FliP and FliR 
proteins of Salmonella typhimurium, putative components of the type III flagellar 
export apparatus, are located in the flagellar basal body', Molecular microbiology, 
26(5), pp. 1035-1046. 
 
Farmer, J.J., McWhorter, A.C., Morris, G.K. and Brenner, D.J. (1984) 'The 
Salmonella-Arizona group of Enterobacteriaceae: nomenclature, classification, and 
reporting', Clinical Microbiology Newsletter, 6(9), pp. 63-66. 
 
Farrant, J.L., Sansone, A., Canvin, J.R., Pallen, M.J., Langford, P.R., Wallis, T.S., 
Dougan, G. and Kroll, J.S. (1997) 'Bacterial copper‐and zinc‐cofactored superoxide 
dismutase contributes to the pathogenesis of systemic salmonellosis', Molecular 
microbiology, 25(4), pp. 785-796. 
 
Faulds-Pain, A., Birchall, C., Aldridge, C., Smith, W.D., Grimaldi, G., Nakamura, S., 
Miyata, T., Gray, J., Li, G. and Tang, J.X. (2011) 'Flagellin redundancy in Caulobacter 
crescentus and its implications for flagellar filament assembly', Journal of 
bacteriology, 193(11), pp. 2695-2707. 
 
Fedorka-Cray, P.J., Gray, J.T. and Wray, C. (2000) 'Salmonella infections in pigs', 
Salmonella in domestic animals, pp. 191-207. 
 
Fedorka-Cray, P.J., Kelley, L.C., Stabel, T.J., Gray, J.T. and Laufer, J.A. (1995) 
'Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in 
swine', Infection and Immunity, 63(7), pp. 2658-2664. 
 



242 
 

Ferris, H.U., Furukawa, Y., Minamino, T., Kroetz, M.B., Kihara, M., Namba, K. and 
Macnab, R.M. (2005) 'FlhB regulates ordered export of flagellar components via 
autocleavage mechanism', Journal of Biological Chemistry, 280(50), pp. 41236-
41242. 
 
Figueiredo, R.F.R. (2016) Microarray-based detection of antibiotic resistance and 
virulence factor genes in Salmonella spp. isolated from food-producing animals and 
processed food. 
 
Figueroa‐Bossi, N., Uzzau, S., Maloriol, D. and Bossi, L. (2001) 'Variable assortment 
of prophages provides a transferable repertoire of pathogenic determinants in 
Salmonella', Molecular microbiology, 39(2), pp. 260-272. 
 
Fluit, A.C. (2005) 'Towards more virulent and antibiotic‐resistant Salmonella?', FEMS 
Immunology & Medical Microbiology, 43(1), pp. 1-11. 
 
Foley, S.L., Johnson, T.J., Ricke, S.C., Nayak, R. and Danzeisen, J. (2013) 
'Salmonella pathogenicity and host adaptation in chicken-associated serovars', 
Microbiology and Molecular Biology Reviews, 77(4), pp. 582-607. 
 
Folkesson, A., Advani, A., Sukupolvi, S., Pfeifer, J.D., Normark, S. and Löfdahl, S. 
(1999) 'Folkesson, A., Advani, A., Sukupolvi, S., Pfeifer, JD, Normark, S., Lofdahl, 
S.(1999) Multiple insertions of fimbrial operons correlate with the evolution of 
Salmonella serovars responsible for human disease. Molecular Microbiology 33: 612-
622'. 
 
Food, U.S. and Drug, A. (2012) 'Managing food safety: a manual for the voluntary 
use of HACCP principles for operators of food service and retail establishments'. 
 
Francis, N.R., Sosinsky, G.E., Thomas, D. and DeRosier, D.J. (1994) 'Isolation, 
characterization and structure of bacterial flagellar motors containing the switch 
complex', Journal of molecular biology, 235(4), pp. 1261-1270. 
 
Fraser, G.M., Bennett, J.C.Q. and Hughes, C. (1999) 'Substrate‐specific binding of 
hook‐associated proteins by FlgN and FliT, putative chaperones for flagellum 
assembly', Molecular microbiology, 32(3), pp. 569-580. 
 
Fraser, G.M., González-Pedrajo, B., Tame, J.R.H. and Macnab, R.M. (2003a) 
'Interactions of FliJ with the Salmonella type III flagellar export apparatus', Journal of 
bacteriology, 185(18), pp. 5546-5554. 
 
Fraser, G.M., Hirano, T., Ferris, H.U., Devgan, L.L., Kihara, M. and Macnab, R.M. 
(2003b) 'Substrate specificity of type III flagellar protein export in Salmonella is 
controlled by subdomain interactions in FlhB', Molecular microbiology, 48(4), pp. 
1043-1057. 
 
Fraser, G.M. and Hughes, C. (1999) 'Swarming motility', Current opinion in 
microbiology, 2(6), pp. 630-635. 
 
Frye, J., Karlinsey, J.E., Felise, H.R., Marzolf, B., Dowidar, N., McClelland, M. and 
Hughes, K.T. (2006) 'Identification of new flagellar genes of Salmonella enterica 
serovar Typhimurium', Journal of bacteriology, 188(6), pp. 2233-2243. 



243 
 

Gaffky, G. (1884) 'Zur aetiologie des abdominaltyphus', Mitteillungen aus dem 
Kaiserlichen Gesundheitsamt, 2, pp. 372-420. 
 
Gelfanova, V., Hansen, E.J. and Spinola, S.M. (1999) 'Cytolethal distending toxin of 
Haemophilus ducreyi induces apoptotic death of Jurkat T cells', Infection and 
immunity, 67(12), pp. 6394-6402. 
 
Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. and Madara, J.L. (2001) 
'Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce 
epithelial proinflammatory gene expression', The Journal of Immunology, 167(4), pp. 
1882-1885. 
 
Gillen, K.L. and Hughes, K.T. (1993) 'Transcription from two promoters and 
autoregulation contribute to the control of expression of the Salmonella typhimurium 
flagellar regulatory gene flgM', Journal of bacteriology, 175(21), pp. 7006-7015. 
 
González‐Pedrajo, B., Fraser, G.M., Minamino, T. and Macnab, R.M. (2002) 
'Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type 
III flagellar protein export pathway', Molecular microbiology, 45(4), pp. 967-982. 
 
González‐Pedrajo, B., Minamino, T., Kihara, M. and Namba, K. (2006) 'Interactions 
between C ring proteins and export apparatus components: a possible mechanism 
for facilitating type III protein export', Molecular microbiology, 60(4), pp. 984-998. 
 
Goodier, R.I. and Ahmer, B.M.M. (2001) 'SirA orthologs affect both motility and 
virulence', Journal of bacteriology, 183(7), pp. 2249-2258. 
 
Gordon, M.A. (2008a) '< i> Salmonella</i> infections in immunocompromised adults', 
Journal of Infection, 56(6), pp. 413-422. 
 
Gordon, M.A. (2008b) 'Salmonella infections in immunocompromised adults', Journal 
of Infection, 56(6), pp. 413-422. 
 
Gordon, M.A. (2011) 'Invasive Non-typhoidal Salmonella Disease–epidemiology, 
pathogenesis and diagnosis', Current opinion in infectious diseases, 24(5), p. 484. 
 
Gordon, M.A., Banda, H.T., Gondwe, M., Gordon, S.B., Boeree, M.J., Walsh, A.L., 
Corkill, J.E., Hart, C.A., Gilks, C.F. and Molyneux, M.E. (2002) 'Non-typhoidal 
Salmonella bacteraemia among HIV-infected Malawian adults: high mortality and 
frequent recrudescence', Aids, 16(12), pp. 1633-1641. 
 
Gordon, M.A., Graham, S.M., Walsh, A.L., Wilson, L., Phiri, A., Molyneux, E., Zijlstra, 
E.E., Heyderman, R.S., Hart, C.A. and Molyneux, M.E. (2008) 'Epidemics of invasive 
Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection 
associated with multidrug resistance among adults and children in Malawi', Clinical 
Infectious Diseases, 46(7), pp. 963-969. 
 
Gossen, M. and Bujard, H. (1992) 'Tight control of gene expression in mammalian 
cells by tetracycline-responsive promoters', Proceedings of the National Academy of 
Sciences, 89(12), pp. 5547-5551. 
 



244 
 

Graham, S.M. (2010) 'Nontyphoidal salmonellosis in Africa', Current opinion in 
infectious diseases, 23(5), pp. 409-414. 
 
Grimont, P.A.D. and Weill, F.-X. (2007) 'Antigenic formulae of the Salmonella 
serovars', WHO collaborating centre for reference and research on Salmonella, 9, pp. 
1-161. 
 
Groisman, E.A. and Ochman, H. (1996) 'Pathogenicity islands: bacterial evolution in 
quantum leaps', Cell, 87(5), pp. 791-794. 
 
Guerra, B., Soto, S., Helmuth, R. and Mendoza, M.C. (2002) 'Characterization of a 
self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical 
isolates carrying two integron-borne gene cassettes together with virulence and drug 
resistance genes', Antimicrobial agents and chemotherapy, 46(9), pp. 2977-2981. 
 
Guiney, D.G. and Fierer, J. (2011) 'The role of the spv genes in Salmonella 
pathogenesis', Salmonella host-pathogen interactions, p. 65. 
 
Gulig, P.A. (1990) 'Virulence plasmids of Salmonella typhimurium and other 
salmonellae', Microbial pathogenesis, 8(1), pp. 3-11. 
 
Gulig, P.A., Danbara, H., Guiney, D.G., Lax, A.J., Norel, F. and Rhen, M. (1993) 
'Molecular analysis of spv virulence genes of the Salmonella virulence plasmids', 
Molecular microbiology, 7(6), pp. 825-830. 
 
Gyles, C.L., Prescott, J.F., Songer, G. and Thoen, C.O. (2008) Pathogenesis of 
bacterial infections in animals. John Wiley & Sons. 
 
Haider, M.G., Chowdhury, E.H., Sharif, S.M.K. and Hossain, M.M. (2014) 
'Pathogenesis of Pullorum Disease (PD) in Chickens by Local Isolate of Salmonella 
pullorum in Bangladesh', SAARC Journal of Agriculture, 11(2), pp. 1-16. 
 
Hakkila, K., Maksimow, M., Karp, M. and Virta, M. (2002) 'Reporter genes lucFF, 
luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial 
sensors', Analytical biochemistry, 301(2), pp. 235-242. 
 
Hall, G.A. and Jones, P.W. (1977) 'A study of the pathogenesis of experimental 
Salmonella dublin abortion in cattle', Journal of Comparative Pathology, 87(1), pp. 
53-65. 
 
Hamann, L., Buß, H. and Tannich, E. (1997) 'Tetracycline-controlled gene expression 
in Entamoeba histolytica', Molecular and biochemical parasitology, 84(1), pp. 83-91. 
Harshey, R.M. (2003) 'Bacterial motility on a surface: many ways to a common goal', 
Annual Reviews in Microbiology, 57(1), pp. 249-273. 
 
Hatha, M., Vivekanandhan, A.A. and Julie Joice, G. (2005) 'Antibiotic resistance 
pattern of motile aeromonads from farm raised fresh water fish', International journal 
of food microbiology, 98(2), pp. 131-134. 
 
Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Eugene, C.Y., Goodlett, D.R., 
Eng, J.K., Akira, S., Underhill, D.M. and Aderem, A. (2001) 'The innate immune 



245 
 

response to bacterial flagellin is mediated by Toll-like receptor 5', Nature, 410(6832), 
pp. 1099-1103. 
 
Hensel, M. (2000) 'Salmonella pathogenicity island 2', Molecular microbiology, 36(5), 
pp. 1015-1023. 
 
Heywood, W., Henderson, B. and Nair, S.P. (2005) 'Cytolethal distending toxin: 
creating a gap in the cell cycle', Journal of medical microbiology, 54(3), pp. 207-216. 
Hillen, W. and Berens, C. (1994) 'Mechanisms underlying expression of Tn10 
encoded tetracycline resistance', Annual Reviews in Microbiology, 48(1), pp. 345-
369. 
 
Hirano, T., Minamino, T. and Macnab, R.M. (2001a) 'The role in flagellar rod 
assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific 
muramidase', Journal of molecular biology, 312(2), pp. 359-369. 
 
Hirano, T., Minamino, T. and Macnab, R.M. (2001b) 'The role in flagellar rod 
assembly of the N-terminal domain of< i> Salmonella</i> FlgJ, a flagellum-specific 
muramidase', Journal of molecular biology, 312(2), pp. 359-369. 
 
Hirano, T., Minamino, T., Namba, K. and Macnab, R.M. (2003) 'Substrate specificity 
classes and the recognition signal for Salmonella type III flagellar export', Journal of 
bacteriology, 185(8), pp. 2485-2492. 
 
Hirano, T., Yamaguchi, S., Oosawa, K. and Aizawa, S.l. (1994) 'Roles of FliK and 
FlhB in determination of flagellar hook length in Salmonella typhimurium', Journal of 
bacteriology, 176(17), pp. 5439-5449. 
 
Hitchcock, P.J., Leive, L., Mäkelä, P.H., Rietschel, E.T., Strittmatter, W. and 
Morrison, D.C. (1986) 'Lipopolysaccharide nomenclature--past, present, and future', 
Journal of bacteriology, 166(3), p. 699. 
 
Ho, T.D., Figueroa-Bossi, N., Wang, M., Uzzau, S., Bossi, L. and Slauch, J.M. (2002) 
'Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage 
of Salmonella enterica serovar Typhimurium', Journal of bacteriology, 184(19), pp. 
5234-5239. 
 
Hoiczyk, E. (2000) 'Gliding motility in cyanobacteria: observations and possible 
explanations', Archives of Microbiology, 174(1), pp. 11-17. 
 
Holt, J., Krieg, N., Sneath, P. and Staley, J. (1986) Bergey’s manual of systematic 
bacteriology, vol 2. Williams and Wilkins, Baltimore. ISBN 0-683-07893-3. 
 
Homma, M. and Iino, T. (1985) 'Excretion of unassembled hook-associated proteins 
by Salmonella typhimurium', Journal of bacteriology, 164(3), pp. 1370-1372. 
 
Homma, M., Kutsukake, K., Hasebe, M., Iino, T. and Macnab, R.M. (1990) 'FlgB, 
FlgC, FlgF and FlgG: a family of structurally related proteins in the flagellar basal 
body of Salmonella typhimurium', Journal of molecular biology, 211(2), pp. 465-477. 
 
Honko, A.N. and Mizel, S.B. (2005) 'Effects of flagellin on innate and adaptive 
immunity', Immunologic research, 33(1), pp. 83-101. 



246 
 

Hossain, M.S., Chowdhury, E.H., Islam, M.M., Haider, M.G. and Hossain, M.M. 
(2006) 'Avian Salmonella infection: isolation and identification of organisms and 
histopathological study', Bangladesh Journal of Veterinary Medicine, 4(1), pp. 7-12. 
 
Howard, Z.R., O'Bryan, C.A., Crandall, P.G. and Ricke, S.C. (2012) 'Salmonella 
Enteritidis in shell eggs: current issues and prospects for control', Food Research 
International, 45(2), pp. 755-764. 
 
Huang, I.F., Wagener, M.M., Hsieh, K.-S., Liu, Y.-C., Wu, T.-C., Lee, W.-Y. and 
Chiou, C.C. (2004) 'Nontyphoid salmonellosis in Taiwan children: clinical 
manifestations, outcome and antibiotic resistance', Journal of pediatric 
gastroenterology and nutrition, 38(5), pp. 518-523. 
 
Hughes, K.T., Gillen, K.L., Semon, M.J. and Karlinsey, J.E. (1993) 'Sensing structural 
intermediates in bacterial flagellar assembly by export of a negative regulator', 
Science, pp. 1277-1280. 
 
Ikeda, T., Asakura, S. and Kamiya, R. (1989) 'Total reconstitution of Salmonella 
flagellar filaments from hook and purified flagellin and hook-associated proteins in 
vitro', Journal of molecular biology, 209(1), pp. 109-114. 
 
Imada, K., Minamino, T., Kinoshita, M., Furukawa, Y. and Namba, K. (2010) 
'Structural insight into the regulatory mechanisms of interactions of the flagellar type 
III chaperone FliT with its binding partners', Proceedings of the National Academy of 
Sciences, 107(19), pp. 8812-8817. 
 
Jones, B.D. (2005) 'Salmonella invasion gene regulation: a story of environmental 
awareness', J Microbiol, 43(Spec No), pp. 110-117. 
 
Kaiser, D. (2007) 'Bacterial swarming: a re-examination of cell-movement patterns', 
Current Biology, 17(14), pp. R561-R570. 
 
Kaiser, P., Rothwell, L., Galyov, E.E., Barrow, P.A., Burnside, J. and Wigley, P. 
(2000) 'Differential cytokine expression in avian cells in response to invasion by 
Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum', 
Microbiology, 146(12), pp. 3217-3226. 
 
Kamel, H.A. (2006) 'Typhoid osteomyelitis of the lumbar spine', Hong Kong Med J, 
12(5), pp. 391-3. 
 
Karasova, D., Sebkova, A., Havlickova, H., Sisak, F., Volf, J., Faldyna, M., 
Ondrackova, P., Kummer, V. and Rychlik, I. (2010) 'Influence of 5 major Salmonella 
pathogenicity islands on NK cell depletion in mice infected with Salmonella enterica 
serovar Enteritidis', BMC microbiology, 10(1), p. 75. 
 
Karlinsey, J.E., Lonner, J., Brown, K.L. and Hughes, K.T. (2000a) 
'Translation/secretion coupling by type III secretion systems', Cell, 102(4), pp. 487-
497. 
 
Karlinsey, J.E., Tanaka, S., Bettenworth, V., Yamaguchi, S., Boos, W., Aizawa, S.I. 
and Hughes, K.T. (2000b) 'Completion of the hook–basal body complex of the 



247 
 

Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription', 
Molecular microbiology, 37(5), pp. 1220-1231. 
 
Katayama, E., Shiraishi, T., Oosawa, K., Baba, N. and Aizawa, S.-I. (1996) 
'Geometry of the Flagellar Motor in the Cytoplasmic Membrane of Salmonella 
typhimuriumas Determined by Stereo-photogrammetry of Quick-freeze Deep-etch 
Replica Images', Journal of molecular biology, 255(3), pp. 458-475. 
 
Kauffmann, F. (1947) 'On the serology of the Salmonella group', APMIS, 24(3‐4), pp. 
242-250. 
 
Kearns, D.B. (2010) 'A field guide to bacterial swarming motility', Nature Reviews 
Microbiology, 8(9), pp. 634-644. 
 
Khan, A.Q. (1969) 'Animal Salmonellosis in the Sudan'. A PhD. Thesis, University of 
Khartoum, Sudan. 
 
Kingsley, R.A., Msefula, C.L., Thomson, N.R., Kariuki, S., Holt, K.E., Gordon, M.A., 
Harris, D., Clarke, L., Whitehead, S. and Sangal, V. (2009) 'Epidemic multiple drug 
resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa 
have a distinct genotype', Genome research, 19(12), pp. 2279-2287. 
 
Klemm, P. (1994) Fimbriae Adhesion, Genetics, Biogenesis, and Vaccines. CRC 
Press. 
 
Koirala, S., Mears, P., Sim, M., Golding, I., Chemla, Y.R., Aldridge, P.D. and Rao, 
C.V. (2014a) 'A nutrient-tunable bistable switch controls motility in', Salmonella 
enterica, pp. 01611-14. 
 
Koirala, S., Mears, P., Sim, M., Golding, I., Chemla, Y.R., Aldridge, P.D. and Rao, 
C.V. (2014b) 'A nutrient-tunable bistable switch controls motility in Salmonella 
enterica serovar Typhimurium', MBio, 5(5), pp. e01611-14. 
 
Konkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B. 
and Mickelson, J. (2004) 'Secretion of virulence proteins from Campylobacter jejuni is 
dependent on a functional flagellar export apparatus', Journal of bacteriology, 
186(11), pp. 3296-3303. 
 
Kubori, T., Shimamoto, N., Yamaguchi, S., Namba, K. and Aizawa, S.-I. (1992a) 
'Morphological pathway of flagellar assembly in Salmonella typhimurium', Journal of 
molecular biology, 226(2), pp. 433-446. 
 
Kubori, T., Shimamoto, N., Yamaguchi, S., Namba, K. and Aizawa, S.-I. (1992b) 
'Morphological pathway of flagellar assembly in< i> Salmonella typhimurium</i>', 
Journal of molecular biology, 226(2), pp. 433-446. 
 
Kupz, A., Guarda, G., Gebhardt, T., Sander, L.E., Short, K.R., Diavatopoulos, D.A., 
Wijburg, O.L.C., Cao, H., Waithman, J.C. and Chen, W. (2012) 'NLRC4 
inflammasomes in dendritic cells regulate noncognate effector function by memory 
CD8+ T cells', Nature immunology, 13(2), pp. 162-169. 



248 
 

Kutsukake, K. (1994) 'Excretion of the anti-sigma factor through a flagellar 
substructure couples flagellar gene expression with flagellar assembly in Salmonella 
typhimurium', Molecular and General Genetics MGG, 243(6), pp. 605-612. 
 
Kutsukake, K. (1997) 'Autogenous and global control of the flagellar master operon, 
flhD, in Salmonella typhimurium', Molecular and General Genetics MGG, 254(4), pp. 
440-448. 
 
Kutsukake, K., Ikebe, T. and Yamamoto, S. (1999) 'Two novel regulatory genes, fliT 
and fliZ, in the flagellar regulon of Salmonella', Genes & genetic systems, 74(6), pp. 
287-292. 
 
Kutsukake, K., Iyoda, S., Ohnishi, K. and Iino, T. (1994) 'Genetic and molecular 
analyses of the interaction between the flagellum‐specific sigma and anti‐sigma 
factors in Salmonella typhimurium', The EMBO journal, 13(19), pp. 4568-4576. 
 
Kutsukake, K., Ohya, Y. and Iino, T. (1990) 'Transcriptional analysis of the flagellar 
regulon of Salmonella typhimurium', Journal of bacteriology, 172(2), pp. 741-747. 
 
Langridge, G., Wain, J. and Nair, S. 'August 2008, posting date. Chapter 8.6. 2.2. 
Invasive Salmonellosis in Humans', EcoSal-Escherichia coli and Salmonella: Cell Mol 
Biol. Available from: http://www. ecosal. org. ASM Press, Washington, DC. 
 
Lanois, A., Jubelin, G. and Givaudan, A. (2008) 'FliZ, a flagellar regulator, is at the 
crossroads between motility, haemolysin expression and virulence in the insect 
pathogenic bacterium Xenorhabdus', Molecular microbiology, 68(2), pp. 516-533. 
 
Lara-Tejero, M.a. and Galán, J.E. (2002) 'Cytolethal distending toxin: limited damage 
as a strategy to modulate cellular functions', Trends in microbiology, 10(3), pp. 147-
152. 
 
Lee, C., Kim, J., Shin, S.G. and Hwang, S. (2006) 'Absolute and relative QPCR 
quantification of plasmid copy number in Escherichia coli', Journal of biotechnology, 
123(3), pp. 273-280. 
 
Li, C., Louise, C.J., Shi, W. and Adler, J. (1993) 'Adverse conditions which cause lack 
of flagella in Escherichia coli', Journal of bacteriology, 175(8), pp. 2229-2235. 
 
Liu, X., Fujita, N., Ishihama, A. and Matsumura, P. (1995) 'The C-terminal region of 
the alpha subunit of Escherichia coli RNA polymerase is required for transcriptional 
activation of the flagellar level II operons by the FlhD/FlhC complex', Journal of 
bacteriology, 177(17), pp. 5186-5188. 
 
Liu, X. and Matsumura, P. (1994) 'The FlhD/FlhC complex, a transcriptional activator 
of the Escherichia coli flagellar class II operons', Journal of bacteriology, 176(23), pp. 
7345-7351. 
 
Lockman, H.A. and Curtiss, R. (1992) 'Virulence of non-type 1-fimbriated and 
nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid 
fever', Infection and immunity, 60(2), pp. 491-496. 
 
Macnab, R. (1996) 'Flagella and motility', Escherichia coli and Salmonella. 



249 
 

Macnab, R.M. (2003) 'How bacteria assemble flagella', Annual Reviews in 
Microbiology, 57(1), pp. 77-100. 
 
Macnab, R.M. (2004) 'Type III flagellar protein export and flagellar assembly', 
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1694(1), pp. 207-217. 
Maiden, M.C. (2006) 'Multilocus sequence typing of bacteria', Annu. Rev. Microbiol., 
60, pp. 561-588.  
 
Männik, J., Driessen, R., Galajda, P., Keymer, J.E. and Dekker, C. (2009) 'Bacterial 
growth and motility in sub-micron constrictions', Proceedings of the National 
Academy of Sciences, 106(35), pp. 14861-14866. 
 
Marineli, F., Tsoucalas, G., Karamanou, M. and Androutsos, G. 'The career of Mary 
Mallon (1869-1938) as a cook: A history of typhoid fever outbreak'. 
 
Martínez, A., Torello, S. and Kolter, R. (1999) 'Sliding motility in mycobacteria', 
Journal of bacteriology, 181(23), pp. 7331-7338. 
 
Martins, M., McCusker, M.P., McCabe, E.M., O'Leary, D., Duffy, G. and Fanning, S. 
(2013) 'Evidence of metabolic switching and implications for food safety from the 
phenome (s) of Salmonella enterica serovar Typhimurium DT104 cultured at selected 
points across the pork production food chain', Applied and environmental 
microbiology, 79(18), pp. 5437-5449. 
 
Mayola Coromina, A., Barbé García, J. and Campoy Sánchez, S. (2014) 
'Relationship between the SOS system and the chemoreceptors clustering in 
Salmonella enterica sv. Typhimurium'. 
 
McBride, M.J. (2004) 'Cytophaga-flavobacterium gliding motility', Journal of molecular 
microbiology and biotechnology, 7(1-2), pp. 63-71. 
 
McDermott, P.F., Ciacci-Woolwine, F., Snipes, J.A. and Mizel, S.B. (2000) 'High-
affinity interaction between gram-negative flagellin and a cell surface polypeptide 
results in human monocyte activation', Infection and immunity, 68(10), pp. 5525-
5529. 
 
McEntire, J., Acheson, D., Siemens, A., Eilert, S. and Robach, M. (2014) 'The public 
health value of reducing Salmonella levels in raw meat and poultry', Food Protection 
Trends, 34(6), pp. 386-392. 
 
McMurry, J.L., Murphy, J.W. and González-Pedrajo, B. (2006) 'The FliN− FliH 
Interaction Mediates Localization of Flagellar Export ATPase FliI to the C Ring 
Complex', Biochemistry, 45(39), pp. 11790-11798. 
 
Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, 
P.M. and Tauxe, R.V. (1999) 'Food-related illness and death in the United States', 
Emerging infectious diseases, 5(5), p. 607. 
 
Meier, I., Wray, L.V. and Hillen, W. (1988) 'Differential regulation of the Tn10-
encoded tetracycline resistance genes tetA and tetR by the tandem tet operators O1 
and O2', The EMBO journal, 7(2), p. 567. 



250 
 

Mermin, J., Hutwagner, L., Vugia, D., Shallow, S., Daily, P., Bender, J., Koehler, J., 
Marcus, R., Angulo, F.J. and Emerging Infections Program FoodNet Working, G. 
(2004) 'Reptiles, amphibians, and human Salmonella infection: a population-based, 
case-control study', Clinical Infectious Diseases, 38(Supplement 3), pp. S253-S261. 
 
Minamino, T., Chu, R., Yamaguchi, S. and Macnab, R.M. (2000) 'Role of FliJ in 
Flagellar Protein Export in Salmonella', Journal of bacteriology, 182(15), pp. 4207-
4215. 
 
Minamino, T., González‐Pedrajo, B., Yamaguchi, K., Aizawa, S.I. and Macnab, R.M. 
(1999) 'FliK, the protein responsible for flagellar hook length control in Salmonella, is 
exported during hook assembly', Molecular microbiology, 34(2), pp. 295-304. 
 
Minamino, T., Iino, T. and Kutuskake, K. (1994) 'Molecular characterization of the 
Salmonella typhimurium flhB operon and its protein products', Journal of 
bacteriology, 176(24), pp. 7630-7637. 
 
Minamino, T., Kazetani, K.-i., Tahara, A., Suzuki, H., Furukawa, Y., Kihara, M. and 
Namba, K. (2006) 'Oligomerization of the bacterial flagellar ATPase FliI is controlled 
by its extreme N-terminal region', Journal of molecular biology, 360(2), pp. 510-519. 
Minamino, T. and Macnab, R.M. (1999) 'Components of the Salmonella flagellar 
export apparatus and classification of export substrates', Journal of Bacteriology, 
181(5), pp. 1388-1394. 
 
Minamino, T. and Macnab, R.M. (2000a) 'FliH, a soluble component of the type III 
flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its 
ATPase activity', Molecular microbiology, 37(6), pp. 1494-1503. 
Minamino, T. and Macnab, R.M. (2000b) 'Interactions among components of the 
Salmonella flagellar export apparatus and its substrates', Molecular microbiology, 
35(5), pp. 1052-1064. 
 
Morgan, E., Campbell, J.D., Rowe, S.C., Bispham, J., Stevens, M.P., Bowen, A.J., 
Barrow, P.A., Maskell, D.J. and Wallis, T.S. (2004) 'Identification of host‐specific 
colonization factors of Salmonella enterica serovar Typhimurium', Molecular 
microbiology, 54(4), pp. 994-1010. 
 
Mouslim, C. and Hughes, K.T. (2014) 'The effect of cell growth phase on the 
regulatory cross-talk between flagellar and Spi1 virulence gene expression', PLoS 
pathogens, 10(3), p. e1003987. 
 
Moyed, H.S., Nguyen, T.T. and Bertrand, K.P. (1983) 'Multicopy Tn10 tet plasmids 
confer sensitivity to induction of tet gene expression', Journal of bacteriology, 155(2), 
pp. 549-556. 
 
Müller, V., Jones, C.J., Kawagishi, I., Aizawa, S. and Macnab, R.M. (1992) 
'Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium 
and identification of the FliE protein as a component of the flagellar hook-basal body 
complex', Journal of bacteriology, 174(7), pp. 2298-2304. 
 
Murray, A. (2009) Investigations into quinolone and fluoroquinolone resistance in 
Salmonella enterica. University of Glasgow. 



251 
 

Murray, T.S. and Kazmierczak, B.I. (2008) 'Pseudomonas aeruginosa exhibits sliding 
motility in the absence of type IV pili and flagella', Journal of bacteriology, 190(8), pp. 
2700-2708. 
 
Nambu, T. and Kutsukake, K. (2000) 'The Salmonella FlgA protein, a putative 
periplasmic chaperone essential for flagellar P ring formation', Microbiology, 146(5), 
pp. 1171-1178. 
 
Nambu, T., Minamino, T., Macnab, R.M. and Kutsukake, K. (1999) 'Peptidoglycan-
Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation in 
Salmonella typhimurium', Journal of bacteriology, 181(5), pp. 1555-1561. 
 
O'Toole, G., Kaplan, H.B. and Kolter, R. (2000) 'Biofilm formation as microbial 
development', Annual Reviews in Microbiology, 54(1), pp. 49-79. 
 
Ochman, H., Soncini, F.C., Solomon, F. and Groisman, E.A. (1996) 'Identification of a 
pathogenicity island required for Salmonella survival in host cells', Proceedings of the 
National Academy of Sciences, 93(15), pp. 7800-7804. 
 
Ohl, M.E. and Miller, S.I. (2001) 'Salmonella: a model for bacterial pathogenesis', 
Annual review of medicine, 52(1), pp. 259-274. 
 
Ohnishi, K., Kutsukake, K., Suzuki, H. and Iino, T. (1990) 'Gene fliA encodes an 
alternative sigma factor specific for flagellar operons in Salmonella typhimurium', 
Molecular and General Genetics MGG, 221(2), pp. 139-147. 
 
Okoro, C.K., Kingsley, R.A., Connor, T.R., Harris, S.R., Parry, C.M., Al-Mashhadani, 
M.N., Kariuki, S., Msefula, C.L., Gordon, M.A. and de Pinna, E. (2012) 
'Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in 
sub-Saharan Africa', Nature genetics, 44(11), pp. 1215-1221. 
 
Pallen, M.J., Penn, C.W. and Chaudhuri, R.R. (2005) 'Bacterial flagellar diversity in 
the post-genomic era', Trends in microbiology, 13(4), pp. 143-149. 
 
Palmer, S.R., Soulsby, L. and Simpson, D.I.H. (1998) Zoonoses: biology, clinical 
practice and public health control. Oxford University Press. 
 
Park, S.-Y., Pontes, M.H. and Groisman, E.A. (2015) 'Flagella-independent surface 
motility in Salmonella enterica serovar Typhimurium', Proceedings of the National 
Academy of Sciences, 112(6), pp. 1850-1855. 
 
Partridge, J.D. and Harshey, R.M. (2013) 'Swarming: flexible roaming plans', Journal 
of bacteriology, 195(5), pp. 909-918. 
 
Paul, K., Harmon, J.G. and Blair, D.F. (2006) 'Mutational analysis of the flagellar rotor 
protein FliN: identification of surfaces important for flagellar assembly and switching', 
Journal of bacteriology, 188(14), pp. 5240-5248. 
 
Pell, A.N. (1997) 'Manure and microbes: public and animal health problem?', Journal 
of Dairy Science, 80(10), pp. 2673-2681. 
 



252 
 

Pfaffl, M.W. (2012) 'Quantification strategies in real-time polymerase chain reaction', 
Martin Filion, Hg., Quantitative real-time PCR in Applied Microbiology, pp. 53-62. 
Poonchareon, K. (2013) 'The role of protein: protein interactions in regulating flagellar 
assembly'. 
 
Popoff, M., Bockemühl, J. and Brenner, F. (1998) 'Supplement 1997 (no. 41) to the 
Kauffmann-White scheme', Research in microbiology, 149(8), pp. 601-604. 
 
Prüß, B.M., Liu, X., Hendrickson, W. and Matsumura, P. (2001) 'FlhD/FlhC-regulated 
promoters analyzed by gene array and lacZ gene fusions', FEMS microbiology 
letters, 197(1), pp. 91-97. 
 
Prüß, B.M. and Matsumura, P. (1997) 'Cell cycle regulation of flagellar genes', 
Journal of bacteriology, 179(17), pp. 5602-5604. 
 
Pui, C.F., Wong, W.C., Chai, L.C., Robin, T., Ponniah, J., Sahroni, M., Hidayah, N., 
Anyi, U., Mohamad Ghazali, F. and Cheah, Y.K. (2011) 'Salmonella: A foodborne 
pathogen', International Food Research Journal, 18(2), pp. 465-473. 
 
Rabsch, W., Tschäpe, H. and Bäumler, A.J. (2001) 'Non-typhoidal salmonellosis: 
emerging problems', Microbes and infection, 3(3), pp. 237-247. 
 
Rappleye, C.A. and Roth, J.R. (1997) 'A Tn10 derivative (T-POP) for isolation of 
insertions with conditional (tetracycline-dependent) phenotypes', Journal of 
bacteriology, 179(18), pp. 5827-5834. 
 
Raupach, B., Kurth, N., Pfeffer, K. and Kaufmann, S.H.E. (2003) 'Salmonella 
typhimurium strains carrying independent mutations display similar virulence 
phenotypes yet are controlled by distinct host defense mechanisms', The Journal of 
Immunology, 170(12), pp. 6133-6140. 
 
Reddy, E.A., Shaw, A.V. and Crump, J.A. (2010) 'Community-acquired bloodstream 
infections in Africa: a systematic review and meta-analysis', The Lancet infectious 
diseases, 10(6), pp. 417-432. 
 
Reeves, M., Evins, G., Heiba, A., Plikaytis, B. and Farmer, J.J. (1989) 'Clonal nature 
of Salmonella typhi and its genetic relatedness to other salmonellae as shown by 
multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov', 
Journal of clinical microbiology, 27(2), pp. 313-320. 
 
Rotger, R. and Casadesús, J. (2010) 'The virulence plasmids of Salmonella', 
International Microbiology, 2(3), pp. 177-184. 
 
Ryan, K.J. and Ray, C.G. (2004) 'Medical microbiology', McGraw Hill, 4, p. 370. 
Saini, S., Brown, J.D., Aldridge, P.D. and Rao, C.V. (2008) 'FliZ Is a posttranslational 
activator of FlhD4C2-dependent flagellar gene expression', Journal of bacteriology, 
190(14), pp. 4979-4988. 
 
Saini, S., Slauch, J.M., Aldridge, P.D. and Rao, C.V. (2010) 'Role of cross talk in 
regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 
and type 1 fimbrial genes', Journal of bacteriology, 192(21), pp. 5767-5777. 



253 
 

Salazar-Gonzalez, R.M. and McSorley, S.J. (2005) 'Salmonella flagellin, a microbial 
target of the innate and adaptive immune system', Immunology letters, 101(2), pp. 
117-122. 
 
Salmon, D.E. (1886) 'Recent Progress in Investigation of Hog Cholera', Public health 
papers and reports, 12, p. 38. 
 
Salmonella Subcommittee of the Nomenclature Committee of the International 
Society for, M. (1934) 'The genus Salmonella lignieres, 1900', The Journal of 
hygiene, 34(3), p. 333. 
 
Samonis, G., Maraki, S., Kouroussis, C., Mavroudis, D. and Georgoulias, V. (2003) 
'Salmonella enterica pneumonia in a patient with lung cancer', Journal of clinical 
microbiology, 41(12), pp. 5820-5822. 
 
Samuel, B. (1996) 'Medical microbiology', The University of Texas Medical Branch at 
Galveston–Tx, USA. 
 
Sarguna, P. and Lakshmi, V. 'Correspondence-Neonatal septic arthritis due to 
Salmonella typhimurium', Indian Journal of Medical Microbiology, 23(1), pp. 66-67. 
 
Sato, Y., Takaya, A., Mouslim, C., Hughes, K.T. and Yamamoto, T. (2014) 'FliT 
selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-
dependent protease, ClpXP', Journal of Biological Chemistry, 289(47), pp. 33001-
33011. 
 
Schmidt, H. and Hensel, M. (2004) 'Pathogenicity islands in bacterial pathogenesis', 
Clinical microbiology reviews, 17(1), pp. 14-56. 
 
Shenker, B.J., Demuth, D.R. and Zekavat, A. (2006) 'Exposure of lymphocytes to 
high doses of Actinobacillus actinomycetemcomitans cytolethal distending toxin 
induces rapid onset of apoptosis-mediated DNA fragmentation', Infection and 
immunity, 74(4), pp. 2080-2092. 
 
Shi, W., Li, C., Louise, C.J. and Adler, J. (1993) 'Mechanism of adverse conditions 
causing lack of flagella in Escherichia coli', Journal of bacteriology, 175(8), pp. 2236-
2240. 
 
Shin, S. and Park, C. (1995) 'Modulation of flagellar expression in Escherichia coli by 
acetyl phosphate and the osmoregulator OmpR', Journal of bacteriology, 177(16), pp. 
4696-4702. 
 
Shivaprasad, H.L., Methner, U. and Barrow, P.A. (2013) 'Salmonella infections in the 
domestic fowl', Salmonella in Domestic Animals, pp. 162-192. 
 
Shrout, J.D. (2015) 'A fantastic voyage for sliding bacteria', Trends in microbiology, 
23(5), pp. 244-246. 
 
Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J.-P. and Sirard, J.-C. 
(2001) 'Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated 
migration of dendritic cells', Proceedings of the National Academy of Sciences, 
98(24), pp. 13722-13727. 



254 
 

Sim, M. (2014) The Abundance and Localisation of Flagella in Salmonella Enterica 
and Escherichia Coli. University of Newcastle upon Tyne. 
 
Sim, M., Koirala, S., Picton, D., Strahl, H., Hoskisson, P.A., Rao, C.V., Gillespie, C.S. 
and Aldridge, P.D. (2017) 'Growth rate control of flagellar assembly in Escherichia 
coli strain RP437', Scientific reports, 7. 
 
Sliusarenko, O., Heinritz, J., Emonet, T. and Jacobs‐Wagner, C. (2011) 'High‐
throughput, subpixel precision analysis of bacterial morphogenesis and intracellular 
spatio‐temporal dynamics', Molecular microbiology, 80(3), pp. 612-627. 
 
Smith, N.H., Beltran, P. and Selander, R.K. (1990) 'Recombination of Salmonella 
phase 1 flagellin genes generates new serovars', Journal of bacteriology, 172(5), pp. 
2209-2216. 
 
Smith, T.G. and Hoover, T.R. (2009) 'Deciphering bacterial flagellar gene regulatory 
networks in the genomic era', Advances in applied microbiology, 67, pp. 257-295. 
Sojka, W.J., Wray, C., Shreeve, J. and Benson, A.J. (1977) 'Incidence of Salmonella 
infection in animals in England and Wales, 1968–1974', Journal of Hygiene, 78(01), 
pp. 43-56. 
 
Solari, C.A., Mandarino, J.R., Panizzutti, M.H.M. and Farias, R.H.G. (2003) 'A new 
serovar and a new serological variant belonging to Salmonella enterica subspecies 
Diarizonae', Memórias do Instituto Oswaldo Cruz, 98(4), pp. 501-502. 
 
Sorenson, M.K., Ray, S.S. and Darst, S.A. (2004) 'Crystal structure of the flagellar 
σ/anti-σ complex σ 28/FlgM reveals an intact σ factor in an inactive conformation', 
Molecular cell, 14(1), pp. 127-138. 
 
Soutourina, O., Kolb, A., Krin, E., Laurent-Winter, C., Rimsky, S., Danchin, A. and 
Bertin, P. (1999) 'Multiple control of flagellum biosynthesis in Escherichia coli: role of 
H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription 
of the flhDC master operon', Journal of bacteriology, 181(24), pp. 7500-7508. 
 
Soutourina, O.A. and Bertin, P.N. (2003) 'Regulation cascade of flagellar expression 
in Gram-negative bacteria', FEMS microbiology reviews, 27(4), pp. 505-523. 
 
Soutourina, O.A., Krin, E., Laurent-Winter, C., Hommais, F., Danchin, A. and Bertin, 
P.N. (2002) 'Regulation of bacterial motility in response to low pH in Escherichia coli: 
the role of H-NS protein', Microbiology, 148(5), pp. 1543-1551. 
 
Spanò, S. and Galán, J.E. (2008) 'A novel pathway for exotoxin delivery by an 
intracellular pathogen', Current opinion in microbiology, 11(1), pp. 15-20. 
 
Sperandio, V., Torres, A.G. and Kaper, J.B. (2002) 'Quorum sensing Escherichia coli 
regulators B and C (QseBC): a novel two‐component regulatory system involved in 
the regulation of flagella and motility by quorum sensing in E. coli', Molecular 
microbiology, 43(3), pp. 809-821. 
 
Stafford, G.P., Ogi, T. and Hughes, C. (2005) 'Binding and transcriptional activation 
of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2', 
Microbiology, 151(6), pp. 1779-1788. 



255 
 

Stevenson, W.J. and Hughes, K.L. (1988) Synopsis of zoonoses in Australia. 
Government Publishing Service. 
 
Stewart, C.R., Rossier, O. and Cianciotto, N.P. (2009) 'Surface translocation by 
Legionella pneumophila: a form of sliding motility that is dependent upon type II 
protein secretion', Journal of bacteriology, 191(5), pp. 1537-1546. 
 
Sun, Y.-H., Rolán, H.G. and Tsolis, R.M. (2007) 'Injection of flagellin into the host cell 
cytosol by Salmonella enterica serotype Typhimurium', Journal of Biological 
Chemistry, 282(47), pp. 33897-33901. 
 
Takaya, A., Erhardt, M., Karata, K., Winterberg, K., Yamamoto, T. and Hughes, K.T. 
(2012) 'YdiV: a dual function protein that targets FlhDC for ClpXP‐dependent 
degradation by promoting release of DNA‐bound FlhDC complex', Molecular 
microbiology, 83(6), pp. 1268-1284. 
 
Terashima, H., Kojima, S. and Homma, M. (2008) 'Flagellar motility in bacteria: 
structure and function of flagellar motor', International review of cell and molecular 
biology, 270, pp. 39-85. 
 
Thomas, D.R., Francis, N.R., Xu, C. and DeRosier, D.J. (2006) 'The three-
dimensional structure of the flagellar rotor from a clockwise-locked mutant of 
Salmonella enterica serovar Typhimurium', Journal of bacteriology, 188(20), pp. 
7039-7048. 
 
Thomson, N.R., Clayton, D.J., Windhorst, D., Vernikos, G., Davidson, S., Churcher, 
C., Quail, M.A., Stevens, M., Jones, M.A. and Watson, M. (2008) 'Comparative 
genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 
provides insights into evolutionary and host adaptation pathways', Genome research, 
18(10), pp. 1624-1637. 
 
Timme, R.E., Pettengill, J.B., Allard, M.W., Strain, E., Barrangou, R., Wehnes, C., 
Van Kessel, J.S., Karns, J.S., Musser, S.M. and Brown, E.W. (2013) 'Phylogenetic 
diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from 
genome-wide reference-free SNP characters', Genome biology and evolution, 5(11), 
pp. 2109-2123. 
 
Todar, K. (2009) 'Todar's Online Textbook of Bacteriology. 2008', Kenneth Todar 
University of Wisconsin-Madison Dept. of Bacterology. 
 
Todar, K. (2015) 'Textbook of bacteriology'. 
 
Tomoyasu, T., Ohkishi, T., Ukyo, Y., Tokumitsu, A., Takaya, A., Suzuki, M., Sekiya, 
K., Matsui, H., Kutsukake, K. and Yamamoto, T. (2002) 'The ClpXP ATP-dependent 
protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium', 
Journal of bacteriology, 184(3), pp. 645-653. 
 
Tomoyasu, T., Takaya, A., Isogai, E. and Yamamoto, T. (2003) 'Turnover of FlhD and 
FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP‐
dependent ClpXP protease', Molecular microbiology, 48(2), pp. 443-452. 
 



256 
 

Torrence, M.E. and Isaacson, R.E. (2008) Microbial food safety in animal agriculture: 
current topics. John Wiley & Sons. 
 
Townsend, S.M., Kramer, N.E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., 
Stevens, K., Maloy, S., Parkhill, J. and Dougan, G. (2001) 'Salmonella enterica 
serovar Typhi possesses a unique repertoire of fimbrial gene sequences', Infection 
and immunity, 69(5), pp. 2894-2901. 
 
Turcotte, C. and Woodward, M.J. (1993) 'Cloning, DNA nucleotide sequence and 
distribution of the gene encoding the SEF14 fimbrial antigen of Salmonella 
entevitidis', Microbiology, 139(7), pp. 1477-1485. 
 
Turner, A.K., Lovell, M.A., Hulme, S.D., Zhang-Barber, L. and Barrow, P.A. (1998) 
'Identification of Salmonella typhimuriumGenes Required for Colonization of the 
Chicken Alimentary Tract and for Virulence in Newly Hatched Chicks', Infection and 
immunity, 66(5), pp. 2099-2106. 
 
Ueno, T., Oosawa, K. and Aizawa, S.-I. (1992) 'M ring, S ring and proximal rod of the 
flagellar basal body of< i> Salmonella typhimurium</i> are composed of subunits of a 
single protein, FliF', Journal of molecular biology, 227(3), pp. 672-677. 
 
Ueno, T., Oosawa, K. and Aizawa, S.-I. (1994) 'Domain structures of the MS ring 
component protein (FliF) of the flagellar basal body of Salmonella typhimurium', 
Journal of molecular biology, 236(2), pp. 546-555. 
 
Urwin, R. and Maiden, M.C. (2003) 'Multi-locus sequence typing: a tool for global 
epidemiology', Trends in microbiology, 11(10), pp. 479-487. 
 
Uzzau, S., Brown, D.J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., 
Platt, D.J. and Olsen, J.E. (2000) 'Host adapted serotypes of Salmonella enterica', 
Epidemiology and infection, 125(02), pp. 229-255. 
 
Valdez, Y., Diehl, G.E., Vallance, B.A., Grassl, G.A., Guttman, J.A., Brown, N.F., 
Rosenberger, C.M., Littman, D.R., Gros, P. and Finlay, B.B. (2008) 'Nramp1 
expression by dendritic cells modulates inflammatory responses during Salmonella 
Typhimurium infection', Cellular microbiology, 10(8), pp. 1646-1661. 
 
Van Der Velden, A.W.M., Bäumler, A.J., Tsolis, R.M. and Heffron, F. (1998) 'Multiple 
fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice', 
Infection and immunity, 66(6), pp. 2803-2808. 
 
Van Immerseel, F. (2004) 'Cats as a Risk for Transmission of Antimicrobial drug− 
resistant Salmonella-Volume 10, Number 12—December 2004-Emerging Infectious 
Disease journal-CDC'. 
 
Varaiya, A., Saraswathi, K., Tendolkar, U., De, A., Shah, S. and Mathur, M. (2001) 
'Salmonella enteritidis meningitis-A case report', Indian journal of medical 
microbiology, 19(3), p. 151. 
 
Visser, S.C., Veling, J., Dijkhuizen, A.A. and Huirne, R.B.M. (1997) 'Economic losses 
due to Salmonella dublin in dairy cattle'. 



257 
 

Vo, A.T.T., Van Duijkeren, E., Fluit, A.C., Heck, M.E.O.C., Verbruggen, A., Maas, 
H.M.E. and Gaastra, W. (2006) 'Distribution of Salmonella enterica serovars from 
humans, livestock and meat in Vietnam and the dominance of Salmonella 
Typhimurium phage type 90', Veterinary microbiology, 113(1), pp. 153-158. 
 
Voedisch, S., Koenecke, C., David, S., Herbrand, H., Förster, R., Rhen, M. and 
Pabst, O. (2009) 'Mesenteric lymph nodes confine dendritic cell-mediated 
dissemination of Salmonella enterica serovar Typhimurium and limit systemic 
disease in mice', Infection and immunity, 77(8), pp. 3170-3180. 
 
Vogler, A.P., Homma, M., Irikura, V.M. and Macnab, R.M. (1991) 'Salmonella 
typhimurium mutants defective in flagellar filament regrowth and sequence similarity 
of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits', Journal of 
bacteriology, 173(11), pp. 3564-3572. 
 
Wada, T., Hatamoto, Y. and Kutsukake, K. (2012) 'Functional and expressional 
analyses of the anti-FlhD4C2 factor gene ydiV in Escherichia coli', Microbiology, 
158(6), pp. 1533-1542. 
 
Wada, T., Morizane, T., Abo, T., Tominaga, A., Inoue-Tanaka, K. and Kutsukake, K. 
(2011) 'EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for 
nutritional control of the flagellar regulon in Salmonella enterica serovar 
Typhimurium', Journal of bacteriology, 193(7), pp. 1600-1611. 
 
Wallis, T.S. (2006) 'Host-specificity of Salmonella infections in animal species', 
Salmonella Infections Clinical, Immunological and Molecular Aspects Cambridge 
University Press, Cambridge, pp. 57-88. 
 
Wallis, T.S. and Barrow, P.A. (2005) 'Salmonella epidemiology and pathogenesis in 
food-producing animals', EcoSal Plus, 1(2). 
 
Wang, Q., Frye, J.G., McClelland, M. and Harshey, R.M. (2004) 'Gene expression 
patterns during swarming in Salmonella typhimurium: genes specific to surface 
growth and putative new motility and pathogenicity genes', Molecular microbiology, 
52(1), pp. 169-187. 
 
Wang, S., Fleming, R.T., Westbrook, E.M., Matsumura, P. and McKay, D.B. (2006) 
'Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator 
of transcription', Journal of molecular biology, 355(4), pp. 798-808. 
 
Warwick, C., Lambiris, A.J.L., Westwood, D. and Steedman, C. (2001) 'Reptile-
related salmonellosis', Journal of the Royal Society of Medicine, 94(3), pp. 124-126. 
 
Wei, B.L., Brun‐Zinkernagel, A.M., Simecka, J.W., Prüß, B.M., Babitzke, P. and 
Romeo, T. (2001) 'Positive regulation of motility and flhDC expression by the RNA‐
binding protein CsrA of Escherichia coli', Molecular microbiology, 40(1), pp. 245-256. 
 
Wigley, P., Berchieri, A., Page, K.L., Smith, A.L. and Barrow, P.A. (2001) 'Salmonella 
enterica serovar Pullorum persists in splenic macrophages and in the reproductive 
tract during persistent, disease-free carriage in chickens', Infection and immunity, 
69(12), pp. 7873-7879. 



258 
 

Williams, A.W., Yamaguchi, S., Togashi, F., Aizawa, S.-I., Kawagishi, I. and Macnab, 
R.M. (1996) 'Mutations in fliK and flhB affecting flagellar hook and filament assembly 
in Salmonella typhimurium', Journal of Bacteriology, 178(10), pp. 2960-2970. 
 
Willse, A., Straub, T.M., Wunschel, S.C., Small, J.A., Call, D.R., Daly, D.S. and 
Chandler, D.P. (2004) 'Quantitative oligonucleotide microarray fingerprinting of 
Salmonella enterica isolates', Nucleic acids research, 32(5), pp. 1848-1856. 
 
Winson, M.K., Swift, S., Hill, P.J., Sims, C.M., Griesmayr, G., Bycroft, B.W., Williams, 
P. and Stewart, G.S.A.B. (1998) 'Engineering the luxCDABE genes from 
Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and 
promoter probe plasmids and mini-Tn 5 constructs', FEMS microbiology letters, 
163(2), pp. 193-202. 
 
Wisner, A.L.S. (2011) Role of Salmonella enterica subspecies enterica serovar 
Enteritidis pathogenicity island-2 in chickens. 
 
Wolgemuth, C., Hoiczyk, E., Kaiser, D. and Oster, G. (2002) 'How myxobacteria 
glide', Current Biology, 12(5), pp. 369-377. 
 
Wood, R.L., Pospischil, A. and Rose, R. (1989) 'Distribution of persistent Salmonella 
typhimurium infection in internal organs of swine', American journal of veterinary 
research, 50(7), pp. 1015-1021. 
 
Worley, M.J., Nieman, G.S., Geddes, K. and Heffron, F. (2006) 'Salmonella 
typhimurium disseminates within its host by manipulating the motility of infected 
cells', Proceedings of the National Academy of Sciences, 103(47), pp. 17915-17920. 
 
Wray, L.V., Jorgensen, R.A. and Reznikoff, W.S. (1981) 'Identification of the 
tetracycline resistance promoter and repressor in transposon Tn10', Journal of 
bacteriology, 147(2), pp. 297-304. 
 
Yamamoto, S. and Kutsukake, K. (2006a) 'FliT acts as an anti-FlhD2C2 factor in the 
transcriptional control of the flagellar regulon in Salmonella enterica serovar 
typhimurium', Journal of bacteriology, 188(18), pp. 6703-6708. 
 
Yamamoto, S. and Kutsukake, K. (2006b) 'FljA-mediated posttranscriptional control 
of phase 1 flagellin expression in flagellar phase variation of Salmonella enterica 
serovar Typhimurium', Journal of bacteriology, 188(3), pp. 958-967. 
 
Yates, A. (2011) 'Salmonella (non-typhoidal)', Agents of Foodborne Illness. Canberra: 
Food Standards Australia New Zealand. 
 
Yonekura, K., Maki-Yonekura, S. and Namba, K. (2002) 'Growth mechanism of the 
bacterial flagellar filament', Research in microbiology, 153(4), pp. 191-197. 
 
Yonekura, K., Maki, S., Morgan, D.G., DeRosier, D.J., Vonderviszt, F., Imada, K. and 
Namba, K. (2000) 'The bacterial flagellar cap as the rotary promoter of flagellin self-
assembly', Science, 290(5499), pp. 2148-2152. 
 
Yu, R. and Kaiser, D. (2007) 'Gliding motility and polarized slime secretion', 
Molecular microbiology, 63(2), pp. 454-467. 



259 
 

Zeiner, S.A., Dwyer, B.E. and Clegg, S. (2012) 'FimA, FimF, and FimH are necessary 
for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium', 
Infection and immunity, 80(9), pp. 3289-3296. 
 
Zeng, H., Carlson, A.Q., Guo, Y., Yu, Y., Collier-Hyams, L.S., Madara, J.L., Gewirtz, 
A.T. and Neish, A.S. (2003) 'Flagellin is the major proinflammatory determinant of 
enteropathogenic Salmonella', The Journal of Immunology, 171(7), pp. 3668-3674. 
 
Zhang, L., Srinivasan, U., Marrs, C.F., Ghosh, D., Gilsdorf, J.R. and Foxman, B. 
(2004) 'Library on a slide for bacterial comparative genomics', BMC microbiology, 
4(1), p. 12. 
 
Zhao, R., Amsler, C.D., Matsumura, P. and Khan, S. (1996) 'FliG and FliM 
distribution in the Salmonella typhimurium cell and flagellar basal bodies', Journal of 
bacteriology, 178(1), pp. 258-265. 
 
Zhou, J., Sharp, L.L., Tang, H.L., Lloyd, S.A., Billings, S., Braun, T.F. and Blair, D.F. 
(1998) 'Function of protonatable residues in the flagellar motor of Escherichia coli: a 
critical role for Asp 32 of MotB', Journal of Bacteriology, 180(10), pp. 2729-2735. 

 


