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Abstract 

Dexamethasone (dex) is a key treatment for childhood acute lymphoblastic leukaemia 

(ALL), but is associated with significant variability in terms of toxicity and efficacy.  In 

this project, the following variables were assessed to better understand how dex 

personalisation may be achieved: pharmacokinetics, intracellular dex accumulation, 

glucocorticoid receptor (GR) posttranslational modifications and B-cell maturation 

state. 

For pharmacokinetic studies, samples were collected from 154 patients randomised to 

short (10mg/m2 x 14 days) or standard (6mg/m2 x 28 days) dex induction therapy, as 

part of the UKALL 2011 trial, and analysed using a validated LC/MS method.  Wide 

pharmacokinetic variability was observed, with AUC0-12h and Cmax significantly higher 

on the short compared to standard arm.  However there was substantial overlap 

between the two arms, with a number of patients on the standard arm exhibiting 

higher exposures than those on short therapy.  The UKALL 2011 trial found no 

statistical difference in terms of steroid-related toxicity or MRD response between 

short and standard dosing.  These data suggest that the considerable dex 

pharmacokinetic variation identified may be a more important factor than variation in 

dosing regimen. 

For cellular pharmacology experiments, cell lines, primagraft and primary patient 

samples were studied.  Dex sensitivity was assessed using Alamar Blue assays and GI50 

values ranged from 2-1000nM.  Western blotting indicated wildtype GR in all samples.  

Dex accumulation was assessed by LC/MS and flow cytometric analysis of dex-FITC.  

While patient samples exhibited large variability, dex accumulation was not 

significantly different between sensitive and resistant cells.  Differential dex sensitivity 

was not accounted for by differences in GR posttranslational modifications, assessed 

using capillary isoelectric focusing.  However, assessment of B-cell maturation using 

mass cytometry revealed a relationship with dex resistance. Importantly, >50% of 

patient cell samples had dex GI50 values greater than plasma concentrations observed 

on either arm of the UKALL 2011 trial. A combined approach incorporating 

pharmacokinetic assessments and cellular response in ALL cells may allow a more 

comprehensive understanding of dex pharmacology to optimise its clinical utility.
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1.1 Cancer 

The development of cancer is caused by dysregulated cell function resulting in 

sustained cell proliferation. The hallmarks of cancer were first published in 2000 by 

Hanahan and Weinberg (2000) and illustrate how normal, healthy cells are able to 

evolve into a malignant state.  They include sustained proliferative signalling, evading 

growth suppressors, resisting cell death, inducing angiogenesis, enabling replicative 

immortality and activating invasion and metastasis. More recently, these hallmarks 

have been updated to also include two ‘emerging hallmarks’ and two ‘enabling 

characteristics’ (Hanahan and Weinberg, 2011). 

In the UK, there are over 350,000 new cases of cancer every year, of which half are 

diagnosed in the over 70s.  These cancers are primarily a result of lifestyle factors and 

environmental exposures that accumulate throughout life. 

1.1.1 Paediatric cancer 

Paediatric cancer accounts for less than 1% of all cancer cases.  However, it still 

accounts for a significant proportion of non-accidental childhood deaths.  Paediatric 

cancers are predominantly different in origin to adult cancers, with poorly defined risk 

factors.  This is because there are considerably fewer cases than in adults and cancer 

type is more diverse. However paediatric cancer is, in general, more chemosensitive 

than adult cancer (Burke et al., 1999). 

With around 400 new cases per year in the UK, acute lymphoblastic leukaemia (ALL) is 

the most common cancer of childhood, accounting for approximately a quarter of all 

childhood cancers and 78% of childhood leukaemia (Cancer Research UK; Pui et al., 

2008).   

1.2 Acute lymphoblastic leukaemia  

Over the past few decades, therapy and prognosis in ALL have improved dramatically, 

and a once fatal disease in now curable in the majority of cases. This has been possible 

due to many years of multifaceted research which has led to the development of a 

clearer understanding of the disease. 
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1.2.1 Aetiology 

ALL results from the abnormal expansion of lymphoid progenitor cells.  Clonal 

rearrangements in T-cell receptor or immunoglobulin genes, or expression of cell 

surface glycoproteins and differentiation-linked molecules, alter the cell’s ability for 

self-renewal, differentiation, and response to growth and death signals (Pui et al., 

2004; Armstrong and Look, 2005; Pui et al., 2008).  This is illustrated in Figure 1.1. 

 

Figure 1.1 Lymphoid cell development.  ALL can arise in Pre-B, Mature B, or T cells. 
 

In the vast majority of ALL cases, a genetic change can be identified (Pui et al., 2011).  

Such changes include structural and numerical chromosomal changes, gene mutation 

and amplification at the molecular level, and loss of heterozygosity (Pui et al., 2004; 

Pui et al., 2008; Inaba et al., 2013).  These genetic changes affect various pathways in 

the cell, for example the activation of tyrosine kinases or formation of chimeric 

transcription factors.  These aberrations are also used to subdivide ALL into a number 

of groups, which have different prognoses (Inaba et al., 2013; Moorman et al., 2014).  

These will be further discussed in 1.2.3. 
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1.2.2 Epidemiology 

The cause of ALL is largely unexplained.  While a small proportion can be attributed to 

inherited conditions such as Down’s syndrome (Hasle et al., 2000; Pui et al., 2004; Pui 

et al., 2008; Li et al., 2014), or exposure to chemotherapeutic agents or radiation, most 

epidemiological studies have not found convincing associations between supposed 

‘risk’ factors and ALL incidence (Pui et al., 2008; Inaba et al., 2013).   

There have been two hypotheses relating to the development of ALL; Greaves’ delayed 

infection hypothesis and Kinlen’s population mixing hypothesis (Kinlen and Petridou, 

1995; Greaves, 2006).  The former highlights a role for delayed exposure to common 

pathogens following underexposure as an infant, and the latter places emphasis on 

unusual mixing of populations causing exposures to novel viruses.  Both hypotheses 

have the common theme that a lack of exposure to pathogens in early life can lead to 

abnormal development of the immune system, and a subsequent predisposition to the 

development of a haematological malignancy. 

Both pre- and post-natal events are involved in the development of ALL (Gale et al., 

1997; Wiemels et al., 1999; Greaves, 2005), evidenced through the study of Guthrie 

cards and monozygotic twins.  A number of leukaemia-associated genetic changes 

have been detected at birth (Wiemels et al., 1999; Wiemels et al., 2002; McHale et al., 

2003a; McHale et al., 2003b).  Interestingly, a study by Mori et al. (2002) showed that 

the ETV6-RUNX1 fusion was present in cord blood at an incidence 100 fold higher than 

the incidence of ETV6-RUNX1 ALL in children, meaning that only 1% with the fusion at 

birth went on to develop ALL.  This highlights the role of postnatal events in the 

development of childhood ALL, such as the deletion of wildtype RUNX1 (Mori et al., 

2002; Wiemels, 2012).  Twin studies also provided evidence for a prenatal origin of 

ALL, as pre-leukaemic clones have been shown to transfer between monozygotic twins 

in utero through the monochorionic placenta.  Nonetheless, it is still hypothesised that 

further events are required for disease development (Greaves et al., 2003; Maia et al., 

2003). 

1.2.3 Classification 

ALL is a heterogeneous group of diseases which can be classified according to 

immunophenotype, cytogenetics or submicroscopic genetic changes. 
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1.2.3.1 Immunophenotype 

Cells express surface markers which compose the immunophenotype of the cell and its 

differentiation stage.  These are named cluster of differentiation (CD) markers.  In ALL, 

the immunophenotype of the cell is indicative of the cell maturation state when it 

became malignant.   

B cell precursor ALL (BCP-ALL) makes up approximately 85% of all ALL cases, and can 

be subdivided into pro-B, pre-B, transitional B, and mature B cell ALL based on the 

differentiation stage of the cell (Onciu, 2009).  The first markers of B cell lineage have 

historically been thought to be CD19 and CD22, however a recent study has identified 

early expression of CD24 and TdT (terminal deoxynucleotidyl transferase) (Bendall et 

al., 2014).  CD markers used in the diagnosis and classification of BCP-ALL are CD19, 

CD20, CD22, CD24 and CD79a (Chiaretti et al., 2014).  T cell ALL (T-ALL) represents a 

smaller proportion of ALL (around 15%) (Onciu, 2009).  Immunophenotypic markers 

important in the diagnosis and classification of T-ALL include CD1a, CD2, CD3, CD4, 

CD5, CD7 and CD8 (Chiaretti et al., 2014). 

1.2.3.2 Cytogenetics 

The cytogenetics of ALL are defined by genetic alterations at the level of the 

chromosome.  Changes can either be ploidy (numerical) or structural, such as deletions 

and fusions in chromosomes.  The cytogenetic subgroup is an important prognostic 

factor in ALL, illustrated in Figure 1.2.  Modern therapy is stratified based on some 

cytogenetic subgroupings, with targeted therapies such as imatinib used where 

possible and poorer prognosis subgroups treated on more intensive protocols. 
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Figure 1.2 Frequencies of ALL cytogenetic subtypes, adapted from (Inaba et al., 
2013).  

Shading – green: good prognosis; orange: poorer prognosis but may be abrogated 
with specific therapy; red: poor prognosis; purple: varying prognosis. 
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Figure 1.3 Outcome of patients with acute lymphoblastic leukemia (ALL) by genetic 
risk group.  

Event-free survival of children and adolescents with B-cell precursor ALL treated 
on UKALL 2003 and stratified by cytogenetics and copy number alterations profile.  
Taken from Moorman et al. (2016). 

High hyperdiploidy accounts for 20% of ALL cases and is defined by a non-random gain 

of at least five chromosomes, with a total chromosome number of >50. It has a good 

prognosis, with a 5 year survival of >90% (Moorman et al., 2010).  Hypodiploidy, which 

only accounts for about 1% of cases, has a much poorer prognosis.  ALL hypodiploidy is 

defined by <44 chromosomes (Inaba et al., 2013). 

Chromosomal structural abnormalities affect a number of different genes. The most 

common is a fusion at t(12;21)(p13;q22), leading to the ETV6-RUNX1 fusion gene.  It 
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accounts for approximately 25% of ALL cases, and mainly occurs in children between 

the ages of 2-9 years (Kanerva et al., 2004; Rubnitz et al., 2008).  The affected genes 

have roles in haematopoiesis and lymphoid cell development, and consequently the 

fusion gene leads to ALL development.  ETV6-RUNX1 ALL has a good prognosis 

(Mullighan, 2012), although this can be altered by other major risk factors such as 

white blood cell count (WCC) and initial response to therapy (Loh et al., 2006; 

Bhojwani et al., 2012). 

MLL (mixed lineage leukaemia) rearrangements account for 6% of ALL, with the MLL 

gene having the potential to create fusions with different gene partners.  In all cases 

MLL rearrangements are aggressive with a poor prognosis, and tend to have an early 

age of onset (Johansson et al., 1998; Harrison et al., 2005). 

Although more common in chronic myeloid leukaemia, BCR-ABL1 also accounts for a 

small number of ALL cases.  The fusion at t(9;22)(q34;q11) results in the Philadelphia 

chromosome, which gives rise to a constitutively activated tyrosine kinase affecting 

signalling in the RAS/RAF/MEK/ERK pathway, which has roles in cell survival, 

proliferation and differentiation.  Historically, this subgroup had a poor prognosis, but 

this has been greatly improved by the development of imatinib and other tyrosine 

kinase inhibitors (Schultz et al., 2009; Ravandi et al., 2010; Schultz et al., 2014).  

Additionally, there is a subgroup known as BCR-ABL1-like (Den Boer et al., 2009; 

Roberts et al., 2014).  Despite having no BCR-ABL1 fusion, BCR-ABL1-like patients 

display a similar genetic expression profile to BCR-ABL1 patients in all other respects, 

and some have kinase activating mutations. Although previously associated with a 

poor prognosis, it has been recently observed that the development of tyrosine kinase 

inhibitors may also improve outcome for these patients (Roberts et al., 2014; Ishibashi 

et al., 2016). 

Other common cytogenetic subgroups include TCF3-PBX1 and intrachromosomal 

amplification of chromosome 21 (iAMP21).  The TCF3-PBX1 fusion t(1; 19) is found in 

4% of ALL, resulting in the abnormal activation of PBX1 in lymphoblasts leading to 

lymphoblast transformation (Hunger, 1996; Kamps, 1997).  This subgroup has been 

associated with a higher incidence of Central Nervous System (CNS) relapse.  In 

iAMP21, there are complex rearrangements in chromosome 21.  Patients with iAMP21 



10 
 

are often older, with a median age of onset of 9 years of age (Harrison, 2015).  

Intensive therapy can minimise the high relapse rate seen in this subgroup with 

standard therapy (Anthony et al., 2013; Nyla et al., 2013).  

1.2.3.3 Submicroscopic genetic changes 

There are a wide range of submicroscopic genetic alterations in ALL.  These broadly 

affect genes involved in lymphoid cell differentiation, cell cycle regulation, 

proliferation and cell survival and lymphoid cell development (Mullighan et al., 2007).  

There is often an association between the primary chromosomal abnormality and 

secondary genetic mutations.  For example, MLL gene fusions typical have less than 

one additional event, reflected by its early age of onset.  Conversely, patients with an 

ETV6-RUNX1 translocation, which has an median age of onset of four years, normally 

have around 6-8 cooperating mutations (Sun et al., 2017). Of note, genes commonly 

affected in ALL include PAX5, IKZF1, JAK1/2 and CRLF2.   

PAX5 and Ikaros are both transcription factors involved in B lymphoid cell 

development.  Mutations in PAX5 specifically affect DNA binding and have been 

detected in 31.7% of BCP-ALL (Kuiper et al., 2007; Mullighan et al., 2007; Mullighan et 

al., 2008a). Mutations and deletions in IKZF1, which codes for Ikaros, result in a loss of 

function of the gene, leading to stalled maturation.  IKZF1 mutations are present in 

15% of all BCP-ALL, but are seen at a much higher rate of 80% of BCR-ABL1 ALL 

(Mullighan et al., 2007; Mullighan et al., 2008a; Martinelli et al., 2009; Mullighan, 

2012).   

The JAK-STAT pathway is important for the proliferation of ALL cells.  Mutations in 

JAK1 and JAK2 are common in Down syndrome ALL and high risk ALL patients with no 

BCR-ABL1 translocation, resulting in constitutive activation of the JAK-STAT pathway 

(Bercovich et al., 2008; Mullighan et al., 2009b).  Similarly, CRLF2, which is also 

involved in activation of the JAK-STAT pathway, is mutated in approximately 15% of 

ALL cases (Mullighan et al., 2009a; Russell et al., 2009; Cario et al., 2010).   

Finally, the RAS genes are frequently mutated in ALL at presentation and relapse (Case 

et al., 2008; Irving et al., 2014; Irving, 2016), with a greater incidence in high risk ALL.  
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Mutations affect signalling in the RAS/RAF/MEK/ERK pathway, leading to altered cell 

survival, proliferation and differentiation (Zhang et al., 2011). 

1.2.4 Prognosis 

A number of factors are known to influence prognosis in children with ALL.  Firstly, as 

previously discussed, cytogenetic and genetic subgroups affect outcome, with high 

hyperdiploidy and ETV6-RUNX1 associated with a good prognosis, and hypodiploidy, 

MLL rearrangements, BCR-ABL1, BCR-ABL1-like and iAMP21 being associated with a 

poorer prognosis.  Genomic features such as mutations in IKFZ1 are also linked to poor 

outcome.   

Secondly, patient characteristics have a bearing on prognosis.  Positive prognostic 

factors are an age of between 1-10 years, female sex, and white or asian ethnicity.  In 

contrast, infants or older children do worse, along with males and patients of black or 

Hispanic race.  A WCC of >50 x 109 cells/l is also indicative of a poor prognosis. 

Glucocorticoid (GC) response is a crucial prognostic factor in ALL.  The Berlin-Frankfurt-

Münster (BFM) group has shown that a good response to 7-day GC monotherapy 

correlated with a better patient outcome in three separate trials (Dordelmann et al., 

1999; Schrappe et al., 2000).   

Recently, a number of studies have also highlighted the prognostic significance of early 

treatment response, measured by MRD status (minimal residual disease, the sub-

clinical level of leukaemic cells present after induction therapy).  It was observed that 

MRD status was the most important predictive prognostic variable when comparing 

children with a similar risk on the same therapy (Cave et al., 1998; van Dongen et al., 

1998; Vora et al., 2013a). Furthermore, the UKALL 2003 trial also showed that children 

who received post induction stratification of therapy based on MRD status had an 

improved EFS (event free survival) (Goulden, 2012).  

1.3 Therapy 

Chemotherapy for ALL is broken down into a number of phases with different 

objectives.  Initially, induction therapy aims to reduce the leukaemic burden on the 

body and restore normal haematopoiesis.  Subsequently, consolidation and delayed 
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intensification phases eliminate residual ALL cells.  Finally, maintenance therapy aims 

to prevent relapse (Pui et al., 2004; Pui and Evans, 2006).  

Over the last few decades, the MRC-NCRI (Medical Research Council-National Cancer 

Institute) group have coordinated a series of clinical trials (United Kingdom National 

Randomised Trial for Children and Young Adults with Acute Lymphoblastic Leukaemia 

and Lymphoma) which have contributed substantially to the improved prognosis of 

children in the UK with ALL.  Accrual to UKALL trials has been excellent, enabling 

improvement to treatment protocols and consequently survival.  This is evidenced by 

the UKALL 2003 trial, which recruited more than 97% of eligible patients (Goulden, 

2012).  

1.3.1 UKALL group trial history 

In 1972, 5 year EFS was 35% for children with ALL in the UK.  The first UKALL trials, 

UKALL I–XI (1970-1997), primarily aimed to improve outcome through intensification 

of therapy.  Trials I-VII failed to demonstrate significant improvement in outcome for 

patients (Working Party on Leukaemia, 1986).  UKALL VIII to XI, however, enhanced 

prognosis for ALL patients, with five year EFS at the end of this time at 63.1% (Eden et 

al., 1991; Chessells et al., 1995; Hill et al., 2004).  Key modifications during this period 

included the introduction of more than one delayed intensification therapy block, and 

the replacement of cranial irradiation with intrathecal chemotherapy as CNS directed 

treatment. 

The following trial, UKALL 97 (1997-1999), only ran for two years before modification 

to a US CCG (Children’s Cancer Group) style protocol (UKALL 97/99, 1999-2003), as the 

outcomes of UKALL X and UKALL XI were inferior to US (CCG) and European (BFM) 

trials (Chessells et al., 2002).   

In UKALL97/99, therapy was also stratified by NCI (National Cancer Institute) risk and 

early response to induction therapy for the first time.  The trial additionally 

investigated the selection of GC used in treatment.  Dex was compared to 

prednisolone for induction and maintenance therapy at doses of 6.5 and 40mg/m2 

respectively.  A one third reduction in CNS and systemic relapse was observed in 

patients treated with dex.  Furthermore, 5 year EFS was 80%, an increase of 12% 
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compared to UKALLXI (Mitchell et al., 2005; Mitchell et al., 2010).  The choice of GC 

used in ALL protocols is discussed further in 1.4.3. 

The main focus of UKALL 2003, the most recently completed UK trial (2003-2011), was 

improved treatment stratification.  In UKALL 97/99, a number of patients who relapsed 

had not been randomised as high risk and therefore had not received the most 

intensive therapy.  MRD had also been recently determined as the best predictor of 

outcome in children on the same treatment. As such, UKALL 2003 randomised patients 

with a day 29 MRD of less than 0.01% at day 29 and a negative week 11 MRD result to 

one delayed intensification block. All other patients received standard therapy with 

two delayed intensification blocks.  

The 5 year EFS of UKALL 2003 was 87.2%, with an overall survival of 91.5%.  This was 

comparable to other major trials worldwide (Table 1.1).  Furthermore, the trial showed 

that there was no significant difference between patients who had received one 

delayed intensification compared to two in terms of EFS (94.4% vs. 95.5% 

respectively), supporting the stratification of therapy by MRD (Vora et al., 2013b; Vora 

et al., 2014). 

 



 
 

Research Group Trial Region Dates No. Patients EFS OS Reference 

MRC-NCRI UKALL 2003 United Kingdom 2003-2011 3126 87.2 91.5 (Vora et al., 2013b) 

COG Many US, Canada, Australia,  

New Zealand 

2000-2005 6994 N/A 91.3 (Hunger et al., 2012) 

SJCRH Total Therapy Study XV US 2000-2007 498 85.6 93.5 (Pui et al., 2009) 

DFCI DCFI ALL Consortium 

Protocol 00-01 

US, Canada 200-2004 492 80.0 91.0 (Vrooman et al., 2013) 

AEIOP-BFM AEIOP-BFM ALL 2000 Western Europe 2000-2006 4480 80.3 91.1 (Conter et al., 2010) 

DCOG DCOG Protocol ALL-9 The Netherlands 1997-2004 859 81 86 (Veerman et al., 2009) 

EORTC CLG EORTC CLG 58591 Belgium, France 1998-2008 1940 82.6 89.7 (Domenech et al., 2014) 

NOPHO ALL-2000 Denmark, Finland, 

Iceland, Norway, 

Sweden 

2000-2007 1023 79 89 (Schmiegelow et al., 

2010) 

Table 1.1 Outcomes of contemporary trials involving children and adolescents with ALL in North America and Western Europe.  

Adapted From Hunger and Mullighan (2015) AIEOP: Italian Association of Pediatric Hematology and Oncology, BFM: Berlin–Frankfurt– Münster, 
DCOG: Dutch Childhood Oncology Group, DFCI: Dana–Farber Cancer Institute, EORTC CLG: European Organization for Research and Treatment of 
Cancer–Children’s Leukemia Group, MRC-NCRI: Medical Research Council–National Cancer Research Institute, N/A not available, NOPHO Nordic 
Society of Paediatric Haematology and Oncology, SJCRH St. Jude Children’s Research Hospital. EFS: Event free survival. OS: Overall survival.  
Survival percentages shown rates at 5 years except AIEOP-BFM trial, which were reported at 7 years. 

1
4
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1.3.2 Therapy today – UKALL 2011 trial 

As previously noted, current therapy is initially stratified based on a number of ‘risk 

groups’, including cytogenetic subgroup, white blood cell count and age, then further 

stratified based on MRD (Pui et al., 2008).  However, it has been suggested these 

groupings are still not comprehensive enough, as relapse still occurs in all risk groups 

(Asselin, 2012; Vora et al., 2013b).  Furthermore, many children experience potentially 

unnecessary severe toxicity associated with the first phase of treatment, and there 

also remains a percentage of children who do not achieve remission (Vora et al., 

2013b) (Jackson et al., 2016). The chemotherapy regimen of the current UKALL trial 

(UKALL 2011) is shown in Table 1.2. 
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Treatment Phase Drugs administered 

Induction therapy Dex 

Vincristine 

Pegaspargase  

(Daunorubicin for Regimen B patients) 

Consolidation Methotrexate 

Mercaptopurine 

Cyclophosphamide 

Cytarabine 

Vincristine 

(Pegaspargase for high risk patients) 

Delayed intensification Dex 

Vincristine 

Doxorubicin 

Pegaspargase 

Methotrexate 

Cyclophosphamide 

Mercaptopurine 

Cytarabine 

Maintenance Mecaptopurine 

Methotrexate 

Table 1.2 Drugs administered to ALL patients in the different phases of the UKALL 
2011 trial. 

Adapted from (Goulden, 2012). 
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Despite reporting a 5 year EFS of 87.2% and an overall survival (OS) of 91.5% , UKALL 

2003 also reported  a significant decrease in quality of life (QoL), along with a 3% risk 

of treatment-related mortality and non-haematological serious adverse events (SAEs) 

in approximately a quarter of patients. (Vora et al., 2013b).  This high level of toxicity is 

seen as unacceptable in a treatment with such a high EFS (Goulden, 2012); with 

survival rates approaching 90% (higher for low risk groups), treatment related 

mortality accounts for a significant proportion of those who do not survive their 

disease.  Furthermore, the necessity of a decreased QoL in all patients is questionable, 

when in fact, the intensified protocol only benefits 40% of patients.  50% of patients 

were cured on the less intensive protocols of the 1980s, and a further 10% would not 

have been cured on either protocol. 

As a result, the ongoing UKALL 2011 trial was designed to maintain the current good 

prognosis whilst reducing the burden of treatment.  As dex is responsible for 

pronounced toxicity during the induction phase of chemotherapy, the trial was 

planned to investigate the effects of a modification of dex dosing.  This will be further 

discussed in 1.4.4. 
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1.4 Dexamethasone 

Due to its ability to induce apoptosis in cells of lymphoid lineage, the GC dex plays a 

key role in the treatment of ALL.   

1.4.1 The glucocorticoids 

GCs are synthetic analogues of the stress hormone cortisol, differing by minor changes 

to their chemical structure which alter their pharmacokinetic properties and biological 

activity, shown in Figure 1.4.  

 

Figure 1.4 Chemical structures of glucocorticoids: cortisol, prednisolone, prednisone 
and dex.  

Taken from (Inaba and Pui, 2010). 

GCs are known to have roles in a wide range of biological processes (Nicolaides et al., 

2010). Amongst these, immunosuppressive and anti-inflammatory properties have led 

to frequent prescription of GCs for a variety of illnesses including allergies and 

autoimmune diseases (Kofler, 2000; Nicolaides et al., 2010).  However, this wide range 

of clinical effects also accounts for many of the adverse events experienced by ALL 

patients receiving dex, such as osteonecrosis and life-threatening infection.  

1.4.2 Glucocorticoid mechanism of action in ALL 

The antileukaemic effects of dex are moderated by the glucocorticoid receptor (GR), 

also known as NR3C1 (Kofler, 2000).  When not bound to ligand, the GR is held in the 

cytoplasm by a heterocomplex with several proteins (Nicolaides et al., 2010).  Dex can 

enter the cell passively, due to its small size and lipophilicity. Upon binding dex, the GR 

dissociates from the heterocomplex and the resulting dex-GR complex exerts its 

effects in two ways.  Firstly, as a dimer, it interacts with glucocorticoid response 
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elements (GREs) and transactivates gene expression (Schaaf and Cidlowski, 2002; 

Tissing et al., 2003; Tissing et al., 2006).  Secondly, as a monomer, the dex-GR complex 

indirectly causes transrepression of genes.  This occurs through interference with the 

activity of transcription factors such as NFkB and AP-1 via protein-protein interactions, 

prevention of DNA binding, and competition for coactivators (Kofler, 2000; Schaaf and 

Cidlowski, 2002; Tissing et al., 2003; Inaba and Pui, 2010). It is a combination of gene 

transactivation and transrepression which results in a change in expression of 

oncogenes and inhibition of cytokine production, ultimately causing cell-cycle arrest 

and cell death (Inaba and Pui, 2010). 

1.4.3 Choice of glucocorticoid  

Historically, prednisolone was the steroid of choice in ALL protocols.  However, over 

the last two decades, dex has been increasingly used due to its superior CNS 

penetration, discussed below (Inaba and Pui, 2010). 

The two glucocorticoids have differing pharmacokinetic properties, which may 

influence efficacy in ALL.  Dex has a longer half-life than prednisolone, which is thought 

to be due to the fluorine present on ring B of the chemical structure (Meikle and Tyler, 

1977; Rose and Saccar, 1978) (Figure 1.4).  Dex has also been shown to be 70% protein 

bound over a wide concentration range, however prednisolone protein binding is 

concentration dependent (60% at 10µM to 95% at <0.5µM) (Balis et al., 1987). This 

may affect the amount of free drug available for clearance in different body 

compartments. There are varying reports regarding the bioequivalence of dex and 

prednisolone, with 1mg of dex reported to be equivalent to 5 – 15.2mg of 

prednisolone in ALL cells in vitro, including when grown on a bone marrow feeder layer 

(Ito et al., 1996; Kaspers et al., 1996).  

The ability to cross the blood brain barrier is an important property of GCs.  Due to the 

elimination of cranial irradiation from treatment protocols, GCs play a vital role in 

eliminating and preventing CNS leukaemia (Pui and Howard, 2008; Pui et al., 2009).  

There have been no studies investigating the pharmacokinetics of dex and 

prednisolone in the cerebrospinal fluid (CSF) in humans, however Balis et al. (1987) 

found that prednisolone had a shorter CSF half-life than dex (2.9 vs. 4h) in a non-

human primate model, after intravenous administration of 6 or 40mg/m2 of 
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prednisolone or dex, respectively.  This was likely attributable to the variable protein 

binding of prednisolone at CNS concentrations.  Such differences in CNS exposure 

between GCs may affect the length of time CNS leukaemic blasts are exposed to 

cytotoxic concentrations of drug.  This important observation led to clinical trials 

investigating the efficacy of dex and prednisolone in ALL, both in terms of outcome 

and CNS relapse.  

The majority of trials used dex and prednisolone at a ratio of 1:6.67, equivalent to 6 

and 40mg/m2 respectively.  In trials at this dose, and others where the dex-

prednisolone dose ratio was less than 7 (dex dose 6-18mg), patients had a better 5 

year EFS and fewer CNS relapses when treated with dex (Jones et al., 1991; Veerman 

et al., 1996; Silverman et al., 2001; Bostrom et al., 2003; Mitchell et al., 2005; Vrooman 

et al., 2013).  However, this enhanced prognosis was observed in parallel with an 

increase in toxicity incidence.  In trials where the dose ratio was greater than 7, there 

was no difference in efficacy observed between dex and prednisolone (Igarashi et al., 

2005b; Domenech et al., 2014), indicating that the benefit is dose dependent (Inaba 

and Pui, 2010).  However, a meta-analysis looking at all randomised ALL trials 

comparing GC selection found that overall, dex was more efficacious than 

prednisolone (Teuffel et al., 2011). 

In UK protocols, the substantial benefit of dex in terms of EFS and reduction of CNS 

and bone marrow relapse shown in the UKALL97/99 trial, has resulted in dex becoming 

established as the steroid of choice.  Different strategies for optimisation of GC dosing 

in this project will therefore focus on dex. 

1.4.4 Optimisation of dex 

Problems associated with both under-treatment and over-exposure of dex reinforce 

the need for further ways to individualise patient treatment, to reduce any 

unnecessary burden of therapy whilst giving the best possible chance of survival (Pui et 

al., 2011).  The challenge lies in selecting patients who could benefit from a reduction 

in therapy, and equally patients for which further treatment intensification is 

necessary.   
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However, adjusting a potentially life threatening therapy is not a simple task. 

Investigations into future patient stratification should consider both the molecular and 

clinical pharmacology of dex. Areas to consider include pharmacokinetics, 

pharmacogenetics and the action of dex at the level of the ALL cell. A review on this 

topic has been published in the British Journal of Haematology, and can be found in 

appendix H (Jackson et al., 2016).   

1.5 Dex pharmacokinetics 

Pharmacokinetics is a valuable tool that is already being utilised in a number of other 

cancer therapies to guide dosing (Burke et al., 1999; Veal et al., 2013; Paci et al., 2014).  

In ALL therapy, the St Jude Total XV protocol utilised pharmacokinetics to adjust the 

dosing of methotrexate and mercaptopurine to avoid sub-optimal exposures and 

needless toxicity in individual patients (Pui et al., 2012).   

However, despite the extensive clinical use of dex, and the successful application of 

therapeutic dose monitoring with drugs such as methotrexate, there is a remarkably 

limited amount of information regarding dex pharmacokinetics, particularly in 

children.  An American study showed substantial inter-patient variability in dex 

pharmacokinetics in children with ALL, with a greater than ten-fold variability in 

systemic drug exposure observed at a dose of 8 mg/m2/day (Yang et al., 2008).  The 

extent of pharmacokinetic variation reflects that seen in one other non-ALL paediatric 

study (Richter et al., 1983) and in healthy adult volunteers (Loew et al., 1986; 

O'Sullivan et al., 1997; Queckenberg et al., 2011). 

Although the impact of this variation has not been extensively studied, an initial follow 

up analysis of the study found that risk of haematological and CNS relapse was 

affected by interpatient variability in dex exposure, in conjugation with the presence of 

anti-asparaginase antibodies.  Furthermore, an association was also observed between 

grade 3/4 osteonecrosis and lower dex clearance (Kawedia et al., 2012).  While these 

observations require validation in independent clinical trials, they highlight the need 

for further study in this area. 

It is important to clarify the relationship between dex pharmacokinetics, clinical 

response and toxicity for two main reasons.  Firstly, it may be possible to further 
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stratify ALL therapy by adjustment of dex dose.  Secondly, variability in dex 

pharmacokinetics may impact studies aiming to optimise dex dosing.  A number of 

protocols are investigating dose changes of 2-4mg/m2 in an attempt to improve 

outcome. However, if inter-patient variability in dex pharmacokinetics is as large as 

that reported, pharmacokinetic variability may mask any potential benefits of such a 

change.  For this reason, a UKALL 2011 sub-study is seeking to resolve these problems 

by investigating how dose changes impact on dex pharmacokinetics.  This sub-study is 

being undertaken as part of this project and involves the characterisation of dex 

pharmacokinetics following contrasting doses and duration of dex treatment in a 

randomised study.   

1.5.1 Source of pharmacokinetic variation 

Data from Yang et al. (2008) suggest that apparent dex clearance is influenced by 

serum albumin concentration, age, and concurrent use of drugs. It will be important to 

verify these findings independently. This is a complicated area when the number of 

other drugs that are administered alongside dex in ALL therapy are also considered 

(Jackson et al., 2016). 

1.5.1.1 Asparaginase 

The observed correlation between albumin concentration and dex clearance is 

unusual, as it is not thought to be a direct result of protein binding.  Instead, Yang et al. 

(2008) hypothesised that this relationship is the result of concomitant administration 

of asparaginase during induction chemotherapy.   

Asparaginase is known to decrease hepatic synthesis of proteins, which could affect 

the production of both albumin and cytochrome P450 enzymes involved in the 

metabolism of dex.  Therefore a reduction in albumin would be exhibited in patients in 

parallel to a decreased dex clearance. The clinical consequences of an interaction 

between asparaginase and dex pharmacokinetics needs to be investigated further. In 

some cases, patients develop antibodies to asparaginase, causing asparaginase 

insensitivity (Woo et al., 1998).  Children may therefore not only lose the 

antileukaemic benefit of asparaginase, but may also have a lower exposure to dex, as 
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they will not experience the lowered dex clearance (and therefore higher exposure) 

associated with asparaginase activity. 

While these findings need to be independently investigated, if intrapatient variation 

was attributed to concomitant administration of asparaginase, the decrease in dex 

clearance associated with asparaginase treatment would need to be factored into any 

proposed dex dose adjustment approach utilised for individual patients (Jackson et al., 

2016). 

1.5.1.2 Age effect 

Yang et al. (2008) reported a lower dex clearance in older children.  This finding is 

consistent with clinical observations, as older children tend to experience more toxicity 

than younger children.  The lower clearance would cause an increased exposure to dex 

and thus a higher incidence of toxicity.  

Importantly, despite causing an increase in toxicity, the comparably higher exposure to 

dex observed in older children does not translate to a better clinical outcome.  This 

may be due to a higher prevalence in older children of poor prognosis subtypes 

(Plasschaert et al., 2004) and highlights the complexity of dealing with a 

heterogeneous disease. The therapeutic window for dex may well differ between 

patient subpopulations, based on known risk factors including cytogenetics and 

microscopic genetic alterations, as well as additional unknown factors (Jackson et al., 

2016; McNeil et al., 2016).   

1.6 Dex pharmacogenetics 

There are a number of well documented examples where pharmacogenetic 

information has been utilised to personalise dosing of anticancer drugs.  One example 

is the administration of azathioprine and 6-mercaptopurine in relation to TPMT 

(thiopurine methyltransferase) genotype (McLeod et al., 2000; Relling et al., 2013).  A 

number of the genes involved in both the pharmacokinetics and mechanism of action 

of dex exhibit polymorphisms, making it an important avenue of investigation for the 

personalisation of dex therapy. 
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1.6.1 The Glucocorticoid Receptor 

The mechanism of action of dex is mediated by the GR.  Therefore polymorphisms in 

NR3C1 have the potential to alter dex response in ALL patients.  In particular, 

mutations affecting the expression and/or function may not only affect the therapeutic 

benefits of dex treatment, but also impact on experience of toxicity.  There are a 

number of documented polymorphisms NR3C1.  The bclI restriction fragment length 

polymorphism has been associated with increased GC sensitivity regarding high blood 

pressure and hyperinsulinaemia (Buemann et al., 1997; Rosmond et al., 2000), 

however another study found it was associated with a decreased GC response, 

measured by white blood cell lysozyme release (Panarelli et al., 1998).  Of interest, the 

variant was associated with a worse overall survival in 222 children with ALL (Fleury et 

al., 2004), so it is possible that this polymorphism affects GC in a tissue specific 

manner.  Furthermore, a GR haplotype including this variant (along with −627A and 

9bT polymorphisms) were associated with a reduced EFS in 310 children with ALL 

(Labuda et al., 2010).  However, these associations need confirming in an independent 

study.   

Another polymorphism of interest is the amino acid change N363S.  There are a 

number of studies highlighting a role for the variant allele in increased sensitivity  to 

glucocorticoids with regards to insulin response, weight and response to exogenous 

cortisol (Huizenga et al., 1998; Dobson et al., 2001; Roussel et al., 2003).  Fleury et al. 

(2004) did not find any association with outcome in children with ALL.  However, this 

study did not look at experience of toxicity.  It is important to further investigate the 

role of variants affecting GC response, as an altered sensitivity to GCs may mean that 

patients with the variant allele may be more susceptible to toxicity.  

1.6.2 Cytochromes P450 (CYP450) 

The main cytochrome P450 enzyme involved in the metabolism of dex is CYP3A4, 

which is responsible for the 6α- and 6β-hydroxylation of dex.  CYP17 is involved to a 

lesser extent in the metabolism of dex, and is thought to be responsible for the 

generation of side chain cleaved dex (Tomlinson et al., 1997). 

Basal expression of CYP3A4 varies greatly between individuals.  There are a number of 

variant alleles in CYP3A4, however most of these are present at low frequencies, and 
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appear to have little functional significance (Plant, 2007; Amacher, 2012).  It is thought 

that much of the variation may be due to genetic variation in transcriptional 

regulators, however apart from the PXR (Lamba et al., 2010), few polymorphisms have 

been identified (King et al., 2003).  One polymorphism in CYP3A4 which has been 

shown to have functional consequences in the metabolism of CYP3A substrates, is the 

intron C>T polymorphism, CYP3A4*22.  Carriers of CYP3A4*22 have been found to 

have reduced CYP3A4 activity in several studies (Elens et al., 2013a; Elens et al., 2013b; 

Kitzmiller et al., 2014).  For example Elens et al. (2013a) found a 20% decrease in 

midazolam activity compared to patients with CYP3A4*1/*1.  

There is an additional CYP3A enzyme present in 10-20% of the population called 

CYP3A5 (Daly, 2003).  CYP3A5 has a comparable substrate specificity to CYP3A4, and in 

individuals with CYP3A5 expression, could be responsible for up to 50% of CYP3A 

activity (Andrews and Daly, 2008).  Homozygotes for the CYP3A5*3 polymorphism, a 

loss of function mutation, have also been shown to have reduced CYP3A activity 

compared to those with CYP3A5*1/*1 (Kitzmiller et al., 2014).   

There are no data currently available in children with cancer concerning the effects of 

variation in CYP3A4/5 expression on dex pharmacokinetics or treatment outcome. 

However, differential CYP3A4 levels have been associated with altered outcome in 

adult cancers (Miyoshi et al., 2002; Dhaini et al., 2003). As such, investigation of the 

effect of CYP3A expression in ALL could provide useful data to support the future 

stratification of dex therapy. 

1.6.3  MDR1 

The body possesses a number of transporter proteins which actively pump 

endogenous and exogenous compounds in and out of cells.  These include multidrug 

resistance protein 1 (MDR1, also termed ABCB1) and multidrug resistance-associated 

protein (MRP1 or ABCC1).  Altered transporter protein expression can potentially 

impact on drug disposition through differences in absorption of orally administered 

drugs, ability to cross the blood brain barrier and drug elimination and excretion. 

There is well characterised inter-individual variation in the expression of MDR1, 

encoded by the ABCB1 gene (Leschziner et al., 2006). Such variation in MDR1 
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expression may well affect dex pharmacokinetics, as it is thought to be a substrate for 

MDR1 (Cole et al., 1992). Indeed, a study in healthy volunteers found that exposure to 

dex was increased upon concomitant administration of the MDR1 inhibitor, valspodar 

(Kovarik et al., 1998).  However, studies regarding the effect of MDR1 expression in 

ALL cells cast doubt on the substrate specificity of dex, as many studies have found no 

effect of ALL cell MRD1 expression on outcome (Kakihara et al., 1999; Plasschaert et 

al., 2003; Balamurugan et al., 2007).  

The ABCB1 gene harbours a number of polymorphisms including two which are 

relatively common, an amino acid change at position 2677, and a silent mutation at 

position 3435. There are limited data concerning the effects of these polymorphisms in 

ALL, however the wildtype form of the C3435T mutation has been associated with a 

poorer outcome in two studies (Jamroziak et al., 2004; Gregers et al., 2015).  This 

association is similar to that observed in other cancers (van den Heuvel-Eibrink et al., 

2001; Lal et al., 2008).  Further work is needed to ascertain whether dex is a substrate 

for MDR1, and the subsequent effect polymorphisms could have on patient outcome.  

1.6.4 Glutathione S-transferases 

The glutathione S-transferases (GSTs) are involved in a number of cellular processes, 

such as the neutralisation of oxidative stress and phase II metabolism of xenobiotics.  It 

has been suggested that sensitivity to GCs may be affected by changes in GST 

expression, possible due to better neutralisation of oxidative stress or increased 

excretion of drug following conjugation to reduced glutathione (Iwata et al., 1997; Den 

Boer et al., 1999). Polymorphisms in all four major subfamilies (GSTα, GSTµ, GSTθ and 

GSTπ) have been reported. Of particular note, polymorphisms in GSTM1 and GSTT1 

can result in a null phenotype, and have been reported in 50% and 15–38% of 

Caucasians, respectively (Chen et al., 1997). 

The effect of GST genotype on dex response is not clear, with conflicting reports in the 

literature.  A number of groups found an association between both GSTT1 and GSTM1 

null genotype and decreased risk of relapse (Hall et al., 1994; Anderer et al., 2000; 

Takanashi et al., 2003), however these were not statistically significant. Conversely, 

several other studies, including one of 710 ALL patients (Davies et al., 2002a), have not 

found any association between GST genotype and outcome in ALL (Krajinovic et al., 
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2002).  These contradictory data may be due to limited knowledge regarding the 

contribution to GC metabolism of different GST isoforms. Similarly, data concerning 

the influence of GST genotype in individual subgroups of ALL may help to resolve these 

contradictory findings (Jackson et al., 2016).  

1.6.5 BCL2 family 

The BCL2 family is crucially involved in the apoptotic response of GCs.  A number of 

genes in this family exhibit polymorphisms (Wang et al., 2003; Tissing et al., 2007), 

which have been implicated in studies investigating outcome in ALL.  A decrease in 

overall survival has been associated with variants in BCL2L11 (29201 C>T) and MCL1 (-

486 G>T) (Gagne et al., 2013; Sanchez et al., 2014). In combination, variants in both 

genes potentiated the effect on overall survival, which was more noticeable when 

patients received higher doses of GCs (Gagne et al., 2013). 

The (-938 C>A) promotor polymorphism in the BCL2 gene has also been associated 

with GC response.  The single nucleotide polymorphism (SNP) was correlated with a 

higher expression of BCL2, resulting in children experiencing a poor initial GC response 

and consequently being risk stratified to the high risk arm (Kunkele et al., 2013). 

Additional studies need to be carried out to ascertain the validity of the currently 

published data, due to the important roles played by these genes in the mechanism of 

ALL cell death, which is further discussed in 1.8.2. 

1.6.6 Genes associated with asparaginase and steroid toxicity 

There have been a number of reports highlighting the significance of various genes on 

the likelihood of developing asparaginase antibodies and similarly experiencing steroid 

related toxicities, such as osteonecrosis.  Most of these genes have only been 

identified in a single cohort of patients, so further investigation is needed in an 

independent cohort of patients to establish the significance of these genes.  Genes of 

interest are shown in Table 1.3. 



 
 

 Group Gene Implications Reference 
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CRHR1  CRHR1  
May impact the risk of bone density deficits in patients treated with 

GCs and antimetabolites in a sex-specific manner. 
(Jones et al., 2008) 

Vitamin D 

Receptor 
VDR Fok I 

Variation associated with lower bone marrow density in paediatric 

non ALL patients, therefore might identify patients at higher risk of 

osteonecrosis. 

(Relling et al., 2004; Jakubowska-

Pietkiewicz et al., 2012) 

Plasminogen and 

fibrinolysis 
PAI-1 

Inhibition of fibrinolysis via suppression of promotion of thrombosis 

and inhibition of tissue plasminogen activator may cause raised 

intraosseous venous pressure stopping blood flow to bones. 

(French et al., 2008) 

Glutamate 

receptor 

GRIN3A Minor allele associated with osteonecrosis in ALL patients. (Karol et al., 2015; Karol et al., 

2016) GRID2 Associated with osteonecrosis in ALL patients of <10 years. 

Fat and 

cholesterol 

metabolism 

genes 

ACP1 Regulates lipid levels and osteoblast differentiation.  Associated with 

risk of osteonecrosis, lower albumin and higher cholesterol. 

(Kawedia et al., 2011) 

SH3YL1 

(Karol et al., 2016) BMP7 
Causes altered bone formation and metabolism before and during 
therapy for ALL, also plays a role in osteonecrosis through effects to 
local bone vasculature. 

PROX1 
Variants cause altered lipid trafficking in bone marrow and/or 
increase plasma lipids. 

(Continued overleaf) 
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Human 

Leucocyte 

antigen genes 

HLA-DRB1*07:01 
Altered binding affinity for asparaginase epitopes may lead to higher 

incidence of asparaginase allergy. 
(Fernandez et al., 2014) 

G protein 

signalling  
SGSM2 Age dependent association of SGSM2 and LDL-C cause altered lipid levels. (Dumitrescu et al., 2011)  

 

Table 1.3 Genetic variation associated with adverse outcome with asparaginase therapy and risk of steroid induced osteonecrosis.  

LDL-C: low density lipoprotein C.  LD: linkage disequilibrium.
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1.7 Dex at the level of the cell 

In parallel to studying the clinical pharmacology of dex, it is also important to consider 

the activity of dex at the level of the individual cancer cell, as this is what results in ALL 

cytotoxicity and disease reduction.  For example, plasma levels of dex may not be of 

clinical importance if a patient’s ALL cells are resistant to the drug.  In this clinical 

situation, even a high exposure to dex as measured by plasma pharmacokinetics is 

unlikely to lead to therapeutic benefit, but the patient may be more likely to 

experience an increase in treatment associated toxicities. 

As previously discussed in 1.2.4, GC response is an important prognostic factor in ALL.  

Furthermore, despite the observed improvements in survival in ALL, relapse still occurs 

in 20% of patients, for which therapy resistance is often the cause (Pui and Evans, 

2006). A study by Klumper et al. found that GC response in vitro in relapsed ALL 

samples was significantly less than at presentation (1995).  However, the mechanisms 

of action and resistance of dex are still not clear.  Given the shortage of therapeutic 

options for relapsed ALL, an improved understanding of resistance mechanisms may 

enable further stratification of dex to prevent unnecessary toxicity, and aid the 

development of novel therapeutics for this group of patients. 

1.8 Mechanisms of dex resistance 

Mechanisms of dex resistance within the cell can be broadly grouped into pre-GC 

receptor mechanisms and post-GC mechanisms (Figure 1.5)(Kofler et al., 2003).  Pre-

receptor mechanisms include factors such as a change in intracellular dex 

concentration due to increased levels of steroid binding protein, a change in uptake or 

efflux by multidrug transporters or altered expression of the 11β-hydroxysteroid 

dehydrogenase enzymes (11-βOHSD). Similarly mutation or deletion of the GR and 

altered levels of GR-related proteins in the cytoplasm and nucleus can also be classed 

as pre receptor mechanisms.  Post-GC receptor mechanisms include defects in the 

response pathway and inhibitory cross talk or other mechanisms interfering with GC 

response.  Some of these mechanisms are discussed in greater detail below. 
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Figure 1.5 Schematic of possible dex resistance mechanisms.   

Pre-GC receptor mechanisms: (1) change in intracellular dex concentration due to 
a) increased levels of steroid binding protein (SBP) b) change in uptake or efflux by 
multidrug transporters or c) altered expression of 11β-hydroxysteroid 
dehydrogenase enzymes (11-βOHSD). (2) Mutation/deletion of the GR. (3) Altered 
levels of GR-related proteins in a) the cytoplasm or b) the nucleus.  Post-GC 
receptor mechanisms: (4) defects in the response pathway and (5) inhibitory cross 
talk or other mechanisms interfering with GC response. Taken from (Jackson et al., 
2016). 
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1.8.1 The glucocorticoid receptor 

It has been shown that small reductions in GR protein levels can significantly alter GC 

response (Costlow et al., 1982; Gruber et al., 2009).  Consequently, the effect of GR 

expression levels on GC sensitivity has been extensively studied. While some studies 

have reported an association between ligand binding on GC sensitivity and quantitative 

GR expression (Mastrangelo et al., 1980; Marchetti et al., 1981; Pui et al., 1984; Tissing 

et al., 2005b), others have not seen such a relationship (Homo et al., 1980; Lauten et 

al., 2003b).  However, it may be that a threshold GR level is needed for GC response 

and therefore higher levels would confer no increased GC sensitivity. Conversely, a 

higher GC dose may be able to compensate for a low GR expression, however it is 

uncertain whether this would be achievable therapeutically (Jackson et al., 2016). 

GR levels can be affected by a number of mechanisms, including somatic mutation of 

NR3C1.  Although GC resistant cell lines often harbour sequence mutations in NR3C1, 

mutations are rare in patient samples (Irving et al., 2005a; Tissing et al., 2005b). 

However, at relapse, NR3C1 deletions have been identified (Hogan et al., 2011; Kuster 

et al., 2011; Bokemeyer et al., 2014).  Approximately 8% of BCP-ALL patients were 

found to have NR3C1 deletions in the UKALLR3 trial for relapsed ALL and these were 

associated with poor outcome (Irving et al., 2016). Interestingly, it was possible to 

identify an NR3C1 deletion in the corresponding diagnostic samples of some patients.  

Somatic epigenetic changes have been identified in GC resistant ALL cells which may 

alter GR activity.  For example, overexpression of NLRP3 and CASP1 have been shown 

to affect CASP1-mediated GR cleavage and consequently GC response (Paugh et al., 

2015).  GC resistance has been reversed by CASP1 inhibition in some models, and thus 

the development of CASP1 inhibitors may represent an approach for GC re-

sensitisation in ALL (Jackson et al., 2016).  

1.8.2 Post-GR mechanisms of resistance 

The BCL-2 pathway has an important role in apoptotic response of ALL cells following 

GC exposure, which has prompted its investigation in GC resistance.  The pro-apoptotic 

BCL2L11 (BIM) protein has been shown to be an important mediator of GC-induced 

apoptosis (Abrams et al., 2004; Lu et al., 2006; Bachmann et al., 2007).  BCL2 and MCL1 

are important anti-apoptotic proteins which have also been found to be dysregulated 
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in GC resistance (Miyashita and Reed, 1993; Inoue et al., 2002; Holleman et al., 2004; 

Ploner et al., 2005; Wei et al., 2006; Stam et al., 2010).  BCL2 antagonists have also 

been shown to re-sensitise T-ALL cells to dex (Bonapace et al., 2010).  The role of this 

family in GC response is exemplified in a recent study, which showed that GC-induced 

apoptosis was controlled by opposing regulation of BIM and BCL2 in GC sensitive and 

resistant primary derived ALL cells (Jing et al., 2015).  

1.8.3 Pre-GR mechanisms of resistance 

The role of proteins associated with the GR as a GC resistance mechanism has also 

been investigated.  Some groups found that in certain GC resistant cell lines, the GC-GR 

complex failed to translocate to the nucleus (Antakly et al., 1990).  However, many 

others showed no difference in GC-GR nuclear translocation between GC-sensitive and 

resistant cells in both patient samples and cell lines (Pui and Costlow, 1986).  

Importantly, there are a number of potential GC resistance mechanisms that remain 

unexplored. These include intracellular accumulation of dex, the GR interactome, the 

developmental stage of leukaemic cells, and whether these differ in sensitive and 

resistant cells.  These will be discussed in the following sections.  

1.8.4 The GR interactome 

There has been evidence for GR related proteins affecting GR function and therefore 

causing GC resistance.  Some resistant ALL samples have been shown to have deletions 

in BTG1 and TBL1XR1, which reduced GR signalling (van Galen et al., 2010; Jones et al., 

2014).  Similarly, activation of AKT1 in T-ALL has been shown to block GR nuclear 

translocation through direct phosphorylation of the GR (Piovan et al., 2013). However, 

Bachmann et al. (2007) found that in a primary derived xenograft model, GC-sensitive 

and resistant samples showed analogous GR nuclear translocation, suggesting in the 

majority of cases that GC resistance is not caused by a lack of nuclear translocation. 

However, there is evidence to suggest that the GR posttranslational modifications may 

be altered in GC resistant ALL cells.  The GR interactome comprises of both proteins 

interacting with the GR, and also post-translational modifications of the GR.  

Unpublished data from J. Irving’s lab, has shown differences in GR isoelectric point 

profiles using capillary isoelectric focussing (cIEF, detailed in Appendix E). The 
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differences were seen in an ALL cell line model of GC resistance, which retains many 

aspects of primary cells such as GC-induced GR nuclear translocation and up-regulation 

of transcriptional targets, but does not undergo apoptosis (Nicholson et al., 2010).   

Differences in the GR interactome could be attributed to a number of factors.  Several 

studies have identified that changes in, or modulation of, heat shock protein HSP90 

(also known as HSP90AA1) affects GR activity (Picard et al., 1990; Cadepond et al., 

1991; Cadepond et al., 1993; Segnitz and Gehring, 1997; Lauten et al., 2003a; Shen et 

al., 2010).  Similarly, the ratio of FKBP51 (FKBP5) to FKBP52 (FKBP4), complex 

immunophilins which play a role in GR signalling, has been implicated in GC resistance 

in primates (Denny et al., 2000; Davies et al., 2002b). However, other studies found no 

evidence that HSP90, FKBP51 or FKBP52 are implicated in GC resistance (Lauten et al., 

2003a; Tissing et al., 2005a).  As most of these studies are well over 10 years old, with 

recent advances in proteomic technology it would be beneficial to investigate this 

discrepancy further, as it may uncover novel ways to re-sensitise patients to GCs. 

1.8.5 Intracellular dex accumulation 

One area of investigation into dex resistance that remains relatively unexplored is 

whether concentrations of intracellular dex differ between sensitive and resistant ALL 

cells.  This is an important complementary investigation to dex pharmacokinetic 

studies, as it defines the applicability of the plasma concentration of dex to the 

leukaemic cells. 

Intracellular levels of dex could be affected by several factors.  A well-documented 

mechanism of drug resistance is expression of MDR proteins. Investigation into the 

effect of expression of MDR1 on outcome in ALL cells have revealed contrasting 

results.  Expression of MDR1 in ALL cells has been associated with a more unfavourable 

outcome (Dhooge et al., 2002), increased risk of relapse (Goasguen et al., 1996) and 

lower survival (Casale et al., 2004).  However, a number of other groups found no 

effect of MDR1 expression on outcome (Kakihara et al., 1999; Plasschaert et al., 2003; 

Balamurugan et al., 2007). There are also other multidrug transporters such as 

multidrug resistance-associated protein 1 (MRP1) and lung resistance protein (LRP). 

However, there are limited studies regarding the effect of such transporters in ALL 

which report contrasting results (Beck et al., 1996; Kakihara et al., 1999)  
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A change in intracellular dex concentration could also be caused by events such as 

increased steroid binding protein, or a change in 11β-hydroxysteroid dehydrogenase 

enzyme expression (intracellular enzymes which can activate and deactivate dex), 

which have been shown to be altered in ALL cells ex vivo (Sai et al., 2009).  Therefore, 

investigating whether intracellular dex levels differ in GC-sensitive and resistance cells 

represents an interesting and novel approach that may aid further stratification of dex 

therapy. 

1.8.6 B cell developmental stage 

The potential importance of B cell maturation as a mechanism of dex resistance has 

been highlighted in several papers, including a study by Rhein et al. and more recently 

by Nicholson et al.  (2007; 2015).  Rhein et al. used genome wide gene expression 

analysis of ALL samples and found that persisting blasts following dex exposure had 

differential expression of genes such as CD11b and CD119, indicating a shift to more 

mature B cells (2007).  Nicholson et al. showed that GC resistant cell lines had reduced 

levels of PAX5 compared to the GC sensitive parent line, PreB697.  Furthermore, 

increasing GC resistance was associated using gene set enrichment analysis to a more 

mature cell stage.  PAX5 mutations are commonly seen in patients with pre-B ALL 

(Mullighan et al., 2007; Mullighan et al., 2008b; Nebral et al., 2009), although it is not 

known how this affects their sensitivity to dex. 

Cellular development is a highly orchestrated process with single cells maturing into 

different diverse cell types.  Although often thought as comprising of distinct cell types, 

cell development is a continuum of different cell states, many of which have not yet 

been identified.  A deeper comprehension of cell development, including B cell 

lymphopoiesis, will enable us to understand better how it is involved in therapy 

resistance in cancer, but also about cancer development (Bendall et al., 2012).  

1.9 Models of ALL 

The study of dex resistance can be carried out using a variety of different models.  

Investigations utilising patient samples is often challenging due to small sample 

volumes and inability to maintain long term cultures.  Two alternative models often 

used are cell lines and primagraft models. 
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1.9.1 Cell lines 

CCRF-CEM and Jurkat cell lines are commonly used in the study of GC resistance, 

however these often show a deletion or mutation of the GR as a primary resistance 

mechanism.  This is most likely the result of a mutation in the MLH1 gene, causing 

defective mismatch repair (MMR).  This leads to increased basal mutation rate, and 

thus under GC selection, GR mutation commonly occurs (Schmidt et al., 2006b). 

However, both GR mutation/deletion and deficiencies in MMR are rarely found in 

patient samples (Matheson and Hall, 2003; Irving et al., 2005a; Tissing et al., 2005c), 

making the study of resistance in these cell lines only applicable to the few patients 

cases whose ALL does not exhibit wild type (WT) GR. However, the GC resistant sub 

clones of the ALL cell line, PreB697, contain two WT GR alleles. This similarity to 

patient samples makes them an ideal model for the study of dex resistance (Schmidt et 

al., 2006b). 

1.9.2 Patient and primagraft models 

Although patient bone marrow samples would be optimal for research, it is often not 

possible to obtain enough ALL cells to undertake extensive experiments.  Primagraft 

models are popular for the study of GC resistance as it is possible to generate a large 

number of cells of primary origin, allowing more comprehensive studies to be 

performed (Schmidt et al., 2006b; Bachmann et al., 2007; Samuels et al., 2014; Jing et 

al., 2015).  Primagraft samples are created by tail vein or intra-femoral injection of 

primary patient material in immunocompromised mice.  Once human cell engraftment 

is high enough, mice are sacrificed, and ALL cells are harvested from the spleen. 

Primagraft models are also clinically applicable, as the in vitro sensitivity of primagraft 

samples has also been shown to reflect the clinical outcome of the patients from which 

they were derived (Jing et al., 2015).  They have also been shown to closely resemble 

the immunophenotype and genetics of the original patient sample (Woiterski et al., 

2013).  
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1.10 Project summary 

A variety of approaches are needed to investigate the stratification of dex therapy.   It 

is important to consider systemic dex concentrations, to define the exposure of both 

cancer cells and normal cells to dex, which can be affected by a number of factors 

including pharmacogenetics.  However, it is also important to define the availability 

and action of dex within the cancer cell to achieve the best chance of survival.  

Undefined areas include the effect of intracellular dex, alterations in the GR 

posttranslational modifications and the B cell maturation state on the sensitivity of ALL 

cells to dex (Figure 1.6). 

 

Figure 1.6 Project summary.  
1. Dex is taken orally and is metabolised by the liver before it reaches the systemic 

circulation.  Dex is also eliminated renally once in the systemic circulation.   
2. Magnification of blood vessel - dex is able to passively diffuse into normal (blue) 

and cancer (red) cells from the plasma.  Dex is also able to diffuse out of the blood 
vessels into other tissues, causing toxicity. 

3. Pharmacokinetic analysis is performed on plasma dex concentrations.  This 
measures the circulating concentration of dex that cells are exposed to, but not 
how much is in the cancer cells or their sensitivity to dex. 

4. Studies are also needed to investigate intracellular levels of dex, and the sensitivity 
of the cancer cells to this drug.  Areas which require further investigation include 
GR posttranslational modifications and B cell maturation state.  
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1.11 Aims and Objectives 

The main focus of this project is to identify and investigate potential ways to 

personalise and optimise dex therapy in childhood ALL patients, to ensure optimal 

exposure whilst limiting unnecessary side effects. 

1. To characterise dex pharmacokinetics following short (10mg/m2 x 14 days) and 

standard (6mg/m2 x 28 days) treatment, investigating differences in key 

parameters between the two groups and the effect of age on dex clearance in 

patients enrolled in the UKALL2011 trial. 

2. To investigate differences in dex uptake in GC sensitive and resistant cells in 

vitro and in vivo. 

3. To investigate whether the GR posttranslational modifications differ between 

GC sensitive and resistant cells using the novel proteomic technique, capillary 

isoelectric focussing coupled to immunoassay. 

4. To establish whether cell developmental stage affects GC sensitivity, using a 

combination of mass cytometry and the Wanderlust algorithm.  
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2.1 UKALL 2011 trial 

2.1.1 UKALL 2011 study details 

The United Kingdom National Trial for Children and Young Adults with Acute 

Lymphoblastic Leukaemia and Lymphoma 2011 (UKALL 2011) is a national multicentre, 

phase III, randomised control trial looking to refine treatment for children and young 

adults diagnosed with acute lymphoblastic leukaemia or acute lymphoblastic 

lymphoma.  The investigation into dex pharmacokinetics being undertaken in this 

project, forms a sub-study of the UKALL 2011 trial, ‘Dexamethasone pharmacokinetic 

study’, detailed in appendix 15 of the UKALL 2011 protocol version 5.0.  The National 

Research Ethics Service Committee (London) approved all study protocols.  Informed 

written consent was taken from all parents, or patients where appropriate.   

Clinical trials authorisation number: 2010 – 020924 – 22 

Sponsor Protocol Number: RG_09-072 

CAS CODE: HM3009 

Eudract Number: 2010-020924-22 

ISRCTN Reference Number: ISRCTN64515327 

2.1.2 Patients and treatment regimen 

Patients were recruited to the dex pharmacokinetic sub-study at first diagnosis of ALL 

upon recruitment to the main UKALL 2011 trial. Patients between the ages of one and 

24 years 364 days were eligible for the study.  Full exclusion criteria is detailed in 

Appendix 2. Patients were assigned to a risk category based on factors including age, 

white blood cell count and cytogenetic subgroup, and were then randomised to 

receive dex as either short (10mg/m2 x 14 days; total dose 140mg/m2) or standard 

(6mg/m2 x 28 days; total dose 168mg/m2) treatment. Dex was administered orally split 

into two doses per day.  

Patient characteristics and clinical parameters were recorded on case report forms 

(CRFs) on each pharmacokinetic sampling day.  Concomitant drugs administered up to 

seven days before and on sampling days, were also recorded on CRFs. Toxicity and 

MRD data were gathered centrally by the clinical trial sponsor. 
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2.1.3 Sample collection  

Blood samples (approximately 3ml) were obtained before administration of dex and at 

1, 2, 4 and 8 hours post-administration, with the actual time each sample was taken 

accurately recorded. Samples were taken on one of the first three days (beginning of 

treatment), and one of the last three days (end of treatment) of induction therapy.  

Duration of therapy varied between different cohorts, therefore end of treatment 

sampling day differed between the groups, as shown in Figure 2.1. Plasma was 

separated by centrifugation for 5 minutes at 2,000 g and 4°C of the whole blood 

samples at the hospital site and stored at -20°C until transport to Newcastle for 

analysis.  Samples were transported on dry ice by next day delivery. 

 

Figure 2.1 Sampling days for the dex pharmacokinetic study.    

Samples were taken on one of the first three days of induction therapy (blue 
arrow) or one of the last three days of induction therapy (red arrow).  HR = high 
risk SR = standard risk. 

2.1.4 Bioanalytical method validation 

All method validation was performed in accordance with the European Medicines 

Agency (EMA) 2011 guidelines (reference number: EMEA/CHMP/EWP/192217/2009 

Rev.1 Corr.2**) on bioanalytical method validation and is reported as part of my 

Masters by Research thesis ‘Investigating the Clinical Pharmacology of Dexamethasone 

in Acute Lymphoblastic Leukaemia’, Newcastle University, 2014. 



43 
 

2.1.5 Reverse phase liquid chromatography and tandem mass spectrometry (LC/MS) 

Chromatography is a technique used for the separation of components in a mixture.  In 

reverse phase liquid chromatography, this is achieved using the hydrophobic 

characteristics of the compounds.  Samples bind to a stationary phase consisting of 

immobilised hydrophobic ligands, to varying extents depending on their 

hydrophobicity.  The concentration gradient of organic in the mobile phases can then 

be increased to elute compounds in order of hydrophobicity.  The aqueous mobile 

phase often contains a weak acid to provide ions for the ionisation step in the 

subsequent mass spectrometry. 

After separation, mass spectrometry is used to detect and quantitate compounds, 

through the measurement of the mass to charge ratio (m/z).  In tandem mass 

spectrometry, compounds are fragmented using collision gas.  The mass to charge 

ratio of both the parent compound and fragments are measured, allowing greater 

sensitivity.  A current is produced, which is turned into a voltage pulse that can be 

detected by an appropriate software.  The data is displayed as a chromatogram.  A 

schematic of this process is displayed in Figure 2.2. 
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Figure 2.2  Schematic illustrating tandem mass spectrometry.    

Compounds separated by reverse-phase liquid chromatography (LC) enter the 
mass spectrometer and are ionised before being focused into the first module 
(Q1), where the m/z of the parent compound is measured.  The compounds are 
then fragmented by collision gas in the second module (Q2), before the m/z of the 
fragments is measured in the third module (Q3).  The resultant current is 
converted into a voltage pulse which is detected by Analyst software. 

Equipment: 

Perkin Elmer Series 200 system 
comprising of a micropump, 
autosampler and peltier column oven 

Perkin Elmer (Massachusetts, USA) 

API Q Trap 3200 LC/MS Applied Biosystems (Massachusetts, 
USA) 

Agilent 1260 Infinity system comprising 
of a column oven, pump, and multi 
sampler 

Agilent (Naldbonn, Germany)  

API 4000 LC/MS Applied Biosystems 

Gemini 3μ C18 110A column (50x3mm) Phenomenex (Macclesfield, UK) 

Guard column with 4x2mm C18 cartridge Phenomenex 
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LC/MS conditions: 

For experiments up until June 2016, The LC/MS analysis was performed using an API Q 

Trap 3200 LC/MS attached to a Perkin Elmer Series 200 system.  Further LC/MS 

parameters can be found in Appendix C.  After this time, an API4000 LC/MS attached 

to an Agilent 1260 Infinity system was used.  Due to the differences in LC/MS systems, 

it was necessary to alter the chromatographic method and perform a revalidation.  The 

full LC/MS parameters and validation report can be found in Appendix C and Appendix 

B, respectively.  The flow rate for both systems was 0.3 ml/min. The gradient profile 

used for both LC/MS systems is shown in Table 2.1. 

For all LC/MS analyses, a Gemini 3μ C18 110A column (50x3mm) fitted with a 4x2mm 

C18 cartridge was used.  Equilibration of either machine was ensured using 10 system 

suitability sample injections of 1μg/ml dex and beclomethasone in a mobile phase 

mixture of 70% 0.1% formic acid: 30% acetonitrile before each run.  

API Q Trap 3200  API 4000 

Total Time 

(min)  

A (%)  B (%)   Total Time 

(min) 

A (%) B (%) 

0.0  60.0  40.0   0.0 100 0 

0.5  60.0  40.0   0.5 100 0 

1.5  0.0  100.0   7.0 30.0 70.0 

2.0  60.0  40.0   9.0 30.0 70.0 

5.0  60.0  40.0   10.0 100.0 0 

    13 100.0 0 

Table 2.1 Gradient profile of mobile phases for the two chromatography methods 
used.  

Mobile phase A: 0.1% (w/w) formic acid. Mobile phase B: 100% Acetonitrile. 

2.1.6  Pharmacokinetic analysis 

Data were verified independently, and a non-compartmental pharmacokinetic analysis 

was performed using Phoenix WinNonLin v6.0 (Certara, New Jersey, USA).  A non-

compartmental analysis was used as it requires fewer assumptions regarding the 

number of compartments in the physiological system.  The use of a compartmental 

model was also not appropriate given the number of sampling points, as too few 
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sampling points can lead to reduced accuracy in pharmacokinetic parameters 

estimates.  A population pharmacokinetic model would be of use; because it takes the 

whole population rather than the individual into account, it enables better predictions 

to be made about pharmacokinetics in an individual.  However, population 

pharmacokinetic modelling is computationally complex.  As recruitment to the dex 

pharmacokinetic sub-study is still ongoing, the data generated up to this point have 

been analysed using a non-compartmental analysis with a view to perform a 

population pharmacokinetic analysis once patient recruitment and sample analysis is 

completed. 

The concentration data were log transformed and the area under the curve (AUC) of 

the concentration time profile of plasma dex was estimated using the linear 

trapezoidal rule and extrapolated to 12 hours (AUC0-12h).  This length of time was used 

because the patients are administered dex twice daily.  Clearance was estimated using 

dose, and normalised to patient surface area.  

2.1.7 Determination of plasma dex concentrations – extraction method 

Analyte sample extraction for LC/MS analysis is an essential process as interfering 

matrix elements can affect accuracy, precision, limit of detection, and variability of the 

assay.  Occasionally matrix elements can also co elute with the analyte resulting in an 

inability to integrate the analyte peak. In addition to purifying the samples, the 

extraction process also leaves the analyte of interest in an aqueous/organic solution 

appropriate for analysis and solution at a concentration appropriate for detection by 

LC/MS.  

Liquid-liquid extraction was used to separate dex from plasma.  Liquid-liquid 

extraction, sometimes referred to as solvent extraction, uses the difference in 

solubility of a compound in immiscible liquids.  Since dex is lipophilic, addition of a 

solvent (methyl-butyl-tert-ether) draws the dex into the solvent. This can then be 

separated from the aqueous plasma liquid containing impurities.  An internal standard 

(beclomethasone) with similar physico-chemical properties to the analyte was used to 

adjust for variability in the extraction method and measurement by LC/MS. 

Reagents and Equipment:  
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Human plasma Blood Transfusion Service (Newcastle, 
UK) 

Dexamethasone Sigma Aldrich (Gillingham, UK) 

Beclomethasone Sigma Aldrich 

25% Ammonium hydroxide FSA laboratory supplies (Loughborough, 
UK).   

Diluted in house 1:4 to 6% formic acid  

Formic acid FSA laboratory supplies. 

0.1% (w/w) solution prepared in house 
and filtered using SolVac Filtration 
apparatus. 

Pressure Plus Duran Bottles FSA laboratory supplies 

12ml Pyrex screw-capped centrifuge 
tubes 

FSA laboratory supplies  

Borosilicate disposable tubes (10ml) FSA laboratory supplies 

Autosampler inserts 200µl Jaytee (Kent, UK) 

SolVac® Filtration Apparatus VWR international (Leicestershire, UK) 

GHP filter membrane, 0.45µm, 47mm VWR international  

TurboVap LV Evaporator Zymark, (UK) 

Multitube vortexer Janke and Kuntel, IKA laboratechnik, 
(Germany) 

FLUOStar Omega Plate Reader BMG Labtech (Aylesbury, UK)  
 

Protocol: 

Stock solutions of both dex and the internal standard beclomethasone were prepared 

in methanol at 1mg/ml and stored at 4ᵒC. The exact concentrations of the dex stocks 

were determined using the Molar Extinction Coefficient of dex on the Omega FLUOStar 

microplate reader at 239 nanometers. 

Dex calibration curve standards were prepared in blank plasma using the standard 

stock solution at concentrations of 1- 250ng/ml on the QTrap and 1-100ng/ml on the 

API4000. Quality control (QC) samples were prepared independently at concentrations 

of 5, 50 and 250ng/ml on the QTrap, or 2, 45 and 90ng/ml on the API4000. Aliquots 

were stored at -20ᵒC for use for up to 6 months. The extraction method was adapted 

from a previously published method by Chen et al. (2002) with a change of injection 

volume from 20µl to 50µl to enhance LC/MS sensitivity. All patient samples were 
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extracted alongside calibration curve standards in duplicate, and QC samples were 

included at the beginning and end of each run to ensure intra-assay consistency. 

Briefly, standards were processed in duplicate, QCs in triplicate and patient samples 

were processed once.  Plasma samples (500µl) were added to screw-capped tubes and 

25µl 400ng/ml internal standard was added to each tube, followed by 0.1ml 6% 

ammonium hydroxide to alkalise the sample.  Methyl-t-butyl ether (3ml) was then 

added to each tube and samples were vortexed for 3 minutes using the multi-tube 

vortexer.  Tubes were centrifuged for 6 minutes at 3000 g at 15°C to ensure separation 

of the organic and aqueous layers.  The aqueous layer was then flash frozen in a bath 

of dry ice and methanol, before the organic layer was separated into a fresh labelled 

borosilicate tube.  The samples were then evaporated to dryness at 30°C under 

nitrogen gas.  Samples were stored at this point for up to two weeks at 4°C, or were 

analysed straight away.   

To analyse samples, samples were reconstituted in 200µl of a 30:70 ratio of 

acetonitrile/0.1% formic acid by vortexing for approximately 20 seconds before being 

transferred to labelled eppendorf tubes.  The eppendorfs were centrifuged at 10,000 g 

for 3 minutes and 150µl of the supernatant was transferred to an insert.  The inserts 

were placed in the LC/MS and 50µl was injected for analysis as described in 2.1.5.  

Analyst software (Sciex, Chesire, UK) was used to analyse and quantify 

chromatograms.

2.1.8 Measurement of dex concentrations in cerebrospinal fluid (CSF) 

CSF samples were collected by Dr. Christina Halsey in Glasgow.  As CSF is a relatively 

clean matrix, no extraction was needed.  CSF samples were injected onto the API4000 

alongside a dex standard curve prepared in artificial CSF (Harvard Apparatus, 

Cambridge, UK) using the same LC/MS method as described in 2.1.5. 
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2.2 Cell Culture 

2.2.1 Tissue culture reagents and equipment  

Media, including RPMI 1640 and 
Dulbecco’s Modified Eagle Medium 

Sigma Aldrich (Dorset, UK) 

Foetal Bovine Serum (FBS) Invitrogen Life Technologies (Paisley, UK) 

Trypsin Sigma Aldrich 

L-Glutamine Sigma Aldrich  

Penicillin Streptomycin Sigma Aldrich  

Phosphate Buffered Saline  Invitrogen Life Technologies  

Trypan Blue Invitrogen Life Technologies 

Neuebauer Counting Chamber Hawksley (Sussex, UK) 

Analogue Tube Roller SRT9 Stuart Scientific (Staffordshire, UK) 

Bead Bath Gallenkamp/Weiss (Loughborough, UK) 

Class II microbiological safety cabinet Medical Air Technology Ltd. (Manchester, 
UK)  

FLUOStar Omega Microplate Reader BMG Labtech  

Olympus transmitted light microscope Olympus (Japan) 

Zeiss transmitted light microscope  Carl Zeiss Ltd. (Hertfordshire, UK)  

2.2.2 Cell culture media 

Cells Medium Supplements 

PreB697, PreB697 sub lines, 

REH, CCRF-CEM, CCRF-VCR 

RPMI 1640 2mM L-Glutamine 

10% v/v foetal bovine serum 

Primary patient and 

primagraft cells 

RPMI 1640 2mM L-Glutamine 

15% v/v foetal bovine serum 

2mM Penicillin streptomycin 

MDCKII-WT MDCKII-MDR1 

MDCKII-BCRP 

Dulbecco’s Modified Eagle’s 

Medium 

2mM L-Glutamine 

10% v/v foetal bovine serum 
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2.2.3 Cell lines 

All cell lines were available from the NICR central cell bank. 

Cell line Origin Reference 

PreB697 Precursor B cell ALL  

Created from the bone marrow of a 12 year old male at 

relapse in 1979.  

(Findley et al., 

1982) 

R3F9, R3D11, 

R3G7, R3C3, 

R4C10  

GC resistant sublines of PreB69.  Originally created 

though limiting dilution in the lab of Prof. R. Kofler. 

University of Innsbrück, Austria.  In brief, cells were 

cultured in the presence of 10–7M dex for 3–4 weeks of 

selection culture before individual clones were selected 

and expanded. 

(Schmidt et al., 

2006a) 

CCRF-CEM T cell ALL 

Created from the peripheral blood of a three year old 

female at relapse in 1964. 

(Foley et al., 1965) 

CCRF-VCR Subline of CCRF-CEM cells  

express p glycoprotein receptor due to limiting stepwise 

exposure to vincristine. 

(Haber et al., 

1989) 

REH Non-B non-T acute lymphocytic leukeamia 

Created from the peripheral blood of a 15 year old 

female at relapse. 

ATCC website 

MDCKII-WT Wild type polarised Madin-Darby canine kidney cell line.  

MDCKII-MDR1 Wild type polarised Madin-Darby canine kidney cell line 

transfected with MDR1. 

(Schinkel et al., 

1993; Schinkel et 

al., 1995a) 

MDCKII-BCRP Wild type polarised Madin-Darby canine kidney cell line 

transfected with BCRP. 

(Pavek et al., 

2005) 

Kasumi Acute myeloblastic leukaemia cell line from a 7 year old 

Japanese male.  CD34 positive.  

ATCC website 

Ramos B lymphocyte cell line originating from a 3 year old 

Caucasian male with Burkitt’s lymphoma.  Expresses IgM 

strongly.  

ATCC website 
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2.2.4 Primary derived xenograft (primagraft) samples 

Primagraft models have been used by a number of groups for the study of GC 

resistance (Schmidt et al., 2006a; Bachmann et al., 2007; Samuels et al., 2014; Jing et 

al., 2015) as they provide a high yield of cells from a primary origin, allowing more 

expansive investigations to be carried out. Primagraft models are also clinically 

applicable, as cells from primagraft samples closely resemble the leukaemic profile of 

the sample they were derived from.  They have also been shown to reflect the clinical 

outcome of the original patient (Woiterski et al., 2013; Jing et al., 2015). 

Primagrafts used in this work were generated, monitored and euthanised by Ali 

Alhammer, Zach Dixon, Elizabeth Matheson and Marian Case, who were all trained and 

held a home office license at the time of this work.  NSG (IL-2R common gamma chain 

null) mice were used as they provide the best platform for leukaemic cell engraftment 

(Shultz et al., 2005; Shultz et al., 2007).  Mice were injected intra-femorally with 1 x 106 

patient or primagraft cells.  Engraftment was monitored in the peripheral blood of the 

animals using tail bleeds of around 50µl using flow cytometry.  Once engraftment of 

the peripheral blood was greater than 40%, mice were euthanised.  The spleens were 

removed and spleen engraftment was assessed by flow cytometry using anti-human 

CD10, CD19 and CD34 and anti-mouse CD45 antibodies on a FACSCanto II.  The full 

methods have been previously detailed (Irving et al., 2014).  Cells were resuspended in 

growth media and then used in this project for downstream analyses.  Table 2.2 

contains details of the primagraft samples used.



 
 

Patient Disease 

Stage 

Gender Age  Immuno-

phenotype 

Trial Current 

Status 

Pres 

WCC 

Initial 

response 

Cytogenetics Mouse Date 

sacrificed 

Created 

by 

LK196 2nd 

Relapse 

M 16 BCP-ALL UKALL 

2011 

Died post 

relapse TTR 

5 m 

315.5 MRD D28 

low risk 

HeH JM271 12/07/2016 M.C. 

JM272 12/07/2016 

L578 2nd 

Relapse 

F 3 BCP-ALL UKALL 

97 

Died post 

relapse TTR 

44 m 

4.1 NK HeH AZ7 06/01/2016 A.A. and 

Z.D. 

 

AZ9 08/01/2016 

AZ8 11/01/2016 

L779 Pres M 5 BCP-ALL UKALL 

2003 

DLS 2013 28.1 NK HeH JM 151 16/10/2014 E.M. 

JM 150 23/10/2014 

JM 152 30/10/2014 

AZ13 18/03/2016 A.A. 

L824 Pres F 16 BCP-ALL UKALL 

2003 

Died post 

relapse TTR 

38 m 

20 MRD D28 

Positive 

Failed AZ21 03/08/2016 A.A. 

AZ22 10/08/2016 

AZ26 09/06/2016 

  

5
2
 



 
 

Patient Disease 

Stage 

Gender Age  Immuno-

phenotype 

Trial Current 

Status 

Pres 

WCC 

Initial 

response 

Cytogenetics Mouse Date 

sacrificed 

Created 

by 

L825 Pres F 14 BCP-ALL UKALL 

2003 

Died post 

infection 

100 MRD D28 

Positive 

Failed JM156 07/11/2014 E.M. 

JM158 28/11/2014 

JM157 04/12/2014 

AZ12 09/11/2015 A.A. and 

Z.D. AZ10 11/11/2015 

AZ17 01/03/2016 A.A. 

L829 Pres F 3 BCP-ALL UKALL 

2003 

Died post 

relapse TTR 

19 m 

11.7 MRD D28 

Negative 

HeH AZ2 16/12/2015 A.A and 

Z.D. AZ3 10/12/2015 

1st 

Relapse 

JM254 16/10/2015 E.M. 

JM251 16/10/2015 

AZ16 24/02/2016 A.A. 

AZ15 02/03/2016 

L897 Pres 

 

M 16 BCP-ALL UKALL 

2003 

Died post 

relapse TTR 

19 m 

110 MRD High 

Risk 

B-Other JM149 25/09/2014 E.M. 

JM148 02/10/2014 

  

5
3
 



 
 

Patient Disease 

Stage 

Gender Age  Immuno-

phenotype 

Trial Current 

Status 

Pres 

WCC 

Initial 

response 

Cytogenetics Mouse Date 

sacrificed 

Created 

by 

L910 Pres F 1 BCP-ALL UKALL 

2003 

DLS-2013 35.8 NK t(1;19) 

 

AZ28 29/04/2016 A.A. 

AZ27 05/05/2016 

L914 Pres 

 

F 7 BCP-ALL UKALL 

2003 

DLS-2013 32.3 High MRD 

D8 

HeH AZ6 21/10/2015 A.A and 

Z.D. AZ4 04/11/2015 

AZ5 05/11/2015 

L919 1st 

Relapse 

M 2 BCP-ALL UKALL 

2003 

TTR 34 m 

DLS-2014 

1.8 NK B-Other JM267 05/08/2016 M.C 

JM268 05/08/2016 

2nd 

Relapse 

AZ20 14/07/2016 A.A. 

AZ19 12/08/2016 

L920 Pres F 4 BCP-ALL UKALL 

2003 

DLS 2013 NK Indetermin

ate 

Failed AZ23 13/07/2016 

AZ24 21/07/2016 

L4951 Pres NK NK NK NK NK NK NK Philadelphia 

Chromosome 

positive 

AZ25 17/05/2016 

AZ26 09/06/2016 

Table 2.2 Details of primagraft samples.   

Pres=presentation; M=male; F=female; BCP-ALL = B cell precursor ALL; DLS= Date last seen in hospital; TTR=time to relapse; WCC= White cell 
count at presentation, x 109 /L; NK = not known; MRD= minimal residual disease; D8=day 8; D28=day 28; HeH=high hyperdiploidy.  Created by: 
M.C.=Marian Case, A.A.= Ali Alhammer, Z.D.= Zach Dixon, E.M. = Elizabeth Matheson.

5
4
 



55 
 

2.2.5 Patient samples 

Patient bone marrow samples were obtained from children with ALL undergoing 

treatment at the Royal Victoria Infirmary (Newcastle upon Tyne, UK) through the 

Bloodwise biobank after project approval.  Local ethical guidelines were followed when 

acquiring parental consent and obtaining samples.  Patient details are found in Table 

2.3. 

Separation of white cells 

Separation of white cells was carried out on the day of bone marrow aspiration by 

Marian Case, Elizabeth Matheson and Lynne Minto using Lymphoprep™ (Nycomed, 

Oslo, Norway).  Briefly, bone marrow aspirates were diluted in a 1:1 ratio with PBS.  

This mixture was layered over 8ml of lymphoprep before centrifugation at 800 g for 15 

minutes with no brake.  The mononuclear cell layer was removed and washed twice in 

PBS.  Cells were either used immediately, or cryopreserved for later experimentation.



 
 

Patient 

ID 

Sex Age at 

pres 

Immuno-

phenotype 

Treatment 

protocol 

Current Status Pres WCC Day 8 blast 

count 

Cytogenetics (If available) 

LK203 m 4.3 T ALL UKALL 2011 No relapse/alive 760.3 Not known Fail 

LK209 m 9.2 BCP ALL UKALL 2011 CNS relapse/alive 

TTR: 20 months 

7.6 0.04 % t(12;21) 

 

LK213 f 5.3 BCP ALL UKALL 2011 No relapse/alive 7.4 6.89 % fail 

LK220 m 10.8 BCP ALL UKALL 2011 No relapse/alive 28.9 Not known normal 

LK221 f 1.7 BCP ALL UKALL 2011 No relapse/alive 77.8 0.45 % normal 

LK96R f 1.9 BCP ALL  Relapsed/Alive 

TTR: 28 months 

4.5 0.16 % (day 

15) 

t(12;21) 

 

L926 f 10.8 BCP ALL Interim No relapse/alive Not known 0.49 % Not known 

L943 m 2.6 BCP ALL Interim No relapse/alive Not known 0.12 % Not known 

L919 m 2.7 BCP ALL UKALL 2003 Relapsed/Alive 

TTR: 1st 23 months, 2nd 21 

months after 1st) 

1.5 Not known  B other 

L890 m 5.8 BCP ALL UKALL 2003 No relapse/alive 25 18.71 % HeH 

L705 m 10.8 T ALL UKALL 2003 Relapse/alive 

TTR: 14 months 

733 1 % HeH 

5
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Patient 

ID 

Sex Age at 

pres 

Immuno-

phenotype 

Treatment 

protocol 

Current Status Pres WCC Day 8 blast 

count 

Cytogenetics (If available) 

L715 m 14.3 BCP ALL UKALL 2003 No relapse/alive 153 >90 % HeH 

L723 f 12.0 BCP ALL UKALL 2003 No relapse/alive 53.3 Reduced 

blast count 

46,XX,del(6)(q1?),add(19)(p13) 

L733 f 2.4 BCP ALL UKALL 2003 No relapse/alive 9 <5 % 46,XX,del(12)(p1?2) 

L809 m 16.7 T ALL UKALL 2003 No relapse/alive 319 74 % 46,XY,del(6)(q13q23) 

L826 m 0.7 BCP ALL Not on trial No relapse/alive 346 Not known t(4;11) 

L837 f 6.0 Pre-B ALL  UKALL 2003 Relapse/alive 

TTR: 54 months 

125 40 % t(12;21) 

L835 m 4.8 Pre-B ALL UKALL 2003 No relapse/alive 7.8 Not known HeH 

L940 m 2.6 BCP ALL Interim No relapse/alive Not known Not known Not known 

LK268 m 6.6 BCP ALL UKALL 2011 No relapse/alive 5.6 3.73 % t(12;21) 

LK269 m 18.3 BCP ALL UKALL 2011 No relapse/alive 8.4 0.83 % HeH 

 

Table 2.3 Details of patient samples.  

M=male F=female; TTR = time to relapse; HeH = high hyperdiploidy; WCC = x 109/L. 

5
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2.2.6 Cell line maintenance and culture 

2.2.6.1 Thawing viable cells 

Vials were removed from the liquid nitrogen and rapidly thawed at 37°C.  The 

appropriate medium (5ml) was added slowly to the cells before centrifugation at 230 g 

for 5 minutes.  The medium was aspirated, and the cell pellet was resuspended in the 

appropriate medium and placed in a tissue culture flask. 

2.2.6.2 Cell counting and viability assessment 

Trypan Blue exclusion was used to enumerate cells and assess viability.  Cells were 

mixed in a 1:1 ratio with 0.4% trypan blue and were then counted with the aid of an 

Improved Neubauer counting chamber.  Trypan blue can enter dead or damaged cells 

whereas healthy cells exclude the dye, therefore non-viable cells are blue and viable 

cells are not blue.  Viability was calculated as a percentage of non-blue cells of the 

total number of cells (blue and non-blue). 

2.2.6.3 Cell culture  

All suspension cells were grown in suspension at a density of 0.5-2 x 106 /ml.  Adherent 

cells were cultured as a monolayer and were passaged at around 80% confluence, 

using 1 x trypsin-EDTA. Primagraft cells were cultured in suspension culture.  

Cells were kept in a humidified tissue culture incubator at 37°C, 5% CO2 and all cell 

lines were regularly screen for mycoplasma using MycoAlert® (Lonza, UK).  All cell lines 

were authenticated externally by short tandem repeat profiling at LCG.  

2.2.6.4 Cryopreservation of cells 

Frozen stocks were made from cells that were in the exponential growth phase.  Cells 

were counted and viability assessed, as described above.  Cells were pelleted and 

resuspended at a concentration of 5 x 106 cells/ ml in freeze mix (10% (v/v) DMSO in 

FBS) and then aliquoted in 1ml volumes into cryovials.  The cryovials were placed in a 

polystyrene box filled with cotton wool and placed in the -80°C freezer for slow 

freezing, before being transferred to liquid nitrogen after 2-14 days.   
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2.3 Drug sensitivity assessment using Alamar Blue 

The cytotoxicities of various drugs were determined using Alamar Blue (rezasurin) 

assays. In these assays, rezasurin (non-fluorescent blue) is reduced in viable cells to 

resorufin (fluorescent red) (Nakayama et al., 1997).  Fluorescence is therefore 

proportional to the number of metabolically active cells.    

Reagents 

Alamar Blue Thermofisher Scientific 

Dexamethsone Sigma Aldrich 

Vincristine RVI Pharmacy (Newcastle, UK) 

Actinomycin D (act D) Sigma Aldrich 
 

Protocol 

Stocks of drugs were prepared in ethanol (dex and vincristine) or methanol (act D).  

Subsequent dilutions were made with control vehicle (CV, RF10 at 0.1% 

ethanol/methanol) to give final concentrations ranging from 0.1nM to 10,000 nM.  

100µl of cells at a density of 3 x 105 cells/ml for suspension cell lines, 6 x 104 for 

adherent cells, or 4 x 106 cells/ml for primagraft/patient cells, were dispensed into 

each well of a 96 well plate.  Suspension cell lines, primagraft and patient cells were 

incubated in triplicate with drug concentrations or CV for 96 hours. This incubation 

length was chosen as it is approximately three doubling times for the cell lines (mean 

doubling time 33.9 ± 5.3 (SD), data from L. Nicholson’s PhD thesis).  This incubation 

time is also the most appropriate for primary cells, as several studies in independent 

patient groups have shown that incubation of primary cells for 96 hours with dex in 

vitro is predictive of the patient’s clinical outcome (Kaspers et al., 1996; Hongo et al., 

1997; Kaspers et al., 1997; Den Boer et al., 2003; Frost et al., 2003).  Adherent cell lines 

were incubated for 24 hours prior to the addition of drug to allow cells to adhere to 

the 96 well plate, before also being incubated in triplicate with drug concentrations or 

CV for 96 hours.  Dex stability in RF10 over 96 hours in a humidified incubator (37°C 5% 

CO2) was confirmed using LC/MS.  Dex peak area of three replicates for each time 

point was consistent from 0-96 hours with a coefficient of variation of 4.7%.  20μl of 
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Alamar blue was then added to each well, and left for a further 3-4 hours for cell lines, 

or 5-6 hours for primagraft/patient cells. Plates were read at 570nm excitation and 

585nm emission using a FLOUstar Omega plate reader and quantified using Omega 

data analysis software.  Results were reported as a percentage of the CV treated cells. 

Non-linear regression curves were used to calculate GI50 (dose causing 50% growth 

inhibition) values using GraphPad Prism software. 

2.4 Intracellular accumulation of dex measured by LC/MS 

Protocol 

Suspensions cells lines and primagraft cells were seeded at 1 x 106 cells/ml.  6.5 ml cells 

were then treated with CV or clinically relevant concentrations of dex, vincristine or act 

D ranging from 100-1,000nM over 4 hours.  Adherent cell lines were seeded at 1 x 105 

cells/well in 6 well plates and left for 24 hours to allow cells to adhere to the plates.  

Cells were then treated with drug as detailed for suspension cells.   

After 4 hours, the media was removed and cells were washed twice with ice cold PBS.  

In the case of the dex assays, cells were lysed with methanol spiked with 4ng/ml 

beclomethasone, as an internal standard.  In the case of vincristine and act D, 

methanol was used without beclomethasone.  Centrifugation at 16,000 g ensured 

removal of cell debris and complete cell lysis.  Samples were then evaporated to 

dryness using TurboVap LV evaporator and reconstituted in a mixture of mobile phase 

for analysis. Dex: 70:30 0.1% formic acid and acetonitrile. Vincristine: 50:50 0.02M 

ammonium acetate and methanol. Act D: 50:50 1% acetic acid pH4, and methanol.  

Calibration curves were prepared in duplicate in the same mobile phase mixture 

ranging from 0 to 100ng/ml for dex 0-20ng/ml for act D and vincristine, and run at the 

start of each assay. Low, medium and high standards were also included at the end of 

the run.  The LC/MS method was the same as described in 2.1.7 with adaptions shown 

in Table 2.4.  The equation of the standard curve was calculated in Microsoft Excel, 

using linear through zero regression.  Data were normalised using the internal 

standard, if used, and drug concentrations in cell lysates were back calculated using 

the linear regression standard curve equation.  



 
 

 Dex Act D Vincristine 

LC/MS API4000 LC/MS (Applied Biosystems, 

California, US) attached to a series 200 

micropump, autosampler and peltier 

column oven (All Perkin Elmer, 

Beckonsfield, UK) 

API4000 LC/MS (Applied Biosystems, 

California, US) attached to a series 200 

micropump, autosampler and peltier 

column oven (All Perkin Elmer, 

Beckonsfield, UK) 

API4000 LC/MS (Applied Biosystems, 

California, US) attached to a series 200 

micropump, autosampler and peltier 

column oven (All Perkin Elmer, 

Beckonsfield, UK) 

Column and Guard 

Column 

Gemini 3μ C18 110A column (50 x 3mm) 

fitted with a C18 (4 x 2mm) security guard 

cartridge (Phenomenex, Cheshire, UK) 

Luna 3µ C8 Mercury column (20 x 4mm) 

fitted with a C8 (4 x 2mm) security guard 

cartridge (Phenomenex) 

Luna 3µ C8(2), (50 x 2mm) fitted with a C8 

(4 x 2mm) security guard cartridge 

(Phenomenex) 

Mobile Phase A 0.1% (w/w) formic acid 1% acetic acid pH4 0.2M Ammonium Acetate pH 5 

Mobile Phase B 100% Acetonitrile 100% Methanol 100% Methanol 

Flow Rate 0.3ml/min 0.5ml/min 0.4ml/min 

Injection Volume 50µl 50µl 50µl 

 

Table 2.4 LC/MS details for intracellular accumulation experiments. 

6
1
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2.4.1 Optimisation of LC/MS assay for small cell numbers 

As there are a limited number of cells available for experimentation in patient samples, 

the method was optimised for used with small cell numbers.  Optimisation was 

performed using PreB697 cells. Cells were seeded at decreasing densities ranging from 

2.2 x 106 cells/ml to 0.1 x 106 cells/ml (total of 14 x 106 and 0.65 x 106 cells 

respectively) before incubation with 500nM dex for 4 h at 37ᵒC.  Extraction was 

performed as described above.  

2.5 Intracellular accumulation measured by fluorescence activated cell 
sorting (FACS) 

Flow cytometry allows analysis of multiple aspects of single cells, such as size, cell type 

and complexity.  It consists of three main systems; the fluidics, lasers and optics, and 

electronics systems.  The fluidics systems controls the flow of particles or cells through 

the laser beam using hydrodynamic focusing, and the removal of waste.  The optics 

system uses lasers and detectors to determine certain physical characteristics of the 

cell and generate fluorescence.  For example, beams of lasers directed at the flow of 

cells scatter when they hit the cells.  This is measured to give forward scatter, a 

measure of the size of the cell, and side scatter, a measure of the granularity of the 

cell.  These measurements allow differentiation between different cell types in a 

heterogenous population.  

Fluorophores such as fluorescein isothiocyanate (FITC) can be conjugated to antibodies 

and compounds to further differentiate between cells, or assess different 

characteristics of the cell. When these fluorescent markers are excited by lasers, they 

emit light at specific wavelengths.  Multiparametric analysis can be achieved by using 

different fluorophores with different excitation and emission wavelengths.  However, 

compensation is required to adjust for overlap of emission spectra. Optical filters and 

beam splitters direct the fluorescent and scattered light to detectors, where it is 

converted into an electrical signal.  
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Reagents and equipment 

Dexamethasone-fluorescein (Dex-FITC) Thermo Fisher Scientific.   

Powder diluted to 10mM solution in 
ethanol in house and stored at 4°C. 

Dulbeccos PBS 10x concentrated without 
Ca and Mg (diluted in house) 

Sigma Aldrich 

Bovine Serum Albumin Fraction V (BSA) Sigma Aldrich 

0.2% PBSA 0.2% BSA (w/v) in 1 x Dulbecco’s PBS, 
prepared in house, and sterile filtered. 

BD FACSflowTM Sheath Fluid, BD 
FACSrinse Solution, BD FACS Clean 
solution. 

BD Biosciences (Oxford, UK) 

BD CaliBRITETM 3 beads (containing 
unlabelled beads, FITC labelled beads 
and PerCP labelled beads. 

BD CaliBRITETM APC beads 

BD Biosciences  

BD Cytometer Setup and Tracking beads BD Biosciences 

Falcon tubes (5ml capped) Scientific laboratory supplies ltd, 
(Nottingham, UK) 

FACSCaliburTM  BD Biosciences  

FACSCantoTM BD Biosciences 

BD CellQuest ProTM Software  BD Biosciences 

BD FACSDivaTM Software  BD Biosciences 

BD FACSCompTM software BD Biosciences 

2.5.1 FACSCalibur calibration 

The FACSCaliburTM was calibrated once a week using BD CaliBRITETM beads with 

FACSCompTM software.  One drop of unlabelled beads and one drop of APC beads were 

added to a 5ml Falcon tube containing 1ml FACSFlowTM.  The tube was mixed by 

inversion and then installed on the machine for the first stage of calibration.  A further 

2ml FACSFlowTM was added to the tube, along with one drop of PerCP, one drop of 

FITC, and one drop of PE labelled beads.  The tube was once again mixed by inversion 

and installed onto the machine.  FACSCompTM results were saved as electronic files. 
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2.5.2 Method development 

An assay published by Kowalik et al. (2013) for the quantification of GR levels in mouse 

thymocytes using dex-FITC was optimised for use in ALL cells. 

First, the incubation time to give optimal fluorescence intensity was investigated. 

PreB697 cells (5 x 105) were incubated with 500nM dex-FITC or CV for 5-60 minutes at 

4ᵒC, before washing twice and analysis on FACScalibur.  From this, an incubation time 

of 45 minutes was chosen.  The method was then tested on REH and PreB697 cell lines, 

and was deemed to be a measure of intracellular dex rather than GR levels, as REH 

cells, which do not express GR (Grausenburger et al., 2016), had an intracellular FITC 

signal. Therefore further optimisation was performed. 

The effect of temperature was measured by incubating 5 x 105 PreB697 cells with dex-

FITC for 45 minutes at 4 or 37°C.   The number of washes for optimal removal of 

extracellular dex was studied; cells were washed once, twice or three times with ice 

cold PBS after incubation with dex-FITC or CV before analysis on FACSCalibur. 

2.5.3 Final flow cytometry method 

Two aliquots of 5 x 105 cells were transferred to falcon tubes.  Both aliquots were 

pelleted; one was resuspended in 500nM dex-FITC in PBS, and the other in CV to 

discount any solvent effect (0.05% ethanol in PBS). Cells were incubated in the dark at 

37ᵒC in a humidified incubator for 45 minutes.  Cells were then washed twice in ice 

cold PBS before being resuspended in 500µl fresh ice cold PBS for immediate analysis 

on the FACScalibur machine.  The geometric mean of the control vehicle and dex-FITC 

treated cells was assessed.  The ratio of the geometric means was assessed to 

determine the mean fluorescence intensity (MFI).  
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2.6 Capillary-based isoelectric focusing immunoassays 

2.6.1 Cell lysis 

In a living cell, post translational modifications are an essential way of governing how 

the cell functions and responds to exogenous stimuli, including drug responses.  It is 

important to maintain protein modifications during cell lysis to enable analysis of 

cellular responses. 

Reagents 

Bicine/CHAPS lysis 
buffer (1ml) 

952µl Bicine/CHAPS buffer ProteinSimple (Oxford, 
UK) 

8µl Benzonase nuclease Merck (Watford, UK) 

10µl Phosphatase inhibitor buffer 2 Sigma Aldrich 

10µl Phosphatase inhibitor buffer 3 Sigma Aldrich 

10µl Protease inhibitor cocktail  Sigma Aldrich 

10µl 100mM Sodium orthovanadate Sigma Aldrich 

1µl 500mM NaF Sigma Aldrich 

Bicine/sucrose 
wash buffer 

20mM Bicine Sigma Aldrich 

200mM Sucrose. Sigma Aldrich 
 

Protocol 

Approximately 1.5 x 107 cells were centrifuged at 500 g for 5 minutes.  The cells were 

washed once in 5 ml bicine/sucrose wash buffer.  50uL of bicine/CHAPS lysis buffer 

was added to each pellet on ice.  Pellets were incubated on ice with bicine/CHAPS lysis 

buffer for one hour, with regular vortexing.   

Cell debris was removed by centrifugation at 20,000 g for 15 minutes at 4°C.  The 

supernatant was then transferred immediately to two clean, cold microfuge tubes and 

snap frozen on dry ice.  Aliquots were stored at -80°C until analysis.  One aliquot was 

thawed and used for protein determination concentration and the other was used for 

charge analysis (detailed in 2.6.5). 
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2.6.2 Protein concentration determination 

It is important to determine the protein concentration of samples so that an equal 

amount of protein can be analysed in size and charge assays.  Lysate protein 

concentrations were determined using the Pierce BCA (bicinchoninic acid) Protein 

Assay Kit (Thermo-Fisher). 

The assay uses the principle that proteins cause reduction of Cu2+ to Cu+ in an alkaline 

environment.  The Cu+ reacts with the BCA to generate a purple complex, which has a 

linear absorbance at 562nm.  This colour change is proportional to the amount of 

protein in the sample. 

Reagents 

Reagent A Sodium carbonate, sodium bicarbonate, 
bicinchonic acid and sodium tartrate in 
0.1M sodium hydroxide 

Reagent B 4% cupric sulphate 

Working Reagent Reagents A and B in a ratio of 50:1 

Bovine Serum Albumin Diluted in house with dH2O to form a 
standard curve 

 

Protocol 

The BCA assay was executed according to manufacturer’s instructions.  Lysates were 

diluted 1:10 in dH2O.  10µl of each diluted sample and standards were loaded into a 96 

well flat bottomed plate in quadruplicate.  190µl of working reagent was then added to 

each well of the plate before incubation at 37°C for 30 minutes.  The absorbance was 

measure on a FLUOStar Omega Microplate Reader.  A standard curve was constructed 

using Omega software and protein concentrations were determined. 
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2.6.3 Western blotting 

Western blotting is a technique that allows qualitative and semi-quantitative analysis 

of protein expression.  Cell lysates are denatured through the addition of beta 

mercaptoethanol and sodium dodecyl sulphate (SDS) to the loading buffer and 

heating.  Denatured cell lysate samples in Laemmli buffer are first separated using gel 

electrophoresis, which separates macromolecules based on their size.  The pore size in 

the gel regulate how quickly proteins travel through the gel.  Proteins subsequently 

need to be transferred to a membrane (PVDF or nitrocellulose), with a high protein 

affinity, to allow immunodetection of proteins.  This process is achieved through 

sandwiching the gel with the membrane between layers of filter paper and sponge.  An 

electric field is then applied across the gel and the membrane, allowing the protein to 

move from the gel to the membrane.  

Proteins are then detected by immunodetection.  As the membrane has a high 

capacity for protein binding, empty sites on the membrane need to be blocked using a 

buffer with a high protein content (5% w/v skimmed milk powder in TBS-Tween (TBS-

T)).  A primary antibody is used that is specific for the protein of interest.  The primary 

antibody is followed by a secondary antibody raised against the immunoglobulins the 

primary antibody is produced in.  The secondary antibody is conjugated to horseradish 

peroxidase (HRP).  A chemiluminescence reaction is then performed using Amersham 

ECL prime.  In a multistep reaction, the oxidation of luminol is catalysed by HRP, which 

produces intermediates such as luminol endoperoxide.  Peroxide interacts with these 

intermediates to produce aminophthalate and chemiluminescence.   Light emission is 

proportional to the amount of protein and can detected by exposure to x-ray film. 
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Reagents and Equipment 

Precision Plus Protein™ Dual Color 
Standard 

BioRad (Hertfordshire, UK) 

10% Tris-Glycine Gels BioRad  

PVDF Membrane Biorad  

3mm Filter Card Thermo Fisher (Paisley, UK) 

Amersham ECL Prime Amersham Life Sciences 
(Buckinghamshire, UK) 

BioRad Power Pac 200 BioRad  

Fujifilm corporation RX MIF sheet X-Ray 
film 

FSA laboratory supplies 

Fuji X-Ray film processor RG11 Fuji Photo Film co. Ltd. (Tokyo, Japan) 

Gyro-Rocker SRT9 Fisher Scientific (Loughborough, UK) 

Mini-PROTEAN 11 Electrophoresis Cell  BioRad  

Mini Trans-Blot Electrophoretic Transfer 
Cell 

BioRad  

Stirrer UC151  

 

Bibby Scientific Limited (Staffordshire, UK) 

 

Buffers (all chemicals from Sigma (Dorset, UK) unless otherwise stated) 

Laemmli Buffer 62.5mM Tris-HCL, pH 6.8 

4% SDS 

20% (v/v) glycerol 

5% 2 mercaptoethanol 

0.0005% bromophenol blue 

Electrode Buffer 41.2mM Tris 

192mM Glycine 

0.1% (w/v) SDS 

Transfer Buffer 10mM CAPS, 10% (v/v) methanol 

Tris-Buffered Saline with Tween (TBS-T) 0.154M NaCl 

0.05M Tris 

0.5% (v/v) Tween-20 

Blocking Buffer 5% (w/v) dried skimmed milk powder 
(Marvel, Lincolnshire, UK), in TBS- T 
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Protocol 

Protein samples were prepared to a concentration of 1mg/ml in laemmli buffer and 

denatured by heating to 100°C for 5 minutes.  In each BioRad mini gel, 5µl of marker 

was loaded into the first well followed by 12µl of each sample in subsequent wells.  An 

empty well was left between primagraft and patient samples to account for variation 

in accuracy of the protein estimation due to red cell contamination. Proteins were 

separated for 30 minutes at a constant voltage of 220V. 

Mini-blot equipment was used for electroblotting.  All components of the 

electroblotting sandwich were soaked in transfer buffer prior to assembly.  The PVDF 

membrane was soaked in methanol for 20 seconds before transfer buffer.   The 

sandwich was constructed in cassettes in the following order: sponge, two filter cards, 

gel, membrane, two filter cards and a final sponge.  Bubbles were removed using a 

stripette as a rolling pin.  Proteins were transferred for 1 hour at 100V.  An ice pack 

and stirrer were placed in the tank, and the tank was placed on a stirrer to prevent the 

tank overheating.   

The PVDF membrane was then blocked for 40 minutes in blocking buffer.  Primary 

antibody probing was performed as per Table 2.5 on a rocking platform.  Three rinses 

of the membrane were then performed in TBS-T followed by a 12 minute wash in TBS-

T on a rocking platform. Next, the membrane was incubated with the relevant 

secondary antibody for 30 minutes at room temperature on a rocking platform.  The 

membrane was then washed 4 times for 5 minutes in TBS-T.   

ECL prime western blotting detection reagents were used to detect membrane HRP, 

following manufacturer’s instructions.  Reagent A and reagent B were mixed in a ratio 

of 1:1 and applied to the membrane.  The membrane was incubated with this mixture 

for 5 minutes at room temperature.  Excess ECL reagent was removed by blotting on 

paper towel before the membrane was wrapped in Saran Wrap (Thermo Fisher).  The 

membranes were then exposed to x-ray film in an autoradiography cassette for an 

appropriate duration to give visible bands.  The x-ray films were developed using the 

Fuji X Ray film processer.  



 
 

 Protein Molecular 

Weight (kDa) 

Catalogue 

Number 

Species and 

clonality 

Supplier Probing 

Conditions 

Dilution Dilution of 

Secondary Ab 

P
ri

m
a
ry

 

GR ~95 Sc-1003 Rabbit Santa Cruz 1 hour, RT 1:500 1:2500 

GR ~95 Ab3579 Rabbit Abcam 1 hour, RT 5µg/ml 1:2500 

GR ~95 D8H2 Rabbit Cell Signalling Overnight, 4°C 1:1000 1:2500 

GR ~95 D6H2L Rabbit Cell Signalling Overnight, 4°C 1:1000 1:2500 

pGR (s211) ~95 4161S Rabbit Cell Signalling Overnight, 4°C 1:2000 1:2500 

Alpha tubulin 50 T6074 Mouse  Sigma-Aldrich 1 hour, RT 1:500,000 1:4,000 

S
e
c
o
n
d
a
ry

 Rabbit-Ig - P0448 Goat Dako (Glosturp, 

Denmark) 

30 minutes, RT - - 

Mouse-Ig - P0447 Goat Dako 30 minutes, RT - - 

Table 2.5: Antibodies and probing conditions.   

Dilutions were made in blocking buffer except GR (Santa Cruz) which was diluted in 5% bovine serum albumin (w/v) in TBS-T.  RT=room 
temperature. 

7
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2.6.4 Western blotting under non denaturing conditions 

A western blot under non denaturing conditions assesses protein in their native state.  

The original protein conformation is maintained by avoiding denaturation of proteins 

in the sample preparation stage.  For example beta mercaptoethanol and SDS are not 

used and samples are not heated prior to separation on the polyacrylamide gel.  

Reagents 

All equipment and reagents used were the same as in the western blot detailed in 

2.6.3.  The sample buffer and running buffer differed, and are detailed below. 

Sample buffer 6.06 Tris Base in 100ml di H20 pHd to 6.8 

5ml Tris-HCl 

4 ml Glycerol 

11 ml DiH20 

Per ml add 50ul bromophenol blue 

Running Buffer 3.0g Tris Base 

14.4g glycine  

1L H2O 
Protocol 

The protocol was as detailed in 2.6.3, with a difference in gel separation conditions; 

12.5µg protein was loaded onto the gel and the gel was run for 40 minutes at 200V. 

2.6.5 ProteinSimple Peggy Sue analysis of the GR posttranslational modifications 

NanoPro Technology has been developed by ProteinSimple, and comprises automated 

capillary-based immunoassays.  In these experiments, separation by charge has been 

used, although size separation is also possible.  Proteins are separated by isoelectric 

focussing in capillaries; voltage is applied across the capillary and proteins and 

standards concentrate at their isoelectric points (PI), the pH where net electrical 

charge is neutral. Ultraviolet light activates photoactive capture chemistry which is 

coated on the walls of the capillaries, cross linking the samples to the capillary wall.  

Proteins are washed and probed with primary, secondary and tertiary antibodies.  

Addition of luminol and peroxidase causes a chemiluminescent reaction which is 

captured by a camera within the machine.  The data is collected in Compass Software 
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(ProteinSimple) and can be displayed as an electropherogram or a digital image of the 

capillaries.  

This work was done in the Whetton Lab in the Wolfson Molecular Imaging Unit at 

Manchester University.  Support was kindly provided by Rognvald Blance, also from 

Manchester University. 

Reagents 

All reagents were purchased from ProteinSimple (Oxford, UK).   

Protocol 

For each run, the volumes of reagents were calculated based on the number of 

samples and the initial and desired protein concentration of each sample.   

The DMSO inhibitor mix was first mixed with the sample diluent.  Following this, the 

ladder (pI standard ladder 3) and premix (5-8 nested, cat number 040-972) were 

combined, and mixed by pipetting. The DMSO and sample diluent mixture were added 

to the lysate to dilute the sample to the desired concentration.  The lysate mixture was 

then combined with the ladder and premix and mixed by pipetting.  

The antibodies (primary, secondary and tertiary) were diluted using antibody diluent to 

achieve the desired concentrations.  The luminol and peroxidase were mixed in a ratio 

of 1:1 and all components were pipetted into the ProteinSimple plate.  An example of 

the plate layout can be seen in Figure 2.3. All samples were run in duplicate for the 

assay validation and in triplicate for sample analysis. 
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Figure 2.3 Example layout of ProteinSimple plate.  

Samples were run in duplicate for validation, and triplicate for sample analysis.  Up 
to 8 rows of samples can be run simultaneously.  The blue row contains the 
primary antibody.  The dark green row contains the secondary antibody, which 
was always diluted 1:100 in sample diluent.  The light green row contains the 
tertiary antibody (streptavidin-HRP), which was always diluted 1:100 in sample 
diluent.  The yellow row contains the luminol and peroxidase, mixed in a ratio of 
1:1.  This must always be at least 2 rows away from the tertiary antibody.   

The final primary antibody concentration used was 1:25 and the lysate concentration 

was between 0.3 and 0.8mg/ml depending on sample type and availability of sample 

for patient and primagraft samples.  The machine settings for all runs can be found in 

Table 2.6. 

  

1 2 3 4 5 6 7 8 9 10 11 12

Sample 1 Sample 2 Sample 3 Sample 4

B Sample 5 Sample 6 Sample 7 Sample 8

J
luminol/peroxidase

1:1

A

C

D

E

1:100

streptavidin-HRP

Protein Simple, 041-106

Biotinylated anti-

Protein Simple, 

1:100
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Sample: Load time (secs) 
 

25 
 

Separation: Separation profile 
 

Power 1 Step 
 

 
Power (µW) 

 
21000 

 

 
Time  (mins) 

 
40 

 

     

 
Standards exposure time (secs) 

 
1 

 
Immobilisation: Time (secs) 

 
100 

 

 
Washes 

 
2 

 

 
Wash load time (secs) 

 
20 

 

 
Wash soak time (secs) 

 
150 

 
Primary antibody: Time (mins) 

 
120 

 

 
Load time (secs) 

 
2 

 

 
Washes 

 
2 

 

 
Wash load time (secs) 

 
20 

 

 
Wash soak time (secs) 

 
150 

 
Secondary antibody: Time (mins) 

 
60 

 

 
Load time (secs) 

 
2 

 

 
Washes 

 
2 

 

 
Wash load time (secs) 

 
20 

 

 
Wash soak time (secs) 

 
150 

 
Streptavidin-HRP: Time (mins) 

 
10 

 

 
Load time (secs) 

 
2 

 

 
Washes 

 
2 

 

 
Wash load time (secs) 

 
20 

 

 
Wash soak time (secs) 

 
150 

 
Detection: Wash load time (secs) 

 
2 

 

 
Detection profile 

 
6 exposures 30 secs 

    
60 secs 

    
120 secs 

    
240 secs 

    
480 secs 

    
960 secs 

 

Table 2.6 Peggy Sue machine settings for glucocorticoid receptor analysis.   
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2.7 Mass cytometry 

Mass cytometry is a new technique that allows measurement of more than 40 

parameters in a single cell simultaneously, a feat not possible with techniques such as 

flow cytometry.  Mass cytometry is inductively coupled plasma mass spectrometry 

(ICP-MS) coupled to single cell analysis (Bandura et al., 2009).  Cells are labelled with 

antibodies conjugated to rare earth metals such as lanthanides as reporters (Lou et al., 

2007; Majonis et al., 2010).  The unconjugated antibodies are the same as those used 

in flow cytometry (Bendall et al., 2012; Takahashi et al., 2017).  Although it is not 

currently possible to measure light parameters such as forward and side scatter, 

rhodium or iridium can be used to provide information about DNA content (Ornatsky 

et al., 2008b) and chelated metals or platinum metals for viability (Ornatsky et al., 

2006; Bendall et al., 2011; Fienberg et al., 2012; Newell et al., 2012).  Furthermore, the 

addition of normalisation beads can reduce the impact of fluctuation in machine 

performance and also improve quantitative analysis between instruments (Finck et al., 

2013; Tricot et al., 2015). This process is illustrated in Figure 2.4. 



 
 

 

Figure 2.4 Schematic of mass cytometry taken from (Bendall et al., 2012).  

Antibodies tagged with metal isotopes bind to cellular epitopes. The cell passes through a nebuliser and where it is vaporised before being 
introduced to the argon plasma (ICP). This causes cells to be ionised and atomised.  The quadrupole removes overly abundant ions, before the 
elemental composition of remaining heavy elements is determined by time of flight (TOF) mass cytometry.  This information is displayed in .FCS 
files which can be analysed by cytometry platforms, such as Cytobank or FCSexpress.

7
6
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2.7.1 Mass cytometry panel 

This experiment was designed using the Wanderlust panel published in (Bendall et al., 

2014).  The panel used a series of markers to identify the development trajectory of 

human B lymphocytes.  In the project, the panel has been imitated to study the 

developmental stage of malignant B cells.  The antibodies and clones have been kept 

the same, with the exception of the CD34 clone.  The metal tags were altered, 

explained below.  

The original panel used the CD34, clone 8G12.  It was not possible to source this 

antibody commercially in a carrier free format at a concentration suitable for metal 

conjugation.  CD34 clone 581 was therefore used which was evaluated by (Arseniev et 

al., 1999) and shown to be comparable to 8G12.   

The metal markers used in the Wanderlust panel were altered, due to the commercial 

availability of metal conjugated antibodies.  By changing the metal tags, only two 

antibodies needed in house conjugation, significantly reducing the cost of the 

experiment.  The panel metal design was achieved using the MAXPAR panel designer 

and support from Nina Lane (Field Applications Scientist, Fluidigm).  The full panel used 

is shown in Table 2.7. 



 
 

Reactivity Company Metal label Target Clone Expressed by (cell type) Functional significance in B cell development  

Human Fluidigm 162Dy CD79B CB3-1 B cells (IG beta) Subunit of B cell receptor.  Required 

for initiation of B cell signal transduction. 

Human Fluidigm 173Yb HLA-DR L243 B cells MHC class II cell surface receptor.  Involved in 

increasing production of IgM (heavy chain). 

Human Fluidigm 146Nd IgD IA6-2 Transitional B cells, 

immature B cells 

Roles in B cell receptor signalling (negative). 

Human Bio-techne 176Yb* IgM heavy chain polyclonal Pro B – PreB cells Part of PreB Cell receptor complex. 

Human Fluidigm 160Gd Ig kappa (light 

chain) 

MHK-49 Immature B cells  Light chain of B cell receptor complex.   

Human Fluidigm 151Eu Ig lambda (light 

chain) 

MHL-38 Immature B cells Light chain of B cell receptor complex. 

Human Fluidigm 156Gd CD10 HI10a B and T cell precursors Neutral endopeptidase that inactivate several 

peptide hormones. 

Human Fluidigm 168Er Ki-67 B56 N/A Cellular marker of proliferation. 

Human Fluidigm 141Pr CD45 HI30 Hematopoietic cells Regulator of T-and B-cell antigen receptor 

signalling. 

Human Fluidigm 167Er CD38 HIT2 Early B and T cells Cell adhesion and signal transduction. 

Human Fluidigm 147Sm CD20 2H7 T and B cell subsets Development and differentiation of B cells into 

plasma cells. 

Human Fluidigm 169Tm CD19 HIB19 B Cells (not plasma cells) Regulates B cell development, activation and 

differentiation. 

7
8
 



 
 

Human Fluidigm 158Gd CD179b HSL11 PreB Cells (lambda V) Part of PreB cell receptor complex.  

B-cell proliferation and differentiation. 

Human BioLegend 164Dy* CD34 581 ** Haematopoetic stem cells 

and progenitors 

Cell adhesion.  Possible role in early 

haematopoiesis by mediating the attachment 

of stem cells to the bone marrow or directly to 

stromal cells. 

Human Fluidigm 166Er CD24 ML5 B-cells, granulocytes, 

epithelial cells and 

monocytes. 

Regulation of B-cell proliferation and 

maturation. 

Human Fluidigm 143Nd CD117 (ckit) 104D2 Haematopoietic stem cells 

and progenitors   

(c-KIT) Receptor tyrosine kinase important for 

proliferation, activation, and chemotaxis. 

Human Fluidigm 149Sm CD179a HSL96 PreB Cells (vPreB). Part of PreB cell receptor complex.  

Roles in early B cell differentiation. 

Human Fluidigm 144Nd CD72 3F3 B-cells (not plasma B-cells) B cell proliferation. 

Table 2.7 Panel of antibodies used in mass cytometry experiment to imitate Wanderlust panel.  

*Metals conjugated in house using MAXPAR® labelling kits: 176Yb;164Dy. **Clone different to that of Wanderlust panel.  See 2.7.1 for 
explanation. 

7
9
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2.7.2 Metal labelling with antibodies 

It was not possible to commercially source all antibodies conjugated to the required 

metals.  Therefore two antibodies were conjugated in house: IgM heavy chain (IgH) 

and CD34.  Antibodies for conjugation must be in in a carrier free format (no BSA) to 

allow for successful conjugation of the metal. The MAXPAR® Metal conjugation 

protocol was followed with minor adaptions.  

Reagents 

MAXPAR® antibody 
labelling kit 

R-Buffer 

C-Buffer 

L-Buffer 

W-Buffer 

MAXPAR® polymer 

Lanthanide solution 

Fluidigm 

Centrifugal Filter Unit: 3 kDa Amicon Ultra- 500 μL V 
bottom 

Merck 

Centrifugal Filter Unit: 50 kDa Amicon Ultra- 500 μL V 
bottom 

Merck  

Pierce™ 0.5M TCEP: Bond-Breaker TCEP (tris (2-
carboxyethyl) phosphine) solution 

VWR International 

PBS – based antibody stabilization solution Candor Biosciences 
(Wangen, Germany) 

BD CompBeads anti mouse Ig κ BD Biosciences  
  

Protocol 

The polymer was first pre-loaded with the lanthanide metal.  To achieve this, the 

polymer was resuspended in 95µl L-Buffer and mixed by pipetting.  The lanthanide 

metal solution (3µl) was added to the tube to achieve a final concentration of 2.5mM.  

This mixture was then incubated at 37°C for 30 minutes. 

During this time, the buffer exchange and partial reduction of the antibody was 

performed.  The 0.5M TCEP stock was diluted to 4mM in R-Buffer to achieve a total of 

100µl per antibody being conjugated.  Simultaneously, 300µl of R-Buffer was added to 

a 50kDa filter.  The antibody was then added to the filter and the tube was centrifuged 
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for 10 minutes at 12,000 g at room temperature.  The flow through was discarded and 

100µl of the 4mM TCEP-R-Buffer was added to each antibody, mixed by pipetting and 

incubated at 37°C for 30 minutes.  Next, the lanthanide loaded polymer was purified.  

L-Buffer (200µl) was added to a 3kDa filter, followed by the metal-loaded polymer 

mixture.  The filter was centrifuged for 25 minutes at 12,000 g at room temperature.  

The partially reduced antibody was then purified.  C-Buffer (300µl) was added to the 

50kDa filter, followed by centrifugation at 12,000 g for 10 minutes at room 

temperature. The flow through was discarded and 400µl C-Buffer was added to the 

filter, followed by a further 10 minute centrifuge at 12,000 g.   Following this, the 

antibody was conjugated with the lanthanide-loaded polymer.  The flow through from 

both the 3kDa filter containing the lanthanide loaded polymer and the 50kDa filter 

containing the partially reduced antibody was discarded.  The lanthanide-loaded 

polymer was resuspended in 100µl C-Buffer, and this was transferred to the 

corresponding partially reduced antibody in the 50kDa filter, mixed briefly by 

pipetting, and incubated at 37°C for 60 minutes.  

The metal conjugated antibody was then washed by adding 300µl W-Buffer and 

centrifugation at 12,000 g for 5 minutes.  The flow through was discarded and this 

process was repeated three more times with 400µl W-Buffer to make a total of four 

washes.  Recovery of the antibody was achieved by adding 100µl of W-Buffer to the 

walls of the filter followed by inversion of the filter into a fresh collection tube.  The 

inverted filter was centrifuged at 1000 g for 2 minutes.  A further 100µl W-Buffer was 

added to the filter and the centrifugation step repeated.   

To determine the yield of the metal conjugated antibody, the absorbance was 

measured at 280 nanometers against a blank of W-Buffer using the NanoDrop.  The 

antibody was diluted to a final concentration of 0.1mg/ml in the commercially 

available antibody stabilisation buffer.  

Validation of antibody conjugation 

The validation of the antibody conjugation involves two steps; first to ensure there is 

metal present on the antibody, and second to check that the antibody still recognises 

its specified antigen.  To validate that the metal is on the antibody BD CompBeads 
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(anti-mouse Ig κ) were used.  These beads are polystyrene microparticles which 

contain anti-mouse Ig κ particles, and therefore bind any mouse κ light chain antibody.  

If signal is generated in a metal channel when using these beads, it shows the metal 

has conjugated successfully to the antibody.  The antibody (1µl) was added to 1ml PBS 

containing 2 drops BD CompBeads and incubated for 30 minutes at room temperature.  

The beads were then washed twice in PBS followed by three washes in MAXPAR® 

water before acquisition on the Helios mass cytometer. 

To ensure the antibody still recognised the target antigen, cell lines were used that 

were known to express the antigen of interest.  Kasumi and Ramos cells were used 

which are positive for CD34 and IgH, respectively.  The cells were used in a 1:1 ratio so 

each tube had a negative and positive population for each marker.  The antibodies 

were titrated in MAXPAR® cell staining buffer to achieve a final antibody dilution of 

1:250, 1:500, 1:1000, 1:2000 and 1:5000.  The cell staining protocol outlined in 2.7.3 

was then followed. 
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2.7.3 Cell staining with antibodies 

Reagents 

Benzonase nuclease Sigma Aldrich 

Dulbecco’s phosphate buffered saline (10x) Sigma Aldrich 

RF10 As per 2.2.2 

MAXPAR® Water Fluidigm (London, UK) 

Cell staining buffer Fluidigm  

Fluidigm (London, UK) Fluidigm  

Methanol FSA laboratory supplies 

Pierce 16% formaldehyde Thermofisher 

Cisplatin 5mM Fluidigm 

Iridium Fluidigm  

Equipment  

Polypropylene FACS tubes Laboratory supplies 

3µm filter caps Sysmex Partec (Goerlitz, Germany) 

BD Accuri C6 Cytometer  BD Biosciences  

Helios™ Fluidigm  

Solutions  

RF10-benzonase media 50U/ml RF10 

3.2% formaldehyde 10ml 16% formaldehyde and 40ml 
dH2O 

Intercalation solution (per sample) 1ml Fix and Perm, 1µl iridium   



 
 

(a) 

Number 

of 

Samples 

(d) 

Volume of 

Antibody 

(µl) 

 (b) Number of Antibodies 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1.1 
(c

) 
V
o
l 
C
e
ll
 S

ta
in

in
g
 B

u
ff

e
r 

(µ
l)

 
53.9 52.8 51.7 50.6 49.5 48.4 47.3 46.2 45.1 44 42.9 41.8 40.7 39.6 38.5 37.4 36.3 35.2 34.1 33 

2 2.2 108 106 103 101 99 96.8 94.6 92.4 90.2 88 85.8 83.6 81.4 79.2 77 74.8 72.6 70.4 68.2 66 

3 3.3 162 158 155 152 149 145 142 139 135 132 129 125 122 119 116 112 109 106 102 99 

4 4.4 216 211 207 202 198 194 189 185 180 176 172 167 163 158 154 150 145 141 136 132 

5 5.5 270 264 259 253 248 242 237 231 226 220 215 209 204 198 193 187 182 176 171 165 

6 6.6 323 317 310 304 297 290 284 277 271 264 257 251 244 238 231 224 218 211 205 198 

7 7.7 377 370 362 354 347 339 331 323 316 308 300 293 285 277 270 262 254 246 239 231 

8 8.8 431 422 414 405 396 387 378 370 361 352 343 334 326 317 308 299 290 282 273 264 

9 9.9 485 475 465 455 446 436 426 416 406 396 386 376 366 356 347 337 327 317 307 297 

10 11 539 528 517 506 495 484 473 462 451 440 429 418 407 396 385 374 363 352 341 330 

11 12.1 593 581 569 557 545 532 520 508 496 484 472 460 448 436 424 411 399 387 375 363 

12 13.2 647 634 620 607 594 581 568 554 541 528 515 502 488 475 462 449 436 422 409 396 

 

Table 2.8 Fluidigm antibody preparation guide.   
To use the table: find the row matching the number of samples that need to be processed (a) and the column for the number of antibodies used 
in the staining (b).  The number where the row and column meet in (c) is the total volume of Cell staining buffer needed.  The volume of each 
antibody is indicated in column (d).  A volume of 50µl of the final solution is added to each sample stained. 

8
4
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During the antibody staining procedure, no glassware was utilised that had already 

been through the laboratory wash.  Laboratory soaps can contain barium, which is 

often still present on glassware even after several washes.  Barium contamination 

leads to a huge signal in the 138 channel, which can not only damage the detector, but 

also cause spill over into other channels including the +16 channel, 154. All buffers 

where therefore stored in new plastic ware that had not been through the laboratory 

wash. 

To produce the antibody cocktail, cell staining buffer was added to an eppendorf 

followed by each of the antibodies.  The volume of cell staining buffer and antibodies 

was determined using the Fluidigm Antibody Preparation Guide, (Table 2.7). 

Thawed cryopreserved cell lines and primagraft cells, and cell lines in culture were 

used.  Cryopreserved cells were thawed quickly in a water bath at 37°C.  Cells were 

added to 1ml warmed benzonase medium, and vials were rinsed with medium to 

retrieve all cells.  Cells were then centrifuged at 473g for 8 minutes.  The supernatant 

was removed and 9ml of warmed benzonase medium was added to each tube.  Cells 

were once again centrifuged at 473g for 8 minutes before being resuspended in 1ml 

PBS.  Cells were counted using trypan blue and adjusted to a total cell number of 

approximately 3 x 106 cells.  For cell lines in culture, cells were counted using trypan 

blue and adjusted to a total cell number of 1 x 106 cells. 

Cisplatin staining 

Incubation with cisplatin concentrations is performed to identify viable and non-viable 

cells after analysis by mass cytometry. Low concentration cisplatin is more readily 

taken up by dead or dying cells after short incubations.  Therefore live cells will have 

low cisplatin levels, allowing differentiation between viable and non-viable cells. 

Cells were washed in 1ml pre-warmed PBS and resuspended in 1ml PBS.  A 1.25M 

concentration of cisplatin was achieved by diluting the cisplatin stock 1:4 in PBS to 

produce a 5mM solution, before a 1:1,000 dilution on addition to the cells (1µL in 1ml).  

The cells were incubated at room temperature for 4 minutes before the staining was 

quenched by addition of 5ml warm RF10.  The tubes were centrifuged for 5 minutes at 
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3,000 g and then resuspended in 700µL RF10 and left to rest in culture conditions for 

15 minutes. 

Antibody staining 

Cells were washed with 3.5ml MAXPAR® cell staining buffer and the supernatant was 

discarded, leaving approximately 50µl per tube.  50µl of the surface antibody cocktail 

was then added to each tube to make a total staining volume of 100µl per tube.  The 

samples were vortexed and incubated at room temperature for 30 minutes.  Following 

this, samples were washed in 2ml of MAXPAR® cell staining buffer, and cells were 

resuspended in 50µl of the supernatant.   

Cells were chilled on ice for 10 minutes before 1ml of methanol at 4°C was added to 

each tube to permeabilise the cells.  The cells were left to incubate on ice for a further 

15 minutes.  Cells were then washed twice with 2ml MAXPAR® cell staining buffer.  

Following the second wash, cells were resuspended in 50µl of the supernatant.  To 

this, 50µl of intracellular staining antibodies were added to make a total staining 

volume of 100µl.  Cells were gently vortexed and left to incubate for 30 minutes at 

room temperature.  

Following this incubation, cells were washed twice in 2ml MAXPAR® cell staining 

buffer, and cells were resuspended in the residual volume after the second wash. To 

each tube, 1ml intercalation solution was then added and gently vortexed.  At this 

point, cells were left for 12-48 hours at 4°C.  To fix the cells, 1ml 3.2% formaldehyde 

was added to each sample and incubated for 30 minutes at room temperature.  

Samples were then washed in 1ml MAXPAR® water, followed by a wash with 2ml 

MAXPAR® water.  Cell pellets were resuspended in 300µl MAXPAR® water and filtered 

through 3µM filter caps into new, labelled tubes.   

The number of cells was measured on the BD Accuri Cytometer.  The volume of the cell 

suspension was then adjusted with MAXPAR® to achieve a concentration of 5 x 105 

cells/ml including EQ beads.  The data were then acquired on the Helios by a member 

of the Flow Cytometry Core Facility.  Data were normalised using EQ beads and 

analysed using FCS express 6 (De Novo Software, California, US). 
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2.7.4 Wanderlust algorithm 

The Wanderlust algorithm is a graph based trajectory that orders cells based on their 

maturity.  The algorithm makes several assumptions: firstly that the sample used to 

generate the algorithm contain cells from the whole developmental process; secondly 

that the development is linear (i.e. non-branching) and thirdly, that protein expression 

changes occur gradually throughout development (Bendall et al., 2014).  

The graph based algorithm overcomes previous problems associated with cell ordering 

according to developmental hierarchy (Bendall et al., 2011; Qiu et al., 2011).  These 

include false assumptions of linearity, and also the loss of single cell resolution and 

directionality through cells grouping into overly coarse clusters (Bendall et al., 2014).  

The algorithm is described in more detail in Figure 2.5.   
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Figure 2.5 Wanderlust developmental trajectory method, adapted from Bendall et al. 
(2014). 
1. Cells are mapped onto an n-dimensional plot, each dot represents a single cell.   
2. A start cell is selected by the user, which defines where the algorithm will begin the 

trajectory. Waypoint cells are additionally selected at random by the algorithm, 
which aids the algorithm later on.  The algorithm then generates a path based on 
each cell’s nearest neighbour on the n dimensional plot.  This step is done 
hundreds of times. 

3. The shortest path through the cells is measured.  This is done for each graph.   
4. The distance of each cell relative to the start of the trajectory and waypoint cells is 

calculated.   
5. The positions for each cell generated by the individual graphs are averaged.  This 

means that the impact of any noise and short circuits generated by the algorithm 
on individual graphs will reduced.   

6. The final trajectory is the average of all the graphs.  The expression of individual 
markers can be plotted against the wanderlust position to examine the expression 
of that marker over cell development.  
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Protocol 

All analyses described in this section were performed by Dr. Rachel Queen.   

Multidimensional scaling (MDS) plots and heat maps were generated using R software.  

This was to check there was no batch effect, for example by date or sample type.  It 

was also possible to ensure at this point that replicates clustered together.   

The wanderlust algorithm is available as a MATLAB (Mathworks, Massachusetts, US) 

tool.  The default parameters for the algorithm were kept, which were all the same as 

detailed in Bendall et al. (2014) except for ‘k’, the part of the algorithm that defines 

the number of clusters in the graph based algorithm.  The default setting for k in 

MATLAB is 8, however the Bendall paper use a value of 5.  In the analysis performed 

here, a value of 5 would not generate the trajectory and therefore the programmes 

default value of 8 was kept. Once the algorithm had been run in MATLAB, results were 

exported to R for further analysis. 

The details of the samples used in the trajectory is described in Chapter 6.  Briefly, four 

remission bone marrow cells were run with the ALL samples.  A group of 

approximately 20 start cells were chosen.  The choice of start cell was optimised and is 

described in more detail in Chapter 6.  

2.8 Statistical analysis 

All statistical analyses were performed using GraphPad Prism, version 6.07 (California, 

USA) unless otherwise stated in the results. 
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Chapter 3. Pharmacokinetics of 
dexamethasone in acute 
lymphoblastic leukaemia 
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3.1 Introduction 

The GC, dex, is a key component of therapy in childhood ALL.  While the use of dex has 

undoubtedly contributed to the improvements in outcome in ALL seen over the past 

decades, it also makes a major contribution to a variety of short and long-term side 

effects, which may negate its antileukaemic benefit.  The toxicity observed in the 

recently completed UKALL 2003 trial is seen as being unacceptably high in the context 

of a trial with such high disease free survival, with a >3% risk of treatment related 

mortality reported, and approximately a quarter of patients suffering at least one non-

haematological serious adverse event (Bartram et al., 2016; Eiser et al., 2017).  As 

such, the ongoing UKALL 2011 trial has investigated whether a shorter, more intense, 

dose of dex (10mg/m2 x 14 days, ‘short’) would reduce toxicity associated with long 

term steroid exposure, compared to the UKALL 2003 dosing schedule (6mg/m2 x 28 

days, ‘standard’). 

Despite its widespread successful use in a number of cancers, very limited information 

is available concerning dex pharmacokinetics in children.  A study in this area showed 

substantial interpatient variability following treatment of children with ALL, with a >10-

fold variability in systemic drug exposure observed at a dose of 8 mg/m2/day (Yang et 

al., 2008). Variability was correlated with a number of covariates including serum 

albumin concentration, concurrent use of other drugs and age.  As a result, it is 

important to further investigate these findings, as a 10-fold variation in dex 

pharmacokinetics may mask any potential benefit of a <2-fold dose change in the 

UKALL 2011 trial.  In this chapter, the impact of pharmacokinetic variation on drug 

scheduling, i.e. standard versus short dex within the current UKALL 2011 trial, and on 

clinical outcome was therefore investigated, see 3.2 for more detail. 

It is also important to investigate the potential effect of asparaginase, a drug 

concomitantly administered during induction therapy, on dex pharmacokinetics.  Yang 

et al. showed that asparaginase caused a reduction in dex clearance.  This is of 

significance, as a number of patients do not have adequate levels of asparaginase; in 

the UKALL 2003 trial this comprised 11% and 20% of standard risk and high risk 

patients, respectively. These patients will not only fail to gain any clinical benefit from 

asparaginase, but may also experience lower exposures to dex, as they will not 
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experience the reported asparaginase associated reduction in dex clearance.  

Therefore, as part of the UKALL 2011 trial, the relationship between dex and 

asparaginase will be investigated.  Vaskar Saha’s group in Manchester are performing a 

UKALL 2011 sub-study measuring asparaginase trough levels in patients.  Therefore, 

where patients are enrolled on both sub studies, it will be possible to investigate the 

potential synergy previously reported between dex and asparaginase.  Importantly, 

patients receive dex both pre- and post-asparaginase, thus allowing the impact of 

asparaginase on dex pharmacokinetics to be appropriately assessed. 

In addition to studying plasma dex pharmacokinetics, a pilot study investigating 

variation in CSF dex concentrations was also performed in a small number of patients.  

The UKALL 2003 trial reported Kaplan-Meier estimates for any CNS relapse at 5 years 

to be 3%, with isolated CNS relapse at 1.9% (Vora et al., 2013b).  Dex has replaced 

prednisolone as steroid of choice in the UK as it showed fewer CNS relapses in the 

UKALL 97/99 trial (Mitchell et al., 2005).  However, as patients do not receive cranial 

irradiation, steroids play a major role in combatting CNS disease.  Dex CSF 

pharmacokinetics have not been previously described in humans.  However, a study 

investigating plasma dex pharmacokinetics found that higher dex clearance was 

associated with CNS relapse (Kawedia et al., 2012).  It will be interesting to determine 

whether this effect is, in part, related to variability in CSF dex concentrations similar to 

that seen in the systemic circulation. 

In summary, clarification of the relationship between dex pharmacokinetics, clinical 

response and toxicity may enable further stratification of ALL therapy to maintain good 

outcomes whilst reducing the adverse effects of treatment (Jackson et al., 2016).   
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3.2 Chapter specific aims 

 Characterise dex pharmacokinetics in patients on the UKALL 2011 trial following 

short (10mg/m2 x 14 days) and standard (6mg/m2 x 28 days) treatment, 

investigating differences in key parameters between the two groups. 

 Determine the effect of covariates such as age and concomitant medication on dex 

pharmacokinetic parameters. 

 Establish whether variation in dex pharmacokinetics affects experience of toxicity 

and early indicators of outcome such as MRD results. 

 Investigate the effect of asparaginase administration on dex pharmacokinetics. 

 Evaluate whether dex pharmacokinetics in CSF are variable in a small number of 

patients. 

  



96 
 

3.3 Results 

3.3.1 Patient characteristics 

A total of 166 patients were recruited from 12 centres across the UK to the dex 

pharmacokinetic sub-study, between June 2013 and November 2016, for the current 

analysis.  Samples were received from 154 patients; 10 patients withdrew consent 

prior to pharmacokinetic sampling, and samples from two patients were not received.  

Of the 154 patients for whom dex samples were received in Newcastle, extraction of 

dex for pharmacokinetic analysis was performed in 149 patients.  The remaining five 

patients were not included in the current analyses due to time constraints but will be 

included in a later analysis incorporating additional pharmacokinetic study patients.  

Samples from four patients were excluded from analysis due to deviations from the 

sample collection protocol.  Two patients did not receive a full dose of dex and one 

patient was administered an incorrect dose of dex.  One patient was administered dex 

orally on the first sampling day, but was administered dex intravenously at the end of 

induction therapy sampling time point.  The second day of sampling was therefore 

removed from analysis.  Hence, the total number of patients used for analysis was 146 

patients; 83 were on ‘short’ treatment and 63 were on ‘standard’ treatment.  The 

median age of patients studied was 6.7 years on the short arm and 6.4 years on the 

standard arm.  Full patient characteristics are detailed in Table 3.1.  
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 Total Short Standard 

Beginning of treatment 139 80 59 

Age 1-5 71 40 31 

5-10 37 20 17 

10-25 31 20 11 

Gender Female 67 35 32 

Male 72 45 27 

SA (m2) <0.5 2 1 1 

0.5-1 99 56 43 

1-1.5 19 12 7 

>1.5 19 11 8 

WCC  <50 x 109/l 135 78 57 

>50 x 109/l 4 2 2 

End of treatment 71 43 28 

Age 1-5 32 21 11 

5-10 24 12 12 

10-25 15 10 5 

Gender Female 35 21 14 

Male 36 22 14 

SA (m2) <0.5 1 1 0 

0.5-1 50 32 18 

1-1.5 13 5 8 

>1.5 7 5 2 

WCC * <50 x 109/l 67 42 25 

>50 x 109/l 0 0 0 

(Continued overleaf)  
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 Total Short Standard 

Both sampling days 65 40 25 

Age 1-5 30 21 9 

5-10 21 10 11 

10-25 14 9 5 

Gender Female 32 20 12 

Male 33 20 13 

SA (m2) <0.5 1 1 0 

0.5-1 46 29 17 

1-1.5 12 5 7 

>1.5 6 5 1 

WCC  <50 x 109 /l 63 40 23 

>50 x 109 /l 2 0 2 

Table 3.1 Characteristics of patients sampled at the beginning of treatment time 
point, end of treatment time point, and patients studied on both sampling days.  

*WCC characteristics for end of treatment sampling = 67 patients (4 patients did 
not have haematology results for end of treatment sampling).  

3.3.2 Dex pharmacokinetics 

A total of 139 patients underwent ‘beginning of treatment’ pharmacokinetic sampling, 

71 underwent ‘end of treatment’ pharmacokinetic sampling and 65 patients were 

sampled at both time points.  It was not possible to calculate plasma dex 

pharmacokinetics for the beginning and end of induction therapy in 14 and 7 patients 

respectively, as there were too few samples to ascertain a maximal concentration or 

clearance values.  This was due to samples not being collected at all time points, for 

example no sample being taken at 4 or 8 hours.  An incomplete sample set was most 

commonly attributed to physical problems with sampling, or lack of availability of the 

patient or research nurse.  Thus, pharmacokinetic parameters were successfully 

calculated in 127 beginning of treatment samples and 64 end of treatment samples.  

Paired beginning and end of treatment pharmacokinetic data were obtained for 54 

patients.   
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3.3.3 Interpatient pharmacokinetic variability 

There was wide variability observed in dex pharmacokinetics, with AUC0-12h and Cmax 

values being significantly higher on the short compared to the standard arm; AUC: 

584.6 hr*ng/ml (69.12-1,606) versus 404.2 hr*ng/ml (38.31-1,009), Cmax: 115ng/ml 

(13.0-265) versus 78.6ng/ml (9.8-196) median (range), p=0.0001 for both, student’s t-

test (Figure 3.1, Figure 3.3, Figure 3.4A).  However there was substantial overlap 

between the two arms, with a number of patients on the standard arm exhibiting 

higher exposures than those on short therapy.  This equates to a >20-fold range after a 

single dex dose, despite there being a <2-fold difference in dose.  For comparisons with 

cellular dex data in later chapters, Cmax data equates to short: 293 nM (33.1 – 675.2) 

standard: 201.8 nM (24.9-449.4) median (range). 

AUC was linear between patients receiving dex doses of 6 and 10 mg/m2 /day.  When 

AUC0-12h data was normalised to exposure per dose of 1mg/m2 dex, there was no 

significant difference between the two dex dosing arms (student’s t test, p=0.6).  This 

is important to establish when assessing a dose change.  

The accuracy and therefore utility of pharmacokinetic parameters such as Tmax and 

half-life were limited due to the small number of sampling points in the study.  In 

particular, this is the case for patients with a Tmax of later that 2h, or in patients with an 

incomplete set of samples.  In this situation, half-life is calculated based on only two 

data points.  For data shown here, half-life was calculated based on two data points in 

18 patients, three points in 43 patients and four data points in 64 patients.  Therefore 

while these data give an approximation of half-life, it is not highly accurate.   

The limited number of sampling points is displayed in the trimodal distribution of the 

Tmax data in Figure 3.3.  The limited number of sampling points means that Tmax will 

most commonly be at the sampling points of 1,2 or 4 hours.  However, from the 

collected data, there was no difference between the short and standard dex arms in 

terms of both parameters.  The median Tmax was 1.50h in the short arm and 1.16h in 

the standard arm.  Dex half-life values were 2.56h and 3.20h for the short and 

standard arms, respectively (Tmax p=0.38, half-life p=0.81, student’s t test). 

These parameters can be extrapolated to represent patient exposure over the duration 

of treatment, as patients on short therapy received 14 days of dex treatment and 



100 
 

patients on standard therapy received 28 days.  When considering cumulative 

exposure, there was a significantly higher exposure of patients on the standard arm 

with a median of 22,634 hr*ng/ml (range: 2,146-56,480) compared to 16,370 hr*ng/ml 

(1,935-44,968) on the short arm (p=0.0027, student’s t test, Figure 3.4B).  Full 

pharmacokinetic parameters are shown in Table 3.2.  



 
 

 

Figure 3.1 Variation in dex plasma concentration-time profiles observed in patients on both short therapy (10mg/m2 x 14 days, blue) and standard 
therapy (6mg/m2 x 28 days, red).  

Blood samples were taken before, and between 1 and 8 hours, following oral administration of a single dex dose of either 3mg/m2 (red) or 
5mg/m2 (blue). Plasma was separated from whole blood and dex concentrations quantified using a validated LC/MS method. Each dot represents 
a single sample from a single patient from the UKALL 2011 cohort.  
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Figure 3.2 Variation in dex plasma concentration-time profiles observed in patients on (A and B) short therapy (10mg/m2 x 14 days, blue) and (C 
and D) standard therapy (6mg/m2 x 28 days, red). Patients are separated into NCI standard risk (A and C) and standard risk (B and D).  

Blood samples were taken before, and between 1 and 8 hours, following oral administration of a single dex dose of either 3mg/m2 or 5mg/m2. 
Dex concentrations quantified using a validated LC/MS method. Each point represents a single sample from a single patient from the UKALL 2011 
cohort.   
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Regimen Short (n=73) Standard (n=54) 

P Value 

 Median Minimum Maximum Median Minimum Maximum 

Half-life (h) 2.91 1.12 17.3 3.20 1.78 25.0 0.81 

Tmax (h) 1.32 0.75 4.25 1.16 0.92 5.17 0.38 

Cmax (ng/ml) 116.2 13.0 265.0 79.2 9.76 196.0 <0.0001 

AUC0-12h  (hr*ng/ml) 584.6 69.12 1606 404.2 38.31 1009 <0.0001 

Clearance (l/h/m2 ) 7.89 1.79 70.28 6.74 0.25 76.16 0.86 

Volume of 

distribution (l) 
25.88 11.6 384 28 7.16 126 0.34 

Cumulative AUC 

(hr*ng/ml)   
16,370 2,146 56,480 22,634 1,935 44,968 0.0027 

Table 3.2 Comparison of pharmacokinetic parameters between short (10mg/m2) and standard (6mg/m2) groups after a single dose of dex.   

Blood samples were taken before treatment and between 1 and 8 hours following oral administration on one of the first three days of dex 
induction chemotherapy. Cumulative AUC is taken from AUC0-12 hour data extrapolated to duration of dex therapy (14 days for short, 28 days for 
standard).  P values comparing pharmacokinetic parameters on short versus standard therapy were generated using unpaired student’s t tests. 

1
0
6
 



107 
 

 

Figure 3.3 Interpatient variation in dex pharmacokinetic parameters obtained at 
the beginning of treatment.  

Blood samples were taken before treatment and between 1 and 8 hours 
following oral administration on one of the first three days of dex induction 
chemotherapy.  Short therapy (10mg/m2 x 14 days), standard therapy (6mg/m2 
x 28 days).  Horizontal bars represent median values.  P values were generated 
using the unpaired student’s t test (half-life and clearance data were log 
transformed to achieve a normal distribution prior to statistical analysis); half-
life: p=0.81, Tmax: p=0.88; Cmax: p=<0.0001; clearance: p=0.81. 
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Figure 3.4 Variation in plasma dex area under the curve in patients on both short 
therapy and standard therapy, calculated following a single drug exposure (A), 
adjusted to exposure per 1mg/m2 (B) and when extrapolated to total induction 
therapy exposure (C).  

Short therapy (10mg/m2 x 14 days), standard therapy (6mg/m2 x 28 days).  AUC 
was normalised to 1mg/m2 by dividing short and standard AUC0-12h data by 10 
and 6 respectively.  Cumulative AUC is taken from AUC0-12h data extrapolated to 
duration of dex therapy (14 days for short, 28 days for standard).  Horizontal 
bars represent median values.  P values were generated using the unpaired 
student’s t test.  AUC0-12h p<0.0001; normalised AUC0-12h p=0.6;Cumulative 
AUC p=0.0027.  
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3.3.3.1Patients with extreme dex pharmacokinetic profiles 

In this study, several patients were identified that had extreme pharmacokinetic 

profiles.  These mainly fell into two group; patients with extremely high clearance 

values (patient 808 and 1259), and patients in whom dexamethasone appears to be 

eliminated very slowly (patients 1453, 567 and 841).  Concentration time profiles 

for these patients can be seen in Figure 3.3 and pharmacokinetic parameters are 

shown in Table 3.3.   

 

 Patient ID 

 808 1259 1453 567 841 

Half-life (h) 1.9 2.9 N/A N/A N/A 

Tmax (h) 1.03 0.95 4.17 3.97 2 

Cmax (ng/ml) 9.76 13.0 113 56.9 107 

AUC0-12h  

(hr*ng/ml) 
38.3 69.11 1149 554.3 945.0 

Clearance 

(l/h/m2 ) 
76.16 70.28 N/A N/A N/A 

Volume of 

distribution (l) 
126.2 384.0 N/A N/A N/A 

Table 3.3 Pharmacokinetic parameters in patients with extreme profiles after a 
single dose of 5mg/m2 (841, 1259, 1453) or 3mg/m2 (567, 808). 

Blood samples were taken before treatment and between 1 and 8 hours 
following oral administration on one of the first three days of dex induction 
chemotherapy. N/A = not applicable (it was not possible to calculate certain 
parameters in these patients).  
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Figure 3.5: Dex concentration time profiles for patients with extreme dex 
pharmacokinetics. 

Blood samples were taken before, and between 1 and 8 hours, following oral 
administration of a single dex dose of either 3mg/m2 (patient 567, 808) or 
5mg/m2 (patient 841, 1259, 1453). Plasma dex concentrations quantified using 
a validated LC/MS method. Each point represents a single sample from a single 
patient from the UKALL 2011 cohort. 

The two patients with an extremely high dex clearance both had very low exposures 

to dex (AUC0-12h of 38.3 and 69.1 hr*ng/ml compared to the median values of 404.2 

and 584.6 hr*ng/ml for the respective arms of therapy the patients were on).  

There are two possible reasons for the high clearance; firstly that the patients have 

expression of an enzyme such as CYP3A5 that will increase metabolism of dex, or 

secondly that the patient has not been exposed to the full dose of dex.  This may be 

due to reduced absorption in these patients, or that the patient has not taken the 

full dose of dex.  It is important to investigate this further, as if the low exposure 

was caused by an increased dex metabolism, there may be a sub set of patients 

who will be exposed to potentially sub therapeutic levels of dex.  This could be 

investigated further using a candidate gene analysis assessing variants of CYP3A4, 

the cytochrome P450 principally responsible for the metabolism of dex, and 

expression of CYP3A5, which has been reported to increase CYP3A activity 

(Kitzmiller et al., 2014).  Secondly, a dietary study could be performed.  Dex is 

lipophilic, and as such the patient’s diet may affect absorption, as absorption of 
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other lipophilic drugs has been shown to be reduced by increased dietary lipids 

(Persson et al., 2008).   

There were also patients who exhibited sustained dex concentrations after oral 

administration of the drug, with little perceivable dex elimination.  It was not 

possible to calculate certain pharmacokinetic parameters for this drug, as there was 

no real decrease in plasma dex concentrations to calculate these.  One potential 

cause for this is a prior administration of dex through the sampling line.  However, 

as there is a much lower dex concentration in the pre dose sample, this is unlikely 

to be the case.  Another explanation for sustained plasma dex concentrations could 

be a reduced CYP3A activity.  For example, patients with CYP3A4*22 have been 

found to have reduced CYP3A4 activity in several studies (Elens et al., 2013a; Elens 

et al., 2013b; Kitzmiller et al., 2014).  This is important to investigate further, as 

these patients could be at risk of increased treatment related morbidity and 

mortality.  

Although both these cases of extreme pharmacokinetic profiles may be due to 

problems with dex dosing or blood sampling, there may also be a physiological 

reason.  It will be important to determine this, as if the observed differences were 

due to differences in dosing or sampling, it may be that variation in AUC is not as 

large as initially thought.  However, if this variation has a physiological basis, the 

outcome of these patients should be monitored, to determine whether those with 

a low exposure have an increased chance of relapse, and similarly those with 

apparent poor elimination experience dex associated morbidities such as 

osteonecrosis.  A candidate gene study assessing whether polymorphisms in 

CYP3A4 and 5 have a role in these extreme profiles may help to resolve this issue.  

3.3.4 Intrapatient variability and asparaginase effect 

Dex has been reported to be both a substrate for, and inducer of, enzymes of drug 

metabolism and drug transporters (Jugert et al., 1994; Demeule et al., 1999; 

Rushmore and Kong, 2002; Xu et al., 2005; Shou et al., 2008).  It is therefore 

important to assess intrapatient variability to establish whether there is any auto-

induction or inhibition of clearance during treatment.  Furthermore, Yang et al. 

(2008) reported a possible association between asparaginase administration and 
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dex clearance.  As patients in the current cohort received at least one dose of 

asparaginase between the two pharmacokinetic sampling days (Figure 2.1), the 

potential effect of asparaginase on dex pharmacokinetics was also assessed in this 

study.  

There were 54 patients for whom complete beginning and end of treatment 

pharmacokinetic data were generated.  Cmax, clearance and AUC0-12h were all 

significantly different within patients, as shown in Figure 3.6 (paired student’s t 

test, Cmax p= 0.0003, clearance p=0.0016 and AUC 0-12h p=0.0003).  However, despite 

these differences between the sampling days being statistically significant in the 

group overall, for some individuals the opposite change is seen.  This makes the 

clinical use of the observation challenging.  An overall increase in exposure cannot 

be assumed and incorporated into dosing protocols if this is not the case for some 

patients.  If a therapeutic monitoring situation was adapted, sampling at two time 

points during induction therapy would be needed to ensure all patients had an 

appropriate exposure to the drug. 

Whilst hypothesised to affect dex clearance through interfering with de novo 

synthesis of drug metabolising enzymes, asparaginase is also thought to inhibit the 

production of proteins such as albumin (Oettgen et al., 1970; Cairo, 1982). Indeed, 

Yang et al. (2008) observed a drop in serum albumin levels following the addition of 

asparaginase to therapy, with a correlation between dex clearance and albumin 

levels. Likewise, in the current cohort of patients, a drop in albumin levels was 

observed upon the addition of asparaginase therapy (n=46, paired student’s t test 

p=0.0078, Figure 3.6F).  However, a correlation between dex clearance and albumin 

was not observed post-asparaginase treatment (pre-asparaginase: p=0.03; post-

asparaginase: p=0.81, Figure 3.7). 
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Figure 3.6 Intrapatient variation in pharmacokinetic profiles and albumin 
concentrations between the beginning and end of induction chemotherapy.  

Pharmacokinetic parameters were calculated in WinNonlin and compared in 
patients who had undergone sampling at both the beginning and end of 
induction therapy using a paired student’s t test.  A: Area under the Curve 
between 0 and 12 hours, n=54, p=0.0003; B: Maximum plasma concentration, 
n=54, p=0.0003; C: Clearance, n=54, p=0.0016; D: Albumin concentration in 
blood, n=46, p=0.0078.   

A B 

C D 
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Figure 3.7 Correlation between dex clearance and albumin concentrations pre- 
and post-asparaginase therapy.   

Taken from 47 patients who were analysed for dex pharmacokinetics on one of 
the first and one of the last three days of induction dex therapy, i.e. pre- and 
post-asparaginase administration. The correlation between the two parameters 
was assessed using a linear regression analysis (pre-asparaginase r2: 0.1, 
p=0.03; post-asparaginase r2: 0.001, p=0.8). 
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To further elucidate a potential interaction between asparaginase and dex, the 

relationship between asparaginase concentrations and dex pharmacokinetic values 

was assessed.  If asparaginase does affect dex pharmacokinetics, low asparaginase 

levels may mean that patients not only have a reduced asparaginase antileukaemic 

action, but will also fail to exhibit the reduced dex clearance associated with 

asparaginase activity, which would be associated with higher drug exposure.   

The asparaginase sub-study was performed by Vaskar Saha’s group at Manchester 

University using a chromogenic assay to measure asparaginase trough levels on 

days 16 and 30 of treatment.  However, there were only 15 patients, for whom 

valid dex pharmacokinetic parameters were calculated, who were also enrolled on 

the asparaginase sub-study.  This low cross over between the two sub studies is 

likely due to a difference in hospital site recruitment.  

For patients with both asparaginase and dex data available, there was marked 

interpatient variability in trough asparaginase levels, with a 3.7- and 3.0- fold range 

in levels observed on day 16 and day 30, respectively.  There was also a significant 

increase in trough asparaginase levels from day 16 to day 30 (paired student’s t 

test, p<0.0002, Figure 3.8).  It was not possible to assess the effect of asparaginase 

allergy on dex pharmacokinetics, as there were only 2 of the 16 patients who had 

experienced a hypersensitivity reaction.  Furthermore, in both cases the 

hypersensitivity reaction occurred beyond the end of induction therapy.  
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Figure 3.8 Asparaginase trough levels in patients on the dex pharmacokinetic sub-
study at day 16 and day 30.  

Asparaginase trough levels were measured by V. Saha’s group at Manchester 
University using a chromogenic assay.  There was a significant increase in 
asparaginase trough levels from day 16 to day 30 (paired student’s t test, 
p=0.0002, n=15). 

In patients with both asparaginase trough levels and dex pharmacokinetic data, a 

correlation analysis was performed to assess the relationships between 

asparaginase, albumin and dex clearance.  As the end of induction treatment dex 

sampling was carried out on days 12-14 or 19-21 for short dex therapy patients, dex 

clearance values and albumin levels from short therapy were correlated with day 16 

asparaginase levels.  Similarly, end of induction dex sampling was carried out on 

days 26-28 for standard dex therapy patients, and therefore albumin levels were 

correlated with day 30 asparaginase levels (Figure 3.9).  It was not possible to 

assess a correlation between dex clearance and asparaginase levels in those on 

standard dex, as there were only three standard dex patients who had clearance 

values and asparaginase trough concentrations.  There was no correlation between 

asparaginase trough concentrations and albumin levels at the end of induction 

therapy (short dex: r2 = 0.2, p=0.13, n=14; standard dex: r2 = 0.0008, p=0.9 n=8).  

Similarly, there was no correlation between end of treatment dex clearance values 

in short dex patients and day 16 trough asparaginase levels (r2 = 0.03, p=0.5, n=16). 
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Figure 3.9 Correlation between trough asparaginase levels, and albumin and dex 
clearance.  

The correlation between the two parameters was assessed using a linear 
regression analysis, r2 values are shown below. (A) Patients on short dex dosing: 
end of treatment albumin concentrations correlated with day 16 trough 
asparaginase levels (r2 = 0.2, p=0.13, n=14; (B) Patients on standard dex dosing: 
end of treatment albumin concentrations correlated with day 30 trough 
asparaginase levels (r2 = 0.0008, p=0.9, n=8; (C) Patients on short dex dosing: 
end of treatment dex clearance value correlated with day 14 trough 
asparaginase levels (r2 = 0.03, p=0.5, n=16).  
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To clarify the effect of asparaginase on dex treatment in a larger patient group, 

intrapatient pharmacokinetic differences were compared in patients who had 

received one dose of asparaginase versus two.  Asparaginase is dosed on days 4 and 

18 of induction therapy.  Therefore, regimen A patients (NCI standard risk) on the 

short dex arm will have received one asparaginase dose between the two dex 

sampling days, whereas regimen B (NCI high risk) patients on the short dex arm and 

all standard dex arm patients will have received two doses of asparaginase between 

the dex sampling days.  Changes in dex AUC0-12h, clearance and albumin 

concentration between the beginning and end of induction therapy were compared 

in those who had been administered one dose of asparaginase vs those who had 

been administered two doses (Figure 3.10).  There was a larger increase in AUC0-12h 

and decrease in albumin concentrations in patients who had been administered 

two doses of asparaginase compared to those who had only had one (p=0.006 and 

0.03 vs. 0.01 and 0.08 respectively, paired student’s t test).  However, this effect 

was not seen for dex clearance (2 doses: p = 0.05, 1 dose: p=0.01). 
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Figure 3.10 Intrapatient variation in dex pharmacokinetic parameters and albumin 
levels in patients receiving one or two doses of asparaginase between dex 
sampling days.  

Dex area under the curve between 0 and 12 hours, dex clearance and albumin 
concentrations were compared between the beginning and end of induction 
therapy.  The left panel shows patients who had received one dose of 
asparaginase between dex sampling days.  The right panel shows data for 
patients who had been administered two doses of asparaginase.  P values were 
generated using the paired student’s t test.    
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3.3.5 Covariate analysis: pharmacokinetics and patient characteristics 

Regimen B patients receive daunorubicin in addition to the three drug induction 

given to regimen A patients.  To assess whether the addition of daunorubicin, or 

other patient characteristics specific to this group of patients, may have affected 

dex pharmacokinetics, relationships between treatment regimen and dex AUC0-12h 

and clearance were studied (Figure 3.11).  There was a statistically significant 

difference in clearance values observed between NCI standard risk and NCI high risk 

patients (p=0.02), however this was likely to be a result of two outliers in the high 

risk group.  When these patients were excluded from analysis, there was no longer 

a statistical difference in clearance between the risk groups (p=0.19).  There was no 

effect of patient regimen on end of induction therapy clearance (p=0.74), or AUC0-

12h, both at the beginning and end of induction therapy (p=0.21 and 0.18, 

respectively).   

To determine whether variations in other patient characteristics could account for 

some of the variability seen in dex pharmacokinetics, relationships between dex 

clearance and patient surface area, age and gender were tested.  However, no 

relationships were observed between clearance and any of these parameters, 

either at the beginning or end of induction therapy (Figure 3.12).  For example, r2 

values for the correlation between surface area and dex clearance were 0.001 at 

the beginning and 0.01 at the end of induction therapy (p=0.71 and 0.44, 

respectively).  Similarly, r2 squared values for the correlation between patient age 

and clearance were 0.003 at the beginning of induction therapy and 0.001 at the 

end of induction therapy (p=0.49 and p=0.76, respectively).  This is in contrast to 

the findings of Yang et al. (2008), who reported an association between dex 

clearance and patient age, with older patients having a lower clearance and thus 

higher exposure to dex. 
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Figure 3.11 Effect of treatment regimen on dex AUC0-12h and clearance.  

SR = standard risk HR=high risk.  Horizontal bars represent median values. (A) 
Beginning of induction therapy pharmacokinetic sampling point. Left: difference 
in area under the curve between 0 and 12 hours between standard and high 
risk patients at the beginning of induction therapy (p=0.21); right: difference in 
clearance between standard and high risk patients at the beginning of induction 
therapy (p=0.02; without outliers, p = 0.19). (B) End of induction therapy 
pharmacokinetic sampling point. Left: difference in area under the curve 
between 0 and 12 hours between standard and high risk patients at the end of 
induction therapy (p=0.18); right: difference in clearance between standard and 
high risk patients at the end of induction therapy (p=0.74). P values were 
generated using the unpaired student’s t test (clearance data were transformed 
to achieve a log distribution before statistical analysis). 
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Figure 3.12 Relationship between patient characteristics and dex clearance at the 
beginning and end of induction therapy.   

(A-D) Correlations between parameters were assessed using linear regression 
analysis, r2 values are shown on the graph. (A) Correlation between surface 
area and clearance at the beginning of induction therapy (n=125, p=0.71) and 
(B) at the end of induction therapy (n=64, p=0.44). (C) Correlation between age 
and clearance at the beginning of induction therapy (n=125, p=0.49) and (D) at 
the end of induction therapy (n=64, p=0.76).  

(E-F) Relationship between gender and clearance at the beginning (E) of 
induction therapy (n=125), 7.3 (2.09-76.16) vs. 7.2 (1.07-23.28) l/h/m2 (p=0.23) 
and end (F) of induction therapy (n=64), 4.9 (1.1-21) vs. 4.25 (0.9-13.4) l/h/m2 
(p=0.23). Data is median (range), p values generated using an unpaired t test 
(data were log transformed to achieve a normal distribution before statistical 
analysis).  Horizontal bars represent median values.  
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3.3.6 Covariate analysis: pharmacokinetics and concomitant medication 

As patients are often prescribed multiple drugs in addition to the three or four 

drugs used in induction therapy, it is important to assess the effect of the 

administration of these additional drugs on dex pharmacokinetics.  Firstly, a 

number of the drugs being administered are both substrates for, and inhibitors or 

inducers of, CYP3A4, the main cytochrome P450 enzyme responsible for the 

metabolism of dex.  Examples include the proton pump inhibitor, omeprazole, 

prescribed to reduce gastric irritation, and the antifungal, fluconazole. Secondly, a 

number of drugs can affect passage through the digestive system which may lead to 

differences in absorption, thus affecting pharmacokinetics.  For example, 

metoclopramide, an anti-emetic, increases the rate of gastric emptying. 

To assess the impact of concomitant medication on dex pharmacokinetics, drugs 

administered seven days prior to dex until the day of pharmacokinetic sampling 

were documented.  In total, 76 different drugs were recorded, however many of 

these were only administered to small numbers of patients.  Drugs were only 

assessed if they had been administered to at least 10 patients, with 

pharmacokinetic parameters compared between patients who had received the 

drug and those who had not.   

The full list of concomitant medications analysed is shown in Table 3.4.  For the 

majority of medications, there was no difference in dex clearance or exposure, as 

defined by AUC0-12h, between those who had taken the concomitant medication 

and those who had not.  Bonferroni’s correction was performed for multiple 

comparisons.  Due to the large number of statistical tests performed on 

pharmacokinetic parameters, the p value at which significance was accepted was 

adjusted.  As 13 tests were performed on beginning, and 12 tests were performed 

on end of induction therapy pharmacokinetics, p values of <0.0038 and 0.0042 

respectively were accepted as significant.  A small number of medications did 

appear to be associated with dex pharmacokinetics, although only one association 

was significant after correction for multiple testing.   

Administration of rasburicase (n=23) for hyperuricaemia was associated with lower 

dex AUC0-12h values at the beginning of induction therapy (rasburicase: 397.8 
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hr*ng/ml (38.31 - 1187), no rasburicase: 506.4 hr*ng/ml (137.2-1606), median 

(range), p=0.0097, student’s t-test) and higher dex clearance values (rasburicase: 

10.86 l/h/m2 (3.46 - 76.2), no rasburicase: 6.81 l/h/m2 (1.07 - 31.1), median (range), 

p<0.0001) (Figure 3.13A).  There was only one patient taking rasburicase on or 

immediately before the end of induction therapy sampling, so it was not possible to 

ascertain whether it also affected end of treatment dex pharmacokinetics.   

There was also a significant increase in dex exposure in patients being administered 

osmotic agents, although this was not reflected in the clearance values (osmotic 

agent AUC0-12h: 591.9 hr*ng/ml (215.2-1452), clearance 4.69 l/h/m2 (1.07 – 20.03) 

vs no osmotic agent AUC0-12h: 424.9 hr*ng/ml (38.31 – 1606), clearance: 7.62 l/h/m2 

(1.55 – 76.16); p=0.01 and 0.08, respectively).  However, this increase in dex 

exposure was not significant after correction for multiple testing.  The altered 

exposure in this situation may be due to a change in bioavailability of the drug 

rather than altered drug elimination.  Osmotic agents are prescribed to patients 

with constipation, so passage of gastric contents, including dex, through the 

gastrointestinal tract will be altered in these patients.  The association between 

osmotic agents and dex exposure, however, was not seen at the second 

pharmacokinetic sampling point at the end of induction therapy (p=0.5, student’s t 

test). 

In contrast, despite not being correlated with pharmacokinetics at the start of 

induction therapy, administration of ranitidine was associated with dex AUC0-12h and 

clearance at the end of induction therapy pharmacokinetic sampling point 

(ranitidine AUC0-12h: 1102 hr*ng/ml (189-2441), clearance: 3.49 l/h/m2 (0.95 – 6.75) 

vs no ranitidine AUC0-12h: 741 hr*ng/ml (218 – 1902), clearance: 5.22 l/h/m2 (1.16 – 

21.0) p=0.045 and p=0.001, respectively), (Figure 3.13B).  However, after 

adjustment for multiple testing using Bonferroni’s correction, this was not 

statistically significant.  Although ranitidine has been reported to be an inhibitor of 

CYP3A (U.S. Food and Drug Administration, 2017), a number of studies also found 

no inhibitory effect in vivo (Martinez et al., 1999; Lemahieu et al., 2005). 



 
 

Drug Class Potential effect 

on dex 

pharmacokinetics 

Sampling 

day 

No 

Patients 

AUC values 

(hr*ng/ml) 

drug vs no drug 

(median (range))  

AUC 

p value 

Clearance values 

(l/h/m2)  

drug vs no drug 

(median (range)) 

Clearance 

p value 

Any opiate Opiates 
May affect 

absorption 

Beginning 57 
491 (38.3-1606) vs 

446 (69.1-1452) 

0.44 6.82 (1.07-76.2) vs 

7.43 (1.55-70.3) 

0.779 

End 18 
798 (239-2441) vs 

743 (189-1707) 

0.14 3.48 (1.13-21.0) vs 

4.63 (0.95-15.9) 

0.57 

Metaclopramide 

Antiemetic 

Increases gastric 

emptying 

Beginning 13 
393 (205-839) vs   

479 (38.3-1606) 

0.19 8.17 (1.07-23.3) vs 

7.07 (1.55-76.2) 

0.88 

End 7 N/A 

Ondansetron 
CYP3A4 S,   

P-gp I- 

Beginning 65 
476 (38.3-1606) vs 

506 (142-1440) 

0.66 6.96 (1.07-76.2) vs 

7.39 (1.79-20.0) 

0.19 

End 25 
742 (234-2441) vs 

820 (189-1902) 

0.97 4.93 (0.95-21.0) vs 

4.27 (1.13-13.4)0- 

0.47 

Amikacin Antibiotic P-gp S Beginning 20 585 (137-1452) vs 

467 (38.3-1606) 

0.24 5.64 (2.09-22.0) vs 

7.41 (1.07-76.2) 

0.42 

End 6 N/A 

(Continued overleaf) 

  

1
2
5
 



 
 

 

Cotrimoxazole 

Antibiotic 

N/A End 33 
933 (189-2441) vs 

603 (234-1902) 

0.09 4.05 (0.95-15.9) vs 

5.75 (1.13-21.0) 

0.09 

Gentamycin 
CYP3A4 S 

P-gp S 
Beginning 14 

451 (162-839) vs 493 

(38.3-1606) 

0.54 7.95 (3.55-31.1) vs 

7.09 (1.07-76.2) 

0.94 

Meropenam 
CYP3A4 S 

P-gp S 

Beginning 20 
430 (142-1606) vs 

493 (38.3-1452) 

0.38 8.37 (1.55-17.9) vs 

7.09 (1.07-76.2) 

0.6 

End 9 N/A 

Piperacillin/ 

tazobactam 

CYP3A4 S 

P-gp S 

Beginning 69 
503 (38.3-1452) vs 

426 (142-1606) 

0.52 6.96 (1.07-76.2) vs 

7.72 (1.55-31.1) 

0.68 

End 11 
546 (189-1902) vs 

795 (219-2441) 

0.38 4.63 (1.13-21.0) vs 

4.51 (0.95-15.9) 

0.35 

Teicoplanin N/A Beginning 28 
498 (162-1606) vs 

484 (38.3-1452) 

0.63 6.48 (1.55-31.1) vs 

7.28 (1.07-76.2) 

0.44 

Rasburicase 
Anti-

hyperuricaemic 

N/A Beginning 23 
398 (38.3-1187) vs 

506 (137-1606) 

0.0097 10.9 (3.46-76.2) vs 

6.81 (1.07-31.1) 

<0.0001* 

 End 1 N/A 

Omeprazole Antisecretory 
CYP3A4 S/I-/I+ 

P-gp I- 

Beginning 31 
496 (206-839) vs   

483 (38.3-1606) 

0.22 7.88 (1.07-20.0) vs 

7.07 (1.55-76.2) 

0.42 

End 30 
824 (219-2441) vs 

723 (189-1405) 

0.11 4.13 (0.95-15.9) vs 

5.39 (1.13-21.0) 

0.3 

1
2
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Ranitidine Antisecretory N/A 

Beginning 25 
486 (38.3-1359) vs 

491 (69.1-1606) 

0.49 7.07 (1.55-76.2) vs 

7.17 (1.07-70.3) 

0.38 

End 13 
1102 (189-2441) vs 

742 (219-1902) 

0.045 3.49 (0.95-6.75) vs 

5.21 (1.16-21.0) 

0.01 

Ambisome Antifungal CYP3A4 S 
Beginning 16 

421 (69.1-1189) vs 

493 (38.3-1606) 

0.4 8.66 (1.98-70.3) vs 

7.14 (1.07-76.2) 

0.11 

End 7 N/A 

Osmotic Agents Laxative 
May affect 

absorption 

Beginning 27 
592 (215-1452) vs 

448 (38.3-1606) 

0.0052 4.69 (1.07-20.0) vs 

7.62 (1.55-76.2) 

0.089 

End 17 
933 (189-2441) vs 

742 (219-1902) 

0.51 4.36 (1.75-21.0) vs 

4.86 (0.95-15.9) 

0.87 

 

Table 3.4 Relationship between concomitant drug administration and dex pharmacokinetic parameters.   

P values were derived by comparing the means of pharmacokinetic parameters in those who had taken a drug versus those who had not using an 
unpaired student’s t test. PK= pharmacokinetics; S=substrate; I- = inhibitor; I+ = inducer. N/A = fewer than 10 patients therefore statistical 
analysis not performed.  Bonferroni’s correction was performed for multiple comparisons.  Due to the large number of statistical tests performed 
on pharmacokinetic parameters, the p value at which significance was accepted was adjusted.  As 13 tests were performed on beginning, and 12 
tests were performed on end of induction therapy pharmacokinetics, p values of <0.0038 and <0.0042 respectively were accepted as significant.  
* denotes statistically significant result. 

1
2
7
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Figure 3.13 Relationship between concomitant medication administration and dex 
pharmacokinetic parameters at the beginning (A) and end (B) of induction 
therapy.   

(A) Difference in AUC0-12h and clearance between patients that had taken 
rasburicase or osmotic agent versus those who had not at the beginning of 
induction therapy (rasburicase: AUC p=0.0097, clearance p<0.0001; osmotic 
agent: AUC p=0.0052; clearance p=0.089). (B) Difference in AUC0-12h and 
clearance between patients that had taken ranitidine versus those who had not 
at the end of induction therapy (ranitidine: AUC p=0.045, clearance p=0.01). 
Horizontal bars represent median values. 
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3.3.7 Relationship between dex pharmacokinetics and toxicity 

In order to assess whether variation in dex pharmacokinetics affected incidence of 

toxicity, key pharmacokinetic parameters were compared between patients who 

had experienced at least one grade 3/4 adverse event and those who had not.  

Toxicity data were obtained for 120 patients who also had valid beginning of 

induction therapy dex pharmacokinetic data.  In total, 68 patients were recorded as 

having experienced a grade 3/4 adverse event.   

The most common category of adverse events experienced was infections and 

infestations, with 50 (42%) patients experiencing an infection.  Device related 

infections and upper respiratory infections were the most common types of 

infections, experienced by 17 (12%) and 12 (9%) patients respectively.  A full list of 

grade 3-4 toxicities is shown in Table 3.5.  

There was a bimodal distribution for patient age or body surface area and 

experiencing a grade 3-4 toxicity (Figure 3.14).  The relationships between age or 

body surface area and incidence of toxicity were assessed using a chi squared test.  

There was a trend towards a higher proportion of toxicity in patients of greater 

compared to less than 10 years of age, however this was not statistically significant 

(p=0.058).  There was also a higher proportion of patients with a larger body 

surface area (greater than 1.25m2 experiencing Grade 3/4 toxicities (p=0.01).   

There were no associations between any dex pharmacokinetic parameter and the 

incidence of any grade 3-4 adverse event (AUC0-12h p=0.6, cumulative AUC p=0.4, 

Cmax p=0.9, clearance p-0.9; one way ANOVA) (Figure 3.15).  Similarly, there was no 

effect of treatment regimen or dex arm on the incidence of toxicity (p=0.1 and 0.7 

respectively, chi squared test) (Figure 3.16).  However, other chemotherapeutic 

agents are also used during induction therapy which contribute to toxicity, and this 

may confound the relationship between the incidence of toxicity and dex 

pharmacokinetic parameters.   

In an attempt to limit the influence of other chemotherapeutic agents, several 

steroid-related toxicities were selected (with at least 10 incidences) and their 

relationship with dex pharmacokinetic parameters was assessed (Table 3.6).  There 

was a trend towards an increased AUC0-12h being associated with haematological 
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events, however this was not statistically significant (p=0.09, student’s t test).  

There were also no significant association with any of the other steroid-related 

toxicities and dex pharmacokinetic parameters (student’s unpaired t test, Table 

3.6).  
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Number of Patients 

Total* 

n (%) 

Short dex 

n (%) 

Standard dex 

n (%) 

Blood and Lymphatic disorders 9 (7.5) 8 (11.6) 1 (2.0) 

Gastrointestinal disorders 11 (9.2) 6 (8.7) 5 (9.8) 

Hepatobiliary disorders 1 (0.8) 1 (1.4) 0 (0) 

Infections and infestations 48 (40) 29 (42.0) 19 (37.3) 

Injury, poisoning and procedural 

complications 

2 (1.6) 2 (2.9) 0 (0) 

Investigations 2 (1.6) 2 (2.9) 0 (0) 

Metabolism and nutrition disorders 10 (8.3) 6 (8.7) 4 (7.8) 

Musculoskeletal and connective 

tissue disorders 

4 (3.3) 1 (1.4) 3 (5.9) 

Nervous System disorders 3 (2.5) 2 (2.9) 1 (1.7) 

Skin and subcutaneous tissue 

disorders 

3 (2.5) 2 (2.9) 1 (1.7) 

Vascular disorders  7 (5.8) 4 (5.8) 3 (5.9) 

None 47 (39) 28 (40.6) 19 (37.2) 

 

Table 3.5 Grade 3-4 toxicities experienced during induction phase in patients on 
the dex pharmacokinetic sub-study of the UKALL 2011 trial.   

*Total = total number of patients with valid pharmacokinetic data at the 
beginning of treatment pharmacokinetic sampling day.  Short n=69, standard 
n=51.  ‘None’ includes patients who experienced grade one or two toxicity only.  
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Figure 3.14 Relationship between incidence of grade 3-4 toxicity and patient age 
and surface area.   

Due to the bimodal distribution for patient age or body surface area and 
experiencing a grade 3-4 toxicity, the relationships between age or body 
surface area and incidence of toxicity were assessed using a chi squared test.   
Age: incidence of toxicity was compared in patients of less than and greater 
than 10 years of age (p=0.058).  Body surface area: incidence of toxicity was 
compared in patients of less than or greater than 1.25m2 (p=0.01).  Horizontal 
line shows median value. 
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Figure 3.15 Relationship between incidence of grade 3-4 toxicity and dex 
pharmacokinetic parameters.   

(A) Area under the curve between 0 and 12 hours after a single dose of dex; (B) 
Cumulative AUC (hr*ng/ml) extrapolated to exposure for duration of induction 
therapy; (C) Maximum plasma concentration reached; (D) Clearance normalised 
to body surface area. Horizontal bars represent median values.  No toxicity 
includes patients with grade 1-2 toxicity. 
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Figure 3.16 Relationship between incidence of grade 3-4 toxicity and treatment 
regimen.  

(A) Incidence of toxicity in NCI standard risk (regimen A) versus NCI high risk 
(regimen B) patients.  Despite an increase in toxicity cases in the NCI high risk 
group, this was not statistically significant (p=0.1, Chi-square test). (B) Incidence 
of toxicity in patients on short dex dosing versus those on standard dex dosing.  
There was no significant difference between the two in terms of the number of 
patients experiencing toxicity (p=0.7, Chi-square test).  
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Number of Patients Association with pharmacokinetic parameters (p-value) 

Total*          

n (%) 

Short dex     

n (%) 

Standard dex 

n (%) 

AUC0-12h 

(hr*ng/ml) 

Cumulative AUC 

(hr*ng/ml) 

Cmax (ng/ml) Clearance 

(l/h/m2) 

Encephalopathy 3 (2.5) 2 (2.9) 1 (2.0) N/A N/A N/A N/A 

Fracture 3 (2.5) 3 (4.3) 0 (0) N/A N/A N/A N/A 

Glucose related 10 (8.3) 6 (8.7) 4 (7.8) 0.45 0.36 0.64 0.90 

Hypertension 6 (5) 3 (4.3) 3 (5.9) N/A N/A N/A N/A 

Infection 51 (42.5) 30 (43.5) 21 (4.1) 0.54 0.74 0.70 0.56 

Muscle related 4 (3.3) 2 (2.9) 2 (3.9) N/A N/A N/A N/A 

Osteoporosis 1 (0.83) 1 (1.4) 0 (0) N/A N/A N/A N/A 

Psychosis 0 (0) 0 (0) 0 (0) N/A N/A N/A N/A 

Thromboembolic events 1 (0.83) 1 (1.4) 0 (0) N/A N/A N/A N/A 

Blood Disorders 9 (0.75) 8 (11.6) 1 (2.0) N/A N/A N/A N/A 

Table 3.6 Steroid specific adverse events in patients on the UKALL 2011 dex pharmacokinetic sub-study and their relationship with dex 
pharmacokinetic parameters.  

Steroid specific adverse events were assessed where there were at least ten incidences within patients on the dex pharmacokinetic sub-study.  
Pharmacokinetic parameters were compared between patients who had experienced a steroid related toxicity and those who had not.  P values 
were generated using the unpaired student’s t test.  N/A = No statistical test performed due to low patient numbers for the individual steroid 
specific adverse event.   

1
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5
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3.3.8 The effect of variable dex pharmacokinetics on outcome 

Currently, there is no long term follow up data for patients on this trial. Therefore, day 

8 response and MRD measurements were used as a surrogate marker of clinical 

response, as MRD measurements have been shown to be highly prognostic of patient 

outcome (Vora et al., 2013b).  All patients were assessed for blast count at day 8 and 

MRD at day 29 of therapy.  

There was a significant difference in AUC 0-12h between patients with a day 8 bone 

marrow blast count of less, or greater than, 5%.  A day 8 blast count of less than 5% 

was associated with a higher mean dex exposure (p =0.0007, student’s t test, Figure 

3.17A).  However, importantly there was no difference between the short and 

standard arm in terms of day 8 blast count (p =0.058, student’s t test, Figure 3.17B).  

This indicates that dex exposure may be more important than dose administered.   

When extended to day 29 MRD, no associations were observed between any 

pharmacokinetic parameter and risk status (p=0.71, student’s t test, Figure 3.17C).  A 

longer follow up time is needed to establish the significance of this rapid early 

response in patients with high dex exposures in this population. 
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Figure 3.17 Association between dex exposure and outcome, defined by MRD.   

(A) There was a significant difference in exposure, defined by AUC0-12h between 
patients with a day 8 blast count of <5 or >5 (p = 0.0007) (B) There was no 
difference in day 8 blast count between patients on short and standard dex 
therapy (p = 0.057) (C) There was no difference in exposure between patients with 
< 0.005% or >0.005% MRD measurement (p=0.71). P values were generated using 
the student’s t test.  Data in (B) were log transformed to achieve a normal 
distribution before testing for significance.  Horizontal bars represent median 
values.  
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3.3.9 Cerebrospinal fluid pharmacokinetics 

CNS directed therapy is an important part of ALL treatment protocols, without which it 

has been shown that up to 75% of children relapse with CNS disease (Evans et al., 

1970).  Dex is the steroid of choice in the UK due to its superior efficacy against CNS 

disease compared to prednisolone (Mitchell et al., 2005).  As dex pharmacokinetics are 

highly variable in plasma, the same may be true for CSF dex pharmacokinetics, which 

could affect risk of CNS relapse.  Therefore a small pilot study was performed on 

retrospectively collected CSF samples to quantify dex concentrations, in collaboration 

with Dr. Christina Halsey at Glasgow University, who kindly provided CSF samples from 

children with ALL.  

Initially, the LC/MS method used for the quantification of dex concentrations in plasma 

and cell lysates was assessed for its suitability for use with artificial CSF (aCSF).  A 

number of ions are present in CSF and there was a concern that this may lead to ion 

suppression of the LC/MS signal.  To test this, 100ng/ml dex was spiked in water, 

mobile phase (70% 0.1% formic acid, 30% acetonitrile) and aCSF, and chromatograms 

were compared.  In all three matrices, dex had a comparable retention time of ~9.4 

minutes.  There was a slight reduction in signal in the aCSF sample, with a peak area of 

6.4 x 105 compared to 7.6 x 105 in mobile phase.  However, as this was only a 15% 

reduction, this would not affect quantification of CSF dex peaks, and the method was 

deemed acceptable for use with CSF samples.   
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Figure 3.18 Typical chromatograms for 100ng/ml dex and beclomethasone in spiked 
water, mobile phase and artificial CSF.  

Mobile phase consisted of 70% 0.1% formic acid and 30% acetonitrile.  Dex (blue) 
and beclomethasone (red) peaks displayed a similar retention time in all matrices 
of approximately 9.4 minutes.  There was a slightly reduced signal in the aCSF 
sample, however this would not affect the quantification of dex CSF peaks.    
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A total of 39 patient CSF samples were analysed from 36 patients.  Samples were 

injected onto the LC/MS after a standard curve of dex prepared in aCSF.  This included 

thirty-three day 8 CSF samples and six day 28 samples.  Patients were receiving either 

short dex therapy (10mg/m2 x 14 days, n=11) and or standard dex therapy (6mg/m2 x 

28 days, n=25) as part of the interim guidelines between UKALL 2003 and 2011, or the 

UKALL 2011 trial.  Three day 8 patients had CSF dex concentrations below the limit of 

quantification and were therefore excluded from the analysis.   

There was wide variation in CSF dex concentrations both at day 7 (6.5 ng/ml (1.4-17)) 

and day 28 (4.4 ng/ml (0.4-11.1), median (range).  However, detailed sampling time 

information was not recorded for these patients, hence differences in the length of 

time between dex dosing and CSF sampling may have contributed to the variation seen 

in CSF dex concentrations.   

 

Figure 3.19 Initial quantification of dex in CSF samples from children with ALL.  

CSF samples were provided by Dr Christina Halsey.  Samples were taken at days 7, 
8 and 28 of induction chemotherapy from patients enrolled on the interim 
guidelines prior to the UKALL 2011 trial, or the UKALL 2011 trial.  Dex CSF 
concentrations were measure using LC/MS.  Horizontal bars represent median 
values. 
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There was no significant relationship between age and CSF dex concentrations (p=0.29, 

one way ANOVA, Figure 3.20A).  There was a statistically significant increase in CSF dex 

concentration in patients who had received 10mg/m2 per day compared to patients 

who had received 6mg/m2 per day (8.3 ng/ml (4.1-16) vs 6.3 ng/ml (1.4-8.1); median 

(range), p=0.01, unpaired student’s t test).  However, similar to plasma dex data, there 

was large variation within the arms in CSF dex concentrations and there was an 

overlap between the two arms (Figure 3.20B).   

Of the thirty day 8 patients analysed, two patients experienced a CNS relapse and one 

patient experienced a bone marrow relapse.  There were not enough patients with a 

CNS relapse to perform any statistical tests to assess a change in CSF dex 

concentrations in these patients, however Figure 3.20C shows that the two patients 

with a CNS relapse fall in the middle of the range of patients who did not relapse (CNS 

relapse: 3.9 and 7.3 ng/ml, no CNS relapse 6.5 ng/ml (1.4-12.1), median (range)).  This 

may suggest that CNS dex concentration is not a factor in CNS relapse, however these 

are very small patient numbers.  Furthermore, as previously noted, the time between 

dex administration and CSF sampling was not recorded for the patients.  This may have 

affected all the results generated and therefore a study with increased patient 

numbers and more detailed sampling time records needs to be performed to expand 

on these preliminary findings. 
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Figure 3.20 CSF dex concentrations in day 8 patient samples on the UKALL 2011 trial.   

(A) CSF dex concentrations in different age groups in years (p=0.29, one way 
ANOVA); (B) CSF dex concentrations in patients who received 6mg/m2 dex per day 
and 10mg/m2/day (p=0.008, unpaired student’s t test); (C) CSF dex concentrations 
in patients who relapsed in the CSF and patients who have not relapsed.  No 
statistical text was performed due to small patient numbers in CSF relapse group.  
One patient was excluded as they had a bone marrow relapse. 
Horizontal bars represent median values.   
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3.4 Discussion 

Over recent decades, survival for patients with ALL has increased dramatically.  

However, this is mainly due to augmentation and intensification of treatment, which 

has conversely also brought about a significant increase in toxicity and decreased 

quality of life.  As such, the focus in paediatric ALL has shifted to reducing treatment 

related morbidity and mortality whilst maintaining current survival rates.  Despite 

current stratification approaches, there is a need for further ways to personalise 

therapy to give patients the best chance of survival and the lowest chance of side 

effects.  Dex pharmacokinetics have been reported to be highly variable (Yang et al., 

2008), and as such may provide an approach to stratify dex therapy.  This project has 

therefore aimed to characterise the relationship between dex scheduling, 

pharmacokinetics and both clinical outcome and toxicity as part of the UKALL 2011 

trial.  Despite closure of the R1 arm of the trial, recruitment to the dex 

pharmacokinetic sub-study is still ongoing to generate equal patient numbers in the 

short and standard patient groups.  The results discussed here therefore represent an 

interim analysis of the data generated to date.   

Patient samples analysed to date have shown large interindividual variability in 

pharmacokinetics, with a >20-fold variation in AUC0-12h values on both arms of therapy. 

This is larger than the level of variability previously reported in a US study; Yang et al. 

observed a 10-fold variation in dex exposure in a cohort of 214 patients.  Similarly, the 

extent of dex pharmacokinetic variability in this trial is greater than that seen in one 

other non-ALL paediatric study (Richter et al., 1983) and in healthy adult volunteers 

(Loew et al., 1986; O'Sullivan et al., 1997; Queckenberg et al., 2011), however these 

sample groups were much smaller. 

Parameters such as AUC0-12h and Cmax were significantly higher on the short compared 

to the standard dex arm of therapy, with a linear increase in AUC0-12h between the two 

dex doses.  However there was substantial overlap between the two patient groups.  A 

number of patients on the standard arm exhibited higher exposures than those on 

short therapy, an important observation given the different durations of therapy on 

the two arms.  Importantly, the UKALL 2011 R1 study found no statistical difference in 

terms of steroid related toxicity or MRD response between short and standard dex 
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dosing.  This suggests that the considerable variation in dex pharmacokinetics shown 

here may mask any benefit of a change in dosing regimen on the two arms of the 

randomisation.  Accordingly, a less than 2-fold difference in dose might not be a great 

enough modification to impact on patient outcome considering the 20-fold variation in 

pharmacokinetic exposure. 

Furthermore, the significance of variation in dex exposure is reflected in the day 8 blast 

count results.  Despite there being no statistical difference in day 8 blast count 

between the short and standard dex arms, patients with a blast count of <5% had a 

significantly higher exposure to dex than those with a blast count of >5%.  This 

highlights the impact of variable dex exposure when assessing a dose change.  

Conversely, there was no difference in exposure at day 29 in patients within the ‘low 

risk’ (<0.005% blasts) and ‘risk’ (>0.005% blasts) group.  This may be due to the 

differences in dex dosing durations.  However, due to the important prognostic 

significance of early dex response, a longer follow up time is needed to assess the 

implication of a variable dex exposure on long term patient outcome. 

In patients with paired beginning and end of induction therapy samples, 

pharmacokinetic profiles differed between the beginning and end of induction 

chemotherapy, with AUC0-12h being significantly higher at the end of induction 

chemotherapy.  A number of covariates were therefore analysed to find predictors 

likely to cause change within and between patients.  Dex is reported to be an inducer 

of CYP3A4, which plays a major role in its metabolism (Moore and Kliewer, 2000). 

However, this would be expected to cause an increase in clearance from the beginning 

to the end of induction therapy, the opposite to what has been observed here.  One 

possible explanation for this is the concomitant administration of asparaginase during 

induction chemotherapy, which has been suggested to influence dex pharmacokinetics 

(Yang et al., 2008). This is thought to be due to asparaginase-mediated inhibition of 

protein production, such as albumin and dex metabolising enzymes. Furthermore, 

exposure to asparaginase has been shown to alter risk of dex induced osteonecrosis in 

both mice and humans (Kawedia et al., 2011; Liu et al., 2016). 

Direct investigation of the relationship between dex and asparaginase in the current 

study was limited by the small number of patients who were enrolled on both the dex 
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and asparaginase sub-studies. However, it is was possible to look at albumin levels and 

differences in dex pharmacokinetics in patients who had received one asparaginase 

dose versus two, as Yang et al. previously reported a correlation between albumin 

levels and dex clearance.  In this study, despite a drop in albumin concentration post 

asparaginase being observed, in parallel to a decrease in dex clearance, no direct 

correlation between albumin and dex clearance was observed.   

Differences seen in this study may be due to a difference in protocols between the two 

studies.  In the Yang study, patients were sampled for dex and asparaginase analysis at 

week 7 and week 8 of therapy.  Therefore the impact of 7 weeks of asparaginase 

therapy on de novo protein synthesis on albumin and dex metabolising enzymes may 

be more pronounced than the 1-3 weeks of patients analysed in this study.  

Additionally, asparaginase concentrations in patients on this trial may not yet have 

reached steady state levels; as asparaginase trough concentrations were significantly 

greater after the second compared to the first dose of asparaginase.   

Importantly, the number of asparaginase doses did appear to impact on intrapatient 

variability in dex pharmacokinetics and albumin concentrations.  A larger increase in 

dex AUC0-12h and decrease in albumin was observed in patients who had received two 

doses of asparaginase compared to one, although the same relationship was not seen 

with dex clearance.  To better understand these results and how they compare to 

those of Yang et al., it would be beneficial to investigate this impact further with later 

dex and asparaginase sampling points. 

Later dex pharmacokinetic and asparaginase sampling points and increased patient 

numbers would also enable further analysis of the effect of asparaginase allergy on dex 

pharmacokinetics.  Yang et al. found that developing an asparaginase allergy affected 

both serum albumin concentrations and dex clearance.  It was not possible to verify 

this effect in the current cohort of patients, as the two patients in this study (recruited 

to both sub-studies) who experienced asparaginase allergy, both developed 

asparaginase hypersensitivity after the end of induction therapy. 

It is also important to consider other possible mechanisms leading to a reduction in 

clearance between the beginning and end of induction therapy.  It is unlikely dex 

causes auto inhibition of its clearance although it is thought to be an inducer of CYP3A 
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(Moore and Kliewer, 2000).  It is possible that the lipophilic nature of dex may 

contribute to the reduction of clearance seen throughout induction therapy.  Dex may 

accumulate in the fat compartment of the patient after initial doses.  When the fat 

compartment becomes saturated, subsequent administrations of dex remain in the 

systemic circulation.  This will cause an increase in AUC, and as clearance is inversely 

proportional to AUC, a decrease in clearance.  A similar situation has been described 

for cyclosporine.  This hypothesis could be tested in the future by measuring 

percentage body fat and comparing this to the level of intrapatient variability 

observed.  This may also explain why some patients had larger intrapatient variability 

than others and would help in the interpretation of intrapatient variability data. 

Previous studies have suggested that increased age is associated with a worse 

outcome and increased side effects (Plasschaert et al., 2004; Yang et al., 2008; Vora et 

al., 2013b).  Yang et al. saw an inverse correlation between age and dex clearance.  As 

older children often have a poorer prognosis it was important to investigate altered 

pharmacokinetics in this high risk population further.  The UKALL 2011 trial was open 

to patients aged between 1 and 25 years, allowing further investigations into the 

relationship between age and dex pharmacokinetics.  However, in the dex 

pharmacokinetic sub-study, no association between age and dex clearance was 

observed.  Similarly, there was no statistically significant effect of patient age on 

incidence of toxicity in patients on the dex sub-study.   

A number of the concomitant medications administered during the induction phase of 

therapy are also CYP3A substrates, and therefore may explain some of the 

pharmacokinetic variability.  Patients who had taken rasburicase, a drug used to 

prevent tumour lysis syndrome in patients with a high tumour burden, exhibited a 

lower mean dex AUC0-12h and increase in drug clearance.  Tumour lysis syndrome 

occurs when a large number of tumour cells are killed simultaneously as a result of 

therapy, releasing their contents into the bloodstream.  This can result in several life 

threatening metabolic disturbances, including hyperuricaemia (Howard et al., 2011).  

Rasburicase is a recombinant urate oxidase enzyme which has urolytic activity, 

reversing hyperuricaemia (Pession et al., 2005).  As rasburicase is given to patients 

with high tumour burden, these patients will be more commonly on regimen B, and 

will therefore have a four drug induction including daunorubicin.   
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Of the 23 patients in this trial taking rasburicase, 20 were on regimen B.  As a result it 

was important to assess whether the observed pharmacokinetic differences may have 

been due to the concomitant administration of the anthracycline, daunorubicin, in 

these regimen B patients.  Furthermore, Yang et al. found that doxorubicin, also an 

anthracycline antibiotic, affected dex clearance.  However, in this study, no difference 

in AUC values or clearance were seen in patients on regimen B (Figure 3.11).  This 

indicates that the decreased dex exposure in patients taking rasburicase is due to the 

rasburicase or the high tumour burden itself.  In the latter situation, a higher number 

of blasts could mean a larger proportion of dex is intracellular.  This would result in 

lower plasma dex concentrations which would be exhibited as a lower AUC and higher 

clearance.  Importantly, the majority of these patients are high risk with an associated 

poorer prognosis.  This association between rasburicase and AUC should therefore be 

investigated in an independent cohort of patients.  If the decreased dex exposure is 

not due to greater intracellular dex levels, a lower exposure in a high risk patient group 

is potentially of concern.   

There was also a correlation between the administration of ranitidine or osmotic 

laxatives and an increased exposure to dex.  Although ranitidine is a weak inhibitor of 

CYP3A4, this is unlikely to fully explain the increase in dex AUC.  Rantidine and osmotic 

laxatives are administered to treat dex side effects.  It is therefore likely that the 

association seen with administration of these drugs and an increased exposure 

resulting in increased side effects rather than a consequence of the drug on dex 

metabolism.   

In patients analysed to date, there was no association seen between the experience of 

toxicity and pharmacokinetic parameters. Firstly, this may be because toxicity data is 

confounded by concomitant administration of other toxic chemotherapeutics.  For 

example, vincristine, a drug also administered in induction therapy, is also 

immunosuppressive and may therefore contribute to the occurrence of therapy 

related infection.  Secondly, despite an attempt to assess the relationship between 

steroid specific toxicities and dex pharmacokinetics, such as hypertension, the 

numbers of patients in these analyses were very low.  Higher patient numbers would 

therefore enable analysis of individual toxicities with a strong association with GC 

therapy. 
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CSF dex concentrations were also assessed in a small number of patients.  Results were 

comparable to plasma pharmacokinetic data; there was a significantly higher dex 

concentration in short compared to standard patients, however there was an overlap 

between the two arms.  Of the patients analysed, there were only two patients who 

relapsed.  These patients had CSF dex concentrations well within the range of patients 

who remained in remission.  However, it is important to consider that the exact CSF 

sampling times were not recorded as the study was performed retrospectively, and 

variation in sampling times will have contributed to the variation seen between 

patients.  Furthermore, without paired plasma and CSF sampled it is difficult to 

establish the relationship between plasma and CSF dex concentrations.  However, 

these data have shown that it is possible to detect dex in CSF samples, which will be 

useful for future studies.  Due to the important role of dex in eliminating CNS blasts, it 

may be worth investigating CSF dex pharmacokinetics with recorded sampling times 

and paired plasma samples in a larger patient group in a prospective study.   

One of the problems with the traditional pharmacokinetic sampling approach used in 

this project was that it required patients to be in hospital and research nurses to be 

available to collect samples.  This firstly meant that a number of patients had missing 

samples, and it was not possible to accurately calculate pharmacokinetic parameters 

for them and thus they were excluded from analysis.  Secondly, a number of patients 

were not sampled at both the beginning and the end of induction therapy, limiting 

characterisation of intrapatient variability.   

To combat the former problem, a population pharmacokinetic approach could be used 

for the analysis of patient data.  When the full cohort of patients have been recruited 

and all samples analysed, this is the approach that will be taken to analyse the data 

generated.  A collaboration has been established with Martina Liebich (Munster, 

Germany), who has developed a population pharmacokinetic model for a reduced 

cohort of patients in this trial (n=107) using NONMEM 7.3.  The model is a one-

compartment model with first-order absorption and first-order elimination and also 

includes proportional residual variability and allometric scaling (presented at the PAGE 

26 meeting (Lieblich et al., 2017)).  This approach will be able to better evaluate 

pharmacokinetic parameters in patients missing samples, and will therefore enable a 

more in depth analysis of the influence of covariates and comparisons between the 
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two dosing regimens. This type of modelling would also be used if a dex dose 

monitoring approach was taken into the clinic.  The use of a population 

pharmacokinetic model would mean fewer samples would be needed to predict 

individual patient’s exposure to dex. 

To address the latter issue, future studies could explore a different sampling approach.  

Increasing sensitivity of LC/MS systems means that collection methods such as Guthrie 

card or other micro blood sampling methods, such as Mitra blood sampling tips, could 

be used.  For example, one study has been able to accurately quantify dex in dried 

blood spots from 30µl of blood (Patel et al., 2010).  Although this approach would 

need extensive validation, it would enable patients to generate samples at home and 

thus recruitment and retention to pharmacokinetic studies may be improved. 

In summary, high inter and intrapatient variability has been observed. The UKALL 2011 

trial aimed to investigate whether a shorter, more intense dex dose, would decrease 

toxicity whilst maintaining survival rates.  However, a futility analysis in April 2017 

demonstrated that there was no statistical difference between the dosing arms in 

terms of steroid related toxicity, MRD or relapse free survival.  In this project, it has 

been seen that at day 8, dex exposure was more important than treatment arm, (short 

vs. standard), in terms of dex response.  Furthermore, a significantly higher cumulative 

exposure to dex on the standard arm suggests that in a drug treatment with markedly 

variable pharmacokinetics, duration of therapy may be more important in terms of the 

likely impact on clinical response and toxicity 

ALL is a heterogeneous disease and it may well be that the therapeutic index is 

different in different subtypes and this may account for some of the variability seen in 

response.  A much larger study would need to be performed to assess this.  

Incorporation of later sampling time points in the delayed intensification phase of 

therapy would also help to elucidate the relationships between dex pharmacokinetics 

and both asparaginase and individual steroid related toxicities.  
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Chapter 4. Intracellular dexamethasone 
accumulation 
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4.1 Introduction 

In addition to studying the systemic pharmacokinetics of dex, the intracellular 

pharmacology of the drug should also be considered, as this is what ultimately results 

in ALL cytoreduction and clinical benefit.  The GR is a ligand-activated transcription 

factor belonging to the nuclear receptor superfamily.  Once bound to ligand, it 

translocates to the nucleus where it mediates GC-induced cell death, by 

transactivation or transrepression of target genes (Schaaf and Cidlowski, 2002; Inaba 

and Pui, 2010).  In some cases, ALL cells can exhibit markedly reduced sensitivity to dex 

therapy.  This results in a reduced clinical benefit from dex treatment whilst patients 

are still exposed to therapy-related toxicity.  Studying dex pharmacokinetics alone may 

allow modulation of the drug concentrations that leukaemic cells are exposed to, but 

does not provide information regarding the drug- target interaction or downstream  

response of the ALL cells (Jackson et al., 2016). 

Despite playing a central role in the treatment of ALL for a number of decades, the 

mechanisms of action and resistance of dex are still not fully clear. An improved 

understanding of these mechanisms is not only needed to develop new therapies for 

patients with resistant disease, but also to identify patients who may not benefit 

clinically from dex therapy, or equally those who may benefit from a reduction or 

intensification of therapy.   

An important area of investigation into dex resistance that remains relatively 

unexplored is whether concentrations of intracellular dex differ between sensitive and 

resistant ALL cells. This is a key complementary investigation to dex pharmacokinetic 

studies, as it defines the applicability of the plasma concentration of dex to the 

leukaemic cells.  

Intracellular drug levels can potentially be affected by several factors, including 

variation in expression of membrane transporters.  This has been shown to be an 

important factor for other commonly used cancer drugs such as actinomycin D (act D) 

(Hill et al., 2013; Hill et al., 2014).  Substrate specificity of dex for MDR1 is debatable.  

Although dex has been reported to be a substrate for MDR1 (Cole et al., 1992; Schinkel 

et al., 1995b), investigations into the impact of MDR1 expression of ALL cells on 

outcome, although not GC response itself, have revealed contrasting results.  For 
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example, expression of MDR1 in ALL cells has been associated with a more 

unfavourable course (Dhooge et al., 2002), increased risk of relapse (Goasguen et al., 

1996), and lower survival (Casale et al., 2004).  However, a number of other groups 

found no effect of MDR1 expression on outcome (Kakihara et al., 1999; Plasschaert et 

al., 2003; Balamurugan et al., 2007).  Whether dex is an MDR1 substrate therefore 

needs further clarification. 

A change in intracellular dex concentration could also be caused by events such as 

increased steroid binding protein, or a change in 11β-hydroxysteroid dehydrogenase 

enzyme (11β-HSD) expression.  There are two forms of 11β-HSD; 11β-HSD1 which 

converts inactive 11β-keto GC into active GC, and is expressed in GC target tissues, and 

11β-HSD2 which inactivates GC but is only has restricted expression (Seckl, 2004).  

Although there have been limited studies looking at 11β-HSD, Sai et al. (2009) found 

that 11β-HSD1 expression was decreased in GC resistant ALL cells ex vivo compared to 

GC-sensitive ALL cells.  Therefore, investigating whether intracellular dex levels differ 

in GC-sensitive and resistance cells represents an interesting and novel avenue that 

may aid further stratification of dex therapy. 

4.2 Chapter specific aims  

 Assess whether dex is a substrate for the multi drug transporter MDR1. 

 To assess dex accumulation in ALL cells and correlate with dex sensitivity. 
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4.3 Results 

In order to assess intracellular accumulation in ALL cells, two methods were utilised.  

The first used LC/MS to measure dex concentrations and the second used flow 

cytometry to measure intracellular dex conjugated to the fluorochrome, fluorescein.  

4.3.1 Method validation  

4.3.1.1 Assessment of dex concentrations in cell lysates using LC/MS 

The validation of the LC/MS method was performed in cell lines and was submitted as 

part of a Masters by Research Degree, awarded in 2012 (Jackson, 2014).  The 

validation is detailed in Appendix D. 

The LC/MS assay was optimised in this project to define the smallest number of cells 

necessary for successful extraction and sufficient signal on the LC/MS, to allow use 

with patient samples. Optimisation was performed with PreB697 cells.  Cells were 

seeded at decreasing densities ranging from 2.2 x 106 cells/ml to 0.1 x 106 cells/ml 

(total of 14 x 106 and 0.6 x 106 cells respectively) before incubation with 500nM dex for 

4h at 37ᵒC.  Extraction was then performed before quantification of dex peaks by 

LC/MS.  Figure 4.1 shows examples of peaks from dilutions that were above and below 

the limit of quantitation (defined as 10 x baseline). 
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Figure 4.1 Example LC/MS chromatograms showing the minimum number of cells 
needed to obtain a quantifiable dex peak after incubation with 500nM dex.    

PreB697 cells of differing densities were incubated with 500nM dex for 4 hours 
before cell lysis and measurement of intracellular dex concentrations.  The lower 
limit of quantitation was defined at 10 x baseline reading.  The top pane shows a 
total of 1.3 x 106 PreB697 cells.  Dex peak (~150 counts) at ~2.6 minutes is > 10 x 
the baseline (~10 counts), to allow differentiation of peaks from baseline noise.  
The bottom pane shows a total of 0.6 x 106 PreB697 cells.  Dex peak (~80 counts) 
at ~2.6 minutes is < 10 x the baseline (~10 counts). 
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There was some variation in the lowest defined number of cells between the three 

experiments performed.  This was most likely due to daily variation in LC/MS 

sensitivity.  A serial dilution was performed, resulting in cell number halving with each 

dilution.  The natural daily variation in LC/MS sensitivity may have therefore caused 

the 1:16 dilution to have been above and below the quantitation limit, causing the 

variation in the lower limit of quantitation (Table 4.1).  

 
Lowest total number of cells that gave a 

quantifiable peak  (x 106) 

Rep 1 0.6 

Rep 2 1.6 

Rep 3 1.3 

Table 4.1 Lowest number of PreB697 cells that gave a quantifiable dex peak, on three 
separate days.  

Cells were seeded at decreasing densities ranging from 2.2 x 106 cells/ml to 0.1 x 
106 cells/ml (total of 14 x 106 and 0.6 x 106 cells respectively) before incubation 
with 500nM dex for 4h at 37ᵒC.  Extraction was then performed before 
quantification of dex peaks by LC/MS.  A quantifiable peak was defined at >10x 
baseline. 

To account for this variability, the assay with the least sensitivity was used to define 

the lowest total number of cells needed, which was 1.6 x 10 6 per sample.  Therefore, 

for patient experiments, cells were resuspended at a concentration of 1 x 106 cells/ml 

with a total cell number of at least 1.6 x 106. 
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4.3.1.2 Assessment of dex concentrations in cell lysates using flow cytometry  

This method was adapted from a study using dex-FITC. The authors described the 

assay as a measure of dex-binding to the GR in human thymocytes (Kowalik et al., 

2013).  Initially, the optimal incubation time was established to give the maximal 

fluorescence.  PreB697 cells were incubated with 500nM dex-FITC or control vehicle 

(CV) for 5, 15, 30 or 60 minutes and then analysed by flow cytometry.  All samples 

were gated on forward and side scatter to eliminate debris and isolate single cells.  The 

ratio of mean fluorescence intensity (MFI) of the FITC channel for CV and dex-FITC 

treated cells was then calculated. 

The MFI ratio increased in a time-dependent manner from 5 to 30 minutes incubation, 

but not between 30 and 60 minutes of incubation (Figure 4.2).  An incubation time of 

45 minutes was therefore chosen for further experiments. 

 

Figure 4.2 Mean fluorescence intensity of dex-FITC after incubation periods of 5 – 60 
minutes.  

There was no increase in MFI from 30 to 60 minutes.  
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The method was subsequently tested in PreB697 cells, dex resistant sub clones and 

REH cells.  MFI values did not differ between PreB697 cell lines, resistant sub lines or 

REH cells (p=0.9, one way ANOVA) (Figure 4.3).  Given that the method was designed 

to measure GR binding, this was surprising, as REH cells do not contain a functional GR 

(Grausenburger et al., 2016).  Furthermore, R3D11 has previously been shown to have 

a reduced level of GR (Nicholson et al., 2010).  It was therefore concluded that 

Kowalik’s method does not measure GR level, but is actually a measure of intracellular 

dex accumulation. 

 

Figure 4.3 Mean fluorescence intensity of PreB697 cells, R3D11 and REH cells after 
45minutes of incubation with dex-FITC.  

There was no difference in MFI between any of the cell lines (p=0.9, one way 
ANOVA). MFI ratio is cells treated with CV:cells treated with dex-FITC. Results are 
mean ± SEM of three independent replicates.   
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Due to the discrepancy with the method published by Kowalik et al, further method 

development work was performed.  Firstly, the number of washes necessary to 

remove surface dex-FITC was determined. MFI decreased from one to two washes, but 

did not further greatly decrease from two to three washes (Figure 4.4).  This indicated 

that one wash was not sufficient to remove extracellular dex-FITC, and therefore 

further experiments were performed with two washes.  

 

Figure 4.4 Effect of the number of washes on dex FITC fluorescence.   

Mean fluorescence intensity of PreB697 cells after incubation with dex-FITC for 45 
minutes, followed by one (1W), two (2W), or three washes (3W) in PBS before 
resuspension in fresh PBS for immediate analysis on the FACSCalibur. Results are 
mean ± SEM of three experiments.  

The effect of temperature on incubation was also investigated.  The published method 

performed incubation steps at 4°C.  However, as this experiment is a measure of 

intracellular accumulation, it is more physiologically relevant to incubate cells at 37°C. 

The clustering of some cell lines on dot plots changed between 4°C and 37°C (Figure 

4.5). This was characterised by an increase in size (shown by a change forward scatter) 

seen in PreB697 cells (A and B). In CEM VCR cells (C and D), there were also two 

distinct populations of cells observed when cells were incubated at 4°C. Therefore 

future incubations were performed at 37°C.  The final method is detailed in 2.5.3.  
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Figure 4.5 Example flow cytometry dot plots showing different clustering of cells 
when incubated with dex-FITC at 4°C and 37°C.  

Each cell line experiment was performed simultaneously at each temperature.  (A) 
PreB697 cells incubated at 4°C, (B) PreB697 cells incubated at 37°C, (C) CEM VCR 
cells incubated at 4°C, (D) CEM VCR cells incubated at 37°C.  (Y axis: SSC-H = side 
scatter, X axis: FSC-H = forward scatter). 
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4.3.2 Assessment of MDR1 dex transporter status 

Specificity of dex for the multidrug transporter, MDR1 was assessed using two paired 

wildtype and MDR-1 expressing cell lines.  CCRF-CEM, a T-ALL cell line, has a MDR1 

expressing sub-clone generated through exposure to vincristine (CCRF-VCR, (Haber et 

al., 1989)).  Madin-Darby canine kidney (MDCKII) wildtype cells do not express multi 

drug transporters, whereas MCKII-MDR1 have been created using gene transfection of 

human MDR1.  In order to assess whether dex is an MDR1 substrate, drug sensitivity 

and intracellular accumulation assays were performed using dex alongside 

experiments with vincristine and act D, known substrates of multidrug transporter 

proteins (Cass et al., 1989; Hill et al., 2013).  All vincristine data were generated by 

Charlotte Lecour, a placement student from Toulouse University. 

There was a significant difference in vincristine GI50 between CCRF CEM and CEM VCR 

cell lines (CEM: 1.53nM ± 0.13, VCR: 3352nM ± 754 (mean ± SEM), p=0.01, student’s t-

test), confirming the expression of MDR1 in the CEM VCR cells.  In contrast, cell GI50 for 

dex (CEM: 290nM ± 51, VCR: 595nM ± 265) did not differ between the wild type and 

MDR1 expressing cells (p= 0.3, Figure 4.6).  These results are reflected in the drug 

accumulation experiments (Figure 4.7).   

Vincristine accumulation in CCRF CEM cells was significantly higher than in CEM VCR 

cells (two-way ANOVA, p<0.0001).  This is seen in the 26- and 18- fold higher 

vincristine accumulation at 100 and 500nM respectively, in CCRF CEM cells compared 

to CEM VCR cells.  Conversely, dex accumulation was actually slightly greater in the 

CEM VCR cells (p=0.02, two-way ANOVA).  Taken together, drug sensitivity and 

accumulation experiments suggest that dex is not a substrate for MDR1 in CCRF CEM 

cell lines.  
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Figure 4.6 Sensitivity of CCRF CEM and CEM VCR cells to dex (A) and vincristine (B) 
generated using alamar blue.  

Cells were incubated with concentrations of dex or vincristine for 96h before 
addition of Alamar Blue.  Results reported as mean percentage survival from 3 
experiments ± SEM relative to cells treated with CV. GI50 values were significantly 
different for vincristine but not dex between the two cell lines (p=0.01 and 0.3 
respectively, student’s t test).  
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Figure 4.7 Accumulation of dex (A) and vincristine (B) in CCRF CEM and CEM VCR 
cells.   

Concentrations measured by LC/MS after incubation with concentrations of dex or 
vincristine for 4 hours.  Results presented are ± SEM from at least 3 experiments.  
There was a significant difference in both dex and vincristine accumulation (p=0.02 
and <0.0001 respectively, two way ANOVA with Sidaks correction for multiple 
comparisons). 
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To confirm this observation, accumulation was tested in paired MDCKII cell lines, 

MDCKII-WT and MDCKII-MDR1.  Dex sensitivity was not assessed in these cell lines as 

they are not lymphoid cells, and therefore neither cell line would be sensitive to dex 

nevertheless it would have served as a negative control.  Despite this, MDR1 

expression and function in the MDCKII-MDR1 were verified through drug sensitivity 

assays using vincristine and act D.  MDCKII cell line vincristine GI50 concentrations 

differed significantly (MDCKII-WT: 56.2 ± 5.0 and MDCKII-MDR1: 1228 ± 315.7 (mean ± 

SEM), p = 0.02 t-test), as well as act D GI50 concentrations (MDCKII-WT:9.1 ± 0.4 and  

MDCKII-MDR1: 21.62 ± 3.86, p = 0.0059 t-test) (Figure 4.8).  This confirms the 

expression of MDR1 in MDCKII-MDR1 cells.   

As anticipated, MDCKII–WT also had a greater accumulation of both vincristine and act 

D than the MDR1 expressing MDCKII-MDR1 cells (Figure 4.9).  With act D, there was a 

1.9 fold higher accumulation in MDCKII-WT cells with 500 and 1000nM act D than 

MDCKII-MDR1 cells, with accumulation in the two cell lines being significantly different 

(two-way ANOVA, <0.0001).  There was also 5.8-fold increase in vincristine 

accumulation at 500nM in MDCKII-WT compared to MDCKII-MDR.  A two-way ANOVA 

performed on data from concentrations used in both cell lines (0, 100 and 500nM) 

revealed a significant difference in accumulation between the two cell lines (p=0.01).  

In contrast, there was no statistical difference in dex accumulation between MDCKII-

WT and MDCKII-MDR1 cells (p=0.8, two-way ANOVA).  

Collectively, drug sensitivity and accumulation experiments in both paired cell lines 

indicate that dex is not a substrate for MDR1. 
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Figure 4.8 Sensitivities of MDCKII-WT and MDCKII-MDR1 cell lines to vincristine (A) 
and act D (B).  

Cells were incubated with concentrations of vincristine or act D for 96h before 
addition of Alamar Blue.  Results are reported as mean percentage survival from 3 
experiments ± SEM relative to cells treated with CV. GI50 values were significantly 
different for vincristine and act D between the two cell lines (p=0.02, 0.0059 
respectively, student’s t test). 
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Figure 4.9 Accumulation of dex (A) act D (B) and vincristine (C) in MDCKII-WT and 
MDCKII-MDR1 cells.   

Concentrations measured by LC/MS after incubation of cells with dex, act D or 
vincristine for 4 hours.  Results presented are ± SEM from 3 experiments.  The 
accumulation did not differ between cell lines for dex but did for act D and 
vincristine (p>0.8, <0.0001, 0.01 respectively, 2 way ANOVA, Sidaks correction for 
multiple comparisons).   
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4.3.3 Dex sensitivity in cell lines 

Dex sensitivity experiments were performed in PreB697 cells and dex resistant sub 

lines R3F9, R3D11, R3C3, R3G7 and R4C10 and submitted as part of my MRes.  

Resistant sub lines were created in the lab of R. Kofler using selection culture in the 

presence of dex for 3–4 weeks before individual clones were selected and expanded 

(Schmidt et al. 2006a).  In addition, in this project, dex sensitivity on REH cells was 

performed.  Cells were incubated with concentrations of dex for 96 hours before the 

assessment of viability using Alamar Blue.  

Dose response curves generated using Alamar Blue are shown in Figure 4.10.  PreB697 

had a dex GI50 of 37 ± 1.2nM (SEM).  REH cells and all PreB697 sub lines generated GI50 

values of >1000nM, except for R3C3 cells, which had a GI50 of 191 ± 1.3nM (Table 4.2). 

All sub lines differed significantly in their sensitivity to dex compared to PreB697 cells 

(two-way ANOVA p<0.0001).  
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Figure 4.10 Sensitivity of PreB697 cell lines and REH to dex in vitro with Alamar Blue 
after a 96h incubation with 0.1-1000nM dex.  

Results reported as mean percentage survival from 3 experiments ± SEM relative 
to cells treated with CV. All sub lines differed significantly in their sensitivity to dex 
compared to PreB697 cells (two way ANOVA p<0.001). Data submitted as part of 
MRes, REH data generated in this project. 
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Cell line Dex GI50 (nM) Cell viability at 1000nM           

(% relative to CV treated cells) 

PreB697 37 13 

R3D11 >1000 89 

R3F9 >1000 61 

R3C3 191 44 

R3G7 >1000 57 

R4C10 >1000 68 

Reh >1000 99.9 

Table 4.2 Cell line sensitivity to dex assessed using Alamar Blue assay.   

Sensitivity was assessed using Alamar blue after a 96h exposure to concentrations 
of dex ranging from 0.1-1000nM. Data is from 3 independent experiments. All sub 
lines differed significantly in their sensitivity to dex compared to PreB697 cells 
(two-way ANOVA p<0.0001). 

4.3.4 Intracellular accumulation of dex in cell lines 

As part of the MRes project, dex accumulation was assessed in PreB697 and resistant 

sub lines (Figure 4.11).  In all cell lines, intracellular dex levels increased in a 

concentration dependent manner.  There was no difference in dex accumulation 

between R3C3, R3G7, R4C10 and R3F9 compared to PreB697 cells (p>0.15, two way 

ANOVA with Sidak’s correction for multiple comparisons).  Finally, R3D11 displayed 

lower dex accumulation compared to parental 697 cells under the same experimental 

conditions (p=0.0122, two way ANOVA).  However, a difference in accumulation was 

only seen after incubation with 500 and 750nM dex, and not 1000nM dex (Figure 

4.11).   

These results are comparable to data obtained using flow cytometry to measure 

intracellular accumulation of dex-FITC, which showed no difference in dex-FITC 

accumulation between any cell line (p=0.89, one way ANOVA).  The difference in dex 

accumulation between PreB697 and R3D11 at 500 and 750nM is likely to be 

inconsequential as this difference was not seen 1000nM.  Overall, as LC/MS data did 

not show a difference in accumulation at every concentration, and flow cytometry 

data showed no difference in intracellular accumulation of dex-FITC, it is likely that 

PreB697 and R3D11 do not differ in terms of dex accumulation.  
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Figure 4.11 Intracellular dex accumulation in PreB697 and selected dex resistant sub 
lines.  

(A) Concentrations measured by LC/MS after cell lines were incubated with dex for 
4 hours. (B) Mean fluorescence intensity of Dex-FITC measured using flow 
cytometry.  Results presented are ± SEM from 3 experiments. There was no 
difference between any cell line and its PreB697 comparison (A: p>0.056 two way 
ANOVA with Sidaks correction for multiple comparisons B: p=0.89, one way 
ANOVA).  
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4.3.5 Viability of cryopreserved cells 

To determine whether it was possible to analyse dex sensitivity and accumulation 

retrospectively in cryopreserved patient and primagraft samples, dex sensitivity assays 

and intracellular dex accumulation experiments were performed in L779 primagraft 

samples before and after they been cryopreserved in liquid nitrogen.  In all primagraft 

samples, dex sensitivity was significantly different after cryopreservation (two-way 

ANOVA, p<0.001 for all, Figure 4.12). 

 

Figure 4.12: In vitro dex sensitivity of L779 primagraft samples pre- and post-
cryopreservation, measured using Alamar blue.  

Results are reported relative to cells treated with CV.  A-C show results from 
individual mouse samples, each point is the mean of three wells ± SEM.  D shows 
the mean of all L779 primagraft samples. 
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A difference was also observed in intracellular dex accumulation between pre- and 

post-cryopreserved samples.  The LC/MS data showed a drop in intracellular 

accumulation in two samples and an increase in accumulation in one sample.  The 

FACS data also shows a drop in intracellular accumulation in the same two samples, 

with the third sample showing a similar level of accumulation (Figure 4.13).  Neither 

difference was statistically significant.  Due to the significant differences seen in dex 

sensitivity and non-significant differences in dex accumulation, subsequent studies 

were performed prospectively on all patient and primagraft samples.  

 

 

Figure 4.13 Intracellular dex accumulation in L779 primagraft samples pre- and post- 
crypreservation.  

Cells were incubated with 500nM dex-FITC before analysis by LC/MS or flow 
cytometry respectively, in primagraft samples derived from patient L779 before 
and after cryopreservation.   
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4.3.6 Dex sensitivity of primagraft and patient samples. 

Dex sensitivity was assessed using the Alamar Blue assays.  Depending on the number 

of cells available for analysis, cells were incubated with a range of concentrations of 

dex (0.1 – 10,000nM) for 96 hours, before the addition of Alamar Blue.  

In total, dex sensitivity was assessed in 37 primagraft samples from 12 patients (Figure 

4.14).  In one patient (L829), there were matched presentation and relapse samples 

available.  In another (L919), there were matched first and second relapse samples.  

Samples exhibited a range of dex GI50 values from 1.3 to > 1000nM, with 11 primagraft 

samples displaying dex sensitivity, and 26 dex resistance.  Dex sensitivity was defined 

as a GI50 of < 500 nM.  Generally, primagrafts derived from the same patient had 

similar GI50 values.  Samples from L825 and L914, however, displayed more variation in 

dex sensitivity (GI50 values L825: JM156 and JM157 >1000nm vs JM158, AZ10, AZ12 

and AZ17 1.3-3nM; L914: AZ4 and AZ5 >1000nM vs AZ6 4.6nM).  This could be due to 

experimental difficulty assessing viability in primary cells, or a different leukaemic 

clone engrafting into the mouse.   

In this project, eight primary patient samples were also assessed, shown in Figure 4.15.  

Primary patient cells also exhibited a range of dex sensitivities, with GI50 values ranging 

from 2.4 to >1000nM.  Five patients were dex sensitive and three were dex resistant.   

GI50 values for all primagraft and primary patient samples are shown in Table 4.3.  In 

addition, percentage survival of samples at 1000nM were also calculated and displayed 

in Table 4.3 to differentiate between samples which are strongly and weakly resistant.  

In some experiments, samples were used with previously defined dex sensitivities 

(Lindsay Nicholson).  Details of dex sensitivity of these patients is also displayed in 

Table 4.3 and denoted by a ‘#’.  

Overall, a wide range of dex sensitivities were observed in patient and primagraft cells.  

In addition, western blotting was performed to test for normal GR expression and 

function.  All primagraft and patient samples displayed normal GR expression and 

phosphorylation at serine 211 upon stimulation with dex treatment (shown in Figure 

5.1).  This bank of primagraft and patient samples is a good resource which can be 

utilised for studies in this project into dex resistance mechanisms.    
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Figure 4.14 Dex sensitivity of primagraft samples.   

Cells were incubated with concentrations of dex ranging from 0.1 – 10,000nM dex for 96 hours before addition of Alamar Blue.  Each graph 
shows mice implanted with cells from the same patient, indicated in the heading of each graph.  Results reported as mean percentage survival 
from 3 wells ± SEM relative to cells treated with CV. R=first relapse RR=second relapse. 
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Figure 4.15 Dex sensitivity of primary samples. 

Cells were incubated with concentrations of dex ranging from 0.1 – 10,000nM dex for 96 hours before addition of Alamar Blue.  Each graph shows a 
single patient, indicated in the heading of each graph.  Results reported as mean percentage survival from 3 wells ± SEM relative to cells treated with 
CV. 
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Patient Stage 
Mouse 

number 

Dex GI50 

(nM) 

Survival at 

1000nM (%) 
Broad class 

LK196 2nd Relapse 
JM271 5 14 Sensitive 

JM271 5.8 15 Sensitive 

L578 2nd Relapse 

AZ7 >1000 72 Resistant 

AZ8 >1000 75 Resistant 

AZ9 >1000 57 Resistant 

L779 Presentation 

JM150 >1000 83 Resistant 

JM151 >1000 83 Resistant 

JM152 >1000 61 Resistant 

AZ13 >1000 96 Resistant 

L824 Presentation 
AZ21 >1000 80 Resistant 

AZ22 >1000 130 Resistant 

L825 Presentation 

JM156 >1000 70 Resistant 

JM157 >1000 77 Resistant 

JM158 1.3 10 Sensitive 

AZ10 3 21 Sensitive 

AZ12 3 26 Sensitive 

AZ17 2.4 28 Sensitive 

L829 Presentation 
AZ2 >1000 85 Resistant 

AZ3 >1000 91 Resistant 

L829 1st Relapse 

AZ15 >1000 74 Resistant 

AZ16 >1000 80 Resistant 

JM251 >1000 77 Resistant 

JM254 >1000 70 Resistant 

L897 Presentation 
JM148 >1000 78 Resistant 

JM149 >1000 81 Resistant 

L910 Presentation 
AZ27 42 34 Sensitive 

AZ28 55 43 Sensitive 

L914 Presentation 

AZ4 >1000 54 Resistant 

AZ5 >1000 62 Resistant 

AZ6 4.6 19 Sensitive 
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L919 1st Relapse 
JM267 44 28 Sensitive 

JM268 7.1 50 Sensitive 

L919 2nd Relapse 
AZ19 >1000 57 Resistant 

AZ20 851 47 Resistant 

L920 Presentation AZ23 83 46 Sensitive 

L4591 Presentation 
AZ24 >1000 84 Resistant 

AZ25 >1000 56 Resistant 

LK182 Presentation N/A >1000 61 Resistant 

LK203 Presentation N/A 71 20 Sensitive 

LK209 Presentation N/A 4 43 Sensitive 

LK213 Presentation N/A >1000 53 Resistant 

LK220 Presentation N/A 4 16 Sensitive 

LK221 Presentation N/A 3.3 23 Sensitive 

LK278 Presentation N/A >1000 97 Resistant 

L96R 1st Relapse N/A 2.4 16 Sensitive 

L705 # Presentation N/A 41.4 / Sensitive 

L715 # Presentation N/A 74.9 / Sensitive 

L733 # Presentation N/A 200 / Sensitive 

L809 # Presentation N/A 67.4 / Sensitive 

 

Table 4.3 Primagraft and patient sample dex sensitivity status.  

Dex GI50 values for primagraft and patient samples.  Sensitivity was defined by a 
GI50 value of <500nM. # Dex sensitivity assay performed previously by L. 
Nicholson. 
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4.3.7 Dex accumulation in primagraft and patient samples 

Intracellular dex levels were determined by LC/MS after incubation of primagraft and 

patient samples with varying concentrations of dex for 4 hours.  In total, 24 primagraft 

(from 11 patients, Figure 4.16) and 6 patient samples (Figure 4.17) were assessed.  

Primagraft samples showed a 20-fold variation in dex accumulation, with intracellular 

concentrations, after incubation with 500nM dex, ranging from 0.13 – 2.94 pmol/106 

cells. The mean intracellular accumulation was 1.15 ± 0.83 pmol dex/106 cells (SD).  

There was a 3.7-fold difference in dex accumulation in patient samples after 

incubation with 500nM dex (range: 0.29-1.07) with a mean accumulation of 0.9 ± 0.6 

pmol dex/106 cells (SD). 

In general, primagrafts derived from the same patient demonstrated comparable dex 

accumulation, particularly after incubation with a dex concentration of 500nM.  Of 

exception were L779, where mouse JM152 displayed a lower intracellular 

accumulation, and L915 where AZ6 had a much lower accumulation than AZ4 and AZ5.  

The latter result is in keeping with the dex sensitivity data, where AZ6 produced a 

different GI50 to AZ4 and AZ5 (Figure 4.12).  This may be caused by engraftment of a 

different leukaemic clone in this mouse.  

Intracellular dex accumulation in primagraft and patient samples was significantly 

lower than in PreB697 cell lines (p=0.03, student’s t test, Figure 4.18).  PreB697 cell 

lines had a mean accumulation of 1.83 ± 0.47 pmol dex/106 cells compared to all 

patient and primagraft cells with a mean accumulation of 1.1 ± 0.79 pmol dex/106 

cells.  Patient cells are, in general, smaller than PreB697 cell lines.  This is apparent 

visually by microscopy, and also in flow cytometry where instrument setting have to be 

changed to account for size differences between patient samples and cell lines.  

Therefore, a lower accumulation in patient cells is in keeping with this observation, as 

the rate of diffusion of a substance into a cell is dependent on cell surface area. 
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Figure 4.16. Intracellular accumulation of dex in primagraft cells assessed using 
LC/MS.  

Dex concentrations measured by LC/MS after incubation with 100-1000nM dex for 
4 hours.  Dex sensitive and resistant samples are identified with a + and - 
respectively. 
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Figure 4.17 Dex accumulation in primary patient samples after incubation with 
500nM dex.  

Cells were incubated with 500nM dex for four hours before lysis with methanol 
and measurement of dex concentrations in cell lysates by LC/MS.  Dex sensitive 
and resistant samples are shown by + and - respectively. 

 

Figure 4.18 Comparison of dex accumulation measured by LC/MS between patient 
cells and cell lines.  

Cells were incubated with 500nM dex for four hours and concentrations of dex in 
cell lysates was measured by LC/MS. Dex uptake in patient samples is significantly 
lower than in PreB697 cell lines (p=0.03, unpaired student’s t test).  Error bars are 
mean ± SD. 
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One of the aims of this chapter was to establish whether dex accumulation differs 

between sensitive and resistant samples.  When patient and primagraft cells were 

grouped together, despite there being a wide range in accumulation in sensitive and 

resistant samples, there was no difference in intracellular accumulation of dex (p= 

0.67, student’s t test, Figure 4.19).  Sensitive samples had a mean dex accumulation of 

1.02 ± 0.67 pmol dex/106 cells, and for resistant samples this was 1.15 ± 0.86 pmol 

dex/106 cells (SD). This is in line with data generated in PreB697 cell lines, where no 

difference was seen in dex accumulation between dex-sensitive and resistant cells.   

 

 

Figure 4.19 Intracellular dex accumulation measured by LC/MS in dex sensitive and 
dex resistant cells after incubation with 500nM dex.  

There was no significant difference in intracellular accumulation of dex in sensitive 
and resistant samples (p = 0.67, unpaired student’s t-test) Patient samples are 
circles, primagraft samples are squares. Error bars are mean ± SD. 
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The wide variation in dex accumulation was also seen using a flow cytometry method 

measuring intracellular accumulation of dex-FITC.  Samples were analysed after 

incubation with 500nM dex-FITC for 45 minutes at 37°C.  Dex-FITC accumulation was 

assessed in 27 primagraft samples (derived from 12 patients) and 6 primary patient 

samples.  Primagraft samples displayed a 15-fold variation in dex accumulation by flow 

cytometry, with intracellular dex accumulation after incubation with 500nM dex-FITC 

ranging from a mean MFI ratio of 0.67 – 10.24 (Figure 4.20A). The mean intracellular 

accumulation MFI was 4.23 ± 1.97 (SD).  There was similarly a 3.1 fold difference in dex 

accumulation in patient samples (range: 3.7-11.5) with a mean accumulation of 6.44 ± 

3.2 (SD) (Figure 4.20B). 

Once again, primagrafts derived from the same patient demonstrated similar dex 

accumulation (Figure 4.20A).  As with the LC/MS data, L779/JM152 displayed a lower 

intracellular accumulation of dex FITC although there did not appear to be a difference 

between L914/AZ6 compared to L914/AZ 4 and AZ5, as was observed in LC/MS data.   
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Figure 4.20 Intracellular accumulation of dex-FITC in primagraft samples (A) and 
primary patient samples (B) measured by flow cytometry.  

All samples were incubated with dex-FITC for 45 minutes at 37°C, before FITC 
emission was measured in CV and dex-FITC treated samples.  Data displayed is the 
MFI ratio of CV to dex-FITC treated samples. Dex sensitive and resistant samples 
are shown by + and - respectively. 
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In contrast to data generated by LC/MS, there was no significant difference in dex-FITC 

accumulation between PreB697 cell lines and patient samples (MFI ratios of 4.27 ± 

0.15, 4.63 ± 2.35 respectively, mean ± SD, p=0.69, student’s t-test, Figure 4.21).   

However, when patient and primagraft cells were grouped together, there was a wide 

range in accumulation in sensitive and resistant samples, similar to the LC/MS data.  

There was also no difference in intracellular accumulation of dex between dex 

sensitive and resistant samples (p= 0.17, student’s t test, Figure 4.22).  

A correlation could not be performed using all samples measured, as sample sets 

differed for LC/MS and flow cytometry experiments.  Some samples were measured by 

LC/MS before the flow cytometry method had been developed.  Similarly, in other 

cases, there were not enough cells for LC/MS analysis.  Initially a correlation analysis 

was performed between the two methods at the validation stage of the flow 

cytometry method (Figure 4.23A).  Both methods correlated well with a Pearson’s r2 

value of 0.54 (p=0.0027).  However, on analysis of the full sample set used in both 

methods, the correlation between the two methods decreased (r2 = 0.008, Figure 

4.23B).  This may be due to differences between dex and dex-FITC, and how it is 

accumulated within cells.  It is also possible that the stability of dex FITC reagent may 

have affected the correlation over time, which is discussed further in section 4.4.  

Nevertheless, the LC/MS method showed a wide range in dex accumulation and no 

difference in dex accumulation between dex sensitive and resistant samples. 
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Figure 4.21 Comparison of dex accumulation measured by flow cytometry between 
patient cells and cell lines.  

Cells were incubated with dex-FITC for 45 minutes at 37°C, before FITC emission 
was measured in control vehicle and dex-FITC treated samples.  Data displayed is 
the MFI ratio of CV to dex-FITC treated samples.  Error bars show mean ± SD. 

 

Figure 4.22 Intracellular dex-FITC accumulation measured by flow cytometry in dex 
sensitive and dex resistant cells after incubation with 500nM dex-FITC.  

There was no significant difference in intracellular dex accumulation between dex 
sensitive and resistant samples (p = 0.17, unpaired student’s t-test) Patient 
samples are circles, primagraft samples are squares. Error bars show mean ± SD.  
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Figure 4.23 Correlation of LC/MS and flow cytometry methods for the assessment of 
intracellular dex concentrations in ALL cell lysates.  

The correlation between the two methods was assessed using a linear regression 
analysis, r2 values are shown on the graph.  (A) Initial correlation of samples at the 
validation stage of the flow cytometry method. (B) Correlation of all samples 
analysed using both LC/MS and flow cytometry. 

  

0 2 4 6
0

1

2

3

4

5

Mean MFI Ratio

D
e
x
 (

p
m

o
l/
1
0

6
 c

e
lls

)

0 5 10 15
0

1

2

3

4

5

Mean MFI Ratio

D
e
x
 (

p
m

o
l/
1
0

6
 c

e
lls

)

A

B

r2=0.008

r2=0.54



193 
 

4.4 Discussion 

Despite being used widely for a number of decades, the mechanisms of action and 

resistance of dex are still not fully elucidated.  It is important that we deepen our 

understanding of these mechanisms, as relapsed ALLs are often GC resistant.  Better 

knowledge surrounding these areas could lead to resensitisation or development of 

new therapies for dex resistant patients.  A key area that remains unexplored is 

whether variations in intracellular dex accumulation influences dex response. 

In this chapter, dex sensitivity was determined using Alamar blue assays, which assess 

metabolic activity of cells.  The majority of the viability curves show a residual 

population of metabolically active cells.  Even at dex concentrations of 1000nM in dex 

sensitive samples, there are residual cells.  This is in contrast to the cell viability curves 

from vincristine and actinomycin D in Figure 4.8, where a near complete cell kill is 

seen.  This phenomenon has also been seen in other studies assessing dex sensitivity 

by different methods (although still assessing metabolic activity) such as the MTT and 

MTS assays (Bachmann et al., 2005; Bachmann et al., 2007; Nicholson et al., 2015).  

This incomplete cell kill is not due to a lack of stability of dex, as it was shown to be 

stable in culture conditions over 96h.  The population of residual cells may be a result 

of the differing dosing schedule of in vitro assays compared to the clinical situation.  As 

demonstrated by various clinical trials worldwide, the dose and schedule of GC is 

important in determining outcome.  It may be that multiple doses of dex are needed to 

result in total cell kill, rather than a single exposure over 96h.  It would be useful to 

investigate the effect of differing in vitro dex dosing schedules on cell proliferation and 

survival.  However, these Alamar blue cell viability assays are still clinically relevant.  

Bachmann et al. (2005) found that in vitro assessment of dex sensitivity using MTT 

assays after a 96h exposure to dex, closely reflected the outcome of the patient 

samples from which they were derived.  Furthermore, several studies from groups in 

Sweden and Holland have shown that the in vitro dex cytotoxicity results from 96h 

exposures to dex were predictive of clinical outcome (Hongo et al., 1997; Kaspers et 

al., 1997; Den Boer et al., 2003; Frost et al., 2003).  Therefore using the outcome of 

these assays as an indicator of how the patient will respond to dex in the clinic is still 

relevant.  
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A number of well used anti-cancer drugs have been shown to be substrates for 

multidrug transporters such as MDR1, affecting intracellular concentrations of the 

drug.  There have been mixed reported regarding the effect of MDR1 and dex (Cole et 

al., 1992; Schinkel et al., 1995b).  Therefore, substrate specificity of dex for MDR1 was 

established in two paired cell lines with overexpression of MDR1.  Despite showing a 

clear decrease in drug sensitivity and drug accumulation in MDR1 overexpressing lines 

for vincristine and act D, no difference was seen in dex sensitivity or accumulation. 

There have been a number of clinical studies investigating the effect of MDR1 

expression in ALL cells.  Some studies associated MDR1 expression with a more 

unfavourable outcome (Goasguen et al., 1996; Dhooge et al., 2002; Casale et al., 

2004), however there was no link to GC response.  The effect of MDR1 on outcome 

may be due to substrate specificity of other drugs administered to ALL patients, such 

as vincristine.  The majority of studies, however, found no effect of MDR1 expression 

on outcome, which supports the findings in this chapter (den Boer et al., 1998; 

Kanerva et al., 1998; Kakihara et al., 1999; Kanerva et al., 2001; Olson et al., 2005).  It 

should be noted, however, that these groups investigated childhood leukaemia patient 

being treated on protocols containing multiple chemotherapeutic agents. 

There are limited single agent studies investigating substrate specificity for MDR1.  

Schinkel et al, found that dex accumulation in the brain was 2-fold higher in a MDR1a 

knock-out mice model, the mouse form of human MDR1, compared to wildtype mice 

(1995b).  However, no difference was found in any other body compartment including 

the plasma, which supports the data generated in this chapter.  The difference in brain 

accumulation in mice compared to data generated here may be due to differences 

between human MDR1 and mouse MDR1a. 

The observation that dex is not an MDR1 substrate is also important when considering 

dex pharmacokinetics.  Multidrug transporters including MDR1 are expressed in the 

liver, kidney and gastrointestinal tract (Fojo et al., 1987).  Therefore, MDR1 can affect 

pharmacokinetics of substrates due to decreased absorption in the gastrointestinal 

tract and increased secretion of substrates into urine and bile (Fojo et al., 1987; 

Schinkel, 1998; Evans and McLeod, 2003; Sakaeda et al., 2003).  The indication that dex 
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is not a substrate for MDR1 suggests that observed pharmacokinetic dex variation is 

not likely to be due to genetic germline variation in MDR1. 

In this chapter, dex accumulation was measured in ALL cells.  The methods used were 

applicable to the small numbers of cells often obtained in patient samples.  Dex 

concentrations were quantifiable in cell numbers of 1 x 106 after incubation with 

500nM dex, allowing measurement of patient samples where limited numbers of cells 

are available.   

The ability to use primagraft and patient samples in this project is a strength.  In the 

past, many studies have made hypotheses for drug resistance mechanisms through cell 

line investigations, however these have rarely translated into the patient setting.  It 

has been shown that investigations in primagraft samples have produced results that 

mirror the patient outcome from which they were derived (Jing et al., 2015), and 

therefore provide a more appropriate model than cell lines. For example, in this 

project dex sensitivities of the primagraft samples reflected patients’ MRD results, 

where available.  Patient L897 was found to be resistant to dex, which is reflected in a 

high MRD result at day 28.  Patients L914 and L825 also had high MRD at day 8 and 28 

respectively.  There was heterogeneity in dex sensitivity response in primagrafts 

derived from these patients, with some displaying sensitivity and some resistance.  It is 

possible that they may be more than one leukaemic clone at presentation, with the 

resistant clone persevering causing high MRD.  In contrast, patient L910 was found to 

be dex sensitive which was reflected in their low risk trial status. 

Using LC/MS, a 20-fold variation was seen in intracellular dex accumulation in 

primagraft and patient samples.  It has been established that this is not likely to be due 

to export via MDR1.  There are also other multidrug transporters such as MRP1, BCRP 

(breast cancer resistance protein) and LRP. However, there are limited studies 

regarding the effect of such transporters in ALL which report contrasting results (Beck 

et al., 1996; Kakihara et al., 1999; Robey et al., 2007).  It may be useful to further 

explore the contributions of these multidrug transporter proteins to intracellular dex 

accumulation.  This could be achieved using the MDCKII cell line model, as there are 

MDCKII cell lines overexpressing MRP1, BCRP and LRP proteins.    
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This range in intracellular dex concentration could also be caused by events such as 

increased steroid binding protein, or a change in 11β-hydroxysteroid dehydrogenase 

enzyme (11β-HSD) expression.  There are two forms of 11β-HSD; 11β-HSD1 which 

converts inactive 11β-keto GC into active GC, and is expressed in GC target tissues, and 

11β-HSD2 which inactivates GC but is only has restricted expression (Seckl, 2004).  

Although there have been limited studies looking at 11β-HSD, Sai et al. (2009) found 

that 11β-HSD1 expression was decreased in GC resistant ALL cells ex vivo compared to 

GC-sensitive ALL cells.  Therefore, investigating whether intracellular dex levels differ 

in GC-sensitive and resistance cells represents an interesting and novel avenue that 

may aid further stratification of dex therapy. 

The physical properties of dex could affect its investigation.  As dex is small and 

lipophilic (reported logP values of 1.95 and 1.83 (Hansch C., 1995; Thakur et al., 2011)), 

it could passively diffuse out of cells during the washing steps of the experiment until a 

steady state is reached.  However, act D and vincristine are also small and lipophilic 

(logP values 2.82 and 4.77 respectively (Hansch C., 1995; Walsh et al., 2016)) and able 

to cross the plasma membrane passively.  In this project, a clear difference was seen in 

accumulation of vincristine and act D in MDR1 expressing and wildtype cell lines, which 

would have been diminished if the washing steps caused passive efflux of small 

lipophilic drugs.   

Intracellular dex accumulation results for some patients differed between the LC/MS 

and flow cytometry methods used.  This may be due to differences in experimental 

procedure including differences between dex and dex-FITC.  In LC/MS, the mass to 

charge ratio of dex and fragments are measured.  This means only ‘pure’ dex will be 

measured, not dex in complex with other molecules or proteins, such as the GR or 

glutathione.  In contrast, the flow cytometry method measures fluorescence of the 

fluorochrome, FITC, which is conjugated to dex.  This will therefore still fluoresce when 

dex is bound to any other molecule.  Therefore the differences observed between the 

two methods may be due to the difference in amounts of ‘pure’ dex and total dex 

within the cell. 

However, the stability of dex-FITC was not assessed; differences observed between the 

two methods could also be caused by degradation of FITC.  FITC is sensitive to 
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photobleaching, the effect of light on degradation of the fluorophore (Hama et al., 

2006; Mahmoudian et al., 2011).  Although the antibody was aliquoted into opaque 

tubes, fluorescence may have diminished over time causing samples analysed at the 

start of an aliquot to emit a brighter signal than those at the end.  The stability of dex 

FITC was not tested over time.  This could have therefore affected the data and thus 

the correlation with the LC/MS results.  Further work should be done to check this, to 

ascertain whether the poor correlation between the two methods is due to a 

difference in what is being assessed or photodegradation of dex-FITC. 

Nonetheless, in LC/MS experiments, no difference was seen between sensitive and 

resistant patient cells in terms of intracellular dex accumulation.  This suggests that 

other cellular mechanisms are more important in defining cellular sensitivity to dex. 

This will be investigated further in chapters 5 and 6. 

Despite being able to relate intracellular dex levels to the in vitro dex response of the 

cell, directly establishing the effect of intracellular dex levels on signalling downstream 

of the GR would require additional experiments.  However, as no relationship has been 

seen between intracellular dex levels and dex sensitivity, further investigations to 

analyse the down-stream consequences and how these relate to in vitro dex sensitivity 

may not be relevant. 

These data suggest that while pharmacokinetics and cellular response are hugely 

variable, variations in drug accumulation do not appear to be caused by MDR1 

substrate specificity, or play a key role in dex response in ALL cells. Importantly, 62% of 

patient cells had dex GI50 values greater than plasma concentrations observed in any 

patient, on both arms on the UKALL 2011 trial.  These patients exhibiting a high dex 

GI50 values may be less likely to obtain a clinical benefit from dex at a dose equivalent 

to that used in the UKALL 2011 trial.  A combined approach incorporating 

pharmacokinetic assessments and cellular response in ALL cells should be further 

investigated, to allow a comprehensive understanding of dex pharmacology with a 

view to optimising its clinical utility. 
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Chapter 5. GR post translational 
modifications and GC sensitivity 
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5.1 Introduction 

Despite the observed improvements in survival in ALL, relapse still occurs in 20%, for 

which therapy resistance is often the cause (Pui and Evans, 2006).  GC response in vitro 

has been found to be significantly less in relapsed ALL samples compared to 

presentation samples (Klumper et al., 1995). However, the mechanisms of action and 

resistance of dex are still not clear.  Given the shortage of therapeutic options for 

relapsed ALL, an improved understanding of resistance mechanisms may enable 

further stratification of dex to prevent unnecessary toxicity, and aid the development 

of novel therapeutics for this group of patients. 

Studies into glucocorticoid resistance have shown that cells undergo GR-ligand nuclear 

translocation and GR binding, albeit to varying degrees, irrespective of GC sensitivity 

status (Bachmann et al., 2005; Nicholson et al., 2010).  In order to produce a GC 

response, the GR must interact with specific proteins in a highly coordinated process 

for the inactive state in the cytosol to transform successfully to the fully 

transcriptionally active nuclear form.  

These roles of proteins include trafficking GR to and from the nucleus and 

orchestrators of transcriptional machinery.  In addition, phosphorylation and other 

post-translational modifications are also important regulatory events (Bodwell et al., 

1998).  Phosphorylation of the GR by GCs can affect co factor interaction, strength and 

duration of signalling, and target promotor specificity (Manning et al., 2002; Wang et 

al., 2002).  For example, serine 211 on the GR is phosphorylated upon stimulation with 

ligand and correlates with the transcriptional activity of the GR (Wang et al., 2002).  

Therefore, characterising the roles of interacting proteins or post-translational 

modifications of the GR in both the active and inactive state, in dex sensitive and 

resistant cells, may reveal differences that potentially could lead to GC re-sensitising 

targets.  

Groups have previously used transcriptome and bioinformatic approaches to identify 

novel regulators of GR function, however methods to study the GR interactome were 

based initially on large amounts (gram weight quantities) of material from animal 

models (Pierce et al., 2012).  One new technology which overcomes the requirement 

for large amounts of material is NanoPro technology (Protein Simple, Santa Clara, 
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California).  This assay is based on capillary isoelectric focusing coupled to aFn 

immunoassay (cIEF).  In cIEF, proteins are separated by isoelectric focussing in 

capillaries where they concentrate at their pI. Proteins are then cross-linked to the 

capillary wall using ultraviolet light before being washed and probed with primary, 

secondary and tertiary antibodies.  Addition of luminol and peroxidase causes a 

chemiluminescent reaction which is quantified by the machine.   

Pilot studies using cIEF performed by Lindsay Nicholson (former member of J. Irving’s 

group) showed differences in the GR pI profiles using a pan-specific GR antibody in an 

ALL cell line model of GC-resistance which recapitulates many features of primary cells, 

including GC-induced nuclear translocation, up-regulation of GR transcriptional targets, 

but no Bim induction or associated apoptosis (Pierce et al., 1998; Nicholson et al., 

2010; Griaud et al., 2012).  This pilot data is detailed in Appendix E. 

Therefore, advances in high end proteomics offer new approaches to gain insight into 

GR regulation and dex resistance that may lead to novel agents to enhance dex 

response and improve ALL outcome.  Pilot data indicate that the GR posttranslational 

modifications differs in dex sensitive and resistant ALL cells but further 

characterisation is needed in a range of dex sensitive and resistant samples to 

establish the molecular basis of the change in GR pI.  As part of this project (detailed in 

Chapter 4), the dex sensitivity of a range of cell lines and primagraft samples has been 

established, making further investigation into GR posttranslational modifications 

possible. 

5.2 Chapter specific aims 

 Establish GR expression and function in all samples. 

 Validate HPA004248, or other GR pan specific antibody for cIEF on Peggy Sue 

machine (ProteinSimple). 

 Investigate GR posttranslational modifications in primary ALL samples using cIEF 

(Peggy Sue). 
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5.3 Results 

5.3.1 Assessment of GR by western blot 

All samples were assessed by western blot for the expression of GR using a pan specific 

antibody (Santa Cruz), and GR phosphorylation at serine 211 (Cell Signalling), an 

indication that the GR has successfully translocated to the nucleus (Wang et al., 2002).  

Lysates were also probed for α-tubulin to ensure equal protein loading.   

Figure 5.1 shows representative western blots.  In all samples, GR was evenly 

expressed in untreated lysates and lysates treated with control vehicle and 100nM dex 

for 3 hours.  Only dex treated samples show a strong band for pGR at S211, indicating 

that upon dex treatment, the GR has been released from the heteromeric protein 

complex in the cytoplasm and has translocated to the nucleus. R3D11 and Reh cells 

serve as hemizygous and negative controls respectively.  R3D11 has a reduced GR 

expression, and REH shows no GR or phosphorylated GR expression.   
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Figure 5.1 Example western blots of lysates probed for GR and phosphorylated GR 
(s211).  

Lysates were generated after treatment with control vehicle or 100nM dex for 3 
hours before lysis.  Lysates were probed with a pan specific GR antibody (santa 
cruz sc-1003), and pGR (s211) antibody (cell signalling, 4161).  0h = untreated 
lysates.  CV = control vehicle treated lysates.  Dex = dex treated lysates. 
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5.3.2 Peggy Sue Antibody selection  

The initial aim was to optimise the HPA004248 antibody (Sigma) for cIEF on the Peggy 

Sue machine, an upgrade from the ProteinSimple NanoPro 1000 machine used in the 

generation of the pilot data.  The main differences between the two systems is that 

the Peggy Sue can carry out size assays in addition to charge assays.  Unfortunately the 

cIEF assay did not transfer well to the new machine.  In an preliminary signal strength 

test, the HPA004248 antibody was compared to a Santa Cruz GR E-20 antibody (Sc-

1003), used in western blot analysis of lysates.  Figure 5.2 shows electropherograms of 

R3F9 lysates probed with both antibodies.  Lysates were treated with both control 

vehicle (top row) and 100nM dex (bottom row). The signal with the HPA004248 

antibody was very low, with the chemiluminescence signal of 80 – 100 not rising much 

above the baseline of 20.  This is in contrast with data generated on the NanoPro1000 

using the same antibody (Figure 5.2). The Santa Cruz E-20 antibody, however, gave a 

much stronger chemiluminescence signal of 700 -1000, and was therefore selected for 

further optimisation. 



 
 

  

Figure 5.2 Comparison of Santa Cruz NR3C1 antibody (E-20, left) with Sigma NR3C1 antibody (HPA004248, middle) on the Peggy Sue and Sigma 
NR3C1 (HPA004248, right) on the NanoPro1000.    

R3F9 lysates were treated with control vehicle (top row) and 100nM dex (bottom row) for 3 hours.  Blue and green lines for Peggy Sue data in 
the dex treated samples show technical replicates. Red line on the NanoPro1000 data shows R3F9 results.  The number on the Y axis 
(chemiluminescence) indicates the scale of the graph.  X axis = pI. 
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Upon further optimisation, it was established that the E-20 antibody is not specific for 

the GR on the Peggy Sue platform.   

Figure 5.3 shows R3D11 lysates (positive for the GR, and REH lysates, which do not 

express GR.  In (A) Peggy Sue charge analysis on untreated lysates produces a strong 

signal in both cell lines, irrespective of GR status.  In (B), however, western blot 

analysis of the same lysates probed with the same GR E-20 antibody showed a positive 

signal in the R3D11, but a negative signal with REH lysates.  A new GR antibody was 

therefore selected. 

 

Figure 5.3 GR analysis using Santa Cruz E-20 antibody by cIEF and western blot.  

(A) R3D11 and REH lysates measured on the Peggy Sue with E-20 antibody, both 
showing a strong positive result. Y axis = chemiluminescence.  X axis = pI  (B) The 
same lysates analysed by western blot using the E-20 antibody.  REH is negative for 
GR. 0h = untreated lysate.  CV = control vehicle treated lysate.  Dex = 100nM dex 
treated lysate. 



208 
 

Three more commercially available GR antibodies were identified; Abcam 

(ab3579), and Cell Signalling D8H2 (#3660), and D6H2L (#12041).  Western blot 

analysis of the three antibodies with PreB697 (GR positive cell line) and REH (GR 

negative cell line) revealed ab3579 to be non-specific for the GR.  However, bands 

were displayed at the expected size of ~95kDa in the two Cell Signaling antibodies.  

The REH cells displayed a faint band at ~70kDa with all antibodies.  Although often 

used as a negative control, REH cells have been shown to have one deleted allele, 

and one truncated allele of 528 amino acids.  The full GR has 778 amino acids so 

the molecular weight of the faint band corresponds with the truncated GR allele.  

These antibodies were therefore tested on the Peggy Sue platform by Rognvald 

Blance (Manchester University).  Both antibodies displayed a chemiluminescence 

signal above baseline, with the D8H2 exhibiting a slightly stronger signal of 

approximately 300 compared to 200 with the D6H2L antibody.  D8H2 was 

therefore taken forward for further validation on the Peggy Sue. 
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Figure 5.4 Testing of GR antibodies by western blot and cIEF.  

(A) Shows three pan specific GR antibodies tested with GR negative cell line, REH, 
and GR positive cell line, PreB697, depicted by ’-‘ and ‘+’ respectively.  Antibodies 
from left to right are Abcam 3579, Cell Signalling D8H2 and D6H2L.  
electropherograms generated on the Peggy Sue machine for PreB697 (top) and 
REH (bottom) lysates treated with 100nM dex, and probed with Cell Signalling 
antibodies D8H2 (left) and D6H2L (right).  Blue, green and grey lines are technical 
replicates. Y axis = chemiluminescence.  X axis = pI.  

B 

 

A 
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5.3.3 Antibody Validation 

Freeze-Thaw Stability 

As cIEF assesses the presence of post-translational modifications, which can be lost 

through freeze-thaw cycles, the freeze-thaw stability of the lysates was established.  As 

can be seen in Figure 5.5, the samples did not have good freeze-thaw stability.  A 

freshly thawed dex treated PreB697 lysate has a chemiluminescence value of around 

130.  However, after one freeze thaw cycle this drops to around 30, which is barely 

distinguishable from the baseline.  All further validation and experiments were 

therefore performed with freshly thawed lysates.   

 

Figure 5.5 Peggy Sue lysate freeze thaw stability.  

PreB697 lysates treated with 100nM dex are shown measured on the Peggy Sue 
machine with the Cell Signalling D8H2 antibody.  The top panel shows lysates that 
have been flash frozen as part of the lysate generation protocol, thawed, refrozen 
and thawed again.  The bottom panel shows lysates that have been flash frozen 
and thawed before use. Blue and green lines are technical replicates. Y axis = 
chemiluminescence.  X axis = pI. 
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Antibody Titration 

An antibody titration was performed to establish the optimal concentration of 

antibody to give a strong signal without giving ‘burn out’.  Burn out can occur when too 

high a concentration of antibody or protein causes the peroxidase substrate to be 

rapidly exhausted and thus the limiting factor in the peroxidase reaction is the luminol 

(ProteinSimple, 2014).  To test antibody titrations, PreB697 cell lysates treated with a 

100nM dex were used.  Lysates were used at a concentration of 0.1µg/µl.  Figure 5.6 

shows the results of the antibody titration.  Peaks at all pIs decreased proportionally to 

antibody concentration.  There was no burn out observed, so the dilution of 1:25 was 

used as it gave the strongest signal.



 
 

 

Figure 5.6 Peggy Sue D8H2 (Cell Signalling) antibody titration in PreB697 dex treated lysates.  

Figures A, B, C show different representations of the same data. (A) The camera capture view of the chemiluminescent signal (inverted colours).  
The strength of chemiluminescent signal can be converted into a graphical representation, which is shown in (B).  The stronger the signal, the 
larger the peak.  The area under the peaks can be integrated, in this case dropped lines analysis was used.  (C) Shows the area of the peaks (pI of 
peaks displayed in the legend) against antibody titration. 
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Lysate Titration 

A lysate titration was also performed as having too high a protein concentration can 

also cause burn out.  Cells were diluted to 0.8, 0.5, 0.2, 0.08, 0.05 and 0.02µg/µl.  Cell 

lysates were probed with Cell Signalling antibody D8H2 at a dilution of 1:25.  As can be 

seen from Figure 5.7, there was no burn out and peak areas decreased with decreasing 

lysate concentration.   

As there was no burn out, a concentration of 0.45 µg/µl was selected for cell line 

analysis, as this was the highest concentration attainable from all cell line lysates.  In 

primagraft samples, protein concentration estimation accuracy can vary due to mouse 

red cell contamination.  Sample analysis was therefore performed on peaks relative to 

total area under the curve for each sample, rather than raw peak areas.  As such, it 

was not essential to load identical amounts of protein for each sample.  In previous 

experiments performed by Nicholson, it had been noted that occasionally not enough 

primagraft material was loaded to give sufficient signal as the protein concentration 

was lower than the estimate given by the Pierce assay.  Therefore, the highest amount 

of primagraft material possible was used, which ranged between 0.4 and 0.8 µg/µl.  



 
 

 

Figure 5.7 Peggy Sue lysate titration in PreB697 dex treated lysates probed with D8H2 (Cell Signalling) GR antibody.  

Figures A, B, C show different representations of the same data.  (A) The camera capture view of the chemiluminescent signal (inverted colours).  The 

strength of chemiluminescent signal can be converted into a graphical representation, which is shown in (B).  The stronger the signal, the larger the 

peak.  The area under the peaks can be integrated, in this case dropped lines analysis was used.  (C) Shows the area of the peaks (pI of peaks 

displayed in the legend) against antibody titration. 
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Inter and intra assay variability 

To account for technical variability between capillaries leading to intra assay variability, 

each sample was run in triplicate (three separate capillaries).  If samples are not mixed 

fully, or the proteins do not separate properly, there can be differences between 

technical replicates.  However, in this assay, there was little variation between 

technical replicates, as is shown in Figure 5.8 (A) and (B).  Each line on the 

electropherogram represents the trace from an individual capillary.  The mean intra 

assay coefficient of variation for individual peaks in this sample was 16.8%.     

To assess inter assay variability, three PreB697 lysates generated on three separate 

occasions were run on the Peggy Sue on the same day.  The data is displayed in Figure 

5.8 (C) and (D).  The mean inter assay coefficient of variation for individual peaks in the 

three samples was 13.4%. 
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Figure 5.8 Variation between technical and biological replicates  

(A and B) Technical replicates of PreB697 lysate (A) Electropherogram; blue green 
and grey lines represent each technical replicate (B) Percentage of the total area 
under the curve comprised by each peak for technical replicates. 

(C and D) Lysates were generated on three separate occasions and run on the 
same day on the Peggy Sue. (C) shows an electropherogram of a lysates; green 
line, pink and blue lines represent samples generated on the 10th, 14th and 18th 
of October, 2016, respectively.  (D) Percentage of the total area under the curve 
comprised by each peak for biological replicates.   

(A and C) Y axis = chemiluminescence.  X axis = pI.  (B and D) Error bars show 
standard deviation.    
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5.3.4 Analysis of the GR by cIEF in ALL cell lines 

Four cells lines were assessed by charge assay using cIEF; PreB697, R3F9, R3D11 and 

REH cells (Figure 5.9).  Lysates were analysed untreated, and treated with control 

vehicle or 100nM dex for 3 hours.  Surprisingly, untreated and CV treated lysates 

showed little to no signal.  This was unexpected as a pan specific GR antibody was 

used; untreated and control vehicle treated cells still have GR even if it is not 

stimulated or phosphorylated.  Furthermore, all lysates used in cIEF analysis were also 

assessed by western blot to check for normal phosphorylation at serine 211 of the GR.  

In these western blots, a clear band for GR was seen, or equal magnitude to the dex 

treated lysates (Figure 5.1).  This is further investigated in 5.3.6. 

There was a smaller signal observed in the R3D11 cell line, which is consistent with 

previous reports that R3D11 has a reduced amount of GR compared to PreB697 cells 

(Nicholson et al., 2010).  There was a small signal observed in the REH cell lysates, a 

cell line which was selected as a negative control for functional GR.  Although one GR 

allele is deleted, the other is truncated in REH cells, and the low signal is likely to be 

due to binding of the antibody to the truncated GR allele.  This truncated allele is also 

seen in the western blot in Figure 5.4, depicted by a lower molecular weight band in 

REH cell lysates.   

Despite the signal difference between PreB697 and R3F9 lysates and R3D11 lysates, 

the composition of the GR profile is similar between the cell lines.  Figure 5.10 shows 

the proportion of the total area under the curve represented by individual peaks.  

There was a no statistical difference between any of the cell line full cIEF GR profiles. 

Multiple comparisons revealed that R3F9 had larger peak percentages of 5.4 and 5.47 

than PreB697 (2 way ANOVA with Bonferroni’s multiple comparisons test; p=0.01 for 

peaks 5.40 and 5.47).



 
 

 

Figure 5.9 Electropherograms 
generated by cIEF of PreB697, 
R3F9, R3D11 and REH cell lines 
with D8H2 (Cell Signalling) GR 
antibody.  

Cell line lysates are shown 
measured by cIEF with the 
cell signalling D8H2 
antibody.  Untreated = 
untreated lysate.  CV = 
control vehicle treated 
lysate and Dex= dex 
treated lysate.  Y axis = 
Chemiluminescence (0-
600).  X axis = pI (4-8). 
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Figure 5.10 Proportion of total electropherogram area under the curve comprised of 
individual electropherogram peaks for PreB697, R3F9 and R3D11 cell lines.   

Bars show percentage of the total electropherogram AUC comprised by each 
individual peak, an average of three technical replicates.  There was no statistical 
difference between any of the cell lines in full GR profile.  There was a statistical 
difference between the size of peaks 5.40 and 5.47 between PreB697 and R3F9 (2 
way ANOVA with Bonferroni’s multiple comparisons test; p=0.01 for peaks 5.40 
and 5.47, depicted by *).  
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5.3.5 Analysis of the GR by cIEF in primagraft ALL cells  

The control vehicle and dex treated primagraft lysates were analysed using cIEF.  

Primagraft electropherograms are displayed in Figure 5.11.  All samples displayed 

peaks at similar pIs to cell lines, for dex treated samples this was between pI 5 and 6 

with multiple individual peaks.  Samples also displayed a much smaller signal in control 

vehicle treated samples.  In all cases, the GR profile shifted to a lower pI from control 

vehicle treated lysates to dex treated lysates, indicating an increase in post-

translational modifications such as phosphorylation in the dex treated sample.  

Samples were analysed using peak areas as a percentage of total area under the curve 

of the GR profile.  Analysis was performed in this way to account for signal differences 

caused by different amounts of lysate loaded, and variation in protein estimation due 

to mouse red cell contamination.  Figure 5.12 shows individual peaks from primagraft 

samples as a percentage of total AUC.  The control vehicle treated samples were more 

variable due to the smaller signal size and therefore peak size.  However, the dex 

treated lysates displayed a consistent ratio of peaks across the range of pI values.  
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Figure 5.11 Electropherograms of primagraft lysates by cIEF probed with D8H2 (Cell 
Signalling) GR antibody.  

Samples shown are control vehicle treated (dark green/blue lines) and dex treated 
(pink/grey/green lines).  Samples were treated with control vehicle or 100nM dex 
for 3 hours before cell lysis.  Multiple traces are technical replicates.  Sample 
names annotated in green are dex sensitive and red are dex resistant. 
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One of the aims of this chapter was to assess whether the GR posttranslational 

modifications, as assessed by cIEF, differed in dex sensitive and dex resistant samples.  

In order to assess whether the peak distribution was related to dex sensitivity, outliers 

were identified visually (shown by red circles in Figure 5.12).  However, as illustrated in 

Table 5.1, outlier groups contain a mix of dex-sensitive and resistant samples.  

Although there are two groups that contain just resistant samples, this is likely to be 

due to the larger number of dex-resistant samples used in this study. 
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Figure 5.12 Electropherogram peak areas displayed relative to the total area under 
the curve of the GR profile for control vehicle and dex treated primagraft samples.  

Percentage were calculated by determining the proportion of individual peak areas 
of the total AUC of GR profile for each individual sample.  Numbered circles (1-5) 
identify outlying peaks and are assessed in Table 5.1.  X axis shows increasing pI 
values.  Y axis is % tptal peak AUC.   
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Outlier group Dex-sensitive 

samples  

Dex Resistant samples 

1  L920/AZ23, L4591/AZ25 

2 L825/AZ17 L578R/AZ7, 

L919RR/AZ20, L824/AZ21 

3 L825/AZ12, AZ28 L578R/AZ7, L4951/AZ25, 

L829R/AZ16 

4  L824/AZ21 

5 L825/AZ12, L825/AZ17 AZ19, L4951/AZ25 

Table 5.1 Identification of samples in outlier groups shown in Figure 5.12.  

Each outlier group represents a circle numbered in Figure 5.12.  The dex sensitivity 
of the samples with peaks within the circles were recorded in the table.   

The samples were analysed to assess whether there was any difference between peak 

areas relative to total AUC in relation to dex sensitivity.  Although there were 

differences in the peak composition of the total AUC, there was no difference in any of 

the peak areas between sensitive and resistant samples (Figure 5.13, student’s t test).   
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Figure 5.13 Comparison of peak composition of GR profiles between sensitive and 
resistant primagraft samples.  

Graphs show the percentage of the total AUC comprised by peaks within the range 
indicated above the graph.  There was no difference in AUC composition between 
sensitive and resistant primagraft samples (student’s t-test).  Error bars show 
mean ± standard deviation.  
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5.3.6 Investigation into reduced signal in untreated samples 

As identified in 5.3.4 and 5.3.5, untreated and control vehicle treated samples 

exhibited a much smaller signal than dex treated samples.  This is surprising as a pan 

specific GR antibody was used, which is able to detect normal GR as well as 

phosphorylated GR.  Furthermore, all samples analysed using cIEF were shown to have 

a similar amount of GR in control vehicle and dex treated samples by western blot 

(Figure 5.1). 

One potential explanation for this phenomenon lies in the difference in denaturing 

capacity of cIEF compared to western blotting.  In its unstimulated form, the GR is held 

in complex with a number of proteins, such as chaperone heat shock proteins (HSP) 90 

and 70, and immunophilins (Pratt, 1993; Nicolaides et al., 2010).  As cIEF is less 

denaturing than western blotting, which incorporates several steps to denature 

samples, it is possible that the proteins in the cIEF assay are still in complex with the 

GR during charge analysis.  This could potentially mask the binding site of the D8H2 GR 

antibody.  Upon dex treatment, the GR is released from this complex, and therefore 

the antibody will be able to bind, thus why a signal was seen in dex treated samples. 

To test this hypothesis, a western blot under non-denaturing conditions was 

performed using the Cell Signalling D8H2 antibody used in the cIEF analysis.  This uses 

all the same principles as a conventional western blot, but denaturing steps, such as 

heating of samples, and use of beta mercaptoethanol and sodium dodecyl sulphate are 

omitted.  Figure 5.14 shows the results of this western blot.  REH samples were used as 

a negative control.  It is not possible to determine protein size in a western blot under 

non denaturing conditions, as there is no SDS present to give the proteins charge.  The 

GR band in the dex treated samples has migrated further down the gel, which is likely 

to be a result of an increased negative charge due to a higher level of phosphorylation 

in dex treated samples.  This could be tested by treating the sample with phosphatases 

and assessing whether sample migration is still altered in dex treated samples.  

However, importantly the dex treated band in the neutral non-denaturing gel is 

stronger than the untreated and control vehicle treated samples.  This supports the 

above mentioned hypothesis that in a non-denatured setting, the GR is held in 

complex with other proteins which may explain why there is a reduced signal in 

untreated and control treated samples in cIEF analysis.  
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Figure 5.14 Analysis of GR lysates by western blot under non-denaturing conditions.   

REH, R3D11 and PreB697 lysates were used untreated (0h) and treated with 
control vehicle (CV) and 100nM dex (Dex).  Lysates were probed with the GR D8H2 
antibody (Cell Signalling).   
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5.4 Discussion 

The aim of this project was to assess differences in GR posttranslational modifications 

in dex sensitive and resistant ALL cells and to determine whether these differences 

account for variations in dex cell sensitivity in ALL cells.  Determining the interactors 

critical to GC response may lead to potential therapeutic targets to reverse GC 

resistance or serve as response biomarkers. In this chapter, an assay has been 

developed to study the GR posttranslational modifications and a clear difference in GR 

profile between control vehicle treated and dex treated lysates was observed. Little 

difference was seen in the GR profile with the D8H2 antibody between dex sensitive 

and resistant samples.   

Samples were first assessed for GR status.  All samples similarly expressed GR, 

irrespective of GC sensitivity status.  There was also no difference seen in the 

functionality of the GR, as all samples displayed phosphorylation at serine 211, an 

indication that the GR has translocated to the nucleus and is transcriptionally active 

(Wang et al., 2002). This is consistent with other observations in the literature.  

Although GR deletions and mutations are seen in relapsed ALL (Irving et al., 2005b), 

they are rare and in this project no evidence of GR deletion was seen.  This indicates 

that the GC resistance mechanism does not directly relate to the GR itself in these 

samples, and therefore provide a good model to study GC resistance in ALL. 

The Sigma antibody used for the generation of the pilot data (by L. Nicholson using 

NanoPro1000 platform, detailed in Appendix E, did not transfer to the Peggy Sue 

machine.  It was therefore necessary to establish a new assay on the Peggy Sue using a 

different GR antibody.  With the Cell Signalling GR D8H2 antibody, a good signal above 

the baseline was generated.  No burn out was observed in the antibody and lysate 

titration, and variation between technical and biological replicates was low.  The assay 

was therefore accepted as valid and used for analysis of cell line and primagraft 

lysates. 

GR profiles in PreB697 and dex resistant sub line, R3F9, showed very similar GR 

profiles.  R3D11, also a dex resistant sub line of PreB697, displayed a lower signal, 

however the proportion of the peaks comprising the GR profile was similar to that 

observed in PreB697 and R3F9 cell lines.  The cell line used as a negative functional GR 



229 
 

control, REH, had a small GR signal.  This is likely to be due to REH expressing one 

truncated GR allele of 528 amino acids (Grausenburger et al., 2016).  This truncated 

allele is also seen as a lower molecular weight band in the western blot in Figure 5.4, 

with a molecular weight of ~70kDa, consistent with the size of the truncated allele.  

The signal was not deemed problematic as it was lower than that displayed in the 

PreB697 and R3F9 electropherograms.  Furthermore, despite differences between the 

pilot data and data generated here (discussed later), a small signal is also seen with 

REH cells with the Sigma Aldrich antibody at a lower molecular weight by western blot 

(Figure E.9A, Appendix E) and with the NanoPro 1000 machine (Figure E.9B, Appendix 

E).  Therefore this phenomenon is not antibody or platform specific so did not affect 

validation of the assay. 

Despite the use of a pan specific GR antibody in the generation of both the data in this 

project, and the pilot data, there were differences in the displayed cell line GR profiles.  

Firstly, the shape of the electropherograms differed between the samples.  The 

electropherogram for dex treated PreB697 lysates in this project displayed a number 

of narrow peaks between approximately pI 5 and pI 6.5 whereas the data generated by 

Nicholson showed peaks starting at approximately pI 4 with a strong peak displayed 

around pI 4.75.  Secondly, Nicholson saw differences between PreB697 and R3F9 both 

basally, and in response to dex stimulation.  In this project, there was only a slight 

difference in peaks 5.4 and 5.47 between PreB697 and R3F9 in response to dex.  It was 

not possible to ascertain if there were differences basally due to low signal. 

The differences seen between Nicholson’s data and the data generated here may be 

due the binding site of the two antibodies used.  The human GR alpha sub form is 777 

amino acids long (Hollenberg et al., 1985).  The HPA004248 antibody used by 

Nicholson binds to amino acids 2 – 49 at the n terminus of the protein.  In contrast, the 

Cell Signalling antibody used in this project binds to amino acids surrounding Leucine 

378, close to the DNA binding domain.  A schematic of the functional human GR is 

shown in Figure 5.15.  Antibody variation in peak shape and cell line GR profiles could 

be due to differences in post-translational modifications around the binding site of the 

two antibodies.  GR post-translational modification locations, taken from Blast 

('Database Resources of the National Center for Biotechnology Information,' 2017) are 

displayed in Figure 5.16.  
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Figure 5.15 NR3C1 alpha amino function domain.  

Adapted from (Nicolaides et al., 2010)  The binding sites of the two antibodies are 
shown in red.  HPA004248 antibody binds amino acids 2 – 49 and D8H2 binds to 
amino acids surrounding leucine 378. 



 
 

 

Figure 5.16 Position of NR3C1 post translational modifications.  

Taken from ('Database Resources of the National Center for Biotechnology Information,' 2017).  HPA004248 antibody binds amino acids 2 – 49 
and D8H2 antibody binds amino acids surrounding leucine 378.   

2
3
1
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Furthermore, data generated here using the D8H2 antibody suggests that amino acids 

surrounding leucine 378 may be involved in the interaction of unstimulated GR with the 

heterodimeric complex in the cytoplasm.  This might also further explain differences seen 

between the data generated in this chapter, and that by Nicholson.  Despite control vehicle 

and dex treated samples displaying a similar amount of GR by western blot when probed 

with the Cell Signaling D8H2 antibody, there was a very low signal in control vehicle treated 

samples when analysed using cIEF.  As cIEF is less denaturing than western blotting, it was 

hypothesised that the target epitope of the D8H2 antibody may be being masked by the 

heterodimeric complex.   

To test this hypothesis, a western blot under non-denaturing conditions was performed.  As 

shown in Figure 5.14, all GR bands were at a higher molecular weight suggesting that all GR 

probed was held in complex with some protein.  Of particular interest, the dex treated GR 

band was stronger in comparison to the untreated and the control vehicle treated samples.  

This supports the hypothesis that the epitope is unmasked by disassociation with some 

element of the protein complex.  This could be checked further by probing the neutral non-

denatured blot for putative binding proteins, such as HSP90.  If the hypothesis is correct, the 

untreated and control vehicle treated samples would have stronger expression of these 

proteins.  Pull down or co-immunoprecipitation assays could also be performed using a GR 

antibody to identify stable protein-protein interactions.  These would allow assessment, for 

example by LC/MS, of proteins interacting with the GR in dex treated and untreated 

samples.   

It is possible that the antibody binding site was masked by a post translational modification 

such as a phosphorylation.  However, this is unlikely as the level of GR post translational 

modification is increased on GC stimulation, which would mean that the dex treated 

samples would have a masked antibody binding sit, the opposite of what has been 

observed.  Supporting this, the cIEF data showed a decrease in pI for dex treated samples, 

an indication of increased phosphorylation in the dex treated samples, once again 

suggesting that it would be the dex samples which would have decreased antibody binding, 

as opposed to the untreated samples, seen in this project.  Therefore the masking of the 

binding site uniquely in untreated samples is unlikely to be caused by posttranslational 

modification.   
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This potential epitope unmasking can also be seen in the primagraft electropherogram 

traces, shown in Figure 5.11.  In 13 of the 14 samples, there was an increase in signal in the 

dex treated sample compared to the control vehicle treated sample.  As the difference in 

signal between control vehicle and dex treated samples is seen in cell lines and primagrafts 

derived from multiple patients, it suggests that the area surrounding leucine 378 in the GR is 

masked constitutively. 

cIEF data suggest that there is an increased number of phosphorylation events in the dex 

treated samples.  In all electropherogram traces, peaks shift to the left, representing a lower 

pI value.  When a protein is phosphorylated, neutral hydroxyl groups are substituted on 

serine, threonine and tyrosines with phosphate groups, which are negatively charged.  This 

results in an acidic shift and therefore a decrease in pI.  It is not possible to compare the 

shift in pI with phosphorylations on other proteins, as the exact effect on pI of 

phosphorylation depends on the original pI of the protein and the number of 

phosphorylation events (Halligan et al., 2004; Zhu et al., 2005).   

PhosphoSitePlus®, an online resource for information on post-translational modifications, 

predicts the basal pI of the GR to be 6, and calculates the effect of phosphorylation residues 

on pI.  For example, 10  and 17 phosphorylation residues to reduce the pI to 5.29 and 5.0 

respectively (PhosphoSitePlus, 2017).  The pIs of peaks in control vehicle treated samples 

ranges between 5.5 and 6, which is expected as unstimulated GR is phosphorylated (Ismaili 

and Garabedian, 2004), albeit to a lesser extent than stimulated GR.  Furthermore, dex 

treated samples displayed multiple peaks between pI 5 and 6 representing 

hyperphosphorylation pI consistent with the PhosphoSitePlus® database.  The GR is also, to 

a lesser extent, acetylated (Figure 5.16).  However, acetylation generally has a much smaller 

effect on pI, with an average acidic shift in pH of 0.2 (Bjellqvist et al., 1993; Zhu et al., 2005) 

and would therefore be of minimal contribution to any observed changes in the GR 

electropherogram.  

One of the aims of this chapter was to determine whether there was a difference in GR 

posttranslational modifications between dex sensitive and resistant samples.  Although 

there was a range in GR peak composition, when the peaks were displayed as a proportion 

of the AUC, there was no difference between sensitive and resistant samples.  
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As there were no consistent differences in GR profiles between samples, it is not be possible 

to further analyse differences in electropherogram traces.  However, as a potential epitope 

unmasking event was uncovered, it may be beneficial to further analyse the interaction 

between the GR and the heteromeric complex.  To further investigate the differences in GR 

cIEF profiles found in Nicholson’s pilot data, an antibody should be used that is specific to 

the N terminus of the protein.  It may also be of use to assess samples using phospho 

specific antibodies by cIEF, and separately to pre-treat the samples with phosphatases and 

proteases.  This would allow a better understanding of the relative contribution of individual 

phosphorylations and other posttranslational modifications to the electropherograms 

observed using a pan specific GR antibody.   

The heteromeric complex could be further analysed using approaches to isolate the 

complex before and after dex treatment.  This would allow the molecular constituents of 

the complex to be studied in dex sensitive and resistant samples, as studies previously 

performed in this area were published a nearly two decades ago (Pratt and Toft, 1997; 

Jibard et al., 1999). Furthermore, variation in different elements of the heteromeric complex 

have been associated with alterations in GC response.  For example, a number of studies has 

identified that changes in or modulation of HSP90 affects GR activity (Picard et al., 1990; 

Cadepond et al., 1991; Cadepond et al., 1993; Segnitz and Gehring, 1997; Lauten et al., 

2003a; Shen et al., 2010).  Of particular interest, Tago et al. (2004) found that two separate 

inhibitors of HSP90 diminished the effects of dex on transcription factors NFκB and AP-1 in 

vitro.  Similarly, the ratio of FKBP51 to FKBP52, complex immunophilins which play a role in 

GR signalling, have been implicated in GC resistance in primates (Denny et al., 2000; Davies 

et al., 2002b). 

New techniques such as subcellular fractionation of the nucleus and cytosol such as LOPIT 

(localisation of organelle proteins by isotope tagging) may allow all constituents and 

phosphorylations of the GR and the heteromeric complex to be identified (Dunkley et al., 

2006; Hall et al., 2009; Christoforou and Lilley, 2012; Mulvey et al., 2017).  Likewise, to 

further unravel the members of the multiprotein complex, iPAC (interactomics using Parallel 

Affinity Capture) could be utilised (Rees et al., 2011).  
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In summary, data generated in this project using cIEF has shown that antibody selection is 

important when assessing post-translational modifications.  Importantly, a new potential 

area of interaction has been identified between unstimulated GR, and the heteromeric 

complex it is held in, which may affect GC response.  Further analysis of this complex 

interaction using new proteomic techniques could lead to a better understanding of the 

effect on GC response, and potentially provide new avenues for resensitisation of dex 

therapy.  
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Chapter 6. B cell maturation and GC 
sensitivity 
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6.1 Introduction 

Cell development is a highly orchestrated process which consists of a continuum of cell 

types and stages leading from stem cells to more mature terminally differentiated cells.  A 

deeper comprehension of these processes aids our understanding of what happens when 

these systems are perturbed and create disease states such as cancer (Bendall et al., 2012).  

Furthermore, cell maturation state has been implicated as a therapy resistance mechanism 

in ALL (Rhein et al., 2007; Nicholson et al., 2015).   

In the past, experimental platforms have broadly allowed the analysis of many aspects of a 

few cells, or a few aspects of many cells (Spitzer and Nolan, 2016).  For example, flow 

cytometry permits a very high throughput of cells, but it is still only commonly possible to 

look at 12 markers simultaneously, due to spectral overlap of fluorochromes.  This restricts 

the ability to look at cell development holistically, which requires a high cell throughput in 

combination with single cell resolution and multiple markers to characterise complex 

samples, rare cell populations and biological processes.  The use of mass cytometry (CyTOF) 

a new technology combining the principles of flow cytometry with mass spectrometry, can 

overcome this problem.  Mass cytometry is able to assess over 40 simultaneous parameters 

in cells, with a throughput of millions of cells from one sample (Bandura et al., 2009; 

Ornatsky et al., 2010; Bendall et al., 2011). 

There are some caveats to mass cytometry.  Firstly, metals are not as sensitive as 

fluorochromes (Ornatsky et al., 2006; Bendall et al., 2011) due to limitations of the chelating 

polymer (Lou et al., 2007; Majonis et al., 2010).  However this may not present a substantial 

problem as the background in mass cytometry is low, due to the natural absence of 

lanthanide metals in cells (unlike the phenomenon of cell autofluorescence in flow 

cytometry).  Similarly, there is less variability in the sensitivity of lanthanides, meaning it is 

not necessary to remedy issues caused by the large variation between fluorochrome 

sensitivity.  Secondly, although there is no spectral overlap, it is still possible to get spill over 

from isotopic impurities and oxidations (plus and minus 1 Da, and plus 16 Da) (Ornatsky et 

al., 2008a). However, perhaps the biggest challenge faced in mass cytometry is the complex 

interpretation and processing of the multiple dimension data produced. 
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However, many of the challenges surrounding mass cytometry are overshadowed by its 

capacity to measure multiple cellular processes at different levels (Bendall et al., 2012; 

Bjornson et al., 2013).  This is exemplified in a recent study characterising B cell 

development in healthy bone marrow, where new ‘coordination points’ of cell signalling, 

proliferation and cell death in distinct maturation stages were identified.  The authors used 

a panel of 44 markers to determine B cell trajectory and characterise novel cell populations.  

Eighteen of these markers were used to develop a graph based algorithm, called 

Wanderlust, which constructs trajectories from early haematopoietic stem cells through to 

naïve B cells.  Despite B cell development being studied for decades, Bendall uncovered and 

characterised a new precursor B cell subset using mass cytometry with expression of CD34, 

CD38, CD24 and terminal deoxynucleotidyl transferase (TdT).  This is significant as 

previously, the earliest known markers of B cell identification were CD10 and CD19. 

This study opens the opportunity to investigate the relationship between B cell 

development in BCP ALL and GC resistance.  The potential importance of B cell development 

was firstly highlighted by Rhein et al. (2007) using genome wide gene expression analysis. 

They found that persisting blasts in ALL bone marrow undergoing induction treatment had a 

more mature phenotype.  Secondly, Nicholson et al. showed that increasing GC resistance in 

the PreB697 GC resistant sub lines used in this project were associated with a more mature 

cell state using gene set enrichment analysis (2015).  Although this change was relatively 

subtle, it may have important phenotypic significance in terms of GC response. 

A greater understanding of B cell development, including the developmental relationships of 

cells and mechanisms that govern their differentiation, in addition to investigating whether 

maturation state is linked to sensitivity, may enable us to establish ways to treat these cases 

pharmacologically. In this project, the dex sensitivities of numerous cell lines, primagraft 

and patient samples were characterised as described in (Chapter 4).  These samples were 

used in the current chapter to assess the developmental stage of ALL cells by mass 

cytometry and the Wanderlust algorithm, to investigate potential links between cell 

maturation and GC sensitivity. 
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6.2 Chapter specific aims: 

 To create and validate a Wanderlust CyTOF panel  

 To assess the relationship between B cell maturation and dex sensitivity in cell lines, 

primagraft and patient samples. 
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6.3 Results 

6.3.1 Gating strategy 

All cell lines, primagraft and primary patient cells were gated on ‘non-beads’ to eliminate EQ 

normalisation beads and bead-cell conjugates.  Viable cells were then gated using cisplatin 

uptake, as low concentration cisplatin is more readily taken up by dead or dying cells after 

short incubations.  Therefore live cells will have low cisplatin levels.  Singlets were finally 

isolated by gating on iridium uptake, a DNA intercalator. Events with low iridium content are 

debris so are excluded.  Aggregates of cells can be excluded as they have both a high 

intensity of iridium and also a higher event length, which is a measure of signal duration.  

This leaves the population of single cells.  A summary of this gating strategy is shown in 

Figure 6.1.   

 

 

Figure 6.1 Gating strategy for all samples to isolate live, single cells in all cell lines, 
primagraft and patient samples.  

Plot A: The 140Ce channel measures EQ beads.  The DNA intercalator iridium is used to 
identify cells.  High 140Ce and low 191Ir events are beads, low 140Ce and high 191Ir are 
cells, and high 140Ce and high 191Ir identifies bead-cell conjugates.  Plot B is made up 
of the ‘Non Beads’ gate from plot A.  Live cells are identified by low cisplatin uptake.  
Plot C is made up of the ‘Live Cells’ gate from plot B.  Singlets are gated based on iridium 
content (low iridium events are debris, high iridium events are cell aggregates). 
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6.3.2 Panel design 

The panel was designed based on the published panel in Bendall et al. (2014).  The mass 

cytometry antibodies in the published panel had been mostly conjugated in house.  It was 

not feasible to replicate the exact antibody panel using in house conjugation for all 

antibodies, due to both time and financial constraints.  Therefore, the antibody targets and 

clones were kept the same as the Bendall panel, however the metal tags differed from that 

described in the original paper.  This meant it was possible to purchase 16 of the antibodies 

commercially, and only two antibodies needed to be conjugated in house.  The final panel is 

detailed in Table 2.7. 

6.3.3 Validation of antibody-metal conjugation 

There are two validation steps required when conjugating metals to antibodies which 

ensure successful conjugation.  Firstly, it is necessary to verify that there is metal conjugated 

to the antibody using BD CompBeads (anti-mouse Ig κ).  These beads are polystyrene 

microparticles which contain anti-mouse Ig κ particles and therefore bind any mouse κ light 

chain antibody.  If signal is generated in a metal channel when using these beads, it shows 

that the metal has conjugated successfully to the antibody.  Secondly, a titration of the 

antibody with a positive cell line for the marker is performed to check that the antibody still 

recognises the epitope of interest.  The titration also allows an appropriate assessment of 

the amount of antibody to use when staining cells. 

In this project, a CD34 antibody was conjugated to 164Dy, and IgM heavy chain (IgH) was 

conjugated to 176Yb.   To validate that the metal was successfully conjugated to the 

antibody, 1µl of the antibody was added to 1ml PBS containing 2 drops BD comp beads and 

incubated for 30 minutes at room temperature, before washing and analysis by mass 

cytometry.  The results are shown in Figure 6.2.  There was a positive expression of both 

164Dy (Figure 6.2A, conjugated to CD34) and 176Yb (Figure 6.2B, conjugated to IgH). 
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Figure 6.2 Antibody conjugation validation with BD beads.  

Antibodies (1µl) were added to 1ml PBS containing 2 drops BD comp beads and 
incubated for 30 minutes at room temperature, before washing and analysis by mass 
cytometry. Y axis: event length.  X axis (A) expression of 164Dy (conjugated to CD34 
antibody) (B) expression of 176Yb (conjugated to IgH). 

To assess that the antibody still recognised the epitope of interest (CD34 and IgH), an 

antibody titration was performed with cells positive for the epitopes.  The antibodies were 

titrated in cell stain buffer to final dilutions of 1:250 to 1:5000.  Kasumi and Ramos cells 

were used which are positive for CD34 and IgH, respectively.  The cells were used in a 1:1 

ratio for the titration so each cell line served as an internal negative control for the other 

marker.  The staining index of the antibody can be calculated, which represents a measure 

of how strong the antibody staining is specific to the positive cell population. 

Staining index =
median of positive population-median of negative population

2*standard deviation of negative population
 

 

The CD34 antibody showed clear separation between the CD34 positive and negative 

populations, in terms of 164Dy expression, at a dilution of 1:250, which diminished with 

increasing dilutions (Figure 6.3A).  This is reflected in a high staining index value of 533, 

which reduces to 10 with a 1:5,000 dilution (Figure 6.3B).  This confirms that the conjugation 

of the CD34 antibody to 164Dy was successful.  The titration can also be used to assess an 

appropriate staining concentration.  Due to the high staining index value with 1:250 dilution, 

this was used for all future experiments. 
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The IgH antibody showed a less clear separation between the IgH positive and negative 

populations (176Yb expression) at a dilution of 1:250, however this did not diminish with 

subsequent dilutions (Figure 6.3B).  This is similarly reflected in the staining index values, 

which are much lower than those of CD34_164Dy (Figure 6.3B).  The staining index reduces 

from 12.4 to 3.7 between dilutions 1:250 and 1:500.  Beyond this dilution, the staining index 

does not decrease further, which is due to the very low metal mass intensity (MMI).  

However, a decrease in staining index form 1:250 to 1:500, in combination with the beads 

experiment (Figure 6.2) confirms that the conjugation of the IgH antibody to 176Yb was 

successful.  Due to the low staining intensity of this antibody, a dilution of 1:100 was 

chosen, which although has not been shown here, is the concentration commonly used for 

commercially purchased antibodies.  



 
 

 

Staining Index 1:250 1:500 1:1000 1:2000 1:5000 

164Dy – CD34 533.0 178.6 115.1 14.4 10.8 

176Yb - IgH 12.4 3.7 3.9 3.9 3.7 

Figure 6.3 Titration of conjugated antibodies CD34 and IgH and staining index values.  

The antibodies were titrated in cell stain buffer to final concentrations of 1:250 to 1:5000.  Kasumi and Ramos cells were used which are positive 
for CD34 and IgH, respectively.  The cells were used in a 1:1 ratio for the titration.  All cells were gated on live single cells. (A) Shows the staining 
of the CD34 antibody conjugated to 164Dy (X axis); (B) Shows the staining of the CD34 antibody conjugated to 176Yb (X axis); (C) Staining index 

values ( Staining index =
median of positive population-median of negative population

2*standard deviation of negative population
).
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6.3.4 Antibody panel validation 

The quality and specificity of the antibodies is equally as important in mass cytometry 

as in flow cytometry.  It is also essential to assess the combination of the metal 

markers.  To validate the specificity of the antibodies, several steps were performed.  

Firstly, a cell line with known expression of markers was used.  This allowed validation 

of both antibody specificity and also metal markers expression. Secondly, patient 

remission samples were assessed using the Wanderlust panel and compared with 

historical flow cytometry data, and data from the Bendall paper.  Finally, T cell patient 

samples were assessed using the mass cytometry panel, which serves as a negative 

control for B cell specific markers.  These steps will be described in the following 

sections. 

As the metal markers had been changed from the original Wanderlust panel published 

by Bendall et al., it was necessary to validate the full Wanderlust panel.  For example, 

it is important to assess whether there is any spill over into the ±1 or +16 channels, as 

a result of isotope impurity or oxidisation (Takahashi et al., 2017).  

Firstly, 1 x 106 PreB697 were stained with the full Wanderlust panel and acquired on 

the Helios mass cytometer to evaluate spill over.  PreB697 contour plots from each 

channel used in the Wanderlust panel are shown in Figure 6.4.  These plots clearly 

showed expression of markers consistent with PreB697 cells, including CD19, Igκ (light 

chain), and high expression of HLA-DR and Ki67.  Contour plots can also be used to 

assess for spill over.  There was concern that there was spill over from the strong 

signals in the 169Tm channel (CD19) into 168Er (Ki67) and 167Er (CD38) into 166Er 

(CD24).  This can be seen by the bulge in the contour plot indicated by the arrow in 

Figure 6.5. 

To further investigate this potential signal overlap, a ‘mass minus many’ (MMM) 

experiment was performed.  Briefly, this involves staining cells with a full panel of 

markers minus the channels where spill over is occurring.  If there is a signal in these 

channels, it will therefore be a result of signal overlap from another channel.  The full 

panel was run with PreB697 cells minus CD24_166Er and Ki67_168Er.  The 166Er and 

168Er channels are shown in Figure 6.6.  There was spill over into both channels, as 

there was a small signal with a MMI of 0.95 in 166Er_CD24 and 3.2 in 168Er_Ki67.  
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However, this was not deemed to be problematic, as the MMI of stained PreB697 cells 

with the antibodies was 26.7 in the 166Er_CD24 channel and 142.4 in 168Er_Ki67 

channel.  There would therefore be no interference of the spill over signal on the 

staining signal. 



 
 

 

Figure 6.4 Full Wanderlust antibody panel with PreB697 cells.   

PreB697 cells (1 x 106) were stained with the Wanderlust antibody panel before being acquired on the Helios mass cytometer.  Y axis = event 
length.  X axis = metal channel. 
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Figure 6.5 Contour plots indicating potential spill over from 167Er into 166Er, and 
169Er into 168Er.   

The full Wanderlust antibody panel was used to stain PreB697 cells before being 
acquired on the Helios mass cytometer.  The contour plots of 167Er_CD38 and 
166Er_CD24 (left), and 169Er_CD19 and 168Er_Ki67 (right) suggests that there 
may be spill over from the 167 channel into the 166 channel and from the 169 
channel into the 168 channel.  This is seen by a bulging shape on the plots 
indicated by the black arrows. 

 

Figure 6.6 Mass Minus Many experiment to determine spillover.  

The full panel of Wanderlust markers was used, minus 166Er_CD24 and 
168Er_Ki67 to stain PreB697 cells before being acquired on the Helios mass 
cytometer, to determine if there was spill over into these channels.  Both channels 
show a small signal (left: 166Er MMI= 0.95, right: 168Er MMI = 3.2).  
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6.3.5 Remission bone marrow samples 

Next, four remission ALL bone marrow samples were stained; L826 (week 40), L835 

(week 23), L837 (end of treatment) and L940 (week 23).  As these samples had already 

been assessed using flow cytometry, it was possible to validate the mass cytometry 

Wanderlust panel using the flow cytometry data.   

6.3.5.1 Gating strategy  

Cells were first gated to isolate singlets, as described in 6.3.1 and Figure 6.1.  To isolate 

different populations of B cells, further gating was performed, which is shown in Figure 

6.7.  Gating was not performed to isolate whole cell populations, but to identify small 

numbers of cells at discrete stages of development.  For Wanderlust gates, used for 

start cell selection in 6.3.11, a final gate was needed that contained a maximum of 

thirty cells.  Therefore Wanderlust gates were kept to a size that included a maximum 

of thirty cells.  CD19 positive and negative cells were first selected.  CD19 negative cells 

were then gated on CD34 and CD38 positivity to identify an early cell population 

(Wanderlust 0.1 stage, or maturation gate 1).  CD19 positive cells were then gated on 

CD34 positivity.  CD19 and CD34 positive cells formed maturation gate 2.  Maturation 

gate 2 was then used to isolate cells at approximately Wanderlust 0.3 stage (pre pro B 

cells) by gating using high CD10 expression followed by low CD19 expression.  CD19 

positive, CD34 negative cells were divided into CD10 positive (maturation gate 3) and 

CD10 negative (maturation gate 4).  Cells in maturation gate 4 were then gated using 

high CD20 expression to isolate the most mature cells.   

For the historical flow cytometry analyses, cells were first gated using forward and side 

scatter to isolate lymphoblasts.  Cells were then gated using CD19 positivity and CD34 

positivity/negativity. 

6.3.5.2 Comparison to flow cytometry data 

All flow cytometry data was from the same stage of treatment as the mass cytometry 

data except L837, which was analysed using flow cytometry at week 15.  To compare 

flow cytometry and mass cytometry data, CD19 positive, CD34 positive and negative 

cells were isolated, as previously detailed (Figure 6.7).  Cells were then gated using the 

same strategy as the flow cytometry analysis to assess whether marker expression was 
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the same using both methods.  Data for patient L829 is shown in Figure 6.8 and Figure 

6.9, and other patients results are shown in Appendix F . Although far fewer events 

were acquired by mass cytometry, all patients showed similar marker expression using 

the Wanderlust panel to those shown in the flow cytometry data, which serves as a 

good validation for the panel. 

 

 

Figure 6.7 Gating strategy to isolate different B cell populations in remission bone 
marrow samples using mass cytometry.  

Cells were first gated to isolate singlets, as described in Figure 6.1.  CD19 positive 
and negative cells were then selected.  CD19 negative cell were then gated on 
CD34 and CD38 positivity to give the least mature population (Wanderlust 0.1 
stage of maturation gate 1).  CD19 positive cells were then gated by CD34 
positivity.  CD19 and CD34 positive cells formed maturation gate 2.  Maturation 
gate 2 was then used to isolate cells at approximately Wanderlust 0.3 stage (pre 
pro B cells) by gating on high CD10 followed by low CD19 expression.  
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CD19 positive, CD34 negative cells were divided into CD10 positive (maturation 
gate 3) and CD10 negative (maturation gate 4).  Cells in maturation gate 4 were 
then gated on high CD20 expression to isolate the most mature cells. 

 

Figure 6.8 Comparison of Wanderlust antibody panel data generated by mass 
cytometry to historical flow cytometry data; CD34 positive cells.  

Patient L826 (week 40) historically assessed using the Eurotubes I panel by flow 
cytometry (black outline with blue dots) and (end of treatment) assessed using the 
Wanderlust panel on the Helios by mass cytometry (navy axes with black dots). 
Each flow cytometry dot plot is a direct comparison of the mass cytometry dot plot 
beneath it.  
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Figure 6.9 Comparison of Wanderlust antibody panel data generated by mass 
cytometry to historical flow cytometry data; CD34 negative cells.  

Patient L826 (week 40) historically assessed using the Eurotubes I panel by flow 
cytometry (black outline with pink dots) and (end of treatment) assessed using the 
Wanderlust panel on the Helios by mass cytometry (navy axes with black dots). 
Each flow cytometry dot plot is a direct comparison of the mass cytometry dot plot 
beneath it.  
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6.3.5.3 Comparison to Wanderlust panel 

To further validate the Wanderlust panel, a comparison was made to the published 

data in Bendall et al. (2014).  The paper presents a figure showing the expression of 

several key markers representing different B cell maturation states.  To replicate this, 

the remission bone marrow samples were broadly separated into five maturation 

gates, gate 1 (CD19 negative, CD34 and CD38 positive) gate 2 (CD19 and CD34 

positive), gate 3 (C19 positive, CD34 negative, CD10 positive) gate 4 (C19 positive, 

CD34 and CD10 negative) and gate 5 (C19 positive, CD34 and CD10 negative, high 

expression of CD20).  These gates are shown in Figure 6.7.  These five groups were 

compared to the Bendall paper in terms of expression of various markers of these 

maturation points (Figure 6.10).  The markers showed a similar expression pattern to 

that displayed in the paper.  Patient L829 is shown in Figure 6.10 and all other patients 

are displayed in Appendix F.   
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Figure 6.10 Comparison of data generated using the metal-altered Wanderlust panel 
across B cells of different maturation stages to that published in Bendall et al. (2014).  

Patient L826 (week 40) was stained using the Wanderlust antibody panel and 
compared to data published by Bendall et al. (2014).  Each row of 10 plots is from 
the Bendall paper, and the rows beneath them represent data generated at similar 
cell development stages in this project.  The red arrows on the Bendall plots show 
the two dimensional progression of cellular marker expression through maturation 
taken in segments of 0.1 on the Wanderlust scale.    
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Finally, three T cell patient samples (L705, L809 and LK203) were analysed as a 

negative control for B cell specific markers.  These T-ALL samples were all negative for 

B cell markers including CD10, CD19 and CD20, and were positive for markers 

commonly expressed by T-ALL including CD45, CD38 and Ki67 (Figure 6.11).   

 

Figure 6.11 Histograms of T-ALL patient samples stained with the Wanderlust Panel.  

Histograms show patients L705, L809 and LK203 (top to bottom).  Patients have 
negative expression of B cell specific markers including CD10, CD19 and CD20. All 
samples were stained with the Wanderlust antibody panel and acquired on the 
Helios mass cytometer.  Histograms are gated on live singlets. X axis: Marker 
expression.  Y axis: counts. 

6.3.6 Cell Lines 

PreB697 and resistant sub lines R3F9, R3D11, R4C10, R3C3 and R3G7 were all stained 

with the Wanderlust antibody panel, and acquired on the Helios mass cytometer.  

Although the majority of the markers showed a similar MMI, there were some 

differences in CD72, CD179a (also known as vPreB, a subunit of the PreB cell receptor) 

and IgKappa between cell lines (Figure 6.12).  For example, R4C10 had a lower 

expression of CD179a and increased expression of IgKappa.  This indicates an increase 

in maturation state of this cell line compared to other resistant sub lines and PreB697.  
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Cell lines PreB697, R3F9 and R3D11 were also run on a further two occasions, and 

R4C10, R3C3 and R3G7 on one further occasion.  Interassay variability is further 

discussed in 6.3.10. 

 

Figure 6.12 Histograms of Wanderlust markers for PreB697 and GC resistant sub 
lines.  

PreB697, R3F9, R3D11, R4C10, R3C3 and R3G7 (order top to bottom of each 
histogram) were all stained with the Wanderlust antibody panel and acquired on 
the Helios mass cytometer.  Cell lines were all stained simultaneously, and 
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acquired on the Helios on the same day.  Cells were gated on live singlets. X axis: 
Marker expression.  Y axis: counts. 

6.3.7 Primagraft samples 

Primagraft samples were stained, and acquired on the mass cytometer on the same 

day as other primagrafts derived from the same patient. For the majority of samples, 

primagrafts derived from the same patient shows very similar expression of markers 

(Figure 6.13A, and Appendix F).  The exceptions to this were the two primagraft 

samples, AZ2 and AZ3, derived from patient L829 (Figure 6.13B).  However, when all 

samples were assessed using MDS plots in the Pre Wanderlust analysis, L829/AZ2 

appeared to be a distinct outlier, with clear separation from all other samples (Figure 

6.18).  As this sample was so different from all other primagraft samples, it may be that 

something may have gone wrong during staining or acquisition of this sample. 

There was one patient for whom primagrafts were created at the point of first and 

second relapse.  The expression of markers changed from first relapse to the second 

relapse (Figure 6.14).  This was particularly noticeable for CD10, CD24, CD34 and CD38.  

Interestingly, the 2nd relapse samples were also more resistant to dexamethasone (first 

relapse GI50 ~26nM, second relapse GI50>1,000nM). 
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Figure 6.13 Histograms of primagraft samples, stained with the Wanderlust panel, 
derived from the same patient.  

All samples were stained with the Wanderlust antibody panel acquired on the 
Helios mass cytometer and are gated on live singlets. (A) Similar histograms are 
seen for primagrafts derived from the same patient including patient L578 2nd 
relapse (mice AZ7, AZ8 and AZ9, top to bottom on each histogram).  Further 
examples are shown in appendix F (B) Differences in histograms between 
primagrafts derived from patient L829 1st relapse, (mice AZ2 and AZ3, top and 
bottom on each histogram). X axis: marker expression.  Y axis: counts.  
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Figure 6.14 Histograms of primagraft samples from L919 first relapse and second 
relapse, stained with the Wanderlust panel, show differences in key markers.  

The top two samples of each histogram show primagrafts JM267 and JM268, 
derived from a bone marrow sample of the first relapse of patient L919.  The 
bottom two samples of each histogram show primagrafts AZ19 and AZ20, derived 
from a bone marrow sample of the second relapse of patient L919.  All samples 
were stained with the Wanderlust antibody panel and acquired on the Helios mass 
cytometer and are gated on live singlets. X axis: marker expression.  Y axis: counts. 
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6.3.8 Patient samples 

Primary patient samples were also stained using the Wanderlust antibody panel, the 

histograms are shown in Figure 6.15.  The expression of CD19 and CD10 and/or CD34 

confirmed the B lineage immunophenotype of these samples.  Several samples (L733, 

LK213, LK220 and LK221) had a bimodal distribution of CD45.  The minor peak with a 

high CD45 expression is likely to be composed of normal cells.  Further analysis of 

these cells confirmed that they had negative CD34 and CD10 expression, which 

alongside a high CD45 expression, is concordant with non-ALL cells.  This population of 

normal cells was also seen in flow cytometric analysis of the same samples, verifying 

this observation.  

 

Figure 6.15 Histograms of patient samples stained with the Wanderlust panel.  

Each histogram shows top to bottom: L715, L733, LK209, LK213, LK220, LK221. All 
samples were stained with the Wanderlust antibody panel and acquired on the 
Helios mass cytometer and are gated on live singlets. X axis: marker expression.  Y 
axis: counts. 
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6.3.9 Total event number acquired on the Helios mass cytometer 

Although a target of 100,000 events was set for acquisition on the Helios cytometer, 

the number of cells acquired varied dramatically between samples.  Figure 6.16 shows 

the event number after gating for all samples to isolate live singlets, and remission 

samples additionally on CD19 positivity to isolate B cells.  The event number variation 

was mainly a result of cell clumping during the permeabilisation step of the staining 

protocol, before intracellular antibodies were added.  As cells had to be filtered before 

acquisition to prevent any blockages in the Helios mass cytometer, the clumps of cells 

were filtered out, reducing the number of cells available for acquisition.  The remission 

samples had a particularly low event number, with two samples having less than 3,000 

CD19 positive cells.   

 

Figure 6.16 Number of events in each sample after gating.  

Each bar represents an individual sample.  All cell lines, primagraft and ALL patient 
samples were gated on live singlets.  Remission samples shown are gated on live 
singlets and CD19 positivity. 
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6.3.10 Pre Wanderlust analysis 

The analyses described in this section were performed by Dr. Rachel Queen, Institute 

of Genetic Medicine, Newcastle University.   

Prior to Wanderlust analysis, a number of analysis steps were performed to check the 

mass cytometry data.  Initially a heat map was created to show expression of all 

Wanderlust markers in samples (Figure 6.17). The heat map also clusters samples by 

similarity so it is possible to assess whether primagrafts derived from the same patient 

grouped together, and displayed a similar expression of the Wanderlust markers.  

Interestingly, sensitive and resistant cells seem to group together in blocks based on 

expression of Wanderlust markers.  The groups also comprised samples stained and 

acquired on different occasions, discounting any possible batch effect in this clustering. 

 

Figure 6.17 Heat map showing expression of all the Wanderlust markers.  

Each row represents an individual sample indicated by the far right column.  Dex 
sensitivity of samples is shown in the first column (red = resistant, blue = sensitive, 
white = remission sample).  The date of the sample run is shown in the second 
column.  Expression of markers is shown in the middle panel (blue = highest 
expression, pale yellow = lowest expression).  Figure created in R by Dr. Queen.  
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MDS plots, a way of showing similarity between samples using distance, were also 

used to assess the data.  For example, cells which are very similar to each other will be 

plotted close together, whereas cells which have many differences will be plotted far 

away from each other on an MDS plot.  Firstly, MDS plots allow assessment of any 

batch effect, for example by date or sample type.  Although EQ normalisation beads 

are included when samples are being assessed by mass cytometry, variability can still 

occur on different days. 

As previously noted in 6.3.6, the cell lines PreB697, R3F9 and R3D11 were run on three 

separate occasions, and R4C10, R3C3 and R3G7 were run on two separate occasions 

with the Wanderlust panel, which enables assessment of interassay variation.  Two of 

the assays were very similar to each other, but one assay was different.  This is seen 

when all samples were plotted on MDS plots (Figure 6.18A).  The cell lines acquired on 

the 24th May were clustered apart from those acquired on the 7th of June and 28th 

June.  As there were two replicates of cell lines that did cluster together, the cell lines 

from the 24th May were removed from analysis.  As mentioned previously, despite 

using EQ normalisation beads, it is possible to get day to day variation on the mass 

cytometer and during the staining process.  Therefore the variation seen here may be, 

in part, due to this.   

The primagraft sample AZ2, derived from patient L829, exhibited a different expression 

of markers to L829/AZ3, which was observable in the comparison of the histogram 

plots (Figure 6.13).  These differences were reflected in an MDS analysis of all 

primagraft samples, AZ2 clustered at a distance from all other primagraft samples 

(Figure 6.18).  This extreme separation may be due to an anomaly in the staining of 

acquisition of the sample, and it was therefore not included in the final Wanderlust 

analysis. 
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Figure 6.18 MDS plot of all of all cell samples colour coded by date (A) and primagraft 
samples (B).  

Each dot represents an individual sample.  (A) Cell lines, indicated by the navy 
ovals, cluster more closely by date; cell lines were run on 24/05/17, 07/06/17 and 
28/06/17.  (B) L829R/AZ2 clusters separately to all other primagraft samples.  
Figures created in R by Dr. Queen.  

A 

B 
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The MDS plot of all samples stained, after removal of the cell lines analysed on the 24th 

May, is shown below in Figure 6.19.  Interestingly, the majority of the dex sensitive 

samples clustered together at the top of the plot, shown by green diamonds.  

Importantly, these samples were stained and acquired on multiple days so this is not 

an effect caused by interassay variation. 

 

Figure 6.19 MDS plot displaying all samples after removal of cell lines acquired on 
the 24th May. 

Each labelled circle shows an individual sample.  The different colour circles and 
labels represent the date the sample was acquired.  Box outline colour indicates 
dex sensitivity (green = sensitive, red = resistant).  Figure created in R by Dr. 
Queen.  

Dex sensitive 

Dex resistant 

Remission 
sample 
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6.3.11 Selection of Wanderlust start cell. 

All gating was performed by myself and the Wanderlust algorithm was executed by Dr. 

Queen in MATLAB. 

In order to run the Wanderlust algorithm, it is necessary to identify a start cell, or 

group of start cells, from which the trajectory can begin mapping.  In Bendall et al. 

(2014), a very early start cell was chosen (Wanderlust stage 0.1, equivalent to a 

haematopoetic stem cell).  Therefore initially, a group of start cells were selected in 

the remission bone marrow samples that were approximately at this Wanderlust level 

(CD34 and CD38 positive, CD19, CD20, CD10, and IgH negative, Figure 6.20A, box 1).  

Gating is shown in Figure 6.7 (mat. gate 1).  However, this generated a Wanderlust 

trajectory that was different to that published in Bendall et al., and to known 

expression patterns of these markers (Figure 6.20B, graph 1).  The main differences to 

the Bendall trajectory were a large dip in expression of all markers approximately half 

way along the trajectory, and a high expression of CD20 at the start of the trajectory.  

These differences may be due insufficient numbers of very immature cells, which 

hampers the ability of the algorithm to create an accurate trajectory.  The low cell 

numbers in the remission samples is shown in Figure 6.16.  The differences may also be 

due to a dissimilarity in cell populations, as Bendall et al. lineage depleted their bone 

marrow samples to rid them of T cells, however, this lineage depletion step was not 

performed in this study.  The presence of T cells may therefore have skewed the 

trajectory. 

Bendall et al. assessed the effect of using trajectory start cells from different 

Wanderlust stages, and observed that the trajectory was still generated when a start 

cell of up to Wanderlust stage 0.3 (approximately equivalent to a pre pro B cells) was 

chosen.  They also observed that when a very mature start cell was selected, the 

trajectory ran backwards, from the most mature cells to the least mature.  Therefore, 

both start cell gates at 0.3 and 0.9/1 wanderlust stages (immature naïve B cells) were 

selected and tested with the Wanderlust algorithm (Figure 6.20A, boxes 2 and 3, 

respectively).  The 0.3 start cell gate was created using cells which had CD34 and CD38 

positivity, high CD10 expression, mid CD19 expression and CD20 and IgH negativity 

(gating shown in Figure 6.7, Wanderlust 0.3 gate).  As all B cells are CD19 positive by 

Wanderlust stage 0.3, by using a start cell gate at this point, it was possible create the 
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trajectory using remission samples gated on CD19 positivity, thus removing the 

influence of T cells.  The trajectory created by a 0.3 start cell gate was very similar to 

the original Wanderlust trajectory Figure 6.20B2.  However, the CD38 trajectory was 

different to that expected, as it seemed to follow the trajectory of the CD19.  These 

differences may once again be due to the significantly smaller cell numbers used to 

create the trajectory in this project.   

To establish whether the trajectory was able to map backwards (from the most mature 

to least mature cells) a gate was created using cells which were at the Wanderlust 

stage of 0.9/1.0 (equivalent to immature naïve B cells).  These cells were CD19, CD20 

and IgH positive and CD10, CD34 and CD38 negative (gating shown in Figure 6.7, mat. 

gate 5).  The trajectory created by this start cell did mirror some of the marker 

trajectories, for example low expression of CD34 and CD10 in the more mature B cells 

which increased as cells became more immature (Figure 6.20B3).  However, other 

markers such a CD19 did not reverse their trajectory as well.   

As the trajectory created using start cell gates of Wanderlust stage 0.3 recreated the 

Bendall trajectory the most faithfully, this start cell gate was used for further analyses. 

  



270 
 

 

Figure 6.20 Start cell selection, adapted from Bendall et al. (2014) (A) and trajectories 
created in this project (B).  

(A) Shows the selection of the start gates.  Boxes denote start cell selections.  In all 
cases 10-20 cells were gated and used to define the start of the trajectory. (B) 
Shows the resultant trajectories from these start gates outlines in (A).  
1. A very early start cell was selected that had CD34 and CD38 positivity, but was 

negative for CD19, CD20, CD10, and IgH. 
2. A start cell of approximately 0.3 on the Wanderlust scale was selected which 

was positive for CD34 and CD38, had high CD10 expression, mid CD19 
expression and was CD20 and IgH negative. 

3. A very mature start cell was selected which was CD19, CD20 and IgH positive 
and CD10, CD34 and CD38 negative. 
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6.3.12 Wanderlust 

The Wanderlust trajectory was run with each remission ALL bone marrow individually 

to assess the interpatient variability in trajectories (Figure 6.21).  The individual 

trajectories varied markedly from one another.  This may be for two reasons; firstly, 

the remission samples were taken from different points of treatment.  Some of the 

samples were taken whilst patients were still undergoing treatment for ALL, for 

example at week 23, whilst others were taken at the end of treatment. 

Secondly, there were different numbers of cells in each sample.  Due to clumping of 

the cells during the permeabilisation step of antibody labelling, a number of cells were 

lost.  In particular, two samples (L835 and L837) only had ~2,600 events after gating 

(Figure 6.16).  This is compared to L826, which had 29,400 cells after gating.  

Therefore, in the remission samples with fewer cells, there may not have been enough 

cells at the different maturation stages to as accurately create the trajectory as the 

sample with nearly 30,000 events.  However, as has shown in Figure 6.20, when the 

remission samples are combined, the trajectory is similar to that published by Bendall. 
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Figure 6.21 Wanderlust trajectories resulting from four individual remission bone 
marrow samples.  

Trajectories were created by Dr Queen with the Wanderlust algorithm in MATLAB 
using the 0.3 start cell gate.  Trajectories: red = CD20, blue = CD19, black = CD10, 
green = CD34, pink = CD38, yellow = IgH. X axis = maturation.  Y axis = normalised 
marker expression. 
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In order to assess the maturation stage of the ALL cell lines and patient samples, cell 

numbers needed to be reduced in order to not skew the trajectory.  This would easily 

happen due to the small number of cells in the remission samples (total approximately 

44,000) compared to other samples (Figure 6.16).  Therefore, for patient samples, 

1000 cells were selected at random (using the Wanderlust software in MATLAB). For 

primagraft samples, primagrafts from the same patient were grouped together and 

1,000 cells were selected at random from this group.  However, primagrafts L825/AZ2, 

L578/AZ7 and L825/JM158 were excluded from this grouping as they clustered too far 

away from other primagrafts derived from the same patient sample (Figure 6.23).   

Interestingly, in the cluster dendrogram of primagrafts, samples segregate broadly into 

sensitive and resistant cells, with the exception of primagraft samples from patient 

LK196, and L919 (first relapse) based on the expression of markers in the Wanderlust 

panel.  Despite both samples being dex sensitive, both had a poor outcome.  The 

sample for LK196 was taken at second relapse, and they subsequently died from their 

disease.  L919 (first relapse) went on to relapse a second time. 

Figure 6.24 shows the effect of adding ALL cells to the into the Wanderlust algorithm 

to create the trajectory.  On one occasion all ALL samples were included in the 

algorithm, on a second only dex sensitive ALL samples were included and on the third 

occasion only dex resistant samples were included (A, B and C, respectively).  Even 

after reduction of cell numbers to 1000 per sample, it can be seen that addition of ALL 

samples still skews the trajectory compared to the trajectory created with remission 

samples alone (Figure 6.21).  This is once again likely due to be a result of a limited 

number of cells in the remission bone marrow samples. 

A heat map for all Wanderlust markers through cell development, as ordered by the 

Wanderlust trajectory is shown in Figure 6.22.  This has been generated using all 

samples (remission and patient/primagraft samples).  Although some marker 

expression is as expected, some markers show a different pattern of expression.  For 

example, the trajectory shows cells expressing CD34 after the pre b I cell stage, when 

physiologically, CD34 expression at this point in development should be minimal.  This 

is once again an indication that the ALL cells have skewed the trajectory and that a 

greater number of normal B cells are needed to anchor the trajectory. 
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Figure 6.22 Summary of Wanderlust marker expression throughout B cell 
development as ordered by the Wanderlust trajectory. 

Each row represents an individual marker. X axis shows maturation (left least 
mature, right most mature), approximate cell stages are shown above heat map. 
Highest expression is shown by red and lowest expression is shown by blue.  Figure 
created in R by Dr. Queen. 
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Figure 6.23 Cluster dendrogram of primagraft samples. 

Primagraft samples were clustered according to their most similar sample.  Most 
primagraft samples clustered close to other primagrafts derived from the same 
patient.  Exceptions are denoted by a blue box and are L829/AZ2, L578/AZ7 and 
L825/JM158.  Dex sensitivity is indicated by a green circle.  Dex resistance is 
indicated by a red circle.    
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Figure 6.24 Wanderlust trajectories created after the addition of all ALL samples (A), 
dex sensitive ALL samples (B) and dex resistant ALL samples (C). 

Trajectories were created using the four remission samples with the addition of (A) 
all ALL samples, (B) all dex sensitive ALL samples and (C) all dex resistant ALL 
samples.  ALL cells were gated on live singlets and 1,000 cells were selected at 
random for each patient (including patients used to create primagrafts).  Figure 
created in MATLAB by Dr. Queen.   
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6.3.13 Post Wanderlust analysis 

Although the Wanderlust trajectory shown in Bendall et al. was not accurately 

reconstructed due to a limited number of normal B cells in the remission samples, and 

a distorting influence of ALL cells, an initial density analysis was performed by Dr. 

Rachel Queen to assess the Wanderlust results generated (Figure 6.25).  As expected, 

the remission samples, shown in red, displayed the broadest maturation range of cells.  

This is also reflected in the Wanderlust values for individual samples shown in Figure 

6.26.  The remission samples show differing average maturation scores, however the 

standard deviation is larger than seen in ALL samples (remission: 0.16-0.20, ALL: 0.08-

0.16), reflecting the range of maturation of cells in these ‘normal’ bone marrow 

samples.  The variation in the average maturation of the remission samples may be 

due to the small number of events in some samples or the different cell populations 

resulting from the samples being obtained at different stages of treatment. 

The Wanderlust density plot indicates that dex resistant cells have a less mature 

phenotype than dex sensitive ALL cells, the opposite of what has been observed by 

previous groups.  However, the maturation scores generated using this algorithm are 

likely not to be accurate due to the inaccurate trajectory.  When the Wanderlust 

trajectory has been replicated exactly, there is likely to be a reordering of marker 

expression which will likely affect the maturation values assigned to the cells.  

Therefore, further work should be performed to refine the algorithm and these 

analyses repeated to reassess the relationship between cell maturation and dex 

resistance. 
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Figure 6.25 Density plot showing the normalised maturation of cells in remission, 
resistant, and sensitive cells.  

Y axis shows the cell density and X axis shows the normalised maturation of cells 
based on values generated from the Wanderlust trajectory.  Figure created by Dr. 
Rachel Queen in R.  

 

Figure 6.26 Average Wanderlust maturation value of cells in each patient sample.  

Each bar represents the mean Wanderlust maturation score for each sample.  
Error bars show standard deviation.  Orange = start cell, red = remission samples, 
green = dex resistant samples, blue = dex sensitive samples.  Dashed bars = 
primagraft sample, spotted bars = primary patient sample. *Indicates samples 
which clustered together in Figure 6.19.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
an

d
er

lu
st

 (
n

o
rm

al
is

ed
)



279 
 

6.4 Discussion 

This chapter aimed to characterise the maturation phenotype of ALL samples, and 

determine whether the level of maturation of ALL samples is linked to GC resistance.  

Cell maturation has been previously implicated in GC resistance, both in ALL (Rhein et 

al., 2007; Nicholson et al., 2015), and healthy B cells (Lill-Elghanian et al., 2002).  In 

order to investigate this association further, a deeper understanding of B cell 

development is needed.  However, this is a highly complex process and previous 

studies have been limited by techniques which are not able to assess the 

developmental course as a whole.  A recent study has developed a mass cytometry 

based approach coupled with a graph based algorithm, called Wanderlust, to study the 

development of healthy B cells.  This has opened up the possibility to assess B cell 

development in ALL samples, as during this project, the dex sensitivity for a range of 

primagraft and patient cells had been characterised in Chapter 4. 

Despite using the same antibody targets and clones as the published Wanderlust panel 

(Bendall et al., 2014), it was necessary to alter the metal tags.  Altering the metal labels 

on the mass cytometry antibodies is the same concept as a fluorochrome change on a 

flow cytometry antibody; the antibody will still bind to the cellular target, but the data 

are reported in a different channel.  A change of metal should therefore not affect the 

end data generated, however validation of certain aspects of the altered metal panel is 

still necessary.  This included validation of the two antibodies conjugated in house; 

both metals were successfully conjugated to the antibodies, and the antibody still 

recognised the epitope of interest in cell lines.  The CD34 antibody had a stronger 

signal than the IgH antibody, although the IgH signal was still sufficient for use.  A 

validation of the panel as a whole was also performed, to check for events such as spill 

over between channels.  A full panel stain with the PreB697 cell line indicated that 

there was possible spill over from channel 169 (CD19) into 168 (Ki67) and 167 (CD38) 

into 166 (CD24) which was confirmed in an MMM experiment, however this was not 

deemed to be problematic as the signal was considerably lower than would be 

produced by a cell which was positive for these markers. 

The full panel was also used to stain four remission bone marrow samples, from ALL 

patients at week 23, week 40 and end of treatment.  Remission samples were used to 
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firstly validate the panel against historical flow cytometry data and data presented in 

Bendall et al. (2014), and secondly to create a trajectory from which to assess the 

maturation state of the ALL samples.  Comparison of the results generated by flow 

cytometry and mass cytometry allowed validation of antibodies CD10, CD19, CD20, 

CD34, CD38 and CD45 within the mass cytometry panel.  Although a lower number of 

events were collected by mass cytometry compared to flow cytometry, the results 

generated between the two experimental approaches are similar.   

The remission sample mass cytometry data were divided broadly into five maturation 

stages, using gating to enable a comparison to the data published in Bendall et al. 

(2014).  The expression patterns through the maturation stages of markers imitated 

those seen by Bendall et al.  Finally, as a negative control, three T-ALL samples were 

stained using the Wanderlust panel.  As would be expected, the T-ALL samples showed 

no expression of any B-cell markers including CD10, CD19 and CD20, but did show 

expression for markers that are expressed by both B and T cells including CD38 and 

CD45.  This validates that the Wanderlust panel is recognising true expression of B cell 

markers.  

The panel was therefore accepted as valid and used to stain cell lines, primagraft and 

patient samples.  For the majority of primagraft samples, there was more than one 

primagraft derived from the same patient, and these represent a biological replicate of 

sorts.  Most primagrafts derived from the same patient displayed a similar expression 

of Wanderlust markers.  As a reduction of cell numbers was needed for Wanderlust 

analysis, primagraft samples derived from the same patient were merged, and 1,000 

cells were selected at random for use in the trajectory.  Primagraft samples from 

patient L829 had a differential expression of Wanderlust markers.  On MDS analysis of 

all samples, one of the two L829 primagraft samples, AZ2, clustered away from all 

other samples.  This suggests that there was a problem in the staining or acquisition of 

this sample, and it was therefore not included in Wanderlust analysis.  Similarly, 

clustering approaches also identified that primagraft samples L825/JM158 and 

L578/AZ7 did not cluster closely with their patient derivatives, although this was not as 

extreme as the case of L829/AZ2.  These samples were therefore also not included in 

the sample merging.  It may be that a different ALL clone engrafted in these primagraft 

samples, causing a difference in marker expression, rather than the difference being 
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created experimentally.  However, a larger number of cells in the normal B cell 

developmental trajectory would be needed to allow analysis of individual primagraft 

samples to assess inter primagraft variation.   

MDS plots, used to check clustering of replicates, also identified inter assay variation 

between cell lines.  Three replicates of cell lines PreB697, R3D11 and R3F9 were run on 

three separate days.  Samples clustered more strongly on date than sample cell line, 

and cell lines acquired on one day clustered away from those acquired on the two 

separate occasions.  Although EQ beads are used to account for variability in machine 

performance, machine variability between days can still occur.  Mass cytometry is a 

relatively new technology and therefore problems encountered with methodology 

such as this are not surprising.  There are several techniques that could be used in the 

future to help control such variation.  Firstly, an internal control could be spiked into 

each sample before staining, which could be used for data normalisation.  This 

approach would not only account for day to day fluctuation of the mass cytometer 

sensitivity, but also variation produced during the antibody staining component of the 

protocol.  Secondly, a technique called ‘barcoding’ could be employed.  In this 

approach, samples are barcoded, and then stained and acquired together.  Barcoding 

can be achieved using different approaches, but commonly involved labelling cells with 

different combinations of isotopes (for example palladium) to achieve a unique 

barcode, before combination of samples and subsequently staining and acquisition 

(Behbehani et al., 2014; Zunder et al., 2015).  Such approaches would require 

validation, but would aid the integrity of the resultant data.  

For patient L919, primagraft samples were available from the patient’s first and second 

relapse.  Interestingly, primagraft samples from the first relapse were sensitive to dex, 

and samples from the second relapse were resistant to dex.  The samples showed 

differential expression of markers such as CD10, CD24, CD34 and CD38 by mass 

cytometry.  This indicates that this sample has a slightly more maturate phenotype, 

although it is not possible to determine this using the Wanderlust algorithm until an 

accurate trajectory has been created.  Samples from the first relapse also clustered 

away from the other sensitive samples and were closer to the dex resistant samples.  

This may mean that expression of Wanderlust markers are able to predict prognosis as 

well as potentially being associated with dex sensitivity.  Similarly, primagrafts derived 
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from the LK196 patient sample at second relapse, also dex sensitive, clustered with the 

dex resistant primagrafts.  This patient unfortunately went on to die from their 

disease.  Within the cluster of dex sensitive patients, no patients died from their 

disease, although one patient died post infection.  However, this association between 

Wanderlust marker expression and outcome had been proposed based on a small 

number of patients, and would need to be replicated in a larger cohort. 

The choice of start cell was investigated for the Wanderlust trajectory.  Bendall et al. 

found that the choice of start cell between Wanderlust stages 0.1 and 0.3 did not 

affect the algorithm’s ability to reproduce the B cell developmental trajectory, 

however this was not the case in this project.  This is most likely to be a result of a 

difference in protocols between Bendall et al. and this project.  Bendall et al. used 

lineage depletion to remove T cells from bone marrow samples, however this was not 

done here.  Therefore, when a very early start cell was selected, it was not possible to 

run the algorithm without discounting T cells, which may have skewed the trajectory.  

However, a start cell gate of cells at 0.3 maturation stage enabled the algorithm to be 

executed on CD19 positive cells only, as B cells have gained CD19 by this point of 

development.  This meant that the influence of T cells were removed and 

consequently the trajectory produced replicated that published in Bendall et al. much 

more faithfully.   

However, the 0.3 start cell gate still did not exactly mirror the trajectory published by 

Bendall et al., with key differences seen in the trajectory of CD38.  This may be due to 

the very low cell number in the remission samples used to create the trajectory, and 

therefore not enough cells in rare populations to create an accurate trajectory.  The 

trajectory may therefore be improved through staining and acquisition of more 

‘normal’ B cell samples, if possible with T-lineage depletion.  A greater number of B 

cells may allow a more accurate trajectory to be created. 

The low number of cells used to create the trajectory has also hampered the ability to 

accurately assess the maturation state of the individual primagraft samples, as when 

the ALL samples were added into the pool of cells to execute the algorithm, the 

trajectory was distorted, which meant it differed to a greater extent to the original 

trajectory published by Bendall et al.  This means the maturation levels assigned to 
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cells may not be accurate due to incorrect ordering of Wanderlust marker expression.  

For example, although an initial post Wanderlust analysis suggested that remission 

samples had the broadest range of cell maturation phenotypes, as expected, it also 

indicated that dex resistant samples had less mature phenotype than sensitive 

samples.  This is the opposite to that observed in studies such as Dworzak et al. (2008), 

who observed an increased expression of CD20, and antigen of differentiation, in 

residual blasts after GC treatment, and those by Nicholson et al. (2015) and Rhein et al. 

(2007), which have already been discussed.  Furthermore, it is well characterised that 

B cell maturation state in normal B cell development has an inverse relationship to 

endogenous GC sensitivity, with a higher amount of apoptosis in early B cells 

compared to more mature cells (Lill-Elghanian et al., 2002; Igarashi et al., 2005a).  This 

may be a mechanism to control steady state lymphopoeisis.  Therefore, as previously 

indicated, it would be beneficial to run additional ‘healthy’ bone marrow samples, to 

generate an accurate trajectory.  Having a high event number of healthy bone marrow 

events would also anchor the trajectory, and prevent distortion when ALL samples are 

added in.  It may be useful to consider the use of healthy bone marrow samples from a 

non ALL source, for example from total hip replacement surgery.  These samples will 

not have been subjected to the effects of prior or ongoing chemotherapy and may 

therefore be a more accurate representation of the B cell subtypes. 

However, despite difficulties in creating an accurate B cell trajectory, the pre 

wanderlust analysis shows encouraging associations.  An analysis of all samples 

showed that samples clustered in broad groups based on their dex sensitivity and 

resistance.  Furthermore, these samples were stained and acquired on different days, 

eliminating any role of a batch effect in creating this outcome.  When just primagraft 

cells were clustered using a cluster dendrogram, samples clustered strongly based on 

dex sensitivity.  As previously discussed, two groups of sensitive samples clustered with 

the dex resistant samples, however these patients both had poor outcomes.  Similarly, 

all other dex sensitive samples clustered together based on their expression of the 

Wanderlust markers.   

Together, these data show that ALL samples clustered by dex sensitivity based on their 

expression of Wanderlust markers.  However, an inability to recreate an accurate B cell 

trajectory thus far has meant it has not been possible to accurately determine whether 
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resistant samples are more or less mature than dex sensitive samples.  More remission 

or healthy bone marrow samples are needed to enable the Wanderlust algorithm to 

create a more accurate and anchored B cell trajectory allowing the maturation stage of 

samples to be determined.  This will open the opportunity for therapeutic targeting of 

this more, or less, mature phenotype to resensitise patients to dex. 
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Chapter 7. General discussion 
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Over the last few decades, outcome in ALL has improved significantly, with 5 year EFS 

in the UK increasing from 35% in 1972, to 87.2% in the most recently closed UKALL 

trial, UKALL 2003 (Working Party on Leukaemia, 1986; Vora et al., 2013b).  This 

dramatic improvement has largely been due to the augmentation and intensification 

of ALL therapies, including the use of GCs.  However, this has also brought with it an 

increase in toxicity.  The UKALL 2003 trial reported a 5 year overall survival of around 

91%, and greater than 3% treatment related mortality (TRM) (O’Connor et al., 2014).  

Therefore, TRM makes up approximately a third of trial deaths, which is extremely high 

in a disease with such a good event free survival.   

A key question is whether this treatment intensification is necessary in all patients, 

when around 50% of patients were cured on the much less intensive protocols of the 

1980s.  Furthermore, there are a proportion of patients still not cured, and who 

therefore do not benefit from intensified treatment and its associated adverse effects.  

Although modern day therapy is stratified based on a number of factors, there is 

clearly still a need for further treatment personalisation, to combat both the problems 

of under- and overexposure of treatment, including dex, in ALL patients.  The aim of 

this project has therefore been to explore variables in dex therapy and response, to 

better understand how dex personalisation may be achieved.  Key areas included dex 

pharmacokinetics, and cellular determinants of GC response, which may include 

intracellular dex accumulation, GR posttranslational modifications and B cell 

maturation state. 

Personalisation using pharmacokinetics 

Dose adjustment is of particular interest in guiding treatment of anticancer drugs, due 

to the narrow therapeutic window that exists between clinically effective and toxic 

drug exposures for the majority of cancer therapeutics (Paci et al., 2014).  Indeed wide 

pharmacokinetic variability is seen in many other cancer therapeutics, and successful 

therapeutic dose monitoring (TDM) approaches have been implemented with drugs 

such as carboplatin, methotrexate and 13-cis-retinoic acid (Stoller et al., 1977; 

Chevreau et al., 2005; Veal et al., 2013).  With dex, there are a number of points to 

consider before dose individualisation can be seen as a viable treatment option.  In 

order to effectively develop a personalisation of dex dosing, factors such as disease 

heterogeneity and inter- and intrapatient variability need to be considered. 
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The substantial pharmacokinetic variation seen in the study by Yang et al. (2008) has 

been replicated in this patients on the UKALL 2011 trial; extensive inter-patient 

variability was seen in dex exposure, as defined by AUC0-12h and clearance, on both the 

short (10mg/m2 x 14 days) and standard (6mg/m2 x 28 days) arms of the trial’s first 

randomisation, R1.  Furthermore, although dex exposure was significantly higher on 

the short arm after a single dose of dex, there was substantial overlap between the 

two arms.  A number of patients on the standard arm displayed higher exposures than 

those on the short arm, despite having a longer duration of treatment.  Importantly, 

this pharmacokinetic variability was reflected in the results of UKALL2011 R1.  A futility 

analysis performed in April 2017, with a median follow up time of 20.4 months, found 

that there was no statistically significant difference between the arms in terms of MRD 

response, steroid-related toxicity or relapse free survival (Goulden et al., unpublished).   

In this study, a relationship was seen between dex exposure and day 8 blast count, 

with patients exhibiting a blast count of <5% having a statistically higher exposure to 

dex AUC0-12h.  However, there was no difference in day 8 blast count between the two 

treatment arms of R1.  This highlights the impact that such extensive variation in dex 

pharmacokinetics can have.  The longer term effect of such an early dex response 

would have to be assessed.  If early dex exposure was associated with a benefit in 

terms of long term outcome, the measurement of dex plasma concentrations could 

enable the modification of dex dose in those patients achieving potentially sub 

therapeutic or particularly high exposures to dex.  However, in some high exposure, 

high-risk groups, it may not be appropriate to reduce treatment. Knowledge regarding 

the relationship between pharmacokinetics and toxicity from a longer follow up, 

however, could still be useful for the prediction and consequentially better detection 

of toxicity, allowing prompt and effective treatment. 

Intrapatient variability can affect TDM strategies, and in this study, a certain degree of 

intrapatient variability was seen.  However, if a cause for such variability is 

determined, this can be appropriately factored into a TDM equation.  Several potential 

reasons for intrapatient variability were identified in the current study, such as the 

concomitant administration of asparaginase and other concomitant medications.  In 

this study, patients who had received two doses of asparaginase had a greater 

intrapatient variability in terms of AUC0-12h and blood albumin concentrations.  
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Asparaginase administration was also highlighted as a source of intrapatient variability 

in the trial by Yang et al. (2008). 

Future studies in this area should focus on clarifying the source of intrapatient 

variability, particularly focusing on the proposed relationship between dex and 

asparaginase.  The inclusion of later sampling points during the delayed intensification 

phase of therapy, or international equivalent, would facilitate this and enable a more 

direct comparison to data generated by Yang et al. (2008).  If intrapatient variation was 

attributed to concomitant administration of asparaginase in an independent study, the 

decrease in dex clearance associated with asparaginase treatment would need to be 

factored into any proposed dex dose adjustment approach utilised for individual 

patients (Jackson et al., 2016).  

A TDM approach would be strengthened if a therapeutic window for dex was defined, 

and correlations between plasma dex concentrations, and apoptosis in ALL cells were 

determined.  However, ALL is a heterogeneous disease, with multiple subtypes 

displaying different molecular characteristics and prognoses.  It may well be that the 

therapeutic window for dex is different in defined patient subpopulations, and 

investigation of ALL as one disease may not allow the effects of variables in different 

patient subgroups to be identified.  Therefore, future studies may generate more 

valuable data through evaluation of these groups individually.  This would be 

challenging based on the numbers of patients at a national level, and sub-group 

specific research would be facilitated if there was a common therapy backbone 

worldwide.  Comparisons would then be possible across an international cohort of 

patients.  This would require carefully planned prospective studies to further elucidate 

relationships between dex pharmacokinetics and clinical outcome and toxicity in large 

patient populations (Jackson et al., 2016).  

Consideration should also be given to the feasibility of TDM approaches for children 

with ALL, as other paediatric cancers which utilise TDM, such as high risk 

neuroblastoma, have a much lower incidence.  The assay utilised in this project would 

not be practical for use with over 400 new patients a year, for reasons including the 

high demand on research nurses, dry ice shipment of samples and a lengthy extraction 

process.  A possible alternative would be the use of dried spots collected with Guthrie 
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Cards or Mitra blood sampling devices, which would allow transport at room 

temperature and sample collection at home.  For example, the Newcastle Cancer 

Centre Pharmacology Group has been testing Mitra blood sampling devices with dex in 

blood spots, and has developed a linear and robust method with a limit of 

quantification of 2ng/ml.  The extraction process is simple and it is easy to process 

over 100 samples simultaneously.   

Personalisation using pharmacogenetics  

Although no pharmacogenetic studies have been included in this project, this still 

represents an important avenue of investigation as a way of personalising therapy, 

particularly as a number of the genes involved in both the pharmacokinetics and 

mechanism of action of dex exhibit polymorphisms.  A clinically important example of 

personalisation of an anticancer drug using pharmacogenetic information is the 

administration of azathioprine and 6-mercaptopurine in relation to TPMT genotype 

(McLeod et al., 2000; Relling et al., 2013).   

To date there have been contradictory reports from pharmacogenetic studies 

regarding the effects of different SNPs on GC response.  This may, in part, be due to a 

limited amount of research in relatively small groups of patients.  As discussed for 

pharmacokinetics, it would be beneficial to confirm these findings in larger cohorts, 

which would allow evaluation of whether such relationship are consistent across 

different ALL subgroups.  Analysis of patient data from previous trials has been limited 

by the incomplete collection of high quality clinical data.  Future studies should 

therefore endeavour to gather detailed clinical information alongside DNA to facilitate 

powerful genetic analyses, such as genome-wide association studies (GWAS). This will 

enable the collection of meaningful datasets relating to the potential impact of 

pharmacogenetic variation on clinical parameters, such as the incidence and severity 

of osteonecrosis associated with dex treatment (Karol et al., 2015).   

Looking forward, with regards to this project, it would be useful to perform two types 

of studies.  Firstly, to continue to take a global approach and analyse the effect of 

genetic variation on pharmacokinetics as well as outcome, as this might provide an 

explanation for the extent of pharmacokinetic variation seen in ALL patients.  As DNA 

samples have been collected as part of the UKALL 2011 trial, a candidate gene analysis 
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could be performed to assess the impact of variation in key genes relating to dex 

pharmacokinetic and mechanism of action.  However, in the current project it has 

been shown that dex may not be a strong substrate for MDR1, therefore this would 

not need to be included in the panel of candidate genes to be investigated.   

Secondly, a case control study could be performed, investigating the impact of 

pharmacogenetic variation on steroid induced toxicity.  It would be sensible to use 

experience of hypertension as a measure of steroid induced toxicity.  Hypertension is a 

frequently measured and objective parameter, which cannot be attributed to other 

drugs used in induction therapy.  This would allow identification of SNPs relevant to 

steroid toxicity rather than experience of toxicity overall. 

If any associations were found, the impact and costs of such a test would need to be 

evaluated.  Although genetic testing is currently relatively expensive, the cost and ease 

of genetic testing is advancing all the time.  Similarly, if a SNP was associated with 

increased toxicity, it may not be that therapy is reduced, but that increased vigilance is 

taken with these patients to identify and treat the associated toxicity effectively.   

Personalisation using molecular oncology 

There are a number of approaches to explore for stratification of dex based on current 

knowledge of its molecular pharmacology.  One well-investigated option is using in 

vitro dex sensitivity to adjust dosing.  Several studies have highlighted a correlation 

between in vitro dex sensitivity and dex response, even in low risk groups (Hongo et 

al., 1997; Kaspers et al., 1997; Frost et al., 2003). Den Boer et al. (2003) proposed that 

such an approach could be used as a way of identifying patients who may benefit from 

a therapy reduction, for example those with multiple low risk variables including low 

MRD and high drug sensitivity. 

However, this approach to dose stratification would only be appropriate for patients 

who are highly sensitive to dex.  It is also essential to consider the treatment 

personalisation strategy for patients who display dex resistance.  In this project, many 

patients who displayed resistance to dex had GI50s that were greater than any patient 

on either arm of the UKALL 2011 trial.  Those patients exhibiting high dex GI50 values 

would be less likely to obtain a clinical benefit from dex at a dose equivalent to that 
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used in the UKALL 2011 trial, but may still suffer toxicity.  Several molecular variables 

have therefore been investigated in this project to better understand decreased dex 

sensitivity and ways in which this can be reversed.  

In the past, studies have focused on deletion or mutation of the GR as a mechanism of 

resistance.  However, although slightly more common at relapse, GR deletion and 

mutations are rare in patient samples (Irving et al., 2005b; Irving et al., 2016).  In this 

project, all patients appeared to have normal GR levels which and underwent 

phosphorylation at serine 211 on stimulation with dex, a sign of activation associated 

with nuclear translocation.  This is a further indication of the rarity of GR deletions and 

mutations a cause of GC resistance.   

Nevertheless, as would be expected, patients with deletions at relapse have been 

associated with an increased risk of induction failure, second relapse, and also have a 

reduced overall survival (Irving et al., 2016).   Therefore, in patients with GR deletions 

and mutations, it may be sensible to avoid treatment with dex, in order to limit dex 

exposure and subsequent unnecessary toxicity.  Treatment in these situations could be 

focussed on other core chemotherapeutics, such as vincristine, or targeted therapies, 

as will be discussed below.  Testing for GR is possible using MLPA (multiplex ligation-

dependent probe amplification) or FISH (fluorescence in situ hybridisation), two tests 

commonly used to detect other genetic changes in ALL.  However, due to the 

infrequency of this situation, a cost-benefit analysis would need to be performed to 

establish the feasibility of testing ALL patients for a GR deletions, even at relapse.   

However, as GR mutation and deletion do not explain the majority of dex resistance in 

ALL, other mechanisms were assessed as potential approaches of personalising 

therapy. Firstly, intracellular drug accumulation in sensitive and resistant ALL cells was 

measured, including the role within this of the multidrug transporter, MDR1.  While 

pharmacokinetics and cellular response were shown to be hugely variable, variations 

in drug accumulation did not appear to be caused by MDR1 substrate specificity.  

Consequently, personalisation approaches involving genotyping for MDR1 

polymorphisms, or testing ALL cells for mutations in MDR1, are unlikely to be useful.  

Although the extent of variation in intracellular accumulation was comparable to that 

observed in dex pharmacokinetics, variation in intracellular accumulation does not 
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appear to play a key role in dex response in ALL cells, and therefore does not provide a 

strategy for dex personalisation. 

Secondly, variation in the GR cIEF profiles (comprising GR post-translational 

modifications and GR interacting proteins), was also studied as a potential 

stratification approach.  Although previous work had identified differences between 

sensitive and resistant cells, these differences were not seen here.  In this project, a 

novel epitope unmasking event was possibly identified.  This could be further studied 

through analysis of the interaction between the GR and its heteromeric complex, 

however there were no consistent differences observed between sensitive and 

resistant cells in the epitope unmasking event.  Moreover, alteration in epitope 

unmasking would likely affect the ability of the GR to bind GC and translocate to the 

nucleus.  As resistant cells are generally able to translocate successfully to the nucleus, 

it is likely this is not a cause of resistance and it would thus be better to focus research 

aimed at re-sensitising ALL cells to dex on post-GR mechanisms of resistance. 

Finally, B cell maturation state was investigated as a cause of dex resistance in ALL 

cells.  Previous studies have highlighted a role of maturation state as a way of evading 

GC therapy in ALL (Rhein et al., 2007; Nicholson et al., 2015). Furthermore, non ALL 

studies have reported an inverse relationship of maturation with sensitivity to both 

synthetic and endogenous GCs (Lill-Elghanian et al., 2002).  In this project, ALL cells 

clustered together by dex sensitivity based on their expression of Wanderlust markers.  

Although it was not possible to accurately order cells in terms of maturation state due 

to problems reconstructing the B cell developmental trajectory, resistant cells 

appeared to have a different maturation phenotype to sensitive cells.  This was based 

on their differential expression of Wanderlust markers, although further work is 

needed to ascertain whether dex resistant cells were more or less mature than 

sensitive cells. 

If dex resistant cells are found to have a more mature phenotype, consistent with 

previous studies, the maturation state of ALL cells could be targeted as a way to re-

sensitise therapy using phenotypic differences of more mature cells.  For example, 

Nicholson et al. (2015) showed that increased maturation was associated with altered 

PAX5 levels and JNK activation.  Therefore, approaches like JNK inhibition could be 
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used in these cells, as JNK inhibition was shown to increase dex sensitivity 30-fold in 

cell lines, to a GI50 value that would be clinically achievable (Nicholson et al., 2015).  

Similarly, Rhein et al., (2007) found more mature cells had a change of expression of 

molecules related to the JAK-STAT pathway, and therefore this also provides a 

potential avenue for re-sensitisation. 

As there will likely not be a single way to re-sensitise all patients to dex therapy, some 

approaches not explored as part of this project will be briefly discussed.  Studies in the 

literature have mainly focused on combinations with other drugs as a way of re-

sensitising cells to GCs.  These include BCL2 antagonists (Miyashita and Reed, 1993) 

and mechanistic target of rapamycin (mTOR) inhibitor rapamycin, which is thought to 

modulate MCL1 (Wei et al., 2006; Zhang et al., 2011; Guo et al., 2013).  Due to the high 

incidence of RAS mutations in ALL, a role for MEK inhibitors has been identified by 

several groups (Irving et al., 2014; Aries et al., 2015; Jones et al., 2015).  This has been 

confirmed by the sensitisation of B ALL cell lines to dex by the MEK1/2 inhibitor, 

selumetinib (Polak et al., 2016). Other possible drugs include arsenic trioxide 

(Bornhauser et al., 2007), MAPK inhibitors (Garza et al., 2009),and the glycolysis 

inhibitor 2-deoxyglucose (Eberhart et al., 2009; Hulleman et al., 2009) all of which have 

been shown to restore sensitivity in GC-resistant ALL cells.  As much of this data has 

been generated in cell lines, further work is needed to validate these findings in 

primary patient cells. 

Combined approach 

Potentially one of the most useful approaches to achieving therapy personalisation 

would be a combined approach of targeted investigation, as previous research has 

generally focussed on individual areas of dex pharmacology.   

For example, a pharmacokinetics-based personalisation approach does give not 

consideration to the response and sensitivity of the individual cancer cell. Conversely, 

using drug sensitivity assays or similar strategies to personalise therapy do not take 

into account the exposure of the leukaemic cells to dex. This combined approach could 

be achieved in future studies by assessing pharmacokinetics, pharmacogenetics and 

drug sensitivity simultaneously in an individual patient, and considering their combined 

effects on toxicity and outcome. 
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Similarly, in the situation of reduced cellular dex sensitivity, a combined approach 

could be taken to study the molecular pharmacology of dex.  Published studies have 

used numerous experimental approaches to identify markers of resistance.  In the 

clinical setting, in order to personalise dex therapy, it would be useful to have one 

method that could identify an appropriate dex re-sensitising agent.  The further 

development of mass cytometry approaches would aid this, as mass cytometry can 

assess up to 40 parameters simultaneously in individual cells.  Multi-purpose metal 

conjugated antibody panels could be designed to incorporate CD-antigens to detect 

MRD, maturation markers, and phospho-antibodies to investigate pathway activation 

as therapeutic targets.  This would enable the appropriate dex re-sensitisation agent to 

be used at an individual patient level.  For example, if a change in MAPK signalling was 

identified, a MEK inhibitor such as selumetinib could be used.  Similarly if cells of a 

more mature phenotype were seen, a JAK inhibitor could be prescribed in an attempt 

to re-sensitise patients to dex. 

However, there is clearly more work and validation that needs to be done before this 

situation becomes a realistic possibility.  For example, a TDM approach may not be 

possible if intra-patient variability is too high. Similarly, the feasibility of using drug 

sensitivity assays to predict cellular dex response, and subsequent mass cytometry 

tests to establish a potential cause of resistance, would have to be evaluated in a 

clinical setting.  In terms of finance, the additional cost of stratifying therapy would 

also need to be justified (Jackson et al., 2016). 
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Conclusions 

Although a large focus of cancer research is directed at novel targeted therapies, for 

the majority of cancers, old drugs still form a fundamental component of treatment.  

As a result, patients are subjected to both long and short-term toxicities.  It is 

therefore important, where feasible, to personalise these therapies to achieve the best 

possible clinical outcome for patients whilst reducing the chances of treatment related 

morbidity and mortality.  This is particularly relevant in ALL, as, while the majority of 

children are now treated successfully, there are significant problems associated with 

the levels of toxicity experienced by children.   

Dex is a central component of treatment in childhood ALL and patients display wide 

inter-patient dex pharmacokinetic variability.  At a cellular level, there are also clearly 

differences in dex response, with a wide range of dex sensitivities seen between 

patients.  For the future optimisation of therapy, it would be useful to define an 

optimal exposure to dex, which results in minimal toxicity and maximum cancer cell 

death.  The aim of personalised treatment would be better achieved through 

prospective studies focused on defining the source of both inter- and intra-patient 

variability, and the effect of ALL subtype within this.  A strategy of targeted 

investigation would help to achieve this aim more efficiently, as there is still much to 

be learned about the clinical and molecular pharmacology of dex. 

There is a broad spectrum of causes for reduced sensitivity to dex, however this 

project has highlighted a role for altered maturation state as a way of evading dex 

cytotoxicity in some resistant ALL cells.  All-encompassing approaches like mass 

cytometry provide opportunities to ask many questions simultaneously about the 

foundation of dex resistance, and how therefore to best re-sensitise the patient to dex. 

Despite advances in targeted therapy, the excellent outcome for patients with ALL 

means that conventional chemotherapy is unlikely to be replaced in the foreseeable 

future.  Optimisation of therapies such as dex is therefore important, to lessen the 

considerable short and long term impact of toxicity on patient quality of life.  While 

other drugs also contribute to the successful treatment of childhood ALL, the 

generation of additional knowledge regarding dex personalisation may enable novel 

approaches and improvement to treatment. 
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Appendix A. UKALL 2011 inclusion and exclusion criteria 

Taken directly from UKALL 2011 Protocol version 6.0 

Main Inclusion and Exclusion Criteria 

Inclusion Criteria 

UKALL 2011 is open to all patients from age 1 (first birthday) to 24 years 364 days (at 

time of diagnosis) with a first diagnosis of acute lymphoblastic leukaemia or 

lymphoblastic lymphoma (T-NHL or SmIg negative precursor B-NHL) diagnosed using 

standard criteria. Written informed consent is required for all patients and a negative 

pregnancy test within 2 weeks prior to starting treatment for female patients of 

childbearing potential. 

Exclusion Criteria 

The following patients are excluded from entering the trial 

  Infants less than a year old at diagnosis. It is recommended that these patients be 

entered onto the relevant Interfant ALL study. 

  Patients diagnosed with mature B-ALL (Burkitt-like, t(8;14), or C-MYC re-arranged 

regardless of morphology or phenotype). Patients with this disease should be 

treated as mature-B-ALL on a suitable protocol for this condition. 

  Patients diagnosed with Philadelphia-positive ALL (t(9;22) or BCR/ABL positive). If 

randomised patients are subsequently found to have Philadelphia-positive ALL they 

will be withdrawn from the UKALL 2011 protocol treatment and transferred to a 

suitable alternative protocol for further therapy. 

  Patients in whom written informed consent has not been obtained from parents 

and/or patients prior to trial entry. 

  Patients who are sexually active and are unwilling to use adequate contraception 

during therapy and for one month after last trial treatment. 

 All patients must be registered within 7 days of starting induction treatment. 
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Appendix B. Validation of plasma dexamethasone assay 
transfer 

Introduction 

This report is documenting the validation of the assay to measure dexamethasone in 

human plasma by LC/MS on the Agilent HPLC coupled to a PE4000 MS.  The assay was 

originally validated on the QTrap LC/MS but had to be transferred as the QTrap LC/MS 

was being decommissioned.  The original method was validated in in February 2014 

and the details can be found in the report version 1.  As the validation is covering an 

LC/MS change, a full validation is not necessary, as sample specific validation is still 

applicable from the original validation.  Therefore only instrument specific validation 

needs performing. 

During the course of this validation, several small changes were made to the validation 

performed on the QTrap LC/MS, and these changes are:  

 The range of the standard curve was changed from 1 to 100ng/ml because of the 

range of linearity. From the previous data collected, we know that samples taken 1 

and 2 hours post dexamethasone administration are likely to have dexamethasone 

concentrations above 100ng/ml. Therefore, samples taken 1 and 2 hours after 

administration of dexamethasone will be diluted 1:2 in blank plasma. 

 The quality control sample concentrations were also altered to match the new 

standard curve range.  These were 2, 45 and 90 ng/ml. 

Abbreviations 

SD Standard deviation 

%CV Coefficient of variation expressed as a 

percentage 

v/v Volume/volume 

w/v Weight/volume 

M Molar solution 
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Limit of detection / quantitation (LOD / LOQ) 

This was not performed, as we know from previous data collected that the lowest 

standard needed is 1ng/ml.  Therefore, it was only necessary to verify that 

concentrations of 1ng/ml were above the limit of quantitation.   

 

Figure B.1 Limit of detection/quantitation.  

The assay performed on 11/10/16 proves this (LB299/13) 

Linear range of assay 

Lab book ref: LB299/013 

Spiked plasma containing dex at concentrations of 0, 1, 5, 10, 50, 100, 150, 200 and 

250ng/ml were extracted in triplicate according to the method described in appendix 1 

and injected onto the LC/MS/MS system.  

Standard curves using a variety of curve fits and weighting were constructed and the 

linear range of the assay and best curve fit were determined. 

See Figure B.2 for curve types 

The assay is linear between 1 and 100 ng/ml.  

The proposed range for the assay is 1 to 100ng/ml. 

Dexamethasone peak: ~1.25 x 

104 cps 

Baseline: ~20 cps 
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The most appropriate curve fit was ‘linear through zero’, ‘no weighting’  

 

Weighting: Linear through zero, no weighting 

Range 1-100ng.ml 

Curve: y=105x 

Correlation: r = 0.9984 

 

Weighting: Linear 

Range: 1-100ng/ml 

Curve:  y=103x+0.25  

Correlation r=0.9977 

Figure B.2 Curve fits for dex standard curve. 
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Specificity 

Not applicable.  For specificity validation see original validation report. 

Recovery Data 

Not applicable.  For specificity validation see original validation report. 

Intra assay precision 

Lab book ref: LB299/018 

Blank plasma was spiked with 2, 45 and 90ng/ml dex and 9 aliquots were extracted, 

according to the method described in appendix 1, alongside a standard curve of 0 to 

100 ng/ml. Extracts were then injected onto the LC/MS/MS system.  

The mean, SD and %CV for dexamethasone at each concentration was then 

determined. 

See Table B.2 for results. 

 

Table B.2 Intra assay precision. 
Intra assay precision was good with a mean %CV for dexamethasone of 7.5%.  
Acceptable CV is less than 10%. 

Inter assay precision 

Lab book refs: LB299/019, 021, 026, 030, 035, 038, 043, 047, 059. 

Blank plasma was spiked with 2, 45 and 90 ng/ml dexamethasone and between 3 and 

9 aliquots were extracted, according to the method described Chapter 2, alongside a 

standard curve of 0 to 100 ng/ml. Extracts were then injected onto the LC/MS/MS 

system.  

This was performed on 10 separate occasions. 

INTRA - ASSAY VARIATION

1 2 3 4 5 6 7 8 9 Mean SD CV (%) % Accuracy

QC 2 2.28 2.3 2.52 2.28 2.58 2.11 2.14 1.98 2 2.24 0.21 9.4 112.2

QC 45 45.7 49.6 44.2 47 50.5 41 47.4 41.9 37.6 45.0 4.22 9.4 100.0

QC 90 82.8 83.2 82.2 83.3 85.1 78.3 82.8 90.1 81.2 83 3.17 3.8 92.5

Dexamethasone calculated concentration ng/ml
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The mean inter assay variation for each compound at each concentration was then 

determined. 

See Table B.2 for results. 

 

Table B.2 Interassay precision. 
Values greater than +/- 15% (20% for QC2).  Inter assay precision was good with a 
mean CV for dex of 6.6%.  Acceptable CV is less than 10%. 

Stability data 

 Experimental stability 

 Freeze/Thaw stability – Not applicable, see original validation report 

 Long Term Storage stability – Not applicable, see original validation report 

INTER - ASSAY VARIATION

QC 2ng/ml

Date Results file (.rdb) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 10 Mean

17/10/2016 161017 intraasay 24h RES 2.28 2.3 2.52 2.28 2.58 2.11 2.15 1.98 2 2.24

19/10/2016 161019 KW1591 CA1594 RES 2.14 2.32 2.19 2.22

24/10/2016 161024 KM1608 GM1612 LB1620 RES 2.63 2.26 2.2 2.36

24/10/2016 161031 KM1501 HC1451 WC1644 RES 2.91 2.08 1.94 2.31

01/11/2016 161101 New QCs JH 1702 RES 1.98 1.91 1.82 2.07 2.1 2.01 1.98

24/11/2016 161124 SR1696 RES 2.16 2.36 2.26 2.26

05/12/2016 161205 AG1482 SM1516 LR1528 JG1549 RES 2.11 2.05 2.13 2.10

06/12/2016 161212 LA1607 BR1541 HP1517 RES 2.26 2.23 2.02 2.17

11/01/2017 170111 new std test RES 2.26 2.13 1.95 2.11

03/02/2017 170203 AW1768 new QCs RES 2.28 2.18 2.33 2.25 2.54 2.24 2.30

MEAN 2.21

STD 0.12

CV % 5.3

QC 45ng/ml

Date Results file (.rdb) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 10 Mean

17/10/2016 161017 intraasay 24h RES 45.7 49.6 44.3 47 50.5 41 47.6 41.9 37.7 45.0

19/10/2016 161019 KW1591 CA1594 RES 44.4 47.0 44.4 45.3

24/10/2016 161024 KM1608 GM1612 LB1620 RES 43.4 45.9 45.0 44.8

24/10/2016 161031 KM1501 HC1451 WC1644 RES 39.1 39.5 42.1 40.2

01/11/2016 161101 New QCs JH 1702 RES 41.9 42.8 40.9 45.4 46 45.8 43.8

24/11/2016 161124 SR1696 RES 47.1 43.5 47.4 46.0

05/12/2016 161205 AG1482 SM1516 LR1528 JG1549 RES 39.8 43.1 44.8 42.6

06/12/2016 161212 LA1607 BR1541 HP1517 RES 41.2 39.9 40.0 40.4

11/01/2017 170111 new std test RES 43.5 44.6 42.1 43.4

03/02/2017 170203 AW1768 new QCs RES 40.4 41.8 43.6 46.3 45.9 44.9 43.8

MEAN 43.5

STD 2.0

CV % 4.5

QC 90ng/ml

Date Results file (.rdb) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 10 Mean

17/10/2016 161017 intraasay 24h RES 83.3 83.3 82.4 83.4 85.4 78.3 83.4 90.6 81.2 83

19/10/2016 161019 KW1591 CA1594 RES 79.9 84.5 78.4 81

24/10/2016 161024 KM1608 GM1612 LB1620 RES 75.2 78.7 18.3 57

24/10/2016 161031 KM1501 HC1451 WC1644 RES 72.7 79.4 91.7 81

01/11/2016 161101 New QCs JH 1702 RES 83.3 77.7 86.7 90.5 88.7 88.9 86

24/11/2016 161124 SR1696 RES 81.0 81.0 82.4 81

05/12/2016 161205 AG1482 SM1516 LR1528 JG1549 RES 80.5 77.5 82.4 80

06/12/2016 161212 LA1607 BR1541 HP1517 RES 79.1 79.1 73.4 77

11/01/2017 170111 new std test RES 83.6 76.7 81.3 81

03/02/2017 170203 AW1768 new QCs RES 78.7 78.3 81.6 81.2 85.0 90.0 82

MEAN 79

STD 8.0

CV % 10.1

Without 18.3 value MEAN 81

STD 2.7

CV % 3.3

mean CV 6.6

Calculated concentration ng/ml

Calculated concentration ng/ml

Calculated concentration ng/ml
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Experimental stability - Lab book ref: LB299/018 & 020 

Blank plasma was spiked with 2, 45 and 90ng/ml dex and 5 aliquots were extracted, 

according to the method described in appendix 1, alongside a standard curve of 0 to 

100 ng/ml.  

50µl of all replicates of each extracted spiked plasma sample were injected 

immediately onto the LC/MS/MS alongside the standard curve.  

The remainder of the extracted spiked plasma samples were stored at 4°C (in the auto 

sampler) for 24 hours.  

After 24 hours, 50µl of the remainder of the sample of all replicates of each extracted 

spiked plasma sample were injected onto the LC/MS/MS. 

The percentage difference in mean peak area for the samples stored for 24 hours was 

calculated against the mean peak area for those samples injected at time 0 to 

determine the experimental stability of the assay. 

See Table B.3 for results. 
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QC 2 ng/ml  
       

 
Calculated concentration ng/ml 

  

Time Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean 

% change from 

Time 0 
 

0 - 4oC 2.58 2.11 2.15 1.98 2 2.16   
 

24h - 4oC 2.56 2.17 2.17 1.96 2 2.17 100.4 
 

         
QC 45 ng/ml  

       

 
Calculated concentration ng/ml 

  

Time Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean 

% change from 

Time 0 
 

0 - 4oC 49.6 44.3 47 50.5 41 46.48   
 

24h - 4oC 51.5 47.4 49.2 51.4 42.3 48.36 104.0 
 

         
QC 90 ng/ml  

       

 
Calculated concentration ng/ml 

  

Time Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean 

% change from 

Time 0 
 

0 - 4oC 83.2 82.2 83.3 85.1 78.3 82.42   
 

24h - 4oC 90.9 87.3 87.2 93.8 86.4 89.12 108.1 
 

         

Table B.3 Dex experimental stability.  

There was no loss of stability of dex when stored at either room temperature or 
4°C on the autosampler.  
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Appendix C. LC/MS advanced settings 

QTrap Settings for quantification of dex concentrations in human plasma 

Mass Spec parameters: 

Scan Type:  MRM 

Polarity:  Positive 

Total Scan Time: 0.3100 

 

 

Duration:  5.002mins  

Delay time:  0 

Cycles:   968

 

ID 

Time 

(msecs) 

DP 

(volts) 

EPstart 

(volts) 

CE 

(volts) 

CEPstart 

(volts) 

CXPstart 

(volts) 

Dex 150.0 76.000 12.000 33.000 30.000 6.000 

Bec 150.0 71.000 10.000 39.000 32.000 6.000 

Table C.1 QTrap mass spectrometer settings 
 

Ion Source parameters: 

CAD:   -2.000 

Ihe:   1.000 

GS2:   80.00 

GS1:   40.00 

TEM:   550.00 

IS:   5500 

CUR:   40.00 

Advanced MS parameters: 

Resolution Q1:  Unit 

Resolution Q2:  Unit 

Intensity threshold: 0 

Settling time:  0 ms 

Pause:   5.007 ms 

Autosampler parameters: 

Syringe size (l): 250 

Injection volume (l): 50 

Pre inject Flushes (#): 2 

Post injectflushes (#): 2 

Air cushion (l):10 

Excess volume (l): 10 

Sample speed:  Medium 

Needle level (%): 10 

Inject delay time: 0 min 

Replicate injections: 1 

Analysis time:  0 min 

Vial vent mode:  Off 

Loop mode:  Partial 

Loop volume (l): 200 

Flush volume (l): 250 

Flush speed:  Medium 

Temperature control: Enable 

Set point:  4˚C 

Pump settings: 
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Total Time 

(min) 

Flow Rate 

(µl/min) 

Gradient 

Profile A (%) B (%) 

0 0.0 300.000 1.0 60.0 40.0 

1 0.5 300.000 1.0 60.0 40.0 

2 1.5 300.000 1.0 0.0 100.0 

3 2.0 300.000 1.0 60.0 40.0 

4 5.0 300.000 1.0 60.0 40.0 

Table C.2 QTrap pump settings. 
Limits: 

Minimum Pressure: 0.0 psi 

Maximum Pressure: 6100.0 psi 

Shutdown time:  60 min 

Valco valve settings 

Posistion name for Step0: Waste 

  Total Time (min) Position 

0 1.4 B 

1 3.2 Waste 

Table C.3 QTrap Valco Valve settings.  
 

Agilent Settings for quantification of dex concentrations in human plasmaLC/MS Conditions 

Flow Rate:  300µl/min 

Column:  Gemini 3µ C18 110A (50x3mm) (Phenomenex,008-4439-YO) 

Injection volume: 50l  

Run Time:  13 min 

Column temperature:  Ambient 

Sample temperature:  4C 

Dexamethasone Q1 Mass: 393.27 

Dexamethasone Q3 Mass: 354.90 

Beclomethasone Q1 Mass: 409.114 

Beclomethasone Q3 Mass: 147.1 

Retention time of Dexamethasone ~9.36mins 

Retention time of Beclomethasone ~9.60 mins 

Mass Spec parameters: 
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Scan Type:  MRM 

Polarity:  Positive 

Total Scan Time: 0.3100seconds 

Duration:  13.000mins  

Delay time:  0 

Cycles:   2516

ID 

Time 

(msecs) 

DP 

(volts) EP (volts) 

CE 

(volts) CXP (volts) 

Dex 150.0 46.000 10.000 19 12.000 

Bec 150.0 56.000 10.000 43 10.000 

Table C.4 Mass spectrometer settings. 
 

Ion Source parameters: 

CAD:   5.00 

Ihe:   ON 

GS2:   40.00 

GS1:   60.00 

TEM:   600.00 

IS:   5500 

CUR:   20.00 

Advanced MS parameters: 

Resolution Q1: Unit 

Resolution Q2: Unit 

Intensity threshold: 0 

Settling time:  0 ms 

Pause:   5.007 ms 

Autosampler parameters: 

Sampler 1 (G7167A):  "Multisampler" 

Draw Speed:   100.0  

Eject Speed:    400.0  

Wait Time After Drawing:  1.2  

Needle Wash Mode:   Flush Port  

Duration:    3  

Needle Wash Mode:  Standard 

Wash  

Injection Volume:  50.00  

Overlap Injection Enabled:  No  

Injection Valve to Bypass for Delay Volume 

Reduction:  No  

Sample Flush-Out Factor: 5.0  

Draw Position Offset:   0.0  

Use Vial/Well Bottom Sensing: Yes  

Stoptime Mode:  No Limit  

Posttime Mode:  Off  

Column Comp. 1 (G1316A): "Column 

Comp." 

Enable Analysis Left Temperature On: No  

Temperature Control Mode:  Not 

Controlled  

Enable Analysis Right Temperature On:No  

Right temperature Control Mode: Not 

Controlled  

Stoptime Mode:    As 

pump/injector  

Posttime Mode:    Off  

Autosampler temperature   4°C 
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Total Time 

(min) Flow Rate (µl/min) A (%) B (%) 

0 0.0 300.000 100 0 

1 0.5 300.000 100 0 

2 7.0 300.000 30.0 70.0 

3 9.0 300.000 30.0 70.0 

4 10.0 300.000 100.0 0 

5 13 300.000 100.0 0 

Table C.5 Pump settings. 
 

Limits 

Minimum Pressure: 0.0 bar 

Maximum Pressure: 400 bar 

Shutdown time:  60 min 

Valco valve settings 

Posistion name for Step B: Waste 

  Total Time (min) Position 

1 0.0 B 

2 8.0 A 

3 11.0 B 

Table C.6 Valco Valve settings. 
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Appendix D. Validation of LC/MS method to quantify dex 
concentrations in cell lysates 

Data submitted for the degree of Masters by Research in 2014 (Jackson, 2014):  

The validated method for the measurement of dexamethasone in human plasma was 

adapted to measure dexamethasone concentrations in cell lysates.  In order to ensure 

compatibility of the two methods, a number of checks were made.  First, it was 

investigated whether there was a matrix effect of RF10 culture media.  There was no 

difference in dexamethasone retention time between plasma, mobile phase (the 

matrix cell lines were reconstituted in) and RF10 media (Figure D.1) 

 

Figure D.1 Chromatograms of dexamethasone in (A) spiked mobile phase (B) spiked 
plasma and (C) Spiked RF10.   

All matrices show a comparable retention time of ~2.5 minutes.  X axis: time 
(Minutes) Y axis: Intensity of peak (CPS) 
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Second, the stability of dexamethasone in media for the duration of the intracellular 

accumulation experiments was established.  

 

Figure D.2 Dexamethasone is stable in RF10 culture media for at least eight hours.   
Aliquots of spiked media were extracted up to eight hours following incubation of 
PreB697 cells with 500nM dexamethasone.  Data is from four independent 
experiments (±SEM) 

  



345 
 

Appendix E. Pilot GR interactome data 

This data was generated by Dr. Lindsay Nicholson with Prof. Julie Irving in collaboration 

with Prof. Tony Whetton and Prof. David Ray at Manchester University.  

 

Figure E.1 Characterisation of the GC-sensitive PreB 697 cell line and a GC-resistant 
sub-clone, R3F9.   

A : Response of PreB697 and R3F9 to dexamethasone in vitro. The cells were 
cultured for 96 hours with a range of dexamethasone concentrations (1 -10,000 
nM) and growth inhibition was determined by the addition of MTS reagent 
(Promega, Southampton, UK) which assesses the capacity of cells to reduce 
formazan and thus is a measure of metabolically active cells. The growth inhibition 
at each drug concentration was calculated relative to vehicle-control treated cells 
and expressed as a percentage. Data are the mean ± S.E.M. of at least three 
independent experiments. B. Basal GR protein expression in the PreB697 cell lines 
was assessed by western blotting, with actin as a loading control. C. Nuclear 
translocation of the GR was assessed in both cell lines by exposing cells to a 
control vehicle (CV; 0.05% ethanol) or 0.1 μM dexamethasone (DEX), harvested 
after 4 hours, followed by subcellular fractionation and immunoblot analysis. Equal 
amounts of protein from cytosolic (Cyt) and nuclear (Nuc) fractions were 
separated by SDS-PAGE and membranes probed using antibodies against GR, α-
tubulin (cytosolic control) and PARP (nuclear control). 
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Figure E.2 NanoPro technology shows differences in GR profiles in a GC-sensitive cell 
line, PreB 697, and a GC-resistant sub-clone, R3F9.   

Bicine/CHAPs lysates from untreated PreB 697 (blue line) and R3F9 (red line) cells 
were separated according to optimised assay conditions and probed with a 
human-specific pan-GR antibody (Sigma-Aldrich, St Louis, MO, USA). Differences in 
GR profiles, both in peak intensity and pI positions were found between the cell 
lines, indicative of distinct post-translational modification events and/or GR 
interactants. 

 

Figure E.3 Nanopro detection of changes in GR profiles in response to 
dexamethasone-treatment in the GC-sensitive cell line, PreB 697.   

Cells were exposed to either control vehicle (CV; 0.05% ethanol) or Dex (0.1 μM 
dexamethasone) over a time-course and harvested for protein at the indicated 
time-points. Bicine/CHAPs lysates were separated according to optimised assay 
conditions and probed with a human-specific pan-GR antibody (Sigma-Aldrich). 
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Figure E.4 Nanopro detection of changes in GR profiles in response to 
dexamethasone-treatment in the GC-resistant cell line, R3F9.   

Cells were exposed to either control vehicle (CV; 0.05% ethanol) or Dex (0.1 μM 
dexamethasone) over a time-course and harvested for protein at the indicated 
time-points. Bicine/CHAPs lysates were separated according to optimised assay 
conditions and probed with a human-specific pan-GR antibody (Sigma-Aldrich). 
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Figure E.5 Nanopro detection of changes in GR profiles in response to 
dexamethasone-treatment in the GC-sensitive, PreB697, and GC-resistant, R3F9, cell 
lines after 30 min (upper plot) and 1 hr (lower plot) exposure to 0.1 μM 
dexamethasone.   

Bicine/CHAPs lysates were separated according to optimised assay conditions and 
probed with a human-specific pan-GR antibody (Sigma-Aldrich). Differences in GR 
profiles, both in peak intensity and pI positions were found between the cell lines, 
indicative of distinct post-translational modification events and/or GR interactants 
in response to GC-exposure. 
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Figure E.6 Glucocorticoid receptor phosphorylation at Serine residue S211 does not 
differ in a GC-sensitive, PreB697, and a GC-resistant cell line, R3F9, or a GC-resistant 
primagraft, JM8, in response to GC-exposure.   

Cells were exposed to either control vehicle (-; 0.05% ethanol) or GC (+; 0.1 μM 
dexamethasone) over a time-course and harvested for protein at the indicated 
time-points. Equal amounts of protein were loaded and analysed by 
immunoblotting using antibodies directed to GR phospho-S211 (Cell Signaling 
Technology) or total GR (Santa Cruz Biotechnology). 
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Figure E.7 Nanopro detection of changes in GR profile in response to 
dexamethasone-treatment in the GC-resistant primagraft, JM8.   

Mouse splenic cells with 97.5% engraftment were exposed to either control 
vehicle (CV; 0.05% ethanol) or Dex (0.1 μM dexamethasone) over a time-course 
and harvested for protein at the indicated time-points. Bicine/CHAPs lysates were 
separated according to optimised assay conditions and probed with a human-
specific pan-GR antibody (Sigma-Aldrich). 

 

Figure E.8 Response of a xenograft, JM8, to dexamethasone exposure in vitro.   

Cells were dosed with 0.1 – 10,000 nM dexamethasone and cell viability was 
assessed using the MTS assay after a 96 hour drug exposure. The viable cell 
number at each drug concentration was calculated relative to vehicle-control 
treated cells, data are mean ± S.E.M. of at least three wells from a single 
experiment. 
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Figure E.9 (A) Glucocorticoid Receptor Expression in Cell lines (B) Nanopro profiles of 
PreB697 and REH cells with GR and ERK antibodies.  
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Appendix F. Additional mass cytometry figures 

Remission bone marrow samples – comparison to FACS data 

A. L837: Blue/Pink = flow cytometry data (week 15).  Grey = mass cytometry data (end 

of treatment) 

 

B. L835 week 23: Blue/Pink = flow cytometry data.  Grey = mass cytometry data 
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C. L940 (week 23): Blue/Pink = flow cytometry data.  Grey = mass cytometry data 

  

Figure F.1 Comparison of Wanderlust antibody panel data generated using the Helios 
mass cytometer to historical flow cytometry data; CD34 positive (blue) and negative 
(pink) cells.  

A. Patient L837 (week 15) historically assessed using the Eurotubes I panel by flow 
cytometry (black outline with blue/pink dots) and (end of treatment) assessed 
using the Wanderlust panel on the Helios by mass cytometry (navy axes with black 
dots). B. Patient L835 (week 23) historically assessed using the Eurotubes I panel 
by flow cytometry (black outline with blue/pink dots) and using the Wanderlust 
panel on the Helios by mass cytometry (navy axes with black dots). C. Patient L940 
(week 23) historically assessed by flow cytometry (black outline with blue/pink 
dots) and using the Wanderlust panel on the Helios by mass cytometry (navy axes 
with black dots). 

Each flow cytometry dot plot is a direct comparison of the mass cytometry dot plot 
beneath it.  
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A. L835 week 23 

 

B. L940 week 23 

 

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
4

10
0

10
1

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
4

10
0

10
1

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
4

10
0

10
1

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
4

10
0

10
1

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
4

10
0

10
1

10
2

10
3

147Sm_CD20

1
7
6
L
u

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
2

10
3

10
0

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
2

10
3

10
0

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
2

10
3

10
0

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
2

10
3

10
0

10
2

10
3

10
4

164Dy_CD34

1
6
7
E
r_

C
D

3
8

10
0

10
2

10
3

10
0

10
2

10
3

10
4

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
0

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
0

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
0

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
0

10
2

10
3

169Tm_CD19

1
5
6
G

d
_
C

D
1
0

10
0

10
2

10
3

10
0

10
2

10
3

147Sm_CD20

1
7
6
L
u

10
0

10
2

10
3

10
4

10
0

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
2

10
3

10
4

10
0

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
2

10
3

10
4

10
0

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
2

10
3

10
4

10
0

10
2

10
3

10
4

147Sm_CD20

1
7
6
L
u

10
0

10
2

10
3

10
4

10
0

10
2

10
3

10
4



355 
 

C. L837 end of treatment 

 

Figure F.2 Comparison of data generated using the metal-altered Wanderlust panel 
across B cells of different maturation stages compared to that published in Bendall et 
al. (2014).  

(A) Patient L835 (week 23) (B) L940 week 23 and (C) L837 end of treatment 
samples were stained using the Wanderlust antibody panel and compared to data 
published by Bendall et al. (2014).  Each row of 10 plots is from the Bendall paper, 
and the rows beneath them represent data generated at similar cell development 
stages in this project. 
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Figure F.3 Histograms of primagraft samples stained by the Wanderlust panel and 
acquired on the Helios mass cytometer. 

Primagrafts are grouped by patient they were derived from.  L919: top two panels 
of each histogram show primagraft samples created from first relapse and bottom 
two panels of each histogram show primagraft samples created from the second 
relapse.  X axis: marker expression.  Y axis: counts.   
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Appendix G. Conference abstracts 

NCRI annual meeting 2014, Liverpool, UK - Poster Presentation 

Development and validation of an analytical method for the quantitation of 
dexamethasone plasma concentrations in clinical samples obtained as 
part of the UKALL 2011 trial 

Rosanna Jackson, Julie Errington, Philip Berry, Julie A.E. Irving, Gareth J. Veal 

Background: Due to its ability to induce apoptosis in cells of lymphoid lineage, the 
corticosteroid dexamethasone plays a key role in the treatment of childhood acute 
lymphoblastic leukaemia (ALL). However, despite dexamethasone therapy being 
integral to the substantial improvements observed in prognosis of children diagnosed 
with ALL in recent decades, it also contributes to a wide range of side effects.  Given its 
wide clinical use, surprisingly few studies investigating dexamethasone 
pharmacokinetics in children have been performed.  A recently published study in 
childhood ALL found large inter and intra-patient variability in systemic exposure to 
dexamethasone (1). Investigating the relationships between pharmacokinetic 
variation, drug scheduling and clinical response/toxicity may facilitate continued 
improvement in ALL treatment. 

Methods: Validation of a method to measure dexamethasone concentrations in 
human plasma samples was performed in accordance with GCP guidelines. 
Dexamethasone was extracted from plasma using methyl-t-butyl-ether and analysis 
performed on an API QTRAP LC/MS/MS using beclomethasone as an internal standard.  
Initial patient samples collected following dexamethasone treatment as part of the 
UKALL 2011 trial have been analysed. 

Results: A quantitation limit of 1ng/ml was determined, allowing measurement of 
dexamethasone in clinical trial samples. The method demonstrated good linearity and 
reproducibility over the calibration curve range of 1-375ng/ml (r2 >0.996), with inter- 
and intra-assay precision CVs of 5.3% and 8.1%, respectively.  Dexamethasone was 
shown to be stable in plasma for >12 months, allowing time for transport and analysis 
of patient samples collected at clinical centres across the UK. Preliminary patient data 
showed considerable variation in dexamethasone pharmacokinetics following 
treatment at doses of 6mg/m2 and 10mg/m2. 

Conclusion: We have validated a reliable and accurate assay to enable  the 
measurement of plasma dexamethasone concentrations in patients treated on the 
UKALL 2011 trial, facilitating the generation of data to guide future dosing of 
dexamethasone in childhood ALL. 

References (1) Yang L, Panetta JC, Cai X, Yang W, Pei D, Cheng C, et al. Asparaginase 
may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. 
Journal of clinical oncology : official journal of the American Society of Clinical 
Oncology. 2008 Apr 20;26(12):1932-9. PubMed PMID: 18421047.  
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AACR annual meeting 2016, New Orleans, US - Poster Presentation 

Pharmacokinetics of standard versus short high-dose dexamethasone 

therapy in childhood acute lymphoblastic leukemia: results from the 

UKALL 2011 trial 

Rosanna Jackson, Julie A.E. Irving, Gareth J. Veal 

Dexamethasone (Dex) is a key component of ALL therapy, with glucocorticoid 
sensitivity strongly linked to prognosis. However, it also contributes to life threatening 
toxicities. The ongoing UKALL 2011 trial is investigating a new schedule of Dex 
(10mg/m2 × 14 days vs 6mg/m2 × 28 days), in an attempt to bring about a more rapid 
cytoreduction whilst limiting toxicities associated with long term steroid exposure. 
There are limited data regarding Dex pharmacokinetics, however large variability has 
been reported in children with ALL (Yang et al. 2008). 

For Dex pharmacokinetic studies, blood samples were collected up to 8h post oral 
administration on one of the first and last three days of induction chemotherapy. 
Plasma Dex levels were analysed using a validated LC-MS method, with a range of 5-
250ng/ml, and non-compartmental pharmacokinetic analysis was performed. 

Pharmacokinetic parameters from day one sampling are shown below. Exposure, as 
defined by AUC0-12h, and Cmax were significantly higher on the short arm (p = 0.0002 
and 0.0007, respectively). However there was substantial overlap between the two 
arms, with a number of patients on the standard arm exhibiting higher exposures than 
those on short therapy, despite having a longer duration of treatment. This is reflected 
in the AUC0-12h ranges observed on the two arms (short: 202-1606; standard: 38-
1009 hr*ng/mL). Pharmacokinetic profiles also differed between the two days of 
treatment, with AUC0-12h being significantly higher at the end of induction 
chemotherapy (n = 37, study day 1: 655 ± 322; study day 2: 894 ± 496 hr*ng/mL, p = 
0.003). 

Pharamcokinetic 
Parameters 
(mean ± SD) 

Half-life (hr) Tmax (h) Cmax (h) Clearance 
(l/h/m2) 

AUC0-12h 

(hr*ng/ml) 

Short (n=43) 3.96 ± 3.2 1.9 ± 1.0 128 ± 55 8.1 ± 5.3 692 ± 325 

Standard (n=33) 3.68 ± 2.1 1.7 ± 1.1 87 ± 41 9.2 ± 12.7 443 ± 202 

 

Based on these preliminary data it will be important to consider pharmacokinetic 
variability when analysing the results generated from the UKALL 2011 trial. Further 
evaluation of relationships between pharmacokinetic variation, dose scheduling and 
clinical outcome may enable better stratification of Dex therapy for future patients. 
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Children with Cancer UK annual meeting, London, UK - Poster 

Presentation 

Pharmacokinetics of Standard versus Short High Dose Dexamethasone 

Therapy in Childhood Acute Lymphoblastic Leukaemia – Results from the 

UKALL 2011 Trial 

Rosanna K Jackson, Julie AE Irving, Vaskar Saha, Gareth J Veal 

Dexamethasone (Dex) is a key component of Acute Lymphoblastic Leukaemia (ALL) 
therapy, with glucocorticoid sensitivity strongly linked to prognosis.  However, it is 
associated with significant toxicities.  The ongoing UKALL 2011 trial is investigating a 
new schedule of Dex (10mg/m2 x 14 days vs 6mg/m2 x 28 days), in an attempt to bring 
about a more rapid cytoreduction whilst limiting toxicities associated with long term 
steroid exposure.  The limited published data regarding Dex pharmacokinetics suggest 
substantial interpatient variability.  Dex pharmacokinetics have also been shown to 
correlate with serum albumin concentration, which is thought to be due to 
asparaginase (ASNase) activity (Yang et al., 2008).  The current study is therefore also 
aiming to investigate potential interactions between Dex and ASNase 
pharmacokinetics in children with ALL.   

For Dex pharmacokinetic studies, blood samples were collected up to 8h post oral 
administration on one of the first and last three days of induction chemotherapy, 
allowing measurement of Dex pre- and post-ASNase exposure.  Plasma Dex levels were 
analysed using a validated LC-MS method, with a range of 5-250ng/ml, and non-
compartmental pharmacokinetic analysis was performed. ASNase levels are being 
measured at Manchester University by Vaskar Saha’s laboratory. 

Day one sampling Dex pharmacokinetic parameters are shown in the table below.  
Exposure, as defined by AUC0-12h and Cmax, were significantly higher on the short arm 
compared to the standard arm (p=0.0003 and 0.0006, respectively). However there 
was substantial overlap between the two arms, with a number of patients on the 
standard arm exhibiting higher exposures than those on short therapy, an important 
finding bearing in mind the different durations of treatment between the two arms. 
This is reflected in the AUC0-12h ranges observed on the two arms (short: 202-1606; 
standard: 142-1009 hr*ng/mL). Pharmacokinetic profiles also differed significantly 
between the two days of treatment, with AUC0-12h being significantly higher at the end 
of induction chemotherapy (n=28, p=0.0016). A decrease in clearance was also 
observed, alongside a drop in serum albumin concentration.  This is a key indication 
that ASNase is affecting Dex pharmacokinetics. 
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Half-life  

(hr) 

Tmax  

(hr) 

Cmax 

(ng/mL) 

Clearance  

(L/hr/m2) 

AUC0-12h 

(hr*ng/mL) 

Short  

(n=44) 

3.0  

(1.7–20.6) 

1.5 

(0.8-2.7) 

122  

(13-265) 

8.1  

(1.6-30.8) 

564 

(202-1606) 

Standard 

(n=36) 

3.0  

(1.8-9.4) 

1.1  

(1.0-4.2) 

89  

(10-196) 

6.6  

(2.7-19.3) 

408 

(142-1009) 
 

Comparison of pharmacokinetic parameters between short (10mg/m2) and standard 
(6mg/m2) groups. Data shown is median and range. 

 

To date, high inter- and intra-patient variability in Dex pharmacokinetics has been 
observed. The UKALL 2011 trial is currently investigating the potential clinical benefit 
of a modified Dex dosing regimen. However, large inter-patient pharmacokinetic 
variability observed may mask any potential impact of the change in dosing regimen. 
Therefore, based on these preliminary data, it will be important to consider 
pharmacokinetic variability when analysing the results generated from the UKALL2011 
trial. With more data generated, further elucidation of the relationship between drug 
scheduling, clinical response and toxicity may enable better stratification of Dex and 
ASPase in childhood ALL. 
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Childhood Leukaemia Research – UK (CLRUK) annual meeting 2016, oral 

presentation – Glasgow, UK 

No abstract available.  
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AACR annual meeting 2017, Washington D.C., US - Poster Presentation 

Personalization of dexamethasone in acute lymphoblastic leukemia 

Rosanna K. Jackson, Ali Alhammer, Zach Dixon, Gareth J. Veal, Julie AE Irving  

Synthetic glucocorticoids, such as dexamethasone (Dex), are pivotal in the treatment 
of childhood acute lymphoblastic leukemia (ALL) but are associated with significant 
variability, both in terms of toxicity and efficacy. We investigated three key variables to 
better understand how Dex personalization may be achieved: pharmacokinetics (PK), 
intracellular Dex accumulation, and cellular response, following Dex binding to the 
glucocorticoid receptor (GR). 

For Dex PK studies, blood samples were collected post oral administration on one of 
the first three days of induction chemotherapy in 99 patients on the UKALL 2011. 
Plasma Dex levels were analysed using a validated LC/MS method, and a non-
compartmental pharmacokinetic analysis. To assess intracellular Dex levels, cell lines, 
primagraft and primary patient samples were studied. The plasma Dex LC/MS method 
was optimized to quantify Dex in ALL cell lysates. Dex accumulation was also assessed 
using flow cytometric analysis of Dex-FITC. Dex sensitivity was assessed using Alamar 
Blue assays. 

There was a wide Dex PK variability, with AUC0-12h, and Cmax significantly higher on the 
short compared to the standard arm; 564 (202-1606) versus 408 (142-1009), median 
(range), p=0.0003 and 0.0006, respectively. However there was substantial overlap 
between the two arms, with a number of patients on the standard arm exhibiting 
higher exposures than those on short therapy. 

Dex GI50 values ranged from 37 - > 1000 nM and 2 - > 1000 nM in cell lines and patient 
samples respectively. Western blotting indicated wildtype GR in all samples, with 
R3D11 and REH cell lines serving as hemizygous deleted and GR negative controls. Dex 
accumulation in cell lines was 2.1 and 1.8 (range 1.2 - 2.1) pmol/106 cells in PreB697 
and Dex resistant sub-lines, respectively. While patient samples exhibited greater 
variability, Dex accumulation was not significantly different between sensitive and 
resistant cells; mean of 1.0 versus 1.4 (range 0.1-2.3, 0.4-4.4 pmol/ 106 cells, p=0.17). 
Flow cytometry Dex FITC accumulation confirmed these data, with a mean 
fluorescence intensity of 4.2 versus 4.1 (range 1.5-5.9, 2.0 - 9.1, respectively; p=0.97). 

These data suggest that while PK and cellular response are hugely variable, variations 
in drug accumulation do not appear to play a key role in Dex response in ALL cells. 
Importantly, 62% of patient cell samples had Dex GI50 values greater than plasma 
concentrations observed in any patient, on both arms on the UKALL 2011 trial. A 
combined approach incorporating PK assessments and cellular response in ALL cells 
should be further investigated, to allow a comprehensive understanding of Dex 
pharmacology with a view to optimizing its clinical utility. 
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Appendix H. Publications 

Jackson, R.K., Irving, J.A. and Veal, G.J. (2016) 'Personalization of dexamethasone 

therapy in childhood acute lymphoblastic leukaemia', Br J Haematol, 173(1), pp. 13-24. 


