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Abstract 

Prostate cancer is usually androgen-dependent and consequently, initial therapy for many 

patients, particularly with advanced disease, is androgen withdrawal, via anti-androgen 

therapeutics. Most patients respond to anti-androgen therapy in the early stages of their 

disease but many will develop resistance, entering a “castrate-resistant” disease state. 

Enzalutamide and ARN-509 have shown promise in the treatment of castration resistant 

prostate cancer (CRPC) patients, however response rates are just 50% and there is the 

inevitable development of resistance and subsequent disease progression. The aims of 

this study are to investigate the role of HER2/HER3 in CRPC models (Casodex-, 

Enzalutamide- and ARN509-resistant cell lines) and the signalling pathway(s) that can be 

stimulated through HER2/HER3 activation in these models. In addition, the project 

focusses on drug-resistant disease models, investigating the genes upregulated in a cell-

line model of enzalutamide-resistance. The data showed that HER2/HER3 has a crucial 

role in the CRPC model cell lines, seen in the activation of both MAP kinase and 

PI3K/Akt pathways, which are responsible for tumour growth and metastasis. This 

activity is more pronounced in enzalutamide resistant- LNCaP cells. For that reason, this 

study aimed to interrogate the global gene expression consequences in this enzalutamide 

resistant- LNCaP cell model. These aims were approached using Illumina Human HT-12 

arrays to detect significantly up-regulated genes and therefore could have a vital role in 

proliferation, migration and cell cycle. SGK1 and TROP-2 were selected from this 

microarray to study in more details. 

The data showed an increase in the expression of SGK1 in Casodex-, enzalutamide- and 

ARN509-resistant cell lines, compared with parental LNCaP cells.  AR regulates SGK1 

in both LNCaP and enzalutamide resistant- LNCaP cells. However, GR regulates SGK1 

and AR target genes in enzalutamide resistant- LNCaP cells. This study indicated that GR 

has no effect on the AR target genes in parental LNCaP cells. SGK1 has a vital role in 

the proliferation, migration and cell cycle of the enzalutamide resistant- LNCaP cell line.  

In addition, the data from this study showed an increase in the expression of TROP-2 in 

enzalutamide resistant- LNCaP cells, compared with LNCaP parental cells. The results 

obtained from this study suggested that TROP-2 might regulates pAkt, pERK1, c-MYC 

and p27 signalling that are important in proliferation and cell cycle of enzalutamide 

resistant- LNCaP cells. In addition, TROP-2 potentially regulates the migration of 
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enzalutamide resistant- LNCaP cells by its effect on the EMT process that is important in 

metastases.  

SGK1 and TROP-2 demonstrated higher protein expression in patients’ tissue samples 

who had relapsed after androgen withdrawal, compared to naïve patients. In conclusion, 

SGK1 and TROP-2 could represent either potential biomarkers of enzalutamide-

resistance, or potential therapeutic targets in advanced disease. 
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1.1 Introduction to cancer 

Cancer is a disease that results from uncontrolled cell proliferation. It initiates when 

normal cells evolve into neoplastic phenotypes by the acquisition of certain traits that 

promote them to become tumourigenic and eventually malignant. These traits have been 

reported as the ‘hallmarks of cancer”. It has been suggested (Hanahan and Weinberg, 

2000) that cancers share six hallmarks: insensitivity to growth inhibitory signals; limitless 

replicative potential; the ability to evade apoptosis; self-sufficiency to growth signals; the 

ability to sustain angiogenesis; the ability to invade tissues and metastasize. The list of 

hallmarks was extended to ten (Hanahan and Weinberg, 2011), who added four more: the 

presence of inflammation; the tendency towards genomic instability; evade the immune 

system and a dysregulated metabolism (Figure 1-1). These ten hallmarks suggest 

theoretical frameworks for chemotherapy and research. However, additional hallmarks 

can be added to the list, such as aberrant alternative splicing, which in turn causes the 

inappropriate expression of multiple oncogenic splice isoforms (Ladomery, 2013).  

Figure 1-1 Hallmarks of Cancer, adapted from (Hanahan and Weinberg, 2011) 
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1.2 Prostate gland 

1.2.1 Function of prostate gland 

The prostate gland is an organ belonging to the male reproductive system and is 

responsible for secreting a milky, alkaline fluid, which contains nutrient materials for the 

spermatozoa and also maintains their viability and motility. This fluid contains prostate 

specific antigen (PSA) which aids the motility of sperm by maintaining the liquid texture 

of the semen (Lilja et al., 1987; Rosenberg, 1989).   

1.3  Zonal anatomy of the prostate  

The prostate gland is an exocrine gland and is an acorn-shaped organ weighing 30-40 g, 

about the size of a walnut. It is located below the bladder, behind the pubic bone and in 

front of the rectum. The prostate gland consists of three major glandular zones: the 

peripheral, the central and the transition zones (Figure 1-2) (McNeal, 1988; Abate-Shen 

and Shen, 2000).   

• The peripheral zone: this forms about 70% of the prostate gland. The peripheral 

zone is rich in acini and it is widely known that acinar cells produce PSA (Robinson et 

al., 2017). A study based on biopsies taken from patients who had prostate cancer showed 

that more than 75% of all prostate cancer originates from the peripheral zone (Chang et 

al., 1998). 

  

 • The transition zone:  this is the smallest zone of the prostate gland, forming about 5-

10% of the prostate and it surrounds the urethra between the bladder neck and 

verumontanum. A detectable increase in this zone’s volume occurs in benign prostatic 

hyperplasia (BPH), often accompanied by lower urinary tract symptoms (LUTS). 10- 

20% of prostatic cancer originates from this zone (McNeal, 1988; Villers et al., 1991; 

Amin et al., 2010).  

• The central zone: this forms about 25% of the prostate and is a funnel (sagittal section) 

or ring-like (horizontal) zone that contains the ejaculatory ducts. Only around 5-10% of 

cancers originate from the central zone and it is relatively low frequency to carcinoma 

and other disease (McNeal, 1988; Schulz et al., 2003).  
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Anterior fibromuscular stroma – The anterior fibromuscular stroma forms about 5% of 

the prostate and is located anterior to the urethra and extends into the transition zone 

(McNeal, 1988). This region separates the transition zone from the central and peripheral 

zones. This region is mainly composed of striated and smooth muscle. The distal and 

proximal regions of the stroma are important for voluntary and involuntary sphincter 

functions, respectively (Amin et al., 2010). 

 

 

 

Figure 1-2 Prostate gland zones, adapted from (McLaughlin et al., 2005) 

  

1.4 Histology of the prostate 

The prostate gland consists of epithelial and stromal cells and these cells are bound 

together by connective tissue. Hormones and growth factors such as testosterone, which 

is primarily secreted from Leydig cell of the testes, control and regulate the growth and 

maintenance of the prostate gland (Thiruchelvam, 2014). The prostate epithelium is 

composed of prostatic ducts comprised of four types of cell: basal, secretory luminal, 

neuroendocrine and stem cells. The stromal part of the prostate contains smooth muscle, 
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vascular endothelial cells, nerve cells, fibroblasts, inflammatory cells, soluble factors and 

an insoluble matrix  (Josson et al., 2010) (Figure 1-3). The prostate epithelia mainly 

consists of luminal cells that produce prostatic secretory proteins. These cells are 

controlled by androgen receptors (AR) and therefore androgen-dependent. Another type 

of epithelial cell known as basal cells are located between the luminal cells and the   

basement membrane. These cells express a low level of AR. Neuroendocrine cells are 

another type of epithelial cell distributed throughout the basal layer. These cells are 

androgen-independent and provide paracrine signalling to assist the growth of the luminal 

cells (Liu et al., 1997; Abrahamsson, 1999; Abate-Shen and Shen, 2000).  

 

Figure 1-3 Schematic overview of cells in the prostate epithelium, adapted from 

(Montano and Djamgoz, 2004)   



   

6 

 

1.5  Prostatic abnormalities  

1.5.1  Benign prostatic hyperplasia 

BPH results from an increased number of epithelial and stromal cells within the 

periurethral region of the prostate gland, but not an increase in their size. It is 

characterized by increased cellular proliferation and/or reduced cell death. Numerous 

factors regulate this biological process, including androgen, growth factors, oestrogen and 

inflammatory and autoimmune mediators. BPH develops in the transition zone, located 

around the urethra and the periurethral zone. BPH often develops from around the age of 

40 and increases with age. It has been reported that 90% of men aged over 80 suffer from 

BPH. A quarter of the cases of prostate cancer arise in the transition zone and the majority 

(around 60-70%) arise in the peripheral zone. However, BPH arises in the periurethral 

tissue, suggesting that BPH does not lead to prostate cancer (Coyne et al., 2009; 

Thiruchelvam, 2014). Lower urinary tract symptoms, common in elderly patients, are 

associated with BPH causing bladder outflow obstruction (BOO). Although there is no 

specific, predictive biomarker, the majority of patients’ symptoms are often alleviated 

with surgery (Kirby and Gilling, 2011). A reduction in prostate size and bladder outflow 

obstruction resulting from BPH can be improved using the 5a-reductase inhibitors, e.g. 

finasteride and dutasteride. These work by reducing the levels of DHT (by inhibition of 

type 1 and type 2 5a-reductase, thereby blocking the enzymatic conversion of testosterone 

to DHT) (Thiruchelvam, 2014). 

1.5.2  Prostatic intraepithelial neoplasia (PIN) 

It was shown before that high-grade PIN is a pre-invasive stage of adenocarcinoma and a 

predictive biomarker of adenocarcinoma, which was more appear in transgenic mouse 

model of prostate cancer (TRAMP) (Bostwick and Qian, 2004). Biopsy is currently the 

only method to detect PIN. Serum prostate-specific antigen (PSA) concentration is not 

elevated significantly at the PIN stage and cannot be detected by ultrasound. Most studies 

have indicated that patients who are diagnosed with high-grade PIN will be likely to 

develop carcinoma within ten years. Similar to cancer, PIN is associated with phenotype 

and genotype abnormalities. Androgen depletion therapy decreases the incidence of PIN, 

suggesting that this form of treatment may play a role in chemoprevention (Bostwick, 

2000). PIN under microscopy is characterized by cellular proliferation within ducts and 
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acini, with an enlargement of the nuclear and nucleolus. Unlike cancer, which lacks a 

basal cell layer, PIN has an intact basal cell layer (Bostwick and Brawer, 1987). PIN 

directly invades through the ductal or acinar wall, disrupting the basal cells layer. 

However, early stromal invasion is associated with carcinoma (Bostwick et al., 1993). 

Furthermore, similar to prostate cancer, high-grade PIN exhibits chromosomal instability, 

including the loss of heterozygosity and the gaining of chromosomes, strongly suggesting 

that high-grade PIN may precede prostate cancer (Qian et al., 1999) (Figure 1-4). 

 

Figure 1-4 Schematic representation of the development and progression of prostate 

cancer, adapted from (Baker and Reddy, 2013) 

 

1.6 Prostate cancer  

Prostate cancer is the most frequently diagnosed cancer among males in 87 countries in 

North and South America and Northern, Western and Southern Europe. The highest 

incidence rates are in the U.S., followed by France and Australia and the lowest incidence 

and mortality rates are in Asia. A large part of the variation in incidence rates is because 

of the use of PSA testing. However, genetic and/or dietary differences might play a crucial 

role in the high rates in some populations (Torre et al., 2016).  
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1.6.1 The etiology of prostate cancer  

Race: Despite the prostate cancer incidence rate tending to be highest in more developed 

countries, Afro-Caribbean and sub-Saharan African (SSA) men experience the highest 

prostate cancer mortality in the world. In contrast, Asian men have the lowest mortality 

rates of prostate cancer (Rebbeck, 2017). The underlying mechanisms behind this are 

unclear. Trinucleotide repeat sequences occur throughout human DNA, where they 

contract and expand during the replication of DNA, giving rise to increased or decreased 

length (length polymorphisms). Although the majority of trinucleotide repeats are located 

in non-coding regions and thus have no effect, those located in coding region of the DNA 

can affect gene expression, modulate the stability of mRNA and alter the function of 

proteins. 

The most studied polymorphism in the human AR is the CAG trinucleotide repeat, 

encoding a polyglutamine tract within the N-terminal transactivation domain (NTD), 

which is located in the coding region within exon 1 of AR. It has been shown that African 

males tend to have the shortest repeats (10-20) compared with Asian men, who tend to 

have the longest tracts (23-30), while Caucasian males have tracts of a length in between 

these two (Buchanan et al., 2004; Albertelli et al., 2008).  

Age: The most prominent risk factor of prostate cancer is ageing, with approximately 

75% of all cases diagnosed between 50-70 years of age. Despite prostate cancer being 

considered a disease of old men, young patients’ prostates are rarely examined, in part 

due to the smaller numbers of cases (Zhou et al., 2016). 

According to Cancer Research UK, (last updated 07/05/16), the overall incidence of PC 

is strongly linked to age, in that the incidence begins to increase in males over the age of 

40 and sharply rises from the age of 50, with a peak observed between 70-74 years (Figure 

1-5)(UK data collated by Cancer Research UK).  
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Figure 1-5 Average number of new cases per year and age-specific incidence rates 

per 100,000 population, males, in the UK (UK data collated by Cancer Research UK) 

 

Family history: A family history of prostate cancer is associated with an increased risk 

of the disease. The risk factor for prostate cancer is also correlated with a family history 

of prostate cancer and/or breast cancer. According to a study of 4,258 patients with 

prostate cancer, followed up between 1996 to 2012, it was reported that the risk of lethal 

prostate cancer was also significantly increased for men with a positive family history of 

prostate cancer, as well as for men with a family history of breast cancer (Barber et al., 

2016).  

Meta-analysis studies have shown that there are many possible factors associated with the 

development of potentially lethal prostate cancer, such as obesity. Same study suggested 

that vigorous activity that causes sweating and an increased heart and respiratory rate is 

might associated with a reduced risk of lethal prostate cancer. Moreover, smokers 

consistently have a higher risk of prostate cancer progression (Peisch et al., 2016). 
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1.6.2 Diagnosis of prostate cancer  

Prostate cancer is initially suspected by the combination of clinical examination of the 

prostate with the determination of the protein level of prostate specific antigen (PSA) in 

the serum of the patients. The diagnosis is then confirmed in patients felt to be at risk by 

histological analysis of trans-rectal ultrasonography (TRUS)-guided biopsy samples. 

Histopathological analysis is used to determine the  aggressiveness of the disease by 

applying Gleason’s score to the patient’s tissue (Sciarra et al., 2012). 

Prostate specific antigen:   

PSA is a glycoprotein, also known as human kallikrein-3 and is a serine protease that 

belongs to the human kallikrein family of proteases, produced primarily by epithelial cells 

that line the ducts and acini of the prostate gland. The PSA levels are normally present in 

the blood at very low levels. However, a greater amount of PSA enters the circulation and 

increases the serum levels in prostate disease processes such as infection, inflammation, 

trauma and cancer. It can be used to assess prostate cancer progression, during and after 

treatment (e.g. chemotherapy). However, despite the early detection of prostate cancer 

using PSA being controversial, due to over-diagnosis and over-treatment, a gradual 

decrease in prostate cancer mortality in the USA of approximately 30% has been reported 

since the introduction of PSA testing (Greene et al., 2009). While measuring the level of 

serum PSA is currently the best blood test for early prostate cancer detection, digital rectal 

examination (DRE) can also identify the disease in the men. Evidence suggests that using 

both tests improves the rate of prostate cancer diagnosis. On the other hand, using DRE 

alone did not improve prostate cancer detection over a PSA test alone (Gosselaar et al., 

2006).  

The most common methods of diagnosing prostate tissue with cancer is trans-rectal, 

ultrasound-guided prostate biopsy, which targets the peripheral zone at the apex, mid 

gland and base, as well as laterally directed cores on each side of the prostate gland. This 

technique is used with patients with persistently elevated PSA levels +/- suspicious 

findings on DRE (Greene et al., 2009).  

Histopathology: 

Only histopathological examination of trans-rectal ultrasonography (TRUS)-guided 

biopsy can confirm prostate cancer, which is then evaluated, based on the Gleason grading 
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system. This is performed by staining the biopsied tissue section with haematoxylin & 

eosin stain and observing the architecture arrangement of the cancerous cells (Gleason 

and Mellinger, 1974). The Gleason grading system was updated at a 2005 consensus 

conference of the International Society of Urological Pathology. This meeting was 

suggested to update the grading system in to the 6 score as a first grade which is usually 

3+3, and for 7 grade is usually (3+4 or 4+3), for 8 grade is (4+4), for grade 9 is (4+5 or 

5+4) and for grade 10 is (5+5) (Epstein et al., 2005). Many other techniques were also 

introduced here to diagnose prostate cancer, including prostate specific antigen testing, 

trans-rectal ultrasound guided prostate needle biopsy and immunohistochemistry for 

basal cells (Epstein, 2010).    

 

Figure 1-6 Modified Gleason system (Epstein, 2010) 

The above diagram describes how the Gleason system is used to establish a Gleason score. 

Grade 1 consists of well-differentiated and closely packed glands and occurs quite rarely. 

Grade 2 can be identified by a slightly less well-defined mass and tumour-stromal 

boundary of the gland. The size and shape of the gland also varies. Grade 3 is the most 

common pattern observed in prostate carcinoma and consists of moderately differentiated 

glands of various sizes, with the most prominent feature being the presence of invasive 

stroma. Grade 4 is considered a high grade and poorly differentiated carcinoma and is 

characterised by the presence of ill-defined glands and chains of malignant epithelial 

cells. Grade 5 is the most undifferentiated pattern and can resemble other undifferentiated 

cancers of other organs. The highest Gleason sum scores are associated with metastatic 

disease and have poor prognosis (Epstein, 2010). 
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1.7 Prostate cancer treatment 

 Treatment of prostate cancer is based on assessing the risk of the disease, progression 

and spread, which are established by evaluating life expectancy, biopsy grade (Gleason 

score), serum PSA levels of patients and a TMN staging system (Sobin and Fleming, 

1997; Carter et al., 2007). The TMN staging system is used to evaluate the progression 

of the disease: T refers to gaining an indication of the size and extent of the tumour, N 

indicates regional lymph node involvement and M is the metastases of the disease 

(DeSantis et al., 2014). Recurrence after localized treatment of prostate cancer can be 

classified into low, intermediate and high risk, based on the PSA, DRE and Gleason grade 

(D’amico et al., 2000). These classifications are based upon the following (Table 1-1): 

Table 1-1 prostate cancer stratification 

 

Low risk: this occur in patients with stage T1-T2a and the level of PSA is <10ng/mL with 

a Gleason score of ≤6. Patients with low risk cancer are not candidates for androgen 

depletion therapy. As above, Active Surveillance is considered the recommended option, 

though curative treatments, such as radical prostatectomy (RP) or external beam 

radiotherapy (EBRT) can also be considered for localized disease (Kuban et al., 2008). 

Intermediate risk: this happens in patients with clinical stage T2b, Gleason score 7 and 

the level of serum PSA 10-20ng/mL. Treatment in this stage is either observation, 

surgery, or radiation therapy. Administering androgen-depleting treatment (ADT) before, 

during and after radiation prolongs survival in patients (Bolla et al., 2002; Merrick et al., 

2004). 

 PSA Gleason Clinical stage  

Low-risk <10ng/mL ≤6 T1-T2a 

Intermediate-risk 10-20ng/mL 7 T2b 

High-risk >20ng/mL 8-10 T2c-T3a 



   

13 

 

High risk: this occur in patients with Clinical stage T2c-T3a, Gleason score 8-10, PSA 

>20 ng/mL (Heidenreich et al., 2014). ADT is used in men with locally advanced T3-4, 

disease with PSA >50 ng/ml and Gleason score 8-10. ADT is reported to be highly 

effective if started at the initial time of metastases (van den Bergh et al., 2016).   

Luteinising hormone-releasing hormone (LHRH): This is a peptide hormone that 

binds to receptors on gonadotropic cells in the anterior pituitary. This stimulates the 

hypothalamic signalling axis, leading to the release of luteinizing hormone (LH) and 

subsequent androgen biosynthesis in the testes (Tammela, 2004).  

ADT and LHRH agonists have somewhat replaced surgical castration because these 

agents are able to avoid physical and psychological discomfort and the risk associated 

with orchiectomy. LHRH antagonists are also available. These antagonists bind and 

compete LHRH receptors, leading to a decrease in LH and testosterone levels, which may 

be useful for patients with locally advanced or metastatic disease (Crawford et al., 2014; 

Heidenreich et al., 2014).  

Antiandrogens: there are two kind of anti-androgen, steroid antiandrogen and 

nonsteroidal antiandrogens (NSAAs). It has shown that the synthetic steroid cyproterone 

acetate is a potent anti-androgen, which is lead to inhibition of testosterone action on 

seminal vesicle and prostate tissue (Whalen and Edwards, 1969). However, a study 

showed that Flutamide (Nonsteroidal antiandrogens) is approximately 2-fold more potent 

than cyproterone acetate in reversing the stimulatory effect of DHT (Poyet and Labrie, 

1985). Nonsteroidal antiandrogens (NSAAs) do not decrease the testosterone level but 

are basically used to improve the clinical effect (Cornford et al., 2016). These 

antiandrogens bind to the ligand-binding domain of the AR and prevent DHT from 

activating AR (Figure 1-10 A, B). The first antiandrogen, approved in the late 1970s/early 

1980s, was called flutamide and then later bicalutamide was developed by the middle of 

1990s (Figure 1-10 D). This was found to be more potent than flutamide (Anantharaman 

and Friedlander, 2016). The CYP17 inhibitor abiraterone and the anti-androgen, 

enzalutamide were approved by the US Food and Drug Administration (FDA) in April 

2011 and August 2012, respectively, for men with castration-resistant prostate cancer 

(CRPC), after docetaxel chemotherapy. Abiraterone is a potent inhibitor of CYP17, a key 

enzyme for the extra gonadal synthesis of androgens and oestrogens, which can improve 

the survival prognosis by around 4.6 months (De Bono et al., 2011). Enzalutamide is a 



   

14 

 

next generation non-steroidal anti-androgen and demonstrated a 4.8 month improvement 

in median overall survival (Bianchini et al., 2014) (Figure 1-7). Enzalutamide is a high 

affinity antagonist, with an 5-8 fold higher binding affinity for AR than bicalutamide 

(Casodex) (Tran et al., 2009).  

ARN509 is another nonsteroidal anti-androgen, differing from enzalutamide by one atom 

(Figure 1-7). The mechanism of action of both compounds is binding to the ligand-

binding domain (LBD) of AR, which leads to the prevention of nuclear localisation and 

recruitment to AR-regulated gene promoters. This results in the inhibition of AR-target 

gene expression. Furthermore, both compounds were shown to differ from the action of 

bicalutamide in that enzalutamide and ARN-509 were able to specifically inhibit AR 

binding to DNA (Tran et al., 2009; Clegg et al., 2012). A study of 396 men with non-

metastatic or metastatic prostate cancer showed that enzalutamide significantly reduced 

the risk of disease progression or death by 76% compared with bicalutamide (Penson et 

al., 2016). A study of patients with high-grade prostate cancer demonstrated that 

enzalutamide reduced tumour size and down staging was also noted with histological 

changes (Van der Roest et al., 2016). However, the majority of patients treated with 

ARN509 or enzalutamide who exhibit a decrease in serum PSA level, eventually develop 

progressive disease (Joseph et al., 2013).  

 

Figure 1-7 Structure of anti-androgen small molecules approved by FDA. (Bassetto 

et al., 2017) 

 

1.8 Androgen Receptor 

1.8.1 Structure of the androgen receptor 

Androgens play a crucial role in male reproductive system development and 

physiological processes. The effect of androgens is mediated by the activity of the nuclear 

androgen receptor (AR). AR is a ligand-inducible transcription factor and acts as a 
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regulator of the downstream androgen-dependent signalling pathway. This transcription 

factor regulates gene expression through the various co-regulator complexes, histone 

modifications and the induction of chromatin reorganization. Dysregulation of AR 

signalling disturbs normal reproductive development and affects a wide variety of 

biological conditions, such as androgen-insensitive syndrome and prostate cancer 

(Matsumoto et al., 2013). 

AR is a member of the nuclear receptor (NR) superfamily and shares structural 

similarities with other NRs. Its gene is located on chromosome X q (11-12) and is 

comprised of eight exons; its protein is 919 amino acids in length and 110 kDa in mass. 

The AR transcription factor consists of N-terminal transactivation domain (NTD) 

(activation function 1(AF1)) that is encoded by exon 1, a C-terminal ligand-binding 

domain (LBD) that is associated with a second transcriptional regulatory function (AF2), 

which is encoded by exons 4-8 and a central DNA-binding domain (DBD) encoded by 

exons 2-3. There is also a hinge region between the DNA-binding domain and LBD that 

contributes to nuclear localization and degradation (Figure 1-8) (Koryakina et al., 2014; 

Yuan et al., 2014; Wadosky and Koochekpour, 2017).  

AF1 activity is ligand independent, while AF2 requires a ligand for its activity. Moreover, 

AF1 and AF2 activity are modulated by posttranslational modifications of the AR protein, 

such as phosphorylation, acetylation and sumoylation. The effect of AF2 on AR 

transactivation appears to be lower than AF1. However, a ligand-dependent functional 

interaction between the N-terminal and C-terminal regions suggests that AF-1 and AF-2 

synergize to achieve full AR transactivation (Matsumoto et al., 2013). 

It has shown that N-terminal transactivation domain has several subdomains which play 

a role in transcription of AR. various proteins binds to the NTD such as P160 family, 

TATA-box binding protein, IIF transcriptional factor, which have a role in prostate cancer 

growth. An interaction between N- and C-terminals occur where NTD binds with LBD, 

and the hormone dependent interaction between NTD and LBD are essential for AR 

stabilization (Sakkiah et al., 2016). 

DNA-binding domain contains a number of basic amino acids as well as a nine of cysteine 

residues. DBD is divided into three substructures: two zinc finger motifs and one 

carboxyl-terminal extension (Jakób et al., 2007). These zinc finger motifs are crucial for 

direct binding to DNA responsive elements in target genomic sections. The N-terminal 
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of α-helix in the zinc finger motif directly interacts with DNA responsive elements at the 

groove of DNA. Once the DBD binds to DNA this lead to stimulate the transcription of 

AR-regulated genes by activating NTD and LBD (Sakkiah et al., 2016). 

 

Figure 1-8 Schematic representation of the androgen receptor gene and protein, 

with indications of its specific domains, adapted from (Lonergan and Tindall, 2011) 

1.8.2 Mechanism of action  

Androgens are the main regulator of prostate growth by both stimulating proliferation and 

inhibiting apoptosis. Testosterone is a circulating androgen and is secreted mainly by the 

testes, but also by the adrenal gland. It appears in blood bound to albumin and sex 

hormone binding globulin (SHBG). When free testosterone enters the cell, 90% is 

converted to dihydrotestosterone (DHT), a more active form, by the enzyme 5α-

reductase. The active hormone DHT has a greater affinity to bind with AR than the less 

active form testosterone. In the basal state, AR is bound to heat shock proteins, which 

prevents DNA binding. Once androgen binding to AR occurs induces conformational 

changes, this leads to dissociation from the heat shock proteins and receptor 

phosphorylation. When ligand binding to the AR occurs (Figure 1-10 C), this facilitates 

the formation of an AR homodimer and then leads to translocation to the nucleus and 

binding to Androgen Response Elements (ARE) generally in the promotor region of 

targets genes. AR homodimer complex recruits co-activators or co-repressors to the AR 

complex. The co-regulators interact with AR complex to stimulate or inhibit target gene 
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transcription. Activation or repression of target genes leads to biological responses, 

including growth, survival and the production of prostate-specific antigen (PSA) (Figure 

1-9) (Feldman and Feldman, 2001a; Yuan et al., 2014).  

        

Figure 1-9 Mechanism of androgen receptor action, adapted from (Feldman and 

Feldman, 2001b). Testosterone is converted to DHT by 5-alpha reductase in the 

membrane of the cell. DHT then binds to the AR, HSPs dissociate and conformational 

changes take place to allow homo-dimerization, phosphorylation and translocation into 

the nucleus. Then, AR binds to sequences in the DNA, termed androgen response 

elements, to activate transcription. Adapted from (Li and Al-Azzawi, 2009).  

 

Under normal conditions, only half of the cellular AR protein is believed to be occupied 

by the ligand for mediating genomic androgen action. The remaining half of unbound AR 

is thought to regulate other biological events, such as cell cycle (Matsumoto et al., 2013).  
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Figure 1-10 Structural understanding of AR. A. Nuclear receptor H12 helices can 

adopt different conformations. In an agonist state, the H12 of DHT-bound AR (PDB: 1I37 

or 2AMA) is held near H3, H4, and H11, which form groove for coactivator binding. B.  

In an antagonist state, H12 rotates clockwise toward H3 and blocks the coactivator 

binding site. C. Structural composition of wild-type AR LBDs in complex with 

dihydrotestosterone. D. Structure of AR LBD W741L complexed with bicalutamide 

(PDB: 1Z95). Residues L704, N705, Q711, and R752 form hydrogen bonds with 

bicalutamide (indicated by dotted lines). Also shown is the wild-type W741 residue 

(white) to illustrate a possible steric clash between tryptophan and the B-ring of 

bicalutamide. 

 

1.9  Androgen receptor signaling in castrate-resistant prostate cancer 

Since the 1940s, the typical treatment of advanced prostate cancer is androgen deprivation 

therapy (surgical or chemical castration) to downregulate AR transcriptional activity. 

Unfortunately, the majority of patients relapse within a few years with more aggressive 

and incurable cancer, no longer responsive to standard hormonal treatments, referred to 
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as castrate-resistant prostate cancer (CRPC). It is widely accepted that the AR is still 

active and can stimulate the growth of these cancers that relapse, despite low levels of 

androgen testosterone and dihydrotestosterone. A study demonstrated that AR was 

reactivated in CRPC, which is driven by low residual steroid hormones from the adrenal 

gland (Yuan et al., 2014). Surgical and chemical castration were later joined by other 

medical therapies, such as prednisone and ketoconazole, which decrease adrenal 

androgen synthesis and subsequently decrease the PSA serum level (Small et al., 2004; 

Taplin et al., 2009). This is based on the hypothesis that residual androgens are still able 

to activate AR after castration. There are many possible mechanisms of AR activity in 

CRPC, as listed below. 

1.9.1 AR gene amplification in CRPC 

For the majority of men with CRPC, AR signalling remains the main oncogenic driver 

for uncontrolled PCa growth, despite the low level of testosterone. Increased signalling 

of AR is thought to be due to increased AR expression as a result of AR gene 

amplification and AR copy number, which has been found to be increased in up to 80% 

of CRPC patients (Koivisto et al., 1996; Waltering et al., 2012; Anantharaman and 

Friedlander, 2016). This elevation in AR copy number may help increase AR sensitivity 

to the low level of androgen in CRPC patients and sustain the AR signalling. A possible 

proposal for this evolution is that most of the primary tumour cells respond to surgical 

and chemical ADT. However, a small population of cells with AR gene amplification are  

selected according to their ability to grow in a castration environment, resulting in a clonal 

population of tumour cells that are able to sustain AR signalling in a Darwinian-like 

manner (Anantharaman and Friedlander, 2016). In a study of genome-wide screens for 

genetic aberration, in nine recurrent prostate cancer patients undergoing androgen-

depleting treatment, it was reported that AR amplification in relapsed prostate cancer 

occurred as a result of ADT. This is based on elevated AR copy number that facilitates 

tumour cell growth in the low level of serum androgens. According to the fact that AR 

mediates prostate cell growth, the amplification of the AR gene and subsequently the AR 

protein is likely to enhance cell growth in an environment with a reduced concentration 

of androgen. In the same study, it was shown that AR amplification was not noticed in 

untreated primary prostate cancer and thus AR amplification is exclusively related with 

regrowth of cancer during androgen depletion (Visakorpi et al., 1995). It has been found 

that 5α-reductase is overexpressed in CRPC, suggesting that the tumour attempts to 
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increase sensitivity to androgens by converting testosterone to its more potent form of 

DHT (Montgomery et al., 2008) (Figure 1-11). 

1.9.2   AR gain of function mutations in CRPC 

Although patients with prostate cancer initially respond to the anti-androgen, the majority 

of men eventually relapse with an androgen-independent tumour. One of the mechanisms 

is through mutation, which has been identified in some androgen-independent cancers. 

Like other receptors, AR activity can be enhanced or diminished by mutations within the 

AR gene, allowing weaker androgens to activate AR receptors, such as 

dehydroepiandrosterone, oestrogens/progesterone, or even cortisol. It has been reported 

that mutations within AR are more prominent in CRPC compared to primary tumours, 

enabling these cells to survive in any environment. This mutation has the ability to  switch 

AR antagonists (e.g. bicalutamide, nilutamide and flutamide) to agonists (Anantharaman 

and Friedlander, 2016). 

Genomic DNA sequencing data showed a mutation was found in 5 of 16 patients who 

received anti-androgen treatment with the AR antagonist flutamide and these mutant ARs 

were strongly associated by flutamide. In addition, these patients with flutamide-

stimulated AR mutations responded to treatment with bicalutamide, another AR 

antagonist that blocks AR, suggest that mutation may be related to flutamide treatment 

(Taplin et al., 1999).  

Another study showed that prolonged treatment with bicalutamide and flutamide might 

select thee cells with  ARW741L/C and ARH874Y/ART877A mutations which could  promote 

the androgenic signalling and tumour cell growth (Sridhar et al., 2014). Using a 

bicalutamide-activated ARW741L/C mutation model, one study demonstrated that this 

mutation prompts an androgenic-like signalling programme and growth promoting 

phenotype in the presence of bicalutamide(O'Neill et al., 2015).  

Second generation antiandrogens such as abiraterone, enzalutamide and ARN509, are 

potential drugs to treat CRPC, however response rates of just 50% and the development 

of resistance have limited their success in the clinic. The use of an enzalutamide-resistant 

model (Korpal et al., 2013) identified a novel F876L mutation in AR that drives genetic 

and phenotype resistance to enzalutamide. Moreover, this mutation can use enzalutamide 

as an agonist, promoting the tumour phenotype (Figure 1-11).  
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1.9.3 Expression of AR splice variants in CRPC 

One postulated mechanism of resistance to the conventional and next generation ADT is 

modified AR mRNA and synthesis of truncated AR variant (AR-V) protein, which lacks 

AR ligand binding domain (LBD). The presence of an N-terminal domain (NTD) and 

central DNA binding domain only is sufficient for AR-V to function as ligand 

independent transcription factors, reported to be upregulated in CRPC and related with 

poor prognosis. Despite AR-V being able to promote CRPC growth phenotype, inducible 

expression of AR-V has been demonstrated to remain dependent on the activity of full 

length AR. Therefore, overcoming AR-V activity could be achieved by targeting full 

length AR (Watson et al., 2010). ARv7, is formed by splicing inclusion of a cryptic exon 

called CE3 located within intron 3. AR CE3 is a terminal exon, meaning that splicing 

inclusion is linked to the selection of a new poly (A) site, thus creating a truncated AR 

mRNA that lacks coding information for the Ligand-Binding Domain. ARv567es mRNA 

is formed by skipping of exons 5–7 of the AR pre-mRNA. In addition, The ARv567es 

protein isoform regulates the transcription of genes involved in cell cycle control. 

Transcriptional activation by the ARv567es AR isoform occurs via a DNA looping 

mechanism  (Munkley et al., 2017).  

The variants AR-V1, AR-V7/AR3, AR-12/ ARv567es and AR-V9 were found to have 

putative clinical relevance. The mRNA expression of AR-V1 and AR-V7 were found to 

be significantly higher in CRPC compared with that in hormone-naive PC. The mRNA 

levels of AR-V1, AR-V7 and ARv567es were also found to be significantly higher in 

analyses of CRPC bone metastases compared with those of hormone-naive tumours 

(Lallous et al., 2013; Anantharaman and Friedlander, 2016).  

A study aimed at understanding enzalutamide resistance in prostate cancer cell lines 

stated that cells with AR-V can act in an androgen-independent manner and are resistant 

to enzalutamide. AR-Vs are key mediators of AR signalling and resistance to next 

generation antiandrogens. These AR-Vs could be therapeutic targets in advanced disease 

(Li et al., 2013b). A clinical study of 31 enzalutamide-treated patients and 31 abiraterone-

treated patients showed an increase of androgen receptor splice variant 7 mRNA (AR-

V7) in their circulating tumour cells. This suggests that the detection of AR-V7 in 

circulating tumour cells from patients with castration-resistant prostate cancer may be 

associated with resistance to enzalutamide and abiraterone (Lallous et al., 2013). It has 

been established that AR splice variants can cooperate with full length AR to potentiate 
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AR signalling, even in the presence of a potent anti-androgen, such as enzalutamide 

(Anantharaman and Friedlander, 2016) (Figure 1-11). 

Figure 1-11 Mechanisms of resistance to androgen deprivation therapy, adapted from 

(Anantharaman and Friedlander, 2016) 

1.9.4 AR activation by interaction with co-regulators 

AR activation by interaction with co-activator or co-repressor proteins leads to sustained 

AR signalling in CRPC. This can be achieved by increasing AR stability, increasing the 

interaction of AR with co-activators, decreasing AR co-repressor interactions, chromatin 

remodelling and post-translational modification of AR. AR functions could be enhanced 

by interaction with co-activators, resulting in the regulation of cellular events. Several co-

activators have been reported to increase their expression in cancer tissue. AR co-

activators bind to one or more regions of the AR and their expression may change during 

different stages of prostate cancer, suggesting that detection of these co-activators in 

tumour tissue may have prognostic and diagnostic importance (Culig, 2016).  
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Steroid receptor co-activators (SRC1, SRC2 and SRC3) are co-factors that mediate 

transcriptional functions of nuclear receptors and have a role in various cancers. These 

proteins are the most frequently studied of all co-activators. All SRCs show structural 

similarity. They mediate protein-protein interaction, including with other transcriptional 

factors. SRCs also regulate transcription factors such as nuclear factor kappa B, signal 

transducers and activators of transcription (STAT), or hypoxia inducible factor. AR 

complex recruits SRC, which is facilitated by the transcription factor GATA2-binding 

protein, which in turn sustains the activity of wild type and truncated AR (He et al., 2014). 

GATA2 expression is elevated in patient samples with cancer compared to benign 

samples. In addition, GATA2 expression associated with tumour stage and grade and 

inhibition of GATA2 with the small molecular inhibitor K7174, decreased the expression 

of AR and growth of prostate cancer. Importantly, GATA2 expression was elevated in 

prostate cancer cells treated with enzalutamide, suggesting that GATA2 be considered a 

mediator of enzalutamide resistance (He et al., 2014; Culig, 2016). 

SRC2 is an important transcriptional co-activator associated with the anti-apoptotic and 

proliferation pathways of PI3K/Akt and MAP kinase. SRC2 expression is increased in 

androgen deprivation conditions, which might indicate that it is correlated with prostate 

cancer progression (Qin et al., 2014).  

AR is required to bind for the androgen-responsive elements (AREs) to function. 

However, this will not happen unless the chromatin is opened and accessible and this can 

be achieved by FOXa1, a transcription factor, which opens the chromatin locally so AR 

can access the ARE. These sites are marked by H3K4me2-containing nucleosomes. A co-

activator, LSD1, functions as an androgen-stimulated gene and correlated with the 

demethylation of H3K9me2 (Yuan et al., 2014). In addition to transcriptional activation, 

it has been established that the expression of multiple genes is decreased in response to 

androgen, which is likely to be secondary to transcriptional effects on other genes.  

AR can act as a repressor to several genes more directly by interacting with other 

transcriptional activators or by functioning as a transcriptional repressor (Yuan et al., 

2014). It has been reported that E74-like factor 3 (ELF3), a member of the ETS family of 

transcription factors, is a repressor of AR activity (Shatnawi et al., 2014), who found that 

endogenous expression of ELF3 represses the AR transcriptional level. In addition, ELF3 

knockdown increases AR transcriptional activity and promotes LNCaP cells to migrate, 
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whereas an increase in ELF3 expression inhibits cells growth, suggesting that interaction 

between ELF3 and AR inhibits the recruitment of AR to specific androgen response 

elements within target gene promoters.  

The initiation of cancer and its development and progression, can be determined by 

epigenetic markers such as histone methylation and histone acetylation, which have a 

crucial role in AR regulation in prostate cancer. One method of controlling transcription 

is histone methylation, which is mediated by histone methyltransferase (HMT) and 

histone demethylase (HDM) enzymes. Methylation changes the local chromatin to 

increase or decrease transcription, depending on the site of modification (Peterson and 

Laniel, 2004; Cucchiara et al., 2017).  

Protein arginine methyltransferase (PRMT) family members such as PRMT6 and co-

activator-associated arginine methyltransferase 1 (CARM1) are the enzymes responsible 

for histone methylation. Evidence indicates that histone methylation of AR regulates its 

transcription activity. SET9 is one HMT enzyme that has a role in prostate cancer and its 

level is elevated in malignant epithelial cells from PC patients (Cucchiara et al., 2017). 

One study identified SET9 as an AR co-regulator by directly methylating lysine 632, 

located in the hinge domain of the receptor, to enhance AR transcription. This activation 

signal facilitates both inter-domain communication between the N and C-terminal of the 

receptor and AR promoter association. This study also indicates that SET9 regulates the 

proliferation and apoptosis of the LNCaP, suggesting the significant role of SET9 in 

prostate cancer as a therapeutic target (Gaughan et al., 2011). The histone 

acetyltransferases (HAT) and deacetylases (HDAC) are enzymes responsible for 

acetylation and deacetylation. In general, active chromatin is hyper-acetylated while 

inactive chromatin is hypo-acetylated. An acetylation motif is located in the hinge region 

of AR with short sequences (KLKK). Placing and removing acetyl groups can improve 

or reduce AR transcriptional activity respectively (Cucchiara et al., 2017). TIP60, an AR 

factor acetyl transferase, is responsible for the acetylation of the LBD of the AR and it 

can interact with HDACs at the PSA promoter region. This interaction can lead to 

activation or suppression of AR transcription. It has been indicated that overexpression 

of TIP60 facilitates the acetylated form of AR and AR localization in the nucleus, in the 

absence of androgen (Brady et al., 1999; Gaughan et al., 2005; Shiota et al., 2010).  
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As mentioned above, acetylation enhances AR activity at specific residues and this 

opposite process leads to the inhibition of the AR transcriptional activity. For example, 

HDAC1 interacts with the PSA promoter to inhibit AR signalling, while HDAC6 

regulates AR activity via modelling heat shock protein 90 (HSP90) acetylation. The 

acetylation of HSP90 leads to destabilization of AR and subsequently degradation by the 

proteasome (Ai et al., 2009; Cucchiara et al., 2017).  

1.9.5 Androgen receptor bypass signaling  

Recent work revealed a novel resistant mechanism of the AR pathway, known as “bypass 

signalling” (Arora et al., 2013). The term bypass refers to a mechanism in which 

downstream signalling of the AR is controlled by another cellular receptor. This was 

shown in an LNCaP xenograft model with exogenous AR overexpression (LNCaP-AR). 

The model demonstrated acquired resistance to enzalutamide, or ARN-509, associated 

with the upregulation of the glucocorticoid receptor (GR). In addition, the LNCaP-AR 

subline tends to be GR-dependent for enzalutamide-resistant growth. According to ChIP-

seq analyses data, GR can bind over half of all AR binding sites in enzalutamide-resistant 

cells and can occupy a large number of sites not bound by AR. This gives the possibility 

that GR transcriptional activity could contribute to resistance. Moreover, it has indicated 

that GR regulates AR target genes such as PSA and TMPRSS2, which may suggest that 

GR enables cells to become resistant to enzalutamide (Arora et al., 2013; Watson et al., 

2015). Similar to the AR, GR is a transcription factor belonging to the superfamily of 

nuclear hormone receptors and can be activated through steroid ligands. GR also 

dissociates from cytoplasmic chaperone proteins and translocates to the nucleus. The 

homodimers bind to the hormone response elements (Epstein et al.) to recruit gene 

expression. Therefore, the dual target of GR and AR could be suggested as a therapeutic 

target for prostate cancer. Two studies have considered non-steroid phyto-chemical 

compound A (CpdA), which an AR/GR modulator is acting as an anti-inflammatory anti-

androgen. This suppresses prostate cell growth and survival and induces endoplasmic 

reticulum stress (ERS) (Yemelyanov et al., 2008; Yemelyanov et al., 2012). 

Despite the hypothesis that GR can confer resistance, this seems inconsistent with patient 

data suggesting that glucocorticoids can be effective in some patients with CRPC. 

However, this can be explained by the fact that glucocorticoids (GCs) decrease 

adrenocorticotropic hormone (ACTH) production by the pituitary gland, which results in 
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decreased androgen levels (Figure 1-12 A). This androgen reduction explains the decline 

of serum PSA levels noticed in men taking prednisone alone, which was reported in the 

comparator arm of the Phase III clinical trial that led to the approval of abiraterone for 

chemotherapy-naive CRPC (Tannock et al., 1989; Ryan et al., 2013). However, evidence 

indicates that GCs stimulate tumour proliferation by the regulation of AR target genes. 

One proposed mechanism is that GCs compete with enzalutamide to bind with the AR 

target gene in those tumours carrying an ARL702H mutation, which is stimulated by GCs. 

Another suggested mechanism is that GCs activate GR expression in tumours carrying 

GR overexpression, thereby bypassing the blockade of AR target gene expression by 

enzalutamide (Figure 1-12 B) (Watson et al., 2015). 

Upregulated of GR protein expression was detected in CRPC and it is associated with an 

acquired resistance to enzalutamide and it has been validated in pre-clinical studies. A study 

aimed to determine the expression of GR in circulating tumor cells (CTCs) from patients with 

progressing metastatic CRPC, showed higher expression of GR detected in (CTCs). This 

suggested that detection of GR in patient-derived CTCs may be a useful biomarker (Wise 

et al., 2016). Recently, a study showed that enzalutamide inhibits the inactivation of 

cortisol to cortisone which lead to GR stimulation and enzalutamide resistance. This 

happens by way a decrease in the expression of 11β-HSD2, which converts cortisol to 

cortisone, in response of enzalutamide in the prostate cancer model, reveling a surprising 

metabolic activity of enzalutamide resistance that could be targeted with a strategy that 

circumvents a condition for systemic GR ablation (Sharifi et al., 2017). 

In addition to AR, GR, the progesterone receptor (PGR) and the mineralocorticoid 

receptor (MR) are all steroid hormone nuclear receptor family members and that share 

substantial homology within the DNA-binding domain. It is suggested that PGR or MR 

may perhaps transcriptionally regulate a number of AR target genes in prostate cancer 

model by bypass AR (Watson et al., 2015). 
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Figure 1-12 The roles of glucocorticoids in prostate cancer, adapted from (Watson et 

al., 2015) 

   

1.9.6   Kinase signalling pathways regulating AR  

There are two possible pathways that regulate AR activity in prostate cancer and this is 

discussed in the following section. 

The phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin 

(PI3K/Akt/mTOR) pathway: 

This pathway is the most frequently dysregulated pathway in prostate cancer and several 

other cancers. It is responsible for proliferation, survival, apoptosis and therapeutic 

resistance, potentially due to its role in the regulation of cell growth, malignant 

transformation and progression of the cancer. Dysregulation of this pathway often occurs 

because of mutation, deletion, amplification and post-translation modification (Chang et 

al., 2015). Structurally, this pathway is composed of the PI3K family, split into Class I, 

Class II and Class III. Class I PI3K are heterodimeric molecules that are further divided 
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into two subclasses: subclass IA (PI3Kα, β and δ), which is activated through receptor 

tyrosine kinases (RTK) and subclass IB (PI3K γ), which is activated by G-protein-

coupled receptors and rat sarcoma (RAS) oncogene. Class II and Class III are different 

from Class I PI3K in their structure and function (Leevers et al., 1999).  

A number of down-stream signals are activated by PI3K, including serine/threonine 

kinase Akt, which activates mTOR. Akt is divided into three structurally similar isoforms; 

Akt1, Akt2 and Akt3. They consist of three domains; an N-terminal domain, a central 

kinase domain and a C-terminal domain. Once Akt is phosphorylated, it phosphorylates 

many downstream proteins such as mTOR, GSK3 and IRS-1. Akt plays a crucial role in 

numerous biological process, such as cell proliferation, apoptosis, cell migration, 

transcription and therapeutic resistance (Manning and Cantley, 2007; Porta et al., 2014). 

As an Akt substrate, mTOR is a serine/threonine protein kinase that plays a vital role in 

the regulation of cell growth, proliferation, motility, survival, protein synthesis and 

transcription. mTOR has two complexes, mTORC1 and mTORC2, which both localise at 

different subcellular compartments, thus affecting their activation and function. mTOR 

activation results in an increased level of multiple proteins, such as cyclin D1 and vascular 

endothelial growth factor (VEGF), leading to up-regulated tumourigenesis (Chang et al., 

2015). The PI3K/Akt/mTOR pathway is negatively regulated by phosphatase and tensin 

homolog (PTEN), which is considered a tumour suppresser gene. However, it is 

frequently mutated and deleted in various human cancers including prostate cancer.  

One study found that aberrant PI3K/Akt/mTOR signal proteins were identified in prostate 

cancer cell lines, xenografts and between 30-50% of patients with prostate cancer 

(Morgan et al., 2009). Another study demonstrated that alterations in the 

PI3K/Akt/mTOR pathway were detected in 42% of early stage prostate tumours and 

100% in the metastatic stage (Taylor et al., 2010). Clinical data from patients also 

revealed that an increase in the signalling of PI3K/Akt/mTOR was accompanied with AR 

phosphorylation in CRPC (McCall et al., 2008). Another study reported that 42% of 

prostate cancer patients had abnormal PTEN and Akt up-regulation (Teng et al., 1997). 

It has been suggested that activation of PI3K can lead to the development of chemo-

resistance in prostate cancer cells, through multidrug resistance protein1 (MRP-1) 

overexpression (Lee et al., 2004). Another clinical study based on patients with prostate 

cancer showed that more than 90% had up-regulated expression and/or phosphorylation 

of PI3K/Akt in malignant tissue, compared to benign tissue. Phosphorylation increased 



   

29 

 

in patients with Gleason scores of ≥6 (100%) compared with those with Gleason scores 

of 4-5 and this increased PI3K/Akt phosphorylation was correlated with loss or 

inactivation of PTEN (Jendrossek et al., 2008).  

The binding of growth factors to receptor tyrosine kinases also recruits and activates 

PI3K. Activated PI3K alters PIP2 to PIP3, which subsequently phosphorylates Akt 

through PDK1. Phosphorylated Akt activates the most important target, which is mTOR 

and this in turn regulates proliferation, cell growth and survival. The active form of Akt 

also regulates AR in an androgen-independent manner, resulting in over-activation of the 

AR signalling in CRPC. PTEN negatively inhibits this pathway by removing the 3-

phosphate from PIP3, converting it back to PIP2. Loss of PTEN leads to over-activation 

of Akt, leading to uncontrolled cell proliferation, decreased apoptosis and enhanced 

tumour angiogenesis (Phin et al., 2013) (Figure 1-13).  

 

Figure 1-13 The interaction between PI3K/PTEN/Akt pathway and AR signalling, 

adapted from (Phin et al., 2013). 
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Recently, it has been shown that the PI3K/Akt/mTOR pathway regulates AR through 

complex reciprocal feedback mechanisms. Deregulation of PI3K/Akt/mTOR results from 

PTEN loss associated with androgen independence to develop CRPC. PTEN loss was 

observed in prostate epithelial cells and leads to a decrease in the AR target genes through 

de-repression of EGR1 and c‑Jun, which is known as a negative regulator of AR (Figure 

1-14 A). This might suggest that the PI3K/Akt/mTOR pathway reactivates AR signalling 

in the presence of low level endogenous androgen, which can contribute to CRPC (Edlind 

and Hsieh, 2014). Additionally, it has been demonstrated that inhibition of either the 

PI3K/Akt/mTOR or AR signalling pathways drives the reciprocal activation of the other 

pathway. Moreover, genetic ablation of AR, or using the AR anti-androgen enzalutamide, 

in a prostate cancer mouse model driven by PTEN loss, enhances Akt signalling through 

downregulation of FKBP5. In turn, this leads to a reduction in levels of PHLPP, a negative 

regulator of Akt signalling (Figure 1-14 B). Another study indicated that inhibition of AR 

transcription or activity reciprocally enhances Akt signalling through down-regulation of 

PHLPP. Moreover, mTOR inhibition accompanied by PTEN loss leads to an increase in 

AR levels through upregulation of HER3, which increases AR stability (Figure 1-14 C). 

This leads to the proposal that the PI3K/Akt/mTOR pathway and AR signalling can 

compensate for each other if there is inhibition of either pathway in prostate cancer 

(Carver et al., 2011; Bitting and Armstrong, 2013; Edlind and Hsieh, 2014).  
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Figure 1-14 Reciprocal feedback mechanisms between PI3K/Akt/mTOR pathway 

and AR signalling, adapted from (Edlind and Hsieh, 2014) 

 

Aberrant Raf/MEK/ERK signalling pathway in prostate cancer  

The Raf/MEK/ERK pathway can be activated in response to the signals from receptor 

tyrosine kinases and other cell membrane receptors. Activating this pathway can regulate 

differentiation, cell cycle, cell survival and its deregulation is a central signature of many 

epithelial cancers, including prostate cancer (Imada et al., 2013; Park, 2014). However, 
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although mitogenic signals activate this pathway to mediate cell growth, they also 

mediate growth inhibitory signalling such as cell cycle arrest and cell death in response 

to several signals. 

The classic Raf/MEK/ERK pathway consists of the Ser/Thr kinase Raf (i.e., A-Raf, B-

Raf, or C-Raf), MEK1/2 and ERK1/2. All three Raf proteins have properties which allow 

them to control cellular transformation as well as growth inhibition and also activate  

downstream proteins such as MEK/ERK (Woods et al., 1997; Park, 2014).  

MEK1 and MEK2 are activated by Raf phosphorylation (i.e., Ser217/221 for MEK1 and 

Ser222/226 for MEK2). In contrast to Raf, MEK is abundant in the cells. Therefore, 

activation of the Raf/MEK/ERK pathway can occur at the Raf/MEK step due to the 

greater abundant ratio between Raf/MEK than between MEK/ERK (Ferrell, 1996).  

ERK1 and ERK2 are activated by MEK1/2 phosphorylation of Tyr and Thr residues and 

can also auto-phosphorylate at the Tyr residue. All effects of ERK1/2 are mediated by 

MEK1/2. This interaction between MEK1/2 and ERK1/2 is a typical characteristic of the 

MAPK pathway due to the high affinity between them. Activation of ERK1/2 can activate 

160 substrates, including kinases, transcription factors, cytoskeletal proteins, receptors 

and other molecular switches (Park, 2014). 

It has been demonstrated that increased signalling in the MAPK pathway is associated 

with prostate cancer and activation of this pathway leads to increased prostate cancer cell 

growth. However, activation of MAPK signalling reduced but did not replace the 

requirement of LNCaP cells for androgen (Bakin et al., 2003). Activation of 

Raf/MEK/ERK has been shown to increase AR target genes, independently of androgen, 

by phosphorylation of AR or its co-factors (Mukherjee et al., 2011). Mutation of Ras and 

gene expression deregulation of Raf are correlated with tumour progression (Mukherjee 

et al., 2011). In addition, Raf and MEK are both thought to be overexpressed in non-

metastatic and metastatic prostate cancer cells (Weinstein-Oppenheimer et al., 2000). It 

has been shown that increased activity of MAPK is elevated in CRPC (Abreu-Martin et 

al., 1999). Activation of MAPK is believed to stimulate prostate cancer cell growth 

independent of AR by activating several transcription factors such as AP-1 (a homo-

heterodimer of phosphorylated c-jun and c-fos) and c-myc. Moreover, increased 

expression of Raf-1 is associated with CRPC development (Weinstein-Oppenheimer et 

al., 2000; Mukherjee et al., 2011). 
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A study showed that activation of prostate cancer cells with DHT leads to ERK1/2 

phosphorylation within 1-2 minutes and the peak level of phosphorylation occurs within 

5-10 minutes (Liao et al., 2013). The same study demonstrated that activation of ERK1/2 

by DHT leads to translocation of ERK1/2 from cytoplasm to the nucleus. ERK1/2 directly 

interacts and phosphorylates transcription factors, such as nuclear ETS, which is involved 

in cell proliferation. However, a study observed that introduction of activated Raf genes 

(Raf-1 and B-Raf) did not increase the resistance to the chemotherapy, while the 

introduction of activated Akt genes did increase the resistance to the chemotherapy (Lee 

et al., 2005). Another study claimed that some prostate cancer cell lines, such as LNCaP 

and PC3, which have PTEN mutation and express a high level of Akt, expressed a low 

level of active Raf/MEK/ERK pathway members (McCubrey et al., 2007).  

Although the role of Raf/MEK/ERK pathway in prostate cancer is still controversial, a 

gene microarray screen between a non-metastatic prostate cancer cell and its metastatic 

derivative line revealed a decrease in the expression of Raf kinase inhibitor protein 

(RKIP) in the metastatic cell line. This suggests increased Raf activity, by inhibition of 

RKIP, which is related with metastasis in prostate cancer (Keller et al., 2004).  

The Raf/MEK/ERK pathway is also involved in cross talk with the PI3K/Akt/mTOR 

pathway in the regulation of AR in prostate cancer and activation of this pathway has 

been reported to decrease the sensitivity to the PI3K/Akt/mTOR pathway blockers. 

Furthermore, using the MEK inhibitor (PD325901) to inhibit the Raf/MEK/ERK pathway 

showed significantly decreased metastatic progression with PTEN loss models (Ihle et 

al., 2009; Mulholland et al., 2011). A study showed that inhibition of both PI3K kinase 

and MAP kinase signalling by using dual PI3K/mTOR inhibitor GSK2126458 and 

AZD6244, respectively, decreased both phospho-Akt and phospho-ERK effectively as 

well as prostate cancer tumour growth, both in vitro and in vivo. This suggests that a 

combination treatment targeting both the PI3K and MAPK pathways is an effective 

treatment strategy for CRPC (Park et al., 2015).  
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Figure 1-15 The PI3K/Akt/mTOR pathway and cross talk with the AR signalling 

and RAS/RAF/MEK pathways, adapted from (Bitting and Armstrong, 2013) 

4E-BP1, eukaryotic initiation factor 4E-binding protein 1; ERK, extracellular signal-related 

kinase; FKBP5, FK506-binding protein 5; MEK, mitogen-activated protein/ERK kinase; 

PHLPP, PH and leucine-rich repeat phosphatase; PI3K, phosphatidylinositol 3-kinase; PTEN, 

phosphatase and tensin homolog; RAS, rat sarcoma oncogene; Rheb, RAS homolog enriched in 

the brain; S6K, S6 kinase; TSC, tuberous sclerosis protein; mTORC, target of rapamycin 

complex; C/K. Akt activity can both enhance and suppress AR signalling. Possible mechanisms 

of Akt-mediated regulation of AR activity include direct phosphorylation of AR, Akt-mediated 

regulation of a variety of transcription factors, including FOXO3a and NF-kb; and Akt-mediated 

regulation of b-catenin via GSK3b (Bitting and Armstrong, 2013).
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Receptor tyrosine kinases regulate both the PI3K/Akt/mTOR and the RAS/RAF/MEK 

pathways. EGFR is family of the receptor tyrosine kinase which regulates proliferation 

and survival in prostate cancer (Robinson et al., 1996).   

1.10 EGFR family  

This family consists of type 1 tyrosine kinases ErbB1/HER1/epidermal growth factor 

receptor (EGFR), ErbB2/HER2/neu, ErbB3/HER3 and ErbB4/HER4. Prostate cancer 

cells express EGFR, HER2 and ErbB3, but not ErbB4 (Figure 1-16) (Chen et al., 2010). 

According to a previous study in our lab, cytoplasmic and nuclear expression of HER2 

and HER3 increases within cancer stage and grade of the patients with prostate cancer. In 

addition, over-expression models of HER2 and HER3 cause an increase in cell migration, 

proliferation, invasion and activation of both PI3K/Akt/mTOR and RAS/RAF/MEK 

pathways (Rao, 2015). For this reason, this study will focus on the role of HER2/HER3 

in castrate resistant prostate cancer models. 

 

Figure 1-16 ErbB/HER receptors and their ligands, adapted from (Iwakura and Nawa, 

2013) 
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EGFR/HER1 

EGFR signalling regulates a variety of cellular functions such as cell survival, cell growth 

and proliferation. The downstream signalling pathways from EGFR are linked to many 

solid tumours, including prostate cancer (Iwakura and Nawa, 2013). The ligands mediate 

EFGR activity by a conformational change in the extracellular domain of the receptor, 

resulting in dimerization of the EGFR receptor to activate the downstream signalling 

pathways. The active form of EGFR undergoes auto-phosphorylation of its tyrosine 

residues in the cytoplasmic tail of the receptor, resulting in the activation of multiple 

signal transduction pathways, including PI3K/Akt/mTOR and RAS/RAF/MEK (Tomas 

et al., 2014). One study found that EGFR is required for primary and secondary prostate 

cancer. EGFR expression was noticed in circulating tumour cells (CTC) during prostate 

cancer metastasis and dual inhibition of HER2 and EFGR resulted in a decrease in tumour 

xenograft growth (Day et al., 2017). 

It is known that EGFR overexpression is associated with the development of CRPC in 

patients. However, EGFR expression is not significantly associated with tumour 

differentiation or preoperative prostate-specific antigen (PSA), suggesting that EGFR 

expression only increases during disease progression and in the development of 

castration-resistant disease (Shah et al., 2006).  

ErbB2/HER2/neu 

Aberrant activity of HER2 has been correlated with the development of CRPC. It has 

been reported that HER2 expression is elevated in bone metastases of prostate cancer and 

inhibiting its expression reduced the proliferation of bone tumour xenografts (Day et al., 

2017). Similar to other HER family members, HER2 is a type I transmembrane growth 

factor receptor that functions to activate intracellular signalling pathways in response to 

extracellular signals. The structure of HER2 protein consists of an extracellular ligand-

binding domain, a transmembrane domain and an intracellular tyrosine kinase domain 

(Figure 1-16). In contrast to other HER members, HER2 has no known ligand and  

therefore its signal cannot function unless there is heterodimer with other HER members 

(Moasser, 2007). Among all the HER family proteins, HER2 has the strongest catalytic 

kinase activity and acts as the most active signalling complex after heterodimerization 

with other HER family members. Overexpression of HER2 leads to increased 
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homodimerization (HER2:HER2) and heterodimerization with HER3 (HER2:HER3), 

which initiates tumourigenic signalling cascades and malignancy (Yan et al., 2015). 

It has been noticed that dysregulation of RTK signalling, such as EGFR and HER2, can 

regulate the PI3K/Akt/mTOR signalling pathway, which is shown to be correlated with 

progression of prostate cancer (Di Lorenzo et al., 2002). A study demonstrated that in the 

inducible overexpression HER2 cell line, ERK1/2 appears to be activated with increased 

PSA level and androgen leads to HER2 phosphorylation at Tyr1221/2 but not Tyr1248. 

In addition, under androgen depletion conditions and in the presence of HER2 inhibitor 

AG879, the growth of LNCaP cells was attenuated (Muniyan et al., 2015). Furthermore, 

an HER2 inhibitor effectively caused AR degradation and decreased AR phosphorylation 

at Ser81 (Hsu et al., 2011).  

According to a differential gene expression study on androgen-dependent and androgen-

independent sublines, it was noticed that an increase in HER2 protein level is associated 

with the progression to androgen-independence. Additionally, forced overexpression of 

HER2 was sufficient to confer androgen-independent growth in vitro and accelerate 

progression to androgen-independence in castrate animals, suggesting that 

overexpression of HER2 mediates androgen independence (Craft et al., 1999). However, 

by using the FISH technique to identify HER2 gene amplification, a study indicated that, 

from a total of 86 cases, only 8 (9.3%) were found to be amplified (Mark et al., 1999). 

Another study demonstrated HER2 amplifications were not detected at any stage of 

prostate cancer progression (Bubendorf et al., 1999). On the other hand, it has been shown 

that activation of HER2 by heregulin leads to HER2 phosphorylation and enhances the 

cell proliferation of the androgen-independent prostate cancer cell line. Heregulin is 

known to be the ligand of HER3, indicating that both HER2 and HER3 have a role in 

prostate cancer (Hsu et al., 2011). Inhibition of HER2 shows reduced AR transcriptional 

activity and the AR function is mediated by the HER2/HER3 pathway, but not by EGFR. 

HER2/HER3 signalling stabilizes AR protein levels and optimizes binding of AR to the 

promoter/enhancer regions of androgen-regulated genes. This indicates that the 

HER2/HER3 pathway is an important target in CRPC patients (Mellinghoff et al., 2004). 

A study showed that prostate cancer patient with low levels of PTEN and high level of 

HER2/HER3 have poor prognosis. Same study showed that activation of HER2 in PTEN 

loss murine model led to increase prostate cancer progression significantly. This can by 
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explained by HER2 activation led to with activation of the MAPK pathway abrogation of 

the PTEN loss-induced cellular senescence program and inhibits MEK activity strongly 

suppressed proliferation within these tumours by restoring the PTEN loss-induced 

cellular senescence program (Ahmad et al., 2011) 

ERBB3/HER3 

HER3 belongs to the ErbB (HER) receptor family of type I receptor tyrosine kinases 

(RTKs). The HER3 gene is located on chromosome 12q13 and expressed in normal 

epithelial tissues. HER3 has 40-50% sequence homology with HER1 and 40-45% 

homology with HER2. The structure of HER3 is typical of the receptor tyrosine kinase 

family, which includes an extracellular domain (ECD) with 612 amino acid residues, a 

transmembrane helix domain with 32 hydrophobic amino acids and an intracellular 

tyrosine kinase domain (TKD) with 677 amino acids (Figure 1-16) (Li et al., 2013a). 

HER3 is one of the most important receptors with a crucial role in tumourigenesis. It has 

been reported that HER3 is overexpressed in both the primary cancer and cell lines of 

many cancers, including pancreatic, colonic, breast, ovarian and prostate. Overexpression 

of HER3 is considered a hallmark of prostate cancer and could be a biomarker for its 

clinical progression (Zhang et al., 2016).  

Similar to other HER family members, dimerization of HER3 receptors is an essential 

step for its function and, as a consequence of dimerization, a signal transfers from 

extracellular to intracellular compartment and leads to activation of the downstream 

signalling pathways, which induces biologic responses, including cell proliferation, 

maturation, survival, apoptosis and angiogenesis. Heregulin is a binding ligand that 

causes dimerization through the extracellular domain of HER3 and promotes receptor-

receptor interactions. HER3 has been considered a “kinase-dead” receptor, because it 

lacks significant intrinsic kinase activity. Therefore, in order for HER3 to induce cell 

signalling, it needs to be phosphorylated by its partners; of these, HER2 is the most 

important (Ma et al., 2014). Moreover, the activation of HER3 by heregulin is dependent 

on HER2 expression (Li et al., 2013a). HER3 also interacts with other members of the 

HER family, such as HER1. It has been reported that EGF can activate both HER1 and 

HER3 at the same time and tyrosine kinase inhibitors are able to block HER1 as well as 

HER3 and their downstream signalling pathways (Carrasco-García et al., 2011).  
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Two downstream signalling pathways are activated by HER3. The first is 

PI3K/Akt/mTOR and activation of PI3K is mediated by heterodimerization between 

HER3 and HER1/2. PI3K is a protein kinase composed of a P110 catalytic subunit and 

P85 regulatory subunit. It has been shown that HER3 binds to this P85 regulatory subunit. 

When PI3K is activated this leads to the accumulation and activation of PDK1/Akt in the 

cell membrane. Once this pathway is activated by HER3 heterodimerization, this 

stimulates the downstream signalling responsible for cell growth, cell apoptosis, tumour 

cell invasion and metastasis and chemotherapy resistance. The second pathway is the 

Ras/Raf/MEK/mitogen-activated protein kinase (MAPK) pathway that can be activated 

by HER3. Phosphorylation of HER3 can activate Grb2-SOS, complex leading to 

activation of Raf, MEK and MAPK. The activation of RAS/RAF/MEK promotes 

migration and proliferation of the cells as well as the regulation of transcription factors in 

the nucleus (Vivanco and Sawyers, 2002; Li et al., 2013a).   

A study to examine the expression of heregulin and HER3 in prostate cancer using 

immunohistochemistry found that 72% of cases showed high expression of heregulin, 

while high expression of HER3 was noticed in 54% of cases. In addition, the high 

expression of heregulin appears to be related to a high grade of the cancer. However, no 

correlation between the high expression of HER3 and the grade of cancer was noticed in 

this study (Leung et al., 1997).  

Another study explained how androgen withdrawal might lead to the development of 

castrate resistance. This study identified HER3 as mediator of increased proliferation 

during CRPC progression, leading to the release of these cells from cell cycle arrest, 

which happens because of androgen withdrawal. In addition, this study showed that 

HER3 is increased in the androgen withdrawal condition and this is caused by negative   

regulation of HER3 by AR, noticed in androgen dependent cells. This can be explained 

by the fact that despite AR regulating androgen dependent cell proliferation, it also resists 

the activation of the androgen independent pathway that mediates cell growth. Androgen 

withdrawal relieves this suppression by causing an increase in HER3 levels, promoting 

proliferation and therapy resistance. This suggests that the inability of the AR to 

downregulate HER3 expression is one cause of CRPC (Chen et al., 2010). 

This negative mechanism is explained by the theory that AR can mediate HER3 

degradation by regulating the neuregulin receptor degradation protein-1 (Nrdp1). This is 
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an E3 ubiquitin ligase that targets HER3 and AR, which transcriptionally regulates Nrdp1 

expression in the androgen dependent but not CRPC. Nrdp1 is known as a RING finger 

domain protein that binds to the cytoplasmic tail of HER3 and mediates its degradation 

(Qiu and Goldberg, 2002; Chen et al., 2010).  

Another study has found that HER3 and HER2 have a role in recurrent prostate cancer 

and heregulin can activate both HER2 and HER3 and downstream pathways, including 

PI3K/Akt pathways, while also increasing androgen-dependent AR transactivation in this 

cell line. Furthermore, the dual tyrosine kinase inhibitor GW572016 (Lapatinib) was able 

to inhibit the phosphorylation of HER2 and HER3, AR transactivation and cell 

proliferation induced by heregulin (Gregory et al., 2005; Perner et al., 2015). 

It has been shown that HER2/HER3 heterodimers lead to aberrant activation of AR, 

contributing to the development of hormone resistant prostate cancer. Moreover, it was 

demonstrated that EBP1, a HER3 binding protein acting as a co-repressor of AR, is 

decreased in hormone refractory prostate cancer (Mujoo et al., 2014). 

Data has suggested that combination therapies directed toward both HER2/ 

HER3 and the PI3K pathway could have efficacy in prostate malignancy more than 

targeting individual members of this family, such as EGFR or HER2, which has resulted 

in limited success in clinical trials (Poovassery et al., 2015).  

 

 



   

41 

 

 

Figure 1-17 HER3 and its downstream signalling pathways, adapted from (Li et al., 

2013a) 

The downstream signalling pathways include the PI3K/PDK1/AKT and the 

Ras/Raf/MEK/MAPK pathways. HER3, human epidermal growth factor receptor-3; MAPK, 

mitogen-activated protein kinase. 

Erbb4/HER4 

ErbB4 is mainly related to the Ras-MAPK and PI3K-Akt pathways, with ErbB4 

phosphorylation promoting activation of the Ras-MAPK pathway, leading to cell cycle 

arrest and differentiation. Similarly to other members of the HER family, when HER4 is 

phosphorylated with a HER partner, the signal is translocated into the nucleus and acts as 

a transcriptional factor (Iwakura and Nawa, 2013).  

HER4 is expressed in 20% of breast cancer; however, a few studies have investigated the 

role of HER4 in prostate cancer. One study reported that levels of HER4 do not change 

in the transition from hormone-sensitive to hormone-refractory prostate cells. However, 

high levels of HER4 in hormone-refractory tumours have been linked to improved patient 

survival (Edwards et al., 2006). 
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1.11 Targeting the EGFR family in prostate cancer 

Trastuzumab was the first drug used to target the HER2 receptor in breast cancer. The 

mechanism of action of this monoclonal immunoglobulin G antibody is its binding 

specificity to the extracellular domain of HER2 receptor and subsequent inhibition of its 

activity. It has been shown that the administration of Trastuzumab alone and in 

combination with Paclitaxel, significantly inhibits the growth of breast cancer that 

showed overexpressing of the HER2 gene (Goldenberg, 1999).  

Cetuximab (C225) is another HER family inhibitor that shows promising results in 

prostate cancer. Cetuximab is an anti-EGFR monoclonal antibody that blocks the ligand 

binding to EGFR, resulting in the prevention of EGFR transfer and tyrosine kinase 

activation. It has been shown that Cetuximab inhibits prostate cancer cell proliferation 

and induces cell apoptosis. However, these results were noticed only in a cell line with 

high EFGR expression (Du145 and A431 cells), but no effect was noticed in a cell line 

with a low level of EGFR (PC3) (Dhupkar et al., 2010). 

Gefitinib and Erlotinib have shown some efficiency in clinical trials in patients with 

CRPC. Pertuzumab, a monoclonal antibody is used to prevent HER2 heterodimerization 

with other HER family members, rather than obstructing the HER2 ligand binding 

domain itself. According to a preclinical study, the growth of CRPC xenografts was 

inhibited by the use of Pertuzumab, while Trastuzumab used in the same study showed 

minimal effectiveness in preventing CRPC xenograft growth (K Jathal et al., 2011). 

The HER3 antibody MM-121 was tested in a variety of cancer and xenograft models 

(lung, renal, gastric, breast and ovarian) and showed effective results. MM-121 was used 

to block ligand binding to HER3, or the activation induced by EGFR and HER2. 

However, this antibody yielded poor results in prostate cancer cell lines with amplified 

HER2 gene, perhaps because these cells are ligand-independent, not ligand-dependent 

(Schoeberl et al., 2010). 

Recently, AZD8931 has been identified as a novel small molecule inhibitor of EGFR, 

HER2 and HER3 signalling, showing significant inhibition with apoptosis induction in 

overexpressed EGFR and HER2 breast cancer cell models (Mu et al., 2014).  
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The effect of AZD8931 on the prostate cancer was identified by Rao (2015), who reported 

that AZD8931 was able to reduce cellular proliferation and colony forming of the studied 

prostate cancer cell lines. In addition, AZD8931 reduces HER2 and HER3 translocation 

to the nucleus and reduces their activity in the cellular and nuclear compartments. 

Moreover, knockdown of HER2 and HER3 using siRNA showed a similar effect to that 

of AZD8931 on the prostate cancer cells. Also, AZD8931 reduced AR activity in a cloned 

HER3 overexpressing cell line.  

 

 

 

Figure 1-18 Antibodies and small molecules interfering with HER family signalling, 

adapted from (Yarden and Pines, 2012) 

Erlotinib and Gefitinib are tyrosine kinase inhibitors (TKIs) which target the epidermal growth 

factor receptor (EGFR). Lapatinib, Neratinib and Afatinib are dual-specificity inhibitors, 

which target both EGFR and HER2. Trastuzumab, T-DM1 and Panitumumab are monoclonal 

antibodies that are able to bind HER2. MM‑121 and AMG‑888 are antibodies that target HER3. 

ALM is a dual-action antibody able to bind HER3 in combination with HER2. MEHD7945A is 

dual action antibody able to bind HER3 in combination with either HER2, or EGFR.  
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1.12 Aims of this study  

 Identify the role of the HER2 and HER3 in CRPC models.  

 Explore novel signalling pathways activated through HER2 and HER3, in CRPC 

models 

 Study the phenotypic and genotypic differences between the LNCaP-

enzalutamide resistant cell line and the parental LNCaP cell line  

 Investigate the role of  SGK1, a target identified from microarray data, comparing 

LNCaP-enzalutamide resistant cell line and LNCaP parental line 

 Investigate the role of TROP-2, a target identified from microarray data, 

comparing LNCaP-enzalutamide resistant cell line and LNCaP parental line.
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Chapter 2. Materials & Methods 
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2.1 Materials and Reagents 

Chemicals that are used in the lab were either analytical or molecular biology grade, 

unless stated otherwise. These chemicals were purchased from Merck Biosciences 

(Nottingham, UK), VWR International (Leicestershire, UK) and Sigma-Aldrich (Dorset, 

UK). Oligonucleotide primers were designed by National Centre for Biotechnology 

Information NCBI (http://www.ncbi.nlm.nih.gov/), purchased from Sigma-Aldrich 

(Dorset, UK) and diluted with sterile distilled water to 1µg/µl as a final stock 

concentration. Plastic-ware used in tissue culture was purchased from Corning (Surrey, 

UK) and Becton Dickinson (BD, Oxford, UK). 

2.1.1 Compounds  

 

Heregulin-β1  

Heregulin was purchased from (R&D Systems). The stock concentration was 1μg/ml in 

sterile PBS and aliquots were stored at -80ºC. Working concentration was 20ng/ml.  

 

Dihydrotestosterone (DHT)  

DHT (Sigma Aldrich) stock concentration was 10mM in ethanol and aliquots were stored 

at -80ºC. Working stock was diluted to 1:1000 in basal medium, to achieve a 10μM stock.  

 

Dexamethasone (DEX)  

DEX was purchased from (Sigma Aldrich) at 1mg/ml stock concentration, dissolved in 

ethanol and was stored at -80ºC. 

 

Lapatinib  

N-{3-Chloro-4-[(3-fluoro benzyloxy]phenyl}-6-[5-({[2-

methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-chinazolinamin (Lapatinib) was 

purchased from Selleck Chemicals. Stocks of 30mM concentration were made in 

DMSO and stored at -20 ºC.  

 

 

 

http://www.ncbi.nlm.nih.gov/
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AZD8931  

The pan-HER inhibitor, AZD8931, was supplied by AstraZeneca. Endotoxin free DMSO 

was used to make 30mM working stocks and stored at -80ºC. 

 

Casodex  

N-[4-cyano-3-(trifluoromethyl) phenyl]-3-[(4-fluorophenyl) sulfonyl]-2-hydroxy-2-

methylpropanamide (bicalutamide) or Casodex was supplied by AstraZeneca. 

Endotoxin free DMSO was used to make 20mM working stocks and stored at -80ºC.  

 

ARN509  

Benzamide,4-[7-[6-cyano-5-(trifluoromethyl)-3-pyridinyl]-8-oxo-6-thioxo-5, 7-

diazaspiro [3.4]oct-5-yl]-2-fluoro-N-methyl (ARN509) is an AR antagonist which was 

purchased from Selleck Chemicals. DMSO was used to make stock at 30mM 

concentration and stored at -20ºC. 

 

Enzalutamide  

4-(3-(4-Cyano-3-(trifluoromethyl) phenyl)-5, 5-dimethyl-4-oxo-2-thioxoimidazolidin-1-

yl)-2-fluoro-N-methylbenzamide (enzalutamide) was purchased from Selleck Chemicals. 

Endotoxin free DMSO was used to make 30mM stock concentration and stored at -80ºC.  

 

GSK650395 

GSK650395 was kindly obtained from Dr. Luke Gaughan (Newcastle University).  

GSK650395 was purchased from Selleck Chemicals. Stocks of 20mM concentration were 

made in DMSO and stored at -20ºC.   
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2.2 General Methodology 

2.2.1  Mammalian Cell Culture 

 

2.2.1.1 Cell lines 

All cell lines used in this study were purchased from the American Type Culture 

Collection (Manassas, VA, USA). Parental LNCaP cell line used in the project was 

authenticated by RNAseq and cell morphology.  

LNCaP: The androgen sensitive LNCaP cell line (Lymph Node Carcinoma of the 

Prostate) is a model of androgen dependent prostate cancer, derived from a left 

supraclavicular lymph node prostate carcinoma metastasis from a 50 years old patient, in 

1977 (Horoszewicz et al., 1980). 

LNCaP-CDX-R: LNCaP-Casodex resistant (LNCaP-CDX-R) is a subclone of LNCaP 

that was derived by serial passage in the presence of an escalating dose of Casodex. 

LNCaP-CDX-R were maintained in full media + 10μM Casodex. LNCaP-CDX-R cells 

are used as a model of resistance to the first generation of anti-androgen.  

LNCaP-ENZ-R: LNCaP- enzalutamide (MDV3100) resistant (LNCaP-ENZ-R), is a 

subclone of LNCaP that was derived by serial passage in the presence of an escalating 

dose of enzalutamide. LNCaP-ENZ-R cells were maintained in full media + 10μM 

enzalutamide. LNCaP-ENZ-R cells are used as a model of resistance for this next 

generation anti-androgen. 

LNCaP-ARN-R: LNCaP-ARN509 resistant (LNCaP-ARN-R) is a subclone of LNCaP 

that was derived by serial passage in the presence of an escalating dose of ARN509. 

LNCaP-ARN-R cells were maintained in full media + 10μM ARN509. LNCaP-ARN-R 

cells are used as a model of resistance for this next generation anti-androgen. 

LNCaP-7B7: This cell line was kindly obtained from Jan Trapman (Erasmus Medical 

Centre, Netherlands). The LNCaP-7B7 cell line was established by transfecting the 

LNCaP cell line with a pPSA luciferase reporter. In this cell line, AR transcriptional 

activity can be detected in an androgen-dependent manner by utilising luciferase assay.   
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LNCaP-AI-7B7: This cell line was a kindly made available by Dr. Scott Walker. The 

LNCaP-AI-7B7 cell line was established by transfecting the LNCaP-AI cell line with a 

pPSA luciferase reporter. In this cell line, AR transcriptional activity can be detected in 

an androgen-independent manner by utilising luciferase assay.  

 

2.2.1.2 Cell Passaging 

LNCaP cells were maintained in full medium (Huffman et al., 2005) (RPMI 1640 

medium containing HEPES buffer (25mM)), 10% foetal calf serum (FCS) and L-

Glutamine (20mM), at 37°C in a humidified atmosphere of 5% CO2.  

LNCaP-CDX-R cells were maintained in full medium (Huffman et al., 2005) (RPMI 

1640 medium containing HEPES buffer (25mM)), 10% foetal calf serum (FCS) and L-

Glutamine (20mM) and 10μM of Casodex, at 37°C in a humidified atmosphere of 5% 

CO2.  

LNCaP-ENZ-R cells were maintained in full medium (Huffman et al., 2005) (RPMI 

1640 medium containing HEPES buffer (25mM)), 10% foetal calf serum (FCS) and L-

Glutamine (20mM) and10μM of enzalutamide, at 37°C in a humidified atmosphere of 

5% CO2.  

LNCaP-ARN-R cells were maintained in full medium (Huffman et al., 2005) (RPMI 

1640 medium containing HEPES buffer (25mM)), 10% foetal calf serum (FCS) and L-

Glutamine (20mM) and 10μM of ARN509, at 37°C in a humidified atmosphere of 5% 

CO2.  

LNCaP-7B7 cells were maintained in full medium (Huffman et al., 2005) (RPMI 1640 

medium containing HEPES buffer (25mM)), 10% foetal calf serum (FCS) and L-

Glutamine (20mM), at 37°C in a humidified atmosphere of 5% CO2.  

LNCaP-AI-7B7 cells were grown in steroid depleted medium (SDM) (RPMI 1640 10% 

charcoal treated FCS and L-Glutamine (20mM), at 37°C in a humidified atmosphere of 

5% CO2. 

All cell lines were passaged every 3-5 days. Medium was aspirated under sterile 

conditions and the cells were then washed with sterile phosphate buffered saline (PBS). 

Cells were then trypsinised (1X trypsin/ EDTA) for 3-5 minutes at 37°C, followed by 
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neutralisation by the addition of the appropriate medium (FM, SDM), according to the 

cell line. Cells were then transferred to a new flask and incubated at 37°C in a humidified 

atmosphere of 5% CO2. 

2.2.1.3 Cryopreservation of cell lines 

Cell lines were routinely cryopreserved for storage. After trypsinisation, the cells were 

pelleted by centrifugation at 400g for 5 min, followed by aspiration of all the supernatant. 

The cell pellet was re-suspended  with 1ml of freezing medium (80% FM, 10% FCS, 10% 

dimethyl sulfoxide (DMSO)) at 2-5 x 106 cells/ml. Cells were then frozen at -80°C in 

cryovials. For re-culturing, the cells were defrosted at 37 °C and transferred gently into 

fresh 10ml of respective growth medium, followed by centrifugation at 400g for 5 

minutes to create a cell pellet. The supernatant containing the remaining DMSO was then 

aspirated and the pellet was re-suspended in 10 ml of the respective medium, transferred 

to a new flask and incubated at 37°C. 

2.2.1.4 Cell growth 

An IncuCyte ZOOM live-cell imager (Essen Bioscience) was used to assess cell growth 

by cell counting. The IncuCyte® live-cell imaging and analysis system permits real-time, 

automated cell proliferation assays within a tissue culture incubator. Cell proliferation 

was observed by analysing the percentage of confluence of cells over time. For this assay, 

cells were grown in 96-well plates (2000 cell/well for LNCaP and LNCaP-ENZ-R cells) 

with 6 replicates /plate and incubated in the IncuCyte for 168 hours, with 2 hours interval 

scan. Data were presented as the average fold difference in confluence relative to the 

control from three independent experiments.  

2.2.1.5 Cell counts  

Cells were seeded at the required density in a 6-well plate and treated with appropriate 

drugs, depending on the experiment. After 72 hours, the cells were pelleted and re-

suspended in 1ml of medium. 10µl of the suspension was stained with Trypan blue and 

the number of cells were counted by a haemocytometer. Only cells that were not stained 

were counted, as Trypan blue interacts only with dead cells, giving a blue stain.    

2.2.2  Wound healing assay 

Wound healing assay is one technique used to study cell direction and migration. This 

method is based on creating a wound on a cell monolayer and cell direction was observed 
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by capturing images at the beginning and at regular intervals during cell migration. Cells 

were seeded out on a 6-well plate and the wound was created manually by using a 20µl 

pipette tip. The cells were then washed with PBS to remove detached cells and replaced 

with fresh medium. Three images were taken for each well by using microscopy at 0, 6, 

24 and 48 hours. The images were analysed using ImageJ software by grading each image 

between 20 lines and calculating the width between the wound edges. The data was 

analysed by taking the average of each image and comparing it to different time points 

within the same condition. The data was normalized to the zero-time point.   

2.2.3  Gene expression analysis 

2.2.3.1 RNA isolation  

All techniques were carried out under RNase free conditions using filter tips (Axygen) 

and by using Diethylpyrocarbonate (DEPC) treated water in all the required solutions. 

Trizol® reagent (Invitrogen) is a monophasic solution of phenol and guanidine 

isothiocyanate, which maintains RNA integrity whilst lysing cells and was used to isolate 

RNA from cells. Adherent cells were washed with 1X PBS and then Trizol® (500µl) was 

added and incubated at room temperature for 5 minutes following the manufacturer’s 

protocol. Chloroform (200µl) was then added followed by centrifugation at 12000g for 

15 minutes to separate the aqueous phase, which exclusively contains the RNA. The 

aqueous phase was collected and Isopropanol (500µl) was added to precipitate the RNA, 

during a 10 minute incubation at room temperature. The precipitated RNA was then 

pelleted by centrifugation at 12000g for 15 minutes at 4 °C. Following a washing step 

with 500µl of 75 % ethanol and centrifugation at 7500g for 5 minutes, the RNA pellet 

was re-suspended in an appropriate volume of DEPC treated water. Another method for 

RNA isolation was also performed by using RNeasy Mini Kit QIAGEN® for purification 

of total RNA from animal cells, animal tissues and bacteria. RNeasy’s procedure 

represents a well-established technology for RNA purification. This technology combines 

the selective binding properties of a silica-based membrane with the speed of microspin 

technology. A specialized high-salt buffer system allows up to 100µg of RNA longer than 

200 bases to bind to the RNeasy silica membrane. After cells were trypsinized and 

collected, 350µl of RLT buffer (supplied) was added to lyse the cells.  The lysate was 

then transferred into a QIAshredder spin column (supplied) placed in a 2ml collection 

tube (supplied) and centrifuged for 2 minutes ≥8000g. One volume of 70% ethanol was 
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added to the homogenized lysate, mixed well by pipetting, then immediately transferred 

to an RNeasy spin column placed in a 2 ml collection tube (supplied) and centrifuged for 

15 second at ≥8000g. 700µl Buffer RW1 (supplied) was added to the RNeasy spin column 

and centrifuged for 15 second at ≥8000g to wash the spin column membrane.  500µl 

Buffer RPE (supplied) was added to the RNeasy spin column and centrifuged for 15 

second at ≥8000g to wash the spin column membrane. Again, 500µl Buffer RPE was 

added to the RNeasy spin column and centrifuged for 2 minutes at ≥8000g to wash the 

spin column membrane. Finally, the RNeasy spin column was placed in a new 1.5 ml 

collection tube (supplied) and 30µl RNase-free water (supplied) was added directly to the 

spin column membrane and centrifuged for 1 minute at ≥8000 x g to elute the RNA. The 

concentration and purity of RNA was measured using a NanoDrop® ND-1000 UV-Vis 

Spectrophotometer (Labtech, East Sussex, UK). The concentration of the sample is 

calculated by the program using Beer’s law and the integrity of the sample was assessed 

by the 260/280 ratio (the ratio of absorbance at 260 nm and 280 nm). Optimal 260/280 

ratio for RNA is 2.0.  

2.2.4 Reverse transcription 

A Moloney Murine Leukaemia virus (MMLV) reverse transcriptase system (Promega, 

Madison, USA) was used for cDNA preparation. Complementary DNA (cDNA) was 

prepared by diluting 1µg of RNA in the required volume of DEPC water to a final volume 

of 12.7µl. RNA was incubated at 65°C for 5 minutes to denature the secondary structure 

of  RNA. A master mix of MMLV was prepared, containing 4μl of 5 X reverse 

transcriptase (RT) MMLV Buffer, 2μl of 4mM dNTPs (dGTP, dATP, dCTP and dTTP) 

(Bioline, London, UK), 1μl of 5μM oligo (dT)16 and 0.3μl of MMLV reverse transcriptase 

enzyme. MMLV master mix was added to each sample to make up a final volume of 20µl 

and mixed well by vortex. Samples were incubated at 37°C for 1 hour, followed by 

incubation at 100°C for 5 minutes and then transferred immediately to ice to inactivate 

the MMLV-RT enzyme. The cDNA was then stored at -20°C until required.  

2.2.5  Quantitative real time polymerase chain reaction (QRT-PCR) 

Following reverse transcription, standard cDNA, known to express the transcript of 

interest, was used to quantify relative amounts of cDNA produced in the PCR reactions. 

A fluorescent reporter (SyBr Green) was used to detect the amount of DNA template in 
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the samples. SyBr Green intercalates with the DNA by binding to the minor groove of the 

double helix. Upon binding, SyBr Green fluorescence is enhanced significantly, which 

makes it easier to be detected by real time PCR thermocycling. A 5µl reaction master mix 

was prepared (2µl of diluted cDNA, 2.5µl of Platinum® SYBR® Green qPCR SuperMix-

UDG plus ROX (Invitrogen, New York, USA), 0.2µl forward and 0.2µl reverse primer 

and 0.1µl sterile distilled water) and loaded into a 384-well plate. 

For the standard curve, sample cDNAs were diluted in sterile H2O prior to use. Seven 

dilutions ranging from 1- 0.0005 were used. The same sterile H2O used for cDNA dilution 

was loaded first on the plate as non-template control, followed by master mix loading, 

standard curve dilutions and finally the tested samples.  Samples were run in triplicate on 

each plate. The plate was then sealed with a clear plastic cover and ran under the following 

PCR conditions: denaturation of 40 cycles at 95 °C for 15 seconds followed by annealing  

at 60°C for 1 minute  and finally dissociation at 95 °C for 15 seconds, 60°C for 15 seconds 

and 95°C for 15 seconds. Hypoxanthine phosphoribosyl transferase 1 (HPRT1) was used 

as a housekeeping gene to normalise expression levels. HPRT1 was validated with 

standard curve in different concentration ranging from 1- 0.0005. Also our research group 

validate it in response to different treatment and it showed consistence results. The 

absolute quantification method was used on an ABI 7900 sequence detection system 

(Applied Biosystems, UK) according to the manufacturers’ instructions. A single peak in 

the resultant dissociation curve indicates the production of single product. Results were 

analysed using SDS 2.2 software (Applied Biosystems, Warrington).  
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Genes  
 

Forward Primer (5’-3’)  Reverse Primer (5’-3’)  

PSA TCGGCACAGCCTGTTTCAT TGGCTGACCTGAAATACCTGG  

KLK2 AGCATCGAACCAGAGGAG

TTCT            

TGGAGGCTCACACACTGAAGA 

HPRT1 TTGCTTTCCTTGGTCAGGC

A   

AGCTTGCGACCTTGACCATCT 

HER2 CACCACCATGGAGCTGGCG

G  

 

CATTGGCACGTCCAGACC  

HER3 CACCGTCATGGGGGCGAA  CGTTCTCTGGGCATTA 

RLN1 AGAGGCAACCATCATTACCA

GA 

AAACAGTGCCACGTAGGGTC 

TACSTD2 CATCAAGGGCGAGTCTCTATT

C 

CCCGACTTTCTCCGGTTGG 

SYT4 ATGGGATACCCTACACCCAAA

T 

TCCCGAGAGAGGAATTAGAACTT 

RLN2 ATTGCCATTTGCGGCATGAG CACAATTTGGAAAGGGCACCA 

SGK1 GAGATTGGCCGTATCCCACC GATGGAGAATCTAGCGGGGC 

GRα CTATGCATGAAGTGGTTGAAA

A 

TTTCAGCTAACATCTCGGG 

FKBP5 GCAACCAGAAATCCACCTG CTCCAGAGCTTTTG 

TMPRSS2 CTGCTGGATTTCCGGGTG TTCTGAGGTCTTCCCTTTCTCCT  

 

c-Myc CACAGCAAACCTCCTCACAG

C  
 

GGAGACGTGGCACCTCTTG

A  
 

 Table 2-2-1 Primers used for QRT-PC



   

55 

 

2.2.6 Agilent Bio-analyzer 2100 

Total RNA was extracted from parental LNCaP and LNCaP-ENZ-R with or without 

enzalutamide for 48 hours cells using RNeasy Mini Kit detailed in Chapter 2.2.1. The 

integrity and purity of total RNA were assessed using Agilent Bioanalyzer 2100. 

2.2.7 Illumina Human HT-12 arrays 

The Human HT-12 v4.0 Expression BeadChip has 47,312 probes. The array reports probe 

intensity levels which represents the level of expression of a gene against which a 

particular probe is targeted. Array processing, normalization and quality control checks 

were performed using the R package ‘Lumi’. Probe intensity values were converted to 

VSD (variance-stabilized data) using variance-stabilizing transformation. The robust 

spline normalization (RSN) was used as the array normalization method. Outlier samples, 

poor quality probes (detection threshold < 0.01) and probes that were not detected at all 

were removed prior to downstream analysis. The remaining probes (21,111) normalized 

intensities, VSD were used in the differential expression analysis. Differential expression 

analysis was performed using the R package ‘Limma’ and p values were adjusted to 

control the false discovery rate (FDR) using the Benjamini–Hochberg method. 

2.2.8 Protein Expression Analysis 

2.2.8.1 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

Cell lysates were generated with the addition of RIPA buffer (150mM NaCl pH 7.5; 

50mM Tris-HCl pH 7.5 (Fisher Scientific); 1% NP40 (BDH Chemicals); 1mM EDTA; 

0.25% sodium deoxycholate. Cells were washed with chilled PBS and lysed in RIPA 

buffer for 30 minutes at 4ºC, after which the samples were sonicated for 5 minutes and 

cell debris was pelleted by centrifugation at 12,000g at 4ºC for 10 minutes. The 

supernatant (whole cell lysate) was then used for further analysis. Protein concentration 

was estimated by using Qubit™ protein assay Kits for use with the Qubit™ 3.0 

Fluorometer (Thermo Fisher Scientific). The kits provide concentrated assay reagent 

(200X concentrate in 1, 2-propanediol) and dilution buffer.  Qubit™ working solution 

was made by diluting Qubit™ protein reagent 1:200 in Qubit™ protein buffer by using a 

clean plastic tube. 1µl of protein sample + 199µl of working solution were mixed in the 
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Qubit™ assay tubes (Cat. no. Q32856) and incubated for 15 minutes in a dark place. The 

samples were placed in to Qubit™ 3.0 Fluorometer (Thermo Fisher Scientific) to give the 

protein concentration in mg/ml. Equal amounts of protein were added to appropriate 

amounts of 5X SDS sample buffer (250mM Tris-HCl pH6.8; 10% SDS; 30% glycerol 

(Fisher Scientific), 5% β-mercaptoethanol, 0.02% bromophenol blue (Sigma Aldrich) and 

analysed using western blotting. 

Polyacrylamide gels were prepared by pouring a 12% resolving gel (0.375M Tris-HCl, 

pH 8.8, 0.1% SDS, 12% acrylamide:bisacrylamide mix, 1% ammonium persulfate (APS) 

and 0.1% N,N,N′,N′-Tetramethylethylenediamine (TEMED)) under a 6% stacking gel 

(0.125M Tris-HCL, pH 6.8, 0.1% SDS, 6% acrylamide:bisacrylamide mix, 1% APS and 

0.1% TEMED) Protein lysates (10-15μl) were loaded alongside the Spectra™ 

Multicolour Broad Range Protein Ladder (Thermo Fisher Scientific) as a molecular 

weight reference. Samples were then resolved in reservoir buffer (25mM Tris-HCl, 

190mM glycine, 0.1% SDS) at 200 V for 45-60 minutes. 

 

2.2.8.2 Western blotting 

Following SDS-PAGE electrophoresis, the protein was then transferred onto a Hybond C 

membrane (GE Healthcare, Wisconsin, USA) by electrophoresis in transfer buffer 

(25mM Tris-HCl, pH 8.3; 0.15M glycine, 10% methanol) for 1 hour at 200 volts, or 

overnight at 30 volts. Membranes were blocked in 5% non-fat powdered MarvelTM milk 

in Tris- buffered saline (TBS-20mM Tris-HCl, 500mM NaCl) to block nonspecific 

antibody binding for an hour, followed by washing with 0.001% Tween TBS (TTBS) for 

10 minutes. The membrane was probed with the appropriate primary antibody overnight 

at 4°C then washed with TTBS twice for 5 minutes and probed with the horseradish 

peroxidase HRP-conjugated secondary antibody at room temperature, for 1 hour (Table 

2.1). The antibodies were diluted according to optimized conditions in 1% (w/v) 

Marvel™ diluent. α tubulin was used as a loading control. ECL reagents (1:1 from reagent 

1 and 2) were then spread over the membrane and incubated for 1 minute (GE 

Healthcare), before being exposed to X-ray film (Fuji Film) for an appropriate length of 

time, before development using an automated MediPhot 937 developer. 
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Antibody Target  Species  Company/Cat No  Ig Type  Dilution   Incubation time  

HER2  Rabbit  Cell Signalling 

(D8F12)/#4290  

Monoclonal  1:1000  Overnight at 4ºC  

Phospho-HER2  Rabbit  Cell Signalling Tyr 

1221/1222(6B12)/#2243  

Monoclonal  1:1000  Overnight at 4ºC  

HER3  Rabbit  Cell Signalling  

(D22C5)/#12708  

Monoclonal  1:1000  Overnight at 4ºC  

Phospho-HER3  Rabbit  Cell Signalling  

(Tyr1289) (21D3)/# 4791  

Monoclonal  1:1000  Overnight at 4ºC  

Phospho-HER3  Rabbit  Cell Signalling  

(Tyr1289) (21D3)/# 4791  

Monoclonal  1:1000  Overnight at 4ºC  

AKT 1/2  Rabbit  Santa Cruz sc-1619  Polyclonal  1:1000  Overnight at 4ºC  

Phospho- AKT 

1/2/3 (Ser 473)  

Rabbit  Santa Cruz sc-7985  Polyclonal  1:1000  Overnight at 4ºC  

ERK 1/2  Mouse  Santa Cruz sc-135900 

 

Monoclonal  1:500  Overnight at 4ºC  

α – tubulin  Mouse  Sigma Aldrich T 9026 Monoclonal  1:2000  Overnight at 4ºC  
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ERK5  Rabbit  Cell Signalling  

#3372S  

 

Polyclonal  1:1000  Overnight at 4ºC  

Phospho – ERK5  

(Thr218/ Tyr220)  

Rabbit  Cell Signalling  

#3371S  

Monoclonal  1:1000  Overnight at 4ºC  

SGK1 Rabbit Sigma Aldrich # S 5188  Polyclonal 1:1000 Overnight at 4ºC 

Phosph-SGK1 

(Ser422) 

Rabbit Santa Cruz sc-16745 Polyclonal 1:1000 Overnight at 4ºC 

GRα Rabbit Santa Cruz sc-1002 Polyclonal 1:1000 Overnight at 4ºC 

TROP-2 Goat  R&D Systems Bio-techne 

Brand # AF650 

Polyclonal 1:1000 Overnight at 4ºC 

P27 Rabbit Santa Cruz # sc-528  Polyclonal 1:1000 Overnight at 4ºC 

 

Myc  
 

Mouse  
 

Cell Signalling 

#2276  
 

monoclonal 1:1000 Overnight at 4ºC 

      

      

      

Table 2-2-2 Primary antibodies used for Western Blotting 
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Antibody Species Company/Cat No  

HRP-conjugated  

Rabbit anti-mouse 

Mouse polyclonal 

 

DakoCytomation 

(P0260) 

HRP- conjugated  

Swine anti-Rabbit 

Rabbit polyclonal    

 

DakoCytomation  

(P0217) 

Table 2-2-3 Secondary antibodies used for Western Blotting 

 

2.2.9 siRNA oligo design to mediated gene knockdown 

siRNA oligos were generated using Tuschl’s rules of design and cross-checked using 

Invitrogen Block-iT RNAi designer. siRNA sequences were also blasted against EST 

libraries (NCBI database) to ensure specificity. siRNA oligos were ordered dry from 

Sigma Aldrich and resuspended in sterile dH2O upon arrival to a concentration of 50μM. 

Aliquots were made (20-50μl, depending on yield) and stored at -20oC. As a negative 

control, non-targeting siRNA, termed scrambled siRNA, was used (catalogue number 

1022076, Qiagen). siRNA sense and anti-sense strand sequences: 
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siRNA Sense sequence Anti-sense sequence 

Non-silencing (N/S)  

(1022076) (Qiagen) 

 

UUCUCCGAACGUGUCAC

GU 

ACGUGACACGUUCGGAG

AA 

TROP2 #1 

 

CGUGGACAACGAUGGCC

UCUA 

UAGAGGCCAUCGUUGUC

CACG 

TROP2 #2 GCACGCUCAUCUAUUAC

CU 

AGGUAAUAGAUGAGCG

UGC 

TROP2 #3 GCCUGAACGCAGUUUGG

AU 

AUCCAAACUGCGUUCAG

GC 

GR #1 GAGUAUGGUUGGAGCCU

AAUU 

AAUUAGGCUCCAACCAU

ACUC 

GR #2 CGUGUGAAGAUGAGUGA

AAUU 

 

AAUUUCACUCAUCUUCA

CACG 

Table 2-2-4 siRNA sequences used for mRNA knockdown 

 

Reverse transfection with siRNAs against TROP2 or GR and /or non-silencing were used 

to knockdown these proteins. siRNA, basal medium and lipofectamine RNAi Max (Life 

Technologies) were mixed into 1.7ml Eppendorf tubes (Axygen) to give a final 

concentration of 25nM/well. The cocktail was added to the 6 well plate after gentle 

mixing and incubated for 30 minutes. This was followed by seeding out 150,000 cell/ml 

of LNCaP and LNCaP-ENZ-R cells in full media into each well, then the cells along with 

the siRNA were incubated for 72 hours.  
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2.2.10 Immunohistochemistry 

2.2.10.1 Human tissue samples  

A database of patients diagnosed with prostate cancer was generated from the Freeman 

Hospital, Newcastle upon Tyne, database. An anonymized database was used which 

included the following sample information: clinic-pathological data (e.g. age at diagnosis, 

PSA values, TNM stage, Gleason grade), plus hormone manipulation, demographic data 

and other treatment modalities. Gleason grade, presence of HGPIN and BPH was 

confirmed by Dr. Mathers, Uropathologist, RVI, Newcastle upon Tyne.  

2.2.10.2 Methodology  

Tissue microarrays (TMAs) were generated within the STTD laboratory and were used 

in immunohistochemical analysis of protein expression in different patient samples that 

includes BPH and different grades of prostate cancer (Gnanapragasam et al., 2006). 

The TMA samples were deparaffinised in xylene for 5 minutes and rehydrated through a 

series of ethanol concentrations (99%, 99%, 95%, 70% and 50%) followed by washing 

in distilled water. Antigen retrieval was performed by incubating the TMA slides in 

0.01M sodium citrate buffer pH 6 using a decloaker (Menapath). To block endogenous 

peroxide activity, the TMA slide was treated with 3% hydrogen peroxide for 10 minutes, 

followed by washing under running tap water for 5 minutes. The area around the cores 

were determined by using a hydrophobic PAP pen (Dako) and unspecific binding was 

blocked using 0.5% of BSA for 1-20 minutes depending on the antibody. The TMA slides 

were incubated in primary antibody overnight at 4ºC. The TMA slides were then washed 

twice with TTBS (Tris buffered saline – Tween 20) for 5 minutes, followed by incubation 

in secondary antibody for 30 minutes (Table 2-5) and Washed under running water for 5 

minutes. The TMA slides were then incubated in DAB (Diaminobenzidine 

tetrahydrochloride) for 5 minutes, followed by a wash in tap water for 5 minutes. The 

slides were then stained with Harris Haematoxylin for 15 seconds, immediately washed 

with tap water and treated with Scott’s tap water for 30 seconds. Finally, the TMA slides 

were dehydrated in a series of ethanol concentration (50%, 70%, 95%, 99% and 99%) 

followed by 5 minute xylene treatment and mounted in DPX. 
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Target  Primary Antibody  Secondary Antibody 

TROP-2 1:150 in 0.5% BSA in PBS as diluent 

overnight incubation  

R&D System Bio-Techne Brand # 

AF650  

Polyclonal Goat IgG 

1:250 0.5% BSA in 

PBS as diluent of HRP-

conjugated Swine anti-

Goat DakoCytomation  

 

SGK1 1:60000 in 0.5% BSA in PBS as 

diluent overnight incubation  

Rabbit poly clonal Sigma Aldrich # 

S 5188 

ImmPRESS™ HRP 

Anti-Rabbit IgG 

(Peroxidase) Polymer 

Detection Kit 

Table 2-2-5 Primary and secondary antibodies used in IHC 

 

2.2.10.3 Scoring  

After TMA staining, all slides were scanned using the online digital scanner Aperio® and 

scored by two independent observers for nuclear and cytoplasmic staining, using a 

histoscore method, also known as H-score. This method considers the intensity of the 

stained proteins and the percentage of cells with the same intensity of staining across the 

sample.  

The score is calculated by using the formula:  

𝐻𝑖𝑠𝑡𝑜𝑠𝑐𝑜𝑟𝑒= (1 x % 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑤𝑒𝑎𝑘 𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔) + (2 x % 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔) + (3 x % 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑜𝑛𝑔 𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔).  

This method has been well established (Kirkegaard et al., 2006; Ahmad et al., 2011) and 

is useful for scoring heterogeneous staining of samples. It provides a maximum score of 

300 (100% cells with strong staining) and a minimum of 0 (100% cells with no staining), 

which makes the data quantifiable. 

2.2.11 Flow cytometry 

Flow cytometry can be used to measure multiple features of individual cells that are 

flowing in a single file in a stream of fluid through an illumination and light detection 

system. Light scattering at different angles can distinguish differences in size and internal 

complexity, whereas light emitted from fluorescently labelled antibodies can identify a 

wide array of cell surface and cytoplasmic antigens (Brown and Wittwer, 2000).  
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2.2.12 Cell harvesting for fluorescence-activated cell sorting (FACS) analysis 

Cells were harvested for DNA staining. Firstly, media from the wells was collected in a 

FACS tube (BD biosciences). Cells were then washed with 500μl PBS (which was also 

retained for analysis) then detached from the well with 500μl 1 X trypsin/EDTA. Trypsin 

was neutralised by adding media to the collected cells and PBS. Cells were then pelleted 

by centrifugation at 2000 rpm for 5 minutes and re-suspended in 100μl citrate buffer 

(0.25M sucrose, 40mM sodium citrate, pH 7.6). Cell permeabilization was achieved by 

using 0.74% TritonX-100, cells were stained with 2.5mg/ml propidium iodide and 

100μg/ml RNase. FACScan (BD Biosciences, California, USA) was used to analyse the 

samples which measures 10,000 events per sample.  

Data analysis: Cyflogic software was used for data acquisition and analysis. PI attaching 

was measured using a BD FACsCalibur, capturing 10,000 events per tube. Cells were 

gated on Forward Scatter versus Side Scatter to exclude cell debris and FL2-Width versus 

FL2-Area dot-blot was used to discriminate doublets and to ensure only single cells were 

examined for cell cycle analysis. Only single cells representing subG1, G1, S and G2/M 

in a FL2-W vs FL2-A plot. 

2.2.13 Luciferase assay  

 

When LNCaP-7B7 cells were used, the cells were starved in SDM for 72 hours prior to 

heregulin stimulation. However, in LNCaP-AI-7B7 (grown continuously in steroid-

depleted media), the cells were not starved. The cells were seeded out in quadruplets per 

experimental arm, using a 24-well plate and the experiment was carried out accordingly. 

Once the experiment was completed, the cells were washed with PBS and lysed using 

50μl of 1X reporter lysis buffer (Promega) /well. 10μl of lysate from each well was 

transferred onto an opaque flat-bottomed 96-well plate. The plate was then placed in the 

automated FLUOstar Omega (BMG Labtech) plate reader where 50μl of Steady-Glo 

luciferase substrate (Promega) was injected per well, shaken for 5 seconds and the emitted 

luciferase counts per second was recorded. The data was then normalised to the 

proliferation data obtained per well using IncuCyte. The average values were then used 

to interpret the results. 
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2.2.14  General statistical analysis  

Statistical analysis was performed for the obtained data. To overcome the inter-

experimental variation, fold changes of individual experimental repeats were compared 

rather than raw data and for the intra experimental variation, 3 independent experiments 

were done for each data set. Student’s t-test was used for data analysis and p value ≤ 0.05 

was significant. For non-parametric data and matched samples, Wilcoxon signed-rank 

test were used to compare two related samples and p value ≤ 0.05 was considered 

significant.  

  

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
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Chapter 3. The expression of HER2, HER3 and androgen receptor in parental 

LNCaP versus castration resistant derivative prostate cancer cell lines 
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3.1 Introduction  

The androgen receptor (AR) is a transcription factor that plays a crucial role in male 

sexual development and growth of the prostate gland. In addition, AR plays a dominant 

role in the progression of human prostate cancer. Androgen ablation therapy is primarily 

used to inhibit tumour cell growth in patients with advanced disease. However, despite 

chemical or surgical castration, tumour regrowth and symptoms recurrence usually occur 

following a period of treatment response. A hormone refractory stage of the disease is 

characterised by an increase in the expression of AR and AR target genes, such as PSA, 

suggesting that the AR pathway remains active during this stage (Isaacs and Isaacs, 2004). 

A study of differential gene expression between androgen-dependent and androgen-

independent PC cell lines found a consistent increase in HER2 protein level in an 

androgen-independent cell line, compared with an androgen-dependent cell line and 

further that the forced expression of HER2 in a PC cell line enhanced AR function and 

activated the AR signalling pathway (Craft et al., 1999).  

Neuregulins (HRG) are a family of ligands that activate HER3 to heterodimerize with its 

partner HER2 to regulate a number of signalling pathways that are associated with 

maintenance of cell division, proliferation and differentiation (Sithanandam and 

Anderson, 2008). It was previously suggested that androgen deprivation can promote 

castration resistant prostate cancer (CRPC) progression by increasing the level of HER3 

in androgen-dependent cells, resulting in increased AR transcriptional activity.  

Additionally, downregulation of HER3 was demonstrated to inhibit the growth of a CRPC 

cell line (Chen et al., 2010). A study conducted in our group using PC patient tissue 

samples found an increase in the expression of both HER2 and HER3 in advanced PC 

and further that the expression level was associated with poor prognosis. Moreover, 

forced overexpression of HER2 and HER3 led to increased cell proliferation, migration 

and invasion in the PC3 cell line. AR stability and activity can also be increased through 

HER2 and HER3 activation (Rao, 2015). However, the role of HER2 and HER3 in CRPC 

models that have been generated in our lab is unknown and the pathway(s) that can be 

stimulated through activated HER2 and HER3 in these CRPC models is therefore also 

unknown. 

The aims of this chapter are: 

1. To investigate the relationship between AR and HER2 and HER3. 

2. To investigate the role of HER2 and HER3 in CRPC models. 
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3. To investigate the signalling pathway(s) that can be stimulated through HER2 

and HER3 activation in CRPC models.
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3.2 Results  

3.2.1 Validating the activity of HER3 and Akt by heregulin stimulation  

A previous study in our laboratory (Rao, 2015) showed an increase in the expression of 

HER3 in a LNCaP and LNCaP-AI cell lines in response to heregulin stimulation. To 

validate these results the androgen-dependent LNCaP cell line was used and activated 

using heregulin at different time points (0, 5, 15, 30 and 60 minutes). The results showed 

an increase in the level of both pHER3 and pAkt after 5 minutes with maximum activation 

achieved following 15 minutes stimulation with heregulin (Figure 3-1).   

 

Figure 3-1 Heregulin activates the phosphorylation of HER3 and Akt 

LNCaP cell lines was seeded out in 6-well plates in normal growth medium for 24 hours. 

This was followed by an overnight starvation in basal medium, then cells were activated 

with 20ng/ml of heregulin for 0, 5, 15, 30 and 60 minutes. DMSO was used as a vehicle 

control. Lysates were collected in a RIPA buffer and pHER3, pAkt protein level were 

detected by western blotting. Alpha-tubulin was used as a loading control (representative 

blot).
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3.2.2  Anti-androgen treatment increases the expression of HER2/3 in the LNCaP 

cell line 

It has been previously suggested that HER2/HER3 signalling increases AR stability and 

enhances its binding to the promoter region of AR target genes; an important step for 

proliferation and survival (Mellinghoff et al., 2004). To examine the role of AR on the 

expression of HER2 and HER3, LNCaP cells were treated with the anti-androgen drugs 

enzalutamide, ARN509 and Casodex for 24 hours. RNA was isolated and HER2 and 

HER3 expression were assessed by QRT-PCR using specific primers. The data was 

normalised to the DMSO vehicle control. No significant change in the expression of 

HER2 or HER3 mRNA was observed in response to anti-androgen treatment compared 

to the DMSO control (Figure 3-2 A, B). However, both HER2 and HER3 increased at the 

protein level in response to the anti-androgen drugs enzalutamide, ARN509 and Casodex 

compared with DMSO vehicle untreated control (Figure 3-2 C).
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Figure 3-2 Anti-androgens increase total HER2 and HER3 level in LNCaP cell line 

LNCaP cells were seeded out in normal growth medium for 24 hours. This was followed 

by treatment with 10µM of Casodex, enzalutamide or ARN509 for 24 hours. DMSO was 

used as control. Cells were then lysed in RIPA buffer for protein samples or Trizol for 

RNA extraction. A. HER2 expression was determined by QRT- PCR. B. HER3 expression 

was determined by QRT- PCR. C. Total HER2 and HER3 protein level was detected by 

western blotting. Alpha-tubulin was used as a loading control. Error bars represent the 

mean ± SD for triplicate independent experiments (representative blot).
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3.2.3 Higher level of HER2 and HER3 in Casodex, enzalutamide and ARN509 

Resistant cell lines compared to parental LNCaP cells 

Despite initial good response rates to ADT, nearly all men eventually develop the 

castration-resistant prostate cancer (CRPC) phenotype, where low levels of androgen can 

stimulate tumour growth (Snoek et al., 2009). It has been shown that increased HER2 

expression is seen in enzalutamide-resistant prostate cancer models (Shiota et al., 2015). 

In our laboratory, cell lines models have been generated that represent the CRPC 

phenotype. These lines have all been generated from the LNCaP parental cell line and are 

resistant to Casodex (LNCaP-CDX-R), enzalutamide (MDV1300) (LNCaP-ENZ-R) or 

ARN509 (LNCaP-ARN-R). LNCaP-CDX-R, LNCaP-ENZ-R and LNCaP-ARN-R are 

LNCaP sub-clones that were generated by growing LNCaP in serial passage of escalating 

dose of Casodex, enzalutamide and ARN509, respectively. These resistant cell lines are 

routinely maintained in full medium supplemented with either 10μM Casodex, 10μM 

enzalutamide or 10μM ARN509 (O’Neill, 2014). To investigate the role of HER2 and 

HER3 in CRPC models parental LNCaP, LNCaP-CDX-R, LNCaP-ENZ-R and LNCaP-

ARN-R cell lines were grown in full medium containing DMSO vehicle, 10μM casodex, 

10μM enzalutamide and 10μM ARN509, respectively for 24 hours. As expected, high 

expression of HER2 was apparent in LNCaP-CDX-R cells which showed a ~5 fold 

significant increase in mRNA expression (p< 0.05) when compared with LNCaP cells. 

Similarly, LNCaP-ENZ-R cells showed a ~13 fold significant increase in HER2 mRNA 

expression (p< 0.05) when compared with LNCaP cells. The same trend was also noticed 

with LNCaP-ARN-R cells which showed an increase in mRNA expression of HER2 of 

~2 fold (Figure 3-3A).  

For HER3, the results demonstrated a significant increase in mRNA expression of HER3 

(p< 0.05) for the LNCaP-CDX-R cells of ~14 fold compared with LNCaP cells. In LNCP-

ENZ-R cells the highest expression of HER3 mRNA was observed with a ~20 fold 

increase in expression (p< 0.05) compared to LNCaP cells. The LNCaP-ARN-R cells 

showed a significant increase in the mRNA expression of HER3 (p< 0.05) of ~12 fold 

(Figure 3-3B). 

To confirm the results of QRT-PCR, HER2 and HER3 protein level were further 

examined using western blotting and the results showed an apparent increase in  the level 

of  HER2 and HER3 total protein in LNCaP-CDX-R, LNCaP-Enz-R and LNCaP-ARN-

R cell lines compared with LNCaP cells that (Figure 3-3C). 
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Figure 3-3 Elevated expression of HER2 and HER3 in Casodex, enzalutamide and 

ARN509 resistant cell lines 

Parental LNCaP and Casodex, enzalutamide and ARN509 resistant cell lines were seeded 

out in in their respective growth medium for 24 hours. The cells were then lysed in RIPA 

buffer for protein samples and Trizol reagent was used for RNA extraction. A. HER2 

expression was determined by QRT- PCR. B. HER3 expression was determined by QRT- 

PCR. C. Total HER2 and HER3 protein level. Alpha-tubulin was used as a loading 

control. Error bars represent mean ± SD for triplicate independent experiments. p-values 

were determined by using student t-test (* p-value <0.05, ** p-value <0.01m and *** p-

value <0.001) (representative blot).
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3.2.4 Higher level of HER2/HER3 in Casodex-, enzalutamide- and ARN509-

resistant cell lines stimulated with heregulin    

The previous experiment (Figure 3-3) showed a high level of HER2/HER3 in Casodex, 

enzalutamide and ARN509 resistant cell lines compared with LNCaP cells. To test the 

role of HER2/HER3 activity in PC resistant cell lines; LNCaP, Casodex, enzalutamide 

and ARN509 resistant cell lines were grown in full medium, followed by an overnight 

starvation in basal medium to reduce any possible activation through FBS. Cells were 

then activated with heregulin for 15 minutes. RNA was isolated and HER2 and HER3 

expression were assessed by QRT-PCR using oligonucleotide primers. The results 

observed an increase in the expression of HER2 at mRNA level in response to heregulin 

stimulation in parental LNCaP and in all tested resistant cell line (Figure 3-4A). The 

results also noticed a significant increase in the HER3 expression at mRNA level in 

response to heregulin stimulation. However, it was not significant in parental LNCaP that 

activated with heregulin (Figure 3-4 B). To confirm the results of QRT-PCR, HER2 and 

HER3 protein level were examined with western blotting and the results showed an 

increase in the level of the HER2 and HER3 total protein level in LNCaP-CDX-R, 

LNCaP-ENZ-R and LNCaP-ARN-R cell lines compared with LNCaP cells grown in 

basal medium and with heregulin stimulation (Figure 3-4 C). 
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Figure 3-4 Higher level of HER2 and HER3 in PC resistant cell lines 

Parental LNCaP and Casodex, enzalutamide and ARN509 resistant cell lines were seeded 

out in 6-well plates in full medium for 24 hours. This was followed by an overnight 

starvation in basal medium, then the cells were activated with 20ng/ml of heregulin for 

15 minutes. The cells were then lysed in RIPA buffer for protein samples and Trizol kits 

were used for RNA extraction. A. HER2 expression was determined by QRT-PCR. B. 

HER3 expression was determined by QRT-PCR. C. HER2 and HER3 protein level in 

parental LNCaP cells, Casodex-resistant cell line, enzalutamide-resistant cell line and 

ARN509-resistant cell line. Alpha-tubulin was used as loading control. Error bars 

represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test (* p-value <0.05)



   

75 
 

3.2.5 Higher level of pHER2, pHER3, pAkt and pERK1/2 in LNCaP-CDX-R, 

LNCaP-ENZ-R and LNCaP-ARN-R cell lines compared with parental 

LNCaP in basal medium 

A previous microarray study of PC tissue revealed that the RAS/RAF/MEK signalling 

pathway is up-regulated in both primary and metastatic cancer (Mulholland et al., 2012). 

Another study showed that the PI3K/Akt/mTOR signalling pathway is important for the 

development and progression of CRPC (Bitting and Armstrong, 2013). To test which 

pathways are activated in resistant cell line models, LNCaP, Casodex-resistant, 

enzalutamide-resistant and ARN509-resistant cell lines were grown in full medium, then 

starved for 24 hours to eliminate any possible activation from FBS. Western blots were 

then probed for the phospho-species of HER2, HER3, Akt and ERK1/2. The data might 

demonstrates high level of pHER2, pHER3, pAkt and pERK1/2 in Casodex-, 

enzalutamide- and ARN509-resistant cell lines compared to the parental LNCaP cells in 

basal medium (Figure 3-5A).
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Figure 3-5 High level of phosphorylated HER2, HER3, Akt and ERK1/2 in resistant 

cell lines compared to parental LNCaP cells 

LNCaP and resistant cell lines were seeded out in 6-well plates in full medium for 24 

hours and followed by an overnight starvation in basal medium. The cells were then lysed 

in RIPA buffer for protein samples. pHER2, pHER3, pAkt, total Akt, total ERK1/2, 

pERK1/2 protein level in parental LNCaP, Casodex-resistant cell line, enzalutamide-

resistant cell line and ARN509-resistant cell line were detected.  Alpha-tubulin was used 

as a loading control (representative blot). 
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3.2.6 Increased level of pHER2, pHER3, pAkt and pERK1/2 in LNCaP-ENZ-R 

and LNCaP-ARN-R cells in response to the heregulin stimulation  

To investigate the pathways that might be stimulated through HER2/HER3 activity in PC 

resistant cell line models, LNCaP, Casodex-resistant, enzalutamide-resistant and 

ARN509-resistant cell lines were grown in full medium, then starved for 24 hours to 

eliminate any possible activation from FBS. The cells were then activated with heregulin 

for 15 minutes. The LNCaP-CDX-R cell line showed no change in the protein level of 

pHER2 in response to the heregulin, while high level of pHER3, pAkt and pERK1/2 was 

noticed in response to heregulin stimulation. The LNCaP-ENZ-R cell line showed an 

increase in the protein level of the pHER2, pHER3, pAkt and pERK1/2 in response to the 

heregulin stimulation, which was observed to be more pronounced than the other resistant 

cell lines. The results also demonstrated a possible increase in the protein level of the 

pHER2, pHER3, pAkt and pERK1/2 in response to the heregulin stimulation in LNCaP-

ARN-R cell line (Figure 3-6).
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Figure 3-6 Increase in the activity of pHER2, pHER3, pAkt and pERK1/2 in 

response to heregulin stimulation 

LNCaP and resistant cells were seeded out in 6-well plates in full medium for 24 hours, 

followed by overnight starvation in basal medium. The cells then were activated with 

20ng/ml of heregulin for 15 minutes. The cells were then lysed in RIPA buffer for protein 

samples. pHER2, pHER3, pAkt, total Akt, total ERK1/2, pERK1/2 protein level in 

parental LNCaP, Casodex-resistant cell line, enzalutamide-resistant cell line and 

ARN509-resistant cell line were detected.  Alpha-tubulin was used as a loading control 

(representative blot). 
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3.2.7 AZD8931 and Lapatinib abrogates the activity of HER2/ HER3 and 

downstream signaling pathways 

A previous study in our lab indicated that a transient over-expression of HER2 and HER3 

increases downstream signalling of PI3 kinase pathways. Also AZD8931 which inhibits 

EGFR, HER2 and HER3 reduces HER2 and HER3 activity in the cellular and nuclear 

compartments as expected  (Rao, 2015). Akt can activate AR in a ligand independent 

manner (Feldman and Feldman, 2001a). To understand which downstream signalling 

pathways could be effected by the inhibition of HER2 and HER3, AZD8931 and 

Lapatinib were used. Lapatinib inhibits both EGFR and HER2 activity but not HER3. 

LNCaP cells were grown in full medium then starved overnight in basal medium and 

treated with AZD8931 or Lapatinib, then activated with heregulin for 15 minutes. It was 

observed that the AZD8931 might decrease pHER2 and HER3 level apparently in the 

presence of heregulin and also decreases pAkt protein expression. The results also 

suggested that Lapatinib was able to reduce pHER2 and HER3 dramatically in the 

presence of heregulin and also decrease pAkt protein level (Figure 3-7).  

 

Figure 3-7 AZD8931 and Lapatinib abrogates HER2/HER3 and Akt 

phosphorylation 

LNCaP cells were seeded out in 6-well plates in full medium for 24 hours, followed by 

overnight starvation in basal medium containing 3µM AZD8931 or 5µM of Lapatinib. 

The cells were then stimulated with 20ng/ml of heregulin for 15 minutes. Next, the cells 

were lysed in RIPA buffer to obtain protein samples. pHER2, pHER3 and pAkt protein 

level in parental LNCaP cells were determined.  Alpha-tubulin was used as a loading 

control (representative blot).
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3.2.8 Heregulin significantly increases AR promoter activity, while AZD8931, 

MK2206 and PD325901 abrogate heregulin stimulation of AR promotor 

activity in an androgen dependent cell line 

To further understand which pathways are able to influence AR activity, a cloned LNCaP-

7B7 cell line was used which has a chromosomally integrated PSA-luciferase promoter, 

thus enabling the analysis of AR activity. LNCaP-7B7 cells line were validated in our 

group by adding enzalutamide which show decreased in the activity of PSA promoter, 

while increased in the PSA promoter’s activity was noticed in the full medium condition 

compared to SDM (Rao, 2015). LNCaP-7B7 cells were starved in SDM medium then 

stimulated with heregulin to activate the HER2/HER3 pathways. AR activity increased 

significantly (p< 0.05) with at least ~1.5 fold increase compared with DMSO control 

(Figure 3-8). Cells were treated with AZD8931 (HER family inhibitor), MK2206 

(inhibitor of the serine/threonine protein kinase Akt) or PD325901 (MEK1/MEK2 

inhibitor). DMSO was used as a control. This study observed that AZD8931 might 

decrease AR activity in the androgen-dependent cloned cell line stimulated with 

heregulin. The results also showed that MK2206 Akt inhibitor was able to significantly 

decrease AR activity (p< 0.05). Although a similar trend was noticed, it was also detected 

that PD325901 (MEK1/MEK2 inhibitor) had no significant effect on the AR activity in 

androgen dependent cloned cell line (Figure 3-8 C).
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Figure 3-8 AZD8931, MK2206 and PD325901 inhibit AR promoter activity, while 

heregulin increases AR promoter activity in an androgen-dependent cell line 

LNCaP-7B7 cells were seeded out in quadruplets per experimental arm using a 24-well 

plate. The cells were then starved in SDM for 72 hours. 16 hours prior to the starvation 

period, the cells were treated with either DMSO or AZD8931, MK2206 or PD3225901 

after which the cells were treated with heregulin 20ng/ml for another 16 hours. The cells 

were then lysed in reporter lysis buffer and luciferase substrate was added to measure the 

luciferase activity. The luciferase counts per second were measured and the data was 

normalised to the number of the cells per well by utilising an IncuCyte machine. A. 

LNCaP-7B7 treated with AZD8931. B. LNCaP-7B7 treated with MK2206. C. LNCaP-

7B7 treated with PD325901. Error bars represent the mean ± SD for triplicate independent 

experiments. p-values were determined by using student t-test (* p-value <0.05, ** p-

value <0.01).
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3.2.9 AZD8931, MK2206 and PD325901 inhibit AR promoter activity, while 

heregulin significantly increases AR promoter activity in an androgen-

independent cloned cell line  

An investigation of the effects of HER2 and HER3 plus downstream partners Akt and 

MEK on androgen receptor activity was continued in the cloned androgen-independent 

cell line LNCaP-AI-7B7. This cell line has a chromosomally integrated PSA-luciferase 

promoter, thus enabling the analysis of AR activity in an androgen-independent model.  

To prove that these changes are occurring through the activity of the androgen receptor, 

a previous study in our lab validated these cell line by treating the cells with the anti-

androgen drug enzalutamide, and it was observed that PSA transcriptional activity was 

inhibited (Rao, 2015). LNCaP-AI-7B7 cells were grown in SDM medium, then 

stimulated with heregulin to activate the HER2/HER3 pathways. AR activity increased 

significantly (p< 0.05) with at least ~2.5 fold increase compared with DMSO control 

(Figure 3-9 A). Cells were treated with AZD8931 (HER family inhibitor), MK2206 

(inhibitor of the serine/threonine protein kinase Akt) or PD325901 (MEK1/MEK2 

inhibitor). DMSO was used as a control. It was observed that AZD8931 decreases AR 

activity in the androgen-independent cloned cell line, seen on stimulation with heregulin. 

It was also observed that PD325901 (MEK1/MEK2 inhibitor) had no significant effect 

on the AR activity in this androgen-independent cloned cell line.
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Figure 3-9 AZD8931, MK2206 and PD325901 inhibits AR promoter activity, while 

heregulin increase AR promoter activity significantly in androgen independent cell 

line 

LNCaP-AI-7B7 cells were seeded out in their normal growth medium (SDM).The cells 

were pre-treated with DMSO control, AZD8931, MK2206 or PD3225901 followed by 16 

hours of 20ng/ml heregulin stimulation. The cells were then lysed and luciferase activity 

was measured. The luciferase counts per second were measured and the data was 

normalised to the number of the cells per well by utilising an IncuCyte machine. A. 

LNCaP-AI-7B7 treated with AZD8931. B. LNCaP-AI-7B7 treated with MK2206. C. 

LNCaP-AI-7B7 treated with PD325901. Error bars represent the mean ± SD for triplicate 

independent experiments. p-values were determined by using student t-test (* p-value 

<0.05, ** p-value <0.01, *** p-value <0.001).
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3.3 Discussion: 

It has previously been shown that HER2/HER3 signalling enhances the stability of AR 

protein and optimizes binding of the AR to the promoter region of androgen receptor 

target genes (Mellinghoff et al., 2004). Additionally, the HER2/HER3 pathway is directly 

upstream of the PI3K-Akt pathway, as well as many other known pathways, including 

the MAP Kinase pathway, suggesting that the HER2/HER3 pathway represents a critical 

target of prostate cancer (Mellinghoff et al., 2004). A previous study in our research group 

demonstrated that stable overexpression of HER2 and HER3 in PC3 cells leads to 

increased PI3 Kinase (pAkt) and MAP Kinase (pERK1/2) pathway activity. In addition, 

this cell line showed an increase in migration and invasion, compared to empty vector 

control. Furthermore, the use of the pan-EGFR family inhibitor, AZD8931 (an inhibitor 

of EFGR, HER2 and HER3), caused a reduction of AR activity (Rao, 2015).  

The stimulation of HER2/3 by heregulin was validated and it showed that heregulin 

activates HER2/3 and Akt after 15 minutes stimulation (Figure 3-1). The limitation of 

this experiment is not investigate the total HER3 and Akt at the protein level, which might 

be useful if this study detect these proteins in response of heregulin stimulation. 

 The role of the HER2/HER3 pathway in the regulation of AR has been investigated in 

several studies (Agus et al., 2002; Mellinghoff et al., 2004). In order to investigate the 

possible feedback mechanism between AR and HER2/HER3, LNCaP cells were treated 

with the anti-androgen drugs Casodex, enzalutamide and ARN509. The data showed no 

possible feedback mechanism between AR and HER2/HER3 at the transcription level 

(Figure 3-2 ). However, an upregulation of HER3/HER2 at the protein level has been 

detected in cells treated with Casodex, enzalutamide and ARN509 which might suggest 

a possible negative feedback mechanism between AR and HER3. Similarly, another 

group Chen et al. (2010) has shown that on knockdown of the AR by two different RNAi 

in both experimental arms there were higher HER3 levels, and AR activation promotes 

HER3 degradation through Nrdp-1, an E3 ubiquitin ligase that targets HER3 for 

degradation. This study suggested that inhibits AR with antiandrogen Casodex, 

enzalutamide and ARN509, cause upregulate of HER3/HER2 which might leads to 

increase the signalling of LNCaP in AR independent manner. This could happens by 

reduced the level of Nrdp-1 and increase HER3 level in response to Casodex, 

enzalutamide and ARN509 treatment. This study investigated the role of HER2/HER3 in 

our in-house generated CRPC models of drug-resistance compared to parental LNCaP 

cells.  
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Expression of HER2/HER3 were tested in LNCaP, LNCaP-Casodex-resistant, LNCaP-

enzalutamide-resistant and LNCaP-ARN509-resistant cells. The data showed that 

expression of HER2 and HER3 were significantly higher in all tested resistant cell lines 

compared to parental LNCaP cells at the protein and at the mRNA levels. HER3 has 

previously been described to be over expressed in widely available cell line models of 

CRPC (DU145, PC3 and LNCaP-AI) (Chen et al., 2010), which agreed with obtained 

data (Figure 3-4 ). Similar results were observed in cells grown in basal medium (Figure 

3-5). Also, these results showed that stimulation of cells with heregulin leads to higher 

expression of HER2/HER3 at the mRNA level, which was more pronounced in the 

LNCaP-enzalutamide resistant cell line (Figure 3-4 A, B). This was also similarly 

reflected at the total protein level (Figure 3-4 C).  

Heregulin is known to activate the HER2/HER3 pathway at tyrosine residues (Gregory et 

al., 2005). Therefore, the same experiment as in Figure 3-4 was repeated looking at the 

phosphorylated forms of HER2 and HER3. The effect of heregulin stimulation on the 

phosphorylation of HER2/HER3 and the possible pathways that could be activated 

through this activation of the HER2/HER3 pathway was assessed in resistant cell line 

models compared to the parental LNCaP cells (Figure 3.5) (Figure 3.6). The most 

interesting finding was higher levels of pHER2, pHER3, pAkt and pERK1/2 detected in 

the LNCaP-Casodex-resistant, LNCaP-enzalutamide-resistant and LNCaP-ARN509-

resistant cells compared with parental LNCaP cells in basal medium condition. However, 

no change was detected in total Akt and total ERK1/2 among the studied cell lines which 

acted as an additional loading control (Figure 3-5). Another important finding was that 

activation of the HER2/HER3 pathway in LNCaP-enzalutamide resistant cells, LNCaP-

Casodex resistant and LNCaP-ARN509 resistant cells led to an activation of both PI3 

Kinase (pAkt) and MAP Kinase (pERK1/2) signalling pathways compared to parental 

LNCaP, which was most apparent in LNCaP-enzalutamide resistant cells (Figure 3-6). 

HER2 was previously suggested to induce PSA through the MAP kinase pathway (Yeh 

et al., 1999). Another study indicated that the loss of HER3 results in a reduction of ~50% 

in Akt phosphorylation and rapid tumour regression (Hsieh and Moasser, 2007). The 

limitation of this experiment is not investigate the total HER3 and Akt at the protein level. 

However, this study suggested that heregulin might only able to phosphorylate HER3 at 

tyrosine residues, which was observed in experiment (Figure 3-5). And no change in the 

total HER2/HER3 protein level was noticed in response to heregulin stimulation (Figure 

3-4).  
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To confirm that Akt is activated through the HER2/HER3 pathway in the studied PC cell 

lines, cells were treated with AZD8931 (EGFR, HER2 and HER3 inhibitor) and Lapatinib 

(EGFR and HER2 inhibitor) (Medina and Goodin, 2008). The results showed that both 

inhibitors were might capable of reducing the activity of pHER3, pHER2 and pAkt in the 

presence of heregulin (Figure 3-7). This experiment has limitation of not investigate the 

total HER2/HER3 and Akt, which might be useful if this study detect these proteins in 

response of AZD8931 and Lapatinib treatment.  

To investigate the effect of the HER2/HER3 pathway and downstream partners (PI3 

Kinase and MAP Kinase pathways) on AR activity, AZD8931 (EGFR, HER2 and HER3 

inhibitor), MK2206 (inhibitor of the serine/threonine protein kinase Akt) and PD325901 

(MEK1/MEK2 inhibitor) were used. In androgen-responsive LNCaP7B7 cells (Figure 

3-8) heregulin increased AR activity, while AZD8931 abrogated this activity (Figure 

3-8A). The LNCaP7B7 cells were validated in our group by grown these cells in present 

enzalutamide, which showed decrease in AR activity (Rao, 2015).    

An interesting question was whether the increased AR activity was mediated through 

PI3K or MAPK pathways downstream of the activated HER2/HER3 heterodimer? 

MK2206 (inhibitor of the serine/threonine protein kinase Akt) reduced AR activity seen 

with heregulin stimulation (Figure 3-8 B). However, no significant effect of PD325901 

(MEK1/MEK2 inhibitor) was seen on AR activity (although a similar trend was seen). 

Gioeli et al. (2011) Suggested the use of a combination of PD325901 with any PI3/Akt 

Kinase pathway inhibitor to provide a greater growth inhibition than the individual drug 

alone in PC (Figure 3-8 C). Similarly, heregulin increases AR activity in LNCaP-AI-7B7 

cells (a model of androgen-independent disease). While AZD8931 and MK2206 

significantly reduce this activity and abrogate heregulin induced AR activity, PD325901 

does reduce AR activity and appears to abolish the effects of heregulin stimulation, 

however, again this was not seen to reach significance (Figure 3-9). 

The LNCaP-AI 7B7 cells were validated in our group by grown these cells in present 

enzalutamide, which showed decrease in AR activity (Rao, 2015). 

In summary, these results show that the HER2/HER3 pathway has a crucial role in the 

CRPC model cell lines. These two members of the EFGR family can activate both MAP 

kinase and PI3K/Akt pathways, which are responsible for tumour growth and metastasis. 

This activity is seen to be more pronounced in the LNCaP-enzalutamide resistant cell. 

Therefore this clinically relevant model was selected for further investigation, comparing 

all results to the parental LNCaP cells. 
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Chapter 4. Phenotypic and transcriptomic comparison between parental LNCaP 

and enzalutamide resistant LNCaP-ENZ-R cell lines
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4.1 Introduction 

Targeting AR signalling by androgen deprivation is the primary option for clinical 

intervention in prostate cancer. Although initially response to the treatment, the majority 

of patients will experience only temporary benefit and relapse with CRPC. Enzalutamide 

a second generation antiandrogen is currently used for the treatment of CRPC. Despite 

transient benefit, resistance to enzalutamide occurs frequently, however the mechanisms 

of resistance are still not fully defined (Liu et al., 2015). Several mechanisms of 

enzalutamide resistance have been described including AR variant expression, which 

promotes the translation of an active truncated AR splice variants lacking the AR ligand 

binding domain. It has been demonstrated that PC cells which express full length AR and 

AR splice variants are androgen independent and enzalutamide resistant (Li et al., 2013b).  

An alternative mechanism of enzalutamide resistance is accomplished through production 

of the F876L mutation in the AR gene. This mutation was originally identified as a novel 

mutation in the AR gene in the LNCaP cell line following long-term culture in the 

presence of enzalutamide (Korpal et al., 2013). 

Over-expression of the glucocorticoid receptor (GR) is another mechanism of resistance 

to enzalutamide. Same study was indicated that the GR is able to substitute for the AR to 

activate AR target genes and the maintenance of the enzalutamide resistant phenotype 

(Arora et al., 2013).  

Previously, the LNCaP-ENZ-R cell line was demonstrated to express a high level of 

HER2 and HER3 proteins (Figure 3.4). In addition, an increase in the activity of both PI3 

kinase (pAkt) and MAP kinase (pERK1/2) signalling pathway in response to HER2 or 

HER3 stimulation was also noticed (Figure 3.5). Based on these observations the LNCaP-

ENZ-R cell line was used to investigate the biological and genetic changes occurring in 

response to enzalutamide treatment and compared with the responses observed in the 

parental LNCaP cell line.   

The aims of this chapter are to: 

1. Investigate the phenotypic differences between LNCaP-ENZ-R and parental 

LNCaP cell lines 
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2. Examine the transcriptomic differences between LNCaP-ENZ-R and parental 

LNCaP cell lines  

 

4.2 Results  

4.2.1 Heregulin stimulation increases the proliferation rate of LNCaP-ENZ-R and 

LNCaP cell lines  

From the data obtained in Chapter 3, heregulin stimulation was shown to activate the 

RAS/RAF/MEK and PI3K/Akt/mTOR signalling pathways in the LNCaP-ENZ-R cell 

line (Figure 3-6). To understand the effect of stimulation of HER2/HER3 on the 

proliferation of LNCaP-ENZ-R cell line compared to the parental LNCaP, both cell lines 

were cultured in SDM with or without heregulin for the whole experiment. The results 

showed the proliferation of the parental LNCaP in SDM was much reduced compared to 

the proliferation of LNCaP-ENZ-R under these conditions. Stimulation with heregulin 

showed an increase in the proliferation rate of both cell lines compared to the SDM-

treated controls (Figure 4-1). The greatest heregulin-induced change was observed in the 

LNCaP-ENZ-R cell line. 
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Figure 4-1 Heregulin increases proliferation rate of LNCaP and LNCaP-ENZ-R cell 

lines 

LNCaP and LNCaP-ENZ-R cells were seeded out in a 96-well plate. The cells were 

grown in SDM with or without 20ng/ml heregulin (HRG). The proliferation was 

determined by using the IncuCyte® ZOOM System. The data were normalized to the zero 

hours for each condition. Error bars represent the mean ± SD for triplicate independent 

experiments.
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4.2.2   Expression of phosphorylated HER2, HER3 and Akt in LNCaP and 

LNCaP-ENZ-R cell lines 

To study the consequences of the enzalutamide treatment on the expression of 

pHER2/pHER3 and the pathways that could be affected, both cell lines LNCaP and 

LNCaP-ENZ-R were grown in full medium in the absence or presence of enzalutamide 

for 48 hours. The results showed that LNCaP-ENZ-R cell line had a higher endogenous 

expression of pHER2, pHER3 and pAkt when compared with parental LNCaP cells 

(Figure 4-2). Furthermore, the addition of enzalutamide to the LNCaP cell line appeared 

to have a small effect in reducing the expression of pHER2, pHER and pAkt. In contrast, 

the expression of these three phospho-proteins was similar in the absence or presence of 

enzalutamide in the LNCaP-ENZ-R cell line. Also the results might suggested that no 

effect of enzalutamide on the expression of pERK5 in LNCaP-ENZ-R. While a decreased 

in the level of pERK5 was noticed in response to the enzalutamide treatment in the 

LNCaP cell line.  

 

Figure 4-2 Elevated level of phosphorylated HER2, HER3 and AKT in the LNCaP-

ENZ-R cell line 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plate. The cells were grown 

in full medium in the absence or presence of 10µM enzalutamide for 48 hours. The cells 

were lysed in RIPA buffer. pHER2, pHER3, pAkt and pERK5 protein level in parental 

LNCaP and LNCaP-ENZ-R cell lines were detected by western blotting. Alpha-tubulin 

was used as a loading control (representative blot).
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4.2.3 Enzalutamide reduces the proliferation rate of LNCaP and LNCaP-ENZ-R 

cell lines  

To study the effect of the enzalutamide on the proliferation of LNCaP-ENZ-R cell line 

compared to LNCaP cells. Both cell lines were grown in full medium in the absence or 

presence of enzalutamide and the IncuCyte® ZOOM System was used to monitor 

changes in cell phenotype over time. The data showed that enzalutamide treatment 

significantly reduced parental LNCaP cells proliferation (p< 0.05) compared to DMSO 

vehicle control. The LNCaP-ENZ-R cell line demonstrated a slightly faster growth rate 

in the absence of enzalutamide but its growth was similarly inhibited by the inclusion of 

10M enzalutamide in the growth medium (Figure 4-3). These results suggest that 

extended treatment with enzalutamide is necessary to distinguish the degree of sensitivity 

of the LNCaP and LNCaP-ENZ-R cell lines to enzalutamide. 

 

Figure 4-3 Enzalutamide decrease the proliferation of LNCaP and LNCaP-ENZ-R 

cell lines 

LNCaP and LNCaP-ENZ-R cells were seeded out in 96-well plates in full medium. After 

overnight incubation, the cells were treated with 10µM enzalutamide or DMSO vehicle 

as a control.  The plate was placed in the IncuCyte® ZOOM System and changes in cell 

confluency were monitored over time. Error bars represent the mean ± SD for triplicate 

independent experiments. p-values were determined by using student t-test (* p-value 

<0.05).
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4.2.4 Enzalutamide causes LNCaP cells to accumulate in the G1 phase of the cell 

cycle 

The effect of enzalutamide on cell cycle progression of the LNCaP-ENZ-R cell line 

compared to the parental LNCaP cells was examined as a part of the study of the 

phenotypic comparison between the two cell lines in response to enzalutamide. To do so, 

parental LNCaP and LNCaP-ENZ-R cell lines were grown in FM in the absence or 

presence of enzalutamide for 48 hours. The data showed that enzalutamide significantly 

arrested the LNCaP in the G1 phase (p≤ 0.05), increasing the percentage of G1 phase cells 

from  67.4% to 77.5% when compared with LNCaP cells cultured in DMSO control 

(Figure 4-4 A). No possible effect on cell cycle distribution was noticed for enzalutamide 

treatment of LNCaP-ENZ-R cells (Figure 4-4 B). 

 

Figure 4-4 Enzalutamide arrests LNCaP cells in the G1 phase of the cell cycle 

LNCaP and LNCaP-ENZ-R were seeded out in 6-well plates in FM and then the cells 

were treated with 10µM enzalutamide for 48 hours or DMSO vehicle as a control. A, 

LNCaP cell cycle analysis. B, LNCaP-ENZ-R cell cycle analysis. Error bars represent the 

mean ± SD for triplicate independent experiments. p-values were determined by using 

student t-test (** p-value <0.01).
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4.2.5  Enzalutamide decreases the migration rate of LNCaP cells without affecting 

the migration of LNCaP-ENZ-R cells 

To study the effect of enzalutamide on the migration of the parental LNCaP cell line. The 

cells were grown in FM then treated with or without enzalutamide for 48 hours. Migratory 

behaviour was monitored by using wound healing assays which measure the cells 

directional movement into the area of the wound. The cellular motility was measured at 

0, 6, 24 and 48 hours. The results suggested that enzalutamide treatment significantly 

decreased the overall migration between the two edges of the wound when compared with 

LNCaP cell motility cultured in DMSO vehicle (Figure 4-5). 

 

Figure 4-5 Enzalutamide decreases the migration of LNCaP cells 

LNCaP cells were seeded out into 6-well plates in FM and the cells were grown to 100% 

confluency. Perpendicular scratches were then generated using p20 filter tips. The media 

was replaced with fresh media with either DMSO vehicle or with 10µM enzalutamide. 

Images were taken of three separate fields for each well at 0h, 6h, 24h and 48h. The width 

of the “wound” was measured using ImageJ software. This was achieved by overlaying a 

20 square grid over each image taking an average and normalising to the 0 hour control. 

Error bars represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test (* p-value <0.05).
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The experiment was similarly performed with the LNCaP-ENZ-R cell line using identical 

treatment conditions. The results showed that there was no effect of the enzalutamide on 

the migration of the LNCaP-ENZ-R cell line when compared to cells grown in the 

absence of enzalutamide (Figure 4-6). 

 

Figure 4-6 Migration of LNCaP-ENZ-R cell line is not affected by enzalutamide 

treatment 

LNCaP-ENZ-R cells were seeded out into 6-well plates in FM and the cells were grown 

to 100% confluency. Perpendicular scratches were then generated using p20 filter tips. 

The media was replaced with fresh media with either DMSO vehicle or with 10µM 

enzalutamide. Images were taken of three separate fields for each well at 0h, 6h, 24h and 

48h. The width of the “wound” was measured, using ImageJ software. This was achieved 

by overlaying a 20 square grid over each image taking an average and normalising to the 

0 hour control. Error bars represent the mean ± SD for triplicate independent experiments. 
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4.2.6 Microarray experiment 

In the previous chapter, it was observed that the LNCaP-ENZ-R cell line displayed higher 

expression of HER2 and HER3 compared with parental LNCaP cells at both the protein 

and mRNA level. Furthermore, activation of pHER2 and pHER3 led to the activation of 

both RAS/RAF/MEK and PI3K/Akt/mTOR signalling pathways when compared to the 

parental LNCaP cells (Figure 3-6). A microarray experiment was designed to study the 

global relative gene expression pattern of LNCaP-ENZ-R cells compared with parental 

LNCaP cells and also to investigate the consequence of enzalutamide resistance in this 

prostate cancer model. To do this, four conditions were selected as shown in (Table 4-1). 

Parental LNCaP and LNCaP-ENZ-R cell lines were treated with or without 10µM 

enzalutamide for 48 hours. Three biological repeats were performed for each condition 

and all samples were validated using QRT-PCR prior to microarray analysis using 

Illumina Human HT-12 arrays. 

Cell line Condition 

DMSO 

(48 hours) 

Enzalutamide 

(48 hours) 

LNCaP + + 

Enzalutamide Resistant cell 

 (LNCaP-ENZ-R) 

+ + 

Table 4-1 Microarray experimental conditions
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4.2.7 RNA integrity number (RIN) of the microarray samples 

RNA quality of each sample was examined by determining the RNA integrity number 

(RIN) which represents the integrity and quality of the RNA samples using a 2100 Bio-

analyzer system. The RIN provides sizing, quantitation and quality of RNA on a single 

platform providing high quality digital data. The RIN value was calculated using a 

software tool designed to estimate the integrity of total RNA for each sample. RIN values 

of 8 to 10 were considered to represent high quality RNA with little or no degradation of 

the RNA (Figure 4-7).    

 

Figure 4-7 High RNA integrity number (RIN) of the microarray samples 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plates. The cells were grown 

in FM with 10µM enzalutamide or DMSO vehicle for 48 hours. The cells were collected 

for RNA extraction by using RNA mini kits QIAGEN®. 2A, 3A and 6A are the three 

biological repeats of LNCaP cells without enzalutamide condition. 2B, 3B and 6B the 

three biological repeats of LNCaP cells with 10µM enzalutamide condition. 2C, 3C and 

6C are the three biological repeats of LNCaP-ENZ-R cells without enzalutamide 

condition. 2D, 3D and 6D are the three biological repeats of LNCaP-ENZ-R cells with 

10µM enzalutamide condition.
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4.2.8 AR target genes expression in parental LNCaP and LNCaP-ENZ-R cell lines: 

validation of experimental conditions in each sample prepared for the 

microarray experiment  

LNCaP and LNCaP-ENZ-R cell lines were grown in FM in the absence or presence of 

enzalutamide for 48 hours. RNA was isolated and then KLK3, KLK2 and TMPRSS2 

expression were assessed by QRT-PCR using specific primers. The data was normalized 

to the DMSO control. Only samples that showed consistency in the expected expression 

of AR target genes in each experimental arm were selected for microarray analysis 

(Figure 4-8). 

 

Figure 4-8 AR target genes expression in parental LNCaP and LNCaP-ENZ-R cell 

lines: validation of samples used for the microarray experiment 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plates. The cells were grown 

in FM with or without 10µM enzalutamide for 48 hours or DMSO vehicle control. The 

cells were collected to extract RNA. A, KLK3; B, KLK2 and C, TMPRSS2 expression was 

determined by QRT-PCR. The relative expression of each gene measured was normalized 

to the LNCaP cells cultured in DMSO vehicle control. Error bars represent the mean ± 

SD for triplicate independent experiments. p-values were determined by using student t-

test *** p-value <0.001 and **** p- value < 0.0001).
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4.2.9 Microarray data analysis  

Differential expression analysis was performed as outlined in Chapter 2. High quality 

data was obtained overall. Relative global gene expression for the LNCaP-ENZ-R cell 

line with enzalutamide condition was selected to compare with the parental LNCaP cell 

line grown without enzalutamide. The microarray data analysis of LNCaP-ENZ-R cell 

line with the enzalutamide condition revealed that 280 genes were significantly up-

regulated (p<0.05) and 501 genes were significantly down-regulated (p<0.05) (Figure 4-9 

A) when comparing with parental LNCaP cultured without enzalutamide treatment. The 

top 10 genes from the microarray data which showed the most significant up- or down-

regulation in their expression (p<0.05) are highlighted (Figure 4-9 B). 1.2 fold change 

with was selected as a cut off for a significant genes.   

 

Figure 4-9 Genes most highly up-regulated or down-regulated in LNCaP-ENZ-R 

cells grown with enzalutamide when compared to LNCaP cells grown in the absence 

of enzalutamide 

A. Volcano graph showing the most up-regulated genes or down-regulated genes 

significantly altered in LNCaP-ENZ-R cells grown with enzalutamide compared to 

LNCaP cells. B. The top 10 genes from the microarray data which showed the most 

significant up- or down-regulation in their expression. 
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4.2.10 Validation of microarray in different sets of RNA  

To validate the results from (Figure 4-8), three independent RNA sets from the ones sent 

from the microarray were generated to validate the microarray data. RNA were extracted 

using Trizol kits and KLK3, KLK2 and TMPRSS2 expression at mRNA level were 

investigated by using QRT-PCR using specific primers and the data were normalized to 

the DMSO control. The same trend of KLK3, KLK2 and TMPRSS2 expression as that 

obtained from the microarray data was detected (Figure 4-8).  

 

Figure 4-10 Validating the consistency of the microarray results in different sets of 

RNA 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plates. The cells were grown 

in FM with or without 10µM enzalutamide for 48 hours or DMSO vehicle control. The 

cells were collected to extract RNA by using Trizol kits. A, KLK3; B, KLK2 and C, 

TMPRSS2 expression was determined by QRT-PCR. The relative expression of each gene 

measured was normalized to the LNCaP cells cultured in DMSO vehicle control. Error 

bars represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test * p-value <0.05.
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4.2.11 Validation of selected genes that showed an up-regulation in the microarray 

analysis 

A number of genes were selected from the microarray data which showed a statistically 

significant upregulation in their expression (p<0.05) in the LNCaP-ENZ-R cell line 

grown in the presence of enzalutamide when compared to LNCaP cell line cultured in the 

absence of enzalutamide. The selected genes have previously been demonstrated to be 

involved in pathways that are crucial for cell proliferation, cell growth and cell signalling. 

These genes could be considered as potential biomarkers for enzalutamide resistance and 

include SGK1, TACSTD2, RLN1, RLN2 and SYT4. 

SGK1:   

Serum- and glucocorticoid-induced protein kinase-1 (SGK1) is one of the downstream 

substrates of the PI3K/Akt pathway, which plays a crucial role in cell growth, stress 

response and in the regulation of ion channels. Deregulation of SGK1 expression has been 

identified in different diseases such as cardiac fibrosis, hypertension, inflammatory bowel 

disease and cancer. Significant expression of SGK1 was identified in 50% of breast 

cancer by using immunohistochemistry, whereas SGK1 is barely detected in healthy 

breast cancer.  Understanding the mechanism of SGK1 regulation is important and could 

lead to a clear insight of cancer (Bogusz et al., 2006). SGK1 was selected to be validated 

from the microarray results by using QRT-PCR. Specific primers were used to detect the 

expression of SGK1 at the mRNA level. An increase in the expression of SGK1 in the 

LNCaP-ENZ-R cell line was detected in the presence and absence of enzalutamide 

(Figure 4-11 A). 

TACSTD2: 

TROP2 is a transmembrane glycoprotein encoded by the TACSTD2 gene. It is an intra-

cellar calcium signal transducer, important in cell proliferation, self-renewal and 

invasion. TROP-2 is expressed in many heathy tissues. However, its overexpression has 

also been detected in many cancers and is suggested as a potential prognostic biomarker. 

Overexpression of TROP-2 in PC enhanced cancer migration and correlated with cancer 

cell aggressiveness (Shvartsur and Bonavida, 2015). The TACSTD2 gene was selected to 

be validated from the microarray results, by using QRT-PCR. Specific primers were used 

to detect the expression of TACSTD2 at the mRNA level. The data showed an increase in 

the expression of TACSTD2 in the LNCaP-ENZ-R cell line in the presence and absence 
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of enzalutamide, which is consistent with the data obtained by the microarray experiment 

(Figure 4-11 B).  

RLN1 and RLN2:  

Relaxin is a short circulating peptide hormone that is encoded by two highly homologous 

genes (RLN1 and RLN2). Relaxin is secreted from the male prostate gland and has a 

crucial role in connective tissue remodelling, suppression of fibrosis, dilation of blood 

vessels and angiogenesis. RLN1 and RLN2 mRNA expression has been detected in the 

prostate gland and suppression of RLN1 and/or RLN2 reduces invasion and proliferation 

and increases apoptosis of prostate cancer cells (Feng et al., 2007). RLN1 and RLN2 were 

both selected for validation from the microarray data by using QRT-PCR. The data 

showed an increase in the expression of RLN1 and RLN2 in the LNCaP-ENZ-R cell line 

in the presence and absence of enzalutamide (Figure 4-11C, D), which is consistent with 

the data from the microarray experiment. 

SYT4: 

Synaptotagmin IV (SYT4) is known to play an important role in neuro-transmitter 

secretion. Increased cells with a neuro-endocrine phenotype is one of the hallmarks of 

prostate cancer and correlates with poor prognosis and shortened patient survival. AR 

plays a negative role in the progression of the differentiation of prostate cancer cells 

towards the neuro-endocrine phenotype, which may suggest that AR inactivation 

correlates with increased frequency of neuro-endocrine cells in androgen independent PC. 

SYT4 was found to be overexpressed in a bicalutamide resistant PC cell line, suggesting 

it as a possible CRPC phenotypic biomarker (Vias et al., 2007). SYT4 was selected from 

the microarray data for validation, by using QRT-PCR. The data showed an increase in 

the expression of SYT4 in the LNCaP-ENZ-R cell line in the presence and absence of 

enzalutamide (Figure 4-11E), which follows the same trend obtained by the microarray 

data.
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Figure 4-11 Validation of SGK1, TACSTD2, RLN1, RLN1 and SYT4 by QRT-PCR 

LNCaP and LNCaP-ENZ-R cells were seeded out into 6-well plate. The cells were grown 

in FM with or without enzalutamide for 48 hours. DMSO were used as vehicle control. 

Trizol kits were used for RNA extraction. A. SGK1, B. TACSTD2, C. RLN1, D. RLN2 and 

E. SYT4 expression was determined by QRT- PCR using specific primer sets. The relative 

expression of each gene was measured by normalizing all samples to the untreated LNCaP 

cells. Error bars represent the mean ± SD for triplicate independent experiments. p-values 

were determined by using student t-test (* p-value <0.05, ** p-value <0.01, *** p-value 

<0.001 and **** p- value < 0.0001).
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4.2.12 Increased expression of SGK1, RLN1, SYT4 and TACSTD2 in enzalutamide, 

Casodex and ARN509 resistant cell lines 

To further investigate the genes that showed an upregulation in LNCaP-ENZ-R cell line, 

the expression of SGK1, RLN1, SYT4 and TACSTD2 were investigated in other resistant 

cell lines including cell lines derivatives resistant to Casodex and ARN509. The data 

showed an increase in the expression of SGK1 RLN1, SYT4 and TACSTD2 in both 

Casodex and ARN509 resistant cell lines (Figure 4-12). 

 

Figure 4-12 Increased expression of SGK1, RLN1, SYT4 and TACSTD2 in Casodex 

and ARN509 resistant LNCaP derivative cell lines 

LNCaP, LNCaP-CDX-R and LNCaP-ARN-R cells were seeded out in 6-well plates. The 

cells were grown in FM and RNA extracted using Trizol kits. A. SGK1, B. RLN1, C. SYT4 

and D. TACSTD2 expression was determined by QRT- PCR using specific primers. The 

relative expression were measured by normalizing all samples to the LNCaP cells. Error 

bars represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test (* p-value <0.05). 
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4.3 Discussion: 

ADT is used to reduce AR activity in PC which achieves a clinical regression in the early 

stage of the disease. The continued AR signalling in CRPC necessitates development of 

novel AR inhibitors. Enzalutamide, formally named as MDV3100 is a non-steroidal anti-

androgen drug, which was designed to target AR by competitively binding to the ligand 

binding domain of the AR and inhibiting AR translocation from the cytoplasm to the 

nucleus and preventing binding to DNA and AR activity. Although patients show initial 

response to enzalutamide treatment, many patients develop resistance to this second 

generation anti-androgen. The mechanisms driving resistance are still unclear (Korpal et 

al., 2013; Beer et al., 2014). An in-house CRPC model (enzalutamide resistant) was 

developed by growing parental LNCaP cells in escalating doses of enzalutamide. To 

understand the consequences of the enzalutamide resistance, both parental LNCaP cells 

and the LNCaP-enzalutamide resistant cell line were tested for phenotypic and biological 

alterations.  

Previously, results showed that both the RAS/RAF/MEK (pERK1/2) and 

PI3K/Akt/mTOR (pAkt) signalling pathways can be activated through pHER2/pHER3 in 

LNCaP-ENZ-R cell line (Figure 3-6). To test the effect of pHER2/pHER3 on 

proliferation, both LNCaP and LNCaP-ENZ-R cell lines were starved in SDM and 

activated with heregulin. The results from this experiment showed that the parental 

LNCaP cells proliferation was reduced in SDM and heregulin stimulation increased the 

proliferation rate as expected. However, proliferation of the LNCaP-ENZ-R cell line was 

not diminished in SDM and an obvious enhancement in proliferation was apparent 

following heregulin stimulation (Figure 4-1). This suggests that LNCaP-ENZ-R cells is 

an androgen independent cell line and that heregulin can enhance proliferation of both 

cell line. IncuCyte assay has limitation in detecting different morphology of the cells line. 

However, this was overcome by setting a logarithm are suitable for each cell line.  

To study the consequences of enzalutamide resistance on signalling pathways, both 

LNCaP and LNCaP-ENZ-R cell lines were grown in the presence or absence of 

enzalutamide for 48 hours. The data from this study showed a possible increase in the 

expression of pHER2, pHER3 and pAkt in the LNCaP-ENZ-R cell line in the absence or 

presence of enzalutamide compared to parental LNCaP cells, which confirms the results 

that were obtained in Chapter 3 (Figure 3-5). Interestingly, pERK5 levels were highest in 
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the LNCaP line in the absence of enzalutamide and the addition of enzalutamide reduced 

pERK5 levels. Whereas, in contrast, the lower levels of pERK5 in the LNCaP-ENZ-R 

cell line were unaffected by the addition of enzalutamide (Figure 4-2). The limitation of 

this findings is not include total HER2/HER3 and Akt. However, this study showed that 

higher level of total HER2/HER3 and Akt in last chapter.  

To test the enzalutamide effects on the parental LNCaP and LNCaP-ENZ-R cell lines, the 

proliferation of both cell lines was investigated in the presence and absence of 

enzalutamide in FM. It can thus be suggested that parental LNCaP cells are more sensitive 

to enzalutamide treatment. However, enzalutamide did affect proliferation of the LNCaP-

ENZ-R cell line but this was not significant (Figure 4-3). This study noticed that LNCaP-

ENZ-R cell lines grown faster in medium without enzalutamide this might give two 

suggestion: either these cells are resistant or they are tolerating the enzalutamide dose. 

This study suggested that these cells line are resistant as it has been observed previously 

that enzalutamide half-life was 5.8 days (Gibbons et al., 2015). To prove this suggestion 

LNCaP and LNCaP-ENZ-R cell lines, cell cycle progression in the presence and absence 

of enzalutamide was determined. The results showed that in the parental LNCaP cells 

grown with enzalutamide an accumulation of cells at the G1 phase was noticed compared 

with LNCaP cells grown in DMSO vehicle control. However, no effect of enzalutamide 

on the cell cycle progression of LNCaP-ENZ-R was noticed (Figure 4-4). This might 

suggested that enzalutamide effect on the cell cycle in parental LNCaP. However, the 

enzalutamide does not effect on the LNCaP-ENZ-R cell cycle, this might put a weight on 

the hypothesis that LNCaP-ENZ-R are resistant to the enzalutamide rather than tolerating 

the enzalutamide. 

Wound healing assay was applied as another method to study the phenotypic effects of 

enzalutamide on the LNCaP and LNCaP-ENZ-R cell lines. A long term wound healing 

assay more than 24 hours cannot distinguish cell proliferation from cell motility. In 

addition, some cells attached to the edge of the scratch after wounding. This study was 

tried to measure cell migration using the trans-well assay. The principle of this assay is 

based on two medium containing chambers separated by 8 µm porous membrane through 

which cells transmigrate. However, we faced a problem that LNCaP-ENZ-R cell lines 

was not able to pass through these pores as it was bigger size than parental LNCaP. This 

study suggested that keep grown the LNCaP-ENZ-R in present of enzalutamide led to 

change in the morphology of these cells by became bigger in size and more irregular in 

shape and also slower in the growth than parental LNCaP. 
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For that reason this study select wound healing assay to measure the cell direction. The 

results from this assay showed that enzalutamide reduced the migration ability of the 

parental LNCaP cells. However, no effect was observed for enzalutamide treatment on 

LNCaP-ENZ-R motility (Figure 4-5). The data above might demonstrates the sensitivity 

of the parental LNCaP cells and the resistance of the LNCaP-ENZ-R cells to 

enzalutamide.   

The data obtained in this study might suggest that blocking AR is effective in androgen 

dependent cell lines. However, no effect of AR blocking in androgen resistant cell line 

was noticed, which might require further in-depth investigation to understand the 

underling mechanism. Therefore, a gene microarray was applied to investigate the global 

gene expression differences between the LNCaP-ENZ-R cells compared to parental 

LNCaP cells in the presence and absence of enzalutamide for 48 hours. Prior to 

microarray analysis a number of optimisation experiments were performed to ensure that 

the samples generated for analysis were as consistent and robust as possible in order to 

ensure that the data generated was of the highest standard. Three consistent experimental 

replicate were selected for microarray analysis according to AR target genes (KLK2, 

KLK3 and TMPRSS2) expression in LNCaP-ENZ-R and parental LNCaP cells in the 

presence or absence of enzalutamide for 48 hours (Figure 4-8). The Illumina Human HT-

12 v4.0 Expression Bead Chip technology was used, in order to detect gene expression 

profiles of LNCaP-ENZ-R cells and parental LNCaP cells in the presence or absence of 

enzalutamide for 48 hours. To validate the microarray data, another three experimental 

replicates were generated using the same experimental conditions. The same trends of AR 

target genes (KLK2, KLK3 and TMPRSS2) expression were obtained in LNCaP and 

LNCaP-ENZ-R cell lines in the presence and absence of enzalutamide (Figure 4-10). This 

differences between two experiments could be explain; firstly, this study used different 

set of RNA than RNA that was used to do the microarray, this to give extra validation of 

the reproducibility of this experiments. Secondly, this study used different method for 

RNA extraction. All above might explain the differences were noticed between two 

validations (Figure 4-8, Figure 4-10).  

Only genes that consistently showed an increase in expression in the LNCaP-ENZ-R cells 

in the presence and absence of enzalutamide compared to LNCaP cells, which have a 

crucial role in the cell proliferation and growth were selected for further analysis. The 

activity of these genes was studied in alternative anti-androgen resistant cell lines to try 

to give a better understanding of the mechanism of enzalutamide resistance.  
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According to the microarray data, SGK1 is one of the genes that showed a significant 

increase in the expression at the mRNA in LNCaP-ENZ-R cells compared to LNCaP cell 

line. To validate the microarray data for SGK1 by QRT-PCR, the same experimental 

condition was applied in the studied cell line and the same trend of microarray results was 

obtained which is consistent with (Arora et al., 2013) microarray data xenograft derived 

from enzalutamide resistant tumour which showed an increase in SGK1 expression ( 

Figure 4-11 A).     

TACSTD2 is another gene which showed significant increase in the expression in LNCaP-

ENZ-R cells in the presence and absence of enzalutamide for 48 hours compared to 

LNCaP cells and the validation with QRT-PCR showed the same trends as the microarray 

data which is in agreement with (Trerotola et al., 2015) who showed that TROP2 is up-

regulated in human PC with extracapsular extension as compared to organ-confined 

(Figure 4-11 B).   

  

RLN1 and RLN2 are genes which showed a significant increase in their expression in the 

LNCaP-ENZ-R cells compared to the LNCaP cells according to the microarray data and 

the validation with QRT-PCR showed the same trends as the microarray results. The data 

obtained in this study was consistent with what has been suggested as an increase in the 

expression of the RLN1 and RLN2 was observed in recurrent prostate cancer compared to 

normal prostate tissue (Feng et al., 2007) (Figure 4-11 C, D).  

SYT4 another gene which showed a significant increased expression in the LNCaP-ENZ-

R cells in the presence and absence of enzalutamide for 48 hours compared to LNCaP 

cells and the validation with QRT-PCR showed the same trends as the microarray data. 

SYT4 was also found to be upregulated in the bicalutamide resistant PC model which is 

consistent with this study (Vias et al., 2007) (Figure 4-11 E). 

From the data above, an increase in the expression of SGK1, TACSTD2, RLN1, RLN2 and 

SYT4 was noticed in the LNCaP-ENZ-R cell line. To test if this effect also applied in other 

PC resistant cell line, the expression of the SGK1, TACSTD2, RLN1, RLN2 and SYT4 was 

examined in the LNCaP-CDX-R and LNCaP-ARN-R cell lines, that are resistant to 

bicalutamide (casodex) and ARN509, respectively. High expression of SYT4 and 

TACSTD2 was noticed in the LNCaP-CDX-R compared to LNCaP-ARN-R cell lines, this 

finding need extra experiment to prove this results. The results showed an increase in the 

expression of all 4 genes in these 2 cell lines at mRNA level (Figure 4-12), which might 

suggest that these genes have a common role in the anti-androgen drug resistance.  
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Chapter 5. Identification of SGK1 as a potential therapeutic target in castrate 

resistance prostate cancer 
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5.1 Introduction 

Serum and glucocorticoid regulated kinase 1 (SGK1) is a member of the 16-strong AGC 

family of serine/threonine protein kinases, which also contains Akt and protein kinase C. 

There are three isoforms of SGK (SGK1, SGK2 and SGK3). The SGK family controls a 

variety of ion channels (such as Na+ ions channels) and the Na+/K+-ATPase. They are 

regulated by several stimuli, including glucocorticoids and serum. The kinase is activated 

by growth factors and insulin, phosphorylating SGK1, as well as other AGC family 

members such as Akt and S6K, at a threonine residue, within the T-loop of the kinase 

domain and a serine residue of the C-terminal hydrophobic motif Ser422. PDK1 

(phosphoinositide dependent kinase 1) phosphorylates SGK1 at the T-loop, while 

mTORC1 (mammalian target of rapamycin complex 1) activates SGK1 at the 

hydrophobic motif Ser422 (García-Martínez and Alessi, 2008).  

Hong et al. (2008) demonstrated that SGK1 is an mTORC1 substrate and that an inducible 

overexpression of mTORC1 can activate both Akt and SGK1. Another study showed that 

Akt inhibitor-resistant breast cancer cells display markedly elevated SGK1, while an Akt 

inhibitor-sensitive cell line displayed low levels of SGK1 (Sommer et al., 2013). 

Furthermore, the group demonstrated that knockdown of SGK1 significantly reduced the 

proliferation of these resistant cell lines. However, no effect of the knockdown of SGK1 

was observed on the Akt inhibitor-sensitive cell line (Sommer et al., 2013). It has also 

been shown that SGK1 is able to phosphorylate p27, which may suggest a role in cell 

cycle progression, as demonstrated in a melanoma cancer cell line (Hong et al., 2008). 

In prostate cancer, AR regulation of SGK1 has been identified in the LNCaP cells, where 

upregulation of SGK1 transcript levels was observed in response to androgen treatment 

and a novel SGK1 inhibitor, GSK650394, which inhibits the enzymatic activity of SGK1 

and SGK2, decreased LNCaP cell growth (Sherk et al., 2008).  

A study aimed to investigate the acquired resistance mechanisms to ADT, they employed 

AR-dependent LNCaP/AR (LNAR) mouse xenograft model that previously used to 

demonstrate the activity of enzalutamide. The method were in this study was injected 

LNAR subcutaneously into castrate mice and treated with either vehicle or enzalutamide 

for a long period of time until resistant tumors formed. Same study identified GR 

upregulation is a driver of enzalutamide resistance. In addition, same research group using 
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immunohistochemistry (IHC) in five tumor-normal pairs, they found that GR is robustly 

expressed in both basal and luminal cells in normal prostate tissue, but substantially 

reduced in primary prostate cancer. finally they have characterized a novel enhancer at 

the GR locus, demonstrated that this enhancer is required for GR expression, and shown 

that AR binding at the enhancer is coupled with reduced GR expression (Shah et al., 

2017). The glucocorticoid receptor (GR) is another receptor that regulates SGK1 

transcription through a GRE region located at the SGK promoter. Existence of this region 

provides a direct molecular basis for the transcriptional activation of SGK1 by 

dexamethasone (Maiyar et al., 1997).  

A previous study in our lab demonstrated that GR is upregulated in a LNCaP-

enzalutamide resistant cell line, compared to parental LNCaP cells (unpublished data).  

The role of AR and GR in the regulation of SGK1 in enzalutamide-resistant cells remains 

unclear. For that reason, the aims of this chapter are: 

1. To investigate the role of AR in the regulation of SGK1 in LNCaP-ENZ-R cells, 

compared to that in LNCaP parental cells. 

 

2. To investigate the role of GR in the regulation of SGK1 in LNCaP-ENZ-R cells, 

compared to that in LNCaP parental cells. 

 

3. To identify the role of SGK1 in the proliferation and migration of LNCaP-ENZ-

R cells, compared to that in LNCaP parental cells. 

 

 

Figure 5-1 Domain structure of SGK1 demonstrating the two essential 

phosphorylation sites, T256 and Ser422. Adapted from (Bogusz et al., 2006) 
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5.2  Results 

5.2.1  High expression of SGK1 in LNCaP-ENZ-R cells at the mRNA and protein 

level 

In the previous chapter, an increase in the expression of SGK1 in the LNCaP-ENZ-R cell 

line compared to LNCaP parental cells was detected by microarray data and QRT-PCR 

(Figure 4-11 B) and (Figure 5-2 A). To elucidate SGK1 expression at the protein level in 

the same experimental condition as in microarray study, an antibody was used to detect 

SGK1. The data showed a small increase in the expression of SGK1 in LNCaP-ENZ-R 

cells at the protein level in the presence and absence of enzalutamide (Figure 5-2 B).   

 

Figure 5-2 High expression of SGK1 in LNCaP-ENZ-R cells at the mRNA and 

protein level 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plate. Cells were grown in 

FM simultaneously with or without 10µM enzalutamide for 48 hours and DMSO used as 

a control. A. mRNA level of SGK1 expression was determined by QRT- PCR using 

specific primers and the relative expression was measured with normalisation of all 

sample to LNCaP cells. B. SGK1 protein expression in parental LNCaP and LNCaP-

ENZ-R cells were determined by western blotting. Alpha-tubulin was used as a loading 

control (representative blot). Error bars represent the mean ± SD for triplicate independent 

experiments. p-values were determined by using student t-test (* p-value <0.05).  
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5.2.2 SGK1 expression in parental LNCaP cells in response to DHT stimulation 

To investigate SGK1 regulation in androgen-dependent cells, parental LNCaP cells were 

activated with increasing doses of DHT (0.1nM, 1nM and 10nM) for 24 hours and 48 

hours. The mRNA and protein levels of SGK1 were detected using QRT-PCR and 

western blotting. The results demonstrated an increase in SGK1 expression in response 

to DHT stimulation at the protein level, which was more pronounced after 48 hours of 

stimulation (Figure 5-3 C). Similarly, an increase in the expression of SGK1 was detected 

at the mRNA level in response to the DHT (Figure 5-3 A, B). 

 

Figure 5-3 Increased expression of SGK1 in parental LNCaP cells in response to 

DHT stimulation 

LNCaP cells were seeded out on 6-well plates. The cells were grown in SDM for 48 hours 

then activated with 0.1nM, 1nM or 10nM DHT for 24 hours and 48 hours. The cells were 

then lysed in RIPA buffer for protein samples and Trizol kits were used for RNA 

extraction. A. mRNA level of SGK1, which was activated with DHT for 24 hours, then 

the expression was determined by QRT-PCR using specific primer and the relative 

expression was measured by normalisation of all samples to LNCaP cells in ethanol. B. 

mRNA level of SGK1, which was activated with DHT for 48 hours, then the expression 

was determined by QRT-PCR using specific primer and the relative expression was 

measured by normalisation of all samples to LNCaP cells in ethanol. C. SGK1 protein 

expression in parental LNCaP cells was activated by DHT for 24 hours and 48 hours 

respectively. Alpha-tubulin was used as a loading control. Error bars represent the mean 

± SD for triplicate independent experiments (representative blot).  
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5.2.3 SGK1 expression in LNCaP-ENZ-R cell line in response to DHT stimulation 

To investigate SGK1 regulation in a cell line model of anti-androgen drug-resistance, 

LNCaP-ENZ-R cells were activated with increasing doses of DHT (0.1nM, 1nM and 

10nM) for 24 hours and 48 hours. The mRNA and protein levels of SGK1 were detected 

using QRT-PCR and western blotting respectively. The results demonstrated an increase 

in SGK1 expression in response to DHT stimulation at the protein level, particularly 

noticeable at 48 hours (Figure 5-4 C). Similarly, an increase in the expression of SGK1 

was detected at the mRNA level in response to DHT (Figure 5-4 A, B).  

 

Figure 5-4 Increased expression of SGK1 in LNCaP-ENZ-R cells in response to DHT 

stimulation 

LNCaP-ENZ-R cells were seeded out on 6-well plates. The cells were grown in SDM for 

48 hours, then activated with 0.1nM, 1nM or 10nM DHT for 24 hours and 48 hours. The 

cells were then lysed in a RIPA buffer for protein samples and Trizol kits were used for 

RNA extraction. A. mRNA level of SGK1, which was activated with DHT for 24 hours, 

then the expression was determined by QRT-PCR using specific primer and the relative 

expression was measured by normalisation of all samples to LNCaP-ENZ-R cells in 

ethanol. B. mRNA level of SGK1 which was activated with DHT for 48 hours, then the 

expression was determined by QRT-PCR using specific primer and the relative expression 

was measured by normalisation of all samples to LNCaP-ENZ-R cells in ethanol. C. 

SGK1 protein expression in LNCaP-ENZ-R cells. Cells were activated by DHT for 24 

hours and 48 hours. Alpha-tubulin was used as a loading control. Error bars represent the 

mean ± SD for triplicate independent experiments (representative blot).  
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5.2.4 SGK1 expression in parental LNCaP cells in response to dexamethasone 

stimulation   

SGK1 encodes an AGC-family kinase that is known to be transcriptionally upregulated 

by both AR and GR (Isikbay et al., 2014). To study the role of GR in the regulation of 

SGK1 in an androgen-dependent cell line, increasing doses of dexamethasone were used 

to stimulate GR in LNCaP cells for 24 and 48 hours. The results showed an increase in 

the expression of SGK1 at the mRNA level (Figure 5-5 A, B). However, no change in 

SGK1 expression was detected at the protein level (Figure 5-5 C).  

 

Figure 5-5 Increased mRNA expression of SGK1, but not protein expression in 

parental LNCaP cells in response to dexamethasone stimulation 

LNCaP cells were seeded out on 6-well plates. The cells were grown in SDM for 48 hours, 

then activated with 100nM, 500nM and 1000nM of dexamethasone for 24 hours and 48 

hours. The cells were then lysed in RIPA buffer for protein samples and Trizol kits were 

used for RNA extraction. A. mRNA level of SGK1, which was activated with 

dexamethasone for 24 hours, then the expression was determined by QRT-PCR using 

specific primer and the relative expression was measured by normalisation of all samples 

to LNCaP cells in ethanol. B. mRNA level of SGK1, which was activated with 

dexamethasone for 48 hours, then the expression was determined by QRT-PCR and the 

relative expression was measured by normalisation of all samples to LNCaP cells in 

ethanol. C. SGK1 protein expression in parental LNCaP cells. Cells were activated by 

dexamethasone for 24 hours and 48 hours. Alpha-tubulin was used as a loading control. 

Error bars represent the mean ± SD for triplicate independent experiments (representative 

blot).   
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5.2.5 Increased expression of SGK1 in LNCaP-ENZ-R cells in response to 

dexamethasone stimulation at mRNA and protein levels 

Following the investigation of the role of GR in the regulation of SGK1 in an androgen 

dependent cell line, the investigation was extended to include the LNCaP-ENZ-R cell 

line. Increasing doses of dexamethasone were used to stimulate GR activity for 24 and 48 

hours. The results showed that GR stimulation by dexamethasone increases the 

expression of SGK1 at the mRNA and protein level (Figure 5-6).  

 

Figure 5-6 Increased expression of SGK1 in LNCaP-ENZ-R at mRNA and protein 

level in response to dexamethasone stimulation 

LNCaP-ENZ-R cells were seeded out on 6-well plates. The cells were grown in SDM for 

48 hours, then activated with 100nM, 500nM and 1000nM dexamethasone for 24 hours 

and 48 hours. The cells were then lysed in a RIPA buffer for protein samples and Trizol 

kits were used for RNA extraction. A. mRNA level of SGK1, which was activated with 

dexamethasone for 24 hours, then the expression was determined by QRT-PCR using 

specific primers and the relative expression was measured with normalisation of all 

samples to LNCaP-ENZ-R cells in ethanol. B. mRNA level of SGK1, which was activated 

with dexamethasone for 48 hours, then the expression was determined by QRT-PCR and 

the relative expression was measured with normalisation of all samples to LNCaP-ENZ-

R cells in ethanol. C. SGK1 protein expression in LNCaP-ENZ-R cells. Cells were 

activated by dexamethasone for 24 hours and 48 hours. Alpha-tubulin was used as a 

loading control. Error bars represent the mean ± SD for triplicate independent 

experiments (representative blot).   
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5.2.6 Enzalutamide increases GR expression in parental LNCaP and LNCaP-ENZ-

R cells 

AR and GR are similar in their structure and it has been demonstrated that GR can induce 

expression of PSA upon stimulation with dexamethasone (Cleutjens et al., 1997). AR and 

GR share several transcriptional targets, including anti-apoptotic genes SGK1 and MAP 

kinase phosphatase 1 (MKP1) (Isikbay et al., 2014). To identify the role of GR in the 

resistant cell line model, relative GR mRNA and protein expression was investigated in 

parental LNCaP and LNCaP-ENZ-R cells. The results showed that treatment with 

enzalutamide significantly increases the expression of the GR at the protein and mRNA 

levels in both cell lines (p< 0.05) (Figure 5-7). 

 

Figure 5-7 Enzalutamide treatment increases GR expression in parental LNCaP and 

LNCaP-ENZ-R cells 

LNCaP and LNCaP-ENZ-R cells were seeded out on 6-well plates. The cells were grown 

in FM simultaneously with or without 10µM enzalutamide for 48 hours. The cells were 

lysed in a RIPA buffer. A. mRNA expression of GRα in LNCaP cells. B. mRNA 

expression of GRα in LNCaP-ENZ-R cells. C. GRα protein expression in parental LNCaP 

and LNCaP-ENZ-R cells. Alpha-tubulin was used as a loading control. Error bars 

represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test (* p-value <0.05, ** p-value <0.01m) (representative 

blot).  
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5.2.7 Dexamethasone does not lead to upregulation of selected AR target genes in 

parental LNCaP cells  

Previous experiments have demonstrated that blocking AR with enzalutamide led to 

increasing the expression of GR in LNCaP cells. Higher expression of GR in LNCaP-

ENZ-R cells, in the presence and absence of enzalutamide was also noticed at the protein 

level. To investigate the role of GR in the regulation of selected AR target genes (KLK3, 

FKBP5, KLK2 and TMPRSS2), GR was stimulated with dexamethasone and AR target 

genes were detected using QRT-PCR in parental LNCaP cells. The results showed that 

GR stimulation does not change the expression of KLK3, FKBP5 and KLK2. However, it 

was noticed a reduction in the expression of TMPRSS2, although this did not reach 

significance (Figure 5-8).  

 

Figure 5-8 Dexamethasone does not lead to upregulation of AR target genes in 

parental LNCaP cells 

LNCaP cells were seeded out in 6-well plates. The cells were grown in SDM for 48 hours 

then activated with 100nM dexamethasone for 24 hours and ethanol was used as a control. 

Trizol kits were used for RNA extraction. A. KLK3 B. FKBP5 C. KLK2 D. TMPRSS2 at 

mRNA level were determined by QRT-PCR. Error bars represent the mean ± SD for 

triplicate independent.  
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5.2.8 Dexamethasone activation leads to upregulation of selected AR target genes in 

LNCaP-ENZ-R cell line 

Further validation extended to the LNCaP-ENZ-R cell line to investigate the role of GR 

in regulation of AR target genes (KLK3, FKBP5, KLK2 and TMPRSS2), GR was 

stimulated by dexamethasone and AR target genes were detected by using QRT-PCR in 

the LNCaP-ENZ-R cell line. The results showed that dexamethasone activation led to a 

significant increase in the expression of KLK3, FKBP5, KLK2 and TMPRSS2 (p< 0.05) 

(Figure 5-9). 

 

Figure 5-9 Dexamethasone activation leads to the upregulation of selected AR target 

genes in LNCaP-ENZ-R cells 

LNCaP-ENZ-R cells were seeded out in 6-well plates. The cells were grown in SDM for 

48 hours then activated with 100nM dexamethasone for 24 hours. Trizol kits were used 

for RNA extraction. A. KLK3 B. FKBP5 C. KLK2 D. TMPRSS2 at mRNA level were 

determined by QRT-PCR. Error bars represent the mean ± SD for triplicate independent. 

p-values were determined by using student t-test (* p-value <0.05, ** p-value <0.01, *** 

p-value <0.001 and **** p- value < 0.0001).   



   

120 
 

5.2.9 Knockdown of GR has no effect on the expression of selected AR target genes 

in parental LNCaP cells 

To add further weight to the findings from the previous experiment (Figure 5-8), GR 

expression was decreased using two specific oligos. The effect on selected AR target 

genes was investigated using QRT-PCR in LNCaP cells. The result showed that the 

knockdown of GR increased SGK1 expression. However, no change was detected at the 

mRNA level of either KLK3 or FKBP5 (Figure 5-10). 

 

Figure 5-10 Knockdown of GR has no significant effect on the expression of selected 

AR target genes in parental LNCaP cells 

LNCaP cells were reverse transfected with two selected oligos against GR for 72 hours. 

Non-silencing oligo was used as a control. RNA was extracted and the expression level 

of A. GR, B. SGK1, C. FKBP5 and D. KLK3 at mRNA level were determined by QRT-

PCR. Error bars represent the mean ± SD for triplicate independent experiments. p-values 

were determined by using student t-test (* p-value <0.05, ** p-value <0.01, *** p-value 

<0.001).  
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5.2.10 Knockdown of GR decreases the expression of selected AR target genes in 

LNCaP-ENZ-R cells 

Further investigation into potential GR regulation of AR target genes was extended to the 

LNCaP-ENZ-R cell line. GR was knocked down using two selected oligos and selected 

AR target gene expression was investigated using QRT-PCR in LNCaP-ENZ-R cells. The 

results showed that the knockdown of GR decreases SGK1 expression but not 

significantly. However, the knockdown of GR significantly decreases the mRNA level of 

KLK3 and FKBP5 (p< 0.05) (Figure 5-11). 

 

Figure 5-11 Knockdown of GR significantly decreases the expression of selected AR 

target genes in LNCaP-ENZ-R cells 

LNCaP-ENZ-R cells were reverse transfected with two selected oligos against GR for 72 

hours. Non-silencing oligo was used as a control. RNA was extracted and the expression 

level of A. GR, B. SGK1, C. FKBP5 and D. KLK3 at mRNA level were determined by 

QRT-PCR. Error bars represent the mean ± SD for triplicate independent experiments. p-

values were determined by using student t-test (* p-value <0.05, ** p-value <0.01).  
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5.2.11 Blockade of AR activity decreases SGK1, KLK3 and FKBP5 expression while 

activation of AR increases SGK1, KLK3 and FKBP5 expression in parental LNCaP 

cells 

To confirm the theory that SGK1 may potentially be regulated by AR but not by GR in 

parental LNCaP cells, LNCaP cells were grown in full media and transfected with siRNA 

against GR for 72 hours. The cells were cultured simultaneously with and without 

enzalutamide. SGK1, KLK3 and FKBP5 were detected using QRT-PCR. The results 

showed that enzalutamide treatment led to a decrease in the expression of SGK1, KLK3 

and FKBP5, with no significant effects noticed in the expression of SGK1, KLK3 and 

FKBP5 in response to GR knockdown (Figure 5-12 A, B, C). To confirm the previous 

experiment, parental LNCaP cells were transfected with siRNA against GR for 72 hours 

in SDM, then the cells were stimulated with DHT for 24 hours. The data indicated that 

the stimulation of LNCaP cells with DHT led to an increase in the expression of SGK1, 

KLK3 and FKBP5. However no effect of GR knockdown was observed on the expression 

of the SGK1, KLK3 and FKBP5 in agreement with the results of the previous experiment. 

Also the data showed that knockdown of GR does not abrogate the effects of DHT on the 

expression SGK1, KLK3 and FKBP5 (Figure 5-12 D, E, F).    
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Figure 5-12 Blockade of AR activity decreases the expression of SGK1, KLK3 and 

FKBP5, while activation of AR increases the expression of SGK1, KLK3 and FKBP5 

in parental LNCaP cells 

LNCaP cells were reverse transfected with one selected oligo against GR for 72 hours, 

then the cells were cultured with or without 10µM enzalutamide. Non-silencing oligo was 

used as a control without enzalutamide. RNA was extracted and the expression level of 

A. SGK1, B. KLK3, C. FKBP5 at mRNA level were determined by QRT-PCR. LNCaP 

cells were reverse transfected with one specific oligo against GR for 72 hours in SDM, 

then the cells were cultured for 48 hours then treated with 10nM of DHT for 24 hours. 

Non-silencing oligo was used as a control without DHT. RNA was extracted and the 

expression level of D. SGK1, E. KLK3, F. FKBP5 at mRNA level were determined by 

QRT-PCR. Error bars represent the mean ± SD for triplicate independent experiments.   
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5.2.12  Blockade of AR activity increases of selected AR target genes expression, 

while GR knockdown leads to a decrease in selected AR target genes 

expression in LNCaP-ENZ-R cells 

To add weight to the theory that GR can regulate SGK1 and AR target genes in LNCaP-

ENZ-R cells, the LNCaP-ENZ-R cells were grown in full media and transfected with 

siRNA against GR for 72 hours. The cells were cultured simultaneously with or without 

enzalutamide. SGK1, KLK3 and FKBP5 were detected using QRT-PCR. The results 

demonstrated that the presence or absence of enzalutamide had no effect on SGK1 

expression in LNCaP-ENZ-R cells and GR knockdown leads to a decrease in the 

expression of SGK1. Enzalutamide treatment led to an increase in the expression of KLK3 

and FKBP5. Blocking AR increases the level of AR target genes whereas blocking the 

AR increases the level of GR, This supports the results obtained from (Figure 5-7). 

 A decrease in the expression of KLK3 and FKBP5 in response to GR knockdown 

simultaneously with or without enzalutamide was noticed (Figure 5-13 A, B, C). To 

confirm the previous experiment, LNCaP-ENZ-R was transfected with siRNA against 

GR for 72 hours in SDM, then the cells were stimulated with DHT for 24 hours. The data 

indicated that stimulation of LNCaP with DHT led to an increase in the expression of 

SGK1, KLK3 and FKBP5, which confirm the earlier results (Figure 5-4), indicating that 

AR might regulate SGK1 in LNCaP-ENZ-R cells. Also the results showed that GR 

knockdown led to a decrease in the expression of SGK1, KLK3 and FKBP5, which 

confirms the results of previous experiments. Interestingly, the data demonstrated that 

knockdown of GR does not abrogate the DHT effect on the expression of SGK1. This 

confirms the previous results obtained from (Figure 5-4) and (Figure 5-6) which indicated 

that AR and GR are both able to regulate SGK1. However, knockdown of GR abrogates 

the effects of DHT on the expression of KLK3 and FKBP5 (Figure 5-13 D, E, F).  
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Figure 5-13 Blockade of AR activity increases the expression of AR target genes 

while GR knockdown leads to a decrease in the expression of AR target genes in 

LNCaP-ENZ-R cells 

LNCaP-ENZ-R cells were reverse transfected with one selected oligo against GR for 72 

hours, then the cells were cultured simultaneously with or without 10µM enzalutamide. 

Non-silencing oligo was used as a control. RNA was extracted and the expression level 

of A. SGK1, B. KLK3, C. FKBP5 at mRNA level was determined by QRT-PCR. LNCaP-

ENZ-R cells were reverse transfected with one selected oligo against GR for 72 hours in 

SDM, then the cells were cultured for 48 hours and treated with 10nM DHT for 24 hours. 

Non-silencing oligo was used as a control without DHT. RNA was extracted and the 

expression level of D. SGK1, E. KLK3, F. FKBP5 at mRNA level was determined by 

QRT-PCR. Error bars represent the mean ± SD for triplicate independent experiments.   
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5.2.13 pSGK1-Ser422 induction by dexamethasone stimulation in LNCaP cells 

To investigate the activity of SGK1 in parental LNCaP and LNCaP-ENZ-R cells, pSGK1-

S422 protein expression was determined in response to increasing doses of 

dexamethasone, stimulated for 24 hours, in both cell lines. The results might showed an 

increase in expression of pSGK1-S422 in response to increasing doses of dexamethasone, 

for 24 hours, in parental LNCaP. However, no apparent changes were detected in the 

expression of pSGK1-S422 in LNCaP-ENZ-R cells, in response to increasing doses of 

dexamethasone (Figure 5-14). 

 

Figure 5-14 pSGK1 (S422) protein expression in response to dexamethasone 

stimulation in LNCaP and LNCaP-ENZ-R cells 

LNCaP and LNCaP-ENZ-R cells were seeded out on 6-well plates. The cells were grown 

in SDM for 48 hours, then activated with 100nM, 500nM and 1000nM dexamethasone 

for 24. The cells were then lysed in a RIPA buffer for protein samples. pSGK1 (S422) 

protein expression in LNCaP and LNCaP-ENZ-R cells was determined. Alpha-tubulin 

was used as a loading control (representative blot).  
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5.2.14 GSK650394 decreases the proliferation of parental LNCaP and LNCaP-

ENZ-R cells and causes a change in cell morphology 

The GI50 of GSK650394 (SGK1 inhibitor) was previously described by our group for 

(O'Neill et al., 2015) LNCaP cells, as a dose of 5μM. The GI50 dose for GSK650394 was 

added to LNCaP and LNCaP-ENZ-R cells and IncuCyte live cell imaging used as a 

measure of proliferation. Increasing doses of GSK650394 (5, 10 and 20µM) were added 

to the cells for 145 hours in both cell lines. Changes in cell morphology interfered with 

attempts to detect/validate GI50 using IncuCyte live cell imaging as shown in Figure 5-15 

and Figure 5-16. 

 

Figure 5-15 GSK650394 decreases the proliferation of LNCaP cells and changes cell 

morphology 

LNCaP cells were seeded out in eight wells per experimental arm, using 96-well plates. 

The cells were grown in full medium overnight, then the following day the cells were 

treated with 5µM, 10µM and 20µM of GSK650394. DMSO was used as a control. Then 

the plates were placed in the IncuCyte® ZOOM System. Error bars represent the mean ± 

SD for triplicate independent experiments. p-values were determined by using student t-

test (* p-value <0.05).  
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Figure 5-16 GSK650394 decrease the proliferation of LNCaP-ENZ-R cell line and 

changes cell morphology  

LNCaP-ENZ-R cells were seeded out in eight wells per experimental arm using 96-well 

plates. The cells were grown in full medium overnight, then the following day the cells 

were treated with 5µM, 10µM and 20µM of GSK650394. DMSO was used as a control. 

Then the plates were placed in the IncuCyte® ZOOM System. Error bars represent the 

mean ± SD for triplicate independent experiments. p-values were determined by using 

student t-test (* p-value <0.05,** p-value <0.01).  
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To overcome the limitations of using IncuCyte live cell imaging to detect the GI50 of 

GSK650394, cell counts were used to count live cells, as described in Chapter 2. The 

results showed that the GI50 dose of GSK650394 in parental LNCaP cells was ~ 2.82µM 

and the GI50 dose of GSK650394 in LNCaP-ENZ-R cells was ~ 2.23µM, as shown in 

(Figure 5-17). 

 

Figure 5-17 GI50 of GSK650394 in LNCaP and LNCaP-ENZ-R cells 

LNCaP and LNCaP-ENZ-R cells were seeded out on 6-well plates. The following day the 

cells were treated with 0.25nM, 1nM, 2.5nM, 5nM and 10nM GSK650394 for 72 hours. 

The cells were then stained with Trypan blue. Only live cells were counted using the 

haemocytometer. A. Cell number of LNCaP cells treated with different doses of 

GSK650394 B. Cell count of LNCaP-ENZ-R cells treated with different doses of 

GSK650394. Error bars represent the mean ± SD for triplicate independent experiments. 

p-values were determined by using student t-test (* p-value <0.05, ** p-value <0.01m,  

*** p-value <0.001 and **** p- value < 0.0001). 
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5.2.15 GSK650394 causes an increase in G2/M arrest in LNCaP cells 

To investigate the effect of the SGK1 inhibitor on cell phenotype, parental LNCaP cells 

were treated with SGK1 inhibitor for three days and a cell cycle distribution was used to 

detect cell cycle progression. The cells were collected and washed with PBS, then fixed 

with a citrate buffer and later the DNA was stained with propidium iodide (PI). RNase 

was added for 40 minutes to degrade RNA. PI binding to the DNA was quantified using 

a BD FACs Calibur, capturing 10,000 events per sample. Only single cells were gated, 

which represented subG1, G1, S and G2/M in a FL2-W vs FL2-A plot. All data analysis 

was carried out using FlowJo_V10 software. The results showed that SGK1 inhibition 

causes an increased number of cells demonstrating arrest at the G2 stage. However, this 

result was shown not to be statistically significant (Figure 5-18).  

 

Figure 5-18 GSK650394 leads to increased arrest of LNCaP cells at G2/M 

LNCaP cells were seeded out on 6-well plates. The cells were grown in full medium and 

the following day the cells were treated with 2.82µM GSK650394 for 72 hours, with 

DMSO used as a control. Error bars represent the mean ± SD for triplicate independent 

experiments.  
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5.2.16 GSK650394 arrests LNCaP-ENZ-R cells at G2/M and Sub-G1 

A validation of the effect of the SGK1 inhibitor on the cell phenotype was extended to 

the LNCaP-ENZ-R cell line by using cell cycle analysis. LNCaP-ENZ-R cells were 

treated with SGK1 inhibitor for 3 days, then the cells were collected to investigate the 

cell cycle using Flow cytometry. The cells were collected and washed with PBS, then 

fixed with a citrate buffer and later the DNA was stained with propidium iodide (PI). 

RNase was added for 40 minutes to degrade RNA. PI binding to DNA was quantified 

using a BD FACsCalibur capturing 10,000 events per sample. Only single cells were 

gated, which represented subG1, G1, S and G2/M in a FL2-W vs FL2-A plot. The results 

demonstrate that SGK1 inhibition causes a significant increase in the number of cells 

demonstrating arrest at the G2 stage and sub-G1 stage (Figure 5-19).  

 

Figure 5-19 GSK650394 leads to increased arrest of LNCaP-ENZ-R cells at G2/M 

and Sub-G1 

LNCaP-ENZ-R cells were seeded out on 6-well plates. The cells were grown in full 

media. The following day the cells were treated with 2.23µM GSK650394 for 72 hours. 

All data analysis was carried out using FlowJo_V10 software. Error bars represent the 

mean ± SD for triplicate independent experiments. p-values were determined by using 

student t-test (* p-value <0.05, ** p-value <0.01).  
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5.2.17 GSK650394 has no effect on the migration of LNCaP cells 

To further validate the role of the SGK1 inhibitor in cell phenotype, LNCaP cells were 

treated with SGK1 inhibitor and a wound healing assay was used to quantify migration 

of the cells. The cells were left until near 100% confluency. After that a perpendicular 

scratch was performed using p20 filter tips. The media was replaced with fresh media 

with and without 2.82µM GSK650394. Images were taken of three separate fields for 

each well at 0h, 6h, 24h and 48h. The width of the “wound” was measured using ImageJ 

software. This was achieved by overlaying a 20 square grid over each image, taking an 

average and normalising to the 0 hour control. The results showed that SGK1 inhibition 

does not reduce parental LNCaP cells migration at 6 and 12 hours. However, a non-

significant effect of SGK1 inhibitor was noticed after 24 hours (Figure 5-20).  

 

Figure 5-20 GSK650394 has no effect on the migration of LNCaP cells 

LNCaP cells were seeded into 6-well plates in full media and the cells left to near 100% 

confluency. After that a perpendicular scratch was performed and the cells treated with 

2.82µM GSK650394. The width of wound was measured by using ImageJ software. Error 

bars represent the mean ± SD for triplicate independent experiments.  
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5.2.18 GSK650394 significantly decreases migration of LNCaP-ENZ-R cells 

To further validate the role of the SGK1 inhibitor in cell phenotype, LNCaP-ENZ-R cells 

were treated with the SGK1 inhibitor and a wound healing assay was used to quantify 

migration of the cells. The cells were left until near 100% confluency. After that a 

perpendicular scratch was performed using p20 filter tips. The media was replaced with 

fresh media with and without 2.23µM GSK650394. Images were taken of three separate 

fields for each well at 0h, 6h, 24h and 48h. The width of the “wound” was measured using 

ImageJ software. This was achieved by overlaying a 20 square grid over each image, 

taking an average and normalising to the 0 hour control. The results showed that SGK1 

inhibitor significantly reduced migration of the cells at 24 and 48 hours (p< 0.05) (Figure 

5-21).     

Figure 5-21 GSK650394 decreases migration of LNCaP-ENZ-R cells  

LNCaP-ENZ-R cells were seeded into 6-well plates in full media and the cells left to near 

100% confluency. After that, a perpendicular scratch was performed and the cells treated 

with 2.23µM GSK650394. The width of wound was measured by using ImageJ software. 

Error bars represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using TWO-WAY ANOVA (* p-value <0.05, ** p-value <0.01).  
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5.2.19 Proliferation of parental LNCaP and LNCaP-ENZ-R cells is reduced in 

response to combined GR knockdown and SGK1 inhibition 

From the data obtained in Figure 5-19, the cell cycle was significantly affected by 

GSK650394 in LNCaP-ENZ-R cells, with cell cycle arrest seen at G2/M. A significant 

increase in the percentage of the cells at the sub-G1 phase was also seen. This increase in 

cells in the sub-G1 phase was not seen in LNCaP cells in response to GSK650394. A 

significant reduction in AR target genes in response to GR knockdown using two selected 

oligos was demonstrated in (Figure 5-11). In an attempt to understand the possible effects 

of an SGK1 inhibitor with or without GR knockdown on the proliferation of LNCaP and 

LNCaP-ENZ-R cells. Both cell lines were reverse transfected with two oligos against GR 

for 72 hours, followed by treatment with GSK650394 for 16 hours. Then the plates were 

placed in the IncuCyte® ZOOM System enabling observation and quantification of cell 

phenotype over time by automatically gathering and analysing images every 2 hours for 

7 days. The data was normalized to the zero hours for each condition. This was to avoid 

problems with seeding out. The data showed a non-significant decrease in proliferation 

of LNCaP cells in response to GSK650394 or GR knockdown, while a combination of 

GSK650394 plus GR knockdown led to a significant decrease in proliferation of the 

parental LNCaP cells (Figure 5-22 A). A similar trend was also obtained in LNCaP-ENZ-

R cells in response to the same experimental condition, where a significant (p< 0.05) 

reduction in proliferation was also detected (Figure 5-22 B).  
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Figure 5-22 Parental LNCaP and LNCaP-ENZ-R cells proliferation is reduced in 

response to combined of GR knockdown and GSK650394 treatment 

LNCaP and LNCaP-ENZ-R cells were reverse transfected with a selected oligo against 

GR on 6-well plates format. Non-silencing oligo was used as a control. The cells were 

transferred to 96-well plates, followed by GSK650394 treatment. Error bars represent the 

mean ± SD for triplicate independent experiments. p-values were determined by using 

student t-test (* p-value <0.05, ** p-value <0.01 and ** p-value <0.01,  *** p-value 

<0.001 and **** p- value < 0.0001).  
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5.2.20 High expression of SGK1 in relapsed patients compared to naïve patients 

Previously, the data generated from the microarray experiment showed a high expression 

of SGK1 in the enzalutamide-resistant cell line compared to the parental LNCaP cells. To 

compare this interesting laboratory finding in clinical samples from patients with known 

prostate cancer, our in-house generated TMA5 was selected to investigate the expression 

of SGK1. TMA5 is a very interesting cohort of patient samples, with samples taken from 

the same patients before and after hormone ablation treatment was received. The pairs 

were divided into three groups: firstly a hormone naïve group containing patients tissues 

which never received hormone treatment. Secondly hormone sensitive group containing 

patients tissues which had subsequently received ADT to good effect and continued to be 

sensitive to the treatment. Then the final castrate resistant group, which included patients 

who received hormone treatment, initially to good effect, but had relapsed and 

subsequently found to have castration resistant PC. 

The results demonstrated that SGK1 expression is seen in the nuclear compartment of the 

cell and does not significantly change between matched patients who belonged to the 

continued treatment naïve group. These patients had not received any treatment. 

However, a suggestion of higher expression of SGK1 was seen in matched patients in the 

second, hormone sensitive treatment group, but this did not reach significance. 

Interestingly, there was a significant change in nuclear expression of SGK1 in matched 

samples taken from patients who were relapsed following treatment. The data also 

showed an increase in the expression of SGK1 in sensitive-to-treatment group compared 

to the naïve group, while a significant increase was noticed in the relapsed group 

compared to the naïve group (Figure 5-23 A, B, C, D).  
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Figure 5-23 Nuclear expression of SGK1 in matched patients who were naïve, 

sensitive to the androgen withdrawal treatment and relapsed patients who were 

resistant to hormone treatment.   

A. There was no significant change in SGK1 expression in matched samples from patients 

who had not received any treatment for their prostate cancer. B. An increase and decrease 

in SGK1 expression was observed in matched samples from patients who were sampled 

before treatment and again after they were established on hormone treatment and were 

still sensitive to the hormone treatment at the time of their second biopsy. C. There was 

a significant change in nuclear SGK1 expression in matched samples taken from patients 

who had a second sample taken after they had relapsed and were no longer sensitive to 

their hormone treatment. D. Higher expression of SGK1 in the sensitive to treatment 

group compared to naïve group, while a significant increase was noticed in relapsed group 

compared to the treatment naïve group.  
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5.3 Discussion: 

Attempts to abrogate testicular androgen production are still a mainstay in the treatment 

of locally advanced and metastatic PC. However, eventually and inevitably this treatment 

fails when PC progresses despite apparent low levels of testosterone (Chen et al., 2008). 

Although there may be low levels of circulating androgen in CRPC following chemical 

or surgical castration, AR signaling continues in CRPC (Scher et al., 2012). Enzalutamide 

is used as a second line anti-androgen to block AR activity, resulting in a significant 

improvement of overall patient’s survival with CPRC progression. Unfortunately median 

survival for patients with CRPC following treatment with enzalutamide remains less than 

a year, with an overall median survival of 4.8 months (Chen et al., 2008; Scher et al., 

2012). The glucocorticoid receptor (GR), progesterone receptor (PR) and the androgen 

receptor (AR) bind with high affinity to DNA elements. Hormone response element 

(Epstein et al.) sites, which are located in the DNA are identical for GR, PR and AR. 

There are many genes that can be regulated by more than one steroid receptor, the 

relevance here being that like the AR, GR can induce PSA activity. Similarly, 

dexamethasone has previously been shown to stimulate PSA expression (Cleutjens et al., 

1997). Other studies have demonstrated that SGK1 is a downstream target of both AR 

and GR in CWR22R1 and LNCaPC4 (Isikbay et al., 2014). However, the role of the GR 

and AR in the regulation of SGK1 in drug-resistant prostate cancer remains unclear. This 

chapter aimed to investigate the possible mechanism governing this relationship, or at 

least the generation of some data to begin to answer this query. Firstly, an investigation 

of SGK1 expression at the protein level was performed on LNCaP and LNCaP-ENZ-R 

cells in the presence and absence of enzalutamide for 48 hours. Similarly, the expression 

at the mRNA level showed an increase in the expression of the SGK1 in LNCaP-ENZ-R 

cells compared to the LNCaP control (Figure 5-2). These results might suggest that SGK1 

plays a role in enzalutamide-resistance, which is consistent with a group working on 

breast cancer (Sommer et al., 2013) who demonstrated that SGK1 is significantly elevated 

in breast cancer Akt inhibitor-resistant cell lines.  

SGK1 antibody was validated by identify the band on the size 50 KD. also SGK1 antibody 

was validated by activated SGK1 with DHT and dexamethasone and the results showed 

increased SGK1 protein level in response for DHT and dexamethasone, which prove 

specify of this antibody. 

To test the role of AR in the regulation of the SGK1 in both LNCaP and LNCaP-ENZ-R 

cell lines (cellular models of hormone-sensitive and hormone-resistant disease, 

respectively), they were stimulated with DHT for 24 and 48 hours. The results of this 
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study might indicated an increase in the expression of SGK1 at the mRNA and protein 

levels in response to the DHT stimulation in both cell lines. Interestingly, the data might 

suggest that AR regulates of SGK1 expression in LNCaP cells (Figure 5-3). This is in 

agreement with Sherk et al. (2008) who demonstrated that activation of AR leads to 

increased SGK1 expression in parental prostate cancer cell line. This study also showed 

that AR regulates SGK1 expression in LNCaP-ENZ-R cells (Figure 5-4). 

To study the role of the GR in regulation of SGK1 in LNCaP and LNCaP-ENZ-R cells, 

both cell lines were activated with dexamethasone for 24 and 48 hours. The results 

showed an increase in the expression of SGK1 in response to dexamethasone stimulation 

in LNCaP cells, at the mRNA level. However, no effect was observed at the protein level 

(Figure 5-5), which perhaps suggests that activation by dexamethasone correlates with 

activation of SGK1 and requires a functional glucocorticoid receptor (Wang et al., 2007). 

On the other hand, increases in mRNA and protein expression of SGK1 were observed in 

LNCaP-ENZ-R cells (Figure 5-6) in response to dexamethasone activation, which might 

suggest that LNCaP-ENZ-R cells contains a functional GR to activate SGK1.  

Further investigation of the functionality of GR was then explored. Firstly, GR expression 

was detected at the protein level by Western blot analysis and the results showed an 

increase in the expression of GR in response to AR inhibition by enzalutamide in parental 

LNCaP cells. However, in LNCaP-ENZ-R cell line, the results showed an increase in the 

expression of GR in the presence and absence of enzalutamide for 48 hours compared to 

the parental LNCaP. At the mRNA level, the results indicated that blocking AR activity 

with enzalutamide for 48 hours increases the expression of GR in LNCaP and LNCaP-

ENZ-R cells (Figure 5-7), which is in agreement with another group (Isikbay et al., 2014), 

who described that GR expression increases in the androgen-sensitive LNCaP and VCaP 

cell lines, following AR inhibition by enzalutamide. One could perhaps therefore suggest 

that increased GR expression mediates PC resistance to enzalutamide. 

A further investigation of GR in LNCaP-ENZ-R cells compared to the parental LNCaP 

cells was applied, by activating both cell lines with dexamethasone for 24 hours. This 

experiment showed that no significant changes of selected AR target genes were noticed 

in LNCaP cells (Figure 5-8). However, a significant increase of the AR target genes 

KLK3, KLK2, FKPB5 and TMPRSS2 was observed in response to dexamethasone 

stimulation in LNCaP-ENZ-R cells (Figure 5-9). To confirm the results from previous 

experiment (Figure 5-9), GR knockdown was achieved by using two selected siRNA 

oligos against GR in parental LNCaP cells and AR target genes were identified mRNA 

level. GR knockdown was validated by QRT-PCR only, the limitation of this experiment 
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is not confirming GR knockdown at the protein level, which might need to be consider in 

future.  

The results from this study showed no significant change in the expression of the chosen 

AR target genes in response to GR knockdown in the parental LNCaP cells (Figure 5-10). 

However, a significant decrease in the expression of the AR target genes was noticed in 

response to GR knockdown in LNCaP-ENZ-R cells (Figure 5-11). It can thus be 

suggested that GR can bypass AR and regulate AR target genes known to be involved in 

the proliferation and growth of resistant cell line models.  

From this data, this study suggests that SGK1 is predominantly regulated by AR in 

parental LNCaP cells, while both GR and AR are involved in the regulation of SGK1 in 

LNCaP-ENZ-R cells. To test this theory, both parental LNCaP and LNCaP-ENZ-R cells 

were grown in full medium and transfected with siRNA against GR for 72 hours. The 

cells were kept with or without enzalutamide. The data from this experiment 

demonstrated that blocking AR led to a decrease in the expression of SGK1, KLK3 and 

FKBP5 and no significant effects were noticed in the expression of SGK1, KLK3 and 

FKBP5 in response to GR knockdown in parental LNCaP cells. Enzalutamide was able 

to reduce the GR knockdown effects on the expression of SGK1, KLK3 and FKBP5 

(Figure 5-12 A, B, C). To confirm the previous suggestion, parental LNCaP cells were 

transfected with siRNA against GR for 72 hours in SDM, then the cells were stimulated 

with DHT for 24 hours. This data showed that stimulation of AR with DHT led to an 

increase in the expression of SGK1, KLK3 and FKBP5. However, no effect of GR 

knockdown was observed on the expression of SGK1, KLK3 and FKBP5, adding weight 

to the results of the previous experiment. Also this study showed that knockdown of GR 

does not abrogate the AR stimulation effects on the expression SGK1, KLK3 and FKBP5 

in LNCaP cells (Figure 5-12 D, E, F). This might suggest that AR regulates SGK1, while 

no significant effect of GR was noticed in the regulation of SGK1 and other AR target 

genes in parental LNCaP and GR knockdown had no effect on blocking or activation of 

AR effects on the expression of SGK1 and other AR target genes. Also this study noticed 

that KLK3 and FKBP5 reduced expression with GR knockdown, but in the presence of 

DHT compared to GR knockdown arm. This might suggest that DHT can activate GR-

mediated gene expression. The limitation of this experiment is not confirming GR 

knockdown at the protein level, which might need to be consider in future.  

Further experiments were applied to test this theory on LNCaP-ENZ-R cells. These cells 

were grown in full medium and transfected with siRNA against GR for 72 hours. The 

cells were kept with and or without enzalutamide. This study demonstrated that in the 
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present and absence of enzalutamide, there was no effect on SGK1 expression in LNCaP-

ENZ-R cells and GR knockdown led to a decrease in the expression of SGK1 in the 

presence and the absence of enzalutamide. However, enzalutamide treatment led to an 

increase in the expression of KLK3 and FKBP5, which supports the results obtained from 

Figure 5-7, that blocking AR increases the level of GR, which appears to be able to 

regulate AR target genes. A decrease in the expression of KLK3 and FKBP5 in response 

to GR knockdown, with or without enzalutamide, was noticed in this study (Figure 5-13 

A, B, C). This perhaps suggests that SGK1 could be a biomarker for enzalutamide 

resistance, but more experiments are needed to confirm this finding. SGK1 is regulated 

by GR and enzalutamide does not abrogate GR activity in LNCaP-ENZ-R cells. However, 

blocking AR led to an increase in the expression of GR which then appears to regulate 

AR target genes. Again, enzalutamide does not abrogate the GR activity in regulation of 

AR target genes. In order to further investigate this theory, LNCaP-ENZ-R cells were 

transfected with siRNA against GR for 72 hours in SDM, then the cells were stimulated 

with DHT for 24 hours. This experiment indicated that stimulation of LNCaP-ENZ-R 

cells with DHT led to an increase in the expression of SGK1, KLK3 and FKBP5, which 

adds weight to the results obtained from Figure 5-4 that AR may regulate SGK1 in 

LNCaP-ENZ-R cells. Also the results showed that GR knockdown led to a decrease in 

the expression of SGK1, KLK3 and FKBP5, which confirm the results of the previous 

experiment. Interestingly, the data demonstrated that knockdown of GR does not abrogate 

the effects of DHT on the expression of SGK1. This confirms the results obtained from 

(Figure 5-4), (Figure 5-6) which indicated that AR and GR are both able to regulate 

SGK1. However, knockdown of GR abrogated AR stimulation effects on the expression 

of KLK3 and FKBP5 (Figure 5-13 D, E, F). Not confirming GR knockdown by western 

blot is one of the limitation of this experiment, which is need further investigation. Below 

a cartoon summarized the finding of this study (Figure 5-24). 

To investigate the activity of SGK1 in the LNCaP and LNCaP-ENZ-R cell lines, pSGK1-

Ser422 protein expression was measured in both cell lines, via western blot. The results 

from this experiment showed a gradual increase in the expression of pSGK1-Ser422 in 

LNCaP cells induced by increasing doses of dexamethasone, while consistent pSGK1-

Ser422 expression was detected in LNCaP-ENZ-R cells, whether stimulated with 

dexamethasone or not. This potentially indicates that in LNCaP cells, stimulation is 

required to activate SGK1. However, in LNCaP-ENZ-R cells dexamethasone stimulation 

was not required, suggesting SGK1 may be constitutively active in these drug-resistant 

cells (Figure 5-14). The limitation of this experiment was total SGK1 not investigated. 
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However, the total SGK1 was investigated previously in this study but in different blot in 

response to dexamethasone (Figure 5-5, Figure 5-6).    

Previously, the data showed that a high expression of pAkt was observed in LNCaP-ENZ-

R cells, compared to parental LNCaP cells (Figure 3-4). An independent study 

demonstrated that Akt promotes activation of mTORC1 (Sommer et al., 2013). Another 

study demonstrated that mTORC1 can mediate the activity of both pSGK1-Ser422 and 

pAkt-Ser473 (Hong et al., 2008). Based on these studies and the previous data in this 

study, mTORC1 might be suggested to activate SGK1 through the activity of pAkt in the 

LNCaP-ENZ-R cells.  

To further study the effect of SGK1 on the LNCaP and LNCaP-ENZ-R cells, an SGK1 

inhibitor (GSK650394) was used. It has been shown GSK650394 inhibited the enzymatic 

activity of SGK1 and SGK2. In addition, GSK650394 is relatively selective for SGK1 

over Akt, the most closely related AGC kinase. Also GSK650394 as a growth inhibitor 

might also be due to nonspecific inhibition of other kinases, particularly other members 

of the SGK protein family, SGK2 and SGK3 (Sherk et al., 2008).  

The GI50 doses (LNCaP 2.82µM, LNCaP-ENZ-R 2.23µM) were evaluated (Figure 

5-17). The data from this study showed that GSK650394 arrests the cells at the G2/M and 

sub-G1 phases significantly (p<0.05) in LNCaP-ENZ-R cells (Figure 5-19). However, no 

significant changes were detected in parental LNCaP cells (Figure 5-18). The effect of 

GSK650394 on cell growth was previously suggested to be a non-specific inhibition of 

other kinases, particularly other members of the SGK protein family SGK2 and SGK3. A 

possible mechanism of how SGK1 may control the cell cycle in enzalutamide-resistant 

prostate cancer is through direct or indirect regulation of mTORC, which regulates cell 

cycle through cyclin D1 and D2 (Sherk et al., 2008).  

A further investigation of the effect of GSK650394 on LNCaP and LNCaP-ENZ-R cells 

was performed using a wound-healing assay to detect effects on cell migration. From the 

results, no significant effects of GSK650394 on cell migration was detected in parental 

LNCaP cells (Figure 5-20). However, a significant reduction of migration was observed 

in the LNCaP-ENZ-R cells starting from 6 hours of treatment (Figure 5-21). A previous 

study showed that SGK1 overexpression in colon cell lines enhances cell migration, also 

correlating with vinculin dephosphorylation (Schmidt et al., 2012). Vinculin is an 

adhesion protein that participates in cell–cell adhesions and is known to regulate 

migration (Schmidt et al., 2012). From the data above (Figure 5-11), it was observed that 

GR regulates the AR target genes responsible for proliferation. Moreover, the SGK1 

inhibitor was able to arrest the cells in sub-G1. For that reason, both cell lines were treated 
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with GSK650394 in addition to GR knockdown to see if combination treatment may be 

advantageous (Figure 5-22). Interestingly, a stronger effect was noticed using a 

combination of GSK650394 with GR knockdown on the proliferation of LNCaP-ENZ-R 

cells, suggesting that inhibition of SGK1 activity combined with GR depletion may be a 

better approach to treat enzalutamide-resistant PC cases. However, further experiments 

are required to strengthen this hypothesis such as validate SGK1 and GR inhibition at the 

protein level by western blotting. 

LNCaP-ENZ-R cells demonstrate upregulated GR signalling and as a consequence 

elevated SGK1 levels and is consistent with the clinical scenario in which patients 

resistant to the next-generation anti-androgen show a switch from androgen- to 

glucocorticoid-dependency. 

High expression of SGK1 was noticed in enzalutamide-resistant cells compared to 

LNCaP parental cells. To investigate this result on patient tissue samples, TMA5 was 

selected as it contains three groups of matched pairs. The pairs were divided into three 

groups: a hormone naïve group containing patients tissues which never received hormone 

treatment; hormone sensitive groups containing patients tissues which had subsequently 

received ADT to good effect and continued to be sensitive to the treatment; and the final 

castrate resistant group. The data was consistent with SGK1 expression on the cellular 

level, as a significant increase was noticed in the relapsed group (representing castration 

resistant PC) as previously seen in the enzalutamide-resistant cells, suggesting that SGK1 

could be a potential prognostic biomarker for enzalutamide-resistance in patients with 

prostate cancer (Figure 5-23). Again, further experiments are required to strengthen this 

hypothesis. 

 



   

144 
 

 

Figure 5-24 role of AR and GR in parental LNCaP compared to LNCaP-ENZ-R  
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Chapter 6. Identification of TROP-2 as a potential therapeutic target in castrate 

resistance prostate cancer 
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6.1 Introduction  

Tumour-associated calcium signal transducer 2, also known as TROP-2, is a 

transmembrane glycoprotein encoded by the intronless TACSTD2 gene located on 

chromosome 1p32. It is approximately 35 kDa in size. TROP-2 protein was originally 

detected in human trophoblasts and has been shown to be overexpressed in a variety of 

human carcinomas such as endometrial and cervical cancers, adenocarcinomas, 

squamous cell carcinomas and carcinosarcomas (McDougall et al., 2011; Bignotti et al., 

2012).  

TROP-2 consists of several domains that span the cell membrane and is composed of 323 

amino acids (a.a.). It starts with a hydrophobic leader peptide (a.a.1-26), then an N- 

terminal domain extracellular domain (a.a. 27-274), which is the largest domain (also 

known as the ectodomain), next is the transmembrane domain (a.a. 275-297), anchored 

via a single transmembrane helix (TM) followed by a short intracellular cytoplasmic tail 

(a.a. 298-323) (Figure 6-1). TROP-2 is predicted to have N-linked glycosylation sites at 

residues 33, 120, 168 and 208. An extracellular EGF-like repeat domain is located 

between amino acid 1-274. A thyroglobulin type-1 domain is made up of the amino acids 

70-145 within the extracellular domain (Cubas et al., 2009). TROP-2 has been implicated 

in numerous signalling pathways that are crucial for survival, self-renewal, proliferation 

and invasion. TROP-2 transduces an intracellular calcium signal, which can occur 

without extracellular Ca2+, suggesting a mobilization of Ca2+ from internal stores 

(Shvartsur and Bonavida, 2015).  

TROP2 is a member of the GA733 family, which consists of GA733-1 (Trop2) and 

GA733-2 also known as EpCAM (epithelial cell adhesion molecule). EpCAM and TROP-

2 have about 49% structural similarity and they are both transmembrane proteins with 

single transmembrane domains. Both proteins have an important role in cell to cell 

adhesion and cell signalling through c-MYC and cyclins that are crucial for migration, 

invasion, proliferation and differentiation. However, TROP-2 and EpCAM appear to have 

opposite biological effects. It has been reported using patient tissues samples from 

pulmonary adenocarcinoma that the expression of EpCAM was significantly related to a 

favourable outcome, while TROP-2 tended to be expressed in cases with an unfavourable 

outcome (Kobayashi et al., 2010).    
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TROP-2 expression can lead to stimulation of the RAS/RAF/MEK signalling pathway 

and this pathway can be further activated by signals related to an increase of calcium. 

TROP-2 expression increases the levels of phosphorylated ERK1 and ERK2 and ERK 

signalling leads to induction of AP-1 transcription factor, which is involved in invasion 

and metastasis via MMPs (matrix metalloproteinases), proliferation via the cyclins and 

CDKs, apoptosis via pro-apoptotic Bcl-2 (B-cell lymphoma 2) and angiogenesis via 

VEGF (vascular endothelial growth factor). TROP-2 expression leads to a 

downregulation of p27 which is a cyclin-dependent kinase inhibitor 1B. Also, its 

expression increases levels of cyclin D1 and cyclin E, which helps mediate ERK1/2 cell 

cycle progression (Cubas et al., 2010; Shvartsur and Bonavida, 2015). 

According to DNA microarray and real-time PCR studies, TROP-2 mRNA is expressed 

in most cancers of epithelial origin such as breast, cervix, endometrium, oesophagus, 

fallopian tubes, kidney, pancreas, placenta, prostate, respiratory tract, salivary glands, 

seminal vesicles, stomach, tonsils, thymus and vagina (Trerotola et al., 2013a). TROP-2 

overexpression was detected in 83% of breast cancer cases compared to normal breast 

tissue according to a microarray analysis and tumour growth rates and progression were 

increased dramatically in the mice that were injected with TROP-2 overexpressing cells 

(Trerotola et al., 2013a). A further study demonstrated that TROP-2 is up-regulated in 

locally advanced human PC (with extracapsular extension - stages pT3/pT4) as compared 

to organ-confined (stage pT2) PC (Trerotola et al., 2015). TROP-2 has also been shown 

to be up-regulated in metastatic prostate tumours of  transgenic adenocarcinoma of mouse 

prostate (TRAMP) mice (Trerotola et al., 2015). Data from the same group has shown 

that β1- integrin-dependent cell adhesion to fibronectin is regulated by TROP-2 and it 

also promotes metastatic dissemination of prostate cancer cells in vivo. Also, TROP-2 

promotes prostate cancer cell migration on fibronectinand its overexpression enhances 

directional cancer cell migration (Trerotola et al., 2013b). However, the role of TROP-2 

in enzalutamide-resistant prostate cancer is not clear. For that reason the aims of this 

chapter are:   

1. Identify the expression of TROP-2 in parental LNCaP and LNCaP-ENZ-R cells 

2. Study the effect of TROP-2 knockdown on the phenotype of parental LNCaP 

and LNCaP-ENZ-R cells 

3. Investigate the pathways that might by affected by TROP-2 knockdown  
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Figure 6-1 Schematic diagram of TACSTD2 gene and homologous domain 

representation of TROP-2 protein. Adapted from (Cubas et al., 2009)  
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6.2 Results  

6.2.1  High expression of TROP-2 protein in LNCaP-ENZ-R cells in the presence 

and absence of enzalutamide 

An increase in the expression of TACSTD2 in the LNCaP-ENZ-R cell line was detected 

in the presence of enzalutamide by microarray data (Figure 4-10 B). This was further 

validated at mRNA level using QRT-PCR (Figure 6-2 A). To validate the TROP-2 

expression at the protein level, in the same experimental condition as in microarray study, 

an appropriate antibody was sourced and then validated to detect TROP-2. The data 

shows an increase in the expression of the TROP-2 in LNCaP-ENZ-R cell line at the 

protein level in the presence or absence of enzalutamide (Figure 6-2 B). 

 

Figure 6-2 TROP-2 expression is increased in the LNCaP-ENZ-R cell line 

LNCaP and LNCaP-ENZ-R cells were seeded out in 6-well plates. The cells were grown 

in full medium simultaneously with or without 10µM enzalutamide for 48 hours. DMSO 

was used as a control. A. TACSTD2 expression was determined by QRT-PCR using 

specific primers. The relative expression was measured by normalizing all samples to the 

parental LNCaP cells. B. TROP-2 protein expression in parental LNCaP and LNCaP-

ENZ-R cells was determined by western blotting. Alpha-tubulin was used as a loading 

control. Error bars represent the mean ± SD for triplicate independent experiments. P-

values were determined by using student t-test (* p-value <0.05, ** p-value <0.01, *** 

p-value <0.001 and **** p- value < 0.0001) (representative blot).  
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6.2.2 Confirmation of TROP-2 knockdown LNCaP-ENZ-R cells 

To confirm that the protein band detected in the previous figure belongs to TROP-2 

(Figure 6-2 B), three selected oligos against TROP-2 were used to achieve knockdown. 

A successful knockdown of TROP-2 was achieved in LNCaP-ENZ-R cell line at both the 

protein and mRNA level. However, TROP-2 showed no detectable expression in parental 

LNCaP which is in agreement with that previously described (Trerotola et al., 2012) 

(Figure 6-3).  

 

Figure 6-3 Confirmation of TROP-2 knockdown LNCaP-ENZ-R cells 

LNCaP and LNCaP-ENZ-R cells were reverse transfected with three selected oligos, 

against TROP-2, for 72 hours. The cells were grown in full medium. Non-silencing oligo 

was used as a control. The cells were then lysed in RIPA buffer for protein samples and 

Trizol kits were used for RNA extraction. A. mRNA level of TACSTD2, the expression 

was determined by QRT-PCR and the relative expression was measured by normalization 

of all samples up to SCR. B. TROP-2 protein expression in parental LNCaP and LNCaP-

ENZ-R cells. Alpha-tubulin was used as a loading control. Error bars represent the mean 

± SD for triplicate independent experiments. p-values were determined by using student 

t-test (* p-value <0.05, ** p-value <0.01) (representative blot).  



   

151 
 

6.2.3 Knockdown of TROP-2 significantly decreases the proliferation of LNCaP-

ENZ-R cells  

To study the effect of TROP-2 on the proliferation of parental LNCaP and LNCaP-ENZ-

R cells, TROP-2 knockdown was achieved by using three oligos against TROP-2 and the 

cells were counted by staining with Trypan blue. The results showed that knockdown of 

TROP-2 in LNCaP-ENZ-R cells significantly decreased proliferation. However, no 

significant effect on proliferation was detected in parental LNCaP cells (Figure 6-4).  

 

Figure 6-4 Cell counts of LNCaP and LNCaP-ENZ-R cells in response to TROP-2 

knockdown   

LNCaP and LNCaP-ENZ-R cells were reverse transfected with two selected oligos 

against TROP-2 for 72 hours. The cells were grown in full medium. A. Cell counts after 

LNCaP cells were transfected with three selected oligos against TROP-2 for 72 hours B. 

Cell counts after LNCaP-ENZ-R cells were transfected with three selected oligos against 

TROP-2, for 72 hours. Error bars represent the mean ± SD for triplicate independent 

experiments. p-values were determined by using student t-test (* p-value <0.05, ** p-

value <0.01m,  *** p-value <0.001 and **** p- value < 0.0001).  
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6.2.4 Knockdown of TROP-2 has no effect on the cell cycle in parental LNCaP cells 

To observe the influence of TROP-2 on the cell cycle, two selected oligos against TROP-

2 were used to achieve TROP-2 knockdown. The cells were collected and washed with 

PBS then fixed with a citrate buffer and subsequently the DNA was stained with 

propidium iodide (PI). RNase was added to degrade RNA for 40 minutes. PI binding to 

the DNA was quantified by a BD FACs Calibre capturing 10,000 events per sample. Only 

single cells were gated, which was represented sub-G1, G1, S and G2/M in a FL2-W vs 

FL2-A plot. The results show that knockdown of the TROP-2 had no detectable effect on 

the progress of the cell cycle in LNCaP cells (Figure 6-5). 

 

Figure 6-5 Knockdown of TROP-2 has no effect on cell cycle progression in parental 

LNCaP cells 

LNCaP cells were reverse transfected with two selected oligos against TROP-2 for 72 

hours. The cells were grown in full medium. A non-silencing oligo was used as a control. 

All data analysis was carried out using FlowJo_V10 software. Error bars represent the 

mean ± SD for triplicate independent experiments.  
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6.2.5 Knockdown of TROP-2 results in an increased accumulation of LNCaP-

ENZ-R cells in sub-G1 

An investigation of the effect of TROP-2 knockdown on the cell cycle was extended to 

the LNCaP-ENZ-R cell line. Two selected oligos against TROP-2 were used to achieve 

TROP-2 knockdown. The cells were collected and washed with PBS then fixed with a 

citrate buffer and the DNA was subsequently stained with propidium iodide (PI). RNase 

were added to degrade RNA for 40 minutes. PI binding to the DNA was quantified by a 

BD FACs Calibre capturing 10,000 events per sample. Only single cells were gated 

representing sub-G1, G1, S and G2/M in a FL2-W vs FL2-A plot. All data analysis was 

carried out using FlowJo_V10 software. The results showed that knockdown of the 

TROP-2 causes an accumulation of cells in the sub-G1 phase (Figure 6-6). 

 

Figure 6-6 Knockdown of TROP-2 results in accumulation of LNCaP-ENZ-R cells 

in sub-G1 

LNCaP-ENZ-R cells were reverse transfected with two selected oligos against TROP-2 

for 72 hours. The cells were grown in full medium. A non-silencing oligo was used as a 

control. All data analysis was carried out using FlowJo_V10 software. Error bars 

represent the mean ± SD for triplicate independent experiments. p-values were 

determined by using student t-test (* p-value <0.05, ** p-value <0.01m,  *** p-value 

<0.001 and **** p- value < 0.0001).  
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6.2.6 Knockdown of TROP-2 has no effect on migration of parental LNCaP cells 

TROP-2 has previously been found to play an important role in cell adhesion by 

promoting prostate cancer cell detachment from the extra-cellular matrix (ECM), 

representing an aggressive phenotype of cancer, associated with a metastatic phenotype 

(Trerotola et al., 2015). To investigate the effect of TROP-2 on the migration of parental 

LNCaP cells, TROP-2 knockdown was achieved by two oligos against TROP-2 and a 

wound healing assay used to investigate the migration of the cells. The cells were left 

until near 100% confluency. At this stage, a perpendicular scratch was performed using 

p20 filter tips. Images were taken of three separate fields for each well at 0h, 6h, 24h and 

48h. The width of the “wound” was measured using ImageJ software. This was achieved 

by overlaying a 20 square grid over each image taking an average and normalising to the 

0 hour control. The results showed that knockdown of TROP-2 in parental LNCaP cells 

had no effect on migration (Figure 6-7).   
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Figure 6-7 Knockdown of TROP-2 has no effect on migration of parental LNCaP 

cells 

LNCaP cells were reverse transfected with two selected oligos against TROP-2 for 72 

hours. Non-silencing oligo was used as a control. The cells were grown in full medium. 

Images were taken of three fields for each well at 0h, 6h, 24h and 48h. The width of 

wound was measured by using ImageJ software by overlaying a 20 square grid over each 

image, taking an average and normalising to the 0 hour control. Error bars represent the 

mean ± SD for triplicate independent experiments.  

0 h 6 h 2 4 h 4 8 h

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

W o u n d  H e a lin g  A s s a y

T im e  (H o u rs )

%
W

o
u

n
d

 W
id

th

S C R

s iR N A 1

s iR N A  3



   

156 
 

6.2.7  Knockdown of TROP-2 significantly decreases migration of LNCaP-ENZ-R 

cells 

The same experimental conditions from the previous experiment (Figure 6-7) were 

applied to the LNCaP-ENZ-R cell line. The results showed that knockdown of TROP-2 

decreases migration of the cells, with the effect being most pronounced with siRNA3 at 

48 hours (Figure 6-8). Another effect detected during this experiment was increased cell 

death, which was observed down the microscope, further investigation is suggested for 

this finding.   
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Figure 6-8 Knockdown of TROP-2 decreases migration of LNCaP-ENZ-R cells  

LNCaP-ENZ-R cells were reverse transfected with two selected oligos against TROP-2, 

for 72 hours in full medium. A non-silencing oligo was used as a control. The cells were 

grown in full medium. Images were taken of three fields for each well at 0h, 6h, 24h and 

48h. The width of wound was measured by using ImageJ software by overlaying a 20 

square grid over each image, taking an average and normalising to the 0 hour control. 

Error bars represent the mean ± SD for triplicate independent experiments.   
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6.2.8 The effect of TROP-2 knockdown on the regulation of epithelial 

mesenchymal transition (EMT) in LNCaP-ENZ-R cells 

To further investigate the effect of TROP-2 on migration, as observed in the previous 

experiment (Figure 6-8). Knockdown of TROP-2 was achieved and the expression of E-

cadherin and Vimentin, which represents an epithelial and mesenchymal marker 

respectively, were detected by using QRT-PCR. The result shows that knockdown of 

TROP-2 with siRNA3 causes a significant increase in mRNA expression of E-cadherin, 

while significantly decreasing mRNA expression of Vimentin (Figure 6-9).  

 

Figure 6-9 The effect of TROP-2 knockdown on epithelial mesenchymal transition 

(EMT) in LNCaP-ENZ-R cells 

LNCaP-ENZ-R cells were reverse transfected with three selected oligos against TROP-2 

for 72 hours. The cells were grown in full medium. A non-silencing oligo was used as a 

control. A. E-cadherin expression was determined by QRT-PCR using specific primers. 

The relative expression was measured by normalizing all samples up to the SCR control. 

B. Vimentin expression was determined by QRT-PCR using specific primers. The relative 

expression was measured by normalizing all samples to the SCR. Error bars represent the 

mean ± SD for triplicate independent experiments. p-values were determined by using 

student t-test (* p-value <0.05). 
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6.2.9 Expression of pAkt, pERK1/2, c-MYC and p27 in response to TROP-2 

knockdown in LNCaP and LNCaP-ENZ-R cells 

To further investigate the cell death that was observed during the cell cycle progression 

analysis of LNCaP-ENZ-R cells in response to TROP-2 knockdown (Figure 6-6), the 

protein expression of pAkt, pERK1/2, c-MYC and p27 were measured in response to 

TROP-2 knockdown utilizing western blotting. The results showed a decreased 

expression of pAkt, c-MYC and pERK1/2 and an increased expression of p27 in response 

to TROP-2 knockdown in LNCaP-ENZ-R cells (Figure 6-10 B). However, there was no 

obvious, similar effect of TROP-2 knockdown on pAkt, pERK1/2 and p27 noticed in 

LNCaP parental cells (Figure 6-10 A).  

 

Figure 6-10 Expression of pAkt, pERK1/2, c-MYC and p27 in response to TROP-2 

knockdown in LNCaP and LNCaP-ENZ-R cells 

LNCaP and LNCaP-ENZ-R cells were reverse transfected with one selected oligo against 

TROP-2 for 72 hours. A non-silencing oligo was used as a control. The cells were grown 

in full medium. The cells were lysed using a RIPA buffer A. Protein expression of pAkt, 

pERK1/2, c-MYC, p27 and TROP-2 in LNCaP parental cells. B. Protein expression of 

pAkt, pERK1/2, p27 and TROP-2 in LNCaP-ENZ-R cells. Alpha-tubulin was used as a 

loading control (representative blot).  
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6.2.10 Higher expression of c-MYC in LNCaP-CDX-R, LNCaP-ENZ-R and 

LNCaP-ARN-R cells, compared to parental LNCaP cells 

To further investigate the effect of TROP-2 on the transcription level of c-MYC. c-MYC 

expression at the mRNA level was measured in LNCaP-CDX-R, LNCaP-ENZ-R and 

LNCaP-ARN-R cells compared to parental LNCaP cells. The results showed a 

significantly higher expression of c-MYC in the LNCaP-CDX-R, LNCaP-ENZ-R and 

LNCaP-ARN-R cell lines compared to parental LNCaP cells (p<0.05) (Figure 6-11 A). 

TROP-2 knockdown was then achieved by using siRNA against TROP-2 in LNCaP-

ENZ-R and LNCaP cells and c-MYC expression was detected by QRT-PCR. The data 

from this experiment showed that knockdown of TROP-2 led to a significant decrease 

(p< 0.05) of c-MYC expression in LNCaP-ENZ-R cells, while no significant change was 

noticed in LNCaP cells (Figure 6-11 B,C).  

 

Figure 6-11 Higher expression of c-MYC in LNCaP-CDX-R, LNCaP-ENZ-R and 

LNCaP-ARN-R cells compared to parental LNCaP cells  

Parental LNCaP and Casodex-, enzalutamide- and ARN509-resistant cell lines were seeded in 6-

well plates in full medium for 24 hours. Trizol kits were used for RNA extraction. A. c-MYC 

expression was determined by quantitative PCR. B. LNCaP-ENZ-R cells were reverse transfected 

with one selected oligo against TROP-2 for 72 hours. A non-silencing oligo was used as a control. 

The c-MYC expression was determined by quantitative PCR using specific primers. C. LNCaP 

cells were reverse transfected with one selected oligo against TROP-2 for 72 hours. Non-silencing 

oligo was used as control. The c-MYC expression was determined by quantitative PCR using 

specific primers. p-values were determined by t-test (* p-value <0.05, ** p-value <0.01,  

*** p-value <0.001 and **** p- value < 0.0001).  
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6.2.11  Higher expression of TROP-2 in castrate-resistant patients, compared to 

hormone-naïve and hormone-sensitive patients  

Previously, the data showed a higher expression of TROP-2 in resistant cell lines 

compared to the parental LNCaP cells. To seek validation of this data in patient samples, 

TMA5 was selected to investigate the expression of TROP-2. TMA5 was selected as the 

samples were taken from the same patients before and then some time after hormone 

therapy was initiated. The pairs were divided into three groups: firstly a hormone naïve 

group containing patient’s tissues which never received hormone treatment. Secondly, 

hormone sensitive group containing patient’s tissues which had subsequently received 

ADT to good effect and continued to be sensitive to the treatment. Then the final castrate 

resistant group, which included patients who received hormone treatment initially to good 

effect, but had relapsed and subsequently found to have castration resistant PC. The 

results showed that TROP-2 expression did not change between matched patients 

belonging to the continued treatment naïve group and the sensitive to treatment group. 

The results also demonstrated higher expression of TROP-2 in matched patients who 

relapsed after treatment. The data also showed a significant increase in the expression of 

TROP-2 in the relapsed group compared to the treatment naïve group (Figure 6-12).  
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Figure 6-12 Cytoplasmic expression of TROP-2 in matched patients who were naïve, 

sensitive to the androgen withdrawal treatment and relapsed patients who were 

resistant to antiandrogens. 

A. There was no significant change in TROP-2 expression in matched samples from 

patients with a diagnosis of prostate cancer who had not received any treatment. B. A 

non-significant decrease in TROP-2 expression was observed in matched samples from 

patients who were initially treatment naïve, received ADT(and were sensitive) and 

continued to be sensitive to this treatment when the second tissue sample was taken. C. 

There was a non-significant increase in cytoplasmic TROP-2 expression in matched 

samples taken from patients who were screened after they relapsed following treatment. 

D. A significant increase in TROP-2 expression was noticed in the relapsed patients 

compared to the treatment naïve group.  
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6.3 Discussion  

TACSTD2 gene encodes a transmembrane Ca+  signal transducer 2 protein which is 

normally expressed in the trophoblast cells. It has been shown that TROP-2 is a biomarker 

associated with neoplastic and normal prostate stem cells (Trerotola et al., 2010). 

Expression of TROP-2 is associated with poor outcome and aggressiveness of pancreatic, 

oral, colorectal, gastric and ovarian cancers, proposing that it has a role in cancer 

progression and it can be a target for anticancer immunotherapy (Trerotola et al., 2013a). 

Anti-TROP-2 monoclonal antibodies have been reported to inhibit the proliferation of 

uterine serous papillar carcinoma cells and mediated cytotoxicity in vitro. However, 

TROP-2 was also detected in normal tissue making the use of inhibitors for TROP-2 

challenging (Trerotola et al., 2013a). A study has found that transfecting LNCaP cells 

with TROP-2 siRNA significantly reduces the percentage of viable cells 7 days after 

docetaxel withdrawal suggesting that the TROP-2 glycoprotein itself may play an active 

role in the recovery process, after chemotherapy and androgen ablation treatments. The 

same authors observed that high TROP-2 expression correlates with poor prognosis in 

cohorts of prostate cancer patients particularly in patients with low (Gleason 6) grade 

tumours (Xie et al., 2016). Another study showed that TROP-2 was not expressed in 

androgen-sensitive LNCaP cells and forced overexpression of TROP-2 inhibits cell 

adhesion to fibronectin (Rothdiener et al., 2010) suggesting the promotion of an 

aggressive phenotype of PC cells, since it is conceivable that more aggressive cells tend 

to be poorly adhesive and more motile than less aggressive cells. Another group suggested 

that TROP-2 expression is a requirement for cancer cells needing to detach from the 

extracellular matrix (ECM) (Trerotola et al., 2012).  

From the microarray data, high expression of TACSTD2 was detected in LNCaP-ENZ-R 

cells compared to parental LNCaP cells and QRT-PCR validation confirmed these results 

at the mRNA level (Figure 6-2 A). To confirm the results at the protein level, LNCaP 

cells and LNCaP-ENZ-R cells were grown in full medium and treated with or without 

enzalutamide for 48 hours. The results showed that TROP-2 is expressed in the LNCaP-

ENZ-R cell line. However, no expression of TROP-2 was observed in parental LNCaP 

cells (Figure 6-2 B) which is consistent with Trerotola et al. (2012) results. They 

demonstrated that TROP-2 expression is found to be higher in aggressive DU145 and 

PC3 cells and undetectable in LNCaP cells. Thus, TROP-2 expression levels may reflect 

an aggressive phenotype of PC.  
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In the current study, an attempt was made to study the biological role of TROP-2 in 

enzalutamide-resistant cells and to investigate the effects of its expression on 

enzalutamide-resistant cell proliferation, cell cycle and migration compared to parental 

LNCaP cells. Three selected oligos against TROP-2 were used to achieve the knockdown. 

A successful knockdown of TROP-2 was achieved in LNCaP-ENZ-R cells at the protein 

and mRNA level. However, TROP-2 showed no detectable expression in parental LNCaP 

cells (Figure 6-3), in agreement with the previous experiment (Figure 6-2). 

This study investigated the influence of TROP-2 on the proliferation of parental LNCaP 

and LNCaP-ENZ-R cells in response to loss of the TROP-2 transcriptome. TROP-2 

knockdown was achieved by using three separate oligos and cells were counted to detect 

the proliferation. The results demonstrated that the knockdown of TROP-2 in LNCaP-

ENZ-R cells significantly decreased proliferation. However, no effect on proliferation 

was detected in parental LNCaP cells. This suggests that TROP-2 may regulates the 

proliferation in the drug-resistant LNCaP-ENZ-R cells (Figure 6-4). 

To further investigate the role of TROP-2 on proliferation, a cell cycle distribution 

analysis was applied to both cell lines after TROP-2 knockdown. As expected, the 

siRNAs against TROP-2 caused a significant accumulation of the LNCaP-ENZ-R cells 

at the sub-G1 phase. However, no effect of siRNAs against TROP-2 was noticed in the 

cell cycle progression of LNCaP parental cells (Figure 6-5, 6). This further suggests that 

the expression of TROP-2 is important for LNCaP-ENZ-R cell proliferation. This data 

are in agreement with Cubas et al. (2010) who reported that TROP-2 expression increased 

tumour growth in both subcutaneous and orthotopic pancreatic cancer murine models and 

also led to increased liver metastasis. Additionally, TROP-2 expression also increased the 

levels of phosphorylated ERK1/2 mediating cell cycle progression, by increasing the 

levels of cyclin D1 and cyclin E as well as downregulating p27. 

Further investigation of the role of TROP-2 on the phenotype of LNCaP and LNCaP-

ENZ-R cells was undertaken. A wound healing assay was used to investigate cell 

migration in response to TROP-2 knockdown. A long term wound healing assay more 

than 24 hours cannot distinguish cell proliferation from cell motility. In addition, some 

cells attached to the edge of the scratch after wounding. This study was tried to measure 

cell migration using the trans-well assay. The principle of this assay is based on two 

medium containing chambers separated by 8 µm porous membrane through which cells 

transmigrate. However, we faced a problem that LNCaP-ENZ-R cell lines was not able 

to pass through these pores as it was bigger size than parental LNCaP. This study 
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suggested that keep grown the LNCaP-ENZ-R in present of enzalutamide led to change 

in the morphology of these cells by became bigger in size and more irregular in shape and 

also slower in the growth than parental LNCaP. 

For that reason this study select wound healing assay to measure the cell direction, and 

the results from this study showed that knockdown of TROP-2 in parental LNCaP cells 

had no effect on migration (Figure 6-7). However, knockdown of TROP-2 decreased 

migration of the LNCaP-ENZ-R cells at 6, 24 and 48 hours. Another effect visualised 

down the microscope was apparent increased cell death (Figure 6-8). The effect of TROP-

2 on migration was described previously Cubas et al. (2010). Ectopically expressed 

TROP-2 in subcutaneous and orthotopic pancreatic cancer murine cells showed increase 

cell migration. 

To further investigate the effect of TROP-2 on cell migration, epithelial mesenchymal 

transition (EMT) markers were examined in response to TROP-2 knockdown. EMT was 

identified as a biological process in which epithelial cells obtain a migratory and invasive 

mesenchymal phenotype. It is typically characterized by loss of epithelial markers such 

as E-cadherin and gain of mesenchymal biomarkers such as N-cadherin and vimentin. In 

particular, EMT has been reported to mediate cancer metastasis and confer resistance to 

therapeutic preclinical model systems of mammary, lung, pancreatic and bladder cancer. 

Moreover, EMT facilitates prostate cancer progression and metastasis (Sun et al., 2012). 

The expression levels of both E-cadherin and Vimentin were determined in response to 

TROP-2 knockdown and the results showed an increased expression of E-cadherin, while 

a decrease in expression of Vimentin, in response to TROP-2 knockdown in LNCaP-

ENZ-R cells was observed (Figure 6-9). This suggests that TROP-2 may perhaps also 

regulate EMT in this cell line. The data was consistent with Chen et al. (2014) who 

demonstrated that high TROP-2 expression was significantly associated with a loss of the 

epithelial marker E-Cadherin in gall bladder cancer patients tissue by using 

immunohistochemistry. This study noticed that siRNA3 provide a significant effect more 

than siRNA1 and siRNA2 on the expression of both N-cadherin and vimentin. This could 

be explained that siRNA3 led to a significant reduction in the expression of TROP-2 at 

mRNA more than siRNA1 and siRNA2 (Figure 6-3). 

This study showed that loss of TROP-2 expression in the LNCaP-ENZ-R cell line led to 

a decreased number of viable cells. Similarly, cell cycle analysis showed an accumulation 

of the cells at the sub-G1 phase. Moreover, loss of TROP-2 transcriptome was able to 

reduce the LNCaP-ENZ-R cell line ability to migrate. This might be indicative that 

TROP-2 transduces a survival signal that has a crucial role in prostate cancer growth. To 
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validate such a theory, this study verified the role of TROP-2 in the regulation of PI3 

Kinase (pAkt) and MAP Kinase (pERK1/2) pathway activity as this study had previously 

shown that both pathways are active in LNCaP-ENZ-R cells. 

The data demonstrated that loss of TROP-2 expression led to a decrease in the protein 

expression of pAkt in LNCaP-ENZ-R cells (Figure 6-10). Previously, this study 

demonstrated a high expression of pAkt in LNCaP-ENZ-R cells (figure 3-6), compared 

to the parental LNCaP. This perhaps suggests that inhibition of TROP-2 leads to an 

increase in the sensitivity of LNCaP-ENZ-R cells to apoptosis by inhibition of the activity 

of Akt. This statement is based on the observation fact that activated Akt leads to the 

inhibition of apoptosis by inactivating several proapoptotic proteins, including BAD, 

BAX and caspase 9 and also by inducing the expression of anti-apoptotic proteins such 

as BCL2, BCLXL, FLIP, cIAP2, XIAP and survivins in myeloma cells (Mitsiades et al., 

2002).  

A previous experiment demonstrated that TROP-2 might regulate Akt activity (Figure 

6-10) due to cross-reaction between PI3K/Akt and MAP Kinase signalling pathways. This 

study hypothesised that TROP-2, as a transmembrane glycoprotein, might transduce 

apoptosis signalling through the MAP Kinase pathway. This might give an understanding 

of the increased apoptosis seen with TROP-2 knockdown in LNCaP-ENZ-R cells. The 

results from this study demonstrated that knockdown of TROP-2 protein leads to no 

detectable pERK1/2 (Figure 6-10), which may explain the increased apoptosis seen in the 

LNCaP-ENZ-R cell line. A previous study showed that Raf/MEK/ERK may promote cell 

cycle arrest in PC cells and this may be regulated by p53, as restoration of wild-type p53 

results in enhanced sensitivity to chemotherapeutic drugs (McCubrey et al., 2007). The 

same study indicated that both Raf/MEK/ERK and PI3K/PTEN/Akt pathways have anti-

apoptotic and drug resistance effects on cells and also interact with the p53 pathway. The 

limitation of this experiment is not investigate total Akt and total ERK1/2, which might 

add a robust finding for this study.  

The previous data suggests that TROP-2 regulates ERK1/2 activity (Figure 6-10) and a 

study has shown that ERKs can directly phosphorylate many transcription factors, 

including Ets-1, c-Jun and c-MYC (Zhao and Lee, 1999). This study examined the 

expression of c-MYC in LNCaP-CDX-R, LNCaP-ENZ-R and the LNCaP-ARN-R cell 

lines compared with parental LNCaP cells and c-MYC expression in response to TROP-

2 knockdown. The data showed that a higher expression of c-MYC was detected in the 

drug-resistant LNCaP-CDX-R, LNCaP-ENZ-R and LNCaP-ARN-R cell lines compared 
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to parental LNCaP cells (Figure 6-11 A). The results from this study also demonstrated 

that loss of TROP-2 expression led to a decrease of c-MYC expression in LNCaP-ENZ-

R cells, at the protein and mRNA level. As expected, no effect of TROP-2 knockdown 

on c-MYC expression in parental LNCaP was observed (Figure 6-11 B, C). This may be 

a further explanation for the reduction in proliferation seen in response to TROP-2 

knockdown, as it has been shown that inhibition of c-Myc expression abrogates 

proliferation and blocks cell cycle progression of breast cancer cells (Butt et al., 2005). 

This study suggests that TROP-2 regulates ERK1/2 signalling, which directly activates 

the transcription factor c-MYC, giving an explanation for the cell cycle arrest and 

proliferation inhibition seen in response to TROP-2 knockdown. Further investigation of 

the role of TROP-2 in the regulation of the cell cycle was examined in this study by 

investigating the expression of p27, a key regulator of cell cycle, in response to TROP-2 

knockdown. The results showed that loss of TROP-2 protein led to a small increase in the 

expression of the p27 protein in LNCaP-ENZ-R cells, while no effect was noticed in 

LNCaP cells. However, no arrest of the LNCaP-ENZ-R cells in G1 or S-phase was seen 

in cell cycle analysis. It is known that p27 is a key regulator of  G1 and S-phase (Porter 

et al., 1997). This suggests that TROP-2 has less of an effect on the expression of p27. 

However, further experiments are certainly required to address this. Below is a cartoon 

summarized the finding of this chapter (Figure 6-13)   

In the current study, a high expression of TROP-2 was noticed in enzalutamide-resistant 

cells, which are used as one tool to represent drug-resistant CRPC in the clinic, compared 

to LNCaP cells at the protein and mRNA levels. For that reason, it was hypothesised that 

TROP-2 may act as a prognostic biomarker in patients who relapsed after an initial good 

response to hormonal deprivation therapy. TMA5 was selected as it contains three groups 

of matched pairs; a naïve group, a drug sensitive group and a relapsed group. The data 

was consistent with TROP-2 expression on the cellular level, as a significant increase was 

noticed in the relapsed group (representing castrate resistant PC) to complement that seen 

in the enzalutamide-resistant cell line, suggesting that TROP-2 could be a potential 

prognostic biomarker for anti-androgen resistance patient (Figure 6-12). Again, further 

studies are required. 
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Figure 6-13 Functional role of TROP-2 in LNCaP-ENZ-R cell line 
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Chapter 7. General Discussion 
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7.1 General Discussion  

The androgen receptor is a transcription factor that plays a crucial role in male sexual 

development and growth of the prostate gland. AR also plays an essential role in the 

development of human prostate cancer. In patients with clinically significant disease, not 

fit or not appropriate for curative treatments, ADT is largely used to inhibit tumour cell 

proliferation. However, tumour regrowth inevitably occurs following a period of 

treatment response. A hormone refractory or “castrate-resistant” stage of the disease is 

characterized by an increase in the expression of AR and AR target genes, such as PSA, 

suggesting that the AR pathway remains active in this advanced stage of the disease 

(Isaacs and Isaacs, 2004). As mentioned in the introductory chapter; HER2/HER3 

signalling enhances AR stability and optimises binding of the AR to the promoter region 

of the AR target genes, suggesting that HER2/HER3 signalling is critical in hormone-

refractory PC (Mellinghoff et al., 2004). An initial objective of this project was to identify 

the role of HER2/HER3 in the available anti-androgen resistant models which have been 

generated in our laboratory, compared to the parental LNCaP cells. The results of this 

study indicated that the expression of HER2 and HER3 were significantly higher in all 

tested resistant cell lines (LNCaP-Casodex resistant, LNCaP-enzalutamide resistant and 

LNCaP-ARN509 resistant) than parental LNCaP cells, at the protein and at the mRNA 

levels, in cells grown in full media and basal media. Heregulin treatment leads to 

increased expression of HER2/HER3 at the mRNA level and this was more pronounced 

in the LNCaP-ENZ-R cell line.  

Heregulin is known to activate HER2/HER3 through tyrosine residue phosphorylation 

(Gregory et al., 2005). In this current study, the pathways that might be activated through 

stimulation of HER2/HER3 were investigated in the anti-androgen resistant models, 

compared to the parental cell line. The results of this study indicate that activation of 

HER2/HER3 in the LNCaP-ENZ-R cell line led to a stimulation of both PI3 Kinase 

(pAkt) and MAP Kinase (pERK1/2) signalling pathways in LNCaP-CDX-R, LNCaP-

ENZ-R and LNCaP-ARN-R resistant cells, compared to parental LNCaP cells. The 

findings of the current study are consistent with Rao (2015) who discovered that HER2/3 

have a prominent role in advanced prostate cancer. The same study showed that 

HER2/HER3 signalling: increases androgen receptor activity; increases downstream 

MAP Kinase and PI3 Kinase signalling activity; and increases cell proliferation, 

migration and invasion of PC cells. The results show that activating HER2/HER3 led to 
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a stimulation of both PI3 Kinase (pAkt) and MAP Kinase (pERK1/2) signalling pathways 

and this was seen to be more pronounced in LNCaP-ENZ-R cells. For that reason, the 

LNCaP-ENZ-R cell model was studied in more detail, always comparing to parental 

LNCaP cells in this study. First, the phenotypic differences between LNCaP-ENZ-R cells 

and parental LNCaP cells were investigated and the results of this study showed that 

LNCaP cellular proliferation was attenuated in SDM whereas heregulin increased the 

proliferation. However, proliferation of LNCaP-ENZ-R cells was not affected in steroid 

depleted media and enhanced with heregulin stimulation. Hence, it could conceivably be 

hypothesised that LNCaP-ENZ-R is an androgen independent cell line and that heregulin 

can enhance the proliferation of both cell lines.  

The current study found that enzalutamide treatment led to a decrease in proliferation, 

cell cycle arrest and migration of parental LNCaP cells. However, no effect of 

enzalutamide on LNCaP-ENZ-R cells was noticed, which simply confirms the resistance 

of LNCaP-ENZ-R cells to enzalutamide drug. This result may be one reason to explain 

why blocking of the AR is usually very effective in the early stage of the disease and not 

as effective in the late stage of the disease.  

This study also investigated the consequence of enzalutamide on LNCaP-ENZ-R cells, 

compared to parental LNCaP cells, at the genomic level. A microarray screen was applied 

to identify the genes which might regulate the LNCaP-ENZ-R phenotype and also to 

identify which proteins, coded by these genes, which are relevant in advanced, drug-

resistant prostate cancer tissue and have the potential for identification by simple, 

inexpensive immunohistochemical techniques. The identification of such predictive 

biomarkers is of vital importance in drug-resistant disease.  

In the current study, four conditions for the microarray screen were included: parental 

LNCaP, parental LNCaP with enzalutamide for 48 hours, LNCaP-ENZ-R without 

enzalutamide for 48 hours and LNCaP-ENZ-R with enzalutamide for 48 hours. 

Triplicates were generated for each sample and only samples that showed consistency and 

high integrity RNA were selected for the microarray screen. Relative expression of the 

LNCaP-ENZ-R cell line with enzalutamide condition was selected to compare with 

parental LNCaP cells, without enzalutamide. The microarray data analysis of LNCaP-

ENZ-R cells with enzalutamide revealed that 280 genes were up-regulated significantly 

(p<0.05) and 501 genes were down-regulated significantly (p<0.05) compared with 

parental LNCaP.   
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From the microarray data, SGK1, TACSTD2, RLN1, RLN2, and SYT4 genes were selected 

for further study as they were upregulated significantly (p<0.05) in LNCaP-ENZ-R cells 

compared to parental LNCaP and also are involved (directly or indirectly) in pathways 

that are crucial for cell proliferation, cell growth and cell signalling. Specific primers were 

used to validate these genes by QRT-PCR. The results were consistent with the 

microarray data, these genes were upregulated significantly (p<0.05) in LNCaP-ENZ-R 

cells compared to parental LNCaP cells. In addition, these genes were also upregulated at 

the mRNA levels in LNCaP-CDX-R and LNCaP-ARN-R cells, adding weight to the 

argument for the possible role of these genes in anti-androgen drug resistance.  

A study in our research group found that  SGK1 expression was highly expressed in the 

KUCaP xenograft model and a CRPC patient biopsy sample, both of which express the 

bicalutamide-activated receptor mutant (O'Neill et al., 2015). In the same study, a SGK1 

inhibitor was used on ARW741L models and transcriptional and growth promoting activity 

was reduced, indicating opportunities for potential new and effective therapies for CRPC 

patients (O'Neill et al., 2015). For that reason we selected SGK1 to investigate the effects 

of its increased expression in enzalutimde-resistant models on; proliferation, cell cycle, 

migration and a possible role of AR and GR in the regulation of SGK1. Similar to the 

mRNA level, there was higher SGK1 protein expression in LNCaP-ENZ-R cells 

compared to parental LNCaP cells, directing an investigation towards the consequences 

of increased SGK1 activity in LNCaP-ENZ-R cells (Figure 5-3). SGK1 is known as a 

downstream target of both AR and GR (Isikbay et al., 2014). However, the role of the GR 

and AR in the regulation of SGK1 in advanced and enzalutimde-resistant prostate cancer 

remains unclear. In order to investigate the role of AR in regulation of SGK1, AR was 

first activated with DHT. The data from this study showed that the activation of AR led 

to an increase in the expression of SGK1 in both LNCaP-ENZ-R and parental LNCaP 

cells (Figure 5-3 and  . It can therefore be assumed that the AR regulates SGK1 expression 

in androgen-dependent conditions and in enzalutamide-resistant conditions.  

To test the alternative theory, that the GR regulates SGK1, both LNCaP-ENZ-R and 

parental LNCaP cells were activated with dexamethasone, which is known to activate 

GR. Although the activation of the GR led to an increase of SGK1 expression at the 

mRNA and protein level in LNCaP-ENZ-R cells (Figure 5-6), only the mRNA level of 

SGK1 was increased in response to dexamethasone stimulation (not at the protein level) 

in parental LNCaP cells (Figure 5-5). It is possible, therefore, that LNCaP-ENZ-R cells 
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contain a functional GR to activate SGK1, while no functional GR is able to activate 

SGK1 in parental LNCaP cells. 

In order to test the functionality of GR in parental LNCaP and LNCaP-ENZ-R cells, in 

presence and absence of enzalutamide, both cell lines were kept with or without 

enzalutamide for 48 hours. The data showed that blocking AR with enzalutamide led to 

an increase in GR expression at the mRNA level in both cell lines. Similar to the mRNA 

level, an increase in the GR expression was noticed at the protein level in parental LNCaP 

cells. However, an increase in the GR was noticed in the presence and the absence of 

enzalutamide. This perhaps suggests LNCaP-ENZ-R cells contain a functional GR in the 

presence and the absence of anti-androgen blockade, therefore this might indicate that 

increased GR expression mediates PC resistance to enzalutamide. From the data above, 

the stimulation of GR led to increased SGK1 expression (Figure 5-6) and SGK1, 

downstream of AR (Figure 5-65). Further evidence for the role of GR in the regulation of 

other AR target genes was observed, such as upregulation of KLK3, KLK2, FKPB5 and 

TMPRSS2 genes in response to dexamethasone activation. We showed that no significant 

changes of these genes were observed in LNCaP cells (Figure 5-8). However, a significant 

increase of the AR target genes KLK3, KLK2, FKPB5 and TMPRSS2 were noticed in 

response to dexamethasone stimulation in LNCaP-ENZ-R cells (Figure 5-9). To confirm 

the previous finding, GR knockdown was achieved and AR target genes such as KLK3, 

KLK2, FKPB5 and TMPRSS2 were detected. GR knockdown led to a significant 

reduction in the expression of these genes in LNCaP-ENZ-R (Figure 5-11). However, no 

significant change in the expression of these genes was noticed in LNCaP. 

From the data, this study suggests that SGK1 is regulated by AR alone in parental LNCaP 

cells, while both GR and AR are involved in the regulation of SGK1 in LNCaP-ENZ-R 

cells. This theory was tested by a demonstration that blockade of AR activity led to a 

decrease in the expression of SGK1 and AR target genes in parental LNCaP cells whereas 

no significant effects were noticed in the expression of SGK1, KLK3 and FKBP5 in 

response to GR knockdown in parental LNCaP cells (Figure 5-12 A, B, C). Also, 

stimulation of AR led to an increase in the expression of SGK1 and AR target genes in 

parental LNCaP cells. However, no effect of GR knockdown was observed on the 

expression of SGK1, KLK3 and FKBP5 which confirm the results of a previous 

experiment. Also, this study showed that knockdown of GR does not abrogate the AR 

stimulation effects on the expression of SGK1, KLK3 and FKBP5 (Figure 5-12 D, E, F). 

These findings suggest that AR regulates SGK1, while no significant effect of GR was 
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noticed in the regulation of SGK1 or other selected AR target genes in parental LNCaP 

cells.   

The presence or absence of enzalutamide was demonstrated to have no differential effect 

on SGK1 expression in LNCaP-ENZ-R cells. Furthermore, GR knockdown led to a 

decrease in the expression of SGK1 in the presence or the absence of enzalutamide. 

However, enzalutamide treatment led to an increase in the expression of AR target genes, 

which support the results obtained from Figure 5-7 that blocking AR activity leads to an 

increase in the level of GR which appears to be able to regulate AR target genes. A 

decrease in the expression of AR target genes in response to GR knockdown with or 

without enzalutamide was seen in LNCaP-ENZ-R cells (Figure 5-13 A, B, C). This 

perhaps suggests that SGK1 could be a predictive biomarker for enzalutamide resistance, 

but more experiments are needed to confirm this finding. SGK1 is regulated by GR and 

enzalutamide does not abrogate the GR activity in LNCaP-ENZ-R cells. However, 

blocking AR led to an increase in the expression of GR, which then appears to regulate 

AR target genes and again enzalutamide does not abrogate the GR activity in the 

regulation of AR target genes (Figure 5-13 D, E, F).  

Overall, these results indicate that GR levels remain unchanged, whether the cells are 

exposed to anti-androgens or not and that GR was able to regulate AR target genes such 

as SGK1. This might be an important factor for the proliferation of enzalutamide-resistant 

PC cells. So the next step undertaken was to decrease SGK1 and/or GR levels in 

enzalutamide-resistant cells by the use of a small molecule inhibitor and siRNA 

technology, respectively and investigate the phenotype of these cells, compared with 

parental LNCaP cells. Using the SGK1 inhibitor led to a significant decrease in the 

proliferation of LNCaP-ENZ-R and parental LNCaP cells. Also inhibition of SGK1 can 

cause a significant arrest of the cells at the G2/M and sub-G1 phases and in LNCaP-ENZ-

R cells (Figure 5-19). However, no significant changes were detected in parental LNCaP 

cells (Figure 5-18). Also, inhibition of SGK1 activity led to a significant reduction in the 

migration of the LNCaP-ENZ-R cell line, starting from 24 hours of treatment (Figure 

5-21). Again, no significant effects of GSK650394 on cell migration were detected in 

parental LNCaP cells (Figure 5-20). It can thus be suggested that SGK1 regulates 

proliferation and cell cycle progression of enzalutamide-resistant PC cells through the 

direct or indirect regulation of the activity of the mTOR protein. A previous study 

demonstrated that Akt promotes activation of mTOR (Sommer et al., 2013).  
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Previously, the data from this study showed a high expression of pAkt, which was 

observed in LNCaP-ENZ-R cells (Figure 3-5). In addition, another study demonstrated 

that mTOR can mediate the activity of SGK1 (Hong et al., 2008). This study gives another 

interesting suggestion: perhaps a high expression of pAkt promotes mTOR activation, 

which, in turn might regulate SGK1 activity in LNCaP-ENZ-R cells. Active mTOR 

contributes to an enhancement of the translation rates of various proteins involved in cell 

cycle progression, including cyclin D1 and D2 (Sherk et al., 2008). This finding was 

supported by the next experiment, which demonstrated a consistently high expression of 

pSGK1-Ser422 in LNCaP-ENZ-R cells, with or without dexamethasone stimulation. 

Increasing doses of dexamethasone were able to induce incremental pSGK1-Ser422 

activation in parental LNCaP cells. This suggests SGK1 may be constitutively active in 

the drug-resistant cells (Figure 5-14). We also showed that inhibition/knockdown of both 

GR and its downstream target SGK1 is a better approach to reduce the proliferation of 

the LNCaP-ENZ-R and the parental LNCaP cell lines (Figure 5-22).  

Taken together, these results suggest that combination inhibition of SGK1 and GR is 

perhaps a better approach to treat patients who are resistant to enzalutamide, or as a 

method of delaying enzalutamide-resistance. However, further experiments will need to 

be undertaken in order to confirm this finding.  

To test this finding in the tissue of patients with known prostate cancer, the matched pairs 

TMA5 was selected. The pairs were divided into three groups: a hormone naïve group 

containing patient’s tissues which never received hormone treatment; hormone sensitive 

group containing patient’s tissues which had subsequently received ADT to good effect 

and continued to be sensitive to the treatment; and the final castrate resistant group. The 

data obtained was consistent with SGK1 expression on the cellular level, as a significant 

increase in SGK1 expression was noticed in the relapsed group (representing castration 

resistant PC) agreeing with that seen in the enzalutamide-resistant cells, suggesting that 

SGK1 could be a potential predictive or prognostic biomarker for enzalutamide-resistance 

in patients with prostate cancer (Figure 5-23). Again, further experiments are required to 

strengthen this hypothesis. 

From the microarray data, a significantly higher expression of the TACSTD2 gene was 

detected in LNCaP-ENZ-R cells, compared to parental LNCaP cells. TACSTD2 was 

selected to study in detail as it has previously been demonstrated that expression of 

TROP-2 is associated with poor outcome and aggressiveness of pancreatic, oral, 
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colorectal, gastric and ovarian cancers, proposing that it has a role in cancer progression 

(Trerotola et al., 2013b). It was hypothesised that TROP-2 might have a role in the 

prostate cancer progression, aggressiveness and indeed enzalutamide-resistance. Firstly, 

the results were validated at mRNA and protein levels by using TROP-2 specific primers 

and a specific targeting antibody, respectively. mRNA levels agreed with the previous 

microarray data and Western blotting revealed that TROP-2 protein is expressed in the 

LNCaP-ENZ-R cell line, however, no protein expression of TROP-2 was observed in 

parental LNCaP cells (Figure 6-2 B), This finding is in agreement with Trerotola et al. 

(2012), who showed that TROP-2 expression is higher in aggressive DU145 and PC3 

cells and undetectable in LNCaP cells. It can thus be suggested that TROP-2 expression 

levels may reflect an aggressive phenotype of PC. 

In the current study, TROP-2 knockdown was applied to investigate the effects of its 

expression on enzalutamide-resistant cell proliferation, cell cycle distribution and 

migration. Loss of TROP-2 expression in the LNCaP-ENZ-R cells was shown to cause a 

significant decrease in cell number, compared to the non-silencing control. However, no 

effect on proliferation was detected in parental LNCaP cells. This suggests that TROP-2 

may play an important role in regulation of the proliferation of LNCaP-ENZ-R cells 

(Figure 6-4). 

Also, this study showed that loss of TROP-2 expression in the LNCaP-ENZ-R cells led 

to an increased number of cells entering sub-G1 phase. However, no effects of siRNA 

knockdown of TROP-2 were noticed on the cell cycle progression of parental LNCaP 

cells (Figure 6-5). This is further evidence that the expression of TROP-2 is important for 

LNCaP-ENZ-R cell proliferation. These data are in agreement with Cubas et al. (2010), 

who reported that TROP-2 expression increased tumour growth in both subcutaneous and 

orthotopic pancreatic cancer murine models.  

A decrease in the ability of LNCaP-ENZ-R cells following TROP-2 knockdown to 

migrate was observed, even with the presence of serum in the media, at 6, 24 and 48 hours 

(Figure 6-8). Knockdown of TROP-2 in parental LNCaP cell had no effect on cell 

migration (Figure 6-7). These results are consistent with those of other studies where 

ectopically expressed TROP-2, in subcutaneous and orthotopic pancreatic cancer murine 

cells, showed increased cell migration (Cubas et al., 2010).  

Further investigation of the role of TROP-2 on cell migration included an analysis of 

EMT markers (E-cadherin and Vimentin), in response to TROP-2 knockdown. An 

increase in the mRNA expression of E-cadherin was observed, while a decrease in mRNA 
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expression of Vimentin was seen, in response to TROP-2 knockdown in LNCaP-ENZ-R 

cells (Figure 6-9). This suggests that TROP-2 may also regulate EMT in these cells. The 

findings of the current study are consistent with those of Chen et al. (2014), who 

demonstrated that high TROP-2 expression was significantly associated with a loss of the 

epithelial marker E-cadherin in gall bladder cancer patients tissue, by using 

immunohistochemical techniques. 

This study indicated that TROP-2 knockdown in LNCaP-ENZ-R cells led to a decrease 

in their proliferation. Subsequently, cell cycle analysis showed an accumulation of the 

cells at the sub-G1 phase. Moreover, TROP-2 knockdown attenuated the ability of 

LNCaP-ENZ-R cell to migrate. This suggests that TROP-2 is a partner in a signalling 

cascade that may have a crucial role in the prostate cancer growth. To test this theory, this 

study verified the role of TROP-2 in the regulation of PI3 Kinase (pAkt) and MAP Kinase 

(pERK1/2) pathway activity, as this study showed that both pathways are active in the 

LNCaP-ENZ-R cell line (Figure 3-6). 

The data from this study demonstrated that TROP-2 knockdown led to a decrease in pAkt 

in LNCaP-ENZ-R cells (Figure 6-10). Previously, we showed high expression of pAkt in 

LNCaP-ENZ-R cells, compared to the parental LNCaP (Figure 3-6). These findings 

further support the idea that loss of TROP-2 expression leads to an increase in the 

sensitivity of LNCaP-ENZ-R cells to cell death by inhibition of the Akt activity. This 

statement is based on the published finding that activated Akt leads to inhibition of 

apoptosis by inactivating several proapoptotic proteins, including BAD, BAX and 

caspase-9 and also by inducing the expression of anti-apoptotic proteins, such as BCL2, 

BCLXL, FLIP, cIAP2, XIAP and survivins, in myeloma cells (Mitsiades et al., 2002).  

The loss of TROP-2 expression was shown to lead a decrease in Akt activity. Based on 

the known cross-talk between the PI3K/Akt and MAP Kinase signalling pathways, it was 

hypothesised that TROP-2 might transmit an apoptosis signalling cascade, through the 

MAP Kinase pathway, which might give better understanding of the apoptosis phenotype 

related to TROP-2 knockdown in LNCaP-ENZ-R cell line. The most interesting finding 

was that knockdown of TROP-2 protein led to a complete loss of pERK1/2 (Figure 6-10), 

which may explain the increased apoptosis seen in the LNCaP-ENZ-R cells. These results 

match those observed in an earlier study demonstrating that Raf/MEK/ERK may promote 

cell cycle arrest in PC cells and that this activity may be regulated by p53, as a restoration 

of wild-type p53 resulted in enhanced sensitivity to chemotherapeutic drugs (McCubrey 

et al., 2007). The same study indicated that both Raf/MEK/ERK and PI3K/PTEN/Akt 



   

178 
 

pathways have anti-apoptotic and drug-resistance effects on cells and also interact with 

the p53 pathway (McCubrey et al., 2007).  

In this study, higher expression of c-MYC was detected in LNCaP-CDX-R, LNCaP-

ENZ-R and LNCaP-ARN-R cells, compared to parental LNCaP cells (Figure 6-11 A). 

The results from this study also demonstrated that loss of TROP-2 expression led to a 

decrease in c-MYC expression, at the protein and mRNA level, in LNCaP-ENZ-R cells. 

As expected, no effect of TROP-2 knockdown on c-MYC expression in parental LNCaP 

cells was observed (Figure 6-11 B, C). This may be a further explanation for the reduction 

in proliferation seen in response to TROP-2 knockdown, as it has been previously shown 

that inhibition of c-MYC expression abrogates proliferation and blocks cell cycle 

progression of breast cancer cells (Butt et al., 2005). This study suggests that TROP-2 

regulates ERK1/2 signalling, which directly activates the transcription factor c-MYC, 

giving an explanation for the cell cycle arrest and proliferation inhibition seen in response 

to TROP-2 knockdown.  

Further investigation for the role of TROP-2 in the regulation of the cell cycle was 

examined in this study by investigating the expression of p27, a key regulator of cell 

cycle, in response to TROP-2 knockdown. The results showed that knockdown of TROP-

2 led to a small increase in the expression of p27 protein in LNCaP-ENZ-R cells, while 

no effect was noticed in LNCaP cells. p27 is known as a key regulator of cell cycle 

progress (Porter et al., 1997).  

The current study found a high expression of TROP-2 in enzalutamide-resistant LNCaP 

cells, which are used as an in vitro model to represent anti-androgen-resistant CRPC in 

the clinic. For that reason, it was hypothesised that TROP-2 might act as a biomarker for 

patients who relapsed after an initial good response to hormonal deprivation therapy. A 

tissue microarray TMA5 was selected as this contains matched samples for individual 

patients. The paired samples were divided into three groups: a hormone naïve group 

containing patient tissues which never received hormone treatment; hormone sensitive 

group containing patient tissues which had subsequently received ADT to good effect and 

continued to be sensitive to the treatment; and the final castrate resistant group. The data 

was consistent with TROP-2 expression on the cellular level, as a significant increase was 

noticed in the relapsed group (representing castrate resistant PC) complementing that seen 

in the enzalutamide-resistant cell line. This suggests that TROP-2 could be a potential 

predictive biomarker for anti-androgen resistance in prostate cancer patients (Figure 

6-12). Further work is required to confirm this suggestion. 
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Conclusion 

The main goal of this study was to determine the genetic differences and the active 

pathways that are involved in the proliferation, cell cycle and migration of enzalutamide-

resistant LNCaP cells, compared to parental LNCaP. This will give a better understanding 

regarding the mechanisms behind drug-resistance in prostate cancer patients and may also 

lead to the discovery of novel predictive and prognostic biomarkers. 

This study has shown that there is a negative feedback effect of AR on HER3 expression. 

The investigation of this study has shown that the expression of HER2 and HER3 are 

significantly higher in all tested resistant cell lines (LNCaP-Casodex resistant, LNCaP-

enzalutamide resistant and LNCaP-ARN509 resistant). Also, activating HER2/HER3 

activates both PI3 Kinase (pAkt) and MAP Kinase (pERK1/2) signalling pathway in all 

tested resistant cell lines, though is more pronounced in LNCaP-ENZ-R cells. 

Additionally, this research has shown that LNCaP-ENZ-R is an androgen-independent 

cell line and that heregulin can enhance proliferation of both parental LNCaP and LNCaP-

ENZ-R. One of the more significant findings to emerge from this study is that only AR 

regulates SGK1 expression in androgen-dependent cells, while both AR and GR are able 

to regulate SGK1 in enzalutamide-resistant cells. The second major finding was that on 

blocking AR activity, the GR level was found to be higher and that GR was able to 

regulate AR target genes such as SGK1. This might be a key factor responsible for the 

proliferation and continued growth of enzalutamide-resistant PCs. The evidence from this 

study suggests that inhibition of the GR and its downstream target SGK1 is a better 

approach to reducing the proliferation of the LNCaP-ENZ-R cells. This study suggests 

that SGK1 could be a potential prognostic or predictive biomarker for enzalutamide-

resistance in patients with prostate cancer.  

Despite its exploratory nature, this study also offers some insight into the role of TROP-

2 in the regulation of proliferation, cell cycle and migration of enzalutamide-resistant 

LNCaP cells. The results of this investigation show that TROP-2 is expressed in LNCaP-

ENZ-R cells, while no expression of TROP-2 was observed in parental LNCaP cells, at 

the protein level. The results of this study indicate that loss of TROP-2 expression in the 

LNCaP-ENZ-R cells led to decreased proliferation and an increased number of cells 

entering the sub-G1 phase. Multiple regression analysis revealed that a decrease in the 

ability of LNCaP-ENZ-R cells, with knockdown of TROP-2, to migrate, even with the 
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presence of serum in the media. However, knockdown of TROP-2 in parental LNCaP 

cells had no effect on the proliferation, cell cycle distribution and migration.  

These findings enhance our understanding of the role of TROP-2 in the regulation of PI3 

Kinase (pAkt) and MAP Kinase (pERK1/2) pathway activity in LNCaP-ENZ-R cells. 

The results of this research support the idea that TROP-2 regulates ERK1/2 signalling, 

which directly activates the transcription factor c-MYC, giving an explanation for the cell 

cycle arrest and proliferation inhibition seen in response to TROP-2 knockdown. Taken 

together, these results suggest that TROP-2 could be a potential predictive biomarker for 

anti-androgen resistance in prostate cancer patients.  

Further research work 

 It would be interesting to perform a second microarray experiment, this time 

including and assessing the effects of heregulin stimulation on the genetic 

expression profile in the LNCaP-enzalutamide resistant cell line. This would give 

a better understanding of the role of HER2 and HER3 in this model of anti-

androgen-resistant disease. This would provide further evidence to justify a 

clinical trial of a pan-HER inhibitor, such as AZD8931, in carefully stratified 

patients, with advanced prostate cancer. 

 

 This research has thrown up many questions in need of further investigation, such 

as the role of GR vs AR in the regulation of SGK1 in advanced prostate cancer. 

There is an opportunity to perform a research study on the validation of SGK1 as 

a therapeutic target in advanced and drug-resistant prostate cancer. This would 

involve: Further justification of SGK1 as a candidate therapeutic target in CRPC; 

an examination of the requirement for SGK1 in AR and GR signalling in CRPC 

in-vitro; and a validation of SGK1 as a therapeutic target in more translationally-

relevant backgrounds, such as human PC biopsies, as either explants or organoids, 

from both hormone-naïve and enzalutamide-resistant patients. 

 

 Future research should also assess the impact of TROP-2 knockdown or inhibition 

on the genetic expression profile of models of anti-androgen-resistance, such as 

LNCaP-enzalutamide-resistant cells, versus parental LNCaP cells. Potentially, 

TROP-2 could be an important predictive biomarker of enzalutamide-resistance, 

or a therapeutic target in its own right, to delay or combat enzalutamide-resistance.   
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9.1 Microarray screen   

Appendix 9-1 microarray samples 

 

 

9.1.1 Technical and Sample QC Metrics 

Quality Control is a fundamental aspect of successful microarray data analysis. QC 

metrics is used for assessing the quality of RNA samples and of the intermediate stages 

of sample preparation and hybridization.  

Sample ID Description Enzalutamide 

1, 5, 9 Parental LNCaP - 

4, 10, 12 Parental LNCaP + 

2, 7, 11 LNCaP-ENZ-R - 

3, 6, 8 LNCaP-ENZ-R + 
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Appendix 9-2 The QC metrics. 

This figure shows the samples ordered by chip and position (A-L) and coloured by the 

groups listed in the sample sheet. The control probes for biotin and hybridization (rows 

1&2) are sample-independent and give consistently high signal, indicating that the 

experimental steps were successful. The sample-dependent plots of average signal 

intensity and signal from housekeeping genes are shown in rows 3&4. Any variability 

here can be attributed to several different factors (sample quality, labelling efficiency, 

amount of material loaded etc) and should largely be corrected by normalization. All the 

samples give good overall signal, and housekeeping gene signal is very high as expected. 

The number of detected genes (row 5) is also consistently high. No individual sample 

gives any cause for concern based on these metrics. 

9.1.2 Data Preprocessing 

The VSN (variance-stabilisation and normalisation) algorithm were used to process raw 

data from Illumina gene expression arrays and this works very well in the vast majority 

of cases. This pre-processing performs two main steps to make the data suitable for further 

analysis: (i) stabilises the variance to better meet the assumptions of the statistical test for 

differential expression and (ii) normalises signal intensities from different samples so that 

they are comparable. 
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Appendix 9-3 Mean-variance plot after VSN processing. 

A mean-variance plot should show approximately constant variance across the entire 

intensity range (the red dots should be roughly in a straight line).  

9.1.3 Exploratory QC plots 

We next generate further QC plots to explore various features of the data, looking at 

overall data quality, potential outlier samples and the main sources of variation. Firstly, 

the distribution of probe intensities (VSN normalized data) can be visualized for each 

sample as density plots (Appendix 9-4: left shows data for all 47,231 probes; right shows 

data for 23,463 probes after filtering to remove probes not detected in any of the samples). 

The filtered data is also shown as boxplots in Appendix 9-5. The profile for the probe 

intensity distribution is characteristic of high quality data and the samples are highly 

consistent with each other. 
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Appendix 9-4 Density distributions for the full dataset (left) and after filtering to 

remove probes not detected above background levels (right) 

 

Appendix 9-5 Boxplots of filtered data for each sample 
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9.1.4 Hierarchical clustering analysis 

Hierarchical clustering and principal components analysis (PCA) can be used to identify 

outlier samples and assess the main factors influencing the expression profile (e.g. 

experimental condition or technical factors such as batch or chip). Clustering of the 

filtered data suggests that samples 4 and 12 have the most distinct expression profiles, 

while 3 and 7 also form a separate branch (Appendix 9-6). Additional experimental 

information is required to comment further on the clustering pattern observed. 

 

Appendix 9-6 Hierarchical clustering of the VSN-processed and filtered data 

 

In the PCA plots below (Appendix 9-7), samples close together have similar overall 

expression profiles and the primary source of variation will separate samples on the x-

axis (PC1) and secondary source on the y-axis (PC2). The pattern here is mostly 

consistent with the hierarchical clustering, with 4 and 12 found to the right of the plot, 

and 3 and 7 to the left. Note that sample 11 appears more similar to 6 and 8 than in Figure 

5, and the PCA probably gives a better assessment of the relationship between samples. 

PC1 accounts for approximately 40% of the total variance, suggesting fairly large 

differences between the samples. However, the biological meaning of this is unclear in 

the absence of experimental details. 
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Appendix 9-7 PCA of the VSN-processed and filtered dataset, labelled by sample 

 

 

 

 

 

 

 

 

 

 



   

203 
 

Table 9-1 microarray data analysis: The up-regulated genes and down-regulated genes 

in LNCaP-ENZ-R in present of enzalutamide  

  

ID  symbol Fold Change P.Value 
ILMN_1796490 GRINA 2.010617 0.029181 

ILMN_2396956 AKAP13 1.890986 0.006564 

ILMN_1766309 ANKRD54 1.666811 0.00894 

ILMN_1714710 CCDC120 1.653325 0.002108 

NM_006911.2 RLN1 1.652356 0.000879 

ILMN_1801403 DCUN1D4 1.623944 0.044987 

ILMN_3238633 SDHAF2 1.616603 0.00418 

NM_020783.2 SYT4 1.614506 0.000364 

ILMN_3240838 SLC25A6 1.60671 0.003564 

ILMN_1675632 LINC01549 1.600436 0.024655 

NM_002353.1 TACSTD2 1.572794 0.000121 

ILMN_1656718 DEF8 1.564621 8.33E-05 

ILMN_1671005 IRF2BP2 1.560454 0.002496 

ILMN_2389429 DCUN1D4 1.556708 0.03429 

ILMN_2216157 GNA12 1.556087 1.76E-05 

ILMN_1693490 SEC11A 1.54727 0.000581 

ILMN_1769517 PRKDC 1.545612 0.002198 

ILMN_1808487 PLA2G12B 1.531139 0.037923 

ILMN_1779558 GAS6 1.512373 0.012286 

ILMN_1659744 PRMT1 1.48603 0.0202 

ILMN_1656185 DEF8 1.478261 0.000252 

ILMN_1653115 ECH1 1.468967 2.8E-05 

ILMN_1693220 AKAP11 1.465837 0.012869 

ILMN_3308505 MIR129-2 1.44548 7.61E-05 

ILMN_1779147 ENC1 1.441394 0.016655 

ILMN_2393296 GK 1.427782 0.002277 

ILMN_1783120 SLMAP 1.424937 0.0077 

ILMN_3270972 ASAP2 1.413429 0.000204 

ILMN_1657148 CIRBP-AS1 1.4096 0.00089 

ILMN_1767509 DEF8 1.399229 0.001817 

ILMN_1815745 SOX4 1.398091 0.003292 

ILMN_2142695 RNF4 1.39446 0.018001 

ILMN_2205050 PRKX 1.391202 0.019139 

ILMN_2089167 RHOD 1.376596 0.000266 

ILMN_1721833 IER5 1.375614 0.007263 

ILMN_1771966 BCCIP 1.373546 0.000358 

ILMN_1665455 DCUN1D3 1.372785 0.028524 

ILMN_1795286 C6orf47 1.369793 0.000497 

ILMN_1768282 SNX21 1.368862 0.001555 

ILMN_1664630 CHEK1 1.366026 0.004413 

ILMN_2166831 RPS4X 1.358629 0.000753 
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ILMN_1666179 HIST2H3C 1.354063 0.000658 

ILMN_2371397 SLC25A45 1.34968 0.006656 

ILMN_1674376 ANGPTL4 1.345407 0.006269 

ILMN_1688938 KCNRG 1.34494 0.010478 

ILMN_1741005 TRMT10A 1.340242 0.04308 

ILMN_2408877 KMT2C 1.339958 0.000588 

ILMN_1776088 NAT9 1.339746 0.007114 

ILMN_1757697 NEIL3 1.338122 0.000946 

ILMN_2412549 GAR1 1.336848 0.002225 

ILMN_1795218 DHX30 1.328926 0.001205 

ILMN_1772131 IL1R2 1.328752 0.0396 

ILMN_1738783 GDF9 1.326873 0.013238 

ILMN_1797499 PRKDC 1.326116 0.001977 

ILMN_2221673 ASNSD1 1.325991 0.001236 

ILMN_2270443 LIMK2 1.325988 0.0048 

ILMN_1698404 ERN1 1.325085 0.000848 

ILMN_2360705 ACSL3 1.323809 0.015924 

ILMN_2315289 PEX10 1.319608 0.010351 

ILMN_1729599 GDPD1 1.318378 0.017299 

ILMN_1706246 CCT5 1.31282 0.001148 

ILMN_1669584 ILF3 1.31195 0.005017 

ILMN_2384536 ECI2 1.31189 0.029444 

ILMN_1748916 TIMM21 1.311621 0.017652 

ILMN_1803036 TARBP1 1.309058 0.00234 

ILMN_1672565 TRMT10C 1.308217 0.009275 

ILMN_2352326 COASY 1.308175 0.000931 

ILMN_1665982 AKTIP 1.307848 0.009086 

ILMN_1696046 SIVA1 1.307559 0.015595 

ILMN_1682763 ALB 1.305131 0.002149 

ILMN_1720124 RCC2 1.301621 0.001842 

ILMN_2262462 CACTIN 1.301556 0.021969 

ILMN_1702487 SGK1 1.301466 0.000216 

ILMN_1677200 CYFIP2 1.300217 0.025698 

ILMN_1732688 DUT 1.295431 0.008352 

ILMN_1652412 PHKB 1.294255 0.001755 

ILMN_1712067 DRC7 1.293823 0.011716 

ILMN_1771599 PLOD2 1.293758 0.002256 

ILMN_1759350 MED27 1.292923 0.058793 

ILMN_1745172 ILF2 1.291021 0.000392 

ILMN_1685641 BCHE 1.288714 0.003921 

ILMN_3244592 SNORA68 1.288416 0.005572 

ILMN_2395913 ARHGAP11A 1.288058 0.008052 

ILMN_1772132 ATP5B 1.287876 0.002027 

ILMN_1666599 SNORD30 1.287589 0.011499 

ILMN_1758474 PRKRA 1.287233 0.020135 

ILMN_2372698 RGN 1.286383 0.002845 
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ILMN_2161286 STRIP2 1.285769 0.000485 

ILMN_2143250 FAR1 1.285158 0.007641 

ILMN_1730363 STAU1 1.284815 0.000183 

ILMN_1679428 CHIC2 1.284763 0.003788 

ILMN_3237665 COX7A2L 1.284186 0.000196 

ILMN_1746696 PDS5B 1.284024 0.008806 

ILMN_1741957 RABEPK 1.283601 0.000252 

ILMN_1659544 STX3 1.283543 0.036087 

ILMN_2076658 MRPL1 1.283074 0.001345 

ILMN_1776121 KIAA1211L 1.282864 0.01613 

ILMN_1706426 DSTN 1.281214 0.006745 

ILMN_1707336 ARPC4 1.2809 0.010378 

ILMN_1684054 ASAH1 1.280437 0.016323 

ILMN_1687495 SLC37A1 1.280405 0.000303 

ILMN_1728517 FNTB 1.278742 0.001098 

ILMN_2109994 RAB4B 1.27762 0.000892 

ILMN_2355738 INCENP 1.276341 0.002957 

ILMN_1756360 RPL35A 1.275338 0.008799 

ILMN_2354478 CYFIP2 1.27525 0.02711 

ILMN_1805024 ERBB2IP 1.275055 0.003316 

ILMN_1756910 PLA2G15 1.274976 0.015732 

ILMN_1792748 CPS1 1.274276 0.001021 

ILMN_2357062 IL1RAP 1.273973 0.022879 

ILMN_1721008 DUT 1.272114 0.002737 

ILMN_1755758 RIF1 1.271775 0.00554 

ILMN_1810085 ABCF3 1.270755 0.016288 

ILMN_1788489 HIST1H3F 1.270069 0.009743 

ILMN_3262348 IP6K2 1.26964 0.03409 

ILMN_2123730 TBC1D22B 1.269571 0.002354 

ILMN_1765649 IRF3 1.269491 0.008086 

ILMN_1719158 CTBP1 1.26791 0.00073 

ILMN_1770936 COQ5 1.267592 0.000922 

ILMN_1681670 SLC25A4 1.267448 0.009039 

ILMN_1725471 GK 1.266746 0.017999 

ILMN_2222991 ETF1 1.265447 0.000404 

ILMN_1751636 ANKS3 1.265403 0.022063 

ILMN_1759048 SDHAP1 1.264963 0.009091 

ILMN_1685952 ACSM3 1.26452 0.052348 

ILMN_1796341 GLT8D1 1.262995 0.006095 

ILMN_1691393 DNPEP 1.26277 0.005535 

ILMN_1654468 ACRV1 1.26059 0.02006 

ILMN_1684042 BET1 1.260242 0.016273 

ILMN_1753353 SLBP 1.260026 0.004499 

ILMN_1666546 DUSP14 1.259212 0.02157 

ILMN_1701293 COX7A2 1.257948 0.001675 

ILMN_1720422 G3BP2 1.25556 0.025067 
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ILMN_1729691 SLC16A6 1.25513 0.035571 

ILMN_1760303 PIK3R1 1.255126 0.000982 

ILMN_1724490 PSPC1 1.252759 0.018556 

ILMN_1752046 SH2B3 1.251564 0.020742 

ILMN_1811877 ANTXR1 1.251347 0.00048 

ILMN_2103024 RBP5 1.250988 0.01487 

ILMN_1817048 NA 1.250958 0.01383 

ILMN_1659524 NDUFAF4 1.250661 0.04493 

ILMN_2071937 ATP6V0E1 1.250381 0.004627 

ILMN_1690066 TIGD2 1.250302 0.012865 

ILMN_1757631 DBNDD1 1.249598 0.016479 

ILMN_1734472 PEBP4 1.248045 0.046586 

ILMN_2234343 ACP6 1.247937 0.019029 

ILMN_1725680 LRRC1 1.247546 0.015213 

ILMN_1736974 SOX12 1.246386 0.036007 

ILMN_1814650 TRAPPC4 1.245596 0.000531 

ILMN_3305949 NA 1.245481 0.003557 

ILMN_1793859 ALDH2 1.245071 0.000977 

ILMN_1892599 NA 1.244517 0.025931 

ILMN_1807737 AKAP17A 1.243828 0.004122 

ILMN_1720266 ZGRF1 1.242187 0.001884 

ILMN_1777660 RNF144A 1.242053 0.00612 

ILMN_1696591 RB1 1.241965 0.006107 

ILMN_1666652 BRCA1 1.241701 0.02484 

ILMN_1873620 TSPAN14 1.241056 0.007906 

ILMN_3238001 NA 1.240797 0.042563 

ILMN_1712027 RSBN1L 1.240638 0.015606 

ILMN_1730848 KRT18 1.240061 0.017887 

ILMN_2138765 PLIN2 1.239942 0.01169 

ILMN_1708891 SCFD2 1.23989 0.006933 

ILMN_2317463 INTS1 1.238729 0.01029 

ILMN_2129877 PARP11 1.238243 0.008558 

ILMN_2232084 ABCA11P 1.237664 0.010497 

ILMN_1853738 SYCE2 1.237074 0.003996 

ILMN_1800786 NA 1.236051 0.002968 

ILMN_3237419 NA 1.235436 0.018881 

ILMN_1746465 FJX1 1.234991 0.000718 

ILMN_1779423 MRPS14 1.23484 0.009018 

ILMN_1740231 ELMO1 1.234703 0.008988 

ILMN_2363065 RTN3 1.234472 0.005854 

ILMN_2281069 GPATCH4 1.234394 0.00648 

ILMN_1793915 MXI1 1.233547 0.005792 

ILMN_1767324 EIF4EBP1 1.233174 0.004206 

ILMN_1810577 RPS4X 1.232911 0.00689 

ILMN_1774589 IQCC 1.232664 0.00558 

ILMN_1780141 SARAF 1.232273 0.008395 
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ILMN_2394193 VCPKMT 1.231153 0.001949 

ILMN_3194508 ASAP2 1.230465 0.004073 

ILMN_1678075 NA 1.229651 0.002166 

ILMN_1730630 CXorf56 1.229293 0.002103 

ILMN_1713935 C3orf33 1.229154 0.002238 

ILMN_3236358 NOP14 1.229076 0.0091 

ILMN_1674024 NA 1.228286 0.001863 

ILMN_1713322 CCZ1B 1.227416 0.004194 

ILMN_3243744 EAPP 1.227046 0.003343 

ILMN_1737541 HGD 1.226925 0.020971 

ILMN_1780699 THAP11 1.22689 0.006958 

ILMN_1740395 RAVER1 1.226768 0.002398 

ILMN_1789244 SOX8 1.226549 0.02675 

ILMN_1651767 MKL1 1.226481 0.005865 

ILMN_1751028 SERPINH1 1.226334 0.000563 

ILMN_1669102 ATP5G2 1.226254 0.005769 

ILMN_1669851 STAG3L4 1.226153 0.018509 

ILMN_1753370 ABTB2 1.225226 0.002265 

ILMN_3235632 ANXA2P2 1.224915 0.01063 

ILMN_1765547 IRF2 1.224782 0.007353 

ILMN_1821517 NA 1.22463 0.05008 

ILMN_1851906 NA 1.224477 0.002941 

ILMN_3310151 MIR1909 1.22442 0.00353 

ILMN_1810116 INPP5B 1.224395 0.008213 

ILMN_2117716 AKAP17A 1.224283 0.022596 

ILMN_2090123 DHX29 1.223701 0.010663 

ILMN_2224907 SMIM14 1.22347 0.004449 

ILMN_2364088 GEMIN8 1.223337 0.001993 

ILMN_1794711 NA 1.221163 0.035966 

ILMN_1812688 SLC35F6 1.220472 0.039283 

ILMN_2355559 PSAP 1.220068 0.002112 

ILMN_2056032 CD99 1.219876 0.007171 

ILMN_1794074 MXI1 1.218981 0.003669 

ILMN_1721713 EXOSC9 1.218715 0.006514 

ILMN_2395236 CHEK2 1.217774 0.01379 

ILMN_1799628 NA 1.216309 0.014434 

ILMN_1716524 RAB7A 1.216227 0.038482 

ILMN_1659782 STK19 1.216186 0.007195 

ILMN_2152711 ACVR2A 1.216026 0.012033 

ILMN_1691428 NA 1.215172 0.043349 

ILMN_2285568 NAAA 1.215084 0.012333 

ILMN_3247653 LRFN1 1.214948 0.05191 

ILMN_1693394 BCKDK 1.214047 0.001766 

ILMN_1701854 GNG5 1.214002 0.001585 

ILMN_1759987 HS6ST1 1.212923 0.031729 

ILMN_1772957 FOXRED2 1.212795 0.002696 
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ILMN_1717674 PEPD 1.212743 0.004965 

ILMN_3238797 FAM72A 1.212555 0.008584 

ILMN_2197846 HADHB 1.211599 0.007435 

ILMN_1769027 CDC42SE1 1.210803 0.013873 

ILMN_2385647 ALAS1 1.210724 0.006646 

ILMN_1815023 PIM1 1.210466 0.019329 

ILMN_1769299 MTMR11 1.210353 0.00422 

ILMN_1710216 AVEN 1.209396 0.010398 

ILMN_1673682 GATAD2A 1.209388 0.019236 

ILMN_2369286 NME7 1.209207 0.017948 

ILMN_1737685 CRLS1 1.208279 0.009521 

ILMN_1744914 FUCA2 1.207593 0.004555 

ILMN_1671603 MED30 1.207233 0.01559 

ILMN_1674411 CKAP2 1.20586 0.003177 

ILMN_1805968 TCAF1 1.205629 0.035054 

ILMN_2196588 C18orf32 1.203844 0.00325 

ILMN_1804834 OARD1 1.203783 0.032222 

ILMN_3309829 MIR373 1.203232 0.002739 

ILMN_1808602 LINC01547 1.202984 0.053696 

ILMN_3251388 TMEM183A 1.202716 0.011018 

ILMN_2333829 NXF2 1.202447 0.003569 

ILMN_1752270 SLC25A40 1.202105 0.005562 

ILMN_1773200 CCP110 1.201295 0.003011 

ILMN_1743194 EEA1 1.201203 0.038626 

ILMN_1705064 NDEL1 1.200128 0.006722 

ILMN_1704472 EID2 0.914898 0.058282 

ILMN_1744963 ERO1A 0.914534 0.057771 

ILMN_1673844 NA 0.913109 0.05197 

ILMN_1663631 BANP 0.912925 0.051344 

ILMN_3282436 NA 0.910992 0.050511 

ILMN_3243274 LINC00200 0.91037 0.054374 

ILMN_1746917 NA 0.910116 0.047759 

ILMN_3239959 TEN1 0.90936 0.052622 

ILMN_1656042 KIAA0319L 0.908854 0.050003 

ILMN_1762281 DCTN3 0.908252 0.056336 

ILMN_1694223 DGCR8 0.908064 0.043679 

ILMN_2143685 CLDN7 0.908013 0.054085 

ILMN_1728199 POLE 0.907958 0.053826 

ILMN_3229570 NA 0.907817 0.055562 

ILMN_1795826 ATP6V0D1 0.906847 0.055259 

ILMN_3201975 NA 0.906593 0.04423 

ILMN_1776582 PDK3 0.905898 0.052029 

ILMN_1777526 MED20 0.905025 0.056268 

ILMN_2141452 RPL18A 0.904489 0.057522 

ILMN_3302701 NA 0.904437 0.038889 

ILMN_1718898 HOXC9 0.904405 0.052725 
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ILMN_1651259 NA 0.90421 0.052881 

ILMN_3298824 NA 0.904115 0.039955 

ILMN_1758164 STC1 0.904076 0.049281 

ILMN_3306730 RBM47 0.903046 0.045258 

ILMN_1695475 SEMA3C 0.902972 0.042471 

ILMN_1713496 ST3GAL5 0.90272 0.05315 

ILMN_1759252 ADD1 0.90271 0.037855 

ILMN_1753063 KIF15 0.902611 0.036171 

ILMN_1725485 RGS17 0.902592 0.038872 

ILMN_3240247 NOP10 0.902471 0.052858 

ILMN_1758673 SLC44A1 0.902413 0.048888 

ILMN_2169025 JOSD2 0.900981 0.045363 

ILMN_1721876 TIMP2 0.900879 0.052516 

ILMN_3246242 NA 0.900687 0.04103 

ILMN_1790100 DDIAS 0.900596 0.050914 

ILMN_1684258 NA 0.900299 0.043208 

ILMN_1808391 DUSP4 0.900192 0.034728 

ILMN_1782621 RPS12 0.899938 0.037907 

ILMN_1764423 NA 0.899911 0.052283 

ILMN_1681754 GGH 0.89988 0.047909 

ILMN_1756308 NAE1 0.899814 0.047536 

ILMN_1913021 NA 0.899581 0.052 

ILMN_1761072 NA 0.899166 0.044465 

ILMN_1786759 TMEM258 0.898628 0.048785 

ILMN_1812473 MLLT3 0.898387 0.058626 

ILMN_1678754 PFDN2 0.898338 0.038057 

ILMN_1808202 R3HDM4 0.898337 0.049465 

ILMN_2041648 TMPRSS7 0.898328 0.044813 

ILMN_1716728 SAYSD1 0.8982 0.022471 

ILMN_2075927 STK40 0.898155 0.055425 

ILMN_2052598 ARMC10 0.897304 0.04252 

ILMN_1674768 NA 0.897245 0.037813 

ILMN_1879480 CCNG2 0.897004 0.035515 

ILMN_2233099 SSRP1 0.896875 0.049009 

ILMN_1721167 MYT1 0.896867 0.054639 

ILMN_1785290 DOK6 0.896617 0.040911 

ILMN_1815107 MATR3 0.896587 0.027159 

ILMN_1780842 RANBP6 0.896551 0.056038 

ILMN_1752798 NA 0.896532 0.054277 

ILMN_2159859 LYSMD4 0.896255 0.022218 

ILMN_3195203 OGFOD3 0.896077 0.037897 

ILMN_2278265 PAOX 0.895901 0.037636 

ILMN_2112460 MAD2L1 0.895675 0.032257 

ILMN_3256801 ATP1A1-AS1 0.895637 0.035736 

ILMN_2187718 COX17 0.895345 0.048737 

ILMN_1687867 NA 0.895242 0.052015 
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ILMN_1771126 RORC 0.89505 0.03067 

ILMN_3304519 NA 0.894677 0.05496 

ILMN_3218820 NA 0.894629 0.033934 

ILMN_1697959 SLC35B4 0.894346 0.037373 

ILMN_1704238 DTD2 0.89405 0.030501 

ILMN_2367172 AMACR 0.893588 0.044167 

ILMN_1673788 CDV3 0.89342 0.025818 

ILMN_1762021 TRIM48 0.893322 0.04717 

ILMN_1745900 NA 0.893199 0.046827 

ILMN_2400644 SRGAP3 0.893166 0.041095 

ILMN_1728984 PA2G4 0.89316 0.059891 

ILMN_2108735 EEF1A2 0.892994 0.021188 

ILMN_1713086 RPL27A 0.892975 0.053377 

ILMN_1815308 SDC1 0.892856 0.053691 

ILMN_3243700 RPS8 0.892665 0.043981 

ILMN_1684402 STXBP5 0.892591 0.048818 

ILMN_1748616 GTF2F1 0.892141 0.044009 

ILMN_1767747 HDAC2 0.892136 0.027134 

ILMN_1660585 C15orf40 0.891995 0.051446 

ILMN_3304012 NA 0.891655 0.050049 

ILMN_1798270 SMCO4 0.891554 0.03977 

ILMN_1810228 TTF2 0.891374 0.020346 

ILMN_1823013 NA 0.891205 0.037673 

ILMN_1663640 MAOA 0.89103 0.050187 

ILMN_1762327 DHRS12 0.890814 0.02107 

ILMN_1699887 ST14 0.890802 0.05152 

ILMN_1758613 RAPGEFL1 0.890788 0.047135 

ILMN_1807304 MBNL1 0.890559 0.032041 

ILMN_2386008 MPZL1 0.890403 0.0202 

ILMN_1691418 CDRT4 0.890194 0.051839 

ILMN_3234513 NA 0.889998 0.026887 

ILMN_1663447 HNRNPA1 0.889935 0.04769 

ILMN_1662427 PTP4A3 0.889482 0.053654 

ILMN_1805131 OXLD1 0.889325 0.024037 

ILMN_1683054 NA 0.889252 0.037234 

ILMN_1793201 HAGHL 0.88912 0.052796 

ILMN_1842797 NA 0.889074 0.041808 

ILMN_1704529 PPIA 0.889027 0.04507 

ILMN_1689869 NA 0.889013 0.031015 

ILMN_3244192 NA 0.888857 0.055758 

ILMN_1812570 SHC1 0.888854 0.047084 

ILMN_1765159 ELMOD2 0.888817 0.033096 

ILMN_1784256 HDGFRP3 0.88871 0.046966 

ILMN_3280735 NA 0.888639 0.047031 

ILMN_1749838 MZF1 0.888637 0.056058 

ILMN_2387784 DEAF1 0.888404 0.054635 
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ILMN_1688127 NA 0.888378 0.043786 

ILMN_1729980 RNF216 0.888236 0.031493 

ILMN_1732343 SIK3 0.887792 0.034508 

ILMN_1691291 PIGS 0.887611 0.051577 

ILMN_1799168 NA 0.887466 0.030041 

ILMN_3240354 CYCSP52 0.887457 0.052372 

ILMN_1743755 NA 0.887421 0.047138 

ILMN_2310968 RUFY1 0.887114 0.035342 

ILMN_2354649 SRSF10 0.887113 0.03876 

ILMN_1788356 AKIP1 0.887039 0.024135 

ILMN_2412384 CCNE2 0.886952 0.033186 

ILMN_3258046 NA 0.886905 0.026184 

ILMN_2356654 LGALS8 0.886758 0.042339 

ILMN_1654398 RGL1 0.886749 0.035353 

ILMN_2044027 NCOR1P1 0.886683 0.050667 

ILMN_1740523 KTN1 0.886571 0.02727 

ILMN_1815345 EIF3J 0.886557 0.040782 

ILMN_1687821 C16orf45 0.886374 0.054735 

ILMN_1656886 LIN37 0.886133 0.046686 

ILMN_1739001 TACSTD2 0.885533 0.042489 

ILMN_3187852 KANSL3 0.885513 0.049171 

ILMN_1797950 EXTL2 0.885483 0.018949 

ILMN_1808568 PYCR2 0.885436 0.018068 

ILMN_1797005 PGLS 0.885435 0.02727 

ILMN_1810875 SYNGR1 0.88536 0.022721 

ILMN_2276933 GDAP1 0.88512 0.03249 

ILMN_2151817 PFN1 0.884892 0.036845 

ILMN_1676625 SS18L1 0.884808 0.030185 

ILMN_1774312 MRPL57 0.884374 0.036792 

ILMN_1696394 IL6R 0.884334 0.02503 

ILMN_2404795 SULT1A1 0.88397 0.050179 

ILMN_1706386 SLC39A4 0.883552 0.012848 

ILMN_1768197 PTBP3 0.882962 0.023259 

ILMN_1719149 NA 0.882329 0.036733 

ILMN_1786606 NA 0.882262 0.058948 

ILMN_1896892 NA 0.882254 0.024925 

ILMN_1679185 LEF1 0.88219 0.04814 

ILMN_2401978 STAT3 0.882178 0.030606 

ILMN_1726647 NA 0.881905 0.019918 

ILMN_1666553 SLC25A19 0.881868 0.02299 

ILMN_1667016 FAF1 0.881819 0.027567 

ILMN_1805766 POU6F1 0.881813 0.037609 

ILMN_1659688 LGALS3BP 0.881707 0.045112 

ILMN_1658830 WBP1L 0.881574 0.053488 

ILMN_2321634 RAD17 0.881549 0.038201 

ILMN_1748661 AKT1 0.880926 0.020581 
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ILMN_1681695 DNASE1L1 0.880803 0.045839 

ILMN_1779182 TMEM98 0.880708 0.041026 

ILMN_1687440 HIPK2 0.880579 0.045223 

ILMN_1680091 POP7 0.880456 0.053946 

ILMN_1753980 NA 0.880445 0.014512 

ILMN_1839750 NA 0.880077 0.033446 

ILMN_2145050 POM121 0.880036 0.031203 

ILMN_1730575 GCLC 0.879995 0.018656 

ILMN_1670540 SMAD1 0.879939 0.023909 

ILMN_3236825 RAPGEF5 0.879878 0.022989 

ILMN_2072091 HNRNPUL2 0.879549 0.033952 

ILMN_1801130 STOML1 0.879287 0.019843 

ILMN_3297510 NA 0.878908 0.015077 

ILMN_1829845 NA 0.878765 0.057412 

ILMN_3238782 NA 0.878722 0.047084 

ILMN_2053829 CBLN3 0.878639 0.020486 

ILMN_3279414 NA 0.87831 0.05453 

ILMN_2041327 MRPL37 0.877825 0.03252 

ILMN_1680193 PAXIP1 0.877748 0.043428 

ILMN_1849941 NA 0.877523 0.01843 

ILMN_1746720 TTC39C 0.877392 0.043763 

ILMN_1813671 SLC25A1 0.877373 0.048472 

ILMN_1737849 NA 0.876997 0.018899 

ILMN_1735979 BCKDHA 0.876894 0.024374 

ILMN_2266309 CEPT1 0.876618 0.026567 

ILMN_2151818 PSMA6 0.87661 0.044704 

ILMN_1801710 APBB1IP 0.876531 0.033713 

ILMN_3202883 NA 0.876413 0.046262 

ILMN_1762678 NMT1 0.876366 0.013666 

ILMN_1760563 PRRC2A 0.876137 0.021704 

ILMN_3247390 NA 0.876129 0.018419 

ILMN_2192281 CARD8 0.876091 0.038487 

ILMN_1682658 EPM2AIP1 0.875765 0.059436 

ILMN_1837935 TNPO1 0.875708 0.038459 

ILMN_2328433 NOP2 0.875611 0.038545 

ILMN_1750549 PI4K2A 0.875472 0.050944 

ILMN_1682428 HENMT1 0.875326 0.045273 

ILMN_2365484 SNX1 0.87499 0.024856 

ILMN_1795922 ZNF830 0.874618 0.046052 

ILMN_3284036 NA 0.874368 0.033658 

ILMN_1737517 RPL29 0.874243 0.025342 

ILMN_1821397 NA 0.874057 0.029573 

ILMN_1808218 NA 0.874043 0.018742 

ILMN_1761131 ECI2 0.874013 0.017817 

ILMN_1671703 ACTA2 0.873964 0.018045 

ILMN_1659058 PPP1R10 0.873924 0.01902 
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ILMN_1788416 ABHD17C 0.873883 0.040198 

ILMN_1738962 SYCN 0.873738 0.046007 

ILMN_1765043 RPL38 0.873577 0.017006 

ILMN_1805228 LRG1 0.873568 0.010044 

ILMN_1699820 TNPO1 0.873243 0.029831 

ILMN_1704760 BZW1 0.873234 0.010516 

ILMN_2366587 SPDYA 0.8732 0.022402 

ILMN_1704045 DEAF1 0.872879 0.017794 

ILMN_1800795 NA 0.872588 0.049335 

ILMN_1810560 NUPR1 0.872334 0.023255 

ILMN_1706687 KLHL5 0.872072 0.020218 

ILMN_1678730 NOMO1 0.872044 0.055814 

ILMN_1655517 NA 0.871712 0.019061 

ILMN_1678934 POLR1E 0.871353 0.033014 

ILMN_1783707 SPECC1 0.87132 0.021702 

ILMN_1753279 HNRNPA0 0.870706 0.042508 

ILMN_1674758 NA 0.870081 0.033075 

ILMN_1797082 SNX13 0.870029 0.029833 

ILMN_1661424 THAP6 0.869917 0.017978 

ILMN_1663605 RNF123 0.869875 0.014633 

ILMN_2153485 NMNAT3 0.869854 0.012718 

ILMN_1756402 TMEM177 0.869494 0.021279 

ILMN_3236259 NA 0.869391 0.037137 

ILMN_1683328 IP6K2 0.869377 0.021415 

ILMN_1795639 MGMT 0.869203 0.023086 

ILMN_1705114 NUMB 0.869176 0.028364 

ILMN_1772455 HDAC3 0.869112 0.01234 

ILMN_1687291 CDNF 0.869067 0.025857 

ILMN_3306977 IMPDH1 0.8687 0.020795 

ILMN_1896406 ZXDA 0.868587 0.027761 

ILMN_2375418 DPH2 0.86857 0.057437 

ILMN_1675387 LIMS1 0.868543 0.03885 

ILMN_3245738 NA 0.868139 0.041891 

ILMN_3242120 RAP1BL 0.868038 0.03908 

ILMN_1671045 NA 0.867945 0.013019 

ILMN_1723871 OTUB1 0.867944 0.038561 

ILMN_1784328 SNORD25 0.867738 0.056998 

ILMN_1677868 ADRA2B 0.867723 0.050324 

ILMN_1804642 SMUG1 0.867173 0.045117 

ILMN_1671158 MRPL13 0.867097 0.015247 

ILMN_1784299 C19orf43 0.866949 0.027586 

ILMN_1838372 NA 0.866826 0.043601 

ILMN_1657810 PPM1M 0.866658 0.007758 

ILMN_1708660 RWDD4 0.866622 0.015533 

ILMN_2362681 CES2 0.866598 0.038438 

ILMN_1738691 POU4F1 0.866484 0.012251 
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ILMN_1811729 CBLC 0.86643 0.023728 

ILMN_2361163 SSBP3 0.86641 0.0167 

ILMN_1689378 NOCT 0.866354 0.014268 

ILMN_2047112 DPCD 0.866307 0.01605 

ILMN_2247594 RPLP1 0.866256 0.014004 

ILMN_3308743 MIR125B2 0.866238 0.038928 

ILMN_1798690 ADAMTSL3 0.866063 0.040581 

ILMN_2123665 SBF2 0.865596 0.050232 

ILMN_2322986 MINA 0.865379 0.043137 

ILMN_1737298 MAT2A 0.865376 0.024607 

ILMN_1725946 IRF6 0.865289 0.029264 

ILMN_1789106 IPP 0.865235 0.005978 

ILMN_3211079 NA 0.865025 0.054596 

ILMN_1798181 IRF7 0.864489 0.037876 

ILMN_1755589 DIP2B 0.86418 0.029748 

ILMN_1751753 IDH2 0.863873 0.03216 

ILMN_2328986 SREBF1 0.863693 0.006386 

ILMN_1708369 EPS15L1 0.863591 0.04989 

ILMN_1677542 TRIM14 0.863458 0.045323 

ILMN_1724897 C14orf93 0.863398 0.052023 

ILMN_1731178 ARHGAP28 0.863303 0.032873 

ILMN_1724825 PCBP2 0.862691 0.037808 

ILMN_1784206 NA 0.862503 0.027627 

ILMN_1751264 CCDC126 0.86245 0.019068 

ILMN_1759250 TAP2 0.862359 0.035989 

ILMN_1792076 TRERF1 0.862188 0.039916 

ILMN_3243233 KATNBL1P6 0.861941 0.05726 

ILMN_1701413 PIGQ 0.861478 0.004507 

ILMN_1741780 DUSP28 0.860232 0.01532 

ILMN_1750256 ALS2 0.859995 0.050252 

ILMN_1679217 FAM110B 0.859972 0.042974 

ILMN_3238570 EIF3CL 0.859667 0.029926 

ILMN_3185709 IP6K2 0.859218 0.052796 

ILMN_1758173 TMEM99 0.858975 0.051158 

ILMN_3250585 NA 0.858565 0.050124 

ILMN_1663033 TMEM129 0.858358 0.018189 

ILMN_2387505 AP1B1 0.85834 0.049903 

ILMN_2356838 CEPT1 0.85781 0.045765 

ILMN_1709227 CCDC84 0.857733 0.05493 

ILMN_1665066 NOA1 0.857529 0.058539 

ILMN_1737380 BCAP29 0.857508 0.055796 

ILMN_2375003 MAP4K4 0.857099 0.023207 

ILMN_3220792 NA 0.857072 0.012393 

ILMN_2341793 CCT7 0.856946 0.013907 

ILMN_1682339 C19orf57 0.856891 0.016088 

ILMN_1809483 HSD17B14 0.856886 0.044123 
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ILMN_2252701 SLC6A9 0.856767 0.016942 

ILMN_1726025 ASXL1 0.85658 0.018572 

ILMN_1720857 GUSBP2 0.856564 0.050821 

ILMN_1667417 RAB23 0.856335 0.015943 

ILMN_1720578 PRAF2 0.856246 0.042596 

ILMN_1706326 MRPL33 0.856228 0.012899 

ILMN_1750722 RPS7 0.856204 0.014392 

ILMN_1730998 TSPAN6 0.855505 0.042912 

ILMN_1831404 NA 0.85549 0.019633 

ILMN_1739573 TNRC6A 0.855415 0.012802 

ILMN_1748770 CKAP5 0.855168 0.015463 

ILMN_2086077 JUNB 0.855053 0.0097 

ILMN_1827736 PDK3 0.854883 0.041015 

ILMN_1803318 PPFIA2 0.854609 0.01031 

ILMN_1773567 LAMA5 0.854073 0.044508 

ILMN_3244640 SNORD96A 0.854 0.023195 

ILMN_1858001 NA 0.853818 0.003846 

ILMN_1805448 EPB41L2 0.853564 0.014755 

ILMN_1700728 KRTCAP3 0.853339 0.0119 

ILMN_1697614 SNU13 0.852982 0.031804 

ILMN_1792837 CIAO1 0.852545 0.047205 

ILMN_2358626 ADK 0.852165 0.010291 

ILMN_1884886 NA 0.852049 0.011742 

ILMN_3289346 NA 0.851533 0.05234 

ILMN_3242357 LOC100132418 0.85125 0.021742 

ILMN_1804476 GMPPA 0.851228 0.013275 

ILMN_1842448 NA 0.851114 0.014951 

ILMN_1718766 MT1F 0.850891 0.033193 

ILMN_1748476 NOP58 0.850766 0.004924 

ILMN_2290808 RPL21 0.850719 0.018166 

ILMN_1808163 C11orf24 0.85064 0.009811 

ILMN_3304175 NA 0.850381 0.047231 

ILMN_1672024 ISCA1P1 0.850139 0.031476 

ILMN_1751452 NDFIP1 0.849785 0.013139 

ILMN_2060145 GRHL2 0.849689 0.035189 

ILMN_1666852 TRIM62 0.848942 0.002049 

ILMN_2407389 GPNMB 0.848759 0.009962 

ILMN_1693323 SMIM8 0.848375 0.010182 

ILMN_2169856 C12orf43 0.848148 0.026351 

ILMN_2325112 CDPF1 0.848073 0.009405 

ILMN_1888264 NA 0.847997 0.027459 

ILMN_2168952 DENR 0.847767 0.023168 

ILMN_1762787 RNF26 0.847573 0.032398 

ILMN_1702759 TMX4 0.846911 0.031546 

ILMN_2318811 RANBP3 0.846793 0.05737 

ILMN_1796069 CBLN2 0.846391 0.017179 
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ILMN_1709814 NMRAL1 0.846316 0.011531 

ILMN_1745256 CXXC5 0.845511 0.007958 

ILMN_2347424 MBOAT2 0.845489 0.020465 

ILMN_3308490 MIR564 0.845027 0.043066 

ILMN_1754068 NA 0.844933 0.034042 

ILMN_2364828 OGT 0.844609 0.044648 

ILMN_1731224 PARP9 0.84405 0.05857 

ILMN_2049642 RPA1 0.843488 0.013349 

ILMN_1784272 CD1E 0.84325 0.048926 

ILMN_2180624 TMCO6 0.843244 0.042404 

ILMN_1691949 NA 0.843156 0.004643 

ILMN_1745533 FAM117A 0.842559 0.04803 

ILMN_3241756 FAM136BP 0.841385 0.008469 

ILMN_2082244 FOXK1 0.841208 0.006725 

ILMN_3187328 IP6K1 0.841129 0.027995 

ILMN_3297898 NA 0.841062 0.039231 

ILMN_2126957 NOMO1 0.841056 0.012667 

ILMN_1674072 RBAK 0.840407 0.011538 

ILMN_1789839 GTF3C1 0.839995 0.011136 

ILMN_3302484 NA 0.839856 0.033918 

ILMN_1651652 RTN3 0.838359 0.017053 

ILMN_1751886 REC8 0.837758 0.005973 

ILMN_2369924 NDUFB6 0.837561 0.037343 

ILMN_2374770 TAX1BP1 0.837516 0.027338 

ILMN_1789001 SLC35B2 0.8371 0.010273 

ILMN_1660323 NA 0.837032 0.013613 

ILMN_1841620 NA 0.836853 0.008576 

ILMN_1712505 KDELC1 0.836757 0.018607 

ILMN_1689749 NA 0.836755 0.015925 

ILMN_1687140 STARD7 0.836036 0.015652 

ILMN_1682368 LRWD1 0.835802 0.02831 

ILMN_3182422 NA 0.835324 0.031224 

ILMN_1882000 TXLNG 0.83525 0.053003 

ILMN_1684439 MLF1 0.83521 0.030948 

ILMN_1657495 MLEC 0.835113 0.036012 

ILMN_2372639 TRAPPC5 0.83507 0.035354 

ILMN_1671933 CLCC1 0.835016 0.026175 

ILMN_1751266 NA 0.834697 0.030572 

ILMN_1754970 NA 0.833254 0.009513 

ILMN_2273447 NPRL3 0.833055 0.005626 

ILMN_1744048 NA 0.833032 0.046532 

ILMN_1703886 SLC16A2 0.832769 0.001338 

ILMN_3290199 NA 0.832714 0.003119 

ILMN_1857861 NA 0.832327 0.001704 

ILMN_1702211 TGIF1 0.832307 0.024106 

ILMN_3209193 NA 0.8323 0.005584 
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ILMN_1841002 NA 0.831549 0.008805 

ILMN_1659122 KLF10 0.828148 0.016553 

ILMN_1766269 HM13 0.827554 0.018637 

ILMN_1728331 ACPT 0.827375 0.047479 

ILMN_1693830 LACTB 0.82713 0.049452 

ILMN_1652306 MEGF10 0.826929 0.017558 

ILMN_3246832 NA 0.826691 0.027192 

ILMN_2083946 TGFA 0.826668 0.007304 

ILMN_1814074 PHKA2 0.826578 0.004032 

ILMN_1786920 KDM5A 0.826474 0.004932 

ILMN_1738529 BCS1L 0.82559 0.040485 

ILMN_3239946 FAM86HP 0.824206 0.049623 

ILMN_1718712 FAM217B 0.824199 0.044694 

ILMN_3241607 NA 0.824135 0.005552 

ILMN_1722900 EIF4A1 0.823689 0.026601 

ILMN_1707240 PTBP2 0.823389 0.005445 

ILMN_2324561 SLC7A6 0.823244 0.009051 

ILMN_1690036 NA 0.823157 0.011121 

ILMN_2182531 TIMM21 0.82306 0.007382 

ILMN_2319994 RPL3 0.822962 0.007072 

ILMN_2167617 NACA 0.822895 0.020493 

ILMN_1689446 EIF3G 0.822132 0.007355 

ILMN_1754988 N6AMT1 0.821221 0.00672 

ILMN_3234124 OGFOD3 0.821039 0.02155 

ILMN_1686043 ZC2HC1C 0.820692 0.023772 

ILMN_1772261 GLG1 0.82046 0.008326 

ILMN_1828438 NA 0.820315 0.040264 

ILMN_1741224 GPR137C 0.820081 0.003097 

ILMN_1683859 SLC7A1 0.820074 0.009572 

ILMN_1773066 CDKN2AIP 0.817977 0.023262 

ILMN_1708047 NA 0.817873 0.001589 

ILMN_1781942 HMMR 0.817591 0.005191 

ILMN_3307901 GAN 0.817257 0.012584 

ILMN_1753745 HDDC2 0.81674 0.016603 

ILMN_2323633 TPD52L2 0.816715 0.02133 

ILMN_1771746 C6orf165 0.81527 0.028306 

ILMN_1731644 SETDB2 0.81442 0.008616 

ILMN_1712352 DOCK3 0.814343 0.008034 

ILMN_1656378 NMT2 0.814336 0.013004 

ILMN_1719649 TMEM63A 0.814258 0.010684 

ILMN_1775058 CSNK1A1 0.813275 0.023973 

ILMN_2319996 RPL3 0.813191 0.012246 

ILMN_1761969 DERL2 0.813059 0.014867 

ILMN_2410864 RAB28 0.812978 0.002228 

ILMN_1731922 NA 0.812175 0.023578 

ILMN_1881909 SNAR-A1 0.811886 0.002212 
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ILMN_1668027 NA 0.811752 0.001939 

ILMN_1680867 NA 0.811523 0.001298 

ILMN_3237324 MMS19 0.810754 0.004016 

ILMN_1719392 FH 0.810566 0.005553 

ILMN_1696654 IFIT5 0.809986 0.041042 

ILMN_3308663 MIR1228 0.809191 0.000961 

ILMN_3239284 B9D1 0.807655 0.01377 

ILMN_1738736 SNX4 0.806837 0.021512 

ILMN_2107004 GPR1 0.806526 0.015353 

ILMN_1690965 DHX9 0.806038 0.002444 

ILMN_2247664 SON 0.804023 0.008247 

ILMN_1654773 CASK 0.803767 0.013505 

ILMN_2276290 RALGPS2 0.803648 0.019395 

ILMN_1795719 RPA1 0.803087 0.051111 

ILMN_1821483 NA 0.802798 0.005746 

ILMN_1798311 MBTPS2 0.800976 0.005472 

ILMN_1789567 MAGED2 0.800701 0.001913 

ILMN_1811363 NOVA1 0.800107 0.001353 

ILMN_1794740 CD151 0.799805 0.000654 

ILMN_1774528 GPRC5C 0.799306 0.010729 

ILMN_1774028 MTFR1 0.799192 0.030466 

ILMN_1758827 RTN4IP1 0.79881 0.015196 

ILMN_1802380 RERE 0.798117 0.002097 

ILMN_1718207 SETDB1 0.796592 0.004736 

ILMN_2377496 ERCC1 0.796581 0.008502 

ILMN_1665909 LASP1 0.794413 0.058998 

ILMN_1707631 MED10 0.793853 0.005153 

ILMN_1731498 GPR156 0.792855 0.005505 

ILMN_1687036 MRPL47 0.791167 0.029046 

ILMN_1725992 RAPGEF6 0.790022 0.001986 

ILMN_1800308 GTF2H4 0.789576 0.014807 

ILMN_2350114 TRIM13 0.788289 0.027932 

ILMN_2393573 RASSF1 0.78756 0.001297 

ILMN_1740772 APBB3 0.786663 0.011611 

ILMN_1679071 MTX3 0.78615 0.023633 

ILMN_2095133 SPTAN1 0.785969 0.014966 

ILMN_1785330 SH3BP4 0.783012 0.005051 

ILMN_1787415 SNX16 0.781027 0.025303 

ILMN_2100000 DHX36 0.780477 0.000274 

ILMN_1697549 BAGE4 0.780374 0.001147 

ILMN_3239426 GPN3 0.779776 0.03357 

ILMN_1771689 EXD2 0.779452 0.037182 

ILMN_1747556 CDK9 0.779346 0.001281 

ILMN_2403730 ATP6V1H 0.779151 0.002809 

ILMN_2205245 GPN2 0.777978 0.020883 

ILMN_1739428 IFIT2 0.77479 0.035681 
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ILMN_2354855 OTUB1 0.773328 0.000902 

ILMN_1700044 SAP130 0.770567 0.044316 

ILMN_1737163 SH3BGRL3 0.763238 0.002803 

ILMN_1797793 BLVRB 0.760857 0.00219 

ILMN_2192683 DHX37 0.758502 0.012786 

ILMN_2352097 ADGRG1 0.753062 0.000115 

ILMN_2181968 CBL 0.750826 0.0033 

ILMN_1714167 CYB5A 0.750047 0.003238 

ILMN_1793241 SRD5A1 0.74936 0.000235 

ILMN_1777113 NEURL2 0.740627 0.05192 

ILMN_2352090 GPRC5C 0.740182 0.015712 

ILMN_2218935 GPR37 0.739463 0.000702 

ILMN_1804938 TPRA1 0.737698 0.031144 

ILMN_1720267 TARSL2 0.7374 0.000232 

ILMN_2375002 MAP4K4 0.736038 0.002013 

ILMN_1739497 GTF2H5 0.733133 0.032535 

ILMN_2121816 GPR137B 0.732951 0.000119 

ILMN_1738976 OR2A20P 0.730877 0.006324 

ILMN_1793118 TAX1BP1 0.725763 0.000169 

ILMN_1687023 GJC1 0.725578 0.007458 

ILMN_1753913 WLS 0.724483 0.000394 

ILMN_1654703 GPR157 0.72385 0.000752 

ILMN_2384122 ADGRG1 0.721709 0.020936 

ILMN_1707326 TASP1 0.71138 0.003487 

ILMN_1755664 RPS26 0.708509 0.014651 

ILMN_1772719 GPN1 0.707997 0.000235 

ILMN_2270015 AADAT 0.707018 0.000429 

ILMN_1726306 HMBS 0.70559 0.000154 

ILMN_2330371 TATDN3 0.685725 0.006771 

ILMN_1657746 BPHL 0.684207 0.019896 

ILMN_1744316 TATDN3 0.683759 3.33E-05 

ILMN_1671260 WLS 0.682365 0.003087 

ILMN_1660549 WLS 0.680088 0.008032 

ILMN_2390853 CTSH 0.679611 4.54E-05 

ILMN_2399769 WLS 0.677365 0.001139 

ILMN_3250850 RFESD 0.674182 0.003152 

ILMN_1692539 SH3BP1 0.672936 4.53E-05 

ILMN_2209027 RPS26 0.672186 0.009045 

ILMN_1802414 CA13 0.667112 0.004219 

ILMN_1804332 GPR137 0.66509 1.82E-05 

ILMN_2179397 TATDN1 0.659317 0.005511 

ILMN_1759030 MAP4K5 0.655264 0.000255 

ILMN_2283325 WLS 0.648223 0.000793 

ILMN_1906397 LINC01311 0.638228 0.002672 

ILMN_2207533 RPS17 0.634552 3.07E-05 

ILMN_1809959 AADAT 0.63332 0.006285 



   

220 
 

ILMN_1762764 SH3BGRL2 0.632543 5.71E-05 

ILMN_1757317 LARS 0.630439 0.000581 

ILMN_1652631 GLIPR2 0.620768 0.000865 

ILMN_2239754 IFIT3 0.618062 0.001876 

ILMN_1666019 ADNP 0.613996 0.00017 

ILMN_1737312 SLC25A17 0.595498 0.020668 

 

 

Appendix 9-8 Venn's diagram. This figure shows the list of genes for each condition of 

microarray and also the common genes between conditions.  This adapted from Oliveros, 

J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. 

tp://bioinfogp.cnb.csic.es/tools/venny/index.html  
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Table 9-2 Common genes of microarray condition 

97 common genes 

in  

LNCaP-ENZ-

R+Enz  

and 

LNCaP-ENZ-R-

Enz 

22 common genes 

in 

 LNCaP-ENZ-

+Enz 

And 

LNCaP-ENZ-R-

Enz 

And 

LNCaP+Enz 

 

85 common genes  

in 

 LNCaP-ENZ-

R+Enz 

and 

LNCaP+Enz 

 

60 common gens  

in  

LNCaP-ENZ-R-

Enz 

and  

LNCaP+Enz 

 

GNA12, GPR137, 

RLN1, DEF8 

ADGRG1. COX7A2L 

ASAP2, RABEPK 

TACSTD2,  

 BCCIP, TRAPPC4 

KMT2C, FJX1 

ERN1, MIR1228 

ASNSD1, BCKDK 

PRKDC, GEMIN8 

ATP5B, CCDC120 

PSAP, PLOD2 

ABTB2, TARBP1 

IRF2BP2, SOX4 

MXI1, CHIC2 

MED10, MBTPS2 

ECH1, TACSTD2 

SYT4, SGK1 

PIK3R1, CPS1 

NA, GK, CKAP2 

SLC25A40, SDHAP1 

PLIN2, GAS6, LRRC1 

RAB23, IL6R,  

MAD2L1, POLR1E 

MLEC, LGALS8 

PAXIP1, MYT1 

 

CTSH, TARSL2 

MAP4K5, WLS 

ANTXR1, LARS 

COASY, ALDH2 

RASSF1, GAR1 

RAB28, RAVER1 

FOXRED2, INCENP 

CYB5A, SLC25A6 

NXF2, BCHE 

MMS19, EIF4EBP1 

SLBP, SH3BP4 

HMMR, IQCC 

HADHB, ERCC1 

SETDB2, NOP14 

SLC7A1, PPFIA2 

PEX10, GPRC5C 

AKAP7, RECQL4 

AGAP3, PAXBP1 

CS, CTSL, LRBA 

MTOR, STRA13 

SCPEP1, GART 

PI4KAP1, PPIC 

PRDX2, SLC35A2 

AMD1, OCRL 

NOL12, SMPDL3A 

CCDC15, SKP2 

NDUFB4, CYTH3 

MAGEA6, NIPAL3 

FOLH1, PIGP 

SPAG9, C9orf152 

EIF4A3, NDUFAF5 

HIST1H4E, PIK3R2 

NAP1L4, SNX3 

DNAJC12, CSE1L 

AFMID, CTSC 

GTF3C2, LAMP2 

EME1, GRN 

ITGB5, PYROXD2 

RPS29, F2RL1 

EXOC4, MR1 
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SGK1, NPRL3 

MKL1, GPATCH4 

AKAP13, NDEL1 

THAP11, CD99 

SLMAP, PPM1M 

INPP5B, FAM136BP 

ANKRD54, SLC25A4 

AKTIP, CDPF1 

CRLS1, JUNB 

ARPC4, ABCA11P 

ANXA2P2, DRC7 

KRTCAP3, ACVR2A 

NAAA, GAN 

NOMO1, NMNAT3 

AKAP11, NOCT 

DERL2, SPTAN1 

SIVA1, RSBN1L 

DBNDD1, ACTA2 

ASXL1, PRKX 

PRMT1, AKT1 

SH2B3, OGFOD3 

SYNGR1, AKIP1 

BCKDHA, BRCA1 

C12orf43, PGLS 

SNORD30, CHEK2 

EPB41L2, RTN4IP1 

MED30, ACSL3 

RNF4, EXTL2 

MBOAT2, IMPDH1 

HGD, SPECC1 

SLC25A19, MGMT 

PTBP3, G3BP2 

CYFIP2, TNPO1 

ISCA1P1, TMX4 

CCNE2, GRHL2 

RGL1, TRAPPC5 

SLC16A6, IFIT2 

KIF15, ADD1 

PFDN2, SMCO4 

SRGAP3, MIR564 

HSD17B14, PSMA6 

HENMT1, TRIM48 

NAE1, GGH 

KANSL3, MAOA 

NCOR1P1, GUSBP2 

DDIAS, ACSM3 

TIMP2, HOXC9 

TXLNG, POLE 

PSMG4, KLK15 

CENPN, GLRX2 

RFC1, BIRC5 

CCDC34, FKBP5 

BEND3, MOB1A 

PPFIBP1 
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ZXDA, STAT3 

OARD1. ELMOD2 

ATP1A1-AS1. CES2 

SRSF10, RAP1BL 

PRAF2. OGT 

PPIA, HNRNPA1 

KIAA0319L, STY4 

ST14, C16orf45 

SNORD25 

 

BCAP29, DPH2 

ERO1A, MED27 

PA2G4 
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Appendix 9-9 ERBB signalling pathway. Genes included in the microarray data 

labelled by stars. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 
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Appendix 9-10 Insulin signalling pathway. Genes included in the microarray data 

labelled by stars. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 
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Appendix 9-11 Oxidative phosphorylation. Genes included in the microarray data 

labelled by stars. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 

 



   

227 
 

 

Appendix 9-12 RNA transport pathway. Genes included in the microarray data labelled 

by stars. Database for Annotation, Visualisation and Integrated Discovery (DAVID), v6.7 

was used to analyse large gene lists and perform comprehensive clustering to outline 

genes with a similar function or biological theme. KEGG pathway analysis on steroid 

biosynthesis was included in the DAVID output. 
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Appendix 9-13 PI3K-Akt signalling pathway. Gene included in the microarray data 

labelled by red. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 
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Appendix 9-14 mTOR signalling pathway. Gene included in the microarray data 

labelled by red. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 
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Appendix 9-15 nucleotide excision repair pathway. Genes included in the microarray 

data labelled by stars. Database for Annotation, Visualisation and Integrated Discovery 

(DAVID), v6.7 was used to analyse large gene lists and perform comprehensive 

clustering to outline genes with a similar function or biological theme. KEGG pathway 

analysis on steroid biosynthesis was included in the DAVID output. 
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Table 9-3 genes that have role in functional process in LNCaP-ENZ-R cell line  

185 genes 

are involve 

in 

Acetylation 

337 genes 

are involve 

in 

Phosphoprotein 

385 genes 

are involve 

in 

Alternative 

splicing 

49 genes 

are involve 

in 

Methylation 

49 genes 

are 

involve 

in 

DNA 

repair 

30   genes 

are 

involve 

in 

Cell cycle 

30   genes 

are involve 

in 

Serine/threonine-

protein kinase 

CCZ1B, 

ALS2, 

MMS19, 

INTS1, 

BPHL, 

PRKX, 

EIF3CL, 

EIF4EBP1, 

ANKRD54, 

RAB28, 

RAVER1, 

RPLP1, 

RAPGEF6, 

DHX36, 

PTBP3, 

PTBP2, 

OGT, 

GNG5, 

AADAT, 

RPL35A, 

RSBN1L, 

DCTN3, 

MAGED2, 

TRERF1, 

TBC1D22B, 

JUNB, 

MAP4K4, 

PA2G4, 

PYCR2, 

PGLS, 

NOP2, 

KRT18, 

MAD2L1, 

RCC2, 

PSMA6, 

PI4K2A, 

RPS12, 

CCZ1B, ALS2, 

HM13, SYT4, 

FAM110B, 

STOML1, 

INTS1, 

RNF216, 

KIAA0319L, 

PRKX, PLOD2, 

RAB28, 

SULT1A1, 

RAVER1, 

INCENP, 

RPLP1, 

MED27, 

RAB23, 

RAPGEF6, 

PTBP3, DHX36, 

GDF9, OGT, 

PTBP2, DHX30, 

GNG5, LRRC1, 

ANKS3, POLE, 

PIM1, 

MAGED2, 

REC8, PGLS, 

NOP2, KRT18, 

MAD2L1, 

RCC2, DHX29, 

RPS17, 

TRAPPC5, 

RFESD, ADD1, 

DEAF1, 

DBNDD1, 

SIVA1, GLG1, 

COASY, 

RALGPS2, 

CDV3, SRSF10, 

MTX3, TMX4, 

ALS2, HM13, 

SYT4, 

STOML1, 

RNF216, 

KIAA0319L, 

MXI1, 

MEGF10, 

MED20, 

PLOD2, 

RAB28, 

SULT1A1, 

RAVER1, 

INCENP, 

RPLP1, 

MED27, 

RAPGEF6, 

RAPGEF5, 

PTBP3, 

DHX36, OGT, 

PTBP2, 

SAYSD1, 

DHX30, 

MRPL33, 

AADAT, 

GPR137, 

CRLS1, 

LRRC1, 

ANKS3, 

EXD2, 

PARP11, 

ACRV1, 

DCTN3, 

MAGED2, 

NME7, 

OGFOD3, 

REC8, NOP2, 

MAD2L1, 

RAB7A, 

EID2, 

FOXK1, 

KMT2C, 

TXLNG, 

AKAP13, 

PRRC2A, 

STAU1, 

RNF123, 

ALB, 

RAB28, 

MED27, 

GATAD2A, 

RAB23, 

RBM47, 

RHOD, 

IMPDH1, 

GNG5, 

INPP5B, 

SIK3, 

SETDB1, 

DHX9, 

SSBP3, 

ACTA2, 

EEF1A2, 

SLC25A6, 

RAB4B, 

ADNP, 

G3BP2, 

PPP1R10, 

ILF3, RB1, 

HNRNPA1, 

HIST2H3C, 

HNRNPA0, 

RPL29, 

CCT7, SON, 

KRT18, 

MMS19, 

SSRP1, 

NEIL3, 

MGMT, 

POLE, 

GTF2H4, 

PRKDC, 

CDK9, 

CHEK1, 

BCCIP, 

GTF2H5, 

CHEK2, 

SMUG1, 

BRCA1, 

RPA1, 

PAXIP1, 

PARP9, 

OTUB1, 

ERCC1       

   TXLNG, 

CHEK1, 

BCCIP, 

CHEK2, 

CCNG2, 

MLF1, 

CCNE2, 

INCENP, 

DDIAS, 

CSNK1A1, 

CKAP2, 

PDS5B, 

SETDB2, 

CKAP5, 

ZNF830, 

PIM1, 

SYCE2, 

BANP, 

RB1, 

DCTN3, 

BRCA1, 

NAE1, 

SPDYA, 

SON, 

MAD2L1, 

KRT18, 

RIF1, 

RCC2, 

RASSF1, 

RAD17    

  CSNK1A1, 

SGK1, LIMK2, 

PIM1, PRKDC, 

CDK9, CASK, 

CHEK1, CHEK2, 

PRKX, AKT1, 

ACVR2A, 

MAP4K4, 

MAP4K5, 

STK40, HIPK2, 

ERN1, STK19, 

SIK3         
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MRPL47, 

RFESD, 

ADD1, 

GPN1, 

RAB7A, 

GPN2, 

CDV3, 

GCLC, 

SNX1, 

PRRC2A, 

ARPC4, 

SNX4, 

SERPINH1, 

HADHB, 

PFN1, 

RPL3, 

IDH2, 

EIF3J, FH, 

DHX9, 

HDDC2, 

CKAP5, 

EEF1A2, 

MAOA, 

ZNF830, 

NDFIP1, 

HGD, 

DENR, 

SMAD1, 

TPD52L2, 

CPS1, 

HNRNPA1, 

HIST2H3C, 

BRCA1, 

RPS8, 

HNRNPA0, 

RPS7, 

CCT7, 

CCT5, 

HDAC2, 

SAP130, 

LASP1, 

OTUB1, 

PPIA, 

GTF2F1, 

CDKN2AIP, 

ALDH2, 

ASAP2, 

AKAP13, 

RABEPK, 

PRRC2A, 

CHEK1, 

CHEK2, 

AKAP11, 

SERPINH1, 

NPRL3, RPS26, 

PFN1, FH, 

DHX9, CLCC1, 

KANSL3, 

KLF10, MAOA, 

ASXL1, NXF2, 

TPD52L2, 

SMAD1, 

HNRNPA1, 

RPS8, GAS6, 

HNRNPA0, 

TAX1BP1, 

NOP14, CBLC, 

CCT5, PAXIP1, 

SAP130, 

RPL18A, RNF4, 

LASP1, MZF1, 

RERE, 

C15ORF40, 

ABCF3, 

BCKDK, 

PHKB, ATP5B, 

TRMT10A, 

TRMT10C, 

MTFR1, RTN3, 

CCNE2, DIP2B, 

KIAA1211L, 

SLMAP, 

IL1RAP, 

OARD1, 

SLC25A1, 

ARHGAP11A, 

ATP6V0D1, 

IP6K1, COX17, 

TARSL2, SIK3, 

CTBP1, PEPD, 

EXOSC9, 

POLR1E, 

TRAPPC4, 

TGIF1, STC1, 

MRPL47, 

RFESD, 

ADD1, 

DEAF1, 

DBNDD1, 

SIVA1, GLG1, 

IL1R2, 

COASY, 

RALGPS2, 

CDV3, 

SRSF10, 

MTX3, ACP6, 

ASAP2, 

AKAP13, 

RABEPK, 

PRRC2A, 

CHEK1, 

CHEK2, 

MYT1, 

HADHB, 

TMEM129, 

IDH2, 

TMEM183A, 

GPR156, 

DHX9, 

CLCC1, 

KANSL3, 

MAOA, 

KLF10, 

FOXRED2, 

ASXL1, 

NDFIP1, 

LGALS8, 

ACPT, 

SMAD1, 

TPD52L2, 

HNRNPA1, 

GAS6, 

TAX1BP1, 

NOP14, 

CCT7, CBLC, 

CCT5, 

PAXIP1, 

SAP130, 

RAP1BL, 

SAP130, 

PTP4A3, 

ILF2, 

HNRNPUL2, 

LASP1, 

RASSF1, 

PSPC1, 

AVEN, 

HIST1H3F      
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CYFIP2, 

GPATCH4, 

RWDD4, 

HIST1H3F, 

RERE, 

BCKDK, 

ABCF3, 

AP1B1, 

FOXK1, 

PHKB, 

ATP5B, 

EPS15L1, 

DPH2, 

SYNGR1, 

DSTN, 

RTN3, 

AKT1, 

BZW1, 

RANBP6, 

RANBP3, 

OARD1, 

SHC1, 

C19ORF43, 

TARSL2, 

SSBP3, 

PEPD, 

EXOSC9, 

SLC25A4, 

ACTA2, 

HMBS, 

SLC25A6, 

KIF15, 

RAB4B, 

ADNP, 

CDK9, 

CYB5A, 

IRF2BP2, 

BANP, 

RB1, 

RPS4X, 

ANXA2P2, 

ELMO1, 

EPB41L2, 

TARBP1, 

EAPP, 

C3ORF33, 

SPECC1, 

RAB4B, ADNP, 

GTF2H5, TTF2, 

ANXA2P2, 

ELMO1, 

EPB41L2, 

EAPP, DOK6, 

ADK, EIF4A1, 

SRGAP3, 

AVEN, PPFIA2, 

NACA, ECH1, 

SNU13, 

RPL27A, BET1, 

TXLNG, 

BCCIP, EEA1, 

APBB1IP, 

MLF1, STAU1, 

HDGFRP3, 

HMMR, 

FAM117A, 

PLIN2, STRIP2, 

GATAD2A, 

ACSL3, 

MLLT3, MT1F, 

CSNK1A1, 

BCKDHA, 

SSRP1, ECI2, 

PDS5B, 

MAT2A, PDK3, 

PPP1R10, ILF3, 

NOA1, 

C12ORF43, 

ETF1, STAT3, 

RPL29, DNPEP, 

DUSP4, 

NUPR1, 

HNRNPUL2, 

ILF2, SLC16A6, 

RASSF1, 

C19ORF57, 

BLVRB, 

NOP58, LIN37, 

MMS19, 

MPZL1, 

SLC44A1, 

CASK, BPHL, 

PARP9, 

RNF4, LASP1, 

LAMA5, 

MZF1, 

TCAF1, 

RWDD4, GK, 

RERE, 

C15ORF40, 

ABCF3, 

BCKDK, 

AP1B1, 

PHKB, 

NAAA, 

GAR1, 

ASAH1, 

MTFR1, 

N6AMT1, 

RTN3, 

CCNE2, 

SLMAP, 

IL1RAP, 

SEMA3C, 

TGFA, 

RBM47, 

ARHGAP11A, 

IP6K1, 

TARSL2, 

SIK3, IP6K2, 

CTBP1, 

TMCO6, 

PEPD, STX3, 

EXOSC9, 

POLR1E, 

SPECC1, 

RAB4B, 

GTF2H4, 

CYB5A, IL6R, 

TTF2, 

ELMO1, 

EPB41L2, 

MTMR11, 

ADK, EIF4A1, 

SRGAP3, 

RAPGEFL1, 

PPFIA2, 

LIMS1, 
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ADK, 

EIF4A1, 

DEF8, 

MATR3, 

LIMS1, 

NACA, 

ECH1, 

NDUFB6, 

KMT2C, 

GDAP1, 

SNU13, 

RPL27A, 

PRKDC, 

VCPKMT, 

COX7A2L, 

RPL38, 

TMEM258, 

STAU1, 

RPA1, 

RNF123, 

MRPL13, 

PLIN2, 

LARS, 

LACTB, 

TNPO1, 

PIK3R1, 

ERCC1, 

MT1F, 

CSNK1A1, 

BCKDHA, 

SSRP1, 

ECI2, 

PAOX, 

COX7A2, 

PDS5B, 

MAT2A, 

AMACR, 

ILF3, ETF1, 

STAT3, 

DNPEP, 

NAE1, 

RPL29, 

ACSM3, 

IFIT2, 

SLC16A2, 

SON, 

CACTIN, 

RGL1, SLC7A6, 

FNTB, EIF3CL, 

EIF4EBP1, 

ANKRD54, 

AKAP17A, 

HOXC9, 

RSBN1L, 

C6ORF47, 

NEIL3, 

TBC1D22B, 

TRERF1, 

JUNB, 

MAP4K4, 

MAP4K5, 

PYCR2, 

PA2G4, 

NDEL1, 

PSMA6, 

PI4K2A, IQCC, 

RAD17, 

PHKA2, GPN1, 

RAB7A, GCLC, 

TMEM63A, 

SNX1, SNX4, 

CXXC5, 

EPM2AIP1, 

CEPT1, EIF3G, 

ERO1A, BCHE, 

ALB, NUMB, 

PRKRA, RPL3, 

LRFN1, EIF3J, 

SLC35F6, 

NOVA1, 

SREBF1, 

CKAP2, 

ZGRF1, 

SETDB1, 

CKAP5, 

HDDC2, 

ZNF830, 

EEF1A2, 

DENR, CPS1, 

DOCK3, 

BRCA1, 

HIST2H3C, 

NACA, 

THAP6, 

ABTB2, 

TRIM14, 

BET1, 

TRIM13, 

TXLNG, 

BCCIP, 

APBB1IP, 

MLF1, 

STAU1, 

HMMR, 

FAM117A, 

STK40, 

STRIP2, 

PLA2G12B, 

GATAD2A, 

PEX10, 

MLLT3, 

CSNK1A1, 

BCKDHA, 

ECI2, CES2, 

PAOX, 

PDS5B, 

PLA2G15, 

MAT2A, 

PDK3, 

AMACR, 

TMPRSS7, 

ILF3, ETF1, 

STAT3, 

CD1E, NAT9, 

NAE1, 

ACSM3, 

DUSP4, 

NUPR1, 

PTP4A3, 

RASSF1, 

C19ORF57, 

RBAK, 

APBB3, 

MMS19, 

MPZL1, 

SLC44A1, 

CASK, BPHL, 

CACTIN, 
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MED30, 

IRF7, 

RASSF1, 

PSPC1, 

IRF2, 

LIN37, 

SH3BGRL3, 

SPTAN1   

NMT2, NMT1, 

HDAC3, 

HDAC2, 

AKTIP, PPIA, 

OTUB1, 

GTF2F1, 

CDKN2AIP, 

SLC25A19, 

GPATCH4, 

ANTXR1, 

HIST1H3F, 

NOMO1, DUT, 

NDUFAF4, 

CLDN7, 

FOXK1, DPH2, 

EPS15L1, 

DSTN, AKT1, 

BZW1, PRMT1, 

DGCR8, 

PCBP2, 

RANBP6, 

RANBP3, 

SHC1, MKL1, 

KDM5A, 

LRWD1, 

IMPDH1, 

C14ORF93, 

SSBP3, SGK1, 

LIMK2, HMBS, 

KIF15, G3BP2, 

ARHGAP28, 

KTN1, LEF1, 

CDK9, 

ATP6V1H, 

IRF2BP2, 

BANP, RB1, 

MBNL1, 

TARBP1, 

SPDYA, SDC1, 

RAP1BL, RIF1, 

STXBP5, SBF2, 

DEF8, HIPK2, 

ERN1, MATR3, 

GPRC5C, 

KMT2C, 

MGMT, 

ABHD17C, 

RGL1, FNTB, 

GLT8D1, 

KLHL5, 

ANKRD54, 

AKAP17A, 

RLN1, 

ST3GAL5, 

CDNF, 

TMEM99, 

RGN, SS18L1, 

NMNAT3, 

RSBN1L, 

SARAF, 

ENC1, 

TATDN1, 

GRHL2, 

TRERF1, 

TATDN3, 

MAP4K4, 

PA2G4, 

NDEL1, 

PSMA6, 

FAM72A, 

IQCC, 

DCUN1D4, 

RAD17, 

GPN1, GPN3, 

EID2, 

ADAMTSL3, 

B9D1, 

CDC42SE1, 

SNX1, 

ARPC4, 

SNX4, 

CXXC5, 

KCNRG, 

CCNG2, 

TASP1, ALB, 

NUMB, 

GMPPA, 

PRKRA, 

DRC7, EIF3J, 

DDIAS, 

STK19, 

NOVA1, 
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SNX16, 

PRKDC, 

VCPKMT, 

MINA, RPA1, 

CCDC120, 

RNF123, 

POM121, 

SLC35B2, 

LARS, SH2B3, 

GEMIN8, 

GPNMB, 

GTF3C1, 

TNRC6A, 

PIK3R1, 

CCP110, 

ARMC10, CBL, 

RUFY1, CD99, 

BCS1L, RGS17, 

FUCA2, 

WBP1L, SLBP, 

IFIT3, SH3BP4, 

SON, SLC6A9, 

IRF7, PSPC1, 

IRF2, IRF3, 

FAF1, SH3BP1, 

SPTAN1        

LYSMD4, 

ANGPTL4, 

SREBF1, 

CKAP2, 

ZGRF1, 

SETDB1, 

CARD8, 

SETDB2, 

CKAP5, 

HDDC2, 

SEC11A, 

CPS1, 

TRIM62, 

ADGRG1, 

BRCA1, 

ZC2HC1C, 

NMT1, 

HDAC3, 

HDAC2, 

AKTIP, 

OTUB1, PPIA, 

CYFIP2, 

ALDH2, 

SLC25A19, 

GPATCH4, 

ANTXR1, 

DUT, CLDN7, 

FOXK1, 

DPH2, 

EPS15L1, 

SYNGR1, 

DSTN, AKT1, 

BZW1, 

PRMT1, 

ALAS1, 

DGCR8, 

PCBP2, 

RANBP3, 

POU4F1, 

SHC1, 

KDM5A, 

TTC39C, 

IMPDH1, 

RTN4IP1, 

C16ORF45, 

LINC01547, 
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C14ORF93, 

SSBP3, SGK1, 

LIMK2, 

HMBS, 

KIF15, 

G3BP2, 

ARHGAP28, 

KTN1, CDK9, 

LEF1, 

ATP6V1H, 

IRF2BP2, 

PIGS, BANP, 

WLS, 

MBNL1, 

PIGQ, COQ5, 

KRTCAP3, 

SPDYA, 

ACVR2A, 

RIF1, 

STXBP5, 

C3ORF33, 

JOSD2, SBF2, 

DEF8, HIPK2, 

ERN1, 

HAGHL, 

PPM1M, 

SNX13, 

MATR3, 

NDUFB6, 

GPRC5C, 

KMT2C, 

TPRA1, 

SNX16, 

GDAP1, 

PRKDC, 

VCPKMT, 

ATP5G2, 

SMUG1, 

MINA, 

CCDC120, 

RNF123, 

POM121, 

SLC35B2, 

TAP2, 

SLC35B4, 

LARS, 
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SNX21, 

BCAP29, 

HS6ST1, 

SLC25A45, 

SLC39A4, 

GPNMB, 

TNPO1, 

CXORF56, 

GTF3C1, 

TNRC6A, 

INPP5B, 

LACTB, 

PIK3R1, 

ERCC1, IPP, 

CCP110, 

DHRS12, 

AKIP1, PSAP, 

ARMC10, 

TSPAN14, 

RUFY1, 

CD99, 

FUCA2, 

WBP1L, 

GDPD1, 

SLBP, 

SH3BP4, 

SON, 

SLC6A9, 

MED30, 

SCFD2, IRF6, 

IFIT5, IRF7, 

PSPC1, IRF2, 

IRF3, FAF1, 

SH3BP1, 

SPTAN1     

 


