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Abstract

Therapies to promote pulp repair and regeneration after injury should be underpinned
by a deep understanding of normal tissue behaviour, and cellular signalling
mechanisms. The objectives of this work were to understand normal structure of the
tooth and to identify changes in its cellular elements and their complex interactions in
response to dentine exposure. Revisiting pulp structure and function with a range of
contemporary techniques may formalize observations into new concepts of tooth
physiology and pathophysiology, and reveal new opportunities for therapeutic
intervention.

Studies within this thesis employed rodent mandibular incisors and molars with
structural and functional investigations on demineralised teeth, non-demineralised
freshly extracted pulp tissues and tissue explants. Observations were made on
ground sections, haematoxylin-eosin stained sections, immunohistochemically-
stained sections, and on quantitative reverse transcription polymerase chain reaction

(g-RT-PCR) examination of tissue explants.

Complex cellular structure and heterogeneity was observed within odontoblast and
subodontoblast cellular populations. Previously undescribed odontoblast processes
were identified within the predentine region during crown development and in the
radicular pulp after tooth development. Programmed retraction of odontoblast
processes was observed after dentine exposure by cavity preparation or tooth wear.
Two phases of reactionary dentine deposition (atubular followed by tubular) was
identified after tooth wear. This revealed a programmed cellular defensive
mechanism which lead to tissue recovery and regeneration. This process could be
controlled by autocrine or paracrine signalling mechanisms, as indicated by the

presence of NGF and NGFR, in addition to a complex network of CGRP-IR axons.

Observations suggested revision of established hypotheses including the
hydrodynamic theory of dentine sensitivity and the role of extracellular pH in
biomineralisation. This hypothesis could provide coherent explanation for several
well-known dental mysteries including pulp stone development, dentine sclerosis and
the mode of action of high pH materials (calcium hydroxide, and hydraulic calcium

silicate cements) in the repair of pulp wounds.
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Chapter 1 Literature review

1.1 Introduction

Dental pulp is a unique soft tissue that resides in a hard tissue compartment of its
own making. Its cells maintain an intimate spatial and functional relationship with
surrounding tissues throughout life. This rigid compartment of dentine-enamel in the
crown, and dentine-cementum in the root offers the required mechanical and
microbial protection for the soft tissue of the pulp, and gives the pulp its distinctive
anatomical features (Yu and Abbott, 2007; Luukko et al., 2011). However, if this rigid
chamber loses its structural integrity, the pulp is at a risk of adverse stimulation from
the oral cavity. Caries, tooth wear, cracks, fractures, and open restoration margins
provide an open route for the oral microflora and their toxins to access the pulp
(Simon et al., 2012).

The unique nature the dental pulp, relates most importantly to the presence of highly
specialised odontoblasts (Ods) at its periphery and extension of cytoplasmic
processes within dentinal tubules. The intimate embryological, physical and
functional relationship between these cells and their surrounding hard shell is often
referred to as the dentine-odontoblast complex (Goldberg and Lasfargues, 1995;
Tjaderhane and Haapasalo, 2012; Simon and Goldberg, 2014). In addition to the
primary role of Ods in dentine formation and mineralisation, their position within this
complex enables them to play a crucial role in sensing danger and defensive
responses. This could include sensing elements of the oral environment through their
odontoblast processes (OPs), mechanosensitive functions related to fluid movement
and tooth flexion (Magloire et al., 2009), and maintaining hard tissue integrity to
preserve pulp vitality (Tjaderhane and Haapasalo, 2012). Nevertheless, the overall
pulp function is always limited by its low compliance surroundings, the absence of a
collateral blood supply, at least in single rooted teeth, relative incompressibility and
restricted ability to expand in the face of inflammation (Ikawa et al., 2003; Smith,
2003).

Different models were used within published data to study dentine pulp complex
including both human and animal teeth (Sloan et al., 1998). Some of these models
contain high crown and enamel extending under the gingival margin. These are

called hypsodont such as the herbivores dentition (bovine and horse) (Raia et al.,
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2011). This evolutionary pattern of teeth is to provide extra material for occlusal
surface wear which occurs as a result of a fibrous diet (Jernvall and Fortelius, 2002).
The opposite from that is the brachydont with normal crown size such as human
teeth. Several studies also used rodent teeth which could provide two different
growth patterns: continuous for incisors and limited for molars (Tjaderhane and
Haapasalo, 2012). The former teeth contain an apical bud region with all generative
cells for the pulp and enamel, to maintain tooth growth in order to compensate the
incisal edge loss due to continuous wear (Smith and Warshawsky, 1975;
Warshawsky et al., 1981). The rodent molars, especially rat, show great similarity in

their structure and growth pattern to human tissue (Sloan et al., 1998).

1.2 Odontoblast differentiation and initial dentine formation

Odontoblasts originate from embryogenic ectomesenchymal cells which are parts of
the cranial neural crest. The primitive oral epithelium proliferates and enlarges toward
underlying ectomesenchyme, forming the basic structures of the tooth bud: dental
lamina, enamel organ and dental papilla (Harada and Ohshima, 2004). Several
epithelial-ectomesenchymal interactions administrate tooth formation (Tjaderhane
and Haapasalo, 2012). During early stages of odontogenesis, proliferation of the oral
epithelium changes the tooth germ from bud to cap and then bell stages. The
differentiation of the Ods starts between the early and late bell stage after
establishing the crown’s morphology. Reciprocal signalling molecules between
enamel organ and dental papilla cells regulate the differentiation of the outer, post-
mitotic cells of the dental papilla into Ods (Ruch et al., 1995). A number of growth
factors have been recognised to participate in this inductive phenomenon. Nerve
growth factor (NGF) belongs to the neurotrophin family, which is important for the
development, survival, maintenance and repair of the neural system (Chao, 2003).
Both NGF and its neurotrophic p’® receptors (NGFR) were reported to be localised
within differentiating pulp cells (Byers et al., 1990; Mitsiadis et al., 1992). NGF protein
was clearly identified within Ods, while NGFR labelled within inner enamel
epithelium, then polarised Ods but was lost after the cells became functional. NGFR
expression then begins in subodontoblast (SOd) cells. This indicates the possibility of
reciprocal cellular paracrine and autocrine inductive mechanisms between these cells
(Mitsiadis et al., 1992). Transforming growth factor- family (TGF-p1, TGF-$2, TGF-
B3, BMP-2, BMP-4, BMP-7) also appear to be important molecules mediating Od
differentiation (Ruch et al., 1995; Sloan and Smith, 1999; Oka et al., 2007). A
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substantial delay in Od differentiation with decrease thickness of dentine formation
and absence of dentinal tubules were reported in TGFbr2 mutant mice (Oka et al.,
2007). This indicated the role of TGF-f signalling in Od differentiation and dentine

formation.

After the withdrawal of preodontoblast cells from the cell division cycle following the
last division phase, these cells start to lie perpendicular to the basement membrane
at the epithelia-mesenchymal junction. The differentiating Ods then elongate and
their nuclei take an eccentric basal position with development of cisterna of rough
endoplasmic reticulum apical to the nucleus and parallel to the cell axis (Couve,
1986). The redistribution of the cellular structural filaments within differentiating Ods
was also reported to have a role in obtaining cellular polarity (Lesot et al., 1982). This
is associated with the dissociation of the basement membrane and the appearance
of fibronectin and decorin near the apical side of the differentiating Ods (Ruch et al.,
1995). These basement membrane proteins were identified to be essential in
terminal differentiation of the Ods. These cells then start to secrete predentine matrix
protein prior to enamel matrix secretion by the ameloblasts. This initial predentine
matrix is important in ameloblast terminal differentiation (Tjaderhane and Haapasalo,
2012).

The first protein matrix secreted by the differentiated Ods contains large fibrils of type
[l collagen (0.1-0.2 um fibrillar diameter). These collagen fibrils and the extracellular
material between the differentiating cells constitute the organic matrix of the initial
dentine (mantle dentine) (Tjaderhane et al., 2012). At the same time, the Ods enlarge
and arrange in a uniform contacted cell layer, which starts to move in a pulpal
direction leaving their OPs behind (Couve, 1986). Mineralisation of the mantle
dentine begins throughout the matrix vesicles produced by the Ods. These vesicles
are membrane-limited bodies and believed to originate from plasma membrane. They
are reported to be enriched with tissue-nonspecific alkaline phosphatase (Golub,
2009). Although the role of matrix vesicles in the initiation of dentine and other hard
tissue mineralisation is generally accepted, the extent of that role remains uncertain
(Tjaderhane and Haapasalo, 2012). The matrix vesicles are also reported to be
involved in reparative dentine mineralisation processes, but not in the formation of
physiological primary and secondary dentine (Takano et al., 2000). Additionally, the
mantle dentine is devoid of dentinal tubules but contains occasional fine tubular

branches. This may indicate that the mantle dentine is secreted by differentiated Ods
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containing multiple branching of OPs (Couve, 1986), at a time before the
development of the functional OPs that create patent dentinal tubules (Tjaderhane et
al., 2012).

1.3 Odontoblasts

Odontoblasts are terminally differentiated, post-mitotic, long living cells that do not
turn over during the lifetime of the individual. They are located along the dental-pulp
interface (Ruch et al., 1995). The active Od is a highly polarized cell with a basally
located nucleus. The polarization of the Od effects the cytoskeleton and results in
apparent expression of the microtubules, intermediate filaments and microfilaments
at the apical side of the cell (Lesot et al., 1982; Nishikawa and Kitamura, 1986;
Nishikawa and Kitamura, 1987). A well-developed Golgi complex is centrally located
in the supra-nuclear cytoplasm. In addition, highly ordered rough endoplasmic
reticulum and numerous mitochondria, ribosomes and secretory granules are also
found in the Od, similar to other protein secretory cells (Sasaki and Garant, 1996).
Od cell bodies are connected with gap junctions, occluding zone (tight junctions),
adhesion belts and desmosomes. The tight junctions connect the cell bodies in their
distal junctional complex with actin filaments. These insert into the junctions forming
a terminal web, but still there are some openings in the inter-odontoblast spaces to
permit the passage of some unmyelinated nerve fibres (Couve, 1986). In addition,
tracer studies suggest the passage of small elements from the capillaries in the SOd
cells, in between the Od cell bodies, to predentine and dentine (Linde and Lundgren,
1995). The gap junctions, places of cytoplasm-cytoplasm communication, also
present in high numbers along the lateral surfaces of the Od cell bodies (Couve,
1986; Sasaki and Garant, 1996).

In the young pulp, where the Ods actively secrete collagen, they appear in a long
columnar form and arrange in a single cell layer. After increasing dentine thickness
the Ods actively slides over each other to form a pseudo-stratified cell layer of 3 to 5
cell thickness (Ohshima and Yoshida, 1992). In more mature pulp, the Od seems to
be shorter with less cytoplasm, fewer cytoplasmic organelles, and lower numbers of
cells within the layer. These cells appear to be in a less activity period after shifting
from primary to secondary dentinogenesis (Couve, 1986; Lovschall et al., 2002;
Murray et al., 2002). The reduced circumference of the pulp space due to ongoing

primary and secondary dentine deposition creates crowding of the Ods, and
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apoptosis may play a part in regulating cell numbers during ongoing tooth

development (Mitsiadis et al., 2008).

In addition to the Od cell bodies, capillaries, unmyelinated nerve fibres and dendritic
cells are also found in the Od cell layer. It has been reported that, the peripheral
capillaries invade in between the Ods and reach the mineralizing front during the
active secretory stage (Ohshima and Yoshida, 1992; Sasaki and Garant, 1996).
Unmyelinated nerve fibres have also been reported approaching the Od layer and
terminating in the dentinal tubules in 25 day old mouse molars(Taylor and Byers,
1990). In addition to sensory conduction, these nerves are reported to release
biologically active peptides (including calcitonin gene related peptide) during
stimulation or injury (Mori et al., 1989). Dendritic cells, and macrophages show
marked increase in numbers during inflammatory stimulation (Ohshima et al., 1995;

Rungvechvuttivittaya et al., 1998; Veerayutthwilai et al., 2007).

The main function of the Od is secretion of dentine matrix to form tubular, primary
dentine, and both physiological secondary and reactionary tertiary dentine. These
functions may be preserved throughout life. The Ods secrete extracellular type |
collagen-rich matrix to form predentine, in addition to a number of non-collagenous
proteins including glycoprotein, proteoglycans, and dentine phosphoproteins to
biomineralise the dentine organic matrix (Tjaderhane and Haapasalo, 2012). Unlike
other formative cells such as cementoblast and osteoblast, the Od cell bodies are
never entrapped by their collagen matrix during normal secretory conditions. When
Ods secrete predentine matrix, they retreat towards the pulp, leaving their
cytoplasmic processes within the tubular structure of the dentine, where they play a
part in mineralisation of the dentine matrix (Ricucci et al., 2014).

Odontoblasts also serve inflammatory, sensory and reparative roles in response to
aging and injury, including dental caries, tooth wear and operative dental intervention
(Ricucci et al., 2014). The position of the Ods at the interface between the pulp and
dentine with their cellular processes extending far within the dentinal tubules
(Vongsavan et al., 2000; Byers and Lin, 2003), and the presence of the partially
impermeable barrier as a pseudo-epithelial layer (Sasaki and Garant, 1996), makes
them the first cell line to encounter microorganisms and their products from the oral
cavity. It has been reported that the Ods provide an innate immune barrier by
expressing TLR2 and TLR4 receptors on their dentine interface. This suggests that
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the pro-inflammatory cytokines and innate immune responses to tooth injury could be

initiated from TLR4 signalling of the odontoblasts (Veerayutthwilai et al., 2007).

The spatial arrangement of the Ods and their processes suggests their potential role
in sensing both external stimuli and/or internal variation in pulp microcirculation

(Magloire et al., 2009). Further details are discussed in section 1.10.

1.4 Odontoblast processes

Odontoblast processes are the cellular extensions of the Od inside the dentine which
act as the main element of the Od cells activity. They are the only cellular part of the
pulp that resides within the dentinal tubules which they have formed, and highlight
the vitality of this hard tissue. During Od differentiation and polarization, a few small
and short OPs emerge facing the enamel organ (Arana-Chavez and Massa, 2004).
After Ods start secreting the organic matrix and establishing the first dentine layer
(mantle dentine) only one main process for each Od is believed to be left within the
dentine to accomplish the mineralization process (Tjaderhane et al., 2012).

1.4.1 Odontoblast process structure

At the ultrastructural level, the OP is a direct extension of the Od plasma membrane
(Holland, 1985). The membrane of the processes is typically trilaminar in
appearance. Although the surface of OPs look smooth, short projections extend from
them which are more common in predentine and inner dentine (Holland, 1985). As
the OPs extends through predentine to the mineralised dentine, it shows changes in
its cytoplasmic contents. The most prominent organelles which have been reported
by TEM studies are protein filaments which extend from the cell body into the
process. The smallest are microfilaments or actin fibres (5-8 nm in diameter),
somewhat larger intermediate filaments (10 nm in diameter) and hollow microtubules
(27 nm in diameter) (Garant, 1972; Holland, 1985; Yoshiba et al., 2002). These
cytoplasmic proteins are polymers of different types of protein. They are required for
numerous activities, including structural support primarily from the cytoskeleton,
cellular movement and secretion (Pollard and Cooper, 2009). Other cytoplasmic
organelles such as mitochondria, endoplasmic reticulum and ribosomes have also
been identified within OPs, especially in the predentine area (Sasaki and Garant,
1996). Vesicles of various sizes and appearance, rod-shape dense bodies, and

lysosome-like bodies may also be present (Thomas, 1979; Holland, 1985).



Within the dentinal tubules, the OPs occupy almost the entire space with scarce
periodontoblastic space in between (Carda and Peydro, 2006). In demineralized
sections, most of the peritubular dentine matrix has disappeared, causing space
between the OPs and intertubular dentine (Yoshiba et al., 2002). At the same time,
incorrect fixation or inadequate demineralisation may change these proportions
(Thomas, 1983). It has been reported that the average area of the OPs in a non-
decalcified human molar is about 2.23 um? and for the intratubular space is 2.85 pm?
which reveals a difference of about 0.72 um? for the intratubular space remaining
(Carda and Peydro, 2006).

Nerve fibres are also reported within the tubular space accompanying the OPs.
These nerves are limited to the inner dentine and extend no more than 150-200 pm.
These nerves join only 30-70% of the odontoblast processes and occupy about 2.9%
of the total tubular space area (Inoue et al., 1992; Carda and Peydro, 2006).
Although the nerve endings show very close proximity to the OPs, no real synaptic or
gap junctions have been reported within or before entering the dentinal tubules.
(Holland, 1985; Carda and Peydro, 2006).

1.4.2 Odontoblast process extension

Although the structure of the OPs appears to be well established and largely beyond
debate, the distance to which the OPs extend within the dentinal tubules remains
uncertain. Numerous studies, involving a range of methods including; scanning
electron microscopy (SEM) (Thomas and Carella, 1983; Goracci et al., 1999),
transmission electron microscopy (Garant, 1972; Thomas, 1979; Yoshiba et al.,
2002), confocal laser microscopy (Grétz et al., 1998; Goracci et al., 1999), and
immunofluorescence microscopy (Byers and Sugaya, 1995; Yoshiba et al., 2002)
have suggested that the odontoblast processes are limited to the inner third of the
dentinal tubules. Other studies using SEM (Kelley et al., 1981; Guniji and Kobayashi,
1983), TEM (Frank and Steuer, 1988), confocal laser microscopy (Grotz et al., 1998;
Tsuchlya et al., 2002), and fluorescence microscopy (Sigal et al., 1984a; Sigal et al.,
1985) have reported the existence of the OPs in peripheral dentine. It is an
interesting area for further investigation to understand the role of these processes
after tooth development such as sensing, maintaining dentine integrity, responding to
different stimuli, and the consequential physiological and pathological reactions.
Their response to operative dental procedures, including the cutting and restoration

of enamel and dentine, which may disrupt an otherwise intact system, is also worthy
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of further exploration (Byers and Narhi, 1999; Kawagishi et al., 2006). Enhanced
understanding of OP extension may provide important information for clinical practice
and the optimisation of clinical procedures for pulp survival. Most of the previous
studies agree with the full extension of the OPs through dentine during tooth
development and the early life of teeth after eruption (Holland, 1985). In contrast,
others insist that these processes retreat after that to the inner third of the dentine
during normal tooth aging, attributing this to the inability of these processes to survive
for a long period at that distance from the body of the pulp (Carda and Peydro, 2006).
An important question could be raised about the ability of these processes to survive
during the developmental period when their function is at its maximum due to
dentinogenesis. There are various critical issues that should be considered when
studying dentine. First is the complexity of this tissue, which is composed of a
network of huge numbers of hard tubules with various sizes of lateral branches that
could contain vital tissue (Tjaderhane et al., 2012). Second is the technical difficulties
during fixation and the type of fixative that can penetrate deeply into these very fine
areas easily without adversely affecting the vital structures within dentine (Thomas,
1983). Third is the effect of other technical procedures such as demineralisation
which could also harm some of the original existing cellular protein (Thomas, 1983;
Carda and Peydro, 2006). Another technical issue which is especially relevant in
TEM work is the impact of processing on delicate cellular structures, including tissue
shrinkage (Brown et al., 2002), which could happen to the processes within the
dentinal tubules during tissue fixation and dehydration. Finally, there are recognised
difficulties in distinguishing between the cellular living substances and the
extracellular materials at an ultrastructural level. Most of the researchers who have
claimed the limitation of the OPs to the inner third of dentine, have suggested the
persistence of a membrane lining the peritubular dentine which could be mis-
diagnosed as OPs. They called this limiting membrane the lamina limitans which was
defined by Thomas (1984) as a sheet-like structure lining the dentinal tubules, which
can be greatly enhanced during the demineralising procedure and appears as an

electron dense structure in SEM and TEM images (Thomas and Carella, 1983).

On the other hand, the detection of intracellular proteins such as tubulin in the
peripheral dentine could reveal the presence of cellular processes in that region.
Actin immunoreactivity (IR) was also detected in the OPs, but its labelling was less

intense, discontinuous, and only located in the inner third of the dentine (Sigal et al.,
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1984a; Sigal et al., 1985). The expression of the Dil and phalloidin have also been
detected in the outer dentine by the use of confocal laser microscopy (Tsuchlya et
al., 2002). A histotomographical study using confocal laser microscopy with non-
decalcified tooth samples revealed the presence of OPs with complex terminal
branching at the DEJ (Grétz et al., 1998). Using SEM, the presence of the OPs has
been reported extending the full dentine thickness in coronal dentine. Sigal et al.
(1985) observed bench dried and freshly extracted tooth samples both in SEM and
immunofluorescence for cytoskeletal proteins. They reported the presence of
process-like structures near the DEJ of the dried teeth by SEM which could be
mummified remnants of the processes. Equally, these dry structures did not have
immunofluorescence labelling compared with the fresh teeth. This may prove that the
detection of the cytoskeletal protein fibres vimentin, tubulin, and actin within the OPs
is a real intracellular structure of the processes and is not a remnant of these
elements that would persist after the retraction of the OPs toward the pulp.
Furthermore, in TEM studies, the detection of intracellular organelles was reported in

the OPs residing within the outer dentine (Frank and Steuer, 1988).

The anatomical complexity of the OPs may reflect its likely functions. In the coronal
dentine, the diameter of the OPs is about 1-3 um with rare branches in the inner
dentine. As the processes extend toward the DEJ, their diameters decrease, and
their branches become more extensive. These branches are directed mainly toward
the DEJ (Tsuchlya et al., 2002), and some of them appear cross-bridging between
two adjacent processes (Gunji and Kobayashi, 1983). In the outer dentine, the main
processes reach about 0.1-0.2 um in diameter with a similar branching pattern, but
appear more extensive than in middle dentine. At the DEJ, the OPs terminate freely
without special structure (Kelley et al., 1981). Small branches also show
anastomoses with each other (Grotz et al., 1998). From a clinical perspective, the
existence of the OPs within the dentine represents the appendages of the Od cells in
the pulp, and this should be taken into consideration in treating dentine as a vital
tissue. Destruction of dentine and its OPs may adversely impact on pulp integrity
(Luukko et al., 2011).

1.5 Dentinogenesis

In different mineralised tissues, biomineralisation is always a cellular responsible

process in which cells direct the formation of mineralised tissue (Tjaderhane and
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Haapasalo, 2012). Several simultaneous events are necessary to perform
biomineralization of a collagenous matrix: i) cellular deposition of extracellular matrix
including collagen type | and non-collagenous matrix molecules, ii) cellular
translocation and accumulation of mineralising ions, iii) cellular organisation of the
matrix contents to permit controlled mineralisation, iv) initiation of mineral
crystallisation, v) regulation of the growth and accumulation of hydroxyapatite
crystals, which could include further remodelling of the deposited matrix (Boskey,
2003). The rate of dentine deposition is dependent on several factors including the
age and function of the tooth and the position of the depositing cells within the tooth.
During primary dentinogenesis, the young Ods are actively secreting cells with a
higher rate of dentine formation. In secondary dentinogenesis and after tooth
eruption the Od cells decrease their dentine formation ability, but never lose their
ability as long as they remain alive (Lovschall et al., 2002; Murray et al., 2002).

1.5.1 Extracellular matrix secretion

The extracellular dentine matrix is synthesised within Ods and excreted either directly
from the main cell bodies or from OPs into the predentine region. This matrix is
composed of 90% collagen and the remainder is non-collagenous proteins, including
proteoglycans (Linde and Lundgren, 1995). This forms a region of about 10-40 um of
non-calcified predentine matrix, separating the apical border of the Ods from

mineralisation front.

Collagen secretion

After collagen exocytosis from the Od cell bodies (Figure 1.1), an intra and inter-
molecular cross-linking occurs before the start of matrix mineralisation. The
collagenous matrix within predentine gradually matures from a poorly organised
condition near the Od border, to a well organised, dense, covalent cross linked,
insoluble network, with precisely located non-collagenous compounds at the distal
part close to the mineralisation front (Linde and Goldberg, 1993; Linde and Lundgren,
1995). It has been suggested that the high intermolecular cross-linking of the
collagenous network is important for mineralisation (Kuboki and Mechanic, 1982).
However, the more accepted idea is that the collagen mesh acts only as a support for
non-collagenous dentine molecules, which initiate and control crystal formation and
growth (Linde and Goldberg, 1993; Boskey, 2003).
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Figure 1.1: Schematic drawing of active secretory Ods showing Ca?* ion transporter
mechanisms (left part of the Fig) and dentine matrix macromolecule secretion (right part of
the Fig).

Ca* ions are transferred via Od cell layer from pulp capillaries to the mineralisation front. A
major way for the flow is transcellular, but the intercellular route can also be suggested.
However, this can be restricted by the tight junctions between Ods. Ca?" is transferred from
pulp circulation into Od via Ca-channels and Na/Ca exchanger. To maintain cytosolic Ca?*
concentration, membrane ATP-dependant (Ca-ATPase) is used for extruding the excess of
Ca?*. Cellular organelles take part in buffering the activity of cytosolic Ca?*. Mitochondria use
electrophoretic uniporter for intrusion of and Na/Ca exchanger for extrusion of Ca®*. Golgi
and endoplasmic reticulum are also involved in regulation of Ca®* concentration. Intavesicular
Ca-ATPase is also used to accumulate Ca*" within intracellular vesicles to obtain controlled
transportation toward mineralisation front. The organic matrix of predentine is synthesised
within Ods (right). Collagen and PGs are secreted from the apical border of the Ods to form
predentine matrix. The collagen fibrinogenesis occurs within predentine region to obtained
matured collagen fibrillar network near mineralisation front. A major portion of non-
collagenous proteins including DPP, Gala-protein and other PGs are putatively secreted via
OPs near mineralisation front. Fig reproduced from Linde and Lundgren (1995).

Non-collagenous matrix

Generally composed of non-collagenous proteins (NCPs) and proteoglycans (PGs),
the NCP fraction comprises the highly phosphorylated phosphoproteins including
mainly of dentine phosphoprotein (DPP), dentine sialoprotein (DSP), and dentine
matrix protein-1 (DMP-1) (Goldberg and Smith, 2004). These have a high phosphate
content, polyanionic type proteins composed of more than 80% of amino acids with
negatively charged phosphate or carboxyl group (Linde and Lundgren, 1995). The

PGs belong to a class of one or more glycosaminoglycane side chains attached to a
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specific core protein. They also present with different compositions between
predentine and dentine (Figure 1.1), and with different concentrations within different
parts of the predentine implicating their significance in matrix maturation and the

control of mineralisation (Goldberg and Takagi, 1993).

Both NCPs and PGs are widely accepted modulators of dentine biomineralisation
due to their role in regulating matrix formation, modulating cellular activity, and
controlling hydroxyapatite crystal growth and morphology (Goldberg and Takagi,
1993; Begue-Kirn et al., 1998).

Growth factors

As discussed in section 1.2, several growth factors are detected as inductive
molecules for the differentiation of Ods during early developmental stages of the
tooth germ. It is perhaps not unexpected to find traces of these molecules
sequestered within dentine as fossilised by interaction with other dentine matrix
components. These molecules are quantitatively minor in comparison to the other
matrix components; however, they have the capacity to influence different processes
that enhance tissue growth and repair (Smith et al., 2012). When dentine is injured,
these fossilised growth factors will be activated again and start their inductive
function (Smith, 2003).

There are different growth factors which are described to be present within dentine
and release during different dentinal injury processes. Among these are some which
notably promote tissue regenerative process including transforming growth factor 1
(TGFB1) and bone morphogenic protein-7 (BMP-7) (Sloan and Smith, 1999; Dobie et
al., 2002; Six et al., 2002).

1.5.2 Mineralisation of extracellular matrix

When hydroxyapatite crystals form, there are several fundamental conditions
controlling the type and rate of crystal development. Among these conditions are pH,
concentrations of calcium and phosphate ions, the presence of mature collagen
networks and cross linking non-collagenous proteins (Linde and Lundgren, 1995).
Although there are many published studies about the concentration of mineral ions
(Boyde and Reith, 1977; Wiesmann et al., 1995), the effect of non-collagenous
proteins on biomineralisation of dentine (Goldberg and Takagi, 1993; Goldberg and
Smith, 2004), and the properties of collagen within mineralised tissue (Landis, 1996),

there is little information on the role of pH in controlling the mineralisation process. A
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study by Lundgren et al. (1992), used micro-electrodes to measure the pH in
predentine, which was found to be 7. Another recent article also shows that Ods
express special acid sensing ion channels which may play important roles in
detecting a wide range of pH fluctuation during normal and pathological conditions
(Solé-Magdalena et al., 2011). However, none of the previous studies identify the
role of the pH as a critical parameter in Od cellular homeostasis and its possible

effect on mineral deposition and growth during different types of dentinogenesis.

In the predentine region, both calcium and phosphate ions are concentrated. This
indicates the presence of translocating mechanisms to transfer these mineral ions
through pulp cells to enrich predentine which nourish the biomineralisation process
(Lundgren et al., 1992; Wiesmann et al., 1995). In addition, considerable amounts of
carbonate and variable traces of other ions are found within mineralised dentine such
as chloride, fluoride, sulphide, magnesium, strontium, zinc and lead (Linde and
Goldberg, 1993).

In biomineralized tissue, the minerals are deposited within two distinct places in
relation to type | collagen fibrils: the first is intrafibrillar (between collagen molecules
within each fibril) and the second is extrafibrillar (attached externally on the collagen
fibrils). In both cases, the mineral ions are either directly bound to the collagen
molecules with the fibril or through a link provided by NCPs (Landis, 1996). The high
mineral content significantly increases the mechanical properties of the collagen
fibrils (Linde and Goldberg, 1993).

The nucleation of hydroxyapatite crystal requires a specific site which can be induced
by electric or other properties that initiate the formation of solid calcium phosphate
from a solution. Additionally, the growth of such crystals is reported to be dependent
on crystal-protein interactions (Gajjeraman et al., 2007). Most of the matrix NCPs
should be modulated by specific enzymes to obtain their anionic characters.
Therefore, the activities of these enzymes plus the nature of such modulation, may
determine mineralised tissue specificity by modulating the position and size of the

growing crystals (Boskey, 2003).

It has been reported that the circumpulpal dentine is the only mesodermal hard tissue
in which the matrix vesicles are not involved in its mineralisation (Takano et al.,
2000). This mineralisation may be performed by heterogenous nucleation instead of

matrix vesicle formation (Tjaderhane and Haapasalo, 2012). This depends
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exclusively on the localisation of DPP within the apical part of the predentine region
in order to induce appositional calcification at the mineralisation front (Lundgren and
Linde, 1992).

Mineralisation front

This is a transitional zone, of 0.5-2um thickness, occurring between the predentine
and dentine where the collagen fibres are mineralised. This includes the total
mineralisation of the inter-collagenous spaces within the predentine matrix (Goldberg
and Septier, 1996). The shape of such a mineralisation interface is different
according to the rate of the dentine deposition and mineralisation. It appears as a
globular shape with mineralised protrusions, called calcospherites, which are thought
to represent heterogenous deposition of crystals in the case of rapid dentinogenesis.
This could occur during mantle and circumpulpal dentine deposition periods.
Nevertheless, with slower dentine formation (secondary dentinogenesis), the
mineralisation front looks more linear in shape (Nanci, 2012).

Transport of ions

During this process the mineral ions must be translocated from the pulp vascular
circulation through the Od cell layer to pass the tight junctional complexes separating
the pulp tissue from the predentine region. These ions should then be excreted
through OPs into predentine matrix at the mineralisation front. Since Ods play a
central role within this process, the main goal of the calcium transportation system is
to maintain the cytosolic Ca?* concentration at a low and steady level. Therefore,
most of the intracellular Ca?* must be complexed or stored within the intracellular
organelles (Linde and Lundgren, 1995). The left part of Figure 1.1, represents what is
known in the literature about the Ca?* transportation process within Ods to perform
dentine mineralisation (Linde and Lundgren, 1995; Tjaderhane and Haapasalo,
2012).

During calcification of the extracellular matrix of predentine, a large influx of Ca* and
inorganic phosphate (Pi) ions is required to form hydroxyapatite induction and growth.
Hence, predentine has 3 times more Ca?* than the pulp, revealing the highly active
Ca?* transportation mechanism of the Ods (Lundgren et al., 1992). Calcium was also
reported to be accumulated in the apical cell body of the Od as well as OPs, and
deposits of calcium have been shown within organelles at these sites (Boyde and
Reith, 1977; Granstrém, 1984). The influx of Ca?* into the Ods was also reported to
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be controlled through L-type voltage gated Ca?* channels, as their blocking in vivo
caused severe impairment of radio-labelled Ca?* uptake within dentine minerals.
Additionally, these channels seem to be highly selective, with no mimicking by similar

ions such as lanthanum (Lundgren and Linde, 1997).

There are several cellular homeostatic mechanisms to maintain intracellular calcium
concentration (about few uM) in comparison to the extracellular level (about 3 mM
and less than half of which is in ionised form) (Carafoli, 1987). Cellular extrusion of
the excess Ca?* can occur through an ATP-dependant process and Na*/Ca?*
exchanger (NCX). Cell membrane Ca-ATPase (PMCA) is identified within the
dentinogenically active Ods (Granstrom et al., 1979), and also located in the vesicle
membrane at the distal region of Od cell body (Granstrom et al., 1978). The intra-
vesicular accumulation of Ca ?* is demonstrated to be ATP-dependant using Ca-
ATPase (Granstrom, 1984). Ca?* extrusion mechanism in osteoblast and salivary
gland is most likely to occur via NCX at the mineralisation face (Stains and Gay,
1998; Homann et al., 2006). Both NCX-1 and NCX-3 are expressed by the distal
membrane of the Od and believed to play a pivotal role in directing Ca* transportation
and extrusion. Ca?* efflux is proven to be dependent on the extracellular Na*
concentration within culture media (Lundquist et al., 2000). However, in living tissue
the concentration of the intracellular Na* is controlled by membrane ATP pumping
mechanism through NaK-ATPase. This ATP-dependent transporter maintains the
membrane gradient to Na* which is necessary for the function of Na*/Ca?* antiporter
(Therien and Blostein, 2000). However, this complementary role of the cellular

homeostatic ion transported within Ods is not yet understood.

Although several researchers have demonstrated the Ca 2* transportation mechanism
within Od cells, little interest has focused on the inorganic phosphate transport

system. The presence of sodium phosphate cotransporter (Na/Pi) within differentiated
cultured odontoblast-like cells indicates that this could be the mechanism for the Ods
to provide Pi for dentine mineralisation (Lundquist et al., 2002). This also emphasises

the role of the NaK-ATPase as a complementary ion transporter.

The flux of Ca?* within Od and between cellular compartments requires a buffering
protein to regulate Ca?* interactions with cytoskeletal proteins and membrane
components. Several Ca?*-binding proteins are expressed by dentinogenically active
Ods such as calmodulin, parvalbumin, and calbindin (Celio et al., 1984; Goldberg et
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al., 1987; Berdal et al., 1996). The latter is a high affinity, intracellular soluble protein,
present in various Ca?* transporting systems within different tissues such as salivary
gland (Onishi et al., 1999), enamel organ, and bone (Berdal et al., 1996) in addition
to odontoblasts (Onishi et al., 1999). The role of the cellular organelles is also
important in cytosolic buffering of Ca?* activity, in addition to transmembraneous
transport systems (Tjaderhane and Haapasalo, 2012). Inside Ods, Ca?* can be taken
up by mitochondria through electrophoretic uniporter and extruded through NCX
(Lundgren and Linde, 1988). The ATP-dependant calcium intrusion seems to be
located within Golgi and endoplasmic reticulum [sarco/endoplasmic reticulum Ca-
ATP (SERCA)] and the cytoplasmic vesicles derived from them (Granstrom, 1984;
Lundgren and Linde, 1987). These organelles act as intracellular store sites for
calcium either to be secreted intracellularly as a secondary messenger to activate
different cellular function (Shibukawa and Suzuki, 2003),or to be excreted
extracellularly from the apical region of Ods at the mineralisation front (Granstréom,
1984).

1.6 Secondary dentinogenesis

This is the process of dentine deposition after eruption of the tooth crown to reach its
functional contact. At this time, the crown has fully formed by enamel and dentine
deposition, while the root is still developing. As described in section 1.3, Ods show
morphological and structural changes after accomplishment of primary
dentinogenesis. These cells are called transitional Ods (Couve, 1986), which become
shorter and less polarised with nuclei displaced from the basal part of the cell. These
Ods have less cellular organelles compared to the secretory cells with smaller rough
endoplasmic reticulum and Golgi apparatus, but these cytoplasmic organelles are still
supra-nuclear in location (Ohshima and Yoshida, 1992). After this period the Ods
change to aged cells which appear shorter and more crowded. The nucleus moves
more apically, creating a prominent infra-nuclear region where most of the cellular
organelles are moved. The supra-nuclear region of the cells appears devoid of
organelles except large vacuoles, some mitochondria, and cytoplasm filled with

intermediate filament and microtubules (Couve, 1986).

After complete primary dentine formation, with a secretion rate of approximately 4 um
per day, the bulk of the tooth formation is already accomplished (Kawasaki et al.,

1979). However, the formation of secondary dentine is continuous, but at a much
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slower rate of approximately 0.5 um per day and decreasing throughout life (image A
Figure 1.2) (Murray et al., 2002). Secondary dentine is structurally similar to primary
dentine and composed of intertubular and peritubular dentine. Slight differences in
the curvature and regularity of dentinal tubules has been detected (Addy, 2002). The
continuity in dentinal matrix secretion in predentine results in increased thickness of
primary and/or physiologically deposited secondary dentine, i.e. decrease in pulp
chamber volume (Smith et al., 1995). This process is radiographically detectable
especially on the floor and roof of the pulp chamber and results in limiting the space
of the pulp chamber and canals in elderly patients (Luukko et al., 2011). Other sign of
the ageing process in teeth is the formation of excess cementosis at the apical region
of the tooth. This process is mainly associated with cusp attrition to compensate for

the length reduction of the physiological crown (Morse, 1991).

Age-related reduction in the available space of pulp chamber is eventually associated
with elimination of a certain number of different pulp cellular populations by
apoptosis. The continuous deposition of dentine progressively decreases both the
volume occupied by pulp fibroblasts and the dentine/Od interface (Mitsiadis et al.,
2008). This possibly promotes reduction in the cellular densities of Ods, SOds, and
pulp fibroblasts (Murray et al., 2002). This age-dependant reduction in the cellular
population possibly causes a decrease in the regenerative capacity (plasticity) of the
pulp. This could be due to reduction in the number of Od as dentine forming cells in
addition to restriction in the number of other pulp cells which could differentiate into
Od-like cells following dentine/pulp injury. Furthermore, it has been reported that the
nerve growth factor and its p75 receptors possibly has a role in inducing cellular

apoptosis of the pulp cells during age progression (Mitsiadis et al., 2008).
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Figure 1.2: Schematic illustration of dentine types.

A shows primary dentine and secondary dentine. B shows tertiary dentine with two types
reactionary and reparative. With mild stimulus, the original Od remains alive and formed
reactionary De. When strong stimulation affects the dentine, this may lead to necrosis of the
Od and recruitment of Od-like cells (black) and these cells forming reparative De.

1.7 Dentinal tubules

The tubular nature of dentine is the central characteristic which distinguishes it from
other hard tissues of the body. This tubular pattern dramatically affects its
mechanical properties, ability to withstand occlusal loads and the pulp responses to

dentine injury (Tjaderhane et al., 2012).

In three-dimensional study, the dentinal tubules show a wide range of tubular tilting
angles beneath the DEJ and these tubules seem to twist or curl up to 90°. This
disagrees with the popular idea that the dentinal tubules extend at right angles from
DEJ and flow in s-shape coarse through the dentine and revealed a more complex
pattern of the dentinal tubules (Zaslansky et al., 2010). In terms of density, tubules
are almost twice as densely packed near the pulp than at the DEJ due to packing of
odontoblast as the pulp space and its circumference diminishes. Additionally,
dentinal tubules appear denser under the cusp area in comparison to the other
regions of the tooth (Mjér and Nordahl, 1996) and this could influence the pulp-

dentine defensive system against wear (Tjaderhane et al., 2012).

Dentinal tubules are not simple tube-like structures, but a complex tubular network
with many branches and ramifications. These branches are most plentiful in regions
of lower main tubule density, forming an abundant anastomosing system of canaliculi
(Kagayama et al., 1999). This allows the dentine to have a high degree of
permeability and facilitates fluid movement (Pashley, 1985). There are three

recognised types for dental tubule branches depending on their size, location and
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anastomosing angle with the primary tubule. The major branches with a diameter
similar to the main tubules (about 0.5-1um), forked at an acute angle, and located
more peripherally within dentine. Fine branches usually emerge at 45° angle from the
primary tubule, ranging from 0.3-0.7 um in diameter and usually limited to root
dentine or crown dentine with low tubular density. Finally, microtubules are scattered
throughout dentine with a very small diameter of 0.1 um, emerging at right angles

from the primary tubule (Mjér and Nordahl, 1996).

Dentinal tubules are surrounded by a collar of highly mineralised dentine called
peritubular dentine. This type of dentine measures about 1um in thickness, is more
highly mineralised than intertubular dentine (about 40% more), with little or no
collagen but rich in phosphoproteins (Gotliv and Veis, 2008). The thickness of this
type of dentine varies greatly depending on the distance from the pulp, being very
thin or completely absent near the pulp and with greatest thickness near the DEJ.
The formation and mineralisation of this type of dentine may result from the mineral
adsorption of the non-collagenous proteins on the peripheries of the dentinal tubules.
The deposition of this type of dentine leads to a continuous decrease in the tubule
lumen (Bertassoni et al., 2012). Peritubular dentine has a porous nature, and the
boundaries of dentinal tubules are fenestrated by numerous tiny pores which,
together with the branches of the dentinal tubules, facilitate the movement of fluids
and other matrix components across the peritubular dentine in all directions (Pashley,
1985; Mjor and Nordahl, 1996). Furthermore, peritubular dentine has an organic
component called calcium-phospholipid-proteolipids (Gotliv and Veis, 2007). Similar
proteins have been shown to have vital roles in brain neurological actions (Turner et
al., 2005). Thus, peritubular dentine may have a potential role in active transport of
ions and signalling between the odontoblast and the intertubular dentine or regulating
the actions that help in maintaining the dentine as a live and vital tissue (Gotliv and
Veis, 2007).

The main bulk of dentine is composed of intertubular dentine, which fills the spaces
between the rings of peritubular dentine. About half of its composition is organic,
mainly made up of collagen fibres that run circumferentially around each tubule.
Because of this organic matrix, intertubular dentine is usually preserved after
pathological or laboratory decalcification (Beniash et al., 2000). The intertubular

dentine is less mineralised and different from peritubular dentine both structurally and
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mechanically however, they both have similar crystal alignment and size (Weiner et
al., 1999).

1.8 Dentine sclerosis

This is a phenomenon of increasing thickness of peritubular dentine due to
continuous mineral deposition on the inner wall of the dentinal tubules, leading to
decrease diameter or complete obliteration of the dentinal tubules. There are two
types of dentine sclerosis depending on the cause of its formation which could be
either physiological or reactive (pathological) (Stanley et al., 1983; Tjaderhane et al.,
2012). Physiological sclerosis is recognised as one of the pulp-dentine complex
reactions to age and environmental irritation (Linde and Goldberg, 1993). It is more
prominent in older teeth especially in the peripheral dentine and decreases towards
the pulp (Stanley et al., 1983). The sclerotic tubules appear to be totally occluded
(Mendis and Darling, 1979b) and this possibly reduces the permeability of dentine,
pulp irritation, and tertiary dentine formation (Tjaderhane et al., 2012). This form of
sclerosis can be recognized in areas without carious irritation such as the floor of the
pulp chamber and root canals (Mendis and Darling, 1979a). Within intact dentine
surfaces, this sclerosis can be present in some dentinal tubules while the rest remain
normal. The mechanism or the trigger for such sclerosis is still not understood
(Tjaderhane et al., 2012).

Alternatively the reactive dentine sclerosis is considered the main dentine response
under carious lesions and restorations. It appears as a translucent zone due to its
higher mineralization content (Frank, 1990; Pugach et al., 2009) and seems to
represent a physiochemical precipitation of hydroxyapatite rather than a vital process
(Smith et al., 1995). Reactive sclerosis occurs either deep or superficial within the
dentine (Tjaderhane et al., 2012). The deep sclerosis is totally dependent on the
odontoblast processes. However, in areas under the carious lesion where the
dentinal tubules are devoid of cellular content, the presence of reactive sclerosis
suggests it is a non-vital defensive process. The calcium phosphate that was
extracted from the hydroxyl-apatite crystals within the carious lesion usually dissolves
and is redeposited more deeply to the adjacent dentinal tubules (Daculsi et al., 1987,
Frank, 1990). It has been proposed that the calcium required for deep sclerosis is
usually taken from the pulp through the odontoblast process, while in superficial

sclerosis the source of calcium is mainly from the carious lesion and saliva
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(Tjaderhane et al., 2012). In the same way, reactionary sclerosis was also reported in
dentine hypersensitivity which could be associated with attrition or abrasion (Addy,
2002). In radicular dentine, the exposure of dentinal tubules hypersensitise the pulp
to occlude the dentinal tubules with intratubular crystals, resulting in reduced fluid
exchange and dentine hypersensitivity (Yoshiyama et al., 1989; Yoshiyama et al.,
1990).

1.9 Tooth innervation

The histological examination of nerve fibres entering the tooth reveals both
myelinated and unmyelinated types. The majority of these nerves are nociceptive
sensory fibres, myelinated A-delta and unmyelinated C fibres. The cell bodies of
these fibres are mainly located in the Gasserian (semilunar) trigeminal ganglion. The
unmyelinated fibres have also shown some minor quantities of both sympathetic and
parasympathetic axons (Byers, 1984; Abd-Elmeguid and Yu, 2009). Almost all nerve
fibres enter the tooth in bundles through one or more apical foramina. These bundles
pass through the radicular pulp in association with blood vessels as neuro-vascular
bundles. Very few nerve fibres appear to be terminated within the root and these
fibres may reach the radicular Od layer. However, the rest of the nerve fibres

terminate within the tooth crown (Byers and Matthews, 1981).

In the crown pulp, nerve bundles diverge and run toward the pulp-dentine border.
The diverged nerves usually run in a relatively straight route until forming the
subodontoblast nerve plexus of Raschkow. The exact function of this nerve plexus is
still unknown. Within this plexus, the nerve fibres loop and form a complex network.
The density of this nerve plexus is varied according to the tooth region. It is more
dense in the cusp and lateral walls of the crown, then decreases in density gradually
toward the cervical region of the tooth until disappearing within the coronal portion of
the root (Johnsen, 1985). From the plexus, plenty and small nerve fibres are derived
and run through the Ods into predentine and dentine with terminals showing bead-
like structures. Within dentinal tubules about 30-70% of the OPs are accompanied by
nerve fibres and this percentage seems to be higher under the cusp and decreased

gradually toward the cervical tooth region (Carda and Peydro, 2006).

During tooth development in rat molar samples, very few nerve fibres appear within

the basal region of the tooth germ during the advanced bell stage. After crown

formation, beaded nerve fibres are present in the pulp core in association with blood
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vessels, and the formation of a subodontoblast nerve plexus also commences within
the cusp. After tooth eruption and during root development peroid, the density of
nerve fibres within coronal Ods and dentine increases gradually, and the
subodontoblast nerve plexus extend up to the cervical region (Fristad et al., 1994).
Neuronal development continues and axonal density gradually increases until the
end of tooth maturation, which represents the time of complete root formation and

development of a mature apical foramen (Byers, 1984).

Histochemical nerve markers have identified: i) sympathetic unmyelinated axons
containing vasoactive intestinal peptide, ii) cholinergic, sensory or parasympathetic
axons, iif) small sensory axons reactive to substance P and calcitonin gene related
peptides (CGRP) (Luthman et al., 1992). Both sympathetic and parasympathetic
axons are primarily associated with the pulp vascular system (Luthman et al., 1992;
Fristad et al., 1994). The CGRP-IR fibres are mainly sensory and run in association
with the neuro-vascular bundles within pulp core and then ramify within the
subodontoblast plexus, Ods and dentine. These axons appear with varicosities,
represented by many vesicles along their courses containing neuropeptides. These
neuropeptides have an important effect on circulatory regulation, inflammatory and

allergic reactions and on wound healing (Taylor and Byers, 1990).

Due to their role in neurogenic inflammation, the effect of cavity preparation on
CGRP nerves has been widely investigated, including different cavity sizes: dentine
micro-abrasion (Taylor et al., 1988), moderate cavity (Taylor and Byers, 1990), deep
cavity with pulp exposure (Kimberly and Byers, 1988), and pulpotomy (Zhang and
Fukuyama, 1999). In all cases, nerve sprouting was identified within pulp cells during
period of inflammatory, with increasing nerve density, followed by a return to normal
innervation patterns when inflammatory signs subside. This possibly indicates the

role of CGRP in inflammation and wound healing.

1.10 Odontoblasts, and nociception

If the Ods are located at a strategic spatial relationship with the dentinal tubules to
play a pivotal role in the defensive mechanism against injury, they are also the first to
be targeted by external stimulation such as thermal variation and mechanical forces
(Bleicher, 2014). Ods carry different structural and morphological properties which
promote their sensing role within Od-dentine complex. The presence of OPs and
their spatial relationship within dentinal tubules and intradentinal fluid is the most
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important factor. The complexity of these processes with different terminal and lateral
branches could facilitate the communication between these processes and with the
external environment (Sigal et al., 1985). In addition, the presence of primary cilia
has been described in ultrastructural studies from the basal sides of Ods. This could
promote the structural ability of the Ods in sensing pulp microcirculation (Thivichon-
Prince et al., 2009).

Although there is a dense network of sensory fibres in the pulp and unmyelinated
afferent fibres engaging the Od layer (Corpron and Avery, 1973; Dahl and Mjor,
1973), no evidence for synaptic structures or gap junctions has been detected
between the Od and these nerve fibres (Ibuki et al., 1996). However, the expression
of specific neural proteins (semaphoring and reelin) has been reported as a large
mass of extracellular glycoprotein between the Ods and nerve fibres, which could

promote intimate adhesion between them (Maurin et al., 2004; Magloire et al., 2009).

Odontoblasts also appear to express several classes of ion transporter which could
be involved in nociception and signal propagation. These cells have been reported to
express all nine voltage gated Na* channels in specific patterns and in different
locations depending on tooth maturation stage. Channels such as Nav1.4, and Nay
1.7 are more expressed by immature Ods, while others are increased in mature Ods
such as Nav1.3, Nav 1.5, Nav 1.6, and Nav 1.8 (Byers and Westenbroek, 2011). The
presence of Na* channels indicates that the Od is an excitable cell which can
produce all or no spike (action potential) in response to depolarising current. This
demonstrate that these cells are able to transduce and integrate somatosensory
signals which could elicit nociceptive responses similar to nerve fibre (Allard et al.,
2006).

Additionally, the odontoblasts are identified to express several members of the
transient receptor potential (TRP) superfamily. These ion channels play an important
role in sensory physiology as transducers for thermal, mechanical and chemical
stimuli. Different thermal sensing channels including heat-sensing TRPV1, TRPV2,
and TRPV3 and cold-sensing TRPM8 and TRPA1 are all reported to be expressed
by Ods (Son et al., 2009; El Karim et al., 2011). Other mechanosensitive receptors
such as TRPV4, TRPM3, TRPP1 and TRPP2 also reported to be present within Ods
(Son et al., 2009; Thivichon-Prince et al., 2009). These TRPP1 and TRPP2 are
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shown to act in combination with the primary cilia of the Ods (Thivichon-Prince et al.,
2009).

As described in 1.5.2, the presence of acid sensing ion channels which belong to the
degenerin/epithelial Na* channel superfamily are also identified within human Ods.
These proteins express mechano-sensory functions in addition to their possible role
in sensing a wide range of pH fluctuation during normal physiological and

pathological conditions (Solé-Magdalena et al., 2011).

Different types of K* channels are expressed by Ods. High conductance of Ca-
activated K* channel (K*ca) is observed within cultured human Ods. The membrane
stretching of cultured Ods activates these channels, which suggests their mechano-
transductive role turning mechanical stimuli into electrical signals (Allard et al., 2000).
The mechanosensitive TREK-1 potassium channels have also been detected within
Od cell membranes (Magloire et al., 2003). In mammals, these channels are
activated in resting potential and gated during different chemical and physical stimuli
such as cellular stretching, intracellular acidosis and heat (Patel and Honoré, 2001).
These channels are expressed by coronal Ods and are absent in the root, which
could speculate their spatial relationship to the afferent sensory nerve fibres
(Magloire et al., 2003). This could further propose that stretch activation of the Od
could stimulate these channels to transduce signals to the afferent nerve ending
(Magloire et al., 2009).

Therefore, the Ods are not only involved in formation of dentine, but also in the
maintenance of this tissue to provide protection and preserve vitality of the pulp
tissue. Better knowledge in Od homeostasis and physiology may possibly help in
developing new hypotheses and therapies for the management of dental pain and
tooth sensitivity (Bleicher, 2014).

1.11 Tertiary dentinogenesis

This is the process of forming of tertiary dentine at specific loci of the pulp-dentine
interface by Od or Od-like cells as a result of pulp irritation. If the primary Ods survive
after such irritation, the formed dentine is called reactionary dentine. If these cells die
due to extensive irritation, the newly differentiated pulp (Od-like) cells will form
reparative dentine (panel B, Figure 1.2) (Smith et al., 1995). Another type of tertiary

dentine is called pulp stone or fibrodentine. This form is merely defensive, non-
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specific production of mineralised tissue formed in regions of the pulp chamber or
root canals which may cause difficulties or failure of root canal treatment (Tziafas,
2010).

The presence of chronological information is essential to identify whether the
secreted tertiary dentine is regarded as reactionary of reparative. This is possibly
important in the determination of the secretory cells which could be the guide for
such dentine (Lesot et al., 1993). In clinical conditions of tertiary dentine, where
different stimulations could be involved within the causes, it becomes more difficult to
distinguish between reactionary and reparative dentine within the same foci.
However, due to the episodic nature of the dental caries, it is more likely to consider
that both reactionary and reparative could be superimposed upon one another
beneath such lesions (Smith et al., 1995).

1.11.1 Reactionary tertiary dentinogenesis

Reactionary dentine formation is caused by mild irritation of the tooth (slow
progressive caries, shallow cavity, wear), which stimulates primary Ods to increase
secretion rate of dentine in comparison to secondary dentinogenesis. This results in
increasing dentine thickness to protect the pulp. In most of the literature, the formed
reactionary dentine is indistinguishable from the already present secondary dentine
with more or less tubular continuity (Tjaderhane et al., 2012; Tjaderhane and
Haapasalo, 2012; Bleicher, 2014). Only one review article mentioned that, after
stimulation of primary Ods, these cells will form irregular secondary dentine
(reactionary dentine) (Tziafas, 1995). However, no experimental evidence or

references are presented within this paper to support this idea.

The matrix of tertiary dentine was reported to have differences in its extracellular
macromolecules which are involved in dentinogenesis (Smith et al., 1995). A study
by Moses et al. (2006), identified different small integrin-binding ligand, N-linked
glycoproteins (SIBLING) in different aged rat molars (12, 18, 24, and 36w) within the
tertiary dentine region caused by cusp attrition. They found that dentine matrix
protein, and dentine sialoprotein show marked age-dependent decreases within
tertiary dentine matrix in comparison to primary dentine matrix. Whilst the expression
of the bone sialoprotein and osteopontin was absent in primary dentine, it was
observed clearly in the tertiary dentine of 36 week old animals. This suggested that

there were two different mechanisms of dentine formation within the tertiary dentine
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region. In younger ages the tertiary dentine matrix was similar to primary matrix,
because they were possibly formed by the primary Ods which formed reactionary
dentine. With age and wear process progression, this possibly caused depletion of
primary Ods which may be replaced by Od-like cells which commenced the formation
of reparative dentine with a more bone-like matrix. Similar observations were also
made in a rat incisor study which confirmed that Od-like cells resemble osteoblast in
the formation of osteopontin within reparative dentine matrix (Cajazeira Aguiar and
Arana-Chavez, 2007).

Reactionary dentine formation was targeted by numerous studies; however, the
controlling mechanisms for the onset and intensity of reactionary dentine formation
are still uncertain (Smith et al., 1995). Most of these experiments used a controlled
model of cavity preparation which presents a situation different from clinical reality
(Turner et al., 1989; Chiego Jr, 1992; Turner, 1992). There are several factors which
could affect the formation of reactionary dentine, such as: sample species (whether
human or animal), trauma model used (cavity, wear, caries), extension and
dimensions of the dentine injury, duration of the trauma, type of restorative material,
and time interval for laboratory measurements (Tjaderhane and Haapasalo, 2012). A
confounding factor lacking in many laboratory studies is the presence of microbial

biofilm.

Several immediate cellular changes have been detected within the remaining Ods
and other pulp cells in response to mild cavity preparation (Turner et al., 1989;
Chiego Jr, 1992; Turner, 1992). These initial responses include breaking down of the
junctional complexes between the injured Ods associated with changes of the
intracellular organelles such as swelling mitochondria and dilated rough endoplasmic
reticulum (Chiego Jr, 1992). In addition, there is dilation of pulp capillaries and
invasion of the pulp by macrophages and dendritic cells (Ohshima, 1990). This is
associated with the infiltration of macromolecular reparative compounds from the
pulp toward the exposed dentinal tubules. One of these reported macromolecules is
fibrinogen which could induce a fibrin clotting cascade to primarily occlude the
exposed dentinal tubules (Chiego Jr, 1992). Nevertheless, the mediator for such
cellular responses still unclear. Differences in the growth factors released from the
injured pulp cells may mediate these responses (Byers et al., 1992). Neuronal
stimulation could also release CGRP neuropeptides which could also act as
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mediators to promote the onset of neurogenic-inflammation within the injured region
(Taylor et al., 1988).

After the initial pulp inflammatory responses subside, which could take several days,
the Od layer re-establishes. The apical junctional complexes between the Ods and

the cytoplasmic organelles within these cells return their normal appearance (Chiego
Jr, 1992). NGF and NGFR restored their normal expression (Byers et al., 1992), and

pulp innervation is also reported to be reversibly recovered (Taylor et al., 1988).

Due to the variability between different experimental models, none of the previous
studies take all these factors into consideration and examine them in one controlled
experiment to identify their possible interactions. Furthermore, there is no previous
link between the hard and soft tissue responses during the process of reactionary

dentinogenesis.

1.11.2 Reparative tertiary dentinogenesis

With greater or more sustained dental injury, Ods may die. The fate of the primary
Ods is not completely understood, but it is believed that these damaged cells
degenerate or go through apoptosis to be phagocytosed by macrophages (Ohshima,
1990; Mitsiadis et al., 2008). Other pulp cells which normally occupy the SOd region
and pulp core that have no direct role in primary dentine secretion, may provide
newly differentiated Od-like cells to compensate for the death of the original Ods. The
progenitor cells of the Od-like cells were reported to be present within the SOd cell
layer that can be directly stimulated after the death of the original Ods (Kitamura et
al., 2001). On the other hand, fibroblasts, perivascular cells, or undifferentiated cells
of the central part of the pulp were also reported to have the ability to differentiate
into Od-like cells (Shi and Gronthos, 2003; Técles et al., 2005). In vitro these cells
can be differentiated into Od-like cells secreting mineralised matrix similar to dentine
(About et al., 2000). It remains an open question whether the Od-like cells originate
from undifferentiated ectomesenchymal cells of the pulp, from other cells that
represent the mature pulp population, or may be both of these cell types (Tziafas,
1995). The dedifferentiation and transdifferentiation of mature pulp cells would mean
re-assessing the regeneration in the repair process. The possibility of the presence of
all these derivatives from progenitor cells makes the term ‘Od-like cell’ inappropriate
to describe any pulp cells capable of mineralised matrix deposition as a result of
injury (Goldberg and Smith, 2004). The primary Od could be defined by its
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morphology, the matrix it secretes and specific gene expression (Smith and Lesot,
2001). In comparison to Od-like cells, very few cells could fulfil all these
requirements. Therefore, it must be recognized that these cells are capable of repair
rather than regenerative processes (Goldberg and Smith, 2004; Simon and
Goldberg, 2014).

The cellular responses to severe trauma associated with the reparative dentine are
said to be much more extensive inflammatory process which may contain signs of
pus with more inflammatory cells infiltrating the injured region (Bleicher, 2014). Od-
like cells could be observed lining the dentinal bridge that formed after the resolution
of inflammatory signs. These new cells were reported to ultrastructurally resemble
the primary Od with large nuclei, high numbers of mitochondria and increased rough

endoplasmic reticulum (Chiego Jr, 1992).

There is a controversy about the morphology of reparative dentine between
completely dystrophic atubular matrix (Ricucci et al., 2014), and tissue that started as
atubular before changing to a tubular structure with complete differentiation of the
Od-like cells into spindle-shape with the clamming appearance of cytoplasmic
process (Tziafas, 1995; Magloire et al., 1996). However, most consider it to be

completely atubular form (Tjaderhane et al., 2012; Ricucci et al., 2014).

The goal of the tertiary dentine deposition, in addition to increasing dentine thickness,
is to decrease dentine permeability beneath an injury, and thus to isolate the irritated
pulp area from further stimulation (Ricucci et al., 2014). The atubular characteristic
and the differences in matrix composition make reparative dentine able to act as a
protective barrier against trauma caused by dentinal tubule exposure (Tjaderhane et
al., 2012). It can also be argued that this impermeable barrier may decrease pulp
sensitivity to the external stimulation. In addition, the presence of sensory nerve
fibres extending in the pulpal third of the dentine (Byers, 1985), is reported to be lost
in cases of reparative dentine (Taylor et al., 1988; Tjaderhane et al., 2012). All these
suggest that the impermeable junction between the tubular dentine (primary and/or
secondary) and reparative dentine may produce a barrier against further stimulation
and this may decrease tooth responses to vitality test (Tjaderhane et al., 2012). If a
second injury occurs such as a carious lesion, the presence of reparative dentine
possibly decreases the pulp’s response and the defence reaction after repeated
insults (Johnson, 2004).
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1.11.3 Pulp stones

Pulp stones are dystrophic calcified depositions that can be classified depending on
structure and location (Nanci, 2012). Structurally, they can be divided according to
their morphological distinction into true and false pulp stones. The structure of true
pulp stone is merely dentine and could be lined by Ods or Od-like cells. Whereas
false pulp stones are composed of atubular dentine and possibly fromed by
degenerating cells of the pulp that can form mineralised material (Goga et al., 2008).
However, the differentiation between true and false appears to be artificial, because
both tubular and atubular dentine is most frequently present within single pulp stone
(Tjaderhane et al., 2012). Depending on location, pulp stones can be divided into
embedded, adherent, and free. The embedded type is believed to be formed with the
ongoing physiological dentinogenesis so that the pulp stone becomes enclosed
within dentine wall. This type is more frequently seen in the apical portion of the
tooth. The adherent type is less attached to dentine wall, whereas free pulp stones
are the most common type and found entirely within pulp tissue. The latter type is
most commonly observed within the pulp chamber, and sometimes more than one

stone or different types can be present within the same tooth (Goga et al., 2008).

The formation of pulp stones is still incompletely understood. It is believed that
external irritation such as caries or attrition enhance pulp stone formation. However,
there are some present with no apparent cause (e.g. impacted 3 molars) (Goga et
al., 2008). In addition, pulp stones have also noticed in relation with genetic

conditions such as dentine dysplasia (Parekh et al., 2006).

The organic matrix component of human pulp stone has been investigated. Type |
collagen is the major component of free pulp stones. The non-collagenous matrix
component is mainly osteopontin, which is similar to the matrix component of
reparative dentine (Cajazeira Aguiar and Arana-Chavez, 2007). Osteopontin is also
found within dental calculi (Kido et al., 1995), and urinary stones (Kohri et al., 1993),
and is absent in primary and reactionary dentine (Moses et al., 2006).

1.12 Animal models for the study of dentine/pulp

The host response to an injurious agent sustains a high degree of complexity which
makes it impossible to be in vitro. The associated inflammatory and reparative
processes are multifactorial, and in order to study these processes from all

perspectives, a suitable experimental model is required. However, it is important to
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address the fact that there is no universal animal model that is ideal for all research
needs. Therefore, clinicians and researchers must be aware of the relative strengths

and weaknesses of the diversity of the available animal models.

Nevertheless, animal models assist science and scientists to obtain new knowledge

and better understanding of various physiological and pathological conditions.

Rodents models comprise the majority of animal studies in pulp biology, mainly due
to the well-defined physiological parameters. They are easy to handle and house for
long periods, are relatively low cost which enhances the possibility of large sample
sizes, adaptable to the lab environment, have low social and ethical concerns
compared to primates makes them a good choice (Saghiri et al., 2015). In addition,
most commercially available antibodies for cellular and molecular techniques are
available for rats. In dentistry and despite the differences, rats presented a suitable

model to study various fields.

Two different developmental models can be obtained from rat teeth. The continuous
growing model is represented by incisors and limited growth (human-like) model by
molars. Continuous growth makes the rat incisor a valuable model to investigate
tissue structure and function within a single organ that may represent the whole life
cycle of cellular activity from formation to maturation and repair after injury (Harada et
al., 1999; Harada et al., 2002; Harada and Ohshima, 2004; Cajazeira Aguiar and
Arana-Chavez, 2007). In addition, rat incisors provide the researcher with
appreciable amounts of pulp tissue suitable for tissue cultures (Sloan et al., 1998),
and enough to provide a sufficient quantity of RNA even from a single pulp tissue
(McLachlan et al., 2003).

Rat molars are considered as a valuable tooth model and with greater similarity to
human teeth in their mode of development. This model has been widely used in
dental in vivo and in vitro studies (Sloan et al., 1998; Woodnultt et al., 2000). It is also
widely used during cavity preparation experiments trying to simulate human dental
preparation (Taylor and Byers, 1990; Murray et al., 2008). However, care should be
taken to consider species differences and interpreting the translation of tissue
responses to the human situation. Working difficulties in controlling the experimental
procedures are important considerations to be taken (Goldberg and Smith, 2004), in
addition to ethical requirements. Other studies used the physiological occlusal

attrition of rodents as a model of dental trauma (Kuratate et al., 2008). The use of
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such model is definitely overcome all experimental variables which could present
during cavity preparation procedure in cavity-models (About et al., 2001; Goldberg
and Smith, 2004). The progress of tooth wear with time also allows the responses to

different stages of injury to be investigated.

1.13 Aims of this study

= To develop structural and functional approaches to investigate pulp-dentine
complex.

= To understand the complex physiology and pathophysiology of the pulp due to
dentine exposure.

= To translate these ideas toward human tooth physiology and pathophysiology.

1.14 Objectives

= To use rat teeth as models to study the pulp-dentine complex.

= To understand changes in odontoblasts, odontoblast processes and other cellular
elements of the pulp during development and in response to dentine exposure.

= To investigate the complex cellular interactions between these tissues.

» To link structural and functional understanding of the pulp response to dentine
exposure following mechanical cavity preparation and natural tooth wear.

= To formalize these observations into new concepts of tooth physiology, repair and
pathology that may be relevant in translational research to study human dental

tissues.
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Chapter 2 Material and Methods

2.1 Immunohistochemistry (IHC)

2.1.1 Animal culling regulations

All animals were administrated according to Schedule 1, UK Home Office guidelines
(Consolidated version of ASPA 1986, 6 May 2014). The animals were either
euthanizing in a CO2 chamber (Smart box, Auto CO2 System, Euthanex), or by intra-
peritoneal injection with a lethal dose (0.7ml/Kg) of 200mg/ml of pentobarbiton. All

procedures were conducted by appropriately licensed staff at Newcastle University.

2.1.2 Sample collection

Male Wistar rats of different ages: one day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6
weeks, 8 weeks, 9 weeks, 12 weeks, 13 weeks and 24 weeks were included in this
work. These ages were chosen according to the life cycle of rat mandibular first molar
tooth development (Farris and Griffith, 1949). This includes cellular differentiation and
tooth morphogenesis (one day), crown formation (1-2 weeks), tooth eruption (3
weeks), commencement of occlusal wear (4 weeks), repair following tooth wear (6-9
weeks), mature tooth (12 weeks), and ageing process (24 weeks). All ages were left
on adlib food of type called RM3 (P) pellets (Special Diet Service, UK) to ensure
similar dietary conditions during the entire work. This type is used as a routine diet for
breeding, lactating, and growing young rats; however it is still considered that hard
pellets promote tooth wear (Pang et al., 2016). Details of animal ages and numbers
were specific to each of the investigations described in results chapters. Depending

on the experiment, sample consisted of:

1- Whole mandibles: dissected carefully before sectioning each half jaw into 3
pieces: apical containing the apical part of the mandibular incisor with the
apical bud, middle containing the middle part of the incisor and the 3 molars,
and incisal third containing the incisal portion of the incisor (Figure 2.1, A).
Sections were made with a diamond coated disc mounted in a low speed
straight handpiece under constant water cooling. The dental structures in one
of the section pieces is illustrated in Figure 2.1, B. In the younger rats (one day,
1 week and 2 weeks) each half mandible was either left without cutting or cut
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into two halves, the incisal containing the incisal half of the incisor and the

apical half for the rest of the jaw.

e Y

Apical Middle Incisal
piece piece piece

Figure 2.1: Diagram showing rat mandible sectioning (A), and different dental structures (B).
Important elements of the mandibular incisor labelled as follows: apical bud, pulp (P), dentine
(De), enamel (En), enamel organ, subodontoblast (SOd), odontoblast (Od), and ameloblast
(Am). The two dotted lines in A represent the sectioning positions dividing the mandible into
3 pieces: apical, middle and incisal. Region of interest in A is shown in higher magnification
in B.

2- Mandibular incisors: surgically extracted after removing the overlying mucosa
and bone to remove the tooth gently with artery forceps. The extracted teeth
were cut into two or three pieces by using a diamond coated disc mounted in a
slow-speed straight handpiece under constant water cooling.

3- Mandibular incisor pulp: after extraction of the mandibular incisors, the pulps
were dissected carefully by grooving the tooth longitudinally with high speed
diamond burs under water cooling and operating microscope (DP Medical
systems, UK). Care was taken to avoid exposure of the pulp and to minimise
any trauma. Teeth were then readily split with a scalpel before carefully lifting

the pulp tissue free with tweezers.

2.1.3 Sample fixation

All collected samples were fixed either before or after jaw dissection with freshly
prepared 4% paraformaldehyde (PFA) in phosphate buffer saline (PBS) (Sigal et al.,
1985; Gage et al., 2012). Fixation was important to preserve tissue morphology and

34



its antigenic immunoreactivity (Berod et al., 1981). Fixation by specimen immersion

and perfusion by cardiac infusion were employed in this work.

1- Immersion fixation: after surgical dissection, samples were immersed in 10 ml
of 4% PFA for 24 hours at 4°C (Fox et al., 1985; Sigal et al., 1985). Most of the
samples used in this work were fixed by this method.

2- Cardiac perfusion: The rats were first anaesthetised with a ketamine/xylazine
mixture (up to 80 mg/kg body weight ketamine and 10 mg/kg body weight
xylazine) via intraperitoneal injection. After opening the rib cage, an incision
was made in the posterior part of the left ventricle and the animal was
perfused with physiological saline before using 4% PFA fixative. Another large
incision was also made in the right atrium to create as large an outlet as
possible for the perfused fluid. The perfusion of the fixative fluid continued until
complete stiffness of the rat (Gage et al., 2012). After complete fixation, the
mandible was dissected and sectioned as previously described, the samples
were then post fixed with 4% PFA for 4 hours at 4°C (Sigal et al., 1984a). All

procedures were again performed by appropriately licenced and trained staff.

After completing the fixation process, the samples were washed in PBS twice for
about 10 min each with continuous agitation to remove any excess fixative solution

from the sample before starting the demineralisation procedure.

2.1.4 Demineralisation

Samples of hard tissue were demineralised with ethylenediaminetetraacetic acid
(EDTA). This binds to the calcium minerals and removes them gently without
damaging the antigenic properties of the examined tissue (Mori et al., 1988; Cho et
al., 2010). As the samples used were pieces of mandible containing teeth, this
required an extended period of demineralisation. To determine which concentration
of the EDTA could be used in this work without possible harm to the antigenic
properties of the sample, the following pilot experiment was undertaken. Firstly,
different concentrations of EDTA, 4.3% (Cho et al., 2010), 12% (Sigal et al., 1984a),
and 17% (Serper and Calt, 2002) with pH 7.4 were used, in combination with the
non-demineralised samples of extracted pulp to identify differences in the expression
of all of the antibodies and fluorescent staining. After observing similar
immunohistochemistry results using different concentrations of EDTA (see Appendix

A) and in order to save time during sample demineralisation, the decision was made
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to use 17% EDTA (pH 7.4) (Serper and Calt, 2002) at 37°C with continuous agitation
on a temperature controlled shaker (Environ-shaker, Lab-line, Jencons Scientific
Ltd).

Each sample was stored in 15ml of 17% EDTA solution, which was renewed daily.
The teeth were examined radiographically in addition to the use of a surgical blade to
check the demineralization by assessing cutting resistance. This was performed
every week during demineralisation process. The total period required for complete
demineralisation depended on the age of the rat and ranged between one day and 4

weeks.

After completion of the demineralisation process, the samples were washed twice in
PBS, for about 10 min each with continuous agitation to remove any excess

demineralising material from the sample before starting the freezing procedure.

Isolated pulp samples did not require demineralisation. They were only washed after

fixation, preparing for the next process of freezing and sectioning.

2.1.5 Freezing and sectioning

Demineralised samples or the non-demineralised fixed pulps were transferred into
graded sucrose solutions for cryoprotection (10%, 20%, 30%) each for 24 hours at
4°C before starting the freezing process (Peters, 2010). Samples were then dried
gently on tissue paper in a petri dish. The required alignment and direction of the
sample within the frozen block was performed under the dissecting microscope
(Kyowa, Tokyo). The samples were then embedded in optimal cutting temperature
medium (OCT) (Sakura Finetck Europe B.V. Netherlands) over a piece of laboratory
paraffin thin film (Parafilm M, Bemis flexible packaging, USA) as a base. Care was
taken in the alignment of each sample within the OCT gel. Only one piece of the cut
mandible (apical, middle or incisal, see Figure 2.1) was placed in each prepared
block. Samples with OCT were snap frozen using isopentane cooled in liquid
nitrogen. The frozen samples were then removed from the isopentane to be

sectioned immediately or stored at -80°C freezer in separate labelled containers.

To section the frozen samples, they were transferred to the cryotome (Shandon
Cryotome FSE, Thermo Fisher scientific, USA), mounted on serrated discs using
OCT and cut using new blades (MX35 Premier +Microtome Blade, Thermo Scientific,

USA). In sagittal sectioning, the sections were taken parallel to the long axis until all
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cusps of the required tooth were visible. From this point about 20 to 25 sections of 8-
15 um thickness were obtained from each block in order to standardise the sections
to be within the same orientation. The prepared sections were mounted on polysine
slides (Thermo Scientific, USA), numbered, dated and allowed to bench dry for 24
hours. Resulting slides were either to be used immediately after drying, or were
wrapped with cling film, avoiding any touch or damage to the tissues, and stored in a

-80°C freezer for later use.

2.1.6 Antibody staining procedure

After removing from the -80°C freezer, the slide packs were allowed to equilibrate to
room temperature for about one hour before unwrapping. In each slide, the position
of the section was encircled with a hydrophobic barrier pen (PAP pen) before
washing the slides with TBS (Tris buffer saline), TBS-T(Tris buffer saline-tween), and
TBS in a Coplin jar for 5 minutes each with agitation over a 3D rocking platform
(Stewart Scientific, UK). The primary antibody, either single or combination of two,
was applied to each section before incubating slides in a humid environment at 4°C
for 24 hours. These antibodies were diluted with triton in phosphate buffer saline
(PBS-T) to enhance tissue penetration. Sections were stained with one or two of the
primary antibodies listed in Table 2.1. These antibodies have been characterised by
the manufacturers and validated in numerous peer reviewed reports (see respective
manufacturers data sheets). Antibodies were chosen according to the following
criteria: (i) Suitable for immunohistochemistry on frozen sections, (ii) the detection of
epitope in control tissue, (iii) the detection of band of appropriate molecular weight
with western blotting and (iv) the removal of antibody binding using the appropriate

blocking peptide.
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Antibody Abbr. Conc. Cat# Company

Mouse monoclonal anti-vimentin vim 1:5000 | MUO074-UC BioGenex, Launch
Diagnostics

Rabbit monoclonal anti-a smooth muscle actin 1:200 Ab32575 Abcam
actin
Rabbit polyclonal anti-a tubulin tub 1:1000 | GTX102078 Gene Tex
Rabbit monoclonal anti-NaK-ATPase NaK-ATPase 1:500 Ab76020 Abcam
Rabbit polyclonal anti sodium hydrogen NHE-1 1:500 sc-28758 Santa Cruz Biotech
exchanger-1
Rabbit monoclonal anti-Ki 67 Ki 67 1:500 RMAB 004 Diagnostic Biotech
Mouse monoclonal anti-calcitonin gene CGRP 1:500 sc-57053 Santa Cruz Biotech
related peptide
Rabbit monoclonal anti neurofilament Nf 1:1000 | Ab40796 Abcam
heavy
Rabbit polyclonal anti nerve growth factor NGF 1:500 sc-548 Santa Cruz Biotech
Goat polyclonal anti nerve growth factor NGFR 1:100 sc-6188 Santa Cruz Biotech
receptor p75
Mouse monoclonal anti-RT1-B (OX-6) OX-6 1:200 GTX76190 GeneTex
Anti-MHC class Il atibody

Table 2.1: Primary antibodies employed in this work.

The following day, slides were washed in a three stage cycle (TBS, TBS-T, and TBS)
for 20 minutes each before staining with one or two fluorescence (secondary)
antibodies (Table 2.2) depending on the primary used. If two secondary antibodies
were required, the first secondary should be selected in accordance with the species
of the first primary antibody with green colour (488 Alexa Fluor), while the selection of
second secondary should coincide the species of the second primary antibody but
with different colour (red for 594 Alexa Fluor). The secondary antibodies were diluted
in PBS. After removing the excess washing material from the slides, they were
incubated with the first secondary antibody in a humidifier in darkness at room
temperature for one hour. Subsequently, the slides were washed again with TBS,
TBS-T, and TBS for 20 minutes each. The second secondary antibody, which targets

the second primary antibody was then applied before incubation in darkness in the
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humidifier for one hour. Finally, the slides were washed again with TBS, TBS-T, and
TBS for 20 minutes each before applying Vectashield hard set mounting medium with
dapi (nucleic acid molecular probe stain) (Vector Laboratories Inc, Burlingame, USA)
which has the ability to fluoresce when bound to DNA and is usually used as a
chromosomal or nuclear stain. One minute after applying dapi, a drop of glycerol in

PBS was applied before placing a glass cover slip and sealing with nail varnish

around its margins.

Fluorescent Antibody Conc. Cat# Company
Donkey anti-mouse IgG Alexa Fluor 488 1:500 A21202 Molecular Probes®, Invitrogen
Donkey anti-goat IgG Alexa Fluor 488 1:500 A11055 Molecular Probes®, Invitrogen
Donkey anti-rabbit IgG Alexa Fluor 594 1:500 A21207 Molecular Probes®, Invitrogen
Donkey anti-goat IgG Alexa Fluor 594 1:500 A11058 Molecular Probes®, Invitrogen

Table 2.2 Secondary antibodies included in this work.

2.1.7 Staining Controls

Positive and negative control samples were included with each staining run,
according to protocols reported by Sigal et al. (1985) and Sigal et al. (1984a).
Positive controls usually consisted of other tissue in the same sample such as
enamel organ, gingival tissue and bone. Tissues from other sources have also been

used in this study to identify the expression of a specific antibody e.g. bladder tissue.
For negative controls, several methods were used as follows:

1- Use of blocking peptide: these peptides were specially manufactured for
particular antibodies to block their active binding sites before incubation in the
tissue. An example was the human alpha smooth muscle actin peptide (ab
211918) which was specifically manufactured by Abcam as the blocking
peptide for anti-alpha smooth muscle actin antibody [E184] (ab32575). The
concentration of actin blocking peptide was 10:1 of the anti-alpha smooth
muscle actin according to the manufacturer instructions. The mixture was kept
overnight with continuous agitation at 4°C, before applying to the slides in a
similar technique to the primary antibody application (mentioned previously).
After 24h incubation with this mixture, the slides were washed and the
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secondary fluorescence antibody (anti-rabbit IgG, Alexa Fluor 594) staining
was performed (as described in section 2.1.6).

2- Use of the isotype controls: Isotype controls are a type of negative control
designed to measure the level of non-specific background signal caused by
primary antibodies, based upon the tissue type of the sample. The isotype
controls used with this work were: rabbit IgG monoclonal (EPR25A) isotype
control (1:500 Abcam cat# ab172730), and normal mouse IgG1 (1:500 Santa
Cruz Biotechnology cat# sc-3877 UK). These isotype controls were used
either singly or in combination with each other in each experiment, similar to
any normal antibody protocol as negative controls. The slides were incubated
for 24h before washing and staining with the secondary conjugated
fluorescent antibodies.

3- Use of only PBS to incubate the slides instead of the primary antibodies,
before staining with the secondary antibodies only, or the slides were

incubated with PBS only without any staining.

2.1.8 Examination and analysis

The stained slides were examined at X10, X20, and X60 objectives with an Olympus
BX61 microscope (Olympus Corporation, Tokyo Japan) using Alexa Fluor 488 and
594 fluorochromes. These fluorochromes were detected via the microscope light
source and dichroic mirror to split excitation and emission light wavelengths.
Relevant images were captured with a microscope-mounted Olympus XM10
monochrome camera and examined using ImageJ software (Java- based image

processing program- National Institute of Health (USA)).

In addition, and in an attempt to obtain better images details, z-stack images were
captured and analysed with AutoQuant x (Media Cybernetics Inc) which had 2D and
3D deconvolution algorithms available. Approximately 80 slides were examined to
confirm the accuracy and consistency of the staining technique and to reveal

constant staining phenomena (Gillespie et al., 2006).

2.2 Rhodamine-phalloidin staining procedure

This is a fluorescent stain to label filamentous F-actin. The procedure for preparing

slides was described in section 02.1.5. The slides were incubated with rhodamine-

phalloidin stain (Molecular Probes®, Invitrogen), 1:500 in PBS at room temperature

for 30 minutes in a humidified environment before washing them with TBS, TBS-T
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and TBS for 10 minutes each. Following this, the Vectashield hard set mounting
medium with dapi was applied to the slides with drop of glycerol in PBS before

placing the cover slip and sealing the margins with nail varnish.

The slides were examined with a fluorescence Olympus BX61 microscope and

Images were captured as described in section 2.1.8.

2.3 Haematoxylin-eosin staining (H&E)

H&E staining (Goldberg, 2014) was performed by the Cellular Pathology Department

in Royal Victoria Infirmary, Newcastle.

2.3.1 Sample preparation

The same sample size and ages were as described in section 2.1.2. The teeth were
dissected, fixed, demineralised, and sectioned as previously described. Two out of

ten sections were stained with H&E.

2.3.2 Staining examination and analysis

The slides were further fixed by immersion in formol calcium 40% for one hour at
room temperature before the staining. The sections were rinsed in tap water before
staining in Harris’s haematoxylin for 5 minutes, followed by rinsing in tap water before
differentiation in 1% acid alcohol. The sections were then rinsed again in tap water
before staining with eosin for 5 seconds. The slides were finally rinsed in tap water
before dehydrating, clearing and mounting. The stained slides were examined by
Olympus BX51 light microscopy mounted with a Q-Imaging Micropublisher 3.3 RTV
camera and Improvision Openlab 5.0.2 image analysis software.

2.4 Ground sections

Ground sections were used in order to identify the shape and complexity of the
dentine tubules and to differentiate between the tubular and atubular dentine (Stanley
et al., 1983). Thanks to Hard Tissue laboratory in Oral Biology Department in
Newcastle University for their help to do these ground sections.

2.4.1 Samples collection and preparation

Two male, Wistar rats of different ages (2, 4, 6, 9, 12 and 24 week) were used. The
rats were culled in a CO2 chamber before carefully dissecting the mandibles. The
mandibular incisors were extracted, then the bone segment containing the three

mandibular molars were trimmed out. The samples of either mandibular incisors or
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molar segments was then stored in 0.5% chloramine-T for 48 hours. Ground sections

were then prepared from both the incisors and molar bone segment.

After marking the correct plane for the required face with proper alignment, the tooth
sample was adhered on a glass slide with sticky wax. The samples were then lapped
gradually with Logitech (PM2A, Glasgow) lapping machine and 3um calcined
Aluminium oxide powder (Logitech, Glasgow). For the incisor sample, the lapping
process was continued until nearly the central part of the sample was reached. In
molar samples, the lapping continued until the whole pulp chamber of the 15t molar
was exposed. The section was then thoroughly cleaned and polished to ensure a
scratch free surface. The samples were finally polished with a polishing microcloth
(Buehler) and liquid diamond solution 1um, then thoroughly cleaned in an ultrasonic
path with distilled water to remove surface lapping compound. Specimens were then
dehydrated through graded alcohol then dewaxed with xylene in a fume cupboard
before mounting over the slides. The thickness of the ground sections ranged

between 90 to 110 pm.

2.4.2 Examination and analysis

The slides were examined by Olympus BX51 light microscopy mounted with a Q-
Imaging Micropublisher 3.3 RTV camera and Improvision Openlab 5.0.2 image
analysis software. Polarized light with filters which were available in the microscope

ware also used depending on the thickness of the observed section.

2.5 Polymerase chain reaction (PCR)

2.5.1 Sample collection:

Details of sample collection are described in Ch 6, section 6.2.

2.5.2 RNA extraction:

Extraction of total RNA from the pulp tissues was accomplished using RNeasy mini
kit (Cat. No. 74104, Qiagen, Germany) (Table 2.3). Before using the kit, four volumes
of ethanol (96-100 %) were added to Buffer RPE and 10 pL B-mercaptoethanol
(M7154, Sigma, Germany) was added to every 1 mL of the Buffer RLT to prepare a

working solution according to the manufacturer instructions.
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Material Supplied volume/ quantity
Buffer RLT 45 mL
Buffer RW1 45 mL
Buffer RPE (Concentrate) 11 mL
RNase-free water 10 mL
RNeasy mini spin column 50
Collection tubes (1.5 ml) 50
Collection tubes (2 ml) 50

Table 2.3: The contents of RNeasy mini kit.

The protocol was as follows:

Prior to RNA extraction, the tools were sterilised and the surrounding area was
thoroughly cleaned with 70% ethanol or RNaseZap solution (Ambion, cat#
AM9780). Additionally, in all steps the solution tubes were kept in an ice box
because the RNA is easily broken down and contaminated by the atmosphere.
The pulp was gently taken from the RNAlater solution with forceps, before
drying with piece of sterile tissue and weighting by sensitive balance. The
average weight of the pulp used was about 14.5 mg. The pulp then put within
sterile petri dish before cutting into small pieces using a new scalpel for each
sample. The sample was then immersed in a micro centrifuge tube containing
600 uL of the Buffer RLT with B-mercaptoethanol. Additionally, the tissue was
disrupted further while being immersed in the Buffer RLT using Pellet Pestle
motor and autoclaved plastic tips.

Homogenisation was achieved using TissueLyser LT (Qiagen, Germany) at
maximum speed for 5 minutes. The supernatant was then pipetted and
transferred to a genomic DNA (gDNA) eliminator spin column placed in a 2 ml
collection tube and centrifuged (SLS 4600, Scientific Laboratory Supply, UK)
for 30 seconds at 28000 x g. The column was then discarded and the flow-
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through saved. This step is very important because it helps to remove the
insoluble materials and gDNA that may interfere with DNA removal.

600 pL of 70% ethanol was added to the saved flow-through solution before
thoroughly mixing by pipetting.

600 pL of the mixture was then transferred to an RNeasy mini spin column,
placed in a 2 mL collection tube supplied by the manufacturer. The lid of the
collection tube was closed tightly and the tube centrifuged for 15 seconds at
28000 x g. The flow-through was discarded. This step was repeated until all
the initial mix was fully used.

700 pL of Buffer RW1 was added to the RNeasy spin column, lid closed,
centrifuged for 15 seconds at 28000 x g and the flow-through was discarded.
500 pL of Buffer RPE was added to the RNeasy mini spin column, before
centrifuging for 15 seconds at 28000 x g and the flow-through was discarded.
The RNeasy mini spin column was centrifuged for 1 minute at 28000 x g, for
further drying of the column membrane.

The RNeasy mini spin column was placed in a new 1.5 recovery tube supplied
by the manufacturer. 30 pl of RNase-free water was directly added to the
column spin membrane before centrifuging for 1 minute.

The previous step was repeated to end with 60 pl flow-through RNA solution

with the tube saved in an ice container for the next step.

2.5.3 RNA quantitation:

The total RNA products yields from both RNA isolation protocols were tested with

NanoDrop ND-1000 spectrophotometer (ThermoFischer Scientific, USA) with the

NanoDrop 1000 specific software (NanoDrop 1000 Version 3.8.1). The protocol was

as follows:

The software initialised, the sampling arm opened and the measuring pedestal
cleaned using a soft laboratory wipe.

1 pL of autoclaved distilled water or elution buffer was used to create the blank
measurement, pipetted carefully into the pedestal, the arm closed and the
blank measurement made.

Upon completion, the sampling arm was opened, the pedestal cleaned

thoroughly, 1 pL of the sample RNA (according to the manufacturer’s
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instructions) was pipetted onto the pedestal and the spectral measurements
made for each sample.

» The pedestal was cleaned thoroughly following every measurement and a
blank measurement was made before each sample measurement.

» For every sample quantified by NanoDrop, the ratio of absorbance at 260-280
nm should be between 1.8 - 2.1 to show minimal amount of protein
contamination present. Additionally, the ratio of absorbance at 260-230 nm

should be greater than 1.8 to show minimal ethanol and salt contamination.

Due to inherent inaccuracy in quantifying total RNA using absorbance with NanoDrop
(Aranda et al., 2009), the amount of RNA added to an RT-PCR from each sample

was more accurately determined by normalising against the housekeeping gene.

2.5.4 Reverse transcription (RT) and complementary DNA gquantitation:

1 pg of total RNA was used in the synthesis of complementary DNA (cDNA) using
High-Capacity cDNA Reverse transcription kit (Cat No. 4368814, ThermoFisher
Scientific, USA). The contents of the kit are listed in Table 2.4.

Component Quantity
10X RT Buffer 1 tube x ImL
10X Random Primers 1 tube x ImL
25X dNTP Mix (100 nM) 1 tube x 0.2 mL
MultiScripe Reverse Transcriptase (50U/ul) 2 tubes x 1 mL
RNase Inhibitor 2 tubes x 200pL

Table 2.4: Components of High-Capacity cDNA kit.

To synthesize a single-stranded cDNA from total RNA using this kit, the following

protocol was employed:

= All the components of the kit were allowed to thaw on ice, then 2X RT master
mix was prepared according to the manufacturer’s instructions as illustrated in
Table 2.5, always kept on ice and mixed gently. This master mix was for 20 pl

yield reaction.
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Component Volume
10X RT Buffer 2 L
10X Random Primers 2 uL
25X dNTP Mix (100 nM) 0.8 L
MultiScripe Reverse Transcriptase (50U/ul) 1uL
RNase Inhibitor 1L
Nuclease-free water 3.2uL
Total volume per reaction 10 L

Table 2.5: Volume components needed to prepare reverse transcription master mix.

= 10 uL of the 2X master mix was pipetted into a PCR tube followed by the
addition of 10 pL of sample RNA of 1 ug concentration, pipetting up and down
two or three times to mix the contents.

* PCR tubes were labelled, dated and the lid closed tightly. Tubes were then
centrifuged for 15 seconds at 8000 x g to spin down the contents and
eliminate any air bubbles and always kept on ice.

= To create negative controls (RT —ve), we included RT reaction tubes
containing the same components of Table 2.7 excluding the MultiScripe
enzyme. To create no template —ve control (NTC), all the components in Table
2.7 were included without the addition of RNA, but the same volume of
nuclease free water was added instead.

= The tubes were then transferred to the thermocycler (T100 Thermal cycler,
BIO-RAD, USA) using a special program suggested by the manufacturer as

shown in Table 2.6.
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Step 1 Step 2 Step 3 Step 4

Temperature ("C) 25 37 85 4

Time 10 min 120 min 5 sec 0

Table 2.6: The program used with thermal cycler.

= The cDNA products were tested with NanoDrop ND-1000 following the same
protocol as previously described for RNA quantitation in section 2.5.2.
» The synthesised cDNA product was either kept on ice for immediate use or

stored in a -20°C freezer for later use.

2.5.5 Primers:

Primer design was performed using Primer 3 input http://primer3.ut.ee/ (Rozen and

Skaletsky, 1999), before checking all primers for specificity using UCSC In-Silico

PCR https://genome.ucsc.edu/cgi-bin/hgPcr . The primers were designed to create

amplicons of up to 200 base pairs (bp), have GC content of 40-60%. Primers with
long runs of a single base were avoided as they can misprime. Then, primers were
synthesised by Metabion (Metabion International AG, Germany), purified by desalting
and with an annealing temperature of 58°C. A full list of primers used in this work and

their nitrogen bases sequences are listed in Table 2.7.
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bp

Type Sequence name Sequence

length
DNA GAPDH forward primer GCGGAGATGATGACCCTTTT

99
DNA GAPDH reverse primer GTGCTGAGTATGTCGTGGAG
DNA a-actin forward primer CAGTTGTACGTCCAGAAGCA

71
DNA a-actin reverse primer CTTCAATGTCCCTGCCATGT
DNA a-tubulin forward primer TGGGTTCCAGGTCTACGAAC

153
DNA a-tubulin reverse primer AGCTCTACTGCCTGGAACA
DNA Col 1al forward primer GCAAAGATGGACTCAACGGT

189
DNA Col 1al reverse primer GGCCACCATCTTGAGACTTC
DNA Col 1a2 forward primer TAACCCTGGCAGTGATGGTC

130
DNA Col 1a2 reverse primer CAGGACCCACAGAACCATGA
DNA NaKATPase al forward primer GGTGGATGAAGTGCTCGATT

192
DNA NaKATPase al reverse primer TCACAAACGAGAACCCCTTG
DNA NHE-1al forward primer GGCCTGCTTTTACCTCTGTT

187
DNA NHE-1al reverse primer GACTATTGCACGATCCTGGG
DNA NCX al forward primer CTTTCTCATATTCCTCACGGTCA

101
DNA NCX al reverse primer ACCTTCTTCATTGAGATTGGAGA
DNA PMCAZ1 forward primer TCAGCTCGTAGTGGTCTTCA

110
DNA PMCAL reverse primer AATGGTGTAGTGCTCTGACG
DNA SERCAZ1 forward primer CCATGATGTCCAGGTCAGGT

180
DNA SERCAL1 reverse primer AAGCAGTTCATCCGCTACCT
DNA Nav 1.6 forward primer TGGCATGTCCAACTTCGCATA

145
DNA Nav 1.6 reverse primer GTTCAGGATTGGCAGCAGCA
DNA Nav 1.7 forward primer ATGAGCATGTTCAGTGTGGG

130
DNA Nav 1.7 reverse primer AGCCTAATTGTGACGCTGAG
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Table 2.7: List of primer pairs used in this study and their product size.

2.5.6 End point (qualitative) Polymerase Chain Reaction (PCR):
PCR reaction was accomplished using GoTaqg Green Master Mix (Cat. No. M7122,

Promega, USA). The protocol used was as follows:

» GoTag master mix was thawed at room temperature, vortexed briefly and
centrifuged for 15 seconds.
* The reaction mix was prepared in PCR tubes on ice as shown in Table 2.8:

Component Volume Final concentration
GoTaq green master mix, 2X 12.5 uL 1X
Forward primer (10 pM) 1puL 0.4 uM
Reverse primer (10 pM) 1pL 0.4 pM
Sample cDNA (10 ng) 1L NA
Nuclease-free water 9.5 uL NA

Table 2.8: End point PCR reaction mix/ 25 pl.

» The PCR tubes were transferred to the thermal cycler using a specifically
designed program according to the manufacturer instructions as shown in
Table 2.9.

= The yielded PCR products were immediately detected by gel electrophoresis.
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Cycles Temp Time Notes
1 95°C 2 min Polymerase activation
40 95°C 30 sec Denaturation
58°C 30 sec Annealing
72°C 30 sec Extension
1 72°C 5 min Final extension
4° © Holding until usage

Table 2.9: End point PCR reaction mix/ 25 pl.

2.5.7 Post PCR detection and gel documentation system:

2% agarose gel was prepared by dissolving 2 gm of agarose (MB1200, Melford
laboratories, UK) in 100 mL of 1X TAE buffer and completely dissolved by heating
the mix in a microwave oven for 5 minutes. The mixture was then allowed to cool
down for few minutes but not solidify, followed by the addition of 10 uL of GelRed
Nucleic Acid Gel Stain 10000x (Cat 41003, Biotium, UK) to allow visualisation of
nucleic acid bands. The solution was poured into a suitable gel tray, with the
associated comb in place. After complete setting of the gel (around 30 minutes), the
comb was removed, the tray transferred to the electrophoresis tank and more 1X
TAE buffer added until it reached a specified level marked on the side of the tank. 3
puL Ladder (Hyper Ladder 1V 100bp, Bioline, UK) was mixed with 5 ul gel loading
buffer (5X DNA loading buffer blue, Cat. Bio-37045, Bioline, UK) followed by the
addition of 3uL autoclaved distilled water, and loaded in the first well to the left. The
samples did not need to be mixed with that stain, because the GoTaq master mix
already contained two dyes (blue and yellow) that allowed monitoring progress during
electrophoresis. 10 pL of each sample was loaded in the specified well. Negative
controls for each gene were prepared following the same technique as with the

samples but without cDNA and loaded in other wells.

Gel electrophoresis was subsequently performed by running TAE gels at 85 volts and
400 mAmp for 1-2 hours, until separation of DNA fragments were achieved using
BIO-RAD Power Pac 300 device (BIO-RAD, UK).
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After completion of the electrophoresis process, the gel was transferred to the
Electrophoresis Documentation Analysis System (G:Box, Syngene, UK) for exposure
to ultra violet light. Relevant images were captured with GeneSnap software (Version
7.08, Syngene, UK), saved and finally printed with a digital monochrome printer
(P93D, Mitsubishi, Japan). The size of PCR products was subsequently determined
by correlating the size and location of each sample band with the known size bands
of the ladder.

2.5.8 Quantitative Reverse Transcriptase Polymerase Chain Reaction (q-RT-
PCR):

g-RT-PCR was achieved using 2X SensiFAST SYBR No-ROX kit (BIO-98005,

Bioline, UK), where all PCRs were prepared in 96 well optical reaction plates (RT-

PL96-0p, Eurogenetics, UK). All the reagents were taken out of the freezer and

allowed to thaw on ice. All the work was accomplished on ice, using disposable

filtered tips (StarLab, UK) and special pipettes with the SensiFAST kept protected

from light. The contents of each well are shown in Table 2.10.

Reagent Volume Final Concentration
2X sensiFAST 10 pL 1X
10 uM Forward primer 0.6 pL 400 nM
10 pM Reverse primer 0.6 pL 400 nM
cDNA (Template) 1 L (10 ng) NA
Nuclease free water 7.8 pL NA
Final volume 20 pL

Table 2.10: Contents of each individual well for g-RT-PCR reaction.

In all the reactions, 10 ng/pl of cDNA was used in each well and a house keeping
gene was included (GAPDH) as a positive control and to ensure that all data were
expressed in close relation to an internal reference. All samples were tested in
duplicate plus a negative control (NTC and RT-ve). Adhesive seals (Microseal B, cat.
No. MSB 1001, BIO-RAD, UK) were fitted firmly over every reaction well plate, to
avoid the samples evaporating during the thermal cycling. Subsequently, the
prepared and sealed 96 wells reaction plates were loaded into the thermal cycler
(Opticon Monitor software, Version 3.1, BIO-RAD, UK). A plate layout was required
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for every reaction plate then the amplification conditions and protocol were
determined. A three-step protocol was used with all reactions, with details of the
protocol shown in Table 2.11 according to the manufacturer’s instructions and the

annealing temperature of the primers used in this study.

Cycles Temperature Time Notes
1 95°C 2 minutes Polymerase activation
95 °C 5 seconds Denaturation
40 58 °C 10 seconds Annealing
72°C 10 seconds Extension

Table 2.11: Details of protocol used in g-RT-PCR.

At the end of each reaction, the data were collected by the system and graphically
displayed. The files were saved containing all the specific details of the reaction
including a melting curve, amplification curve and Ct values. The threshold was also
set at the linear part of the amplification curve and the number of cycles needed to
reach it was calculated. The Ct value is defined as the number of cycles required for
the fluorescent signal to cross the threshold (i.e. exceeds background level) and this

is the value which used for statistical analysis.

2.5.9 Results, analysis (real time) and absolute quantification

Relative mRNA levels for each gene were determined by use of a standard curve
and by further normalisation to the reference gene to adjust for uncontrolled

variabilities between the samples.

Calibration of the g-RT-PCR system was accomplished by including a standard curve
prepared from gradual dilution of the cDNA template in each reaction. This can also

serve as an internal positive control for primer function.

The melting curve analysis was performed by the system upon the completion of the
cycles and was used to determine the specificity of each primer set. Melting curve
allows the confirmation of specific PCR products and the absence of non-specific
products which also help to determine the purity of the sample detected (see

appendix B image II).
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Following each reaction, the system presented the data in a numerical and graphical
manner. All the data were then moved to an excel spread sheet where they were
assembled from all experiments. The data was then categorised and initially
analysed using excel in which mean, standard deviation and standard error values
were calculated. To determine the level of significance, ANOVA and post hoc
analysis was used for the different incubation group and student t test for control and

treated groups using SPSS software.
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Chapter 3 The complexity of Odontoblast process and response to
injury
3.1 Introduction

Odontoblast processes are cytoplasmic extensions of the cell body, which reside
within the tubular structure of dentine. The intimate relationship between the soft
tissue of the pulp and its surrounding dentine, thus forms a spatially and functionally
related pulp-dentine complex (Luukko et al., 2011). Within this complex, the OPs are
primarily responsible for dentinogenesis, whilst their presence within the dentinal
tubules make the dentine a vital and responsive tissue (Holland and Botero, 2014)

with a range of sensory and defensive roles throughout life.

At the ultrastructural level, TEM studies in human and animal models, reported the
presence of intermediate filaments mainly of vimentin (10 nm in diameter), and
microfilaments or actin fibres (5-8 nm in diameter) within odontoblasts and their
processes. The intermediate filaments are believed run centrally within the core of
the OP, whilst microfilaments are abundant peripherally in the form of bundles or
networks (Nishikawa and Kitamura, 1987; Yoshiba et al., 2002). These insoluble
cellular proteins have also been reported in immunofluorescence studies (Sigal et al.,
1985; Nishikawa and Sasa, 1989; Byers and Sugaya, 1995) and are believed to have
instrumental roles including structural and cytoskeletal support, cellular movement

and secretion (Pollard and Cooper, 2009; Gunning et al., 2015).

The OP plays a central role in dentinogenesis, a key element of which is the active
transport of Ca?* ions into the extracellular spaces and Na*/Ca?* exchange
employing chemical energy derived from tissue with a high extracellular Na*
concentration (Guerini, 1998). NaK-ATPase is expressed widely in cellular systems,
including dental tissues, where it is instrumental in maintaining cell membrane
potentials (Obrien et al., 1994). In the enamel organ, NaK-ATPase has been linked to
transport activity of the sub-ameloblast cells (Josephsen et al., 2010). NaK-ATPase
has also been reported within the cells of the pulp, especially within subodontoblast,
and odontoblast cells (Alhelal et al., 2016; Mahdee et al., 2016). It is proposed that
detecting the presence of structural intracellular proteins (vimentin and actin), and

cell membrane active enzyme NaK-ATPase within odontoblasts and cellular
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processes may provide helpful insights on the anatomical complexity of the pulp

dentine complex which may reflect its likely functions.

The presence of the immunocompetent cells i.e. macrophages and dendritic cells
has been reported within the odontoblast cell layer during tooth development. This
suggests that they may have a role in supporting dental development, in addition to
their primary immune-surveillance function (Tsuruga et al., 1999). Because dendritic
cells can extend cellular processes into dentinal tubules (Kawagishi et al., 2006),

these must be identified during studies on OP complexity.

It is well known that the odontoblast cell layer shows remarkable morphological,
structural, and functional changes during tooth development. This is seen both in
continuous growing rodent teeth (Ohshima and Yoshida, 1992) and in teeth with
limited growth (Couve, 1986; Yoshida and Ohshima, 1996). The degree of extension
of the OP remains contentious with a number of groups identifying full extension to
the dentino-enamel junction, provided that the tooth surface remains intact (Gunji and
Kobayashi, 1983; Sigal et al., 1984a; Sigal et al., 1985; Grotz et al., 1998; Kagayama
et al., 1999; Tsuchlya et al., 2002). Less information is available on the morphological

complexity of OP changes during stages of tooth formation.

Similarly, studies have shown changes in pulp innervation (Taylor et al., 1988),
growth factor expression (Byers et al., 1990), presence of immunocompetent cells
(Kawagishi et al., 2006), and pulp cell apoptosis (Kitamura et al., 2001) following
dental cavity preparation, but the effects on odontoblasts and their processes are

less well understood.

Odontoblast process is an active element during dentinogenesis in dentine secretion
and mineralisation (Tjaderhane et al., 2012) and their spatial sensing relationship
within the pulp-dentine complex triggers inflammatory and reparative activities
(Okumura et al., 2005). The balance between secretory and defensive roles may
suggest morphological and functional heterogeneity within the odontoblast population
or changes in cells as they predominate in different duties. Specific objectives of the

current work are:

1- To explore the development of OPs and their complexity in a rodent incisor

tooth model.
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2- To examine the response of OPs to trauma induced by cavity preparation into

dentine.

3.2 Methods

3.2.1 Non-cavity samples:

About 10 male Wistar rats, 12-13w age (about 400-500g weight) were killed in a CO2
chamber. Mandibles containing incisors were carefully dissected free and divided
centrally into two halves. These half mandibles (n=20) were cut to divide incisors into
apical, middle and incisal thirds (Figure 2.1 A), with a high-speed diamond bur under
constant water cooling. Fixation, demineralisation, freezing and sectioning were done
as described in Ch 2 sections 2.1.3, 2.1.4, and 2.1.5 respectively. Sections were
placed on polysine coated slides. Approximately 20 sagittal, 10um thickness sections

were obtained from each block.

Sections from each animal were stained either with rhodamine phalloidin (Molecular

Probes®, Invitrogen) (see section 2.2) or IHC antibodies (see section 2.1.6).

Immunohistochemical staining included either one or a combination of two of the
following antibodies: mouse monoclonal anti-vimentin (vim) (1:5000), rabbit
monoclonal anti-a smooth muscle actin (1:200), rabbit monoclonal anti-NaK-ATPase
enzyme (1:500), and mouse monoclonal RT1-B antibody [OX-6], a dendritic cell

marker, (1:200). Details about these antibodies were shown in table 2.1

Negative controls for IHC staining included blocking peptides and isotype controls for

each experiment was described in section 2.1.7.
Fluorescent microscopy was conducted as described in section 2.1.8.

3.2.2 Cavity samples:

Similar number of male Wistar rats with similar ages were used in this experiment.
After animal killing in CO2 chamber, the mandibular incisors were extracted. The
teeth (n=15) were divided into thirds as previously described, with only the relatively
mature tissues of the incisal regions included in this investigation. One groove-like
cavity was prepared on the labial surface, about 3 mm from the incisal edge, of each
incisal specimen with high speed diamond bur No 009 (head diameter 0.5mm) (Kerr
Dental, Switzerland), under constant cooling from a syringe containing Dulbecco’s
Modified Eagle’s Medium (DMEM) solution (Sigma, USA), to overcome the osmotic
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pressure changes that may have occurred under traditional water cooling. From our
ground section archives of the rat mandibular incisor, the thickness of enamel at that
region was estimated to be 200um. Insertion of the bur to half-thickness therefore
resulted in a cavity of approximately 50 um depth in dentine. This depth of
penetration was considered shallow given the typical thickness of dentine in this area
in the range of 600-700um. Work was conducted under a Global Operating
Microscope (DP Medical Systems, UK). After cavity preparation, teeth were divide
into 3 groups (n=5). Group A was immediately fixed with 4% PFA solution for 24 h at
4 °C. The working time for one cavity preparation was 60sec or less, and this group
was referred to as the 60sec or group A within this study. The other groups were
incubated in a COz2 incubator (Sanyo, Japan) at 37°C with 5 ml DMEM solution
supplemented with fetal calf serum (1% Sigma) and penicillin-streptomycin (50 IU/ml-
pg/ml Sigma) for 3h (Group B) or 24h (Group C). After incubation, samples were
fixed, demineralised and sectioned as described in sections 2.1.4 and 2.1.5. Tooth
cross-sectional sections were prepared (10 um, 20 serial sections from each
sample). Only the mid sections from these series were used for staining in order to
ensure the best section location within each cavity. These sections were stained with
rabbit monoclonal anti-alpha smooth muscle Actin antibody (1:200) and mouse
monoclonal anti-vimentin (1:5000) (same as described previously). Negative control
sections were also obtained as described in Ch 2 section 2.1.7. Images were
captured at X100, X200, and X600 magnification.

Depths for all cavities were verified as being in the range of 40-60 um.
Measuring OP length:

Only images showing a-actin staining were used to measure the length of
odontoblast processes, because, depending on the results of the first section, this
stain was labelled within the full length of OPs. Measurements were performed on
X100 magnification images to allow the whole thickness of dentine to be seen.
Measurements of OP process were made from intact or cavity surfaces. Therefore,
each group was subdivided into two sets of measurements: intact OP length ratios as
“control” measurements and traumatised OP length ratios as “experimental”
measurements. Groups Al, B1 and C1 were controls and A2, B2, and C2 were
experimental groups. Measurements of OP lengths were performed using Cell F
imaging software (Olympus). Figure 3.1 illustrates the process.
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1- To measure OP length within cavity zone:

a_

d-

A curved line was drawn between the two edges of each cavity to
represent the position of the original DEJ before cutting (dotted line in
Figure 3.1).

To identify the cavity measurement zone (CMZ), two lines (blue lines in
Figure 3.1) were drawn from the pulp margin to the curved line on the two
boundaries of the cavity. These 2 lines should be parallel to the flow of
OPs.

The measurement lines were drawn (red line 1, Figure 3.1), which should
be parallel to each process within the measurement zone and similar to the
boundary lines. Each measurement line was used to measure:

i- length of the odontoblast process (OP) from pulp margin to its
terminal end.

ii- Thickness of dentine before cutting (L), which is represented by the
estimated curve line (dotted line in Figure 3.1). All measurements
were done in micrometres.

The ratios of OP/L were used to calculate the differences in OP length after

cavity preparation in relation to the original dentine thickness.

Similar measurement lines were also used to quantify OP length ratios within

intact tooth regions adjacent to the cavity (red line 2, Figure 3.1). These lines

were outside cavity zone. The length ratios for control tooth surfaces were
OP/DL.

In this preliminary investigation of proof of concept, only one section was

analysed for each group of samples. About 25-50 OP measurements were

performed in each section within and outside the cavity zone. Both controls and

experimental groups were analysed using Kruskal Wallis test to identify

statistically significant differences within groups for cavity or intact OP

measurements. If significant differences were observed, multi comparison post

hoc test was performed.
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Figure 3.1: Cavity measurement diagram.

Cross section of the rat mandibular incisor for cavity region identifying measurements within
and outside the cavity zone (CMZ) for traumatised (1) and normal (2) OPs respectively. The
length of the OPs were normalised either with control dentinal tubule thickness (DL) in
control surfaces or with estimated length (L) for dentine surface before cutting on cavity side.
P= pulp and De=dentine.

3.3 Results

3.3.1 Non-cavity samples:

Structural proteins:
All images shown in this part of the work were demineralised longitudinal sections
from the labial side of the apical, middle and incisal thirds of rat mandibular incisors.
The apical third, which contains the apical bud (proliferation region) of the tooth and
the newly differentiated Ods secreting the initial dentine (mantle dentine), is
expressed in Figure 3.2. The apical bud contains an epithelial component (Figure 3.2
A, B *) which includes inner enamel epithelium (IEE) and outer enamel epithelium
(OEE). Another component (mesenchymal origin) is clearly represented by
proliferating cells of the dental papilla (DP). The latter cells appear with regular
distribution of vim and actin within their cell bodies. Moving further, cellular
differentiation results in formation of pre-ameloblast (PAm) cells which face the pre-
odontoblasts (POd) (differentiating cells of the dental papilla). The PAm cells are not
yet polarized, in comparison with the POds which appear as a single cell layer of low
columnar shape with basally-located nuclei. The presence of actin represented by
alpha smooth muscle actin (a-actin) (Figure 3.2 images A and al), or the rhodamine
phalloidin (RP) binding to F-actin (Figure 3.2 image B), is apparent in the junctional
60



region between POds and PAm cells i.e, the apical pole for these two developing
groups of cells. However, the vim-IR is only present within the POds in the apical
region above their nuclei and slightly basal to the apical actin pole (Figure 3.2 al).
After the start of predentine (PD) deposition, the differentiated Ods appear as a
single polarised cell layer of about 45um in thickness, with multiple cellular processes
in their apical region (Figure 3.2 C). The a-actin seems to be more concentrated in
the apical region of the Ods and within their processes. Additionally, F-actin is seen
within Od cell bodies (Figure 3.2 D). The highest expressions of a and F-actin are still
present within cells of the enamel organ, especially the Tome’s processes (TP) of the
ameloblasts (Am), followed by pulp blood vessels (arrows in D). Vim-IR becomes
more concentrated within the Od cell bodies apical to their nuclei and within OPs
(Figure 3.2 C). In higher magnification images (Figure 3.2 E, F, and G), this region is
illustrated by the very complex appearance of OPs which clearly identify two different
immuno-reactive (IR) processes (Figure 3.2, E): actin tree-like processes (*) (as also
shown in image F) and vim-IR (a in E). These actin processes extend to about 20um
in front of the Ods. By use of an a-actin blocking peptide, no signs of this protein are

seen within treated sections (Figure 3.2 image H).
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Figure 3.2: Vimentin, a and F actin expressions in demineralised sections from the apical
third of rat mandibular incisors of 12w rat.

Images A, al, C, and E are stained for vim (green), a-actin (red) and dapi (blue), B for RP
(red) and dapi (blue), D, F for RP, G for a-actin and H for a-actin + a-actin-blocking peptides.
Images A, region of interest al, and B show the apical bud region (*) with the following
structures: inner enamel epithelium (IEE), outer enamel epithelium (OEE), dental papilla cells
(DP), pre-odontoblasts (POd), pre-ameloblast (PAm), and blood vessels (BV). a-actin and
RP expressions are seen in the junctional interface between POd and IEE (arrows), OEE
cells and the BV of the pulp. Highly magnified image al shows the junctional interface
between POd and PAm is a-actin-IR (arrow) and the apical region of the POd is vim-IR (+).
Panels C and D show the region of hard tissue dentine (De), enamel (En) deposition with the
following structures: odontoblasts (Od), ameloblasts (Am), Tomes’ processes (TP),
predentine (PD), stratum intermedium (SI), stellate reticulum (SR), and blood vessels (BV).
Regions of interest in C and D are seen in higher magnification in E and F respectively and
the component image G, which show two different OPs: actin processes (*), vim-IR
processes (a in E). Actin expression also presents in the apical cell region of the Od (+) and
pulp capillaries (arrows). No a-actin-IR could be detected in image H after using a-actin
blocking peptides.

In the middle region of the tooth (Figure 3.3), the thickness of dentine (De) and Od
layer increase. This is associated with a more specific SOd cell layer which becomes
clearly recognised between Od and central region of the pulp. The Od layer appears
as a pseudo-stratified layer of columnar cells with apically located nuclei, about 80pum
in thickness. It is highly vascularised, with numerous capillaries both in between and
on the apical region of Od (Figure 3.3, A). There is high actin expression in the apical
pole of the Od layer associated with tree-like actin processes which extend within the
predentine region (images A and D respectively). The extension of these actin
processes is similar to that in the apical part of the tooth. The SOd is thinner
compared to Od (short and long double sided arrows respectively in image A), but
more densely packed. It has different cellular orientations and represents the region

of blood supply passage from central pulp cells (CPC) toward the Od layer.

A very complex structure of OPs and their branches is clearly identified within all
regions of dentine (Figure 3.3), extending from PD toward the DEJ. a-Actin within the
PD region labels two different types of OPs: either vertical without division or
horizontal with multidivisional shape processes (images B and C Figure 3.3). The
straight vertical processes are short non-divided spikes (+ in image B and its
component images), parallel to the main vim-IR OPs (A), and do not extend further
than the PD region. The horizontally actin-IR processes appear longer than the
vertical processes and with tree like divisions (*). The main OPs which labelled vim-
IR (A) also have a-actin-IR in their circumferences (e) both with their branches (*).

Similar complex actin processes are also labelled with RP stain (* in image D) in the
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PD region. This F-actin marker is also expressed by the main OPs and their lateral
branches in the inner dentine region (A and arrows in image D Figure 3.3
respectively). Similar observations are also present in the middle dentine. The lateral
branches emerge at an acute angle from the main processes and directed distally
toward DEJ. However, the outer dentine region, which represents the first deposited
dentine (mantle dentine), shows much more complex detail. This region has intense
staining due to the huge branching of the OPs. Firstly, the OPs are divided between
2 to 3 major branches (* in image E Figure 3.3) within outer dentine and these
branches terminate into many terminal and lateral side branches reaching close

vicinity to the DEJ (thick arrows in image E).
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Figure 3.3: Vimentin, a and F actin expressions in the demineralised sections for the middle
third of rat mandibular incisors.

Images A, B, and C are stained for vim (green), a-actin (red) and dapi (blue), b1, c1 for vim,
b2, c2 for a-actin, D and E for RP. An overview of pulp region in middle tooth third is seen in
image A with the following structures: odontoblasts (Od), sub-odontoblasts (SOd), central
pup cells (CPC), odontoblast layer capillaries (Cp), predentine (PD), apical part of the
odontoblasts cell layer (long arrow), and dentine (De). The box in A highlight the region for
the high magnification images B and C and their component images b1, b2, and c1, c2
respectively. In these images the following structures are shown: two types of actin-IR
processes are seen: vertical processes (+) parallel to the vim-IR main processes (a), and
horizontal processes (*). Actin-IR also presents in the boundary (e) of vim processes (a) and
their branches ("), Od apical membrane (arrows), and capillaries (Cp). Image D shows actin
processes (*) of the main OPs (a) in PD region. The apical part of the OPs (thick arrow)
shows intense staining compared to other regions within Od. The dotted line marks the
mineralising front region of the OPs. Lateral branches of OPs (short arrows) are numerous
within the inner dentine. The mid and outer dentine regions are seen in image E with long
lateral branches (short arrows) of OPs (a) within mid dentine and major (*) and terminal
(thick arrows) branches within the outer dentine region close to enamel (En).
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In the incisal region of the tooth (Figure 3.4), the Od layer appears thicker with a
heavily packed pseudo-stratified layer of cells (about 100um in thickness). Similar to
the middle region of the tooth, apically located vascular capillaries (arrow heads) are
also seen within the apical region of the Od layer. This cellular pole still shows
richness in actin and vim-IR (thick arrows in images A, al Figure 3.4 and A, B images
Figure 3.5). At the same time similar vascular details are also observed with
numerous capillaries (Cp) within the SOd running in different directions, which
originate from the large blood vessels (BV) within CPC. The complexity of the OPs
within PD region is still present with two types of processes, IR to actin and vim (*
and . respectively in Figure 3.4 al). However, the actin tree-like processes
decreased in extension to about 14.5um and are noticeably less dense in
comparison to the apical and middle regions of the tooth (Figure 3.2 and Figure 3.3
respectively). Moving toward the the dentino-enamel junction, the OPs show
different regions of protein IR within different depth of dentine. Although a-actin is
expressed within OPs through its entire thickness (Figure 3.4), vim-IR varies in
different regions within their paths, dividing dentine into 4 different regions of
expression. Working from the pulp, the first region is described here as region I,
shows the highest vim and actin IR and may represent the predentine and inner
dentine (Figure 3.4 images B and b2). Moving toward the DEJ, the IR for vim seemed
to disappear in the inner part of the middle dentine. This is described as region Il in
the present study. Continuing outward, region Il was characterized by a return of
vim-IR within the bulk of the middle dentine (Figure 3.4 images C and c2). Finally,
region IV was represented near to the DEJ, with the odontoblast processes

appearing to lose their vim-IR.
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Figure 3.4: Vimentin, a-actin expression in demineralised sections from the incisal third of rat
mandibular incisors.

Images A, al, B and C are stained for vim (green), a-actin (red) and dapi (blue), b1, c1 for a-
actin, and b2, c2 for vim. The pulp region in incisal tooth third is seen in image A with the
following structures: odontoblasts (Od), subodontoblasts (SOd), central pup cells (CPC),
blood vessels (BV) capillaries (Cp), odontoblast layer capillaries (short arrows), predentine
(PD), apical part of the odontoblasts cell layer (long arrow), and dentine (De). Double sided
arrows marked the thickness of the Od and SOd regions. A region of interest is highlighted in
image al which shows both vim (a) and a-actin (*) OPs. Image C is continuous to B (with
their component images c1, c2 and b1, b2 respectively). As dentine is thicker in the incisal
tooth part, it necessitated the presentation of two sequential images for adequate resolution,
rather than one low magnification image. These images show different regions within dentine
thickness according to vim-IR of the OPs (I, II, lll, and 1V in images b2 and c2), although, all
these regions express similar a-actin-IR (images bl and cl).
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The complexity of the OPs at different depths within dentine is expressed clearly with
RP staining in Figure 3.5. In the inner dentine and after passing the PD region, the
OPs have numerous lateral branches which run in a forward direction between the
main processes (1 and 2 in image B Figure 3.5). Similar complexity of the OPs is also
identified in the middle dentine (Image C Figure 3.5). At higher magnification (as
seen in image cl Figure 3.5), there are two OPs (1 and 2) sending many lateral
branches (a-f) which emerge about 45° from the main processes in a distal direction
and directed toward adjacent processes (3-6). Some of these lateral branches (a and
b) extended far away from their original OPs to about 4 to 5 processes distant. Other
lateral branches are evident (d and e), where the origin process for them is not clear
in this section, but they seem either to connect adjacent OPs (4 and 3 respectively) in
a proximal direction or to be overlapped by these processes. In the outer dentine
(Image C and higher magnified region in image c2 Figure 3.5), complex terminal
branches of the OPs are also seen with numerous terminal branches for each

process as mentioned previously in middle tooth part in Figure 3.3.
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Figure 3.5: F-actin expression in the incisal third of rat mandibular incisor.

All images are stained for RP. Image A, shows De region with following structures:
odontoblasts (Od), predentine (PD) and apical region of the Od (thick arrow). The two
regions of interests are shown in images B and C. Image B shows the Od, predentine (PD)
and inner region. The actin tree processes (*) in PD are fewer in number. Two OPs (1 and 2)
and their three lateral branches (arrows) are highlighted. The mid and outer dentine are
shown in image C. The OPs (a) give many lateral branches (arrows) directed distally toward
DEJ. Two regions of interest for mid and outer dentine are shown in higher magnifications in
images cl and c2 respectively. In ¢l image, seven processes have been numbered (1-7) in
addition to five lateral branches (a-f). The complexity of the OPs terminal branches (long
arrows) are seen in image c2. Double sided arrows in images C, c1 and c2 are for orientating
the pulp and enamel sides of the images.

69



NaK-ATPase:

A house keeping marker, NaK-ATPase, is not expressed in the pulp-side within the
apical tooth region before hard tissue deposition commences (Figure 3.6 image A).
However, NaK-ATPase-IR can be recognised within the outer cells of the OEE. After
starting dentine deposition and moving toward middle and incisal regions of the tooth
(Figure 3.6 image B and D respectively) this marker becomes more specific in the
SOd region and to a lesser extent in Od cell layer. In higher magnification images of
the PD region (Images C and its component images c1 and c2 Figure 3.6), the main
OPs (a) and their branches (+) show vim-IR. At the same time, the NaK-ATPase-IR
also appears in a faint expression in the perimeter of these processes, because it
may label their cell membrane. Additionally, there are some processes which shows
only NaK-ATPase-IR and no vim-IR. This could be the labelling of the NaK-ATPase
to the cell membrane of some a-actin tree-like processes which previously presented
in Figure 3.2 and Figure 3.3. In the incisal tooth section and with increase thickness
of deposited dentine (Figure 3.6 image D), NaK-ATPase-IR is only detected in the
inner half within the OPs, while no observed NaK-ATPase-IR is seen within the
external dentine half (images D and G Figure 3.6). In regions were NaK-ATPase-IR
still working, it does not only label the main OPs (4), but also the lateral (arrows in

images E and Figure 3.6) and major branches (* in image F) of the OPs.
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Figure 3.6: NaK-ATPase expression in demineralised sections from different portions of the
rat mandibular incisors.

All panels are stained for NaK-ATPase, except image C for vim (green), NaK-ATPase (red),
and dapi (blue), and c2 for vim. An overview image A of the apical bud shows the following
structures: outer enamel epithelium (OEE), inner enamel epithelium (IEE), dental papilla cells
(DP), pre-ameloblasts (PAm) and pre-odontoblasts (POd). Image B shows a demineralised
section from the middle part of the tooth showing subodontoblast cells (SOd), odontoblast
(Od), and dentine (De). Region of interest in B is shown in higher magnification in image C
and its component images c1 and c2. These images show the main OPs (a) and their
branches (+), and other NaK-ATPase-IR processes (*). An overview image of the pulp and
dentine in incisal tooth part is shown in image D. There are three regions of interest which
are presented in higher magnifications in images E F and G. The inner dentine is seen in
image E showing one of the OPs (a) with many lateral branches (arrows). Mid dentine region
is seen in image F identifying one OP (a) which has many lateral branches (arrows) and one
major branch (*). In outer dentine region (image G) no NaK-ATPase-IR has been identified
within OPs.
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OX-6:

The dendritic cell marker (OX-6) was used in combination with a-actin in order to
exclude other cellular components within the Od cell layer and their possible
relationship to the actin processes within PD region. In the apical part of the incisor
(Figure 3.7 A), no positive OX-6 cells were identified either in the pulp or in enamel
organ cellular components. The only positive cells present are in the connective
tissue surrounding the tooth apical bud (arrows). After dentine deposition has
commenced, (Figure 3.7 B), some OX-6-IR cells are seen in between the cells of Od
associated with the capillaries within this cell layer (arrows in image B). No OX-6-IR
processes for these cells have been identified in association with a-actin-IR OPs in
PD region (* in image B). The number of the OX-6-IR cells increase in the middle and
incisal third of the tooth within all regions of the pulp especially in SOd and CPC
(arrow heads in Figure 3.7 image C) and in association with the BV. In higher
magnification (image D Figure 3.7), the OX-6-IR cells are seen within the Od layer,
either in between cells (arrow) or associated with the apically located capillaries (+)
within Od cell layer, but the cellular processes within predentine region (*) are only a-
actin-IR OPs.

Tissue sections that had been incubated in isotype controls, rabbit IgG monoclonal

(EPR25A) and normal mouse IgG1, show a complete absence of immunoreactivity.
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Figure 3.7: Dendritic cell marker (OX6) expression in demineralised sections of rat
mandibular incisors.

Images A, B, C, and D are stained for OX6 (green), actin (red) and dapi (blue). An overview
image for apical bud region in image A with following structures: dental papilla (DP), inner
enamel epithelium (IEE), pre-odontoblast (POd), pre-ameloblasts (PAmM), junction between
POd and IEE (long arrow) and dendritic cells (short arrows). Image B shows OX-6-IR cells
within Od region, and (*) symbol highlight the a-actin-IR OPs in predentine region (PD).
Image C shows a highly developed region of the tooth containing more OX-6-IR cells. In
higher magnification (image D), 2 dendritic cells lie within Cp of the Od region (+), while one
big dendritic cell (arrow) is seen between the Od cells.

3.3.2 Cavity samples:

The work in this section was done on demineralised cross sections for cavity region
in the incisal third of the rat mandibular incisor. Three controls and experimental
reading groups are available depending on the incubation time: immediate fixation
(Al, A2), 3 hours (B1, B2) and 24 hours (C1, C2) incubation before fixation. Each

group shows images and quantitative values for the length ratios of OPs.

Control surfaces:

The non-cavity, intact, or normal surfaces, as control groups, confirm the first result
section about the extension of OPs across the entire thickness of dentine. a-Actin-IR
is identified along the entire length of OPs within different groups of the study. Vim-IR
shows regional variations with the deficiency in the outer region of dentine (IV) as

shown in Figure 3.8 and Figure 3.9. The terminal branches of the OPs also show
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similar complexity in the outer dentine regions with many branches terminating within

the DEJ (Figure 3.8 images F and Figure 3.9 image B and C).

Measurements of the length ratios OP/DL for control groups are shown in Figure 3.10
A, B, C and Table 3-1. Values for all groups range between 0.95 and 1. This means
that in control surfaces (non-cavity surfaces) the OPs extend fully across the dentine
thickness. The Kruskal Wallis test was used instead of ANOVA to identify the
statistical significant differences between these groups because the data in these
groups were not normally distributed as tested by Shapiro Wilk test (p<0.05). There
was no statistical significant difference between 3 control groups (Al, B1, and C1) by
Kruskal Wallis test (p>0.05).

Experimental (cavity) surfaces:

60sec group A2:
The traumatised OPs, labelled with a-actin, are seen close to the cavity margin
(dotted line in Figure 3.8). Some show immediate retraction as a result of cutting
(arrows in Figure 3.8 Images A). Actin labelled the full length of OPs (image C in
Figure 3.8). Although, the traumatised and retracted OPs lost their lateral branches
(image E Figure 3.8), most of the unretracted processes still preserved these lateral
branches (image F Figure 3.8)

Measurements of the length ratios (OP/L) for group A2 are shown in Figure 3.10 A
and Table 3-2. These indicate that some OPs retracted immediately after cutting
(values range from 0.7-0.925). However, most of the processes persist in their
original places after cutting (ratios between 0.925-0.975). The presence of
differences between none responding OPs and the control group (A1) which
illustrated in Figure 3.10 A (between 0.975 to 1) is due to the cut amount of dentine.
In order to measure the instance speed of retraction for the furthest retracted
processes within group A2, the values between 0.725-0.8 were chosen (about 24
processes). The average retraction distance for the processes was 122um. If the
actual cutting time required for preparing one cavity is considered to be 1 min
(60sec), the retraction speed of these processes will be as fast as 122um/min
(2.03um/sec).

3 hour group B2:
After 3h of incubation, the traumatised OPs show different levels of pulpal-ward

retraction leaving empty dentinal tubules behind (2 arrows in Figure 3.9 image A).
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However, several processes remained in their old positions close to the cavity margin
(thick arrow). Under higher magnification (Figure 3.9 images bl), these processes
show two different profiles: either preserving their lateral branches (arrows), or
appearing without branches as straight processes (arrow heads). Only a-actin labels
all these retracted processes, while vim-IR appear in some (Figure 3.9 b2).
Measurements of OP/L ratios (Figure 3.10 B) shows a varied range of frequencies
from 0.95 for the processes which still reside within original sites to the half distance
of the retracted processes (0.45-0.55). The median value is 0.687 (Table 3-2) with
maximum frequencies for length ratios between 0.65-0.675. Therefore, most of the
traumatised OPs have managed to retract toward the pulp. To calculate the retraction
speed, the maximum frequency range was chosen which consisted of 22 processes
with average retraction distance about 198.87um to give nearly 1.1pum/min
(0.02pum/sec) which is less than about 100 times the immediate retraction speed

calculated in group A2.

24 hour group C2:
In the 24h incubation group, more OPs retracted toward the pulp leaving more empty
space behind within dentinal tubules (* in images C Figure 3.9). Almost all of the
retracted OPs appeared without lateral branches (arrows in images D, d1 and d2
Figure 3.9) and labelled both a-actin and vim-IR within middle dentine region. OPs
labelled with the former, appear more in number than those labelled with latter
antibody. With a-actin (arrows in image d2 Figure 3.9), some OPs show globular
ends after retraction. Measurements of length ratios in group C2 (Figure 3.10 C)
shows increased numbers of retracted OPs compared to group B2 (image B Figure
3.10). This can also be identified in Table 3-2 by inverted skewness values between
these two groups. However, the higher frequency values of OPs retraction are still
between 0.65- 0.675, but with a narrower whole frequency range (between 0.45-0.8).
This means the number of OPs which didn’t manage to retract or those which
showed minimum retraction at 3h incubation period (ratios larger than 0.675 in Figure
3.10 B) become more retracted at 24h. The chances of processes still residing in
their old places within dentinal tubules become less. However, no process retracting
below the ratio of 0.45 has been identified in group C2 (Figure 3.10 C) which is
similar to the lower ratio in group B2. It is worth mentioning here that no cellular

changes have been noticed within Od cell bodies in all incubation groups.
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Although groups B2 and C2 were normally distributed according to Shapiro Wilk test
(p>0.05), they showed no homogeneity of variances according to Levene test
(p<0.05). Therefore, to identify the presence of statistical differences within ratios of
OPI/L for experimental groups (A2, B2, and C2), the Kruskal Wallis test was used.
This test shows a high significant difference (p<0.001) present between these
groups. To compare between them, a Pairwise Comparison test (Table 3-3) shows

highly significant differences (p<0.001) between all of these groups.
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Figure 3.8: OPs in group A (60sec) samples.

Images A, B were stained for vim (green), a-acin (red), dapi (blue), D stained for vim and the
rest images stained for a-actin. Overview of the tooth section is shown in image A containing
cavity surface (dotted line), intact tooth surfaces (solid lines) and some retracted OPs
(arrows) which also appear in component image C. Region of interest in A is shown in B and
its component images C and D. In B and D, the OPs have vim-IR in the middle and inner part
of the outer dentine while the a-actin-IR appear within the full thickness of the OPs as seen
also in image C. The two regions of interest in C are represented in higher power in images
E and F. In image E, the traumatised and retracted OPs (arrows) are seen without lateral
branches and leaving empty dentinal tubules behind (*). The other region in image F shows
that most of the traumatised and unretracted OPs still have their lateral branches (arrows)
similar to the intact OPs (+) beyond DEJ.
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Figure 3.9: OPs in groups B and C (3h and 24h respectively) samples.

Images b2 and D were stained for vim (green), a-acin (red), dapi (blue), d1 stained for vim
and the rest images stained for a-actin. In 3h incubation sections (Image A), the intact
dentine surface still has complex terminal branches of the OPs (+) similar to 24h sample in
image C. Region of interest in A is shown in higher magnification in B which illustrate the
edge of the cavity in order to compare between intact OPs (+) and those under cavity surface
(arrows). Two regions of interest are also shown in higher magnification in images b1 and b2.
In image b1, some OPs are still not retracted. These processes either lose their lateral
branches (short arrows) or still preserve them (long arrows). The other region in image b2
shows that almost all of the retracted OPs lost their lateral branches and have a-actin and
some vim-IR. The region of empty dentinal tubules marked with (*). More OPs retraction is
seen in 24h incubation sections (* in image C) under the cavity surface. A region of interest is
shown in higher magnifications in images D and its component images d1 and d2. An oblique
arrow in D orientates the directions of tooth pulp and DEJ. The retracted OPs (arrows in d2),
terminated with globular shape due to retraction within the dentinal tubules (arrows in image
d2).
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Figure 3.10: Frequency amplitude distribution of the OP length ratio measurements.

A shows groups without incubation (Al, A2), B shows groups with 3h incubation (B1, B2),
and C shows groups with 24h incubation (C1, C2). The OPs length ratio for the control
groups (Al, B1, and C1) is OP/DL, while for the cavity groups (A2, B2, and C2) is OP/L.
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Groups Mean Min Max Median | Interquartile Skewness
range

Al 0.973 | 0.938 | 0.987 | 0.974 0.008 -1.665

Bl 0.974 [ 0.949 [ 0.998 | 0.975 0.01 -0.613

C1 0.973 | 0.942 | 0.990 | 0.974 0.013 -0.461

Table 3-1:
groups.

Table 3-2: Descriptive statistics for experimental surfaces (ratio OP/L) of the three time

Descriptive statistics for control surfaces (ratio OP/DL) of the three time period

Groups Mean Min Max Median | Interquartile | Skewness
range

A2 0.890 | 0.714 | 0.963 | 0.935 0.115 -0.792

B2 0.697 | 0.467 | 0.948 | 0.687 0.112 0.28

Cc2 0.622 | 0.468 | 0.777 | 0.625 0.095 -0.16

period groups.

Table 3-3: Multi-comparison test (post-hoc) test (p<0.05) for OPs length ratios for three time

groups p-value
A2 vs B2 0.000
A2 vs C2 0.000
B2vs C2 0.000

periods of experimental groups.
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Figure 3.11: Diagrammatic summery of key findings.

A and B depict observations beneath intact surfaces, while C illustrates events beneath
exposed surfaces. In A, the apical portion of the tooth shows cells of undifferentiated
ameloblast (UAmM) contacting the undifferentiated odontoblast (UOd) cells. After withdrawal
from cell division cycle both pre-ameloblast (PAm) and pre-odontoblast (POd) cells polarise
and the latter cells develop both actin and vim processes as they secrete PD matrix. In the
middle portion, Ods appear longer and columnar in shape with polarised nuclei. The PD
region contains complex tree-like actin OPs in addition to the main OPs which express both
actin and vim and extend fully across the full thickness of dentine. These processes show
complex lateral and terminal branches. In the incisal portion, the Od layer is pseudostratified,
and the main OPs present 4 distinct regions of vim-IR. These regions become wider with
increased dentine thickness and are accompanied by decreased density of tree-like actin
OPs within PD. Panel B shows the position of the dendritic cells within Od, subodontoblast
(S0d), and central pulp region (CPC) in association with the blood vessels. Panel C shows
time dependant retraction of OPs beneath exposed dentine surfaces. OP #1 is the control,
#2 is 60sec after cavity preparation with maintained position. OP #3 and 4 (3h), show two
types of OPs response either maintaining its original position or retracted. OP #5 (24h)
shows OPs retracted to half dentine thickness.
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3.4 Discussion

3.4.1 Non-cavity samples

This part of the study investigated the complexity of Ods and their cellular processes
during different stages of development in continuous growing rodent mandibular
incisor. The complexity of SOd and CPC has also been identified. The continuously
growing incisors of rodents have provided a valuable model for investigating
physiological processes within the dental organ, including epithelial-mesenchymal
correlated induction processes, cellular differentiation mechanisms (Ohshima and
Yoshida, 1992; Arana-Chavez and Massa, 2004), and other studies on cellular
function (Yu and Abbott, 2007). Almost all previous research that deals with the
extension, density and complexity of the OP has been conducted on teeth with a
limited growth period including human (Kubota et al., 1969; Thomas, 1979; Gunji and
Kobayashi, 1983; Sigal et al., 1985; Grétz et al., 1998; Goracci et al., 1999;
Kagayama et al., 1999; Yoshiba et al., 2002; Carda and Peydro, 2006) and other
animal species (Sigal et al., 1984a; Byers and Sugaya, 1995; Tsuchlya et al., 2002) .
One frequently highlighted benefit of the continuously growing tooth model is the
opportunity to study physiological processes such as dentinogenesis from the early
stages of mantle dentine formation until complete dentine mineralization in the same
tooth. It has been reported that after formation of the mantle dentine and an increase
in the thickness of dentine, the OPs start to retreat and reside in the inner third of the
dentine (Luukko et al., 2011). In an effort to model the human tooth crown situation,
investigations in the current study were limited to the enamel-covered, labial side of

the rat incisor (Beertsen and Niehof, 1986).

Structural protein (vim and actin)
Intermediate filaments and microfilaments have been demonstrated in previous
studies to be major components of OPs and their branches which extend from the Od
cell body (Lesot et al., 1982; Thomas and Carella, 1983; Thomas and Payne, 1983).
In this study, microfilaments (actin fibres) were investigated by fluorescent staining
with rhodamine phalloidin and immunohistochemistry a-smooth muscle actin.
Vimentin antibody was used as a marker for intermediate filaments. In their
filamentous derived form, these proteins are essential cytoskeletal scaffolding
elements which participate in ordering and shaping the compartments and organelles
to their appropriate physical locations (Gunning et al., 2015). A second property of
some polymers is that there is a directed polymerization or depolymerisation ability.
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This can provide pushing or pulling forces that can be integrated into biological

processes when movement is a necessary component (Pollard and Cooper, 2009).

During early cellular differentiation, a rich actin apical pole of POd and PAm is
associated with apical accumulation of vimentin within POd cell bodies were clearly
identified (Figure 3.2). The presence of reciprocal transmembranous epithelio-
mesenchymal communications between these cells has been reported to control
cellular differentiation and their re-structural modification (Thesleff, 2003). The
redistribution of the structural filaments from a uniform distribution in the
undifferentiated cells of the dental papilla, into accumulation of these filaments in the
apical pole of the POd was suggested to be responsible for polarization of these cells
prior to their terminal differentiation (Lesot et al., 1982; Nishikawa and Kitamura,
1986).

After predentine deposition commences, the cellular polarity of the Ods is evident
with concentrated apical actin pole associated with the appearance of multiple
processes of two different types: actin and vimentin. The apical concentration of actin
filament bundles is associated with the plasma membrane and is in a direction
parallel to the long axis of the tooth. This has been reported to provide essential
contractile isomeric form to keep the Ods in a single layer despite the pressure
applied by accumulative dentine deposition (Nishikawa and Sasa, 1989). Although, it
has been published that the newly differentiated Ods have more than one apical
cellular process (Couve, 1986; Ohshima and Yoshida, 1992), this is the first study to
identify the presence of more than one type of OP, with IR to structural proteins actin
and vimentin, within the predentine region (Figure 3.2). It is uncertain from the
current investigations what could be the function of the actin processes. It can be
hypothesised that these processes are part of the cellular stabilizing system of the
Od cell layer in combination with the presence of apical rich actin pole (Nishikawa
and Sasa, 1989). These processes with their different orientations could provide
better support for the Od cell layer against lateral forces that could be generated from
the centripetal pressure of accumulative dentine formation. Another suggested role is
that these processes could be associated with dentine matrix deposition, since the
density and length for these processes within the predentine region reduced toward
the incisal edge (Figure 3.4 and Figure 3.5). It also has been reported that nerve
endings were seldom observed within the Od cell layer of the rat incisors (Nishikawa,

2007). The role of Ods as mechano-sensory cells (Magloire et al., 2009) has been
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established. This can be evidenced by the excitable properties of these cells (Allard
et al., 2006), the concentration of mechanosensitive mediator (calcium-activated
potassium channel-KCa and mechanosensitive TREK-1 potassium channels) (Allard
et al., 2000; Magloire et al., 2003) and thermos-sensitive (TRPV1) ion channel
(Okumura et al., 2005) preferentially in the apical cell part (terminal web). In addition,
the cytoskeleton is part of the system that senses both external forces applied to the
cell and the mechanical property of the cell’s environment. This could alter different
aspects of cell function, including gene expression and cellular differentiation (Pollard
and Cooper, 2009). Therefore, the presence of the actin processes emerging from
the Ods terminal web toward the predentine region could contribute to the sensing

tools of these cells.

In the middle and incisal thirds of the tooth, the thickness of the Od layer has been
increased as a thick pseudo-stratified layer and is associated with a persistent apical
rich actin region (Figure 3.11 B). The increase in thickness of the Od layer could
reflect the increase in its activity in dentine deposition in these parts of the tooth with
numerous capillaries evident (Ohshima and Yoshida, 1992). On the other hand,
continuing dentine deposition in an inward direction limits the total surface area of the
dentine-forming face. The presence of actin filament bundles as well as myosin in the
Od apical region associated with the plasma membrane may help in centripetal
cellular movement (Nishikawa and Sasa, 1989). The contractile ability of these
proteins could be the cause for this type of movement (Pollard and Cooper, 2009). In
addition, it may also help to resolve cell crowding by shifting of the cellular
configuration from simple single into a more complex, pseudostratified layer
(Ohshima and Yoshida, 1992). In addition, the cell membrane of the mature Od
displays av33 integrins which are suspected to be involved in continuous
reorganization of actin that accompany process elongation and cell body movement
toward the pulp core (Lucchini et al., 2004; Staquet et al., 2006).

In the current study, OPs were observed by fluorescent labelling to extend to the
DEJ. This was through the expression to rhodamine phalloidin stain and different
antibodies which were different at different depths within the dentine (Figure 3.3 and
Figure 3.11 A). The IR to vimentin was greatest in region | and lowest in regions I
and IV. By contrast, the expression of a and F-actin was consistent in all regions
within the entire thickness of the dentine. The increase in the thickness of deposited

dentine requires the present of actin as a structural element responsible for OPs
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elongation (Pollard and Cooper, 2009; Gunning et al., 2015). In addition, ultra-
structural studies found the localisation of actin filaments within the OP as a network
of bundles beneath the cell membrane running along the long axis of the process
(Nishikawa and Kitamura, 1987). All the above support the current study findings that
actin is expressed within the full length of the growing OPs. On the other hand, the
presence of intermediate filaments (vim-IR) in particular regions, named | and Il in the
current study, could reflect the special job allocated for these two regions within the
OPs. The highest intensity was observed in the basal part of the OPs. These
filaments are abundant in the core of the processes and run in singular filaments
unlike the actin filament bundles (Nishikawa and Kitamura, 1987). In addition to their
role in maintaining the cell shape, they act as an active tensional bearer and a
resistant element for the mechanical forces (Pollard and Cooper, 2009). Intermediate
filaments in this study are present only in certain areas, possibly due to specific
structural or functional requirements not present over the entire length of the process.
Alternatively, the current observation of lower vimentin-IR in the distal regions of OPs

may reflect imperfect fixation of these proteins deep within the tissue specimens.

Two previous immunofluorescence studies have reported differences in the IR to
different structural proteins (vimentin, actin and tubulin) within the OPs of humans
(Sigal et al., 1985) and rat molars (Sigal et al., 1984a). In common with current
findings, they reported actin-IR to be more concentrated in the pulpal third of the
process, but their observation of vimentin and tubulin throughout the length of the OP
was at variance to current findings. This variation could be due to differences in
samples used (continuous growing vs limited growing teeth), age of the sample, or
techniques (fixation, demineralisation, sectioning or staining). Regional differences in
the structure of the OP i.e. certain protein filaments may only be present in certain

regions within the process were also identified within these studies.

Studies have also reported the possible presence of a tubular lining membrane that
remained after decalcification of the peritubular dentine and appeared as an electron
dense structure in TEM (Thomas, 1984). This membrane is termed the lamina
limitans and could be artifactually observed as OPs (Holland, 1985). In contrast, the
observation of intracellular proteins, vimentin, and actin, and to a certain extent,
membrane located enzyme NaK-ATPase in the present, and other
immunohistochemical studies (Sigal et al., 1984a; Sigal et al., 1985; Tsuchlya et al.,

2002), the identification of processes with microfilaments in TEM studies in the outer
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dentine of human samples (Frank and Steuer, 1988), and the presence of real
process reported by SEM (Kelley et al., 1981; Gunji and Kobayashi, 1983) support

the assertion that OPs may fully traverse mature dentine.

The side branches of the OPs showed a huge number of the lateral processes in
different regions of the dentine. These commonly forked off at an acute angle and
were orientated toward the DEJ. Lateral branching was also observed, with long
extensions crossing more than 4 primary processes (Figure 3.5). In addition, lateral
processes seemed to contact adjacent processes in a proximal direction. Although
most of the previous studies have shown branching of the OPs only within the middle
region of dentine and near the DEJ, a variety of shapes and sizes have been
reported (Sigal et al., 1984a; Grotz et al., 1998; Tsuchlya et al., 2002). SEM studies
have revealed lateral branching that appeared to bridge between OPs and connect
them (Thomas, 1979; Gunji and Kobayashi, 1983). Similar complex systems of
dentinal tubules with multiple side branches have been reported by others in human
teeth (Mjor and Nordahl, 1996; Schilke et al., 2000). The primary roles for these
lateral branches is to ensure full mineralization of the dentine matrix (Tjaderhane et
al., 2012). However, their spatial existence within the dentinal tubules of mature
dentine regions reveals their fundamental activity in preserving vitality for this

mineralized tissue.

Furthermore, the outer dentine contains very complex terminal branching of the OPs.
This is the first dentine secreted by the odontoblasts (mantle dentine). This dentine
part is the outer most part for this mineralized tissue, the closest to the outer tooth
surface and the first which is affected by external stimulation or trauma. Therefore,
the presence of such complex terminal branches may suggest their involvement in
detecting the integrity or flexion of surfaces during functional and parafunctional
activity, acting as a receptor field. Any stimulation, mechanical or chemical, could be
transmitted along OPs to the cell body of the Ods. The stimulated Od triggering a
cascade of events that includes retraction of OPs, stimulating Ods to start reactionary
dentinogenesis and possible signalling to afferent nerve fibres underpinning
inflammation, sensation or pain (Femiano et al., 2014). This could reflect the massive
numbers of the lateral and terminal branches of the OPs to maintain the vitality of this
region (Figure 3.3 and Figure 3.5 images C and c2 respectively).
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It is uncertain whether, in an intact system, OPs fill the entire cross sectional volume
of the dentinal tubule (Thomas, 1979; Yoshiba et al., 2002; Carda and Peydro, 2006),
however, the remaining space within the tubules in the presence of OPs and their
side branches is reported to be extremely limited (Carda and Peydro, 2006). This
spatial limitation of the OPs with this complex structure may raise questions about the
validity of hydrodynamic theory, with very minor spaces available within the dentinal

tubules.

NaK-ATPase:

NaK-ATPase is a cellular homeostasis element involved in ion transport, fluid
movement and the maintenance of membrane potentials (Josephsen et al., 2010).
Although, the presence of the NaK-ATPase has been recognised within the SOd
cells of rat molars (Mahdee et al., 2016), it's precise role in the pulp environment is
not currently known. In the present study, the limited expression within
undifferentiated cells of the dental papilla suggested limitation in its action during the
cellular differentiation process. Alternatively, it showed high expression in the SOds,
followed by Ods, and the least in the inner half of the OPs as soon as dentine
deposition has started (Figure 3.6). This may reveal its active transport role
associated with dentine matrix deposition. The rich vascularization and massive
abundance of NaK-ATPase in the papillary layer was reported as the pumping
activity of these cells which play a pivotal role in the function of the enamel organ
(Josephsen et al., 2010). The abundant vascularisation of the SOds may allocate
similar ion pumping function to support dentine matrix deposition and mineralisation
by the Ods (further discussion is seen in Ch5 section 5.4.6). However, it can be

speculated that it plays a central role in the signalling systems operating within OPs.

Dendritic cell marker (OX-6):

Another marker, dendritic cell marker (OX-6), was used in this study to check other
elements of the Od layer, dendritic cells, and the possibility of their cellular processes
interacting with OPs during development and primary dentinogenesis. Although no
signs of dendritic cells have been detected in the dental papilla region, they appeared
within the Od layer in early period of dentine deposition in association with capillaries.
This confirms with previous studies (OKiji et al., 1996; Tsuruga et al., 1999) which
reported delay in the appearance of immunocompetent cells in the pulp during early
stages of tooth development. Even after dentine thickness increased in the middle

and incisal third of the tooth, the number of the OX-6 positive cells within Od layer is
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still few in comparison to other regions of the pulp (Figure 3.7). In addition, none of
these cells appeared to send processes to predentine. It can be speculated that this
region of the tooth is apparently intact and not affected by bacterial antigens which
challenge the tissue and facilitate the migration of immune cells (Okiji et al., 1996). In
addition, the temporary appearance of the dendritic cells on the dental pulp border
sending their processes into the dentinal tubules was only reported after 12 to 24h

following dental trauma (Ohshima et al., 2003; Kawagishi et al., 2006).

3.4.2 Cavity samples:

The results of this section support the hypothesis that the OPs are not static
structures, but rather have a dynamic capacity to retract in response to dentine
surface trauma (Figure 3.11 C). Since the presence of actin was confirmed within the
structural framework of the OPs and its possible role in cellular process elongation
during dentinogenesis, the results of this section suggest that these microfilaments
could be involved in OP retraction as a result of trauma from shallow cavity
preparation. A second protein involved in cellular mobility is myosin (Gunning et al.,
2015). The presence of myosin in association with actin filaments in the apical pole of
the Ods was reported (Nishikawa and Sasa, 1989). During cellular locomotion,
myosin interacts with actin filaments to alter cellular shape, in this case to produce
cellular processes contraction, working as structural elements with myosin motor

proteins (Pollard and Cooper, 2009).

Immediate response (60 sec):

Within immediate fixation groups, there are two phenomena involved in OPs
responses: traumatised retracted and traumatised unretracted processes (Figure
3.11 C, Od no. 2). Because actin is present in both main OPs and their side
branches, it could be the cause for this protective cellular response resulting from
direct bur cutting. However, this immediate and very fast retraction could occur in two
ways. Firstly, these processes manage to pull back their side branches as fast as the
OP retraction. The second hypothesis is that the main OP retraction was so fast and
unexpected, that it could rip off the numerous side branches. This may intensify the
trauma for the retracted process. However, only a minority of the OPs retracted
immediately, while the majority appear to be unaffected; even their side branches
(Figure 3.8). The absence of an immediate response could be due to the duration of
cavity preparation (maximum 60 seconds) being insufficient to initiate a retraction

response for these processes. Alternatively, what appears to be a slower retraction
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may be a part of programmed retraction to enable initial plugging of the dentinal
tubules as a defense mechanism. The presence of a clear sequence of events
includes immediate OP retraction with or without side branch withdrawal, in addition
to unretracted OPs. This suggests a programmed withdrawal of the OPs within
exposed dentinal tubules.

3 hour response:

The complexity of retraction for the OPs starts to be apparent after 3 hours, which
raises the possibility of what might be a programmed sequence of events. It involves
first the retraction of the side branches, a maintenance of single core process, then
retraction of the modified processes (Figure 3.11 C processes 3&4). Examining of
Figure 3.10 B, the values on the right side of the median for group B2, represent OPs
without side branches and not yet retracted. This indicates a slower process, a part
of program almost certainly not involving cell damage but reorganization of the
cellular architecture. Although, some processes are still not retracted, the majority of
the processes respond to trauma after 3h incubation which suggests a time
dependent response of the OPs. However, the most retracted processes did not pass
0.5 their original length with the majority of the withdrawn processes retreating no
further than 0.675 (Figure 3.10 image B, group B2).

24 hour response:

After 24 hours, none of the OPs in the cavity zone remained near the cavity surface,
but all of the processes retracted toward the pulp. This means that all OPs responded
within 24h from the time of cavity preparation. However, the maximum retraction
distance is still similar to that in the 3h response, although the majority passed the
0.675 of original dentine thickness (Figure 3.10 C), i.e. inverted skewness values
between B2 and C2 groups (Table 3.2). This means that even though all processes
responded by retraction, their response within 24h remained within a certain distance
limitation. This can be explained either mechanically or structurally. The former (as
illustrated in Figure 3.11 C) depends on the tight space available within the lumen of
dentinal tubules (Yoshiba et al., 2002; Carda and Peydro, 2006). This may limit the
retraction of processes and could explain the presence of globular appearances at
the end of retracted processes (Figure 3.8 image H). These globules may be formed
due to folding of the retracted process components which could be impacted within
the lumen of the dentinal tubules (Figure 3.11 C, Od 5). Another question raised here

is, whether the fluid movement inside the tubules occurs in normal physiological
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conditions, when the OPs possibly occupy most of the tubule space, or if it is more
applicable after OPs have withdrawn pulpward after pathological, physiological or

iatrogenic opening of dentinal tubules.

The second explanation, depends on the structure of the processes in the mid
dentine region. There is a presence of vim in addition to actin within the OPs in this
region. This delay in retraction could be due to the presence of intermediate filaments
within the structure of OPs to reduce tensions and mechanical forces on the
structural framework (Pollard and Cooper, 2009) of processes which could result
from continuous retraction. Therefore, this guarded way of retraction of the OPs
within 24 hours confirms the programmed sequence of events which aims to

preserve cellular vitality of the traumatised dentine/pulp complex.

It should be mentioned that due to limitation in the incubation technique used in this
study and the concerns about tooth sample vitality that could be affected if the
incubation time extended further than 24h, no extra groups with longer incubation
time were included. The question here is whether OPs will stop retraction on the 24h
limit or it they will continue to retract toward the pulp. In vivo preparations showed
disappearance of OPs within 4 days and appearance of tertiary dentine during 14
days after cavity preparation (Byers and Sugaya, 1995). Another study reported
empty dentinal tubules beyond worn dentine surfaces associated with region of
tertiary dentine near the pulp in rat molar. The tubules under intact dentine surfaces
still preserve their OPs (Mahdee et al., 2016). The present study used in vitro
technique and was limited to 24h because of limitations on tissue vitality. A third
possible model may extend the investigation to investigate responses to tooth wear
model in the rat molar. Natural tooth wear produces damage similar to our cavity and

up to 24 weeks. This model is explored in Chapter 5.

3.5 Conclusions

1- In the intact, enamel-covered dentine of the rat mandibular incisor, OPs
extended all way to the DEJ.

2- OPs are complex morphologically and have a large number of side branches
along the entire length of the process.

3- OPs show heterogeneity in their cytoskeleton in relation to distribution of
vimentin. The functional significance of this is not known at present. The
experiment in response to cavity preparation (see below) suggested that this
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cytoskeletal arrangement may set limits on programmed retraction of the
processes triggered by damage.

The initial response to cavity preparation (up to 24h) can be seen to involve
both rapid and slow events: initial fast retraction and a slower programmed
phase involving withdrawal of the side branches, stabilizing of the process,
and final retraction up to 50% of the initial process length. This limited
contraction may be due to the distribution of structural elements vimentin and
actin in the outer third of the OPs.

These observations highlight the complexity of structure and function of the
OPs that may play a role in early patho-physiological responses induced by

trauma.

3.6 Clinical Implications

1-

Based on this animal model, without any underlying pathological condition or
microbial contamination, drilling into intact dentine may trigger the defense
mechanism of the OPs.

Retraction of OPs and filling of the vacated tubule space with fluid allows
hydrodynamic forces to come in to play and possibly link to tooth sensitization.
The prevention, slowing or reversal of OP retraction could have a therapeutic
role in the management of tooth vitality and sensitivity. An appreciation of this
cellular molecular mechanism and complexity can give a fundamental insight
into potential new pharmacological and therapeutic intervention in dental

practice.
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Chapter 4 Complex cellular responses to tooth wear in the rodent

molar

4.1 Introduction

The dental pulp shares intimate spatial and functional relationships with dentine, and
is commonly described within a pulp-dentine complex (Yu and Abbott, 2007). Ods
perform a range of formative, supportive, sensory and defensive functions throughout
life (Ricucci et al., 2014), and the comparison of regions within the same tooth that
have been subjected to or spared from injury provides one means of understanding

important cellular and hard-tissue responses.

Recognised age-related changes in the pulp-dentine complex include reduced
cellularity, particularly within the Od and SOd layers (Morse, 1991; Burke and
Samarawickrama, 1995; Murray et al., 2002), and changes in volume, structure and
permeability of dentine (Moses et al., 2006; Tjaderhane et al., 2012). Much
understanding has derived from rodent molar studies, which have shown a reduction
in Od size and cytoplasmic volume with age (Lovschall et al., 2002), along with
physiological occlusal tooth wear, which is apparent within 4 weeks and consequent
hard and soft tissue changes (Lovschall et al., 2002; Kawashima et al., 2006),

including reactionary dentine deposition beneath worn cusp tips (Moses et al., 2006).

Dentine exposure by cavity preparation has revealed a reduction of Od numbers,

probably resulting from apoptosis (Murray et al., 2000; Kitamura et al., 2001), but

with newly differentiated odontoblast-like cells appearing within 7 days (Ohshima,

1990). Cellular responses may be age-related, since the presence of dendritic like
cells in the SOd cells, with processes extending into the predentine is more

prominent after cavity preparation in aged than in young rats (Kawagishi et al., 2006).

The degree of OP extension within dentine remain contentious (Luukko et al., 2011),
with the suggestion that they are limited to the inner third of dentine (Byers and
Sugaya, 1995; Goracci et al., 1999; Yoshiba et al., 2002; Carda and Peydro, 2006),
whilst others have demonstrated OPs reaching the DEJ (Gunji and Kobayashi, 1983;
Sigal et al., 1984a; Sigal et al., 1985; Kagayama et al., 1999; Tsuchlya et al., 2002).
In the rat molar, it has been reported that the OPs fully traverse the dentine

throughout life in cusp areas, while in the cervical regions, they retract to the inner
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third as teeth mature (Tsuchlya et al., 2002). In Ch 3, we have demonstrated the
extension of OPs to the rodent incisor DEJ with regional variations and complex

branching along their path, especially near the DEJ.

The arrangement and roles of the Od and its process in sensing and responding to
injuries such as tooth wear are incompletely understood. This report presents
evidence from the rat molar that dentine-exposing tooth wear triggers a discrete and
hitherto undescribed series of structural and functional changes that aim to protect

deep connective tissues from the oral environment.

4.2 Methods

In order to investigate tooth changes associated with dentine exposure due to the
wear process, this study used ground sections to characterise hard tissue changes
and decalcified sections with immunohistochemistry to identify pulp cellular

differences.

Ground sections: Six lower first molars were extracted from freshly culled male
Wistar rats (age 8 weeks; weight 240-300g). Ground sections (100-105um thickness)
of the largest, mesial cusp, were examined by light microscopy using objectives X20
and X40 to identify variations in tubular arrangement associated with the wear

process.

Immunofluorescence technique: Ten lower first molars were extracted as previously,
with immediate fixation in 4% paraformaldehyde in PBS for 24 hours at 4°C,
demineralisation in 17% EDTA (pH 7.4) for 4-6 weeks at 37°C. This was followed by
freezing and sectioning as described in Ch 2, section 2.1.5. Ten micrometre
thickness sagittal sections were divided randomly into different staining groups
(approximately 50 slides for each group) and stained as follows, using either single or

a combination of two antibodies:
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= Monoclonal mouse anti-vimentin structural protein (vim) (1:5000).

= Monoclonal rabbit anti-a smooth muscle actin (actin) (1:200).

= Monoclonal rabbit anti-NaK-ATPase enzyme (1:500).

» Polyclonal rabbit anti-a tubulin (tub) (1:1000).

= Polyclonal rabbit sodium hydrogen exchanger-1 (NHE-1) (1:200). Both NaK-
ATPase and NHE-1 are enzymes present in the cell membrane and they were
used in the present study to detect the cell membrane of the OPs.

= Monoclonal mouse anti-calcitonin gene-related peptide (CGRP) (1:500) for

afferent sensory nerve fibres.

The secondary antibodies; donkey anti-mouse Alexa Fluor 488 and donkey anti-
rabbit IgG, Alexa Fluor 594, were applied in accordance to the species of the primary

antibody used.

The immunohistochemistry staining procedure was described in detail in Ch 2,

section 2.1.6.

Control samples were included. The slides were either incubated with PBS instead of
the primary antibodies, before staining with the secondary antibodies, or incubated
with PBS only.

To standardize the region of interest for all the teeth, this study examined only the
mesial cusp of the first mandibular molar (Figure 4.1). The stained sections were
examined as previously described in Ch 2, section 2.1.8. Approximately 50 slides
were examined for each group to confirm the accuracy and consistency of the
staining technique and to reveal consistent staining phenomena (Gillespie et al.,
2006).
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Figure 4.1: Diagram represents the rat mandibular 1% molar cusps viewed in sagittal plane
(A) and occlusal surface (B).

The following structures have been identified: enamel (En), dentine (De), pulp (P), cementum
(Ce).

4.3 Results

All images illustrated in this chapter are for the mesial cusp of the rat mandibular 15
molar (Figure 4.1). These images are illustrated in a way that the mesial side is
always displayed on the left side of the image and vice versa for the distal side. To
identify time-dependent changes in the mesial cusp as a model for tooth wear, the
following descriptions of tooth wear were used (Figure 4.2):

Stage 0 (So) tooth regions under unworn dentine surface (lateral and central walls of
the mesial cusp).

Stage 1 (S1) tooth regions close to worn dentine surface (at the angle of the cusp
from the unworn cusp side).

Stage 2 (S2) tooth regions of minor worn dentine surface (near the angle of the cusp
from the worn cusp side).

Stage 3 (S3) tooth regions of severe worn dentine surface.

All the ground sections observed in this study showed worn occlusal dentine,

associated with an underlying area of tertiary dentine close to the pulp space (big

panel in Figure 4.2). In So regions, the complexity of the dentinal tubules could easily

be recognized in the outer dentine with abundant lateral and terminal branching

(image So, Figure 4.2). The terminal branching seemed to terminate within the DEJ. A
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similar pattern of dentinal tubules is also illustrated in S1 region which is located close
to the worn dentine surface at the cusp angle (image Si-Sz, Figure 4.2). In the same
image, it is apparent that in Sz region, the dentinal tubules were worn and had lost
their outer branching region. In the Ss region (image Ss, Figure 4.2), the dentinal
tubules appeared shorter with the proximity of the worn dentine surface to the pulp
space becoming apparent. Considering the region of tertiary dentine deposition near
the pulp (image R, Figure 4.2), there was no continuity of the dentinal tubules
between the primary dentine and the newly-formed tissue, which appeared to present

tubules with a meandering pattern.
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Figure 4.2: Ground sagittal section of rat mandibular 1% molar mesial cusp.

The following structures were identified, P; pulp space, De; dentine, En; enamel, DEJ;
dentine-enamel junction. The big panel shows the worn occlusal dentine (arrows). An
orientation double sided arrow points to the mesial (M) and distal (D) sides of the image.
Four regions of interest are highlighted (So, S1-S2, Sz and R). Image So shows a region of
intact tooth surface with complex lateral branches (arrows) appearing in the outer third of the
dentine associated with complex terminal branches (*) of the dentinal tubules. S;-S, image
shows the cusp angle with S; region on the top and in which the dentinal tubules still possess
complex terminal branches (*) near DEJ. In S; regions, the dentinal tubules appear to be
worn to a minor degree. The S; image identify the severely worn dentine surface. In R panel,
an area of tertiary dentine with meandering tubules (arrows) is illustrated.
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In decalcified sections, the extension of the OPs to the outer region of the dentine
was demonstrated with NHE-1 (first panel, Figure 4.3). The intensity of labelling was
relatively uniform throughout the full dentine thickness in So, S1, and Sz regions and
this labelling also followed a linear course along the primary curvature of the dentinal
tubules (Figure 4.2). In S3 region, the odontoblast processes were limited to the inner
dentine while the rest appeared to be devoid of any specific fluorescence labelling
(image A, Figure 4.3). The OPs showed vim immunoreactivity (IR) in the region
between the cell body and into inner dentine (image B, Figure 4.3). This IR changed
to be more NHE-1 within the remainder of the dentine, indicating a heterogeneity of

antibody expression within the same OP.
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Figure 4.3: Decalcified sagittal section of the mesial cusp of rat mandibular 1 molar.

All images were stained for NHE-1 in red, vim in green and dapi in blue. The large panel
shows the extension of OPs to the dentine surface in So, S1, and S, regions, while in Ss
region, the processes are limited to the inner region of the dentine. A double sided arrow
provides orientation for the mesial (M) and distal (D) sides of the image. In A panel, the
continuity of NHE-1-IR for the OPs in the outer dentine in S; is apparent and partly in S
region. In Sz the outer dentine is devoid of NHE-1-IR. B image shows a region of the pulp-
dentine area with odontoblasts (Od) and sub-odontoblast cells (SOd). The OPs show vim-IR
near the Od cell body, then change to NHE-1-IR when the process extends further within the
dentine (arrows).
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The antibody to a- tub, also labelled the OPs throughout the full thickness of the
dentine. The OPs showed very complex lateral and terminal branches in the outer
region of the dentine near the DEJ in So regions (images A and a, Figure 4.4). Some
of these processes showed more than 4 terminal branches (image a, Figure 4.4),
indicating great complexity in the outer dentine. In region Ss, tub-IR (images B and b,
Figure 4.4) was also absent in the outer dentine and was limited to the inner third of
the dentine, similar to the pattern observed with NHE-1. In Sz region the OPs that
reached to the outer dentine appeared to be thicker than the ones observed in So
regions, and without lateral branching (image b, Figure 4.4).
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Figure 4.4: Decalcified sections from S compared to S, and S; regions in the mesial cusp of
rat mandibular 1% molar.

All images were stained for a-tub. A shows the extension of OPs in the outer dentine in an
area of intact enamel (En) on the lateral wall of the cusp (an So region). The region of interest
in A is delineated by the box which clearly shows complex terminal branching of the OPs
(arrow). Panel B shows no OPs extending to outer dentine in an Ssregion and some
processes extending to outer dentine in an S; region (*). The higher magnification image in
panel b shows some of the OPs labelled with a-tub extending close to the outer dentine
surface in S; region but these processes have no branches.

IR to a-actin and NaK-ATPase was limited in the inner third of the dentine with no
immunofluorescent labelling detected in the external dentine in any region of the
mesial cusp, as shown in Figure 4.5 images A and B. A notable observation for these
two antibodies was the cellular heterogeneity of the odontoblast cells expressing

these antibodies in comparison to vim (images C and D, Figure 4.5).
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Figure 4.5: Decalcified sagittal sections of rat mandibular 1% molar from groove region (A)
and mesial cusp (B) to identify dentine/pulp regions beneath intact tooth surface (So).
Sections were either stained for vim (green), a-actin (red), dapi (blue) in panels A and C, or
vim (green), NaK-ATPase (red), dapi (blue) in panels B and D. The following structures were
identified: Od; odontoblast cell layer, SOd; sub-odontoblast cells, BV; blood vessel, De;
dentine, DEJ; dentino-enamel junction. In panels A and B, the OPs show IR for vim, a-actin,
and NaK-ATPase only in the inner third of the dentine. The dotted arrow in B demarcates the
worn dentine surface. C and D are high power images of Od and SOd in Sy regions. In C and
its component images (actin and vim), some Od cells show actin-IR (*) with no vim-IR and
others have only vim-IR (+) with no actin-IR. Panel D and its component images (vim and
NaK-ATPase) show most of the Od cells labelled both vim and NaK-ATPase-IR, but some
have no vim-IR (A).
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The dentinal tubules and OPs showed differences in their pattern between So in one
side and Sz and Ss regions on the other side. There were other differences related to
the cellular elements within the pulp. In So region, the Ods appeared as a single cell
layer, with their cellular processes extending into the dentine. They were
morphologically distinct from the SOds (image A, Figure 4.6). Cellular heterogeneity
was also identified within the Ods between vim and tub antibodies (images al and
a2, Figure 4.6). Moving to S2-Ss regions, the Ods were arranged in a pseudostratified
or stratified layer of 2-3 cells thickness (image B, Figure 4.6). Some cells from the
second line of Ods were also observed, sending processes into the predentine
(image b1, Figure 4.6). Some SOd cells in this region showed modification in their
cellular morphology to be similar to the Ods. However, no cellular processes were

recognized in these cells (image b2, Figure 4.6).

Finally, the distribution of afferent sensory nerve fibres was identified with antibodies
to CGRP. These fibres appeared with punctate staining and did not extend further
than the inner dentine (image C, Figure 4.6). The varicosities of CGRP-IR fibres gave
rise to this punctate staining, whilst the axons between these varicosities were very
weakly detectable. These sensory nerves showed a complex distribution in between
the SOds and the Ods and they ran with the odontoblast process (Figure 4.6, images
cl and c2).

None of the control groups showed any specific fluorescent labelling within the pulp,
dentinal tubules, or DEJ.
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Figure 4.6: Decalcified sections from mesial cusp of rat mandibular 1% molar to compare
between Sp and S,-S; pulp regions.

Images A, at,a2, B, b1, and b2 were stained for vim (green), a-tub (red), and dapi (blue), and
images C, c¢1 and c2 for CGRP (green), a-tub (red), and dapi (blue). A shows the single layer
arrangement of the Od cells in Sp region. The two panels below al and a2 represent region
of interest in image A and identify three types of Od cells: vim-IR (+), tub-IR (*), and vim-tub-
IR cells (A). Panel B shows the arrangement of Ods in a pseudo-stratified layer of 2 to 3 cell
thickness in S; and S regions of the pulp. Two regions of interest are shown in image B. The
first one appears in image b1 with cells (*) in the second line of the thick Ods cell layer
sending processes (arrows) to the predentine (Pd). The second region is identified in image
b2 which shows the SOd cells heading toward the proximal cells of the odontoblasts. Image
C from S,-Ss region shows nerves stained with CGRP running from the pulp and terminating
in the inner part of the De (arrows). A region of interest is shown in image c1 and the
component image c2, which clearly identify nerve fibres running between Ods (*) and then
into the inner De (small arrows).
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4.4 Discussion

This study is among the first to present evidence from the rat molar that dentine-
exposing tooth wear triggers a discrete and hitherto undescribed series of structural
and functional changes that aim to protect deep connective tissues from the oral
environment. Although rat molars have enamel-free areas on their cusps, they
remain covered with bone and gingival tissue until eruption, with tooth wear
commencing soon after, and certainly within 4 weeks for the rat mandibular first
molar (as seen in different age groups in chapter 5). The largest cusp (the mesial)

was examined in all cases for consistency.

Antibodies for structural proteins vim, a-actin, and a-tub were used since
intermediate filaments, microfilaments and microtubules have been reported as major
components of the odontoblasts cytoskeleton and have not been shown to exist
extracellularly in viable cells (Lesot et al., 1982; Thomas and Carella, 1983; Thomas
and Payne, 1983). The other antibodies used were for cellular homeostatic elements
indicative of living cells; NaK-ATPase and NHE-1. NaK-ATPase is expressed widely
in the cellular systems of the dental pulp (Duan, 2014), where it is instrumental in
maintaining the ionic gradient cross cell membranes. NHE-1 is an isoform of the
sodium/ hydrogen exchanger, which is a membrane protein primarily responsible for
maintaining the intracellular pH (Duan, 2014). Josephsen et al. (2010) found both
NaK-ATPase and NHE-1 in cells of the rodent enamel organ and linked them with
cellular pumping activities. Pulp cells, especially odontoblasts, have also been
reported to contain both of NaK-ATPase and NHE-1 in their cell membrane (Duan,
2014). Another antibody, CGRP, was used as a marker for sensory nerve fibres (Mori
et al., 1989).

An illustration of the changes from normal undamaged surfaces to a situation of
significant wear is shown in Figure 4.7. In normal physiology (A in Figure 4.7), OP
and their complex branches occupy the full tubular space (Carda and Peydro, 2006).
The current study confirms that the OPs extend the full thickness of the dentine and
terminate within an intact DEJ through the function of either structural (a-tub) and ion
transporter (NHE-1) markers. However, the other antibodies including vim, a-actin,
and NaK-ATPase were labelled only in the inner third of the dentine. This could
reflect regional differences in the structure of the OPs i.e. certain protein filaments

may be present only in defined regions depending on the function of the OPs in these
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regions. Previous studies have also reported the a-tub-IR of OPs throughout the
thickness of the dentine, whilst vim and a-actin-IR were limited to the inner dentine in
human (Sigal et al., 1985) and rat molars (Sigal et al., 1984a). These findings are
supported by the current study. By contrast, our previous work (Ch 3) on the rat
incisor found a-actin-IR in OPs throughout the entire thickness of the dentine, and
this may reflect the greater concentration of that protein in continuously growing teeth
compared with rat molars and human teeth. Additionally, using earlier age samples
(up to eruption time in 3w old rat, further discussion in Ch 5) gave similar observation
to rat incisor sections. This could reveal that there is also an age-dependent factor
which could cause these differences in OPs labelling behavior. Therefore, it would
appear that OPs beneath intact molar surfaces are complex and show regional
variations in protein expression that may reflect structural and functional
specialization. Furthermore, this is the first report to identify NHE-1-IR within the full
length of intact OPs. The role of this ion transporter within OPs is still unknown.
However, it could be one of the homeostatic elements that maintain vitality of the
OPs by regulation of the intracellular pH. On the other hand, it could also play a role
in controlling the intratubular pH of the tubular fluid to regulate ion transportation and
mineral deposition within peritubular dentine (see Ch 5 section 5.4.6 for further

discussion).

In normal physiology, OPs terminated with complex branches within the DEJ. The
function of this complex branching is not known, but may suggest its involvement in
detecting the integrity of that region, acting as a receptor field. Any stimulation,
mechanical or chemical, could be transmitted along OPs to the cell body of the Od,
the stimulated Ods triggering a cascade of events that could include retraction of
OPs. The primary aim for such events are possibly to initiate pulp inflammation and
defense mechanism in the face of injury to prevent further tissue destruction and
promote healing and regeneration (Tjaderhane and Haapasalo, 2012). Additionally,
the presence of voltage gated sodium channels (Allard et al., 2006), and
mechanosensitive potassium channels (Allard et al., 2000) were also reported within
the Od. This could reveal the ability of Od to sense the external environment possibly
through its process and generate an action potential to transduce this stimuli as an

electrical signal to the other pulp cells or adjacent nerve fibres (Allard et al., 2006).

It was observed that after exposing of the dentine surface to the oral environment,

there was an initial loss of side processes in Sz regions (B in Figure 4.7). However, in
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areas of minor or perhaps slower wear, the OPs still extended to the end of the
dentinal tubules. The trauma within this region could be transient which gave more
time for the OPs to react in a slower and programmed retraction process. Similar
observations were also detected in the cavity experiment in Ch 3. Additionally, the
persistence of OPs within their dentinal tubules for longer periods of time may
promote further mineral deposition or accumulation for internal obliteration and
sclerosis of the exposed tubules. Hyper-mineralization lumens of hypersensitized
dentinal tubules was also reported (Yoshiyama et al., 1989; Yoshiyama et al., 1990),

and this may also support the possible function of these non-retracted OPs.

Further retraction of OPs, could leave more space within the tubules for intratubular
fluid movement (C in Figure 4.7). This hydrodynamic fluid movement could stimulate
either the remaining part of the OPs or persisting afferent sensory nerves within the
tubules as suggested by the hydrodynamic theory (Ciucchi et al., 1995). This may
also contribute to altered sensation including pain in damaged or worn regions of the
teeth. This hyper-stimulation of the exposed tubules due to hydrodynamic fluid
movement, response to microbial or other external noxious stimuli could all stimulate
OPs for further retraction toward the pulp and the Od cell body to deposit reactionary
atubular dentine matrix (D in Figure 4.7). This atubular matrix possibly blocks the
inner part of the dentinal tubules, in addition to increasing the distance between the
pulp tissue and the exposed area (further discussion in Ch 5 section 5.4.1). The
afferent fibres in the pulp express CGRP (Mori et al., 1989), and in other systems
where CGRP afferent fibres are found, it can be released during nerve activation to
initiate neuro inflammatory reactions (Assas et al., 2014). This raises the possibility
that the nerves may feedback to stimulate the Ods. Collateral branches of such
axons almost certainly exist, in addition to the electrical coupling between Ods (Ikeda
and Suda, 2013). This has an effect on triggering Ods some distance away from the
injury (Kimberly and Byers, 1988). Thus, the effect of damage may be spread to Ods

over a considerable area.

Changes in the pulp cellular population were also noticed in regions undergoing
dentine exposure i.e. Sz and Ss regions in the present study (Figure 4.6). The first
change was the increase in thickness of the Od layer to 2-3 cells which could reflect
more activity of the Ods in this region as they are involved in the formation of
reactionary dentine. However, this could be the normal distribution of the Ods in this

region as these cells tend to be more crowded in areas under the cusps (Lovschall et
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al., 2002). At the same time, differences were also noticed SOd cell populations as
the most distal cells in this region become more odontoblast-like. These cells could
be supportive to the remaining Ods or recruited to replace extensively damaged Ods.
However, and under the conditions of this study, all the cells present at the border of
the pulp-dentine complex contained processes. These border Ods were associated
with meandering processes which form similar shape dentinal tubules (E in Figure
4.7). This could be the second part of the reparative procedure for the remaining
Odes, to reestablish the tubular pattern of the dentine. However, more severe trauma
such as deep cavity preparation, can be suggested for further studies to investigate

pulp cell reaction to such trauma (hypothesis in Figure 4.7, panel F).

Another important observation from the current study is the heterogeneity of the Ods,
both in intact and worn regions of the tooth (Figure 4.6). This could either suggest the
presence of another cell type within Ods layer such as dendritic cells as seen in Ch
3. Another speculation could be that the Ods themselves could possess different
functions within the same layer. These duties may include the primary function of
Ods as a dentine-formative cell, in addition to possible sensing, nutrition and

inflammatory functions (Luukko et al., 2011).

In summary, this study provides novel observations about the pulp-dentine complex,
and suggests a new explanation for the role of OPs in maintaining dentine surface
integrity following exposure by tooth wear. New insights have also been given about
the roles of cellular complexity within the pulp-dentine complex and possible roles in
sensing, defense and repair. Furthermore, two possible sensing approaches for the
pulp-dentine complex have been suggested depending on the integrity of the dentine
surface. The examination of rats of varying ages and degrees of tooth wear (see Ch
5), will shed further light on the pulp-dentine complex reactions associated with
exposing dentine. This may advance understanding of pulp physiology in health and

disease, and provide opportunities for therapeutic intervention.
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Figure 4.7: Schematic illustration representing the hypothesis of this chapter.

The following abbreviations have been used: OP odontoblast process, PD predentine, NF
nerve fibre, Od odontoblast, SOd subodontoblast, and (*) the covering tissue. Reading from
the left, it illustrates the presentation of an odontoblast within a healthy unworn dentine
surface (A), followed by early (B and C) to late pathological changes (D) resulting from the
opening of dentinal tubules, and finally the development of defensive reactionary (E) and
reparative responses (F). (Note: F is speculative and was not observed in the results of this
chapter).
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Chapter 5 A longitudinal investigation of formative and reactionary

changes in the dentine/pulp during the life of the rodent molar

5.1 Introduction

Odontoblasts are highly specialised and polarised cells, arranged in a continuous
layer of tall columnar cells with clear epithelioid appearance on the pulp boundary
(Arana-Chavez and Massa, 2004). The fundamental function of these cells is their
ability to lay down dentine during and after tooth eruption. This includes primary and
secondary physiological dentine respectively, with dentinal tubular continuity between
them (Tjaderhane et al., 2012). After primary dentinogenesis, there is an obvious
decrease in cellular activity, which is evidenced by morphological and functional
changes within the Od cell layer (Murray et al., 2002; Magloire et al., 2009).
However, most of these cells survive for the life of the tooth unless subjected to injury
(Murray et al., 2002). Various injurious stimuli (wear, cavity, or caries) trigger cellular
responses to form a structurally different tertiary dentine which could be reactionary
(formed by the same Ods) or reparative (formed by new Od-like cells) (Tjaderhane et
al., 2012). Generally, and in most of the previous reviews, reactionary dentine is
reported to have more or less structural continuity with the secondary dentinal
tubules. Alternatively, reparative dentine with it's a tubular organisation shows
significant structural and mineral variations (Smith et al., 1995; Smith et al., 2008;
Tziafas, 2010; Tjaderhane et al., 2012; Femiano et al., 2014). In the case of
reactionary dentine, the primary function is to isolate the pulp from external stimuli,
by reducing the permeability of dentine overlying the pulp. This isolation cannot be
proposed if the dentinal tubular continuity between this dentine and the original
dentine is still maintained. To investigate such response, it is important to follow a

trauma stimulus (tooth wear in the current model) and the response to it over time.

NGF, is a member of the neurotrophin family, promoting neuron development,
maintenance and repair, through its action on tyrosine kinase receptors (trkA) (Chao,
2003). It also reported to be involved in the epithelial-meshenchymal induction
associated with tooth development, by its action on p’® neurotrophin receptors
(Mitsiadis et al., 1992). NGF is also present in mature tooth tissue and is involved in
pulp tissue inflammatory reaction and repair after trauma (Byers et al., 1992).

However, its role within tooth development and tissue repair is not well known.
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Dental pulp, particularly the cusp region, is a highly innervated tissue. The vast
majority of this is sensory innervation such that the primary sensation perceived is
pain (Abd-Elmeguid and Yu, 2009). In normal conditions, there is no stimulation
above their nociceptive threshold, therefore, no pain is sensed. In pathological
conditions, these nerves become hypersensitive to simple thermal, mechanical, or
osmotic stimuli which can cause severe pain (Byers and Narhi, 1999). We include the
trauma caused by wear in the present study model which is associated with tissue
insult and inflammation. It becomes necessary to record the reaction of the pulp
neurons to this trauma and to determine how this could affect nerve distribution and

sprouting during inflammation and after repair.

Very few previous studies used an animal tooth attrition model to study the impact of
dentinal exposure on the OPs, vitality of the Ods, sensory nerve morphology, and the
associated repair mechanisms (Mahdee et al., 2016). The use of such a model could
possibly avoid all the experimental variables in the cavity preparation models that
could not be overcome during surgical procedures (About et al., 2001; Goldberg and
Smith, 2004). Equally, the roles of pulp cells in sensing danger from wear, tooth
flexion, and microbial challenge are incompletely understood. There is no recorded
information about the initial response of the pulp cells to the exposure of dentinal
tubules, or the late reaction of these cells after the deposition of reparative dentine,
which was suggested to be a barrier to isolate the pulp from the external stimuli. In
addition, if these findings proceeded by earlier tooth developmental records and
normal tissue structure before the surface wear took place. This would probably help
to follow the whole story from its early phases to give a broader understanding about
the changes that could occur in response to the stimuli. Therefore, the overarching
aim of this chapter is to identify possible complex cellular interactions of the major
pulp elements including Ods, OPs, SOds, blood vessels and nerves during different
stages of tooth of development and response to dental injury. The rat mandibular first
molar was chosen as the model in this chapter, because it is a validated model for
human teeth. Additionally, this model allows the phenomena of occlusal wear to be
investigated, providing a valuable trauma tooth model. This is expected to give novel
insights about the early and late tooth responses to occlusal wear.
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5.2 Methods

Male Wistar rats of different age groups: zero day (0d), 1, 2, 3, 4, 6, 9,12 and 24w (5
or 6 of each) were killed as follows. After the birth of the 0d pups, they were killed by
intra-peritoneal injection with lethal dose (0.7ml/Kg) of pentobarbitone. The remaining
age groups were killed by using a CO2 chamber. Mandibles were carefully dissected
and divided centrally into two halves. Right and left halves were sectioned into three
pieces as described in 2.1.2 and Fig 2.1. Only middle pieces, which contain the bone
segment with 3 molars, were utilised in this experiment. In 0d and 1w samples, the
half mandibles were kept without sectioning in a one-piece sample because they

were small in size.

Three samples from 2, 4, 6, 9, 12, 24w aged rat were used in ground sections. The
ground section preparation protocol and method of slide examination was described

previously in section 2.4.

The rest of the samples were fixed immediately in freshly prepared 4% PFA solution
for 24h. The samples were washed thoroughly in PBS and demineralised 17% EDTA
(pH 7.4) (see 2.1.3 and 2.1.4 respectively) except 0d and 1w samples which were
used without demineralisation. Samples were then frozen and sectioned as
described in section 2.1.5. Twenty to thirty slides of 10um sections (each slides have

2 sections on) were obtained from each block and stored in -80°C freezer.

Three different staining procedures were performed: hematoxylin and eosin (H&E),
fluorescent staining with rhodamine phalloidin (RP), and immunohistochemistry
staining (IHC) using various antibodies. The H&E and RP staining protocols were
described in 2.3 and 2.2 respectively. Different antibodies were used in IHC staining

which included the following:

e Structural framework antibodies: vim (1:5000), a-actin (1:200) and a-tub
(1:1000).

e Cell division marker (Ki 67) (1:500)

e House-keeping proteins: NaK-ATPase (1:500), and NHE-1 (1:500).

e Nerve growth factor (NGF) (1:500) and nerve growth factor receptors (NGFR)
(1:100)

¢ Nerve markers: calcitonin gene related peptide (CGRP) (1:500), and
neurofilament (Nf) (1:1000).
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All details for the above antibodies were described in table 2.1. Either a single or a
combination of the two antibodies were used in each staining experiment. The

staining protocol for IHC was also described thoroughly in 2.1.6.

The negative controls for the IHC staining were previously described in section 2.1.7.
This included:

e Blocking peptide (BP) for anti-alpha smooth muscle actin antibody [E184].

e Use of the isotype controls including rabbit IgG monoclonal (EPR25A) isotype
control and normal mouse IgG1.

e Use of PBS to incubate the slides instead of primary antibodies or both
primary and secondary antibodies.

Other oral tissue within the same samples served as internal positive staining
controls. Examples included the use of gingival tissue as a positive control for nerve
staining, the apical bud region of the mandibular incisor as a positive control for cell
division marker Ki 67, and the use of the enamel organ cells as a positive staining for
a-actin, NaK-ATPase, and NHE-1. Other tissue organs were also used as positive
controls including rat bladder and skeletal muscle.

For each staining, samples from different animals (4-8 rats) in each age group were
examined to confirm the accuracy and consistency of the staining technique and to

reveal constant staining phenomena.

For nerve staining with CGRP, nerve counting was made for nerve fibres within the
Od layer of the mesial cusp region for 3, 4, 6, 9, 12 and 24w sections. The procedure

for qualitative nerve counting was as follows (see Figure 5.1):

e The region for nerve counting was determined within 200um from the cusp
margin of the pulp. Only nerve fibres within Od layer were counted.

e The Od layer within the counting zone was divided into two regions; mesial
and distal of the cusp. The trauma region due to wear, which occurs from 4w
and older samples, was included within the distal side measurements of each
age.

¢ Within each mesial and distal Od regions, the number of CGRP fibres and Od
layer surface area was calculated.

e To measure nerve fibre density within the surface area (nerves/1000um?) the

following formula was used:
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Nerve density= (nerve number / Od surface area) * 1000
Therefore, in each sample there was a mesial nerve density (M-Den), distal

nerve density (D-Den) and total nerve density (T-Den) for the whole cusp.

Between 4-6 images from each age group were measured and these measurements
were analyzed by ANOVA and Bonferroni Post Hoc test to find the statistically
significant differences between each nerve density within different age groups.
Unpaired T-test was also used to compare between M and D-Den within the same

age group.

Nerve fibres

Od surface area

f
Od surface area Of D side

of M side

Figure 5.1: lllustration of the CGRP nerve counting procedure within mesial cusp.
M is for mesial, and D is for distal side, and the latter includes the trauma site within it.

5.3 Results

For consistency, and because the examined piece of the mandible contained 3
molars and each molar had a different number of cusps, only the mesial cusp of the
first molar (the largest cusp within the largest molar) was focused on during this work
(see Figure 4.1). However, the image archive for this experiment contains many
images of other cusps of the 15t molar or within other 2 molars which confirm the

same story details in each cusp.

There are several regions within the mesial side of the tooth are focused on during
the presentation of the figures. These regions include (see Figure 5.30): the mesial
cusp (cusp tip and lateral wall), groove region (which is mainly between mesial and

middle cusp), mesial cervical region, and mesial root. Additionally, all images for
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mesial cusps in each figure were arranged to show the mesial side of mesial cusp to

be on the left hand side of the image and vice versa for the distal side.

5.3.1 Ground sections

The ground section for 2w molar shows no enamel covering the cusp tip (image A
Figure 5.2). The tooth is still not yet erupted with unbroken cortical bone covering the
mesial cusp. The dentinal tubules above the pulp horn region appear as dark tubules
which represent the peritubular dentine. These tubules are highly condensed to each
other with very limited white spaces in between them, even under higher
magnification (image a Figure 5.2). No clear branching of the dentinal tubule is
evident in the inner dentine compared to the many lateral and terminal branches

within outer dentine (images A and a Figure 5.2).

In 4w age sections, the occlusal wear of the mesial cusp surface is apparent. It
appears more severe on the distal side of the mesial cusp which looks shorter than
mesial side (image B Figure 5.2). This wear has resulted in the cutting off of the
terminal branches of the dentinal tubules and hence exposing them to the oral cavity.
There is a region of atubular dentine evident near the pulp and marked by a dotted
curved line in image B Figure 5.2. This region at higher magnification shows an
atubular dentine pattern which contains a few irregularly shape tubules (white arrows
in image b Figure 5.2). This atubular dentine region seems to obliterate the proximal

opening of primary dentinal tubules (black arrows in image b Figure 5.2).

In 6, 9 and 12w sections, more occlusal surface wear is observed, which
progressively increased with age. The cusp attrition affects not only the central region
of the cusp in 6 and 9w sections (images C and D Figure 5.2), but also includes the
whole cusp depth in 12w sections (image E Figure 5.2). This can be identified by
comparing the depth of the occlusal groove between different age groups (double
sided arrow in images D and E respectively in Figure 5.2). There is also an
associated retraction of the pulp space due to increased deposition of atubular
dentine. This changes the profile curvature of the occlusal boundary of the pulp
(images C, D and E Figure 5.2). Under higher magnifications, new dentinal tubules
appear from the proximal side of the reactionary dentine region (images ¢ and d
Figure 5.2). These tubules have large areas of atubular dentine between them, short
in length, meandering in shape, and extending only into the inner part of the
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reactionary dentine. The number and length of these new tubules increases with age

(image e Figure 5.2).

In 24w sections, the wear continues to progress to reach the atubular part of the
reactionary dentine (x1 in image F Figure 5.2). The mesial cusp becomes much
shorter in its distal side compared to other ages. Additionally, the dentine on the
sides of the cusp is severely worn and is shorter than the adjacent enamel (2 arrows
in image F Figure 5.2). An important observation at this age is the tubular pattern of
the inner half of the reactionary dentine. Although these tubules run in meandering
style, which looks different to the pattern of the primary dentinal tubules, they appear
more packed with each other and the white atubular spaces disappear. This is due to
progressive surface wear which could expose new dentinal tubules near the distal
side of the mesial cusp presented in thick arrow in image F Figure 5.2. This resulted
in the appearance of a new region of atubular dentine on the distal margin of the pulp

space (%2 symbol in image f Figure 5.2).
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Figure 5.2 Ground sections for different age of rat mandibular 1 molar (mesial cusp).

The six panels of interest from A, B, C, D, E, and F are labelled a, b, ¢, d, e, and f
respectively. Panel A shows the unerupted tooth of 2w aged rat, with mesial cusp still
covered by cortical bone and there is no enamel (En) covering the dentine (De) on the tip of
the cusp. The (+) symbol in images (A, B, C, D, E, and F) points to the changes of the
occlusal outline of the pulp space within different age group samples. The dentinal tubules
near the pulp space (arrows in image a) are compact. Panel B shows worn occlusal De
(arrow) of mesial cusp at 4w rat, associated with a region of atubular tertiary dentine (x) near
the pulp and its margin is marked by a curved dotted line. Image b at higher magnification
shows atubular dentine region (x) which block the proximal ends of the primary dentinal
tubules (black arrows). The wear increases (arrows) at 6 and 8w (images C and D), but the
region of atubular dentine (x) shows few signs of short dentinal tubules near pulp (arrows in
images ¢ and d respectively). In 12w section (panel E), the occlusal surface is affected by
more wear which is obvious both in the centre and sides of the cusp near En margins
(arrows). The tubules become apparent near the pulp space (arrows in image e). The 24w
section shows progressive signs of cusp wear at the distal and mesial side of the cusp
dentine (thick and thin arrows respectively). Two forms of the tertiary dentine have been
distinguished: atubular (x1 and %), and tubular dentine (*). In higher magnification (image f)
the tubular tertiary region (*) shows more compacted dentinal tubules. The double sided
arrows in images D, E and F refer to the depth of the groove between the mesial and middle
cusp.
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5.3.2 Demineralised sections

Structure

This part of the report includes sections stained for H&E, RP, and IHC. The latter
include cytoskeletal proteins (vim, a-actin, and a-tub). In most of the figures, the H&E
image used is an overview and navigating image for the regions of interest for the

other staining images.

0d and 1w:
In 0d, the mandibular 15t molar is still in the bell stage with no signs of dentine or
enamel deposition (image A in Figure 5.3). Cellular differentiation is more recognised
on the tip of the mesial cusp where the POd cells appear as a single cell layer,
columnar in shape with apically retreated nuclei. These cells are vim-IR with higher
staining intensity on the apical part of the cells (image B in Figure 5.3). Both a-actin
and RP (F-actin) show more reactivity in the cusp region with the highest on the
contact region between UOd and IEE cells (images B and C in Figure 5.3) including
the basement membrane. In higher magnification, this region shows both actin and
vim-IR processes of the POd (+ and * respectively in image D Figure 5.3), actin-IR is
in the apical region of the POd (thick arrow in image D Figure 5.3), and intense actin-
IR is seen in the basement membrane of the IEE cells (arrow image D in Figure 5.3).
Cells in the sides of the cusps show less differentiation characteristics in which the
region of UOd still have similar morphology to the other cells of the dental papilla
(image E in Figure 5.3) with the highest F-actin expression within basement
membrane region of the IEE. Additionally, no evidence of cellular processes are
observed within the UOd, and all cells of the dental papilla express faint RP staining

in their cytoplasm.

In sections from rats 1w after birth, both dentinogenesis and amelogenesis have
already begun in the mesial cusp (image F Figure 5.3). The ameloblasts appear fully
differentiated, long columnar cells with intense a-actin and RP staining in their
Tome’s processes. The Ods appear as a single cell layer, and are more vim-IR than
a-actin-IR, but sending both actin and vim-IR OPs (+ and * respectively in image G
Figure 5.3) into the PD region. Additionally, the apical region of Ods express both a-
actin and vim-IR (thick arrows in image G and its component images). In higher
magnification, the Ods show peripherally located F-actin staining within their cell
bodies, and these send actin tree-like processes to the PD from their intense F-actin

apical pole (image | Figure 5.3).
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The a-tub seems not to specifically label UOd, POd (image A Figure 5.8) or even

secretory Od during these early ages of development.
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Figure 5.3: Undemineralised sections for mesial cusp of rat mandibular 1% molar at day zero
(0d) and 1w after birth.

Images B, D, F, and G were stained for vim (green), a-actin (red), and dapi (blue), images C,
E, H, and | were stained for rhodamine phalloidin (RP) in red and dapi in blue. Images A-E
are for 0d. Panel A is an overview H&E section of the advanced bell stage showing outer
enamel epithelium (OEE), inner enamel epithelium (IEE), undifferentiated odontoblasts
(UOd), pre-odontoblasts (POd) and dental papilla cells (DP). The highlighted region of
interest in A is shown in B, which identifies the intense actin interface between pulp and IEE
cells (long arrows). Similar observation is shown in panel C. Image D is a highly magnified
region of interest in B which shows the two types of POd processes: actin (+) and vim (*),
and high actin apical region of these cells (thick arrow). The basement membrane of the IEE
(arrow) also shows high actin-IR. This is clearly illustrated in the two component images (a-
actin and vim). Panel E is a higher magnification of the region of interest from C which shows
intense F-actin in the interface between IEE and UOd (long arrow) including the basement
membrane region. Images F-I are for 1w aged rat. F panel shows fully differentiated
odontoblasts (Od) and ameloblasts (Am) and other cells of the enamel organ, stratum
intermedium (SI) and stellate reticulum (SR). Region of interest is shown in higher
magnification in panel G, which clearly identifies high actin-IR of TP of Am extending within
the early formed enamel (En), and presents two types of odontoblast processes extending to
predentine region (PD), actin-IR (+) and vim-IR (*). This is shown clearly in two component
images actin and vim. The thick arrows in these images point to the apical region of the Ods.
Image H shows a large region of mesial cusp on the left side of the image, groove region
between the cusps, and small region of the middle cusp in the right lower corner. Higher RP
intensity in TP of the Am, SI cells and blood vessels of the pulp (arrows) than the remaining
cells of the pulp including Od. At higher magnification (panel I), the Od clearly appear as
unipolar cells with basally located nuclei. RP stain appears in apical (thick arrows) lateral
(long arrow) and basal (*) regions of cells in addition to OPs (+).

2w:
In H&E staining (image A Figure 5.4), the crown morphogenesis seems to be
finished, while the root is commencing growth. The dentine thickness decreases from
cusp tip toward the cervical region, which indicates that the dentine deposition is still
progressing on the lateral walls of the cusp and cervical tooth region. Additionally, the
thickness of the Od cell layer also changes from a single cell layer on the cervical
region of the tooth to a thicker pseudostratified layer on the tip of the cusp region of
the pulp. Atthe same time, and in IHC sections, the a-actin tree-like processes also
show variances in their density between different developing regions of the tooth.
These variances include none to very few in cusp tip region, to plenty in the cervical
and developing root regions (images B and G, H respectively in Figure 5.4). There
are also several of a-actin tree OPs still present in the predentine of the groove
region (image C Figure 5.4). The main OPs show vim-IR only in the inner third of the
dentine, alternatively a-actin-IR appears through the full length of OPs (images D and
E Figure 5.4). At the apical part of the root developing region, pulp cells are still

undifferentiated to Ods. These cells are vim-IR but with intense a-actin apical poles,
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which are in contact with the high a-actin-IR Hertwig’s epithelial root sheath (HERS)
cells (image | Figure 5.4).

Similar observations are also present in RP staining. With this staining, the actin
expression of the apical pole region of the Ods are well represented along the full
distance of the pulp perimeter (arrows image J Figure 5.4). The OPs express RP
staining along their entire length (image K Figure 5.4). The cervical region of the
tooth still shows actin tree-like processes which disappear from the cusp region
(image L Figure 5.4). At higher magnification, the lateral branches of the OPs are
only observed in the outer third of the dentine, before their terminal branches (long
and short arrows respectively in image M Figure 5.4).

Although, a-tub-IR becomes more specific within Od cells in 2w sections, it is still

limited to cell bodies and no signs of this protein label the OPs (image B Figure 5.8).
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Figure 5.4 Demineralised sections for mandibular 1% molar mesial cusp in 2w old rat.

Images stained for H&E in A, vim (green), a-actin (red), and dapi (blue) in B-I panels, and RP
(red) and dapi (blue) in J and K, and just with RP in image L and M. A shows an overview
image for the mesial side of the developing tooth with crown morphology almost complete
and commencement of root formation. Following structures are identified: enamel En,
dentine De, odontoblasts Od. Several regions of interest are highlighted in boxes in this
image and are shown in the following panels: B shows Od layer in mesial cusp region with
high actin-IR Od and only vim-IR OPs (arrows) extending toward De. The Od cells and their
cellular processes in groove region are shown in panel C with two types of processes: actin-
IR (+) and vim-IR (*). The outer region of the dentine is shown in images D and E for cusp tip
and lateral wall respectively which shows rich actin-IR OPs (arrows). The cervical region of
the tooth is shown in panel F which illustrates more actin-IR of the Am compared to Od. Two
regions of interest are shown in higher magnifications in images G and H with greater and
thicker actin-IR (+) processes in root Od (image H) compared to crown Od (image G). Also,
the cementoblasts (Cb) in image H express actin-IR. Panel | presents the developing region
of the root with high actin-IR in the apical region of undifferentiated Od (UOd) (arrows) and
the Hertwig’s epithelial root sheath (HERS) cells. The mesial cusp section is also presented
in panel J, which shows high expression of RP in Am, apical region of the Od (arrows), Od
processes within De and other pulp cells. The 2 boxes highlight regions of interest in cusp tip
and cervical tooth region respectively. The Od have high RP expression in the apical part of
the cells (arrows) and within entire length of OPs. Also, more lateral Od processes in PD
appear toward the cervical region of the tooth (+ in Image L). The outer region of dentine in K
is shown in higher magnification in image M, which identify the presence of OPs lateral
branches close to their final termination.
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3w:
The 15t molar is erupted at this age but still does not reach its functional occlusal
contact (image A Figure 5.5). The appearance of the pulp horn is clearly observed as
a thin conical extension of the pulp cells into the dentine. The Ods along pulp horn
region express a higher intensity of RP stain, which indicates higher F-actin in their
cytoskeleton in comparison to the adjacent pulp cells (images B and C Figure 5.5). A
similar observation is present with a-actin in pulp horn region. The Od layer in the
whole cusp appears as a thick, continuous, pseudostratified layer of cells which
shows high a-actin-IR in the apical poles of Od (image D Figure 5.5). No actin tree-
like processes are seen in the PD region and the main OPs express vim-IR in their
inner third and actin along their entire length (image E Figure 5.5). The SOd cells
also express a high a-actin and F-actin in comparison to the Od layer. There are also
numerous capillaries present in the SOd, in between Od cells, and in the apical

region of this cell layer.

Ods in the groove and cervical region still have actin processes in their apical side
(images F and G respectively Figure 5.5), but the density of these processes is much
higher in the root. The root is still growing and shows a-actin-IR in the HERS cells in
its apical part (image H Figure 5.5).
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Figure 5.5: Mesial cusp sections of demineralised mandibular 1* molar in 3w old rat.

A shows an overview H&E image for the mesial cusp identifying the following structures:
odontoblasts (Od), sub-odontoblasts (SOd), dentine (De), and gingiva (Gi). Images B and C
stained for RP (red), dapi (blue), D-H images stained for vim (green), actin (red) and dapi
(blue). Panel B shows the pulp horn (thick arrow), odontoblasts (Od) and sub-odontoblast
cells (SOd). Arrows with (*) showing the pulp horn cells, small arrows show capillaries
running in Od cell layer, arrow heads illustrate small capillaries on the apical side of the Od,
and (BV) large blood vessel in the SOd. Image C is a magnification from B to show the
complexity of pulp horn Od cells (thick arrow). Panel D shows the mesial cusp with arrows
pointing to the actin-IR Od cells of pulp horn which overlap each other. Capillaries (Cp)
appear in both Od and SOd. The extension of the OPs (arrows), with actin-IR, toward the
outer surface of the dentine (dotted line) is shown in panel E. Higher magnification image F
shows the Od in groove region of the tooth. Arrows with (*) point to the lateral actin-IR OPs,
with some Cp in Od cell layer. The cervical region is shown in panel G. The orientation is
included by the two-sided arrow pointing toward root (R) and crown (C). Arrows pointing to
large blood vessel which runs from the SOd and gives number of branches emerging the Od
with some Cp in the apical region of the Od. The root apex is shown in image H, with actin-IR
for OPs and less for the cells of the Hertwig’s epithelial root sheath (HERS).
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4w:
At this age, occlusal wear is evident on the mesial cusp, and it looks greater on the
distal side compared to the mesial. The trauma effect of the wear is mirrored within
Ods layer and SOd cells. This is apparent on the distal side in comparison to intact
mesial side of the cusp pulp (images A and B Figure 5.6). The effect of trauma from

wear can be summarised as follows starting from the dentinal surface:

= The worn dentine surface shows empty dentinal tubules in the central worn
area (long arrow in image F Figure 5.6). Alternatively, the OPs still present in
the dentinal tubules beyond the minor worn dentine surface, are labelled with
a-actin, and devoid of any lateral branches (short arrows in image F Figure
5.6).

= Several cellular nuclei are obvious within the atubular dentine region (image
B-E Figure 5.6). These nuclei show faint staining in comparison to other cells
of the pulp, and seem to be separated from the pulp horn region and the distal
side of the Od layer.

= The discontinuity of the pulp border Ods is apparent beyond the trauma region
with high actin-IR (image C and D Figure 5.6).

= The traumatised Ods appear without OPs (image D and E Figure 5.6).

= The traumatised Ods lose their apical junctional contacts and look more
separated in comparison to adjacent non traumatised Ods (image D and E
Figure 5.6) with many dilated capillaries in between.

= The SOd beyond the trauma region express the highest actin-IR (images C
and D Figure 5.6). These cells also seem densely packed with limited spaces
in between them.

= Several dilated capillaries are illustrated within Od and SOd (image B Figure
5.6). No signs of pus have been distinguished between Od layer and newly

formed atubular dentine.

The appearance of the non-traumatised region of the crown and developing root cells

can be summarised as follows:
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The unworn dentine surface of the cusp still shows complex terminal
branches of the OPs in the outer dentine region and OPs are fully labelled with
actin (thick arrow in image F Figure 5.6).

The tree-like actin processes are less within the predentine region of the
crown (image G Figure 5.6).

These processes are still evident within the root, especially the developing
regions (image H Figure 5.6).

a-tub-IR becomes more specific in Od cell layer. It also labels some large
nerves running within the pulp core, and small nerve branches within SOd
cells (image C Figure 5.8). This structural protein also marks the pulpal half of

the OPs beyond intact tooth surface.
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Figure 5.6: Effect of occlusal wear in 4 weeks old rat mandibular 1% molar in demineralised
mesial cusp sections.

Images stained for H&E in (A and B), and panels C,D,F, G and H stained for vimentin
(green), actin (red), and dapi (blue), and image E for RP (red) and dapi (blue). An overview
image A shows mesial (left) and middle (right) cusps wear (w) associated with an area of
tertiary dentine (x). Region of interest in A is shown in higher magnification in panel B, which
identifies the tertiary dentine region containing nuclei (arrows) of some odontoblast cells (Od)
and dilated capillaries (Cp) appear within Od and SOd. Same region in B is also presented in
panel C and E but with different staining, shows the discontinuity in Od beyond tertiary
dentine region (x). Od also have lost their cellular processes which are still present in the
adjacent Od (arrow heads), where some nuclei merge into tertiary dentine region (arrows).
Additionally, the highest actin intensity is identified within SOds. Region of interest in C is
shown in higher magnification in panel D with actin-IR cell membrane (long arrows) of the
separating cells (small arrows). The worn dentine surface is shown in panel F with some
actin-IR OPs still reaching the outer dentine (short arrows). In the severely worn region, the
dentinal tubules look empty (long arrow). In unworn side (right side of the image) the OPs still
have complex terminal branches (wide arrow) near the outer surface. Panels G and H show
the Od in groove and root regions respectively, with more actin-IR tree-like OPs in panel H
compared to the thinner and dispersed pattern in panel G.
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6wW:
By this age, the overall pulp profile seems to be retracted in a pulpal direction in the
region of tertiary dentine, beyond the cusp worn surface (two arrows in image A
Figure 5.7). The structural morphology of the pulp cells in this region can be

summarised as follows:

= The Ods in the trauma region return their apical junctional contacts which
express both actin and vim-IR (images B Figure 5.7).

= The orientation of the Od cells in the trauma site appear in different directions
(sometimes horizontally as seen in * image B Figure 5.7) in comparison to
their orientation in non-trauma regions which look parallel to each other and
perpendicular on their apical junctional region (+ in image B Figure 5.7).

= Short OPs start to extend into the PD region behind the atubular dentine as
secondary OPs. These processes are meandering in shape and express both
vim and actin-IR.

= The Ods have a higher IR of both actin and vim in comparison to SOds
(images al and a2 Figure 5.7).

= No actin tree-like processes are evident within the PD region of the crown,
although they are still apparent within root PD region of the tooth.

= As a-tub becomes more specific in Od from the 4w sections, it is more intense
within OPs and starts marking the outer third of processes beyond intact tooth
surfaces (+ in image D Figure 5.8). However, in the region of reactionary
dentine, the newly formed OPs IR to a-tub is nearly similar to vim expression
(images E and F Figure 5.8).
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Figure 5.7: Demineralised sections of the 6w old rat mandibular 1% molar.

Panels A and B were stained for vim (green), a-actin (red), and dapi (blue), image a2 for vim
and rest of the images for a-actin. Panel A shows the mesial cusp region with pulp receeded
(arrows) following tooth wear. Region of interest is shown with higher magnification in B, with
vim-IR OPs within the tertiary dentine region (arrows), and dilated capillaries (Cp) engaging
the Od and SOd cells. The two component images al and a2 show vim-IR for the newly
formed OPs is more than for a-actin (arrows). Panel C shows the groove region with a
sparsity of actin-IR lateral process (arrows) of Od compared to the furcation region in panel D
that have abundant actin-IR lateral process (arrows) of Od in addition to actin-IR in the basal
part of the main OPs (long arrows).
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Figure 5.8: a-Tubulin (tub) expression in different age groups of rat mandibular 1% molar
mesial cusp.

A and B images were stained for a-tub (red) and dapi (blue), C, D and E for a-tub and F for
vim. Panel A of 0d rat section, shows more tub-IR in dental papilla (DP) and outer enamel
epithelium (OEE) cells than in undifferentiated odontoblasts (UOd) and the inner enamel
epithelium (IEE). The tub-IR increase in Od and SOd cells in 2w rat (image B), but there is no
expression detected in OPs within the dentine (De). In 4w rat (image C), the tub-IR becomes
more specific in the Od cells, their processes (arrows), large nerve fibres (long arrows) run
within central pulp region in association with big blood vessels (BV). Small nerves (arrow
heads) also labelled with tub are seen in SOd regions. Similar findings are presented in
image D for 6w rat but with higher tub-IR in the outer region of the OPs (+) and no tub-IR
detected in tertiary dentine region (x). Images E and F are higher magnification images for
pulp region in image D which shows similar labelling of the OPs by a-tub and vim in
reactionary dentine region. Capillaries in Od region are pointed to by arrows in image E.
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Ow-12w:

The signs of pulp responses to trauma start to subside with progressing age. The

following morphological features are recognised:

The reactionary dentine starts to express different profiles: atubular occlusally
and tubular pulpally. Within atubular dentine some lacunae can be recognised.
(images A and B Figure 5.9). These could be the site for trauma associated
apoptotic pulp cells.

The Od layer beyond the trauma region appears uniform, and the large
capillaries seems to be more retracted in a pulpal direction toward SOd region
(image C Figure 5.9).

The meandering secondary OPs become longer and denser with time (images
D Figure 5.9 and C, D Figure 5.10).

OPs near outer worn dentine surface (image F Figure 5.10) show similar
details as described previously in Chapter 4 section 4.3.

Within non-trauma regions, the following morphological features can be seen:

The OPs start to express a-tub within their entire length (image G Figure
5.10). Actin is expressed in the inner half, and vim only the inner third of the
entire OPs length (image C and D Figure 5.10).

The root formation is fully accomplished at 12w of rat age with complete
formation of the apical foramen. The signs of occlusal loading due to the wear
process can also be manifested in the apical region of the root. The
hypercementosis process is obviously recognised and the thickness of the
deposited cementum appears more on the outer side of the root in comparison

to the inner side (image A Figure 5.10).
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Figure 5.9: Demineralised sections of the 9w old rat mandibular 1 molar.

Images A,B and C are stained for H&E, D for RP (red) and dapi (blue), and E for vim (green),
a-actin (red), and dapi (blue). Panel A shows an overview image for the pulp and associated
reactionary dentine region. 2 regions of interest are illustrated in higher magnifications in
image B and C. Two arrows in Image B point to a lacuna-like structure within tertiary dentine.
Several capillaries are identified in SOd region (arrows). Same details in C are illustrated by
different stain in D, with arrows pointing to the newly formed OPs. The mesial root apical
region is presented in panel E with wider cementum (Ce) thickness on the outer surface of
the root (left double sided arrow) in comparison to the inner surface (right double sided
arrow) with large blood vessels in the periodontal ligament (PDL) near the root apical region,
which still contains the cells of HERS. Double sided arrow at the top of the image is orients
the mesial (M) and distal (D) sides of the root.
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Figure 5.10: Demineralised sections of 1% mandibular molar of 12w old rat mesial cusp.
Images A, B stained for H&E, C for vim (green), actin (red) and dapi (blue), D for RP (red)
and dapi (blue), and E, F, and G for tub. A is an overview image for mesial cusp and root
with following structures: dentine (De), periodontal ligament (PDL), odontoblasts (Od), bone,
hypercementosis of the root apex (*), and wear of the occlusal surface of the cusp (arrow). In
higher magnification, the region of tertiary dentine (dotted line) show two different dentinal
tubule arrangements: atubular (x) and tubular (arrow) closer to the Od. This atubular dentine
region (x) shows no signs of OPs in image C, while many OPs run parallel to each other in
dentine region closer to the pulp (arrow) similar to other part of the dentine (+). Large blood
vessels (BV) and small capillaries (arrows) are also detected. The same OPs arrangement is
detected in both RP and tub (image D and E respectively), but with more tub-IR within OPs in
the outer dentine under the unworn tooth surfaces (+ in image F and at higher magnification
in G). Panel F also shows no OPs detected under severe worn tooth surface (x), while there
are OPs (arrows) reaching to the outer De under minor worn De surface (*).

141



24w:
The limitation in the remaining pulp space due to continuous secondary and tertiary
dentine deposition is quite obvious in 24w sections. This causes difficulty in getting
the pulp chamber and pulp canal in one section together (image A Figure 5.11) in
most of the presented figures. Similar to the ground section observations (image F
Figure 5.2), the H&E sections also confirm the differences in dentine tubular pattern
from atubular occlusal to tubular pulpal parts of the tertiary dentine region (image B
Figure 5.11).

In IHC and RP staining, the number and length of the newly formed secondary OPs
in the reactionary dentine are increased (long arrow in images C, D and E in Figure
5.11). These secondary processes express actin within their entire thickness and vim
and a-tub within their pulpal third. However, in image C, a new region of atubular
dentine (x2) shows an absence of the primary OPs in the adjacent, more distal region
of the Od cells. This indicates a new trauma site as a result of progressive wear. The
SOd cells beyond the new trauma region also show high actin expression similar to
the reaction to the first trauma in 4w sample. In non-trauma surfaces, the OPs shows
similar labelling for actin, vim and tub that has been described previously in 12w rat
sections (images C, D, and E Figure 5.11 and image G Figure 5.12)

The signs of ageing can be identified by an increase of secondary dentine deposition
in the non-traumatised region of the tooth. This can be illustrated in the groove region
of the tooth by comparing the differences in pulp width between 12 and 24w sections
(images A and D respectively in Figure 5.12). The pulp width in 24w sections is
reduced to less than half its size in 12w sections which indicate continuous
secondary dentine formation during this period. Additionally, the furcation and root of
the tooth lose their actin tree-like OPs in their PD region (image F Figure 5.12), which
was present in 12w sections (image C Figure 5.12). Furthermore, the ageing signs
could be easily identified in the root apex region. This region shows increase in
thickness of the accumulated hypercementosis on the outer and inner side of the
mesial root increasing the root length (two double sided arrows in image H Figure
5.12).
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Figure 5.11: Demineralised sections of 1% mandibular molar of 24w old rat mesial cusp.
Images A and B are stained for H&E stain, C for vim (green), actin (red) and dapi (blue), D
for RP, and E for tub. A is an overview image of mesial cusp and root with following
structures: dentine (De), limited pulp (P), periodontal ligament (PDL), and bone. Deep wear
is shown on the occlusal surface of the cusp (arrow). In higher magnification (image B), the
region of atubular tertiary dentine (x) reaches the worn surface (small arrows) and the region
of tubular tertiary dentine (big arrows) become wider. The OPs near pulp become denser as
shown in images C and D (long arrows), with no signs of OPs detected in atubular De region
(x). At the same time, processes on the lateral walls of the cusp label actin-IR only in pulpal
half of these OPs (+). Second region of atubular dentine is also detected in image C (x2).
Similar observations are detected in panel E but with tub-IR expressed in the outer part of
OPs both under unworn (+) and minor worn (*) dentine surfaces.
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Figure 5.12: Demineralised sections of groove and root regions in 12 and 24w old rat
mandibular 1% molar.

Images A, B, and C is for 12w while the rest are for 24w aged rat. Panels A and D, are
stained for H&E, B ,C ,E and F for actin, G for tub, and H for vim (green), actin (red) and dapi
(blue). The pulp space is larger in 12w in comparison to 24w as shown in images A and D
respectively. Also large BV and small capillaries (arrows) have been identified. Comparing
the groove and furcation regions, only small branches of the OPs are detected (arrows in
image B), while numerous long lateral actin-IR OPs are still present in PD region of furcation
area (arrows in image C). However, these two regions show no lateral actin-IR OPs in 24w
(image E and F) except very few in furcation region (arrow). The extensions of the OPs to the
outer dentine is detected with tub, as shown in panel G (arrows). Panel H shows the apical
region of the mesial root with the region of hypercementosis (Ce) (double sided arrows) with
triple its size on the mesial surface (left side of the image) compared to the distal (right side
of the image). Also large blood vessels enter the tooth through its apical foramen. PDL=
periodontal ligament. Double sided arrow at the top of the image is to orientate the mesial
(M) and distal (D) directions of the root.
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Cell division (expression of Ki 67)

During tooth crown morpho-differentiation stage of rat 15t molar at 0d, the cellular
division for the whole tooth germ cells is apparent by Ki67-IR in nuclei of the
differentiating cells (image A Figure 5.13). All cells of the DP, including regions of
UOd, and enamel organ, including IEE and OEE, show Ki67-IR which indicate

cellular division activity of these cells (images al and a2 Figure 5.13).

After cellular differentiation and commencement of hard tissue deposition in 1w
sections, no Ki67-IR has been identified within all pulp cells of the tooth crown
(images B and C Figure 5.13). The region of the tooth which still shows the Ki67-IR in
their cellular nuclei is the developing root region, including both pulp and HERS cells,
which indicates that these cells still show cellular division activity (image D Figure
5.13). These observations remain similar during all ages of the study where root
development is still unfinished (Figure 5.14 and Figure 5.15). The signs of cellular
division that are observed within fully differentiated tooth region are only located
within the capillaries, which could be some dividing blood cells in these vessels

(image a and d with their component images in Figure 5.14).

In the 4w old molar, the region of pulp trauma due to wear process has no detected
signs of Ki67-IR neither within the traumatised Od nor within the adjacent SOd cells
(image A Figure 5.15). The oldest age group within this study (24w) also confirms the
absence of any signs of cellular division within all pulp cells (images D and E Figure
5.15). The positive controls for each group are sections of the apical bud for the
mandibular incisors for each age, and one section is illustrated in image F Figure
5.15.
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Figure 5.13: Cellular division in mesial cusps undemineralised sections of 0d and 1w rat
mandibular 1% molar.

Images A, al, and a2 is for 0d, B, C and D for 1w old rat. All images stained for vim (green),
Ki67 (red), and dapi (blue). Panel A shows an overview of the developing mesial cusp with
following structures: inner enamel epithelium (IEE), outer enamel epithelium (OEE),
undifferentiated odontoblasts (UOd), and dental papilla (DP). Two regions of interest are
shown in higher magnification in images al and a2. The majority of cells of IEE, OEE, DP,
and UOd show Ki67-IR in their dividing nuclei. No Ki67-IR is shown in image B in Od, SOd,
Am and Sl cells but is still presented within outer cells of enamel organ (*). Similarly, no
expression is seen in image C, except in some pulp cells toward the root (arrow) and in bone
(*). Panel D shows most of the pulp cells toward the root (arrows), UOd, and HERS express
Ki67-IR. This image also shows the Am and Od of the incisor tooth down in the image.
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Figure 5.14: Cell division marker (Ki67) in demineralised sections of 2 and 3w old rat
mandibular 1% molar.

A and B images are for 2w, while C and D for 3w old rats. Images stained for vim (green),
Ki67 (red), and dapi (blue). Panel A shows the mesial cusp with no signs of Ki67-IR in any
regions of the cusp except for one region of interest in SOd which is presented in (a) and its
component images (Ki67, vim, and dapi). These images show cellular division occurring in
blood vessels only. Panel B shows cellular division still active in developing root especially in
UOd and HERS cells, in addition to other pulp cells (arrows) and PDL (*). Root region
continues to show Ki67-IR in some of the dividing cells in Od and other pulp cells of 3w aged
rat (image C). Panel D shows the groove region with faint Ki67 staining only in some
capillaries (arrows) in Od and SOd regions. One of these capillaries is shown in higher
magnification in image d and its component images, which identify some red blood cells
(arrows) within this vessel.
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Figure 5.15: Cell division marker (Ki67) in demineralised sections of different ages of rat
mandibular 1° molar and one positive control image.

Images A and B are for 4w, C for 6w, D and E for 24w, and F for apical bud region of
mandibular incisor. Images stained for vim (green), Ki67 (red), and dapi (blue). No signs of
Ki67-IR are shown in images A, C, D and E, except the developing root region which appear
in image B, in which the Ki67-IR is still present in some pulp cells (arrows) and HERS cells.
Arrows in images A and C pointed to cells with Ki67 evident which could be white blood cells.
Image F is the positive control region for the Ki67-IR, which shows Ki67-IR cells in dental
papilla (DP), inner enamel epithelium (IEE) and outer enamel epithelium (OEE) cells of the
apical bud of rat mandibular incisor.
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lon transporter markers

NaK-ATPase:
In the Od rat molar, NaKATPase-IR labels only the outer cells of the enamel organ
including the developing SR and OEE cells. This antibody seems undetectable in

both dental papilla and IEE cells (image A and B Figure 5.16).

After hard tissue deposition commences at 1w, NaK-ATPase-IR becomes evident in
the Od and SOd region of the crown and within cells of the HERS of the developing
root (image C and D Figure 5.16). The expression of NaK-ATPase becomes more
apparent within SOd than Od cells in 2 and 3w sections (image E-H Figure 5.16).
Additionally, faint labelling of NaK-ATPase is also evident in OPs. The highest
expression is seen within SR cells of the enamel organ and it is used as a positive

internal control for this antibody (image D and E Figure 5.16).

At 4w, when wear processes have started, the cells of SOd and basal part of Od cells
beyond the region of trauma show the highest NaK-ATPase-IR in comparison to
other region of the mesial cusp (image A Figure 5.17). The expression remains
unchanged within adjacent non-traumatised Od, SOd and OPs (+ in image A Figure
5.17).

In the other age groups (6-24w), similar expression of the NaK-ATPase-IR is seen
within their sections, in which SOd cells show higher NaK-ATPase-IR than Od cells
(B-D Figure 5.17). However, only Od and some adjacent pulp cells, especially those
in between Od cells and BV, express this marker in furcation and root regions of the
tooth (E and F Figure 5.17). This is because there are no evident SOd cells that have

been identified associated with Od within molar root canal pulps.
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Figure 5.16: NaK-ATPase expression in mesial cusp regions during development and tooth
eruption of rat mandibular 1% molar.

Images A, B is for 0d, C, D for 1w, E, F for 2w, and G, H for 3w. Panels A, B, C and D are
undemineralised sections stained for NaK-ATPase (red), vim (green), and dapi (blue), and
the remaining images are demineralised sections stained only for NaK-ATPase. Developing
mesial cusp appears in image A, with no expression of NaK-ATPase within DP cells. NaK-
ATPase-IR is clearly identified in the outer cells of the enamel organ (SR, and OEE) as
shown in image B. In 1w both Od and SOd express NaK-ATPase-IR (image C) while the
highest expression is present in SR cells. In cervical region and toward developing root side
(base of image D), the UOd cells still do not express NaK-ATPase-IR which is clearly
identified in HERS. Both Od and SOd cells express NaK-ATPase-IR in 2 and 3w aged rat
(images E, F and G, H respectively). The highest NaK-ATPase-IR is still in SR cells (image
E). Very low expression is identified in the OPs within De (image H).
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Figure 5.17: NaK-ATPase expression in different regions of mandibular 1% molar between 4
to 24w old rats.

Images A, B, C, and D are for mesial cusp sections for 4, 6, 12, and 24w rat respectively,
and E, and F are for 24w rat groove and mesial root respectively. A shows higher NaK-
ATPase-IR in SOds and basal part of Ods (thick arrow) beyond atubular dentine region (%),
and the latter has no expression of the NaK-ATPase in the OPs compared to the adjacent
dentine regions (+). The NaK-ATPase-IR looks similar in all regions of SOd along the cusp,
and no expression within BV. The newly formed process (arrow) show NaK-ATPase-IR.
Similar NaK-ATPase-IR is shown in images C and D with very low expression in the central
region of the pulp (image D). In groove region (image E), the expression of the Od and SOd
in the crown side (oriented to the top of the image) seems much higher than furcation side
Od and adjacent pulp cells (bottom of the image), which also obvious in root Od cells (image
F).
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NHE-1:
In 0d sections, the expression of the NHE1-IR is only seen in OEE cells, junctional
basement membrane between IEE and UOd cells and within capillaries in DP of the
tooth germ (image A and B Figure 5.18). During 1 and 2w, which include the period
of dentine deposition in rat 15t molar before tooth eruption, the NHE1-IR appears
within pulp capillaries especially those present within Od and SOd cells (image C-F
Figure 5.18). Additionally, faint staining is also present in Od cell cytoplasm and in

the basal part of the OPs.

After 15t molar eruption at 3w, the expression of NHE1-IR become more apparent
within Od cells and capillaries in addition to the OPs (images A and B Figure 5.19).
The NHE1-IR starts to faintly label the entire length of the OPs.

After wear commences at 4w, the NHE1-IR is seen to a greater extent within SOds in
comparison to the above traumatised Ods (image C Figure 5.19). This expression in
SOd cells disappears within 6w sections and remains only within Ods and keep this
form similar in all other ages of the study (images D and E Figure 5.19). The NHE1-
IR within OPs also become apparent in older ages especially within the outer part of
the OPs (image E Figure 5.19).
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Figure 5.18: NHE-1 expression in developing rat mandibular 1% molar (mesial cusp sections).
Images A, B are for 0d, C, D for 1w, and E, F for 2w rats. The coloured images are
undemineralised sections stained for NHE-1 (red), vim (green), and dapi (blue) and images E
and F are demineralised sections stained only for NHE-1. In Od rat (images A and B) the
expression of NHE-1 only presented in regions of the interface (*) between IEE and UOd,
cells of OEE and several blood vessels (arrows) within DP region. In 1w rat sections (images
C and D), NHE1-IR is seen in inner region of the OPs (*), BV of the pulp (arrows) and BV of
PDL at the boundary of enamel organ (image D). In 2w rat sections (E and F images), there
is no NHE1-IR in the OPs within De. NHE1-IR is observed to a greater degree in the BV of
the apical regions of the Od (long arrows), also the initial region of OPs (*), in addition to low
expression within Od cell bodies (arrow heads).
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Figure 5.19: NHE-1 expression in demineralised sections of mesial cusp in different age rat
mandibular 1% molars.

Images A, B for 3w, C for 4w, D for 6w, and E for 24w rats. In 3w sections (images A and B)
the NHE1-IR is obvious in OPs within De, fine details of the terminal OP branches in the
outer dentine (arrows in image A), in Od cells, capillaries in between (arrows in image B) and
less extent in SOd. In 4w sections (images C) after wear started, SOds become more NHE-
IR than Ods under trauma region (x). In 6w sections, the Ods return more NHE-IR than
SOds and the same also seen in 24w (image E). In latter image, the old trauma (x1) shows
NHE-IR OPs which disappeared in second trauma region (x2). In other unworn De regions,
the OPs express NHE1-IR to the outer region of dentine (+).
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NGF and NGFR

In 0d sections, the expression of NGF and NGFR varies according to the degree of
cellular differentiation (image A Figure 5.20). In regions of the tooth germ, where the
DP cells are close to differentiation to Od cells, the POd start to express NGR-IR in
their cytoplasm in addition to faint staining to NGFR (image al Figure 5.20). The
adjacent DP cells also express NGFR-IR while IEE cells have no evident expression
for either of the previous antibodies. In region of the tooth germ that is further back
from differentiation, the IEE cells and central region of the DP cells show NGFR-IR
(image a2 Figure 5.20). However, the DP cells in between these two regions show no
evidence of either antibody. The other component of the tooth germ which is OEE,
shows intense NGFR-IR (image A Figure 5.20).

After the beginning of dentine formation in 1w old rats, the NGF-IR appears more
specific in the apical region of the Ods and the basal part of OPs, while NGFR-IR is
seen within SOd and the whole CPC of the cusp region. In 2w sections, with
increased thickness of dentine deposition, the NGF-IR label the whole Od layer and
NGFR-IR is expressed by SOd and the adjacent CPC of the cusp.
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Figure 5.20: Expression of nerve growth factor (NGF) and nerve growth factor receptor
(NGFR) in developing rat mandibular 1% molar.

Images A, al, a2 are for 0d, B, C for 1w, and D for 2w rats. All images stained for NGF (red),
NGFR (green), and dapi (blue). In Image A, an overview section for the mesial cusp in bell
stage showing 2 regions: more developed upper part of the cusp, and less developed lower
region. The NGF-IR is only seen in the POd (images A and al). The NGFR-IR is more
obvious in cells of the OEE of the whole tooth germ, IEE within the less developed region of
the cusp (Image a2 in higher power), the central cells of the DP (image A), and less IR within
mesenchymal cells near POd. In 1w sections (images B and C) the NGF-IR is more
concentrated in the apical part of the Od and beginning of the OPs (arrows in C). Other pulp
cells express NGFR-IR. In 2w sections, the NGF-IR appears in Od cells of the crown and
decrease toward the root, while the NGFR is shown in SOd cells and adjacent CPC of the
cusp.
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In 3w sections, and after tooth eruption the cusp region shows high intensity for
expression of NGF in Od cells and the basal part of OPs (images A, al Figure 5.21).
The NGFR-IR is intensely evident in SOd, cusp CPC, including cells around large
blood vessels, and less IR within Ods on the cusp peripheries. The expression of
these two antibodies is reduced toward the tooth cervical region and disappears in
the root (image B Figure 5.21). However, the Ods in the tooth cervix expressed both
NGF and NGFR. In addition, NGFR-IR is also seen in small nerve fibre and nerve
bundle within CPC region (small and big arrows respectively in image B and b2
Figure 5.21).

After commencement of cusp wear at 4w (Figure 5.21), NGF-IR is weakly labelled
within Ods and associated SOds beyond trauma site (images C Figure 5.21). This
clearly affected the distal side of the cusp much more than the mesial. The SOds
also has no NGFR-IR except some nerve fibres within this region (small arrows in
image D Figure 5.21). On the cusp peripheries, the mesial side shows higher IR than
the distal for both NGF and NGFR within Ods and SOds respectively. Even the CPC,
located mesially within the cusp, express higher NGFR-IR than those located distally.
Additionally, only Ods on the mesial side (thick arrow) express NGFR-IR in
comparison to those on the distal side.

157



NGFR NGF daj

Figure 5.21: NGF and NGFR expression in demineralised sections of mesial cusp of 3, and
4w old rat mandibular 1° molars.

Images A, B (component images al, a2 and b1, b2 respectively) are for 3w, and C, D for 4w
rat sections. Images A, and B are stained for NGF (red), NGFR (green), and dapi (blue),
al,bl and C for NGF, a2, b2 and D for NGFR. In 3w sections, NGF-IR is well recognised in
Od and basal part of OPs (long arrow in A and al), while SOd, adjacent CPC, and less in
Ods (long arrow in a2) express NGFR-IR (Image A). These expressions are reduced toward
cervical region and disappear in root (image B, b1, and b2). Also nerve bundle and small
nerve fibre (thick and small arrow respectively) are shown to express NGFR. In 4w sections
(images C and D) weak expression of NGF occur beyond trauma region (*) within Ods and
SOds (arrow in C) respectively. Higher expression of NGF and NGFR appear within non-
trauma of mesial side of the cusp more than distal side.
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In 6w sections (Figure 5.22), within the trauma region (*) Ods return their NGF
expression similar to the adjacent non-traumatised Ods. Additionally, the Ods cells in
this region start to express NGFR-IR on the lateral region of the trauma (thick arrows
in image b2, Figure 5.22) and on cusp peripheries (non-trauma regions). SOds
underlying trauma region do not express NGFR, but still are labelled with NGF-IR
and this expression appears more shifted toward the distal side of the cusp, which
was more affected by trauma (arrow in images A, B and bl Figure 5.22). However,
the SOds of non-traumatised cusp peripheries expressed high NGFR-IR with the
adjacent CPC on both sides of the cusp. Both NGF and NGFR expressions
decreased gradually toward the root and only large bundles of nerves within root
labelling NGFR (thick arrows). Similar observations were also obtained from 9w

sections.
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Figure 5.22: NGF and NGFR expression in demineralised sections of mesial cusp of 6w rat
mandibular 1° molar.

The coloured images are stained for NGF (red), NGFR (green), and dapi (blue) and
component images bl and b2 are stained for NGF and NGFR respectively. In image A and
at higher magnification in image B, trauma region (*) shows NGF staining in Ods and less in
SOd (arrow) and the latter shows no expression to NGFR as shown in component images b1l
and b2. Thick arrows in image A point to big nerve bundles express NGFR-IR. In component
image b2, the thick arrows pointed to the traumatised Ods NGFR-IR.

160



In 12w sections, the trauma site shows relabelling of Od and basal part of the OPs by
NGF and SOd cells by NGFR antibodies (images A and B Figure 5.23). However, the
expression of NGFR becomes more localised within CPC cells which are adjacent to
SOds, and decreasing gradually until disappearing in central region of the cusp. This
means that only specific cells of CPC in cusp region express this marker.
Additionally, some nerve fibres and bundles within central pulp region express
NGFR-IR.

In 24w sections, the old trauma region (* in image C Figure 5.23) appears similar in
expression to non-traumatised lateral sides of the mesial cusp. The Od cells label
NGF-IR and SOd and adjacent CPC express NGFR-IR, while the central region of
the cusp shows no NGFR expression. A new trauma site is also identified (arrow in
image A and B Figure 5.23) with negative reaction to both NGF and NGFR in all their

cells.
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Figure 5.23: NGF and NGFR expression in demineralised sections of 12, and 24w old rat
mandibular 1° molar.

All images stained for NGF (red), NGFR (green), and dapi (blue). In 12w sections (Images A
and B), the NGF-IR is only localised to Od. The NGFR-IR is more specifically identified in
SOd cells and the close adjacent pulp cells. This is gradually depleted toward central region
of pulp. In addition, some singular or multiple nerve fibres (arrows in A) which run centrally
within the pulp also express NGFR-IR. Region of repair also shows a return in NGF-IR in Od
(*) and NGFR-IR in SOd (thick arrows). In 24w sections (images C and D), the expressions
of NGF and NGFR-IR return completely in old repair region (*) but disappear in new trauma
site (arrow).
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Sensory nerve markers (CGRP and Nf)

0d to 2w:
No expression of CGRP and Nf marker has been identified within the cusp region
before 2w. Very few nerves are present in 1w sections in the central tooth part and
close to the apical side of the tooth which labelled with both CGRP and Nf antibodies
(images A and B Figure 5.24). The CGRP fibres appear more in sections of 2w rat
mesial cusp (image C Figure 5.24). These fibres are mostly present in CPC region
and some of them pass along SOd into Od cell layer, but non are observed entering
PD area. Very few Nf fibres are identified within central region of the tooth crown

(image D Figure 5.24).
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Figure 5.24: Developing rat (1 and 2w) mandibular 1% molar innervation.

Images A and B stained for CGRP (green), Nf (red) and dapi (blue), C for CGRP and D for
Nf. In undemineralised sections of 1w aged molars (images A and B), few nerve fibres
express CGRP and Nf-IR appears only in the central part of the pulp (arrows image A) and in
the root side of the tooth (arrow heads in B). There are some nerves (short arrows) seen in
region between molar root side (HERS) and the incisor tooth (long arrow). In demineralised
2w sections (images C and D), only CGRP-IR nerves shows several branches in CPC
passing into SOd and few to Od regions (arrows in C), while the Nf-IR nerves are only
present in the CPC of the pulp.
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3w:
After tooth eruption, a large network of sensory afferent fibres is observed engaging
different cell types of the mesial cusp in 3w sections (image A Figure 5.25). Two
different types of nerves are observed: CGRP and Nf fibres. The nerve bundles of
CGRP and Nf fibres (thick arrows in image al Figure 5.25) are present within CPC
region and mainly run in association with big blood vessels. From these bundles
major nerve branches emerge. The mean diameter for CGRP major branches is
(2.3um) and for Nf nerves is (1.8 um) (* and + respectively in image al Figure 5.25).
These branches run in SOd region and subdivide into minor branches which have
smaller diameter (CGRP nerves 0.45 um and Nf nerves 0.69 pum). The minor
branches of CGRP pass through Od layer and into the inner region of the dentine
(arrow heads in image al Figure 5.25) and can also be seen within Od cells of the
pulp horn (image a2 Figure 5.25). The CGRP small fibres appear punctuated due to
nerve fibre varicosities. They are distributed either intercellular, between Od cells, or
perivascular to the Od capillaries (images al and a2 Figure 5.25). While the Nf minor
branches mainly run within SOd cells (short arrows in image al Figure 5.25), few
nerves are seen within Od layer (long arrows in image a2 Figure 5.25). These fibres

appear uniform in their pattern as a straight fibre without apparent varicosities.

While, root formation continues during this period, nerve development within cervical
region also occurs. CGRP axons start to engage the coronal SOds and Ods. The Nf
fibres are still within CPC region in this stage. The root only contains nerve bundles

passing centrally, with very rare branching into Od cells (image D Figure 5.25).

Comparing between groove and furcation regions, in both of them the actin short
OPs are still present, only few CGRP fibres have developed within SOd and basal
regions of Ods in groove region. None of these nerves are recognised near Od cell

layer of furcation region (images B and C in Figure 5.25).
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Figure 5.25: Expression of CGRP and Nf nerve markers in demineralised sections of 3w rat
mandibular 1% molar.

Images A, al, a2, a3 and D are stained for CGRP (green), Nf (red) and dapi (blue), and B
and C are stained for CGRP (green), actin (red) and dapi (blue). Overview image for mesial
cusp section is shown in image A, with complex network of CGRP and Nf-IR nerve fibres. 3
regions of interest are presented in images al, a2, and a3. Different bundles for main trunk
nerves for both CGRP and Nf-IR nerves are shown in image al (thick arrows) which run in
the central region of the cusp toward the SOd region. Major branches of CGRP-IR nerves (*)
emerge from the previous bundle to give many small branches both in Sod, Od and inner De
(arrow heads). Similarly seen in Nf-IR major nerve branches (+), but the minor branches
mainly terminate within SOd region (short arrows). In pulp horn region (image a2), both
CGRP and Nf-IR small nerves (short and long arrows respectively) run from SOd to Od
regions. In cervical region (image a3) the CGRP-IR small branches are not present in Od
region of the root side (downward in image) compared to many nerve fibres present in crown
Od. Both Od cells in groove and furcation regions (images B and C respectively) still have
actin-IR lateral processes (small arrows). Very few CGRP-IR nerves are noticed emerging
Od in groove region (long arrow in B). Image C also identifies some CGRP-IR fibres either
running as single nerve in central part of the pulp (arrow) or associated with the wall of BV
(*). Only the main trunk of CGRP and Nf-IR nerves pass within the root (image D) and no
branches to Od region have been identified.

4w:
After wear commences, the traumatised Od cells and underlying SOd show depletion
from CGRP and Nf fibres (image A Figure 5.26). The nerve disappearance is on the
distal side of the mesial cusp. However, one faintly stained CGRP fibre is seen in the
same image (short arrows in image B Figure 5.26) engaging SOd and Od beyond
trauma region. This CGRP fibre could be a new proliferating nerve. The mesial side
shows a large network of CGRP fibres engaging Od layer to the PD and inner
dentine. At higher magnification, two CGRP fibres are seen wrapping around either
capillary or Od cell within the non-traumatised Od cell layer (A and + respectively in
image B Figure 5.26). Major branches of CGRP and Nf are present in CPC region
and run perivascularly to the present blood vessels. The CGRP-IR nerve fibres are
only limited to the trauma bounded region (thick arrows in image B Figure 5.26),

Within the groove region, more CGRP and Nf axons have developed. Numerous
CGREP fibres start to engage the Od layer (image C Figure 5.26) which shows
reduction in number of the actin short processes within PD in previous images
(image G Figure 5.6). Several Nf fibres are also seen, but do not extend further than
SOd cells in this age group. No evident of CGRP or Nf fibres are recognised within
furcation Od cells.

6wW:
Nerve proliferation is apparent within trauma region of the cusp (image D Figure

5.26). Under higher magnification, CGRP nerve sprouting is also evident within
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traumatised Od and passing toward PD (short arrows in image E Figure 5.26). The
increase in number of Nf fibres become evident in SOd region of the traumatised site
(long arrows in image E Figure 5.26). These fibres show big network of branches

between cells of the SOd.

Returning to image D Figure 5.26, which shows the main nerve bundle that engages
the mesial cusp (thick arrows). This bundle contains both CGRP and Nf nerve trunks
in association with large blood vessel, and numerous major nerve branches arise
from this bundle. These branches run peripherally toward the SOd region where they
arborise into many small minor branches (long arrows). These small branches form a
network of nerve fibres which innervate the whole cusp Od layer. This innervation is
only limited with the cervical region of the tooth (+ in same image) and no nerve is
seen within Od layer in the root side. Also one large capillary is present in the
cervical region which passes through the Od layer at the cervical region in
association with numerous CGRP fibres (image D Figure 5.26).

The groove (image F Figure 5.26) and furcation regions show similar innervation
details to those described in 4w sections.
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Figure 5.26: Expression of CGRP and Nf nerve markers in demineralised sections of 4w
(images A, B, C) and 6w (images D, E, and F) rat mandibular 1 molar.

Panels A-E are stained for CGRP (green), Nf (red) and dapi (blue), and F is stained for
CGRP (green), actin (red) and dapi (blue). Mesial cusp in 4w section (Image A) shows
absence of CGRP and Nf nerve fibres from traumatised (*) Od and SOd cells. In adjacent
non-traumatised region, the number of CGRP nerves on the mesial side of the cusp
increases (short arrows). Also Nf-IR branches noticed only in CPC and SOd region beyond
non-traumatised Od (long arrow). At higher magnification, the trauma region (*) is shown in
image B. The CGRP nerves are limited to the traumatised region (thick arrows) with one
nerve (short arrows) seen within this region. Additionally, two CGRP fibres wrap either
capillary (A) or Od cell (+) on mesial non-traumatised cusp side. Panel C compares between
innervation in groove (upward in image) and furcation (downward in image) regions. There
are many CGRP-IR fibres (short arrows) in SOd and Od regions, and Nf-IR nerves (long
arrows) in Sod and central pulp regions only. However, the Od and other adjacent pulp cells
in furcation region (downward in image C) are devoid of innervation. Mesial cusp section in
6w aged rat is presented in image D and its region of interest in image E. The main nerve
bundle (thick arrows) of both CGRP and Nf-IR nerve trunks is clearly shown in panel D.
Several Nf-IR branches (long arrows) from this bundle run peripherally toward Od layer. The
CGRP-IR branches are also presented in whole SOd, and Od regions except below cervical
line (+). Higher magnification of the region of interest is shown in E, which identify CGRP-IR
nerve sprouting (arrows) in repair region of Od (*). The groove region of 6w rat sections
(image F) shows no actin-IR short OPs and numerous CGRP nerves engaging PD region
through Od layer which ramify from the main nerve (x) in SOd region.

9 and 12w:
The CGRP nerves appear denser within this period. The SOd nerve plexus become
apparent specially within 12w sections. At higher magnification, higher density of
CGRP fibres present in Od region of 12w in comparison to the same region in 9w
sections (images D and B respectively in Figure 5.27). These CGRP fibres pass from
SOd through Od into the inner dentine (short arrows in image D Figure 5.27). The Nf
nerves still reside within the CPC and do not extended further than SOd region of the

cusp (long arrows in image B and D Figure 5.27).

In the cervical region (E Figure 5.27), the end of the CGRP nerve branching within
SOd and Od with level of cervical line (dotted line) is apparent. CGRP nerves cannot
be detected within the Od layer of the root. Additionally, the CGRP nerves are also

evident within the gingival tissue.
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Figure 5.27: Expression of CGRP and Nf nerve markers in demineralised sections of 9 and
12w rat mandibular 1° molar.

All panels are stained for CGRP (green), Nf (red) and dapi (blue). Images A and C shows
overview for the mesial cusp at 9 and 12w sections respectively and B and D are higher
magnification for the trauma site (*) of the cusp. These clearly identify CGRP-IR nerve
branches running between Od cells (small arrows) into PD and Nf fibres that do not pass
further than SOd (long arrows). Nerve plexus (+) are observed for Nf (long arrows) and
CGRP (short arrows) within SOd regions. The cervical region is shown in image E with
dotted line highlights the level of the attached gingiva (Gi) on left side of the image and
divided the Od layer into crown innervated Od and root non-innervated Od on the right side
of the image. CGRP-IR nerve branches (short arrows) only identified incisally to the cervical
line. At the same time the Nf-IR branches (long arrow) are only identified in crown SOd
region. Some CGRP nerves (+) are identified within gingival tissue.
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24w:
Although, the pulp innervation beyond trauma region appears similar to other non-
traumatised regions, a new trauma site emerges which shows depletion of CGRP
innervation within its Od layer (image A Figure 5.28). Under higher magnification, the
new trauma site shows signs of CGRP nerve sprouting on the lateral margins of
traumatised Od region (+ in image B Figure 5.28). The Nf fibres are also seen within
SOd and CPC regions (long arrows in image B Figure 5.28). The innervation
associated with one of the CPC blood vessel is shown in C Figure 5.28. This image
clearly identifies the presence of 2 types of nerves, CGRP and Nf, running

perivascularly to this vessel.

The Od layer within groove region also appears densely CGRP innervated (image D
Figure 5.28). However, no evident of CGRP nerve fibre is seen within or close to the

Od of the furcation region.

Considering the negative controls for all IHC staining, none of these slides show

staining signs for the targeted regions.
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Figure 5.28: Expression of CGRP and Nf nerve markers in demineralised sections of 24w
aged rat mandibular 1% molar.

All panels are stained for CGRP (green), Nf (red) and dapi (blue). Image A is an overview of
24w section of mesial cusp, a new region of no nerve is identified (thick arrow). In higher
magnification (image B), this region shows new CGRP-IR nerve sprouting (+) in Od, and Nf-
IR fibres (long arrow) only run in SOd. Image C identify a BV from cusp region associated
with two different nerve: CGRP and Nf-IR (short and long arrows respectively). The groove
region (image D) shows numerous CGRP-IR nerves (short arrows) which run from SOd to
Od and inner De at the crown side (upward in the image). Also the Nf-IR nerves (long arrow)
run only in SOd and central region of the pulp. The furcation side is depleted of nerves.
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CGRP nerve density

M, D and T-Den of CGRP nerve fibres within Od layer of the mesial cusp for different
age groups are illustrated in Figure 5.29. The M-Den increases gradually with age
until 12w, which shows the highest value (4.23 £ 0.9). This increase shows no
statistical significant differences until 12w age sections (Table 5-1). Followed by
reduction in M-Den in 24w group, but it still high to give statistical significant
differences with younger age groups (3,4, and 6 w). The D-Den shows the lowest
value (0.92) in 4w sections due to the effect of wear and Ods damage that affected
the distal side of the mesial cusp. Then D-Den shows remarkable increases after that
especially at 9w group, and reaches the highest value in 12w group (4.8 £ 0.3). This
is followed by reduction in 24w samples. The changes in D-Den are much more
detected statistically which show differences between all groups except 3 and 4w
(Table 5-1). The T-Den shows nearly similar statistical differences to D-Den.
Additionally, in T-test, the statistical significant differences are only present between

M and D-Den of 3, 4 and 9w age groups (Table 5-2).

Nerve Density

I
I
- =
1 I I '
0
3w 4w 6w 9w 12w 24w

B M-Den HD-Den T-Den

S (6] [e)]

nerves/1000um?
N w

Figure 5.29: CGRP nerve fibre density (nerves/1000um?) within mesial cusp.
It includes mesial (M-Den), distal (D-Den) and total nerve densities (T-Den) within mesial
cusp of different age groups.
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M-Den D-Den T-Den
4w NS NS NS
6w NS *x *
3w ow NS ok ok
12w Sk ek —
24w ook ek —
6W NS - *
ow NS ek —
4w
12w Sk ek —
24w o ok —
ow NS - o
6W 12w ok " —
24w * * —
12w ook NS —
9w
24w NS ** NS
12w 24w NS ok ok

Table 5-1: Bonferroni Test (p<0.05) to compare between same nerve densities within
different age groups.
Non-significant (NS) is P>0.05, * is p<0.05, ** is p<0.01, *** is p<0.001.

Groups M-Des vs. D-Den
3w *
4w *kk
6w NS
9W *k%
12w NS
24w NS

Table 5-2: Unpaired T-test (p<0.05) to compare between M and D-densities within the same
age group.
Non-significant (NS) is P>0.05, * is p<0.05, ** is p<0.01, *** is p<0.001.
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5.4 Discussion

The developmental changes within Ods and OPs in the rat mandibular incisor, as a
continuous growing tooth model, were reported in Chapter 3. In this work, the
responses of OPs to simple cavity preparation were investigated. This was followed
by studies on the rat mandibular first molar, as a limited-growing tooth in Chapter 4,
and the effects of wear on OPs and the formation of tertiary dentine were described.
It is now necessary to develop a broader project to follow the single tooth model from
its early formation, including all developmental stages, maturation, eruption, trauma
from occlusion, followed by reparative processes and ending with the ageing
process. Because of our developing techniques in managing rat samples and the
difficulties associated with acquiring appropriate human material, the rat mandibular
first molar was chosen. This model offers many advantages in addition to pure
convenience. One of these advantages is the presence of occlusal wear that
provides a valuable dental trauma model. Tooth responses to such trauma may not
be identical to those associated with cavity preparation or carious lesions. However,
this particular model shows a rapid and progressive physiological tooth damage that
could provide a novel insight into the early and late tooth responses to such trauma.

In order to guide the reader through the discussion of results in each section of the
current study, schematic illustrations have been prepared (Figure 5.30 to 5-35).
These will summarise results and introduce the hypotheses that have developed

from this study.

5.4.1 Dentine structure (ground sections)

The effect of occlusal wear on molar dentine is quite evident within the different age
samples presented in this study. Before wear commenced in 2w samples, high
density and heavily packed dentinal tubules were observed within the inner dentine
of the cusp. The highest density of dentinal tubules within cuspal regions has been
reported before (Mjor and Nordahl, 1996). This could influence the regulation of the
pulp defensive system within the cusp region against trauma from surface wear
(Tjaderhane et al., 2012).

After cusp wear commenced at 4w, tertiary dentine was recognised near the pulp.

The primary aim for such dentine deposition is the protection of pulp from injury

through exposed dentinal tubules (Tziafas, 2010). Although, part of the Od layer was

traumatised as a result of occlusal trauma (Figure 5.6) (see later discussion), several
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Od cells within the traumatised region persisted. As a result, this formed tertiary
dentine is called reactionary dentine (Tjaderhane et al., 2012). However, in 4w
specimens, the reactionary dentine seems atubular and could act as a plug for the
pulpal orifices of the primary dentinal tubules (images B and b Figure 5.2).
Furthermore, and with age progression, the re-establishment of a tubular pattern
within reactionary dentine became apparent, especially within 24w samples. This
means that, in the present study reactionary dentinogenesis was divided into two
stages: initial or responsive, occurring immediately after dentine surface exposure, to
ensure pulp isolation by closing the pulpal ends of the dentinal tubules with atubular
dentine. In addition, it increased dentine thickness between the pulp and the external
dentine surface. This was followed by a second stage of re-formation of new dentinal
tubules by the existing primary Ods. This pattern of reactionary dentine formation is
not well supported in previous studies (Tziafas, 1995) (for more details see section
1.11.1). Most previous studies describing the reactionary dentine with a more or less
structural continuity with existing physiological dentine (Stanley et al., 1983;
Tjaderhane et al., 2012). This idea contradicts the primary purpose for such
responsive dentine, to block the exposed dentinal tubules and provide effective
isolation of pulp beneath the area of trauma. However, the newly formed tubular
pattern of reactionary dentine presented in this study shows meandering
arrangement, in comparison to the primary dentinal tubules. This could have resulted
from the effect of dentine surface exposure on the arrangement of the traumatised
Ods after repair and their ability to form a regular dentinal tubular pattern (this will be

discussed in more details in the ‘Trauma region:‘ section).

Additionally, in 24w samples, a second region of atubular dentine was detected due
to progressive wear process that extended trauma to another tooth part on the distal
side of the cusp. Examining the Ods beneath this trauma region also reveals that
some of these cells still survive. This could reflect the ability of the pulp to respond

similarly to trauma even after age progression.

Finally, an important question can be raised: how could the same Ods switch in their
ability to form two different patterns of dentine, i.e. atubular then tubular? Are these
different patterns within reactionary dentine reflecting different stages of Od cell
trauma response? The possibilities for answering these questions will be discussed

later.
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5.4.2 Pulp structure

Development (0d-2w)

This study revealed changes in the distribution of structural proteins associated with
cellular differentiation. The vim changed from uniform in UOd into being more apically
localised within the cell body of the polarised Od cell. Actin also became more
laterally distributed within polarised Ods and concentrated in the apical region of the
cells. This is in agreement with previous studies (Lesot et al., 1982; Nishikawa and
Sasa, 1989). The role of the basement membrane, separating epithelial and
mesenchymal cells, is essential for the terminal differentiation of the Ods (Couve,
1986; Ruch et al., 1995). Degradation of this membrane releases collagenous and
non-collagenous glycoproteins in addition to glycosaminoglycans (Thesleff et al.,
2001). These in the presence of fibronectin surrounding the dividing POd, generate
cell-matrix interactions which are possibly responsible for cellular mediating function.
These cellular inductions possibly play a fundamental role in redistribution of the
cytoskeletal components to accomplish Od polarisation and terminal differentiation
(Thesleff et al., 2001; Tjaderhane and Haapasalo, 2012).

After deposition of PD, two types of OPs were observed: actin and vim. These
processes were associated with intense actin and vim IR in the apical region of the
Ods. This is similar to Ch 3 observations within rat incisor samples. While the vim
OPs were the main cellular processes, the actin OPs were different with a complex
morphology and extending only within the PD region. The term actin tree-like
processes is also used to identify these processes in this chapter. As discussed in
Ch 3, the function of these actin tree-like processes is still unknown. One hypothesis
is that they could play a role in the cellular stabilising system along with the actin
immunoreactive apical region of the Od cells (Nishikawa and Sasa, 1989).
Additionally, the disappearance of these processes when primary dentinogenesis is
nearly finished in the tooth crown, may support the suggestion of their role in dentine
matrix deposition. However, the persistence of these processes in the root region
until older ages (till 12w age rats) may support the idea of a sensing function for

these processes (this will be discussed further in section 5.4.5).

The Od cell layer morphology changes in relation to formation, maintenance, and
repair of dentine (Linde and Goldberg, 1993). In cusp regions, because it is the
region of thickest dentine deposited, the Ods change from a single cell layer into a

pseudostratified layer. Dentine is accumulated in association with the centripetal
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retraction of the Ods restricting the available space within pulp chamber. The Od
cells tend to slide above each other (Ohshima and Yoshida, 1992). The abundance
of microfilaments in the structural framework of Ods, especially within apical poles,
aids such sliding movements. These microfilaments are also important to exert
contractile pressure to keep the Ods in one layer, in addition to their relation to
plasma membrane and the intercellular junctional contacts (Nishikawa and Sasa,
1989). In other tooth areas, such as the cervical region, the thickness of the Od layer
decreases gradually toward the root, depending on the amount of the dentine
deposited.

Eruption, maturation and aging (3w-24w)

Non-trauma regions:
These regions include lateral cusp walls, cervical region, groove, furcation and root
(see Figure 5.30). With age progression, the thickness of the pseudostratified layer of
Ods decreased. A programmed cellular apoptosis could be responsible for such
changes, which not only affects Ods but also other cells within pulp (Mitsiadis et al.,
2008). Additionally, the total pulp space was decreased with age. After tooth eruption
and commencement of secondary dentinogenesis, the activity of the Ods to produce
dentine is remarkably reduced in comparison to the primary dentinogenesis period
(Lovschall et al., 2002; Murray et al., 2002). However, Ods continue to form and
maintain dentine during their life (Arana-Chavez and Massa, 2004). Furthermore, the
presence of cusp wear and the continuous occlusal forces associated with the
deposition of reactionary dentine has huge impact on the remaining pulp space. The
effect of these forces was quite clear in the 24w samples, especially on the root apex
which showed accumulations of hypercementosis (Figure 5.30). Therefore, it remains
unclear whether the decrease in pulp size after 24w would be similar than if the pulp
had no wear at all. In other words, is the decrease in pulp size in root canals of the
mesial root one of the consequences of increased occlusal loading on the worn cusp,
or is it part of the physiological secondary dentine formation or a combination of
both?

Although the differentiated Od cells reacted positively to the three structural proteins
used in this study (vim, actin, and tub), their responsiveness varied in intensity in
different age groups. Ods were more intensely labelled with actin and vim in younger
age groups before tooth eruption. After tooth eruption, the expression of tub within

Od cell bodies became more apparent. Additionally, and with age progression, actin
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and vim became more concentrated in the apical region of Ods and OPs. This is in
agreement with a previous study which found reduction of vim and F-actin expression
in Ods with age progression in rat molar samples (Moxham et al., 1998). This age-
dependent cytoskeletal changes within Ods possibly reflects changing in function. It
has been reported that cellular organelles change when Ods altered from active
secretory to mature cells (Ohshima and Yoshida, 1992). The secretory Ods have
highly polarised nuclei and numerous supra-nuclear organelles, including large rough
endoplasmic reticulum, Golgi apparatus and many mitochondria. After ageing,
several changes occur within Od cells including decrease in cell length, reduction in
the number and size of cytoplasmic organelles, and these organelles move to be
infra-nuclearly located (Couve, 1986; Sasaki and Garant, 1996). Additionally, the
appearance of tight junctions was reported to be more prominent between mature Od
cells, which could reflect shifting in cellular function (Turner et al., 1989). Therefore,
the observed age related changes of Ods cytoskeletal components could reflect the
alteration in dentine forming activity, turning these cells from active secretory to aged

dentine maintaining cells.

Moreover, the OPs labelled fully within the whole dentine thickness; but this labelling
was different according to age and position within dentine (see B in Figure 5.31). In
younger age and before tooth eruption, the main OPs were fully labelled with actin
and partly with vim. There was no evidence of tub labelling within these samples.
This regional difference in the expression of these structural proteins was also
observed in the incisor sections in Ch 3. Since primary dentinogenesis is still
proceeding during this age, microfilaments are the essential structural element within
developing OPs possibly facilitating process elongation (Pollard and Cooper, 2009).
This coincided with the suggested function of the intermediate filaments within the
pulpal third of OPs. These filaments could act as an active tensional bearer and
resistant element for the mechanical forces, which could resolve the accumulated
stresses within OPs due to their elongation (Pollard and Cooper, 2009). After tooth
eruption, the expression of tub became more evident within the inner half of the
dentine. In the older sample, tub became apparent within the entire length of OPs,
while actin retreated to the inner half and vim only labelled inner third of the total OPs
length (see B Figure 5.31). This change in labelling of these cytoskeletal markers
suggests changes in the structure of the OPs during age progression and this could

reflect a change in function. Microtubules were reported to be the major component
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within OPs. They had a parallel arrangement and longitudinal flow within the trunk of
the processes (Nishikawa and Kitamura, 1987). The elementary function for these
cytoskeletal elements is the maintenance of cell shape, and to some extent,
participation in cellular shape changes including extension and retraction. This is
dependent on the rapid structural ability of these microtubules to assemble and
disassemble (Garant, 1972). This could explain the detected structural changes
within this study. After tooth eruption, the secretion of secondary dentine matrix
commences, which is slower in comparison to primary dentine deposition (4 pum/day
in compared to 0.5um/day respectively). As a result, the amount of OPs elongation
per day is also decreased. Therefore, in this stage more cytoskeletal support for OPs
is expected to be obtained from microtubules rather than microfilaments, especially in
the outer part of OPs. This possibly clarifies the changes in labelling of the outer part
of OPs from actin to tub. Furthermore, another important function for the microtubules
is intracellular transport, depending on their tubular structure and straight flow
(Garant, 1972; Nishikawa and Kitamura, 1987). This gives remarkable support for the
basic functions of the OPs after dentine formation which include maintenance and
sensing activities (Tjaderhane and Haapasalo, 2012).

Although the level of OPs extension within the dentine of the crown is still a subject of
controversy, the vast majority of the opponents agree with the idea of full extension in
younger samples (Holland, 1985). This is quite important in this study because the
wear occurs in the young rat sample. This means that, the consequences for such
trauma could occur as a result of direct trauma to the OPs. The major controversy
occurs after tooth maturation and ageing. The opponents still believe that the OPs
retreat toward the pulp. They claim that the purpose for such physiological retraction
is that the OPs cannot survive at such a distance away from the pulp (Byers and
Sugaya, 1995; Goracci et al., 1999; Yoshiba et al., 2002). However, there are many
studies supporting the remote vitality of the OPs away from the pulp (Yamada et al.,
1983; Sigal et al., 1984a; Sigal et al., 1984b; Grotz et al., 1998). There are several
technical problems including sample type, preparation, fixation, sectioning and
viewing which could explain the differences between these observations.
Furthermore, other studies reported closure of the terminal third of dentinal tubules
with ageing as a result of physiological dentine sclerosis (Stanley et al., 1983). This

could be true, taking the age limit of this study into consideration. Therefore, either
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older rat samples or even human samples could be suggested for further

investigations.

Trauma region:
This section includes the trauma region starting from first detected signs of wear at
4w up to 24w samples (see A Figure 5.31). Although, occlusal attrition is a familiar
process within study models such as the rat molar, this is the first study which looked
in detail within different age groups to illustrate the effects of this process on the

structure of OPs, Od, and adjacent pulp cells.

When wear commenced after tooth eruption, the first cell component to be affected
was not surprisingly the OPs. Exposure of the dentinal tubules and direct trauma to
the terminal branches of the OPs could be a possible interpretation. However, the
direct contact of the cellular process with oral fluids, and bacterial contamination, is
another existent traumatic factor. Regardless of the irritation mechanism, the visible
effect of this trauma was empty dentinal tubules from their OPs beyond the worn
surface. According to our previous work in Ch 3, cavity preparation caused a
programmed retraction of the traumatised OPs toward the pulp. Therefore, the
traumatised OPs in this experiment might also have undergone a programmed
retraction. This was probably the initial response to trauma occurring in a period
between the 3 and 4" weeks of age. Additionally, there were some non-retracted
processes in regions of minor wear (Figure 5.31). These processes were either in a
preparation stage for retraction, the wear was still simple and not enough to stimulate
retraction, or their roles were to plug their tubules to decrease the number of

contamination routes toward the pulp cells (as discussed previously in chapter 4).

The second effect was identified within Ods and can be divided into two
observations: Od cells of pulp horn, and pulp border Od cells beyond the trauma
region. Because the pulp horn cells were the nearest to the worn surface, the
responses of these cells were exaggerated. As observed in 4w sections in Figure
5.6, these cells were separated from the Od layer and their nuclei appeared within
the atubular dentine region of the reactionary dentine. However, there was no
evidence of cellular cytoplasm within these cells. At the same time, their nuclear
staining was faint in relation to other pulp cells. This could reflect signs of cellular
degradation (Mitsiadis et al., 2008). Cavity preparation has also been reported to
induce apoptosis within Ods and SOd cells (Ohshima, 1990; Kitamura et al., 2001).
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The border Od cells beyond the trauma region also showed remarkable
morphological changes. These cells lose their apical junctions, appear more
separated, have a large network of dilated capillaries evident near pulp border, and
the cells became highly actin labelled both with the associated SOd cells. The
junctions between Od cells are structures which can break and reform intermittently
(Turner, 1992). Breakdown of the junctional complexes was also recognised within
24h of deep cavity preparation. This was associated with changes in intracellular
organelles of the Od cells (Turner et al., 1989; Chiego Jr, 1992). This could facilitate
the passage of reparative compounds and associated ions from pulp to the overlying
predentine as a first stage of the inflammatory response, which was boosted by the
presence of dilated capillaries (Turner, 1992). Studies also show that the increase in
permeability of the Od layer allows large macromolecules such as fibrinogen
penetration through predentine into the dentinal tubules. Polymerisation of fibrinogen
into fibrin can be activated via the clotting cascade and this possibly seals the pulpal
opening of the occlusally exposed dentinal tubules prior to the formation of a calcified
barrier (Chiego Jr, 1992; Pashley, 1996). Furthermore, evidence of microfilaments
within cytoskeleton of Od and SOd cells possibly aids cellular movement and
morphological changes within these regions induced by inflammation (Pollard and
Cooper, 2009). In the same way, because actin was also intensely observed within
secretory Ods in earlier age groups, the induction of such protein within traumatised
cells could be the sign of an increase in dentine formation behaviour. The
mechanisms possibly behind this cellular induction will be discussed later in sections
5.4.4 and 5.4.5.

The remarkable increase in actin expression within the SOd is a subject that should
be considered. These cells also appeared highly packed to each other, under
traumatised Ods, dissimilar to their loose arrangement beyond intact Ods. Within
normal Ods, the microfilaments are always involved in keeping Od cells in one layer
in addition to their junctional contacts (Nishikawa and Sasa, 1989). The highest
expression of these microfilaments are within SOds in this stage and they possibly
aid cellular movements to make these cells tightly packed with one another to
provide cellular seal to direct extracellular fluid diffusion toward the traumatised pulp
cells. This could help to localise the pulp responses within trauma region and prevent
diffusion of the reparative material in the wrong direction. A repeated behaviour of

these cells was also seen in the second trauma region in 24w samples (Figure 5.11).
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A similar pulpal response was reported within the deeper cavity. This includes
formation of a fibrous layer containing fibroblast like cells possibly to isolate the
trauma region from other intact pulp regions (Taylor and Byers, 1990). Additionally,
these highly actin IR SOds could also be preparing to be the precursors. This could
occur when the whole Od cells within the trauma region die (Fitzgerald et al., 1990).
Other signs were detected within SOds in the trauma site in this study which included
hyper expression of NaK-ATPase, and faint expression of NHE-1 (image D, Figure
5.34) and NGF (image D, Figure 5.32). These cellular changes will be discussed
within each section and in the final homeostatic hypothesis for this study (Figure
5.35).

This stage of tissue response is possibly followed by a next step, including the
formation of a calcified dentine plug. This atubular plug evident in 4w samples
(Figure 5.6) is in the same location of the pulp horn cells in 3w samples (Figure 5.5).
This may suggest the role of these cells in the formation of such stage-dependant
dentine. Although these cells showed signs of apoptosis, they still labelled with dapi
stain which reflects their vitality. After losing their OPs, these cells possibly separated
from the entire pulp body due to trauma. This may stimulate these cells to start
dentine matrix deposition to occlude the pulpal opening of dentinal tubules, i.e. acting
as scarifying cells. At the same time, the pulp border Ods possibly deposit further
dentine matrix in a pulpo-occlusal direction. This increases the thickness of this
atubular plug for further pulp isolation. The evident dentine lacunae which were
observed within this atubular dentine in later age group sections (as seen in Figure
5.9) could support this suggestion. There was also similar observation reported in
previous studies of Ods sucked into the dentinal tubules immediately after cavity
preparation (Ohshima, 1990; Mitsiadis et al., 2008). The Ods that have been sucked
could also participate in the formation of the impermeable barrier between pulp and
exposed dentinal tubules. Another possible hypothesis is that the atubular
reactionary dentine could only be formed by the border Ods and these degraded Ods
were just dying cells because of the traumatic insult. Furthermore, the absence of
OPs during this stage is the major cause of atubularity of this dentine. Whatever the
depositing cells of this atubular dentine, its formation could be part of the initial
inflammatory responses of the pulp cells to form a pulp isolator plug in front of
exposed dentinal tubule contamination. The impermeability of this plug was also

evident in this model because these trapped pulp horn cells after deposition of
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atubular plug were degraded and only their calcified lacunae were apparent within
older tooth section. This agrees with previous research which identified reduction of

the dentine fluid diffusion after atubular dentine formation (Byers and Lin, 2003).

To summarise, the initial response to trauma which includes the morphological
changes of pulp cells and initial reactionary dentine plug, aims to minimise pulp
damage by: (i) enhancing pulpal permeability for reparative compounds and ions into
the predentine region which accelerated healing of the injured pulp cells and boosted
reparative dentine deposition (Turner, 1992). (ii) limiting dentinal tubule permeability
by formation of an impermeable dentine plug to restrict harmful compound diffusion
to the repair region and pulp tissue. (iii) structural and functional changes within
SOds which aids pulp healing from the injury side and protects the involvement of the

rest of the pulp from the other side.

After the pulp response subsides from the immediate trauma effect, the Od cells
return their morphological characteristics, which include apical cellular junctions and
OPs (Figure 5.7). The gap and tight junctions between Od cells, as well as the
intracellular organelles, were reported to be re-established at five days after trauma
from cavity preparation (Chiego Jr, 1992). The presence of an atubular plug within
the reactionary dentine, possibly provides a good barrier for the pulp healing process
and this led to gradual disappearance of the inflammatory signs. The new OPs,
called secondary OPs in this study, appear similar in their structural protein labelling
to the primary OPs during development. The secondary OPs were evidently labelled
with actin along their entire length and vim and tub only in the inner region of the
processes. However, these secondary processes appeared in a meandering style
compared to the straightness and parallelism of the primary OPs. The reason for that
is still unknown. It could be due to the effect of trauma, which possibly altered the Od
cellular orientation within the re-established Od layer. Consequently, the orientation
of the secondary OPs and the resultant reactionary dentinal tubules were possibly
altered.

The model of this study showed the dynamic capacity of the pulp cells, especially
Ods, to change their shape and function. This was not only during developmental
stages but also in response to trauma and ageing. This capacity appeared recurrent,
even with age progression. This can be recognised within 24w samples which

showed similar reaction of the Ods and SOds to progressive trauma from wear.
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Previous studies showed that repetitive, microbial, chemical or mechanical trauma
possibly reduced the pulp healing ability (Johnson, 2004; Tjaderhane et al., 2012).
This could be due to depletion of the Od cells, which leads to differentiation of Od-like
cells that will form structurally different reparative dentine (Smith et al., 1995;
Tjaderhane et al., 2012). Therefore, samples from older ages of rat could be
suggested for future work to improve our understanding about the repetitive trauma

from progressive surface wear on the remaining aged pulp tissue.

The control that is responsible for the Od switching in their morphological and
functional behaviour in response to trauma is still unknown. However, and according
to the findings of this study, there were two switching patterns that should be taken
into consideration. The first was the immediate response, which could be mediated
directly by trauma itself and this was aimed at pulp protection. The second occurred
after the success of the first aim, followed by a gradual termination of inflammation
and return of Ods to their original morphology and function before trauma. Therefore,
the stimulator causing the first Ods switching should subside to allow the stimulator

of the second change to occur. Further discussion can be found in section 5.4.4.

5.4.3 Cell division

It became important in this study, which used a broad range of age groups (including
the developmental, maturation, trauma, repair and ageing stages), to explore cellular
proliferation. This aided the identification of the proliferation time, cell differentiation
period, and the possible effect of trauma applied by wear on the affected pulp cell
proliferation responses. Ki67 is a proliferation marker. Human Ki67 protein is strictly
associated with cell proliferation. It reacts with nuclear structures present exclusively
within proliferating cells (Scholzen and Gerdes, 2000). The Ki67 antigen is available
in nuclei of cells in G1, S, and G2 phases of the cell division cycle as well as cell
mitosis and absent in resting cell (Go phase) (Gerdes et al., 1984). This marker is
widely used as diagnostic evidence for different types of neoplasm (De Azambuja et
al., 2007) and in biological studies including continuously growing rodent teeth
(Gomes et al., 2010).

This study confirmed the presence of cellular proliferation only during the
development stage (bell stage (0d)) of the tooth before terminal differentiation of the
Ods and predentine deposition. The differentiated Od cells passed through the

proliferation period followed by a cellular reorganisation of their cytoskeletal elements
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and organelles, before commencement of dentine matrix deposition (Ruch et al.,
1995). Therefore, Ods are specialised post-mitotic cells that should continue living
and being functional, as long as the tooth is kept intact and vital (Tziafas, 2010).
Following tooth development and morphogenesis, neither Ods nor other pulp cells
showed any proliferation signs within all age groups except the developing root
region. After root completion, there was no evidence of Ki67 within pulpal cells,
except very few cells within the pulp core and near blood vessels (which could be

white blood cells).

The trauma model associated with this study showed evidence of cellular apoptosis
within Ods of the pulp horn and some border pulp cells. However, no evidence for
cellular proliferation has been detected within SOd or central pulp cells associated
with the trauma region. As mentioned previously, the existing Ods, or part of them,
within the trauma region, successfully survived after insult and returned to their
normal morphology and function after the end of inflammation. Therefore, this trauma
type is possibly not sufficient to activate adult mesenchymal cells within the pulp to
differentiate into Od-like cells (Tziafas, 2010), as deep cavity or pulp exposure
trauma may do (Fitzgerald et al., 1990; Chiego Jr, 1992). On the other hand, this
possibly questions the availability of these adult pulp stem cells which were reported
to be either part of SOd cells, pericytes or fibroblasts of the pulp core (Shi and
Gronthos, 2003; Téclés et al., 2005). In Ch 4, the SOd cells, which were closely
underlying the Ods beneath the worn cusp region, have been observed to change
their morphology and be more Od-like cells but without detected cellular processes.
We were expecting to see the cell division marker to be present within these cells
especially during early trauma age (4w). The absence of this marker from these cells
probably support the idea of dedifferentiation ability within these cells to change their
morphology and possibly function in response to the stimuli (Simon and Goldberg,
2014). Additionally, the high actin-IR for these cells during early stage of trauma and
then their ability to recover their original expression after passing this period could
also support the above idea. However, the absence of severe stimuli within this study
which possibly cause total degeneration of the Od layer within trauma region may
require further investigations. Identifying cellular division markers and other structural
proteins within the possible Od precursor cells possibly give new insights about the

actual pulp response to be regeneration process or just tissue repair response.
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5.4.4 NGF and NGFR

NGF was reported to regulate non-neuronal cellular function through its action on low
affinity neurotrophic p’® (known as NGFR in this study) and high affinity trkA
receptors. Its dual action on these receptors together was reported to enhance
cellular differentiation and survival (Woodnutt et al., 2000). Previous studies also
reported the involvement of p”® receptors during tooth development, ageing and
trauma (Byers et al., 1990; Byers et al., 1992). This study used IHC to explore the
expression of NGF and its p’® receptor through a broad range of age groups of rat
mandibular 15t molar sections. Data collected from this section, associated with other
sections of this chapter, could help to link information to improve understanding
about the possible cellular induction which could occur during these different tooth
stages. A marker for trkA receptors was not used in this study and could be

suggested for further research.

Changes in the expression of both NGF and NGFR were introduced in this study
during the morpho and cyto-differentiation stages of tooth development (image A
Figure 5.32). These differences occurred between undifferentiated and more
developed dental papilla cells within the tooth germ. This is in line with previous
studies, which suggested the presence of sequential regulatory signalling between
the epithelium and mesenchymal developing tissue, possibly with mediated timing
and spatial differentiation during early morphogenesis. (Byers et al., 1990; Mitsiadis
et al., 1992). Additionally, no sensory nerve fibres were evident in similar age group
sections, which confirms the previous suggestion (Figure 5.24). The autonomous,
nerve independent, mechanism of NGF synthesis within developing tissue was
previously reported (Rohrer et al., 1988). This indicated the ability of the developing
dental cells to produce NGF and provide its membrane receptors by themselves,
suggesting an autocrine or paracrine mode of action (Mitsiadis et al., 1992).
Therefore, the presence of this signalling mechanism within this stage of tooth
development suggested its active implication on the cyto-differentiation changes
occurring within Ods and other cells of the pulp. In addition to the effect of growth
factors on cellular differentiation, the basement membrane derived substrates, such
as fibronectin, were also reported to be essential in Ods differentiation (Lesot et al.,
2001). The presence of all these factors together promote Ods to withdraw from

division cycles. This was followed by cytoskeletal modifications occurring in post
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mitotic, polarised, Ods with apical redistribution of the structural cytoskeletal proteins

(Tjaderhane and Haapasalo, 2012).

After commencement of primary dentinogenesis (images B and C Figure 5.32), NGF
expression was specifically identified within Ods and the basal region of the OPs.
The NGFR labelled SOd and nearby CPC. This is also in agreement with previous
studies, which reported similar location of NGF and NGFR during period of primary
dentine formation (Byers et al., 1990; Mitsiadis et al., 1992; Luukko et al., 1996). This
expression could hypothesis the maestro role of Ods in controlling associated pulp
cells. This possibly related to several spatial and functional properties of the Ods
which include: 1) they are the formative cells of the tubular dentine which control its
calcification both before and after tooth eruption (Linde and Goldberg, 1993); 2) they
are neural crest derived cells (Ruch et al., 1995); 3) they form a special cellular
barrier separating pulp from mineralised dentine and/or oral cavity, and cells within
this layer are linked by numerous gap junctions (Turner et al., 1989). As a result, we
can suggest the coordination role of the Ods on other pulp cells acting as supportive
cells during dentine formation. Additionally, the primary role of the NGF, as a
neurotrophic factor, is an important regulator for survival, differentiation, and
maintenance of nerve cells. This induces NGF-responsive neurones toward NGF
source (Chao, 2003). This function was also recognised within the present study by
NGFR labelling of the nerve bundles in the central pulp region and small nerve fibres
in SOd region (Figure 5.21). Additionally, there was a high intensity labelling of both
NGF and NGFR within Ods and SOds respectively. This could explain the growth
direction of sensory nerve toward the Ods and OPs, especially after tooth eruption
and accomplishment of primary dentinogenesis, represented in 3w sections (see
Figure 5.21). To summarise, the unique properties of the Ods layer with their specific
expression of NGF could suggest their controlling ability not only on the adjacent
responsive cells, but also on the pulp nerve supply.

With trauma onset (image D Figure 5.32), there is an evident reduction of NGF-IR
within injured Ods, and a weak expression within the underlying SOds, associated
with the absence of NGFR-IR within latter cells. These injury responses agreed with
the previous studies, which reported similar cellular reactions up to 9 days after
trauma (Byers et al., 1992; Woodnultt et al., 2000). Additionally, a marked increase in
the expression of NGF-IR in Ods was identified within adjacent, non-trauma regions,

especially on the mesial side of the cusp. This was associated with increase in the IR
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of NGFR within underlying SOds and CPC. This could be part of the inflammatory
process within this cusp to support the injury region and repair mechanism in the
pulp. These cellular responses were identified in normal and denervated teeth,
indicating that these alterations were possibly nerve-independent (Byers et al., 1992).
The reduction in the NGF production by the traumatised Ods may also cause an
increase in its formation by the underlying SOd and the adjacent non-injured Ods to
compensate that lost within injured tissue. The lack of NGF mRNA within injured Ods
was also reported, suggesting that NGF was transferred to these cells from adjacent
SOd (Woodnutt et al., 2000). This suggested the role of these NGF producing cells in
mediating and regulating the injured Ods. By forming excess NGF, this might
influence the reparative process by supporting Ods within the trauma region to
perform reactionary dentinogenesis (Magloire et al., 2001). This is in agreement with
the results of this study suggesting the SOd fibroblasts may control the Ods function

during trauma time (Byers et al., 1992; Magloire et al., 2001).

The NGF was reported to induce the invading leukocytes to the injured region by its
non-neuronal paracrine receptors during the inflammation period (Woodnutt et al.,
2000). It also may induce significant morphological changes within Od cells, enhance
production of cellular microfilaments within Ods and OPs, activate the nuclear
transcription factor (NF-kB), induce formation of trk-A (Woodnutt et al., 2000) and
(Magloire et al., 2001). The latter agrees with the present study finding, which
showed the IR of NGFR was detected in the Ods close to the trauma region, and this
continued within 9w samples (image E Figure 5.32). Therefore, the structural cellular
changes which were detected within the worn cusp could be mediated by NGF and
its paracrine or autocrine receptors. The presence of this signalling system between
these adjacent cells possibly controls cellular inflammatory responses and tissue
repair mechanisms. Furthermore, a returned IR of NGF within traumatised Ods
associated with a prolonged expression within SOds was also recorded, persisting
within 6 and 9w sections. The persistence of a large number of NGF formative cells
within trauma region is possibly related to their role in tissue reparative mechanisms.
This also could suggest the role of NGF on OPs elongation during reactionary
dentinogenesis, because of its actin formation inductive activity (Magloire et al.,
2001). On the other hand, increase production of NGF could attract the CGRP nerve

fibres within this region and this enhanced CGRP release which in turn accelerated
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the healing process (Davies, 2000). This will be discussed in more detail in the next

section.

The altered cellular expression of NGF and NGFR within the trauma region was
continued until 12w sections, where the normal tissue expression returned (image F
Figure 5.32). At this age, the injured Ods and OPs looked similar in their expression
of NGF to other regions of the cusp. This is also true in the underlying SOds which
NGFR-IR appeared continuous with the non-injured SOds. Because of the age group
intervals included within this study, it was unclear whether the normal expression of
these markers re-established exactly at 12w (about 8w period from the onset time of
trauma) or between 9 to 12w. Therefore, to overcome this shortage, a period of
within 8w is considered in the present study, as a time that is possibly required by the

pulp tissue in this model to return to its normal expression.

Moreover, the NGFR-IR appeared less diffuse within CPC and became more limited
to SOd and the close vicinity central pulp cells. This pattern of NGFR expression
became apparent within 24w samples (image G Figure 5.32) and this agreed with
previous studies which showed continuous reduction of NGFR-IR within older ages of
rats (Swift and Byers, 1992). The reason for this is unknown, however, due to the
restriction of the pulp volume with ageing, the number of the Ods was also reduced
(Murray et al., 2002). This possibly decreased the NGF producing cells which also
caused decrease in the number of responding cells. The involvement of the p”™> NGF
receptors in cellular apoptosis was also reported (Casaccia-Bonnefil et al., 1998).
The re-expression of p’> NGFR was reported in the Ods in the anterior region of the
rat incisors, whereas its expression was limited to the SOd during primary
dentinogenesis (Mitsiadis et al., 1993). This could keep the density of the Ods
constant in continuous growing teeth by apoptosis control of the NGFR expressed
Ods (Mitsiadis et al., 2008). This pattern of NGFR expression was also evident in this
study, where the labelling of these receptors was only limited to SOd before tooth
eruption. After tooth eruption, these receptors became apparent both within Ods and
SOds (Figure 5.32). Furthermore, cellular ageing signs were also recorded within the
pulp reaction to the second trauma site which appear different than its reaction to the
first trauma. However, there were no older age groups included within the present
study which could show what may happen further. Therefore, further ages can be

suggested for future studies. Finally, we can conclude that the presence of NGF and

190



NGFR signalling system during different stages of the tooth life could suggest its

multiple functions, which could be altered depending on age required circumstances.

5.4.5 Sensory nerve markers

Although occlusal attrition is a well known phenomenon within the rat molar, none of
the previous studies used this physiological trauma to analyse its effect on sensory
nerve fibre distribution and sprouting (Kimberly and Byers, 1988; Taylor et al., 1988;
Taylor and Byers, 1990). This study observed the immunoreactivities of two nerve
markers (CGRP and Nf). In addition, quantitative analysis and comparison between
densities of the CGRP nerve fibres within Od layer on the two sides of the mesial
cusps within different age groups were performed. This was because the CGRP
fibres were the common detected axons within Od and PD and the most observed
reaction with trauma insult. Additionally, CGRP fibres are important considering their
relation to inflammation and tissue response to trauma, by releasing neuropeptides,
which have important effects on circulatory regulation, inflammation, and wound
healing (Taylor et al., 1988; Taylor and Byers, 1990). This study also linked pulp
innervation data with other information obtained from previous sections to provide

new insights about tooth developmental stages, pulp inflammation and repair.

It was obvious in this study model that tooth sensory innervation was delayed in its
development until tooth crown formation was completed. The innervation was limited
to few fibres running in association with pulp core blood vessels during
developmental stages and primary dentinogenesis. Nerves then showed oriented
development toward the cusp Od and dentine which became apparent after tooth
eruption. This is in line with previous studies (Corpron and Avery, 1973; Byers et al.,
1990; Fristad et al., 1994). The presence of NGF-IR within secretory Od and OPs, in
addition to NGFR within SOds and CPC, may suggest the role of NGF as a nerve
guiding development factor (Davies, 2000). The action of NGF may control the
sensory nerve growth from CPC through SOd, Ods and into inner region of the
dentine. NGF working on both p75 and trkA neurotrophic receptors together, can
effectively regulate neuron survival and control growth of axons and neurites (Davies,
2000). Lacking one of these receptors effectively limited nerve growth within oral and
dental tissue (Matsuo et al., 2001).

It is unclear from the results obtained in the current study whether the CGRP or Nf

fibres within Od and SOd were myelinated or not. However, and depending on the
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calculated diameters, the CGRP were smaller than Nf fibres and contained
varicosities. Mainly unmyelinated nerve fibres which contained microvesicles, were
reported within Ods and inner dentine, while both myelinated and unmyelinated
nerves were observed within SOds (Corpron and Avery, 1973). Myelinated and
unmyelinated axons were reported to pass through the apical tooth foramen with an
average diameter between 2-4um (Byers, 1984). Although sympathetic nerves
(unmyelinated) were also seen within pulp tissue, they were very few and found
along large blood vessels within pulp core (Fristad et al., 1994). The rest of the pulp
axons were mainly sensory axons whose cell bodies were located in the trigeminal
ganglia (Byers, 1984). These sensory axons are either fast fibres (A delta) or slow-
conducting fibres (C). The latter nerves have been distinguished to be responsive to
CGRP depending on their secretory microvesicles (Taylor et al., 1988; Taylor and
Byers, 1990). The other type (Nf axons), which were recorded in the current study,
were mainly located within SOd, partially in Od (smaller diameter), and rarely in PD.
The neurofilament is part of the structural skeleton of the nerve axons (Tsuzuki and
Kitamura, 1991), and considered as a marker for the myelinated sensory fibres
(Luthman et al., 1992).

As mentioned previously, the tree-like OPs disappeared form the crown Ods after
accomplishment of primary dentinogenesis. This was also associated with increase
axonal development within Ods layer. Additionally, these processes persisted within
root Ods until 12w old rats, with very rare intercellular nerves being evident. This
could support the hypothesis of the relationship between these actin tree-like OPs
and the sensing mechanism of the Ods during this period of tooth development.
However, these OPs disappeared even from root Ods in 24w rats with no change
within intercellular root innervation. This could reflect the effect of tooth ageing, with
thicker secondary dentine deposited on root surfaces, which may decrease the
activity of the root Ods and their required external sensation.

The effect of wear trauma was apparent on CGRP afferent axons both
morphologically and quantitatively. Localised depletion of CGRP fibres within
traumatised Od regions was observed, which appeared similar to previous studies
observations (Taylor et al., 1988; Taylor and Byers, 1990). The exact mechanism
controlling this transient retraction of the nerve fibres from traumatised Ods regions is

unknown, but it could be part of inflammatory changes resulting from tissue insult.
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Additionally, the changing in the expression of the NGF from traumatised Ods to the

underlying SOd could be the mediator for this retraction (see D in Figure 5.32).

This was followed by a significant increase in the number of CGRP fibres in the
trauma side of the cusp in 6w rats (Figure 5.29). This could be mediated by NGF
which is produced by both Od and SOds in this age. As a result, the increased
production of NGF within trauma region may promote more nerve growth, which
promoted nerve proliferation and sprouting (Chao, 2003). The CGRP nerves are
primarily sensory as is assumed from the physiology of C fibres (Abd-Elmeguid and
Yu, 2009), and their trigeminal ganglia origin (Pan et al., 2003). This observed CGRP
nerve proliferation possibly increases the pain sensitivity of the inflamed pulp.
Alternatively, it could increase the release of CGRP and substance P as
neuromodulators, and have an effect on the inflammatory process. This effect could
include; pulp blood flow (Brain et al., 1985), histamine release (Ottosson and
Edvinsson, 1997), modulation of immune cells function and mitosis (Hahn and
Liewehr, 2007). Therefore, increasing nerve densities within the trauma region could
enhance the delivered amount of CGRP and other vasoactive neuropeptides which
promote neurogenic inflammation and tissue healing process (Taylor and Byers,
1990). Additionally, the structural re-establishment of the Ods, with reappearance of

OPs, could be in part mediated by this neurogenic inflammation.

The distal nerve density continued to increase in 9w samples, although the mesial
nerve density looked similar. The cause for this profound nerve proliferation within
this time is unknown. However, it could be in part due to the neurogenic inflammatory
process, which may result in hyper innervation and hypersensitivity of the tooth cusp.
After re-establishment of the Ods layer, new tubular dentine was also secreted.
Therefore, the persistence of the neurogenic inflammatory period could promote
tissue healing and enhancing tubular reactionary dentine deposition. Additionally, the
continuous expression of NGF by both Ods and SOds even after this period from the
onset time of trauma (image E Figure 5.32) may promote CGRP nerve sprouting and

proliferation.

At 12w both mesial and distal nerve densities reached their maximum levels (Figure
5.32). As mentioned previously, 12w is the age of the complete mesial root formation
and closure of the apical foramen. This is the tooth maturation age. It has been
reported that, the number of axons increased during the maturation period and
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reached its maximum number after complete root formation (Byers, 1984). Therefore,
the increasing number of nerves entering the tooth, could be the cause for increasing
axons arborisation within both sides of the mesial cusp. Additionally, the
subodontoblast nerve plexus became more developed within this age (Figure 5.27).
However, the distal nerve density was still higher than the mesial. This could reflect

the effect of neurogenic inflammation which could be extended until this age.

In 24w samples, both mesial and distal nerve densities were reduced in comparison
to the 12w values. This was probably part of the ageing process and may have
contributed to age related reduction in the number of nerve fibres (Swift and Byers,
1992). Additionally, this could also reflect the age reduction of the NGF and NGFR
cells recorded within the current study. Moreover, the distal nerve density showed
more significant changes than the mesial one. This could be due to the appearance
of new trauma region on the distal side of the cusp which showed disappearance of
CGRP axons from traumatised Ods. According to the obtained data, the
consequences for this new trauma site on the CGRP nerve sprouting is unknown.
However, previous research reported higher CGRP nerve sprouting after cavity

preparation in older compared to younger rat ages (Swift and Byers, 1992).

5.4.6 lon transporter markers (NaK-ATPase and NHE-1)

Primary dentinogenesis

NaK-ATPase or sodium pump is the cell membrane enzyme maintaining the Na* and
K* gradient across the plasma membrane of animal cells. It is responsible for a
relatively high concentration of intracellular K* and extracellular Na*. It actively
exchanges 3 Na* out of the cell for every 2K* into the cell. This keeps the membrane
resting potential with one positive charge gradient (Kaplan, 2002). This gradient is
important in regulating cell volume, cytoplasmic pH and Ca ions (Ca?*) levels through
Na*/H* (NHE) and Na*/Ca?* exchangers respectively, and in driving a variety of
secondary transport processes such as Na*-dependant glucose and amino acid
transport (Therien and Blostein, 2000). Because the pulp is a form of tissue with high
transport function, it possibly possesses high NaK-ATPase activity (Mornstad, 1978).
This can be manifested in the results of this study, which showed activity for this
enzyme within Ods and with more IR in SOd during primary dentiogenesis.
Alternatively, there is no evidence of expression during the cell division and
differentiation period of these cells (Figure 5.34). The exact role of the NaK-ATPase

during this stage of primary dentine formation is not known, however it could play a
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role in Ca?* transportation required for dentine mineralisation. Although, there were
several studies on the role of NaK-ATPase and NHE in maturation and mineralisation
of enamel (Josephsen et al., 2010; Wen et al., 2014), their action within dental pulp
and dentine mineralisation is so far not known (Duan, 2014). Therefore, this study
proposed a model to explain the possible function of these transporters. They could
be involved with other ion transporters (which are possibly present) in the process of
Ca?* translocation during dentine formation (Figure 5.35). The selection of the other
ion transporters in this model is dependent on data available in the published studies
on pulp cells or other cells of the body dealing with Ca?* transportation such as
salivary gland (Onishi et al., 1999), bone (Boonrungsiman et al., 2012), and enamel

organ (Josephsen et al., 2010).

During dentinogenesis, Ca?* transport to the sites of mineralization is reported to be
under cellular control, in that the ions are primarily transported intracellularly through
the odontoblasts (Lundgren and Linde, 1992; Linde and Lundgren, 1995). Studying
the Ca?* transporting system within Ods should basically deal with mechanisms to
maintain a low steady state Ca?* concentration within cytosol (Linde and Lundgren,
1995). The major reported influx route for the Ca?* ions is through the L-type Ca?*
channels (group |, image A, Figure 5.35), as their blocking in vivo caused severe
impairment of radioactive Ca?* uptake within dentine minerals (Lundgren and Linde,
1997). After influx of Ca?* intracellularly, these ions are immediately buffered by
calcium binding proteins such as calbindin (Berdal et al., 1993). The latter is a high
affinity, intracellular soluble protein, present in various Ca?* transporting tissue such
as salivary gland (Onishi et al., 1999), enamel organ, and bone (Berdal et al., 1996).
Cellular organelles could also play a pivotal role in controlling the concentration of
intracellular Ca?* such as endoplasmic reticulum by active Ca pumping (SERCA)
mechanism (Granstrom et al., 1979) and mitochondria via Na/Ca exchanger (Linde
and Lundgren, 1995). The plasma membrane also exhibits a transport mechanism to
extrude the excess Ca?*, to control their concentration within cytosol by plasma
membrane active pump (PMCA) (Granstrém and Linde, 1976) or by secondary active
Na/Ca exchanger (NCX), depending on decreasing intracellular Na* ions
concentration caused by function of NaK-ATPase (Tsumura et al., 2010).
Furthermore, inorganic phosphate (Pi) translocation through Ods was also reported
to be Na* concentration dependant via the Na/Pi cotransporter (Lundquist et al.,
2002). This could reflect the high expression of the NaK-ATPase within Ods in the
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present study during primary dentinogenesis. This could play a crucial role in
regulation of calcifying ions (Ca?*, Pi) transportation and concentration within Od cells
by maintenance Na* gradient crossing plasma membrane (Therien and Blostein,
2000).

In addition to formation of organic matrix protein, the primary aim for cells forming
mineralised tissue such as Ods, is to transport ions to their mineralisation front to
perform tissue calcification (Tjaderhane et al., 2012). This requires a unidirectional
bulk flow of intracellularly ions (Ca?* and Pi) from the cellular basal part toward efflux
sites, near mineralisation zone, where hydroxyapatite crystal nucleation occurs
(Lundgren and Linde, 1992). Very little is however known about this intracellular ion
translocation within Ods (Linde and Lundgren, 1995). Studies reported that the Ca?*
activity in predentine was three times higher its concentration than in pulp
extracellular fluid. This reflects their concentration across Od layer within
mineralisation front (Lundgren et al., 1992). The extrusion of Ca?* and Pi ions and
formation of calcified nodules was also reported to be dependent on Na* ions
concentration through Na/Ca exchanger and Na/Pi cotransporter respectively
(Lundquist et al., 2002). Additionally, the expression of presence of NCX1 and NCX3
were reported to play an active role in the extrusion system and unidirectional
transport pathway of Ca?* within Ods (Tsumura et al., 2010). This supports the
detected high expression of the NaK-ATPase within OPs during primary
dentinogenesis in the current study, which suggest the role of Na* pumping enzyme
in mineralising ion translocation. Other possible ions extrusion pathway which could
be suggested is through membrane vesicles by the activity of Ca*-ATPase which
reported to concentrate Ca* within these vesicles at the apical region of the Ods to
be exported near the mineralisation front (Granstrom, 1984; Lundgren and Linde,
1987).

On the other hand, the presence of NaK-ATPase as an active Na pumping enzyme is
also required to maintain other cellular requirements such as, intracellular pH
(Therien and Blostein, 2000) (see group Il, image A, Figure 5.35). This can be
achieved through its correlation with the pH regulating ion transporters including
NHE-1. The latter has been recorded in the current study within Od cell bodies and
initial region of the OPs during primary dentinogenesis (see B Figure 5.34). There is
another pH regulating Na dependent ion transporter which can be suggested such as

Na/HCOs cotransporter (NBCel) which plays a pivotal role in enamel and bone
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development (Riihonen et al., 2010; Jalali et al., 2014). The coordination between
NaK-ATPase and this group of transporter is possibly instrumental to keep Od
cellular vitality during primary dentinogensis. Additionally, they could also be the main
transporter which regulates the pH within predentine region. This pH was measured
to be around 7 (Lundgren et al., 1992), which is possibly essential to allow crystal
nucleation and development at the mineralisation front. Furthermore, the presence of
different K* channels was also reported to be present within Od (Allard et al., 2000;
Magloire et al., 2003). The K-channels could be the way to efflux excess of
intracellular K* that could be accumulated during NaK-ATPase action.

The other region within dental pulp which expresses high NaK-ATPase activity during
primary dentinogenesis, even higher than Ods, is the SOd cells (image B Figure
5.34). The physiology that could be probed by the NaK-ATPase within Ods is by the
possible role of Na* in mineral translocation and hydroxyapatite crystal formation at
the dentine mineralisation front. But this is not the case for the SOd region. These
cells have the highest NaK-ATPase, and they are the closest to the feeding
capillaries during this stage of dentine formation (Ohshima and Yoshida, 1992). The
Ods are connected to each other by junctional complexes which keep other cells of
the pulp separated from dentine and limited minerals translocation just intracellularly
within Ods (Linde and Lundgren, 1995). However, studies showed that the functional
barrier between developing rat Ods appeared between 15-28 days, which means that
these junctions were permeable prior to this time (Turner et al., 1989). Therefore, the
SOd cells could play a role during this stage of dentine formation, yet this is still
unclear. But, an indicator of what SOd cells might be doing, is possibly gleaned from

its cellular changes during trauma time which will be raised later.

Secondary dentinogenesis

As noted previously, after tooth eruption the activity of dentine formation by the Ods
is dramatically reduced. These cells change to be dentine maintaining and sensing
cells, rather than their previous function before tooth eruption (Magloire et al., 2009;
Femiano et al., 2014). This is also manifested in the structural changes that occur
within Ods and OPs (Figure 5.31) (for more details see section ‘Non-trauma
regions:‘). The differences in the expression of NaK-ATPase appeared minimum in
comparison to the changes occurred for NHE-1 within Ods and OPs after tooth
eruption (Figure 5.34). The coordination between these ion transporters during this

stage could be by their homeostatic function in maintaining cellular vitality, in addition
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to their suggested role in Ca?* translocation during secondary dentinogenesis.
However, the reason behind chronological increasing activity for these two
homeostatic markers especially NHE-1 is not yet clarified. The processes of dentine
formation require specific pH value (7), to allow nucleation and development of
hydroxyapatite crystals (Lundgren et al., 1992). The reduction in pH possibly reduces
this process and enhances dentine demineralisation (Marshall et al., 1997). Changes
in pH were also detected during enamel formation, which was associated with the
process of cyclical changes of the ameloblasts from ruffle to smooth border cells at
maturation stage (Josephsen et al., 2010). During the ruffled border phase, the pH
drops to be about 6 in front of these cells within enamel mineralisation region. This
could allow dissolving of the enamel organic matrix and reduction of the crystal
growth, which could facilitate removal of the dissolved matrix during smooth border
ameloblasts when the pH returns to 7 at that stage (Sasaki et al., 1991; Josephsen et
al., 2010). Alteration in pH also occurs in association with the bone remodelling
process, by the function of osteoclast cells. These cells release more H* to reduce
the pH value at the interface between the cell and the bone. This possibly facilitates
dissolving organic matrix, and aids bone demineralisation (Rousselle and Heymann,
2002). Therefore, the increase in NHE-1 expression within Od in this stage possibly
caused an increase in the concentration of H* within predentine region. The H* within
Ods could be obtained from the decomposition of the carbonic or phosphoric acids
intracellularly according to the following equations (Silverthorn et al., 2007):

H2CO3 < H* + HCOgz
H2PO 4 « H* + HPO4?*

This released H* is possibly to control pH value (Josephsen et al., 2010), which in
turn controls the rate of dentine mineralisation. Decreasing pH to a certain limit
possibly causes delay in the time of mineral growth and development (Linde and
Goldberg, 1993). This could be associated with reduction in the Ods synthesis ability
for the organic matrix of the dentine and changing from secretory to mature cells
(Couve, 1986). As a result, the rate of dentine formation is dramatically reduced

during secondary dentinogenesis (Tjaderhane et al., 2012).

Similarly, the detected expression of the NHE-1 in the OPs especially the outer

region could also be for pH control within intratubular fluid (image B Figure 5.35). It

was reported that the dentinal fluid is quite similar in its ion concentrations to the
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plasma and interstitial fluid (Haldi et al., 1961; Coffey et al., 1970). This means that it
contains high Ca?*and Piion concentrations, which could enhance crystal formation
and cause obliteration of the dentinal tubules. However, the dentinal tubules remain
open, except for some regions where sclerosis of dentinal tubules occurs. This is
possibly associated with dentine hypersensitivity (Stanley et al., 1983; Yoshiyama et
al., 1989; Mj6r and Nordahl, 1996). The possible controlling feature for the
continuous crystal formation within this region to prevent tubule obliteration could be
by controlling pH. This possibly occurs by the release of H* to the intratubular fluid by
the function of NHE associated with NaK-ATPase in the OPs. Additionally, this
suggests continuous remodelling of the dentinal tubules, which could also reflect the
source for high concentration of Ca?* and Pi within the intradentinal fluid according to

the following equation:
10Ca(OH)2 + 6H3PO4 < Caio(P0O4)s(OH)2 + 18H20

Unfortunately, there is no record in previous studies of the pH within the intratubular
fluid. This could be suggested as a further study to support our hypothesis.
Therefore, the presence of both NaK-ATPase and NHE after tooth eruption, could
suggest the dynamic cellular controlling role of dentine remodelling performed by the
Ods and OPs.

Trauma region

The major tissue alteration which happened during the period of occlusal attrition was
the loss of the junctional contacts between Od cells (image C, Figure 5.35). Studies
reported the presence of a macromolecular tracer between traumatised Ods and
within predentine and reparative dentine beyond the trauma site (Turner et al., 1989).
This means that due to the trauma effect, the Od layer became more permeable
extracellularly to the passage of reparative macromolecules and ions to perform
tissue repair (Turner, 1992). This also could be the case for the extracellular
transportation of the mineralisation ions during this stage of trauma response of the
pulp which provides rapid diffusion of these ions. This probably aid in fast
mineralisation of the atubular dentine matrix plug. Although traumatised Ods still
expressed NaK-ATPase during this time, the SOds beyond them were the highest
labelled cells within the trauma region. The rich vasculature and massive abundance
of NaK-ATPase within SOd cells suggest that their active Na*ions pumping possibly
play a pivotal role in reparative dentine plug formation during this stage. This was
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associated with the increase in packing of SOd cells between each other, and their
actin been highly expressed during this period. This probably aided in the
unidirectional guiding of the ions, to be directed towards the repair zone. Following
this lead, during trauma time the role of SOds can be hypothesised to maintain a
negative cell potential and electrochemical Na* gradient which is possibly required for
the extracellular translocation of the mineralisation ions. This coupling between
cytosol can be mediated by the presence of massive CGRP innervation which
connected cells and dilated capillaries within SOd region. Unfortunately, the
inadequate data about the ion transportation mechanism during trauma time from
previous studies, impaired further speculation within the model suggested by the

current study.

Another important parameter that should be considered within this model is the pH
value. The extracellular space between pulp cells within trauma time became
connected to the predentine zone above the Ods. In addition, high Ca?* and Pi ion
transportation is expected to be present between the cells. The possibility of crystal
nucleation behind the Ods became valid if the pH within this region remained neutral.
Therefore, in a homeostasis model of this study (image C Figure 5.35), we suggested
that to prevent this abnormal crystal formation, the pH of the extracellular fluid
between the pulp cells should be controlled to be more acidic, to prevent mineral
nucleation within this region. This was built on the SOds expression of NHE within
this stage (image D Figure 5.34). This could cause a release of H* ions within
extracellular fluid to decrease pH, to limit abnormal or pathological crystallisation.
Additionally, the fact that pulp could deposit calcified tissue behind the Ods cells is
also recorded, by formation of pulp stones, which is still a physiologically little-
understood mechanism (Goga et al., 2008). The organic matrix of these stones were
shown to be consisted mainly of collagen type | and osteopontin (Ninomiya et al.,
2001), and the latter has been commonly found within pathological calcifications
induced by pulp fibroblasts in case of reparative dentine (Cajazeira Aguiar and
Arana-Chavez, 2007), also in other organ pathological conditions such as urinary
stones (Kohri et al., 1993). Therefore, in order to control ion passage and normal
crystallisation growth within the predentine region, the present model suggested that
the pH control could be the main key that should be considered.

According to this hypothesis, the role of high pH, pulp treatment cements and their

mechanism of action in enhancing the calcified dentine formation can be understood.
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All the pulp medication applied during direct and indirect pulp capping such as
calcium hydroxide, MTA, biodentine and hydraulic calcium silicate cement are
alkaline material with pH value more than 9 (Darvell and Wu, 2011; Grech et al.,
2013; Rajasekharan et al., 2014). Effect of alkaline pulp treatment during direct and
indirect pulp capping is not totally understood and always linked to antimicrobial
nature of high pH material (Sipert et al., 2005). None of the previous research
employed this high pH in the direct physiological stimulation of the pulp to produce
the mineralised matrix. This alkaline treatment could act as a promotor by providing
the alkaline environment for the mineralised tissue to be deposited at the pulp border.
In the same way, they could act as a director for the pulp cells to deposit their

mineralised product toward the high alkaline side of the restoration.

After the effect of trauma subsided, the reestablishment of the apical junction of the
Ods and appearance of secondary OPs (image E Figure 5.34) were definitely
associated with reorganisation of the mineralisation front and reformation of new
dentinal tubules. This suggests returning of the normal ion transportation and dentine
calcification which was suggested within this hypothesis (images A and B Figure
5.35).

5.5 Conclusions

As a summary, this model of the rat molar offered important advantages to study
different stages of normal tooth development and the pathological and repair
processes associated with wear trauma (Figure 5.36). Linking data and results
obtained from different structural, cell division, growth factor, nerve and ion
transporter markers, helped to provide better understanding about cellular processes
within intact and injured dental tissue. It also helped to link this information with that
already present in the field, to hypothesise a homeostatic model which could improve

the knowledge regarding some well-known dental mysteries.

Several detectable cellular changes have been identified during normal tooth growth.
These include the period of cytodifferentiation in the early developmental stages,
followed by tooth eruption time, maturation period and ageing process. The first
change was associated with structural reorganisation of the cellular cytoskeleton,
which could be mediated by the presence of an autocrine or paracrine induction
mechanism. This probably caused withdrawal of the Ods from cell division cycle, into
specialised secretory cells. Following this was the primary dentinogenesis period,
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including hard tissue deposition, development of the OPs and formation of the
dentinal tubules. This was associated with activation of the ion transporting
mechanism to deliver mineral ions at the cellular mineralisation front. This process
could also be self-mediated, by the secretory and other pulp cells, with the absence
of neuronal intervention. This was followed by tooth eruption after complete crown
formation and commencement of root development. The crown Ods showed major
morphological and cytoskeletal alteration as they changed from secretory into
maintaining cells. This change was associated with sensory nerve invasion, probably
by a continuous cellular mediating process. Additionally, another ion transporter
(NHE) became apparent within Od and OPs possibly to control dentine formation by
managing extracellular pH. This was followed by complete nerve growth which was
associated with the completion of root formation and the tooth maturation period.
Changes in pulp space and varied cellular responses to the markers used, were

obviously detected in tooth ageing samples.

The trauma model represented by the tooth wear process also showed different
cellular changes starting with early protection alterations and ending with tissue
repair and regeneration. In the initial trauma responses, both cellular and neuronal
changes were obtained and mediated other cellular modifications, to decrease
trauma invasion and localise the effect of the trauma insult. This was associated with
the appearance of the role of the SOd cells which showed various structural and
functional alterations. These aimed to decrease damage and facilitate passages of
the repairing material to the injured Ods and region above. This caused formation of
an atubular plug for the exposed dentinal tubules, to provide a protected environment
for the established repair mechanism. These features possibly aided in damaged

tissue repair and reestablishment of the new tubular dentine.

Therefore, the advantages obtained from this model are expected to give new and
valuable insights to improve dental knowledge about normal tooth development in

addition to pathological responses associated with the trauma of tooth wear.
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Figure 5.30: lllustration of the saggital section for the mesial side of the rat mandibular 1
molar for the different age groups within current study.

Following structures have been identified: pre-ameloblast (Pam), predentine (PD), pre-
odontoblast (POd), stratum intermedium (SI), stellate reticulum (SR), inner enamel
epithelium (IEE), undifferntiated odontoblast (UOd), dental papilla (DP), odontoblast (Od),
subodontoblast (SOd), central pulp cells (CPC), enamel (En),and dentine (De). Two images
A and B represented the crown developmental stages, C is the tooth eruption age (3w), D is
the wear start age (4w), E shows the ages of tooth repair process (6-12w) and F is the older
age group (24w).
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Figure 5.32: Schematic representation of NGF and NGFR immunoreactivities within all study
groups.

Following structures have been identified: predentine (PD), pre-odontoblast (POd), stratum
intermedium (SI), stellate reticulum (SR), inner enamel epithelium (IEE), undifferentiated
odontoblast (UOd), outer enamel epithelium (OEE), odontoblast (Od), subodontoblast (SOd),
central pulp cells (CPC), enamel (En), and dentine (De). Each image shows two drawings to
identify the NGF and NGFR immunoreactivities respectively, which could be either strong or
weak IR. Different panels represent different ages.
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Figure 5.33: Schematic representation for the CGRP-IR nerve disribution within different
groups of the current study.

The following structures have been identified: odontoblasts (Od), sub-odontoblast (SOd),
central pulp cells (CPC), blood vessels (BV), and the region of wear trauma (x). CGRP
nerves are represented by dotted red lines with different thickness depending on their
position within the pulp. Additionally, the associated blood vessels are also represented
within each figure. Different panels represent different ages.
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Figure 5.34: Schematic representation of NaK-ATPase and NHE-1 immunoreactivities within
all study groups.

Following structures have been identified: predentine (PD), pre-odontoblast (POd), stratum
intermedium (SI), stellate reticulum (SR), inner enamel epithelium (IEE), un-differntiated
odontoblast (UOd), outer enamel epithelium (OEE), odontoblast (Od), subodontoblast (SOd),
central pulp cells (CPC), enamel (En), and dentine (De). Each image shows two drawings to
identify the NaK-ATPase and NHE immunoreactivities respectively, which could be either
very strong, strong or weak IR. Different ages are shown in different panels.
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Figure 5.35: Homeostatic and ion transporter illustration representing the hypothesis of this
study according to different stages of dentine formation.

A primary dentinogenesis, B odontoblast process in secondary dentiongenesis, and C is ion
transportation during early trauma period. The following structures have been identified: (OP)
odontoblast process, (DT) dentinal tubule, (PD) predentine, (JC) junction complex, (Od)
odontoblast, (SOd) subodontoblast, (Cp) capillary, (De) dentine, (CPC) central pulp cells and
(HAP) hydroxyapatite. The black ion transporters represent those observed within this study
while the green identify those cited from published papers. A) shows transcellular
translocation of Ca?* ions via Od cell layer from pulp capillaries to the mineralisation front,
however the intercellular route can also be suggested (long arrow with question mark). Two
groups of ion transporter have been shown: group | including mineral ions related transporter
and group Il contains other homeaostatic ion transporter mainly dealing with controlling pH.
Group | shows Ca*influx through Ca channel. To maintain cytosolic Ca®* concentration, Ca?*
either bind to transferring protein such as calbindin or possibly using membrane ATP-
dependant (Ca-ATPase) and Na/Ca exchanger used for extruding the excess of Ca?*. Na/P;
cotransporter use for transcellular transportation for P;. Cellular transferring for both Ca?* and
Pi cause increase intracellular Na* which activate NaK-ATPase to remove excess Na".
Cellular organelles take part in buffering the activity of cytosolic Ca**. Mitochondria use
Na/Ca exchanger, while endoplasmic reticulum using Ca?-ATPase. Intravesicular Ca-
ATPase is also used to accumulate Ca?* within intracellular vesicles to obtain controlled
transportation toward mineralisation front. The efflux of Ca®"is suggested by Ca-ATPase and
NCX which also requires membrane Na* gradient to extrude Ca?*. Another Ca?* extrusion
route could be via membrane vesicle exocytosis. The Na/P; cotransporter is also proposed
near mineralisation front to extrude Pi. Group Il shows possible role of Na/H exchanger
(NHE) and Na/HCOs3 cotransporter in controlling intracellular and extracellular pH. This
process also required NaK-ATPase to regenerate membrane Na* ion gradient and K-
channels required to balance the concentration of intracellular K*. The pH suggested within
this hypothesis should be less than 7 within the extracellular fluid between the Ods and SOds
to prevent crystal development behind the Ods. Whilst the pH at the mineralisation front
should be equal or may be more that 7 to enhance crystal formation and growth. Panel B
shows the possible function of the detected ion transporter (NaK-ATPase and NHE) in
decreasing the pH of intratubular fluid to control the apposition of hydroxyapatite during
secondary dentinogenesis. Panel C illustrates the proposed early trauma extracellular ion
transportation mechanism due to loss of cellular junctional contacts between Ods. The role of
detected NaK-ATPase and NHE ion transporters was shown to be the key factor in
controlling extracellular pH in front and behind the traumatised Ods.
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Figure 5.36: Flow diagram to summarise normal and pathological processes within the study

model (rat molar).
The blue circles represent the normal tooth flow process, while the red circles illustrate the
cellular processes occurring within trauma and tooth repair.
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Chapter 6 Exploration of early gene activation or inactivation in the

re-modelling of the pulp after trauma

6.1 Introduction

The dentine-pulp complex shows a great similarity to other connective tissues within
the body. However, it has considerable complexity and several unparalleled features,
due to its enclosure within the hard and non-compliant shell of the tooth in all
directions except the small apical foramen (Tjaderhane et al., 2012). This
encirclement may limit the pulps’ inflammatory and reparative ability to neutralise and
recover from different injuries. This represents the most obvious challenge facing the
dental pulp, as it faces the onslaught of injuries including acute trauma, tooth wear,

dental caries, and operative dental surgery.

The tooth crown within the oral cavity environment, is covered by symbiotic harmless
microbial communities which are mainly composed of Gram-positive bacteria. These
communities normally adhere to the highly mineralised enamel surface in a form of
biofilm. A high sugar environment within this biofilm enhances bacterial acid
production, which leads to tooth surface demineralisation and the formation of dental
caries (Farges et al., 2015). After disruption of the tooth enamel barrier, lesions
progress into dentine, with tissue degradation. During this phase, Gram-positive
bacteria compose about 70% of the recoverable microflora (Bjgrndal and Larsen,
2000). This percentage changes as the lesion advances and becomes deeper,
providing a perfect habitat for the survival and proliferation of Gram-negative bacteria
(Love and Jenkinson, 2002). The major pathogenic component for these bacteria is
endotoxin, or lipopolysaccharide (LPS), which is reported to be involved in pulpitis
(Martin et al., 2002) following direct invasion of the dental pulp through patent
dentinal tubules (Love and Jenkinson, 2002; Chung et al., 2011). In a previous study
of Alhelal (2016), it was determined that a short incubation (3h) of rat incisor pulp
tissue in LPS-treated media significantly activated specific pro-inflammatory and anti-
inflammatory genes. LPS was also reported to promote differentiation of cultured
dental pulp stem cells and to enhance formation of calcified nodules after 2w
incubation (He et al., 2015). Other studies have shown that LPS suppressed the
transformation of cultured pulp stem cells into Od-like cells by inhibiting alkaline

phosphatase, dentine sialophosphoprotein, and restricting mineralised nodule
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formation (Nomiyama et al., 2007). LPS-specific binding receptors (TLR-4) have
been reported to be present within the odontoblast cell membrane (Botero et al.,
2006). It is logical to think that treatment of pulp tissue with LPS can be recognised
by host defence systems through interaction with its specific receptors, which could
indirectly stimulate structural and homeostatic genes within stimulated pulp tissue.

Cellular degradation is a possible effect of pulp injury caused by different harmful
stimuli including caries and trauma (Mitsiadis et al., 2008). This causes release of
cytosolic ATP to the extracellular fluids (Liu et al., 2012). Extracellular ATP is
reported to serve as a vital signalling molecule, especially in injured tissue through its
function on ATP receptors (purinoceptors) (Alavi et al., 2001). These receptors were
found to be expressed by the odontoblast cell membrane and nociceptive pulp
nerves, which suggests the role of ATP in the mechanism of dental pain (Alavi et al.,
2001; Cook and McCleskey, 2002). Additionally, ATP causes changes to
cyclooxygenase level within injured tissue, which suggests its indirect effect on tissue
inflammatory responses (Alhelal, 2016). However, none of the previous studies
identify its possible effect on housekeeping genes including cytoskeletal and ion

transporters.

In Ch 5, we used IHC to study different housekeeping markers within rat dental pulp,
which included structural markers (a-actin and a-tub), and ion transporter markers
(NaK-ATPase and NHE-1). During IHC work, the sample preparation,
demineralisation, and staining procedures were very time consuming. This limited the
use of other markers because of specimen depletion and time required for preparing
new samples. Also, the high cost for each antibody marker had to be considered. It
now becomes necessary to develop a simpler technique which requires less time and
allows us to scan for different homeostatic genes within the same sample. The
molecular techniques including end-point polymerase chain reaction (PCR) and
guantitative reverse transcription polymerase chain reaction (QRT-PCR) were chosen
as complementary techniques in this work. Therefore, the aims for this work were as

follows:
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= To employ molecular techniques to identify the expression of key cellular and
signalling elements that have been identified using IHC techniques in pulp
tissue, in addition to other related elements.

» To explore the idea that damage could cause an active change of gene
expression immediately after pulp removal from the tooth and during
incubation in media for up to three hours.

= To explore the possibility that LPS and ATP could alter the expression of
targeted genes after short incubation periods.

6.2 Material and methods

Methods and materials were described in detail in section (2.6.). The work was

divided into three experiments as follows:

6.2.1 Effect of incubation time on gene expression (Table 2.7)

Fifteen male Wistar rats (age= 9 weeks, weight 260-400 G) were killed in a CO2
chamber before surgically extracting only right mandibular incisor teeth. The teeth
were divided into 3 groups (n=5) as follows:

Group A (control): fresh pulps were carefully extracted as previously described in
Ch 2 section 2.1.2. The dissected pulp (average weight = 14.5 mg) was immediately
stored in 500 pL RNA stabilization agent (RNAlater, Cat. No. 76106, Qiagen,
Germany) at 4°C.

Group B: the extracted pulp was incubated for one hour in in 500ul DMEM solution
supplied with foetal calf serum (1% Sigma) and penicillin-streptomycin (50 IU/ml-
png/ml Sigma) before transfer to 500 pL RNA stabilization agent.

Group C: same as B but with 3h incubation time.

6.2.2 Effect of LPS treatment

Seven male, Wistar rat (age= 9 weeks, weight 260-400 G) were killed as above. For
each rat, the left mandibular incisor was assigned for the control and the right for the
test group for direct comparison. Fresh pulps were carefully dissected as described
previously and divided into control and test groups (n=5). The pulps were incubated
in a 12 well plate (one pulp per well contained 500ul of incubation solution mentioned
above). For the test group, Escherichia Coli serotype 026:B6 LPS (10 pg/ml) (Sigma
Aldrich, UK) was added. After three hours of incubation, each pulp tissue was stored
in 500p! of RNAlater solution at 4° C.
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6.2.3 Effect of ATP treatment

This study was conducted in the same manner as for LPS (above) with ATP
analogue 2'(3’)-O-(4-benzoylbenzoyl) adenosine-5-triphosphate triethylammonium
salt (100 uM) (Sigma Aldrich, UK) added to the incubation media of test samples
instead of LPS. Media were renewed every hour, since ATP is known to dissociate

over time.

At the end of each experiment, the samples underwent RNA extraction, reverse
transcription to cDNA and PCR procedures were accomplished (for more details see
2.6.210 2.6.9).

Quality control

Two reference genes were used within this study GAPDH and B-actin. The results
obtained from GAPDH were consistent and showed unchanged Ct value in gRT-PCR
within all conditions and treatment used. Alternatively, the Ct value for the B-actin
was affected similarly to the target genes during different incubation experiments.
Therefore, only the GAPDH was considered to be the reference gene during these

experiments.

The accuracy of PCR quantification depends on two important parameters: linearity
and efficiency (see Appendix B image lll). These parameters were measured using
double standard curve samples generated by progressive dilution of cDNA samples.
For quality control within each run, all samples were tested in duplicate, with the
inclusion of internal negatives and positive controls (for more details see 2.6.9).
Additionally, the duplicates must be within no more than a half cycle in between, or
the whole reading was repeated. The Ct for each gene were normalised with the

reference gene Ct to obtain a ACt value to be used for the statistical analysis.

The numerical data of the gRT-PCR were analysed by using ANOVA and post hoc
analysis (Bonferroni test) to compare between groups within different incubation
experiments. The unpaired T-test was also used to compare between treated and
untreated samples within LPS and ATP treatment experiments. Additionally, fold
change views were also prepared for all experiments. This was accomplished
depending on the ACt values for the target gene in the test group to be normalised

with the ACt of the same gene within the control group of the same experiment.
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Therefore, AACt = ACt (test) — ACt (control). The fold change was equivalent to the

value obtained from (2/-22CY),

6.3 Results

To determine whether or not the target genes were expressed in normal animals,
conventional PCR technique and gel electrophoresis were used. This revealed that
all target genes were present in single bands within correct base pair length (Figure

6.1), while all negatives were blank.

Serial dilution for the reference gene (GAPDH) showed proportional relationship
between the intensity of the band and the cDNA template concentration used (Figure

6.2). The negative control showed no band.

Figure 6.1: Conventional PCR (end point) gel electrophoresis for the genes within this study
represented in rat mandibular incisor pulp.

Bands of appropriate base pair (bp) values are shown (as correlated to the hyper ladder IV to
the left side) for all target genes. GAPDH was used as a positive internal control. The
concentration of the cDNA template was 10ng.
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HLIV 10ng 1ng 0.1ng 0.01ng 0.001ng Negative
control

Figure 6.2: Conventional PCR (end point) gel electrophoresis for different concentrations of
GAPDH gene.

The intensity of the band decreased when the concentration of the cDNA template
decreased, and no band represents the negative control.

6.3.1 Different incubation times

The effects of short incubation time periods on the target genes are shown (Figure
6.3). It shows that the ACt values for all targeted genes increase with increasing time
of incubation. These changes appear with high statistical significant differences in the
following genes: Coll al, a2, NaK-ATPase, NHE-1, PMCA and SERCA (Table 6.1).
Less significant differences were found in other genes (Nav 1.7 and 1.6). Additionally,
no statistical significant differences were seen in the other genes in comparison to
their control groups including: a-actin, a-tub, and NCX-1. The increase in ACt value
means that these genes were down-regulated with time and this is apparent after

normalising their ACt values against the control group for each gene (Figure 6.4).
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Figure 6.3: gRT-PCR quantification for target genes after different incubation periods.

The levels of gene expression were calculated after normalising with the Ct value of the
positive control (GAPDH) and presented in relative ACt for mRNA expression units of each
gene. ACt are inversely proportional to the actual mMRNA expression. Values are means of
ACt + standard error (SE) (n=5). The values of ACt for a-tub, coll al,a2, and NaK-ATPase
are shown in the negative side of the x-axis because their actual mMRNA concentrations were
higher than the reference gene (GAPDH) within the pulp. This means that their Ct values are
less than those of the reference gene.
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Figure 6.4: Fold change representative values after normalising ACt for each gene in groups
with incubation periods against ACt of group A (without incubation group) for the same gene.
The fold change can be calculated according to the formula = 2 44,

6.3.2 Treatment with LPS and ATP

Neither LPS nor ATP treatment showed remarkable effects on the target genes
within this study (Figure 6.5 and Figure 6.7). No statistical significant difference was
obtained between the treated and untreated groups for both treatments except NaK-
ATPase which showed a statistically significant difference at p<0.05 after treatment
with ATP (Figure 6.7).

Additionally, minor fold change values were obtained after normalising the treated
ACt against untreated values for all genes in both treatments. The highest
upregulated gene after LPS treatment was Nav 1.6 which showed more than 2 fold-
change. The greatest down-regulation was for Nav 1.7 gene. After in ATP treatment,

the highest upregulated gene was the NaK-ATPase.
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Figure 6.5: gqRT-PCR gquantitation for the target genes within treated group with LPS and
their corresponding non-treated group.

Samples were operated in the presence of GAPDH as a reference gene. The level of gene
expression was calculated after normalising against GAPDH in each sample and presented
as ACt values. Values are mean ACt + SE (n=5). The values of ACt for a-tub, coll al,a2, and
NaK-ATPase are shown in the negative side of the x-axis because their actual mMRNA
concentrations are higher than the reference gene (GAPDH) within the pulp. Note: the Ct
values are inversely proportional to the actual mMRNA expression. No statistical significant
difference was obtained in Unpaired T-test (p>0.05) between test and control samples.
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Figure 6.6: Interpretation of the modulating effect of LPS incubation on the expression of
target genes in terms of fold change.

Fold-change was determined after normalising the ACt value after treatment of each gene
with ACt of the incubated, untreated group. The fold value= 24,
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Figure 6.7: qRT-PCR quantitation for the target genes within treated group with ATP and
their corresponding non-treated group.

Samples operated in the presence of GAPDH as a reference gene. The level of gene
expression was calculated after normalising against GAPDH in each sample and is
presented as ACt values. Values are mean ACt + SE (n=5). The values of ACt for a-tub, coll
al,a2, and NaK-ATPase are shown in the negative side of the x-axis because their actual
MRNA concentrations are higher than the reference gene (GAPDH) within the pulp. Note: the
Ct values are inversely proportion to the actual mMRNA expression. Unpaired T-test only
shows statistical significant difference (*) between control and test groups for the NaK-
ATPase at (p< 0.05).
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Figure 6.8: lllustration of the change in expression of target genes in response to ATP
incubation in terms of fold-change.

Fold-change was obtained after normalising the ACt value after treatment of each gene with
ACt of the incubated, untreated group. The fold value= 224,
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6.4 Discussion

These investigations demonstrated that all target genes were expressed in the rat
dental pulp. The presence of this mMRNA provides molecular confirmation for the
previous chapters which used the same protein markers in IHC including a-actin, a-
tubulin, NaK-ATPase, and sodium hydrogen antiporter (NHE-1). Additionally, other
structural and ion transporter genes were identified to help broaden our
understanding about possible pulp responses to short incubation periods with and
without treatment. The latter genes included structural genes: collagen (Coll al and
a2) (McLachlan et al., 2003), and ion transporter genes: sodium calcium exchanger
(NCX-1) (Lundquist et al., 2000), plasma membrane calcium ATPase (PMCA)
(Lundgren and Linde, 1997), sarcoplasmic reticulum calcium ATPase (SERCA)
(Granstrom et al., 1979), and voltage gated sodium channels (Nav 1.6 and 1.7)
(Byers and Westenbroek, 2011). The use of extracted pulp as a model in this work
may not reflect the exact in vivo environment of tooth trauma and inflammation.
However, it could provide a valuable model for studying pulp responses to these

insults within a tissue in a lab-based environment.

Studies reported that most of the Ods (87.5%) remain attached to the pulp tissue of
the rat incisor teeth after extirpation of this tissue from the tooth at room temperature
and only few remain attached to dentine wall (McLachlan et al., 2003). This suggests
that the pulp used within this study still maintains a pulp-odontoblast cellular
complex, though this was not specifically examined in the current work. Within this
complex the main affected cells would be the Ods. It would be valuable to examine
an odontoblast cell population only, isolated from dental pulp because they are the
cells which are likely to be first to confront external stimuli. However, a large number
of teeth were reported in order to obtain a detectable amount of RNA for such
analysis (Palosaari et al., 2000). In our own preliminary data, small teeth such as rat
molars were also insufficient to provide a detectable amount of RNA, even after using

tissues from three molars of the same segment.

The dental pulp is a complex system, which is subjected to different harmful stimuli
from its surroundings including mechanical, thermal stimulation and bacterial
infection. In all events, the pulp may be damaged, either reversibly or irreversibly
depending on the insult (Smith et al., 2008). Reversible damage usually includes the

injury or death of the damaged cells followed by healing induction, often including the
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secretion of reactionary and reparative dentine matrix. Irreversible damage usually
includes a series of pathological events which may end with partial or complete pulp

necrosis (Farges et al., 2015).

The purpose of short time incubation period experiments was to identify how fast the
targeted genes could respond to the trauma caused by extraction of the pulp tissue
from the hard shell of the tooth. Most of the target genes showed statistically
significant differences after 1h incubation (group B) when compared to control group
without incubation (group A). This change, including down regulation, is compared to
group A. This could be due to deterioration of the tissue and RNA destruction during
the incubation period. This has no biological explanation. However, not all the genes
behaved similarly. a-actin, a-tub and NCX-1 showed no significant differences after
one hour of incubation. Moreover, other genes such as Nav 1.7 changed from
significant after one hour to non-significant after 3 hours incubation. This specific
gene change could reflect a specific tissue response against trauma which causes
different transcriptional changes within a short period after tissue injury. The possible
explanation for such gene expression differences is unknown at this level. However,
development of this technique could allow us to see in the future the possibilities for
such change.

None of the targeted genes exhibited a biologically significant change during short
periods of incubation after treatment with LPS and ATP. This could mean that none
of these genes were quickly activated at a transcriptional level to give significant up
or down regulation values by the effect of the applied treatment. This work
complements a previous project of Alhelal (2016) who found that there was rapid
pulpal activation of pro-inflammatory and anti-inflammatory genes in response to
short incubation periods with LPS. The most upregulated genes were for
cyclooxygenase 1 and 2. The latter gives upregulation up to 20-fold within a 3h
incubation period. Other genes such as prostaglandin receptors (EP1, EP2),
interleukin 1 (IL1), IL1 receptors, interleukin 6 (IL6), IL6 receptors and nitric oxide
synthase (NOS1) showed upregulation values ranged between 3-6.5. This may
suggest that the tissue inflammation represented by these inflammatory genes were
the first line of tissue defence mechanism to be activated. This may supposedly be
followed by a series of molecular and cellular events in the course of the
inflammatory process. This leads to activation of the structural and homeostatic

genes which aims to enhance defence mechanisms ending with tissue repair and
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regeneration (Cooper et al., 2014). Additionally, results in Ch 5 revealed that all
examined structural and ion transporter markers showed a remarkable increase in
expression within the traumatised pulp region after the commencement of tooth wear.
Higher expressions of a-actin, NaK-ATPase and NHE were detected within the
traumatised Od and associated SOd cells in 4w rat samples (Figures 5-31 and 5-34).
The incubation time was only limited to a short period (3h) within the current study to
maintain tissue vitality. The targeted genes possibly required more time to be
stimulated and to process their function. This function would probably control cellular
events that may enhance tissue defence mechanisms and lead to repair and
regeneration. However, the exact time required for this process is still not known.
Therefore, further research with a longer incubation period can be suggested to

identify exactly the time required for such genes to be activated.

In conclusion, early remodelling has been identified within rat pulp samples within
specific genes, while others remained unchanged. LPS and ATP treatment did not
cause detectable transcriptional changes in the target genes. This possibly required
longer incubation times (more than 3h) to allow tissue inflammation, proceeding to

generate the stimulatory mechanisms for these molecular changes.
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Chapter 7 Discussion, reflections and opportunities for future work

This work was initiated by reviewing literature relating to pulp biology and general
cellular physiology. The assumption at the outset was that the physiology of the
dentine-pulp complex was well understood. Much of the widely held knowledge
contained in standard textbooks is based on studies performed many decades ago,
and many of the hypotheses explaining tissue behaviour are based on these. This
may partly explain the relative lack of focus on basic pulp biology research until
recent times, when growing interest in pulp regeneration/revascularisation has
reignited interest. It is essential to build therapies on the basis of deep
understanding of normal tissue structure and function, and to continue to challenge
assumptions on tissue reaction patterns in the face of injury. Without this foundation,
opportunities may be missed to discover new and more effective ways of controlling
symptoms, managing disease and promoting helpful tissue responses. The relatively
low level of knowledge and exploration in fundamental pulp biology could also
account for the lack of coherent explanation for several well-known dental mysteries
such as pulp stone development, dentine sclerosis and the mode of action of high pH

materials (calcium hydroxide, and hydraulic calcium silicate cements).

From many aspects, the dental pulp is regarded as a unique tissue. Much of this
relates to its structural and functional intermingling with hard tissues, making its study
and its behaviour complicated. New aspects of this complexity have been revealed
within the current work. Three broad statements can be made. First, dental pulp is
composed of several cellular elements, many of which are heterogeneous in nature,
with all cellular elements performing distinctive roles in tissue formation, maintenance
and response patterns. Second, changes in cellular structure and morphology always
reflect changes in physiology and function. Third, all fine details should be taken into
consideration when building hypotheses on tissue behaviour, even if the historic
literature neglect this, or consider these details as not useful. Using these concepts
helped to direct the present work to elaborate traditional hypotheses or develop new

ones that could provide new insights.

Figure 7.1 provides a diagrammatic summary of the new observations, challenges to
established knowledge, opportunities for human translational research and possible

therapeutic interventions that have emerged from the current work.
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This work was focussed on the well-established rat model, which has many
similarities with human tissue, but also with important differences. The rat molar is
the closest model for human teeth because its growth is not continuous. The
continuously growing rat incisor is a particularly good model for the study of different
stages of tooth development (Ohshima and Yoshida, 1992). Its size also provides the
opportunity for adequate volumes of RNA extraction, compared with the much
smaller rat molar (McLachlan et al., 2003; Alhelal, 2016).

Through sections of this thesis, attempts were made to address a number of targeted
issues in the following way. In Ch 3, the structural complexity of the Od and its
cellular process were explored. The reaction of OPs to cavity preparation into dentine
was also investigated. The already published Ch 4 used the physiological occlusal
wear of the rat molar to compare cellular responses within areas of the tooth exposed
to the oral environment and those that remained intact. Structural and homeostatic
cellular elements were the main focus of exploration. The same model was studied in
a broader way in Ch 5, including animals of different age and tooth wear experience,
and exploring different markers including structural, cell division, growth factors,
neurons, and ion transporters. Finally, Ch 6 focused on possible homeostatic gene
transcription in early stages after pulp trauma with and without exposure to pro-

inflammatory treatments.

There were important new observations in each section (see Figure 7.1 for

summary):

Ch 3, the most striking finding was the detection of actin-IR tree-like OPs within the
PD region, which were separate from the primary cellular processes. The structural
complexity of these tree-like OPs and their spatial relationship to the apical region of
the Ods suggested different possibilities for their intervention. These could include
possible roles in preserving cellular stability, dentine deposition and/or sensing
mechanisms of Od cells following fluid movement or tooth flexion. Moreover, great
complexity and regional heterogeneity of primary OPs in terms of different IR to
different antibodies within different dentine thickness was also identified. Previously,
OPs may have been considered relatively homogenous. Furthermore, the cavity
model provided possible new insights on the structural response of OPs to dentine

exposure, with evidence of a programmed retraction of OPs toward the Od cell body.
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Based on the observed complexity within pulp cells, IR to structural and ion
transporter markers, the interactions of these two elements and their corresponding
components were chosen to be the focus of this thesis. Nevertheless, other structural
elements including tooth innervation and blood supply were also explored for their
fundamental structural relationship with Od, and SOd cellular populations.

In Ch 4, the new observations included confirmation of architectural cellular
heterogeneity within the Od population. In addition, the regional heterogeneity of the
OPs in response to different antibody markers was confirmed in the rat molar.
Focusing on the region of the tooth affected by cusp wear, meandering OPs and
dentinal tubules were discovered. This observation led to a re-direction of the project,

by expanding the investigation of tooth wear and reaction patterns (Ch 5).

A key new finding from studies in Ch 5 was the presence in younger samples (before
tooth eruption) of obvious actin tree-like OPs in the coronal pulp; as primary
dentinogenesis continued. Once primary dentine formation was complete, these
processes disappeared. This observation supports the assertion that these
processes have a function in dentine deposition. However, their persistence within
root samples even after tooth maturation may indicate other possible functions.
Another important observation was the regional heterogeneity of OPs which was
found to be age-dependant, and further suggests age-dependant functional changes
within the OPs. An additional important finding was the two-staged pulp repair
mechanism in areas of the tooth affected by wear. This included the formation of an
atubular dentine plug as an early pulp response, followed by a second tubular form
within the reactionary dentine region. This was associated with an apparent
supportive role from the SOd cells during the period of trauma and defensive
reaction. The obvious activation of these cells as evidenced by IR to a range of
markers including actin, growth factors, and ion transporters (NaK-ATPase and NHE-
1) during early stages of trauma, supports the proposal that these cells provide
support to the traumatised Ods. This role helps to support a new homeostatic
hypothesis. This hypothesis provides a hitherto undescribed way of mineral ion
translocation during normal and pathological conditions depending on the pH
controlling ability of the pulp cells (due to active NaK-ATPase and NHE-1

expression).
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The results of Ch 6 showed specific transcriptional gene changes within homeostatic

genes following a short period of trauma to pulp tissue explants. However, no

biologically significant changes occurred after short-term exposure of pulp tissue to

LPS and ATP. The lack of response may be time-dependant, with longer exposures

needed for tissue inflammatory process to react (Alhelal, 2016) and indirectly activate

these genes.

Several existing dental hypotheses and ideas have been challenged through sections

of this thesis (challenges in Figure 7.1) as follows:

One of these ideas was the normal physiological events during cellular
developmental period and the associated signalling mechanisms. The
identification of the actin tree-like processes and the presence of NaK-ATPase
within Ods, OPs, and SOd raise new questions about the role of these new
observations during tooth developmental period. Increasing the knowledge
about cellular structural changes and possible signalling mechanisms between
different cellular populations during the developmental stages probably
improve understanding about the possible cellular interactions during trauma
and repair.

Challenging the hydrodynamic theory during normal physiological condition of
the tooth by identifying the structural complexity of the OPs and dentinal
tubules and how these structures are correlated spatially and functionally. It is
suggested that the hydrodynamic fluid movement is more applicable during
pathological conditions when more spaces would be available within dentinal
tubules after retraction of the OPs. Therefore, this suggests two different
modes of tooth sensing mechanism during normal and pathological conditions.
Challenging the previous ideas about tertiary dentine and the reactionary
mechanism of the traumatised pulp tissue, by identifying two-stage reactionary
dentine responses to the wear trauma. This new observation revealed that the
pulp cells respond to trauma in a controlled mechanism which aims to plug the
exposed dentinal tubules as a first response. This allows the pulp cells to
overcome the immediate inflammatory period and initiate a second stage of
repair and regeneration, with the deposition of more tubular tissue.
Challenging the previous hypothesis about Ca?* ion transportation and
deposition during dentinogenesis. This hypothesis neglected the role of pH as

a pivotal parameter during Ca?* deposition and hydroxy apatite crystal
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formation and growth (Linde and Lundgren, 1995). Our new hypothesis
focused on homeostatic ion transporters which are complementary to Ca?*
transportation mechanisms and important in regulating cellular pH and linking
that with changes in cellular morphology during normal and pathological
conditions. All these helped in developing this hypothesis which theoretically
provides a scientific explanation for several unknown pathological phenomena
such as the formation of pulp stones. Additionally, this hypothesis can be used
to explain the possible physiological mode of action for some existing pulp
therapies. This could include the role of high pH cements such as calcium
hydroxide, and hydraulic calcium silicates in promoting mineralised tissue
formation by traumatised pulp regions (Grech et al., 2013; Sangwan et al.,
2013).

Although there is a huge interest in the field of regenerative endodontics, this
work challenges the hypothesis of the present of adult stem cells within
differentiated pulp cell populations. The absence of the cell division marker
within traumatised pulp tissue raised a question about the reliability of this
hypothesis. Instead, this work supports the ability of other pulp cells to de-
differentiate and change into other cell types to replace the degenerated Ods.
The inactivation of homeostatic genes within the short period of time examined
in this work identifies the presence of two sets of genes: fast activated
inflammatory genes and slow activated repair genes. This supports our
concepts about the presence of complex inflammatory and reparative
interactions that require to be understood further in the process of developing

new therapies.

Although there are many advantages of performing laboratory research on animal

samples, this work should be translated in future work to human samples. This may

include human teeth maintained within a tissue culture environment, or undertaking

clinical experiments on teeth needing extraction for orthodontic purposes. Either

option would be technically challenging, costly and time consuming.

Building on the observations and hypotheses emerging from this work, there may be

helpful therapeutic implications (see benefits and therapies in Figure 7.1). This may

open the possibility for introducing new pharmacological interventions stemming from

more detailed understanding of complex cell to cell signalling mechanisms. The use

of growth factors could be one of these interventions. In addition to the cellular
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released NGF and its NGFR receptors, there are other growth factors including the
TGF family released during tissue differentiation, preserved within dentine matrix
and released during dentine trauma (Goldberg and Smith, 2004). Better
understanding of these growth factors and their receptors during normal and
pathological conditions could provide new insights in pulp therapies. Furthermore,
understanding tissue repair mechanisms and the process of cellular replacement
may identify the key cell types within the pulp which can be employed therapeutically

in tooth revascularisation process.

New observations not in literature
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Figure 7.1: Diagram summarising the new observations, challenges to existing knowledge,
opportunities for human translation research and possible therapeutic interventions emerging
from current studies.

Ché Ratincisor
Molecular

* Homeostatical genes
confirmation

+ Delay homeostatic

gene activation

230



Appendix A

Experiment to determine optimal EDTA concentration for specimen
demineralisation

vim Nak

vim NaK

An example of IHC staining in rat mandibular incisor extracted pulp (A) and decalcified
sections treated with different EDTA concentrations (4.3% in B,12% in C and 17% in D). All
images stained for NaK-ATPase (red), vim (green), and dapi (blue). The following structures
have been identified: odontoblast layer (Od), subodontoblast cells (SOd), dentine (De), and
central pulp cells (CPC). All images show similar IR to both vim and NaK-ATPase staining.
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Appendix B
gRT-PCR quality control

Fluorescence
S

0.05

Threshold
0

I. Fluorescence amplification versus cycle number for GAPDH (control gene) with serial
dilutions of templet cDNA (0.001- 10ng). The curves represent the highest to lowest input
MRNA from left to right. Duplicates were used for each input amount and are reflected by
overlapping curves on the graph. The relative quantity of GAPDH transcript from each
concentration is reflected at the exponential phase of the amplification curve and determined
by the Ct value. The threshold bar is the point at which the mRNA levels were estimated. The
arrow points to the amplification of RT-ve mRNA, with no amplification or fluorescence was
observed. This indicates the complete absence of any genomic DNA contamination.

Fluorescence

Temperature

Il. Fluorescence versus temperature (melting curve) for GAPDH (control gene) with serial
dilutions of templet cDNA (0.001- 10ng). After amplification, the samples were slowly heated
in order to detect the loss of fluorescence that occurs at the melting temperature which is
recognised by a specific melting peak for each PCR product. All the peaks are located at the
same temperature point. This pattern refers to the specificity of the product, as any product
has one melting temperature and confirms the specificity of the primers. Note that the peaks
are not at the same height because each peak represents a different concentration. The
arrow refers to the NTC and RT™® reaction.
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lll. A representative of plot of standard curve threshold values (Ct) versus the log of the
amount of total cDNA (0.001- 10ng) added to the reaction for GAPDH, showing the R? and
efficiency values. The correlation coefficient (R?) for the standard curves ranged from 0.97-
1.00 and the efficiency ranged from 90-110 %. X axis represent the serial dilution of target
cDNA where S1 represent the neat cDNA, S2 represent S1 diluted ten times and so on.
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Appendix C
List of publications and conference presentations Publications:

Mahdee, A., Alhelal, A., Eastham, J., Whitworth, J. and Gillespie, J. (2016). Complex

cellular responses to tooth wear in rodent molar. Arch Oral Biol, 61, pp. 106-114.

Alhelal, A., Mahdee, A., Eastham, J., Whitworth, J. and Gillespie, J. (2016).
Complexity of Odontoblast and Subodontoblast Cell Layers in Rat Incisor. J Dent Sci,
4(2), pp. 68-74.

Conference presentations:

Mar. 2017: Spring Scientific Meeting of the British Endodontic Society,

London, UK (poster presentation).

Pulp responses to tooth wear in the rodent molar.

June 2016: 10th World Endodontic Congress of the International Federation
of Endodontic Association, Cape Town, South Africa (poster

presentation).

Presence and putative role of actin-containing odontoblast
processes in the rodent molar.

Sep. 2015: European Society of Endodontology Biennial Congress,
Barcelona, Spain (oral presentation).

Complexity and extension of odontoblast processes in intact and

damaged rodent dentine.

Mar. 2015 General Session & Exhibition of the International Association for

Dental Research (IADR), Boston, USA (poster presentation).

Complexity and extension of the odontoblast processes.
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