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Abstract 

Chronic obstructive pulmonary disease (COPD), the third leading cause of death 

worldwide, is characterised by airflow obstruction and is primarily caused by smoking. 

In contrast, another obstructive pulmonary disease, cystic fibrosis (CF), has orphan 

disease status. However, patients with either COPD or CF present with similar 

clinical lung problems. Importantly, cystic fibrosis transmembrane conductance 

regulator (CFTR) activity is reduced in both diseases. Recent work from our lab 

showed that cigarette smoke-induced increases in cytosolic Ca2+ were consequential 

in reducing plasma membrane expression of CFTR by an unknown mechanism. 

Therefore, the major aim of my project was to identify the molecular mechanism 

underlying the loss of CFTR activity brought about by an increase in cytosolic Ca2+.  

Whole cell patch clamp recordings in HEK 293T cells transiently transfected with 

CFTR showed that an increase in cytosolic Ca2+ significantly reduced CFTR-

mediated conductance. Characterisation of the dynamic changes in cytosolic Ca2+, 

induced by a range of agonists, showed that a sustained increase in Ca2+ was not 

essential for the loss of CFTR-mediated conductance, but it did involve a dynamin-

dependent internalisation of the channel. Confocal imaging further confirmed that an 

increase in cytosolic Ca2+ caused a reduction in plasma membrane CFTR 

expression, and a reciprocal increase in intracellular CFTR.  

Activation of the MEK/ERK pathway has previously been linked to smoke-induced 

internalisation of CFTR. Similarly, inhibition of the pathway prevented a Ca2+-induced 

internalisation of CFTR, indicating this pathway also plays a role in Ca2+-induced 

CFTR internalisation. Importantly, inhibition of the Ca2+ dependent phosphatase 

calcineurin with cyclosporin A prevented both Ca2+ as well as smoke-induced loss of 

CFTR, suggesting that the mechanism of internalisation is linked to 

dephosphorylation, possibly of CFTR itself. Furthermore, either an increase in Ca2+, 

or exposure to cigarette smoke, increased calcineurin activity, further implicating this 

phosphatase as a key effector. Functionally, inhibition of calcineurin prevented 

against a smoke-induced reduction in ASL height whilst having no effect on 

physiological changes in height induced by G protein-coupled receptor agonists; 

signifying calcineurin only gets activated under conditions of stress. These findings 

highlight a role for cytosolic Ca2+ in modulating CFTR activity. Additionally, these data 

may lead to novel therapeutic strategies aimed at correcting ASL hydration in 

smokers as well as in people with CF. 
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Chapter 1.0 Introduction 

 

1.1 Anatomy of the airways 

The airways form a continuous tract that allows the passage of air to the lungs, with 

the predominant role being to protect against inhaled pathogens and provide a 

suitable mechanism for gas exchange, allowing oxygen to reach the rest of the body. 

The airways can be split into two broad regions, the upper and lower airways, which 

function to allow the passage of air to the lungs. The nasal cavities, pharynx, larynx, 

trachea, bronchi and bronchioles form the upper airway. The respiratory bronchiole, 

alveolar ducts, and sacs form the lower airway (Ganesan et al., 2013). The purpose 

of the upper airways is to condition and moisten inhaled air, thus allowing sterile air to 

flow to the lower airways (Pohunek, 2004). The lower airways on the other hand, are 

primarily responsible for gas exchange. Anatomically, the airways possess 20-25 

generations or branch points with a progressive increase in the surface area 

(Knowles and Boucher, 2002). The first 10 airway generations are characterised as 

having cartilaginous rings, seen from the trachea to the bronchi. Between 

generations 10-15th, there is a loss of cartilage in the conducting bronchioles. 

Between generations 15-20, are respiratory bronchioles and after generation 20 are 

the alveolar ducts, continuously lined with alveoli.  

 

As mentioned earlier, the airways serve to protect the host from inhaled agents. This 

is accomplished by cells in the upper airway acting synchronously to prevent any 

inhaled pathogens reaching the respiratory airways (Saint-Criq and Gray, 2017). The 

airways are lined by a pseudostratified epithelium that progressively becomes a 

cuboidal layer followed by a thin epithelial layer (Hermans and Bernard, 1999). It has 

been estimated that 50-90% of cells in the conducting airway are ciliated; these cells 

beat in a co-ordinated manner to expel any inhaled toxins or pathogens. Submucosal 

glands, goblet and club cells are responsible for most mucus secretion into the 

airways, which helps remove inhaled agents. The secreted fluid and mucins form a 

layer of solution, the airway surface liquid (ASL), which traps inhaled particles and 

transports them, via ciliary beating towards the mouth (Fig. 1.01). The process by 

which the ASL clears trapped pollutants from the distal airway to the pharynx is 

known as mucociliary clearance (MCC) and the efficiency of this process depends on 

the composition of the airway surface liquid (Boucher, 2004).  



2 

 

 

 

1.2 The airway surface liquid 

The airway surface liquid, approximately 7-10 µm in height, serves to lubricate 

epithelial cells and is composed of the periciliary liquid layer (PCL) and a mucus layer 

(Matsui et al., 1998b). The PCL is a low viscosity solution that is roughly the same 

height as cilia and functions to sustain an environment which maintains efficient 

ciliary beating. The PCL also contains a mesh layer that prevents movement of 

substances from the mucus layer into the PCL (Fig. 1.02). This mesh layer is 

composed of membrane spanning mucins including MUC1, MUC4 and MUC16 and 

also contains mucopolysaccharides (Button et al., 2012). The height of the PCL is 

maintained by a balance between the absorption of Na+ through the epithelial Na+ 

channel (ENaC) and the secretion of Cl- through the cystic fibrosis transmembrane 

conductance regulator (CFTR) and Ca2+-activated Cl- channels (CaCC; discussed in 

more detail in section 1.3). The importance of the PCL height in the airways was 

 

Figure 1.01.  Airway surface liquid and mucociliary clearance in the airways. (A) Diagram 

showing airway surface liquid (ASL) in large and small airways. The ASL is composed of a 

periciliary fluid layer, which is the same thickness as cilia and a mucus gel layer. The direction of 

fluid movement throughout the airways is indicated. Taken from (Verkman et al., 2003). (B) 

Detailed diagram showing the components that constitute mucociliary clearance. Mucus is carried 

towards the mouth to clear bacteria and toxins away from the airways. Taken from (Bennett et al., 

2010). 
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highlighted by Tarran et al., (2001) who showed that despite multiple manoeuvres to 

change ASL hydration, the PCL height remained constant (Tarran et al., 2001a). The 

researchers observed that the mucus layer absorbed the changes in height to 

maintain a PCL height of ~7 µm, adding to existing evidence suggesting that the 

mucus layer acts as a reservoir for the PCL (Kilburn, 1968).  

 

In addition to maintaining PCL height, the mucus layer also serves to bind and trap 

inhaled pathogens (Thornton et al., 2008). The mucus layer is effective at binding a 

variety of pathogens due to the expression of multiple carbohydrate epitopes. The 

mucins predominantly found in the airways are MUC5AC and MUC5B which are 

produced by goblet cells and submucosal glands, respectively (Hovenberg et al., 

1996, Wickström et al., 1998). Mucus and any trapped pathogens are subsequently 

removed by the tips of cilia contacting the underside of the mucus layer and 

propelling it towards the mouth (Knowles and Boucher, 2002). 

 

The control of ASL height occurs locally with mediators in the ASL acting as feedback 

molecules to regulate and maintain ASL height. The control of basal ASL height is 

regulated by adenosine which causes an increase in Cl- secretion through pathways 

linked to the activation of G protein-coupled receptors (Lazarowski et al., 2004, 

Tarran et al., 2005, Tarran et al., 2006b). The reporter molecules contained within the 

ASL include purine nucleotides and channel activated proteases (CAPs). Vallet et al 

(1997) identified CAPs and CAP inhibitors as regulators of ENaC activity, with CAPs 

cleaving ENaC and causing an increase in activity (Vallet et al., 1997). Donaldson 

and colleagues further suggested that the main CAP in airway epithelia is prostatin 

(Donaldson et al., 2002). In addition to CAPS, the protease inhibitor, short palate, 

lung and nasal epithelial clone 1 (SPLUNC1) also functions as a reporter molecule by 

binding to ENaC directly to inhibit channel activity (Garcia-Caballero et al., 2009, 

Gaillard et al., 2010).  
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1.3 Ion transport in the airway 

As indicated in section 1.2, the activity of ion channels, transporters and pumps must 

be co-ordinated for efficient MCC. Therefore, an understanding of transepithelial ion 

transport in the airway and what governs these fluxes is of importance. In particular, 

the movement of Na+ and Cl- is of interest as Na+ absorption is associated with a 

reduction in ASL height and Cl- secretion with increases in ASL height.  

 

The concentrations of Na+ and K+ in the cell are regulated by the Na+/K+ ATPase at 

the basolateral membrane which loads K+ into the cell and exports Na+. The Na+/K+/2 

Cl- cotransporter (NKCC) at the basolateral membrane consequently uses the Na+ 

gradient created by the Na+/K+ ATPase to accumulate Cl- into the cell along with Na+ 

and K+. Cl- subsequently leaves the cell passively through channels expressed on 

the apical membrane whilst K+ is recycled from the cell via the action of K+ channels 

at the apical and basolateral membrane (McCann and Welsh, 1990).  

 

ENaC, a heterotrimer made up of α, β and γ subunits, is responsible for the 

transepithelial absorption of Na+ from the luminal space to blood (Canessa et al., 

1994). ENaC is inhibited by CFTR activity, as an elevation of cyclic adenosine 

monophosphate (cAMP) activates protein kinase A (PKA), resulting in 

phosphorylation of ENaC and a decrease in channel gating (Fig. 1.03) (Stutts et al., 

1995, Konstas et al., 2003). Alternatively, ENaC is activated by anionic lipid such as 

 

Figure 1.02. Model of the airway surface liquid. (A) Airway surface liquid (ASL) in fixed human 

bronchial epithelial cells. Scale bar represents 7 µm. Taken from (Matsui et al., 1998a). (B) Model 

detailing composition of the layers of the ASL. The mucus gel layer contains the mucins MUC5AC 

and MUC5B. The periciliary liquid (PCL) layer is the same height as cilia and contains mucins such 

as MUC4 to form a mesh and prevent constituents of the mucus layer entering the PCL. Taken from 

(Button et al., 2012). 
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phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatidylinositol 4,5-bisphosphate 

(PIP2) and phosphatidylserine. Thus, PIP2 has been shown to prevent the rundown of 

ENaC activity by binding to all three subunits of ENaC (Ma et al., 2002). 

 

Cl- secretion through the apical plasma membrane is predominantly mediated by 

CFTR which responds to increases in cAMP (discussed in more detail in next 

section). Additionally, CaCC channels, which respond to increases in cytosolic Ca2+, 

also mediate Cl- secretion. CaCC are thought to be encoded by the Anoctamin 

1/TMEM16 A gene (Caputo et al., 2008, Schroeder et al., 2008, Yang et al., 2008). 

However, in intestinal and airway epithelia, TMEM16A may only contribute for a small 

amount of CaCC (Namkung et al., 2011). CaCC activity is stimulated by nucleotides 

such as ATP. Once released in the airways, nucleotides bind to P2Y2 receptors and 

cause an increase in cytosolic Ca2+ through phospholipase C (PLC). This pathway 

also leads to inhibition of ENaC through a reduction in PIP2 (Chambers et al., 2007). 

Increased secretion Cl- into the ASL by ATP has been reported to increase ASL 

height and mucus hydration, although the effects have been shown to be short-lived 

due to the rapid metabolism of ATP by 5’-ectonucleotideases (Tarran, 2004). The 

metabolism of ATP however, yields adenosine which can stimulate CFTR activity 

through increasing intracellular PKA (Lazarowski et al., 2004, Picher et al., 2004). 

 

The movement of K+ is also of importance within airway epithelia as the movement of 

this ion creates the electrical driving force for the movement of Cl- out of the cell 

(Silva et al., 1977). Within airway epithelia, the basolateral membrane expresses 

voltage gated K+ channels, KvLQT1 (also known as Kv7.1, KCNQ1) channels which 

respond to an increase in cAMP with the secretion of K+ (Fig. 1.03). Thus, these 

channels act in parallel with the activation in CFTR to maximise Cl- secretion (Mall et 

al., 2000). Another K+ channel, SK4, also known as Kca3.1 (KCNN4), is also 

expressed at the basolateral membrane of airway epithelia and respond to an 

increase in cytosolic Ca2+ (Mall et al., 2003). As with KvLQT1, SK4 channels act in 

concert with the activation of CaCC channels to maximise Cl- efflux from the cell. 

KvLQT1 and SK4 have also been found to be expressed at the apical membrane, 

where these channels may interact with CFTR (Bernard et al., 2003, Moser et al., 

2008, Klein et al., 2016). Furthermore, Davis and Cowley identified two-pore domain 

K+ channels at the apical plasma membrane, which also facilitate anion efflux (Davis 

and Cowley, 2006). 
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The movement of Na+ and Cl- creates local osmotic gradients allowing the movement 

of water, either passively through the paracellular pathway or transcellularly through 

aquaporins (AQP). Within airway epithelia, AQP 5 is expressed at the apical 

membrane, whilst AQP 3 and 4 are expressed at the basolateral membrane 

(Schreiber et al., 1999). Furthermore, Schrieber and colleagues showed that 

activation of CFTR was also linked to an increase in water permeability through 

AQP3, suggesting changes in cAMP can influence water transport through the cell 

(Schreiber et al., 1999). 

 

 

Figure 1.03. Ion transport in airway epithelia. Ion transport at the apical plasma membrane is 

controlled by the actions of the epithelial Na+ channel (ENaC), the cystic fibrosis transmembrane 

conductance regulator (CFTR), Ca2+ activated Cl+ channels (CaCC) and K+ channels. Ion 

transport at the basolateral membrane is controlled by the Na+/K+/2 Cl- cotransporter (NKCC), 

Na+/K+ ATPase and K+ channels. Water moves by paracellularly or through aquaporins (AQP). 

The activity of channels expressed in airway epithelia is regulated by increases in protein kinase 

A (PKA) linked to cAMP, which in turn is stimulated by activation of the A2B receptor. 

Alternatively, channels can be regulated by increases in Ca2+ through activation of the Gq 

pathway induced by UTP/ATP binding to P2Y2 receptors. Solid arrows represent positive 

regulation through these pathways whereas dashed lines indicate inhibition. The secretion of Cl- 

and absorption of Na+ at the apical membrane consequently influence the height of the airway 

surface liquid (ASL), composed of a periciliary layer (PCL) and mucus layer. 
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1.4 CFTR 

1.4.1 CFTR structure and function 

CFTR is an anion channel found on the apical membrane of polarised epithelial cells 

and is a member of ATP-binding cassette (ABC) transporter family (Riordan et al., 

1989). As with other members of this superfamily, CFTR consists of two membrane 

spanning domains (MSD), composed of six transmembrane α-helices and two 

nucleotide binding domains (NBD; Fig. 1.04). Amongst the ABC transporter family, 

the regulatory (R) domain and long N and C terminal tails are specific to CFTR (Rab 

et al., 2013, Riordan, 2005, Moran and Zegarra-Moran, 2008, Lubamba et al., 2012).  

 

The R domain of the channel contains multiple consensus sites for serine/threonine 

phosphorylation by either PKA or PKC. In a non-active state, the R domain is bound 

to NBD1, inhibiting dimerisation of CFTR (Aleksandrov et al., 2007). Phosphorylation 

of the channel releases the R domain from binding to NBD1 and causes the binding 

of the R domain to C terminus of CFTR, allowing channel activation (Baker et al., 

2007, Seavilleklein et al., 2008). The channel pore is formed by the two membrane 

spanning domains in response to the binding of ATP by the Walker A and B motifs. 

The Walker motifs bind ATP in a head to tail orientation and interruption of this 

conformation requires ATP hydrolysis. The opening of the channel is brought about 

by the dimerisation of the two NBD domains and the movement of the 

transmembrane domains to an outward facing conformation (Vergani et al., 2005). In 

addition, rotation of the transmembrane domains during channel gating is thought to 

facilitate channel opening. The pore has been characterised as a having a narrow 

central region (~5.3 Å) flanked by larger inner and outer vestibules (Linsdell and 

Hanrahan, 1998). In particular, the transmembrane segments 1, 6, 11 and 12 are 

involved in pore formation and line the inner vestibule; roles for transmembrane 

regions 3 and 9 in the cytoplasmic region of the pore have also been suggested 

(Wang et al., 2014). Transmembrane region 2 and extracellular loop 1 have been 

associated with forming the outer vestibule and attracting Cl- to the pore (Zhou et al., 

2008). 

 

CFTR has a single channel conductance of 8-11 pS and an ohmic Cl- conductance 

(Gray et al., 1989, Berger et al., 1991, Sheppard and Welsh, 1999). Notably, CFTR is 

not only selective for Cl-, but other ions can also permeate through the channel. The 

permeability sequence through the channel is as SCN->NO3
->Br->Cl->I->formate>F- 
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(Anderson and Gregory, 1991). It has been found that the permeability sequence of 

ions through CFTR follows a lyotropic sequence, determined by a selectivity filter in 

the channel pore. Therefore, ions that are easily dehydrated have a higher 

permeability through CFTR (Linsdell et al., 1997). Indeed, it has been shown that 

ions are dehydrated as they pass through the pore (Smith et al., 1999). The 

permeation of Cl- ions through CFTR is of particular interest because Cl- has the 

highest conductance through the channel with the conductance sequence being as 

follows, Cl->NO3
->Br->formate>F-,SCN-,I-. The conductance of ions through CFTR is 

in turn determined by the affinity of ions for the inner vestibule (Linsdell, 2016, 

Linsdell, 2017). 

  

Using the cell attached configurations of the patch clamp technique, Gray et al., 

(1989) showed that channel activity has a characteristic profile. Initial channel 

activation of CFTR is typified by a burst phase in which the channel shows flickering 

(Gray et al., 1989). The burst phase is followed by the channel being in a closed state 

(Zhou et al., 2001). This profile of CFTR channel activity involves the channel being 

in three states, open, closed or open-ready. It has been suggested that the channel 

is open when ATP is bound with the binding of ATP causing the opening of a gate 

within the channel pore and allowing access to the cytoplasmic region of the channel. 

Likewise, ATP hydrolysis results in the channel being closed (Wang and Linsdell, 

2012). Further, the length of channel opening has been correlated to the time for ATP 

hydrolysis (Li et al., 1996). 

 

 
Figure 1.04.  Model of CFTR. (A) CFTR is composed of two transmembrane domains (TMD) that 

are each composed of six transmembrane helices. The protein also contains two nucleotide 

binding domains (NBD) which are the site for nucleotide hydrolysis and a regulatory (R) domain 

which is unique to CFTR. Extracellular loops (ECL) and intracellular loops (ICL) are also indicated. 

(Kim and Skach, 2012). (B) Model of human CFTR. Taken from (Liu et al., 2017). 
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1.4.2 Biogenesis and trafficking of CFTR 

CFTR synthesis occurs on cytosolic ribosomes, which are subsequently targeted and 

inserted into the endoplasmic reticulum (ER) (Skach, 2000, Farinha et al., 2013). The 

protein is assembled in the ER, with each domain of CFTR folding separately after 

which interdomain assembly occurs. CFTR undergoes quality control in the ER, with 

chaperones such as calnexin and Aha acting in concert with the cytosolic proteins 

Hsp 40/70/90, the co-chaperones Hdj2, HsBp1, Hop and p23, and CHIP to assess 

CFTR folding (Yang et al., 1993, Pind et al., 1994, Loo et al., 1998, Farinha et al., 

2002). If CFTR fails to be deemed suitable, the protein is targeted for ER associated 

degradation. Furthermore, along with Hsp70, CHIP can also mediate degradation of 

misfolded CFTR by targeting the protein for ubiquitination and subsequent 

proteasomal degradation (Meacham et al., 1999, Meacham et al., 2001). 

 

Following assembly, CFTR is transferred to an ER-Golgi intermediate compartment 

via COPII vesicles. At the Golgi apparatus, CFTR undergoes further quality control 

and may be targeted back to the ER for further modification (Bannykh et al., 2000, 

Ellgaard and Helenius, 2003). Alternatively, CFTR can be modified by N-linked 

glycosylation, however it has been suggested that this modification is not necessary 

for CFTR to proceed to the plasma membrane (Yu et al., 2007). The next step in the 

processing of CFTR involves the protein being targeted to the apical plasma 

membrane, via endosomes. In total, it has been suggested that only 30% of 

synthesised protein reaches the plasma membrane (Ameen et al., 2007, Cant et al., 

2014). 

 

Exocytosis of CFTR in to the apical plasma membrane is regulated by the interaction 

of CFTR with post synaptic density protein (PSD-95), drosophila disc large tumour 

suppressor (Dlg 1) and zona occludens 1 protein (ZO-1; PDZ) proteins. CFTR’s PDZ 

binding motif (DTRL) is located at the C-terminus of the channel. The importance of 

this interaction has been evidenced by truncation of the C-terminus of CFTR resulting 

in the production of protein that was not targeted to the apical membrane (Moyer et 

al., 1999). PDZ proteins thought to be involved in CFTR localisation include ezrin-

radixin-moesin (ERM)-binding phosphoprotein (EBP50/NHERF1), which has been 

shown to bind to the actin cytoskeleton, CAP70 which is found in the apical region of 

airway cells and also binds the cytoskeleton and CAL, which is localised below the 
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apical membrane and may be associated with the trans Golgi network (TGN) (Short 

et al., 1998, Wang et al., 2000, Cheng et al., 2002).  

 

In addition to tethering CFTR to the apical plasma membrane, the interaction of 

CFTR with PDZ proteins also helps regulate CFTR activity; CAP70 and EBP50 have 

been shown to increase the open probability of CFTR. Wang and colleagues 

suggested CAP70 increased the open probability of CFTR by promoting the 

interaction of CFTR monomers with other CFTR monomers (Wang et al., 2000). 

Raghuram and colleagues also suggested EBP50 may act to increase Po through 

promoting dimerisation of CFTR (Raghuram et al., 2001). Furthermore, ezrin has 

been suggested to act as an A kinase anchor protein (AKAP) and bind to EBP50 to 

facilitate the recruitment of PKA to the plasma membrane (Sun et al., 2000). Through 

interaction with EBP50 or CAP70, it has been suggested PLC can also be recruited 

to the plasma membrane. Additionally, PKC can also be tethered to EBP50 through 

interaction with a receptor for activated C kinase (RACK1; Fig. 1.05 (Jia et al., 1997). 

Thus, it has been suggested that recruitment of other proteins to the plasma 

membrane by PDZ proteins can potentiate CFTR activity. 

 

 

Mature CFTR has a half-life of between 24 - 48 hours at the plasma membrane with 

the activity of CFTR at the plasma membrane being dependent on both the number 

of channels present at the plasma membrane and the conductivity of the channels 

(Heda et al., 2001, Swiatecka-Urban et al., 2002). This can be summarised by the 

equation; I=iNPo where I represents the macroscopic current, i the unitary 

 

Figure 1.05.  Protein interactions of CFTR at the plasma membrane. CFTR is contained in a 

complex with proteins that regulate CFTR activity. Furthermore, the complex tethers CFTR to the 

apical plasma membrane through interaction with actin. Taken from (Guggino and Stanton, 2006). 
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conductance of the channel, N the number of channels at the plasma membrane and 

Po represents the open probability of the channel. Thus, factors that affect trafficking 

usually affect N and so have consequent effects on conductance (Ameen et al., 

2007). 

 

Regulation of CFTR density at the cell membrane is dependent upon endocytic 

pathways. Removal of CFTR from the membrane is thought to be dependent upon 

clathrin mediated pathways and has been shown to be a rapid process, with a 

capability of removing up to 10% of total CFTR per minute (Prince et al., 1994). This 

rapid internalisation of CFTR occurs due to the presence of tyrosine-based and 

dileucine-based internalisation motifs within the C terminus of CFTR. The tyrosine-

based motif consists of either a NPXY signal where X is a variable amino acid or the 

more common YXXΦ signal where Φ represents a large hydrophobic amino acid 

(Goldstein et al., 1979, Ameen et al., 2007). The dileucine-based motif consists of 

D/EXXXLL/I or DXXLL and is important in regulating protein trafficking to 

endosomes/lysosomes (von Essen et al., 2002, Ameen et al., 2007).  

 

Clathrin-mediated endocytosis of CFTR is facilitated by the C terminus of CFTR 

binding to the µ2 subunit of an endocytic adaptor complex known as AP-2 (Weixel 

and Bradbury, 2001). Once endocytosed, approximately 50% of CFTR may be 

recycled back to the cell membrane (Picciano et al., 2003). Therefore, CFTR also 

undergoes trafficking between intracellular organelles and the plasma membrane. 

The Ras associated binding (Rab) GTPase, Rab5 has been shown to modulate 

trafficking of CFTR from the plasma membrane to early endosomes whilst Rab7 

facilitates movement from endosomes to lysosomes. Rab11 has been shown to 

modulate trafficking of CFTR from endosomes to the TGN and plays a role, via 

recycling endosomes, in trafficking CFTR back to plasma membrane (Gentzsch et 

al., 2004, Ameen et al., 2007, Farinha et al., 2013). Further, the recycling of CFTR 

back to the plasma membrane is facilitated by Rme-1 which regulates the movement 

of CFTR from the endosome recycling compartment to the plasma membrane 

(Picciano et al., 2003). Thus, the recycling of CFTR back to the plasma membrane 

allows cells to maintain a relatively high proportion of CFTR ready for transport to the 

membrane, if required (Fig. 1.06).  
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1.4.3 Regulation of CFTR channel activity by phosphorylation  

The activity of CFTR is controlled by phosphorylation at multiple sites on the R 

domain of the channel. Particularly, the balance between the phosphorylation by 

kinases and phosphatases that remove phosphoryl groups determine the amount of 

Cl- secretion through CFTR. Phosphorylation at various sites on the R domain can be 

either stimulatory or inhibitory; however, phosphorylation at multiple sites is required 

for full activation of CFTR. Furthermore, phosphorylation at one site can influence the 

phosphorylation of other sites on the R domain (Chappe et al., 2004, Hegedűs et al., 

2009). 

 

The key kinase linked to the activation of CFTR is PKA, identified through the large 

number of PKA consensus sites on the R domain of CFTR (Anderson et al., 1991). 

 

Figure 1.06. Trafficking of CFTR. CFTR is synthesised in ribosomes and then transferred to the 

ER. Following transport to the ER, CFTR is transported to the trans Golgi network and then onto 

the plasma membrane. Following this, CFTR is transported to endosomes through internalisation 

signals present on CFTR. CFTR can be cycled back to the cell membrane from endosomes or to 

lysosomes for degradation. Misfolded CFTR can also be targeted to the proteasome for 

degradation. Taken from (Bertrand and Frizzell, 2003). 
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Accordingly, there are up to 19 sites on the R domain which have been predicted to 

be phosphorylation sites for PKA (Picciotto et al., 1992, Gadsby and Nairn, 1999). 

Phosphorylation of CFTR by PKA results in the R domain binding to other domains of 

CFTR to allow channel activation (Chappe et al., 2005). Consequently, there is an 

increase in the open probability of the channel. In addition to phosphorylation at the 

R domain, it has also been suggested that PKA may phosphorylate sites near NBD1, 

as identified in NBD1-R domain peptides. Indeed, mutation of these sites when 

phosphorylation sites on the R domain are also mutated has been found to cause 

further loss of channel activity (Townsend et al., 1996, Neville et al., 1997, Neville et 

al., 1998). Conversely, mutation of phosphorylation sites in the R domain only does 

not abolish all CFTR channel activity, adding further evidence for the functional 

significance of sites outside the R domain (Seibert et al., 1995).  

 

Consensus sites for PKC have also been identified, with 6 sites on the R domain 

being suggested as targets for PKC phosphorylation (Chappe et al., 2004). However, 

this kinase causes a smaller activation of CFTR in comparison to PKA. Instead, 

phosphorylation of CFTR by PKC has been found to facilitate the activation of the 

channel by PKA by shifting the PKA concentration dependence of the channel (Jia et 

al., 1997, Chappe et al., 2003). Furthermore, phosphorylation of CFTR by PKC has 

been shown to be crucial for PKA induced configurational changes involving binding 

of the R domain to CFTR. It has been suggested that the configurational change in 

CFTR when stimulated with PKA and PKC in combination, causes CFTR to be more 

conductive (Seavilleklein et al., 2008). Interestingly, Picciotto and colleagues showed 

that exposure of a portion of the R domain to supraphysiological levels of Ca2+ 

caused an inhibition of PKC dependent phosphorylation of CFTR (Picciotto et al., 

1992). 

 

Further to phosphorylation by protein kinases, Fischer and colleagues showed that 

CFTR activation can occur through tyrosine phosphorylation, independent of the 

action of PKA. Through measuring changes in channel activity using inside out 

patches, the researchers identified the tyrosine kinases p60c-Src and proline-rich 

tyrosine kinase 2 (Pyk2) as kinases capable of activating CFTR. Moreover, the 

activation of CFTR induced by tyrosine kinases was comparable to that caused by 

PKA (Fischer and Machen, 1996, Billet et al., 2013). The kinase, CK2, has also been 

shown to play role in the activation of CFTR. CK2 binds to CFTR at the apical 
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membrane and phosphorylates the channel, thus increasing Cl- secretion (Treharne 

et al., 2009). Furthermore, CK2 has also been linked to the processing and trafficking 

of CFTR, with CK2 inhibition resulting in the production of CFTR that is not stable at 

the plasma membrane (Luz et al., 2011). Finally, 5’ adenosine monophosphate-

activated protein kinase (AMPK) has been linked to the phosphorylation of CFTR. 

However, unlike the other protein kinases previously discussed, phosphorylation by 

AMPK has been linked to inactivation of CFTR. AMPK directly binds to CFTR and 

inactivates the channel, possibly through preventing the phosphorylation of CFTR by 

PKA and PKC (Hallows et al., 2000, Kongsuphol et al., 2009). 

 

As the activity of CFTR is controlled by the phosphorylation of the channel, it follows 

that there are a variety of phosphatases linked to the regulation of CFTR activity. 

Phosphatases that have been linked to CFTR function predominantly include protein 

phosphatase 2 (PP2). Specifically, the isoforms PP2A, PP2B and PP2C have been 

linked to an inhibition of CFTR activity. In vitro, PP2A and PP2C are known to have 

relevant roles in the regulation of CFTR activity (Berger et al., 1993, Luo et al., 1998). 

CFTR has been shown to act as a substrate for PP2A, with the C terminus of CFTR 

being physically linked to the catalytic and regulatory subunits of PP2A. Furthermore, 

PP2A activity has been shown to have functionally important consequences for basal 

CFTR activity, as inhibition of PP2A can prevent the rundown of CFTR channel 

activity when measured in outside-out membrane patches. This response was 

physiologically related to an increase in ASL height (Thelin et al., 2005). Alongside 

controlling basal CFTR activity, PP2A is capable of causing an inhibition of activated 

CFTR (Luo et al., 1998). PP2C requires the presence of Mg2+ to be active. Studies 

have indicated that addition of PP2C is able to cause an inhibition of CFTR activity 

faster than PP2A. Furthermore, under basal conditions, PP2C and CFTR are 

tethered together, possibly to enable deactivation of the channel following cAMP 

stimulation (Dahan et al., 2001). PP2A and PP2C show different patterns of effects 

on CFTR gating after inhibition suggesting they act on different sites on CFTR (Luo et 

al., 1998). Importantly, neither PP2A nor PP2C causes a complete inhibition of CFTR 

activity alone, suggesting that multiple phosphatases are required to fully deactivate 

CFTR (Luo et al., 1998). 

 

PP2B or calcineurin, which requires the presence of Ca2+ and calmodulin for activity, 

has also been implicated in the regulation of CFTR activity. Using the specific 
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inhibitors, cyclosporin A and deltamethrin, Fischer and colleagues showed that 

calcineurin caused an inhibition of either PKA or PKC stimulated CFTR activity. 

However, there has been some uncertainty regarding the role of PP2B, with the 

regulation of CFTR by PP2B appearing to be cell type dependent (Fischer et al., 

1998). Lastly, alkaline phosphatase has also been implicated in the regulation of 

CFTR activity. Using the inhibitor, bromotetramisole, in intact cells and membrane 

patches, Becq and colleagues (1994) found that inhibition of alkaline phosphatase 

stimulated CFTR activity. Furthermore, inhibition of alkaline phosphatase also 

increased channel activity of CFTR channels with a cystic fibrosis causing (G551D) 

mutation (detailed in next section (Becq et al., 1994).  

 

The major kinases and phosphatases involved in the regulation of CFTR exist in a 

macromolecular complex. The kinases and phosphatases contained within this 

complex include PKA, PKC, AMPK, PP2A and PP2C. Although calcineurin has not 

been shown to be contained within this complex, AKAP79, which binds to calcineurin, 

has been found to be tethered to CFTR. As discussed in section 1.4.2, CFTR is also 

tethered to a complex including EBP50, CAP70 and CAL (Bozoky et al., 2013). The 

arrangement of proteins in this complex highlights the tight regulation of CFTR 

activity. 

 

1.5 Diseases in the airway due to defective CFTR  

1.5.1 Cystic Fibrosis 

Cystic fibrosis (CF) is an autosomal recessive disease, deemed an ‘orphan disease’ 

which affects approximately 80,000 people worldwide (Lubamba et al., 2012, Rab et 

al., 2013). Broadly, CF is a consequence of a loss of Cl- permeability through CFTR. 

Clinically, the loss of CFTR causes a multi organ disease which adversely affects the 

lungs, gastrointestinal and reproductive tracts. Critically, deterioration of lung function 

is the major determinant of morbidity (Davis, 2006). 

 

To date, >2000 mutations in CFTR have been associated with development of cystic 

fibrosis, however, only approximately 10% of these mutations have been directly 

associated as causative in CF (www.genet.sickkids.on.ca/cftr, https://www.cftr2.org/). 

The mutations in CFTR have effects ranging from the production of protein with 

defects in gating, conductance, or reduced expression at the plasma membrane. 

However, around 90% of patients harbour the same mutation, the deletion of 
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phenylalanine 508 (F508) located in NBD1 (Davis, 2006). This mutation results in a 

loss of CFTR at the plasma membrane due a temperature sensitive processing 

defect where the protein is retained in the ER (Dalemans and Barbry, 1991, Amarai 

et al., 1992, Okiyoneda et al., 2004). Consequently, only ~1% of translated protein 

reaches the apical membrane. However, Swiatecka-Urban et al., (2005) showed that 

this protein also had a reduced half-life of ~4 hours at the plasma membrane and a 

defect in channel gating with the channels spending an increased proportion of time 

in the closed state when compared to wild type CFTR (Lukacs et al., 1993, Heda et 

al., 2001, Swiatecka-Urban et al., 2005). 

 

Within the airways, the loss of CFTR from the plasma membrane causes a loss of Cl- 

secretion and an increase in Na+ absorption due to the activity of ENaC no longer 

being negatively regulated by CFTR. CaCC is functional in CF patients and provides 

a route for Cl- efflux; however, this can be compromised by infection (Chambers et 

al., 2007). This altered ion channel activity leads to reduced Cl- secretion and 

increased Na+ absorption which causes dehydration of the airways and a reduction in 

the volume of the PCL (Davis, 2006). The net effect of reduced ASL volume is that 

patients suffer from mucus accumulation (Tarran et al., 2006a).  

 

As the F508 deletion represents the most predominant CF causing mutation, 

treatment strategies have focused on alleviating this protein defect. Currently 

available CFTR modulators are potentiators, such as ivacaftor, which increase CFTR 

channel activity at the plasma membrane and correctors, such as lumacaftor, which 

targets the defect in CFTR processing by enabling movement of the protein to the 

plasma membrane (Clancy et al., 2012, Rowe and Verkman, 2013). 

 

1.5.2 Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD), the third leading cause of death 

worldwide, is characterised by airflow obstruction and is primarily caused by smoking 

(World Health Organisation, 2014). The disease can also be brought about by 

environmental exposure to heavy metals and toxic fumes. A small proportion of 

patients develop COPD due to mutation of α1 antitrypsin (Gerald and Bailey, 2002). 

Clinically, COPD is a manifestation of either emphysema, chronic bronchitis (CB), or 

a combination of both. Chronic bronchitis is clinically defined as a chronic cough that 
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persists for two months or more and the progression of CB causes a loss of lung 

function similar to that in CF (Boucher, 2004). 

 

COPD usually leads to lung inflammation that continues even after smoking 

cessation. Disease progression leads to obstruction of the small airways due to 

mucus production and accumulation. Furthermore, the chronic inflammatory 

environment results in structural changes in airway epithelia with an increase in 

smooth muscle and fibrosis resulting in thickening of the basement membrane and 

lamina reticularis just beneath the basement membrane of airway walls (Yoshida and 

Tuder, 2007, Tuder and Petrache, 2012). Along with smoking cessation and 

mucolytics, treatment strategies for COPD involve the use of corticosteroids to 

reduce inflammation and β adrenergic receptor agonists to increase ciliary beat 

frequency and mucus hydration (Kim and Criner, 2013).  

 

The similar clinical symptoms between patients with COPD and CF, suggest there 

may be a common mechanism for the initiation of both diseases (Boucher, 2004). 

Accordingly, sufferers of both COPD and CF show impaired mucus clearance from 

the airways due to the production of thick, viscous mucus, brought about by defective 

ion homeostasis in the airways. The common spectrum of clinical manifestations of 

the two diseases led to the initial speculation that both diseases could be due to 

dysfunction of CFTR. Indeed, research has found that CFTR function is reduced in 

COPD (Dransfield et al., 2013). Furthermore, although chronic bronchitis has been 

highlighted as being clinically similar to CF, Bodas et al., (2011) linked the loss of 

CFTR to the progression of emphysema (Bodas et al., 2011). The similarities 

between COPD and CF also extend to the bacterial infections seen with 

Staphylococcus aureus and Pseudomonas aeruginosa common in both CF and 

COPD patients (Kahl et al., 1998, Soler et al., 1998, Murphy et al., 2008). 

Furthermore, the treatment regimens used for CF patients have applications for 

COPD patients. For example, ivacaftor is effective in treating the CFTR defect 

caused by smoke exposure (Raju et al., 2017). 

 

1.6 The effect of cigarette smoke on CFTR 

In recent years, several groups have proposed that cigarette smoke (CS) affects 

CFTR with the observation that smoke exposure negatively regulates CFTR in 

multiple ways. CS exposure has been shown to reduce CFTR at the mRNA level, 
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along with the amount of protein expressed at the membrane in Calu-3 cells (Cantin 

et al., 2006). Furthermore, Kreindler and colleagues showed the ionic fluxes were 

altered in cells exposed to cigarette smoke extract. Using human bronchial epithelial 

cells as a model, the researchers showed that transepithelial Cl- transport was 

decreased via a reduction in both Cl- secretion and Cl- uptake via NKCC1. The effect 

of this was an increased net Na+ absorption, as with CF cells (Kreindler et al., 2005). 

 

The link between cigarette smoke exposure and CFTR dysfunction has not only been 

found in airway epithelia, but also in sweat ducts, pancreatic and intestinal epithelia. 

A study by Raju et al., 2013 looked at the effect of CS on extrapulmonary organs 

isolated from smokers and non-smokers, the researchers found that CFTR in multiple 

organs including the intestine was dysfunctional. Moreover, the researchers showed 

acrolein, which is a toxic component of CS, was likely the cause of extrapulmonary 

CFTR dysfunction (Jia et al., 2007, Raju et al., 2013). Indeed, many papers have 

speculated that smoking causes a systemic defect in CFTR function, creating a 

pseudo-CF phenotype (Cantin et al., 2006, Raju et al., 2013).  

 

Recently, work from our lab has shown that exposure to the volatile phase of 

cigarette smoke causes an increase in cytosolic Ca2+ (Rasmussen et al., 2014). 

Further to the increase in Ca2+, cigarette smoke exposure caused activation of the 

MEK/ERK pathway (Xu et al., 2015). Both cellular effects of smoke were linked to a 

decrease in plasma membrane expression of CFTR and the internalisation of CFTR 

into insoluble aggregates. Interestingly, the effect of smoke was specific to CFTR. 

Na+ transport was unaffected by CS, as evidenced by the expression of the α subunit 

of ENaC being unchanged after CS exposure. Cl- secretion through CaCC was also 

unaffected by CS as agonists such as ATP were still able to induce Cl- efflux after CS 

exposure (Clunes et al., 2012).  

 

It has been previously suggested that although cigarette smoke is composed of 

thousands of constituents, the toxic effects of smoke are a consequence of a few 

chemicals. Cadmium and acrolein have been used to mimic the effect of smoke 

exposure and linked to a reduction in CFTR activity (Raju et al., 2013, Rennolds et 

al., 2010). Indeed, specific components of smoke underlying the increase in cytosolic 

Ca2+ were identified by Sassano et al., (2017) who showed that nicotine and 
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formaldehyde were amongst the constituents linked to substantial increases in 

cytosolic Ca2+ (Sassano et al., 2017).  

 

Although CS has been shown to have numerous effects on cells, an important caveat 

to consider is that many of the studies cited above use differing methods of exposing 

cells to CS. Furthermore, cigarette smoke exposure protocols vary between 

laboratories, with each lab having their own method of exposure. CS is composed of 

a volatile phase, which comprises approximately 95% of CS and a particulate phase 

composed of lipid and water-soluble particulates, which constitutes 5% of CS. 

Typically used formulations include cigarette smoke condensate (CSC), which is 

prepared by passing whole cigarette smoke (WCS) through a filter pad and then 

sonicating the filter pad in DMSO to collect the lipid soluble phase. Alternatively, 

groups have also used cigarette smoke extract (CSE) which is prepared by passing 

WCS through a buffer solution to collect the aqueous phase of CS. Other labs have 

exposed cells to specific components of CS such as nicotine, acrolein, cadmium or 

reactive oxygen species. Finally, studies have also puffed the volatile or gaseous 

phase of cigarette smoke over cells directly, with the particulate phase typically 

excluded from exposure due to the highly fluorescent nature of this phase. 

Importantly, Clunes et al., (2008) showed that this method of smoke exposure most 

closely resembles in vivo smoke exposure. By comparing nicotine concentrations in 

the airway surface liquid from smoke exposed cells to concentrations found in 

sputum from smokers, Clunes et al., (2008) found WCS was more effective than CSE 

at replicating in vivo smoke exposure (Clunes et al., 2008).  

 

1.7 Calcium signalling  

Ca2+ is a ubiquitous second messenger, able to control many cellular processes 

within a cell. The sensitivity of cells to Ca2+ is achieved by the high concentration 

gradient between cytosolic Ca2+ and either intracellular organelles or the extracellular 

space. The relatively low cytosolic Ca2+ is achieved by the action of Ca2+ influx and 

efflux pumps and transporters. At the plasma membrane, the plasma membrane Ca2+ 

ATPase and the Na+/Ca2+ exchanger act to extrude Ca2+ from the cell and maintain a 

low resting Ca2+ in the range of ~100 nM. Alongside pumps expressed at the plasma 

membrane, the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) restores 

cytoplasmic Ca2+ by transporting Ca2+ to the ER stores (Brini and Carafoli, 2009). 
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Mitochondria can also take up cytosolic Ca2+ via the mitochondrial uniporter which 

couple Ca2+
 uptake to the mitochondrial membrane potential (Berridge et al., 2000, 

Berridge et al., 2003). Finally, lysosomal Ca2+ channels also play a role in cytosolic 

Ca2+ uptake by coupling the uptake of Ca2+ to H+ transport (Galione and Churchill, 

2002). 

 

Cellular cytoplasmic Ca2+ signals are encoded by not only the duration of Ca2+ signal 

but also the frequency and amplitude of the signal. Thus, a large variety of responses 

can be elicited after a change in cytosolic Ca2+ due to effectors that respond to 

distinct spatiotemporal signals. Furthermore, Ca2+ binding proteins and buffers can 

help to fine tune changes in cytosolic Ca2+. The buffers have different properties, with 

the fast buffers, calretinin and calbindin, having a low affinity for Ca2+ and the slow 

buffer, parvalbumin, having a higher affinity for Ca2+ (Bootman et al., 2001, Berridge 

et al., 2003). 

 

The ER represents a large cellular store of Ca2+ and for the most part, Ca2+ release 

from intracellular stores is derived from the ER. As the ER spans the entire cell, 

release of Ca2+ from this store can create global increases in cytosolic Ca2+. Release 

of Ca2+ from the ER is usually triggered by Ca2+ itself or by second messengers 

including inositol-1,4,5-trisphosphate (IP3), cyclic ADP ribose, nicotinic acid adenine 

dinucleotide triphosphate and sphingosine-1-phosphate. The process of Ca2+ 

induced Ca2+ release can help create a large increase in cytosolic Ca2+ over a short 

timeframe and the generation of repetitive Ca2+ waves (Berridge et al., 2003). 

Furthermore, depletion of the ER stores can activate store operated Ca2+ entry, the 

molecular components of which are composed of the ER Ca2+ sensor, STIM1 and the 

plasma membrane channel, Orai1 (Clapham, 2007). 

 

Mitochondria can also act as sources for Ca2+. Mitochondria take up Ca2+ via a 

uniporter which is controlled by the mitochondrial membrane potential and can 

modulate Ca2+ uptake and release in response to local changes in Ca2+. 

Furthermore, mitochondria can release Ca2+ through a Na+ dependent exchanger 

(Bootman et al., 2001, Rizzuto et al., 2012). Mitochondria have also been shown to 

act as Ca2+ buffers for Ca2+ released from the ER (Bakowski et al., 2012). 

Importantly, within airway epithelial cells, mitochondria have been shown to act as 

Ca2+ buffers, limiting the release of Ca2+ to either the apical or basolateral poles of 
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the cell (Ribeiro et al., 2003). Indeed, Rasmussen et al., (2014) also speculated that 

the mitochondria buffered some of the Ca2+ released after smoke exposure 

(Rasmussen et al., 2014). However, it has been suggested mitochondria do not 

buffer modest cytosolic elevations in Ca2+, and so may not respond to physiological 

changes in Ca2+ (Ribeiro et al., 2003). 

 

Research from our lab associated Ca2+ release from lysosomal stores as being 

responsible for the smoke-induced rise in cytosolic Ca2+. Ca2+ uptake into lysosomes 

is proton dependent and has been suggested to facilitate the endocytic pathway 

(Galione and Churchill, 2002). Ca2+ entry into lysosomes is thought to occur through 

secondary active transport due to proton transport into lysosomes, however the 

transporter responsible is unknown (Jha et al., 2014). It has also been suggested that 

Ca2+ uptake can occur from the extracellular space, but the contribution of Ca2+
 

uptake through this method is unclear (Christensen et al., 2002, Xiong and Zhu, 

2016). Lysosomal Ca2+ release has been shown to be sensitive to NAADP and occur 

through two-pore channels (TPC) although there is conflicting evidence as to whether 

TPC channels transport Ca2+ (Wang et al., 2012). Furthermore, it has been 

suggested that Ca2+ release from lysosomes can be increased by release from ER 

stores and Ca2+ induced Ca2+ release (Calcraft et al., 2009, Morgan et al., 2011). It 

has also been suggested that members of the transient receptor potential (TRP) 

family of channels, in particular TRPML1, may mediate Ca2+ release from lysosomes 

as these channels have been shown to be NAADP sensitive, although with a much 

lower affinity than TPC channels (Zhu et al., 2010). Finally, P2X4 channels have been 

shown to cause pH dependent Ca2+ release such that the channels are active at 

neutral pH (Huang et al., 2014, Cao et al., 2015). 

 

1.7.1 Ca2+ signalling in airway epithelia 

Ca2+ plays an important role in influencing mucociliary clearance in airway epithelia. 

Airway epithelial Ca2+ release is elicited by activation of apical or basolateral G 

protein-coupled receptors. The receptors are linked to phospholipase C (PLC), which 

release Ca2+ from the ER store through the generation of IP3. Alternatively, 

nucleotides released into the airways are coupled to purinoceptors (P2Y2) which also 

cause Ca2+ release from ER stores via PLC (Antigny et al., 2011). Additionally, 

acetylcholine released from parasympathetic nerve endings at the basolateral 

membrane can also stimulate Ca2+ release by binding to M3 muscarinic acetylcholine 
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receptors that are coupled to PLC activation (Eichstaedt et al., 2008, Billet et al., 

2013, Widdicombe and Wine, 2015). 

 

Within airway epithelia, changes in Ca2+ help regulate a multitude of processes. As 

discussed earlier, changes in cytosolic Ca2+ can affect Cl- secretion through CaCC 

and therefore have secondary effects on ASL height (Tarran et al., 2001b, Tarran, 

2004, Schroeder et al., 2008, Yang et al., 2008). In addition to influencing ion 

channel activity, ciliary beat frequency (CBF) is also regulated by changes in 

cytosolic Ca2+. The basal level of CBF is regulated by changes in Ca2+. Furthermore, 

ciliary beat frequency also increases in response to specific oscillatory Ca2+ changes 

in cytosolic Ca2+ (Di Benedetto et al., 1991, Evans and Sanderson, 1999). In 

accordance with Ca2+ regulating ciliary beat frequency, smoke has been shown to 

cause a reduction in CBF (Dalhamn, 1959). This is particularly important as efficient 

ciliary beating is needed to maintain MCC (Stanley et al., 1986). Interestingly, the 

reduction in CBF due to smoke exposure has been linked to changes induced by 

smoke independent of Ca2+. Ciliary beating can also be stimulated by increases in 

cAMP linked to PKA; conversely activation of PKC causes an inhibition of ciliary 

beating. CS has been shown to activate PKC and consequently decrease ciliary beat 

frequency and the number of ciliated cells (Simet et al., 2010). 

 

The secretion of mucins is a Ca2+ dependent process with the exocytosis of mucin 

granules requiring an increase in cytosolic Ca2+ (Davis and Dickey, 2008). 

Importantly, Ca2+ regulates mucin secretion at multiple stages with the movement of 

secretory granules towards the plasma membrane, the priming of secretory granules 

so they are fusion competent, and the fusion of granules with the plasma membrane 

all being dependent on Ca2+ (Klenchin and Martin, 2000, Rossi et al., 2007). 

Likewise, the secretion of mucin is increased when airway goblet cells are exposed to 

Ca2+ ionophores or conversely, inhibited when Ca2+ is chelated (Abdullah et al., 

1997, Conway et al., 2003). The importance of Ca2+ in mucin secretion has also been 

underscored with the finding that regulation of secretion by PKC, previously thought 

to be a Ca2+ independent process, is also reliant on Ca2+ (Rossi et al., 2004). 
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1.8 Aims 

Recent work from our lab and others, has found that cigarette smoke negatively 

affects CFTR (Kreindler et al., 2005, Cantin et al., 2006, Clunes et al., 2008). 

However, our lab was the first to show cigarette smoke induced CFTR internalisation 

and that a smoke-induced increase in cytosolic Ca2+ was essential for CFTR 

internalisation (Clunes et al., 2012, Rasmussen et al., 2014). These data, along with 

research from other groups, leads me to hypothesise that increases in cytosolic Ca2+ 

can modulate the presence of CFTR at the plasma membrane, specifically, by 

causing a reduction in the channels present at the plasma membrane (Bargon et al., 

1992, Bozoky et al., 2017). However, the direct effect of an increase in cytosolic Ca2+ 

on CFTR function and expression has not yet been investigated. Thus, a better 

understanding of this process would be of value in determining how changes in Ca2+ 

affect CFTR activity and expression. As an increase in cytosolic Ca2+ is crucial for the 

effect of smoke on CFTR, these data would directly help understand the deleterious 

effects of CS on epithelial function. Moreover, the data could have consequences for 

the development of new therapeutics for COPD. 

 

Therefore, the specific aims of my project were to; 

• Determine if an increase in cytosolic Ca2+ affects whole cell CFTR-mediated 

conductance 

• Characterise if a change in cytosolic Ca2+ was temporally related to a change 

in CFTR-mediated conductance 

• Compare the effects of an increase in cytosolic Ca2+, induced by 

pharmacological agents, on CFTR to that caused by cigarette smoke 

• Identify the molecular mechanism by which an increase in cytosolic Ca2+ 

affects CFTR function and validate these findings in primary human bronchial 

epithelial cells 
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Chapter 2.0 Methods 

 

2.1 Reagents 

All reagents were purchased from Sigma-Aldrich, except for ionomycin and CFTRinh-

172 (Calbiochem), Fura-2 acetoxymethyl ester (AM; Invitrogen), forskolin, cyclosporin 

A and H89 (Tocris). Drugs used are listed in table 1; stock solutions of each drug 

were made up in dimethyl sulfoxide (DMSO). Culture media was purchased from 

either Sigma-Aldrich or Gibco. All culture flasks and plates were purchased from 

Corning. The pIRES2-EGFP-CFTR vector was a gift from Dr Linsdell of Dalhousie 

University; STIM1 mCherry was a gift from Dr Dolmetsch of Stanford University. 

Antibodies were purchased from Cell Signalling Technology apart from the 

calreticulin antibody (Abcam). The cell lines, HEK 293T, A6, SL-29 and VSW were 

purchased from ATCC; Sf9 cells were kindly donated by Dr Hammond at the 

University of North Carolina, Chapel Hill. 

 

Reagent Stock concentration Working concentration 

Forskolin 100 mM 5 µM 

CFTRinh-172 50 mM 10 µM 

Thapsigargin 2 mM 200 nM 

Ionomycin 5 mM 1 µM 

GPN 500 mM 100 µM 

Dynasore 100 mM 80 µM 

H89 5 mM 500 nM 

Staurosporine 1 mM 100 nM 

Cyclosporin A 100 mM 1 µM 

Okadaic Acid 1 mM 10 nM 

U0126 10 mM 10 µM 

PD98059 10 mM 10 µM 

BAPTA-AM 20 mM 50 µM 

Fura-2 AM 1mM 5 µM 
 

 
Table 1.01. List of reagents and the concentrations they were used at. 
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2.2 Cell culture 

Tissue culture was carried out in class II laminar flow hoods. All media and 

supplements were filtered through a 0.2 µm filter unit before use. Media was pre-

warmed to 37oC in a water bath and media and tissue culture equipment were 

sterilised before use. All cultures were maintained in 75 cm2 flasks with 25 mls of 

growth media and were grown to ~90% confluence. To subculture cells, culture 

media was removed and cells were rinsed with phosphate buffered saline (PBS) 

twice. Cells were then incubated in 5 mls of a 0.05% trypsin and 0.02% 

ethylenediaminetetraacectic acid (EDTA) solution for 2-5 minutes at 37oC to detach 

cells from the culture flasks. Following detachment, trypsin was neutralised by the 

addition of 10 mls media and cells were centrifuged at 500 rpm for 5 minutes. The 

supernatant was discarded and the pellet was resuspended in 10 mls of fresh media. 

The cell density was then calculated using a haemocytometer (Fisher Scientific) and 

cells were reseeded to maintain cultures. 

 

Human embryonic kidney (HEK) 293T cells for patch clamp experiments were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 2 mM L-

glutamine, 1% non-essential amino acids, 10% foetal bovine serum (FBS), 100 Uml-1 

penicillin and 100 µgml-1 streptomycin. Cells were subcultured every 7 days and used 

between passages 10-50. HEK 293T cells used for imaging experiments were 

cultured in DMEM supplemented with 10% FBS, 100 Uml-1 penicillin and 100 µgml-1 

streptomycin. Cells were subcultured every 2-5 days and used between passages 5-

40. All cells were grown at 37oC in a humidified 5% CO2 atmosphere. 

 

Xenopus laevis kidney cells, A6, were grown in NCTC 109 medium supplemented 

with 15% distilled water, 10% FBS, 100 Uml-1 penicillin and 100 µgml-1 streptomycin. 

Cells were grown at 26oC in a 5% CO2 atmosphere and subcultured approximately 

every 10 days. Cells were used up to passage 10. 

 

Chicken embryonic fibroblast cells, SL-29, were grown in DMEM supplemented with 

5% tryptose phosphate broth, 5% FBS, 100 Uml-1 penicillin and 100 µgml-1 

streptomycin. Cells were grown to confluence at 37oC in a 5% CO2 atmosphere and 

subcultured approximately every 10 days. Cells were used up to passage 7. 
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Splenic Russell’s viper cells, VSW, were grown in Eagle’s minimum essential 

medium supplemented with 10% FBS, 100 Uml-1 penicillin and 100 µgml-1 

streptomycin. Cells were grown at 30oC in a 5% CO2 atmosphere and subcultured 

approximately every 7 days. Cells were used up to passage 5. 

  

Ovarian fall armyworm cells, Sf9, were cultured in Grace’s Insect medium 

supplemented with 10% FBS, 100 Uml-1 penicillin and 100 µgml-1 streptomycin. Cells 

were grown at 27oC in atmospheric air and subcultured every 7 days. Cells were 

subcultured by removing spent growth medium from the cultures and adding 10 mls 

of fresh media. Cells were subsequently agitated until they detached. Cells were then 

centrifuged and reseeded. 

 

Primary human bronchial epithelial cells (HBECs) were obtained by the University of 

North Carolina’s Cystic Fibrosis Center Tissue Core in a procedure approved by the 

University of North Carolina Institutional Committee for the Protection of the Rights of 

Human Subjects. Epithelial cells were isolated from the cartilaginous bronchi of 

excess donor lungs. Cells were plated at a density of 2.5 x 104 onto 12 mm polyester 

clear transwell supports with a 0.4 µM pore size (Costar, USA). Transwells were 

coated with human type IV placental collagen and ultraviolet (UV) sterilised before 

use. Cells were grown using a base media of DMEM-H: LHC (50:50) with additives 

as detailed previously (Fulcher et al., 2005, Hill and Button, 2012, Fulcher and 

Randell, 2013). Cells were grown at a liquid-liquid interface until the cells formed a 

monolayer (usually 7 days’ post seeding); after which cells were grown under air-

liquid interface conditions. Only primary cells were used for experiments. Basolateral 

media was replenished three times a week and cells were washed with PBS once a 

week. Cultures were maintained at 37oC in a 5% CO2 humidified atmosphere and 

studied after fully differentiated (approximately 3-5 weeks). 

 

2.3 Transfection 

HEK 293T cells were transiently transfected with the bicistronic pIRES2-EGFP-CFTR 

vector (https://www.addgene.org/vector-database/3178/) to co-express wild type 

CFTR and enhanced green fluorescent protein (GFP) for patch clamp experiments 

(Gong et al., 2002). Cells were transfected one day post seeding. Briefly, DNA was 

pre-complexed with Lipofectamine 2000 (Invitrogen) and Opti-MEM with GlutaMAX 

(Invitrogen) for 15 minutes at room temperature. DNA was then diluted in culture 
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media to 1 µgml-1 and added to cells. Following 6 hours incubation at 37oC, cells 

were left to incubate overnight in Opti-MEM with 10% FBS after which cells were 

transferred back to culture media. Cells were studied 48-72 hrs post transfection at 

~50% confluency.  

 

For imaging experiments, cells were transfected with wild type CFTR with a GFP tag 

on the N terminus of channel and STIM1 with a mCherry tag on the C terminus of 

STIM1 (Park et al., 2009). Cells plated on coverslips were transfected with 1 µg of 

CFTR and 0.5 µg of STIM1 one day post seeding. DNA and Lipofectamine 2000 

(Invitrogen) were diluted in Opti-MEM and the mixtures were incubated for 5 minutes 

at room temperature. Following the incubation, the diluted DNA was mixed with the 

diluted Lipofectamine 2000 and incubated for 15 minutes at room temperature. The 

cells were transferred to growth media without antibiotics and the transfection mix 

was added dropwise. Cells were incubated for 4 hours at 37oC after which the 

transfection mix was aspirated and the cells were transferred back to culture media. 

Cells were used 48 hrs post transfection. 

 

2.4 Cigarette smoke exposure 

Reference cigarettes (3R4F) from the University of Kentucky (Lexington, Kentucky) 

were used to produce cigarette smoke. These cigarettes are produced for research 

purposes only and are manufactured with known amounts of constituents that 

resemble commercial cigarettes, allowing for reproducibility between experiments 

(Chepiga et al., 2000). The blend specifications for the 3R4F cigarette are; flue-cured 

35.41%, burley 21.62%, oriental 12.07%, maryland 1.35%, reconstituted (Schweitzer 

process) 29.55%, glycerine (dry weight basis at 11.6% oven volatiles) 2.67% and 

isosweet (sugar) 6.41%. 

 

Whole cigarette smoke was generated using the LC1 Borgwaldt smoke engine 

(Borgwaldt, Hamburg, Germany). Cells were smoked according to the standards set 

by the International Organisation for Standardisation (ISO) to mimic in vivo smoke 

exposure (Clunes et al., 2008). Cells were exposed to 13 x 35 ml puffs of 2s duration 

every 30s, which was the equivalent of one research cigarette. The particulate 

fraction of smoke, which is highly fluorescent, was collected by placing a Cambridge 

filter pad in the output line. The filter pad collects 99.9% of the particulate fraction 

with a size greater than 0.1 µm (Clunes et al., 2008). Before exposure, cells were 
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rinsed twice in pyruvate Ringer’s solution and left to incubate in Ringer’s for 5 

minutes at 37oC. Following incubation, the excess Ringer’s solution was tipped off, to 

represent the ‘thin film’ conditions in the airways (Tarran et al., 2006a). Cells were 

then exposed to smoke or room air in dedicated chambers for each. Following 

exposure, cells remained in the chambers for a further 5 minutes after which the 

Ringer’s solution was removed and cells were put back into media and incubated for 

the times necessary. 

 

Cigarette smoke condensate, which captures the particulate fraction of cigarette 

smoke, was prepared by puffing three full reference cigarettes, through a Cambridge 

filter pad. The filter pad was then cut in half and each half was sonicated in 1 ml 

DMSO for 15 minutes to collect the particulate fraction (Clunes et al., 2008). The 

concentration of particulate matter was calculated by weighing the filter pad before 

and after smoke exposure. On average, this method gave a yield of 16 mgml-1 of 

particulate matter; the condensate was stored at -20oC until use. 

 

2.5 Electrophysiology 

HEK 293T cells were seeded at a density of 5 x 105 per coverslip and used 2-3 days 

post transfection. Whole cell recordings, which allow for changes in current through 

the membrane of the whole cell to be measured, were carried out on single cells and 

all experiments were conducted at room temperature (Sakmann and Neher, 1984, 

Sheppard et al., 2004). Pipettes were pulled from borosilicate glass capillaries 

(GC120F; Harvard Apparatus, Kent) using the P-87 Sutter Flaming/Brown 

micropipette puller. All pipettes had resistances between 3-5 MΩ after fire-polishing. 

The pipette solution was filtered through a 0.2 µm filter before use.  

 

Cells were viewed under phase-contrast microscopy and gigaohm seals were 

obtained by applying gentle suction once the pipette had touched the cell (Fig. 2.01). 

Further suction was then applied to disrupt the membrane and provide electrical 

access to the cell (Hamill et al., 1981). Experiments were carried out using an 

Axopatch 200B (Molecular Devices Inc) patch clamp amplifier and data was captured 

using pClamp10 software. The reference electrode was a silver/silver chloride wire 

connected to a 150 mM NaCl agar bridge. Cells were held at 0 mV and voltage steps 

were applied between ±100 mV in 20 mV increments. Each voltage step lasted 250 

ms and there was a 1 s interval between subsequent steps. Data was filtered at 1 
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kHz and sampled at 2 kHz with a four pole Bessel filter. The average current 

obtained between a 100 ms period starting 80 ms into the voltage step was used to 

construct current-voltage (I-V) plots.  

 

Liquid junction potentials, which arise from the charge generated due to the different 

mobility’s of ions present in the pipette and bath solutions, were corrected for and 

applied to membrane potentials (Vm) (Neher, 1992, Wright et al., 2004). The 

Axopatch 200B amplifier was used to compensate for series resistance; 70% 

compensation was used for all whole cell recordings. The input capacitance of cells 

was measured before each experiment and compensated for; the mean capacitance 

of HEK 293T cells was 19.3 ± 0.9 pF (n=79). Slope conductance was calculated by 

fitting a linear regression to each I-V plot. Single cell slope conductance was divided 

by cell capacitance to normalise data to cell size and therefore this allowed a 

comparison between different experiments.  

 

 

2.6 Measurement of intracellular Ca2+ 

The Ca2+ sensitive dye, Fura-2 acetoxymethylester (AM; 5 µM) was used to measure 

changes in the concentration of intracellular Ca2+ ([Ca2+]i) (Grynkiewicz et al., 1985). 

 
Figure 2.01. Set up for whole-cell patch clamp recording technique. A micropipette is attached 

to the cell and suction applied to form a high resistance seal between the cell and the micropipette. 

The seal allows for current through ion channels on the surface of the membrane to be detected 

with minimal background noise. Electrical contact to the solution was provided by silver electrode. 

The electrode measures current and the current measured is transferred to a high resistance 

amplifier. The voltage measured by the sensing electrode is compared to the reference ‘bath 

electrode’ which sets the zero current value. Image adapted from (Clare, 2010). 
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Experiments were conducted 2-4 days post seeding and all experiments were carried 

out at room temperature. To load cells with dye, culture media was removed and 

cells were rinsed with NaHEPES solution. Cells were then loaded with Fura-2 AM for 

1 hour at 37oC. Following incubation, cells were again rinsed in NaHEPES solution 

and left to de-esterify for 15 minutes at room temperature.  

 

Experiments were carried out on an inverted epifluorescence microscope (Nikon, UK) 

and cells were viewed under an oil immersion lens (Nikon, Fluor 40, numerical 

aperture 1.3). The microscope was equipped with a 300W xenon lamp and computer 

controlled filter changer and shutter that contained 340 nm and 380 nm bandpass 

filters; emission at 510 nm was measured using a photomultiplier (PMT). Data was 

acquired every 250 ms and was captured using InCyt PM-2 software (Intracellular 

Imaging Inc).  

 

For experiments in which cells were exposed to cigarette smoke or air within the 

experiment, cells were placed in chambers with entry and exit ports for smoke or air. 

Cells were manually exposed to either one reference cigarette or the equivalent of 

room air per ISO standard conditions. Single cells were selected as regions of 

interest and images were acquired every 30s with HCImageLive software 

(Hamamatsu). Experiments were carried out using an inverted microscope (Nikon, 

USA) and were viewed under an oil immersion lens (Nikon, Fluor 40, numerical 

aperture 1.3). The microscope was equipped with a 200 W metal halide lamp and 

shutter that contained 340 nm and 380 nm bandpass filters; emission at 510 nm was 

measured using an Orca CCD camera (Hamamatsu).  

 

The excitation ratio of the 340 nm and 380 nm wavelengths was taken to be a read 

out of [Ca2+]i (Grynkiewicz et al., 1985, Boese et al., 2000, Stewart et al., 2001). 

Counts were corrected for background fluorescence and cell autofluorescence. Data 

was analysed using ImageJ software (National Institutes of Health, Bethesda, 

Maryland, http://rsb.info.nih.gov/ij/); changes in [Ca2+]i are expressed as maximum 

changes in the 340/380 ratio induced by each agent from the resting ratio. These 

values indicate the peak response seen minus the baseline value before the addition 

of the reagent. Area under the curve (AUC) was also chosen to indicate changes in 

Ca2+ as this gives an estimation of the magnitude of any changes as well as any 
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subsequent recovery. AUC was calculated for the duration the reagent was added to 

the cells. 

 

2.7 Confocal microscopy 

HEK 293T cells were seeded at a density of 7.5 x 104 per coverslip and transfected 

with the construct of interest as detailed earlier. Cells were treated 48 hrs post 

transfection and fixed with methanol after treatment. Briefly, cells were washed twice 

with PBS and incubated in ice-cold 100% methanol at -20oC for 10 minutes. Cells 

were then rinsed again in PBS twice and stored in the dark at 4oC until use. Nuclei 

were counter stained with 1 µgml-1 4’,6-Diamidino-2-Phenylindole dihydrochloride 

(DAPI) for 10 minutes on ice. Cells were then rinsed twice with PBS and imaged. All 

cells were imaged within 24 hrs of fixation. 

 

Cells were imaged using the Leica TCS SP8 confocal laser scanning microscope. 

Images were captured using a 63x oil immersion lens (numerical aperture 1.4); with a 

bidirectional scan frequency of 700 Hz and a pinhole of 1 airy unit. DAPI, GFP and 

mCherry were excited with the 405 nm, 488 nm line of an argon laser and 561 nm 

laser, respectively. The hybrid detector (HyD) was used for excitation at 488 nm 

whilst the PMT lasers were used for all other wavelengths. Images were captured 

using a sequential scan to avoid possible overlap between the excitation and 

emission spectra of the various wavelengths. Images were captured using the Leica 

Application Suite: Advanced Fluorescence (LAS AF) software; 6-12 images were 

taken to obtain approximately 50 cells per coverslip. Images were taken on a 12-bit 

scale with a line average of between 3-5 and a frame accumulation of 2. Images 

were taken from two coverslips on at least three separate occasions. 

 

Images were analysed offline using ImageJ by manually selecting 6 regions of 

interest from the membrane and 6 regions of interest from the intracellular space 

(Fig. 2.02). The average intensity of these regions was then determined for each cell. 

The average values of all the cells from either vehicle treated and air exposed cells 

were collected and were taken as one; all other treatments were normalised to the 

controls. All confocal images were arranged and enhanced (brightness enhanced 

~40%) in Adobe Photoshop. 
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2.8 Airway surface liquid height measurements 

HBECs were washed with PBS for 1 hr to remove excess mucus before all 

experiments. Cells were then loaded with 1 mgml-1 tetramethylrhodamine conjugated 

to 10 kDa dextran which has been shown to diffuse into the airway surface liquid 

(ASL) without crossing the epithelial barrier (Worthington and Tarran, 2011). Before 

imaging, the cultures were transferred to Ringer’s solution and 100 µl 

perfluorocarbon (PFC, FC-770; Acros Organics) was added mucosally to prevent 

evaporation of the ASL (Tarran et al., 2001b). PFC has been shown to have no effect 

on ASL height, mucus transport or ion transport (Tarran et al., 2001a, Tarran and 

Boucher, 2002). Following measurement of the ASL, cells were transferred back to 

media and kept at 37oC in a 5% CO2 incubator between time points.  

 

For experiments in which the effect of smoke on secretion of Cl- into the ASL was 

being tested, cultures were loaded with dextran for 30 minutes. Excess dextran was 

then aspirated to set a starting ASL height of ~8 µm cells. As cultures were pre-

treated bilaterally with compounds, the dextran and basolateral media contained the 

appropriate compounds. For experiments measuring the long-term effect of 

compounds on ASL height, the dextran and basolateral media again contained the 

compounds. However, dextran was added to the cultures and left to absorb 

overnight. Compounds added apically in these experiments were suspended as a dry 

powder in PFC and sonicated for 10 minutes (Tarran et al., 2001b).  

 
Figure 2.02. Image selection and analysis for confocal micrographs. (A) Diagrammatic 

representation of a coverslip and the points at which images were taken. (B) Example of an image 

taken at a point indicated in A. (C) Regions to measure the intensity of fluorescence at the 

membrane (indicated in yellow) and the intracellular space (indicated in white) were drawn using 

the ‘freehand line selection’ on ImageJ. 
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ASL was imaged using a XZ scan on a confocal laser scanning microscope (Leica 

SP5) with a 63x glycerol immersion lens and the 561 nm laser. Images were 

captured on an 8-bit scale using a bidirectional scan frequency of 700 Hz, with a line 

average of 2 and a pinhole of 1 airy unit. At least three transwells were taken per 

condition in experiment. Images were taken at 15 predefined points on the transwell; 

the first 10 images were taken forward for analysis. Any images which captured the 

edge of the transwell and therefore imaged the meniscus were excluded. Images 

were analysed offline using ImageJ software by measuring the height of the ASL and 

correcting for the zoom on the microscope to calculate the ASL height in microns 

(Fig. 2.03). 

 

 

2.9 Immunocytochemistry 

HEK 293T cells were seeded at a density of 7.5 x 104 per coverslip and transfected 

with GFP-CFTR one day post seeding. Cells were treated and fixed 48 hrs post 

transfection. Following treatment, cells were fixed with methanol as described earlier. 

Next, cells were blocked for 1 hr at room temperature in a solution consisting of PBS, 

5% (v/v) normal goat serum and 1% (w/v) bovine serum albumin. Cells were then 

probed with antibodies against the lysosomal marker, LAMP1 (rabbit anti-LAMP1, 

1:200), the endoplasmic reticulum marker, calreticulin (mouse anti-calreticulin, 1:200) 

or a marker of the Golgi apparatus, GM130 (rabbit anti-GM130, 1:200). Cells were 

probed for the relevant markers for 3 hours at room temperature or overnight at 4oC. 

Following incubation, cells were washed three times with PBS, for 5 minutes each. 

 

Figure 2.03. Imaging and measurement of airway surface liquid height. (A) Representation of 

15 pre-defined points on a transwell used to image airway surface liquid (ASL). (B) Typical image 

obtained at a point on the transwell, the yellow box indicates the ‘bounding rectangle’ function 

used on ImageJ to measure ASL height. 
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Cells were then probed with secondary antibodies (1:500) for 1 hour at room 

temperature. Secondary antibodies used were either goat anti-rabbit conjugated to 

Dylight 649 or goat anti-mouse conjugated to Alexa Fluor 568. Cells were then given 

three 5 min washes with PBS and loaded with 1 µgml-1 DAPI, following which cells 

were imaged using the SP8 confocal microscope. 

 

Images were captured using the LAS AF software with the 405 nm, 488 nm line of an 

argon laser and either 561 nm or 633 nm lasers. Images were taken using a 

sequential scan; 6-10 images were taken per coverslip to obtain approximately 50 

cells per coverslip. Images were taken from two coverslips on at least three separate 

occasions. Co-localisation between two proteins of interest was also calculated using 

LAS AF software (Fig. 2.04). Single cell regions of interest were selected manually 

and the percentage co-localisation was calculated by the software using the 

equation; percent co-localisation = co-localisation area/ area foreground, where area 

foreground = image area/image background. 

 

 

2.10 Total internal reflection fluorescence microscopy 

HEK 293T cells were plated onto glass coverslips at a density of 7.5 x 104 and 

transfected with CFTR with a GFP tag on the N terminus as detailed above. Cells 

were treated and fixed with ice-cold methanol 48 hrs post transfection. Total internal 

 

Figure 2.04. Example co-localisation analysis between CFTR and STIM1. Representative 

images taken as indicated in Fig. 2.02. Example image showing co-localisation between CFTR 

(green) and STIM1 (red) calculated using LAS AF software. CFTR fluorescence was 

superimposed onto STIM1 fluorescence (indicated in white) and single cells were selected as 

regions of interest (indicated in yellow) to calculate co-localisation. 
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reflection fluorescence microscopy (TIRF) was performed on a Leica SR GSD 

microscope. GFP was excited using the 488 nm line of an argon laser and images 

were taken using a 100x oil immersion lens. The penetration depth of the evanescent 

wave set to 90 nm. Images were captured on a 16-bit scale using the LAS AF 

software; 6-10 images were taken per coverslip to obtain approximately 40 cells per 

condition. Images were taken from two coverslips on at least three separate 

occasions 

 

Images were analysed offline using ImageJ software. The threshold function was 

used to select regions of interest and the integrated density, which accounts for the 

mean grey value and the area of the selected region, was measured and used to 

compare between treatments (Fig. 2.05). 

 

 

2.11 Measurement of calcineurin phosphatase activity  

Calcineurin phosphatase activity in cell lysates was measured using a colorimetric 

assay per manufacturer’s instructions (Enzo life sciences). HEK 293T cells were 

seeded onto 60 mm culture dishes at a density of 1 x 106 per dish and treated 24 hrs 

later. Cells were then washed with ice-cold Tris buffered saline solution, lysed and 

stored at -80oC. Excess phosphates and nucleotides were removed from the lysates 

by passing the samples through a chromatography column. The desalted samples 

were subsequently stored at -80oC. To ensure an equal amount of protein was run in 

the assay for each sample, a bicinchoninic acid (BCA) assay was run according 

 
Figure 2.05. Example of total internal reflection fluorescence microscopy image acquisition 

and analysis. (A) Representation of the points on a coverslip at which images were taken and (B) 

example image taken from a point on the coverslip. (C) The ‘threshold’ function on ImageJ was 

used to select regions of interest (indicated in red) and the integrated density of these areas used 

for analysis. 
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manufacturer’s instructions. Total protein in the samples was calculated using a 

standard curve generated from known bovine serum albumin (BSA) standards (Fig. 

2.06).  

 

Following the BCA assay, 3 µg of protein per sample was used for the calcineurin 

phosphatase assay. Total phosphatase activity in the samples was detected by 

addition of the phosphopeptide substrate, RII, in assay buffer. The assay plate was 

then equilibrated to the reaction temperature for 10 minutes at 37oC. Following the 

equilibration, sample lysates were added to the assay plate and the plate was 

incubated at 37oC for 30 minutes. The free phosphate was then measured by the 

addition of BIOMOL GREEN reagent and colour was allowed to develop for 30 

minutes at 37oC. Absorbance at 620 nm was then measured. Results were corrected 

for background, which was obtained by measuring absorbance without the addition of 

the RII phosphopeptide substrate. 

 

 

2.12 Solutions  

For patch clamp experiments, the high EGTA pipette solution contained in mM; 120 

CsCl, 2 MgCl2, 5 EGTA, 10 HEPES and 1 Na2ATP, set to pH 7.2 with CsOH. The low 

EGTA solution contained in mM; 120 CsCl, 2 MgCl2, 0.2 EGTA, 10 HEPES, 1 

 
Figure 2.06. Example BCA assay used to quantify protein in lysates generated for the 

calcineurin phosphatase activity assay. Known concentrations of bovine serum albumin (BSA) 

were used to generate a standard curve. Data was generated from the average of standards run 

in triplicate r2= 0.9957 
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Na2ATP and 13 mannitol, set to pH 7.2 with CsOH. Pipette solution osmolarity was 

typically 260 mOsm. The bath solution contained in mM; 130 NaCl, 5 KCl, 1 CaCl2, 1 

MgCl2, 10 HEPES, 10 glucose and 20 mannitol, set to pH 7.4 with HCl. Bath solution 

osmolarity was typically 310 mOsm. 

 

The solutions used for Ca2+ imaging experiments consisted of the same NaHEPES 

solution as that used in patch clamp experiments, but without the addition of 

mannitol. Experiments conducted with a 0 mM Ca2+ solution contained in mM; 130 

NaCl, 5 KCl, 1 EGTA, 1 MgCl2, 10 HEPES, 10 glucose and 20 mannitol, set to pH 7.4 

with HCl. For experiments conducted with a nominally Ca2+ free bath solution, the 

solution consisted of in mM; 130 NaCl, 5 KCl, 2 MgCl2, 10 HEPES, 10 glucose and 

20 mannitol, set to pH 7.4 with HCl.   

 

The pyruvate Ringer’s solution used for cigarette smoke exposure consisted of, in 

mM; 120 NaCl, 12 NaHCO3, 24 HEPES, 1.2 MgCl2, 5.2 KCl, 1 NaPyruvate, 1% non-

essential amino acids, 10 glucose, 1.2 CaCl2, set to pH 7.4 with NaOH. 

 

PBS consisted of, in mM; 137 NaCl, 2.7 KCl, 1.5 KH2PO4, 8.1 Na2HPO4, pH 7.0 - 7.3. 

 

Tris buffered saline consisted of, in mM; 20 Tris, 150 NaCl, pH 7.2. 

 

Lysis buffer consisted of, in mM; 50 Tris, 0.1 EDTA, 0.1 EGTA, 1 DTT, 0.2% NP-40, 

pH 7.5. 

 

2.13 Statistical analysis 

Data was collected using Microsoft Excel 2007; Graphpad Prism v6.0 was used to 

carry out all analyses. All data are presented as mean ± standard error of the mean. 

For patch clamp experiments, data was analysed using a repeated measures 

ANOVA with a Tukey’s multiple comparison post-test. For imaging experiments, data 

was analysed using Students’ t-tests or one-way ANOVA were used where 

appropriate; p<0.05 was considered statistically significant. 
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Chapter 3.0 An Increase in Cytosolic Ca2+ Causes a Loss of 

CFTR-Mediated Conductance and Internalisation of 

CFTR 

 

3.1 Introduction  

Recently, several labs have proposed that cigarette smoke causes a reduction in 

CFTR expression and activity (Kreindler et al., 2005, Cantin et al., 2006, Clunes et 

al., 2012, Dransfield et al., 2013). Our lab and others have shown that cigarette 

smoke and its constituents are linked to an increase in cytosolic Ca2+ in a variety of 

different cell lines (Misonou et al., 2006, Rasmussen et al., 2014, Lin et al., 2015). 

Using confocal microscopy and fluorescent Ca2+ measurements, our lab was the first 

to show that a smoke-induced increase in intracellular Ca2+ ([Ca2+]i), irrespective of 

the source, caused internalisation of CFTR. Furthermore, this research showed that 

Ca2+ release from internal stores, such as the endoplasmic reticulum, was sufficient 

to cause CFTR internalisation (Rasmussen et al., 2014). Therefore, I sought to 

further understand the effect of an increase in cytosolic Ca2+ on CFTR at a functional 

level. This chapter details the effect of an increase in [Ca2+]i, released from different 

intracellular stores, on CFTR-mediated conductance, measured using the whole cell 

patch clamp technique. Additionally, the effect of the various Ca2+ agonists on 

cytosolic Ca2+ within HEK 293T cells were characterised using fluorescent Ca2+ 

measurements. 

 

3.2 Stable CFTR-mediated currents can be activated in transfected HEK 293 

cells 

To investigate the effect of an increase in [Ca2+]i on CFTR, experiments were carried 

out on HEK 293T cells transiently transfected with CFTR. This system results in 

robust expression of CFTR, allowing changes in CFTR-mediated current to be easily 

measured using the whole cell configuration of the patch clamp technique. 

Furthermore, preliminary experiments carried out in Calu-3 cells, a cell line derived 

from serous cells of the submucosal glands, showed that activated CFTR current was 

variable between different cultures of cells, making it difficult to compare between 

cultures or treatments (data not shown; (Shen et al., 1994).  
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To characterise the activity of CFTR, transfected cells were perfused with forskolin to 

stimulate CFTR and the inhibitor CFTRinh-172 used to test the specificity of the 

activated current. Overall, activation of CFTR with forskolin (5 µM) caused a 58.3 ± 

38.9 fold increase in conductance to 2.0 ± 0.5 nS/pF (8 mins post addition) from a 

baseline of 0.07 ± 0.02 nS/pF (n=4, p<0.005, Fig. 3.01). The forskolin activated 

current was found to reach a peak between 6 - 8 minutes after the addition of 

forskolin and was relatively stable for ~20 minutes, with the conductance at 18 

minutes post addition being 1.6 ± 0.5 nS/pF (n=4, p<0.005, Fig. 3.01) and the 

conductance at 28 minutes post addition being 1.4 ± 0.5 nS/pF (n=4, Fig. 3.01D). 

The remaining forskolin stimulated increase in conductance was sensitive to 

inhibition with CFTRinh-172 (10 µM), with the conductance being reduced to 0.3 ± 0.1 

nS/pF after 8 minutes of exposure (p<0.05, Fig. 3.01D). As the data indicated 

approximately 69.4 ± 10.0% of activated current remained following a prolonged 

exposure to forskolin, this model provided a system whereby temporal changes in 

conductance could be studied in response to test compounds. 
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Figure 3.01. Time course for CFTR activation. (A) Representative fast whole cell current traces 

obtained by holding the membrane potential at 0 mV and applying voltage steps between +100 

mV in 20 mV increments under (i) basal conditions and after 8 mins perfusion with (ii) forskolin 

(fsk; 5 µM) and (iii) fsk and CFTRinh-172 (10 µM). Dashed line indicates the zero current level. (B) 

Current-voltage (I-Vm) plot for the traces shown in A. (C) Mean changes in conductance plotted 

relative to the maximum current reached at +100 mV when cells were perfused with fsk. (D) 

Changes in conductance under conditions indicated. Conductance was normalised to cell size. 

Data are mean ± SEM (n=4) *p<0.005 when compared to baseline conductance. † p<0.05 when 

compared to fsk (8 mins) stimulated conductance. 
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3.3 An increase in Ca2+ has no effect on conductance in cells that do not 

express CFTR 

3.3.1 Non-transfected HEK 293T cells show no change in conductance when 

exposed to an increase in cytosolic Ca2+  

To determine whether an increase in cytosolic Ca2+ would affect CFTR-mediated 

conductance, it was first necessary to test whether untransfected cells showed any 

changes in conductance when exposed to an increase in [Ca2+]i. The endoplasmic 

reticulum (ER) represents one of the major stores of Ca2+ within the cell, therefore 

cells were exposed to the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) pump 

inhibitor, thapsigargin (Lytton et al., 1991). Thapsigargin irreversibly binds the 

SERCA pump when it is in a conformational state acquired in the absence of Ca2+ 

(Inesi and Sagara, 1992, Sagara et al., 1992). The SERCA pumps usually acts to 

refill endoplasmic reticulum stores with Ca2+ from the cytosol, thus inhibition of the 

pump leads to an elevation of cytosolic Ca2+. To study the effect of an increase in 

[Ca2+]i on CFTR, cells were initially stimulated with forskolin (5 µM) for 8 minutes to 

activate CFTR, and then exposed to thapsigargin (200 nM) for 10 minutes to increase 

[Ca2+]i. Current was monitored for a further 10 minute wash out period in the 

presence of forskolin alone. Finally, cells were exposed to CFTRinh-172 (10 µM) for 8 

minutes to test whether there was any residual CFTR-dependent current. 

 

Overall, untransfected cells showed no substantial changes in conductance after the 

addition of thapsigargin. On average, the baseline conductance of these cells was 

0.3 ± 0.1 nS/pF, and after addition of forskolin; conductance remained at 0.3 ± 0.1 

nS/pF. Subsequent addition of thapsigargin also had no effect, with the conductance 

remaining at 0.3 ± 0.1 nS/pF 10 minutes post addition. Whole cell conductance 

showed no change 10 minutes after wash out of thapsigargin (0.3 ± 0.1 nS/pF). 

Furthermore, addition of the inhibitor, CFTRinh-172, also had no effect (0.3 ± 0.1 

nS/pF n=8, Fig. 3.02D). The absence of an increase in conductance upon exposure 

to forskolin or thapsigargin suggested there is no endogenous CFTR, Ca2+-activated 

chloride channel (CaCC) or Ca2+ activated non-selective cation channels present in 

HEK 293T cells. 
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Figure 3.02. An increase in cytosolic Ca2+ has no effect on conductance in untransfected 

cells. HEK 293T cells were exposed to forskolin (fsk; 5 µM) followed by thapsigargin (TG; 200 nM) 

and the inhibitor CFTRinh-172 (172; 10 µM). (A) Representative current-voltage (I-Vm) plot under 

conditions indicated. (B) Mean changes in conductance plotted relative to the maximum current 

reached at +100 mV when cells were perfused with forskolin. (C) Changes in conductance under 

conditions indicated; conductance was normalised to cell size. Data are mean ± SEM (n=8). 
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3.3.2 HEK 293T cells transfected with vehicle only show no change in 

conductance when exposed to an increase in cytosolic Ca2+  

In addition to the experiments detailed above, cells which had been transfected with 

water only, which was the vehicle for the CFTR construct, were also exposed to 

thapsigargin. On average, these cells had a resting conductance of 0.1 ± 0.04 nS/pF, 

which showed no change with the addition of forskolin (0.10 ± 0.05 nS/pF after 8 

minutes’ exposure). Addition of thapsigargin caused little change in the conductance 

(0.14 ± 0.07 nS/pF after 10 minutes) and the conductance remained at 0.14 ± 0.06 

nS/pF after 10 minutes wash out of thapsigargin. CFTRinh-172 also had no effect on 

the conductance after 8 minutes of exposure (0.18 ± 0.09 nS/pF, n=3, Fig. 3.03D). As 

these cells also showed no significant change in conductance after addition of 

forskolin or thapsigargin, the data indicated that the transfection protocol or vehicle 

provided no artefacts in forskolin or Ca2+ stimulated conductance’s and that any 

changes observed would be due to the expression of CFTR. 
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Figure 3.03. An increase in cytosolic Ca2+ has no effect on conductance in cells transfected 

with vehicle only. HEK 293T cells were exposed to forskolin (fsk; 5 µM) followed by thapsigargin 

(TG; 200 nM) and the inhibitor CFTRinh-172 (172; 10 µM) (A) Representative current-voltage (I-

Vm) plot under conditions indicated. (B) Mean changes in conductance plotted relative to the 

maximum current reached at +100 mV when cells were perfused with forskolin. (C) Changes in 

conductance under conditions indicated. Conductance was normalised to cell size. Data are mean 

± SEM (n=3). 
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3.4 Exposure to the SERCA pump inhibitor, thapsigargin causes a decrease 

in CFTR-mediated conductance and internalisation of the channel 

3.4.1 The effect of endoplasmic reticulum Ca2+ release on CFTR conductance  

To study the effect of an increase in cytosolic Ca2+ on CFTR, transfected HEK 293T 

cells were exposed to forskolin to activate CFTR and then exposed to thapsigargin to 

induce an increase in cytosolic Ca2+. Thus, any effect of thapsigargin on CFTR could 

be directly assessed. 

 

On average, stimulation with forskolin caused an increase in conductance to 2.7 ± 

0.5 nS/pF from a baseline of 0.1 ± 0.06 nS/pF (n=8, p<0.05, Fig. 3.04). Cells were 

subsequently exposed to thapsigargin for 10 minutes. This caused a decline in 

conductance to 1.9 ± 0.4 nS/pF after 10 minutes exposure. After a further 10 minutes 

in which cells were exposed to forskolin alone, there was a further decrease in 

conductance to 1.0 ± 0.3 nS/pF (n=8, p<0.05, Fig. 3.04). On average, after 20 

minutes of exposure to thapsigargin, 40.0 ± 6.5% of the forskolin stimulated 

conductance remained. This remaining conductance was still sensitive to inhibition by 

CFTRinh-172 with the conductance being reduced to 0.4 ± 0.06 nS/pF (n=8, p<0.05, 

Fig. 3.04D). 
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Figure 3.04. Thapsigargin causes a decrease in CFTR-mediated conductance. (A) 

Representative fast whole cell current traces obtained by holding the membrane potential at 0 mV 

and applying voltage steps between +100 mV in 20 mV increments under (i) basal conditions (ii) 

after 8 mins perfusion with forskolin (fsk; 5 µM) (iii) 10 mins perfusion with fsk and thapsigargin 

(TG; 200 nM) (iv) 10 mins perfusion with fsk alone and (v) 8 mins perfusion with fsk and CFTRinh-

172 (10 µM). Dashed line indicates the zero current level. (B) Mean changes in conductance 

plotted relative to the maximum current reached at +100 mV when cells were perfused with fsk. (C) 

Changes in conductance under the conditions indicated. Conductance was normalised to cell size. 

Data are mean ± SEM (n=8). *p<0.05 when compared to baseline. † p<0.05 when compared to 

maximal forskolin stimulated conductance. 
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Alongside characterising the effect of thapsigargin on CFTR-mediated conductance, I 

also followed changes in cytosolic Ca2+ following exposure to thapsigargin. As 

mentioned in section 3.3.1, thapsigargin inhibits the action of the SERCA pump, 

which would lead to an elevation of cytosolic Ca2+ (Sagara et al., 1992). The increase 

in Ca2+ was found to gradually reach a peak followed by a slow decline to a 

maintained plateau greater than baseline (n=3; Fig. 3.05). Although the environment 

within the cells being patch clamped and imaged using Fura-2 AM would differ, the 

time frames of the patch clamp experiments and the Ca2+ imaging experiments were 

similar. Furthermore, the experiments were performed in the presence of forskolin as 

with patch clamp experiments. Therefore, these experiments gave an approximation 

of how Ca2+ may change when cells were exposed to thapsigargin in patch clamp 

experiments. Together, these data indicate that the increase in cytosolic Ca2+ 

correlated to a loss of CFTR-dependent conductance.  

 

 

3.4.2 Preventing an increase in cytosolic Ca2+ prevents a loss of CFTR-

mediated conductance  

To verify that the changes in [Ca2+]i induced by thapsigargin were indeed responsible 

for the reduction in CFTR dependent current seen in earlier experiments, the EGTA 

concentration in the pipette solution was increased from 0.2 to 5 mM in an attempt to 

buffer out the increase in [Ca2+]i induced by thapsigargin (Gray et al., 1994).  

 

 
Figure 3.05. Thapsigargin causes a sustained increase in cytosolic Ca2+. Mean change in 

[Ca2+]i, as indicated by the 340/380 ratio, when cells were exposed to TG in a bath solution 

containing 1mM Ca2+ (n=3). 
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As before, CFTR was stimulated using forskolin, which caused an increase in 

conductance to 3.0 ± 2.1 nS/pF after 8 minutes exposure compared to a baseline of 

0.4 ± 0.2 nS/pF. Addition of thapsigargin for 10 minutes failed to cause a decrease in 

conductance (3.4 ± 2.4 nS/pF). Following a 10 minute wash out period, the 

conductance remained at 3.4 ± 2.5 nS/pF. This remaining conductance was mostly 

reduced with CFTRinh-172 (1.1 ± 0.8 nS/pF, n=3, Fig. 3.06D). 

 

 

For calcium imaging experiments, cells were pre-incubated with the Ca2+ chelator, 

BAPTA-AM (50 µM) for 1 hour before an experiment. Cells were exposed to 

thapsigargin in the presence of forskolin as earlier, however, the profile of the change 

in [Ca2+]i differed in that the cells showed no substantial change in [Ca2+]i (n=3; Fig. 

3.07).  

 
Figure 3.06. An increase in the concentration of EGTA in the patch pipette solution 

prevents the thapsigargin-induced decrease in CFTR conductance. HEK 293T cells were 

exposed to forskolin (fsk; 5 µM) followed by thapsigargin (TG; 200 nM) and the inhibitor CFTRinh-

172 (172; 10 µM) (A) Changes in current were measured using the fast whole cell configuration of 

the patch clamp technique. Data are plotted as mean changes in conductance plotted relative to 

the maximum current reached at +100 mV when cells were perfused with forskolin. (B) Changes 

in conductance under conditions indicated. Conductance was normalised to cell size. Data are 

mean ± SEM (n=3).  
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3.4.3 An increase in cytosolic Ca2+ causes internalisation of CFTR via a 

dynamin-dependent mechanism  

Rasmussen and colleagues (2014) recently showed exposure to either tobacco 

smoke or a Ca2+ agonist causes internalisation of CFTR, seen as the movement of 

GFP-tagged CFTR from the cell membrane into intracellular aggregates (Rasmussen 

et al., 2014). To test whether CFTR was also being internalised under these 

conditions, HEK 293T cells were pre-incubated with an inhibitor of the dynamin 

GTPase, dynasore (Macia et al., 2006).  

 

Cells were pre-incubated with 80 µM dynasore in media at 37oC for 30 - 60 min and 

were studied within 20 minutes post incubation. On average, cells showed an 

increase in conductance to 3.0 ± 0.9 nS/pF when stimulated with forskolin compared 

to 0.04 ± 0.02 nS/pF at baseline (n=7, p<0.05, Fig. 3.08B). The conductance 

remained at 2.9 ± 0.9 nS/pF 10 minutes after addition of thapsigargin and showed a 

small decrease to 2.5 ± 0.9 nS/pF after 10 minutes wash out of thapsigargin. Addition 

of CFTRinh-172 inhibited the conductance to 0.5 ± 0.3 nS/pF (p<0.05, n=7, Fig. 

3.08B). Thus, dynasore largely prevented the thapsigargin induced decrease in 

CFTR activity, with 86.2 ± 14.8% of the forskolin stimulated conductance remaining 

20 minutes post exposure to thapsigargin. These data suggest that an increase in 

 
Figure 3.07. Pre-incubation of HEK 293T cells with BAPTA-AM prevents a thapsigargin 

induced increase in cytosolic Ca2+. Mean change in [Ca2+]i when cells were exposed to TG in a 

bath solution containing 1mM Ca2+, as indicated by the 340/380 ratio, after pre-incubation with 

BAPTA-AM (50 µM; n=3). 
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cytosolic Ca2+ causes a reduction in CFTR-mediated conductance through 

internalisation of the channel in a dynamin dependent manner. 

 

 

To validate the effect of dynasore was through preventing the internalisation of CFTR 

and not through an indirect effect on cytosolic Ca2+, I characterised the effect of 

dynasore on Ca2+. Cells were pre-treated with dynasore as for patch clamp 

experiments and exposed to TG in the presence of forskolin. Overall, the change in 

[Ca2+]i showed the same trend in cells pre-treated with dynasore. On average, cells 

pre-treated with dynasore showed an increase in ratio to 1.4 ± 0.03 ratio units from a 

baseline of 1.0 ± 0.01 ratio units. In comparison, cells pre-treated with vehicle 

showed an increase in ratio to 1.7 ± 0.2 ratio units from a baseline of 1.1 ± 0.05 ratio 

units. Likewise, the area under the curve in cells pre-treated with dynasore was 14.5 

± 0.9 ratio.min compared to 27.0 ± 2.8 ratio.min in vehicle treated cells (n=3; Fig. 

3.09). These data suggest that the ability of dynasore to prevent a thapsigargin-

induced CFTR internalisation in patch clamp experiments, could in part, be due an 

effect on the thapsigargin-induced increase in cytosolic Ca2+. 

 

 

 
Figure 3.08. Dynasore prevents the thapsigargin-induced decrease in CFTR conductance. 

Cultures were pre-treated with dynasore (80 µM) for 30 - 60 min in media at 37oC and then 

exposed to thapsigargin (TG; 200 nM) and the inhibitor, CFTRinh-172 (172; 10 µM). (A) Changes in 

current were measured using the fast whole cell configuration of the patch clamp technique. Data 

are plotted as mean changes in conductance plotted relative to the maximum current reached at 

+100 mV when cells were perfused with forskolin (fsk; 5 µM). (B) Changes in conductance under 

conditions indicated. Conductance was normalised to cell size. Data are mean ± SEM (n=7). 

*p<0.001 when compared to baseline. † p<0.05 when compared to initial forskolin exposure. 
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3.5 Extracellular Ca2+ is not required for a Ca2+ dependent loss of CFTR-

mediated conductance  

3.5.1 CFTR can be activated without the presence of extracellular Ca2+  

It has been previously reported that extracellular Ca2+ is not required for tobacco 

smoke to increase cytosolic Ca2+, determined by exposing cells to cigarette smoke in 

Ca2+ free conditions (Rasmussen et al., 2014). Before testing whether extracellular 

Ca2+ was required for a Ca2+-induced loss of CFTR-mediated conductance, 

experiments were first conducted to determine whether CFTR could be activated 

without extracellular Ca2+. Cells were perfused with a nominally Ca2+ free solution, as 

 

Figure 3.09. Effect of dynasore on intracellular Ca2+. (A) Mean change in [Ca2+]i, as indicated 

by the 340/380 ratio, when cells were pre-treated with vehicle (black trace) or dynasore (grey 

trace; 80 µM) for 30 minutes at 37oC and exposed to thapsigargin (TG; 200 nM) in a bath solution 

containing 1mM Ca2+. Mean changes in (B) Fura-2 ratio and (C) area under the curve (AUC). 

Data are mean ± SEM (n=3). 
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the addition of EGTA to the bath solution has been shown to result in the activation of 

hemichannels (Contreras et al., 2003). The free Ca2+ in this solution could be 

estimated to be approximately less than 100 µM based on measurements of free 

Ca2+ carried out in similar solutions (Stewart et al., 2001). 

 

On average, the conductance 8 minutes after removal of extracellular Ca2+ was 0.39 

± 0.18 nS/pF which was not significantly different to a resting conductance of 0.2 ± 

0.1 nS/pF. Following the removal of Ca2+, CFTR was activated with forskolin, which 

caused a large increase in conductance to 1.3 ± 0.5 nS/pF and this increase was 

sensitive to inhibition with CFTRinh-172 (0.5 ± 0.2 nS/pF; n=7; Fig. 3.10). 
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As earlier, I also followed the change in the forskolin stimulated conductance 

overtime. Cells were exposed to forskolin for 28 minutes and then to CFTRinh-172. 

On average, forskolin caused an increase in conductance to 1.0 ± 0.3 nS/pF 

compared to a baseline of 0.1 ± 0.04 nS/pF. The conductance remained at 1.1 ± 0.4 

 

Figure 3.10. CFTR activation in the absence of extracellular Ca2+. (A) Representative fast 

whole cell current traces obtained by holding the membrane potential at 0 mV and applying 

voltage steps between +100 mV in 20 mV increments under (i) basal conditions (ii) after 8 mins 

perfusion with a nominally Ca2+ free solution and (iii) forskolin (fsk; 5 µM, 8 mins post addition) (iv) 

fsk and CFTRinh-172 (10 µM, 8 mins exposure). Dashed line indicates the zero current level. (B) 

Current-voltage (I-Vm) plot for the traces shown in A. (C) Changes in conductance under 

conditions indicated. Conductance was normalised to cell size. Data are mean ± SEM (n=7). 
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nS/pF (n=3) at 18 minutes post addition and 1.1 ± 0.2 nS/pF at 28 minutes. The 

forskolin stimulated increase in conductance was sensitive to inhibition with CFTRinh-

172, with the conductance being reduced to 0.3 ± 0.1 nS/pF (n=2, Fig. 3.11B). 

Similar to time course experiments in the presence of Ca2+, these experiments 

indicated the forskolin activated conductance was stable for the duration of the 

experiment. 

 

 

3.5.2 Extracellular Ca2+ is not needed for the Ca2+ dependent loss of current  

I next tested whether addition of thapsigargin to a nominally Ca2+ free bath solution 

would cause a decrease in CFTR conductance. On average, when stimulated with 

forskolin, cells showed an increase in conductance to 1.6 ± 0.3 nS/pF from a baseline 

of 0.03 ± 0.01 nS/pF (n=7, p<0.05, Fig. 3.12). Addition of thapsigargin for 10 minutes 

reduced this conductance to 1.3 ± 0.4 nS/pF. After a further 10 minutes, in which 

cells were perfused with forskolin alone, the conductance further declined to 0.8 ± 0.2 

nS/pF. Addition of CFTRinh-172 inhibited the remaining conductance to 0.2 ± 0.1 

nS/pF (n=7, p<0.05, Fig. 3.12B). Thus, the data showed exposure to thapsigargin in 

a nominally Ca2+ free bath solution caused a 52.8 ± 9.7% reduction in the forskolin 

stimulated conductance. In comparison, when cells were exposed to thapsigargin in a 

bath solution containing 1 mM Ca2+, there was a similar reduction (60.0 ± 6.5%) in 

forskolin stimulated conductance. 

 
Figure 3.11. Time course for CFTR activation in the absence of extracellular Ca2+. (A) 

Changes in current were measured using the fast whole cell configuration of the patch clamp 

technique. Data are plotted as mean changes in conductance plotted relative to the maximum 

current reached at +100 mV when cells were perfused with forskolin. (B) Changes in conductance 

under conditions indicated. Conductance was normalised to cell size. Note that one cell was lost 

at 20 mins. Data are mean ± SEM (n=2-3).  



55 

 

 

 

The effect of thapsigargin on cytosolic Ca2+ was also characterised. In a nominally 

Ca2+ free solution, exposure to thapsigargin in the presence of forskolin caused a 

transient increase in [Ca2+]i which was seen as a slow rise to a peak followed by a 

decline (n=3, Fig. 3.12). Thus, these data along with patch clamp data indicate that a 

sustained increase in [Ca2+]i is not needed for thapsigargin to cause a significant 

decrease in CFTR-mediated conductance. Furthermore, the data suggests that 

extracellular Ca2+ does not need to be present for thapsigargin-induced CFTR 

internalisation (further detailed in Fig. 3.26).  

 
Figure 3.12. Thapsigargin decreases CFTR-mediated conductance in the absence of 

extracellular Ca2+. HEK 293T cells were exposed to forskolin (fsk; 5 µM) followed by thapsigargin 

(TG; 200 nM) and the inhibitor CFTRinh-172 (172; 10 µM). (A) Changes in current were measured 

using the fast whole cell configuration of the patch clamp technique. Data are plotted as mean 

changes in conductance plotted relative to the maximum current reached at +100 mV when cells 

were perfused with forskolin. (B) Changes in conductance under conditions indicated. 

Conductance was normalised to cell size. Data are mean ± SEM (n=7). *p<0.05 when compared to 

baseline, † p<0.05 when compared to initial forskolin exposure. 
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3.6 The effect of other Ca2+ agonists on CFTR-mediated conductance  

3.6.1 The effect of ionophore mediated Ca2+ release on CFTR conductance 

Along with thapsigargin, I also characterised the effect of several other Ca2+ agonists 

on CFTR-mediated conductance to further understand how a change in cytosolic 

Ca2+ was related to a loss of CFTR-mediated conductance. Cells were exposed to 

the ionophore, ionomycin which creates Ca2+ permeable pores in intracellular 

membranes (Liu and Hermann, 1978, Morgan and Jacob, 1994).  

 

Like earlier experiments with thapsigargin, cells were exposed to ionomycin (1 µM) in 

a bath solution containing 1 mM Ca2+ for 10 minutes. Current was then monitored for 

a further 10 minutes after the wash out of ionomycin but in the presence of forskolin. 

Finally, CFTRinh-172 was added to test whether there was any residual CFTR activity. 

On average, cells showed an increase in conductance to 2.2 ± 0.4 nS/pF from a 

baseline of 0.2 ± 0.07 nS/pF. The conductance was reduced to 0.7 ± 0.2 nS/pF 10 

minutes after addition of ionomycin (n=6, p<0.001, Fig. 3.14B). After a further 10 

minutes, 22.9 ± 7.2% of the forskolin stimulated conductance remained with the 

conductance being reduced to 0.4 ± 0.1 nS/pF. Addition of CFTRinh-172 did not affect 

the remaining conductance with the average being 0.39 ± 0.1 nS/pF (n=6, p<0.005, 

Fig. 3.14B). On average, ionomycin caused a faster loss of forskolin stimulated 

conductance (5.1 ± 0.7% per minute) when compared to thapsigargin (3.2 ± 0.4% per 

 
Figure 3.13. Thapsigargin in a nominally Ca2+ free bath solution causes a transient increase 

in cytosolic Ca2+. Mean change in [Ca2+]i, as indicated by the 340/380 ratio, when cells were 

exposed to TG (200 nM) in a nominally Ca2+ free bath solution (n=3). 
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minute, p<0.05). Indeed, when single cell profiles were studied, 63.7 ± 12.9% of 

forskolin stimulated conductance was lost within the first ten minutes of exposure 

(Fig.3.14A, blue trace). 

 

 

In Ca2+ imaging experiments, exposure of cells to ionomycin in the presence of 

forskolin caused a sharper rise in cytosolic Ca2+ followed by a more sustained 

increase in cytosolic Ca2+, when compared to thapsigargin. This different profile in 

Ca2+ change could account for the faster and more complete loss of CFTR 

dependent conductance, as indicated by the lack of any CFTRinh-172 sensitive 

conductance. This data further confirms an increase in Ca2+, regardless of the 

source, can reduce CFTR activity. 

 
Figure 3.14. Ionomycin causes a loss of CFTR-mediated conductance. HEK 293T cells were 

exposed to forskolin (fsk; 5 µM) followed by ionomycin (1 µM) and the inhibitor CFTRinh-172 

(172; 10 µM). (A) Changes in current were measured using the fast whole cell configuration of 

the patch clamp technique. Data are plotted as mean changes in conductance plotted relative to 

the maximum current reached at +100 mV when cells were perfused with forskolin (fsk; black 

trace, n=6). The blue trace depicts a representative example of the change in conductance 

induced by ionomycin in a single cell. (B) Changes in conductance under the conditions 

indicated. Conductance was normalised to cell size. Data are mean ± SEM. *p<0.001 when 

compared to baseline. † p<0.005 when compared to initial forskolin exposure. 
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3.6.2 The effect of lysosomal Ca2+ release on CFTR mediated conductance 

Tobacco smoke induced Ca2+ release has been shown to arise from lysosomal 

stores (Rasmussen et al., 2014). In order to determine the effect of lysosomal Ca2+ 

release on CFTR, I tested the effect of the compound glycyl-L-phenylalanine-β-

napthylamide (GPN), which releases Ca2+ from lysosomal stores (Haller et al., 1996).  

 

Cells were treated with concentrations of GPN ranging from 100-500 µM. In patch 

clamp experiments, however, I could not test the effect of 500 µM GPN as this 

concentration was found to be toxic to cells in that I either lost the high resistance 

seal between the cell and the patch pipette or the cells died within minutes of 

exposure to GPN (n=5, data not shown). 

 

Therefore, cells were exposed to 100 µM GPN. On average, cells showed an 

increase in conductance to 1.5 ± 0.4 nS/pF when stimulated with forskolin compared 

to a baseline of 0.04 ± 0.02 nS/pF (n=6, p<0.05, Fig. 3.16B). The conductance was 

reduced to 0.8 ± 0.2 nS/pF following a 10 minute exposure to 100 µm GPN in a bath 

solution containing 1 mM Ca2+. After a further 10 minute wash out, the conductance 

was 0.7 ± 0.2 nS/pF. Addition of CFTRinh-172 caused a reduction in the forskolin 

stimulated conductance to 0.4 ± 0.1 nS/pF (n=6, Fig. 3.16). However, the cells 

showed mixed responses to GPN; out of the 6 cells tested, 3 cells showed a further 

 
Figure 3.15. Ionomycin increases intracellular Ca2+. Mean change in [Ca2+]I, as indicated by the 

340/380 ratio, when cells were exposed to ionomycin (1 µM) in a bath solution containing 1mM 

Ca2+ (n=3).  



59 

 

activation of current that was sensitive to CFTRinh-172 and 3 cells showed a 

reduction in CFTR dependent conductance. The mixture of responses seen made it 

difficult to draw any firm conclusions regarding the effect of lysosomal Ca2+ on CFTR. 

 

 

Despite the mixed responses seen to GPN in patch clamp experiments, the release 

of lysosomal Ca2+ was found to cause a sustained increase in cytosolic Ca2+ when 

exposed to cells in a bath solution containing 1 mM Ca2+ (n=3, Fig. 3.17). 

 
Figure 3.16. Effect of GPN on CFTR-mediated conductance. HEK 293T cells were exposed to 

forskolin (fsk; 5 µM) followed by the lysosomal Ca2+ release agent, glycyl-L-phenylalanine-β-

napthylamide (GPN; 100 µM) and the inhibitor, CFTRinh-172 (172; 10 µM). (A) Changes in current 

were measured using the fast whole cell configuration of the patch clamp technique. Data are 

plotted as mean changes in conductance plotted relative to the maximum current reached at +100 

mV when cells were perfused with forskolin. (B) Changes in conductance under the conditions 

indicated. Conductance was normalised to cell size. Data are mean ± SEM (n=6). *p<0.05 when 

compared to baseline conductance. 
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3.6.3 The particulate fraction of cigarette smoke does not affect CFTR-

mediated current  

Tobacco smoke can be separated into two fractions, the volatile fraction, which 

comprises 95% of whole cigarette smoke and is composed of gaseous vapours and 

the particulate fraction, which forms the other 5% and is composed of lipid and water 

soluble particulates (Clunes et al., 2008). Rasmussen and colleagues (2014) have 

previously shown that exposure of cells to either the volatile phase alone or complete 

smoke results in a similar degree of internalisation of CFTR (Rasmussen et al., 

2014).  

 

To further investigate whether the particulate fraction affects CFTR, cells were 

exposed to a cigarette smoke condensate (CSC), which collects the lipid soluble 

phase. On average, cells showed an increase in conductance to 1.7 ± 0.7 nS/pF from 

a baseline of 0.03 ± 0.01 nS/pF (n=4, p<0.05, Fig.3.18B). Exposure of cells to 32 

µgml-1 cigarette smoke condensate for 4 minutes caused little change in conductance 

(1.6 ± 0.6 nS/pF). The conductance dropped to 1.0 ± 0.6 nS/pF following wash out of 

the condensate and this remaining conductance was sensitive to inhibition to 

CFTRinh-172, with the conductance being reduced to 0.4 ± 0.2 nS/pF (n=4; Fig. 3.18).  

 
Figure 3.17. Effect of GPN on intracellular Ca2+. Mean change in [Ca2+]i, as indicated by the 

340/380 ratio, when cells were exposed to GPN (100 µM) in a bath solution containing 1mM Ca2+ 

(n=3).  
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When the same concentration of cigarette smoke condensate was tested in Ca2+ 

imaging experiments, the condensate caused no substantial changes in cytosolic 

Ca2+ (n=3, Fig. 3.19). Furthermore, the profile of Ca2+ changes did not follow that of 

cells exposed to GPN, suggesting that the condensate did not cause Ca2+ release 

from lysosomes. These data suggested that for the condensate, the effect on CFTR-

mediated conductance was not due to an increase in cytosolic Ca2+. 

 
Figure 3.18. Effect of cigarette smoke condensate on CFTR-mediated conductance. HEK 

293T cells were exposed to forskolin (fsk; 5 µM) followed by cigarette smoke condensate (CSC; 

32 µgml-1) and the inhibitor, CFTRinh-172 (172; 10 µM). (A) Changes in current were measured 

using the fast whole cell configuration of the patch clamp technique. Data are plotted as mean 

changes in conductance plotted relative to the maximum current reached at +100 mV when cells 

were perfused with forskolin. (B) Changes in conductance under the conditions indicated. 

Conductance was normalised to cell size.  Data are mean ± SEM (n=4). *p<0.05 when compared 

to baseline. 
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To further understand how cigarette smoke condensate affected CFTR-mediated 

conductance, experiments were carried out on vehicle treated cells. Cells were 

exposed to an equivalent concentration of DMSO (0.2% v/v) as that used for CSC. In 

patch clamp experiments, cells showed an increase in conductance to 1.4 ± 0.1 

nS/pF when treated with forskolin compared to a baseline conductance of 0.1 ± 0.1 

nS/pF (n=4, p<0.05, Fig. 3.20B). When exposed to DMSO for 4 minutes, the 

conductance showed a small decrease to 1.2 ± 0.2 nS/pF. Following wash out of 

DMSO, the conductance was reduced to 0.4 ± 0.2 nS/pF. This remaining 

conductance was reduced to 0.2 ± 0.1 nS/pF with CFTRinh-172 (n=4, Fig. 3.20).  

 
Figure 3.19. Effect of cigarette smoke condensate on intracellular Ca2+. Mean change in 

[Ca2+]i, as indicated by the 340/380 ratio, when cells were exposed to cigarette smoke condensate 

(CSC; 32 µgml-1) in a bath solution containing 1mM Ca2+ (n=3) 
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Similar to Ca2+ imaging experiments with cigarette smoke condensate; DMSO had no 

substantial effect on cytosolic Ca2+ (n=3, Fig. 3.21). These experiments showed that 

exposure of cells to DMSO caused a similar loss of CFTR-mediated conductance 

and had no effect on cytosolic Ca2+, suggesting that CSC alone has no effect on 

CFTR and the active compound against CFTR must be found in the volatile phase of 

tobacco smoke. 

 

 
Figure 3.20. Effect of dimethyl sulfoxide on CFTR-mediated conductance. HEK 293T cells 

were exposed to forskolin (fsk; 5 µM) followed by dimethyl sulfoxide (DMSO; 0.2% v/v) and the 

inhibitor, CFTRinh-172 (172; 10 µM) (A) Changes in current were measured using the fast whole 

cell configuration of the patch clamp technique. Data are plotted as mean changes in conductance 

plotted relative to the maximum current reached at +100 mV when cells were perfused with 

forskolin. (B) Changes in conductance under the conditions indicated. Conductance was 

normalised to cell size.  Data are mean ± SEM (n=4). *p<0.01 when compared to baseline 
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3.6.4 The effect of physiological increases in cytosolic Ca2+ on CFTR-mediated 

conductance 

To test whether physiological Ca2+ increases could also cause internalisation of 

CFTR, cells were exposed to ATP. On average, cells showed an increase in 

conductance with forskolin to 1.2 ± 0.3 nS/pF from a baseline of 0.1 ± 0.03 nS/pF 

(n=6, p<0.05, Fig. 3.22B). The conductance was reduced to 0.7 ± 0.2 nS/pF following 

addition of ATP. After a further 10 min wash out, the conductance was reduced to 0.4 

± 0.1 nS/pF (n=6, p<0.05, Fig. 3.22B). Addition of CFTRinh-172 inhibited the forskolin 

stimulated conductance to 0.2 ± 0.1 nS/pF (n=6, p<0.05, Fig. 3.22B).  

 

 
Figure 3.21. Effect of DMSO on intracellular Ca2+ and CFTR. Mean change in [Ca2+]i, as 

indicated by the 340/380 ratio, when cells were exposed to DMSO (0.2% v/v) in a bath solution 

containing 1mM Ca2+ (n=3).  
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However, the individual responses to ATP seen could be split into 3 groups. Out of 

the 6 cells tested, 1 cell responded by showing little change in conductance after 

exposure to ATP. 3 cells responded to ATP by showing a gradual decrease in CFTR 

conductance and 2 cells showed a transient decrease, with the conductance starting 

to recover after wash out of ATP (Fig. 3.23).  

 

 
Figure 3.22. Effect of ATP on CFTR-mediated conductance. (A) Changes in current were 

measured using the fast whole cell configuration of the patch clamp technique. Data are plotted as 

mean changes in conductance plotted relative to the maximum current reached at +100 mV when 

cells were perfused with forskolin. (B) Changes in conductance under the conditions indicated. 

Conductance was normalised to cell size. Data are mean ± SEM (n=6). *p<0.05 when compared to 

baseline. † p<0.005 when compared to initial forskolin exposure. 
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Figure 3.23. Changes in CFTR conductance seen following exposure to ATP. Representative 

traces showing the different responses seen in CFTR activity after addition of ATP. (A) 2 cells 

showed a transient decrease in CFTR conductance (B) 3 cells showed a reduction in conductance 

following exposure to ATP and (C) 1 cell responded by showing little change in conductance after 

exposure to ATP. 
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When cells were exposed to ATP with forskolin in Ca2+ imaging experiments, there 

was a transient increase in cytosolic Ca2+, with the Ca2+ being released from ER 

stores (Fig. 3.24). The transient response was likely due to the breakdown of ATP, or 

the desensitisation of the P2Y2 receptor (Lazarowski and Boucher, 2001). 

 

 

 

3.7 An increase in cytosolic Ca2+ does not change CFTR open channel 

probability in lipid bilayers  

The data presented thus far has indicated that an increase in cytosolic Ca2+ causes a 

decrease in CFTR dependent conductance. Further, the data suggested that this loss 

of conductance was due to the removal of functional channels from the membrane 

via dynamin dependent endocytosis. However, it could be argued that the loss of 

CFTR activity could be due to a decrease in the open state probability of the channel 

(Po). To test whether Ca2+ was indeed causing a change in the Po of CFTR, open 

probability was measured in purified CFTR incorporated into lipid bilayers 

(Aleksandrov and Riordan, 1998, Aleksandrov et al., 2002). Experiments were 

conducted by Dr Aleksandrov in the Riordan lab at the University of North Carolina at 

Chapel Hill. 

 

Single channel kinetics were measured after exposing bilayers to solutions with or 

without Ca2+ on the cytoplasmic side of CFTR. On average, these experiments 

 
Figure 3.24. Effect of ATP on intracellular Ca2+. Mean change in [Ca2+]I, as indicated by the 

340/380 ratio, when cells were exposed to ATP (100 µM) in a bath solution containing 1mM Ca2+ 

(n=3). 
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showed that there was no significant variation in the conductance of the channel 

(14.1 pS in Ca2+ free vs 14.2 pS with Ca2+), the open probability (0.81 in Ca2+ free vs 

0.79 with Ca2+), the time the channel was open (190 ms in Ca2+ free vs 200 ms with 

Ca2+) or the closed time (45 ms in Ca2+ free vs 55 ms with Ca2+; Fig. 3.25). Thus, the 

data show that addition of Ca2+ to the cytoplasmic side of CFTR causes no 

differences in single channel kinetics; suggesting Ca2+ increases do not affect CFTR 

function. 

 

 

3.8 Correlating changes in cytosolic Ca2+ to changes in CFTR-mediated 

conductance  

To further understand how changes in cytosolic Ca2+ affect CFTR, a comparison of 

the agonists used to increase cytosolic Ca2+ was carried out, in terms of their effect 

on CFTR-mediated conductance. When the data was collated, ionomycin caused the 

biggest increase in Ca2+, determined by the maximum change induced in the 340/380 

ratio, as well as the biggest magnitude of response, determined by the change in the 

 

Figure 3.25. An increase in cytosolic Ca2+ does not affect CFTR single channel function. 

Single channel function (on the right) and all points histogram (on the left) used to calculate single 

channel conductance and open state probability for CFTR at 37oC in (A) Ca2+ free conditions and 

(B) after addition of 1.5 mM Ca2+ to the cytoplasmic side of the channel. Scale bar represents 10s 

interval. Experiments were performed by Dr Aleksandrov at the University of North Carolina, 

Chapel Hill. 
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area under the curve. When cells were exposed to thapsigargin in a nominally Ca2+ 

free solution or ATP, a bigger change in the 340/380 ratio was induced by ATP. 

However, the magnitude of the response induced by thapsigargin and ATP were 

similar (Fig. 3.26). A caveat to the data, however, is that the changes in the Fura-2 

ratio were not calibrated, thus any changes in Fura-2 ratio measured do not reflect 

absolute changes in cytosolic Ca2+.  

 

 

The effects of the various agonists were also compared in terms of their effect on 

CFTR-mediated conductance. This was determined by calculating the percentage 

decrease induced in the maximal forskolin stimulated conductance. Similar to the 

trends seen in the Ca2+ imaging experiments, ionomycin caused the biggest inhibition 

in CFTR-mediated conductance, causing the conductance to fall by 5.1 ± 0.7% per 

minute (Fig. 3.27). Earlier analyses carried out showed that thapsigargin in either a 

Ca2+ containing or Ca2+ free solution could cause a significant reduction in CFTR-

mediated conductance. These agonists both induced a similar loss of CFTR-

mediated conductance, with 3.2 ± 0.4% in Ca2+ containing solution and 2.5 ± 0.4% in 

the absence of Ca2+. Patch clamp experiments showed the loss in CFTR-mediated 

conductance induced by ATP was significant. However, ATP caused a similar 

percentage inhibition per minute (3.3 ± 0.5%) to cells that were exposed to 

 
Figure 3.26. Summary diagram comparing the effect of various Ca2+ agonists on cytosolic 

Ca2+. The agonists detailed were compared by analysing changes they induced in the (A) 

maximum change in 340/380 ratio calculated using the difference in the Fura-2 AM ratio before 

addition of the agonist and at the end of the exposure period. (B) Area under the curve (AUC) was 

also used as a comparison and was calculated for the duration of exposure to each agonist. Data 

are mean ± SEM (n=3). *p<0.05 compared to TG (1 mM Ca2+). 
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thapsigargin in a Ca2+ containing solution. Taken together with the data from the Ca2+ 

imaging experiments, these data suggest that the rate at which a Ca2+ agonist 

causes inhibition of CFTR-mediated conductance may be of importance in 

determining whether an increase in [Ca2+]i is able to induce a significant loss of 

CFTR-mediated conductance. 

 

 

To further understand the relationship between the change in cytosolic Ca2+ and 

CFTR-mediated conductance, the correlation between the two variables was tested. 

Regression analysis between the rate the inhibition and both the maximum change in 

Fura-2 AM ratio and area under the curve showed that changes in cytosolic Ca2+ 

were indeed related to loss of CFTR-mediated conductance (Fig. 3.28). Thus, the 

data from this chapter indicated an increase in cytosolic Ca2+ caused a loss of CFTR-

mediated conductance, with the magnitude of the increase in Ca2+ being related to 

the magnitude of the loss of CFTR-mediated conductance.  

 
Figure 3.27. The effect of various Ca2+ agonists on CFTR-mediated conductance. The effect 

of various agonists on CFTR-mediated conductance, determined by the percentage inhibition per 

minute of forskolin stimulated conductance induced by each agonist. Data are mean ± SEM. 

*p<0.05 compared to dynasore + TG † p<0.005 when compared to ionomycin. 
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Figure 3.28. Correlation between changes in cytosolic Ca2+ and inhibition of CFTR-mediated 

conductance. The relationship between increases in cytosolic Ca2+ and loss of CFTR-mediated 

conductance was assessed by testing the correlation between the average rate of inhibition and 

(A) maximum change in Fura-2 AM ratio and (B) area under the curve (AUC) induced by each 

agonist. 
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3.9 Discussion 

Tobacco smoke has been shown to cause internalisation of CFTR through a smoke-

induced increase in cytosolic Ca2+ (Rasmussen et al., 2014). The data presented in 

this chapter showed that increases in cytosolic Ca2+, regardless of the source, 

caused a decrease in CFTR-mediated conductance, perhaps via internalisation of the 

channel. Therefore, the data is consistent with the work from Rasmussen et al., 

(2014). 

 

Increases in [Ca2+]i induced by the SERCA pump inhibitor, thapsigargin, showed that 

this lead to a decrease in CFTR-mediated conductance. The decrease in 

conductance caused by thapsigargin was further supported by the loss of CFTR-

mediated conductance by ionomycin. The change in Ca2+ induced by ionomycin was 

larger than that of thapsigargin and likewise, ionomycin induced a greater loss of 

conductance. Interestingly, Bargon and colleagues (1992) found that exposure of 

colon carcinoma (HT-29) cells to agents that increased the intracellular concentration 

of divalent cations including Ca2+, caused a reduction in CFTR mRNA and protein in 

a time and dose dependent manner (Bargon et al., 1992). Furthermore, Bozoky and 

colleagues (2017) found that an increase in cytosolic Ca2+ caused a reduction CFTR 

activity. The researchers also found that the effect of an increase in cytosolic Ca2+ on 

CFTR depended on the phosphorylation status of CFTR. Similar to the findings 

detailed in this chapter, Bozoky et al., (2017) found that phosphorylated CFTR 

showed a decrease in activity when exposed to an increase in cytosolic Ca2+.  

However, in the absence of PKA phosphorylation, an increase in [Ca2+]i caused an 

increase in CFTR activity (Bozoky et al., 2017). 

 

In the present study, when cells were exposed to thapsigargin after exposure to 

forskolin, the whole cell conductance declined. However, Billet and Hanrahan (2013) 

have suggested that there may be a role for CFTR to act as a Ca2+ activated Cl- 

channel (Billet and Hanrahan, 2013). Indeed, Billet and colleagues (2013) found that 

there was a Ca2+ dependent component to the activation of CFTR. The researchers 

found that activation of the M3 muscarinic receptor via carbachol in baby hamster 

kidney (BHK) cells caused stimulation of CFTR (Billet et al., 2013). Further support 

comes from the observation that the efficacy of agents thought to increase Cl- 

secretion through CaCC is lowered in CF. Indeed, CF pig nasal turbinates show a 

reduction in fluid secretion in response to stimulation with carbachol (Cho et al., 
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2011). Thus, Billet and Hanrahan (2013) suggested that the effect of Ca2+ may be 

cell type dependent (Billet and Hanrahan, 2013). However, investigating the effect of 

a muscarinic receptor agonist may be of value in further understanding how changes 

in cytosolic Ca2+ modulate CFTR-mediated conductance. 

 

The data in this thesis suggested that extracellular Ca2+ was not necessary for the 

loss of CFTR-mediated conductance, and therefore store operated Ca2+ entry does 

not need to occur. Similarly, Rasmussen and colleagues have previously shown that 

if cells were exposed to cigarette smoke in the absence of extracellular Ca2+, the 

increase in [Ca2+]i was similar to that seen when Ca2+ was present (Rasmussen et 

al., 2014). These data suggested a transient increase in Ca2+ was sufficient to cause 

CFTR internalisation. Thus, the data in this chapter also supports the finding that 

Ca2+ release from internal stores alone is sufficient to cause a reduction in CFTR at 

the membrane. 

 

To test the effect of a physiological agonist on CFTR-mediated conductance, cells 

were exposed to ATP. ATP is usually released in the airways in response to the 

mechanical stresses seen during breathing; the subsequent effect is the release of 

Ca2+ from endoplasmic reticulum stores (Paradiso et al., 2001). Exposure to ATP in 

patch clamp experiments induced a variety of responses in terms of CFTR 

conductance. A proportion of the cells showed a transient loss of conductance; it is 

known that stimulation of the P2Y2 receptor causes activation of the Gq pathway and 

the activation of PKC via this pathway has been shown to result in the 

phosphorylation of CFTR, through potentiating the effect of PKA (Paradiso et al., 

2001). Furthermore, ATP is broken down to adenosine by ectonucleotidases which 

would stimulate CFTR activity in a autocrine/paracrine manner through the action of 

adenosine on the A2B receptor (Lazarowski et al., 2004). Likewise, the activation of 

the A2B receptor has been shown to be coupled to cAMP accumulation via Gs 

(Cooper et al., 1997, Gao et al., 1999). Therefore, it could be that the increase in 

[Ca2+]i induced by ATP caused a loss in conductance, but the recovery was due to 

one of the effects listed above. The majority of cells tested showed some decrease in 

conductance, either as an initial decrease followed by a plateau or a gradual decline 

in conductance. This suggests that the increase in cytosolic Ca2+ caused by ATP 

may have overwhelmed the ability of the various mechanisms listed above to prevent 

a big loss in conductance. Interestingly, activation of A2B receptors in HEK 293 cells 
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has been shown to result in the activation of the extracellular signal regulated 

kinases (ERK) 1/2 pathway (Gao et al., 1999). This is of significance as Xu and 

colleagues (2015) showed that activation of the MEK/ERK pathway can cause CFTR 

internalisation (Xu et al., 2015). 

 

As it has been previously suggested that smoke induced Ca2+ release is from the 

lysosomal store, the lysosomal Ca2+ release agent, GPN, was tested. GPN is 

hydrolysed by the lysosomal cathepsin C which causes osmotic swelling of the 

lysosomal membrane and allows for leak of small molecular weight substances 

including Ca2+ (Patel and Docampo, 2010, Kilpatrick et al., 2013).  Exposure to GPN 

in HEK 293 cells was found to cause a slow sustained change in cytosolic Ca2+, 

which induced variable effects on forskolin stimulated increases in CFTR 

conductance in patch clamp experiments. It is possible that release of substances 

from the lysosome was toxic to the cell and so caused a loss of the high resistance 

seal or the variability in the responses seen.  

 

Overall, when all the Ca2+ agonists were compared in terms of their effect on CFTR-

mediated conductance, the data showed that the rate at which agonists induced a 

loss of CFTR-mediated conductance was an important determinant of whether there 

was a significant loss of conductance. Furthermore, increases in [Ca2+]I, determined 

by changes in Fura-2 ratio,, were correlated to the loss of CFTR-mediated 

conductance. This suggests, albeit indirectly, that cytosolic Ca2+ levels can directly 

affect the activity of CFTR. Conversely, it has been suggested that CFTR itself can 

regulate Ca2+ influx. CFTR has been shown to prevent the insertion of Orai1 

channels into the membrane, which causes a net effect of decreasing Ca2+ entry into 

the cell during store operated Ca2+ entry. This effect is lost in CF which allows for the 

creation of more STIM1/Orai1 complexes during store-operated Ca2+ entry and 

causes a larger influx of Ca2+ into the cells (Balghi et al., 2011). If cigarette smoke 

exposure causes the same effect i.e. the loss of Orai1 channel regulation, CFTR loss 

induced by the smoke induced increase in Ca2+ would create a positive feedback 

loop whereby the loss of CFTR would allow for further entry of Ca2+ into the cells due 

to the failure of Orai1 channel regulation by CFTR. 

 

The data suggested a Ca2+ dependent decrease in conductance was due to a 

decrease in functional CFTR channels present at the membrane, via dynamin 
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dependent endocytosis, and no change in channel gating. This was evidenced by the 

ability of dynasore, a dynamin GTPase inhibitor (Macia et al., 2006), to prevent a 

Ca2+-induced decrease in conductance. Dynamin is the primary protein involved in 

scission of clathrin coated pits from the cell membrane and dynasore prevents the 

GTPase activity of dynamin by preventing the hydrolysis of GTP (Hinshaw, 2000). 

Previous studies have shown that dynasore is able to prevent the endocytosis of 

CFTR under resting conditions, suggesting that the initial mechanism by which CFTR 

is internalised resembles that of the normal trafficking process (Young et al., 2009). 

Interestingly, Ca2+ increases have been linked to regulating the balance between 

endocytosis and exocytosis. In synaptosomes, Marks et al., (1998) showed that an 

increase in Ca2+ was able to cause endocytosis at concentrations lower than that 

needed for exocytosis (Marks and McMahon, 1998). Furthermore, in nerve terminals, 

an increase in cytosolic Ca2+, and binding of Ca2+ to calmodulin, has been shown to 

be linked to the initiation of endocytosis. The researchers also found that increasing 

the rate of Ca2+ influx was linked to a corresponding increase in the rate of 

endocytosis (Wu et al., 2009). However, a caveat to my data was that Ca2+ imaging 

experiments suggested that the effect of dynasore could be in part, due to a 

reduction in the increase in cytosolic Ca2+ induced by thapsigargin. Thus, further 

experiments would be needed to definitively conclude that thapsigargin was inducing 

the internalisation of CFTR.  

 

Experiments carried out to measure the single channel gating kinetics showed that 

there was no significant change in the conductance, open probability, open time or 

closed time when bilayers expressing the purified channel were exposed to an 

increase in cytosolic Ca2+. Similar findings were reported by Clunes et al., (2012) who 

carried out the same experiments in bilayers that had been exposed to cigarette 

smoke (Clunes et al., 2012). The data supports the evidence that either exposure to 

smoke or an increase in cytosolic Ca2+ causes a reduction in CFTR via an effect on 

the number of channels present on the membrane and not the gating kinetics. 

However, Raju and colleagues showed that exposure of inside out patches from HEK 

293 cells to the cigarette smoke component, acrolein, was able to cause a reduction 

in the open probability of CFTR (Raju et al., 2013). It is possible that testing the effect 

of one component of smoke alone, however, is not sufficient to gage the effect whole 

cigarette smoke would have on CFTR gating. The same group has also shown that 

exposure to cigarette smoke extract to HEK 293 cells causes a reduction in the open 
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probability of CFTR (Raju et al., 2017). However, the researchers used cigarette 

smoke extract, not whole phase cigarette smoke for these studies. Furthermore, they 

found that acute exposure of cells to extract had no effect on CFTR. Cigarette smoke 

condensate, used in this study, is prepared by capturing the particulate fraction in 

DMSO. However, cigarette smoke extract, is prepared by bubbling cigarette smoke 

into either media or buffer solution (Tamashiro et al., 2009). It is possible that 

because cigarette smoke extract only captures a fraction of smoke, it takes longer for 

it to be effective. Indeed, the data detailed in section 3.6.3 (discussed below) showed 

that acute exposure to cigarette smoke condensate had no effect on CFTR 

conductance. 

 

Cigarette smoke condensate captures the particulate fraction of smoke, which 

comprises 5% of whole smoke. When the condensate was tested, cells showed no 

substantial decrease in CFTR-mediated conductance compared to vehicle treated 

cells. Rasmussen and colleagues previously showed that CFTR internalisation was 

the same whether they used whole cigarette smoke or the volatile phase only, 

suggesting that the particulate fraction has no effect on CFTR internalisation 

(Rasmussen et al., 2014). However, as mentioned above, there is conflicting 

evidence as to the effect of cigarette smoke extract on CFTR. Welsh and colleagues 

(1983) showed that exposure of CS to canine tracheal cells caused a reduction in Cl- 

mediated short circuit current. In contrast to the data detailed in this chapter, Moran 

and colleagues (2014) found that exposure to CSC caused an inhibition of CFTR-

mediated conductance (Moran et al., 2014). Other researchers have previously 

showed that cigarette smoke extract is able to induce a decrease in CFTR protein. 

For example, cigarette smoke extract has been shown to cause a reduction in CFTR 

short circuit current and protein (Kreindler et al., 2005, Cantin et al., 2006). 

Furthermore, the deleterious effects of CS extract are not limited to CFTR; the free 

radicals within the CS extract have been shown to cause an opening of 

hemichannels which propagate Ca2+ increases between cells (Ramachandran et al., 

2007). As there is no standardised protocol for the development of cigarette smoke 

condensate and the preparation varies between labs, it is possible different extracts 

capture different constituents of smoke, accounting for the differing effects seen.  

 

When cells were exposed to a relatively high concentration of DMSO, there was a 

large decrease in CFTR-mediated conductance. However, Ca2+ imaging experiments 
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indicated there was little change in cytosolic Ca2+. Tamagnini and colleagues showed 

that pre-treatment with a low concentration (0.05%) of DMSO had permanent effects 

on excitable cells such as reducing action potential output, under patch clamp 

conditions. Furthermore, the researchers found the effects remained after wash out 

of the DMSO (Tamagnini et al., 2014). It has also been suggested that DMSO is able 

to cause changes in the structure of membranes, including changing the orientation 

of components such as cholesterol (de Ménorval et al., 2012). Indeed, it has been 

suggested that changing cholesterol in the plasma membrane can cause the 

redistribution of CFTR in primary human bronchial epithelial cells (Abu-Arish et al., 

2015). It could therefore be possible that although there was little change in [Ca2+]i 

upon the addition of DMSO, there was a large effect on conductance due to non-

specific effects of DMSO. 

 

In summary, the findings of this chapter are; 

• An increase in [Ca2+]i caused a significant reduction in CFTR-mediated 

conductance. 

• An increase in [Ca2+]i caused an inhibition of CFTR-mediated conductance in 

the absence of extracellular Ca2+. These data suggested that a transient 

increase in [Ca2+]i, from internal stores is sufficient to induce loss of CFTR-

mediated conductance. 

• The different agonists used to increase cytosolic Ca2+ indicated that the 

magnitude of the increase in [Ca2+]i correlated to the degree of CFTR-

mediated conductance lost. 

• An increase in [Ca2+]i causes internalisation of CFTR via dynamin-dependent 

endocytosis and has no effect on the gating of channels present at the 

membrane.  
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Chapter 4.0 An Increase in Cytosolic Ca2+ Causes CFTR 

Internalisation via the MEK/ERK Pathway and the 

Activation of Calcineurin 

 

4.1 Introduction  

The findings from the previous chapter showed that an increase in cytosolic Ca2+ 

induced a decrease in CFTR-mediated conductance via internalisation of the 

channel. CFTR expression at the plasma membrane is tightly regulated, once 

removed from the membrane; much of the protein is recycled back to the plasma 

membrane via recycling endosomes (Farinha et al., 2013). As discussed in section 

1.4.2, CFTR is routed to late endosomes or lysosomes for degradation, if not 

recycled back to the plasma membrane (Gentzsch et al., 2004). Previous research 

from our lab has shown that tobacco smoke exposure does not cause CFTR to be 

routed to the lysosome for degradation, due to smoke induced disruption of 

lysosomal function (Rasmussen et al., 2014). Therefore, I sought to further 

understand the trafficking process undertaken by CFTR once exposed to an increase 

in cytosolic Ca2+. Further to the internalisation route taken by CFTR following 

cigarette smoke exposure, our lab has shown that activation of the mitogen activated 

protein kinase (MEK)/ extracellular signal related kinase (ERK) pathway plays a role 

in the smoke-induced internalisation of the channel (Xu et al., 2015). Cigarette smoke 

has been shown to cause the activation of the MEK/ERK pathway, however, previous 

studies had not identified the MEK/ERK pathway as having a role in regulating 

plasma membrane expression of CFTR (Mercer and D Armiento, 2006). Thus, I 

tested whether this pathway could regulate CFTR expression after an increase in 

cytosolic Ca2+. As the experiments carried out in chapter 3 studied the effect of an 

increase in cytosolic Ca2+ on phosphorylated CFTR, the effect of the phosphorylation 

status on CFTR internalisation was also investigated. In this chapter, I used confocal 

microscopy to further understand the movement of CFTR following an increase in 

cytosolic Ca2+ induced by either Ca2+ agonists or cigarette smoke. Furthermore, I 

sought to identify the mechanism by which an increase in cytosolic Ca2+ affects 

CFTR expressed at the plasma membrane. Many of the studies cited above have 

used HEK 293 cells as a simpler model system that replicated the signalling 

pathways found in human airway epithelial cell lines, such as the MEK/ERK pathway. 

Thus, I used HEK 293T cells to further investigate the mechanism behind how 
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increases in cytosolic Ca2+ affect CFTR. Primary airway cells were then used to 

validate if the same signalling pathways were affected as those in HEK 293 cells.  

 

4.2 Cigarette smoke exposure causes internalisation of CFTR 

Experiments detailed in the previous chapter showed that an increase in cytosolic 

Ca2+ caused a reduction in CFTR-mediated conductance via internalisation of the 

channel. As a control for the Ca2+ agonists, cigarette smoke, which has been 

previously shown to cause an increase in cytosolic Ca2+ and CFTR internalisation via 

confocal microscopy, was used as an agonist for internalisation (Rasmussen et al., 

2014). 

 

HEK 293T cells were exposed to one full research grade cigarette under thin film 

conditions and incubated for 30 minutes in media before fixation (detailed in section 

2.7). For these experiments, cells were co-transfected with CFTR and STIM1. On 

average, exposure to cigarette smoke caused an increase in intracellular 

fluorescence of CFTR to 4.2 ± 0.2 A.U (n=228 cells, p<0.001), compared to 1.0 ± 

0.04 A.U (n=227 cells) in cells exposed to air. Likewise, the plasma membrane 

fluorescence of CFTR in cells exposed to smoke showed a decrease to 0.7 ± 0.2 A.U 

compared to 1.0 ± 0.03 A.U in cells treated with air (p<0.001, Fig. 4.01). 

 

Experiments in the lab have previously indicated that smoke exposure caused the 

movement of CFTR to the endoplasmic reticulum (Marklew, 2016). To further confirm 

this observation, cells were co-transfected with stromal interaction molecule 1 

(STIM1) which acts as a Ca2+ sensor in the endoplasmic reticulum. Specifically, 

STIM1 couples to and activates Orai1 channels on the plasma membrane upon 

depletion of the endoplasmic reticulum store to form Ca2+ release activated channels 

(Baba et al., 2006). Exposure to smoke caused an increase in co-localisation of 

CFTR and STIM1 to 51.7 ± 2.3% (p<0.001) compared 37.7 ± 1.9% in air exposed 

cells.   
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4.3 Increases in cytosolic Ca2+ cause internalisation of CFTR  

4.3.1 Exposure to the SERCA pump inhibitor thapsigargin, causes 

internalisation of CFTR but not Ano1 

Data in the previous chapter showed thapsigargin caused a reduction of CFTR-

mediated conductance via a dynamin-dependent mechanism. Therefore, the effect of 

thapsigargin and dynasore on CFTR internalisation was tested.  

 

 
Figure 4.01. Exposure to the cigarette smoke causes internalisation of CFTR. (A) 

Representative images showing the effect of either 13 puffs of air (n=228 cells) or cigarette smoke 

(CS; n=227 cells) as indicated. HEK 293 cells were transfected with GFP CFTR (green) and 

STIM1 mCherry (red). Nuclei were counter stained with DAPI (blue). Changes in (B) intracellular 

and (C) membrane fluorescence. Data are mean ± SEM (coverslips were imaged in duplicate from 

3 independent experiments). Scale bar represents 50 µm. *p<0.001 compared to air exposed 

cells. 
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Using same protocol as earlier, cells were co-transfected with CFTR and STIM1. On 

average, HEK 293 cells treated with vehicle had an internal fluorescence of 1.0 ± 0.1 

A.U (n=201 cells) for CFTR. Exposure to 200 nM thapsigargin for 30 minutes caused 

an increase in internal fluorescence to 4.5 ± 0.2 A.U (n=199 cells, p<0.005) whereas 

cells pre-treated with 80 µM dynasore showed little increase in fluorescence (1.2 ± 

0.1 A.U; n=238 cells, p<0.001) after exposure to thapsigargin. Likewise, plasma 

membrane fluorescence of CFTR in vehicle treated cells had an average 

fluorescence of 1.0 ± 0.03 A.U. Cells exposed to thapsigargin showed a reduction in 

plasma membrane fluorescence to 0.6 ± 0.02 A.U whereas cells treated with 

dynasore showed no loss in membrane fluorescence (1.0 ± 0.03 A.U, p<0.001, Fig. 

4.02). Therefore, pre-treatment with dynasore completely prevented the thapsigargin-

induced internalisation of CFTR. 

 

As with earlier experiments, co-localisation between CFTR and STIM1 was 

quantified. On average, cells treated with vehicle had a percentage co-localisation of 

20.5 ± 1.7% whereas cells exposed to thapsigargin showed an increase in co-

localisation to 44.5 ± 2.6% (p<0.001). Pre-treatment of cells with dynasore caused a 

reduction in co-localisation to 32.3 ± 2.1% (p<0.001). 
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Total internal reflection fluorescence microscopy, which directly measures changes in 

protein expressed at the plasma membrane, was used to further investigate the effect 

 

Figure 4.02. Exposure to thapsigargin causes internalisation of CFTR via a dynamin 

dependent mechanism. (A) Representative images showing the effect of vehicle (n=201 cells), 

200 nM thapsigargin (TG; n=199 cells) and 80 µM dynasore + thapsigargin (n=238 cells) on 

CFTR. HEK 293 cells were transfected with GFP CFTR (green) and STIM1 mCherry (red). Nuclei 

were counter stained with DAPI (blue). Changes in (B) intracellular and (C) membrane 

fluorescence. Data are mean ± SEM (coverslips were imaged in duplicate from 3 independent 

experiments). Scale bar represents 50 µm. *p<0.001 compared to vehicle treated cells † p<0.001 

compared to TG. 
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of an increase in cytosolic Ca2+ on CFTR expressed at the plasma membrane 

(Axelrod, 2001). Furthermore, to test whether the effect of an increase in cytosolic 

Ca2+ was specific to CFTR, cells were co-transfected with Anoctamin 1 (Ano1). Ano1 

encodes the Ca2+ activated chloride channel (CaCC) which is responsible for Cl- 

secretion into the airways in response to an increase in cytosolic Ca2+ (Caputo et al., 

2008, Schroeder et al., 2008, Yang et al., 2008).  

 

Upon exposure to thapsigargin, CFTR expressed at the plasma membrane showed a 

decrease in fluorescence to 0.7 ± 0.1 A.U (p<0.05), in contrast to cells treated with 

vehicle (1.0 ± 0.1 A.U). On the other hand, Ano1 expressed at the plasma membrane 

showed a little change in fluorescence (0.9 ± 0.2 A.U), when compared to Ano1 

expressed at the plasma membrane in vehicle treated cells (1.0 ± 0.1 A.U; Fig. 4.03). 

These data indicated that the effect of an increase in cytosolic Ca2+ was specific to 

CFTR and did not affect Ano1 and potentially other plasma membrane Cl- 

transporters expressed in HEK 293 cells.  
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4.3.2 Exposure to the ionophore, ionomycin, causes internalisation of CFTR 

As with experiments detailed in chapter 3, further Ca2+ agonists were tested to 

complement the data from cells treated with thapsigargin. Exposure to the ionophore, 

 
Figure 4.03. Exposure to thapsigargin causes loss of CFTR expressed at the membrane. (A) 

Representative images showing CFTR (green) and Ano1 (red) imaged using total internal 

reflection fluorescence microscopy and epifluorescent microscopy after treatment with either 

vehicle or 200 nM thapsigargin (TG). (B) Changes in relative membrane fluorescence, calculated 

using TIRF images. Data are mean ± SEM (coverslips were imaged in duplicate from 3 

independent experiments). Scale bar represents 30 µm. *p<0.05 compared to vehicle treated 

cells. 
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ionomycin, for 30 minutes caused an increase in intracellular fluorescence of CFTR 

to 4.1 ± 0.2 A.U (n=228 cells, p<0.001) compared to cells treated with vehicle (1.0 ± 

0.03 A.U, n=227 cells). Likewise, plasma membrane fluorescence of CFTR 

decreased to 0.5 ± 0.01 A.U in ionomycin exposed cells, compared to 1.0 ± 0.02 A.U 

in vehicle exposed cells (Fig. 4.04). Accordingly, co-localisation between CFTR and 

STIM1 showed an increase to 54.6 ± 2.0% in ionomycin exposed cells, compared to 

cells treated with vehicle alone (37.7 ± 1.1%, p<0.001). 

 

 

Figure 4.04. Ionomycin causes internalisation of CFTR. (A) Representative images showing 

the effect of vehicle (n=227 cells) and 1 µM ionomycin (n=228 cells). HEK 293 cells were 

transfected with GFP CFTR (green) and STIM1 mCherry (red). Nuclei were counter stained with 

DAPI (blue). Changes in (B) intracellular and (C) membrane fluorescence. Data are mean ± SEM 

(coverslips were imaged in duplicate from 3 independent experiments). Scale bar represents 50 

µm. *p<0.001 compared to vehicle treated cells. 
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4.3.3 Exposure to a physiological agonist, ATP, causes internalisation of 

CFTR 

The effect of the physiological agonist, ATP was also tested; cells were exposed to 

100 µM ATP or vehicle for 30 minutes. Exposure to ATP caused an increase in 

intracellular CFTR to 1.9 ± 0.2 A.U (n=213 cells, p<0.001) compared to 1.0 ± 0.1 A.U 

(n=210 cells) for vehicle treated cells. Likewise, ATP treated cells showed a reduction 

in plasma membrane expressed CFTR (0.8 ± 0.02 A.U) compared to vehicle treated 

cells (1.0 ± 0.3 A.U, p<0.001, Fig. 4.05). As with earlier experiments, co-localisation 

between CFTR and STIM1 was analysed. Exposure to ATP caused an increase in 

co-localisation to 38.9 ± 1.7% in comparison to cells exposed to vehicle (30.2 ± 1.4%, 

p<0.001). 

 

 
Figure 4.05. Exposure to the physiological agonist, ATP, causes internalisation of CFTR. (A) 

Representative images showing the effect of vehicle (n=213 cells) and 100 µM ATP (n=210 cells) 

on CFTR. Cells were transfected with GFP CFTR (green) and STIM1 mCherry (red). ). Nuclei 

were counter stained with DAPI (blue). Changes in (B) intracellular and (C) membrane 

fluorescence under conditions indicated. Data are mean ± SEM (coverslips were imaged in 

duplicate from 3 independent experiments). Scale bar represents 50 µm. *p<0.001 compared to 

vehicle. 
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4.4 Comparison of the effect of cigarette smoke and Ca2+ agonists on CFTR 

expression  

The data detailed in chapter 3 showed that thapsigargin, ionomycin and ATP all 

elicited different temporal changes in cytosolic Ca2+. In order to try and correlate the 

changes in Ca2+ to changes in expression of CFTR, a comparison of the effects of 

the agonists detailed above to CS was carried out. When compiled, the data 

indicated that thapsigargin and ionomycin induced a bigger change in both 

intracellular and plasma membrane CFTR expression compared to smoke (p<0.05, 

Fig. 4.06). Furthermore, the change in both intracellular and plasma membrane 

expression of CFTR was similar between thapsigargin and ionomycin exposed cells, 

despite the differences in Ca2+ induced by both agonists. In contrast, ATP caused a 

smaller increase in intracellular fluorescence when compared to smoke (p<0.05, Fig. 

4.06) and caused a loss of plasma membrane fluorescence that was comparable to 

cigarette smoke.  

 

 

4.5 A thapsigargin-induced increase in cytosolic Ca2+ causes CFTR to be 

routed to the endoplasmic reticulum 

4.5.1 Internalised CFTR co-localises with calreticulin 

Smoke internalised CFTR is thought to be routed to aggresome like compartments, 

possibly due to lysosomal function being compromised by smoke exposure 

 

Figure 4.06. Comparison of the effect of cigarette smoke and Ca2+ agonists on CFTR 

expression. Effect of indicated Ca2+ agonists on relative amounts of (A) intracellular and (B) 

plasma membrane CFTR; cigarette smoke (CS), thapsigargin (TG). Data are mean ± SEM 

(coverslips were imaged in duplicate from 3 independent experiments). *p<0.05 compared to CS. 
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(Rasmussen et al., 2014). The experiments detailed above using STIM1 as a marker 

for the endoplasmic reticulum have shown CFTR was routed to the ER. To further 

confirm this observation and use a conventional marker for the endoplasmic 

reticulum, staining was carried out with the ER marker, calreticulin (Milner et al., 

1991). Cells exposed to thapsigargin showed an increase in co-localisation between 

CFTR and calreticulin to 53.2 ± 1.3% (n=265 cells, p<0.001) when compared to 

vehicle treated cells (39.0 ± 1.0%, n=355 cells, Fig. 4.07), further indicating that 

CFTR is routed to the endoplasmic reticulum following an increase in cytosolic Ca2+. 

 

 
Figure 4.07. Exposure to thapsigargin causes an increase in CFTR in the endoplasmic 

reticulum. (A) Representative images showing the effect of vehicle (n=355 cells) or 200 nM 

thapsigargin (TG; n=265 cells) on CFTR. HEK 293 cells were transfected with GFP CFTR (green) 

and stained for calreticulin (red). Nuclei were counter stained with DAPI (blue). (B) Co-localisation 

between CFTR and calreticulin under conditions indicated. Data are mean ± SEM (coverslips were 

imaged in duplicate from 3 independent experiments). Scale bar represents 50 µm *p<0.001 

compared to vehicle treated cells. 



89 

 

4.5.2 Internalised CFTR is not routed to the lysosome 

Research from the lab has shown that CFTR is not routed to lysosomes following 

exposure to cigarette smoke (Rasmussen et al., 2014). To test whether an increase 

in cytosolic Ca2+ causes the same pattern of trafficking, cells were stained for 

lysosomal associated membrane protein 1 (LAMP1) (Meikle et al., 1997). On 

average, thapsigargin exposed cells had a co-localisation of 39.0 ± 0.9% (n=300 

cells), similar to vehicle treated cells (37.0 ± 0.8%, n= 362 cells, Fig. 5.08), 

suggesting CFTR is not routed to the lysosome following an increase in cytosolic 

Ca2+. 

 

 
Figure 4.08. Exposure to thapsigargin does not change CFTR expression in lysosomes. (A) 

Representative images showing the effect of vehicle (n=362 cells) or 200 nM thapsigargin (TG; 

n=300 cells). HEK 293 cells were transfected with GFP CFTR (green) and stained for LAMP1 

(red). Nuclei were counter stained with DAPI (blue). (B) Co-localisation between CFTR and 

LAMP1 under conditions indicated. Data are mean ± SEM (coverslips were imaged in duplicate 

from 3 independent experiments). Scale bar represents 50 µm. 
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4.5.3 CFTR is not routed to the Golgi apparatus following an increase in 

cytosolic Ca2+ 

To determine whether CFTR was being routed to the Golgi apparatus, cells were 

stained for the cis Golgi apparatus marker, GM130 (Nakamura et al., 1995). On 

average, cells treated with vehicle had a co-localisation of 21.0 ± 0.8% (n=247 cells) 

and exposure to thapsigargin caused no change in co-localisation (20.2 ± 1.1%, 

n=187 cells, Fig. 4.09). These data suggest that for the timeframe recorded for these 

experiments, CFTR is not routed to the Golgi apparatus. 

 

 
Figure 4.09. Exposure to thapsigargin causes no change in CFTR present in the Golgi 

apparatus. (A) Representative images showing the effect of vehicle (n=247 cells) or 200 nM 

thapsigargin (TG; n=187 cells). HEK 293 cells were transfected with GFP CFTR (green) and 

stained for GM130 (red). Nuclei were counter stained with DAPI (blue). (B) Co-localisation 

between CFTR and GM130 under conditions indicated. Data are mean ± SEM (coverslips were 

imaged in duplicate from 3 independent experiments). Scale bar represents 50 µm. 
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4.6 Inhibitors of the MEK/ERK pathway prevent a thapsigargin-induced 

internalisation of CFTR  

Research from the has previously shown that inhibition of the MEK/ERK pathway can 

prevent tobacco smoke-induced internalisation of CFTR (Xu et al., 2015). To test 

whether the MEK/ERK pathway is involved in Ca2+-induced internalisation of CFTR, 

cells were pre-treated for 30 minutes with U0126 (10 µM) which binds to MEK1 and 

MEK2 at specific residues, without competing with ERK or ATP, and thus provides 

selective inhibition of MEK (Duncia et al., 1998, Favata et al., 1998). Cells were also 

pre-treated with PD98059 (10 µM) which binds to the inactive form of MAPKK, 

preventing its activation (Alessi et al., 1995, Dudley et al., 1995). 

 

On average, exposure to 200 nM thapsigargin caused an increase in intracellular 

fluorescence of CFTR to 5.7 ± 0.3 A.U (n=322 cells, p<0.05) from a baseline of 1.0 ± 

0.1 A.U (n=307 cells). This increase was significantly blunted when cells were pre-

treated with U0126 (1.5 ± 0.1 A.U, n=341 cells) or PD98059 (1.6 ± 0.1 A.U, n=386 

cells, Fig. 4.10B). Likewise, plasma membrane fluorescence of CFTR decreased to 

0.6 ± 0.01 A.U when cells were treated with thapsigargin, however, this decrease 

was prevented after pre-treatment with U0126 (1.0 ± 0.03 A.U) or PD98059 (1.0 ± 

0.02 A.U, Fig. 4.10C).  

 

As earlier, percentage co-localisation between CFTR an STIM1 was also quantified. 

On average, vehicle treated cells had a co-localisation of 35.2 ± 1.4% which was 

increased to 54.8 ± 2.1% (p<0.05) when cells were exposed to thapsigargin. This 

increase was blunted when cells were pre-treated with either U0126 (42.6 ± 1.7%, 

p<0.05) or PD98059 (46.8 ± 2.1%, p<0.05). Thus, these data indicate that the 

activation of the MEK/ERK pathway plays a role in Ca2+-induced CFTR 

internalisation. 
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Figure 4.10. Effect of MEK/ERK inhibitors on thapsigargin-induced CFTR internalisation. (A) 

Representative images showing the effect of vehicle (n=307 cells), 200 nM thapsigargin (TG; 

n=322 cells), TG + 10 µM U0126 (n=341 cells) and TG + 10 µM PD98059 (n=386 cells). Cells 

were transfected with GFP CFTR (green) and STIM1 mCherry (red). Nuclei were counter stained 

with DAPI (blue). Changes in (B) intracellular and (C) membrane fluorescence under conditions 

indicated. Data are mean ± SEM (coverslips were imaged in duplicate from 3 independent 

experiments). Scale bar represents 50 µm *p<0.001 compared to vehicle treated cells † p<0.001 

compared to TG. 
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4.7 Effects of altered cAMP/PKA activity on CFTR internalisation  

4.7.1 Increasing cAMP does not affect thapsigargin-induced CFTR 

internalisation  

Patch clamp experiments detailed in the previous chapter studied the effect of an 

increase in cytosolic Ca2+ on CFTR after the channel had first been activated with 

forskolin. To test whether the phosphorylation of CFTR could affect internalisation, 

cells were pre-treated with forskolin for 10 minutes before addition of thapsigargin, 

similar to the exposure period used in patch clamp experiments.  

 

On average, in cells exposed to vehicle, CFTR had an intracellular fluorescence of 

1.0 ± 0.05 A.U (n=323 cells) and exposure to 200 nM thapsigargin caused an 

increase in intracellular fluorescence to 5.1 ± 0.3 A.U (n=279 cells, p<0.001). 

Exposure to thapsigargin in cells that had been pre-treated with 5 µM forskolin 

caused a similar increase in intracellular fluorescence (4.7 ± 0.2 A.U; n=289 cells, 

p<0.001, Fig. 4.11B). Likewise, plasma membrane fluorescence of CFTR in vehicle 

exposed cells was 1.0 ± 0.03 A.U whereas cells exposed to thapsigargin showed a 

reduction in plasma membrane fluorescence to 0.6 ± 0.02 A.U as did cells treated 

with forskolin and thapsigargin (0.6 ± 0.02 A.U, Fig. 4.11C). These data suggested 

that in forskolin stimulated cells, which should activate and phosphorylate CFTR, an 

increase in cytosolic Ca2+ had the same effect as cells in which CFTR has not been 

activated. Thus, Ca2+-induced CFTR internalisation was independent of 

phosphorylation status of CFTR. 

 

Similar trends were seen in the co-localisation between CFTR and STIM1. On 

average, vehicle treated cells had a co-localisation of 20.1 ± 1.6% which was 

increased to 40.0 ± 2.4% (p<0.05) in thapsigargin exposed cells and similarly 

increased to 44.0 ± 1.9% (p<0.05) in forskolin and thapsigargin exposed cells. 
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Figure 4.11. PKA phosphorylation of CFTR does not affect thapsigargin-induced 

internalisation of CFTR. (A) Representative images showing the effect of vehicle (n=323 cells), 

200 nM thapsigargin (TG; n=279 cells) and TG + forskolin (fsk; n=289 cells). Cells were 

transfected with GFP CFTR (green) and STIM1 mCherry (red). Nuclei were counter stained with 

DAPI (blue).  Scale bar represents 50 µM. Changes in relative (B) intracellular and (C) membrane 

fluorescence, Data are mean ± SEM (coverslips were imaged in duplicate from 3 independent 

experiments). Scale bar represents 50 µm *p<0.001 compared to vehicle treated cells. 
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4.7.2 Inhibitors of PKA and PKC have no effect on thapsigargin-induced 

internalisation of CFTR 

In order to further investigate whether the cAMP/PKA pathway played a role in Ca2+ 

induced CFTR internalisation, cells were pre-treated with the PKA inhibitor, H89. H89 

inhibits the effect of PKA through competitive inhibition of ATP binding to the catalytic 

subunit of PKA (Engh et al., 1996). Cells were also pre-treated with the PKC inhibitor, 

staurosporine to determine whether phosphorylation by this kinase plays a role in 

internalisation. Staurosporine inhibits the action of PKC by binding to the catalytic 

subunit of PKC (Tamaoki et al., 1986, Ward and O'Brian, 1992). 

 

On average, exposure to thapsigargin caused an increase in intracellular 

fluorescence of CFTR to 2.0 ± 0.2 A.U (n=258 cells, p<0.001) compared to cells 

treated with vehicle (1.0 ± 0.04 A.U, n=254 cells). In comparison, cells exposed to 

thapsigargin after pre-treatment with staurosporine (100 nM) showed an increase in 

intracellular fluorescence to 2.2 ± 0.1 A.U (n=284 cells, p<0.001). Similarly, cells pre-

treated with H89 (0.5 µM) showed an increase in fluorescence to 2.6 ± 0.1 A.U 

(n=238 cells, p<0.05, Fig. 4.12B). 

 

Likewise, plasma membrane fluorescence of CFTR decreased to 0.6 ± 0.02 A.U 

(p<0.001) in thapsigargin treated cells, compared to a fluorescence of 1.0 ± 0.02 A.U 

in cells treated with vehicle. Similarly, cells exposed to thapsigargin after pre-

treatment with staurosporine showed a decrease in fluorescence to 0.6 ± 0.01 A.U 

(p<0.001) and cells pre-treated with H89 showed a decrease to 0.59 ± 0.02 A.U 

(p<0.001, Fig. 4.12C).  

 

A similar trend was seen in the changes in co-localisation between CFTR and STIM1. 

Cells exposed to vehicle had a co-localisation of 31.2 ± 1.8% which was increased to 

46.2 ± 2.2% (p<0.05) when cells were exposed to thapsigargin. A similar increase in 

co-localisation was seen when cells were exposed to staurosporine (50.1 ± 1.7%, 

p<0.05) or H89 (48.4 ± 2.0%, p<0.05). 
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Figure 4.12. Inhibitors of PKA or PKC do not affect thapsigargin-induced internalisation of 

CFTR. (A) Representative images showing the effect of vehicle (n=254 cells), 200 nM thapsigargin 

(TG; n=258 cells), TG + 100 nM staurosporine (n=284 cells) and TG + 0.5 µM H89 (n=238 cells). 

Cells were transfected with GFP CFTR (green) and STIM1 mCherry (red). Nuclei were counter 

stained with DAPI (blue). Changes in relative (B) intracellular and (C) membrane fluorescence, 

Data are mean ± SEM (coverslips were imaged in duplicate from 3 independent experiments). 

Scale bar represents 50 µm *p<0.001 compared to vehicle treated cells. 
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4.7.3 Increasing cAMP via forskolin prevents cigarette smoke-induced CFTR 

internalisation 

The data discussed above showed that increasing cAMP, and therefore 

phosphorylation of CFTR, had no effect on the thapsigargin-induced internalisation of 

CFTR. Likewise, inhibition of PKA with H89 had no effect on the thapsigargin-induced 

internalisation of CFTR. To determine whether cigarette smoke-induced CFTR 

internalisation was also insensitive to PKA phosphorylation, cells were pre-treated 

with either forskolin or the inhibitor, H89 and then exposed to cigarette smoke. 

  

The data in fig 4.13 shows that in marked contrast to the data in figure 4.11, in cells 

pre-treated with forskolin, cigarette smoke failed to induce CFTR internalisation. This 

effect of forskolin was affected by H89 and so was clearly a PKA dependent effect. 

On average, in cells exposed to air and pre-treated with vehicle, CFTR had an 

intracellular fluorescence of 1.0 ± 0.1 A.U (n=237 cells), similar to cells pre-treated 

with 5 µM forskolin (1.3 ± 0.2 A.U; n= 242 cells) and cells treated with forskolin and 

0.5 µM H89 (1.6 ± 1.0 A.U; 232 cells). Exposure to cigarette smoke caused an 

increase in intracellular fluorescence to 6.8 ± 1.2 A.U (n=235 cells, p<0.001), which 

was prevented by pre-treatment with forskolin (1.4 ± 0.3 A.U; n= 245 cells, p<0.001). 

On the other hand, pre-treatment of smoke exposed cells with forskolin and H89 

showed an increase in intracellular fluorescence that was similar to cells treated with 

vehicle (6.6 ± 1.0 A.U; n= 235 cells, p<0.001, Fig. 4.13B). 

 

Changes in plasma membrane fluorescence showed similar trends. Cells exposed to 

air and treated with vehicle had a plasma membrane fluorescence of 1.0 ± 0.1 A.U, 

similar to cells pre-treated with forskolin (0.9 ± 0.1 A.U) and forskolin and H89 (0.9 ± 

0.1 A.U). Smoke exposure caused a reduction in plasma membrane fluorescence to 

0.6 ± 0.05 A.U (p<0.001) whereas cells pre-treated with forskolin had a higher 

plasma membrane fluorescence of 0.8 ± 0.04 A.U. In contrast, cells treated with 

forskolin and H89 showed a similar loss of plasma membrane fluorescence to cells 

exposed to smoke and treated with vehicle (0.5 ± 0.03 A.U, p<0.001, Fig. 4.13C).  

 

Changes in co-localisation between CFTR and STIM1 showed the same trends. On 

average, cells exposed to air and treated with vehicle had a co-localisation of 35.8 ± 

2.3%, which was increased to 58.3 ± 2.4% (p<0.05) when cells were exposed to 

smoke. The smoke induced increase in co-localisation was blunted to 43.5 ± 2.6% 
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(p<0.05) when cells were pre-treated with forskolin whereas cells exposed to air had 

a co-localisation of 34.4 ± 1.8%. Cells exposed to smoke and treated with forskolin 

and H89 had a co-localisation of 51.9 ± 2.6% (p<0.05) whereas cells exposed to air 

had a co-localisation of 45.4 ± 2.3%. Thus, these data suggest that phosphorylation 

of CFTR via the action of forskolin has different consequences for cells exposed to 

cigarette smoke or to an increase in cytosolic Ca2+ induced by thapsigargin.

 

 

Figure 4.13. Phosphorylation of CFTR via PKA prevents smoke induced internalisation (A) 

Representative images showing the effect of air exposed cells treated with either vehicle (n=237 

cells), 5 µM forskolin (fsk; n=242 cells) and fsk + 0.5 µM H89 (n=232 cells) or smoke (CS) 

exposed cells treated with vehicle (n=236 cells), fsk (n=245 cells) and fsk + H89 (n= 235 cells). 

Changes in relative (B) intracellular and (C) membrane fluorescence, Data are mean ± SEM 

(coverslips were imaged in duplicate from 3 independent experiments). Scale bar represents 50 

µm. *p<0.001 compared to air + vehicle exposed cells † p<0.001 compared to CS + vehicle. 
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To determine whether the protective effect of forskolin was due to modulation of CS 

induced changes in Ca2+, cells were pre-treated either 5 µM forskolin or vehicle and 

then Ca2+ measured. As with confocal imaging experiments, cells were pre-treated 

with 5 µM forskolin for 10 minutes before exposure to one research grade cigarette. 

On average, vehicle treated cells responded to cigarette smoke with an increase in 

ratio to 0.5 ± 0.1 ratio units from a baseline of 0.2 ± 0.02 ratio units. Likewise, cells 

pre-treated with forskolin showed an increase to 0.5 ± 0.1 ratio units from a baseline 

of 0.2 ± 0.02 ratio units. Cells treated with vehicle and exposed to air showed no 

changes in ratio (0.2 ± 0.03 ratio units compared to 0.2 ± 0.04 ratio units after 

exposure).  Similarly, cells pre-treated with forskolin and exposed to air also showed 

no change in Fura-2 ratio (0.1 ± 0.01 ratio units compared to 0.2 ± 0.01 ratio units 

after exposure). Changes in area under the curve showed a similar trend where cells 

pre-treated with vehicle had an increase in AUC to 9.7 ± 3.7 ratio.min compared to 

0.7 ± 0.3 ratio.min in air exposed cells. Similarly, cells pre-treated with forskolin 

showed an increase in AUC to 11.8 ± 5.2 ratio.min compared to 0.8 ± 0.3 ratio.min in 

air exposed cells (n=3, Fig. 4.14). These data suggest that the protective effect of 

forskolin on CFTR internalisation was not due to an inhibition of the smoke-induced 

rise in cytosolic Ca2+. 
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4.8 The effect of calcineurin on CFTR internalisation  

4.8.1 Inhibition of calcineurin prevents the thapsigargin-induced 

internalisation of CFTR  

The data discussed above suggests that phosphorylation of CFTR via PKA is 

protective against CFTR internalisation induced by smoke. However, phosphorylation 

of CFTR had no effect on CFTR internalisation induced by an increase in cytosolic 

 

Figure 4.14. Forskolin pre-treatment has no effect on the smoke-induced increase in 

cytosolic Ca2+. HEK 293T were loaded with Fura-2 AM for 30 mins. Cells were then exposed to 

one full research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs in total) or 

the equivalent of air. (A) Representative traces showing the changes in intracellular Ca2+ when 

cells were exposed to air or CS after pre-treatment with vehicle (V) or 5µM forskolin (fsk). Bar 

represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) Fura-2 ratio 

and (C) area under the curve (AUC). Data are mean ± SEM (n=3).   
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Ca2+. Thus, the data suggested that phosphorylation and dephosphorylation rates 

were important in determining CFTR internalisation. As an increase in cytosolic Ca2+ 

was common in both the response to cigarette smoke exposure and thapsigargin, the 

role of Ca2+ dependent phosphatase, calcineurin, was investigated. Cyclosporin A 

binds to the immunophilin cyclophilin, forming a complex which binds to and inhibits 

calcineurin (Schreiber and Crabtree, 1992, Galat, 1993). As a control, okadaic acid 

which inhibits protein phosphatase 1 and 2A was also tested. Cells were pre-treated 

with each drug for 30 minutes before the addition of thapsigargin. 

 

On average, exposure to 200 nM thapsigargin caused an increase in intracellular 

fluorescence of CFTR to 6.0 ± 0.3 A.U (n=330 cells, p<0.05) from a baseline of 1.0 ± 

0.05 A.U (n=356 cells). This increase was blunted when cells were pre-treated with 1 

µM cyclosporin A (1.7 ± 0.1 A.U, n=363 cells, p<0.05), whereas pre-treatment with 10 

nM okadaic acid had no effect (5.4 ± 0.3 A.U, n=321 cells, Fig. 4.15B). Likewise, 

plasma membrane fluorescence of CFTR decreased to 0.6 ± 0.02 A.U when cells 

were treated with TG, compared to vehicle treated cells (1.0 ± 0.02 A.U). This 

decrease was prevented by cyclosporin A pre-treatment (0.9 ± 0.02 A.U), however, 

okadaic acid had no effect on the TG-induced decrease in plasma membrane 

fluorescence (0.6 ± 0.02 A.U, Fig. 4.15C).  

 

Co-localisation between CFTR and STIM1 was also analysed. On average, 

thapsigargin caused an increase in co-localisation to 39.0 ± 2.4% (p<0.05) compared 

to 18.5 ± 1.6% in vehicle treated cells. Pre-treatment of cells with cyclosporin A 

caused a reduction in co-localisation to 27.1 ± 1.9% (p<0.05) whereas pre-treatment 

with okadaic acid had no effect (32.8 ± 2.4%, p<0.05). 
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Figure 4.15. Effect of phosphatase inhibitors on thapsigargin-induced CFTR internalisation. 

Representative images showing the effect of (A) vehicle (n=356 cells), 200 nM thapsigargin (TG, 

n=330 cells), TG + 1 µM cyclosporin A (n=363 cells) and TG + 10 nM okadaic acid (n=321 cells). 

Cells were transfected with CFTR (green) and STIM1 (red). Nuclei were counter stained with DAPI 

(blue). Changes in (B) intracellular and (C) membrane fluorescence under conditions indicated. 

Data are mean ± SEM (coverslips were imaged in duplicate from 3 independent experiments). 

Scale bar represents 50 µm. *p<0.0001 compared to vehicle † p<0.0001 compared to TG. 
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4.8.2 An increase in cytosolic Ca2+ stimulates calcineurin phosphatase activity 

A direct effect of thapsigargin on calcineurin phosphatase activity was also tested 

using a colorimetric assay. Various controls were employed to verify the sensitivity of 

the assay. When exposed to the PP1 and PP2A inhibitor, okadaic acid, calcineurin 

phosphatase activity was 1.4 ± 0.2 A.U compared to total activity in the assay (1.0 

A.U). Treatment with the Ca2+ chelator, EGTA (1 mM), decreased calcineurin activity 

in the assay to 0.1 ± 0.3 A.U. When treated in combination with okadaic acid and 

EGTA, to inhibit PP1, PP2A and calcineurin, calcineurin activity was inhibited to 0.1 ± 

0.1 A.U. Human recombinant calcineurin (40 U) was also assayed as a positive 

control, on average, the protein caused an increase in activity to 1.5 ± 0.4 A.U (n=3, 

Fig. 4.16A). 

 

Alongside the controls, the effect of agonists used in imaging experiments was also 

tested. On average, 200 nM thapsigargin caused an increase in calcineurin 

phosphatase activity to 1.4 ± 0.1 A.U compared to vehicle treated cells (1.0 A.U; n=3, 

p<0.05). When treated with 1 µM cyclosporin A and thapsigargin, the phosphatase 

activity was reduced to 1.0 ± 0.04 A.U (n=3). Treatment with 10 nM okadaic acid had 

no effect on the thapsigargin induced increase (1.2 ± 0.1 A.U, n=3, Fig. 4.16B).  

 

 
Figure 4.16. An increase in cytosolic calcium causes an increase in calcineurin 

phosphatase activity. Calcineurin phosphatase activity was measured using the Enzo Life 

Sciences calcineurin activity assay. Cells were treated with the conditions indicated and lysed. 

Excess phosphate was then removed from the sample and total calcineurin activity measured. (A) 

Changes in calcineurin phosphatase activity when treated with; okadaic acid (O.A), EGTA and 

human recombinant calcineurin (Cn). Data have been normalised to total phosphatase activity. (B) 

Changes in phosphatase activity when cells were exposed to thapsigargin (TG) and various 

inhibitors. Data have been normalised to vehicle. Data are mean ± SEM (n=3) *p<0.05 when 

compared to vehicle. 
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4.8.3 Inhibition of calcineurin in cigarette smoke exposed cells prevents 

internalisation of CFTR 

The effect of calcineurin inhibition on smoke induced CFTR internalisation was also 

tested. As earlier, cells were pre-treated with either cyclosporin A or okadaic acid for 

30 minutes before exposure to either 13 puffs of cigarette smoke or air. On average, 

exposure to smoke caused an increase in internal fluorescence of CFTR to 5.8 ± 0.3 

A.U (n= 241 cells, p<0.001) compared to 1.0 ± 0.1 A.U (n=235 cells) when exposed 

to air. Pre-treatment with cyclosporin A blunted the increase in internal fluorescence 

induced by smoke to 1.4 ± 0.1 A.U (n=246 cells, p<0.001) whereas cells treated with 

air showed no change in fluorescence (0.9 ± 0.1 A.U; n= 240 cells). When treated 

with okadaic acid, cells exposed to smoke showed an increase in internal 

fluorescence to 5.4 ± 0.3 A.U (n=321 cells, p<0.001) compared to cells treated with 

air (0.7 ± 0.1 A.U, n=330 cells, Fig. 4.17B). 

 

Likewise, exposure to cigarette smoke caused a decrease in plasma membrane 

fluorescence of CFTR to 0.6 ± 0.1 A.U compared to 1.0 ± 0.1 A.U (p<0.001) when 

exposed to air. Pre-treatment with cyclosporin A blunted the decrease in membrane 

fluorescence induced by CS to 0.9 ± 0.02 A.U similar to cells exposed to air (0.9 ± 

0.1 A.U). When treated with okadaic acid, cells treated with CS showed a decrease in 

membrane fluorescence to 0.6 ± 0.02 A.U compared to cells treated with air (0.9 ± 

0.1 A.U, p<0.001, Fig. 4.17C). 

 

Cells were also co-transfected with STIM1. On average, the co-localisation between 

CFTR and STIM1 in cells exposed to air and treated with vehicle was 37.6 ± 2.1%. 

The co-localisation increased to 55.3 ± 2.7% (p<0.05) when cells were exposed to 

smoke. This increase in co-localisation induced by smoke was blunted to 41.8 ± 2.2% 

(p<0.05) when cells were pre-treated with cyclosporin A whereas cells exposed to air 

had a co-localisation of 31.4 ± 1.6%. Cells exposed to smoke and treated with 

okadaic acid had a co-localisation of 53.7 ± 2.4% (p<0.05) whereas cells exposed to 

air had a co-localisation of 42.4 ± 2.2%. 
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4.8.4 Exposure to cigarette smoke causes an increase in calcineurin 

phosphatase activity 

The effect of cigarette smoke exposure on calcineurin phosphatase activity was also 

tested. As earlier, the assay was run with several controls, which displayed similar 

trends. Cells were exposed to 3 puffs of cigarette smoke and the phosphatase 

 

Figure 4.17. Effect of phosphatase inhibitors on smoke-induced CFTR internalisation. (A) 

Representative images showing the effect of air (n=235 cells), air + 1 µM cyclosporin A (CsA; 

n=240 cells), air + 10 nM okadaic acid (O.A; n=330 cells) or cigarette smoke (CS; n= 241 cells), 

CS + CsA (n=246 cells) and CS + O.A (n=321 cells) in cells transfected with GFP CFTR. Changes 

in (B) intracellular and (C) membrane fluorescence under conditions indicated. Data are mean ± 

SEM (coverslips were imaged in duplicate from 3 independent experiments). Scale bar represents 

50 µm. *p<0.0001 compared to air + vehicle † p<0.0001 compared to CS + vehicle. 
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activity assayed. Note that cells exposed to the standard 13 puffs showed highly 

variable results (data not shown).  

 

As earlier, various controls were used to validate the assay. Exposure to okadaic acid 

caused an increase in calcineurin activity to 2.5 ± 0.7 A.U whereas treatment with 

EGTA inhibited activity to 0.3 ± 0.1 A.U, as did treatment with okadaic acid and in 

EGTA in combination (0.2 ± 0.1 A.U). As a positive control, human recombinant 

calcineurin was also assayed, and was found to cause an increase in activity to 9.0 ± 

2.8 A.U (n=4-7, Fig. 4.18A). On average, exposure to cigarette smoke caused an 

increase in calcineurin activity to 2.4 ± 0.3 A.U when compared to air exposed cells 

(1.0, p<0.05). Cyclosporin A blunted the smoke induced increase in calcineurin 

activity to 1.1 ± 0.1 A.U which was similar to air exposed cells (0.9 ± 0.1 A.U). On the 

other hand, pre-treatment with okadaic acid still caused an increase in calcineurin 

activity to 1.9 ± 0.2 A.U, compared to air exposed cells (1.0 ± 0.1 A.U; n=7, Fig. 

4.18B). 

 

 

 
Figure 4.18. Cigarette smoke exposure causes an increase in calcineurin phosphatase 

activity. Calcineurin phosphatase activity was measured using the Enzo Life Sciences calcineurin 

activity assay. Cells were treated with the conditions indicated and lysed. Excess phosphate was 

then removed from the sample and total calcineurin activity measured. (A) Changes in calcineurin 

phosphatase activity under various control conditions employed in the assay; okadaic acid (O.A), 

EGTA and human recombinant calcineurin (Cn). Data have been normalised to total phosphatase 

activity (n= 4-7). (B) Changes in phosphatase activity when cells were exposed to air or cigarette 

smoke (CS); cyclosporin A (CsA; n=7). ‡ p<0.05 compared to Cn. *p<0.05 compared to air 

exposed cells. † p<0.05 compared to CS. 
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4.8.5 Inhibition of calcineurin prevents a smoke-induced reduction in airway 

surface liquid height 

One of the major effects of cigarette smoke exposure is to decrease the height of the 

ASL and increase the production of mucus, due to a loss of CFTR from the plasma 

membrane (Rasmussen et al., 2014). To test whether calcineurin inhibition could be 

protective against the smoke-induced decrease in ASL height, primary human 

bronchial epithelial cells (HBEC) were used to study the effect of cyclosporin A on the 

ASL. Cells exposed to air had an ASL height of 8.3 ± 0.3 µm at 30 minutes post 

exposure compared to a starting height of 8.7 ± 0.2 µm (n=8 transwells). Cells 

subsequently maintained a height of approximately 7.7 µm for the duration of the 

experiment. In comparison, cells exposed to cigarette smoke showed a decrease in 

the height of the ASL to 5.0 ± 0.3 µm (n=7 transwells, p<0.05) at 30 mins post 

exposure compared to a starting height of 8.1 ± 0.3 µm. The ASL height 

subsequently started to recover, reaching a height of 7.3 ± 0.1 µm at 2 hours post 

exposure (n=7 transwells, Fig. 4.19B).  

 

HBECs were also pre-treated with cyclosporin A for 30 mins before exposure to 

either air or smoke. Cells exposed to air had a starting ASL height of 8.7 ± 0.4 µm 

(n=8 transwells) and this height stayed fairly constant for the duration of the 

experiment. Cells pre-treated with cyclosporin A and exposed to smoke had a 

starting height of 8.2 ± 0.3 µm and showed a small but significantly less decline in 

ASL height compared to CS and vehicle exposed cells, with a decrease in height to 

7.0 ± 0.4 µm at 30 minutes post exposure to cigarette smoke. Like vehicle treated 

cells, the ASL height subsequently recovered to a height to 7.6 ± 0.2 µm at 2 hours 

post cigarette smoke exposure (n=7 transwells, Fig. 4.19). These data indicated that 

pre-treatment with cyclosporin A could protect the ASL from a smoke-induced 

reduction in height, further implicating calcineurin as a key effector in smoke-induced 

internalisation of CFTR. 
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4.8.6 Calcineurin does not affect physiological increases in ASL height in 

response to G protein-coupled receptor agonists 

The role of calcineurin under physiological conditions was also tested by exposing 

cells to adenosine (Ado; ~200 µM) after pre-treating cells with cyclosporin A or 

 

Figure 4.19. Cyclosporin A protects against a smoke-induced decrease in airway surface 

liquid height. Airway surface liquid (ASL) in human bronchial epithelial cells was labelled with 

tetramethylrhodamine conjugated dextran and perfluorocarbon was added mucosally to prevent 

evaporation of the ASL. (A) Representative images showing ASL height 30 minutes after cultures 

were exposed to either 13 puffs of air or cigarette smoke and treated as indicated. Scale bar 

represents 10 µm. (B) Time course showing changes in ASL height under conditions indicated. 

Data are mean ± SEM (n=7-8 transwells from 3 independent donors). Scale bar represents 10 µm. 

*p<0.05 compared to air exposed cultures. † p<0.05 compared to CS + vehicle. ‡ p<0.05 

compared to t=0. 
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vehicle overnight. Adenosine acts on the A2B receptor causing an increase in cAMP 

and stimulation of CFTR (Tarran et al., 2005). Cells exposed to vehicle showed an 

increase in ASL height to 6.5 ± 0.2 µm (n=9 transwells) after being exposed to 

adenosine for 10 minutes, compared to a starting height of 5.8 ± 0.1 µm. The ASL 

height subsequently started to recover with the height falling to 5.7 ± 0.2 µm at 1 hour 

post exposure and remaining at that height for the rest of the experiment. In 

comparison, cells treated with vehicle showed no increases in ASL height overtime 

and the ASL height stayed at approximately 5.6 ± 0.2 µm for 6 hours (n=8 transwells, 

Fig. 4.20). 

 

Cells exposed to cyclosporin A overnight appeared to respond normally to 

adenosine. Similar to vehicle treated cells, cells pre-treated with cyclosporin A 

showed an increase in ASL height to 6.8 ± 0.3 µm (n=9 transwells) after exposure to 

adenosine for 10 minutes, compared to a starting height of 5.6 ± 0.1 µm. Cells 

subsequently showed a recovery in ASL height, with the height at 6 hours being 6.0 ± 

0.1 µm. In contrast, cells treated with vehicle only showed no changes in ASL height 

for the duration of the experiment, with the height remaining at ~5.6 ± 0.2 µm (n=8 

transwells, Fig. 4.20). These data indicated that calcineurin had no effect on the 

response of CFTR to physiological agonists. Together with the previous ASL height 

data, these data indicate CFTR is regulated by calcineurin only under conditions of 

stress. 
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As a further physiological control, HBECs were also exposed to uridine 5’-

triphosphate (UTP, ~200 µM). Within the airways, release of UTP stimulates the 

P2Y2 receptor and causes activation of the Gq pathway to increase cytosolic Ca2+ 

 

Figure 4.20. Cyclosporin A has no effect on the response of CFTR to adenosine induced 

increases in ASL height. (A) Airway surface liquid (ASL) in human bronchial epithelial cells was 

labelled with tetramethylrhodamine conjugated dextran and perfluorocarbon was added mucosally 

to prevent evaporation of the ASL. Representative images showing ASL height at 10 minutes post 

exposure to either powdered adenosine (Ado; ~200 µM) suspended in PFC or vehicle, as 

indicated. (B) Time course showing changes in ASL height under conditions indicated. Data are 

mean ± SEM (n=9 transwells, measured in triplicate, from 3 independent donors). Scale bar 

represents 10 µm. * represents a significant difference between cells treated with Ado compared to 

cells treated with vehicle. † represents a significant difference between cells treated with CsA + 

Ado compared to cells treated with CsA alone. 
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and subsequently stimulate Cl- efflux through CaCC (Tarran et al., 2001b). As with 

earlier experiments, HBECS were exposed to UTP after pre-treatment with 

cyclosporin A or vehicle to test whether calcineurin could affect the function of the 

Ca2+ activated chloride channel. Cells were treated with either vehicle or cyclosporin 

A overnight as earlier.  

 

Cells exposed to vehicle overnight showed an increase in ASL height to 7.4 ± 0.3 µm 

following 10 minutes exposure to UTP, from a starting height of 5.9 ± 0.3 µm. The 

ASL height subsequently fell to 6.8 ± 0.4 µm at 1 hour post exposure and recovered 

to 6.0 ± 0.1 µm at 6 hours post exposure. In contrast, cells treated with vehicle had 

an ASL that maintained a height of approximately 5.7 µm for the duration of the 

experiment. 

 

Cells pre-treated with cyclosporin A overnight showed an increase in ASL height to 

7.4 ± 0.3 µm following 10 minutes exposure to UTP, compared to a starting height of 

6.0 ± 0.1 µm. Cells subsequently showed a decline in ASL height to 6.5 ± 0.2 µm at 1 

hour post exposure and a recovery to 5.8 ± 0.1 µm at 6 hours. Cells treated with 

cyclosporin A showed no substantial changes in ASL height for the duration of the 

experiment. Thus, the data indicated the response to UTP was similar between cells 

pre-treated with vehicle and cyclosporin A. Therefore, calcineurin must have no role 

in regulating the response of the Ca2+ activated chloride channel to physiological 

agonists. 
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Figure 4.21. Cyclosporin A has no effect on uridine 5’-triphosphate mediated increases in 

airway surface liquid height responses. Airway surface liquid (ASL) in human bronchial 

epithelial cells was labelled with tetramethylrhodamine conjugated dextran and perfluorocarbon 

was added mucosally to prevent evaporation of the ASL. (A) Representative images showing ASL 

height at t=10 min after exposure to either powdered uridine 5’-triphosphate (UTP; ~200 µM) 

suspended in PFC or vehicle, as indicated. (B) Time course showing changes in ASL (n=8-9 

transwells from 3 independent donors). Scale bar represents 10 µM. * represents a significant 

difference between cells treated with uridine 5’-triphosphate (UTP) compared to cells treated with 

vehicle. † represents a significant difference between cells treated with CsA + UTP compared to 

cells treated with CsA alone.  
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4.9 Discussion  

In the following section, I will attempt to summarise the effects of increases in 

cytosolic Ca2+, induced by either cigarette smoke or pharmacological agents, on 

CFTR (also detailed in Fig. 4.22). Data in the previous chapter showed that a range 

of Ca2+ agonists elicited different changes in cytosolic Ca2+ signals in terms of their 

magnitude and duration. These differences were correlated to differences in the 

degree of CFTR-mediated conductance loss. The data from confocal microscopy 

experiments detailed in this chapter also allowed the differences in Ca2+ responses to 

be correlated to differences in the degree of CFTR internalisation seen. Although not 

as evident in confocal microscopy experiments, ATP was seen to cause a smaller 

degree of intracellular accumulation of CFTR. These data provide further evidence 

for the finding that differences in the kinetics of cytosolic Ca2+ increases can 

modulate CFTR residency at the plasma membrane. Initial experiments showed that 

an increase in cytosolic Ca2+
 lead to changes in CFTR localisation that were of a 

similar magnitude to cigarette smoke induced changes. This data supports the finding 

by Rasmussen and colleagues (2014) that the smoke-induced increase in cytosolic 

Ca2+ is primarily responsible for the effects seen on CFTR (Rasmussen et al., 2014).   

 

Initial experiments found that, as reported by others, cigarette smoke exposure 

caused a reduction in CFTR present at the plasma membrane and an increase of the 

protein in the intracellular space. Rasmussen and colleagues (2014) first suggested 

that CFTR is internalised because of smoke exposure (Rasmussen et al., 2014). 

However, smoke exposure has been shown by other groups to affect CFTR function. 

For example, Cantin and colleagues (2006) showed that cigarette smoke exposure 

caused a reduction in nasal potential difference consistent with a reduction in CFTR 

activity (Cantin et al., 2006). Furthermore, Raju et al., (2013) showed that the defects 

in CFTR function are not limited to airway epithelia. Using sweat chloride analysis 

and intestinal current measurements, the researchers showed reduced CFTR activity 

in smokers compared to non-smokers (Raju et al., 2013). 

 

The effect of an increase in cytosolic Ca2+ was found to be specific to CFTR and had 

no effect on Ano1 as the location of this channel did not change in response to an 

increase in cytosolic Ca2+. Ano1 encodes CaCC which secretes Cl- into the airways, 

secondary to CFTR (Anderson and Welsh, 1991, Namkung et al., 2011). 

Consequently, CaCC also plays a role in fluid secretion and changes in ASL height in 
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response to agonists released into the airways (Tarran et al., 2002). Therefore, Cl- 

secretion via CaCC could be protective against the effects of an increase in Ca2+ or 

smoke on CFTR mediated Cl- secretion. Indeed, it has been previously suggested 

that in cystic fibrosis, where Cl- secretion through CFTR is compromised, activation of 

CaCC could be of therapeutic value (Boucher et al., 1989, Knowles et al., 1991). 

However, it has been suggested that the secretion induced by CaCC would be 

insufficient to compensate for the loss of CFTR, suggesting that CaCC activity would 

be unlikely to counteract the loss of Cl- secretion from CFTR (Rab et al., 2013). 

 

The specificity of the effect of smoke has also been previously reported by 

Rasmussen et al., (2014) and Clunes et al., (2012) who found that smoke had no 

effect on ENaC total protein or Ano1 expression (Clunes et al., 2012, Rasmussen et 

al., 2014). Interestingly, Virgin et al (2010) found that cigarette smoke condensate 

exposure caused a decrease in CaCC-mediated conductance in murine sinonasal 

epithelial cells (Virgin et al., 2010). In contrast to human epithelial cells, where CFTR 

is principally responsible for Cl- secretion, CaCC plays a predominant role in Cl- 

secretion from murine cells (Clarke et al., 1994). This provides evidence for cigarette 

smoke affecting the primary Cl- conductance within the cell. 

 

To assess the route taken by CFTR once internalised, different organelles were 

labelled with markers and CFTR co-localisation with the markers was assessed. 

Under the normal endocytic trafficking route taken by CFTR, the channel is 

internalised by clathrin mediated endocytosis (Bradbury et al., 1994, Prince et al., 

1994). Following internalisation, CFTR can be routed to early endosomes from where 

CFTR can be transported to recycling endosomes to be returned to the plasma 

membrane. Alternatively, CFTR could be ubiquitinated, causing the protein to be 

routed from early endosomes to lysosomes for degradation (Ameen et al., 2007). 

Rasmussen and colleagues (2014) postulated that lysosomal function may be 

compromised after exposure to smoke, due to smoke stimulating the emptying of 

lysosomal Ca2+ stores, and therefore CFTR may not follow a normal trafficking 

process (Rasmussen et al., 2014). Indeed, co-localisation between LAMP1 and 

CFTR did not change when cells were exposed to an increase in cytosolic Ca2+, 

suggesting that CFTR was not degraded following an increase in cytosolic Ca2+.  
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Co-localisation of CFTR with the ER markers calreticulin and STIM1 indicated that 

CFTR is trafficked to the endoplasmic reticulum following an increase in cytosolic 

Ca2+. This suggests that CFTR follows a retrograde transport pathway whereby 

CFTR internalised into endosomes is transported to the ER following exposure to an 

increase in Ca2+ (Bonifacino and Rojas, 2006). Friedman and colleagues (2013) 

showed that the endoplasmic reticulum and endosomes can form sustained contact 

sites and that these contact sites can be used for transfer of proteins (Friedman et 

al., 2010, Friedman et al., 2013). Retrograde transport can also involve transport to 

the trans Golgi network, and CFTR can be transported to the trans Golgi network 

from late endosomes (Ameen et al., 2007). However, the experiments detailed above 

showed no change in CFTR in the Golgi network following an increase in cytosolic 

Ca2+. As transport to the Golgi network is usually seen in retrograde transport, it is 

possible that a more detailed time course would be needed to fully assess whether 

CFTR located in the Golgi changes after an increase in cytosolic Ca2+.  

 

The data showed that inhibition the MEK/ERK pathway negated the effect of a Ca2+-

induced internalisation of CFTR. The MEK/ERK pathway is a ubiquitous signalling 

pathway that is comprised of a mitogen activated protein kinase (MAPK) kinase 

kinase that phosphorylates a MAPK kinase which in turn phosphorylates MAPK. In 

the ERK pathway, Raf functions as the MAPKKK, MEK (MAPK/ERK) as MAPKK and 

ERK as MAPK. The pathway can regulate other kinases, as well as cellular 

processes such as proliferation, differentiation, and cell survival (Bonni et al., 1999, 

Kolch, 2000, Whitmarsh and Davis, 2000, Shaul and Seger, 2007). Our lab has 

previously shown that the MEK/ERK pathway is involved in the smoke induced 

diminution of CFTR. Further, the same inhibitors as those used in these experiments 

were able to inhibit smoke-induced internalisation of CFTR (Xu et al., 2015). 

Similarly, Hellerman and colleagues (2002) found that acute exposure of human 

bronchial epithelial cells to cigarette smoke condensate caused an increase in 

ERK1/2 activity. Further, the authors also linked the activation of MAPK activity and 

NFĸB to an increase in proinflammatory cytokines (Hellermann et al., 2002).  

 

Studies have correlated an increase in cytosolic Ca2+ with the activation of ERK 1/2 

and MEK 1/2 in lens epithelial tissue and neurons (Rosen et al., 1994, Li et al., 

2005). Indeed, studies from our lab have shown that inhibition of the MEK/ERK 

pathway had no effect on the Ca2+ increase induced by smoke (Marklew, 2016) . 
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Paradoxically, ERK has been associated with an increase in CFTR activity in renal 

epithelial cells. Jansson and colleagues found that fluid secretion from renal cells was 

coupled to increases in Cl- secretion through CFTR, which were in turn mediated by 

the Src-MEK/ERK pathway (Jansson et al., 2012). The consequences of the 

activation of the MEK/ERK pathway has been shown to depend on the strength and 

magnitude of the activation (Agell et al., 2002). For example, previous studies have 

shown that sustained activation of the pathway can lead to cell cycle arrest inked to 

either apoptosis or proliferation, depending on the cell type (Qiu and Green, 1992, 

Cook et al., 1997). However, the profile of the activation of the MEK/ERK pathway by 

smoke has not been characterised. Together with the data detailed in this chapter, 

these findings suggest that activation of the MEK/ERK pathway is secondary to the 

Ca2+ increase induced by cigarette smoke. However, further characterisation of the 

activation profile of the MEK/ERK pathway in airway cells would be needed as these 

studies could help elucidate how activation of the pathway could have different 

effects on CFTR. 

 

Various inhibitors employed to investigate the role of PKC and serine/threonine 

phosphatases suggested that these pathways play no role in Ca2+-induced 

internalisation of CFTR. Rasmussen and colleagues (2014) similarly found that these 

same pathways also play no role in CFTR internalisation induced by cigarette smoke 

(Rasmussen et al., 2014). Interestingly, my experiments showed that when cells were 

pre-treated with forskolin, cigarette smoke no longer caused internalisation of CFTR, 

suggesting that PKA phosphorylation protects CFTR. Similarly, inhibition of PKA 

‘rescued’ the internalisation of CFTR induced by smoke but had no effect in cells 

treated with a pharmacological Ca2+ agonist. Experiments also showed that forskolin 

pre-treatment did not affect the change in cytosolic Ca2+ induced by cigarette smoke, 

suggesting the effect of forskolin on CFTR internalisation was downstream to the 

increase in cytosolic Ca2+. Likewise, others have found that forskolin was able to 

prevent endocytosis of wild type CFTR in cell lines including pancreatic cells and T84 

cells (Bradbury et al., 1992, Prince et al., 1994, Howard et al., 1996). Lukacs et al., 

(1997) further suggested that phosphorylation of CFTR prevented CFTR removal 

from the plasma membrane by promoting the movement of CFTR held in internal 

stores to the plasma membrane (Lukacs et al., 1997).  
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Conversely, in my studies, forskolin pre-treatment had no effect on Ca2+-induced 

internalisation of CFTR. Whilst no other studies have investigated the effect of an 

increase in cytosolic Ca2+ on CFTR internalisation, as discussed in chapter 4, others 

have shown that an increase in Ca2+ in the presence of forskolin can cause a 

reduction in CFTR activity (Bozoky et al., 2017). Therefore, it seems that when cells 

are exposed to an increase in cytosolic Ca2+, phosphorylation via PKA is not able to 

protect CFTR. Arguably, smoke exposure would cause numerous effects within the 

cell. It is possible that besides the increase in cytosolic Ca2+, another consequence of 

smoke exposure is responsible for this discrepancy between the effect of smoke and 

an increase in cytosolic Ca2+.  

 

Imaging experiments showed that inhibition of the Ca2+ dependent phosphatase, 

calcineurin, prevented both smoke-induced and thapsigargin-induced internalisation 

of CFTR. Thus, calcineurin plays a key role in regulating CFTR internalisation. 

Calcineurin, also known as protein phosphatase 2B, requires Ca2+ and calmodulin for 

activation, specifically, calcineurin is activated by sustained elevations in cytosolic 

Ca2+ (Crabtree, 1999, Rusnak and Mertz, 2000). Although calcineurin is found in 

multiple mammalian tissues, the role of this phosphatase has been extensively 

studied in neuronal cells, where calcineurin is responsible for hippocampal long term 

depression and nerve regeneration. Calcineurin itself is composed of an A and B 

subunit, both of which are necessary for activity of the phosphatase (Klee et al., 

1979). The A subunit contains the catalytic domain and the regulatory domain which 

is composed to a calmodulin binding domain and an autoinhibitory domain whilst the 

B subunit of the phosphatase contains the Ca2+ binding region (Kincaid et al., 1988, 

Rusnak and Mertz, 2000). 

 

Interestingly, Lai et al., (1999) found that in extracts from rat brain, calcineurin is 

linked to dynamin 1. Furthermore, the researchers found that the link between 

calcineurin and dynamin was Ca2+ dependent. They correlated an increase in 

cytosolic Ca2+ to the dephosphorylation of dynamin, which resulted in the 

translocation of the calcineurin-dynamin complex to a cluster of proteins involved in 

clathrin mediated endocytosis, allowing calcineurin to dephosphorylate other proteins 

(Lai et al., 1999). Further evidence for the interaction between calcineurin and 

dynamin comes from the observation that calcineurin has been found to be 

associated with the cytoskeleton, as is dynamin (Earnest et al., 1996). Given that 
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inhibition of dynamin via dynasore was found to inhibit CFTR internalisation, these 

data from Lai and colleagues provide a functional link between my data showing a 

role for calcineurin and dynamin in Ca2+-induced internalisation of CFTR (Fig. 4.22). 

Consequently, testing whether there is an interaction between calcineurin and 

dynamin, either using co-immunoprecipitation or knockdown of either protein could 

provide a direct link between smoke-induced activation of calcineurin and changes in 

dynamin activity.  

 

Calcineurin has also been shown to regulate the activity of CFTR itself. Fischer and 

colleagues (1998) found that calcineurin could inhibit the activation of CFTR by either 

PKA or PKC. Furthermore, they found forskolin stimulation evoked larger currents 

after calcineurin inhibition. However, it has been suggested that calcineurin does not 

regulate CFTR in all cell types, Fischer and colleagues found that in epithelial cell 

lines, inhibition of endogenous calcineurin did not affect CFTR, suggesting CFTR 

function is not governed by calcineurin, similar to findings from ASL height data. The 

researchers suggested that the effect of calcineurin on CFTR may depend on the 

subcellular location of calcineurin (Fischer et al., 1998). My data has thus far 

suggested that phosphorylation of CFTR may be an important determinant of 

whether the channel is internalised. However, the data from Fischer and colleagues 

along with data in the literature describing the effect of calcineurin on dynamin 

suggest the phosphorylation status of multiple proteins, including CFTR, may need to 

be further investigated to understand the internalisation of CFTR. 

 

As discussed in section 1.7 cigarette smoke is thought to cause Ca2+
 release from 

lysosomal stores. Furthermore, lysosomal Ca2+ release through the TRPML1 channel 

has been shown to activate calcineurin directly. Since calcineurin is activated by 

direct increases in cytosolic Ca2+, these data provide a direct mechanistic link 

between CS induced release of lysosomal Ca2+ and CFTR internalisation (Fig. 4.22). 

The pathway has been characterised as regulating autophagy independently of the 

mTOR pathway (Medina et al., 2015). Rasmussen and colleagues found inhibition of 

the mTOR pathway has no effect on CFTR internalisation (Rasmussen et al., 2014). 

Thus, investigating whether cigarette smoke causes Ca2+ release through the 

TRPML1 channel could be of value in further understanding how cigarette smoke 

affects intracellular Ca2+ signalling. 
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Studies have suggested that there is a link between calcineurin and activation of the 

ERK pathway, which is of interest, given that activation of the ERK pathway has been 

shown to play a role in CFTR internalisation. Kinase suppressor of Ras 2 (KSR2) 

acts as a scaffold and positive regulator of the ERK signalling cascade (Kornfeld et 

al., 1995, Sundaram and Han, 1995, Therrien et al., 1995, Kolch, 2000). Using mass 

spectrometry analysis, Dougherty and colleagues (2009) found that KSR2 can 

interact with calcineurin. Furthermore, using metabolic [32P] labelling, the researchers 

showed that calcineurin dephosphorylated KSR2 and so was able to regulate KSR2 

movement to the plasma membrane and an increase ERK activity in response to 

increases in cytosolic Ca2+ (Dougherty et al., 2009). Conversely, MAPKs themselves 

have also been shown to affect calcineurin. It has been shown that activation of 

MAPK can either further activate or inhibit calcineurin-NFAT signalling, depending on 

the cell type (Molkentin, 2004). These data suggest that further study is needed into 

the interaction between calcineurin and the MEK/ERK pathway after smoke exposure 

in airway epithelia. 

 

It has been suggested that A kinase anchoring proteins (AKAPs), which bind PKA 

and localise its actions to specific domains in the cell can form a macromolecular 

complex (Colledge and Scott, 1999). In particular, the mAKAP complex has been 

shown to contain PKA, Ca2+, components of the MEK/ERK pathway, the guanine 

nucleotide exchange factor (Epac), the ryanodine receptor, phosphodiesterases and 

phosphatases including calcineurin in cardiac myocytes (Marx et al., 2000, Dodge-

Kafka et al., 2005, Dodge-Kafka and Kapiloff, 2006). The complex has been 

suggested to integrate changes in intracellular cAMP and Ca2+ to nuclear processes 

(Dodge-Kafka et al., 2005). Furthermore, a similar complex has also been found in 

neuronal cells, where AKAP79, PKA and calcineurin have been shown to form a 

complex (Coghlan et al., 1995). Within airway epithelia, ezrin has been shown to be 

an AKAP associated with PKA and CFTR, however, it has not been found to be 

associated with calcineurin (Sun et al., 2000, Tasken and Aandahl, 2004). These 

findings suggest that there may be more components to the regulation of CFTR by 

changes in Ca2+, the MEK/ERK pathway and calcineurin. 

 

Conversely, it has been shown that calcineurin can also indirectly positively regulate 

CFTR function. Using co-immunoprecipitation, Borthwick and colleagues (2007) 

showed that annexin 2, the Ca2+ binding protein S100A10, and CFTR form a complex 
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dependent on cAMP and PKA. Further, they showed that the formation of this 

complex was dependent on calcineurin, as inhibition of calcineurin was able to 

prevent complex formation (Borthwick et al., 2007). Whilst these data suggest 

calcineurin plays a role in the activation of CFTR, Fischer et al., (1998) speculated 

that the location of calcineurin may be important in regulating its effect on CFTR 

(Fischer et al., 1998). Therefore, it could be possible that the increase in Ca2+ of the 

magnitude caused by thapsigargin or cigarette smoke interferes with the role of 

calcineurin in forming a macromolecular complex or causes relocation of the 

phosphatase. Thus, further experiments using co-immunoprecipitation to test whether 

Ca2+ agonists interfere with complex formation would be of value. 

 

The findings detailed in HEK 293 cells were validated in airway cells. Inevitably, HEK 

293 cells present a model system which has much simpler dynamics/signalling 

pathways than highly specialised airway epithelial cells. Indeed, when grown in a 

polarised manner, airway cells have highly compartmentalised signalling machinery 

for CFTR located at the apical pole of the cell (Guggino and Stanton, 2006). Thus, I 

attempted to validate my findings in HBECS to determine whether similar dynamics 

were at play in a more complex system. Cigarette smoke exposure caused a rapid 

reduction in ASL height, and similar changes in ASL have been previously reported 

(Clunes et al., 2012, Rasmussen et al., 2014). The height of the ASL is principally 

determined by transepithelial ion flux; therefore, a smoke-induced reduction in CFTR 

function causes a reduction in ASL height (Boucher, 1999, Clunes et al., 2012). 

Furthermore, an abnormal ASL height has been suggested to be linked to an 

impairment of mucociliary clearance and an increased prevalence of bacterial 

infections (Verkman et al., 2003, Fahy and Dickey, 2010). Indeed, patients with 

COPD have been found to have a higher incidence of chronic infection (Stämpfli and 

Anderson, 2009). Cyclosporin A prevented the smoke-induced decrease in ASL 

height, presumably by preventing the loss of CFTR from the membrane. This is of 

interest because restoring CFTR function in CF patients has been shown to reduce 

the prevalence of lung infection (Hisert et al., 2017).  

 

Phosphatases have been previously shown to regulate ASL height. Thelin and 

colleagues (2005) showed that PP2A, which is active in the absence of divalents, can 

regulate CFTR in airway epithelial cells (Rusnak and Mertz, 2000, Thelin et al., 

2005). Using affinity purification and co-immunoprecipitation, the researchers found 
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that PP2A binds to the C terminus of CFTR. Furthermore, an inhibition of the 

interaction between PP2A and CFTR resulted in an increase in Cl- secretion through 

CFTR and the height of the ASL (Thelin et al., 2005). The resting ASL height of 

cultures pre-treated with cyclosporin A, either acutely or overnight, showed no 

difference to cultures pre-treated with vehicle only. These data suggested that 

calcineurin is not active under resting conditions, as an increase in activity would be 

expected to cause a higher ASL height. 

 

Further evidence for calcineurin having no role in regulating resting ASL height came 

from the finding that calcineurin inhibition had no effect on changes in ASL height in 

response to physiological agonists. The effect of calcineurin of CFTR function was 

tested using adenosine, which stimulates the A2B receptor, and is an agonist for 

CFTR function. Similar to the data presented in this chapter, it has been previously 

been shown that adenosine causes a small and rapid increase in ASL height (Tarran 

et al., 2006b). A role for adenosine in the regulation of ASL height has also been 

shown by the findings that inhibition of the A2B receptor results in cultures being 

unable to regulate ASL height (Tarran et al., 2005). Furthermore, a sustained basal 

level of adenosine, which continuously stimulates the A2B receptor, has been shown 

to be critical for the regulation of ASL height (Lazarowski et al., 2004). The effect of 

calcineurin on Cl- secretion through calcium activated chloride channel activity was 

also tested, using UTP to stimulate P2Y2 receptors (Tarran et al., 2006a). A similar 

temporal change in ASL height induced by UTP has been previously reported, with 

the transient nature of the response likely due to breakdown of UTP by ecto-

nucleotidases (Tarran et al., 2001b). The data showed that calcineurin inhibition had 

no effect on Cl- secretion through either CFTR or CaCC when stimulated with 

physiological agonists. Therefore, it may be possible that calcineurin only plays a role 

in regulating CFTR under conditions of stress. 

 

In summary, the main findings of this chapter are; 

• An increase in cytosolic Ca2+ causes a loss of CFTR at the plasma membrane 

and movement of the protein to the intracellular space. 

• CFTR is trafficked to the endoplasmic reticulum following an increase in 

cytosolic Ca2+. 
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• The phosphorylation status of CFTR has different consequences for cells 

exposed to cigarette smoke or to an increase in cytosolic Ca2+. 

• The MEK/ERK pathway plays a role in Ca2+-induced internalisation of CFTR. 

• The Ca2+ dependent phosphatase, calcineurin, plays a central role in the 

internalisation of CFTR following exposure to either cigarette smoke or to an 

increase in cytosolic Ca2+ induced by thapsigargin. 

• Inhibition of calcineurin can protect the ASL against a smoke-induced 

reduction in height but this phosphatase plays no role in the response of CFTR 

to physiological agonists. 
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Figure 4.22. Summary of the cellular effects of cigarette smoke and an increase in cytosolic 

Ca2+ on CFTR surface expression. Data detailed in this chapter showed exposure to either 

thapsigargin (TG) or cigarette smoke caused an increase in cytosolic Ca2+. The work in this thesis 

did not show an increase in Ca2+ activates the MEK/ERK pathway, however this effect has been 

detailed in the literature. Nevertheless, a role for the MEK/ERK pathway in thapsigargin-induced 

CFTR internalisation was indicated by my data. Furthermore, my data linked an increase in 

cytosolic Ca2+ to the activation of calcineurin. CFTR was subsequently found to be internalised via a 

dynamin-dependent mechanism and routed to the endoplasmic reticulum. The location of Ano1, on 

the other hand, was unaffected by cigarette smoke or an increase in Ca2+. Potential mechanisms 

deduced from the literature are indicated by dashed arrows. Cigarette smoke has been linked to 

activation of the MEK/ERK pathway. Cigarette smoke, through the effects of reactive oxygen 

species, and increases in cytosolic Ca2+ has also been speculated to cause an increase in cytosolic 

Ca2+ arising from the lysosomal stores. Lysosomal Ca2+ release through TRPML1 channels, have 

been linked to the activation of calcineurin. Furthermore, the activation of calcineurin has been 

linked to dephosphorylation of the ERK pathway regulator, KSR2, with the consequent effect of 

increasing ERK activity. Thus, there may be some cross-talk between the activation of the 

MEK/ERK pathway and calcineurin. Calcineurin is also known to dephosphorylate dynamin and 

other proteins involved in endocytosis, suggesting that calcineurin may act to internalise CFTR via 

its effects on dynamin.  
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Chapter 5.0 Concluding Discussion 

 

5.1 Summary of main findings 

The aim of my project was to investigate the effect of an increase in cytosolic Ca2+ on 

CFTR function and to determine the mechanism underlying how an increase 

cytosolic Ca2+ affects CFTR activity. Much of my work was carried out using HEK 

293T cells transiently transfected with CFTR as this cell system represents a model 

which can be easily manipulated and reproduce the effects of cigarette smoke on 

epithelial cells (Rasmussen et al., 2014). Using the whole cell configuration of the 

patch clamp technique, I found that increases in cytosolic Ca2+, elicited by a range of 

pharmacological agonists, caused a decrease in CFTR-mediated conductance. By 

using fluorescent Ca2+ measurements to give an approximation of the changes in 

cytosolic Ca2+, I found that the loss of CFTR-mediated conductance was temporally 

related to the increases in cytosolic Ca2+. Furthermore, Ca2+ imaging experiments 

also helped deduce that a transient increase in cytosolic Ca2+ was sufficient to cause 

a reduction in CFTR-mediated conductance. Further to these findings, inhibition of 

dynamin prevented the loss of CFTR-mediated conductance after exposure to an 

agonist which caused an increase in cytosolic Ca2+. These data suggested that 

increases in cytosolic Ca2+ stimulated the removal of CFTR from the plasma 

membrane via a dynamin-dependent mechanism. 

 

Confocal microscopy was used to assess changes in CFTR localisation after an 

increase in cytosolic Ca2+. These experiments revealed that the loss of CFTR from 

the plasma membrane followed changes in cytosolic Ca2+, similar to that seen in 

patch clamp experiments. These data also linked the reduction in CFTR-mediated 

conductance to a loss of CFTR channels expressed at the plasma membrane. In 

addition, imaging experiments indicated that the Ca2+-induced loss of CFTR from the 

plasma membrane was accompanied by a reciprocal increase in intracellular 

fluorescence, further suggesting that CFTR was internalised. A comparison of the 

changes in CFTR expression induced by pharmacological Ca2+ agonists and smoke 

exposure revealed both agonists caused a similar pattern of change in CFTR 

expression. Taken together, these data provide strong evidence that a smoke-

induced increase in Ca2+ was the primary cause for loss of CFTR from the plasma 

membrane. Additionally, an increase in cytosolic Ca2+ stimulated the relocation of 

CFTR from the plasma membrane to the endoplasmic reticulum, without routing the 
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protein to lysosomes for degradation, as shown for the change in CFTR localisation 

induced by smoke exposure (Rasmussen et al., 2014, Marklew, 2016). The similarity 

between smoke exposure and pharmacological Ca2+ agonists was also seen in the 

MEK/ERK pathway, where inhibition of the pathway prevented Ca2+-induced CFTR 

internalisation (Xu et al., 2015). Together, these data suggested that exposure to 

either a Ca2+ agonist or cigarette smoke caused similar cellular effects and induced a 

similar pattern of trafficking in CFTR. 

 

Initial electrophysiology experiments studied the effect of an increase in cytosolic 

Ca2+ after forskolin had been used to stimulate phosphorylation of CFTR. To 

determine whether there was a difference in the effect of Ca2+ increases on 

phosphorylated and unphosphorylated CFTR, parallel confocal imaging experiments 

were carried out. These experiments revealed that the pre-treatment of HEK 293 

cells with forskolin had no effect on Ca2+-induced CFTR internalisation. Interestingly, 

the same manoeuvre in cigarette smoke exposed cells prevented CFTR 

internalisation. These data suggested that PKA dependent phosphorylation of CFTR 

had different consequences for CFTR depending on the agonist used to stimulate 

internalisation, thus uncovering a divergence in the effects of cigarette smoke vs 

increases in Ca2+ induced by pharmacological agents. 

 

Further to the finding that the phosphorylation status of CFTR may be an important 

determinant of CFTR internalisation, the Ca2+ dependent phosphatase, calcineurin, 

was found to play a key role in CFTR internalisation. Using confocal microscopy, 

calcineurin inhibition was found to prevent loss of CFTR from the plasma membrane 

after exposure to either cigarette smoke or a Ca2+ agonist. Furthermore, cigarette 

smoke and pharmacological Ca2+ agonists were both found to directly increase 

calcineurin phosphatase activity; these data further indicated that this phosphatase 

could determine CFTR internalisation. Importantly, these findings were replicated in 

primary human bronchial epithelial cells, where calcineurin inhibition prevented a 

cigarette smoke-induced reduction in ASL height. Conversely, calcineurin inhibition 

had no effect on physiological changes in ASL height induced by G protein-coupled 

receptor agonists. Together, these data suggest that calcineurin may not regulate 

CFTR activity under resting conditions but may only be active under conditions of 

stress. 
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5.2 Clinical significance of findings for smoke related disease 

The major disease associated with smokers is chronic obstructive pulmonary 

disease. As detailed in section 1.5.2, the presentation of the disease is clinically seen 

as either emphysema, chronic bronchitis, or most commonly, a combination of both 

(Siafakas et al., 1995). Furthermore, the progression of both emphysema and chronic 

bronchitis has been proposed to be, in part, mediated by a smoke-induced reduction 

in CFTR function and expression at the plasma membrane (Bodas et al., 2011, 

Clunes et al., 2012). My data identified the activation of the Ca2+ dependent 

phosphatase, calcineurin as causative in smoke-induced CFTR internalisation. 

Likewise, my data showed that calcineurin inhibition with cyclosporin A prevented 

loss of CFTR at the plasma membrane after smoke exposure.  

 

Cyclosporin A is currently in use clinically as an immunosuppressant. The drug has 

been widely used as part of treatment regimens for the prevention of graft rejection 

and in the cure of autoimmune diseases (Stellato et al., 1992, MacDonald, 2001). 

These findings suggest that cyclosporin A could be easily administered to patients 

with smoke related diseases. However, it has been suggested that smokers have a 

lower absorption of formulations of cyclosporin A used clinically. These differences 

have been attributed to a reduction in the availability of the drug in the intestine due 

to increased intestinal peristalsis caused by nicotine (Fagiolino et al., 2014). 

Nevertheless, a study looking at the effect of environmental tobacco smoke exposure 

and cardiovascular disease found that the association was lower in patients who 

were already being prescribed cyclosporin A, suggesting the drug may have some 

efficacy in vivo in combating the effects of cigarette smoke (Pope 3rd et al., 2001).  

 

In addition to oral formulations of cyclosporin A, aerosolised cyclosporin A also been 

prescribed for the treatment of lung diseases as this method of application has been 

associated with increased bioavailability of the drug (Fukaya et al., 2003). 

Furthermore, administration of aerosolised cyclosporin A has been associated with a 

stabilisation of pulmonary function in progressive diseases such as bronchiolitis 

obliterans (Iacono et al., 1997). This is of interest because these studies indicate 

cyclosporin A could be readily used to treat smoke induced lung disease. Therefore, 

inhibition of calcineurin with cyclosporin A could represent a viable method of 

negating the effects of cigarette smoke on the airway. 

 



127 

 

Although my studies used cyclosporin A to inhibit calcineurin, clinically, tacrolimus is 

also available as an immunosuppressant that acts through the inhibition of 

calcineurin (Jørgensen et al., 2003). Furthermore, studies have suggested that 

tacrolimus has a higher efficacy than cyclosporin A in preventing graft rejection 

(Group, 1994a, Group, 1994b). Thus, tacrolimus could also represent a potential 

treatment strategy to prevent smoke-induced airway disease.  

 

5.3 Future experiments 

The data presented in this study help to further understand how changes in cytosolic 

Ca2+ modulate the expression and activity of CFTR at the plasma membrane. 

However, there are still many experiments that could be performed to provide a more 

detailed mechanistic understanding of the effects of increases in cytosolic Ca2+
 and 

cigarette smoke on CFTR. Many of the experiments carried out in this thesis used 

HEK 293 cells as an expression system as exogenous protein can be easily 

introduced and studied in this cell line. The experiments conducted in this thesis 

would be much more difficult in highly specialised epithelial cells as these cells are 

not as easily manipulated (Zhu et al., 1998). Thus, validating my findings in other cell 

lines would be of value. Accordingly, Balch and colleagues observed that the 

trafficking pattern of CFTR is different in BHK and CHO cells versus HEK and HeLa 

cells. Furthermore, trafficking has been suggested to be different between epithelial 

and non-epithelial cell lines (Bertrand and Frizzell, 2003). Previous studies have also 

found cAMP dependent membrane trafficking is not seen in non-epithelial cell lines, 

suggesting the trafficking machinery is specialised in epithelial cells in comparison to 

non-epithelial cell lines (Dho et al., 1993, Hug et al., 1997, Bertrand and Frizzell, 

2003). Additionally, trafficking has been shown to be different in cells grown as 

polarised monolayers or unpolarised (Cholon et al., 2010). Therefore, experiments 

investigating the relocation of CFTR following an increase in cytosolic Ca2+ may need 

to be repeated in polarised epithelial cells such as primary human bronchial epithelial 

cells.  

 

CFTR was found to be routed to the ER, after either an increase in cytosolic Ca2+ or 

smoke exposure. However, the experiments only looked at CFTR localisation 30 

minutes after exposure to an increase in cytosolic Ca2+. Therefore, a more detailed 

time course using various intracellular organelle markers would be needed to fully 

determine the trafficking of CFTR after exposure to an increase in cytosolic Ca2+. 
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Thus far, the fate of CFTR after being transported to the ER has not been 

investigated. The retrograde transport of CFTR through the ER has been associated 

with ER associated degradation (ERAD) of the protein. Indeed, Xiong and colleagues 

(1999) showed that proteins in the ER membrane could be targeted for ERAD (Xiong 

et al., 1999). Whether a similar process takes place after an increase in cytosolic 

Ca2+ or smoke exposure could help further understand the fate of CFTR after it 

reaches the ER. 

 

The data detailed in chapter 4 showed increases in cAMP, and so the 

phosphorylation of CFTR by PKA had different effects on CFTR internalisation. When 

exposed to cigarette smoke, phosphorylation of CFTR relieved internalisation 

whereas the phosphorylation status of CFTR had no effect on internalisation 

stimulated using pharmacological Ca2+ agonists. Further investigating this difference 

could help understand how the phosphorylation status of CFTR affects endocytic 

trafficking of the channel. Various antibodies are available which only bind to CFTR 

when phosphorylated by PKA (Hegedűs et al., 2009). Furthermore, antibodies to 

distinguish between various sites on the R domain are available. For example, 

antibodies which bind at phosphorylation sites, 737, 700, 768 and 813, all of which 

are predicted to be phosphorylated by PKA. Western blots to determine changes in 

the phosphorylation of these sites could help further understand the different effects 

PKA phosphorylation had on CFTR internalisation when exposed to either a Ca2+ 

agonist or cigarette smoke. 

 

As detailed in section 4.9, calcineurin has been physically associated with dynamin in 

neuronal cells (Lai et al., 1999). My experiments linked inhibition of dynamin and 

calcineurin independently to the prevention of CFTR internalisation. Knockdown of 

either calcineurin or dynamin using siRNA could help determine whether both these 

proteins are needed for CFTR internalisation. Whether an increase in Ca2+ causes 

calcineurin to be physically associated with dynamin would help not only further 

characterise the mechanism of smoke exposure on CFTR internalisation, but also the 

role of calcineurin in airway epithelial cells. As the experiments detailed in this thesis 

used pharmacological inhibitors for calcineurin, knock down of the phosphatase 

using siRNA could also help provide further evidence for the role of calcineurin in 

CFTR internalisation. 
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As discussed in section 4.9, calcineurin is associated with AKAPs, PKA, various 

phosphatases, phosphodiesterase’s and components of the MEK/ERK pathway in 

cardiac myocytes and neuronal cells (Dodge-Kafka and Kapiloff, 2006). To my 

knowledge, no one has investigated whether components of the MEK/ERK pathway 

and calcineurin are part of a macromolecular complex with CFTR. The association of 

calcineurin with these proteins could be tested using co-immunoprecipitation. If 

calcineurin was found to be associated with these proteins, it could help understand 

how calcineurin regulates CTFR, as a complex such as this would create a 

specialised region bringing together multiple proteins involved in the regulation of 

CFTR activity. Alternatively, calcineurin has been shown to critical to development of 

a macromolecular complex involving CFTR, annexin 2 and S100A10 (Borthwick et 

al., 2007). This complex has been suggested to be necessary for the function of 

CFTR. Co-immunoprecipitation of CFTR with these proteins could help understand if 

calcineurin affects CFTR activity by disrupting the formation of this complex. 

 

I used confocal microscopy to measure changes in plasma membrane resident 

CFTR; however, studies measuring changes in expression of protein at the plasma 

membrane have typically used surface biotinylation as a sensitive assay (Prince et 

al., 1994, Lukacs et al., 1997, Silvis et al., 2009). This technique involves labelling 

proteins expressed at the plasma membrane with biotin and measuring changes in 

biotinylated proteins after treatment. Thus, directly measuring whether calcineurin 

inhibition could cause the retention of CFTR at the plasma membrane after an 

increase in cytosolic Ca2+ would be of value. 

 

The MEK/ERK pathway represents a common signalling cascade that is thought to 

be activated by either an increase in cytosolic Ca2+ or cigarette smoke exposure 

(Rosen et al., 1994, Li et al., 2005, McCubrey et al., 2005). The studies detailed in 

this thesis used pharmacological inhibitors to test the involvement of this pathway in 

CFTR internalisation. To more definitively test the role of this pathway, antibodies 

against phospho-Erk1/2 could be used to show activation of MEK/ERK signals (Xu et 

al., 2015). The activation of the MEK/ERK signalling cascade and calcineurin has 

been shown to be co-dependent. Identifying whether there is some cross talk 

between these two events after smoke exposure would help decipher the 

downstream events that takes place. Therefore, western blots testing for activation of 
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the pathway after treatment with cyclosporin A could help identify whether activation 

of calcineurin is upstream or downstream of the MEK/ERK pathway. 

 

The experiments in this thesis used pharmacological agents to replicate the effect of 

cigarette smoke. Sassano et al., (2017) identified multiple cigarette smoke 

constituents linked to an increase in cytosolic Ca2+. Thus, the identification of 

constituents of cigarette smoke may prove useful in replicating the effects in smoke 

on Ca2+ more closely. Amongst the constituents, nicotine-derived nitrosamine ketone 

(NNK) was found to cause a substantial increase in cytosolic Ca2+ (Sassano et al., 

2017). Based on the data detailed in this thesis, I would predict that NNK would also 

cause a reduction in CFTR-mediated conductance and dynamin-dependent 

internalisation of the channel. However, Li et al., (2010) showed that exposure of 

Calu-3 cells to NNK caused an increase in CFTR activity, measured using either 

iodide efflux or short-circuit current changes (Li et al., 2010). Together, these findings 

are intriguing as they suggest that there may be another underlying mechanism for 

Ca2+ to affect CFTR at the plasma membrane. However, a clear difference is that 

Sassano et al., (2017) exposed cells to NNK overnight whilst the experiments in this 

thesis only studied the effect of acute increases in cytosolic Ca2+. Whilst the acute 

effect of NNK on cytosolic Ca2+ would need to be studied, measuring the effect of 

NNK on CFTR could be of value in further understanding how changes in cytosolic 

Ca2+ affect CFTR function and expression.  

 

Many of the experiments detailed in this thesis used thapsigargin to mimic the effect 

of cigarette smoke exposure. Whilst the temporal profile of smoke induced increases 

in cytosolic Ca2+ have been characterised, any possible long-term effects have not 

been studied. Interestingly, it has been suggested that a process of Ca2+ induced 

Ca2+ signal remodelling can occur in the heart, causing changes to cellular 

architecture (Berridge et al., 2003, Berridge, 2006a, Berridge, 2006b). In cystic 

fibrosis, the capacity of the endoplasmic reticulum stores has been shown to be 

increased in comparison to wild type cells. Furthermore, the cigarette smoke 

component, cadmium has been linked to an inhibition of SERCA (Biagioli et al., 2008, 

Mekahli et al., 2011). Further to changes in the endoplasmic reticulum structure, 

mitochondrial stores have also been found to be altered in cystic fibrosis. Similar to 

the endoplasmic reticulum store, the capacity of the mitochondrial stores are 

enlarged in CF patients (Feigal and Shapiro, 1979). Rasmussen and colleagues 
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showed that the mitochondria and endoplasmic reticulum buffered some of the 

increased cytosolic Ca2+ after smoke exposure. Therefore, changes in the expression 

of the SERCA and mitochondrial buffering capacity would have important 

consequences for the effect of long term smoke exposure on Ca2+ homeostasis 

(Rasmussen et al., 2014). It is possible that chronic elevations in cytosolic Ca2+ 

cause stores to increase their buffering capacity. Consequently, it would be 

interesting to measure the capacity of these stores in cells derived from smokers or 

exposed to cigarette smoke chronically in comparison to cells from non-smokers. 

Thus, characterising whether chronic smoke exposure could cause similar changes 

in the Ca2+ signalling architecture, such as the expression of SERCA, would be of 

interest in further understanding the effect of smoke on cellular processes.  

 

Finally, further understanding the proteins involved in the Ca2+ response to cigarette 

smoke would be of value as identification of these proteins could lead to novel 

targets in preventing a smoke-induced increase in cytosolic Ca2+. One approach to 

identify these proteins would be to screen cells derived from species on various 

points on the phylogenetic tree. Thus, identifying a cell line incapable of reproducing 

the effect of smoke on cytosolic Ca2+ could allow for further study of the differences in 

the Ca2+ signalling machinery and identification of the proteins involved in the 

response to cigarette smoke. Preliminary data using this approach are detailed in the 

appendix. 

 

5.4 Final conclusions 

In conclusion, my work has shown that changes in cytosolic Ca2+ are able to 

modulate the expression and activity of CFTR at the plasma membrane. These 

findings help provide a better understanding of how changes in cytosolic Ca2+ affect 

CFTR as well as how changes in Ca2+ induced by smoke affect CFTR. Furthermore, I 

have identified calcineurin as being a key target which coupled an increase in 

cytosolic Ca2+ to a decrease in CFTR, regardless of whether cigarette smoke or 

pharmacological agents induced this. Thus, I hypothesise that an increase in 

cytosolic Ca2+ regardless of the agonist, causes an increase in calcineurin 

phosphatase activity which may cause dephosphorylation of CFTR and its 

subsequent translocation from the plasma membrane to the endoplasmic reticulum. 

Finally, my data suggests inhibition of calcineurin may have important implications for 
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the correction the ASL hydration in smokers and the treatment of smoke related 

disease. 
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Appendix The Effect of Cigarette Smoke on Cytosolic Ca2+ in 

Eukaryotes 

 

A.1 Introduction 

As discussed in section 1.6, cigarette smoke exposure has been shown to cause an 

increase in cytosolic Ca2+ with a corresponding decrease in the expression of CFTR 

and height of the airway surface liquid in HBECs. An increase in cytosolic Ca2+ 

elicited by smoke has been shown in numerous cell lines, including differentiated 

airway cells and undifferentiated non-airway cell lines including HEK 293 cells 

(Rasmussen et al., 2014). As the increase in cytosolic Ca2+ seems to be the principle 

step in the changes elicited by cigarette smoke, a better understanding of what 

underlies the change in Ca2+ would be of value. To this end, I sought to characterise 

the response to cigarette smoke in cell lines chosen from various branches on the 

phylogenetic tree, to determine if all species respond in a similar manner. 

 

 
Figure A.1. Phylogenetic tree of life. Phylogenetic tree representing different evolutionary 

relationships between species. Species studied in this chapter are indicated. Image taken from 

‘The Evidence of Evolution’ by Nicholas Hotton. 
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A.2 Cigarette smoke exposure causes an increase in cytosolic Ca2+ in cell 

lines chosen from various branches on the phylogenetic tree  

A.2.1 Mammalian cells 

To investigate the effect of cigarette smoke on cytosolic Ca2+, HEK 293T cells were 

chosen as a model cell line for mammalian cells as the response to smoke in these 

cells has been previously documented (Rasmussen et al., 2014). Fura-2 loaded cells 

were exposed to 13 x 35 ml puffs over 2s every 30s which was the equivalent of one 

reference cigarette. Cells were otherwise exposed to room air as a control. Exposure 

to one cigarette caused an increase in ratio to 2.1 ± 0.5 ratio units from a baseline of 

0.7 ± 0.02 ratio units. In comparison, air exposed cells showed little change in ratio 

(0.7 ± 0.2 ratio units from a baseline of 0.8 ± 0.1 ratio units; n=3, Fig. A.2B). Similarly, 

the area under the curve in smoke exposed cells was increased to 530.3 ± 66.0 

ratio.min compared to 67.7 ± 22.2 ratio.min in air exposed cells (n=3, Fig. A.2C). 

 

 
Figure A.2. Cigarette smoke exposure causes an increase in intracellular Ca2+ in HEK 293T 

cells. HEK 293T were loaded with Fura-2 AM for 30 mins. Cells were then exposed to one full 

research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs in total) or the 

equivalent of air. (A) Representative traces showing the changes in intracellular Ca2+. Bar 

represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) Fura-2 ratio 

and (C) area under the curve (AUC). Data are mean ± SEM (n=3). *p<0.05 compared to air. 
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A.2.2 Avian cells  

To further understand what determines the change in cytosolic Ca2+ in response to 

smoke exposure, cells from species at various positions on the phylogenetic tree 

were screened. Chicken fibroblast (SL-29) cells exposed to cigarette smoke showed 

an increase in ratio to 0.7 ± 0.02 ratio units from a baseline of 0.4 ± 0.1 ratio units. In 

contrast, air exposed cells showed little change in ratio (0.5 ± 0.1 ratio units 

compared to 0.4 ± 0.1 ratio units before exposure). AUC followed the same trend, 

where smoke exposed cells showed an increase to 215.7 ± 33.0 ratio.min compared 

to 35.7 ± 19.0 ratio.min in air exposed cells (n=3, p<0.05, Fig. A.3). 

 

 

Figure A.3. Cigarette smoke exposure causes an increase in intracellular Ca2+ in SL-29 

cells. Embryonic chicken cells, SL-29, were loaded with Fura-2 AM for 30 mins. Cells were then 

exposed to one full research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs 

in total) or the equivalent of air. (A) Representative traces showing the changes in intracellular 

Ca2+. Bar represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) 

Fura-2 ratio and (C) area under the curve (AUC). Data are mean ± SEM (n=3). *p<0.05 compared 

to air. 
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A.2.3 Reptilian cells 

Reptilian cells were also chosen to study the effect of smoke on changes in cytosolic 

Ca2+. Splenic viper (VSW) cells exposed to cigarette smoke responded with an 

increase in ratio of 1.0 ± 0.1 ratio units compared to 0.6 ± 0.1 ratio units before 

exposure. In contrast, air caused no change in the Fura-2 ratio (0.4 ± 0.02 ratio units 

compared to 0.4 ± 0.03 ratio units before exposure). Likewise, the AUC increased to 

338.1 ± 25.8 ratio.min in smoke exposed cells, compared to 48.4 ± 25.7 ratio.min in 

air exposed cells (n=3, p<0.05, Fig. A.4). 

 

 
Figure A.4. Cigarette smoke exposure causes an increase in intracellular Ca2+ in VSW cells. 

Splenic viper cells, VSW, were loaded with Fura-2 AM for 30 mins. Cells were then exposed to 

one full research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs in total) or 

the equivalent of air. (A) Representative traces showing the changes in intracellular Ca2+. Bar 

represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) Fura-2 ratio 

and (C) area under the curve (AUC). Data are mean ± SEM (n=3). *p<0.05 compared to air. 
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A.2.4 Amphibian cells 

As the previous cell lines tested showed an increase in Ca2+ comparable to 

mammalian cells, amphibian cells were tested as they represent an earlier offshoot of 

the phylogenetic tree (Fig. A.1). Cells derived from xenopus laevis kidney (A6) were 

exposed to cigarette smoke or air. On average, exposure to smoke caused an 

increase in ratio to 0.9 ± 0.1 ratio units compared to 0.4 ± 0.03 ratio units before 

exposure. In comparison, air exposed cells showed an increase to 0.5 ± 0.04 ratio 

units compared to 0.3 ± 0.04 ratio units (n=3, Fig. A.5B). Likewise, AUC increased to 

559.5 ± 212.2 ratio.min in smoke exposed cells compared to 185.9 ± 61.7 ratio.min in 

air exposed cells (n=3, Fig. A.5C) indicating amphibian cells also respond to cigarette 

smoke. 

 

 
Figure A.5. Cigarette smoke exposure causes an increase in intracellular Ca2+ in A6 cells. 

Frog kidney cells, A6, were loaded with Fura-2 AM for 30 mins. Cells were then exposed to one 

full research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs in total) or the 

equivalent of air. (A) Representative traces showing the changes in intracellular Ca2+. Bar 

represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) Fura-2 ratio 

and (C) area under the curve (AUC). Data are mean ± SEM (n=3) *p<0.05 compared to air. 
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A.2.5 Insect cells 

The divergence from vertebrates and insects represents a major split in the 

phylogenetic tree, with the deviation from human evolution occurring earlier than 

previous species that have been tested (Ayala et al., 1998). Therefore, cells from 

ovarian fall armyworms (Sf9) were tested (Fig. A.1). On average, exposure to 

cigarette smoke caused an increase in ratio to 0.5 ± 0.1 ratio units compared to 0.2 ± 

0.01 ratio units before exposure. In comparison, cells exposed to air showed little 

change in ratio (0.3 ± 0.1 ratio units compared to 0.2 ± 0.04 ratio units; n=3, Fig. A.6). 

Likewise, the AUC in smoke exposed cells increased to 5.4 ± 1.7 ratio.min compared 

to 2.3 ± 0.6 ratio.min in air exposed cells (n=3, Fig. A.6C). Although the data did not 

reach significance, there was a trend towards an increase in Ca2+ upon exposure to 

cigarette smoke. Thus, it is likely that an increase in the number of experiments 

would cause the trend to reach significance.  
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Figure A.6. Cigarette smoke exposure causes an increase in intracellular Ca2+ in Sf9 cells. 

Ovarian fall armyworm cells, Sf9, were loaded with Fura-2 AM for 30 mins. Cells were then 

exposed to one full research grade cigarette at a rate of one 35ml puff over 2s every 30s (13 puffs 

in total) or the equivalent of air. (A) Representative traces showing the changes in intracellular 

Ca2+. Bar represents exposure period to either air or cigarette smoke (CS). Mean changes in (B) 

Fura-2 ratio and (C) area under the curve (AUC). Data are mean ± SEM (n=3). 
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A.3 Discussion 

Tobacco smoke exposure has been shown to cause internalisation of CFTR in both 

airway and non-airway cell lines’, suggesting this phenomenon is not reliant on the 

highly-specialised nature of airway epithelium (Rasmussen et al., 2014). Rasmussen 

and colleagues previously tested multiple mammalian cell lines. Therefore, it could be 

possible that the increase in Ca2+ in response to cigarette smoke evolved as a 

protective mechanism. To further understand what governs the response to cigarette 

smoke, I tested whether cell lines from various offshoots on the phylogenetic tree 

would elicit a similar response. Cells from birds, reptiles, amphibians, and insects all 

showed an increase in cytosolic Ca2+ in response to smoke exposure. Thus, these 

data provide further support for the hypothesis from Rasmussen and colleagues that 

the response of cells to cigarette smoke is a fundamental response (Rasmussen et 

al., 2014).  

 

Recently, several cigarette smoke constituents have been identified as being 

causative in the increase in cytosolic Ca2+ induced by cigarette smoke (Sassano et 

al., 2017). However, the mechanism by which these components act to increase 

cytosolic Ca2+ has not been elucidated. On the other hand, exposure to whole 

cigarette smoke has been shown to cause an increase in cytosolic Ca2+ via Ca2+ 

release from the lysosomal store, without any release from ER or mitochondrial 

stores (Rasmussen et al., 2014). The basic Ca2+ signalling machinery has been 

documented in many species. Indeed, it has been suggested that the machinery is 

highly regulated and has been evolutionary conserved (Plattner and Verkhratsky, 

2015). The presence of Ca2+ influx and efflux channels as well as organellar Ca2+ 

stores has been documented in species varying from humans to bacteria (Berridge et 

al., 2000, Raeymaekers et al., 2002). Furthermore, it has been shown that Ca2+ 

signalling was present when plant and animal ancestors split, with plants possessing 

Ca2+ influx channels and Ca2+ binding proteins (Edel and Kudla, 2015, Plattner, 

2015). Later in the phylogenetic tree, when animal and fungi ancestors split, animals 

developed a large increase in specialised Ca2+ genes. Examples of these proteins 

include calcineurin and calmodulin. However, fungi do express calcineurin like 

proteins and these proteins have been found to respond to the same kinases and 

phosphatases as those in mammalian cells (Goldman et al., 2014). Thus, these 

findings further indicate a range of species possess the basic Ca2+ signalling 

machinery (Plattner and Verkhratsky, 2015). 
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Since all the species tested showed a similar profile in the Ca2+ response to smoke, it 

is possible that cells derived from animals which split from mammals earlier on the 

phylogenetic tree would need to be tested. Further down the phylogenetic tree would 

be choanoflagellates, which are unicellular organisms closest to humans. However, 

choanoflagellates have also been shown to have several of the Ca2+ channels seen 

in mammalian cells, including transient receptor potential channels (TRP) and Orai 

channels needed for store-operated Ca2+ entry as well as the calcium sensor STIM1 

(Cai, 2008, Cai and Clapham, 2012). Going back earlier in the evolutionary tree 

would be yeasts. However, S. cerevisiae possess TRP channels on vacuoles which 

are organelles similar to lysosomes (Palmer et al., 2001). Indeed, vacuoles have 

been studied as a model for mammalian lysosomal function, suggesting that yeasts 

also have the machinery capable of responding to smoke (Li and Kane, 2009). 

 

All of the species studied were eukaryotic; therefore, prokaryotic organisms could 

also be studied. However, these organisms are known to have a low cytosolic Ca2+ 

and plasma membrane Ca2+ extrusion pumps and exchangers (Gangola and Rosen, 

1987, Shemarova and Nesterov, 2005). Furthermore, bacterial Ca2+ channels have 

been shown to have similar functional and pharmacological properties to eukaryotic 

cells (Matsushita et al., 1989). Although the Ca2+ signalling machinery is more 

complex in eukaryotic systems, prokaryotic organisms have a basic Ca2+ signalling 

system, similar to mammalian cells suggesting that these organisms may possess 

the machinery needed to respond to smoke (Marchadier et al., 2016). 

 

One other avenue that could be pursued would be to test water breathing animals. All 

the cell lines tested were from air breathing animals and therefore, it is possible that 

in water breathing animals, the response to smoke may differ enough to determine 

what governs the Ca2+ increase. Fish have been shown to have Ca2+ homeostatic 

mechanisms that are comparable to vertebrates, however, it has been suggested that 

fish can tolerate bigger fluctuations in Ca2+ than land-dwelling vertebrates (Hanssen 

et al., 1989, Flik and Verbost, 1993).  

 

Overall, the data showed that species which diverged from humans in the order of 

hundreds of millions of years ago all responded to cigarette smoke, suggesting this 

response is fundamental across many phyla. As changes in cytosolic Ca2+ can signal 
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changes in several processes, smoke exposure would likely have detrimental 

consequences for any cell type exposed. If a species could be found that showed an 

atypical response to cigarette smoke, further analysis of the genome of this species 

could help identify which proteins are involved in the Ca2+ response to smoke. 
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