
Tools and Techniques for Analysing the
Impact of Information Security

John C. Mace

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2017

To Dad

Acknowledgements

A special mention must first be made to my wife Denise for supporting, and more so, putting
up with my dark moods during the writing of this thesis, especially the final arduous weeks.
I would like to thank my supervisor Professor Aad van Moorsel for his wise words of advice
and to Dr Simon Parkin for his guidance on the work presented in part two of this thesis. I
have a huge debt of gratitude to Dr Charles Morisset who helped me enormously, and without
whose help this thesis would not have been possible. I would also like to thank my examiners,
Professors Paul Watson and Jason Crampton, for their time, comments and recommendations.
A final note must go to the members of my ‘hellish’ fitness family, especially Gail and Neil
Lang, Dorothy and Dennis Valums, and Mr Mark Scott. By making me run the odd marathon
they ensured I did not spend the entire time in front of a computer.

Abstract

The discipline of information security is employed by organisations to protect the confi-
dentiality, integrity and availability of information, often communicated in the form of
information security policies. A policy expresses rules, constraints and procedures to guard
against adversarial threats and reduce risk by instigating desired and secure behaviour of
those people interacting with information legitimately. To keep aligned with a dynamic threat
landscape, evolving business requirements, regulation updates, and new technologies a policy
must undergo periodic review and change. Chief Information Security Officers (CISOs) are
the main decision makers on information security policies within an organisation. Making
informed policy modifications involves analysing and therefore predicting the impact of those
changes on the success rate of business processes often expressed as workflows. Security
brings an added burden to completing a workflow. Adding a new security constraint may
reduce success rate or even eliminate it if a workflow is always forced to terminate early. This
can increase the chances of employees bypassing or violating a security policy. Removing an
existing security constraint may increase success rate but may may also increase the risk to
security. A lack of suitably aimed impact analysis tools and methodologies for CISOs means
impact analysis is currently a somewhat manual and ambiguous procedure. Analysis can
be overwhelming, time consuming, error prone, and yield unclear results, especially when
workflows are complex, have a large workforce, and diverse security requirements. This
thesis considers the provision of tools and more formal techniques specific to CISOs to help
them analyse the impact modifying a security policy has on the success rate of a workflow.
More precisely, these tools and techniques have been designed to efficiently compare the
impact between two versions of a security policy applied to the same workflow, one before,
the other after a policy modification.

This work focuses on two specific types of security impact analysis. The first is quan-
titative in nature, providing a measure of success rate for a security constrained workflow
which must be executed by employees who may be absent at runtime. This work considers
quantifying workflow resiliency which indicates a workflow’s expected success rate assuming
the availability of employees to be probabilistic. New aspects of quantitative resiliency are

introduced in the form of workflow metrics, and risk management techniques to manage
workflows that must work with a resiliency below acceptable levels. Defining these risk
management techniques has led to exploring the reduction of resiliency computation time and
analysing resiliency in workflows with choice. The second area of focus is more qualitative,
in terms of facilitating analysis of how people are likely to behave in response to security
and how that behaviour can impact the success rate of a workflow at a task level. Large
amounts of information from disparate sources exists on human behavioural factors in a
security setting which can be aligned with security standards and structured within a single
ontology to form a knowledge base. Consultations with two CISOs have been conducted,
whose responses have driven the implementation of two new tools, one graphical, the other
Web-oriented allowing CISOs and human factors experts to record and incorporate their
knowledge directly within an ontology. The ontology can be used by CISOs to assess the
potential impact of changes made to a security policy and help devise behavioural controls
to manage that impact. The two consulted CISOs have also carried out an evaluation of the
Web-oriented tool.

viii

Table of contents

List of figures xv

List of tables xix

1 Introduction 1
1.1 Research Context . 2

1.1.1 Business Process Workflows . 2

1.1.2 Workflow Tasks . 2

1.1.3 Workflow Users . 3

1.1.4 Workflow Security Policies . 3

1.1.5 Chief Information Security Officers 4

1.1.6 Security Policy Design . 5

1.1.7 Security Policy Impact . 5

1.2 Security Policy Impact Analysis . 8

1.2.1 Workflow Resiliency Metrics . 9

1.2.2 Ontology Development . 12

1.3 Research Problems . 14

1.4 Contributions . 16

1.5 Publications . 18

1.6 Thesis Structure . 19

I Metrics 23

2 Workflow 25
2.1 Workflow Specification . 26

2.1.1 Task Schema . 26

2.1.2 Workflow Users . 29

Table of contents

2.1.3 Security Policy . 30

2.1.4 Workflow Specification Definition 33

2.2 Workflow Satisfiability . 33

2.2.1 Workflow Plans . 33

2.2.2 Workflow Satisfiability Problem 34

2.3 Workflow Resiliency . 35

2.3.1 Execution Specification . 36

2.3.2 Workflow Execution Specification 38

2.3.3 Feasible Plans . 40

2.3.4 Quantitative Resiliency . 41

2.3.5 Distance Resiliency . 42

2.4 Related Work . 45

2.4.1 Workflow Satisfiability Problem 45

2.4.2 Workflow Resiliency . 48

2.5 Summary . 54

3 Generating Workflow Metrics 57
3.1 Decision Making Processes . 58

3.1.1 Decision Making . 58

3.1.2 Decision Process . 59

3.1.3 Markov Decision Process . 64

3.2 Computing Workflow Metrics . 66

3.2.1 Workflow Markov Decision Process 66

3.2.2 Workflow Metric Reward Functions 71

3.2.3 Solving Workflow Markov Decision Process 72

3.3 Related Work . 79

3.4 Summary . 80

4 Computer Generated Metrics 83
4.1 PRISM . 84

4.1.1 Probabilistic Model Checking . 84

4.1.2 Model Checker . 85

4.1.3 Modelling Language . 86

4.1.4 Model Building and Verification 87

4.2 Encoding Workflow Markov Decision Processes 89

4.2.1 Workflow Specification . 89

x

Table of contents

4.2.2 Execution Specification . 92

4.2.3 Process Actions . 93

4.2.4 Plan . 95

4.2.5 Reward Functions . 96

4.3 Workflow Analysis . 97

4.3.1 Verification Properties . 97

4.3.2 Security Impact Analysis . 98

4.3.3 Computational Overheads . 101

4.4 Related Work . 103

4.4.1 Model Checking . 103

4.4.2 PRISM . 104

4.5 Summary . 105

5 Workflow Risk Management 107
5.1 Risk Reduction . 108

5.1.1 Empirical Assessment of Policy Modifications 109

5.1.2 Reducing Computation Time . 113

5.2 Risk Acceptance . 117

5.2.1 Workflow with Choice . 119

5.2.2 Resiliency with Choice . 122

5.2.3 Mitigation Strategy . 127

5.3 Summary . 130

II Ontologies 133

6 Security Ontology 135
6.1 Knowledge Management . 136

6.1.1 Organisational Knowledge . 136

6.1.2 Formalising Knowledge . 137

6.1.3 Knowledge Stakeholders . 138

6.1.4 Human Factors Knowledge . 139

6.2 Ontology Development . 141

6.2.1 Using Development Tools . 141

6.2.2 Collaborative Ontology Development 143

6.2.3 Existing Development Tools . 144

xi

Table of contents

6.3 Information Security Ontology . 145

6.3.1 Current Security Ontologies . 146

6.3.2 Foundation Security Ontology . 147

6.4 CISO Consultations . 149

6.4.1 Policy Review Timing . 150

6.4.2 Policy Review Resource Gathering 150

6.4.3 Policy Creation and Modification 151

6.4.4 Policy Reviews . 151

6.4.5 Policy Justification . 152

6.4.6 Policy Evaluation . 152

6.4.7 Sharing Policy Content . 153

6.4.8 Core Findings . 154

6.5 Summary . 155

7 Ontology Development Tools 157
7.1 Graphical Ontology Development Tool . 158

7.1.1 Tool Requirements . 158

7.1.2 Tool Implementation . 159

7.2 Web-Oriented Ontology Development Tool 166

7.2.1 Tool Requirements . 167

7.2.2 Tool Implementation . 168

7.2.3 CISO Tool Evaluation . 172

7.3 Summary . 176

8 Conclusion 179
8.1 Research Outcomes . 181

8.1.1 Problem 1 . 181

8.1.2 Problem 2 . 184

8.2 Future Work . 186

8.2.1 Workflow Resiliency Analysis . 186

8.2.2 Ontology Development . 190

References 193

Appendix A PRISM Encodings 207
A.1 Workflow Execution Specification WES1 207

xii

Table of contents

A.2 Workflow Execution Specification WES21 212
A.3 Workflow Execution Specification WES22 215
A.4 PRISM Model State Diagrams . 218

Appendix B Experimental Data 221
B.1 Workflow Execution Specification WES3 221
B.2 Workflow Execution Specification WES4 222
B.3 Workflow Execution Specification WES5 223

Appendix C CISO Consultations 225
C.1 Consultation Questions . 225
C.2 Tool Evaluation Session Structure . 228

Appendix D OWL Ontology Encoding 231
D.1 Security Ontology . 231

xiii

List of figures

1.1 Example of an abstracted purchase order approval workflow (POA), where the
darker nodes represent tasks and the directed arrows represent the required
order of task execution for the workflow to terminate successfully. 3

1.2 Example of an abstracted security policy life cycle, where the policy monitor-
ing and maintenance stage involves policy review and potential modification. 5

2.1 Illustration of workflow security policy (A1,S1,B1), where ̸= indicates a
separation of duty between tasks, = indicates a binding of duty between
tasks, and {ui, . . . ,un} indicates the users authorised to execute a task. . . . 32

3.1 A typical normative process whose outcome is a sequence of decisions made
rationally after careful reasoning of the expected reward. 58

3.2 Partial example of a decision process showing pairs of decision and event
actions that together form a sequence of decision process steps, which form
the decision process itself. 59

3.3 Partial example of a decision making process consisting of non-deterministic
decisions, probabilistic events, and deterministic termination actions, and
where s0 is the initial process state. 61

3.4 Process step of a decision process consisting of non-deterministic decisions,
probabilistic events, and deterministic termination actions, where sn is a
successful termination state and sm is an unsuccessful termination state. . . 62

3.5 Example decision making process with three possible decision policies δ1,
δ2, δ3, where s10 and s14 are successful termination states, and δ3 is the
optimal decision policy, maximising the probability of the decision process
reaching a successful termination state, which is s14 in this case. 65

3.6 Example workflow task schema (T2,<2) and security policy (A2,S2,B2)

used to illustrate solving a workflow Markov decision process (MDPW). . . 72

xv

List of figures

3.7 Quantitative satisfiability calculation for workflow execution specification
WES21 using an MDPW , where rQ is the reward received in a termination
state s and V ∗(s) is the maximum expected reward in state s where non-
deterministic choice exists. State s10 is the only successful termination
state. 74

3.8 Quantitative resiliency calculation for workflow execution specification
WES22 using an MDPW , where rQ is the reward received in a termina-
tion state s and V ∗(s) is the maximum expected reward in state s where
non-deterministic choice exists. State s15 is the only successful termination
state. 76

3.9 Distance resiliency calculation for workflow execution specification WES22

using an MDPW , where rD is the reward received in a termination state s and
V ∗(s) is the maximum expected reward in state s where non-deterministic
choice exists. State s15 is the only successful termination state. 78

5.1 Quantitative resiliency analysis of workflow execution specification WES3

using PRISM, where each plot represents a set Y of WES3 instances whose
security policy contains the same number of separation of duty constraints. 111

5.2 Quantitative resiliency verification time of workflow execution specification
WES3 using PRISM, where each plot represents a set Y of WES3 instances
whose security policy contains the same number of separation of duty con-
straints. 112

5.3 Sets of up to three separation of duty constraints which can be added to the
security policy of workflow execution specification WES5 to optimally re-
duce quantitative resiliency verification time without impacting the resiliency
value. 116

5.4 Sets of up to three authorisation constraints which can be removed from the
security policy of workflow execution specification WES5 to optimally re-
duce quantitative resiliency verification time without impacting the resiliency
value. 117

5.5 Task structure ts6 coming with choices of exclusive task execution, where
diamond nodes ci are choice points and the empty diamond node indicates
the end of a choice. 120

xvi

List of figures

5.6 Illustration of workflow security policy (A6,S6,B6), where ̸= indicates a
separation of duty between tasks, = indicates a binding of duty between
tasks, and {ui, . . . ,un} indicates the users authorised to execute a task. . . . 122

6.1 Partial ontology example where rectangles are ontology classes, ovals are
instances of a class, and directed arcs are relationships between instances
and classes. 138

6.2 Overview of security ontology which incorporates information security and
human behavioural knowledge with the ISO27002 security standard. 148

7.1 Overview of graphical ontology development tool components which in-
corporates the ontology editor and two file stores, one for Visio ontology
diagrams, the other for OWL ontology files. 160

7.2 Graphical development tool’s interface which allows users to drag and drop
populated ontology components and connect them before automatically
encoding the ontology in the Web Ontology Language OWL. 161

7.3 Graphical development tool dialog box for adding properties to a new security
ontology ‘vulnerability’ component which can then be incorporated with
pre-existing ontology content. 163

7.4 Overview of graphical development tool Java Translation Program’s compo-
nents which imports Java, Xerces, and OWL APIs to automatically encode
Ontology Diagrams into an ontology. 165

7.5 Section of example Ontology Diagram and corresponding OWL code rep-
resenting a password vulnerabiltity which is exploited by a threat of being
forgotten, and mitigated by a behavioural control making a password easier
to remember. 167

7.6 Overview of Web-oriented ontology development tool components which
incorporates a Tool Server which houses the tool and allows authorised users
to enter content and collaborate remotely. 168

7.7 Web-oriented ontology development tool’s Welcome page which gives an
introduction to the tool, an overview of the underlying security ontology
structure, and tabbed pages to access and modify ontology content. 169

7.8 Web-oriented ontology development tool Content page which shows ‘vul-
nerability’ compenents incorporated into the security ontology, along with
their interrelationships with other content, a help section, and notes posted
by users relating to ontology content. 170

xvii

List of figures

7.9 Web-oriented ontology development tool portal which allows users to post
notes relating to ontology content. 171

A.1 PRISM state diagram of MDPW for workflow execution specification WES21.218
A.2 PRISM state diagram of MDPW for workflow execution specification WES22.219

xviii

List of tables

1.1 Example drivers for reviewing and modifying a workflow security policy . . 6

2.1 All complete and valid plans for workflow specification WS1, where a table
entry πi× ti is the user ui assigned the execution of task ti by plan πi. 34

2.2 User availability forecast θ1, where a table entry xi×ui is the probability of
user ui being available at execution step xi. 38

2.3 All complete and valid step-task mappings for workflow specification WS1,
where a table entry µi× xi is the task ti mapped to the execution step xi by µi. 39

2.4 Probabilities of plan π15 being implemented under each step-task mapping
µi ∈ M1, and where the feasibility of π15 is given to be ρ(π15) = 0.060,
correct to 3 decimal places. 41

2.5 The expected number of completed execution steps for workflow execution
specification WES1 = (WS1,((Z1,≺1),θ1)), using step-task mapping µ11

and plan π15, is computed to be 1.65508, where k is the expected number of
completed execution steps and p(K = k) is the probability a discrete random
variable K = k. 44

3.1 Assignment decisions returned at each execution step xi by all workflow
decision policies δ that enable the workflow specification WS1 to be satisfied. 70

4.1 Workflow metrics for workflow execution specifications WES21 coming
with a full availability forecast, and WES22 and WES1, both coming with a
probabilistic availability forecast. 99

4.2 Workflow metrics for workflow execution specification WES1, where mi is a
modification applied to the security policy of WES1. 100

4.3 Computation overheads when using PRISM to generate workflow metrics
for workflow execution specifications WES1, WES21, and WES22. 102

xix

List of tables

4.4 Computation overheads when using PRISM to generate workflow metrics
for workflow execution specification WES1 before and after security policy
modifications m1, . . . ,m6. 103

5.1 Impact results of modifications to the security policy of workflow execution
specification WES3, where each column i∼ j shows the average impact of
adding between i and j separation of duty constraints. 110

5.2 Quantitative resiliency before and after a single separation of duty constraint
is added to the security policy of workflow execution specification WES4,
and quantitative resiliency verification times using PRISM. 113

5.3 Quantitative resiliency before and after a single authorisation constraint is
removed from the security policy of workflow execution specification WES4,
and quantitative resiliency verification times using PRISM. 114

5.4 Quantitative resiliency before and after respectively adding and removing a
set of separation of duty and authorisation constraints to and from the security
policy of workflow execution specification WES5, where each constraint set
contains up to three constraints. 115

5.5 User availability data sets D1 and D2, from which availability forecasts can
be directly defined, and used to generate a set of quantitative resiliency values
for the workflow specification with choice WSC6. 123

5.6 Quantitative resiliency values for each execution path of workflow specifi-
cation with choice WSC6 using user availability data sets D1 and D2, along
with the expected resiliency and resiliency variance of WSC6. 124

xx

Chapter 1

Introduction

Businesses, non-profit ventures or government agencies typically offer services or products
to consumers, made available by orchestrating and executing different business processes
across their organisations. Successful business process operations require a mix of accessing,
collecting, processing, transforming, analysing, and storing information, often using diverse
IT systems and technologies. Achieving regulation compliance, establishing trustworthiness,
and gaining business advantage mean organisations are compelled to protect the confiden-
tiality, integrity and availability of the information they govern. Chief Information Security
Officers (CISOs) must manage this challenge and take responsibility as the main decision
makers for setting security rules, procedures and defences commonly expressed in the form
of information security policies. Aligning information security policies and business pro-
cess requirements can often be a cause of tension; too much security may hinder business
process productivity whilst too much freedom to process information can be a risk to its
security [134]. A major challenge for a CISO can be designing and maintaining workable
security policies, which may be demanding when dynamic business environments necessitate
the need to regularly modify a security policy in accordance with new security requirements,
or the introduction of new information processing systems. Maintaining workable policies is
made harder considering human behaviour may impact and itself be impacted by information
security [10, 87]. Clearly, modifying a security policy so that it stops or reduces business
process productivity to an unacceptable level would render a security policy unworkable.
A CISO must therefore understand the business implications of designing and modifying
security policies, which leads to the aim of this thesis:

Aim: To provide new tools and more formal methodologies to help Chief In-

formation Security Officers (CISOs) analyse the impact of information security

policies on the productivity of a business process.

1

Introduction

1.1 Research Context

1.1.1 Business Process Workflows

Many business sectors including finance, healthcare and eScience use the concept of workflow
to formally describe and efficiently orchestrate their everyday business processes using
automated workflow management systems [13, 69, 79]. The exact definition of workflow
can often differ across business sectors, or even organisations within the same sector [69].
The Workflow Management Coalition (WfMC) formed from global analysts, developers,
researchers and consultants have been working towards the standardisation of workflow and
its management since 1993. Their working definition of a workflow is:

"An automation of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant to another for action,
according to a set of procedural rules." [106]

The concept of workflow is used in this thesis as it provides a suitable platform to
formally express and analyse a business process. Well defined workflow descriptions are
necessary for automation purposes and outline a workflow’s components, their structure,
and how they interrelate. Workflows may be described with differing scope (e.g. within
single, or across multiple organisational departments), distributed across many different
frameworks (e.g. cloud platforms [119]), and managed in many different ways (e.g. manually
or automatically). By abstracting away such details this thesis does not concern itself with
where a workflow is performed, nor the technologies used to manage it. Instead it focuses on
the workflow itself and how its execution may be impacted by a security policy. Workflows
are typically repeatable structures representing day-to-day business processes. An instance

of a workflow is one instantiation, or execution of a workflow [106]. Productivity in terms of
workflow is expressed as success rate, that is the percentage of completed instances among N

attempts [69]. This thesis considers dynamic human factors, including availability, which can
affect the success rate of a workflow. This thesis also introduces new techniques to generate
an expected success rate under the uncertainty unavailability introduces.

1.1.2 Workflow Tasks

One common component to all workflows is a group of clearly identified atomic activities,
or tasks (the work) that must be co-ordinated and performed in some specific and logical
ordering (the flow), e.g. [41, 69, 174, 176]. For example, consider the abstracted purchase

2

1.1 Research Context

create
order

submit
order

approve
order

success f ul
termination

Fig. 1.1 Example of an abstracted purchase order approval workflow (POA), where the darker
nodes represent tasks and the directed arrows represent the required order of task execution
for the workflow to terminate successfully.

order approval workflow (POA) shown in Figure 1.1. The workflow consists of three tasks
(create order), (submit order), and (approve order). The directed arrows indicate the
order in which the tasks should be executed, for instance the execution of (submit order)
can only follow the execution of (create order). The POA workflow therefore reaches
successful termination once the last task, (approve order) has been performed. This simple
example exhibits a linear, or sequential execution order meaning a task is enabled after the
task immediately preceding it is completed. However, workflows may be more complex
than this. Common scenarios include parallel splits where the execution path diverges into
two or more parallel paths which execute concurrently, or conditional splits meaning the
execution path diverges into two or more parallel paths of which only one will execute [176].
In the latter case, path selection is made, based on certain conditions or preferences, by some
decision making agent represented in the workflow as a choice point [176].

1.1.3 Workflow Users

Another common aspect of workflow is a group of processing entities, or participants that
perform the tasks in a workflow. These may be human, software systems, or a combination
of both [69]. As previously mentioned, this thesis considers human behavioural factors in
part, and therefore focus on workflows executed solely by human users. The work presented
in this thesis, could however be adapted and applied to workflows which involve automated
processing entities. User responsibilities when executing workflow tasks include interacting
with computer systems in order to access and process information. A key enabler to achieving
acceptable workflow success rates is the timely availability, accessibility and processibility
of information to users. Information is also essential to drive workflows by informing critical
decisions over which tasks need performing and when (e.g. at choice points).

1.1.4 Workflow Security Policies

Despite such a heavy demand for information, its availability and accessibility is commonly
protected by implementing security policies. A security policy can be described as a set

3

Introduction

of rules put in place to provide confidentiality, integrity, and availability of information
by aiming to protect information and information processing systems from unauthorised
access, use, disclosure, disruption, modification and destruction. Security policies may take
many forms, for instance a password policy defining what form a password should take and
how often it should be changed, or a network login policy which specifies how many login
attempts a user can make before being locked out of the system.

A particular security concern with workflow is to ensure users with the correct clearance
and capabilities are matched with appropriate tasks, and the threat of collusion and fraud is
reduced [18]. For instance it would be desirable for the tasks (submit order) and (approve
order) in the example POA workflow, shown in Figure 1.1, to be performed by different
users, thus ensuring a user cannot order unauthorised goods. A workflow security policy
is often expressed by sets of security constraints, many of which may have to be satisfied
in conjunction when executing a workflow [6, 132, 186]. Typical workflow constraints are
authorisation constraints that define which users can execute which tasks in any workflow
instance, separation of duty constraints that define which tasks should not be executed by the
same user in a single workflow instance, and binding of duty constraints that define which
tasks should be executed by the same user in a single workflow instance [18, 20, 98, 188]. A
security policy is therefore the third common aspect of the workflows we consider.

Having introduced the concepts of workflow tasks, workflow users, and workflow security
policies, we are now in a position to give an informal definition of workflow to be:

A workflow consists of a set of ordered tasks, a set of users, and a security policy.

1.1.5 Chief Information Security Officers

Security experts are commonly employed by organisations in the form of Chief Information
Security Officers (CISOs) to devise, manage and monitor information security policies. Due
to the size and diverse nature of networked computerised systems and technologies used by
large numbers of users within many organisations, setting a single information security policy
may not be practical. According to Information Security Policy - A Development Guide for

Large and Small Companies, published by the SANS institute [48], CISOs are recommended
to take a more practical approach and express their organisation’s information security policy
in a number of different ways, by maintaining a collection of (sub) policies. Each of these
can then express more detailed rules, constraints and procedures to guard against adversarial
threats and reduce risk by instigating desired and secure behaviour of those people interacting
with information legitimately during the execution of workflows.

4

1.1 Research Context

Risk Assessment Policy Construction

Policy ImplementationPolicy Monitoring & Maintenance

Fig. 1.2 Example of an abstracted security policy life cycle, where the policy monitoring and
maintenance stage involves policy review and potential modification.

1.1.6 Security Policy Design

Complex and dynamic business environments mean periodic modifications must be made
to a security policy over its operational lifetime to ensure it remains aligned with current
organisational security and operational requirements. In other words a security policy must
be both compliant and workable. Indeed, a security policy can be considered to be a ‘living’
document in the sense it is never finished, but is continuously updated as technology and
employee requirements change. This progressive design process typically forms a policy life
cycle consisting of a number of stages, taking a policy from its initial creation right through
to its retirement. Particular examples include the Security Policy Roadmap - Process for

Creating Security Policies (SANS institute), and The Security Policy Life Cycle: Functions

and Responsibilities [171]. An abstracted security policy life cycle taken from [173] is
shown in Figure 1.2. Of particular interest is the Policy Monitoring & Maintenance

stage that, as the name suggests consists of: 1) monitoring user compliance with a policy
and; 2) maintenance of a policy, which itself consists of two sub-phases, making policy
reviews and making policy modifications. There can be many reasons, or drivers that prompt
a CISO into reviewing, and possibly modifying a workflow security policy. Some possible
change drivers are given in Table 1.1.

1.1.7 Security Policy Impact

Policy modifications may take many forms but intuitively consist of changing current policy
content by adding new rules, removing obsolete rules, and/or updating rules or constraints,
thus creating a new version of the policy. Modifications could also be applied in the context
of creating a new policy required for a newly implemented business function, (i.e., changing
from an empty policy to a non-empty one). Despite a CISO identifying compelling policy
modifications, following a policy review, it does not mean she is necessarily free to implement
them. The aforementioned policy life cycle guidelines highlight policy modifications must

5

Introduction

Table 1.1 Example drivers for reviewing and modifying a workflow security policy

An organisation may wish to redesign and streamline a workflow by changing the
process structure, the tasks involved, or the information required to complete the
workflow.
Technologies and applications used by employees to access information and carry
out workflow tasks may be updated or may change.
The structure of the workforce associated with performing a workflow may change
in terms of employee numbers and skills.
A completely new policy may be needed following the introduction of a new business
function, technology or software application used during the performance of a
workflow.
An existing policy may need to be modified in order to apply it to a new business
function, technology, or application.
An organisation may wish to demonstrate compliance with a particular regulation to
meet legal obligations or instil consumer confidence as a trustworthy information
guardian.
A new security threat may emerge when using a particular technology used to
perform a workflow task, or an existing threat may no longer exist.
A policy may be found to be unworkable by slowing or stopping employees from
completing workflow tasks on a regular basis.

first be recommended to, reviewed by, and agreed upon by business leaders. Intuitively,
information security policies will have some level of impact on the success rate of workflows
within their sphere of influence. Understanding this impact is a major concern before business
leaders sign-off on any recommended modifications. A CISO must therefore present a trade-
off, on the one hand justifying why a policy needs to be modified, often difficult when
information security is both intangible and expensive (security metrics are being developed
for this purpose, e.g. [108]). On the other hand a CISO is expected to communicate the
potential impact of those modifications in a meaningful way. Clearly, any modification to a
security policy that would reduce the success rate of a workflow has a negative impact for
the business leader. This impact may be felt as an increase in the time it takes to complete an
instance of the workflow, or it may prevent some or all workflow instances from completing.
Of course, on the other hand, removing an unworkable or obsolete security constraint or
procedure may have a positive impact thereby increasing the success rate of a workflow,
although this may bring a potential reduction to security levels. Security policies should
therefore minimise risk while not imposing undue access restrictions on those who need
access to information.

6

1.1 Research Context

Understanding the potential impact of policy modifications on workflow completion is
important as modifying policies once implemented can be a long process [10]. Policies
must be re-written, systems and controls reconfigured and tested, employees made aware
and trained. Identifying policy modifications with an unacceptable impact before their
implementation can help to avoid this. The potential impact of policy modifications is also
useful to understand in scenarios where a negative impact from a modification on workflow
completion is unavoidable, for instance, as the result of a regulation update. This impact may
present an uncomfortable risk to the business leader, in this case, the potential for workflow
failure. Two common approaches to managing risk that could be applied to workflow are,
reducing the risk of failure and accepting the risk of failure [160]. One way to facilitate risk
reduction is to use dynamic techniques that can adapt the way the workflow is performed
according to risk indicators extracted from the environment, e.g. [148, 182]. In the case of
risk acceptance, mitigation strategies can be formulated which consist of targeted actions to
be taken when a risk of workflow failure materialises. For instance, a strategy may include
emergency measures such as policy overrides (e.g. break glass [63]), allowing certain users to
perform tasks they would not normally be authorised for. A mitigation strategy may include
more long-term actions outlining staff security training or recruitment.

It is users who ultimately perform and complete tasks that form workflows (although they
may not realise this), and it is users who impact and are themselves impacted by security
on the ground. Information security and the human factor are therefore tightly coupled in
respect to their impact on workflow success rates. From an organisational viewpoint, human
behaviour, such as unavailability, meaning a user is unable to perform tasks when needed,
can have a major impact on the success rate of workflows [87]. Unavailability of a user
may for example, stem from being off sick or on vacation, being already occupied with
performing another task, or simply their unwillingness to perform a task. Such situations
make it necessary to find other, available users to perform these tasks, however the security
policy may prohibit such users from doing so. Predicting and understanding the impact of
this becomes a particular problem when many organisations in today’s financial climate
must make budget cuts and often operate workflows with minimal staffing levels. Users
who are not technology minded and find information security hard to grasp can also cause
delays when completing tasks, for instance, unfamiliarity with systems, misplacing data and
forgetting passwords [10].

From a user’s perspective, security places an added burden on their working procedures
and can often become a source of tension when it causes seemingly unnecessary delays or
even prevents tasks from being performed as and when required [134, 144]. For instance,

7

Introduction

implementing a complex password policy may cause some users to forget their password
which can take some time to reset. In other cases, misaligned security may prevent a workflow
from completing if, for instance, users do not have the correct information access to complete
certain tasks. Indeed it is widely reported that the pressures of securing information have
led to many unworkable policies which, coupled with the pressures of productivity, have
resulted in policy violations, user workarounds, bring your own device, and the unauthorised
provisioning of cloud computing resources [119, 134, 140]. Adding more security therefore
can arguably make information less secure in such cases. It is important then, for a CISO to
consider the human aspect in order to provide more practical impact analysis of modifications
made to an information security policy. This can be considered in terms of how human users
behave and how they would likely react to policy modifications.

1.2 Security Policy Impact Analysis

As previously stated, an organisation’s security policy is often expressed a a suite of sub-
policies in order to target specific security concerns, many of which may be applicable to
a workflow. Each policy, and any subsequent modifications made to it may, together with
aspects of human behaviour, impact a workflow’s successful completion in different ways.
This makes it necessary for a CISO to perform many different types of impact analysis
incorporating human factors. In order to do this the CISO must have appropriate workflow
security impact analysis tools and techniques at her disposal.

Some work already exists in terms of analysing security policies, particularly detecting
and resolving conflicts between multiple policies applied to the same business processes [112,
154, 161]. This issue often arises when policies are constructed independently by multiple
authors within the same organisation [59]. Security policy compliance with workflow
specifications is also considered, e.g. [97], which focuses on analysing separation of duty
constraints. Of particular interest is analysing the presence and correctness of access control
properties necessary for employees to access the information necessary to complete workflow
tasks. Formal modelling approaches have been suggested for this purpose [9, 187, 189].
This is of particular importance in adaptive workflows whose configuration can change
dynamically at runtime [175]. The inability to provide specific security properties when such
workflows do change can prevent them from completing [49, 182]. Issues such as redundancy
(unnecessary security constraints) and incompleteness (missing security constraints) can also
be analysed using similar techniques [17]. Approaches have also been considered to analyse

8

1.2 Security Policy Impact Analysis

whether obligations taken on to gain immediate information access can be fulfilled at a later
time in accordance with a security policy [17, 111].

When it comes to predicting the impact of policy modifications on workflow completion,
the process is less well articulated and less informed by any background theory, especially
when considering the human element. Although some work on this area is starting to emerge
(e.g. [31]), a lack of suitably aimed tools and techniques for the CISO means impact analysis
is currently a somewhat manual and ambiguous procedure [134]. This can be overwhelming,
time consuming, error prone, and yield unclear results, especially when workflows are
complex, have a large workforce, and diverse security requirements. This thesis aims to help
address this issue by providing new tools and more formal methodologies to help CISOs
analyse the impact of security policies on workflow completion. More precisely, these tools
and methodologies have been designed to simplify the process of impact comparison between
two policies applied to the same workflow, that is one version with and the other without
a potential policy modification. This work focuses on two specific types of policy impact
analysis that incorporate the human factor.

1.2.1 Workflow Resiliency Metrics

The first analysis method for workflow security impact considers user availability, more
precisely how the unavailability of certain users in conjunction with a security policy may
impact the completion of a workflow. Availability is the ‘the quality of being able to be used

or obtained’, ‘the state of being otherwise unoccupied’, or the ‘freedom to do something’1.
In systems, availability is usually defined in terms of up-time. That is, states of a system
are labelled either up or down, and the fraction of time in the states labelled up corresponds
to the system’s availability. In [127], Meyer and Sanders provide a general approach to the
definition of metrics such as this. We consider a more specific notion of availability, namely
the availability of users, which can be free or not during the execution of a workflow to
execute tasks. Dynamic workplaces, complex work schedules and human behaviour mean
users may not always be available during every execution of a workflow. For instance, a user
may be required to perform tasks across several different workflows executing concurrently,
meaning their availability for specific tasks in each workflow may be intermittent. In other
cases, a user may be employed to only perform tasks in a single workflow suggesting they will
always be available as required. However, sickness, vacation, tardiness and other countless
reasons can still attribute to the user’s unavailability. Availability and its impact on reducing

1Oxford English Dictionary

9

Introduction

workflow success rate has been considered previously [141]. This approach looks at the
unavailability of systems and administrators that control decisions on access requests to
information assets. The impact of reducing success rates is measured as the time taken
waiting for an access control decision. This is clearly a useful analysis technique for a
CISO but it does not address the issue of how the security policy itself, coupled with user
availability, impacts the success rate of a workflow, and therefore, is unsuitable in this regard.

A suitable first step to security policy impact analysis when considering user availability
is to assess whether a workflow can complete without violating a policy while assuming all
users will be available during execution. This problem is known as the workflow satisfiability
problem, and is a well studied problem in the literature, e.g. [41, 163, 180, 190]. Solving the
workflow satisfiability involves finding a complete and valid plan which assigns the execution
of tasks to users. A plan is complete if the execution of all tasks are assigned, and valid if all
security constraints are satisfied. Current work tends to concern itself with finding efficient
algorithms to find whether a workflow is satisfiable, or not, e.g. [35]. However, by providing
a quantitative solution to the workflow satisfiability problem we can start to think in terms of
impact analysis metrics which indicate whether the security policy blocks the completion of
a workflow.

An extension to the workflow satisfiability problem is workflow resiliency which con-
siders whether a workflow is resilient to a number of users becoming unavailable, in the
sense that it is still satisfiable [94, 179, 180]. Resilience, or Resiliency2, is defined as the

‘capacity to recover quickly from difficulties; toughness’, or the ‘ability of a substance or

object to spring back into shape; elasticity’3. In general, resiliency is the ability to withstand
or recover quickly from adverse conditions [1]. In terms of systems, a system is resilient
if it can persistently deliver trustworthy service despite changes, such as changes to the
availability of needed resources. Intuitively, as the availability level of users reduces, the
resiliency of a workflow is likely to reduce. Similarly, as a security policy is tightened, for
instance by adding separation of duty constraints, it is likely the resiliency of a workflow
will again reduce. In both cases, finding a complete and valid plan for which all users are
available to execute, is likely to become harder. On the other hand, raised user availability
levels or the weakening of a security policy may raise the resiliency of a workflow. The
configuration of workflow tasks defined in a task schema may also cause resiliency to change.
As the design of a security policy is managed by a CISO, whilst arguably, the configuration
of workflow tasks and user availability is not, we focus on the impact of security policies on

2We use the term resiliency inline with related literature
3Oxford English Dictionary

10

1.2 Security Policy Impact Analysis

the resiliency of a workflow. In doing so, we assume task configurations and predictions of
user availability to be fixed.

Current solutions to quantifying workflow resiliency define the number of k users who can
be unavailable at any point during the execution of a workflow. If a workflow is k resilient it is
assured that the security policy allows the remaining, available users to complete the workflow
while satisfying the security policy. In terms of impact analysis, modifying a security policy
may raise or lower k but does not indicate a fine grained degree of impact a modification has
on the resiliency of a workflow. For instance, two different policy modifications may cause
a workflow that is 2 resilient to become 0 resilient, but is the impact of both modifications
actually equal? The k resiliency metric offers a binary measure in the sense that a workflow
is either k resilient or not. Imagine a workflow coming with a set of users, and there are
100 possible k sized subsets of users who could become unavailable during a workflow’s
execution. For the workflow to be k resilient, it must be satisfiable in all 100 cases of possible
user unavailability. This may not practical in many situations when analysing real world
workflows, that must work, but may not always complete depending on the availability of
users. However, a workflow that is found to be satisfiable in 99 possible cases of k users
being unavailable is clearly better than a workflow that is satisfiable in only 1 case.

By building on existing solutions this thesis defines a new resiliency metric called
quantitative resiliency which indicates the expected success rate of a workflow under the
assumption users may become unavailable. Another new resiliency metric is distance

resiliency which indicates the expected point a workflow will terminate. This could be
useful for a CISO by indicating at what point a security policy causes a workflow to become
blocked. Providing these meaningful resiliency metrics means a CISO could predict the fine
grained resiliency impact of each modification to a security policy. For instance, saying one
modification reduces the quantitative resiliency of a workflow from 98% to 95%, whereas a
different modification reduces it from 98% to 15% enables easy resiliency comparison. This
is clearly more meaningful than saying a workflow is, or is not, k resilient, as the workflow
will still provide a level of service following both policy modifications, although clearly a
policy with the first modification will in general provide much better service than a policy
with the second.

The resiliency of a workflow could in some cases be unavoidably low due to enforced
policy modifications, meaning it may be necessary to reduce the risk of workflow failure.
Computing workflow resiliency at runtime could be one way to reduce the risk of a workflow
failing by ensuring the most resilient assignment of task executions to users is made in
accordance with current predictions of user availability. Calculating resiliency when assigning

11

Introduction

the execution of each task could itself have an impact on the success rate of a workflow making
it necessary to minimise resiliency computation time. This thesis therefore examines how
resiliency computation time is affected by modifications to a security policy and explores how
computation time could be reduced. In terms of risk acceptance, the resiliency of a workflow
could help understand the requirements for a suitable mitigation strategy. Workflows with
a single execution path will have single quantitative and distance resiliency measure. For
instance a high resiliency would imply an infrequent need to perform any mitigation actions.
This could favour a mitigation strategy consisting of short-term, low cost actions such as
security constraint emergency overrides. Low resiliency would suggest a broader strategy
including more permanent yet costly mitigation actions such as staff training and increasing
user availability, by cancelling vacations or paying overtime for example. Workflows with
choice points on the other-hand can have multiple execution paths, any of which may be
taken when executing a workflow. Workflows of this kind may therefore have a different
level of resiliency for each path, making the formation of suitable mitigation strategies much
more complex, especially when a workflow contains hundreds of execution paths. Taking
the resiliency average alone could be a misleading indicator of success rate, especially when
a workflow contains paths of both very high and very low resiliency. Therefore this thesis
provides a single, understandable measure of resiliency for a workflow with choice and
suggests how it can be used to form suitable mitigation strategies.

1.2.2 Ontology Development

The second analysis method for workflow security impact focuses on security policies applied
at the task level of a workflow. The analysis of workflow resiliency described in Section 1.2.1
makes the simple assumption that if a user is available and they are permitted to perform
a task, the task in question will be completed successfully. As discussed in Section 1.1.7,
users face many challenges in respect to information security when performing workflow
tasks even when they are permitted to do so. These challenges can delay and in extreme
cases prevent a user completing their assigning tasks. Security impact analysis at the task
level consists of identifying how users typically behave and react in relation to security
modifications, assessing how policy modifications and related employee behaviours jointly
impact the success rate of a workflow, and extracting behavioural controls to manage that
impact.

Modelling and formalising human behaviour in security is a topic of increasing interest
and is being researched in many areas of security including insider threat prediction [28],

12

1.2 Security Policy Impact Analysis

passwords [100] and human decision making [191]. Ideally, a CISO would like to carry
out quantitative analysis of security impact at the task level (e.g. [31]) however the related
research is still in its infancy, still remains complex, and remains beyond the reach of
most CISOs to measure in an accurate way. Instead, a more realistic qualitative analysis
approach can be considered. As a first step, the CISO must understand how users are likely
to react when imposing modifications to existing security policies. To facilitate this there
are potentially large amounts of diverse (and in some cases untapped) knowledge relating to
information security issues and human-behavioural factors, available from a wide array of
sources and represented using a variety of terms and concepts [142].

Managing and formalising knowledge of various information security concerns and
exposing their interdependencies within an ontology can form an information security
knowledge base, useful for security impact analysis [61, 142]. The strength of an ontology
is there is no single entry point to the information within it, allowing a CISO to analyse
security impact from many different perspectives. For instance a CISO may start with a
potential policy modification and want to assess its typical impact on user behaviour and
therefore the success rate of a workflow, or a CISO may start with a typical user behaviour
negatively impacting workflow success rate and assess what behavioural controls can be put
in place to manage this. Another strength of an ontology is that knowledge fragments can
easily be recorded and incorporated with existing content. Most CISOs and human factors
experts however do not have the expertise to create an ontology directly using existing tools
as such tools are complex and aimed at ontology experts [117, 118]. Recording knowledge is
potentially error-prone and time-consuming, especially if a CISO or human factors expert is
relying upon an ontology expert with limited availability, and who does not fully understand
the nuances of the knowledge content and its structure, as they enter it into the ontology.
To address this issue, this thesis introduces two new security ontology development tools,
one graphical, the other Web-oriented dedicated for CISOs and human factors experts to
record and incorporate their knowledge directly and intuitively within the structure of the
underlying security ontology. Both tools can automatically translate this knowledge into
a machine readable ontology file for automatic analysis. The graphical tool is dedicated
to ontology construction whilst the Web-oriented tool can be used to create new and edit
existing ontologies including those imported from the graphical tool. Furthermore, it can be
used by a CISO to access and share ontology content, and use it to qualitatively analyse the
potential impact on workflow success rate at the task level when modifying security policies,
and help identify behavioural controls to manage that impact.

13

Introduction

1.3 Research Problems

The work presented in this thesis focuses on improving two analysis methods CISOs can
use to predict the impact security policy modifications have on workflow completion. Both
analysis methods consider human behavioural factors. The first security impact analysis
method considers workflow resiliency, that is the expected success rate of a workflow when
assuming users may become unavailable during execution. Current resiliency metrics offer
a binary measure indicating a workflow to be resilient, or not. This may not be practical
in many cases, when analysing the potential impact of modifying the security policy of a
workflow that must work but may not be resilient in every instance. This shortcoming has
highlighted the following research problem:

Problem 1 CISOs need fine grained metrics to analyse the potential impact security policy

modifications have on the resiliency of a workflow.

This first problem has raised a number of research questions which in turn have driven
the research presented in part 1 of this thesis. In order to analyse the expected impact of
a security policy modification, it is necessary for a CISO to compare the the resiliency of
a workflow with and without the policy modification. To enable practical and meaningful
resiliency comparison a CISO requires quantitative resiliency measures raising the question:

Question 1.1 How can a CISO generate a quantitative measure of resiliency for a workflow?

Central to calculating workflow resiliency is the expected availability of users when
executing a workflow. It is therefore necessary to express, or model an expectation of user
availability when calculating resiliency. More precisely it is necessary to represent which
users are expected to be available and when during the execution of a workflow. It may be
possible, or even necessary (dependent on user availability data) to represent a level of user
availability when calculating the resiliency of a workflow. We therefore ask:

Question 1.2 How can the expected availability of users be modelled in order to calculate

the quantitative resiliency for a workflow?

It is unrealistic to expect many security constrained workflows, executed by users who
may become unavailable, to be fully resilient. Security policy modifications enforced by

14

1.3 Research Problems

regulations may lower the resiliency of a workflow below an acceptable threshold of failure
risk. When workflow completion is of extreme importance it is necessary to specify ways
to manage this risk, for instance through risk reduction, or risk acceptance. The latter case
should outline allowable mitigation actions that can be taken to avoid a workflow terminating
early. If a quantitative measure of resiliency can be calculated, we ask the question:

Question 1.3 How can a quantitative measure of resiliency help manage the risk of workflow

failure?

The first research problem and its associated questions will be tackled in Part 1 of this
thesis. The second security impact analysis method considers recording and incorporating
security and human factors knowledge within the structure of a security ontology. A CISO
could use an ontology to analyse how human behaviour is likely to affect and be affected
by a security policy, and how these behaviours may affect the completion of a workflow.
Currently, ontology development is complex and not easily accessible for knowledge holders
to directly record and interrelate their knowledge. This has highlighted the following research
problem:

Problem 2 CISOs and human factors experts need to record and incorporate their security

and human behavioural knowledge directly within the structure of an ontology.

This second problem has raised a number of research questions which in turn have
driven the research presented in part 2 of this thesis. As with any tool development it is
necessary to capture the needs, or requirements of its targeted users, which raises the question:

Question 2.1 What are the requirements for an ontology development tool created specifi-

cally for CISOs and human factors experts?

A large number of ontology editing tools4, and technologies, already exist that could
be utilised to create specific ontology development tools. Understanding these tools and
technologies is therefore important when meeting user requirements. It is also necessary
to identify suitable and intuitive ways of knowledge recording and its incorporation with
existing knowledge, e.g. graphical or text based. We therefore ask:

4e.g. see https://www.w3.org/wiki/Ontology_editors

15

https://www.w3.org/wiki/Ontology_editors

Introduction

Question 2.2 What methods and technologies can CISOs and human factors experts use to

record and incorporate their security related knowledge within an ontology?

Once user requirements and the means to meet those requirements are understood, a
natural next step is the implementation of a specific security ontology development tool. We
therefore ask the question:

Question 2.3 How can an ontology development tool tailored specifically for CISOs and

human factors experts be implemented?

The second research problem and its associated questions will be tackled in Part 2 of this
thesis.

1.4 Contributions

The motivation of this thesis is to provide new tools and techniques to help CISOs analyse the
potential impact modifying a security policy has on workflow completion. Two methods of
workflow security impact analysis involving human behavioural factors are considered, and
have led to several contributions in terms of workflow resiliency and ontology development.
More precisely, the main contributions of this research are as follows:

• Contribution 1. We propose a novel approach to quantifying the satisfiability and
resiliency of a security constrained workflow in order to provide workflow resiliency
metrics (Chapter 2). We give a definition of workflow which exposes the notion of
users becoming unavailable during the execution of a workflow. We then consider
the execution process of a security constrained workflow, involving the execution
of tasks being assigned to users, to be a decision making process, and show how it
can be expressed as a Markov decision process (Chapter 3). We show that finding
such an assignment is equivalent to finding the optimal policy of a Markov decision
process whose value function provides the resiliency metrics we require. We also show
how changing the reward function of a Markov decision process can provide different
metrics of resiliency, which we call quantitative resiliency and distance resiliency.

• Contribution 2. We outline a systematic approach to encode a Markov decision
process, modelling the execution process of a workflow, into the probabilisitic model
checker PRISM. PRISM is subsequently used to automatically generate resiliency

16

1.4 Contributions

metrics by verifying the existence of properties in the encoded Markov decision process
(Chapter 4). We illustrate with examples how this single framework can be used
to generate quantitative satisfiability, quantitative resiliency, and distance resiliency
metrics for a workflow. We then show how the impact of a security policy modification
on the resiliency of a workflow can be predicted. We also highlight interesting analysis
cases, for instance adding security constraints does not necessarily reduce resiliency,
while a workflow with no quantitative resiliency may still have resiliency in terms of
distance.

• Contribution 3. We discuss how computing the quantitative resiliency of a workflow
at runtime can help reduce the risk of workflow failure by ensuring the most resilient
assignment is made in accordance with the current prediction of user availability
(Chapter 5). We first give an empirical assessment of policy modifications on the
quantitative resiliency computation time followed by a methodology to calculate a
set of artificial security constraints that can be added or removed from the security
policy. The effect of these constraints is observed in some cases to reduce resiliency
computation time whist maintaining the quantitative resiliency of a workflow.

• Contribution 4. We give a definition for a workflow with choice and show how it can
be reduced to a set of workflows without choice in order to calculate the resiliency
of each execution path (Chapter 5). We introduce a new metric for security impact
analysis called resiliency variance that indicates an overall resiliency variability or
volatility from the resiliency average. Several other resiliency metrics are considered
for a workflow with choice; resiliency extrema, resiliency distribution, and expected

resiliency. Discussion is also given indicating how resiliency variance could be used
for predicting a suitable workflow mitigation strategy.

• Contribution 5. We outline requirements and implementation details of a new graph-
ical ontology development tool (Chapter 6). The tool prototype allows CISOs and
human factors experts to record and incorporate their security knowledge within the
underlying ontology structure. In particular the tool enables knowledge relating to
potential security constraints and controls to be related to common human behaviours,
useful for security policy impact analysis. The tool, created in Visual Basic provides a
template of shapes and connectors allowing ontology diagrams to be easily constructed
according to the ontology structure (Chapter 7). The graphical content can be both
stored and automatically translated via a Java implemented program into the machine
readable ontology language OWL without need for ontology expertise.

17

Introduction

• Contribution 6. We outline the requirements and implementation details of a new
Web-oriented collaborative ontology development tool (Chapter 6). The tool prototype
extends the Web-based, open source ontology development tool Web-Protégé, making
ontology development approachable both to CISOs and human factors experts by
hiding the complexities of the underlying ontology. The tool supports several collabo-
rative features allowing knowledge capture and alignment from across a number of
participating organisations (Chapter 7). Tool requirements have been extracted from
semi-structured consultations with two CISOs within large organisations (Chapter 6).
Evaluation of the tool has also been carried out by the two CISOs, providing useful
feedback on tool design and functionality.

1.5 Publications

This work has been documented in part in the following peer reviewed publications:

1. Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015c). Resiliency variance in
workflows with choice. In Proceedings of the 7th International Workshop on Software

Engineering for Resilient Systems, SERENE’15, pages 128–143

2. Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015b). Modelling user avail-
ability in workflow resiliency analysis. In Proceedings of the 3rd Symposium and

Bootcamp on the Science of Security, HotSoS’15. Article 7

3. Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015a). Impact of policy design
on workflow resiliency computation time. In Proceedings of the 12th International

Conference on the Quantitative Evaluation of Systems, QEST’15, pages 244–259

4. Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2014). Quantitative workflow
resiliency. In Proceedings of the 19th European Symposium on Research in Computer

Security, ESORICS’14, pages 344–361

5. Mace, J. C., Van Moorsel, A. P. A., and Watson, P. (2011). The case for dynamic
security solutions in public cloud workflow deployments. In Proceedings of the 41st

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops,
DSN-W’11, pages 111–116

6. Mace, J. C., Parkin, S. E., and Van Moorsel, A. P. A. (2010a). A collaborative
ontology development tool for information security managers. In Proceedings of the

18

1.6 Thesis Structure

4th ACM Symposium on Computer Human Interaction for Management of Information

Technology, CHIMIT’10. Article 5

7. Mace, J. C., Parkin, S. E., and Van Moorsel, A. P. A. (2010b). Ontology editing tool for
information security and human factors experts. In Proceedings of the 2nd International

Conference on Knowledge Management and Information Sharing, KMIS’10, pages
207–212

1.6 Thesis Structure

This chapter has motivated the research presented in this thesis and two research problems
it looks to address in regards to analysing the impact security policies have on workflow
completion. The research contributions and peer reviewed publications supporting the validity
of the research have also been presented. The remaining chapters of this thesis are as follows:

• Chapter 2. A formal definition of security constrained workflow is given and shown
to be satisfiable if a complete and valid plan can be found, that is a plan assigning
the execution of tasks to users which satisfies all security constraints. The workflow
definition is extended in a way that exposes the notion of users becoming unavailable
at runtime. A workflow is shown to have a level of resiliency if a feasible complete
and valid plan can be found. A plan is feasible in the sense that users are available to
execute it. Quantitative measures are then defined in the form of workflow metrics.
Related work on the workflow satisfiability problem and workflow resiliency is also
presented.

• Chapter 3. An abstracted workflow execution process, involving the execution of tasks
being assigned to users, is presented as a decision making process. It is shown how a
workflow execution process is partly under the control of a process agent choosing tasks
and user assignments, and partly random brought about by the uncertainty introduced
by probabilistic user availability. The workflow execution process is modelled as a
Markov decision process whose optimal value function provides the required workflow
metrics. This single framework is shown to provide several resiliency metrics by
changing the reward function which associates rewards to process transitions.

• Chapter 4. A systematic approach is given to encode a Markov decision process,
modelling the execution process of a workflow, into the probabilisitic model checker

19

Introduction

PRISM. The PRISM tool is introduced, including an overview of its high level mod-
elling language, and how properties of probabilistic models encoded in PRISM are
verified. PRISM is subsequently used to automatically generate resiliency metrics
by verifying the existence of properties in the encoded Markov decision process. By
example, it is shown how generating the resiliency of a workflow can be used to analyse
the expected impact of a policy modification.

• Chapter 5. Two techniques are presented showing how calculating quantitative re-
siliency can help manage the risk of workflow failure. The first technique, aligned
with reducing the risk of workflow failure, considers the computation of resiliency
at runtime and ensuring it is maximised when taking the current prediction of user
availability into account. The second technique, aligned with accepting the risk of
workflow failure, considers the formation of mitigation strategies. In particular it
is shown how calculating resiliency metrics can help form mitigation strategies for
workflows containing choice.

• Chapter 6. The management of organisational knowledge is discussed highlighting
how it can be recorded and incorporated into an ontology to form a security knowledge
base. Information security knowledge holders are introduced, whose knowledge of
information security and human-behavioural factors requires incorporating into an
ontology, enabling qualitative impact analysis of security policy modifications on
workflow completion. An overview of current ontology technologies and tools is
provided before reviewing a number of ontological approaches to information security.
The result of consultations carried out with two CISOs are also presented regarding
security policy review and modification management.

• Chapter 7. The requirements and high-level implementation details are provided for
two prototype security ontology development tools that enable CISOs and human
factors researchers to collaborate. The first tool is graphical in nature, the second is
Web-oriented. Both tools incorporate a user’s entered content within the structure of
an underlying information security and human factors ontology, and automatically
translate it to machine readable ontology files written in the Web Ontology Language
(OWL). Evaluation of the Web-oriented tool is provided by the same two CISOs
consulted previously.

20

1.6 Thesis Structure

• Chapter 8. The thesis concludes with a summary of its contributions, reflections
on the research problems posed in Section 1.3, and a number of interesting future
directions the research could follow.

21

Part I

Metrics

23

Chapter 2

Workflow

When designing a security policy, a CISO may need to analyse how a policy design is likely
to impact the completion of a workflow under different scenarios of user availability. A
security policy has an impact if a workflow cannot be completed in a valid way, that is,
without a policy violation or by necessitating some authorised remediation action, such as a
policy override. This chapter provides the foundations for security policy impact analysis,
and begins by formally defining a workflow before introducing the problem of whether a
security policy has an impact on workflow completion whilst assuming all users are available
to execute all tasks, a problem known as the workflow satisfiability problem. The workflow
definition is then extended to expose the notion of probabilistic user availability during a
workflow’s execution, before describing the problem of finding whether a workflow can still
be completed in a valid way under the condition that users may be unavailable, a concept
known as workflow resiliency. New metrics for workflow resiliency are then introduced
called quantitative resiliency and distance resiliency. In Chapter 3 we use our definition
of workflow and encode the decision process of assigning the execution of tasks to users
under the uncertainty of user availability as a Markov decision process. Using this single
framework we show how our metrics can be generated to indicate the satisfiability and
resiliency of a workflow, which are the concepts introduced in this chapter. In Chapter 4
we show how these metrics can be computer generated by encoding the Markov decision
process in the probabilistic model checker PRISM, and how the impact of a security policy
on the completion of a workflow can be analysed.

25

Workflow

2.1 Workflow Specification

In general, a workflow is the automation of a business process. Typically, a business process
is formally represented as a workflow specification which is input to an automated workflow
management system for execution [69]. A workflow specification is often composed from
the different components introduced in this section; namely a task schema, workflow users,
and security policy. Note these components may be constructed by independent ‘design’
actors, or by the same actor adopting different ‘design’ roles.

2.1.1 Task Schema

One common component of all workflow specifications is a workflow task schema which
represents a business process in terms of what work needs to be done and in what order. More
precisely, a task schema expresses a group of clearly identified atomic activities, or tasks

(the work), that must be co-ordinated and executed in some specific and logical ordering

(the flow) to accomplish the goal of the business process [41, 69, 174, 176]. We assume a
task schema is constructed by a schema designer who defines both workflow tasks and any
constraints on the order in which those tasks should be executed.

Ordering Constraints

A task schema only defines tasks and the order in which they should be executed, and does
not express how tasks are executed. We therefore consider a finite set of abstract workflow
tasks as a set T . We make the assumption that all tasks are executed sequentially and the
order in which tasks should be executed is defined by ordering constraints. A common
ordering constraint indicates two tasks should be executed sequentially, that is the execution
of one task should only follow the execution of the other [176].

t1 t2 t3 t4 t5

In this example, all tasks should be executed sequentially, that is the execution of task t2
is permitted after the execution of t1, the execution of task t3 is permitted after the execution
of t2, and so on. It can be imagined the output from task ti constitutes the input of the next
task in the sequence, ti+1. The tasks are constrained in such a way that only one execution
order is permitted, however task schemas may be more complex than this. For instance,
ordering constraints may also permit parallel splits where two or more sequences of tasks are
executable at the same time.

26

2.1 Workflow Specification

t2

t4

t3

t5

t1

In this example, the execution of both tasks t2 and t4 is permitted only after the execution
of t1. The output from t1 constitutes the input of t2 and t4 in this case. The tasks in the same
branch (e.g. t2, t3, . . . , tm) should be executed sequentially, however their execution order
in relation to tasks in another, parallel, branch (e.g. t4, t5, . . . , tn) does not matter. In other
words, the execution order of tasks from different parallel branches can be interleaved. For
instance, it is permitted for the execution of t4 to take place before t2, between t2 and t3, or
after t3, and so on. Similarly, ordering constraints may also specify parallel joins where two
or more parallel sequences of tasks join into a single sequence.

t4

t6

t3

t5

t7

In this example, the execution of t5 is permitted only after the execution of both t2 and t4
meaning both parallel branches must be executed before t5. The combined output from both
t2 and t4 constitutes the input of t5 in this case. Ordering constraints may also permit exclusive
choice where only one sequence of tasks needs to be executed from a set of task, and we
discuss this more in Chapter 5. Although not considered here, the repetition of single tasks
(loops) or groups of tasks (sub-workflows) may also be permitted in practice [176]. Including
such ordering constraints would add an extra layer of complexity which is unnecessary in
the understanding of our approach. We therefore leave task schemas containing loops and
sub-workflows for future work.

Ordered Sets

Before we give a formal definition of a task schema it is useful to first consider the concept of
ordered sets. A strict partially ordered set (or poset) (Q,<) is a pair consisting of a distinct

27

Workflow

set of elements Q and a binary relation1 < on Q satisfying the following three properties:

∀q ∈ Q,q ≮ q (2.1)

∀q,q′ ∈ Q, q < q′⇒ q′ ≮ q (2.2)

∀q,q′,q′′ ∈ Q, q < q′∧q′ < q′′⇒ q < q′′ (2.3)

That is, < satisfies the properties of irreflexivity, antisymmetry, and transitivity. The set Q

is referred to as the ground set and < as a strict partial order on Q. For any pair q,q′ ∈ Q

the notation q < q′, q′ > q, and (q,q′) ∈< is used interchangeably and indicates q and q′ are
comparable. The order placed on Q by < is strict in the sense q < q′ means q is strictly before
q′. Furthermore, the order is partial as not all pairs of elements in Q may be comparable;
there may exist q,q′ ∈ Q such that q ≮ q′ and q′ ≮ q. The elements q and q′ are said to
be incomparable in this case and denoted by q||q′ as neither one precedes the other. The
order-extension principle states that every partial order can be extended to a total order [124].
A total order is placed on Q when all pairs q,q′ ∈ Q are comparable, that is when < satisfies
the property of totality:

∀q,q′ ∈ Q,q < q′∨q′ < q (2.4)

Given a poset (Q,<), a linear extension of < is a total order ≺ on the ground set Q that
is consistent with the original partial order <, meaning q≺ q′ whenever q < q′. Algorithms
for generating a poset’s set of linear extensions has been well studied, e.g. [146, 150]. As
a final note, the unique ordering of elements for any totally ordered set (Q,≺), where
q1 ≺ q2 ≺ ·· · ≺ q|Q|, can be written as a sequence (q1,q2, . . . ,q|Q|).

Task Schema Definition

Given a set of abstract tasks T , ordering constraints, and the concept of ordered sets we define
a task schema to be:

Definition 1 A task schema is a strict partially ordered set (T,<), where T is a finite set of

distinct tasks and < is a strict partial order on T.

Each execution of a workflow is called a workflow instance. Given a task schema (T,<),
each valid workflow instance involves all tasks in T being executed in a sequential order that

1A binary relation on a set A is a collection of ordered pairs of elements in A. In other words, < is a subset
of A×A.

28

2.1 Workflow Specification

respects the partial order <. In other words, the task execution order of a valid workflow
instance is a linear extension of <. In [41], Crampton and Gutin introduced the notion of
an execution schedule for a task schema (T,<); namely, a linear extension of the set of
workflow tasks. We write σ to denote an execution schedule for (T,<), and Σ for the set of
all execution schedules for (T,<). We now introduce an example task schema (T1,<1) where
T1 = {t1, t2, t3, t4, t5} and <1= {(t1, t2),(t1, t4),(t2, t3),(t3, t5),(t4, t5)}. The strict partial order
<1 can be illustrated as follows:

t1

t2 t3
t4 t5

Note, examples of sequential ordering, parallel splits and parallel joins are evident. The ex-
istence of incomparable task pairs (t2, t4) /∈ <1 and (t3, t4) /∈ <1 mean three execution sched-
ules exist, such that the set of all execution schedules for (T1,<1) is Σ1 = {σ11,σ12,σ13},
and:

σ11 = (t1, t2, t3, t4, t5)

σ12 = (t1, t2, t4, t3, t5)

σ13 = (t1, t4, t2, t3, t5)

Therefore, any workflow instance satisfies (T1,<1) if its task execution order equals one
of the three execution schedules in Σ1.

2.1.2 Workflow Users

Another common component of all workflow specifications is a group of task processing
entities in the form of human users. Users are important as they are often needed to take
responsibility for executing, or for initiating the execution of workflow tasks. Users detail
such as name, skills or role, are not necessary in the understanding of our approach, therefore
we define a finite group of abstract workflow users to be:

Definition 2 A finite group of workflow users is a set U.

We will only consider workflows where all tasks are executed in some form by users and
make the assumption that only one user is necessary to execute a single task. Furthermore, we
assume a workforce, or group of users is designated by a workforce designer for the specific
purpose of executing all instances of a workflow. One can imagine the workforce designer

29

Workflow

analyses what users are needed to execute a workflow in terms of size, type, experience,
knowledge, skills and quality. Having defined the task schema (T1,<1) in Section 2.1.1, we
now consider the the set of workflow users U1 = {u1,u2,u3,u4}.

2.1.3 Security Policy

The third common component of all workflow specifications is a workflow security policy

which expresses a collection of security constraints defining which groups of tasks each
user is permitted to execute in any instance of a workflow. A user is given permission to
execute a task through the act of assignment, effectively giving the user all necessary system
permissions and data access to complete the task in question. Often data access should only
be given to users with the correct clearances and skills, meaning the execution of certain
tasks by users may need to be constrained. We assume a security policy is constructed by a
security designer, considered in this case, to be equivalent to a Chief Information Security
Officer (CISO).

Security Constraints

A security policy may be a conjunction of many different kinds of security constraints [18,
20, 98, 188]. Common security constraints found in workflow include:

• Authorisation constraints defining which users are permitted to execute which tasks.

• Separation of duty constraints defining pairs of tasks that should be executed by two
different users in the same instance of a workflow.

• Binding of duty constraints defining pairs of tasks that should be executed by the
same user in the same instance of a workflow.

• Counting constraints defining the maximum number of tasks a user should execute
in the same instance of a workflow.

• Seniority constraints defining pairs of tasks that should be executed by two different
users, with one user being senior to the other, in the same instance of a workflow.

We consider a security policy consisting of the three most common constraints appearing
in the literature, that is authorisation, separation of duty and binding of duty constraints.
Further constraint types would add an extra layer of complexity which is unnecessary in the
understanding of our approach.

30

2.1 Workflow Specification

Authorisation Constraints

In practice, users in large organisations are often grouped according to their skills into
roles which are subsequently bound to workflow tasks [29]. Roles have a many to many
relationship meaning a user can have multiple roles and a role can have multiple users.
Binding a user to a role grants them permissions to access systems and information in ways
that are necessary to execute those tasks to which their role is bound. This access control
mechanism defined around roles and permissions is commonly known as role based access
control (RBAC) [152].

To simplify understanding we do not explicitly define an RBAC style policy binding users
to roles and roles to tasks, but instead consider its derivation as a relation A⊆ T×U defining
a set of authorisation constraints, stating which users are authorised to execute which tasks
in any instance of a workflow. We assume A is inclusive such that (ti,u j) ∈ A indicates
user u j is authorised to execute task ti, and the set of all users authorised to execute ti is the
set Vi = {u j ∈U | (ti,u j) ∈ A}. It is straightforward to derive A from an RBAC policy, for
example imagine two roles r1 and r2 which are bound to tasks t1 and t2 respectively. If a user
u1 is bound to both r1 and r2 then (t1,u1) ∈ A and (t2,u1) ∈ A. If a second user u2 is bound to
r1 but not r2 then (t1,u2)∈ A and (t2,u2) /∈ A. We assume for an authorisation relation A to be
usable it must contain at least one user authorised to execute each task. In other words, given
a set of tasks T , set of users U, and an authorisation relation A, ∀t ∈ T,∃u ∈U ⇒ (t,u) ∈ A.

Separation and Binding Constraints

Next we consider two other constraints common to workflows. Separation of duty constraints
are used to prevent errors and fraud by restricting which tasks or groups of tasks a user
can execute in the same instance of a workflow. A common example is preventing a user
whose role allows them to submit and authorise expenses claims from authorising their own
expenses claim. The relation S⊆ T ×T denotes a set of separation of duty constraints where
for any (t, t ′) ∈ T , the same user must not execute both t and t ′. Binding of duty constraints
are used for continuity and restricting information flow by binding the execution of groups of
tasks to individual users. For example, from a security viewpoint it may be a requirement to
limit the dissemination of information accessed when executing several tasks to the same
user. The relation B⊆ T ×T therefore denotes a set of binding of duty constraints where for
any (t, t ′) ∈ B, the same user must execute both t and t ′.

31

Workflow

t1

{u1,u2}

t2
{u2,u3}

t3

{u1,u2}

t4
{u2,u4}

t5
{u1,u4}

=

̸=
̸=
̸=

̸=

Fig. 2.1 Illustration of workflow security policy (A1,S1,B1), where ̸= indicates a separation
of duty between tasks, = indicates a binding of duty between tasks, and {ui, . . . ,un} indicates
the users authorised to execute a task.

Security Policy Definition

Having introduced authorisation constraints, separation of duty constraints, and binding of
duty constraints we now give a definition of a security policy.

Definition 3 A security policy is a tuple (A,S,B), where A is a set of authorisation con-

straints, S is a set of separation of duty constraints, and B is a set of binding of duty

constraints.

In addition to the task schema (T1,<1) and set of users U1, defined in Sections 2.1.1
and 2.1.2 respectively, we now consider a workflow security policy (A1,S1,B1), where:

A1 = {(t1,u1),(t1,u2),(t2,u2),(t2,u3),(t3,u1),(t3,u2),(t4,u2),(t4,u4),(t5,u1),(t5,u4)}

S1 = {(t2, t4),(t2, t3),(t3, t4),(t4, t5)}

B1 = {(t1, t3)}

For clarity, an illustration of the security policy (A1,S1,B1) is given in Figure 2.1. Each
node represents a task ti ∈ T1 and labelled with the set Vi of all users authorised to execute ti.
Each edge between tasks ti and t j indicates a separation of duty constraint if labelled ̸= (i.e.,
(ti, t j) ∈ S), or a binding of duty constraint if labelled = (i.e., (ti, t j) ∈ B). Note, the policy
indicates user u2 is authorised to execute tasks t2 and t4, but because (t2, t4)∈ S, u2 should not
execute both tasks in the same workflow instance. Furthermore, u2 is authorised to execute
tasks t1 and t3, and because (t1, t3) ∈ B, if u2 executes t1 then u2 should also execute t3 in the
same workflow instance, and vice versa.

32

2.2 Workflow Satisfiability

2.1.4 Workflow Specification Definition

Having defined a task schema in Section 2.1.1, a set of users in Section 2.1.2, and a security
policy in Section 2.1.3, we now give a definition for a workflow specification in a similar
fashion to Wang and Li [180], and Crampton, Gutin and Yeo, [41]:

Definition 4 A workflow specification is a tuple WS = ((T,<),U,(A,S,B)), where (T,<)

is a task schema, U is a set of workflow users, and (A,S,B) is a security policy.

We are now in a position to consider WS1 = ((T1,<1),U1,(A1,S1,B1)) to be a workflow
specification.

2.2 Workflow Satisfiability

When designing a security policy, it is useful for the CISO, to establish whether a workflow
specification defined in Section 2.1 is satisfiable, that is, whether the workflow specification
can be implemented and executed without having to violate the specification’s security policy.

2.2.1 Workflow Plans

Given a workflow specification WS = ((T,<),U,(A,S,B)), a workflow plan specifies an
assignment of users in U to execute workflow tasks in T . A plan is represented as a function
π : R→U , where R ⊆ T , and given a task t ∈ R, π(t) = u indicates the execution of t is
assigned to user u. A plan π is said to be complete if the following property holds:

R = T (2.5)

That is, π assigns assigns the execution of every task t ∈ T to a user. A plan π which
is not complete is deemed partial, that is when R ⊂ T . Furthermore, a plan π is valid if
it satisfies the security policy (A,S,B); more precisely, if π satisfies the following three
properties:

(t,π(t)) ∈ A (2.6)

∀(t, t ′) ∈ S, π(t) ̸= π(t ′) (2.7)

∀(t, t ′) ∈ B, π(t) = π(t ′) (2.8)

33

Workflow

Table 2.1 All complete and valid plans for workflow specification WS1, where a table entry
πi× ti is the user ui assigned the execution of task ti by plan πi.

t1 t2 t3 t4 t5
π11 u1 u2 u1 u4 u1
π12 u1 u3 u1 u2 u1
π13 u1 u3 u1 u2 u4
π14 u1 u2 u1 u4 u1
π15 u2 u3 u2 u4 u1

That is, all assignments of users to execute tasks in π are authorised by A, and all
separation and binding constraints defined in S and B are respected. We write Π for the
set of all possible plans for a workflow, and ΠV ⊆ Π for the set of all complete and valid
plans. In the case of WS1 = ((T1,<1),U1,(A1,S1,B1)), the workflow specification defined
in Section 2.1, five complete and valid plans exist such that ΠV 1 = {π11, . . . ,π15}. Each
π ∈ΠV 1 is shown in Table 2.1, where πi× t j is the user returned by πi(t j).

Note how more than one complete and valid plan may exist for a given workflow
specification, whilst for others no complete and valid plan may exist. For example, imagine a
policy with conflicting separation and binding of duty constraints (t1, t2) ∈ S and (t1, t2) ∈ B.
Note also that many other complete plans may exist which are not valid, given by Π\ΠV .
Furthermore, with the security constraints we consider, a plan π can be complete and
valid independently of any task execution order. Task ordering is important however when
considering the unavailability of users when executing a workflow, a concept which is
introduced in Section 2.3.

2.2.2 Workflow Satisfiability Problem

Having defined a workflow specification WS = ((T,<),U,(A,S,B)) in Section 2.1.4 and
workflow plan π in Section 2.2.1, we give a definition of workflow satisfiability to be:

Definition 5 A workflow specification WS = ((T,<),U,(A,S,B)), is satisfiable if there exists

a plan π that is complete and valid.

The problem of finding whether a workflow specification is satisfiable is commonly
known as the workflow satisfiability problem, defined to be:

Definition 6 Given a workflow specification WS = ((T,<),U,(A,S,B)), the workflow satis-
fiability problem consists of finding a complete and valid plan π , or an answer that no such

plan exists.

34

2.3 Workflow Resiliency

In Section 2.2.1, we showed by example that multiple complete and valid plans may exist
for any workflow specification WS, however, the workflow satisfiability problem requires
only one complete and valid plan to be found for WS to be satisfiable. If WS is found to be
satisfiable then every instance could be executed without violating any security constraints.
Finding a complete and valid plan π may be relatively simple, for instance consider a security
policy where S = B = /0, where there are no separation or binding of duty constraints. In
this case, it is enough for a plan π to assign each user u to execute a task t whilst ensuring
(t,u) ∈ A. If there is no such user, WS is unsatisfiable. If S ̸= /0 and/or B ̸= /0 it may be
necessary in the worst case to try all combinations of users to tasks in order to determine
the existence of a plan π that is both complete and valid. Indeed, the workflow satisfiability
problem has been shown to be NP-hard for any workflow specification containing even simple
constraints such as separation and binding of duty constraints [41, 179]. If no complete
and valid plan is found then every workflow instance would have to be terminated early to
preserve security, force the security policy to be violated, or some authorised mitigation
action taken, in order to complete execution [151]. Clearly, this situation can be avoided by
considering the workflow satisfiability problem at design time and therefore make changes to
the workflow specification as necessary, in particular changes to the security policy which is
the focus of this thesis.

2.3 Workflow Resiliency

Although a workflow specification may be satisfiable, it still needs to be executed in a stepwise
manner to respect task ordering in an environment that may be uncertain. We introduce the
notion of uncertainty by considering the availability of users who may be available or not
during the execution of a workflow. A workflow specification WS = ((T,<),U,(A,S,B)) will
deadlock if no user u ∈U can be assigned the execution of a task t ∈ T without violating the
security policy. It may be that every user is prevented the assignment due to the workflow’s
security policy (A,S,B), or that every every user not prevented the assignment by the security
policy (A,S,B) is unavailable. In the former case the workflow is not satisfiable, in the
latter, the workflow is not resilient. Having defined whether a workflow is satisfiable in
Section 2.2, we now consider whether a workflow is resilient. A workflow is resilient if there
exists a complete and valid plan which can be implemented at runtime even when users are
unavailable. The level of resilience for workflows is therefore called workflow resiliency.

35

Workflow

2.3.1 Execution Specification

We assume users are benevolent and their availability is dependant on points in time relative
to the progress of a workflow, and not the tasks themselves. We therefore consider the
availability of users as a temporal notion in the sense that any changes to it will occur as the
execution of a workflow progresses. To expose the notion of user availability we introduce an
execution specification composed from the different components introduced in this section;
namely an execution schema and availability forecast.

Execution Schema

The future availability of each user u ∈U can be expressed as a sequence of probabilistic
availability predictions made for successive equally spaced steps of a workflow instance.
These steps represents specific known events that will occur during every instance of a
workflow and, depending on the required granularity for predicting user availability, may
be defined in many ways. It is intuitive however to only consider those events for which
knowing the possible availability of users is relevant. A step, called an execution step,
therefore represents the event of a task being assigned to, and being executed by, a user. A
user availability prediction is relevant to this event as it indicates which users if any, will
likely be available to execute the selected task. To model the fact that a workflow can finish
we consider a termination step which is the last possible step of a workflow. We write X for
the set of execution steps, x⊥ for the termination step, and define an execution schema to be:

Definition 7 An execution schema is a totally ordered set (Z,≺), where ≺ is a total order

on Z = X ∪{x⊥} which is a set of distinct workflow steps such that X is a set of execution

steps and x⊥ is the termination step.

Workflow steps are expressed as a total order due to the assumption in Section 2.1.1 that
tasks are executed sequentially.

Availability Forecast

Knowing the forthcoming availability of users is important for a workforce designer in
order to provide assurance that all tasks will be executed. That is, what availability a user
is likely to have and when they are likely to have it. In many cases it may be possible to
forecast a user’s availability for future instances of a workflow, and we call such a forecast an
availability forecast. One data source for an availability forecast is the past availability of a
user in the workplace, especially during the time frame of previous instances of the workflow

36

2.3 Workflow Resiliency

in question. Predictions may be made based on the user’s average availability over that time
period and used as their availability forecast for all future instances of the workflow.

Something more fine grained may be required, for instance providing an availability
forecast for each forthcoming workflow instance. This may require analysing both previous
availability history and future work schedules over the time period of the workflow instance
(assuming this is known). Future work schedules can be likened to a workplace calendar
where users outline their future availability on a day-by-day basis in the form of appointments.
For example, a user may be ‘busy’ or ‘out of office’, they may be ‘tentative’, or they may
‘free’. From a qualitative perspective, the knowledge and opinions of a user’s manager
and human resources personnel may also be taken into account. Furthermore, availability
forecasts may be recalculated over time as more and more instances of a workflow take place,
and future work schedules are updated.

Definition 8 Given an execution schema (Z,≺) and set of users U, an availability forecast
is a function θ : (Z \{x⊥})×U → [0,1], where Z \{x⊥} is the set of all execution steps in Z.

Given an execution step x ∈ Z \{x⊥} and a user u ∈U , an availability forecast θ returns
the predicted availability of u at execution step x as a probability. If θ(x,u) = 1 then u is
certain to be available at step x, whilst if θ(x,u) = 0 then u is certain to be unavailable at
step x. Expressing the availability of a user at an execution step as a probability allows an
availability forecast to be classified according to different user availability levels. Given an
execution schema (Z,≺), where X = Z \{x⊥} is the set of execution steps in Z, an availability
forecast θ is classified as full iff:

∀u ∈U, ∀x ∈ X ,θ(x,u) = 1 (2.9)

That is all users are certain to be available for every execution step, and therefore available
to be assigned the task selected for execution at each step x. An availability forecast θ is
classified as binary iff:

∀u ∈U, ∀x ∈ X ,θ(x,u) = 1∨θ(x,u) = 0 (2.10)

That is all users are certain to be either available or unavailable for every execution step, and
therefore either available or unavailable to be assigned the task selected for executionat each
step x. It follows that θ is classified as probabilistic in any other case.

37

Workflow

Table 2.2 User availability forecast θ1, where a table entry xi×ui is the probability of user ui
being available at execution step xi.

u1 u2 u3 u4
x1 0.8 0.7 0.1 0.1
x2 0.8 0.8 0.9 0.1
x3 0.8 0.3 0.7 0.1
x4 0.6 0.9 0.7 0.4
x5 0.8 0.9 0.7 0.0

Execution Specification Definition

Having defined an execution schema (Z,≺), and availability forecast θ we give a definition
for an execution specification to be:

Definition 9 An execution specification is a pair ES = ((Z,≺),θ) where (Z,≺) is an execu-

tion schema and θ is an availability forecast.

We now consider ES1 = ((Z1,≺1),θ1) to be an execution specification, where Z1 =

{x1,x2,x3,x4,x5,x⊥}, and ≺1 defines the total order of steps (x1,x2,x3,x4,x5,x⊥). For the
availability forecast θ1 : (Z1 \ {x⊥})×U ′ → [0,1], the set of users U ′ = U1, defined in
Section 2.1.2. Table 2.2 shows the availability forecast θ1, where given X1 = Z1 \{x⊥}, a
table entry xi×u j is the probability returned by θ1(xi,u j).

2.3.2 Workflow Execution Specification

We introduce the concept of user availability to the execution of a workflow by considering a
workflow execution specification, defined to be:

Definition 10 A workflow execution specification is a pair WES = (WS,ES) where WS =

((T,<),U,(A,S,B)) is a workflow specification and ES = ((Z,≺),θ) is an execution specifi-

cation.

An workflow execution specification WES = (WS,ES) is said to be valid if WS and ES

are compatible. More precisely, given that WS = ((T,<),U,(A,S,B)), ES = ((Z,≺),θ),
θ : (Z \ {x⊥})×U ′→ [0,1], and ES is the set of all execution specifications, a workflow
execution specification WES = (WS,ES) is valid, for any ES ∈ ES, if the following property
holds:

|T |= |Z \{x⊥}|∧U =U ′ (2.11)

38

2.3 Workflow Resiliency

Table 2.3 All complete and valid step-task mappings for workflow specification WS1, where
a table entry µi× xi is the task ti mapped to the execution step xi by µi.

x1 x2 x3 x4 x5
µ11 t1 t2 t3 t4 t5
µ12 t1 t2 t4 t3 t5
µ13 t1 t4 t2 t3 t5

That is the number of tasks must equal the number of execution steps as one task is
executed per step, and θ must be an availability function for the users defined in the workflow
specification WS. We define the satisfiability of a workflow execution specification to be:

Definition 11 A workflow execution specification WES = (WS,ES), is satisfiable if the

workflow specification WS is satisfiable.

Therefore, if a complete and valid plan π exists which satisfies a workflow specification
WS then a workflow execution specification WES = (WS,ES) is also satisfiable. Next we
consider a step-task mapping, which maps execution steps in X = Z \ {x⊥} to tasks in T ,
to be a function µ : X → T . A step-task mapping µ is said to be complete if the following
property holds:

∀t, t ′ ∈ T, t ̸= t ′, ∃x,x′ ∈ X , x ̸= x′, µ(x) = t ∧µ(x′) = t ′ (2.12)

That is, µ maps every execution step to a different task. Furthermore, a step-task mapping
is valid if it respects the strict partial ordering over tasks defined by <. More precisely, a
step-task mapping is valid if the following property holds:

∀t, t ′ ∈ T,∀x,x′ ∈ X , t ≤ t ′∧µ(x) = t ∧µ(x′) = t ′⇒ x≤ x′ (2.13)

That is, if steps x and x′ map to tasks t and t ′ respectively, and t < t ′ then x should be
ordered before x′. It follows that given a valid workflow execution specification WES =

(WS,ES), where WS = ((T,<),U,(A,S,B)) and ES = ((Z,≺),θ), all complete and valid
step-task mappings can be derived for WES directly from (Z,≺) and (T,<). We denote the
set of all complete and valid step-task mappings as M, where |M|= |Σ|, where Σ is the set of
execution schedules for (T,<). In Section 2.1.1, three execution schedules were shown to
exist for the example task schema (T1,<1), meaning |M1|= 3. The three task-step mappings
µ11,µ12,µ13 ∈M1 are shown in Table 2.3, where a table entry µi× x j is the task returned by
µi(x j).

39

Workflow

2.3.3 Feasible Plans

At runtime, a satisfiable workflow may not always be able to complete without violating the
security policy. If users are unavailable during a workflow instance it may be necessary to
continue the instance by assigning the execution of a task to a user who is available but not
authorised to execute the task. We therefore consider whether a plan π is feasible. Informally,
a plan π is feasible if each user u, assigned the execution of a task t by π , is not unavailable
at the execution step task t is selected for execution. Plan feasibility can be represented as a
function ρ : Π→ [0,1], which given a plan π returns the maximum probability of π being
implemented at runtime. Given WES = (WS,((Z,≺),θ)) is a valid workflow execution
specification, where X = Z \ {x⊥} is the set of all execution steps, and M is the set of all
complete and valid step-task mappings for WES:

ρ(π) = argmax
µ∈M

[
∏
x∈X

θ(x,π(µ(x)))

]
(2.14)

A plan π is therefore feasible iff:

0 < ρ(π)≤ 1 (2.15)

If ρ(π) = 0 then π has no probability of being implemented at runtime, and is not
feasible. Clearly, for plans π and π ′, if ρ(π) is close to 1 and ρ(π ′) is close to 0, then π

has a much higher chance of being implemented at runtime than π ′. Every plan π which
exists for a workflow execution specification WES = (WS,ES) will have a feasibility of
ρ(π) = 1, iff θ is a full availability forecast (Section 2.3.1, Property 2.9). When considering
the workflow satisfiability problem, if a complete and valid plan π can be found, such that
WES is satisfiable, then π will also be feasible.

Given the workflow specification WS1 = ((T1,<1),U1,(A1,S1,B1)) and execution speci-
fication ES1 = ((Z1,≺1),θ1), we now consider the workflow execution specification WES1 =

(WS1,ES1). Taking the complete and valid plan π15 (Section 2.2.1), the set of all valid step-
task mapping M1 = {µ11,µ12,µ13} (Section 2.3.2), and the availability forecast θ1 shown
in Table 2.2, the probability of π15 being implemented under each µ1 j ∈ M1 is shown in
Table 2.4. The feasibility of π15 is therefore given to be ρ(π15) = 0.060, correct to 3 decimal
places.

40

2.3 Workflow Resiliency

Table 2.4 Probabilities of plan π15 being implemented under each step-task mapping µi ∈M1,
and where the feasibility of π15 is given to be ρ(π15) = 0.060, correct to 3 decimal places.

.

µ11 µ12 µ13
θ1(x1,π15(µi(x1))) 0.700 0.700 0.700
θ1(x2,π15(µi(x2))) 0.900 0.900 0.100
θ1(x3,π15(µi(x3))) 0.300 0.100 0.700
θ1(x4,π15(µi(x4))) 0.400 0.900 0.900
θ1(x5,π15(µi(x5))) 0.800 0.800 0.800

∏x∈X1 θ(x,π(µi(x))) 0.060 0.045 0.035

2.3.4 Quantitative Resiliency

Having defined a complete and valid plan π in Section 2.2.1, and a feasible plan π in
Section 2.3.3, a workflow execution specification WES = (WS,ES) has a level of resiliency
if there exists a feasible complete and valid plan π . We represent the resiliency of a workflow
as a function ΓQ : WES→ [0,1], which given a workflow execution specification WES =

(WS,ES), returns a probability indicating the resiliency of WES. Note, we write WES to
denote the set of all workflow execution specifications. Any complete and valid plan π which
satisfies WES has a level of feasibility 0 ≤ ρ(π) ≤ 1, where ρ(π) = 0 indicates π is not
feasible. Although more than one complete and valid plan for WES may exist, denoted by
the set ΠV , the feasibility of each π ∈ΠV may be different. Given WES, the goal of ΓQ is to
find a complete and valid plan π ∈ΠV whose feasibility maximises the function ρ . We now
define quantitative resiliency of a workflow to be:

Definition 12 The quantitative resiliency of a workflow execution specification WES =

(WS,ES) is:

ΓQ(WES) = arg max
π∈ΠV

[ρ(π)] (2.16)

If |ΠV |= 0, then ΓQ(WES) = 0, meaning WES can only have a quantitative resiliency
greater than 0 if it is also satisfiable. Trivially, if WES is not satisfiable then the set of all
complete and valid plans ΠV = /0. If however, ΓQ(WES) = 0 and |ΠV | > 0, then WES is
satisfiable but not resilient which means no complete and valid plan exists which is also
feasible. Therefore a workflow execution specification WES can be satisfiable and not
resilient, but it cannot be unsatisfiable and resilient. That is WES must be satisfiable to be
resilient.

41

Workflow

Expressing quantitative resiliency as a probability means ΓQ(WES) indicates the expected
success rate of WES in N instances, assuming forecasted user availability remains unchanged.
That is, the probable percentage of instances that can be completed without having to violate
the security policy. It is important to note that at runtime, a workflow may achieve a higher
or lower success rate than indicated by ΓQ. This is due to the fact that at runtime, users will
either be available or not. Quantitative resiliency therefore indicates the maximum expected
success rate which we suggest would be useful to a CISO when modifying a security policy
before its implementation. The actual quantitative resiliency value may not be important,
what is important is that it enables a workflow execution specification WES with different
versions of a security policy to be ranked in order of expected success rate. Clearly, a security
policy (A,S,B) has more impact on the success rate of WES than a policy (A′,S′,B′), if the
quantitative resiliency of WES coming with (A,S,B) is less than the quantitative resiliency
of WES coming with (A′,S′,B′).

Quantitative Satisfiability

Having defined ΓQ, we now give a quantitative answer to the workflow satisfiability problem
defined in Section 2.2.2. As workflow satisfiability is independent of user availability,
the satisfiability of a workflow execution specification WES = (WS,((Z,≺),θ)) can be
established if θ is a full availability forecast (Section 2.3.1, Property 2.9). It follows that the
feasibility of all plans π ∈ΠV , where ΠV is the set of all complete and valid plans for WES,
is ρ(π) = 1, therefore the quantitative resiliency of WES is ΓQ(WES) = 1. We represent
the satisfiability of a workflow as a function ΓS : WES→ {0,1}, which given a workflow
execution specification returns 1 if WES is satisfiable, or 0 otherwise. We therefore define
quantitative satisfiability to be:

Definition 13 Given a workflow execution specification WES = (WS,((Z,≺),θ)) such that

θ is full, the quantitative satisfiability of WES is:

ΓS(WES) =

1 if ΠV ̸= /0

0 otherwise
(2.17)

2.3.5 Distance Resiliency

A workflow becomes deadlocked at an execution step xi if no users are available at xi, or no
user can be assigned the execution of a task at xi without violating the security policy. From
a security perspective, it may be the case that a CISO wants to establish whether a security

42

2.3 Workflow Resiliency

policy causes a workflow to deadlock, and at which execution step xi the deadlock occurs. To
help a CISO analyse this problem we consider the notion of distance resiliency. Finding the
distance resiliency of a workflow execution specification WES = (WS,((Z,≺),θ)) consists
of finding the expected maximum number of execution steps x ∈ X , where X = Z \{x⊥}, to
be completed before WES becomes deadlocked.

To compute distance resiliency we turn to probability theory which states the expected
value of a discrete random variable is the probability-weighted average of all possible
values [74]. In other words, each possible value the random variable can assume is multiplied
by its probability of occurring, and the resulting products are summed to produce the expected
value2. More formally, let Y be a discrete random variable with a finite number of n outcomes,
y1,y2,,yn, which occur with probabilities, p1, p2, . . . , pn, respectively. The expected
value of Y , denoted as E[Y], is therefore defined to be:

E[Y] = y1 p1 + y2 p2 + · · ·+ yn pn =
n

∑
i=1

yi pi (2.18)

By convention, yi pi = 0 whenever yi = 0 or pi = 0, even when pi ̸= 0 or yi ̸= 0 respectively.
Since all probabilities pi add up to 1, that is p1 + p2 + . . .+ pn = 1, the expected value E[Y]

is the weighted average, with pi’s being the weights. Using the concept of expected value
to compute the distance resiliency of a workflow, let K be a random variable denoting
the number of completed execution steps, given a plan π , a step-task mapping µ , a set
of execution steps X , and an availability forecast θ . Consider the following table, which
tabulates the number of completed execution steps k and the probability p(K = k) that exactly
that number of execution steps will be completed. For compactness, here pi denotes the
probability the user assigned by π is available to execute the task mapped to execution step
xi, that is pi = θ(xi,π(µ(xi))).

k p(K = k)

0 1− p1

1 p1(1− p2)

2 p1 p2(1− p3)

. . .

For example, the probability that no execution steps will be completed (i.e. k = 0), is the
probability of the first execution step x1 not being completed (i.e. 1− p1). The probability
that only the first execution step x1 will be completed (i.e. k = 1), is the probability of the first

2I would like to thank Professor Jason Crampton for his guidance on using expected value.

43

Workflow

Table 2.5 The expected number of completed execution steps for workflow execution specifi-
cation WES1 = (WS1,((Z1,≺1),θ1)), using step-task mapping µ11 and plan π15, is computed
to be 1.65508, where k is the expected number of completed execution steps and p(K = k) is
the probability a discrete random variable K = k.

.

k p(K = k) k ∗ p(K = k)
0 1.00000(1 - 0.7) = 0.30000 0.00000
1 0.70000(1 - 0.9) = 0.07000 0.07000
2 0.63000(1 - 0.3) = 0.44100 0.88200
3 0.18900(1 - 0.4) = 0.11340 0.34020
4 0.07560(1 - 0.8) = 0.01512 0.06048
5 0.06048(1 - 0.0) = 0.06048 0.30240

∑
5
k=0 = 1.00000 ∑

5
k=0 = 1.65508

execution step x1 being completed (i.e. p1), multiplied by the probability of the immediate
succeeding execution step x2 not being completed (i.e. 1− p2). The expected number of
completed execution steps is then defined by the following formula:

|X |

∑
i=1

i(1− pi+1)
i

∏
j=1

p j = 1(1− p2)p1 +2(1− p3)p1 p2 +3(1− p4)p1 p2 p3 + . . . (2.19)

= p1− p1 p2 +2p1 p2−2p1 p2 p3 +3p1 p2 p3− . . . (2.20)

= p1 + p1 p2 + p1 p2 p3 + . . . (2.21)

=
|X |

∑
i=1

i

∏
j=1

p j (2.22)

We now consider a function λ : M×Π×X×Θ→ [0, |X|], which given a step-task
mapping µ , a plan π , a set of execution steps X , and an availability forecast θ , returns
the maximum expected number of execution steps to be completed under plan π before a
workflow execution specification WES = (WS,((Z,≺),θ)) becomes deadlocked:

λ (µ,π,(Z \{⊥x}),θ) =
|X |

∑
i=1

i

∏
j=1

θ(x j,π(µ(x j))) (2.23)

For the workflow execution specification WES1 = (WS1,((Z1,≺1),θ1)), and using step-
task mapping µ11 (Section 2.3.3) and plan π15 (Section 2.2.1), output of the function λ is
shown in Table 2.5. The expected number of completed execution steps λ (µ11,π15,X1,θ1) =

1.65508. We represent the distance resiliency of a workflow as a function ΓD : WES→ R,

44

2.4 Related Work

which given a workflow execution specification WES, returns the expected number of
completed execution steps before WES becomes deadlocked. Given the set of all step-task
mappings M and the set of all complete and valid plans ΠV , we define distance resiliency to
be:

Definition 14 The distance resiliency of a workflow execution specification WES=(WS,ES),

where ES = ((Z,≺),θ)), is:

ΓD(WES) = arg max
µ∈M
π∈ΠV

[λ (µ,π,(Z \{⊥x}),θ)] (2.24)

Given WES, the goal of ΓD is to find a complete and valid plan π ∈ ΠV and step-
task mapping µ ∈ M that maximise the function λ . If ΓD(WES) = |X | then a valid plan
π ∈ΠV exists that is also complete and feasible, due to the fact that all execution steps are
expected to be completed. This means ΓD provides an alternative metric for analysing the
workflow satisfiability problem introduced in Section 2.2. That is, if ΓD(WES) = |X | then
ΓS(WES) = 1. Using distance resiliency, a CISO could look to modify security constraints
associated with tasks executable at the deadlocking step xi. Any plans that can be found for
all preceding steps can be considered executable valid plans.

2.4 Related Work

In this section we introduce current work related to the workflow satisfiability problem and
workflow resiliency.

2.4.1 Workflow Satisfiability Problem

In some cases a pen and paper approach may be appropriate to solve the workflow satisfiability
problem, especially when the number of workflow tasks, users, and security constraints is
small. In many cases workflows are large, meaning a pen and paper approach soon becomes
intractable. In light of this, the workflow satisfiability problem has become a well studied
problem in the literature, with an aim to providing more efficient solutions. In [39], Crampton
defines a model for workflow which incorporates separations and bindings of duty, and
cardinality constraints which state certain tasks must be performed a certain number of times.
An algorithm is presented which determines whether a valid user-task assignment exists
for a workflow. Essentially, the algorithm tries to generate a pair of valid users which can

45

Workflow

be assigned to the two tasks either separated, or bound by a constraint. If a valid pair can
be found for every constraint the algorithm returns true indicating a valid solution to the
workflow satisfiability problem exists. Details are also provided showing how the algorithm
can be incorporated into a workflow reference monitor that ensures user-task assignments
made at runtime are granted only if a solution to the workflow satisfiability problem exists
for the remainder of the workflow. Computational complexity for the algorithm and analysis
of its performance is also presented. Yang et al., in [190] consider the workflow satisfiability
problem and its computational complexity along two directions. The first considers solving
the workflow satisfiability problem for task constrained workflows with linear and parallel
control patterns (task ordering), and more complex workflows incorporating choice points;
the second considers role constraints imposed by a role based access control (RBAC) policy
and computing a minimum set of roles that can complete a given workflow. Their results
indicate the workflow satisfiability problem is in general intractable which motivates placing
restrictions on control patterns in a workflow and access control policies in order to limit
workflow satisfiability problem to tractable cases of practical interest.

Sun et al., in [163] also consider the workflow satisfiability problem in the context of
RBAC where users are assigned to roles, and roles are assigned to tasks. Such a system
removes the administration cost of assigning individual users directly to tasks [152]. Role-
based constraints are considered, for instance a role r may have to be assigned to at least
k users. RBAC constraints are also consider similar to separations and bindings of duty.
For instance a user may not be assigned one role if already assigned to another (mutual
exclusion), or they can only be assigned a role if assigned to another (prerequisite). An
approach to analyse constraint consistency is provided as well as a method to find whether
a solution to the workflow satisfiability problem exists, in other words can an assignment
of users be found for a workflow whilst satisfying all RBAC constraints. The problem is
formulated as the Boolean satisfiability problem (SAT), the problem of determining if there
exists an interpretation that satisfies a given Boolean formula [37]. This approach enables
the use of existing well known SAT solvers, e.g. SAT4J [107].

RBAC in relation to the workflow satisfiability problem has also be considered by Wang
and Li in [179, 180]. They propose a natural extension to RBAC called role-and-relation-
based access control, or R2BAC which is used to determine a user’s relationship with other
users in addition to the RBAC constraints mentioned in [163]. These user relationships are
considered before allowing a user to be assigned to a certain workflow task. For, instance,
users assigned to separate roles in a traditional RBAC model may be related, e.g. parent
- child. Solving the workflow satisfiability problem under this model is shown in general

46

2.4 Related Work

to be NP-hard when considering separations and bindings of duty. The authors make the
assumption that in practice, the number of tasks in a workflow will be small and apply tools
from parameterised complexity to better understand the complexities of finding a solution
to the workflow satisfiability problem [52]. Their results indicate that algorithms can be
developed to efficiently solve the workflow satisfiability problem in these practical cases. The
complexity bounds of Wang and Li’s approach are improved by the algorithms developed
by Crampton et. al., in [41]. The type of constraints under consideration is also extended
to include counting constraints, a generalisation of cardinality constraints discussed in [39],
and constraints based on hierarchal organisational structures.

Cohen et al., in [35] use the SAT solver SAT4J mentioned previously to encode the
workflow satisfiability problem defined by Wang and Li in [179, 180] in order to compare
its performance to an implementation of the generic algorithm presented by the authors
in [36]. This algorithm was demonstrated to be fixed-parameter tractable for user-independent
constraints such as separations and bindings of duty. This means the workflow satisfiability
problem can be solved efficiently in cases where the values for the fixed parameter are
small. Rather than generating all plans, equivalence classes are used to reduce the amount
of information the algorithm must keep at each step. From the author’s experiments they
observe the algorithm implemented in C++ solves all generated workflow satisfiability
problem instances with a yes/no decision whereas SAT4J does not. In many cases the
algorithm was faster than SAT4J apart from those instances with few security constraints.

The algorithm proposed to solve the workflow satisfiability problem defined by Bertino
et al., in [18] involves generating an actual valid user-task assignment for a workflow rather
than deciding whether a workflow is satisfiable or not. This is described as planning and
consists of two phases; role planning which tries to assign roles to workflow tasks whilst
meeting constraints similar to [163]; and user planning which tries to assign individual users
within those roles (we take the latter approach of assigning individual users in this work and
do not consider roles). The algorithm proposed is recursive in nature, effectively building an
assignment graph of all valid assignments for the workflow. A graph colouring technique
for security constrained workflows to find a user-task assignment is presented by Kohler
and Schaad in [99]. Their approach is to find an assignment that satisfies the workflow
satisfiability problem with the minimal number of users motivated by a requirement to reduce
cost. They define the notion of policy-based deadlocks where the execution of a workflow
becomes blocked and cannot reach completion without administrative intervention. Two
types of policy-based deadlock are considered; the first comes from conflicting constraints
that prevent further execution of a workflow which can be handled by reference monitors as

47

Workflow

suggested by Crampton in [39]; the second stems from tasks assigned to human users where
a combination of constraints and user unavailability lead to situations where the workflow
cannot complete (this is the same problem addressed by the work presented in Part 1 of this
thesis). In terms of the second type of policy-based deadlock the authors illustrate when
these situations can occur but do not consider how the likelihood of such situations can be
quantified.

Most existing approaches address the workflow satisfiability problem from a compu-
tational point-of-view, by finding the most efficient algorithm to compute a plan, either
returning a complete and valid plan if one exists, or nothing. Furthermore, existing ap-
proaches to the workflow satisfiability problem assume users to be always available, which
in practice, may not always be case.

2.4.2 Workflow Resiliency

Workflow resiliency has been considered in different ways by a number of works appearing in
the literature. Wang and Li took a first step towards quantifying the resiliency of a workflow
by addressing the problem of how many users can become unavailable before a workflow
becomes unsatisfiable. They also showed the problem of finding the resiliency of a workflow
to be NP-hard, even for a workflow with simple security constraints [179, 180]. Wang and
Li, first consider three common scenarios allowing them to classify how the availability of
users may change during a workflow instance:

• Level 1 (Static) - a number of users are unavailable before the execution of a workflow
instance while available users will not be unavailable during the execution. This
scenario assumes execution will be carried out in a relatively short period of time, say
fifteen minutes. It is assumed available users are unlikely to become unavailable during
that execution and the set of available users is stable.

• Level 2 (Decremental) - users may be unavailable before or during the execution of a
workflow instance, and unavailable users will not become available again. This scenario
assumes execution will be carried out in a relatively long period of time, say within
one day. It is assumed some users may not be available that day, or some available
users may have to become unavailable before the workflow instance is complete and
not be available again until the next day. The set of available users therefore becomes
smaller and smaller during the day.

48

2.4 Related Work

• Level 3 (Dynamic) - users may be unavailable before and during the execution of a
workflow instance and unavailable users may become available again. This scenario
assumes execution will be carried out over a long period of time, for example only a
single task is performed each day. Since the set of users may differ from day to day,
the set of available users may differ from execution step to execution step.

Our concept of an availability forecast θ , defined in Section 2.3.1 can be classified
according to these three resiliency levels: Level 1 (static), the availability of a user is
the same for all execution steps; Level 2 (decremental) the availability of a user for an
execution step is equal or less than for the immediate preceding execution step; Level
3 (dynamic) the availability of a user for an execution step is equal, less or more than
for the immediate preceding execution step. More formally, given a workflow execution
specification WES = (WS,((Z,≺),θ)), with X = Z \{x⊥} being the set of execution steps,
the availability forecast θ can be classified as static iff:

∀u ∈U, ∀xi,x j ∈ X ,θ(xi,u) = θ(x j,u) (2.25)

In the static case the availability of a user for any execution step xi is the same as any other
execution step x j. Note, a full availability forecast θ , defined in Section 2.3.1 (Property 2.9),
can be classified as static. An availability forecast θ can be classified as decremental iff:

∀u ∈U, ∀xi,x j ∈ X ,xi < x j, θ(x j,u)≤ θ(xi,u) (2.26)

The availability of a user for any execution step xi in this case is either equal or less than
their availability for execution step xi−1. It follows that θ can be classified as dynamic in any
other case. Wang and Li then go on to define a workflow to be k-resilient if an complete and
valid plan can be found even when a maximum of any k users become unavailable during
the workflow’s execution. Furthermore, a workflow is defined to be k-resilient under the
three resiliency levels. A workflow in this case is equivalent to our definition of a workflow
specification WS = ((T,<),U,(A,S,B)) (Section 2.1.4).

Definition 15 Given an integer k ≥ 0, a workflow specification WS = ((T,<),U,(A,S,B))

is static k−resilient if for all U ′ ⊆U, such that |U ′|= k, WS = ((T,<),(U \U ′),(A,S,B))

is satisfiable.

In [180], the establishment of decremental k-resiliency, and dynamic k-resiliency below,
is described as a two-player game. Note, we write← to denote an assignment operation.

49

Workflow

Definition 16 Given an integer k ≥ 0, a workflow specification WS = ((T,<),U,(A,S,B))

is decrementally k−resilient iff Player 2 can always win the following two-player game when

playing optimally:

Initialisation: U0←U, T0← T , k0← k and i← 1
Round i of the game:

1. Player 1 selects a set U ′i−1 such that
∣∣U ′i−1

∣∣ ≤ ki−1, Ui ← (Ui−1 \U ′i−1) and ki ←
(ki−1−

∣∣U ′i−1

∣∣).
2. Player 2 selects a task ti ∈ Ti−1 such that ∀t j ∈ T, t j < ti⇒ t j /∈ Ti−1.

Player 2 selects a user u ∈Ui.

π(ti)← u and Ti← Ti−1 \{ti}.
If π is not a valid partial plan with respect to the sequence t1, . . . , ti then Player 1 wins.

3. If Ti = /0 then Player 2 wins, otherwise, let i← i+1 and the game goes on to the next

round.

Definition 17 Given an integer k ≥ 0, a workflow specification WS = ((T,<),U,(A,S,B))

is dynamically k−resilient iff Player 2 can always win the following two-player game when

playing optimally:

Initialisation: U0←U, T0← T and i← 1
Round i of the game:

1. Player 1 selects a set U ′i−1 such that
∣∣U ′i−1

∣∣≤ ki−1 and Ui← (Ui−1 \U ′i−1).

2. Player 2 selects a task ti ∈ Ti−1 such that ∀t j ∈ T, t j < ti⇒ t j /∈ Ti−1.

Player 2 selects a user u ∈Ui.

π(ti)← u and Ti← Ti−1 \{ti}.
If π is not a valid partial plan with respect to the sequence t1, . . . , ti then Player 1 wins.

3. If Ti = /0 then Player 2 wins, otherwise, let i← i+1 and the game goes on to the next

round.

The idea of rounds, used in Definitions 16 and 17, is equivalent to our notion of execution
steps, defined by the set X = Z \{x⊥}, such that each round/step correspond to assigning
the execution of one task to one user, and the execution of all tasks is assigned sequentially.
It follows, the sequence of all possible rounds i, . . . ,n is equivalent to an execution schema
(Z,≺) defined in Section 2.3.1, where i, . . . ,n≡ xi, . . . ,xn.

In practice, finding an executable complete and valid plan for all possible k sized subsets
of unavailable users may be demanding and often unmanageable. Furthermore, in definitions
of k-resiliency, each k sized subset is assumed equally likely which may not be realistic
in many real-life cases. Also, k-resiliency offers a somewhat binary result by indicating a

50

2.4 Related Work

workflow to be k resilient or not. What may not be clear to a CISO is how much security
policy modifications actually impact the resiliency of a workflow. For instance, a CISO could
add 2 separation of duty constraints to a security policy, both of which have an impact by
causing a workflow execution specification WES to go from being 1 resilient to 0 resilient.
But is the impact of such constraints equal? Can certain constraints have more of an impact
than others on the resiliency of a workflow? To help a CISO answer these questions we
take a probabilistic approach to workflow resiliency. Rather than analysing how many k

users can become unavailable, quantitative resiliency considers the probability of a workflow
completing without having to violate the security policy, and does so under the assumption
that user availability is probabilistic. We believe quantitative resiliency would allow a CISO
to understand the impact for particular security modifications in a fine grained manner by
finding a workflow’s quantitative resiliency before and after the modification, and analysing
the degree of change.

In another response to the resiliency problem, Wang et al., introduce the notion of
resiliency policies in the context of access control systems, with an aim to overcome the
problem of user unavailability, by enabling access rather than restricting it [109]. Resiliency
policies state a minimum number of users that must hold particular permissions thereby
introducing an acceptable level of redundancy into the system. The resiliency checking
problem is introduced and an algorithm defined to determine whether a given access control
state satisfies a resiliency policy, a problem shown to be NP-hard in the general case. A
methodology is also provided to check the consistency of resiliency and separation of duty
policies to ensure a user is not given too many permissions by the resiliency policy therefore
enabling them to violate the separation of duty policy.

A similar approach is presented by Paci et al., in [139] who consider introducing resiliency
constraints into processes containing web services and user performed tasks, expressed in
the Web Services Business Process Execution Language (WS-BPEL) [92]. Resiliency
constraints state the minimum number of users that must be authorised to execute a task
and therefore provide some assurance that the workflow will still complete if some users
become unavailable. A process is said to be user failure resilient if a user-task assignment
can be found that meets both resiliency and security constraints. The set of all possible
valid assignments is generated and stored to decided which user should be assigned to a
task if the pre-assigned user becomes unavailable at runtime. As previously mentioned
Wang and Li stated a workflow as k-resilient if it could still complete when any k users
became unavailable at any point in the workflow. This work is similar in that the constraints
ensure an assignment can still be found to complete the workflow even when k users become

51

Workflow

unavailable. Lowalekar et al., in [110] show multiple assignments may exist with the
same level of k-resiliency and that it may be necessary to choose the most favourable one.
Particular workflow security attributes are assessed and an assignment chosen that minimises
the diffusion of business knowledge across all users. Each role assigned a task is itself
assigned an ordered set of potential role delegates, of which one becomes active when the
parent role becomes unavailable. Criticality values are used to decide whether the delegation
may proceed or the task be suspended. By considering resiliency in terms of the number
of users who can be come unavailable, these approaches bring a similar limitation to Wang
and Li’s work as they do not quantify the likelihood of a workflow completing under an
assumption of user unavailability which is necessary in order to analyse the potential impact
of security policy changes.

Cloud computing with its seemingly unlimited supply of on demand computing resources
offers an attractive platform to deploy and efficiently execute workflows, especially those
processing large data sets used in domains such as eScience [79]. One major barrier to cloud
computing adoption are a number of security issues including the sharing of processing
infrastructures often in distant and sometimes unknown locations, and administrated by third
parties [119]. In [181], Watson considers the partitioning of workflows across federated
clouds whilst meeting security constraints, meaning sections of a workflow considered
security critical can be kept in-house whilst other sections can de outsourced to public
clouds. A methodology is presented which applies the Bell-LaPadula multi-level security
model [15] to constrain how workflows can be partitioned across a set of cloud platforms,
and how all deployments can be found that satisfy the security model. This problem is
similar to solving the WSP where a valid cloud deployment is essentially an assignment of
tasks to clouds (akin to users). Each task is deployed based on where the previous task is
deployed meaning complex security constraints such as separations and bindings of duty
are not considered. A cost model is applied to choose the optimal deployment with the
lowest cost but quantitative measures indicating success rate are also not considered. This
work is extended by Zhenyu in [183] by assuming cloud platforms may fail during workflow
execution and use a pre-generated cost weighted graph of all partitioning options in order to
find the cheapest alternative valid deployment to complete the workflow, if one exists. This
work does not however consider the future ‘availability’ of cloud platforms when choosing
an alternative deployment which could reduce the likelihood of having to redeploy parts
of a workflow. Graphs are also used in [123] by Massacci et al., used to assess whether
a process is resilient to both users becoming unavailable and changes to user privileges
at runtime. Acyclic hypergraphs are used to model a process where each node represents

52

2.4 Related Work

either an organisational goal, tasks, roles and users. The graph is traversed to see if a path
exists linking goals, actions, roles and users but provides no quantitative measures regarding
predicted success rate.

A cost-based approach to increase the resiliency of a workflow has been suggested
by Basin et al., in [11] and [12]. The authors analyse the trade-off between security and
business objectives, and the avoidance of deadlock in workflows caused by a combination
of a security policy and the unavailability of certain users. They define the existence of an
obstruction free enforcement mechanism as a decision problem that overcomes scenarios
where no valid user-task assignment exists by reallocating roles to users at runtime to satisfy
security constraints. A new assignment of users to roles is calculated with the minimum
cost to risk (of a user taking on a role), administration and maintenance. This is feasible in
certain business domains but may have limited application in workflows where roles are more
specialised; although the risk of adopting a role is considered, is adding an untrained user to
the role doctor for example to satisfy a security policy better than overriding the policy and
enabling a constrained but qualified doctor? In [40], Crampton et al., define an approach to
find the ‘best’ or ‘least bad’ user-task assignment for a workflow that is unsatisfiable. The
approach, called Valued WSP assumes security constraints and user-task permissions can
be violated, or overridden in order to complete a workflow. Violation risk is expressed as a
cost and an algorithm is defined to find a user-task assignment that completes the workflow
with the minimum cost, shown to be fixed-parameter tractable with user-independent security
constraints. Although this approach is applied to the WSP, it could be adapted to find the
least bad user-task assignment that completes a workflow in those instances where user
unavailability would otherwise force early termination.

Overriding security constraints to enable a workflow to complete has been considered
in other works appearing in the literature. Notably, Wainer et al., in [178] consider the
explicit overriding of security constraints by defining a notion of privilege by assigning levels
of priority to each constraint and maximum override levels to user roles. In the presence
of exceptions such as user unavailability, users can potentially perform tasks they would
not normally be permitted to do by overriding constraints whose priority level is equal
to or below their given override level. Brunel et al., in [23] suggest a a security policy
may still be satisfied even when some security constraints may be violated, for instance
to ensure a workflow completes when certain users become unavailable at runtime. The
authors define an approach of violation management that allows a security constraint to
be overridden but stipulates conditions or obligations that must be fulfilled at a later time
that once completed ensure compliance with the security policy is till met. El Bakkali

53

Workflow

suggests enhancing resiliency through the delegation of tasks and the placement of criticality
values over workflows [55, 56]. User delegates are chosen on their suitability but may lack
competence; this is considered the ‘price to pay’ for resiliency in a similar way to the risk
of a user adopting a role in the work by Basin et al., [11, 12]. As delegation takes place at
a task level it is not currently clear whether a workflow could still complete while meeting
security constraints. Delegation is also consider to overcome situations when users become
unavailable by Crampton and Morisset in [43]. The authors suggest a mechanism that can
automatically respond to the unavailability of users by delegating a task to the most qualified
user available, however as this work is placed in the context of access control it does not
consider the workflow satisfiability or resiliency problems.

Similarly to the workflow satisfiability problem most current approaches address work-
flow resiliency from a computational point-of-view. The current literature on workflow
resiliency also tends towards user availability being a binary notion in the sense that users
are either available or not, and does not consider availability to be probabilistic as we do
in our approach. In Chapter 3 we introduce a decision making approach for analysing the
satisfiability and resiliency of a workflow specification. We use this single framework to
provide metrics for workflow satisfiability and resiliency, and aid CISOs in designing work-
able security policies. This is something the current literature on the workflow satisfiability
problem and workflow resiliency does not consider to the best of our knowledge.

2.5 Summary

When designing a security policy, a CISO may need to analyse how a policy design is likely
to impact the completion of a workflow under different scenarios of user availability. Such
analysis at design time, rather than finding out the impact at runtime, could avoid unworkable
policies being put into practice. A security policy can have an impact if it prevents any
available users from being assigned the execution of a task, thus causing a workflow to
become deadlocked. Such a scenario may occur when all authorised users are unavailable. A
security policy therefore has an impact if a workflow cannot be completed in a valid way,
that is, without a policy violation or by necessitating some authorised remediation action,
such as a policy override. Intuitively, as the availability of users decreases, a policy is likely
to have more impact as it becomes harder to ensure valid workflow completion.

In this chapter we considered finding the impact of a workflow security policy under
different levels of user availability. First, we assumed a CISO may need to know whether a
workflow is satisfiable, in other words, whether a security policy has an impact on workflow

54

2.5 Summary

completion under the condition that all users are available. If a workflow is found to be
unsatisfiable, it can never be completed without violating the security policy, regardless of
user availability. Second, a CISO may also need to know whether a workflow is resilient, that
is, whether a workflow can still be completed in a valid way under the condition that users
may be unavailable. We defined two new metrics for workflow resiliency called quantitative

and distance resiliency. Quantitative resiliency indicates the maximum probability of valid
workflow completion whilst assuming user availability to be probabilistic. Distance resiliency
indicates the maximum expected number of steps completed before a workflow becomes
deadlocked. A step in this case is the point in a workflow where the execution of a task is
assigned to a user.

Furthermore, we have given a formal definition of an execution workflow specification
which exposes the notion of probabilistic user availability during the execution of a workflow.
In Chapter 3 we use our definition of workflow and encode the stepwise process of assigning
the execution of tasks to users as a Markov decision process. Using this single framework
we show how the satisfiability, quantitative resiliency, and distance resiliency of a workflow
can be generated. In Chapter 4 we show how these metrics can be computer generated by
encoding the Markov decision process in the probabilistic model checker PRISM, and how
the impact of a security policy on the completion of a workflow can be analysed. We believe
the metrics can be used by a CISO for fine grained analysis of how a policy design is likely to
impact the satisfiability and resiliency of a workflow, the concepts introduced in this chapter.
We suggest a CISO can analyse the likely impact of a policy modification, such as adding a
separation of duty constraint, by generating a metric with and without the modification and
observing the degree of change.

55

Chapter 3

Generating Workflow Metrics

In general, metrics are standards of measurement, commonly used by organisations, by
which efficiency, performance, progress, or quality of a plan, process, or product can be
assessed. In Chapter 2 we defined a workflow execution specification and introduced
workflow satisfiability and workflow resiliency. We then proposed quantitative measures for
these concepts in the form of workflow metrics. We suggest a CISO can use these metrics
to assess the satisfiability and resiliency of a workflow, and undertake fine grained impact
analysis of modifications to a workflow’s security policy by generating a metric with and
without the modification, and observing the degree of change.

In this chapter we first consider the execution of a workflow to be a stepwise decision
making problem consisting of discrete steps where an assignment decision and event is
actioned. Assignment decisions represent the selection of a task and a user, whilst assignment
events represent the assignment of a task’s execution to a user. Event success is probabilistic
as the availability of users is considered to be probabilistic. We describe the concept of
decision making processes before introducing a Markov decision process (MDP) which is an
analytical tool for modelling and studying stepwise decision problems. We then show how a
workflow execution process can be modelled as an MDP before defining two reward functions,
one for generating quantitative satisfiability and resiliency, the other for generating distance
resiliency. Reward functions place motivational rewards on specific process transitions, and
solving the MDP consists of finding the expected maximum reward in the initial state of the
process for a given reward function. Using this single MDP framework we show how the
satisfiability and resiliency metrics can be generated by changing the reward function. In
Chapter 4 we show how these metrics can be computer generated by encoding the Markov
decision process in the probabilistic model checker PRISM, and how the impact of a security
policy on the completion of a workflow can be analysed.

57

Generating Workflow Metrics

Identify
Problem

Analyse
Problem

Develop
Options

Choose
Best Option

Take
Action

Review
Decision

Fig. 3.1 A typical normative process whose outcome is a sequence of decisions made
rationally after careful reasoning of the expected reward.

3.1 Decision Making Processes

In practice, workflows are often complex structures whose execution is carried out in a
stepwise manner. At each step, an assignment decision must be executed, selecting the next
task t and a user u to execute t, followed by the execution of an assignment event which
assigns the execution of t by u. We assume if u is available then t will be executed, if u is
unavailable then t will not be executed. User availability means assignment decisions must
often be resolved under uncertainty, in the sense of not knowing with certainty which users
will be available at future steps. Assignment decisions can therefore force the process to a
step where no user authorised to execute a task is available, and therefore deadlock [11].

To expose this notion, we consider a workflow execution process to be a sequential
decision making process partly under the control of a process agent executing the entire
process, and partly random. That is, a process agent controls assignment decisions regarding
task and user selection, but is not fully in control of whether a selected user will be available
to execute a selected task. Executed assignment events may or may not be successful in
this case. We also consider a workflow execution process to be an optimisation problem
in the sense of resolving assignment decisions in a way that maximises the possibility of
finding an optimal plan π , that is a plan that is complete and valid, and whose feasibility
ρ(π) is higher than any other complete and valid plan. In Section 3.2 we show how the
workflow satisfiability and resiliency metrics introduced in Chapter 2 can be generated with
this decision making approach.

3.1.1 Decision Making

In general, decision making is the process of selecting between two or more courses of
action in order to solve a problem. Correct decisions provide longterm opportunities for
accomplishment, growth, and success, while wrong decisions can lead to loss, instability,
and failure. Indeed, without decisions, activities would not be possible, resources would not
be put to use, and problems would not be solved. Two central concepts exist in decision
theory, these are preferences and options. Roughly speaking, a process agent ‘prefers’ the
‘option’ of action A over action B when A is more desirable than B for the process agent in

58

3.1 Decision Making Processes

| | |
decision event decision event

| | |
process step process step

Fig. 3.2 Partial example of a decision process showing pairs of decision and event actions
that together form a sequence of decision process steps, which form the decision process
itself.

question. A process agent’s preference between actions may be influenced by many factors,
for instance biases and expected payoff or reward. Decision making made rationally after
careful reasoning of the expected reward is described as normative, and is often a step by
step process, identifying a problem, gathering information, and assessing action options as
shown in Figure 3.1. Taking a stepwise approach in this way can help increase the chances
of choosing the best actions in the long-term. Alternatively, bad choices can often be made,
for example, due to insufficient information or unawareness of the consequences.

3.1.2 Decision Process

In this section we introduce general terms and concepts for a decision process.

Process States

A decision process can be in one particular configuration at any point, called a state. We
write S for the set of all states describing all possible configurations of a process, where
s0 ∈ S is the initial process state. A decision process can only be in one state at any point in
time, called the current state. As a decision process progresses, it moves through a series of
states, each one being unique in the sense they contain unique contextual information about
the process. We assume a state to at least include a process history of all actions executed in
all previously visited states. We therefore write s.h to denote the process history in state s.

Process Actions

A decision process, is a discrete sequence of actions where a decision is made, an event
occurs, another decision is made, another event occurs, and so on. Roughly speaking, a
decision d is an action representing the choice of what to do next in a process, chosen from a
finite set of alternative actions, whilst an event e is an action representing some outcome of
a decision. It follows that each decision triggers some corresponding event, and we reduce

59

Generating Workflow Metrics

each corresponding decision/event pair to a discrete process step as illustrated in Figure 3.2.
In order for a process to terminate we also consider a process termination action t. More
formally we write D for the set of decision actions, E for the set of event actions, T for the
set of termination actions, and A= D∪E∪T for the set of all process actions.

Process Transitions

The execution of decision, event, and termination actions causes the process to transition from
one unique state to the next. All possible process transitions are represented by a transition

function p : S×A×S→ [0,1], where p(s,a,s′) returns the probability of reaching state s′

when the action a is executed in state s. A transition function p therefore defines which states
a process can transition to. Executing an action a in state s, such that p(s,a,s′) = 0, for any
state s′, means the execution of a will not cause the process to transition to another state. If
p(s,a,s′) = 0 for any action a and any state s′ ̸= s, then the process cannot transition to any
other state from s. In this case s is a termination state which is an absorbing state, that is a
state that, once entered, cannot be left.

If in a state s there exists two (or more) actions a,a′ ∈ A, such p(s,a,s′) = 1 and
p(s,a′,s′′) = 1, then a non-deterministic choice exists between executing a or a′. Note,
executing a in s can move the process to only one state s′ with a probability of 1. We apply
this notion to decisions and say that a choice between executing decision actions in a state s

is non-deterministic and must be resolved by the process agent executing the entire process.
If in a state s there exists an action a, such that p(s,a,s′) = p and p(s,a,s′′) = 1− p then by
executing a the process can move to one of two states, that is, to s′ with a probability of p and
s′′ with a probability of 1− p. We apply this notion to events and say the success of an event
action is under the influence of external factors coming from the surrounding environment,
and is therefore probabilistic. This is in the sense that if an event action is successful in state
s, the process moves to s′ with probability p, or if the event action fails, the process moves to
s′′ with probability 1− p.

The choice of decisions which can be executed in a state s are partly under the control of
the process agent, and partly random due to the influence of external factors. The process
agent has part control in the sense that they ‘control’ what decision is executed in s, and
thereby move the process to a new state s′. External factors have part influence as they
partly ‘influence’ previous transitions which caused the process to be in state s where the
process agent must resolve the non-deterministic choice. It follows that a process agent must
resolve non-deterministic choices under the uncertainty introduced by external factors, in
the sense that the agent is uncertain which future states will be reached, and therefore what

60

3.1 Decision Making Processes

s0

s1

s2

1 : d1

1 : d2

s3

s4

p : e1

1− p : ¬e1

s7

s8

s9

1 : d3

1 : d4

1:t1

s5

s6

1− p : ¬e2

p : e2

s12

s13

s14

1 : d5

1 : d6

1:t4

s10
1:t2

s11
1:t3

| |
process step 1 process step 2

d : (non-deterministic) decisions
e : (probabilistic) events
t : (deterministic) terminations

Fig. 3.3 Partial example of a decision making process consisting of non-deterministic deci-
sions, probabilistic events, and deterministic termination actions, and where s0 is the initial
process state.

future decisions can be executed. In a similar way to decisions, an event executed in a state s

is partly under the control of the process agent, and partly under the influence of external
factors. The agent has part control in the sense that they partly ‘control’ previous transitions
which caused the process to be in state s where the event is executed. External factors have
part influence as they ‘influence’ whether the event executed in s succeeds or fails.

Figure 3.3 shows a partial example of a decision process where s0 is the initial state. In
s0, a non-deterministic choice exists between executing actions d1 and d2 which must be
resolved. The process agent can control whether the process moves to either state s1 or s2 by
choosing to execute either d1 or d2 respectively. Let us assume the process agent chooses to
execute d1 and the process moves to s1 with a probability of 1. An event e1 may be executed
at s1 which moves the process to state s3 with the probability of success p, or moves the
process to state s3 with the probability of failure 1− p. We label the transition for event a1

failing as ¬e1. These two probabilistic transitions illustrate a point in the process where the
process agent does not control which state the process moves to.

If the process moves to s3 and s3.h is valid according to some criteria, a non-deterministic
choice exists between executing d3 and d4. If s3.h is invalid, a termination action t1 is

61

Generating Workflow Metrics

si s j

smsn

(d) : (non-deterministic transition) decision
(e) : (probabilistic transition) event
(t) : (deterministic transition) termination

[valid]

(d)

(e)

[invalid](t)

[v
ali

d ∧
co

mple
te]

(t
)

Fig. 3.4 Process step of a decision process consisting of non-deterministic decisions, proba-
bilistic events, and deterministic termination actions, where sn is a successful termination
state and sm is an unsuccessful termination state.

executed and the process ends unsuccessfully by moving to the termination state s9 with a
probability of 1. Note that, although event e1 may be successful, it may be incorrect according
to some criteria, making s3.h invalid. One could say in this case the choice to execute decision
d1 was a bad one. Similarly, s4.h is invalid as event e1 has failed, meaning the process ends
unsuccessfully by moving to the termination state s10. This example illustrates how the
choice to execute an action in an early state can restrict the choices of decision actions in
later states. For instance at s0, the process agent has a chance of choosing any of the decsion
actions d1, . . . ,d6 later in the process, depending on the choice between d1 and d2 in state s0.
If d2 is chosen the choice to execute either d3 or d4 will never be available as state s3 will
not be reached. Furthermore, if the goal of the agent is to get to the end of the process, and
the probability of e1 succeeding is higher than the probability of e2 succeeding, choosing d1

over d2 would seem the preferred choice.

Process Steps

The notion of process steps allows a decision process to be presented as a state transition
diagram shown in Figure 3.4, which represents a process step i. Each node represents a state
the process can move to in step i. We consider the presence of termination actions (t) to
cause deterministic transitions from state si to either sn or sm, shown as solid arcs; decision
actions (d) to cause non-deterministic transitions from state si to a state s j, shown as a dashed
arc; and event actions (e) to cause probabilisitic transitions from state s j to a state si, shown
as a dotted transition. A process step i starting in state si proceeds as follows:

1. (a) If the process history si.h is invalid, based on some criteria, a termination action
t is executed moving the process from si to a termination state sm. The process

62

3.1 Decision Making Processes

ends unsuccessfully in state sm.

(b) Else, if the process history si.h is valid based on some criteria and complete, that
is all steps have been executed, a termination action t is executed moving the
process from si to a termination state sn. The process ends successfully in state sn.

(c) Else, the process history si.h is valid, based on some criteria, and a chosen
decision action d is executed moving the process from si to s j. In state s j, s j.h =
si.h← d, meaning the process history in s j is the process history of the previous
state si plus the decision d executed in si.

2. In state s j an event action e is executed moving the process probabilistically from s j to
a state si. Depending on the probabilistic success of the executed event, the process
history si.h may or may not be valid based on some criteria. The process then moves
to the next process step i+1.

The problem the process agent faces is to resolve each non-deterministic choice in state
si, for each progressive process step i, in such a way that maximises the chance of reaching
the termination state sn, where the process ends successfully. To do so requires the decision
action choices of the process agent to be optimal choices.

Decision Policy

In general, a ‘policy’, not to be confused with a security policy, is a detailed undertaking
that attempts to provide an answer for all possible contingencies. A policy is particularly
important when a process agent is automated, such as a workflow management system, and
operating in environments where information on which decisions must be based is dynamic.
Hence, in the case of a decision process we consider a decision policy to be a function
δ : S→ A, which given a state s returns the action to execute in s. Note, the action returned
by a decision policy δ (s) is only dependant on the state s, and not on any other states. Each
decision policy δ therefore resolves all non-deterministic choice by defining a single course
of sequential actions among several possible courses of sequential actions. In respect to
executing event actions in a state s, a policy δ returns the event to execute, however as
previously stated, the process moves to a new state s′ with a probability p. By implementing
a decision policy, a process agent can partly control the process towards a longterm outcome,
which may be the result of executing thousands of actions, or it may be the result of executing
just a few actions. In terms of the execution process we assume the preferred outcome of the

63

Generating Workflow Metrics

process agent is for the process to end in a successful termination state, shown as state sn in
Figure 3.4. Because the outcome can be influenced by external factors, the problem is to find
the optimal decision policy from among all possible decision policies. An optimal decision
policy in this case, is the decision policy which, if implemented, maximises the chance of the
process ending in a successful termination state.

Figure 3.5 shows an example decision process for which there exists three possible
decision policies δ1, δ2, and δ3. Implementing δ1 means δ1(s0) = d1 and the process ending
in either termination state s10 or s11. Indeed, implementing any one of these three policies
means the process can end in one of two termination states. Decision policy δ2 gives the
process the highest chance of reaching a termination state, in this case s12. This is because
the probability of event e2 being successful, that is p(s2,e2,s6) = 0.8, is higher than e1

executed under δ1, and e3 executed under δ3. In fact the maximum probability or reaching
any termination state is 0.8 under decision policy δ2. However, if the decision process ends in
s12 it has been executed unsuccessfully due to the process history [d2] being invalid according
to some criteria. The process can end successfully in only two termination states s10 under δ1,
and s14 under δ3. The maximum probability of the process ending in a successful termination
state is 0.7 under δ3, making δ3 the optimal decision policy in this case. In Section 3.1.3 we
introduce an analytical tool suitable for finding an optimal decision policy for the decision
processes we consider.

3.1.3 Markov Decision Process

A Markov decision process (MDP) is an analytical tool which provides a framework for
modelling and studying a wide range of multi-step decision, or optimisation problems where
the results are somewhat random and partially under the control of a decision maker [16, 83].
An MDP consists of a set of states and will be in one of these states at each discrete time
step. The transition from one state in the MDP to another is governed both probabilistically
and by the decision maker’s choice to execute an action from those available in the current
state. Therefore the next state depends on the current state and the executed action, but
is independent of all previous states and actions. This independence satisfies the Markov

property [121].

An MDP extends the decision processes introduced in Section 3.1.2 by associating each
transition between states with a particular motivational reward, which is returned to the
decision maker as each transition occurs. Solving an MDP consists of defining a policy that
specifies the action the decision maker will execute when in a particular state of the process.

64

3.1 Decision Making Processes

[]

s0

[d2]

s2

[d1]

s1

[d3]

s3

1 : d2

1 : d 1

1 : d3

〉
δ1

[d1]

s4

[¬d1]

s5

0.6 : e1

0.4 : ¬e1

〉
δ2

[d2]

s6

[¬d2]

s7

0.8 : e2

0.2 : ¬e2

〉
δ3

[d3]

s8

[¬d3]

s9

0.7 : e3

0.3 : ¬e3

[d1]

s10
[s4.h valid ∧ complete]

1 : t1

[¬d1]

s11
[s5.h invalid]

1 : t2

[d2]

s12
[s6.h invalid]

1 : t3

[¬d2]

s13
[s7.h invalid]

1 : t4

[d2]

s14
[s8.h valid ∧ complete]

1 : t5

[¬d3]

s15
[s9.h invalid]

1 : t6

| | |
process step 1 termination step

Fig. 3.5 Example decision making process with three possible decision policies δ1, δ2, δ3,
where s10 and s14 are successful termination states, and δ3 is the optimal decision policy,
maximising the probability of the decision process reaching a successful termination state,
which is s14 in this case.

The objective is to define an optimal policy, that is a policy that maximises the expected
reward collected by the MDP, such that the action to be executed in a particular state is the
one that returns the highest expected longterm reward. Collecting the rewards is a somewhat
inductive process which involves finding all reachable future states from the current state
and collecting the rewards associated with the transitions taken to reach those states. Many
approaches have been devised to solve an MDP in order to find the optimal policy, most
notably policy iteration [16, 83], value iteration [16] and, when probabilities and rewards are
unknown, reinforcement learning [165].

When applied to the decision processes introduced in Section 3.1.2, an MDP is formally
represented as tuple (S,A,p,r) where S, A, and p are a set of states, set of actions and
transition function also introduced in Section 3.1.2. The association of rewards to transitions
is defined by a reward function r : S×A×S→ R, such that r(s,a,s′) describes the reward
associated with executing action a in state s causing the process to transition to state s′. A
policy for an MDP is equivalent to a decision policy introduced in Section 3.1.2, that is a
function δ associating each state with an action. The value of a policy δ for an MDP in state

65

Generating Workflow Metrics

s is given to be:

V δ (s) = ∑
s′∈S

p(s,δ (s),s′)r(s,δ (s),s′)+β ∑
s′∈S

p(s,δ (s),s′)V δ (s′)

We call V δ : S→ R the value function of δ . More or less weight to ‘future’ values is
given by the discount factor β , where 0 ≤ β < 1. The optimal policy δ ∗ : S→ A is then
defined to be:

δ
∗(s) = argmax

a∈A

[
∑

s′∈S
p(s,a,s′)r(s,a,s′)+β ∑

s′∈S
p(s,a,s′)V ∗(s′)

]

Here V ∗ : S→ R is the value function of δ ∗. Note that since β < 1, the optimal policy is
always defined, even when s = s′. It is possible to show that V ∗(s)≥V δ ′(s), for any other
policy δ ′ and any state s, and we refer to [16] for further details about the proof of this
property and further details on the notion of MDP. For clarity the parts of the optimal policy
function δ ∗ are as follows:

δ ∗(s)

optimal action
to execute

in s

= argmaxa∈A

analyse executing
all actions

in s [
∑

s′∈S
p(s,a,s′)r(s,a,s′)

expected immediate
reward for

executing a in s

+ β ∑
s′∈S

p(s,a,s′)V ∗(s′)

expected longterm
reward for

executing a in s]

3.2 Computing Workflow Metrics

In this section we introduce an approach to finding the satisfiability and resiliency of a
workflow, by modelling a workflow decision process as a Markov decision process (MDP).
We then define reward functions for each of the satisfiability and resiliency problems we
consider. Generating the workflow metrics described in Chapter 2 therefore consists of
solving the MDP with the appropriate reward function.

3.2.1 Workflow Markov Decision Process

We now use the concepts introduced in Section 3.1 to show how a workflow execution process
can be modelled as a Markov decision process (MDP). Henceforth we will refer to such
an MDP as a workflow Markov decision process (MDPW). A process agent in the case of

66

3.2 Computing Workflow Metrics

workflow is an automated workflow management system which controls decisions regarding
task and user selection according to a decision policy δ . The optimal value function V ∗ of
the MDPW , returns the workflow metrics we require when using suitable reward functions.
Therefore it is necessary to solve the MDPW to find the optimal policy δ ∗ that maximises V ∗.

Workflow Process States

In Section 3.1.2, the set of process states is denoted as S. Given a workflow execution
specification WES = (((T,<),U,(A,S,B)),((Z,≺),θ)), we say any state s ∈ S in an MDPW

is of the form (x,(t,u),π) where x ∈ Z is a workflow step, (t,u) is an assignment decision
d ∈ D representing the action of choosing a user u ∈U to be assigned the execution of a task
t ∈ T , and π is a plan. Therefore, given any state s = (x,(t,u),π), its process history s.h≡ π .
The initial state of an MDPW is s0 = (x1,null,π), where x1 is the first execution step, null is
an assignment decision (t,u) associated a zero value, and π : R→U , where R⊂ T , is a valid
partial plan that does not assign the execution of any task to any user. In other words, R = /0.
A termination state is of the form s = (xi,null,π), where xi ̸= x1 is any first workflow step
except the first, null is a null assignment decision, and π is a plan. A termination state of the
form s = (x⊥,null,π) is successful iff the plan π is complete and valid. As all workflow steps
must complete for π to be complete it follows a state s = (xi,null,π) can be a successful
termination state only iff xi = x⊥.

Workflow Process Actions

In Section 3.1.2, we assumed a decision process to be a sequence of discrete process steps
where either a decision action d or event action e is executed, or a termination action t is exe-
cuted. Process steps in a decision process are represented in an MDPW as the set of workflow
steps Z for a workflow execution specification WES = (((T,<),U,(A,S,B)),((Z,≺),θ))
where x⊥ ∈ Z is the termination step, and X = Z \{x⊥} is the set of execution steps. Also in
a decision process, the set A=D∪E∪T was given to be the set of all process actions. In the
case of an MDPW we consider the set D to be the set of all assignment decision actions (t,u).
Each assignment event e ∈ E is denoted as a pair (x,u) representing the action of assigning
the execution of a task to a user u at assignment step x. Assignment event (x,u) has the
probability of success θ(x,u) = p, meaning a task will be executed at step x with probability
p. If θ(x,u) = 0 then a task will not be executed at step x, and the assignment event (x,u)
is said to have failed. Each termination action t ∈ T, represents the action of terminating a

67

Generating Workflow Metrics

workflow if the current step is the termination step x⊥, or if the process moves to an invalid
state s which we discuss in the next section.

Workflow Process Transitions

Given a workflow execution specification WES = (((T,<),U,(A,S,B)),((Z,≺),θ)), we
now discuss how an MDPW moves from state to state by way of transitions, and show
how the transition function p defined in Section 3.1.2 prevents redundant transitions and
states in an MDPW . First, we show how the finite set of assignment decisions which can be
executed in a state s is defined by p. An assignment decision (t ′,u′) is executed in any state
s = (xi,(t,u),π), such that π : R→U is a plan where R⊆ T , if the following two properties
hold:

xi ̸= x⊥∧π is valid∧|R|= i−1∧ (t ∈ R∨R = /0) (3.1)

∀t ′′ ∈ T, t ′′ < t ′,∃u ∈U ⇒ π(t ′′) = u (3.2)

State s = (xi,(t,u),π) satisfies Property 3.1 if the termination step x⊥ has not been
reached, the plan π is valid, the number of tasks whose executions have been assigned by π

equals the number of completed steps, and either π assigns the execution of task t to a user,
or π does not assign the execution of any tasks. State s = (xi,(t,u),π) satisfies Property 3.2
if the execution of task t at step xi respects the ordering defined by the task schema (T,<)

when considering all tasks selected at previous workflow steps. If Properties 3.1 and 3.2
both hold, then the MDPW will move to a new state s′ = (xi,(t ′,u′),π) with the probability
p(s,(t ′,u′),s′) = 1. If both properties do not hold for executing assignment decision (t ′,u′)

in state s = (xi,(t,u),π) then p(s,(t ′,u′),s′) = 0.

Next, we show how the finite set of assignment events which can be executed in a state s

is defined by p to be a singleton set. An assignment event (x j,uq) is executed in any state
s = (xi,(t,up),π), such that π : R→U is a plan where R⊆ T , if the following two properties
hold:

xi ̸= x⊥∧|R|= i−1∧ t /∈ R (3.3)

x j = xi∧uq = up (3.4)

State s = (xi,(t,u),π) satisfies Property 3.3 if the termination step x⊥ has not been
reached, the number of tasks whose executions have been assigned by π equals the number
of completed steps, and π does not assign the execution of task t to a user. State s =

68

3.2 Computing Workflow Metrics

(xi,(t,u),π) satisfies Property 3.4 if x j equals the current execution step xi and uq is the user
up selected at step xi to be assigned the execution of task t. If Properties 3.3 and 3.4 both
hold then the MDPW will move to either a new state s′ = (xi+1,(t,u),π(t)← u) with the
probability p(s,(xi,u),s′) = θ(xi,u), or a new state s′′ = (xi+1,(t,u),π) with the probability
p(s,(xi,u),s′) = 1− θ(xi,u). In the former case, state s′ indicates the completion of step
xi and creates a new plan by assigning the execution of t to u, denoted as π(t)← u. Note,
given the set of all execution steps X = Z \{x⊥}, if i = |X | then xi+1 = x⊥. In the latter case,
state s′′ also indicates the completion of step xi but does not create a new plan as u was not
available to be assigned the execution of t. If Properties 3.3 and 3.4 both do not hold in
s = (xi,(t,u),π) then p(s,(xi,u),s′) = 0.

A termination action t is executed in state s = (xi,(t,u),π), such that π : R→U is a plan
where R⊆ T , if one of the following two properties hold:

π is valid∧R = T (3.5)

(xi ̸= x⊥∧π is valid∧|R|< i−1)∨ (xi = x⊥∧R ̸= T)∨ (xi ̸= x1∧π is invalid) (3.6)

State s = (xi,(t,u),π) satisfies Property 3.5 if the plan π is valid, and the execution of
all tasks have been assigned to a user by π , that is π is complete. The MDPW is said to end
successfully in this case. State s = (xi,(t,u),π) satisfies Property 3.6 if either the termination
step x⊥ has not been reached and the number of tasks whose executions have been assigned
by π is less than the number of completed steps, or the termination step x⊥ has been reached
and the execution of all tasks have not been assigned to a user by π , or step xi is not the
first workflow step and π is invalid. The MDPW is said to end unsuccessfully in this case.
If Property 3.5, or Property 3.6 hold in s = (xi,(t,u),π) then the MDPW will move to a
termination state s′ = (xi,null,π(t)) with the probability p(s,t,s′) = 1. If neither property
holds in state s then p(s,t,s′) = 0 meaning the MDPW will not terminate in s.

Workflow Decision Policy

In Section 3.1.2 a decision policy was defined as a function δ : S→ A which given a process
state, returned the action to execute in that state. In an MDPW a workflow decision policy δ ,
given a state s = (xi,(t,u),π), returns a single assignment decision (t,u), assignment event
(x,u), or termination action t depending on the properties of s. Given a workflow execution
specification WES = (WS,ES), many workflow decision policies δ may exist, each one
resolving all non-deterministic choice to define a single course of sequential actions among
several possible courses of sequential actions. In Section 2.2.1 we defined Π to be the set of

69

Generating Workflow Metrics

Table 3.1 Assignment decisions returned at each execution step xi by all workflow decision
policies δ that enable the workflow specification WS1 to be satisfied.

Execution Decision Execution Steps
Plan Schedule Policy x1 x2 x3 x4 x5

π11

σ11 δ1 (t1,u1) (t2,u2) (t3,u1) (t4,u4) (t5,u1)
σ12 δ2 (t1,u1) (t2,u2) (t4,u4) (t3,u1) (t5,u1)
σ13 δ3 (t1,u1) (t4,u4) (t2,u2) (t3,u1) (t5,u1)

π12

σ11 δ4 (t1,u1) (t2,u3) (t3,u1) (t4,u2) (t5,u1)
σ12 δ5 (t1,u1) (t2,u3) (t4,u2) (t3,u1) (t5,u1)
σ13 δ6 (t1,u1) (t4,u2) (t2,u3) (t3,u1) (t5,u1)

π13

σ11 δ7 (t1,u1) (t2,u3) (t3,u1) (t4,u2) (t5,u4)
σ12 δ8 (t1,u1) (t2,u3) (t4,u2) (t3,u1) (t5,u4)
σ13 δ9 (t1,u1) (t4,u2) (t2,u3) (t3,u1) (t5,u4)

π14

σ11 δ10 (t1,u1) (t2,u3) (t3,u1) (t4,u4) (t5,u1)
σ12 δ11 (t1,u1) (t2,u3) (t4,u4) (t3,u1) (t5,u1)
σ13 δ12 (t1,u1) (t4,u4) (t2,u3) (t3,u1) (t5,u1)

π15

σ11 δ13 (t1,u2) (t2,u3) (t3,u2) (t4,u4) (t5,u1)
σ12 δ14 (t1,u2) (t2,u3) (t4,u4) (t3,u2) (t5,u1)
σ13 δ15 (t1,u2) (t4,u4) (t2,u3) (t3,u2) (t5,u1)

all possible plans for WES and ΠV ⊆Π for the set of all complete and valid plans for WES.
In Section 2.3.2 we defined the set of all complete and valid step-task mappings to be M,
where |M| equals the number of execution schedules σ . The number of existing decision
policies which enable the satisfiability of WS, is |ΠV |× |M|.

Under a full availability forecast θ (Section 2.3.1, Property 2.9) any one of these decision
policies could be implemented for an automated workflow management system to enable
satisfiability when executing WES. In cases where users may not always be available, the
optimal strategy will be one of these workflow decision policies. Solving an MDPW allows
us to find the optimal strategy and generate the workflow metrics we require when using
appropriate reward functions which we discuss in the next section. As a final note, three
execution schedules were shown to exist in Section 2.1.1 for workflow specification WS1,
such that |M1|= 3. In Section 2.2.1 five complete and valid plans were shown to exist for
WS1, such that |ΠV 1|= 5. It follows that 3 * 5 = 15 workflow decision policies exist which
enable the satisfiability of WS1. Table 3.1 shows the assignment decisions returned at each
execution step xi by all 15 of these workflow decision policies δ .

70

3.2 Computing Workflow Metrics

3.2.2 Workflow Metric Reward Functions

In this section we define two reward functions for an MDPW . The first, rQ, is used for
generating either the quantitative satisfiability or quantitative resiliency of a workflow when
solving an MDPW . The second, rD, is used for generating the distance resiliency of a
workflow when solving an MDPW .

Quantitative Resiliency and Satisfiability

We now define an MDPW reward function rQ(s,a,s′) for both quantitative resiliency and
satisfiability metrics. Both cases are concerned with the process reaching a successful
termination state s′ = (x⊥,null,π) where the plan π is complete and valid, therefore a single
reward function is sufficient. As the maximum quantitative satisfiability or resiliency for any
workflow execution specification WES is 1, we associate a reward of 1 to any transition that
moves the process from a non-termination state s = (xi,a,π) to a successful termination state
s′ iff π is a complete and valid plan, following the execution of a termination action t in s.
Given π : R→U is a plan, such that R⊆ T , we give the reward function rQ to be:

rQ((xi,a,π),a′,(xi,a′′,π)) =

1 if π is valid∧R = T ∧a′ ∈ T

0 otherwise
(3.7)

Given a valid execution workflow schema WES = (WS,((Z,≺),θ)), an MDPW for
computing the quantitative resiliency and satisfiability of WES is written as (S,A,p,rQ).
In the case of computing the quantitative resiliency of WES, the workflow metric function
ΓQ = V ∗(s0), where s0 ∈ S is the initial state and V ∗ is the optimal value function of an
MDPW (S,A,p,rQ). For computing the quantitative satisfiability of WES, the availability
forecast θ must be full (Section 2.3.1, Property 2.9). In this case the workflow metric function
ΓS =V ∗(s0).

Distance Resiliency

We now define an MDPW reward function rD(s,a,s′) for a distance resiliency metric. Distance
resiliency is concerned with the process completing execution steps. The execution of an
assignment event moves the process to a state s and completes an execution step x. As
the maximum probability for any assignment event being successful is 1 we associate a
reward of 1 to any transition that moves the process from state s = (xi,a,π) to a new state
s′, following the execution of an assignment decision d in s, or iff π is a complete and valid

71

Generating Workflow Metrics

t1 t2 t1
{u2}

t2
{u1,u2}

̸=

Fig. 3.6 Example workflow task schema (T2,<2) and security policy (A2,S2,B2) used to
illustrate solving a workflow Markov decision process (MDPW).

plan, a termination action t in state s. Note, because each reward of 1 is received after the
completion of an execution step, no reward is received if xi is the first step x1. Given that
π : R→U is a plan, such that R⊆ T , we give the reward function rD to be:

rD((xi,a,π),a′,(xi,a′′,π)) =

1 if π is valid∧R = T ∧a′ ∈ T

1 if i ̸= 1∧a′ ∈ D

0 otherwise

(3.8)

Given a valid execution workflow schema WES = (WS,((Z,≺),θ)), an MDPW for
computing the distance resiliency of WES is written as (S,A,p,rD). For computing the
distance resiliency of WES, the workflow metric function ΓD = V ∗(s0), where V ∗ is the
optimal value function of an MDPW (S,A,p,rD).

3.2.3 Solving Workflow Markov Decision Process

We now illustrate by example how quantitative satisfiability, quantitative resiliency and
distance resiliency is generated by solving an MDPW .

Example Execution Workflow Specification

First, we consider a small valid workflow execution specification WES2 = (WS2,ES2), such
that the workflow specification WS2 = ((T2,<2),U2,(A2,S2,B2)) consists of the following:

• A task schema (T2,<2) where T2 = {t1, t2} and t1 < t2
• A set of users U2 = {u1,u2}
• A security policy (A2,S2,B2) where A2 = {(t1,u2),(t2,u1),(t2,u2)}, S2 = {(t1, t2)},

and B2 = /0

Task schema (T2,<2) and security policy (A2,S2,B2) are illustrated in Figure 3.6. The
execution specification ES2 = ((Z2,≺2),θ2), which is compatible with WS2, consists of the
following components:

• An execution schema (Z2,≺2) where Z2 = {x1,x2,x⊥} and x1 < x2 < x⊥

72

3.2 Computing Workflow Metrics

• An availability forecast θ2 : (Z2 \ x⊥)×U2→ R
With this small example it is quite straightforward to calculate the set Π2 of all plans for

WES2 to be:
t1 t2

π21 u1 u1
π22 u1 u2

t1 t2
π23 u2 u1
π24 u2 u2

It is also straightforward to see the set of complete and valid plans ΠV 2 ⊆ Π2 to be
ΠV 2 = {π23}. A single step-task mapping µ2 exists where µ2(x1) = t1 and µ2(x2) = t2.

Quantitative Satisfiability

In order to generate quantitative satisfiability we must consider the availability forecast θ2

for WES2 to be full, and we write WES21 = (WS2,((Z2,≺2),θ21)) for this. Therefore for all
execution steps x ∈ Z2 \{x⊥} and every user u ∈U2, the probability of u being available at x

is θ21(x,u) = 1. Definition 13 states that if the set of all complete and valid plans ΠV ̸= 0 for
a workflow execution specification WES, then the quantitative satisfiability ΓS(WES) = 1. It
follows that because ΠV 2 ̸= /0 the quantitative satisfiability of WES21 is ΓS(WES21) = 1.

Figure 3.7 shows how the quantitative satisfiability is generated for the workflow ex-
ecution specification WES21 = (WS2,((Z2,≺2),θ21)) using an MDPW (S,A,p,rQ). State
s0 is the initial process state. States s0 and s4 are states where a non-deterministic choice
exists which must be resolved between executing assignment decisions. States s1, s2, s6 and
s7 are states where probabilistic assignment events are executed, however because θ21 is
full, the probability of each assignment event being successful is 1. States s5, s10, and s11

are termination states, with s10 being the only successful termination state. The transition
function rQ associates a reward of 1 to the transition from state s8 to state s10, such that
rQ(s8,t2,s10) = 1. The successful termination property (Section 3.2.1, Property 3.5) is
satisfied in this case by state s8. All transitions to any other termination state are associated
with a reward of 0 due to the unsuccessful termination property (Section 3.2.1, Property 3.6).

Figure 3.7 shows the maximum expected rewards at states s0 and s4 where a non-
deterministic choice exists. Starting at the termination states s10 and s11, all transition
rewards are collected up in an inductive manner to give the maximum expected reward at
state s4 to be V ∗(s4) = 1, where V ∗ is the optimal value function of the MDPW . Similarly,
collecting all transition rewards starting from the termination state s5 and those already
collected at s4, gives the maximum expected reward at the initial state s0 to be V ∗(s0) = 1.
As the quantitative satisfiability metric ΓS =V ∗(s0), it follows the quantitative satisfiability
of WES21 is ΓS(WES21) = 1.

73

Generating Workflow Metrics

x1,null,π1

s0 V ∗(s0) = 1

x1,(t1,u1),π1

s1

x1,(t1,u2),π1

s2

1 : (t 1,
u 1)

1 : (t1 ,u
2)

x2,(t1,u1),π2(t1)← u1

s3

rQ[0]
1

:
(x1 ,u

1)

x2,null,π2

s5

[prop.3.6]

1
:t

1

x2,(t1,u2),π3(t1)← u2

s4 V ∗(s4) = 1
1

:(
x 1
,u

2)

x2,(t2,u1),π3

s6

x2,(t2,u2),π3

s7

1
: (

t 2,
u 1)

1
: (t2 ,u

2)

x⊥,(t2,u1),π4(t2)← u1

s8

rQ[1]

x⊥,(t2,u2),π5(t2)← u2

s9

rQ[0]

1
:
(x2 ,u

1) 1
:(

x 2
,u

2)

x⊥,null,π4

s10

x⊥,null,π5

s11

[prop.3.5]

1
:t

2

[p
ro

p.
3.

6]

1
:t

3

Fig. 3.7 Quantitative satisfiability calculation for workflow execution specification WES21
using an MDPW , where rQ is the reward received in a termination state s and V ∗(s) is the
maximum expected reward in state s where non-deterministic choice exists. State s10 is the
only successful termination state.

74

3.2 Computing Workflow Metrics

Quantitative Resiliency

In order to generate quantitative resiliency for WES2, we consider the availability forecast
θ22 to be:

u1 u2
x1 0.8 0.6
x2 0.8 0.7

We then write WES22 = (WS2,((Z2,≺2),θ22)) to denote this workflow execution speci-
fication. Definition 12 states quantitative resiliency is the maximum feasibility found for all
plans π ∈ΠV where ΠV is the set of all complete and valid plans for a workflow execution
specification. For example WES22, the set of all complete and valid plans is a singleton set
ΠV 2 = {π23}. The quantitative resiliency of WES22 is therefore the feasibility of π23 given
by the function ρ . As only a single step-task mapping µ2 exists, the feasibility of π23 is given
to be:

ρ(π23) = θ(x1,π23(µ2(x1)))θ(x2,π23(µ2(x2)))

ρ(π23) = θ(x1,π23(t1))θ(x2,π23(t2))

ρ(π23) = θ(x1,u2)θ(x2,u1)

ρ(π23) = 0.6∗0.8

ρ(π23) = 0.48

Therefore the quantitative resiliency of WES22 is ΓQ(WES22) = 0.48. Figure 3.8 shows how
the quantitative resiliency is generated for the workflow execution specification WES22 =

(WS2,((Z2,≺2),θ22)) using an MDPW (S,A,p,rQ). State s0 is the initial process state.
States s0 and s6 are states where a non-deterministic choice exists which must be resolved
between executing assignment decisions. States s1, s2, s9 and s10 are states where proba-
bilistic assignment events are executed. Because θ21 is probabilistic, the probability of each
assignment event being successful is dependant on the availability of users defined by θ21.
For instance, the process transitions from state s1 to state s3 with a probability of 0.8 as
the probabilistic availability of user u1 at execution step x1 is 0.8. Otherwise the process
transitions from state s1 to state s4 with a probability of 0.2. States s7, s8, s15, s16, and s17

are termination states, with s15 being the only successful termination state. The transition
function rQ associates a reward of 1 to the transition from state s11 to state s15, such that

75

Generating Workflow Metrics

x1,null,π1

s0 V ∗(s0) = 0.48

x1,(t1,u1),π1

s1

x1,(t1,u2),π1

s2
1

: (
t 1
,u

1)

1
: (t1 ,u

2)

x2,(t1,u1),π1

s4

rQ[0]

x2,(t1,u1),π2(t1)← u1

s3

rQ[0]

0.8
: (

x 1,
u 1)

0.2
:
(x1 ,u

1)

x2,null,π2

s7

[prop.3.6]

1
:t

1

x2,(t1,u2),π1

s5

rQ[0]

x2,(t1,u2),π3(t1)← u2

s6 V ∗(s6) = 0.80.
4

:(
x 1
,u

2) 0.6 : (x1 ,u
2)

x2,null,π1

s8

[prop.3.6]

1
:t

2 [pr
op

. 3
.6]

1 : t
3

x2,(t2,u2),π3

s10

x2,(t2,u1),π3

s9

1
:(

t 2
,u

2)
1 : (

t 2,
u 1)

x⊥,(t2,u2),π5(t2)← u2

s14

rQ[0]

x⊥,(t2,u2),π3

s13

rQ[0]

0.
7

:(
x 2
,u

2)

0.3
: (

x 2,
u 2)

x⊥,(t2,u1),π3

s12

rQ[0]

x⊥,(t2,u1),π4(t2)← u1

s11

rQ[1]

0.8
: (x2,

u1)

0.2
: (

x 2,
u 1)

x⊥,null,π4

s15

[prop.3.5]

1
:t

4

x⊥,null,π3

s16

[prop.3.6]

1
:t

5 [p
ro

p.
3.6

]
1 : t

6

x⊥,null,π5

s17

[p
ro

p.
3.

6]

1
:t

7

Fig. 3.8 Quantitative resiliency calculation for workflow execution specification WES22
using an MDPW , where rQ is the reward received in a termination state s and V ∗(s) is the
maximum expected reward in state s where non-deterministic choice exists. State s15 is the
only successful termination state.

76

3.2 Computing Workflow Metrics

rQ(s11,t4,s15) = 1. The successful termination property (Section 3.2.1, Property 3.5) is
satisfied in this case by state s11. All transitions to any other termination state are associated
with a reward of 0 due to the unsuccessful termination property (Section 3.2.1, Property 3.6).

Figure 3.9 shows the maximum expected rewards at states s0 and s6 where a non-
deterministic choice exists. Starting at the termination states s15, s16, and s17, all transition
rewards are collected up in an inductive manner to give the maximum expected reward at
state s6 to be V ∗(s6) = 0.8, where V ∗ is the optimal value function of the MDPW . Similarly,
collecting all transition rewards starting from the termination states s7 and s8, and those
already collected at s6, gives the maximum expected reward at the initial state s0 to be
V ∗(s0) = 0.48. As the quantitative resiliency metric ΓQ =V ∗(s0), it follows the quantitative
resiliency of WES22 is ΓQ(WES22) = 0.48.

Distance Resiliency

We now consider generating distance resiliency for the workflow execution specification
WES22 = (WS2,((Z2,≺2),θ22)) defined in the previous section. Definition 14 states distance
resiliency is the maximum expected number of steps completed found for all plans π ∈ΠV

where ΠV is the set of all complete and valid plans for a workflow execution specification.
For the example WES22, the set of all complete and valid plans is a singleton set ΠV 2 = {π23}.
The distance resiliency of WES22 is therefore the expected number of steps completed by
π23, given by the function λ . As only a single step-task mapping µ2 exists, the expected
number of steps completed by π23 is given to be:

λ (µ2,π23,(Z2 \{⊥x}),θ22) = θ(x1,π23(µ2(x1)))+θ(x1,π23(µ2(x1)))θ(x2,π23(µ2(x2)))

= θ(x1,π23(t1))+θ(x1,π23(t1))θ(x2,π23(t2))

= θ(x1,u2)+θ(x1,u2)θ(x2,u1)

= 0.6+0.6∗0.8

= 1.08

Therefore the distance resiliency of WES22 is ΓD(WES22) = 1.08. Figure 3.9 shows
how the distance resiliency is generated for the workflow execution specification WES2 =

(WS2,((Z2,≺2),θ22)) using an MDPW (S,A,p,rD). All states are the same as for generating
the quantitative resiliency for WES2 in the previous section. The transition function rD

associates a reward of 1 to all transitions from a successful step completion state. In this
case, only states s6 and s11 are such states as step x1 and x2 are completed successfully in s6

77

Generating Workflow Metrics

x1,null,π1

s0 V ∗(s0) = 1.08

x1,(t1,u1),π1

s1

x1,(t1,u2),π1

s2
1

: (
t 1
,u

1)

1
: (t1 ,u

2)

x2,(t1,u1),π1

s4

rD[0]

x2,(t1,u1),π2(t1)← u1

s3

rD[0]

0.8
: (

x 1,
u 1)

0.2
:
(x1 ,u

1)

x2,null,π2

s7

[prop.3.6]

1
:t

1

x2,(t1,u2),π1

s5

rD[0]

x2,(t1,u2),π3(t1)← u2

s6 V ∗(s6) = 1.8

rD[1]
rD[1]

0.
4

:(
x 1
,u

2) 0.6 : (x1 ,u
2)

x2,null,π1

s8

[prop.3.6]

1
:t

2 [pr
op

. 3
.6]

1 : t
3

x2,(t2,u2),π3

s10

x2,(t2,u1),π3

s9

1
:(

t 2
,u

2)
1 : (

t 2,
u 1)

x⊥,(t2,u2),π5(t2)← u2

s14

rD[0]

x⊥,(t2,u2),π3

s13

rD[0]

0.
7

:(
x 2
,u

2)

0.3
: (

x 2,
u 2)

x⊥,(t2,u1),π3

s12

rD[0]

x⊥,(t2,u1),π4(t2)← u1

s11

rD[1]

0.8
: (x2,

u1)

0.2
: (

x 2,
u 1)

x⊥,null,π4

s15

[prop.3.5]

1
:t

4

x⊥,null,π3

s16

[prop.3.6]

1
:t

5 [p
ro

p.
3.6

]
1 : t

6

x⊥,null,π5

s17

[p
ro

p.
3.

6]

1
:t

7

Fig. 3.9 Distance resiliency calculation for workflow execution specification WES22 using an
MDPW , where rD is the reward received in a termination state s and V ∗(s) is the maximum
expected reward in state s where non-deterministic choice exists. State s15 is the only
successful termination state.

78

3.3 Related Work

and s11 respectively. For instance, the transitions from state s6 to state s9 and state s10 are
associated a reward of 1, such that rD(s6,(t2,u1),s9) = 1 and rD(s6,(t2,u2),s10) = 1. Both
Property 3.1 and Property 3.2 defined in Section 3.2.1 hold in this case for state s6.

Figure 3.9 shows the maximum expected rewards at states s0 and s6 where a non-
deterministic choice exists. Starting at the termination states s15, s16, and s17, all transition
rewards are collected up in an inductive manner to give the maximum expected reward at
state s6 to be V ∗(s6) = 1.8, where V ∗ is the optimal value function of the MDPW . Similarly,
collecting all transition rewards starting from the termination states s7 and s8, and those
already collected at s6, gives the maximum expected reward at the initial state s0 to be
V ∗(s0) = 1.08. As the distance resiliency metric ΓD = V ∗(s0), it follows the distance
resiliency of WES22 is ΓQ(WES22) = 1.08.

3.3 Related Work

To support our approach a number of works appearing in the literature have used Markov
decision processes (MDPs) for optimised decision making within the workflow and security
domains. In [51], Doshi et. al. consider the automatic composition of Web services to form
flexible and efficient workflows. They argue that current planning algorithms do not consider
the uncertain behaviour of real-world Web services and the dynamic environments in which
they operate. The authors consider the generation of robust and adaptive workflows as a
decision problem and model the abstracted composition process as an MDP. Solving the
MDP provides a policy optimally balancing the rewards of completing the workflow with the
risks imposed by the Web services and their operational environment. Periodical Bayesian
model learning is suggested as a way to update knowledge about the environment in order to
gradually improve the quality of those workflows composed in the future.

A very similar approach to dynamic Web service composition is defined by Gao et. al
in [68] who use MDPs to optimise overall quality of service (QoS). This work considers more
complex compositions to [51] such as parallel and conditional execution. It is assumed in this
work that Web service QoS data can be obtained from service registries. Two algorithms to
solve the MDP based on value iteration are also presented. In both of these works, each Web
service is selected in order to optimise workflow factors such as cost, time and availability
making the problem similar in nature to the one of optimally assigning workflows which is
the problem we consider. However they do not consider having to satisfy a security policy
when selecting services, nor how certain Web service selections may prevent future sections
of a workflow from being composed (i.e., the WSP). It is therefore assumed a workflow can

79

Generating Workflow Metrics

always be composed (and completed) making them insufficient for the analysis of security
policy impact on workflow resiliency.

The assignment of workflows using MDPs is also adopted by Espinosa et. al. in [58]
such that selecting a human to perform task is based on assessing their behavioural impact on
the overall financial revenue generated by the workflow. Behavioural impact is gained from
using a balanced scorecard system which records a human’s performance profile in terms
of specific skills, experience, salary etc. This system allows a comparison to be performed
between different employees in terms of their economical benefit/cost. For example a choice
may exist between assigning a current employee or hiring one or more agency staff. The
more expensive option may complete the task in a quicker time thus offering more gain in
the long term. The motivation for this approach is to integrate it into the common workflow
description language Business Process Model and Notation (BPMN) [136] which currently
lacks the capability to model workflow goals and strategies. Again, the satisfaction of a
security policy is not considered when selecting employees for task assignments.

In terms of security, quantitative access control using partially-observable MDPs is
presented by Martinelli et al. in [122] which under uncertainty, aims to optimise the decision
process for a sequence of probabilistic access requests. An access request may be denied if by
solving the MDP it is predicted that one or more access requests may be denied later on in the
sequence (e.g. due to a separation of duty). Access requests are not however assessed within
the confines of a structured workflow (i.e., correct ordering) nor does this work consider the
WSP and resiliency problems per se. It does however consider the satisfaction of a security
policy and provides inspiration for the solution defined in this chapter for quantifying the
resiliency of a workflow. For instance, probabilistic access requests can be viewed as being
loosely equivalent to the probabilistic availability of users to perform workflow tasks.

3.4 Summary

In general, metrics are standards of measurement, commonly used by organisations, by
which efficiency, performance, progress, or quality of a plan, process, or product can be
assessed. In Chapter 2 we defined an execution workflow specification which consists of a
workflow specification and execution specification. The former describes the workflow itself
in terms of tasks, users, and security policy; the latter exposes the notion of user availability
and defines a forecast of predicted availability of users during the execution of a workflow.
We also defined the satisfiability and resiliency of a workflow before proposing quantitative
measures for these concepts in the form of workflow metrics. We suggest a CISO can use

80

3.4 Summary

these metrics to assess the satisfiability and resiliency of a workflow, and undertake fine
grained impact analysis of modifications to a workflow’s security policy by generating a
metric with and without the modification, and observing the degree of change.

In this chapter we considered the execution of a workflow to be a stepwise decision
making problem consisting of discrete steps where an assignment decision and event is
actioned. Assignment decisions represent the selection of a task and a user, whilst assign-
ment events represent the assignment of a task’s execution to a user. The choice of which
assignment decisions to execute are non-deterministic and must be resolved by a workflow
management system. Event success is probabilistic as the availability of users is considered
to be probabilistic. We showed how the execution of a workflow under these conditions is
partly controlled by the workflow management system resolving assignment decisions, and
partly random due to the uncertainty introduced by the probabilistic availability of users.

We described the general concept of decision making processes before introducing a
Markov decision process (MDP) which is an analytical tool for modelling and studying
stepwise decision problems. Solving an MDP exposes the optimal decision policy which
resolves all non-deterministic choices by defining an optimal sequence of process actions
that maximise the chance of reaching some process termination state. We showed how
a workflow execution process can be modelled as an MDP, which we call a workflow
Markov decision process (MDPW). We then define two reward functions, one for generating
quantitative satisfiability and resiliency of a workflow, the other for generating distance
resiliency. Reward functions place motivational rewards on specific process transitions, and
solving the MDPW consists of finding the expected maximum reward in the initial state of
the process for a given reward function. Using this single MDPW framework we show how
the satisfiability and resiliency metrics can be generated by changing the reward function. In
Chapter 4 we show how these metrics can be computer generated by encoding the MDPW

in the probabilistic model checker PRISM, and how the impact of a security policy on the
completion of a workflow can be analysed.

81

Chapter 4

Computer Generated Metrics

Generating workflow metrics manually can soon become complex, time consuming, and
error prone even for small scale workflows like the examples used in this thesis to illustrate
our approach. Applying mathematical-based techniques directly may not be practical nor
fully understood by a Chief Information Security Officer (CISO) when generating metrics for
analysing the impact security policies have on workflow completion. A logical next step is to
provide a more accessible and efficient way of generating metrics by using an automated tool
that supports our approach. In Chapter 2 we gave a formal definition of a security constrained
workflow and described it to be satisfiable if the execution of its tasks could be assigned
to users without violating security constraints. We then extended the definition to expose
the notion of users being unavailable during workflow execution and described a workflow
as being resilient if it could be completed with unavailable users while still satisfying all
security constraints. In Chapter 3 we modelled the process of assigning the execution of
tasks to users under uncertainty as a Markov decision process (MDP), and described how
solving a workflow Markov decision process (MDPW) could generate quantitative measures
of workflow satisfiability and resiliency.

In this chapter we focus on the concept of probabilistic model checking and introduce
the probabilistic model checking tool PRISM, which is suitable for modelling and solving
Markov decision processes. We give a systematic encoding of an MDPW in PRISM using its
high level modelling language before describing how PRISM is used to verify properties in
the encoded process model and generate the workflow metrics we require. Using PRISM we
generate metrics for an example workflow execution specification, and show how a CISO
can use these metrics to analyse the potential impact different security policy modifications
have on the workflow’s completion. We also give an indication of the main computational
overheads that are encountered when using PRISM for generating workflow metrics.

83

Computer Generated Metrics

4.1 PRISM

In this section we introduce the probabilistic model checking tool PRISM [104]. Using its
high level, state based modelling language we encode an MDPW defined in Chapter 3 and
use PRISM to automatically generate the quantitative workflow metrics we require. We first
give a brief overview of probabilistic model checking before describing the PRISM model
checking tool, its modelling language, and its building and verification of process models.

4.1.1 Probabilistic Model Checking

To rule out errors in a system one needs to try all possible executions of that system, which
is often not feasible in practice. Instead, a common technique is to perform some method
of formal verification. Formal verification is the application of rigorous, mathematical-
based techniques to verify the existence of properties in a system and prove that a system
satisfies its specification. Formal verification can take many forms, for instance, manual
proof, automated theorem proving, static analysis, and model checking. Model checking is
a common technique for automatically verifying the existence of properties in finite-state
systems, modelled for example, as Markov decision processes [104]. Model checking has a
number of advantages over traditional approaches that are based on simulation, testing, and
deductive reasoning. In particular, model checking is automatic and can be quite efficient.
Also, if the system design contains an error, model checking will produce a counterexample
that can be used to pinpoint the source of the error.

Once a system property whose existence needs verifying is specified, an automatic model
checking tool can be used to exhaustively check whether that property holds in the system.
For instance, one may want to verify the absence of deadlocks in critical systems, or, in the
case of the workflow satisfiability problem, verifying that a workflow can be satisfied. Many
properties other than the correctness of a system may be important. For instance a system
designer may need to guarantee the safety, reliability, performance, dependability, resource
usage, and security of a system. Many model checking tools are in existence, many of which
have been used successfully in practice to verify real industrial designs1.

Some systems are inherently probabilistic, such as the workflows we consider in the first
part of this thesis. Probabilistic model checking is a formal verification technique for systems
which contain uncertainty, for instance, the probabilistic availability of resources such as
users, needed for a system to complete successfully. Analysis of these systems can quantify

1http://www.prismmodelchecker.org/other-tools.php

84

http://www.prismmodelchecker.org/other-tools.php

4.1 PRISM

the existence of properties such as levels of resource usage, quality of service, rates of failure,
satisfiability and resiliency.

4.1.2 Model Checker

PRISM is a free, open-source probabilistic model checking tool, which enables the formal
modelling and analysis of models that exhibit probabilistic behaviour [104]. PRISM has
been used to analyse systems in many different domains, including communication and
security protocols, biological systems and many others including workflow, some of which
are discussed in Section 4.4.2. PRISM has also been heavily used in the field of systems and
security research, and features in over 500 peer reviewed publications2. PRISM becomes an
intuitive choice of tool for our needs as it can model both probabilistic and non-deterministic
choice, and gives an efficient way to automatically solve a Markov decision process whilst
providing analysis data regarding computation overheads.

PRISM can build and analyse many types of probabilistic model, including discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs), probabilistic automata
(PAs), probabilistic timed automata (PTAs), and Markov decision processes which we use in
Chapter 3 to model the execution process of a security constrained workflow coming with
probabilistic user availability. The PRISM developers, who are active researchers at Oxford
University at the time of writing, give no definitive answer to the size of models in terms
of state space, the PRISM model checking tool can handle. Several factors can affect the
performance of PRISM including its use of data structures based on binary decision diagrams
(BDDs) which make performance unpredictable [131]. Other factors include the model type
and model properties being verified, and the engine used for verification. The default PRISM
engine is the hybrid engine which can reportedly handle models of up to 108 states on a
‘typical’ personal computer [103]. To put this into perspective, the example MDPW processes
we have introduced in Chapters 2 and 3 have between 12 and 719 states. PRISM engines are
discussed in Section 4.1.4.

Probabilistic models can be encoded in PRISM using the PRISM language which is a high-
level, state-based modelling language. PRISM provides support for automatic analysis with a
wide range of quantitative properties which can be specified for such models, for example, the
maximum probability of reaching a failure state, the probability of terminating successfully, or
the expected maximum reward for reaching any one of a number of states holding a particular
property. PRISM provides a number of techniques for solving probabilistic models, such

2 http://www.prismmodelchecker.org/bib.php

85

http://www.prismmodelchecker.org/bib.php

Computer Generated Metrics

as Markov decision processes, including dynamic programming (e.g. value iteration) [83].
Value iteration begins at the ‘end’ states of a process and then works backward to determine
a sequence of optimal actions, and refines an estimate of the optimal value function V ∗.
Roughly speaking, PRISM proceeds by first considering the last time a non-deterministic
decision might be made and trying all available decisions at that time. Using this information,
PRISM can determine what to do at the second-to-last time a non-deterministic decision
might be made. This process continues backwards until PRISM has determined the best
action for every possible situation at every point in time.

4.1.3 Modelling Language

A PRISM encoded process model constitutes a number of interactive modules that contain
one or more local variables and commands as follows:

module name
variables
commands

endmodule

The values of a module’s local variables define the module’s state, while the values of every
variable across all modules constitutes the global state of the model. Each variable is defined
with a name, a type restricted to either a finite range of integers or to a Boolean, and an initial
value:

name : type init value

The initial state of a process model is therefore defined by the initial values of all variables.
The behaviour of a module is described through a set of local commands. Each command
contains a guard and one or more updates, taking the form:

[label] guard →update1 & ... & updaten;

A guard is a predicate over both local variables and those contained in other modules. If a
command’s guard equates to true, the guard’s corresponding updates take place assigning one
or more local variables with new values. Updating variables is equivalent to a state transition
causing the model to move from its current state to a new state. Labelling commands
across modules with a common label allows those commands to be synchronised such that a
transition consists of all these commands operating in parallel. Such a transition will only
occur when the guards of all its constituent commands equate to true. A guard of the form
true is an empty guard that always equates to true; commands with such a guard are used
to update local variables regardless of the variable’s current value. These commands can

86

4.1 PRISM

still be synchronised with others through labelling. A module containing several commands
whose guards all equate to true will make a non-deterministic choice over which command
to perform. PRISM allows probabilistic variable updates with commands of the form:

[label] guard →prob1 : update1 + ... + probn : updaten;

This states the probability of update1 is prob1 and so forth such that the sum of prob1 to
probn is 1. Only one of the updates will take place with its given probability assuming the
guard is true. For example, a Boolean variable available has a probability of 0.75 to be true
and 0.25 to be false with a command of the form:

[label] guard →0.75 :(available’=true) + 0.25 :(available’=false);

Guards placed on commands and probabilistic variable updates essentially form the process
transition function p(s,a,s′). Named expressions or formulas can be included in a PRISM
process model to avoid the duplication of code and reduce the state space. Essentially a
formula’s expression can be substituted by its name where ever the expression would be
expected.

formula name = expression;

One or more reward functions may be included in a PRISM process model which return
a reward for reaching a particular state, or executing a particular transition comprised of
synchronised commands. We are concerned with the later which has the form:

rewards "name"
[label] guard : reward;
endrewards

The "name" of the function is simply used to distinguish it amongst multiple reward
functions, and can be removed if only one reward function is present in a process model.
The label matches the label of the command in the model for which the reward should be
returned. The guard is used to restrict when the reward is returned for a given command and
can be set to true if the reward is to be returned every time the given command executes. The
reward itself may be a single value or a formula combining values and variables within the
PRISM model.

4.1.4 Model Building and Verification

In order to analyse a PRISM process model, it is necessary to identify which properties need
to be evaluated by the PRISM model checker. PRISM’s property specification language
incorporates several probabilistic temporal logics, including probabilistic computation tree

87

Computer Generated Metrics

logic (PCTL), continuous stochastic logic (CSL), linear time logic (LTL), and PCTL*, which
incorporates both PCTL and LTL [104]. PRISM supports two quantitative properties for
non-deterministic models Pmin=? [path property] and Pmax=? [path property] which return
the minimum and maximum probability of satisfying a path property respectively. Reward-
based properties using the R operator are also supported which relate to the expected value
of a reward function. In order to calculate the maximum reward within a process model, the
following verification property is encoded in a PRISM properties file:

R{"name"}max=? [F p]

Path properties include F, which is the eventually operator, such that F p is true if the
statement p eventually holds in the process. In this case R{"name"}max =? asks PRISM to
verify the maximum expected reward returned by the reward function "name" when the path
property F p is true. In order to verify the property p is satisfied, PRISM first builds the
process model by converting a process encoding into a Markov decision process. To do this
PRISM computes the set of all reachable states from the initial state of the process model and
the transition matrix which represents the model. The transition matrix represents the process
transition function p : S×A×S→ [0,1], and contains the probabilities for all transitions,
from state to state, that are possible in the model. A non-zero entry at row i, column j in the
transition matrix represents the probability of going from state si to state s j in the process.

Verifying the existence of properties in a Markov decision process using PRISM is based
on exhaustive search and numerical solution [66]. The numerical result returned by PRISM is
the expected maximum reward at the initial state of the Markov decision process. The model
verification functionality in PRISM is implemented by four main engines MTBDD, sparse,
hybrid, and explicit, all of which essentially perform the same calculations3. The first three
engines are symbolic meaning the transition matrix is represented using data structures such
as binary decision diagrams (BDDs) and multi-terminal BDDs (MTBDDs) [131]. PRISM
starts with a symbolic representation of the initial state before performing fixed-point iteration.
In each iteration the states are computed which can be reached within one transition step. The
fourth engine, explicit, uses explicit state data structures to represent the transition matrix,
such as sparse matrices where most entries are zero [185].

3http://www.prismmodelchecker.org/manual/ConfiguringPRISM/ComputationEngines

88

http://www.prismmodelchecker.org/manual/ConfiguringPRISM/ComputationEngines

4.2 Encoding Workflow Markov Decision Processes

4.2 Encoding Workflow Markov Decision Processes

In this section we provide a systematic encoding in the PRISM modelling language of a
workflow Markov Decision Process (MDPW) described in Section 3.2. We do so using the
workflow execution specification WES1 = (WS1,ES1) defined in Section 2.3.3, where WS1

is a workflow specification and ES1 is an execution specification. A state of the MDPW

is defined in Section 3.2 to be s = (x,(t,u),π), where x is a workflow step, (t,u) is an
assignment decision, and π is a plan. The full encoding is given in Appendix A.1.

4.2.1 Workflow Specification

We now show how a workflow specification can be encoding in PRISM using the workflow
specification WS1 = ((T1,<1),U1,(A1,S1,B1)) defined in Section 2.1.4, where (T1,<1) is a
task schema, U1 is a set of users, and (A1,S1,B1).

Task Schema

Given the task schema (T1,<1), where T1 = {t1, t2, t3, t4, t5} is a set of tasks, we consider a
task variable t which can take the values 0 to 5 to indicate the current task t ∈ T1, such that:

t : [0..5] init 0;

If t=0 then no task is currently selected, meaning in the process state s = (x,(t,u),π), the
selected task t in the assignment decision (t,u) is null. Next, given the ordering of tasks
<1= {(t1, t2),(t1, t4),(t2, t3),(t3, t5),(t4, t5)} the task schema (T1,<1) is encoded as:

module task_schema
t : [0..5] init 0;
[d] decision & !t1 → (t’=1);
[d] decision & t1 & !t2 → (t’=2);
[d] decision & t1 & !t4 → (t’=4);
[d] decision & t2 & !t3 → (t’=3);
[d] decision & t3 & t4 & !t5 → (t’=5);
[t] true → (t’=0);
endmodule

A command labelled [d] selects a task t as part of an assignment decision, and assigns it to t

thus becoming the new current task. The formula decision must hold for any [d] command
to execute and we encode decision in Section 4.2.3. The formulas t1, ... ,t5 are true if the
respective task ti has already been selected. We encode these formulas in Section 4.2.4. Note,
when t1 has been selected, the non-deterministic choice between t2 and t4 exists if neither

89

Computer Generated Metrics

have been selected. Similarly, if t1 and t2 have been selected, the non-deterministic choice
exists between t3 and t4 if neither have been selected. Finally, t5 can only be selected if the
both t3 and t4 have been selected. The command labelled [t] is a termination action and sets
the current task t to null.

Users

Given the set of users U1 = {u1,u2,u3,u4}, we consider a user variable u which can take the
values 0 to 4 to indicate the current user u ∈U1, such that:

u : [0..4] init 0;

If u=0 then no user is currently selected, meaning in the process state s = (x,(t,u),π), the
selected user u in the assignment decision (t,u) is null. The task of users U1 is encoded as:

module users
u : [0..4] init 0;
[d] true → (u’=1);
[d] true → (u’=2);
[d] true → (u’=3);
[d] true → (u’=4);
[t] true → (u’=0);
endmodule

A command labelled [d] selects a user u as part of an assignment decision, and assigns it
to u thus becoming the new current user. Note how these commands are synchronised with
the task selection commands to form an assignment decision (t,u). As there is no guard on
these commands, a non-deterministic choice exists between selecting any user u ∈U1. The
command labelled [t] is a termination action and sets the current user u to null.

Security Policy

The workflow security policy (A1,S1,B1), is defined to be:

A1 = {(t1,u1),(t1,u2),(t2,u2),(t2,u3),(t3,u1),(t3,u2),(t4,u2),(t4,u4),(t5,u1),(t5,u4)}

S1 = {(t2, t4),(t2, t3),(t3, t4),(t4, t5)}

B1 = {(t1, t3)}

The set of authorisation constraints A1 is encoded in PRISM as a set of formulas as follows:

formula a1 = u=1 & (t=1 | t=3 | t=5);
formula a2 = u=2 & (t=1 | t=2 | t=3 | t=4);

90

4.2 Encoding Workflow Markov Decision Processes

formula a3 = u=3 & (t=2);
formula a4 = u=4 & (t=4 | t=5);

A formula exists for each user, for instance a1 is true if the current user is u1 and the current
task is either t1, t3 or t5. If a1 is true then u1 is authorised to be assigned the execution of the
current task t as (t1,u1), (t3,u1), and (t5,u1) are all in A1. The satisfaction of all authorisation
constraints in A1 is encoded as:

formula a = (u=0 & x=1) | a1 | a2 | a3 | a4;

The condition (u=0 & x=1) states the formula a is always true in the initial state s =

(x1,null,π). The set of separation of duty constraints S1 are encoded as a set of PRISM
modules. For instance (t2, t3) is encoded as:

module sod1
us1 : [0..4] init 0;
fs1 : bool init false ;
[e] (t=2 | t=3) & us1=0 →(us1’=u);
[e] (t=2 | t=3) & us1!=0 & u=us1 →(fs1’=true);
[e] (t!=2 & t!=3) | (us1!=0 & u!=us1) →true;
[t] true → (us1’=0)&(fs1’=true);
endmodule

When the execution of either t2 or t3 is assigned a user u first, the variable us1 = u. The
Boolean fs1 becomes true to indicate a policy violation, if the execution of the second task is
also assigned to u. Commands are labelled [e] in this case as they can execute in parallel to
an assignment event described in Section 4.2.3. The command labelled [t] is a termination
action and sets the current user us1 to null and fs1 to true. Given |S1|= 4, the satisfaction of
all separation of duty constraints in S1 is encoded as:

formula s = !fs1 & !fs2 & !fs3 & !fs4 ;

The set of binding of duty constraints S1 are encoded in a similar way. For instance (t1, t3) is
encoded as:

module bod1
ub1 : [0..4] init 0;
fb1 : bool init false ;
[e] (t=1 | t=3) & ub1=0 →(ub1’=u);
[e] (t=1 | t=3) & ub1!=0 & u!=ub1 →(fb1’=true);
[e] (t!=1 & t!=3) | (ub1!=0 & u=ub1) →true;
[t] true → (ub1’=0)&(fb1’=true);
endmodule

Given |B1|= 1, the satisfaction of all binding of duty constraints in B1 is encoded as:

91

Computer Generated Metrics

formula b = !fb1;

It follows that the satisfaction of the security policy (A1,S1,B1) is encoded as the following
formula:

formula valid = a & s & b;

The formula is named valid as a plan π in a state s = (x,a,π) is valid if the formulae a, s,
and b all hold true.

4.2.2 Execution Specification

We now show how an execution specification can be encoding in PRISM using the workflow
specification ES1 = ((Z1,<1),θ1) defined in Section 2.3.1, where (Z1,≺1) is an execution
schema and θ1 is an availability forecast.

Execution Schema

Given the execution schema (Z1,≺1), where Z1 = {x1,x2,x3,x4,x5,x⊥} is a set of workflow
steps, we consider a step variable x which can take the values -1 to 5 to indicate the current
step x ∈ Z1, such that:

x: [−1..5] init 1;

The step variable is initialised to 1 as the process starts at step x1. Next, given the ordering of
steps ≺1= (x1,x2,x3,x4,x5,x⊥), the execution schema (Z1,≺1) is encoded as:

module execution_schema
x : [−1..5] init 1;
[e] x < 5 → (x’=x+1);
[e] x = 5 → (x’=−1);
endmodule

When x=−1 the current workflow step is the termination step x⊥.

Availability Forecast

Given the availability forecast θ1 : (Z \ {x⊥})×U → [0,1], whose values are shown in
Table 2.2, we first consider a set of variable pairs tx and ux for each execution step x ∈
Z \{x⊥}, which can take the values 0 to 5, and 0 to 4 respectively, such that:

tx1 : [0..5] init 0;
ux1 : [0..4] init 0;

92

4.2 Encoding Workflow Markov Decision Processes

The variable tx1 is the task whose execution was assigned to a user at step x1, while the
variable ux1 is the user assigned the execution of a task at step x1. We then encode the
availability of each user u ∈U to form the availability forecast θ1 as follows:

[e] event & x=1 & u=1 →0.8:(tx1’=t)&(ux1’=u)+0.2:(tx1’=0);
[e] event & x=2 & u=1 →0.8:(tx2’=t)&(ux2’=u)+0.2:(tx2’=0);
[e] event & x=3 & u=1 →0.8:(tx3’=t)&(ux3’=u)+0.2:(tx3’=0);
[e] event & x=4 & u=1 →0.6:(tx4’=t)&(ux4’=u)+0.4:(tx4’=0);
[e] event & x=5 & u=1 →0.8:(tx5’=t)&(ux5’=u)+0.2:(tx5’=0);

These commands are the availability of user u1 at each execution step x ∈ Z \{x⊥}. Each
command labelled [e] is a probabilistic assignment event. For instance, if the current step is
x1 and the current user is u1, then tx1 becomes the current task t and ux1 becomes u1 with
the probability θ1(x1,u1) = 0.8. This indicates the assignment event, assigning the execution
of t to u1 has succeeded. Otherwise the assignment event fails and tx1 becomes null. In this
case the number of assigned tasks is one less than the number of completed steps, forcing the
process to terminate. We discuss the encoding of this in Section 4.2.3. The formula event

must hold for any [e] command to execute and we encode event in Section 4.2.3. All tx, ux,
and availability forecast commands [e] are encoded within a single PRISM module as shown
in Appendix A.1.

4.2.3 Process Actions

We now show how the properties defined in Section 3.2.1 are encoded, which if satisfied,
allow either an assignment action, assignment decision, or a termination action to be executed.

Assignment Decisions

Two properties were defined in Section 3.2.1 which must be satisfied by a state s = (x,a,π)

for an assignment decision action to be executed in s. The first property we consider,
Property 3.2, is defined to be:

∀t ′′ ∈ T, t ′′ < t ′,∃u ∈U ⇒ π(t ′′) = u

This states task ordering must be respected and is satisfied by the task_schema module
described in Section 4.2.1. The second property, Property 3.1, is defined to be:

xi ̸= x⊥∧π is valid∧|R|= i−1∧ (t ∈ R∨R = /0)

93

Computer Generated Metrics

Here π : R→U is a plan, where R ⊆ T is a set of tasks. To encode this property we first
encode the formula:

formula null = t=0 & u=0;

Which only holds true in both the initial state of the process, where R= /0, and any termination
state s = (x,null,π). Next we encode the formula:

formula tinR = (x=2&tx1=t) | (x=3&tx2=t) | (x=4&tx3=t) | (x=5&tx4=t) |(x=−1&tx5=t);

The formula tinR holds true if the execution of the current task t has been assigned to a user
such that t ∈ R. Finally we encode Property 3.1 as the formula decision :

formula decision = x!=−1 & valid & sp=x−1 & (x=1 & null | tinR);

Given a state s = (x,a,π), the formula valid indicates the plan π is valid, and is encoded in
Section 4.2.1. The formula sp is equivalent to |R|, and is defined in Section 4.2.4. Finally,
x=1 & null allows an assignment decision to execute in the initial state of the process.

Assignment Events

Two properties were defined in Section 3.2.1 which must be satisfied by a state s=(x,(t,u),π)

for an assignment event action to be executed in s. The first property we consider, Property 3.4,
is defined to be:

x j = xi∧uq = up

This states task workflow step x must equal the current workflow step x, and the user u

must equal the current user u. This property holds true by virtue of an assignment decision
command [d], described in Section 4.2.1, which moves the process to state s from a state
s′ = (x,(t,u′),π). The command [d] changes the current user u from u′ to u, but does not
change the step x in state s′. The second property, Property 3.3, is defined to be:

xi ̸= x⊥∧|R|= i−1∧ t /∈ R

We encode Property 3.3 as the formula event:

formula event = x!=−1 & sp=x−1 & !tinR;

The formula sp is equivalent to |R|, and is defined in Section 4.2.4, and the formula tinR is
defined in the previous section.

94

4.2 Encoding Workflow Markov Decision Processes

Termination Actions

Two properties were defined in Section 3.2.1, either of which must be satisfied by a state
s = (x,(t,u),π) for a termination action to be executed in s. The first property we consider,
Property 3.5, is defined to be:

π is valid∧R = T

Here π : R→U is a plan, where R⊆ T is a set of tasks. To indicate a plan π is complete we
encode the formula:

formula complete = tx1!=0 & tx2!=0 & tx3!=0 & tx4!=0 & tx5!=0;

We then encode Property 3.5 as the command:

[t] valid & complete → true;

Given a state s = (x,a,π), the formula valid defined in Section 4.2.1, indicated the plan π is
valid. The second property, Property 3.6, is defined to be:

(xi ̸= x⊥∧π is valid∧|R|< i−1)∨ (xi = x⊥∧R ̸= T)∨ (xi ̸= x1∧π is invalid)

Property 3.6 is then encoded as a command:

[t] (x!=−1 & sp!=x−1 & valid) | (x=−1 & !complete) | (x!=1 & !valid) →true;

The formula sp is equivalent to |R|, and is defined in Section 4.2.4. Both termination
commands [t] are encoded within a single PRISM module as shown in Appendix A.1. To
determine whether the process is in a termination state s = (xi,null,π), where the workflow
step xi is not the first workflow step x1, we encode the formula:

formula terminated = x!=1 & null;

4.2.4 Plan

Given a state s = (x,a,π), the combination of all tx and ux variables introduced in Sec-
tion 4.2.2 forms the plan π , by indicating the task t selected at each step x, and the user u

assigned the execution of t. Understanding whether the execution of each task t ∈ T has been
assigned is captured by the following formulae:

formula t1 = tx1=1 | tx2=1 | tx3=1 | tx4=1 | tx5=1;
formula t2 = tx1=2 | tx2=2 | tx3=2 | tx4=2 | tx5=2;
formula t3 = tx1=3 | tx2=3 | tx3=3 | tx4=3 | tx5=3;

95

Computer Generated Metrics

formula t4 = tx1=4 | tx2=4 | tx3=4 | tx4=4 | tx5=4;
formula t5 = tx1=5 | tx2=5 | tx3=5 | tx4=5 | tx5=5;

These formula are used to satisfy task ordering when selecting tasks, as shown in Section 4.2.1.
Given π : R→U is a plan, where R⊆ T is a set of tasks, the size of a plan is equivalent to
|R|, and encoded by the formula sp:

formula sp = (tx1/tx1) + (tx2/tx2) + (tx3/tx3) + (tx4/tx4) + (tx5/tx5);

4.2.5 Reward Functions

We now show how the reward functions defined in Section 3.2.2 can be encoded in PRISM.
The first reward function rQ is used to maximise the MDPW optimal value function V ∗ in
order to generate the quantitative satisfiability and resiliency metric for a workflow:

rQ((xi,a,π),a′,(xi,a′′,π)) =

1 if π is valid∧R = T ∧a′ ∈ T

0 otherwise

This is encoded in PRISM as:

rewards "quantitative"
[t] complete & valid : 1;
endrewards

A reward of 1 is returned when, from a state s = (x,a,π) where the plan π is complete and
valid, the process transitions to a termination state by executing a termination action in state
s. Note, the PRISM encoded reward function is synchronised to return a reward of 1 when a
termination command [t] executes. The second reward function rD is used to maximise the
MDPW optimal value function V ∗ in order to generate the distance resiliency metric for a
workflow:

rD((xi,a,π),a′,(xi,a′′,π)) =

1 if π is valid∧R = T ∧a′ ∈ T

1 if i ̸= 1∧a′ ∈ D

0 otherwise

This is encoded in PRISM as:

rewards "distance"
[t] complete & valid : 1;
[d] x > 1 : 1;
endrewards

96

4.3 Workflow Analysis

A reward of 1 is returned when, from a state s = (x,a,π) where the plan π is complete and
valid, the process transitions to a termination state by executing a termination action in state s.
A reward of 1 is also returned when, from a state s = (x,a,π) where the step x is not the first
workflow step x1, the process transitions to a state s′ by executing an assignment decision in
state s. Note, the PRISM encoded reward function is synchronised to return a reward of 1
when either a termination command [t] or assignment decision [d] executes.

4.3 Workflow Analysis

In this section we carry out analysis of the workflow execution specifications defined in
Chapters 2 and 3 using the probabilistic model checker PRISM. We define the verification
properties needed for PRISM to automatically analyse the MDPW models and generate
workflow satisfiability and resiliency metrics. We then illustrate how a Chief Information
Security Officer (CISO) can analyse the impact of a security policy on workflow completion
by making arbitrary changes to the security policy of one of the example workflow execution
specifications. We then give an example of the computational overheads encountered when
generating workflow metrics with PRISM.

4.3.1 Verification Properties

In this section we define two reward-based properties needed for PRISM to automatically
analyse the MDPW models and generate workflow satisfiability and resiliency metrics. The
first property verifies the maximum reward in the initial process state s0 expected when the
process eventually terminates, that is the maximum expected reward return by the reward
function rQ. The maximum expected reward is equivalent to the value returned by the optimal
value function V ∗(so) of the MDPW (S,A,p,rQ). This reward-based property is encoded in
PRISM as:

R{"quantitative"}max=? [F terminated]

The property asks PRISM to verify the maximum reward, using the " quantitative " reward
function, expected when the process terminates. The path property terminated is defined in
Section 4.2.3. In this case a reward of 1 is received when the process terminates successfully.
It is possible to encode an equivalent quantitative property in PRISM using the formulae
complete and valid defined in Sections 4.2.3 and 4.2.1 respectively:

Pmax=? [F complete & valid]

97

Computer Generated Metrics

This property asks PRISM to verify the maximal probability of eventually reaching a state
s = (x,a,π) where π is a complete and valid plan. The second property verifies the maximum
reward in the initial process state s0 expected when the process eventually terminates, that is
the maximum expected reward return by the reward function rD. The maximum expected
reward is equivalent to the value returned by the optimal value function V ∗(so) of the MDPW

(S,A,p,rD). This reward-based property is encoded in PRISM as:

R{"distance"}max=? [F terminated]

The property asks PRISM to verify the maximum reward, using the "distance" reward
function, expected when the process terminates. In this case a reward of 1 is received when
each workflow step is completed successfully, and when the process terminates successfully.

4.3.2 Security Impact Analysis

In this section we generate workflow metrics for the workflow execution specifications
defined in Chapters 2 and 3. We then show by example how a CISO could use workflow
metrics to analyse the potential impact of modifying a workflow security policy.

Analysing Satisfiability and Resiliency

When analysing the potential impact of a policy modification on workflow completion, it
is intuitive to begin by generating the quantitative satisfiability of a workflow execution
specification. As discussed in Section 2.3.4, a workflow execution specification can be
satisfiable and not resilient, but it cannot be resilient and unsatisfiable. We generate the
quantitative satisfiability ΓS for the workflow execution specifications WES21 and WES22

defined in Section 3.2.3, and WES1 defined in Section 2.3.3. Generating quantitative satisfi-
ability requires a workflow execution specification WES = (WS,((Z,≺),θ)) to come with
a full availability forecast θ , that is all users have a probabilistic availability of 1 for every
execution step. Supplying WES22 and WES1 with a full availability forecast, the quantitative
satisfiability of all three workflow execution specifications is 1. The workflow execution
specifications WES21 already comes with a full availability forecast making WES21 and
WES22 equivalent in this case.

Next the quantitative resiliency ΓQ is generating for WES21, WES22, and WES1 with
their original availability forecasts, that is full in the case of WES21 and probabilistic for
both WES22, and WES1. The full PRISM encodings for all three workflow execution
specifications are listed in Appendices A.1 to A.3, while the PRISM state diagrams of the
MDPW for both WES21 and WES22 are shown in Appendix A.4. Note that the two state

98

4.3 Workflow Analysis

Table 4.1 Workflow metrics for workflow execution specifications WES21 coming with a full
availability forecast, and WES22 and WES1, both coming with a probabilistic availability
forecast.

Workflow Metric WES21 WES22 WES1

Quantitative satisfiability ΓS 1.00 1.00 1.00
Quantitative resiliency ΓQ 1.00 0.48 0.41

Distance resiliency ΓD 2.00 1.08 3.03

diagrams are equivalent to the two MDPW manual calculation diagrams shown in Figures 3.7
and 3.8 respectively. The quantitative resiliency values generated using PRISM are shown in
Table 4.1. Note, because WES21 comes with a full availability forecast and ΓS(WES21) = 1,
its quantitative resiliency is also 1. Note also, ΓS(WES22) = 0.48, which matches the value
manually calculated for WES22 in Section 3.2.3.

Next the distance resiliency ΓD is generating for WES21, WES22, and WES1 using
PRISM, which are shown in Table 4.1. Note, because WES21 comes with a full availability
forecast and ΓS(WES21) = 1, its distance resiliency is 2, which is the number of tasks in
WES21. Note also, ΓD(WES22) = 1.08, which matches the value manually calculated for
WES22 in Section 3.2.3.

Analysing Policy Modifications

We now consider a scenario where a CISO has reviewed current organisational security
requirements and identified six potential security policy modifications, m1, . . . ,m6, for
workflow execution specification WES1 = ((T1,<1),U1,(A1,S1,B1)). Given the security
policy (A1,S1,B1) the the five potential modifications are:

• m1 : A1∪{(t5,u3)}→ a user is newly qualified to execute a task

• m2 : S1∪{(t3, t5)}→ a guideline update suggests a new separation of duty

• m3 : A1 \{(t5,u1)}→ a change in schedule means user can no longer execute task

• m4 : B1∪{(t2, t5)}→ a CISO wants to achieve compliance with a security standard

• m5 : A1 \ {(t1,u1),(t1,u2)} → a change in technology means users are no longer
qualified a for task

• m6 : S1∪{(t1, t2)}→ a new security threat has emerged between tasks

99

Computer Generated Metrics

Table 4.2 Workflow metrics for workflow execution specification WES1, where mi is a
modification applied to the security policy of WES1.

Workflow Metric WES1 m1 m2 m3 m4 m5 m6

Quantitative satisfiability ΓS 1.00 1.00 1.00 1.00 0.00 0.00 1.00
Quantitative resiliency ΓQ 0.31 0.36 0.05 0.00 0.00 0.00 0.31

Distance resiliency ΓD 2.93 2.98 2.61 2.61 2.23 0.00 2.93

Each policy modification has been applied to WES1 and the workflow metrics generated
using PRISM. In order to generate the quantitative satisfiability of WES1, it is supplied
with a full availability forecast. The generated metrics are shown in Table 4.2, where
column WES1 gives the values before any security policy modification, and column mi

gives the values for WES1 with policy modification mi. Note that if WES1 has a level of
quantitative resiliency, that is 0 < ΓQ(WES1)≤ 1, then WES1 is also satisfiable, such that
ΓS(WES1) = 1. On the other hand, if WES1 is not satisfiable, that is ΓS(WES1) = 0, then
WES1 has 0 quantitative resiliency, such that ΓQ(WES1) = 0. It follows that, given any
workflow execution specification, if ΓS(WES) = 0 and the availability forecast of WES is
full, then ΓQ(WES) = 1.

Following modifications m1 and m2, WES1 still maintains a level of resiliency, albeit
impacted by the modifications. In the case of m1, which authorises a user to execute a task,
and arguably weakens security, the quantitative and distance resiliency of WES1 increases,
as one might expect. In the case of m2, which adds a separation of duty, and arguably
strengthens security, the quantitative and distance resiliency of WES1 decreases, as one might
again expect. Following modification m3, the quantitative resiliency of WES1 is 0, that is,
ΓQ(WES1) = 0, yet WES1 is still satisfiable. This shows there exists at least one complete
and valid plan π , but none are feasible. Interestingly, WES1 still maintains a level of distance
resiliency, albeit reduced, and indicates 2.61 tasks can be expected to be completed before
the security policy causes WES1 to become deadlocked. With modification m4, WES1 is no
longer satisfiable, such that ΓS(WES1) = 0, which means the quantitative resiliency of WES1

is also 0 in this case. Even in this situation, WES1 still maintains a level of distance resiliency
which indicates the security policy is expected to cause WES1 to become deadlocked after
2.23 execution steps. Applying modification m5 shows a situation where the security policy
causes WES1 to have 0 quantitative satisfiability and resiliency, and 0 distance resiliency.
This indicates the security policy causes WES1 to deadlock at the first execution step, which
is clearly the case as modification m5 removes all users authorised to execute the first task t1.
Finally, modification m6 highlights a situation where a security constraint can be added, a

100

4.3 Workflow Analysis

separation of duty constraint in this case, and have no impact on the quantitative and distance
resiliency of a workflow.

4.3.3 Computational Overheads

In this section we give an indication of the main computational overheads encountered when
using PRISM to generate workflow metrics. We do so by generating workflow metrics for
the workflow execution specifications WES1, defined in Chapter 2, and WES21 and WES22

defined in Chapter 3. In doing so we consult the analysis logs provided by PRISM, and the
execution platform’s file storage system regarding computation overheads. The workflow
metrics are generated by executing PRISM on a standard MacBook Pro laptop incorporating
a 2.7Ghz Intel Core i5 processor, 16GB RAM and an OS X 10.12.5 operating system. To
take into account any influence the computing platform may have on timing overheads, each
metric is generated 20 times and the average taken. The workflow metrics are generated using
an unmodified version 4.3.1 of the PRISM model checker running the sparse engine. The
available computational data allows us to consider the following overheads when generating
workflow metrics:

• Model build time : time taken by PRISM to construct the MDPW model
• Verification time : time to by PRISM to generate workflow metric
• States : total number of reachable states in the MDPW model
• Transitions : total number of transitions between reachable states in the MDPW model
• Memory : total memory allocated to PRISM while generating workflow metric
• File size : size of file containing PRISM encoding of MDPW

• Size on disk : storage space allocated by execution platform for PRISM encoding

The computation overheads for generating the metrics for WES1, WES21, and WES22 are
shown in Table 4.3. Note when generating the same metric for the same workflow execution
specification, certain overheads such as model build time and verification time may fluctuate
depending on the execution platform. Other overheads such as the number of states and
transitions remain fixed as these are dependent on the MDPW . An MDPW model need only
be built once, that is, each time it is loaded into PRISM for verification. Verification time
however must be accepted each time a metric is generated from the pre-built MDPW model.

As one would expect, build times, memory requirements, the number of states, and the
transitions between states increases as the ‘size’ of a workflow increases. For instance WES21

consists of 2 tasks, 2 users, and 1 separation of duty constraint, while WES1 consists of
5 tasks, 4 users, and 5 separation and binding of duty constraints. However, with just a

101

Computer Generated Metrics

Table 4.3 Computation overheads when using PRISM to generate workflow metrics for
workflow execution specifications WES1, WES21, and WES22.

Overhead WES21 WES22 WES1

Model build time (s) 0.002 0.003 0.206
Verification time (s) 0.001 0.001 0.039

Total runtime (s) 0.003 0.004 0.245

States 12 18 719
Transitions 14 24 1107

Memory (KB) 0.70 1.10 44.60
File size (KB) 1.92 1.93 5.42

Size on disk (KB) 4.00 4.00 8.00

small increase in tasks, users, and security constraints, the number of states and transitions
increases significantly. This would indicate computation overheads are strongly linked to the
‘complexity’ of a workflow, in terms of the number of tasks, users and security constraints.
Workflow complexity can therefore be measured by the number of states and transitions
in the corresponding MDPW . Note however WES21 and WES22 are equivalent in terms of
tasks, users, and security constraints; the difference lays with the availability forecast, which
is full for WES21 and probabilistic for WES22 (Section 2.3.1). The fact that users may be
unavailable or not increases the number of states and transitions, and therefore adds to the
complexity of a workflow. We consider workflow complexity further in Chapter 5 and show
by continually adding security constraints to a workflow’s security policy, the number of
states can actually start to decrease after a certain point.

We now consider the six security policy modifications, m1, . . . ,m6, introduced in Sec-
tion 4.3.2 and add them in turn to workflow execution specification WES1. We then generate
workflow metrics for WES1 with each policy modification and record the computation over-
heads shown in Table 4.4. For modifications m1, . . . ,m4 the number of states, 719, remains
the same as WES1 without any policy modifications despite the changes in the quantitative
resiliency values shown in Table 4.2. This unchanging number of states can be attributed to
the distance resiliency which remains at between 2.98 and 2.23 after each policy modification
m1, . . . ,m4. Instead, it is the number of transitions which is affected by adding or removing
policy constraints. It is only when distance resiliency is 0, following policy modification m5,
that both states and transitions reduce significantly. Memory usage and file size gives a sense
of resource cost when making a security policy modification. For example, modification
m1 which adds an authorisation constraint ‘costs’ a file size increase of 0.01KB but reduces

102

4.4 Related Work

Table 4.4 Computation overheads when using PRISM to generate workflow metrics for work-
flow execution specification WES1 before and after security policy modifications m1, . . . ,m6.

Overhead WES1 m1 m2 m3 m4 m5 m6

Model build time (s) 0.206 0.165 0.221 0.143 0.172 0.092 0.141
Verification time (s) 0.039 0.037 0.038 0.043 0.038 0.002 0.024

Total runtime (s) 0.245 0.202 0.259 0.186 0.210 0.094 0.165

States 719 719 719 719 719 18 652
Transitions 1107 1095 1107 1119 1107 25 1003

Memory (KB) 44.60 44.50 44.50 44.70 44.50 1.10 40.50
File Size (KB) 4.58 4.59 4.81 4.57 4.82 4.57 4.82

Size on Disk (KB) 8.00 8.00 8.00 8.00 8.00 8.00 8.00

memory usage of PRISM by 0.1KB when generating metrics. Modification m2 which adds
a separation of duty constraint ‘costs’ a file size increase of 0.23KB while also decreasing
memory usage of PRISM by 0.1KB. Modification m6 had no impact on the resiliency of
WES1, yet interestingly, the number of states and transitions is reduced, along with the total
runtime, and the amount of memory allocated to PRISM for generated a workflow metric.

4.4 Related Work

In this section we introduce current work related to model checking and the probabilistic
model checker PRISM.

4.4.1 Model Checking

Several works appear in the literature using model checking to verify properties of security
constrained workflows. In [3], Armando et al., present a formal definition based on the action
language C [70], of workflows and security policies consisting of an RBAC access control
model, separations of duty, and delegation constraints. Automatic analysis is provided by
the Causal Calculator (CCALC) [167], to verify whether the workflow can reach completion
given a set of resources, essentially providing a solution to the workflow satisfiability
problem. A resource allocation plan (akin to a user-task assignment) can be extracted using
the minimal number of resources in a similar way to the graph colouring technique used
by Kohler and Schaad in [99]. Armando and Ponta in [4, 5] use model checking to verify
authorisation requirements are correctly defined in a workflow specification. This work

103

Computer Generated Metrics

considers separating the encoding of the workflow and the access control policy within the
model checker. A number of detailed authorisation and data dependency requirements are
considered and encoded in their framework allowing fine-grained access control policies to
be expressed. Automated model checking is used to ensure firstly that workflow security
properties are present in a BPMN workflow description, and secondly a resource allocation
plan can be found under those security properties as considered in [3]. Although these work
consider the workflow satisfiability problem and start to think in terms of how different
security constraints (similar to policy modifications) impact the satisfiability of a workflow
they do not consider probabilistic availability of resources or workflow resiliency.

Quantitative analysis of security impact on workflow performance using model checking
techniques is considered by He et al., in [76]. The authors consider hybrid workflows
consisting of both human and computer based tasks annotated with synthetic performance
data. A rich set of security constraints is considered including RBAC, separations and
bindings of duty, cardinality constraints and delegation through role hierarchies. The timed
Colour Petri-Net (TCPN) formalism [90], is applied to model workflow execution and
authorisation allowing various workflow performance metrics to be computed using a Petri-
net based model checker. Metrics including authorisation overheads similar to those generated
in the work by Parkin et al., [141], and performance based metrics such as resource utilisation
and workflow success rate are generated in order to identify unacceptable overheads and
workflow bottlenecks caused by the security constraints as discussed by Basin et al, in [12].
The unavailability or users, and therefore the generation of resiliency metrics for a workflow
however is not considered. Methods to improve workflow performance such as modifying
security constraints are also outlined but techniques to manage the risk of poor performance
when security constraints cannot be modified are not.

4.4.2 PRISM

In support of our choice of tool, PRISM has been used for optimisation and quantitative
verification in several works appearing in the literature. Notably, Calinescu et al., in [25]
use PRISM for model checking and quantitative verification of software that can self-adapt
in response to changing system objectives and the environment in which it exists. The
motivation for this approach is to prevent software changes that would lead to errors in
the newly adapted and deployed software. Therefore model checking and quantitative
verification is performed at runtime to predict and identify violations of the PRISM encoded
system requirements (akin to identifying security policy violations), optimise steps to avoid

104

4.5 Summary

requirement violations (similar to optimising workflow task assignments), and provide proof
of system requirement satisfiability. PRISM is also used in a similar approach by Calinescu
et al., in [26] who incorporate it into a framework for dynamically composing service-
based workflow systems at runtime in order to provide self-adapting, complex and adaptive
functionality in accordance with workloads and other environmental factors. This is similar
to the quality of service optimisation problem considered by Gao et al., [68] who also use
MDPs in their approach as mentioned above. Using PRISM in this case enables automatic
optimised service composition inline with quality of service requirements formalised and
encoded into the model checker.

In terms of workflow PRISM has been used by Herbert and Sharp in [77] as part of a
framework to model workflows and carry out quantitative analysis on them. The core of
this work is the definition of an algorithm to automatically translate workflows expressed
in BPMN to an equivalent MDP encoding in PRISM in order to perform direct analysis of
several quantitative workflow properties. A general description is provided on specifying
analysis properties in PRISM in order to verify whether particular states of interest can be
reached, or checking the occurrence and correct ordering of certain events modelled in the
state of the MDP encoding. A high-level outline is provided on encoding workflow control
patterns in PRISM such as sequential task ordering, parallel task execution and choice points
but other workflow aspects such as encoding security policies, users, probabilistic availability,
and task assignment is not considered, nor is the verification of workflow resiliency.

4.5 Summary

Manual generation of workflow metrics by solving a workflow Markov decision process
(MDPW) can be a complex, time consuming and error prone process even for small scale
workflows like the examples we consider in the first part of this thesis. For instance, the
MDPW for workflow execution specification WES1 defined in Section 2.3.3, coming with 5
tasks, 4 users and 5 separation and binding of duty constraints, has 719 states. The application
of a Markov decision process approach may not be practical, nor fully understood, by a Chief
Information Security Officer (CISO) when generating metrics to analyse the potential impact
of security policy modifications. In this chapter we have taken the first steps in providing a
more accessible and efficient way of generating metrics by using PRISM, which is a tool for
modelling and automatically verifying properties in probabilistic models such as Markov
decision processes.

105

Computer Generated Metrics

PRISM is a free, open-source tool developed and managed by active researchers at
Oxford University, and features in over 500 peer reviewed publications at the time of
writing. We have given an introduction to the concept of probabilistic model checking, before
describing the PRISM model checker, the PRISM high level state-based modelling language,
and the building and property verification of models using PRISM. We then outlined a
systematic way of encoding an MDPW in PRISM before describing how the tool can be
used to generate quantitative satisfiability and resiliency metrics. Using PRISM we generate
metrics for example workflow execution specifications and showed the results match those
of manual calculations undertaken in Chapter 3. Next we showed how a CISO could use
these metrics to analyse the potential impact different security policy modifications have
on a workflow’s completion. By example, we highlighted the resiliency of a workflow may
be reduced or increased by a policy modification, yet the workflow still maintain a level of
quantitative resiliency. We also showed a workflow can have 0 quantitative resiliency but still
be satisfiable, and a workflow that has 0 quantitative satisfiability and resiliency can still have
a level of distance resiliency. Furthermore, we showed a workflow that is unsatisfiable has
0 quantitative resiliency. We then gave an indication of the main computational overheads
encountered when using PRISM to generate workflow metrics. These include the size of
an MDPW model in terms of states and transitions, the amount of memory allocated to
PRISM for generating metrics, and model building and verification times. We highlighted
that some overheads are dependant on the execution platform and may fluctuate, while others
are dependant on the MDPW model and are fixed.

Having shown how satisfiability and resiliency metrics can be generated for a workflow
execution specification we have not so far considered cases where security policy impact
analysis indicates the resiliency of a workflow is expected to fall to an unacceptable level.
This may be an issue for workflows that cannot be made acceptably resilient but must still be
executed. In Chapter 5 we outline two techniques that use resiliency metrics to help manage
the risk of potential workflow failure. The first technique considers generating resiliency
metrics at runtime, ensuring the execution of each task is assigned to users in a way that
maximises resiliency in accordance with the current user availability forecast. We utilise the
observation that constraints can be added to a security policy without affecting the resiliency
yet reduce metric computation time. The second technique considers workflows with choice
and introduces new resiliency metrics called expected resiliency and resiliency variance. We
then show how these metrics can be used to help form mitigation strategies for overcoming
situations where user unavailability would otherwise force a workflow to become deadlocked.

106

Chapter 5

Workflow Risk Management

In some cases, the quantitative resiliency of a workflow may fall below an acceptable
level of risk when analysing the impact of security policy modifications. This can be of
particular concern when policy modifications are enforced by regulation updates, especially
for workflows in critical domains such as healthcare where the tolerance for workflow
failure is small. In Chapter 2, the quantitative resiliency of a security constrained workflow
was shown to indicate the success rate of a workflow, that is the expected probability a
workflow can complete whilst satisfying all security constraints under the uncertainty of
user availability. In Chapter 3, the process of assigning the execution of tasks to users who
may be unavailable was modelled as a Markov decision process (MDP). Solving a workflow
Markov decision process (MDPW) with appropriate rewards functions was shown to generate
quantitative measures of workflow satisfiability and resiliency. In Chapter 4, an encoding was
given of an MDPW in the probabilistic model checker PRISM which is used to automatically
generate quantitative workflow metrics for a Chief Information Security Officer (CISO) to
analyse the potential impact of security policy modifications.

This chapter explores two techniques showing how calculating quantitative resiliency
can help manage the risk of workflow failure. The first technique is aligned with reducing
failure risk by considering the computation of resiliency at runtime to ensure the execution
of tasks maximises the quantitative resiliency of the workflow in accordance with a current
prediction of user availability. We show by adding artificial constraints to a security policy,
the resiliency verification time can be reduced without impacting the resiliency value. The
second technique is aligned with failure risk acceptance by considering the formation of
mitigation strategies, in particular calculating resiliency metrics to help form strategies for
workflows containing choice. We introduce a new resiliency variance metric which can give
a prediction of failure risk for such workflows.

107

Workflow Risk Management

5.1 Risk Reduction

Maximising the resiliency of a workflow at runtime would require its quantitative resiliency
to be recomputed at each workflow step x, given the current user availability forecast, before
assigning the execution of a task t at step x to a user u. Generating resiliency metrics at
runtime could ensure the task execution assignments are only granted if the remainder of the
workflow has a resiliency above a given resiliency threshold. Generating workflow metrics
can be computationally demanding therefore generating quantitative resiliency metrics at
runtime has itself an impact on workflow execution time. This means, in some cases,
techniques are required that facilitate fast generation of workflow metrics.

In Chapter 4, the probabilistic model checker PRISM was used to automatically generate
quantitative resiliency metrics to analyse the resiliency of a workflow execution specification
(WES) at design time. Quantitative resiliency metrics are generated assuming an availability
forecast, which defines the expected availability of users at each workflow step, does not
change during the execution of a workflow. If the execution time is long, say over a number
of days, the availability forecast may well change. At runtime, a user is either available or
not. As discussed in Section 2.3.4, this means quantitative resiliency gives an expectation of
successful workflow completion, not a level of workflow successful completion. A workflow
only completes successfully if the execution of all tasks have been assigned to users without
violating the workflow security policy, and all users are available to execute their assigned
tasks.

A plan π defined in Section 2.2.1, assigns the execution of workflow tasks to users. When
the availability forecast does not change at runtime, the optimal complete and valid plan π ,
that is the plan that maximises the quantitative resiliency of a workflow, does not change
at runtime. However, when user availability is dynamic, the optimality of π might change
during workflow execution, meaning the new optimal plan might need to be found. In [42],
Crampton and Khambhammettu describe two workflow execution models; a workflow-driven
execution model (WDEM), where users are automatically assigned the execution of tasks,
and user-driven execution model (UDEM), where users initiate requests to be assigned the
execution of tasks. The impact of dynamic user availability is slightly different between
the two models. With WDEM it may be necessary to continuously compute the optimal
valid plan π and so adapt to changes in user availability. With UDEM it may be necessary
to ensure a user requesting to execute a task is assigned that task according to the optimal
valid plan π , or a plan π ′ that delivers a level of resiliency which satisfies some threshold

108

5.1 Risk Reduction

requirement. In the case of either model, quantitative resiliency might need to be recomputed
several times at runtime.

In this section, we investigate how a Chief Information Security Officer (CISO) could
analyse and modify a workflow security policy to improve the computation time for generat-
ing quantitative resiliency metrics at runtime. We first show that adding or removing security
components to a security policy has a clear impact on resiliency computation time, that is,
the computation time can either increase or decrease. We then propose a methodology to
help a CISO compute a set of security constraints that can be artificially added to a security
policy, without impacting the resiliency value, but which significantly decreases resiliency
metric computation time.

5.1.1 Empirical Assessment of Policy Modifications

In this section we provide an empirical assessment of quantitative resiliency computation
time to help understanding of how it can be improved at runtime. In doing so we investigate
the impact upon computation time of adding security constraints to a workflow security
policy. First we consider WES3 = (((T3,<3),U3,(A3,S3,B3)),((Z3,≺3),θ3)) to be a work-
flow execution specification consisting of 10 tasks which are to be executed sequentially,
and 5 users. For reference, the workflow specification WS3 = ((T3,<3),U3,(A3,S3,B3)) and
execution specification ES3 = ((Z3,≺3),θ3) is defined in (Appendix B.1). We only consider
adding separation of duty constraints to the security policy (A3,S3,B3), which is sufficient to
show the impact adding constraints has on resiliency computation time.

The workflow execution specification WES3 coming with 10 tasks, means the maximum
number of separation of duty constraints S3 can contain is 45. Given a discrete variable
k, such that 0 ≤ k ≤ 45, we generate 100 random security policies (A′3,S

′
3,B
′
3) under the

following constraints. First, the set of authorisation constraints A′3 permits between 2 and 5
users in U3 to be assigned the execution of each task t ∈ T3, such that 20≤

∣∣A′3∣∣≤ 50. Next
the set of separation of duty constraints S′3 contains k constraints, more precisely

∣∣S′3∣∣= k,
and the set of binding of duty constraints B′3 contains 0 constraints, that is B′3 = /0. A total of
4600 security policies are generated denoted by the set F .

Each security policy (A′3,S
′
3,B
′
3) ∈ F is applied to the workflow execution specification

WES3 such that WES′3 = (((T3,<3),U3,(A′3,S
′
3,B
′
3)),ES3). We the generate the quantitative

resiliency metric for each WES′3 by following the process described in Chapter 4, that is
WES′3 is encoding as a workflow Markov decision process (MDPW) in the probabilistic
model checker PRISM which automatically generates the quantitative resiliency of WES′3

109

Workflow Risk Management

Table 5.1 Impact results of modifications to the security policy of workflow execution
specification WES3, where each column i∼ j shows the average impact of adding between i
and j separation of duty constraints.

0 1∼ 5 6∼ 10 11∼ 15 16∼ 20

Quantitative resiliency ΓQ 0.582 0.580 0.557 0.528 0.505

0 resilient WES′3 0 0 0 1 0

Model build time (s) 0.56 2.83 16.12 25.91 21.72
Verification time (s) 0.11 0.38 1.56 2.24 1.80

Total runtime (s) 0.67 3.21 17.68 28.15 23.52

States 3893 58246 346992 600287 522850
Transitions 73249 758351 3352889 4754705 3649065

21∼ 25 26∼ 30 31∼ 35 36∼ 40 41∼ 45

Quantitative resiliency ΓQ 0.460 0.349 0.153 0.009 0.000

0 resilient WES′3 11 90 305 488 500

Model build time (s) 13.81 7.52 4.38 2.55 1.78
Verification time (s) 1.08 0.52 0.20 0.07 0.04

Total runtime (s) 14.89 8.04 4.58 2.62 1.82

States 332259 171627 89361 47140 29387
Transitions 2171394 1090709 561534 294596 182751

by solving the corresponding MDPW . We use an unmodified version 4.2.1 of the PRISM
model checker using the explicit engine which is suitable for solving MDPW models with a
potentially very large state space, only a fraction of which is actually reachable.

For efficient generation of each workflow execution specification WES′3 we have imple-
mented a Python-based tool which automatically generates each WES′3 and the MDPW for
WES′3 in the PRISM modelling language. Each MDPW is then automatically inputted to
PRISM which in turn generates both the quantitative resiliency metrics we require, and a log
of computational overheads including MDPW state space and computation time. PRISM is
executed using a standard Lenovo laptop incorporating a 2.40Ghz i7-4500U Intel processor,
8GB RAM and Windows 8 operating system. To take into account any influence the comput-
ing platform may have on the results, each analysis is repeated 20 times and the averages
taken.

110

5.1 Risk Reduction

0 10 20 30 40

0

0.2

0.4

0.6

0.8

Separation of duty constraints

Q
ua

nt
ita

tiv
e

re
si

lie
nc

y
Γ

Q

Fig. 5.1 Quantitative resiliency analysis of workflow execution specification WES3 using
PRISM, where each plot represents a set Y of WES3 instances whose security policy contains
the same number of separation of duty constraints.

Quantitative Resiliency Analysis

Table 5.1 shows the results of generating the quantitative resiliency metric for WES′3 with
each security policy (A′3,S

′
3,B
′
3) ∈ F . The column 0 gives the average computational values

of the 100 instances of WES′3 coming with the security policy (A′3,S
′
3,B
′
3) where

∣∣S′3∣∣= 0.
The columns i∼ j give the average computational values of the 500 instances of WES′3
coming with the security policy (A′3,S

′
3,B
′
3) where i≤

∣∣S′3∣∣≤ j. The row (# 0 resilient WES′3)
indicates the number of WES′3 instances appearing in each column that have 0 quantitative
resiliency. We provide a graph plotting the quantitative resiliency of each WES′3 instance
against the number of separation of duty constraints k, in Figure 5.1. Each plot represents
a set Y of WES′3 instances such that for all WES′3 = (((T3,<3),U3,(A′3,S

′
3,B
′
3)),ES3) and

WES′′3 = (((T3,<3),U3,(A′′3,S
′′
3 ,B
′′
3)),ES3) in Y , ΓQ(WES′3) = ΓQ(WES′′3) and

∣∣S′3∣∣ = ∣∣S′′3∣∣,
where ΓQ is the quantitative resiliency metric function defined in Section 2.3.4.

Figure 5.1 shows the quantitative resiliency in general, steadily reduces with an incre-
mental introduction of separation of duty constraints. For example, when

∣∣S′3∣∣ = /0, each
WES′3 instance has quantitative resiliency of between 0.4 and 0.8. Instances of WES′3 when∣∣S′3∣∣ = 20 have quantitative resiliency of between 0.3 and 0.7. When 0 ≤

∣∣S′3∣∣ ≤ 10, all
instances of WES′3 are resilient to some degree, and, up to the point where

∣∣S′3∣∣ = 20, all
except 1 instance of WES′3 have some level of quantitative resiliency. The data in Fig-
ure 5.1 and Table 5.1 also indicate 11 instances of WES′3 have 0 quantitative resiliency
when 21≤

∣∣S′3∣∣≤ 25, and 90 instances have 0 quantitative resiliency when 26≤
∣∣S′3∣∣≤ 30.

Once
∣∣S′3∣∣≥ 40 no instance of WES′3 is resilient, however some instances of WES′3 have a

111

Workflow Risk Management

0 10 20 30 40

0

5

10

15

Separation of duty constraints

V
er

ifi
ca

tio
n

tim
e

(s
)

Fig. 5.2 Quantitative resiliency verification time of workflow execution specification WES3
using PRISM, where each plot represents a set Y of WES3 instances whose security policy
contains the same number of separation of duty constraints.

level of quantitative resiliency when
∣∣S′3∣∣= 39 out of a possible 45 constraints. The results

indicate that some separation of duty constraints can be added or removed with no effect
on quantitative resiliency. For instance if a line was drawn on Figure 5.1 horizontally at
0.5 resiliency we can observe particular sets of constraints can be added of size 0 up until
roughly 35 while a level of 0.5 quantitative resiliency is maintained.

Computation Time Analysis

Next we provide a graph plotting the time PRISM takes to verify the quantitative resiliency
of each WES′3 instance against the number of separation of duty constraints k. The graph
is shown in Figure 5.2. As before, each plot represents a set Y of WES′3 instances such
that for all workflow execution specifications WES′3 = (((T3,<3),U3,(A′3,S

′
3,B
′
3)),ES3) and

WES′′3 = (((T3,<3),U3,(A′′3,S
′′
3 ,B
′′
3)),ES3) in Y , ΓQ(WES′3) = ΓQ(WES′′3) and

∣∣S′3∣∣ = ∣∣S′′3∣∣.
The graph indicates the verification time increases in general, and then begins to decrease
despite a continual incremental introduction of separation of duty constraints. The times
measured are of course somewhat dependant on the efficiency of PRISM and the execution
platform. The maximum average verification time is 2.24 seconds when 11 ≤

∣∣S′3∣∣ ≤ 15.
When S′3 = /0 and 41 ≤

∣∣S′3∣∣ ≤ 45 the average verification time is 0.11 and 0.04 seconds
respectively.

The latter result can intuitively be attributed to the 0 quantitative resiliency value when
all 45 constraints are applied. However, even when 26≤

∣∣S′3∣∣≤ 30 where the quantitative
resiliency of WES′3 is 0.348, the verification time is lower at 0.52 seconds than the verification

112

5.1 Risk Reduction

Table 5.2 Quantitative resiliency before and after a single separation of duty constraint is
added to the security policy of workflow execution specification WES4, and quantitative
resiliency verification times using PRISM.

+(t2, t3) +(t2, t5) +(t3, t5) +(t1, t4)
p4 p41 p42 p43 p44

Quantitative resiliency ΓQ 0.512 0.479 0.512 0.512 0.512

Verification time (s) 0.110 0.109 0.141 0.110 0.063

time when 11≤
∣∣S′3∣∣≤ 15. This result would indicate instances of WES′3 are at their most

complex in terms of verification time approximately when 26 ≤
∣∣S′3∣∣ ≤ 30. By observing

the number of states and transitions for the MDPW of each WES′3 instance, the verification
time can be put into context. PRISM takes on average 2.24 seconds to verify the quantitative
resiliency of an MDPW with 600287 states and 4.75 million transitions. As one would expect,
verification time appears to be tightly coupled to the size of an MDPW model. This means to
reduce verification time we must look to reduce the size of an MDPW model without altering
the quantitative resiliency. The results indicate that in some cases that separation of duty
constraints can be added to, or removed from, a workflow without impacting quantitative
resiliency.

5.1.2 Reducing Computation Time

In this section we provide a methodology to calculate a set of dummy security policy
constraints (e.g., redundant separation of duty constraints or unused authorisation constraints),
in order to reduce quantitative resiliency verification time. In Section 5.1.1 we showed that in
some cases, separation of duty constraints could be added to, or removed from, a workflow
security policy without impacting quantitative resiliency. We are not in a position to say
which constraints should be removed as this may weaken the security policy. Therefore we
only consider strengthening the policy, in other words adding separation of duty constraints
and removing authorisation constraints, which in effect, can be removed after verifying the
quantitative resiliency of a worfkflow without any loss of security.

Adding Separations of Duty

We now consider WES4 = (((T4,<4),U4,(A4,S4,B4)),ES4) to be a workflow execution
specification whose workflow specification WS4 = ((T4,<4),U4,(A4,S4,B4)) and execution
specification ES4 are defined in Appendix B.2. For compactness we write p4 for the security

113

Workflow Risk Management

Table 5.3 Quantitative resiliency before and after a single authorisation constraint is re-
moved from the security policy of workflow execution specification WES4, and quantitative
resiliency verification times using PRISM.

−(t4,u4) −(t5,u4) −(t4,u2) −(t1,u1)
p4 p45 p46 p47 p48

Quantitative resiliency ΓQ 0.512 0.395 0.512 0.512 0.512

Verification time (s) 0.063 0.047 0.121 0.110 0.062

policy (A4,S4,B4). The quantitative resiliency of WES4 is verified as 0.512 in a time of
0.110 seconds, based on the average of 10 resiliency calculations using PRISM. We now add
a new separation of duty constraint (t2, t3) to give a new policy p41 = (A41,S41,B41) where
A41 = A4, S41 = S4∪{(t2, t3)}, and B41 = B4. The quantitative resiliency of WES4 coming
with p41 is now verified to be 0.479 in an average time of 0.109 seconds. In other words, the
verification time has reduced by 0.001 seconds but with a loss of 0.033 quantitative resiliency.

We now consider adding alternative separation of duty constraints (t2, t5),(t3, t5) and
(t1, t4) to p4 to give new policies p42, p43 and p44 respectively. The quantitative resiliency
and average verification times are given in Table 5.2 where +(t, t ′) denotes the addition of a
separation of duty constraint to p4, whilst −(t,u) denotes the removal of an authorisation
constraint from p4. The addition of (t2, t5) to p4 (p42) results in no loss to quantitative
resiliency but increases the average verification time by 0.031 seconds. Adding (t3, t5) to p4

(p43) results in no loss to quantitative resiliency nor any reduction of average verification
time. However, adding (t1, t4) to p4 (p44) results in no loss to quantitative resiliency yet a
reduction to the average verification time of 0.047 seconds.

Removing Authorisation Constraints

We now consider removing an authorisation constraint (t4,u4) to give a new policy p45 =

(A45,S45,B45) where A45 = A4 \ {(t4,u4)}, S45 = S4, and B45 = B4. The quantitative re-
siliency of WES4 coming with p45 is computed to be 0.395 at an average verification time of
0.047 seconds. In other words, the verification time has reduced by 0.063 seconds but with a
loss of 0.117 to quantitative resiliency.

Next we consider removing alternative authorisation constraints (t5,u4),(t4,u2) and
(t1,u1) from p4 to give new policies p46, p47 and p48 respectively. The quantitative re-
siliency values and average verification times are given in Table 5.3. The removal of (t5,u4)

from p4 (p46) results in no loss to quantitative resiliency but increases the average verification
time by 0.011 seconds to 0.121 seconds. Removing (t4,u2) from p4 (p47) results in no loss

114

5.1 Risk Reduction

Table 5.4 Quantitative resiliency before and after respectively adding and removing a set of
separation of duty and authorisation constraints to and from the security policy of workflow
execution specification WES5, where each constraint set contains up to three constraints.

WES5 +s1 +s2 +s3 −a1 −a2 −a3

Quantitative Resiliency ΓQ 0.640 0.634 0.628 0.622 0.625 0.605 0.580

Verification time (s) 6.534 4.285 3.557 3.295 5.098 3.833 1.765

to quantitative resiliency nor any reduction of average verification time. However, removing
(t1,u1) from p4 (p48) results in no loss to quantitative resiliency yet reduces the average
verification time by 0.048 seconds to 0.062 seconds. These results indicate that a selective
addition of separation of duty constraints, or removal of authorisation constraints can reduce
quantitative resiliency verification time without impacting the quantitative resiliency value.

Calculating Dummy Security Constraints

With the aid of a larger workflow execution specification WES5, we provide a method of
calculating an optimal set of dummy security policy constraints that minimises quantitative
resiliency verification time without any reduction to the quantitative resiliency value. For
clarity we calculate two optimal sets, one of redundant separation of duty constraints that can
be added to the policy, and one of authorisation constraints that can be removed. Our method
could easily be modified to calculate a single set of optimal dummy constraints composed of
separation and binding of duty constraints, and authorisation constraints.

The workflow execution specification WES5 = (((T5,<5),U5,(A5,S5,B5)),ES5) comes
with 10 tasks, 5 users, and a security policy p5 = (A5,S5,B5) composed of 29 authorisation
constraints, 15 separation of duty constraints, and 0 binding of duty constraints. The workflow
specification WS5 = ((T5,<5),U5,(A5,S5,B5)) and execution specification ES5 are defined
in Appendix B.3. We also use the same computing platform and PRISM model checker
set-up as described in Section 5.1.1. The quantitative resiliency of WES5 is calculated as
0.640 with an average verification time of 6.53 seconds.

Dummy Separations of Duty

A Python encoded tool has been implemented which, given WES5, calculates all possible sets
of separation of duty constraints that can be added to the security policy p5 = (A5,S5,B5). In
the case of WES5, the maximum number of separation of duty constraints is 45 meaning up
to 30 separation of duty constraints can be added. All possible sets containing between 1 and

115

Workflow Risk Management

0 1 2 3
0

2

4

6

{(t3, t4)}

/0

{(t2, t3),(t2, t5)}
{(t1, t3),(t3, t4),(t3, t8)}

Added separation of duty constraints

V
er

ifi
ca

tio
n

tim
e

(s
)

Resiliency ΓQ: 0.640

Fig. 5.3 Sets of up to three separation of duty constraints which can be added to the security
policy of workflow execution specification WES5 to optimally reduce quantitative resiliency
verification time without impacting the resiliency value.

30 separation of duty constraints not appearing in S5 are therefore computed. Each of these
constraint sets are automatically added in turn by the Python tool to S5, the resulting MDPW

is generated, and inputted to PRISM for quantitative resiliency verification. Results in terms
of quantitative resiliency, verification time, and constraint set added to S5 are logged.

The results of this analysis step are given in Table 5.4, where a column +si gives the
average quantitative resiliency and verification time for all i sized sets of separation of duty
constraints added to the security policy S5. For instance the average quantitative resiliency
is 0.622 when adding any 2 separation of duty constraints not in S5. Similarly, a column
−ai gives the average quantitative resiliency and verification time for all i sized sets of
authorisation constraints removed from the security policy S5. For instance the average
quantitative resiliency is 0.605 when removing any 2 authorisation constraints from S5. For
compactness we only show the impact on verification time of up to 3 additional separation
of duty constraints and the removal of up to 3 authorisation constraints. In general, adding
arbitrary separation of duty constraints in an incremental fashion is shown to reduce the
resiliency verification time but this comes with a reduction in the quantitative resiliency
value.

Finding a set of dummy constraints that reduces quantitative resiliency verification time
without reducing the quantitative resiliency value is found by performing an automatic
double sort on the analysis result set, first by the quantitative resiliency value (largest to
smallest) and then by verification time (smallest to largest). The set of dummy separation
of duty constraints that does not change the quantitative resiliency yet gives the lowest

116

5.2 Risk Acceptance

0 1 2 3

0

2

4

6

{(t6,u5)}

/0

{(t1,u5),(t5,u2)}
{(t1,u5),(t2,u3),(t5,u1)}

Removed authorisation constraints

V
er

ifi
ca

tio
n

tim
e

(s
)

Resiliency ΓQ: 0.640

Fig. 5.4 Sets of up to three authorisation constraints which can be removed from the security
policy of workflow execution specification WES5 to optimally reduce quantitative resiliency
verification time without impacting the resiliency value.

verification time for each i additional separation of duty constraints is shown in Figure 5.3.
For example, adding the single constraint (t3, t4) minimises the verification time on average
to 2.58 seconds. Adding the three separation of duty constraints {(t1, t3),(t3, t4),(t3, t8)}
minimises the verification time to 1.52 seconds, reducing the original verification time for
WES5 by 5.01 seconds without impacting its quantitative resiliency value.

Dummy Authorisation Constraints

Similar to adding separation of duty constraints, the results in Table 5.4 show that in general,
removing arbitrary authorisation constraints in an incremental way reduces quantitative
resiliency verification time but with a reduction in the quantitative resiliency value. The
set of removable authorisation constraints shown to give the lowest computation time for i

authorisation constraints removed from S5 is given in Figure 5.4. For example, removing
the single authorisation constraint (t6,u5) minimises the verification time to 3.44 seconds.
Notice removing the three authorisation constraints {(t1,u5),(t2,u3),(t5,u1)} minimises the
verification time to 0.63 seconds, thus reducing the original computation time by 5.90 seconds
without impacting the quantitative resiliency value.

5.2 Risk Acceptance

In practice, it is unlikely a security constrained workflow will be fully resilient meaning
a risk of workflow failure may need to be accepted in some cases. When analysing the

117

Workflow Risk Management

impact of security policy modifications, a Chief Information Security Officer (CISO) may
find the resiliency of a workflow would reduce to an unacceptable level. In cases where
workflows must complete, early termination, due for instance to the unavailability of users,
may bring heavy operational penalties in terms of monetary costs, lost productivity and
reduced reputation. Workflows that become deadlocked due to user unavailability are typi-
cally managed by performing mitigation actions which facilitate a completable workflow,
often essential in healthcare and other critical domains where workflow failure tolerance is
small. For example, it may be that authorising a security override (e.g. break glass [145])
has less long-term impact to an organisation than allowing a workflow to fail. Elucidating
permitted mitigation actions to manage the risk of workflow failure due to user unavailability,
forms a workflow mitigation strategy. Calculating the quantitative resiliency of a workflow
can aid the formation of such plans. In Chapters 2 to 4, quantitative resiliency has only
been considered for workflows with sequential and parallel task ordering, that is workflow
execution specifications WES coming with a task schema (T,<) where all t ∈ T must be
executed according to the order defined by the partial order <. Calculating the quantitative
resiliency for workflows of this form provides a singular comprehensible indicator of work-
flow failure risk for a CISO. For instance, a workflow with quantitative resiliency 0.75 has
a failure risk of 0.25. Low failure risk (i.e. high quantitative resiliency) would imply an
infrequent need to perform any mitigation actions. This could favour a mitigation strategy
consisting of short-term, low cost actions such as a security constraint emergency override.
High failure risk (i.e. low quantitative resiliency) would suggest a broader strategy including
more permanent yet costly mitigation actions such as staff training and raising expected user
unavailability by cancelling vacations, or paying overtime for example.

This section considers workflows with choice meaning two or more unique execution
paths exist that can be taken at runtime to complete a workflow, and where each path may
come with a different quantitative resiliency value. Understanding failure risk and mitigation
strategy requirements of such workflows can be much more complex, especially when a
workflow contains several unique execution paths. For example, an instance of an insurance
claim workflow will typically take one execution path if a claim is accepted, and another
path if a claim is rejected. When a claim is accepted it may take one execution path if the
cost of a claim is above i for more investigation, and another path if the cost is i or less.
Taking the resiliency average, or expected resiliency alone may be a misleading indicator
of failure risk, especially when a workflow contains execution paths of both very high and
very low quantitative resiliency. We therefore introduce resiliency variance, a new metric
for workflows with choice that indicates overall resiliency variability, or volatility, from the

118

5.2 Risk Acceptance

resiliency average. In business terms, volatility is typically viewed as a measure of risk; a
variance metric helps determine the risk an investor might take on when purchasing a specific
asset [45]. We show how a workflow with choice can be reduced to a set of workflows
without choice which allows the techniques described in Chapters 2 to 4 to be used and show
how the resiliency variance of the workflow with choice is calculated. We then discuss how
resiliency variance could provide a CISO with an indicator of failure risk taken on when
modifying a security policy for a workflow with choice. We then discuss how this could
also aid forming a suitable workflow mitigation strategy. For example, a workflow with high
expected quantitative resiliency and low variance indicates low failure risk and mitigation
cost, while high variance would suggest a much higher failure risk and mitigation cost. As the
focus here is on completing a workflow successfully we do not consider resiliency distance
in this section.

5.2.1 Workflow with Choice

Our definition of a workflow specification WS = ((T,<),U,(A,S,B)) (Definition 4) does
not allow for choice, that is, having exclusive task orderings according to the evaluation of
some choice points. A choice point can be equated to an if/else statement in computer
programming terms. For instance, a workflow managing a purchasing process might mean
executing different tasks based on the cost of a purchase. In this section, we give an inductive
definition for a workflow specification with choice inspired from [95], and show how it can
be reduced into a definition compatible with Definition 4.

Task Structure with Choice

A task structure is built upon two sets: the set of tasks T and a set C of atomic choices.
Intuitively, the latter represents the different choice points where a workflow can branch. The
set TSC of task structures with choice is then defined inductively:

• Given a single task t ∈ T , t also belongs to TSC;

• Given two task structures ts1 ∈ TSC and ts2 ∈ TSC, ts1→ ts2 also belongs to TSC, and
corresponds to the sequential execution of ts1 followed by ts2;

• Given two task structures ts1 ∈ TSC and ts2 ∈ TSC, ts1∧ ts2 also belongs to TSC, and
corresponds to the parallel ordering ts1 and ts2;

119

Workflow Risk Management

c1
t1 t3 : (c1 = F) t6

c2

t 2
: (c

1
=

T)
t4 : (c2 =

F)

t5 : (c2 =
T)

Fig. 5.5 Task structure ts6 coming with choices of exclusive task execution, where diamond
nodes ci are choice points and the empty diamond node indicates the end of a choice.

• Given a choice c ∈C and two task structures ts1 ∈ TSC and ts2 ∈ TSC, c : ts1 ? ts2 also
belongs to TSC, and corresponds to the task structure ts1 if c evaluates to true, and to
ts2 otherwise.

To illustrate the concepts presented in this section, we define a set T6 = {t1, t2, t3, t4, t5, t6}
of tasks, a set C6 = {c1,c2} of atomic choices, and a task structure ts6 such that:

ts6 = t1→ [c1 : [t2→ [c2 : t5 ? t4]]? t3]→ t6

For the sake of simplicity, we do not consider any parallel composition in this example. A
graphical representation of ts6 is provided in Figure 5.5 where choice points are represented
as diamond nodes. In order to represent the end of a choice, we use the empty diamond node,
and in this particular example, both choices c1 and c2 finish at the same point. The directed
arcs represent the ordering of task execution. A directed arc labelled ti : (c j = T) indicates
task ti is executed if choice point c j is true, and ti : (c j = F) indicates task ti is executed
if choice point c j is false. Three exclusive sequences of task execution exist; (t1, t2, t4, t6),
(t1, t2, t5, t6), and (t1, t3, t6). It is worth pointing out that in the graphical notation used in
Figure 5.5, the choice nodes corresponds to or-nodes and the empty diamond node to a merge
coordinator in [177].

Task Structure Reduction

At runtime, the choices in a task structure ts are resolved, and only the corresponding task
sequence is executed. We adopt here an approach where it is unknown how each choice is
going to be resolved at runtime, and therefore consider beforehand all possible task sequences.
Intuitively, we want to reduce a task structure with choice to one without choice, for which all
tasks should be executed in order to use the techniques described in in Chapters 2 to 4. Hence,

120

5.2 Risk Acceptance

we write TS for the subset of TSC corresponding to task structures without choice, and we
model the reduction process through the function red : TSC×℘(C)→ TSC, such that, given
a task structure ts and a set of choices γ ⊆C, red(ts,γ) corresponds to the reduction of ts

where each choice in γ is evaluated as true, and any other choice as false. More formally:

red(t,γ) = t

red(ts1→ ts2,γ) = red(ts1,γ)→ red(ts2,γ)

red(ts1∧ ts2,γ) = red(ts1,γ)∧ red(ts2,γ)

red(c : ts1 ? ts2,γ) =

red(ts1,γ) if c ∈ γ

red(ts2,γ) otherwise

All possible instances without choice of a task structure ts with choice is defined to be:

ins(ts) = {ts′ ∈ TS | ∃γ ⊆C red(ts,γ) = ts′}

A task structure ts without choice can be converted to a set of tasks with a partial ordering,
thus allowing us to reuse the existing definition of a task schema (T,<) (Definition 1). Given
a task structure ts, we first write τ(ts) for the set of tasks appearing in ts (which can be
straightforwardly defined by induction over ts). We then define the function ord : TS→
℘(T ×T), which, given a task structure without choice ts, returns the ordering relation <

over the tasks in ts.

ord(t) = /0

ord(ts1∧ ts2) =ord(ts1)∪ord(ts2)

ord(ts1→ ts2) ={(t1, t2) | t1 ∈ τ(ts1)∧ t2 ∈ τ(ts2)}∪ord(ts1)∪ord(ts2)

The possible instances of task structure ts6 are therefore:

• t1→ t2→ t5→ t6 (corresponding to γ = {c1,c2})
• t1→ t2→ t4→ t6 (corresponding to γ = {c1})
• t1→ t3→ t6 (corresponding to γ = {c2} and γ = /0)

Since these instances do not contain any parallel structure, the ordering for each instance
is simply the total ordering of the tasks following the sequence. Therefore, given a work-
flow specification with choice, denoted as WSC = (ts,U,(A,S,B)), and a set of choices
γ ⊆C, we abuse the notation and write red(WSC,γ) for the workflow specification WS =

(red(WSC,γ),U,(A′,S′,B′)), where the security policy (A′,S′,B′) corresponds to the secu-

121

Workflow Risk Management

t1

[u1,u2]

t2

[u2,u3]

t3

[u1,u3]

t6

[u1,u4]

t5

[u3,u4]

t4
[u1,u4]

̸=
̸=

̸=

̸= ̸=

=

Fig. 5.6 Illustration of workflow security policy (A6,S6,B6), where ̸= indicates a separation
of duty between tasks, = indicates a binding of duty between tasks, and {ui, . . . ,un} indicates
the users authorised to execute a task.

rity policy (A,S,B) restricted to the tasks appearing in red(WSC,γ). Similarly, we write
ins(WSC) for the set of workflow specifications WS such that there exists γ ⊆C satisfying
WS = red(WSC,γ).

We now consider a set of users U6 = {u1,u2,u3,u4} and a security policy (A6,S6,B6) that
defines the following sets of authorisation, separation of duty, and binding of duty constraints:

• A6 = {(u1, t1),(u2, t1),(u2, t2),(u3, t2),(u1, t3),(u3, t3),(u1, t4),(u4, t4),(u3, t5),(u4, t5),

(u1, t6),(u4, t6)}
• S6 = {(t1, t2),(t1, t6),(t2, t5),(t2, t6),(t3, t6}
• B6 = {(t4, t6)}

Figure 5.6 illustrates the security policy (A6,S6,B6), where arcs labelled ‘̸=’ and ‘=’ signify
the constraints given in S6 and B6 respectively. A label [um, ...,un] states the users that are
authorised by A6 to be assigned the execution of task ti.

5.2.2 Resiliency with Choice

Given a workflow specification WSC = (ts,U,(A,S,B)), we need to assign the execution
of tasks in ts to users in U in order to execute them, while respecting the security policy
(A,S,B). If ts contains some choice elements, it is not strictly necessary to assign the
execution of all tasks, only those that will be chosen at runtime. However, as mentioned
above, we assume here that we have no control over the choices, and therefore we cannot
know beforehand which subset of tasks must be assigned. Hence, we reduce the problem
assigning the execution of tasks for a workflow with choice to considering the assigning the
execution of tasks in all possible instances of the workflow without choice, thanks to the
function red.

122

5.2 Risk Acceptance

Table 5.5 User availability data sets D1 and D2, from which availability forecasts can be
directly defined, and used to generate a set of quantitative resiliency values for the workflow
specification with choice WSC6.

D1 D2

u1 u2 u3 u4 u1 u2 u3 u4

x1 0.95 0.90 0.96 0.94 0.95 0.90 0.96 0.94
x2 0.99 1.00 0.90 0.97 0.99 1.00 0.90 0.97
x3 0.40 0.77 0.99 0.30 0.40 0.77 0.70 0.45
x4 0.40 0.88 0.89 0.80 0.40 0.88 0.89 0.80

We now consider adapting the quantitative resiliency measure for a workflow with-
out choice to a resiliency measure for a workflow with choice using the aid of an exam-
ple. We consider a workflow specification with choice WSC6 = (ts6,U6,(A6,S6,B6)) such
that ins(WSC6) = {WS61,WS62,WS63} where WS61 = ((T61,<61),U61,(A61,S61,B61)) is
defined to be:

• T61 = {t1, t2, t5, t6} and <61= {t1, t2),(t2, t5),(t5, t6)}
• U61 = {u1,u2,u3,u4}
• A61 = {(t1,u1),(t1,u2),(t2,u2),(t2,u3),(t5,u3),(t5,u4),(t6,u1),(t6,u4)}
• S61 = {(t1, t2),(t1, t6),(t2, t5),(t2, t6)} and B61 = /0

Next, workflow specification WS62 = ((T62,<62),U62,(A62,S62,B62)) is defined to be:

• T62 = {t1, t2, t4, t6} and <62= {t1, t2),(t2, t4),(t4, t6)}
• U62 = {u1,u2,u3,u4}
• A62 = {(t1,u1),(t1,u2),(t2,u2),(t2,u3),(t4,u1),(t4,u4),(t6,u1),(t6,u4)}
• S62 = {(t1, t2),(t1, t6),(t2, t6)} and B62 = {t4, t6}

Finally, workflow specification WS63 = ((T63,<63),U63,(A63,S61,B63)) is defined to be:

• T63 = {t1, t3, t6} and <62= {t1, t3),(t3, t6)}
• U63 = {u1,u2,u3,u4}
• A63 = {(t1,u1),(t1,u2),(t3,u1),(t3,u3),(t6,u1),(t6,u4)}
• S63 = {(t1, t6),(t3, t6)} and B63 = /0

We now consider two data sets D1 and D2 shown in Table 5.5, predicting the availability
of users when executing WSC6. We assume that D2 is the result of some rescheduling for
users u4 and u4. A table entry xi×u j is the expected probability of user u j being available at
execution step xi. Execution specifications ES = ((Z,≺),θ) can be extracted directly from
D1 and D2 which are compatible with the workflow specifications WS61, WS62, and WS63.
The compatibility of a workflow and execution specification is defined in Section 2.3.2. For

123

Workflow Risk Management

Table 5.6 Quantitative resiliency values for each execution path of workflow specification
with choice WSC6 using user availability data sets D1 and D2, along with the expected
resiliency and resiliency variance of WSC6.

D1 D2
WSC6 WS61 WS62 WS63 WSC6 WS61 WS62 WS63

Resiliency ΓQ 0.75 0.75 0.23 0.32 0.53 0.53 0.34 0.42
expR(w1) 0.43 - - - 0.43 - - -

varR(w1) 0.051 - - - 0.006 - - -

instance, in the case of WS61 and WS62, the set of workflow steps Z in a compatible execution
schema will be {x1,x2,x3,x4,x⊥}, while in the case of WS63, Z = {x1,x2,x3,x⊥}.

Combining WS61, WS62, and WS63 with compatible execution schemas generates three
workflow execution schemas WES = (WS,ES) and allows the quantitative resiliency of
each WES to be generated using the techniques described in Chapters 3 and 4. Using these
techniques we automatically generate the quantitative resiliency of WS61, WS62, and WS63

shown in Table 5.6. We have created a Python-based tool which implements the function
red, and given a workflow specification with choice WSC, generates the set of workflow
specifications without choice ins(WSC) before encoding the MDPW for each in the PRISM
modelling language for automatic verification. Note that WS61 returns the highest quantitative
resiliency value of all WS ∈ ins(WSC6) under D1 and D2.

Resiliency Extrema

Finding the minimal quantitative resiliency for a workflow specification with choice WSC

indicates which WS ∈ ins(WSC) will give the lowest success rate for WSC assuming an
execution specification ES. This can be interpreted as the worst case, or the instance in
ins(WSC) with the highest failure risk. On first glance this indicates which parts of WSC

need the most attention in terms of mitigation. For instance, in our example, WSC6 is most
likely to fail when WS62 is executed at it gives the minimal quantitative resiliency, 0.23 and
0.34 under D1 and D2 respectively. Imagine now that under D1, WS62 has a low probability
of execution, for example, 0.01, or 1 execution in 100 instances whereas WS61 with 0.75
quantitative resiliency has a high execution probability, for example, 0.80, or 80 in 100 cases.
In general, the resiliency for WSC6 will therefore be much higher meaning a costly mitigating
strategy for the infrequent, low resiliency case may not be cost effective.

A bound on the expected success rate can be placed on WSC by calculating both the
maximal and minimal resiliency for WSC. In our example under D1, WSC6 has a large

124

5.2 Risk Acceptance

bound with an expected completion rate of between 0.23 (WS62) and 0.75 (WS61). Under
D2, WSC6 has a much smaller bound such that the expected completion rate is between 0.34
(WS62) and 0.53 (WS61). The resiliency bound can be a useful resiliency measure when all
WS ∈ ins(WSC) have an equiprobable chance of being executed. If however under D1, WS61

has a low execution probability of 0.01 whilst WS62 has a high execution probability of 0.8
then in general the resiliency achieved will tend towards the minimal value of 0.23. Placing a
bounds on the resiliency in this case becomes a misleading measure of resiliency to a CISO.

Resiliency Distribution

Given a workflow specification with choice WSC, calculating the resiliency for every pos-
sible instance WS ∈ ins(WSC) coming with an execution specification ES provides the full
resiliency distribution for WSC. This can enable the CISO to identify instances of low
resiliency, and therefore those needing more extensive mitigation. A tolerance threshold for
resiliency may exist for WSC, deemed acceptable when every instance WS has a resiliency
equal to or more than the threshold, in other words the probability that every WS meets
the threshold is 1. Assume for the sake of example, a resiliency threshold of 0.30 and for
simplicity, an equiprobable execution model for all WS ∈ ins(WSC6) where the execution
probability of WS is 0.33. A more complex probabilistic model could easily be imagined.
Under D1 the probability of WSC6 meeting this threshold is therefore 0.66 (unacceptable)
as the quantitative resiliency of WS61 is below this value, whilst under D2 the probability is
now 1 (acceptable) as all WS ∈ ins(WSC6) have a quantitative resiliency above the thresh-
old. Illustrating a comparison of risk failure between a pre and post mitigated workflow to
business leaders using resiliency distribution may be complex, especially when they multiple
execution paths. It may be more useful for a CISO to provide a singular, easy to understand
measure of resiliency for a workflow with choice.

Expected Resiliency

In Section 2.3.4, the quantitative resiliency function was defined to be ΓQ : WES→ [0,1]
which given a workflow execution specification WES = (WS,ES) returns the quantitative
resiliency of the workflow specification WS under the execution specification ES. We now
consider a probability function prob : WS→ [0,1], which given a workflow specification
without choice WS ∈ ins(WSC), returns the probability of WS being executed. The expected
resiliency indicates the likely success rate across every instance in a workflow with choice
WSC, calculated as the average resiliency of all WS ∈ ins(WSC). We define the function

125

Workflow Risk Management

expR : WSC×ES→ [0,1], which given a workflow with choice WSC and an execution
specification ES returns the expected resiliency of WSC.

expR(WSC,ES) = ∑
WS∈ins(WSC)

prob(WS)ΓQ((WS,ES))

In our example, assuming prob(WS) = 0.33 for all WS ∈ ins(WSC6), the expected
resiliency is 0.43 for WSC6 under both D1 and D2, shown in Table 5.6. This in turn indicates
an expected failure rate for WSC1 of 0.57. Under D1, with an equiprobable execution model,
means the expected resiliency of 0.43 is not assured with every execution of WSC1. Each
time the instance WS62 is executed, the probability of WSC1 terminating successfully is only
0.23. When executing WS61 the quantitative resiliency is much higher than the expected
value. Clearly in this case the expected resiliency alone gives a misleading measure of
resiliency for a workflow with choice, in other words the expected resiliency cannot actually
be expected in every case.

Under data set D2, the expected resiliency is now roughly attained whichever WS ∈
ins(WSC6) is executed. In this case the expected resiliency measure alone is arguably
enough to indicate the true failure risk of WSC6. In other words, a resiliency of ≈ 0.43 can
be expected with every execution of WSC6. This remains so even when the probabilistic
execution model for all WS ∈ ins(WSC6) is not equally weighted.

Resiliency Variance

The resiliency variance is a measure of how spread a distribution is, or the variability from
the expected resiliency of all instances in a workflow with choice WSC. A resiliency variance
value of zero indicates that the resiliency of all WS ∈ ins(WSC) are identical such that the
expected resiliency alone will give a true indicator of risk failure. All resiliency variances that
are non-zero will be positive. A large variance indicates that instances are far from the mean
and each other in terms of resiliency, whilst a small variance indicates the opposite. The
resiliency variance can give a prediction of volatility or failure risk to a workflow designer
taken on when implementing a particular workflow with choice. To quantify the resiliency
variance measure we define a function varR : WSC×ES→ R, which given a workflow
specification with choice WSC and an execution specification ES, returns the resiliency
variance of WSC.

varR(WSC,ES) = ∑
WS∈ins(WSC)

prob(WS)(ΓQ(WS)− expR(WSC))2

126

5.2 Risk Acceptance

The resiliency variance for WSC6, calculated using availability data sets D1 and D2,
from which execution specifications can be defined directly, is given in Table Table 5.6. An
equiprobable execution model is again used for simplicity. Under D1 a resiliency variance
of 0.051 is calculated, equivalent to a large standard deviation of 0.23 (

√
varR(WSC6)).

Under D2 the resiliency variance has been reduced to 0.006, equivalent to a much smaller
standard deviation of 0.08 from the expected resiliency. Clearly this indicates in this case
that all instances of WSC6 under D2 have a probability of terminating successfully close to
the expected resiliency of 0.43.

The former case (D1) indicates that instances in WSC6 can have a large spread in terms of
resiliency despite having the same expected resiliency as the latter case (D2) coming with a
small spread, or variance. Under D1, the results show that instances exist in WSC6 with much
lower and higher probabilities of terminating successfully than the expected resiliency for
WSC6. The workflow specification with choice WSC1 can be considered volatile or high risk
as it has a high risk of failing if one such instance with low quantitative resiliency is executed.
Coupled with expected resiliency, resiliency variance can provide an easy to understand
measure of workflow risk failure and allow CISOs to quickly compare similar complex
workflows, before and after a policy modification, to help them predict a suitable mitigation
strategy.

5.2.3 Mitigation Strategy

In this section we give an overview of the main techniques discussed in the literature that
could be implemented within a workflow mitigation strategy to overcome situations when a
workflow deadlocks. These mitigation actions are categorised into two classes, long-term
actions and emergency actions.

Long-term Actions

Long-term actions can help raise the resiliency of a workflow by providing a secure solution
that does not involve having to violate the security policy or change the task structure [149,
151]. Long-term actions can also often provide a more permanent solution to parts of a
workflow that commonly becomes blocked. Long-term actions arguably take time and can
be expensive in monetary terms to complete, yet the long-term benefits can be high. Those
actions of interest include:

• suspension : a workflow is suspended until a user becomes available. This can
be appropriate if deadlines are not important or there is some assurance of future

127

Workflow Risk Management

availability. Essentially a task is assigned to a user and executed when the user
becomes available.

• escalation: the probability of a valid user being available for a task is increased. A
user may be asked to return from vacation or come in on their day off, or they may
need to suspend another task they are currently executing.

• training : a user’s capabilities are raised to an acceptable level before authorising their
execution of a task.

• change policy [11, 12] : security constraints are removed or modified (e.g. reallocating
roles) which can take time and may need to be done multiple times if a workflow is
to complete. Changes may not be possible due to legal requirements or impractical if
users do not have the correct skills.

Emergency Actions

Emergency actions can help raise the quantitative resiliency of a workflow by overriding the
security policy or changing the task structure. Such actions provide a quick-fix to a workflow
that becomes blocked but do not offer any permanent solution to parts of a workflow that
commonly becomes deadlocked. A less secure solution is provided than long-term actions
that may also impact the output quality of the workflow if the task structure is indeed changed.
Emergency actions are arguably quick and cheap in monetary terms to complete, yet the
long-term benefits can be low. A distinction is made between overriding which implies some
control is in place over who and how policies can be broken while violation is unsolicited.
Those actions of interest include:

• delegation [55, 67, 102]: if user is unavailable they may delegate a task assignment to
a peer or subordinate who would not normally be authorised to perform the task. This
overrides the authorisation constraints but can result in lower standards and higher risk.

• break glass [120]: certain users are given the right to override a security constraint
to gain privileges when the assigned user is unavailable, set up with special accounts.
Justification is typically sought after access is granted.

• skipping: a task is bypassed and executed at a later time, although out of sequence.
This is similar to suspension although other tasks are executed while waiting for a user
to become available.

128

5.2 Risk Acceptance

• forward execution: the workflow instance is rolled back [53] until another execution
path can be taken which bypasses the deadlocked state.

Strategy Selection

Implementing a suitable mitigation strategy is important to reduce a workflow’s chance of
failure, especially one with both a high expected success rate and rigid security constraints.
Ultimately a favourable mitigation strategy will give a high expected resiliency and a low
resiliency variance. Clearly we are not in a position to state which and when particular
mitigation actions should be implemented as part of a mitigation strategy as this is highly
context dependant. We do however offer some discussion on this matter and show how the
resiliency measures for a workflow with choice discussed in Section 5.2.2 could be useful in
this regard. It may be the case that a mitigation strategy can consist of only long-term actions,
especially where security is paramount and no emergency actions are permitted. Alternatively,
finishing a workflow in a timely manner may be the priority meaning a mitigation strategy
consists of only emergency actions. A third option is a mitigation strategy consisting of both
long-term and emergency actions that is fully comprehensive and means the most appropriate
option is always available.

Although long-term mitigation actions can be costly in both time and monetary terms, it
may be the case that such actions need only be performed once. For instance, training a staff
member once for a particular task means they can perform the task in all future executions
when necessary. Implementing long-term mitigation actions for all instances of low resiliency
would seem a sensible option however if some or all low resiliency instances have a very
low probability of execution, this approach may not be cost effective. Emergency actions
alone may be acceptable. If on the other hand emergency actions are implemented for an
instance with a high probability of execution yet low resiliency it is likely that these often
less secure actions will need to be performed multiple times. Long-term actions may be
more appropriate here. Using the minimum resiliency of a workflow with choice may lead
to over mitigation, especially if the lowest resiliency instances are infrequently executed.
Using the maximum resiliency may produce the opposite effect such that a workflow is under
mitigated. Workflows with high resiliency variance and low resiliency variance can have the
same measure of expected resiliency meaning this measure alone may be misleading. The
expected resiliency and resiliency variance together can inform mitigation strategy choice as
follows:

129

Workflow Risk Management

• high resiliency and high variance : a combination of both action types with a higher
proportion of emergency actions

• low resiliency and high variance : a combination of both action types with a higher
proportion of long-term actions

• high resiliency and low variance : emergency actions

• low resiliency and low variance : long-term actions

5.3 Summary

In some cases, the quantitative resiliency of a workflow may fall below an acceptable level of
risk when analysing the impact of security policy modifications. This can be of particular
concern when policy modifications are enforced by regulation updates, especially in critical
workflow domains such as healthcare that have a small tolerance for workflow deadlock or
failure. We have outlined two techniques showing how calculating quantitative resiliency
can help manage the risk of workflow failure caused by users becoming unavailable. The
first technique is aligned with reducing failure risk and has considered the computation
of quantitative resiliency at runtime to ensure the assignment of task executions to users
maximises the quantitative resiliency of the workflow in accordance with the current pre-
diction of user availability. We have shown that adding or removing security constraints
to the security policy of a workflow has a clear impact on the resiliency computation time,
which can increase or decrease respectively. We have then proposed an approach for a Chief
Information Security Officer (CISO) to analyse and modify a security policy to improve the
computation time for quantitative resiliency at runtime by adding a set of dummy, or artificial
security constraints that do not impact the resiliency value. Our observations show the gain
in time can be significant, for instance in our example the computation time reduces from
6.53 seconds to 0.63 seconds.

The second technique is aligned with failure risk acceptance and has considered the
formation of mitigation strategies, in particular calculating resiliency metrics to help form
strategies for workflows with choice that can have a different resiliency value for each
possible execution path. We have shown that taking the resiliency average, or expected
resiliency alone can be a misleading indicator of workflow failure risk, especially when a
workflow contains paths of both very high and very low quantitative resiliency. We have
introduced a new metric for workflows with choice called resiliency variance that indicates

130

5.3 Summary

overall resiliency variability, or volatility, from the resiliency average. We have shown how a
workflow with choice can be reduced to set of workflows without choice whose quantitative
resiliency can be generated using the techniques described in Chapters 3 and 4. We then
showed how resiliency variance is calculated before discussing how resiliency variance can
provide a CISO with an indicator of the workflow failure risk taken on when modifying a
security policy for a workflow with choice. Discussion has been given on how resiliency
variance could be useful for predicting a suitable mitigation strategy containing actions
that should be taken to avoid a workflow failing due to user unavailability. For instance, a
workflow with high expected resiliency and low resiliency variance would indicate a low risk
of failure and a mitigation strategy containing low-cost emergency style mitigation actions.

131

Part II

Ontologies

133

Chapter 6

Security Ontology

Part 1 of this thesis considered quantitative techniques for analysing the potential impact
that security policy modifications have on workflow completion. These techniques provided
metrics for analysing workflow security at the process level by calculating a workflow’s
resiliency, that is the probability of completion, under the uncertainty of user availability,
without violating security constraints. This analysis considered tasks to be abstract such
that if the execution of a task could be assigned to a user, that task would be completed. In
practice, workflow tasks are often complex and come with many different security policies
regulating system access, password usage, network access, usb stick usage, and many other
concepts necessary to complete tasks. The second part of this thesis therefore considers the
impact security policy modifications may have at the task level. Due to the complexities
of many workflow tasks we consider facilitating qualitative security analysis, using the
knowledge and experience of security and human behavioural experts.

This chapter provides the foundations for two bespoke tools we have created for infor-
mation security and human factors experts to easily record and incorporate their knowledge
within the formal structure of a security ontology. An ontology is a description of concepts,
their properties, and their interrelationships that exist within a particular domain. We sug-
gest bespoke ontology development tools are needed for knowledge holders to construct an
ontology first-hand, and thereby build a shared and agreed knowledge base of information
security and its relationships to human behaviour in the workplace. The resulting knowledge
base could be used by Chief Information Security Officers (CISOs) to analyse the potential
impact modifying a security policy has on workflow completion, and the identification of
behavioural controls to manage that impact. The chapter begins by describing the manage-
ment of organisational knowledge and how it can be formalised in an ontology to form a
knowledge base. It then introduces the knowledge stakeholders whose knowledge would be

135

Security Ontology

incorporated into a security ontology, and a brief overview of human factors related to an
information security setting. It then describes current ontology development tools before
discussing current information security ontologies appearing in the literature. The security
ontology which forms the underlying knowledge base structure for the tools we introduce
is outlined, before presenting the results of consultations carried out with two CISOs from
which we have extracted requirements for two security ontology development tools.

6.1 Knowledge Management

The second part of this thesis focuses on the provision of tools which allow security and
human behavioural experts to record and incorporate their knowledge within the structure of
a security ontology. Formalising security related knowledge would create an agreed security
knowledge base whose content could be used by a Chief Information Security Officer (CISO)
to conduct qualitative analysis on the potential impact security policy modifications have on
workflow completion. As a first step to creating bespoke security ontology development tools
we describe the management of knowledge and how it can be formalised in an ontology.

6.1.1 Organisational Knowledge

Knowledge is a major organisational resource [89]. It can be considered as comprising the
experience and insights embodied in individuals, or organisational procedures and processes.
Its key components are concepts (e.g. events or objects) and the relationships between those
concepts. Davenport and Prusak describe knowledge as:

"A fluid mix of framed experiences, values, contextual information, and
expert insight that provides a framework for evaluating and incorporating new
experiences and information. It originates and is applied in the minds of knowers.
In organisations, it often becomes embedded not only in documents or reposito-
ries but also in organisational routines, processes, practices, and norms." [46]

Knowledge can potentially reside in the minds of experts or within the external sources
they use such as organisation statistics (business intelligence), experimental research data or
online materials. The capturing and sharing of distributed knowledge can potentially bring
vast improvement to an organisations’s performance if that knowledge is sound, meaningful
and actionable [44]. Organisations will acquire insight into how to adapt to changing
environments, avoid errors and solve problems more efficiently. By recording this knowledge

136

6.1 Knowledge Management

in the form of a knowledge base, organisations will gain the valuable experience and insights
of experts and retain it for future use. Knowledge recording must allow experts to capture
their knowledge directly and structure that knowledge in a useful and meaningful way.

For knowledge to be valuable it must be correct in a way that allows organisations
to manage current situations efficiently and plan effectively for their future [84]. Correct
knowledge can be considered to be the consensual knowledge of the contributing experts. To
acquire correct knowledge the method of capturing and recording expert knowledge must
include a mechanism for reaching consensus. The discipline of knowledge management deals
with the management of organisational knowledge and encompasses its capture, recording
and reuse. Defined by Skyrme:

"Knowledge management is the explicit and systematic management of
vital knowledge and its associated processes of creating, gathering, organising,
diffusion, use and exploitation. It requires turning personal knowledge into
corporate knowledge that can be widely shared throughout an organisation and
appropriately applied." [157]

6.1.2 Formalising Knowledge

To construct a knowledge base and present its content in a useful and meaningful way
that content must be structured and formalised. One method is to record and incorporate
knowledge within the structure of an ontology [71, 72]. An ontology is an interrelated set
of terms and concepts that are used to describe and model a particular domain of interest.
Ontologies present a common understanding of a domain through formal descriptions of its
concepts and relationships. This reduces ambiguity and supports consistent treatment of an
ontology’s content. Providing explicit semantics to ontology data allows its interpretation
and reasoning by both humans and software. Explicit semantics also support the sharing, use
and reuse of ontology content. Through sharing a common understanding of information
and knowledge, humans and systems can communicate and interoperate effectively within a
particular domain.

For an ontology to assign meaning to data it is necessary to define information via
representational building blocks and the relationships within and between those blocks.
These building blocks are ‘classes’, ‘individuals’ and ‘properties’ [135]. Classes describe
concepts in the domain with each class representing a group of instances, or individuals
with similar characteristics. Each individual is an instance of a particular class. Classes
themselves may have sub-classes whose individuals are more specific than those of the

137

Security Ontology

instance of
Vehicle Blue

Colour
A35 DFR

Car

Joe Bloggs
sub class of

instance of

colour is

owns owned by

favourite
colour is

Fig. 6.1 Partial ontology example where rectangles are ontology classes, ovals are instances
of a class, and directed arcs are relationships between instances and classes.

super-class. Properties provide attributes and values to individuals by defining relationships
between those individuals. Restrictions on a property’s domain and range can be stated to
restrict which properties an individual can or must have. An ontology is created by defining
classes (arranged in a hierarchal structure) and properties [135]. A knowledge base can be
considered to be an instance of a particular ontology that contains individual instances of its
classes, related by its given properties.

Figure 6.1 shows a simple ontology example which illustrates how an ontology is struc-
tured and its concepts related. Each individual (ovals) is an instance of a class (boxes), for
instance Blue is an instance of the Colour class and Joe Bloggs could be an instance of
a Person class. The Car class is a sub-class of the Vehicle super class, identified by the
directional arrow between the two classes. Only one individual of the Car class is shown
in this example, defined as the car’s unique number plate A35 DFR, but typically the Car

class will have multiple individuals. Many of the property relationships (arrows) would
typically have a range and domain restriction. For example, the relationship owns would be a
many-to-many mapping as every car can potentially have multiple owners and a person can
own multiple cars.

6.1.3 Knowledge Stakeholders

We assume a scenario where CISOs need formalised knowledge of human factors in informa-
tion security to analyse the impact of changing a security policy and identify behavioural
controls to manage that impact. It is then necessary to obtain this knowledge and record it
within an ontology. CISOs may also propose additional content for inclusion in the structure

138

6.1 Knowledge Management

of a foundation ontology with regard to how information security issues are represented
(see Section 6.3.2). It is assumed CISOs have knowledge of information security issues and
some personal management experience of human behavioural factors, but no knowledge of
ontology construction.

Human factors researchers, in the context of this work, investigate human-behavioural
factors in an information security environment. They may, directly or indirectly, also examine
how an organisation’s information security policies affect employee behaviour. A human
factors researcher would analyse the content of the security ontology for research purposes,
and potentially submit refined or additional content concerning human-behavioural factors.
This content is then used by a CISO while analysing the impact of changing a policy. It
is assumed that human factors researchers have knowledge of human-behavioural factors
in information security, and a limited knowledge of security management issues, but no
knowledge of ontology construction.

Ontology experts (IT technicians and ontology researchers) would assist CISOs and
Human Factors Researchers by constructing, modifying and maintaining a security ontology.
They take the content given by a CISO or human factors researcher (i.e. knowledge or
procedural details) and enter it into the ontology. The ontology content may then be formatted
for presentation during the information security management process, or used by ontology
experts in further (manual or automated) processing. An ontology expert can also make
changes to the ontology structure on the instruction of a CISO or human factors researcher.
It is assumed an ontology expert has knowledge of ontology construction and tools but little
knowledge of information security issues and/or human-behavioural factors. As such they
are able to maintain the ontology but do not have the capacity to reliably populate it. For
these reasons CISOs, human factors researchers and ontology experts must be provided with
a shared tool that facilitates the direct capture and re-use of information security knowledge.

6.1.4 Human Factors Knowledge

Workflow tasks are commonly performed by humans [69], whose behaviour when processing
information is constrained by information security policies. Information security is often
viewed as an added burden by users who must follow security procedures and abide by
security rules in order to carry out their assigned tasks [10]. The way users react and behave
when following these security protocols can affect task completion times and workflow
success rates. For instance a user forgetting their password, or not having the correct
permissions to access a critical piece of information can slow task completion. Users may of

139

Security Ontology

course simply exhibit accidental, non-malicious and unpreventable behaviour in reaction to
security policies [126, 153]. To the CISO, security controls that may seem straightforward
and obvious can be challenging to those users who are not technically minded, even in the
case of the simplest security procedures. Security can therefore be viewed as too complex,
unusable and the cause of ‘unnecessary’ delays, for instance a complex security policy may
necessitate regular resets of a user’s password when too many unsuccessful attempts have
been made [142]. Users may adopt a blasé attitude to information security (i.e. doesn’t
apply to them), they may not grasp its importance, they may be oblivious to it, or they may
feel they have no choice but to ignore it to complete their assigned tasks [134]. Security
work arounds are a common symptom of misaligned security controls such as missing
permissions to access needed information. Bypassing a security policy puts information
at risk which ultimately can affect the success rate of a workflow, for instance information
may be left open to unauthorised access or modification [87]. Another common reaction
to security is the unauthorised use of instant computing resources (e.g., the cloud) and the
latest technologies ‘needed’ by users to manage their ever increasing workloads and meet
their targets. Organisations are often accused of being slow in assessing and authorising
these technologies meaning users often go ahead and use them anyway [119]. These various
impacts on human behaviour may not be fully understood by a CISO, nor behavioural
controls that can manage this impact when changing a workflow security policy.

It is therefore important a CISO considers human behavioural factors when analysing
the potential impact of modifications to a security policy on workflow success rate. This
impact may be unmeasurable in many cases but may be observed and studied which can
over time tease out the typical behaviour or norms of users when interacting with particular
security procedures and rules. It is these norms and their alignment with information security
that need to be captured and formalised in an ontology using tailored development tools
to enable meaningful policy impact analysis. Social norms are unwritten rules about how
humans behave [164]. Behaviour which follows these norms is called conformity, and most
of the time norms provide a useful way to understand and predict what humans will do in
particular situations. Humans conform to social norms because it provides order, guidance
and understanding within an environment, making them often necessary for humans to
operate [125]. Norms defining appropriate behaviour exist for every environment and have
been observed to change when humans move from one environment to another [164].

A large amount of human factors and behavioural research in the information security
domain appears in the literature. Notably, Bartsch and Sasse in [10] present a study they
conducted within a large organisation, of 118 user experiences with information access

140

6.2 Ontology Development

controls and their subsequent (self-reported) behaviour. The study highlighted the fact
that user issues with security policies are reported as anecdotes and organisations, more so
CISOs are often reluctant to carry out comprehensive reviews of the problems, nor analyse
the impact of security on productivity. From the user responses the authors were able
to develop Personas which represent groups of users in terms of behavioural norms and
their daily problems which are to a large extent caused by policy modifications. Similar
user studies have been conducted to establish user experiences with security policies and
subsequent user behaviours, specifically in relation to information sharing [184] and access
control [14, 144]. In [96], Kirlappos et al. identify a security behaviour called shadow
security where users bypass organisational security policies in order to complete tasks yet
form their own security measures to counteract the risks they may cause. This in essence
reflects the working compromise user find between security and ‘getting the job done’. A
number of shadow security practices are described following a study conducted with users
within an organisation. Work has been conducted on characterising and formalising user
security behaviours within a knowledge base. Alfawaz et al. in [2] have conducted a number
of case studies and an extensive literature review to characterise user behaviour towards
information security controls. From their findings they suggest how user behaviour can
change over time due to influential factors such as technology, the social environment, and
self-interest which would suggest an ontology of information security and human factors
knowledge would need continual review. Stanton et al. define a taxonomy of user security
behaviour ranging from malicious behaviour meaning a user will intentionally violate a
policy to beneficial behaviour meaning a user is strongly security minded [159]. The authors
taxonomy was formed following 110 individual user interviews and a survey of over 1000
users self-reporting behaviour relating to passwords.

6.2 Ontology Development

6.2.1 Using Development Tools

Currently the construction and modification of an ontology aligning information security
and human behavioural factors would require the use of an existing ontology development
tool. Ontologies are typically expressed in such tools through formal XML based ontology
languages which assign machine-understandable semantics to the user submitted content.
Common examples are the well supported Web Ontology Language (OWL) [170] and the
Darpa Agent Markup Language plus Ontology Interface Layer (DAML+OIL) [82]. The tools

141

Security Ontology

themselves typically come in two forms, graphical and text based. Graphical tools allow the
user to enter their content by constructing an ontology diagram using a palette of shapes and
connectors provided by the tool (e.g. SemTalk [64] and GrOWL [101]). Alternatively, textual
editors (e.g. OntoWiki [7] and Protégé [133]) permit content to be entered manually and
arranged in a hierarchal structure. Both forms of editor automatically convert the informal
content into a formal ontology and store it as an ontology file that can be analysed using
the same, or another language supporting tool. Although different in form, both types of
development tool require the same information from the user. Assuming the ontology content
has been gathered, the user must define its overall structure in the tool being used. Concept
types (classes) and relationship types (properties), including any range or domain restrictions
must be created by the user before the content itself can be inputted. As the content is
entered, each concept (individual) must be separately defined by stating its content, class
type, properties and relationships to other concepts.

Due to its complex nature this process assumes familiarity with ontology technologies.
To create or modify an information security ontology, knowledge is required of ontology
creation, including the use of ontology development tools; ontology structure and language;
and the ontology content itself. Most CISOs and human factors researchers do not have the
expertise to create an ontology directly using existing tools as such tools are complex and
aimed at ontology experts, not those who hold the knowledge to populate those ontologies.
This of course holds true for many domains of interest, however this thesis focuses on the
information security domain and the provision of bespoke ontology development tools for
security experts. As such an information security domain expert may be unable to develop
ontology content themselves, and would require either the assistance of an ontology expert or
a dedicated ontology development tool that hides ontology complexity. Due to the potential
lack of expertise in ontology creation an information security domain expert may either
convey their knowledge to an ontology expert, or interact with an ontology expert directly
within a shared ontology development scenario. The ontology expert will proceed to enter
the content into an ontology development tool. However, manual entry can be error prone
especially if the ontology expert does not fully understand the nuances of the content and
its structure as they enter it into the ontology. Problems still exist if it is assumed that
the ontology expert is familiar with the structure of the ontology, and that the ontology
structure is adequately defined before entry of knowledge data. The process can prove time-
consuming as there is a need to ensure the availability of the ontology expert and relevant
domain experts. There is also a need to ensure that each individual concept is unambiguously

142

6.2 Ontology Development

defined within the constructs of the chosen ontology development tool. This may slow the
knowledge-capturing process.

6.2.2 Collaborative Ontology Development

For an ontology of information security and human behavioural factors knowledge to be a
comprehensive and correct its development process should allow knowledge contributors to
cooperate and reach consensus [162]. The creation of an information security ontology is far
too large a project for any one individual or small team to carry out effectively. Development
by such people also restricts the contributed knowledge which may be specialised, out of
date or culturally specific leading to a restricted and stagnant knowledge base. To solve
this, the ontology must be constructed by multiple experts to provide a larger and more
accurate repository of information security knowledge. There are potentially vast amounts of
information security knowledge held globally so collaboration must be an integral part of the
ontology’s development [142]. Collaboration will allow CISOs and human factors researchers
to capture, integrate, publish and share their knowledge with peers and colleagues within the
information security domain. Through collaboration these domain experts can potentially
comment, criticise and peer review other content with the ultimate aim of reaching consensus.
Through the involvement of multiple experts, a larger and more accurate knowledge base
can be created. The collaboration process must include mechanisms for both synchronous
and asynchronous development and communication. This will allow valuable contribution
from all experts regardless of location or time-zone. Furthermore, a deeper discussion of
information security is promoted between domain experts leading to an accepted base of
knowledge for the whole community.

For an ontology of information security knowledge to be useful the knowledge it contains
must be accepted and trusted by both its providers and users. Different terminology can
potentially be used for the same concept or the same terminology for different concepts.
Incorporating a consensus mechanism in the knowledge base development process means
every term will be clear and unambiguous to all parties involved. Agreement is realised when
every term has the same meaning to all domain experts allowing effective communication
amongst themselves through their shared vocabulary. Consensus can be considered a form of
collaborative decision making in which all contributors have an equal say when discussing
and accepting a concept’s meaning. Technology can allow CISOs and human factors experts
to successfully share in the creation of a knowledge base. The Web is a natural platform
for collaboration and knowledge sharing by distributing the development process and the

143

Security Ontology

resulting knowledge base to the entire information security community. Knowledge holders
will have on demand access to the latest version of the knowledge base anywhere in the
world. Web hosting also eliminates the time and cost associated with deploying client side
applications and the need to upgrade them.

6.2.3 Existing Development Tools

Collaborative ontology development tools allow the successful capture and integration of
ontology content from a wide variety of sources which is too much for one single person
to process. A number of tools are already available, for example Web-Protégé [172] which,
based in a Web environment, allows simultaneous editing on the same ontology file and for
users to see those changes immediately. The ontologies themselves are listed in the tool’s
interface and are available for any registered user to view and edit. Web-Protégé offers
form based content entry while presenting that content and its structure in a textual format.
Ontology content is organised into class, property and individual hierarchies displayed with
other structural data in separate tabbed panes whose level of complexity is appropriate
for an ontology expert Although the integration of widespread knowledge is simplified
with Web-Protégé, an understanding of ontology construction and language is still required.
OntoWiki [7] is a collaborative Web application for the development of ontologies that serves
to acquire the knowledge of users while in effect hiding the actual ontology development.
OntoWiki is similar to existing Wiki systems and regards ontologies as information maps,
built from nodes which represent concepts in a visual and intuitive way. All content supplied
by registered users can be commented on, rated, and its popularity and provenance viewed.
This tool to decrease the entrance barrier for domain experts to capture their knowledge and
collaboratively develop ontologies however is not tailored specifically to information security
domain experts. COE (Collaborative Ontology Environment) [75] is a further collaborative
tool that attempts to abstract away the ontology development by building on the rapid
construction capabilities of CmapTools [27] and its concept mapping system to represent
domain knowledge. Concept maps however are meant for communication to humans and
not machine readable. This application translates concept maps to the machine readable
OWL language. COE combines an OWL ontology viewing and editing environment which
displays ontologies as concept maps. Related concepts may also be located in any Web based
ontologies and incorporated into the ontology being developed allowing knowledge from
wide spread sources to be captured. Even though OntoWiki and COE are aimed more at
domain experts rather than ontology creators they still remain relatively complex, require a

144

6.3 Information Security Ontology

certain amount of initial training; and are generic in nature and not designed specifically for
security ontology creation unlike our proposed tool.

Visualisation of an ontology during its construction or modification is of great advantage
to the user and eases these processes immensely. There are a number of visual ontology
creation tools using OWL as a base language, for instance GrOWL [101] and OWL-S Edi-
tor [57] which illustrate the ontology in a UML format. SemTalk [64] uses the functionality
of Microsoft’s graphical application Visio’s to create and modify ontologies graphically, again
in a UML format, translating ontologies automatically to an OWL ontology file. SemTalk
still remains complex however and is again aimed at the ontology creator, not the domain
expert and is designed for ontology creation covering any domain. In general we make the
observation that currently available ontology development tools are relatively complex, are
generic in nature and require a substantial amount of initial training and configuration before
the knowledge capture process can begin.

6.3 Information Security Ontology

The diverse knowledge relating to information security issues and human behavioural factors
can be organised and related in the form of a knowledge base by using an ontology. Such an
ontology will allow clear and effective communication within the security community and
inform (and thereby improve) a CISO’s ability to analyse and communicate the predicted
impact of changing a security policy in terms of typical user behaviours, and identify controls
that can be used to manage those behaviours. Some work already exists in the literature
in the field of security ontologies. In [147], Raskin et al., highlight the suitability of using
ontologies to describe the information security domain. Donner in [50], discusses the need for
an ontology to describe the most important security concepts and their interrelationships. The
author suggests such an ontology is needed to provide explicit meaning to the current, vaguely
defined terminology and allow clear and effective communication between colleagues and
their clients. Vulnerabilities to information security systems and the information itself would
be classified allowing the detection of possible threats and their countermeasures. The
discussion ends with the proposal that the ontology should be developed in a collaborative
manner in order to create a robust body of information security knowledge.

145

Security Ontology

6.3.1 Current Security Ontologies

The capture of security knowledge in an ontology has been shown to be viable through a
number of studies. A systematic survey and comparison of approaches applying the concept
of ontology to reuse, communicate and share information security knowledge has been
carried out by Blanco et al., in [19] and Souag et al., in [158]. In the former, the main
proposals in some 28 different works have been identified and compared in terms of security
concepts and their relationships. The authors suggest that in general the ontologies analysed
do not define all possibilities of the information security domain, but instead focus on specific
areas of it. They also suggest that a limited number of security concepts can be defined and
that many, although common to each ontology are defined in different ways. This would
suggest a more collaborative approach is needed within a community in order to remove
ambiguity from ontology construction.

In [78], Herzog et al., suggest an ontology of information security needs to contain four
main concepts: ‘assets’, ‘threats’, ‘vulnerabilities’ and ‘countermeasures’. An example
ontology has been developed in OWL consisting of some 88 threats, 79 assets, and 133
countermeasures. This ontology structure is extended by Fenz et al., in [62] who incorporate
the ISO27001 guideline [21] with a security ontology that considers the physical aspects
of information security management. Also proposed here is the ‘Ontoworks’ framework to
access, visualise and reason about the content of the ontology. The main purpose of their
work is to allow organisations to audit security polices and assess whether they adhere to
the ISO27001 guidelines. Similarly, Ekelhart et al., in [61] incorporate domain knowledge,
organisation assets and the German IT Grundschutz Manual guidelines [60] into a security
ontology. The purpose of this work is to allow organisations to determine the set of controls
they need to put in place to obtain certification for specific information security management
standards, however it does not consider controls suitable to manage the impact of human
behaviour when interacting with security controls.

Human behavioural aspects in security have been considered by Obrst et al., who define
a systematic approach for developing an ontology of the cyber security domain expressed
in OWL [137]. This work focuses primarily on describing threats and impacts on IT in-
frastructure by malware but includes human-oriented concepts such as the human users
interacting with affected systems, the actors infecting those systems with malware, and the
actor’s capabilities to infect those systems. The ontology can be used to extract infrastructure
vulnerabilities and detect malware attacks and controls to mitigate those attacks. In terms of
human behavioural factors the focus is on the attacker trying to maliciously infect a system
rather than the users and how they behave when interacting with common security controls.

146

6.3 Information Security Ontology

Schiavone et al., in [155] suggest implementing workable security polices requires the
whole organisation to be described as a complex system within an ontology. The ontology
suggested incorporates concepts describing an organisation at the business level such as
‘capabilities’, ‘mission’, ‘governance’, ‘resources’, and ‘values’. By aligning these with
information security concepts and introducing business metrics, the ontology can be analysed
in terms of how best to configure complaint information security policies and controls yet
minimise the impact on various business activities. Information security concepts such as
‘threats’, ‘vulnerabilities’, and ‘countermeasures’ are gained from externally sourced security
ontologies suggesting the need for these to be constructed by security domain experts.

A more quantitative approach to information security using ontologies has been suggested
by Singhal and Wijesekera in [156]. The authors show how an information security ontology
with a similar structure to the one proposed by Herzog et al., [78], can be extended to model
security metrics such as costs and benefits of particular security controls. The ontology
is constructed in OWL within the Protégé ontology development tool [133]. The main
motivation for this work is to query the ontology and produce reports on information security
spending. In [54], Ekelhart et al., consider a security ontology for low-cost risk management
and threat analysis. The ontology is used to evaluate the effectiveness and the cost/benefit
ratio of individual security constraints. A tool ‘SecOntManager’ has been implemented that
uses the ontology content to visualise simulated security threats and their impact on business
processes in terms of cost and recovery time. This approach could be adapted to enable
CISOs to analyse the impact of changing security polices on user behaviour, and how that
behaviour goes on to impact the success rate of a workflow. The main limitation however
would be generating suitable metrics as user behaviour at the workflow task level is extremely
difficult to quantify, suggesting a more qualitative analysis approach is more appropriate.

6.3.2 Foundation Security Ontology

A foundation information security ontology to enable analysis of policy modifications on
workflow success rate should define the most important security issues and concepts (‘assets’,
‘vulnerabilities’, ‘threats’, etc.) and the relationships between them. It should also crucially
provide a standard model of human behavioural factors and how they relate to the concepts
within an enterprise’s security policies. For these purposes we use the ontology developed by
Parkin, Van Moorsel and Coles [142]. The concepts represented in the ontology are shown in
Figure 6.2. Each individual concept has a relationship with one or more other concepts. The
objects Chapter, Section, Guideline and Guideline Step represent content from the ISO27002

147

Security Ontology

	

Asset

Behavioural
Foundation

Behaviour
Control

Chapter

Guideline

Section

Guideline
Step

Threat

Vulnerability

contains

contains

contains

hasSubject

hasVulnerability

exploitedBy

hasFoundation

managesRiskOf

Control Type
hasRiskApproach

isMitigatedBy

Role
ownedBy

hasStakeholder

hasSubject

1

1

1

1

*

*

*

1 1

1

1

1

1

1**
*

*

*

*

*

Infra. Proc.

1

1

*

hasVulnerability
*

1

Fig. 6.2 Overview of security ontology which incorporates information security and human
behavioural knowledge with the ISO27002 security standard.

standard [22]. An individual Guideline can be associated with a particular information Asset
by way of the hasSubject relationship. Otherwise if a Guideline has been broken down into
more refined Guideline Steps it will be these that are linked to an Asset, e.g., a password.
We represent those information Assets identified in a Guideline or Guideline Step that either
must be secured or which are crucial to an information security management process. In
the ontology an Asset can be ownedBy someone that has an identified Role, who is then
responsible for its maintenance. For instance a password is owned by a user.

The ontology also represents the security and usability weaknesses of an Asset that
may promote or inhibit certain user behaviours. It is with the Vulnerability concept that
these human behavioural factors are introduced into the ontology. A Vulnerability may be
exploitedBy a Threat (e.g., if "memorisation of password is difficult" it may follow that
"password is forgotten"), which renders the Asset unusable or insecure. Note that when a
Vulnerability is ‘exploited’, this may be intentional or accidental. A Threat may be either an
Infrastructure Threat or a Procedural Threat. The former represent activities that directly
affect security mechanisms, whereas the latter represent security events that impact upon
an individual and their behaviour. A Procedural Threat may impact the success rate of a
workflow, for instance if an employee forgets a password and is unable to access a system

148

6.4 CISO Consultations

until it is changed. It is with the Procedural Threat concept that the impact of policy
modifications can be introduced into the ontology. For each Procedural Threat we record
the Behavioural Foundation, as a means to classify behaviours and indicate the concerns
that they raise within an enterprise (e.g. a person’s memory capabilities or attitude towards
security).

A Vulnerability may be mitigatedBy a Behavioural Control. A Behavioural Control
represents a procedural activity that can be enacted by a CISO to manage the impact of human
behaviour when users interact with organisational security controls. Note a Behavioural
Control is similar to the workflow failure risk management approaches discussed in Part 1
of this thesis (Chapter ??). Each Behavioural Control has a Control Type which indicates
the associated risk management approach, such that a Behavioural Control managesRiskOf
a specific Threat. Approaches to manage the risks imposed by human behaviour can be
‘avoidance’, ‘transfer’, ‘reduction’, or ‘acceptance’ used appropriately to promote acceptable
user working practices when interacting with security. For example, one approach to reduce
the risk of forgotten passwords on workflow success rate whilst maintaining the password
policy would be to employ more IT help-desk staff.

6.4 CISO Consultations

CISOs use their knowledge and expertise to compose and modify information security
policies, which then informs the information security stance of their organisation. We
examine the process of information security policy-making and modification through semi-
structured discussions with information security managers, through a mixture of surveys and
phone interviews. For this we consulted two CISOs; (CISO1) has a wealth of experience as
a former CISO of a large multi-national financial organisation, and (CISO2) is a CISO at a
leading UK University with previous experience at UK regional councils. These discussions
help us to understand and identify the requirements of policy makers when using information
security knowledge. The consultations also build a picture of how policy makers across the
community choose to interact with external bodies and other knowledge holders, identifying
barriers to the sharing of knowledge and with this the potential uptake of collaborative
ontology development tools. The results of our CISO consultations are organised and
presented here based on the responses from the questions in Appendix C.1.

149

Security Ontology

6.4.1 Policy Review Timing

Within the organisations of both CISO1 and CISO2 information security policies are reviewed
at regular intervals, typically annually. CISO1 points out that although this is normally the
case, reviews may be forced by the emergence of a new threat or with the introduction of a
new security technology. With this we may assume that CISOs require access to relevant
material for guiding policy modifications to address new threats and security technologies.

6.4.2 Policy Review Resource Gathering

When reviewing and creating policies, CISO1 refers to the following sources for guidance:

• Payment Card Industry (PCI) [143]

• ISO27001/27002 security standards [21, 22]

• Information Security Forum (ISF) [86]

• International Information Integrity Institute (I-4) [85]

CISO2 also examines a range of sources for guidance:

• Information Technology Infrastructure Library (ITIL) [8]

• ISO27001/27002 security standards [21, 22]

• The Law Society [169]

• TechRebublic [166]

Although both CISOs work in different sectors, they both refer to the ISO27K family of
standards during their work. Having to refer to a number of independent sources implies the
need for this information to be cross-referenced in an appropriate manner. Within CISO1’s
organisation information gathered from different sources is entered into a software-based
policy management tool, which provides facilities to create information security policy
database(s). The tool also allows policy content to be separated according to applicable roles
(e.g. system development, human resources, auditors, etc). The tool’s databases are by no
means complete as they provide only information about standards. There remains a lack of
coverage of some other kinds of information, such as industry best practices and information
for managing human factors within IT security management.

150

6.4 CISO Consultations

For CISO2 the majority of gathered information is recorded within the organisation ‘as-is’.
Some financial and business information is stored as an information base within an Enterprise
Resource Planning (ERP) system [138]. Less than 3% of all the gathered information is
formalised and managed within a standardised knowledge repository. This contradicts the
need to cross-reference various sources of information. Where information is stored, it is
managed within individual policy categories. This together with CISO1’s responses suggest
that there are various ways to formalise the arrangement of knowledge content into policies.

6.4.3 Policy Creation and Modification

The policy databases in CISO1’s organisation are used to create, modify and publish informa-
tion security policies internally upon the organisation’s intranet. During policy creation or
modification, the IS027001 standard acts as an underlying structure [21]. Internal policies
are then created, or modified according to this structure, and developed through methods
including benchmarking, forums and use of informal networks. Internal policies (e.g. soft-
ware configuration settings, machine build settings) are then quite distinct from external
information security standards (e.g. ISO27001).

For CISO2, an internal information security policy is created, or modified by examining
the organisation’s trading environment (e.g. business, legal and common practices). CISO2

uses these practices to facilitate the formation of action plans or strategies to achieve particular
IT security-related goals. Policies are defined, or modified to help realise these strategies and
are put into practice upon approval by senior management. When addressing an information
security concern with the forming, or modifying of a policy, the order of strategy, policy and
practice is always followed, suggesting that policies must be seen to be achieving a goal for
the organisation.

6.4.4 Policy Reviews

When reviewing information security policy within CISO1’s organisation, various parties
must be consulted both internally and externally (e.g. human resources, legal counsel, etc).
In a regulated industry, regulators must be consulted as they may have their own published
guidelines (e.g. Financial Conduct Authority [65]). Also, the views of both internal and
external auditors must be sought to assist in aligning policy initiatives with industry standards.
Once the policy has been decided upon, CISO1 will talk with technologists to determine
whether the proposed solution can be integrated into the organisation’s applications and

151

Security Ontology

systems. The proposed policy is also discussed with business people to understand how it
would be received within the organisation.

CISO2 also consults both internal and external parties during review of information
security policies. These parties include the University Registrar, human resources, internal
auditors and external legal counsel specialising in information security. Policies and any
modifications are verified by peers and external advisors (e.g. legal counsel) together with
additional checks by Jisc certificated legal services [91]. These responses imply a need to
communicate knowledge meaningfully to peers and other disciplines.

6.4.5 Policy Justification

For both CISO1 and CISO2 it is the case that before a policy or policy modifications are
enacted they must be justified to, and supported by, senior management. In CISO1’s case
policies and policy modifications are discussed in terms of risk and what the effects could
be to the organisation without such policies and policy modifications being in place. For
CISO2 debate around policies and policy modifications is framed in terms of impact and
reach including legal requirements, financial considerations, personal data protection and
intellectual policy. A further consideration noted by CISO2 (but which is likely applicable
for CISO1) is the commercial and reputation risks to the institute without such policies or
policy modifications being in place. This implies a need to be able to objectively compare the
advantages and disadvantages of particular approaches to information security. An ontology
would serve to formalise knowledge of security solutions and expose their comparable
qualities in terms of impact.

CISO1 noted that situations can arise where objective evidence relating to the impact of
potential policy modifications is lacking (e.g. effects on employee productivity). Here CISO1

may rely upon his judgment and expertise to convey the reasons why a particular change
in security procedure needs to take place. However CISO1 notes that there would ideally
be evidence at hand to support such an argument, implying a need to identify the objective
evidence underpinning expert opinion within security policy management.

6.4.6 Policy Evaluation

Within CISO1’s activities, information security policies and policy modifications are typically
evaluated for correctness and effectiveness using metrics, but this is not always possible.
When assessing technological solutions it is possible to obtain and analyse output from
those systems (e.g. the number of e-mails rejected by anti-spam software). However

152

6.4 CISO Consultations

where the behaviour of users is involved it is difficult to formulate and measure meaningful
metrics. An alternative approach might be to obtain agreements from department managers
declaring that security measures will be enacted. These agreements are then reviewed at least
annually alongside computer-based user training and forward-looking agreements, e.g. "I

will comply with these measures for the next 12 months". Such self-assessments then transfer
responsibility for security to individuals.

CISO2 notes yet another approach to evaluating security modifications, where the security
policy evaluation process entails physically observing individuals using human-facing secu-
rity controls and identifying how those controls are dealt with or how they affect working
practices. Within CISO2’s organisation, business processes and workflows are also reviewed
to see if current security controls are appropriate or whether they can be modified to effect
improvement in success rate. That there are various options for managing the assessment
of information security policies within organisations, and that their place within business
processes and workflows must also be accounted for suggests a need to consider the merits of
different methods for analysing security policy modifications, and equally how appropriate a
particular method might be for assessing a range of policy modifications.

6.4.7 Sharing Policy Content

CISO1 states that formal and informal groups of CISOs regularly meet to discuss security
issues and share expertise. With this approach, there is potential for organisations to converge
on similar solutions, even to a low level (e.g. password composition rules, password reset
intervals, etc.). Sharing of information security management knowledge then occurs amongst
known and trusted parties. In the academic sector, institutions tend to reach consensus on ap-
proaches to information security through regular interaction and sharing of expertise. CISO2

also corresponds regularly with other non-academic organisations (e.g. local government).
Both CISO1 and CISO2 would be hesitant to share policy content that exposes the security
stance of their organisation. This suggests that if information security practitioners across
different organisations were to share knowledge, there would need to a consideration of how
to hide the identity of contributors or otherwise maintain knowledge at an abstract level so as
not to betray its source (although policies may tend to be framed at a high, operational level
as a matter of course).

CISO1 would consider using policy impact knowledge from new and untrusted sources
once consensus is established amongst peers. Consensus may potentially be reached through
successive edits until the content is agreed (i.e. no-one feels it necessary to edit any further).

153

Security Ontology

For CISO2, anonymously supplied information would be considered once it was proven
elsewhere and recommended from a trusted source. If such proof was unavailable the
anonymous content would still be considered if it could be tested in an environment of
limited impact and in such a way that it could do no harm to the organisation. This suggests
a need for details on how supplied knowledge can be enacted and tested.

6.4.8 Core Findings

From the discussions with CISOs a number of similarities are apparent, from which assump-
tions may be drawn regarding the management of knowledge contributing to the impact of
information security policy modifications:

• Information security policies are reviewed at regular intervals or when new secu-
rity threats or technologies emerge, wherein security modifications are informed by
guidance material gathered from a variety of disparate sources.

• Organisations across different sectors may form information security policies and
modifications to them, according to the same guidelines (e.g. ISO27001/2). This
implies that many organisations have similar information security requirements which
could benefit from collaboration.

• Policy modification impact consensus is reached from correspondence and discussion
amongst peers alongside the examination of guidelines and regulatory mandates.

• All material that informs policy modifications (be it guidelines, regulatory mandates,
technical documentation, etc.) is recorded in-house and arranged within distinct,
specialised policies, although this is not necessarily conducted in a centralised manner.

• Policies are reviewed in consultation with many internal and external parties, notably
experts in legal, human resource and technical issues. These parties cannot be assumed
to be proficient in the use of ontologies or information security.

• There is a need to compare different approaches to analysing information security
policy impact and the evaluation of policy modifications, and to be able to provide
justification for such modifications.

154

6.5 Summary

6.5 Summary

This chapter has described the foundations for tools specifically for Chief Information
Security Officers (CISOs) and human factors researchers to create a knowledge base by
aligning knowledge of information security with common human behavioural responses
in an ontology. An ontology is a powerful concept as its content can be analysed from a
number of different perspectives. The constructed knowledge base can be used by CISOs to
predict how changing a security policy will impact human behaviour which itself impacts the
success rate of a workflow. Furthermore, behavioural controls can be extracted to manage
the impact of this behaviour. For instance, a complex password policy may cause delay due
to a higher rate of user forgetfulness and managed by employing more IT help-desk staff to
quicken the password reset process. We have described the main structural components of
an ontology and how it can be used to manage organisational knowledge. An overview of
current ontology development has been given which has highlighted current tools are generic
in nature, relatively complex to use and require a substantial amount of initial training and
configuration before knowledge capture can begin. Furthermore employing an ontology
expert in order to use current tools is error prone as they are unlikely to understand the nuances
of the ontology content and its alignment. We suggest dedicated ontology development tools
are required to allow security domain experts to collaborate and create a knowledge base
whilst hiding the details of ontology construction. The foundation ontology aligning security
and human behavioural aspects is described which will form the underlying knowledge base
structure for the development tools. Discussions with two CISOs are also presented which
have highlighted the need for suitable tools to align security related knowledge in order to
analyse the potential impact of modifying a security policy.

Chapter 7 describes the requirements and implementation of two ontology development
tools. The first is graphical in nature by providing a palette of shapes and connectors that
can be used by the user to construct ontology diagrams connecting and aligning knowledge
fragments within the structure on the foundation ontology. Once constructed the diagram
is automatically translated into the ontology language OWL which can be imported into an
appropriate ontology analysis tool. The second development tool is Web-oriented allowing
knowledge holders to collaborate and reach consensus over ontology content by providing a
number of collaborative features. Knowledge entry is text based, aligned within the same
foundation ontology structure as the graphical tool. The Web-oriented tool also provides
a platform for analysing ontologies created in both tools in order to assess the impact of
security policy modifications and derive suitable behavioural controls to mange that impact.

155

Security Ontology

Both tools come with the foundation ontology pre-configured and provide user guidance to
simplify the knowledge capture process.

156

Chapter 7

Ontology Development Tools

Interrelated information security and human behavioural knowledge held by security domain
experts can be recorded and incorporated within the formalised structure of a dedicated
security ontology to form a security knowledge base. Chief Information Security Officers
(CISOs) can use a knowledge base of security related information for qualitative impact
analysis of modifications to a security policy. More precisely, the recorded knowledge and
its interrelations provide a CISO with a way to predict how people are likely to behave
in response to potential security modifications and how that behaviour could impact the
success rate of workflow. The knowledge base can also be used by a CISO to extract suitable
behavioural controls to manage the impact of user behaviour when interacting with security
controls. Currently ontology development is undertaken using generic ontology development
tools which accommodate ontology experts, and not those individuals whose knowledge
requires capture. This process is therefore time consuming and error prone, and requires
appropriate technical skills. Furthermore, gaining the assistance of an ontology expert to
develop the ontology on behalf of the knowledge holders is also error prone as they are
unlikely to understand the nuances of the ontology content and its alignment.

This chapter presents details of two dedicated ontology development tools for CISOs
and human factors researchers to collaborate and create a knowledge base whilst hiding
the details of ontology construction. The requirements of both tools have been extracted
from consultations with two CISOs presented in Chapter 6. The first tool is graphical in
nature allowing a diagrammatical representation of an ontology to be constructed, the second
is Web-oriented facilitating distributed knowledge entry and ontology construction. Both
tools simplify the current knowledge capture process by removing the need for expertise in
ontology construction and technologies. Furthermore they are intuitive, require no ontology
configuration due to pre-configuration, and provide mechanisms to guide users, thereby

157

Ontology Development Tools

reducing the potential for errors. The tools also allow domain experts to develop and extend
the ontology, and enterprises to tailor the ontology to their own requirements. Evaluation of
the Web-oriented tool has been provided by the same two CISOs consulted previously.

7.1 Graphical Ontology Development Tool

A graphical ontology development tool has been implemented providing a palette of shapes
and connectors for the user to construct ontology diagrams according to the structure of
the underlying security ontology described in Section 6.3.2. Ontology diagrams once
constructed can be automatically translated to the Web Ontology Language (OWL) [170],
for further analysis in a suitable tool. The tool has been implemented as a downloadable
standalone application imagining a scenario with group-based, face-to-face collaboration.
The tool’s design removes the need to understand ontology construction techniques allowing
collaborating information security domain experts to construct and modify, share, and analyse
an ontology at an abstract level. The work presented in this section has been published
in [118]. First we outline the requirements for a graphical ontology development tool before
giving implementation details in Section 7.1.2.

7.1.1 Tool Requirements

The main requirements of a graphical ontology development tool have been extracted from
consultations with two CISOs (Section 6.4), and identified as follows:

• A simple, intuitive graphical tool to create and/or modify a security ontology in
diagrammatical form. The tool will combine the unstructured knowledge of domain
experts with formalised ontology structure while abstracting away details of ontology
content creation and maintenance.

• The ontology editor tool must allow capture and organisation of formalised knowledge
relating to familiar information security concepts (e.g. Assets, Vulnerabilities, Threats,
Procedural Controls etc). Disparate knowledge fragments may also be interrelated,
and users should be able to record these relationships.

• The graphical user interface must not obscure the knowledge that is represented. This
may require the tool to include only the bare minimum of ontology editing controls,
and to present the ontology to the user in a diagrammatical form. An approach
such as providing ‘drag and drop’ functionality using a pre-defined set of shapes to

158

7.1 Graphical Ontology Development Tool

represent information and construct ontology diagrams may prove useful in this case.
A diagrammatic, formalised representation of an ontology could then be translated to
an ontology file automatically and without the need for user participation.

• The ‘hidden’ ontology structure should be pre-defined, meaning that no initial configu-
ration is required before knowledge capture can begin. A domain expert would then
only need to concern themselves with adding new information and connecting it to
other concepts.

• It may be necessary to present ontology content to other stakeholders (such as senior
management) whenever policy-related knowledge is used to identify necessary changes
to a security policy, the behavioural impact of those changes, and behavioural controls
to manage that impact.

• Ideally an interactive help system will be in place to aid the user through all aspects of
ontology development. Other forms of assistance, such as ‘tool tips’, could be provided
to explain features of the tool as they are being actively used. Dialog boxes and the like
may also be used to restrict what the user can do, and thereby minimise the potential
for errors.

• There must be mechanisms to minimise errors occurring in the knowledge capture
process. This may include restrictions on data properties, and active error notifications
during knowledge entry.

7.1.2 Tool Implementation

Figure 7.1 illustrates the graphical ontology development tool’s main components. These are
as follows:

• Ontology Editor: the user’s interface to the ontology development tool through which
ontology content is entered. A graphical representation of an ontology may be created
in the editor’s canvas and the corresponding machine readable ontology file created.
Diagrams are built up from a set of predefined shapes supplied within the editor
interface. Ontology diagrams may be saved and existing diagrams loaded into the
editor for analysis and/or modification.

• Ontology Diagram: a graphical representation of an ontology constructed in the editor
from a set of pre-defined shapes. Ontology diagrams may be saved from the ontology

159

Ontology Development Tools

	

enter content

save
 current
 diagram

load
 existing
 diagram

Ontology Editor

Chief Information Security Officer (CISO) /
Human Factors Researcher (HFR)

Ontology Diagram Store Ontology File StoreJava Translation Program

ontology
diagram

ontology
file

Fig. 7.1 Overview of graphical ontology development tool components which incorporates
the ontology editor and two file stores, one for Visio ontology diagrams, the other for OWL
ontology files.

editor to the Ontology File Store for future use or ontology diagrams may be loaded
from the Ontology File Store into the editor for analysis and/or modification. The
Ontology File Store may be located on the user’s own machine or held as a centralised
organisation database.

• Ontology File: a textual representation of an ontology written in OWL. An ontology
file may be created from within the editor once an appropriate ontology diagram has
been constructed. The creation of the ontology file takes place via the Java Translation
Program. Ontology files are saved to the Ontology File Store once created and may be
retrieved from the Ontology File Store for analysis using an appropriate application.
The Ontology File Store may be located on the user’s machine or held as a centralised
organisation database.

• Java Translation Program: a program which parses an ontology diagram and obtains
data on the shapes and their connections contained in that diagram. This data is
processed resulting in the creation of a corresponding ontology file. The translation
program is activated from the ontology editor interface once an appropriate ontology
diagram has been constructed.

Ontology Editor

The ontology editor offers the user a simple graphical interface where they can enter and
capture their knowledge in a graphical form. This is in effect a graphical representation of

160

7.1 Graphical Ontology Development Tool

	 Fig. 7.2 Graphical development tool’s interface which allows users to drag and drop populated
ontology components and connect them before automatically encoding the ontology in the
Web Ontology Language OWL.

the ontology (an ontology diagram). All aspects of the security ontology are pre-defined,
and with the integrated help system, diagram construction is simplified and intuitive. Fig-
ure 7.2 shows the user interface. To the right of the interface are the available controls
(new/open/save diagram, create OWL file, etc.). To translate the current diagram in the editor
to the corresponding ontology (OWL) file, the user is only required to input a location to
which to save the resulting file, thereby abstracting away any requirement to know about
ontology construction.

The main window of the editor interface is where the diagram construction takes place,
utilising the Microsoft Visio 2007’s drawing control [128]. Microsoft Visio 2007 [130] is a
graphical tool for creating a wide variety of diagrams to visualise, explore and communicate
complex information. The Visio drawing control allows the full functionality of the Microsoft
Visio 2007 drawing surface to be embedded seamlessly into any standalone application
written in the Visual Basic 6.0 programming language [129]. The drawing control itself
holds a template which consists of all shape data (stencil) and drawing page settings. On

161

Ontology Development Tools

start-up or beginning a new diagram, a master template is loaded into the control offering a
blank page. Subsequently, when a diagram is saved the resulting file includes all data from
the master template which becomes available when the diagram is reloaded.

On the left of the drawing control is a list of pre-defined shapes available for constructing
diagrams. This collection of master shapes is a ‘stencil’ which is stored as part of the master
template. Each ‘master’ shape in the stencil contains individual data (name, colour, size,
etc) and can be re-used by dragging and dropping onto the drawing page. The stencil shapes
are pre-defined for the user and consist of boxes (concepts) and arrows (relationships) to
coincide with the structure of the underlying foundation ontology described in Section 6.3.2.
Other pre-defined elements include the drawing page settings which are stored as part of the
master template. These settings dictate not only the page size and orientation but how the
shapes behave on the drawing page with regard to lining up and/or connecting to each other
(snap and glue). Connecting two boxes with an arrow is straightforward through the use of
the Visio auto connect feature which allows a box to be dragged around in the drawing page
while still connected to any adjoining boxes. Use of this functionality means that the user
does not need to manage how diagrammatic content is arranged within the editor, and is free
to concentrate on the development of the content itself.

A number of mechanisms are used to restrict the potential for errors in the ontology
population process. When a new box (concept) is added the user is forced to enter that
concept’s content before they can proceed. Also, when joining boxes, range and domain
restrictions are in place on the connecting arrows so only certain boxes can be associated with
each other with certain arrows. This removes the possibility of incorrect connections being
made. One further error handling feature of the editor is the detection of any unconnected
shapes (isolated boxes, unconnected arrows, etc.), which if found to be the case halts creation
of the ontology file until the user has resolved any such errors. An integrated help system
is in place to aid the user in diagram construction. When a new box (concept) is added to
the diagram a dialog box opens explaining the box’s type, how it is used and how it may
be connected to other boxes in the diagram. An example dialog box is shown in Figure 7.3.
Dialog boxes also aid the user through the creation of an ontology file, explaining the input
required, e.g. the location to which to save a file. Tool tips are in place for all shapes added
into a diagram, the master shapes contained in the stencil and for the user controls. These
provide active assistance in explaining the function of the various elements of the editor
whenever the user floats the mouse cursor over them. A full help page explaining the editor
and its use is also available through the user controls.

162

7.1 Graphical Ontology Development Tool

	
Fig. 7.3 Graphical development tool dialog box for adding properties to a new security ontol-
ogy ‘vulnerability’ component which can then be incorporated with pre-existing ontology
content.

Ontology Diagram

An Ontology Diagram is a graphical representation of an ontology constructed in the editor
from a set of pre-defined shapes. Ontology classes are represented as boxes, each class
having its own assigned colour (so as to help the user distinguish between different classes).
Each box represents individual ontology concepts and records the content for that concept
in textual form. Ontology properties are represented as arrows, each property having its
own assigned colour (again to help differentiate between ontology constructs). Each arrow
represents a relationship between individual elements from different concept families.

When beginning a new diagram, the generic ontology template is loaded into the editor’s
drawing control window. The template can be thought of as a blank page which contains
the ontology stencil and page settings. Once a diagram is saved as a Visio XML drawing
(.vdx), template data is also saved within the resulting diagram file, allowing that file to be re-
opened at a later date. Both drawing and template data is used to construct the corresponding
ontology file. When a user wishes to create an ontology file from the diagram currently

163

Ontology Development Tools

loaded in the editor, that diagram is saved automatically into a temporary folder ready for
further processing. Any files held in the temporary folder are automatically removed when
the editor is closed down.

Ontology File

An Ontology File is a textual representation of an Ontology Diagram and is obtained by
translating the content of Ontology Diagrams into OWL. The content of the resultant OWL
files has the potential to be processed automatically by software programs, thereby providing
scope for expert knowledge to be used in various ways. Once created, all ontology files are
stored in a user designated Ontology File Store. An example information security ontology
file created in the graphical ontology development tool and translated to OWL is presented in
Appendix D.

Java Translation Program

The Java Translation Program’s purpose is to process a given Ontology Diagram and produce
the corresponding Ontology File, in effect translating the representation of the ontology
content from a graphical form to a machine-readable OWL format. As this translation
is done automatically it removes the need for the user to have any knowledge of ontology
construction and the syntax and semantics that is involved in that construction. The translation
program also removes the need for a user to manually enter ontology structural information,
ontology content and the relationships between that content into a standard ontology editor,
e.g. Protégé [133], which can be a lengthy, complicated and error-prone process. The Java
Translator Program is written in the SE 7 edition of the Java programming language [93] and
is deployed as an executable Java archive on a user’s machine. The Java Translator Program
requires the following input parameters for operation:

• The filename and location of the Ontology Diagram to be processed.

• The user must specify a URI (Uniform Resource Indicator) which identifies the on-
tology. This is normally in the form of a web address and can be thought of as the
ontology’s name.

An overview of the translation process is provided in Figure 7.4. This process is twofold.
First an Ontology Diagram file must be processed and the relevant data obtained. Secondly,
that data must be transformed into the OWL format before being compiled into an Ontology
File. Having been saved in XML format the Ontology Diagram file is passed to the Java

164

7.1 Graphical Ontology Development Tool

	

Ontology Editor Ontology File StoreJava Translation Program

Java 1.5 API Xerces API OWL API

Ontology Diagram Ontology File

file saved
file created

diagram
retrieved

from Temp
folder

diagram
saved to

Temp
folder

Java libraries imported

user defined
parameters

Fig. 7.4 Overview of graphical development tool Java Translation Program’s components
which imports Java, Xerces, and OWL APIs to automatically encode Ontology Diagrams
into an ontology.

Translator Program where it is parsed for validation and the creation of an internal represen-
tation for use in subsequent processing. The creation of a Java parser is performed using
the Java libraries from the Xerces API [168]. Each shape in the Ontology Diagram, both
boxes and arrows, are given a unique name which allows that shape to be uniquely identified
during the translation process. For each shape in the Ontology Diagram the following data is
retrieved:

• The shape’s type: each shape is an instance of a master shape held in the ontology
diagram stencil. The shape’s type is equivalent to the master shape’s name.

• The shape’s text: if the shape is a box, the text entered by the user inside that box.

• The shape’s connections: if the shape is an arrow, the two boxes it connects.

Once this data has been retrieved and stored in memory the second phase of the translation
process commences, namely the creation of the Ontology File. To create the file, libraries
from the OWL Java API [81] are used for parsing and writing of OWL ontology files within
a Java program. The following aspects of the Ontology File structure are predefined in the
Java Translation Program and written directly to the Ontology File:

165

Ontology Development Tools

• Ontology classes: these mirror the boxes in the ontology diagram stencil.

• Ontology data/object properties: these mirror the arrows in the ontology diagram
stencil.

Axioms are added to ontology classes to arrange them into a hierarchal structure within
the ontology, and to properties to specify range and domain restrictions. By predefining
selected aspects of the ontology file structure the user is not required to understand and enter
this information. The data obtained by the Java Translation Program from the Ontology
Diagram is used to create instances of the Ontology File classes. An example of the OWL
code generated to represent an instance, or individual can be seen in Figure 7.5. The data is
translated as follows and written to the Ontology File:

• The shapes type (master shape’s name) becomes the individual’s type, or owning class.
This can be seen in Figure 7.5 as the parent element’s name, e.g. Vulnerability.

• The shape’s text is set as the value of the parent element’s rdf:about tag, e.g.
SinglePasswordMemorisationDifficult.

An individual’s properties are determined by finding any arrows from the ontology
diagram data that have that individual as its starting point. A child element is added
to the individual for each property, e.g. exploitedBy. The individual at the finish-
ing point of the arrow becomes the value of the child element’s rdf:resource tag, e.g.
SinglePasswordForgotten.

7.2 Web-Oriented Ontology Development Tool

A Web-oriented ontology development tool has been implemented providing text based
knowledge entry according to the structure of the underlying security ontology described in
Section 6.3.2. The Web is a natural platform for collaboration and knowledge-sharing, by
distributing the development process and disseminating the resulting knowledge across the
information security community. The tool has therefore been implemented by tailoring the
open source Web ontology tool Web-Protégé [172]. Using the collaborative tool, CISOs and
human factors researchers can potentially submit, comment on, and peer-review submitted
knowledge, with the ultimate aim of reaching consensus on a robust body of information
security knowledge useful for CISOs to analyse the potential impact of security policy
changes. The tool’s design has intentionally removed the need to understand ontology

166

7.2 Web-Oriented Ontology Development Tool

	 < V u l n e r a b i l i t y
r d f : a b o u t =" # S i n g l e P a s s w o r d M e m o r i s a t i o n D i f f i c u l t ">

< m i t i g a t e d B y r d f : r e s o u r c e =" # MakePasswordEasierToRemember " / >
< e x p l o i t e d B y r d f : r e s o u r c e =" # S i n g l e P a s s w o r d F o r g o t t e n " / >

< / V u l n e r a b i l i t y >

Fig. 7.5 Section of example Ontology Diagram and corresponding OWL code representing a
password vulnerabiltity which is exploited by a threat of being forgotten, and mitigated by a
behavioural control making a password easier to remember.

construction from the standard Web-Protégé tool, adapted its collaborative features towards
security domain experts, and added user guidance for intuitive knowledge entry. The work
presented in this section has been published in [117]. First we outline the requirements
for a Web-oriented ontology development tool before giving implementation details in
Section 7.1.2.

7.2.1 Tool Requirements

The main requirements of a Web-oriented ontology development tool have been extracted
from consultations with two CISOs (Section 6.4). As the tool is Web-based and collaborative
in nature it comes with both the requirements described in Section 7.1.1, and the additional
requirements listed below:

• The interface should allow collaborative capture of distributed knowledge between dis-
parate parties. There should also be features to allow members of the user community
to reach consensus (e.g. by discussing content).

• Users must be able to preserve an appropriate level of anonymity. Users should not be
expected to divulge specific organisation security practices.

167

Ontology Development Tools

	

Tool
 Interface

Chief Information
Security Officer (CISO)

content entry

content
transfer

Tool System Files

Ontology Files Metaproject
 File

Tool Server

War File

Projects Directory

Fig. 7.6 Overview of Web-oriented ontology development tool components which incorpo-
rates a Tool Server which houses the tool and allows authorised users to enter content and
collaborate remotely.

7.2.2 Tool Implementation

The open-source ontology editor Web-Protégé [172] forms the foundation of the tool. Web-
Protégé is a Web-accessible collaborative ontology editor built with a number of collaborative
features that can be tailored to meet our requirements. An overview of the components of the
collaborative information security ontology editing tool is shown in Figure 7.6. The tool is
composed of the client-side Tool Interface and the Tool Server.

• Tool Interface: a browser-accessible Web application through which ontology content
is viewed and manipulated.

• Tool Server: the tool is stored as a Web application archive file (War file) on a
centralised Web application server. The server provides remote access to the latest
version of the tool.

A War file contains both the tool system files and the ontology files. Having all the
necessary files in a single archive allows for simple server deployment. Tool system files
within the War file hold the tool’s compiled source code and supporting images and html
pages. All of the tool’s current ontology files are stored in the Projects directory. The Projects
directory also contains the tool’s Metaproject ontology file, which describes access conditions
for the tool’s ontologies.

168

7.2 Web-Oriented Ontology Development Tool

	 Fig. 7.7 Web-oriented ontology development tool’s Welcome page which gives an introduc-
tion to the tool, an overview of the underlying security ontology structure, and tabbed pages
to access and modify ontology content.

Tool Interface

The Tool Interface allows CISOs and human factors researchers to access ontology content
in a manner that abstracts away details of ontology construction. These users are then free to
view, add, modify or relate fragments of information security and human factors knowledge
to help them:

• View information security policy and human behavioural knowledge and the interde-
pendencies between knowledge fragments.

• Record (and share) knowledge of information security policy, their behavioural impact,
and behavioural controls (through use of editing controls).

• Collaboratively refine the knowledge stored within the underlying ontology, using the
tool’s collaboration features.

169

Ontology Development Tools

	 Fig. 7.8 Web-oriented ontology development tool Content page which shows ‘vulnerability’
compenents incorporated into the security ontology, along with their interrelationships with
other content, a help section, and notes posted by users relating to ontology content.

Users are initially presented with a screen offering a list of available ontologies. For
demonstration purposes distinct ontologies are provided so as to mirror an organisation’s
policies (e.g. USB stick policy, password policy, etc.). These ontologies employ the structure
described in Section 6.3.2, and can potentially be pre-populated with knowledge content
that can be viewed and/or extended with user-supplied knowledge. The main user interface
consists of a number of tabbed pages providing users with ontology content, ontology editing
controls, and features to advise users in how to interact with the tool. Only authorised users
can access editing controls and make changes to the ontology, by providing a registered
user ID and password. A ‘Welcome’ page (Figure 7.7) provides an overview of the tool,
its functionality, and the base ontology structure, so as to familiarise new users and act as
a reference for returning users. The ‘Class’ and ‘Property’ tab pages provide the user with
descriptions of the ontology’s structural components and how they interact with each other.

The ‘Content’ pages (Figure 7.8) allow a user to view and edit ontology content. Any
modifications made to an ontology are immediately visible to all those users currently access-

170

7.2 Web-Oriented Ontology Development Tool

	 Fig. 7.9 Web-oriented ontology development tool portal which allows users to post notes
relating to ontology content.

ing the tool, thereby making it useful in situations that require newly-available knowledge
(e.g. when a new threat or technology emerges). Four separate Content pages cover the
main classes of the information security ontology structure; Assets, Vulnerabilities, Threats
and Behaviour Controls. This allows a user to access ontology content from a range of
perspectives rather than be restricted to a particular starting point. Each of the Content pages
contains a portlet listing the individual fragments of knowledge associated with the particular
class. Selecting one of these individuals will display the properties associated with it (e.g.
the Vulnerabilities of a selected Asset). A combination of editing controls and dialog boxes
allow a user to add a new class individual or change the text of an existing entry. Warning
mechanisms limit the potential for user error and ontology inconsistency (e.g. to prevent
addition of an individual with the same text as an existing entry). Users can also connect
fragments of knowledge according to the relationships defined in the ontology structure. The
tool restricts the user’s choice of property connections accordingly by way of restrictive
controls, for example a user may only connect an individual Vulnerability to a Threat or
Behaviour Control via the exploitedBy and mitigatedBy properties respectively. Each
Content page has an information portal providing an overview of that page’s content and
relevant instructions on how ontology content may be extended and/or edited.

A ‘Notes’ portal (Figure 7.9) enables users to annotate, discuss and reach consensus on
ontology content by posting messages, akin to a bulletin-board system. Posted messages
are linked with specific content and are visible to all users when that content is selected.
Authorised users may post new messages or reply to pre-existing messages via an e-mail style
dialog box. The tool has the capacity to guide users through aspects of ontology development
and exploration, using a variety of help features.

171

Ontology Development Tools

7.2.3 CISO Tool Evaluation

An evaluation has been carried out of the functionality and usability of the Web-oriented
ontology development tool by presenting it to the two CISOs consulted previously (see
Section 6.4). During evaluation the tool was demonstrated according to a structured demon-
stration plan, and the chance offered to participants to practice using the tool first-hand.
This was immediately followed by a series of structured questions that serve to relate each
participant’s impression of the tool to the tool’s requirements outlined in Section 7.2.1. The
structure of the tool evaluation sessions is outlined in Appendix C.2.

As well as evaluating the requirements that were defined for the tool, the evaluation
sessions provided the opportunity to centre discussion of collaboration and knowledge-
sharing around a tangible tool, eliciting comments about how the tool may be practically
applied (along with any issues that have the potential to limit application of this, or a similar,
tool). Each complete session was voice-recorded to allow us to capture feedback from the
participants throughout the evaluation process.

Knowledge Capture

Overall, the tool was considered as being approachable and easy to navigate, with a clear
ontology structure, thereby making progress towards accommodating the needs of target
users. CISO2 stated that "regular IT security folk will be able to dig into [the tool] and use

it". The tool’s interface was not thought to be confusing but instead very clean, with a "nice

flow round the screen" (CISO1). CISO2 regarded the ontology structure, covering Assets,
Vulnerabilities, Procedural Threats and Behaviour Controls, seemed "very obvious".

The notion of separating ontology content, thus making the ontology more manageable,
was described by CISO2 as a very complex area, but that "splitting the content into policies

makes sense". However CISO1 argued that it might be preferable to "slice and dice the

content whatever way the user chooses", and that individual users might potentially not
recognise policy content that they would otherwise think is relevant to them if it is not
appropriately labelled. For example, a security manager might regard "identification and

authentication" as separate technologies, whereas another manager would regard the same
content as "sign-on" policy. This problem of potentially unexpected terminology "makes it

less accessible in some ways".

With the capturing of content, the tool was described by CISO2 as generic and "open

enough to do just about anything in information security", qualified with examples of issues
within networking management, such as firewalls, denial of service attacks, and routing. The

172

7.2 Web-Oriented Ontology Development Tool

tool can potentially capture knowledge of sophisticated information security issues which
can "become horribly complex but you could end up with areas of specialisation".

CISO2 suggested that ontology content could be "tuned" according to the user’s business
sector, for example banking. However, each sector tends to have slight differences in
information security needs, and so any content considered irrelevant to that sector would be
omitted from the user interface. However, it would depend on "who takes up the idea [of the

tool] first, so making it a while before tailoring content becomes an issue". Alternatively,
CISO1 suggested that one incentive to use the tool "would be if you could tag items to make

it specific to your organisation and then ... download an extract or have a version of it

which is for your own organisation, so that you can ignore stuff which isn’t relevant to you".
CISO2 made a similar comment that keeps content within the tool, suggesting that when
users are creating an account they should declare their business sector so that the tool may
tailor content to that sector once the user is logged in.

The mechanism which detects whether content is already added was described by CISO2

as good, but the recognition of similar content is not addressed. Not having this feature was
considered "a bad thing", as there was potential for multiple entries to describe the same
concept. CISO1 built upon this issue, speculating that duplicates might go beyond spelling
(e.g. "pwd" instead of "password") to similar terms that use natural alternatives (e.g. "user

ID ... logon ID ... username ... credential").

Currently the tool relies on users to use the collaborative features to inform others when
similar content is already expressed in the ontology. CISO2 stated that this notion "would

probably work" as the "community will police itself to a certain extent but if too much policing

is needed [the community] will get tired of it". CISO1 echoed this - "what’s the incentive ...

to edit somebody else’s content?", "just because it’s easy doesn’t give me a carrot to want

to do it" - and suggested a solution of employing an administrator to "collapse" duplicates
(which potentially defeats the purpose of the tool).

Knowledge as Evidence

In relation to the potential for ontology content to be used in supporting policy modifications
and communicating potential impacts, CISO1 speculated that "you’d want to use this ...

because it takes you through a structured way of doing a risk assessment ... but the only

way that you’d want to do it is if you can make it specific to your organisation", reiterating
the idea of "tagging" organisation-specific content. CISO2 similarly "would use [the tool]

and happily add content but would need to see the outputs" before using it within their
organisation ("Would it allow me to make a business case? ... Something that would support

173

Ontology Development Tools

that would be really useful") before going on to speculate that if the tool was being used
to assess threats etc. in a particular business sector then "it would be good enough as it

is". CISO1 echoes similar thoughts: "what makes it information is the specificity for your

situation".

CISO2 noted that an information security manager "cannot simply say we need to imple-

ment this because we are insecure". The manager must be able to present a business case to
justify modifications to information security policy and their impact to senior management
from a range of possible solutions, and "the tool allows you to do that". The business case
will state "we can do this, this and this to get us there and then do calculations to work out

the costs". A scenario could be imagined where departmental managers (e.g. finance or IT
helpdesk) are consulted when making security policy modifications and who use the tool’s
content to help work out costs: "at the very least [the tool] helps to identify stakeholders to

communicate with".

Collaboration and Consensus

CISO2 considered the collaborative features very useful in discussing knowledge with peers
or other stakeholders within an organisation. The ability to add notes to content was described
as "a nice feature" that "added richness to the tool". When discussing a threat a user could
"post" a message asking "how real is this threat?" while the reply could be "we’ve actually

had a breach on this". The attachment of messages to specific content made "perfect sense".

Regarding the collaborative features, CISO1 said that "it’s a time-save thing" so that
users are "not having to reinvent the wheel" at each organisation. However CISO1 also
speculated that "within the organisation, that time-saving doesn’t mean anything" unless
it is with auditors. For CISO2 the idea suggested of providing additional mechanisms for
reaching consensus, such as a voting or rating system, could be seen as being useful. This
would be akin to "Ebay where the voting on how good a vendor and supplier are is a big

deal". Such a mechanism promotes sensible levels of discussion while ensuring that content
stays appropriate: "You end up with the community vetting itself which is what you want to

do". CISO1 speculated however that users might inevitably just "grab" meaningful content,
returning to the issue of how to "incentivise people to comment and use" the tool.

According to CISO2 encouragement for users to record and share their knowledge may
be brought about by stressing, "this is your community and your tool to help you. The richer

you make it the more powerful it becomes". A suggestion was to implement a system where
users are asked to review recently added content, perhaps through an e-mail style inbox that
highlights content added since their last login. It appears from the evaluation responses that

174

7.2 Web-Oriented Ontology Development Tool

the need for users to be able to discuss content and be aided in reaching consensus has been
achieved, at least in part, via the notes feature. Realistic suggestions for further mechanisms
include a voting/rating system enhancement to facilitate content selection.

User Anonymity

CISO2 noted that the user interface did not raise any privacy or security concerns as the user’s
organisation is not being identified during content entry. The notion of anonymity is achieved
by users logging into the tool through a username alias. CISO2 suggested the tool should
"stress the fact that content can be entered anonymously and content cannot be traced back

to an organisation". CISO1 echoed this concern: " the only drawback would be the level

of comfort ... over the ... secrecy around the specificity to my organisation ... how would I

know that other people can’t see that?". The mechanism for users to create an account, once
implemented, must "vet people and make sure not just anyone can gain access" (CISO2).
The suggestions by both CISOs for personalising ontology content bring with them similar
issues of guaranteeing that personal identifiers remain protected.

It appears from the evaluation responses that the need for users to submit information
while not divulging specific organisation security practices can be achieved within the tool,
although there are understandably many concerns surrounding the issue of user anonymity.

User Guidance

CISO1 thought that the tool was helped by a "very nice layout" that was "not confusing".
According to CISO2 the user interface was not thought to be confusing but seemed "fairly

simplistic" suggesting an appropriate level of detail for "non-ontology" experts building an
ontology of information security knowledge. CISO1 suggested that users "might ... want to

follow something all the way through" to "produce another view", such that the interface
changes dynamically depending on selected content (e.g., moving automatically to another
screen). CISO2 noted that "two or three different learning styles are catered for" by the help
features, for example the Welcome screen provides an overview of the ontology structure in
both graphical and textual form. "Some people will read the prose while others will use the

picture. For me the [diagram of] the knowledge base structure was very useful".

Further Comments

Some extensions to the tool’s underlying ontology structure were suggested during the evalu-
ation sessions. Such extensions could include - according to CISO1 -, details of "technical

175

Ontology Development Tools

controls" and their threat management approach (e.g. "detective", "defending"). CISO2 sug-
gested that policy implementation costs, methods of policy enforcement and measurements of
policy success would be useful ("Cost is a big deal. Quantifying cost, cost of implementation,

cost of risk etc. [is important] but it will be hard to categorise the financial [costs]").

Summary

From the evaluation responses the tool largely satisfies the requirements outlined in Sec-
tion 7.2.1. A summary of other key points that emerged from the evaluation sessions is as
follows:

• The tool is approachable and easy to use.

• Care must be taken if dividing the underlying ontology according to distinct policies,
as this may cause confusion.

• Concentrating the tool towards particular sector- or organisation-specific concerns may
distort content that is essentially shared. Solutions include providing facilities to "tag"
relevant content.

• Content duplication could cause problems that might only be resolved through con-
certed efforts by community members.

• Collaborative features can help users to reach consensus, but must provide proper
incentives to maintain a collective community effort.

• Users would be able to preserve their anonymity with the tool, but would need reassur-
ances that it does not disclose the organisation’s security posture.

• The tool can support communication of policy behavioural impact and behavioural
controls to stakeholders, however to fully exploit this capability ontology content
would need to include or be enriched with relevant sector- or organisation-specific
content.

7.3 Summary

This chapter has presented user requirements and high-level implementation details of two
dedicated ontology development tools for Chief Information Security Officers (CISOs) and
human factors researchers to collaborate and create a knowledge base whilst hiding the details

176

7.3 Summary

of ontology construction. The resulting knowledge base can be used by CISOs to analyse
what impact changing a security policy may have on human behaviour and how in turn
that behaviour impacts on the success rate of a workflow. Behavioural controls can also be
extracted to help manage the predicted human behavioural impact. Both tools automatically
deliver machine readable Web Ontology Language (OWL) ontology files based upon content
recorded within the structure of an underlying information security and human factors
ontology. The first tool is graphical in nature and implemented as a standalone downloadable
application for use in face-to-face collaboration scenarios. Ontology development is carried
out in the tool by users constructing a diagram of the ontology’s concepts and relationships
within a drawing canvas and translating this diagram automatically to an OWL ontology
file for use in a suitable analysis tool. Diagram construction is intuitive with a simple drag
and drop approach using a small set of pre-defined shapes representing high level ontology
concepts and relationships. The second tool is Web-oriented for use in scenarios of distributed
knowledge entry and ontology construction. Community users can therefore record and
share their knowledge within the structure of a pre-defined information security ontology
which has the potential to improve impact analysis of policy modifications by providing
a single, shared, comprehensive reference of interrelated information security and human
factors knowledge. The Web-oriented development tool’s current implementation has been
evaluated by two CISOs from varying backgrounds, meeting with general praise for both its
appearance and functionality. Both tools simplify the development process, requires little or
no instruction to use due to their interactive help system and reduce the potential for errors
in ontology creation. Most importantly knowledge holders can develop ontology content
without the need to know of ontology construction.

177

Chapter 8

Conclusion

This thesis has presented new tools and techniques to help a Chief Information Security
Officer (CISO) analyse the potential impact modifying an information security policy has on
the success rate of business processes expressed as workflows. Information security policies
are necessary for organisations to achieve regulation compliance, establish trustworthiness as
information guardians, and to gain business advantage. A CISO must manage this challenge
and take responsibility as the main decision maker for setting information security policies
which express rules, procedures and controls to guard against adversarial threats, and instigate
secure behaviour of users processing information to complete workflow tasks. Dynamic
business environments make it necessary for a CISO to periodically review and modify a
security policy to keep it inline with the current security landscape. Policy modifications
can affect the success rate of a workflow, that is, removing a security constraint can increase
success rate but may be detrimental to security; adding a security constraint can reduce
success rate or even eliminate it if users are blocked from completing tasks. Although
restrictive modifications to security policies are deemed necessary, or even enforced by
regulation updates, they often place new burdens on the completion of workflows, making
it necessary to find an agreeable trade-off between business and security needs. Before
implementing a policy modification, a CISO must gain the approval of business leaders
concerned with the impact of the modification in terms of the benefit to security, and the
cost to workflow completion. It is important then that the CISO can analyse the potential
impact of a policy modifications on workflow completion and communicate this impact in an
understandable way to business leaders.

The behaviour of human users who execute workflow tasks affects and is affected by
security thus making the human factor an important consideration when analysing the true
impact of policy modifications. Two specific types of security impact analysis involving

179

Conclusion

human behavioural factors have been considered. The first it quantitative in nature, centred
around the notion of workflow resiliency which indicates how likely a security constrained
workflow will complete under the assumption users may become unavailable at runtime.
Security policy modifications can have an impact as they may prevent those users who are
available from being assigned the execution of tasks in order to complete the workflow. This
can either force the workflow to be terminated early of the security policy to be violated.
Existing approaches to workflow resiliency offer binary solutions, in the sense that a workflow
is either resilient or not when applying any policy modification. They do not indicates a
degree of resiliency change and whether one policy modification has more or less impact
than another. Current approaches may therefore not always be practical when analysing the
potential impact of policy modifications on the success rate of workflows that do not have
full resiliency, but still have some resiliency nonetheless.

The second type of analysis is qualitative in nature, facilitating analysis of how users
are likely to behave in response to policy modifications and how this behaviour can affect
the success rate of a workflow. A large amount of research exists on human behavioural
factors in a security setting which can be incorporated with the knowledge held by CISOs
within the structure of an ontology to form a security knowledge base. An ontology is
a description of concepts, their properties, and their interrelationships that exist within a
particular domain. A security ontology can be used by a CISO to analyse the potential
impact of policy modifications on user behaviour and extract behavioural controls to manage
that impact. Although ontology development tools exist they require expertise in ontology
technologies and are not suited to CISOs and human factors researchers whose knowledge
requires recording and interrelating to existing content, making the development process
time consuming and error prone.

A lack of suitably aimed impact analysis tools and technologies for CISOs means impact
analysis of security policy modifications is currently a somewhat manual and ambiguous
procedure. Analysis can be overwhelming and yield unsubstantiated results, especially when
workflows are complex, have a large workforce, and diverse security requirements. The
tools and more formal techniques outlined in this thesis have been devised specifically for
CISOs to help them analyse the potential impact of modifying security policies has on the
success rate of a workflow. More precisely, these tools and techniques have been designed to
efficiently compare the impact between two security policies applied to the same workflow,
one before, the other after a policy modification. Analysing policy impact at design time can
help avoid putting unworkable security policy into practice which may have a detrimental
affect to workflow productivity.

180

8.1 Research Outcomes

8.1 Research Outcomes

Two open research problems were identified concerning security policy modification analysis
in terms of how a modification potentially impacts the success rate of a workflow when
considering human behavioural factors. This section revisits these two research problems
outlined in Section 1.3 and summarises the contributions made in this thesis that build on
existing work to lay the foundations for proper solutions to those problems.

8.1.1 Problem 1

CISOs needs fine grained metrics to analyse the potential impact security policy modifications

have on the resiliency of a workflow.

• Contribution 1. We began by giving a formal definition of a security constrained
workflow and considered the problem of workflow satisfiability, that is whether a plan
exists which assigns the execution of all tasks to users while satisfying all security
constraints. This problem is known as the workflow satisfiability problem. We then
considered users may become unavailable to execute tasks at runtime and extended
our workflow definition to expose this notion. We then considered the resiliency of
a workflow, that is the likelihood it can be completed while still satisfying security
constraints under the uncertainty of user availability. Existing work on the workflow
satisfiability problem and workflow resiliency is more concerned with finding efficient
algorithms to solving these problems, and tends to be binary in nature, stating whether
a workflow is or is not satisfiable or resilient. In Chapter 2 we defined a novel approach
to workflow satisfiability and resiliency in the form of workflow metrics which provides
a quantitative measure of satisfiability and resiliency, rather than a boolean one. In
Chapter 3 we showed that a plan can be found which satisfies a security constrained
workflow by reducing the problem to that of solving a Markov decision process (MDP).
We model the process of assigning the execution of tasks to users under security
constraints as a workflow Markov decision process (MDPW) and solve it to find the
optimal policy. The optimal value function of the MDPW returns the workflow’s
quantitative satisfiability, either 1 if the workflow is satisfiable, or 0 otherwise. By
introducing probabilistic user availability into an MDPW we showed how the optimal
value function returns a measure of quantitative resiliency, in other words a value
between 1 and 0 indicating the expected maximum probability a security constrained
workflow will complete successfully. A workflow completes successfully if a feasible

181

Conclusion

complete and valid plan can be found, that is a plan that assigns the execution of all
tasks to users who have a level of availability, while satisfying all security constraints.
It is the measure returned by the optimal value function that expresses the impact
of the current security policy on the success rate of a workflow. By changing the
reward function of an MDPW we showed different resiliency metrics can be generated;
quantitative resiliency which indicates the likelihood of successfully completing a
workflow, and distance resiliency which indicates how many tasks are likely to be
completed before the workflow deadlocks. Distance resiliency is a useful analysis
metric as it can indicate to a CISO at what step in a workflow the security policy causes
a deadlock. The CISO can then effect necessary modifications to security constraints
related to tasks they may be executed at that step.

• Contribution 2. Generating workflow metrics using an MDPW can be a complex,
time consuming and error prone process, therefore we turned to specialist automated
tools. In Chapter 4 we presented a systematic approach to encode an MDPW into
the probabilistic model checker PRISM, a tool which enables the specification, con-
struction and automatic verification of property existence in probabilistic models such
as MDPs [104]. PRISM is managed and developed by active researchers at Oxford
University and features in over 500 peer reviewed publications at the time of writing.
Resiliency and satisfiability metrics are automatically generated by defining specific
properties we wish PRISM to verify exist in one or more states of an MDPW model.
For instance, in the case of quantitative resiliency, PRISM verifies the maximum
probability of a reachable state existing that represents a workflow has terminated
and the execution of all tasks have be assigned to available users while satisfying the
workflow’s security policy. By example we applied arbitrary policy modifications to a
workflow and showed how a CISO could use the metrics we generate to analyse the
resiliency of a workflow, and how resiliency is impacted by calculating the resiliency
before and after the policy modification and comparing the two values. This analysis
example highlighted some interesting cases. For instance, removing a single security
constraint may reduce the quantitative resiliency significantly but with little affect on
the distance resiliency. In one case it was shown a policy change reduces the quantita-
tive resiliency to 0 yet the workflow still has high distance resiliency. Furthermore, a
workflow may have 0 quantitative resiliency yet still be satisfiable. One further case
showed how a change to the security policy does not change the resiliency values but
does have the effect of reducing the size of the MDPW model PRISM must evaluate in
terms of state space, thereby reducing resiliency verification time.

182

8.1 Research Outcomes

• Contribution 3. It is unlikely that any workflow executed by human users will have
full resiliency, therefore it is desirable to manage the risk of a workflow deadlocking
or terminating unsuccessfully due to the unavailability of those users. In Chapter 5
we suggested this risk can be reduced by re-computing at each step the expected
quantitative resiliency, in order to adjust task assignments so resiliency is maximised in
accordance with the current prediction of user availability. In a user driven execution
model (UDEM), where users initiate requests to be assigned the execution of tasks
at runtime, quantitative resiliency computation could ensure a request is granted only
if the rest of the workflow has a resiliency value above a given threshold. Comput-
ing quantitative resiliency is a computationally demanding process hence evaluating
quantitative resiliency for assignments at runtime has itself an impact on workflow
execution time. We have used the observation from Chapter 4, that policy modifi-
cations can be made without affecting resiliency, by performing empirical analysis
on a workflow by incrementally adding constraints to its security policy. These and
further results indicated that adding or removing security components to the security
policy of a workflow has a clear impact on the resiliency verification time which can
either increase or decrease. The results also showed that the same resiliency value can
in some cases be maintained even with the addition or removal of several restrictive
security constraints. We have considered the addition of separation of duty constraints
which define sets of tasks that cannot be executed by the same user in a workflow
instance, and the removal of authorisation constraints which define which users can be
assigned the execution of which tasks. We have provided a methodology for a CISO to
analyse and change a security policy to improve the verification time for quantitative
resiliency at runtime by adding or removing a set of dummy, or artificial, restrictive
security constraints that do not impact the actual resiliency value. Our observations
showed the gain in time can be significant, for instance in one example the verification
time was reduced from 6.53 seconds to 0.63 seconds following the removal of three
authorisation constraints while the resiliency value remained the same.

• Contribution 4. Workflows that deadlock due to user unavailability, but must com-
plete, are typically managed by performing mitigation actions such as emergency
security overrides which allow those users who are available to complete the remaining
tasks. Calculating the quantitative resiliency of a workflow can aid the formation of
mitigation strategies, for instance a workflow with very high resiliency (low failure
risk) may need only low cost, emergency type actions, whereas a workflow with low
resiliency (high failure risk) may require more costly long-term mitigation actions.

183

Conclusion

Understanding the requirements of a mitigation strategy for a workflow with a single
execution path can be straightforward as a single resiliency value is generated. Work-
flows with choice however can consist of many possible execution paths, each giving
potentially different resiliency values making the formation of mitigation strategies
complex. In Chapter 5 we have given a definition for a workflow with choice and
shown how it can be reduced to a set of workflows without choice in order to calculate
the quantitative resiliency of each execution path using the techniques described in
Chapters 3 and 4. We have introduced a new metric for analysing policy modification
impact in workflows with choice called resiliency variance which indicates an overall
resiliency variability, or volatility, from the resiliency average. Several other resiliency
measures have been considered for a workflow with choice; resiliency extrema which
are the maximum and minimum resiliency values; resiliency distribution which the
set of all resiliency values for all execution paths; and expected resiliency which is
the average of the resiliency distribution. We then showed through example how a
workflow with different predictions of user availability can have the same expected
resiliency but significantly different measures of resiliency variance, meaning expected
resiliency may be misleading when used alone. We have also discussed how resiliency
variance could be used for predicting a suitable workflow mitigation strategy for a
workflow with choice.

8.1.2 Problem 2

CISOs and human factors experts need to record and incorporate their security and human

behavioural knowledge directly within the structure of an ontology.

• Contribution 5. Currently the construction and modification of an ontology aligning
information security and human behavioural factors requires the use of a generic
ontology development tool. This makes the creation of an ontology a complex process
as existing tools assume a familiarity with ontology technologies and are aimed at
ontology experts, and not those whose knowledge requires incorporating into an
ontology. As such, an information security domain expert may be unable to develop
ontology content themselves and so, requires dedicated ontology development tools
that hide ontology complexity. In Chapter 7 we have outlined the requirements and
high-level implementation details for a prototype graphical ontology development
tool for information security domain experts. The tool requirements were extracted
from discussions conducted with two CISOs from large organisations. The tool has

184

8.1 Research Outcomes

been designed as a standalone application imagining a scenario with group-based,
face-to-face collaboration. It has been implemented in Visual Basic [129], and embeds
the Microsoft Visio 2007’s drawing control [128], thus providing a canvas on which
users can construct visual representations of an information security ontology using a
palette of pre-configured shapes and connectors. Knowledge fragments can be written
by a user within the text box of appropriate shapes representing ontology concepts and
connected together in a ‘drag and drop’ approach to form relationships according to an
underlying security ontology structure. Ontology diagrams once constructed can be
automatically translated via a Java implemented program to the machine readable Web
Ontology Language (OWL) [170], for further analysis in a suitable tool. The tool’s
design removes the need to understand ontology construction techniques allowing
collaborating information security domain experts to construct and modify, share, and
analyse a security ontology at an abstract level.

• Contribution 6. An information security ontology constructed in a distributed fashion
by multiple experts would provide a larger and more accurate repository of information
security knowledge. Collaboration of this kind allows CISOs and human factors
researchers to capture, integrate, publish and share their knowledge with peers and
colleagues within the information security domain and reach a general consensus. The
Web is a natural platform for collaboration and knowledge sharing by distributing the
development process and the resulting knowledge base to the entire information security
community. In Chapter 7 we outlined the requirements and high-level implementation
details for a second prototype tool for information security domain experts. Additional
tool requirements were extracted from the same semi-structured consultations with
two CISOs mentioned above. The second tool is Web-oriented for use in scenarios of
distributed knowledge entry and ontology construction. The tool has extended the Web
based, open source ontology development tool Web-Protégé [172], to make ontology
development approachable both to CISOs and human factors experts by hiding the
complexities of the underlying ontology. Community users record and share their
knowledge in a text-based fashion within the structure of a pre-defined information
security ontology which is then automatically translated and stored as an OWL encoded
ontology file. Ontology files created in the graphical ontology development tool can
also be imported for analysis purposes or text based editing. Several pages are provided
for the user to simplify knowledge entry, structuring and analysis, one for each major
concept in the ontology (e.g. ‘assets’, ‘threats’, ‘vulnerabilities’, etc.). The tool
supports several collaborative features allowing knowledge recording and incorporation

185

Conclusion

from across a number of participating organisations. This includes a notes portal that
allows users to annotate, discuss and reach consensus on ontology content by posting
messages. Tool evaluation was carried out by the two CISOs consulted previously and
met with general praise for both its appearance and functionality. The evaluation has
also provided useful feedback on tool design and functionality, and several avenues for
future work.

8.2 Future Work

In this section we reflect on the research outcomes and outline possible future work.

8.2.1 Workflow Resiliency Analysis

• Workflow Complexity. The workflow examples used throughout this thesis are com-
pletely synthetic in terms of tasks structure, security policy and users. Example size
has also been arbitrarily limited to workflows with a maximum of 10 tasks and 5 users
for ease of understanding our approach. A natural next step is to integrate our approach
into a real-life workflow execution setting to evaluate its feasibility and effectiveness.
We have had some interest in this regard from the research division of SAP who is
a multinational software corporation that develops and manages software to manage
business operations such as workflows1. From a research perspective, we have used
synthetic examples due to the difficulty in accessing real-life workflow examples with
enough level of detail for our purposes. This is understandable as organisations intu-
itively do not want to release details of key business processes and workflows at the
level of abstraction we require. Some data is available regarding ‘typical’ workflow
structures, for instance in banking, insurance and purchasing which could provide a
good starting point for more complex workflow models however security and user
details may still require fabrication. It would be favourable to establish contact with a
number of organisations to assess the possibility of a case study in order to validate our
approach. As alluded to in the introduction, organisations can have different definitions
of a workflow which need to be investigated in more detail to establish whether our
workflow model is powerful enough to capture these definitions. Certainly it would
be interesting to consider more complex workflows, for instance with a combination
of choice and parallel control patterns, probabilistic parallel task ordering, and the

1https://www.sap.com/index.html

186

https://www.sap.com/index.html

8.2 Future Work

introduction of loops meaning the same task or group of tasks may be performed more
than once. Loops would introduce another level of non-determinism in the execution
of the workflow itself, and present as such some challenging aspects in their analysis.
We made a simple assumption that tasks are viewed as ‘black boxes’ such that if a task
can be assigned it will be completed. It would be interesting to open up these black
boxes and perhaps consider other user attributes which could affect the success rate of
a workflow such as capability.

• Security Complexity. As mentioned above, the security policies considered in our
examples are synthetic in terms of their composition. Although they incorporate the
main security constraints mentioned in the literature: authorisation constraints, and
separations and bindings of duty, it is unclear whether the ‘level’ of security we apply
is too little or too much in comparison to real-life security policies at this level of
abstraction. We do aim to introduce more complex security constraints including
cardinality, restricting the number of times a user can be assigned a specific task.
Currently, authorisation constraints are stated on an individual level with an assumption
that all users permitted to perform one task are assigned to the same role. It would
be interesting and perhaps more realistic to consider a more role-based approach by
introducing role related constraints, for instance a user may be permitted to take on
a limited number of roles in a single workflow instance [32]. Incorporating roles
would mean constraints such as separations of duty can be stated at both the user
and the role level as defined in [38]. Adding role hierarchies would allow ‘no read
up’ and ‘no write down’ policies to be introduced akin to the Bell-LaPadula security
model [15, 181]. Adding such a complex security model will undoubtedly affect
resiliency verification time which would need investigation to assess the viability of
our approach as a workflow resiliency analysis tool.

• Solution Complexity. It is important to note that the initial focus of this work has
been on proposing a novel approach to providing metrics for the satisfiability and
resiliency of a workflow, rather than providing a necessarily efficient solution of these
problems. We propose to carry out a full theoretical analysis on the complexity of
our approach of using model checking of Markov decision process models. The main
challenge in taking a model checking approach is dealing with the state space explosion
problem [34]. This may currently inhibit our approach’s applicability for resiliency
calculated at runtime as suggested in Chapter 5 when a timely response is expected, or
during offline resiliency analysis of large scale complex workflows. The state space

187

Conclusion

problem is an active area of research and considerable progress is being made, e.g. [33].
We believe however our approach paves the way to defining an efficient solution by
using the extensive literature dedicated to the efficient solving of a Markov decision
process, e.g. [105]. It would be interesting to carry out some comparison analysis in
terms of computation time between our quantitative approach to solving the workflow
satisfiability problem against other proposed algorithms, e.g., [41]. Another lead is
the study of sub-optimal policies. Indeed, calculating a sub-optimal solution might
be more tractable [30], at the cost of a loss of accuracy. In this case, it could be
worth understanding the impact on workflow satisfiability and resiliency when using a
sub-optimal solution. With regard to our approach in Chapter 5, to reduce resiliency
verification time by adding dummy or redundant constraints to the security policy,
some more investigation is required to understand the implications of this in terms
of its practicality. As a side note, another application of this approach could be to
identify redundant security constraints which can be removed without changing the
resiliency of a workflow. For instance in a similar way to [99], the minimum number
of required authorisation constraints could be found to satisfy a workflow and maintain
its resiliency at a certain threshold. Another approach to reducing complexity would
be to revisit our encoding of the workflow assignment process in PRISM and explore
how this could be made more efficient, for instance reducing the number of variables
and therefore the size of the model that must be built before verifying resiliency. We
are in discussions with one of the main PRISM developers in this regard.

• Model Checker. Clearly, the verification of resiliency currently relies on our encoding
but also on the model checking tool PRISM. Some more investigation is required to
understand the capabilities of PRISM in terms of the workflows PRISM can handle,
not only in terms of the number of tasks but also the complexity of the security policy.
Our initial analysis carried out in Chapter 5 suggests a workflow with a large number of
tasks and few security constraints may be less complex to analyse than a workflow with
fewer tasks but more security constraints. It would therefore be favourable to define
a notion of complexity for a workflow indicating workflow configurations which are
tractable in terms of resiliency computation. Some comparison in terms of performance
is also needed between PRISM and other ‘off-the-shelf’ probabilistic model checking
tools capable of providing efficient and automatic solutions to MDPs. Some attractive
alternatives are RAPTURE [88], which uses a Communicating Sequential Processes
(CSP) type language [80], PASS [73] which uses a variant of PRISM’s modelling
language, and the Möbius modelling environment which offers a graphical interface for

188

8.2 Future Work

model construction [47]. Some exploration is also required regarding the computing
platform on which these tools are run, for instance comparing the computation time
for a standard desktop deployment against one running on an external cloud platform.

• User Availability. To assess our approach ‘in the wild’ it is necessary to integrate it into
a real life workflow management system such that task execution assignment decisions
are based partly on resiliency calculations. Central to these resiliency calculations is
the data predicting the future availability of users. In the case of a UDEM system
this would require predicted user availability data to be constantly updated in order
for optimal assignment decisions which maximise resiliency. It is favourable then to
understand in more detail how such data is, or can be derived, what the practicalities
are of collecting such data, and how reliable it is. This would involve a survey of
current business techniques from workforce planning, statistical analysis and employee
management used to predict staffing requirements and levels of absenteeism. One
avenue for a fully automated UDEM system would be to look at workflow operational
logs and other digital data sources to identify possible automated and more efficient
and timely data collection strategies [24].

• Risk Acceptance. Our approach to manage workflow failure risk through mitigation
strategies requires formalisation. By applying cost to mitigation actions and modelling
them in the state of our MDPW encoding it would be possible to find an optimal
mitigation strategy. Policy overrides should be straightforward to implement by
applying a cost (or reward in the case of the MDPW) to transitions that assign a task but
violate the security policy. Other actions such as skipping tasks and forward execution
will not be so trivial to model. It should be possible to model complex mitigation action
strategies such that each task has a different mix of allowable actions and where some
may not have any. Furthermore restrictions could be placed on which users can perform
which mitigation actions at each assignment step. Several avenues of mitigation strategy
analysis can then be taken. For instance by finding the cheapest mitigation strategy that
provides a required threshold of resiliency, or finding the maximum level of expected
resiliency that can be achieved for a given mitigation strategy budget. In terms of
workflows with choice we have not yet considered computing resiliency variance
for workflows where choice is probabilistic. Furthermore we have yet to analyse
how resiliency variance is impacted in a workflow with choice when modifying the
workflow’s security policy.

189

Conclusion

• Analysis Tools. An interesting point is to develop useable analysis tools for a CISO to
compute the predicted resiliency of a workflow when modifying its security policy. It is
unlikely that a CISO would have the expertise, time or inclination to employ the formal
techniques presented in Part 1 of this thesis as they stand. Indeed, the presentation of
the work in this part is somewhat contradictory in some sense to the motivation for
the ontology development tools presented in Part 2. The ontology development tools
were implemented to hide the complexities of the underlying ontology methods and
technologies. For usability purposes there is a necessity to encapsulate the resiliency
analysis techniques into tools for a CISO whilst abstracting away unnecessary details
such as MDPs and PRISM encodings. Such tools would instead enable a CISO to
concern themselves with analysing the impact of security policy modifications and
produce different resiliency metrics for inclusion in business cases. An attractive
approach would be to implement a graphical tool that allows a CISO to construct
workflow diagrams expressing tasks and security constraints with a palette of pre-
configured shapes. Once diagrams are completed, perhaps in collaboration with a
workflow designer or business analyst, resiliency analysis can be performed once
the diagram is automatically encoded into PRISM. We have a prototype command
line tool for this which takes some simple workflow and security policy parameters,
automatically generates the PRISM encoding, and initiates PRISM to perform the
resiliency analysis before writing the results to a text file. Indeed it may be possible
to take a similar approach to the implementation of the ontology development tools
outlined in Chapter 7, that is, either create a new standalone resiliency analysis tool,
or embed the resiliency analysis techniques into a pre-existing workflow design tool
modified specifically for a CISO. Another useful feature of a workflow resiliency
analysis tool would be computing the optimal security policy modifications, that is all
the modifications that can be made to the policy without reducing workflow resiliency
below a given threshold.

8.2.2 Ontology Development

• Tool Functionality. We will consider several suggestions from the participating CISOs,
that is extensions to the underlying ontology structure, and the issue raised of potential
incentives for motivating members of the information security and human factors
research communities to contribute to developing a security ontology. With further
development work we will also look to address concerns raised about the control

190

8.2 Future Work

and quality of content through enhancement of the Web-oriented tool’s collaborative
features. This may include provision of a voting system or content-rating scheme.
Another avenue is to improve the analysis capabilities of the graphical tool, perhaps
with a search tool that highlights a particular concept in the diagram. Ontology
development is only ‘one-way’ at present meaning ontology diagrams are translated
to OWL encoded ontology files and not vice-versa. Also the size of the tool’s canvas
may inhibit the size of the ontologies constructed, for instance an ontology with lots of
concepts and relationships could soon become quite confused, necessitating a ‘clean
up’ feature that automatically rearranges and tidies the diagram content. The Microsoft
Visio drawing surface embedded in the tool comes with some automatic realignment
functions that could be used for this purpose [128]. Another possibility could be to
develop the security ontology in parts and automatically join them using the merge
functions provided by the Java OWL API [81].

• Tool Validation. Currently the tools have not be validated in terms of analysing poten-
tial impact modifying security policies has on the behaviour of users, and therefore on
the success rate of workflows. Clearly the effectiveness of the developed ontology for
such analysis relies on the data within it which may be difficult to obtain in order to
provide a comprehensive knowledge base. Studies have been conducted to identify nor-
malised user behaviour when interacting with security policies related to USB sticks,
passwords and access control which may be a useful starting point for populating a
base security ontology (see Section 6.1.4). An assessment of the tools’ effectiveness in
supporting the recording and sharing of information security knowledge by CISOs and
human factors researchers would require a prolonged study. However we aim to engage
with more CISOs and human factor researchers with a scope to deploying our tools
within their organisations to help us validate our assumptions relating to how security
experts would participate in the collaborative development of an information security
ontology, and use that ontology to analyse the impact security policy modifications
have on the success rate of workflows.

191

References

[1] Agarwal, J. (2015). Improving resilience through vulnerability assessment and manage-
ment. Civil Engineering and Environmental Systems, 32(1-2):5–17.

[2] Alfawaz, S., Nelson, K., and Mohannak, K. (2010). Information security culture: A
behaviour compliance conceptual framework. In Proceedings of the 8th Australasian
Conference on Information Security, AISC’10, pages 47–55.

[3] Armando, A., Giunchiglia, E., and Ponta, S. E. (2009). Formal specification and
automatic analysis of business processes under authorization constraints: An action-based
approach. In Proceedings of the 6th International Conference on Trust, Privacy and
Security in Digital Business, TrustBus’09, pages 63–72.

[4] Armando, A. and Ponta, S. E. (2010). Model checking of security-sensitive business
processes. In Proceedings of the 7th International Workshop on Formal Aspects in Security
and Trust, FAST’09, pages 66–80.

[5] Armando, A. and Ponta, S. E. (2014). Model checking authorization requirements in
business processes. Computers & Security, 40:1–22.

[6] Atluri, V. and Warner, J. (2008). Security for workflow systems. In Handbook of
Database Security: Applications and Trends, pages 213–230. Springer.

[7] Auer, S., Dietzold, S., and Riechert, T. (2006). OntoWiki - a tool for social, semantic
collaboration. In Proceedings of the 5th International Conference on The Semantic Web,
ISWC’06, pages 736–749.

[8] AXELOS (2015). Information Technology Information Library. https://www.axelos.
com/best-practice-solutions/itil. Accessed: 04-07-2015.

[9] Barletta, M., Ranise, S., and Vigano, L. (2009). Verifying the interplay of authorization
policies and workflow in service-oriented architectures. In Proceedings of the 12th
International Conference on Computational Science and Engineering, CSE’09, pages
289–296.

[10] Bartsch, S. and Sasse, M. A. (2013). How users bypass access control and why: Impact
of authorization problems on individuals and the organization. In Proceedings of the 21st
European Conference on Information Systems, ECIS’13, page 53.

[11] Basin, D., Burri, S., and Karjoth, G. (2011). Obstruction-free authorization enforcement:
Aligning security with business objectives. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF’11, pages 99–113.

193

https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil

References

[12] Basin, D., Burri, S. J., and Karjoth, G. (2012). Optimal workflow-aware authorizations.
In Proceedings of the 17th ACM Symposium on Access Control Models and Technologies,
SACMAT’12, pages 93–102.

[13] Basu, A. and Kumar, A. (2002). Research commentary: Workflow management issues
in e-business. Information Systems Research, 13(1):1–14.

[14] Bauer, L., Cranor, L. F., Reeder, R. W., Reiter, M. K., and Vaniea, K. (2009). Real life
challenges in access-control management. In Proceedings of the Conference on Human
Factors in Computing Systems, CHI’09, pages 899–908.

[15] Bell, D. E. and LaPadula, L. J. (1973). MTR-2547-VOL-1: Secure computer systems:
Mathematical foundations. Technical report, MITRE Corporation.

[16] Bellman, R. (1957). A Markovian decision process. Indiana University Mathematics
Journal, 6(4):679–684.

[17] Bertino, E., Brodie, C., Calo, S., Cranor, L., Karat, C., Karat, J., Li, N., Lin, D., Lobo,
J., Ni, Q., Rao, P., and Wang, X. (2009). Analysis of privacy and security policies. IBM
Journal of Research and Development, 53(2):1–18.

[18] Bertino, E., Ferrari, E., and Atluri, V. (1999). The specification and enforcement
of authorization constraints in workflow management systems. ACM Transactions on
Information and Systems Security, 2(1):65–104.

[19] Blanco, C., Lasheras, J., Valencia-Garcia, R., Fernandez-Medina, E., Toval, A., and
Piattini, M. (2008). A systematic review and comparison of security ontologies. In
Proceedings of the 3rd International Conference on Availability, Reliability and Security,
ARES’08, pages 813–820.

[20] Botha, R. and Eloff, J. H. P. (2001). Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal, 40(3):666–682.

[21] British Standards Institution (2005a). BS ISO/IEC 27001:2005 - information technology
- security techniques - information security management systems - requirements. http:
//www.bsigroup.com/en-GB/. Accessed: 04-07-2015.

[22] British Standards Institution (2005b). BS ISO/IEC 27002:2005 - information technology
- security techniques - code of practice for information security management. http:
//www.bsigroup.com/en-GB/. Accessed: 04-07-2015.

[23] Brunel, J., Cuppens, F., Cuppens, N., Sans, T., and Bodeveix, J.-P. (2007). Security
policy compliance with violation management. In Proceedings of the 5th ACM Workshop
on Formal Methods in Security Engineering, FMSE’07, pages 31–40.

[24] Cain, R. and van Moorsel, A. (2012). Optimization of data collection strategies for
model-based evaluation and decision-making. In IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN’12, pages 1–10.

[25] Calinescu, R., Ghezzi, C., Kwiatkowska, M., and Mirandola, R. (2012). Self-adaptive
software needs quantitative verification at runtime. Communications of the ACM, 55(9):69–
77.

194

http://www.bsigroup.com/en-GB/
http://www.bsigroup.com/en-GB/
http://www.bsigroup.com/en-GB/
http://www.bsigroup.com/en-GB/

References

[26] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., and Tamburrelli, G.
(2011). Dynamic QoS management and optimisation in service-based systems. IEEE
Transactions on Software Engineering, 37(3):387–409.

[27] Cañas, A. J., Carvajal, R., Carff, R., and Hill, G. (2004). IHMC CmapTools 2004-01:
CmapTools, web pages & websites. Technical report, Florida Institute for Human and
Machine Cognition.

[28] Cao, L. (2014). Behavior informatics: A new perspective. IEEE Intelligent Systems,
29(4):62–80.

[29] Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. (1999). Specification and implementa-
tion of exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405–451.

[30] Cassandra, A. R. (1994). CS-94-14: Optimal policies for partially observable Markov
decision processes. Technical report, Brown University.

[31] Caulfield, T. and Pym, D. (2015). Improving security policy decisions with models.
IEEE Security & Privacy, 13(5):34–41.

[32] Chen, F. and Sandhu, R. S. (1996). Constraints for role-based access control. In
Proceedings of the 1st ACM Workshop on Role-based Access Control, RBAC’95. Article
14.

[33] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2001). Progress on the
State Explosion Problem in Model Checking. Springer-Verlag.

[34] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. (2012). Model Checking and
the State Explosion Problem. Springer Berlin Heidelberg.

[35] Cohen, D., Crampton, J., Gagarin, A., Gutin, G., and Jones, M. (2014a). Engineering
algorithms for workflow satisfiability problem with user-independent constraints. In
Proceedings of the 8th International Workshop on Frontiers in Algorithmics, FAW’14,
pages 48–59.

[36] Cohen, D., Crampton, J., Gutin, G., and Jones, M. (2014b). Pattern-based plan construc-
tion for the workflow satisfiability problem. Artificial Intelligence Research, 51:555–577.

[37] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the 3rd ACM Symposium on Theory of Computing, STOC’71, pages 151–158.

[38] Crampton, J. (2003). Specifying and enforcing constraints in role-based access control.
In Proceedings of the 8th ACM Symposium on Access Control Models and Technologies,
SACMAT’03, pages 43–50.

[39] Crampton, J. (2005). A reference monitor for workflow systems with constrained task
execution. In Proceedings of the 10th ACM Symposium on Access Control Models and
Technologies, SACMAT’05, pages 38–47.

[40] Crampton, J., Gutin, G., and Karapetyan, D. (2015). Valued workflow satisfiability
problem. In Proceedings of the 20th ACM Symposium on Access Control Models and
Technologies, SACMAT’15, pages 3–13.

195

References

[41] Crampton, J., Gutin, G., and Yeo, A. (2013). On the parameterized complexity and
kernelization of the workflow satisfiability problem. ACM Transactions on Information
and System Security, 16(1):1–31.

[42] Crampton, J. and Khambhammettu, H. (2008). On delegation and workflow execution
models. In Proceedings of the 23rd ACM Symposium on Applied Computing, SAC’08,
pages 2137–2144.

[43] Crampton, J. and Morisset, C. (2011). An auto-delegation mechanism for access
control systems. In Proceedings of the 6th International Workshop on Security and Trust
Management, STM’11, pages 1–16.

[44] Dalkir, K. (2011). Knowledge Management in Theory and Practice. MIT Press.

[45] Damodaran, A. (2007). Strategic Risk Taking: A Framework for Risk Management.
Wharton School Publishing.

[46] Davenport, T. H. and Prusak, L. (1997). Working Knowledge: How Organizations
Manage What They Know. Harvard Business School Press.

[47] Deavours, D. D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J. M., Sanders,
W. H., and Webster, P. G. (2002). The Möbius framework and its implementation. IEEE
Transactions on Software Engineering, 28(10):956–969.

[48] Diver, S. (2004). Information security policy: A development guide for large
and small companies. https://www.sans.org/reading-room/whitepapers/policyissues/
information-security-policy-development-guide-large-small-companies-1331. Accessed:
13-07-2015.

[49] Domingos, D., Rito-Silva, A., and Veiga, P. (2003). Authorization and access control
in adaptive workflows. In Proceedings of the 8th European Symposium on Research in
Computer Security, ESORICS’03, pages 23–38.

[50] Donner, M. (2003). Toward a security ontology. IEEE Security and Privacy, 1(3):6–7.

[51] Doshi, P., Goodwin, R., Akkiraju, R., and Verma, K. (2004). Dynamic workflow
composition using Markov decision processes. In Proceedings of the IEEE International
Conference on Web Services, ICWS’04, pages 576–582.

[52] Downey, R. G. and Fellows, M. R. (1999). Parameterized Complexity. Springer.

[53] Eder, J. and Liebhart, W. (1996). Workflow recovery. In Proceedings of the 1st
IFCIS International Conference on Cooperative Information Systems, COOPIS’96, pages
124–134.

[54] Ekelhart, A., Fenz, S., Klemen, M., and Weippl, E. (2007). Security ontologies: Im-
proving quantitative risk analysis. In Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, 2007, HICSS’07, pages 156–162.

[55] El Bakkali, H. (2012). Bypassing workflow satisfiability problem due to access control
constraints. In Proceedings of the 4th International Conference on Networked Digital
Technologies, NDT’12, pages 178–191.

196

https://www.sans.org/reading-room/whitepapers/policyissues/information-security-policy-development-guide-large-small-companies-1331
https://www.sans.org/reading-room/whitepapers/policyissues/information-security-policy-development-guide-large-small-companies-1331

References

[56] El Bakkali, H. (2013). Enhancing workflow systems resiliency by using delegation and
priority concepts. Digital Information Management, 11(4):267–276.

[57] Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., and Senanayake,
R. (2005). The OWL-S editor: A development tool for semantic web services. In The
Semantic Web: Research and Applications, pages 78–92. Springer.

[58] Espinosa, E. D., Frausto, J., and Rivera, E. J. (2010). Markov decision processes for
optimizing human workflows. Service Science, 2(4):245–269.

[59] Fatema, K. and Chadwick, D. (2014). Resolving policy conflicts: Integrating policies
from multiple authors. In Proceedings of the 4th International Workshop on Information
Systems Security Engineering, WISSE’14, pages 310–321.

[60] Federal Office of Information Security (2005). IT-Grundschutz. https://www.bsi.bund.
de/EN/Topics/ITGrundschutz/itgrundschutz_node.html. Accessed: 07-07-2015.

[61] Fenz, S. and Ekelhart, A. (2009). Formalizing information security knowledge. In
Proceedings of the 4th International Symposium on Information, Computer, and Commu-
nications Security, ASIACCS’09, pages 183–194.

[62] Fenz, S., Goluch, G., Ekelhart, A., Riedl, B., and Weippl, E. (2007). Information
security fortification by ontological mapping of the ISO/IEC 27001 standard. In Proceed-
ings of the 13th Pacific Rim International Symposium on Dependable Computing, 2007,
PRDC’07, pages 381–388.

[63] Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E., Chadwick,
D. W., and Costa-Pereira, A. (2006). How to break access control in a controlled man-
ner. In Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems,
CBMS’06, pages 847–854.

[64] Fillies, C. and Weichhardt, F. (2005). On ontology-based event-driven process chains.
http://www.semtalk.com/pub/semtalkepk.pdf. Accessed: 07-07-2015.

[65] Financial Conduct Authority (2015). http://www.fca.org.uk/. Accessed: 04-07-2015.

[66] Forejt, V., Kwiatkowska, M., Norman, G., and Parker, D. (2011). Automated verification
techniques for probabilistic systems. In Proceedings of the 11th International School
on Formal Methods for the Design of Computer, Communication and Software Systems,
SFM’11, pages 53–113.

[67] Gaaloul, K., Schaad, A., Flegel, U., and Charoy, F. (2008). A secure task delegation
model for workflows. In Proceedings of the 2nd International Conference on Emerging
Security Information, Systems and Technologies, SECURWARE’08, pages 10–15.

[68] Gao, A., Yang, D., Tang, S., and Zhang, M. (2005). Web service composition using
Markov decision processes. In Proceedings of the 6th International Conference on
Advances in Web-Age Information Management, WAIM’05, pages 308–319.

[69] Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of workflow
management: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2):119–153.

197

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
http://www.semtalk.com/pub/semtalkepk.pdf
http://www.fca.org.uk/

References

[70] Giunchiglia, E. and Lifschitz, V. (1998). An action language based on causal explana-
tion: Preliminary report. In Proceedings of the 15th National Conference on Artificial
Intelligence, AAAI’98, pages 623–630.

[71] Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge
sharing. Human-Computer Studies, 43(5-6):907–928.

[72] Guarino, N. (1995). Formal ontology, conceptual analysis and knowledge representation.
Human-Computer Studies, 43(5-6):625–640.

[73] Hahn, E. M., Hermanns, H., Wachter, B., and Zhang, L. (2010). PASS: Abstraction
refinement for infinite probabilistic models. In Proceedings of the 16th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’10,
pages 353–357.

[74] Hamming, R. W. (1991). The Art of Probability: For Scientists and Engineers. Addison-
Wesley Longman Publishing Co., Inc.

[75] Hayes, P., Eskridge, T. C., Saavedra, R., Reichherzer, T., Mehrotra, M., and Bo-
brovnikoff, D. (2005). Collaborative knowledge capture in ontologies. In Proceedings of
the 3rd International Conference on Knowledge Capture, K-CAP’05, pages 99–106.

[76] He, L., Huang, C., Duan, K., Li, K., Chen, H., Sun, J., and Jarvis, S. A. (2012).
Modeling and analyzing the impact of authorization on workflow executions. Future
Generation Computer Systems, 28(8):1177–1193.

[77] Herbert, L. and Sharp, R. (2013). Precise quantitative analysis of probabilistic busi-
ness process model and notation workflows. Computing and Information Science in
Engineering, 13(1):011007.

[78] Herzog, A., Shahmehri, N., and Duma, C. (2007). An ontology of information security.
Information Security and Privacy, 1(4):1–23.

[79] Hiden, H., Woodman, S., Watson, P., and Cala, J. (2013). Developing cloud applications
using the e-Science Central platform. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371(1983):20120085.

[80] Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the
ACM, 21(8):666–677.

[81] Horridge, M. and Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies.
Semantic Web, 2(1):11–21.

[82] Horrocks, I. (2002). DAML+OIL: A reason-able web ontology language. In Proceed-
ings of the 8th International Conference on Extending Database Technology, EDBT’02,
pages 2–13.

[83] Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press.

[84] Hussain, F., Lucas, C., and Ali, M. (2004). Managing knowledge effectively. Knowledge
Management Practice, 5(1):1–12.

198

References

[85] I4 - International Information Integrity Institute (2015). https://i4online.com/. Accessed:
04-07-2015.

[86] Information Security Forum (2015). https://www.securityforum.org/. Accessed: 04-07-
2015.

[87] Jakoubi, S., Tjoa, S., Goluch, S., and Kitzler, G. (2010). Risk-aware business process
management: Establishing the link between business and security. In Complex Intelligent
Systems and Their Applications, pages 109–135. Springer.

[88] Jeannet, B., D’Argenio, P., and Larsen, K. (2002). Rapture: A tool for verifying
Markov decision processes. In Proceedings of Tools Day, affiliated to 13th International
Conference on Concurrency Theory, CONCUR’02, pages 84–98.

[89] Jelenic, D. (2011). The importance of knowledge management in organizations - with
emphasis on the balanced scorecard learning and growth perspective. In Proceedings of
the International Conference on Management, Knowledge and Learning, MakeLearn’11,
pages 33–43.

[90] Jensen, K., Kristensen, L. M., and Wells, L. (2007). Coloured Petri Nets and CPN
tools for modelling and validation of concurrent systems. Software Tools for Technology
Transfer, 9(3):213–254.

[91] Jisc (2015). https://www.jisc.ac.uk/. Accessed: 04-07-2015.

[92] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al. (2007). Web services business process execution
language: Version 2.0. OASIS standard, 11(120):5.

[93] Joy, B., Steele Jr, G. L., Gosling, J., and Bracha, G. (1998). The Java Language
Specification. Addison-Wesley.

[94] Khan, A. A. and Fong, P. W. L. (2012). Satisfiability and feasibility in a relationship-
based workflow authorization model. In Proceedings of the 17th European Symposium on
Research in Computer Security, ESORICS’12, pages 109–126.

[95] Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C. (2000). On structured
workflow modelling. In Proceedings of the 12th International Conference on Advanced
Information Systems Engineering, CAiSE’00, pages 431–445.

[96] Kirlappos, I., Parkin, S., and Sasse, M. A. (2015). Shadow security as a tool for the
learning organization. ACM SIGCAS Computers and Society, 45(1):29–37.

[97] Knorr, K. and Stormer, H. (2001). Modeling and analyzing separation of duties in
workflow environments. In Proceedings of the 16th International Conference on ICT
Systems Security and Privacy Protection, IFIP SEC’01, pages 199–212.

[98] Kohler, M., Liesegang, C., and Schaad, A. (2007). Classification model for access con-
trol constraints. In Proceedings of the 26th IEEE International Performance, Computing,
and Communications Conference, IPCCC’07, pages 410–417.

199

https://i4online.com/
https://www.securityforum.org/
https://www.jisc.ac.uk/

References

[99] Kohler, M. and Schaad, A. (2008). Avoiding policy-based deadlocks in business
processes. In Proceedings of the 3rd International Conference on Availability, Reliability
and Security, ARES’08, pages 709–716.

[100] Kothari, V., Blythe, J., Smith, S. W., and Koppel, R. (2015). Measuring the security
impacts of password policies using cognitive behavioral agent-based modeling. In Pro-
ceedings of the 2015 Symposium and Bootcamp on the Science of Security, HotSoS’15,
pages 13:1–13:9.

[101] Krivov, S., Williams, R., and Villa, F. (2007). GrOWL: A tool for visualization and
editing of OWL ontologies. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(2):54–57.

[102] Kumar, A., Van der Aalst, W. M. P., and Verbeek, E. M. W. (2002). Dynamic work
distribution in workflow management systems: How to balance quality and performance.
Management and Information Systems, 18(3):157–193.

[103] Kwiatkowska, M., Norman, G., and Parker, D. (2002). Probabilistic symbolic model
checking with prism: A hybrid approach. In Proceedings of the 8th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, TACAS?02,
pages 52–66.

[104] Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of
probabilistic real-time systems. In Proceedings of the 23rd International Conference on
Computer Aided Verification, CAV’11, pages 585–591.

[105] Lassaigne, R. and Peyronnet, S. (2015). Approximate planning and verification for
large markov decision processes. International Journal on Software Tools for Technology
Transfer, 17(4):457–467.

[106] Lawrence, P. (1997). The workflow reference model. In Workflow Handbook, pages
243–293. John Wiley & Sons, Inc.

[107] Le Berre, D. and Parrain, A. (2010). The Sat4j library, release 2.2. Satisfiability,
Boolean Modeling and Computation, 7:59–64.

[108] LeMay, E., Ford, M., Keefe, K., Sanders, W., and Muehrcke, C. (2011). Model-based
security metrics using ADversary VIew Security Evaluation (ADVISE). In Proceedings
of the 8th International Conference on the Quantitative Evaluation of Systems, QEST’11,
pages 191–200.

[109] Li, N., Wang, Q., and Tripunitara, M. (2009). Resiliency policies in access control.
ACM Transactions on Information and System Security, 12(4):20:1–20:34.

[110] Lowalekar, M., Tiwari, R. K., and Karlapalem, K. (2009). Security policy satisfiability
and failure resilience in workflows. In The Future of Identity in the Information Society,
pages 197–210. Springer.

[111] Lupu, E. and Sloman, M. (1997). Conflict analysis for management policies. In
Proceedings of the 5th IFIP/IEEE International Symposium on Integrated Network Man-
agement, IM’97, pages 430–443.

200

References

[112] Ma, C., Lu, G., and Qiu, J. (2009). Conflict detection and resolution for authorization
policies in workflow systems. Journal of Zhejiang University SCIENCE A, 10(8):1082–
1092.

[113] Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2014). Quantitative workflow
resiliency. In Proceedings of the 19th European Symposium on Research in Computer
Security, ESORICS’14, pages 344–361.

[114] Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015a). Impact of policy
design on workflow resiliency computation time. In Proceedings of the 12th International
Conference on the Quantitative Evaluation of Systems, QEST’15, pages 244–259.

[115] Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015b). Modelling user
availability in workflow resiliency analysis. In Proceedings of the 3rd Symposium and
Bootcamp on the Science of Security, HotSoS’15. Article 7.

[116] Mace, J. C., Morisset, C., and Van Moorsel, A. P. A. (2015c). Resiliency variance in
workflows with choice. In Proceedings of the 7th International Workshop on Software
Engineering for Resilient Systems, SERENE’15, pages 128–143.

[117] Mace, J. C., Parkin, S. E., and Van Moorsel, A. P. A. (2010a). A collaborative ontology
development tool for information security managers. In Proceedings of the 4th ACM
Symposium on Computer Human Interaction for Management of Information Technology,
CHIMIT’10. Article 5.

[118] Mace, J. C., Parkin, S. E., and Van Moorsel, A. P. A. (2010b). Ontology editing
tool for information security and human factors experts. In Proceedings of the 2nd
International Conference on Knowledge Management and Information Sharing, KMIS’10,
pages 207–212.

[119] Mace, J. C., Van Moorsel, A. P. A., and Watson, P. (2011). The case for dynamic
security solutions in public cloud workflow deployments. In Proceedings of the 41st
IEEE/IFIP International Conference on Dependable Systems and Networks Workshops,
DSN-W’11, pages 111–116.

[120] Marinovic, S., Craven, R., Ma, J., and Dulay, N. (2011). Rumpole: A flexible break-
glass access control model. In Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies, SACMAT’11, pages 73–82.

[121] Markov, A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta
Steklova, 42:3–375.

[122] Martinelli, F. and Morisset, C. (2012). Quantitative access control with partially-
observable Markov decision processes. In Proceedings of the 2nd ACM Conference on
Data and Application Security and Privacy, CODASPY’12, pages 169–180.

[123] Massacci, F., Paci, F., and Gadyatskaya, O. (2011). Dynamic resiliency to changes. In
Trustworthy Internet, pages 213–220. Springer.

[124] Mathias, A. R. D. (1974). The order extension principle. In Axiomatic set theory,
pages 179–183. American Mathematical Society.

201

References

[125] McLeod, S. (2008). Social roles. http://www.simplypsychology.org/social-roles.html.
Accessed: 07-07-2015.

[126] Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., and Gian-
nakopoulos, G. (2013). The human factor of information security: Unintentional damage
perspective. In Proceedings of the 3rd International Conference on Integrated Information,
IC-ININFO’13, pages 424–428.

[127] Meyer, J. F. and Sanders, W. H. (1993). Specification and construction of performabil-
ity models. In Proceedings of the 2nd International Workshop on Performability Modeling
of Computer and Communication Systems, PMCCS’93, pages 28–30.

[128] Microsoft Developer Network (2012). About using the Visio drawing control in your
application. https://msdn.microsoft.com/en-us/library/office/ff765109.aspx. Accessed:
07-07-2015.

[129] Microsoft Developer Network (2015). Visual Basic 6.0 Resource Center. https:
//msdn.microsoft.com/en-us/vstudio/ms788229.aspx. Accessed: 07-07-2015.

[130] Microsoft Office Online (2015). Microsoft Visio. https://products.office.com/en-gb/
visio/flowchart-software. Accessed: 07-07-2015.

[131] Miner, A. and Parker, D. (2004). Symbolic representations and analysis of large
probabilistic systems. In Validation of Stochastic Systems: A Guide to Current Research,
pages 296–338. Springer.

[132] Monakova, G., Brucker, A. D., and Schaad, A. (2012). Security and safety of assets
in business processes. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC’12, pages 1667–1673.

[133] Musen, M. A. (2015). The Protégé project: A look back and a look forward. AI
Matters, 1(4):4–12.

[134] Norman, D. A. (2009). The way I see it: When security gets in the way. ACM
Interactions, 16(6):60–63.

[135] Noy, N. F. and McGuinness, D. L. (2001). SMI-2001-0880: Ontology develop-
ment 101: A guide to creating your first ontology. Technical report, Stanford Medical
Informatics.

[136] Object Management Group (2011). Business Process Model and Notation (BPMN):
Version 2.0. http://http://www.omg.org/spec/BPMN/2.0/PDF/. Accessed: 13-07-2015.

[137] Obrst, L., Chase, P., and Markeloff, R. (2012). Developing an ontology of the
cyber security domain. In Proceedings of the 7th International Conference on Semantic
Technologies for Intelligence, Defense, and Security, STIDS’12, pages 49–56.

[138] O’Leary, D. E. (2000). Enterprise Resource Planning Systems: Systems, Life Cycle,
Electronic Commerce, and Risk. Cambridge University Press.

[139] Paci, F., Ferrini, R., Sun, Y., and Bertino, E. (2008). Authorization and user failure
resiliency for WS-BPEL business processes. In Proceedings of the 6th International
Conference of Service-Oriented Computing, ICSOC’08, pages 116–131.

202

http://www.simplypsychology.org/social-roles.html
https://msdn.microsoft.com/en-us/library/office/ff765109.aspx
https://msdn.microsoft.com/en-us/vstudio/ms788229.aspx
https://msdn.microsoft.com/en-us/vstudio/ms788229.aspx
https://products.office.com/en-gb/visio/flowchart-software
https://products.office.com/en-gb/visio/flowchart-software
http://http://www.omg.org/spec/BPMN/2.0/PDF/

References

[140] Parkin, S., Van Moorsel, A. P. A., Inglesant, P., and Sasse, M. A. (2010). A stealth
approach to usable security: Helping IT security managers to identify workable security
solutions. In Proceedings of the 2010 Workshop on New Security Paradigms, NSPW ’10,
pages 33–50.

[141] Parkin, S. E., Kassab, R. Y., and Van Moorsel, A. P. A. (2008). The impact of
unavailability on the effectiveness of enterprise information security technologies. In
Proceedings of the 5th International Service Availability Symposium, ISAS’08, pages
43–58.

[142] Parkin, S. E., Van Moorsel, A. P. A., and Coles, R. (2009). An information security
ontology incorporating human-behavioural implications. In Proceedings of the 2nd
International Conference on Security of Information and Networks, SIN ’09, pages 46–55.

[143] PCI Security Standards Council (2015). https://www.pcisecuritystandards.org/. Ac-
cessed: 04-07-2015.

[144] Post, G. V. and Kagan, A. (2007). Evaluating information security tradeoffs: Restrict-
ing access can interfere with user tasks. Computers and Security, 26(3):229–237.

[145] Povey, D. (1999). Optimistic security: A new access control paradigm. In Proceedings
of the 2nd Workshop on New Security Paradigms, NSPW’99, pages 40–45.

[146] Pruesse, G. and Ruskey, F. (1994). Generating linear extensions fast. SIAM Journal
on Computing, 23(2):373–386.

[147] Raskin, V., Hempelmann, C. F., Triezenberg, K. E., and Nirenburg, S. (2001). Ontology
in information security: a useful theoretical foundation and methodological tool. In
Proceedings of the 4th Workshop on New Security Paradigms, NSPW’01, pages 53–59.

[148] Reichert, M. and Dadam, P. (1998). AdeptFlex: Supporting dynamic changes of
workflows without losing control. Intelligent Information Systems, 10(2):93–129.

[149] Reichert, M. and Weber, B. (2012). Enabling flexibility in process-aware information
systems: challenges, methods, technologies. Springer Science & Business Media.

[150] Ruskey, F. (1992). Generating linear extensions of posets by transpositions. Journal
of Combinatorial Theory, Series B, 54(1):77–101.

[151] Russell, N., van der Aalst, W., and ter Hofstede, A. (2006). Workflow exception
patterns. In Proceedings of the 18th International Conference on Advanced Information
Systems Engineering, CAiSE’06, pages 288–302.

[152] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based
access control models. Computer, 29(2):38–47.

[153] Sasse, A. M., Ashenden, D., Lawrence, D., Coles-Kemp, L., Flechais, I., and Kearney,
P. (2007). Human vulnerabilities in security systems. http://www.ktn.qinetiq-tim.net/
content/files/groups/humanvuln/HFWGWhitePaperfinal.pdf. Accessed: 13-07-2015.

203

https://www.pcisecuritystandards.org/
http://www.ktn.qinetiq-tim.net/content/files/groups/humanvuln/HFWGWhitePaperfinal.pdf
http://www.ktn.qinetiq-tim.net/content/files/groups/humanvuln/HFWGWhitePaperfinal.pdf

References

[154] Schefer, S., Strembeck, M., Mendling, J., and Baumgrass, A. (2011). Detecting and
resolving conflicts of mutual-exclusion and binding constraints in a business process
context. In Proceedings of On the Move to Meaningful Internet Systems, OTM’11, pages
329–346.

[155] Schiavone, S., Garg, L., and Summers, K. (2014). Ontology of information security in
enterprises. Electronic Journal of Information Systems Evaluation, 17(1):71–87.

[156] Singhal, A. and Wijesekera, D. (2010). Ontologies for modeling enterprise level
security metrics. In Proceedings of the 6th Annual Workshop on Cyber Security and
Information Intelligence Research, CSIIRW’10. Article 58.

[157] Skyrme, D. (2003). Knowledge management: Making sense of an oxymoron. http:
//www.skyrme.com/insights/22km.htm. Accessed: 07-07-2015.

[158] Souag, A., Salinesi, C., and Comyn-Wattiau, I. (2012). Ontologies for security
requirements: A literature survey and classification. In Proceedings of the The 2nd
International Workshop on Information Systems Security Engineering, WISSE’12, pages
61–69.

[159] Stanton, J. M., Stam, K. R., Mastrangelo, P., and Jolton, J. (2005). Analysis of end
user security behaviors. Computers and Security, 24(2):124–133.

[160] Stoneburner, G., Goguen, A. Y., and Feringa, A. (2002). Sp 800-30: Risk management
guide for information technology systems. Technical report, National Institute of Standards
& Technology.

[161] Strembeck, M. and Mendling, J. (2010). Generic algorithms for consistency checking
of mutual-exclusion and binding constraints in a business process context. In Proceedings
of On the Move to Meaningful Internet Systems, OTM’10, pages 204–221.

[162] Strohmaier, M., Walk, S., Pöschko, J., Lamprecht, D., Tudorache, T., Nyulas, C.,
Musen, M. A., and Noy, N. F. (2013). How ontologies are made: Studying the hidden
social dynamics behind collaborative ontology engineering projects. Web Semantics:
Science, Services and Agents on the World Wide Web, 20:18–34.

[163] Sun, Y., Wang, Q., Li, N., Bertino, E., and Atallah, M. (2011). On the complexity of
authorization in RBAC under qualification and security constraints. IEEE Transactions
on Dependable and Secure Computing, 8(6):883–897.

[164] Sunstein, C. R. (1996). Social norms and social roles. Columbia Law Review,
96(4):903–968.

[165] Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT
Press.

[166] TechRepublic (2015). http://www.techrepublic.com/. Accessed: 04-07-2015.

[167] Texas Action Group (2015). The Causal Calculator. http://www.cs.utexas.edu/users/
tag/ccalc/. Accessed: 13-07-2015.

204

http://www.skyrme.com/insights/22km.htm
http://www.skyrme.com/insights/22km.htm
http://www.techrepublic.com/
http://www.cs.utexas.edu/users/tag/ccalc/
http://www.cs.utexas.edu/users/tag/ccalc/

References

[168] The Apache Software Foundation (2015). The Apache Xerces project. http://xerces.
apache.org/xerces2-j/. Accessed: 07-07-2015.

[169] The Law Society (2015). http://www.lawsociety.org.uk/. Accessed: 04-07-2015.

[170] The World Wide Web Consortium (W3C) (2004). OWL web ontology language
overview. http://www.academia.edu/download/30759881/5.3-B1.pdf. Accessed: 04-07-
2015.

[171] Tipton, H. F. and Krause, M. (2008). Information Security Management Handbook.
Auerbach Publications.

[172] Tudorache, T., Vendetti, J., and Noy, N. F. (2008). Web-Protégé: A lightweight OWL
ontology editor for the web. In Proceedings of the 5th International Workshop on OWL:
Experiences and Directions, OWLED’08.

[173] Tuyikeze, T. and Pottas, D. (2010). An information security policy development
life cycle. In Proceedings of the South African Information Security Multi-Conference,
SAISMC’10, pages 165–176.

[174] Van der Aalst, W. M. (1998). The application of Petri Nets to workflow management.
Circuits, Systems, and Computers, 8(1):21–66.

[175] Van der Aalst, W. M. and Jablonski, S. (2000). Dealing with workflow change:
Identification of issues and solutions. Computer Systems Science and Engineering,
15(5):267–276.

[176] Van der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., and Barros, A. P. (2003).
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51.

[177] Van der Aalst, W. M. P., Hirnschall, A., and Verbeek, H. M. W. E. (2002). An
alternative way to analyze workflow graphs. In Proceedings of the 14th International
Conference on Advanced Information Systems Engineering, CAiSE’02, pages 535–552.

[178] Wainer, J., Barthelmess, P., and Kumar, A. (2003). W-RBAC a workflow security
model incorporating controlled overriding of constraints. Cooperative Information Sys-
tems, 12(4):455–485.

[179] Wang, Q. and Li, N. (2007). Satisfiability and resiliency in workflow systems. In
Proceedings of the 12th European Symposium on Research in Computer Security, ES-
ORICS’07, pages 90–105.

[180] Wang, Q. and Li, N. (2010). Satisfiability and resiliency in workflow authorization
systems. ACM Transactions on Information and System Security, 13(4). Article 40.

[181] Watson, P. (2012). A multi-level security model for partitioning workflows over
federated clouds. Cloud Computing, 1(1):1–15.

[182] Weber, B., Reichert, M., Wild, W., and Rinderle, S. (2005). Balancing flexibility and
security in adaptive process management systems. In Proceedings of On the Move to
Meaningful Internet Systems: CoopIS, DOA, and ODBASE, OTM’05, pages 59–76.

205

http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/
http://www.lawsociety.org.uk/
http://www.academia.edu/download/30759881/5.3-B1.pdf

References

[183] Wen, Z. and Watson, P. (2013). Dynamic exception handling for partitioned workflow
on federated clouds. In Proceedings of the 5th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom’13, pages 198–205.

[184] Whalen, T., Smetters, D., and Churchill, E. F. (2006). User experiences with sharing
and access control. In Proceedings of the Conference on Human Factors in Computing
Systems (Extended Abstracts), CHI EA’06, pages 1517–1522.

[185] Wijs, A. and Bošnački, D. (2012). Improving GPU sparse matrix-vector multiplication
for probabilistic model checking. In Proceedings of the 19th International Workshop on
Model Checking Software, SPIN’12, pages 98–116.

[186] Wolter, C. and Meinel, C. (2010). An approach to capture authorisation requirements
in business processes. Requirements Engineering, 15(4):359–373.

[187] Wolter, C., Miseldine, P., and Meinel, C. (2009). Verification of business process
entailment constraints using SPIN. In Proceedings of the 1st International Symposium on
Engineering Secure Software and Systems, ESSoS’09, pages 1–15.

[188] Wolter, C., Schaad, A., and Meinel, C. (2008). Task-based entailment constraints for
basic workflow patterns. In Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies, SACMAT’08, pages 51–60.

[189] Wu, C., Zhang, X., and Urban, C. (2013). A formal model and correctness proof for
an access control policy framework. In Proceedings of the 3rd International Conference
on Certified Programs and Proofs, CPP’13, pages 292–307.

[190] Yang, P., Xie, X., Ray, I., and Lu, S. (2014). Satisfiability analysis of workflows
with control-flow patterns and authorization constraints. IEEE Transactions on Services
Computing, 7(2):237–251.

[191] Yevseyeva, I., Morisset, C., Groß, T., and Van Moorsel, A. P. A. (2014). A decision
making model of influencing behavior in information security. In Proceedings of the 11th
European Workshop on Performance Engineering, EPEW’14, pages 194–208.

206

Appendix A

PRISM Encodings

A.1 Workflow Execution Specification WES1

A full PRISM encoding of workflow execution specification WES1, defined in Section 2.3.3,
is given below:

//WORKFLOW SPECIFICATION
//task schema
module task_schema
t : [0..5] init 0;
[d] decision & !t1 → (t’=1);
[d] decision & t1 & !t2 → (t’=2);
[d] decision & t2 & !t3 → (t’=3);
[d] decision & t1 & !t4 → (t’=4);
[d] decision & t3 & t4 & !t5 → (t’=5);
[t] true → (t’=0);
endmodule

//users
module users
u : [0..4] init 0;
[d] true → (u’=1);
[d] true → (u’=2);
[d] true → (u’=3);
[d] true → (u’=4);
[t] true → (u’=0);
endmodule

207

PRISM Encodings

// security policy
// authorisation constraints
formula a1 = u=1 & (t=1 | t=3 | t=5);
formula a2 = u=2 & (t=1 | t=2 | t=3 | t=4);
formula a3 = u=3 & (t=2);
formula a4 = u=4 & (t=4 | t=5);
formula a = (u=0 & x=1) | a1 | a2 | a3 | a4;

// separation of duty constraints
module sod1
us1 : [0..4] init 0;
fs1 : bool init false ;
[e] (t=2 | t=3) & us1=0 →(us1’=u);
[e] (t=2 | t=3) & us1!=0 & u=us1 →(fs1’=true);
[e] (t!=2 & t!=3) | (us1!=0 & u!=us1) →true;
[t] true → (us1’=0)&(fs1’=true);
endmodule

module sod2
us2 : [0..4] init 0;
fs2 : bool init false ;
[e] (t=2 | t=4) & us2=0 →(us2’=u);
[e] (t=2 | t=4) & us2!=0 & u=us2 →(fs2’=true);
[e] (t!=2 & t!=4) | (us2!=0 & u!=us2) →true;
[t] true → (us2’=0)&(fs2’=true);
endmodule

module sod3
us3 : [0..4] init 0;
fs3 : bool init false ;
[e] (t=3 | t=4) & us3=0 →(us3’=u);
[e] (t=3 | t=4) & us3!=0 & u=us3 →(fs3’=true);
[e] (t!=3 & t!=4) | (us3!=0 & u!=us3) →true;
[t] true → (us3’=0)&(fs3’=true);
endmodule

208

A.1 Workflow Execution Specification WES1

module sod4
us4 : [0..4] init 0;
fs4 : bool init false ;
[e] (t=4 | t=5) & us4=0 →(us4’=u);
[e] (t=4 | t=5) & us4!=0 & u=us4 →(fs4’=true);
[e] (t!=4 & t!=5) | (us4!=0 & u!=us4) →true;
[t] true → (us4’=0)&(fs4’=true);
endmodule

formula s = !fs1 & !fs2 & !fs3 & !fs4 ;

//binding of duty constraints
module bod1
ub1 : [0..4] init 0;
fb1 : bool init false ;
[e] (t=1 | t=3) & ub1=0 →(ub1’=u);
[e] (t=1 | t=3) & ub1!=0 & u!=ub1 →(fb1’=true);
[e] (t!=1 & t!=3) | (ub1!=0 & u=ub1) →true;
[t] true → (ub1’=0)&(fb1’=true);
endmodule

formula b = !fb1;

// security policy
formula valid = a & s & b;

//EXECUTION SPECIFICATION
// execution schema
module execution_schema
x : [−1..5] init 1;
[e] x < 5 → (x’=x+1);
[e] x = 5 → (x’=−1);
endmodule

209

PRISM Encodings

// availability forecast & plan
module plan
tx1 : [0..5] init 0;
ux1 : [0..4] init 0;
tx2 : [0..5] init 0;
ux2 : [0..4] init 0;
tx3 : [0..5] init 0;
ux3 : [0..4] init 0;
tx4 : [0..5] init 0;
ux4 : [0..4] init 0;
tx5 : [0..5] init 0;
ux5 : [0..4] init 0;

// availability forecast
//user 1
[e] event & x=1 & u=1 →0.8:(tx1’=t)&(ux1’=u)+0.2:(tx1’=0);
[e] event & x=2 & u=1 →0.8:(tx2’=t)&(ux2’=u)+0.2:(tx2’=0);
[e] event & x=3 & u=1 →0.8:(tx3’=t)&(ux3’=u)+0.2:(tx3’=0);
[e] event & x=4 & u=1 →0.6:(tx4’=t)&(ux4’=u)+0.4:(tx4’=0);
[e] event & x=5 & u=1 →0.6:(tx5’=t)&(ux5’=u)+0.4:(tx5’=0);

//user 2
[e] event & x=1 & u=2→ 0.7:(tx1’=t)&(ux1’=u)+0.3:(tx1’=0);
[e] event & x=2 & u=2→ 0.8:(tx2’=t)&(ux2’=u)+0.2:(tx2’=0);
[e] event & x=3 & u=2→ 0.3:(tx3’=t)&(ux3’=u)+0.7:(tx3’=0);
[e] event & x=4 & u=2→ 0.9:(tx4’=t)&(ux4’=u)+0.1:(tx4’=0);
[e] event & x=5 & u=2→ 0.9:(tx5’=t)&(ux5’=u)+0.1:(tx5’=0);

//user 3
[e] event & x=1 & u=3→ 0.1:(tx1’=t)&(ux1’=u)+0.9:(tx1’=0);
[e] event & x=2 & u=3→ 0.9:(tx2’=t)&(ux2’=u)+0.1:(tx2’=0);
[e] event & x=3 & u=3→ 0.7:(tx3’=t)&(ux3’=u)+0.3:(tx3’=0);
[e] event & x=4 & u=3→ 0.7:(tx4’=t)&(ux4’=u)+0.3:(tx4’=0);
[e] event & x=5 & u=3→ 0.7:(tx5’=t)&(ux5’=u)+0.3:(tx5’=0);

//user 4
[e] event & x=1 & u=4→ 0.1:(tx1’=t)&(ux1’=u)+0.9:(tx1’=0);
[e] event & x=2 & u=4→ 0.1:(tx2’=t)&(ux2’=u)+0.9:(tx2’=0);
[e] event & x=3 & u=4→ 0.1:(tx3’=t)&(ux3’=u)+0.9:(tx3’=0);
[e] event & x=4 & u=4→ 0.4:(tx4’=t)&(ux4’=u)+0.6:(tx4’=0);
[e] event & x=5 & u=4→ 0.0:(tx5’=t)&(ux5’=u)+1:(tx5’=0);
endmodule

210

A.1 Workflow Execution Specification WES1

//PROCESS ACTIONS
//assignment decisions
formula null = t=0 & u=0;
formula tinR = (x=2&tx1=t) | (x=3&tx2=t) | (x=4&tx3=t) | (x=5&tx4=t) |(x=−1&tx5=t);
formula decision = x!=−1 & valid & sp=x−1 & (x=1 & null | tinR);

//assignment events
formula event = x!=−1 & sp=x−1 & !tinR;

//termination actions
module termination
[t] valid & complete → true;
[t] (x!=−1 & sp!=x−1 & valid) | (x=−1 & !complete) | (x!=1 & !valid) →true;
endmodule

formula complete = tx1!=0 & tx2!=0 & tx3!=0 & tx4!=0 & tx5!=0;
formula terminated = x!=1 & null;

//plan
formula t1 = tx1=1 | tx2=1 | tx3=1 | tx4=1 | tx5=1;
formula t2 = tx1=2 | tx2=2 | tx3=2 | tx4=2 | tx5=2;
formula t3 = tx1=3 | tx2=3 | tx3=3 | tx4=3 | tx5=3;
formula t4 = tx1=4 | tx2=4 | tx3=4 | tx4=4 | tx5=4;
formula t5 = tx1=5 | tx2=5 | tx3=5 | tx4=5 | tx5=5;

formula sp = (tx1/tx1) + (tx2/tx2) + (tx3/tx3) + (tx4/tx4) + (tx5/tx5);

//REWARD FUNCTIONS
rewards " resiliency "
[t] complete & valid : 1;
endrewards

rewards "distance"
[d] x > 1 : 1;
[t] complete & valid : 1;
endrewards

211

PRISM Encodings

A.2 Workflow Execution Specification WES21

A full PRISM encoding of workflow execution specification WES21, defined in Section 3.2.3,
is given below:

//WORKFLOW SPECIFICATION
//task schema
module task_schema
t : [0..2] init 0;
[d] decision & !t1 → (t’=1);
[d] decision & t1 & !t2 → (t’=2);
[t] true → (t’=0);
endmodule

//users
module users
u : [0..2] init 0;
[d] true → (u’=1);
[d] true → (u’=2);
[t] true → (u’=0);
endmodule

// security policy
// authorisation constraints
formula a1 = u=1 & t=2;
formula a2 = u=2 & (t=1 | t=2);
formula a = (u=0 & x=1) | a1 | a2;

// separation of duty constraints
module sod1
us1 : [0..2] init 0;
fs1 : bool init false ;
[e] (t=1 | t=2) & us1=0 →(us1’=u);
[e] (t=1 | t=2) & us1!=0 & u=us1 →(fs1’=true);
[e] (t!=1 & t!=2) | (us1!=0 & u!=us1) →true;
[t] true → (us1’=0)&(fs1’=true);
endmodule

formula s = !fs1 ;

//binding of duty constraints
formula b = true;

212

A.2 Workflow Execution Specification WES21

// security policy
formula valid = a & s & b;

//EXECUTION SPECIFICATION
// execution schema
module execution_schema
x : [−1..2] init 1;
[e] x < 2 → (x’=x+1);
[e] x = 2 → (x’=−1);
endmodule

// availability forecast
module availability_forecast
//plan
tx1 : [0..2] init 0;
ux1 : [0..2] init 0;
tx2 : [0..2] init 0;
ux2 : [0..2] init 0;

// availability forecast
//user 1
[e] event & x=1 & u=1 →1:(tx1’=t)&(ux1’=u)+0:(tx1’=0);
[e] event & x=2 & u=1 →1:(tx2’=t)&(ux2’=u)+0:(tx2’=0);
//user 2
[e] event & x=1 & u=2 →1:(tx1’=t)&(ux1’=u)+0:(tx1’=0);
[e] event & x=2 & u=2 →1:(tx2’=t)&(ux2’=u)+0:(tx2’=0);
endmodule

//PROCESS ACTIONS
//assignment decisions
formula null = t=0 & u=0;
formula tinR = (x=2&tx1=t) | (x=−1&tx2=t);
formula decision = x!=−1 & valid & sp=x−1 & (x=1 & null | tinR);

//assignment events
formula event = x!=−1 & sp=x−1 & !tinR;
//assigned tasks
formula t1 = tx1=1 | tx2=1;
formula t2 = tx1=2 | tx2=2;

213

PRISM Encodings

//termination actions
module termination
[t] valid & complete → true;
[t] (x!=−1 & sp!=x−1 & valid) | (x=−1 & !complete) | (x!=1 & !valid) →true;
endmodule

formula complete = tx1!=0 & tx2!=0;
formula terminated = x!=1 & null;

//plan
formula sp = (tx1/tx1) + (tx2/tx2);

//REWARD FUNCTIONS
rewards " resiliency "
[t] complete & valid : 1;
endrewards

rewards "distance"
[d] x > 1 : 1;
[t] complete & valid : 1;
endrewards

214

A.3 Workflow Execution Specification WES22

A.3 Workflow Execution Specification WES22

A full PRISM encoding of workflow execution specification WES22, defined in Section 3.2.3,
is given below:

//WORKFLOW SPECIFICATION
//task schema
module task_schema
t : [0..2] init 0;
[d] decision & !t1 → (t’=1);
[d] decision & t1 & !t2 → (t’=2);
[t] true → (t’=0);
endmodule

//users
module users
u : [0..2] init 0;
[d] true → (u’=1);
[d] true → (u’=2);
[t] true → (u’=0);
endmodule

// security policy
// authorisation constraints
formula a1 = u=1 & t=2;
formula a2 = u=2 & (t=1 | t=2);
formula a = (u=0 & x=1) | a1 | a2;

// separation of duty constraints
module sod1
us1 : [0..2] init 0;
fs1 : bool init false ;
[e] (t=1 | t=2) & us1=0 →(us1’=u);
[e] (t=1 | t=2) & us1!=0 & u=us1 →(fs1’=true);
[e] (t!=1 & t!=2) | (us1!=0 & u!=us1) →true;
[t] true → (us1’=0)&(fs1’=true);
endmodule

formula s = !fs1 ;

//binding of duty constraints
formula b = true;

215

PRISM Encodings

// security policy
formula valid = a & s & b;

//EXECUTION SPECIFICATION
// execution schema
module execution_schema
x : [−1..2] init 1;
[e] x < 2 → (x’=x+1);
[e] x = 2 → (x’=−1);
endmodule

// availability forecast
module availability_forecast
//plan
tx1 : [0..2] init 0;
ux1 : [0..2] init 0;
tx2 : [0..2] init 0;
ux2 : [0..2] init 0;

// availability forecast
//user 1
[e] event & x=1 & u=1 →0.8:(tx1’=t)&(ux1’=u)+0.2:(tx1’=0);
[e] event & x=2 & u=1 →0.8:(tx2’=t)&(ux2’=u)+0.2:(tx2’=0);
//user 2
[e] event & x=1 & u=2 →0.6:(tx1’=t)&(ux1’=u)+0.4:(tx1’=0);
[e] event & x=2 & u=2 →0.7:(tx2’=t)&(ux2’=u)+0.3:(tx2’=0);
endmodule

//PROCESS ACTIONS
//assignment decisions
formula null = t=0 & u=0;
formula tinR = (x=2&tx1=t) | (x=−1&tx2=t);
formula decision = x!=−1 & valid & sp=x−1 & (x=1 & null | tinR);

//assignment events
formula event = x!=−1 & sp=x−1 & !tinR;

//termination actions
module termination
[t] valid & complete → true;
[t] (x!=−1 & sp!=x−1 & valid) | (x=−1 & !complete) | (x!=1 & !valid) →true;
endmodule

216

A.3 Workflow Execution Specification WES22

formula complete = tx1!=0 & tx2!=0;
formula terminated = x!=1 & null;

//plan
formula t1 = tx1=1 | tx2=1;
formula t2 = tx1=2 | tx2=2;

formula sp = (tx1/tx1) + (tx2/tx2);

//REWARD FUNCTIONS
rewards " resiliency "
[t] complete & valid : 1;
endrewards

rewards "distance"
[d] x > 1 : 1;
[t] complete & valid : 1;
endrewards

217

PRISM Encodings

A.4 PRISM Model State Diagrams

0
(0,0,0,0,0,0,1,0,false)

0:d 1:d

1
(0,0,0,0,1,1,1,0,false)

1

0:e

2
(0,0,0,0,1,2,1,0,false)

1

0:e

4
(1,1,0,0,1,1,2,1,false)

1

0:t

5
(1,2,0,0,1,2,2,2,false)

1

0:d 1:d

3
(1,1,0,0,0,0,2,0,true)

0:t 1

1

6
(1,2,0,0,2,1,2,2,false)

1

0:e

7
(1,2,0,0,2,2,2,2,false)

1

0:e

9
(1,2,2,1,2,1,-1,2,false)

1

0:t

11
(1,2,2,2,2,2,-1,2,true)

1

0:t

8
(1,2,2,1,0,0,-1,0,true)

0:t 1

1

10
(1,2,2,2,0,0,-1,0,true)

0:t 1

1

Fig. A.1 PRISM state diagram of MDPW for workflow execution specification WES21.

218

A.4 PRISM Model State Diagrams

0
(0,0,0,0,0,0,1,0,false)

0:d 1:d

2
(0,0,0,0,1,1,1,0,false)

1

0:e

4
(0,0,0,0,1,2,1,0,false)

1

0:e

1
(0,0,0,0,0,0,2,0,true)

0:t 1

3
(0,0,0,0,1,1,2,1,false)

0.2

7
(1,1,0,0,1,1,2,1,false)

0.8

0:t 0:t

1

5
(0,0,0,0,1,2,2,2,false)

0.4

9
(1,2,0,0,1,2,2,2,false)

0.6

0:t 0:d1:d

1

6
(1,1,0,0,0,0,2,0,true)

0:t 1

1

8
(1,2,0,0,0,0,-1,0,true)

0:t 1

11
(1,2,0,0,2,1,2,2,false)

1

0:e

13
(1,2,0,0,2,2,2,2,false)

1

0:e

10
(1,2,0,0,2,1,-1,2,false)

0:t

1

0.2

15
(1,2,2,1,2,1,-1,2,false)

0.8

0:t

12
(1,2,0,0,2,2,-1,2,true)

0:t

1

0.3

17
(1,2,2,2,2,2,-1,2,true)

0.7

0:t

14
(1,2,2,1,0,0,-1,0,true)

0:t 1

1

16
(1,2,2,2,0,0,-1,0,true)

0:t 1

1

Fig. A.2 PRISM state diagram of MDPW for workflow execution specification WES22.

219

Appendix B

Experimental Data

B.1 Workflow Execution Specification WES3

A full definition of the workflow execution specification WES3 = (WS3,ES3), introduced in
Chapter 5 is given below:

Workflow specification WS3 = ((T3,<3),U3,(A3,S3,B3))

• T3 = {t1, . . . , t10}
• <3= {(t1, t2), . . . ,(t9, t10)

• U3 = {u1,u2,u3,u4,u5}
• A3 = /0
• S3 = /0,
• B3 = /0

Execution specification ES3 = ((Z3,≺3),θ3))

• Z3 = {x1, . . . ,x10,x⊥}
• ≺3= (x1, . . . ,x10,x⊥)

• θ3 is shown in the table below were an entry ui× x j = θ3(x j,xi)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1 0.93 0.99 0.85 0.87 0.91 0.84 0.95 0.86 0.97 0.99
u2 0.84 0.89 0.82 0.87 0.81 0.97 0.99 0.85 0.98 0.81
u3 0.97 0.92 0.84 0.95 0.96 0.84 0.86 0.96 0.83 0.83
u4 0.93 0.97 0.82 0.99 0.99 0.98 0.92 0.93 0.99 0.80
u5 0.97 0.88 0.94 0.83 0.93 0.84 0.93 0.87 0.82 0.88

221

Experimental Data

B.2 Workflow Execution Specification WES4

A full definition of the workflow execution specification WES4 = (WS4,ES4), introduced in
Chapter 5 is given below:

Workflow specification WS4 = (((T4,<4),U4,(A4,S4,B4))

• T4 = {t1, . . . , t5}
• <4= {(t1, t2),(t1, t4),(t2, t3),(t3, t5),(t4, t5)}
• U4 = {u1,u2,u3,u4}
• A4 = {(t1,u1),(t1,u2),(t2,u2),(t2,u3),(t3,u1),(t3,u2),(t4,u2),(t4,u4),(t5,u1),(t5,u4)}
• S4 = {(t2, t4),(t3, t4),(t4, t5)}
• B3 = {(t1, t2)}

Execution specification ES4 = ((Z4,≺4),θ4))

• Z4 = {x1, . . . ,x5,x⊥}
• ≺4= (x1, . . . ,x5,x⊥)

• θ4 is shown in the table below were an entry ui× x j = θ4(x j,xi)

x1 x2 x3 x4 x5

u1 0.96 0.83 0.72 0.72 0.71
u2 0.86 0.92 0.80 0.81 0.95
u3 0.83 0.86 0.77 0.72 0.71
u4 0.72 0.90 0.95 0.84 0.81

222

B.3 Workflow Execution Specification WES5

B.3 Workflow Execution Specification WES5

A full definition of the workflow execution specification WES5 = (WS5,ES5), introduced in
Chapter 5 is given below:

Workflow specification WS5 = ((T5,<5),U5,(A5,S5,B5))

• T5 = {t1, . . . , t10}
• <3= {(t1, t2), . . . ,(t9, t10)

• U5 = {u1,u2,u3,u4,u5}
• A5 = {(u4, t1),(u5, t1),(u1, t2),(u3, t2),(u2, t3),(u3, t3),(u5, t3),(u2, t4),

(u3, t4),(u4, t4),(u5, t4),(u1, t5),(u2, t5),(u3, t5),(u4, t5),(u1, t6),(u2, t6),

(u4, t6),(u5, t6),(u2, t7),(u4, t7),(u5, t7),(u2, t8),(u3, t8),(u1, t9),(u2, t9),

(u4, t9),(u4, t10),(u5, t10)}
• S5 = {(t1, t4),(t1, t5),(t1, t8),(t1, t10),(t2, t9),(t3, t5),(t3, t6),(t3, t7),(t3, t9),

(t4, t10),(t5, t10),(t6, t8),(t8, t9),(t8, t10),(t9, t10)}
• B5 = /0

Execution specification ES5 = ((Z5,≺5),θ5))

• Z5 = {x1, . . . ,x10,x⊥}
• ≺5= (x1, . . . ,x10,x⊥)

• θ5 is shown in the table below were an entry ui× x j = θ5(x j,xi)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1 0.93 0.99 0.85 0.87 0.91 0.84 0.95 0.86 0.97 0.99
u2 0.84 0.89 0.82 0.87 0.81 0.97 0.99 0.85 0.98 0.81
u3 0.97 0.92 0.84 0.95 0.96 0.84 0.86 0.96 0.83 0.83
u4 0.93 0.97 0.82 0.99 0.99 0.98 0.92 0.93 0.99 0.80
u5 0.97 0.88 0.94 0.83 0.93 0.84 0.93 0.87 0.82 0.88

223

Appendix C

CISO Consultations

C.1 Consultation Questions

CISO1

1. Who, if anyone, both within and outside of the organisation do you consult when
reviewing policies? (e.g., internal: your own security officers, legal representatives,
internal auditors, human resources personnel, etc.) (e.g., external: auditors, government
representatives, police, etc.)

2. What sources of information do you interact with when reviewing policies? (e.g.,
standards such as ISO or COBIT, management forums, journals, etc.?)

3. What do you do with information obtained from other sources? (e.g., is it ‘recorded’
in policy? Stored as-is within the organisation? Integrated into a knowledge base or
standardised knowledge repository for future reference?)

4. Are your policies divided into any particular categories (e.g. password policy, building
access policy)?

5. Would you consider using information security knowledge supplied by other individu-
als (i.e. security managers / security officers)? Would you trust it? What if content had
been supplied anonymously?

6. Would you consider using content that had been agreed on by the majority of commu-
nity users but which you didn’t agree with?

225

CISO Consultations

7. Specific to security controls that interact with people in your organisation, how do you
go about defining methods for evaluating the correctness and effectiveness of your
security controls (where those controls are enacted as part of your security policies)?
Do you use well-known procedures and performance metrics that can also be seen in
other organisations, or do you have scope to define your own methods and metrics for
evaluating security mechanisms? (E.g. spot checks to measure number of infractions
of a clear-desk policy, audit logs, instrumentation data, etc.)

8. How do you justify proposed security policy changes to senior management? In what
terms must controls be described in order to adequately convey to senior management
that any given security change is necessary and appropriate?

9. How is it determined that guidelines satisfy particular legal requirements, and that in
turn specific controls address the legal requirements associated with specific guidelines?

10. Do you implement any verified ‘best practices’ in information security management?
If so, how do these differ from ‘accepted standards’? I.e. do they offer a more
evidence-based approach over a ‘common sense’ approach?

11. When translating external standards/guidelines into internal policies, what is the typical
process that is followed? (E.g. simply extracting and directly copying relevant advice,
down to low-level implementation configuration details?)

12. You have stated that organisations typically converge upon similar security solutions.
How are qualities of security solutions conveyed between organisations, i.e. without
openly divulging security practices to one another or other parties?

13. Where security controls affect individuals within your organisation, do you find that
there any often many different methods for enforcing those controls? If so, what is the
process for evaluating the best approach to use? (e.g. enforcing controls in hardware
to guarantee compliance but aggravate staff vs. e-mailing staff and asking them kindly
to do as they are asked with the potentially unsatisfied hope that they will comply)

14. How regularly are security policies reviewed and changed in your organisation?

CISO2

1. Which other professions, both within and outside of the organisation, do you consult
with when reviewing policies, and for what purposes do you consult with them? (e.g.,

226

C.1 Consultation Questions

internal: your own security officers, legal representatives, internal auditors, human
resources personnel, etc.) (e.g., external: auditors, government representatives, etc.)

2. Which sources of information do you interact with when reviewing policies? (e.g.,
standards such as ISO or COBIT, management forums, journals, etc.?)

3. What do you do with information obtained from other sources? (e.g., is it ‘recorded’
in policy? Stored as-is within the organisation? Integrated into a knowledge base or
standardised knowledge repository for future reference?) .

4. Are your policies divided into any particular categories? (e.g. password policy, building
access policy)

5. How regularly are security policies reviewed and changed in your organisation?

6. Do you ever share information security management knowledge with individuals in
similar positions in other organisations? If so, how are qualities of security solutions
conveyed between organisations, i.e. without openly divulging security practices to
one another or other parties? (e.g. sharing information on how to configure password
authentication policies)

7. Would you consider using information security knowledge supplied by other individu-
als in similar positions to you in other organisations (i.e. security managers / security
officers) if it was supplied anonymously to a trusted/credible knowledge repository of
some description? If so, what guarantees would need to be made about that knowledge
for you to trust it?

8. Would you consider using management advice that had been agreed on by the majority
of the information security management community but which you didn’t agree with?
If not, why not?

9. Where you have security controls that directly affect people in your organisation, how
do you go about evaluating the correctness and effectiveness of those controls?

10. Do you use any well-known procedures and performance metrics that can also be seen
in other organisations, or do you have your own methods and metrics for evaluating
human-facing security mechanisms? (e.g. spot checks to measure number of infractions
of a clear-desk policy, audit logs, instrumentation data, etc.)

11. How do you justify proposed security policy changes to senior management?

227

CISO Consultations

12. In what terms must controls be described in order to adequately convey to senior
management that any given security policy change is necessary and appropriate?

13. Does the approach change when discussing human-facing security directives?

14. How is it determined that specific controls address the requirements of specific guide-
lines or standards of information security management?

15. Do you find that there are factors external to your decisions concerning security which
must be considered when assessing the range of solutions you can implement within
your organisation? If so, what are these factors? (e.g. financial limitations, expectations
of industry/government i.e. ‘common practices’)

16. When translating external standards/guidelines into internal policies, what is the typical
process that is followed? (e.g. extracting and directly copying relevant advice, down to
implementation details?)

17. Where security controls affect individuals within your organisation, do you find that
there any often many different methods for enforcing those controls? If so, what is the
process for evaluating the best approach to use?

C.2 Tool Evaluation Session Structure

Demonstration of tool (5∼10 minutes)

• Brief high level overview of tool layout (what is where)
• How and what content is displayed
• User-specific features - login to edit/add notes
• Editing content
• Add individual
• Add new/existing properties
• Edit individual
• Note keeping

Exploratory evaluation by participant (5∼10 minutes)

• Allow participant to add knowledge relating to human factors in information security
• Prompt the participant where appropriate to utilise some of the interface features

228

C.2 Tool Evaluation Session Structure

Q&A session (15∼20 minutes)

1. What kinds of knowledge could be recorded with this tool?

2. Are there any features of the interface that are confusing?

3. Does the knowledge structure seem clear to you?

4. Are there elements within or missing from the knowledge structure that are especially
useful for capturing your knowledge and which should be given focus within the
interface?

5. Are there any features of the interface or knowledge structure that you think would
benefit from more or less detail?

6. Were you restricted in any way from recording knowledge?

7. Would the collaboration features (notes, annotations, etc.) be useful in discussing
knowledge with peers or other stakeholders in the organisation?

8. Would you benefit from additional mechanisms for reaching consensus (e.g. voting/rat-
ing system)?

9. How could the tool give more encouragement for you to supply content?

10. Are there any elements of the interface which raise security/privacy concerns for your
organisation?

11. Are there aspects of the interface that you think might confuse some users?

12. Does available help system give enough guidance in constructing knowledge base?

13. How do you think such a tool might be used in your organisation or other organisations?

14. How would your organisation benefit from using this tool?

15. Are there any drawbacks you can see to introducing the tool into your organisation?

16. Would you benefit from extensions to the content such as costs, methods to measuring
policy success, methods of enforcing controls (i.e., behavioural controls), previous
success history and how to implement?

229

Appendix D

OWL Ontology Encoding

D.1 Security Ontology

Below is the content of an example information security ontology automatically encoded in
the Web Ontology Language (OWL) by the graphical ontology development tool described
in Chapter 7.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2−xml#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf−schema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22−rdf−syntax−ns#" >
<!ENTITY example "http://www.semanticweb.org/ontologies/2010/3/example.owl#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/3/example.owl#"
xml:base="http://www.semanticweb.org/ontologies/2010/3/example.owl"
xmlns: rdfs="http://www.w3.org/2000/01/rdf−schema#"
xmlns:owl2xml="http://www.w3.org/2006/12/owl2−xml#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns: rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns:example="http://www.semanticweb.org/ontologies/2010/3/example.owl#">

<owl:Ontology rdf:about=""/>

231

OWL Ontology Encoding

<!−− /////////////////////
//
// Object Properties
//
///////////////////////////////
−→

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#exploitedBy −→

<owl:ObjectProperty rdf :about="#exploitedBy">
<rdfs:range rdf : resource="#ProceduralThreat"/>
<rdfs:domain rdf: resource="#Vulnerability"/>

</owl:ObjectProperty>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
followsRiskApproach −→

<owl:ObjectProperty rdf :about="#followsRiskApproach">
<rdfs:domain>

<owl:Restriction>
<owl:onProperty rdf: resource="#followsRiskApproach"/>
<owl:onClass rdf : resource="#BehaviourControl"/>
<owl: qualifiedCardinality rdf :datatype="&xsd;nonNegativeInteger">1
</owl: qualifiedCardinality >

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf: resource="#followsRiskApproach"/>
<owl:onClass rdf : resource="#RiskControlType"/>
<owl: qualifiedCardinality rdf :datatype="&xsd;nonNegativeInteger">1
</owl: qualifiedCardinality >

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>

232

D.1 Security Ontology

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#hasFoundation −→

<owl:ObjectProperty rdf :about="#hasFoundation">
<rdfs:domain>

<owl:Restriction>
<owl:onProperty rdf: resource="#hasFoundation"/>
<owl:onClass rdf : resource="#ProceduralThreat"/>
<owl: qualifiedCardinality rdf :datatype="&xsd;nonNegativeInteger">1
</owl: qualifiedCardinality >

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf: resource="#hasFoundation"/>
<owl:onClass rdf : resource="#BehaviouralFoundation"/>
<owl: qualifiedCardinality rdf :datatype="&xsd;nonNegativeInteger">1
</owl: qualifiedCardinality >

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#hasVulnerability −→

<owl:ObjectProperty rdf :about="#hasVulnerability">
<rdfs:domain rdf: resource="#Asset"/>
<rdfs:domain rdf: resource="#BehaviourControl"/>
<rdfs:range rdf : resource="#Vulnerability"/>

</owl:ObjectProperty>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#managesRiskOf −→

<owl:ObjectProperty rdf :about="#managesRiskOf">
<rdfs:domain rdf: resource="#BehaviourControl"/>
<rdfs:range rdf : resource="#ProceduralThreat"/>

</owl:ObjectProperty>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#mitigatedBy −→

<owl:ObjectProperty rdf :about="#mitigatedBy">
<rdfs:range rdf : resource="#BehaviourControl"/>
<rdfs:domain rdf: resource="#Vulnerability"/>

</owl:ObjectProperty>

233

OWL Ontology Encoding

<!−− ////////////////////
//
// Data properties
//
/////////////////////////////
−→

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
threatConsequence −→

<owl:DatatypeProperty rdf:about="#threatConsequence">
<rdfs:domain rdf: resource="#ProceduralThreat"/>
<rdfs:range rdf : resource="&xsd;string"/>

</owl:DatatypeProperty>

<!−− /////////////////
//
// Classes
//
///////////////////////////
−→

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#Asset −→

<owl:Class rdf :about="#Asset">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#BehaviourControl −→

<owl:Class rdf :about="#BehaviourControl">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
BehaviouralFoundation −→

<owl:Class rdf :about="#BehaviouralFoundation">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

234

D.1 Security Ontology

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#ProceduralThreat −→

<owl:Class rdf :about="#ProceduralThreat">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#RiskControlType −→

<owl:Class rdf :about="#RiskControlType">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#Vulnerability −→

<owl:Class rdf :about="#Vulnerability">
<rdfs:subClassOf rdf : resource="&owl;Thing"/>

</owl:Class>

<!−− http://www.w3.org/2002/07/owl#Thing −→

<owl:Class rdf :about="&owl;Thing"/>

<!−− ////////////
//
// Individuals
//
//////////////////////
−→

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#capability −→

<BehaviouralFoundation rdf:about="#capability">
<rdf:type rdf : resource="&owl;Thing"/>

</BehaviouralFoundation>

235

OWL Ontology Encoding

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
make_password_easier_to_remember −→

<BehaviourControl rdf:about="#make_password_easier_to_remember">
<rdf:type rdf : resource="&owl;Thing"/>
<followsRiskApproach rdf: resource="#reduction"/>
<managesRiskOf rdf:resource="#single_password_forgotten"/>

</BehaviourControl>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#password −→

<Asset rdf:about="#password">
<rdf:type rdf : resource="&owl;Thing"/>
<hasVulnerability rdf : resource="#single_password_memorisation_difficult"/>

</Asset>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#reduction −→

<owl:Thing rdf:about="#reduction">
<rdf:type rdf : resource="#RiskControlType"/>

</owl:Thing>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
single_password_forgotten −→

<ProceduralThreat rdf:about="#single_password_forgotten">
<rdf:type rdf : resource="&owl;Thing"/>
<threatConsequence

>user temporarily without access</threatConsequence>
<hasFoundation rdf:resource="#capability"/>

</ProceduralThreat>

<!−− http://www.semanticweb.org/ontologies/2010/3/example.owl#
single_password_memorisation_difficult −→

<Vulnerability rdf :about="#single_password_memorisation_difficult">
<rdf:type rdf : resource="&owl;Thing"/>
<mitigatedBy rdf: resource="#make_password_easier_to_remember"/>
<exploitedBy rdf : resource="#single_password_forgotten"/>

</Vulnerability>
</rdf:RDF>

236

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Context
	1.1.1 Business Process Workflows
	1.1.2 Workflow Tasks
	1.1.3 Workflow Users
	1.1.4 Workflow Security Policies
	1.1.5 Chief Information Security Officers
	1.1.6 Security Policy Design
	1.1.7 Security Policy Impact

	1.2 Security Policy Impact Analysis
	1.2.1 Workflow Resiliency Metrics
	1.2.2 Ontology Development

	1.3 Research Problems
	1.4 Contributions
	1.5 Publications
	1.6 Thesis Structure

	I Metrics
	2 Workflow
	2.1 Workflow Specification
	2.1.1 Task Schema
	2.1.2 Workflow Users
	2.1.3 Security Policy
	2.1.4 Workflow Specification Definition

	2.2 Workflow Satisfiability
	2.2.1 Workflow Plans
	2.2.2 Workflow Satisfiability Problem

	2.3 Workflow Resiliency
	2.3.1 Execution Specification
	2.3.2 Workflow Execution Specification
	2.3.3 Feasible Plans
	2.3.4 Quantitative Resiliency
	2.3.5 Distance Resiliency

	2.4 Related Work
	2.4.1 Workflow Satisfiability Problem
	2.4.2 Workflow Resiliency

	2.5 Summary

	3 Generating Workflow Metrics
	3.1 Decision Making Processes
	3.1.1 Decision Making
	3.1.2 Decision Process
	3.1.3 Markov Decision Process

	3.2 Computing Workflow Metrics
	3.2.1 Workflow Markov Decision Process
	3.2.2 Workflow Metric Reward Functions
	3.2.3 Solving Workflow Markov Decision Process

	3.3 Related Work
	3.4 Summary

	4 Computer Generated Metrics
	4.1 PRISM
	4.1.1 Probabilistic Model Checking
	4.1.2 Model Checker
	4.1.3 Modelling Language
	4.1.4 Model Building and Verification

	4.2 Encoding Workflow Markov Decision Processes
	4.2.1 Workflow Specification
	4.2.2 Execution Specification
	4.2.3 Process Actions
	4.2.4 Plan
	4.2.5 Reward Functions

	4.3 Workflow Analysis
	4.3.1 Verification Properties
	4.3.2 Security Impact Analysis
	4.3.3 Computational Overheads

	4.4 Related Work
	4.4.1 Model Checking
	4.4.2 PRISM

	4.5 Summary

	5 Workflow Risk Management
	5.1 Risk Reduction
	5.1.1 Empirical Assessment of Policy Modifications
	5.1.2 Reducing Computation Time

	5.2 Risk Acceptance
	5.2.1 Workflow with Choice
	5.2.2 Resiliency with Choice
	5.2.3 Mitigation Strategy

	5.3 Summary

	II Ontologies
	6 Security Ontology
	6.1 Knowledge Management
	6.1.1 Organisational Knowledge
	6.1.2 Formalising Knowledge
	6.1.3 Knowledge Stakeholders
	6.1.4 Human Factors Knowledge

	6.2 Ontology Development
	6.2.1 Using Development Tools
	6.2.2 Collaborative Ontology Development
	6.2.3 Existing Development Tools

	6.3 Information Security Ontology
	6.3.1 Current Security Ontologies
	6.3.2 Foundation Security Ontology

	6.4 CISO Consultations
	6.4.1 Policy Review Timing
	6.4.2 Policy Review Resource Gathering
	6.4.3 Policy Creation and Modification
	6.4.4 Policy Reviews
	6.4.5 Policy Justification
	6.4.6 Policy Evaluation
	6.4.7 Sharing Policy Content
	6.4.8 Core Findings

	6.5 Summary

	7 Ontology Development Tools
	7.1 Graphical Ontology Development Tool
	7.1.1 Tool Requirements
	7.1.2 Tool Implementation

	7.2 Web-Oriented Ontology Development Tool
	7.2.1 Tool Requirements
	7.2.2 Tool Implementation
	7.2.3 CISO Tool Evaluation

	7.3 Summary

	8 Conclusion
	8.1 Research Outcomes
	8.1.1 Problem 1
	8.1.2 Problem 2

	8.2 Future Work
	8.2.1 Workflow Resiliency Analysis
	8.2.2 Ontology Development

	References
	Appendix A PRISM Encodings
	A.1 Workflow Execution Specification WES1
	A.2 Workflow Execution Specification WES21
	A.3 Workflow Execution Specification WES22
	A.4 PRISM Model State Diagrams

	Appendix B Experimental Data
	B.1 Workflow Execution Specification WES3
	B.2 Workflow Execution Specification WES4
	B.3 Workflow Execution Specification WES5

	Appendix C CISO Consultations
	C.1 Consultation Questions
	C.2 Tool Evaluation Session Structure

	Appendix D OWL Ontology Encoding
	D.1 Security Ontology

