
Least-False and Local Misspecification

Methods for Longitudinal Data with Dropout

Amal A. Almohisen

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

Newcastle University

Newcastle upon Tyne

United Kingdom

March 2017



To my parents,

The reason of what I become today.

Thanks for your great support and continues care.



Acknowledgements

I would like to express deepest gratitude to my supervisor Prof. Robin Henderson for

his full support, expert guidance, understanding and encouragement throughout my study

and research. Without his incredible patience and timely wisdom and counsel, my thesis

work would have been a frustrating and overwhelming pursuit.

I would also like to thank Dr. Jian, Prof. Shuhrat, and Dr. Arwa for helping me with

my academic research during my PhD. study.

Thanks also go to King Saud University, Statistics and OR Department and External

Joint Supervision Program staff for their support in facilitating my needs to complete my

research. Also, special thanks go to my numerous friends who helped me throughout this

academic exploration.

Finally, I would like to thank my husband, parents and sisters for their unconditional

support during the last five years; I would not have been able to complete this thesis

without their continuous love and encouragement.



Abstract

In any longitudinal study, a dropout before the final timepoint can rarely be avoided.

The chosen dropout model is commonly one of these types: Missing Completely at Ran-

dom (MCAR), Missing at Random (MAR), Missing Not at Random (MNAR) and Shared

Parameter (SP). In this thesis, we present methods to estimate the longitudinal model

parameters under a variety of different dropout models. These methods are Complete

Case analysis (CC), Observed data analysis (Obs), Inverse Probability Weighted estimat-

ing equations (IPW), Linear Mixed Effect models (LME), Linear Increment models (LI)

and Last Observation Carried Forward (LOCF). We estimate the parameters of the longi-

tudinal model under MCAR, MAR, MNAR and SP for both simulated data and real data

assuming two and three timepoint examples. We show that all methods work under the

MCAR model as expected. Also, the LI method give consistent estimate under the SP

model. The IPW and LME give consistent estimate under MAR, while no method work

under MNAR.

We investigate the consequences of misspecifying the missingness mechanism by deriv-

ing the so called least false values. These are the values the parameter estimates converge

to, when the assumptions may be wrong. This constitutes the central part of the thesis.

In order to calculate the least false values, we use the approximation to the extended skew

normal distribution (ESN) as produced in Ho et al. [2012]. We give closed form expressions

to calculate the least false values β∗3 and β∗4 for LI, CC and LME methods. For the IPW,

we provide a closed form for β∗3 under SP, MAR and MNAR while for β∗4 we failed to find

closed form under MNAR and we use a numerical calculation instead. The knowledge of

the least false values allows us to conduct sensitivity analysis which will be illustrated.

This method provides an alternative to a local misspecification sensitivity procedure

which has been developed for likelihood-based analysis. The LME method is a likelihood

based method, and this idea can be also adapted for the IPW estimating equation ap-

proach. We compare the results obtained by our method with the results found by using

the local misspecification method. We show that Copas and Eguchi [2005] method and

LME least false match very well. Both gave very close results. This suggests that our least

false method can provide a credible alternative to Copas and Eguchi in sensitivity anal-

ysis. In fact it might be preferred since there is no assumption of local misspecification.

Moreover, we apply the local misspecification and least false methods to estimate the bias

and sensitivity for two real data examples with two timepoint and three timepoint data.

We show how the IPW method is much more sensitive to misspecification than the LME

method.
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Chapter 1

Introduction

The problem of analyzing incomplete longitudinal data has been tackled by many au-

thors. Some of the early references include Wu and Carroll [1988], Heyting et al. [1992],

Diggle and Kenward [1994] and Schluchter [1992]. Earlier work on missing measurements

was largely focused on forming algorithms for computational solutions (Afifi and Elashoff

[1966]), but data imputation with the aid of powerful computers has compacted the prob-

lem to some extent. For later methodologies like the expectation-maximization (EM) see

Dempster et al. [1977]. In this thesis, we discuss the concept of missing data mechanisms

and present some methods to handle longitudinal data with dropout. The dropout model

is commonly one of the following types: Missing Completely at Random (MCAR), Miss-

ing at Random (MAR), Missing Not at Random (MNAR) and Shared Parameter (SP)

as introduced by Little and Rubin [2002] for the first three types and Follmann and Wu

[1995] for shared parameter model. We will consider six general strategies for handling

missing data : 1) Complete Case analysis (CC), 2) Observed data analysis (Obs), 3) In-

verse Probability Weighted Estimating Equations with Missing at Random Assumption

(IPW), 4) Linear Mixed Effect models (LME), 5) Linear Increment models (LI) and 6)

Last Observation Carried Forward (LOCF). In Chapter 2, we estimate the parameters of

the longitudinal model under MCAR, MAR, MNAR and SP for both simulated data and

real data assuming, for simplicity, that there are only either two or three scheduled mea-

surements times. We will refer to these as two timepoint and three timepoint situations

respectively.

Next, we investigate the consequences of misspecifying the missingness mechanism by de-

riving the so called least false values (see Claeskens and Hjort [2008]). These are the

values the parameter estimates converge to, when the assumptions may be wrong. This

constitutes the central part of the thesis. We describe this method in detail for the Linear

Increment method (LI) in Chapter 3, to see the performance under shared parameter,

MAR and MNAR dropout models. Then, in Chapter 4, we apply the same procedure

to investigate the IPW method. In Chapters 5 and 6 we investigate the CC and LME

methods respectively. We adopt the procedures used by Diggle et al. [2007] and Ho et al.
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Chapter 1. Introduction

[2012] to our setting in order to calculate the least false values.

The knowledge of the least false values allows us to conduct sensitivity analysis which will

be illustrated in Chapters 7 and 8. Copas and Eguchi [2005] give a formula to estimate

the bias under such misspecification using a likelihood approach. Their method is called a

local misspecification sensitivity procedure. The LME is a likelihood based method, and

this idea can be also adapted for the IPW estimating equation approach. We compare the

results obtained by our method with the results found by using the local misspecification

method. Moreover, we apply the local misspecification and least false methods to estimate

the bias for two real data examples.

1.1 Assumptions

Longitudinal data is defined as information on a set of individuals that is collected at mul-

tiple follow up times. The statistical analysis aims to model the evolution of the response

variable Y and investigate the relationship with the covariates.

Suppose there are n individuals in a study and each provides longitudinal responses Y and

dropout information R. Generally we will assume a linear model for Y (in the absence of

dropout) and logistic models for the probability of continuing to the next timepoint t+ 1

given that a subject is still under observation at time t. At times we will refer to a true

or generating model as the way in which data are obtained, and to an assumed or fitting

model as that chosen by the analyst for estimation.

For simplicity in this work, we will assume there are either two or three observations or

treatment periods. The methods are of course more general.

For the most parts we will consider the simple case for either two or three timepoints.

Assume to begin with that there are just two scheduled measurements. At time 1, there is

a measurement provided for all subjects, denoted Yi1 for subject i. Then at time 2 some

subjects drop out before measurement. Let Ri=1 indicate that we have a measurement

at time 2 and Ri=0 otherwise. Let Yi=(Yi1, Yi2)T and assume E[Yi]=xiβ where β is a

parameter vector of dimension p and xi is the design matrix associated with subject i,

which is of dimension 2× p. Our standard model assumes just one covariate and is:

Y1i = βG1 + βG2 xi + Ui + ε1i

Y2i = βG3 + βG4 xi + Ui + ε2i

 Yi = xiβ
G + Ui1 + εi, (1.1)

where Yi =

(
Y1i

Y2i

)
, xi =

(
1 xi 0 0

0 0 1 xi

)
, βG = (βG1 , β

G
2 , β

G
3 , β

G
4 )T , 1 =

(
1

1

)
,

2



Chapter 1. Introduction

εi =

(
ε1i

ε2i

)
, and xi ∼ N(0, σ2

x) Ui ∼ N(0, σ2
U ), ε1i ∼ N(0, σ2

ε1i), ε2i ∼ N(0, σ2
ε2i).

Also we have i = 1, . . . , n and the superscript G is used to indicate the true generating

values. All subjects are observed at time 1, but some may dropout by time 2.

At times, we will write

Y1i = βG1 + βG2 xi + Z1i

Y2i = βG3 + βG4 xi + Z2i

 Yi = xiβ
G + Zi, (1.2)

where Zi1 ∼ N(0, σ2
1), Zi2 ∼ N(0, σ2

2) and corr (Zi1, Zi2) = ρ. Clearly ρ = σ2
U/σ1σ2,

σ1 =
√
σ2
U + σ2

ε1 and σ2 =
√
σ2
U + σ2

ε2 .

We will also consider three timepoints. At time 1, there is a measurement provided for

all subjects, denoted Yi1 for subject i, and then at time 2 some subjects drop out before

this measurement. Let R1i=1 indicate that we have a measurement at time 2 and R1i=0

otherwise. Then, if a subject provides a measurement at time 2 let R2i=1 indicate that we

have a measurement at time 3 and R2i=0 otherwise. Let Yi=(Yi1, Yi2, Yi3)T and assume

E[Yi]=xiβ where β is the p dimension parameter vector and xi is now a 3 ×p design ma-

trix associated with subject i. Usually, as above, we have a single covariate and so p = 2,

including the intercept term.

1.2 Mechanisms of Missingness

Returning to the general case, the influence of missing data depends on the missingness

mechanism, that is the probability model for missingness. Knowing the reason for the

missingness is obviously helpful to handle missing data. We consider four general miss-

ingness mechanisms as introduced in Little and Rubin [2002] and Wu and Carroll [1988].

Assume Ri to be a response indicator vector for the ith subject so that Rij=1 if Yij is ob-

served, Rij=0 if Yij is missing, where i and j refer to the jth observation for the ith subject.

We partition the complete data vector Yi = (YiO, YiM ) into those observed components,

YiO, and those that are not observed YiM . Note that in the case of dropout then once

a value is missing then so too are all later ones (monotone dropout). In this case

R = (1, 1, · · · , 1, 0, 0, . . . , 0)T . The alternative is intermittent missingness which allows

observation to resume after missingness occurs. In this thesis we will concentrate on

monotone dropout.

As in Bell and Fairclough [2013], we suppose there are n independent patients with m
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scheduled measurements, and mi ≤ m observed values for patient i which means we ini-

tially assume that all patients are observed. Let xi represent covariates (such as treatment

assignment). Without loss of generality, we can exclude xi in the notation at times. Then

the likelihood of the complete data is f(YO, YM , R)=f(YO, YM )f(R|YO, YM ) and of the

observed data is

f(YO, R) =

∫
f(YO, YM )f(R|YO, YM )dYM . (1.3)

1.2.1 Missing completely at random dropout model (MCAR)

A variable is missing completely at random if the probability of missingness does not

depend on outcomes Y , either YO or YM . For example, if each participant decides if he

or she will answer for instance an education level question by flipping a coin and refusing

to answer if a head shows up. If data are missing completely at random, then removing

those cases with missing data does not influence or bias inferences. Formally, data are

MCAR if

P (Rij = 1|YiO, YiM , xi) = P (Rij |xi)

so that the missingness is unrelated to the response data, whether its values are observed

or are not observed. The missingness can depend on xi. In terms of (1.3), under MCAR

we have f(R|YO, YM )=f(R) and so f(YO, R)=f(R)
∫
f(YO, YM )dYM=f(R)f(YO). If there

are no shared parameters in f(R) and f(YO) we can ignore f(R) and estimate from f(YO)

for the observed data only, without loss, except perhaps in efficiency.

The MCAR model that we will assume for the two timepoints example will be

πi(θ) = P (Ri = 1|Y1i, Y2i) =
eθ0

1 + eθ0
= expit(θ0) (1.4)

where where, in general expit(z) = ez/(1 + ez). As used, Ri is an indicator of observation

(Ri = 1) or dropout (Ri = 0) at time 2. We have a similar model for three timepoints,

with two potential missing values.

1.2.2 Missing at random dropout model (MAR)

Missing at random occurs when the probability of dropout depends on what available

information there is. Thus, for any survey, if all the subjects answer such questions as

sex, age, earnings, and ethnicity, then a response is considered missing at random if on

answering a question such as education, the probability of not answering this question

depends only on the other fully recorded variables.

In our case, data are MAR if P (Rij = 1|YiO, YiM , xi)=P (Rij |YOi, xi), hence the dropout

4
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may depend on observed values. Turning to (1.3), under MAR we have

f(YO, R) =

∫
f(YO, YM )f(R|YO)dYM

= f(R|YO)

∫
f(YO, YM )dYM

= f(R|YO)f(YO).

Hence the joint density of observables can be modelled correctly. Again, if there are no

shared parameters then we can ignore f(R|YO) and estimate consistently from f(YO) using

maximum likelihood. Seaman et al. [2013] distinguish between realised MAR and every-

where MAR. The first means P (Rij = r|YiO, YiM )=P (Rij = r|YOi) for the particular r

seen in the data. The second means P (Rij |YiO, YiM )=P (Rij = r|YOi) for every possible

R. The second is a much stronger assumption. Mealli and Rubin [2015] make a similar

point.

For simplicity in our investigations, we assume that the parameters are common between

timepoints. Furthermore, we assume that Y1 does not affect the probability of dropout

after time 2. Both assumptions can be relaxed if necessary. Let the dropout parameters

θM = (θM0 , θM1 ). At the two timepoints situation, the MAR dropout logistic model is:

πi(θ
M ) = P (Ri = 1|Y1i, Y2i) =

eθ
M
0 +θM1 Y1i

1 + eθ
M
0 +θM1 Y1i

= expit(θM0 + θM1 Y1i) (1.5)

And the three timepoints MAR version is

p1i(θ
M ) = P (R1i = 1|Y1i, Y2i, Y3i) = eθ

M
0 +θM1 Y1i

1+eθ
M
0 +θM1 Y1i

= expit(θM0 + θM1 Y1i)

p2i(θ
M ) = P (R2i = 1|Y1i, Y2i, Y3i, R1i = 1) = eθ

M
0 +θM1 Y2i

1+eθ
M
0 +θM1 Y2i

= expit(θM0 + θM1 Y2i)


(1.6)

Note that we have used p(.) for continuation probability, because in general this is condi-

tional on not previously dropping out. The unconditional observation probabilities are

π1i(θ) = p1i(θ) and π2i(θ) = p1i(θ)× p2i(θ).

1.2.3 Missing not at random dropout model (MNAR)

The missingness is called missing not at random, if it depends on unrecorded information

which predicts the missing values. An example is that a patient was unsatisfied with a

particular treatment thus this patient is more likely to quit the study. This missingness

is not at random (unless that feeling of to be unsatisfied, is measured and observed for all

patients). If missingness is not at random, we expect some bias in inferences.
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Notationally, the missingness depends on YM , i.e. P (Rij = 1|YiO, YiM , xi) 6= P (Rij =

1|YOi, xi). Under MNAR, there is no simplification of (1.3) and so sometimes MNAR

is also known as non-ignorable. Models can be true, but the observed data alone is not

enough to check the model.

Let the dropout parameters be θMN = (θMN
0 , θMN

1 ). The MNAR version for the two

timepoints example is the logistic model:

πi(θ
MN , θMN

2 ) = P (Ri = 1|Y1i, Y2i) =
eθ
MN
0 +θMN

1 Y1i+θ
MN
2 Y2i

1 + eθ
MN
0 +θMN

1 Y1i+θMN
2 Y2i

= expit(θMN
0 + θMN

1 Y1i + θMN
2 Y2i). (1.7)

And for the three timepoints example, our MNAR logistic model is:

p1i(θ
MN , θMN

2 ) = P (R1i = 1|Y1i, Y2i.Y3i) = eθ
MN
0 +θMN

1 Y1i+θ
MN
2 Y2i

1+eθ
MN
0 +θMN

1 Y1i+θ
MN
2 Y2i

= expit(θMN
0 + θMN

1 Y1i + θMN
2 Y2i)

p2i(θ
MN , θMN

2 ) = P (R2i = 1|Y1i, Y2i.Y3i, R1i = 1) = eθ
MN
0 +θMN

1 Y2i+θ
MN
2 Y3i

1+eθ
MN
0 +θMN

1 Y2i+θ
MN
2 Y3i

= expit(θMN
0 + θMN

1 Y2i + θMN
2 Y3i)


(1.8)

Again,

π1i(θ) = p1i(θ, θ2) and π2i(θ, θ2) = p1i(θ, θ2)× p2i(θ, θ2).

1.2.4 Shared parameter dropout model (SP)

In shared parameter models a random effect U is shared between the repeated measures

model and the missing data mechanism model, where U is an unobserved subject spe-

cific random effect. The shared parameter dropout logistic model for the two timepoints

example is defined as:

P (Ri = 1|Y1i, Y2i, Ui) =
eθ
SP
0 +θSP1 Ui

1 + eθ
SP
0 +θSP1 Ui

= expit(θSP0 + θSP1 Ui). (1.9)

Typically Ui will affect the distributions of Y1i and Y2i also.

Similarly, the shared parameter dropout logistic model for three timepoints example will

be:

P (Ri = 1|Y1i, Y2i, Y3i, Ui) =
eθ
SP
0 +θSP1 Ui

1 + eθ
SP
0 +θSP1 Ui

= expit(θSP0 + θSP1 Ui). (1.10)
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Chapter 1. Introduction

We use θSP , θM and θMN to denote values under SP, MAR and MNAR respectively.

1.3 Thesis Outline

The structure of the thesis is as follows. Having introduced the missing data mechanisms,

we consider four dropout models: MCAR, MAR, MNAR and SP in subsequence chapters.

In Chapter 2, we will explore six dropout modelling methods: CC, Obs, IPW, LME, LI

and LOCF. We will estimate the regression parameters for both simulated and real data

using each of the methods under different dropout models, then in the following chapters

we will study some of them in more detail. In Chapter 3, we will see how the LI method

performs under SP, MAR and MNAR dropout by calculating the least false values. The

performance and the least false values of IPW, CC and LME methods under different

dropout modelling will be discussed and calculated in Chapters 4, 5 and 6 respectively. In

Chapter 7, we will conduct a sensitivity analysis to see the effect of local misspecification

of the dropout model when using the LME method under the MAR assumption. We will

compare our results found by using the least false method with the local misspecification

method as introduced by Copas and Eguchi [2005]. We will apply both methods on

simulated and real data examples with two and three timepoints. A similar sensitivity

analysis will be used in Chapter 8 for the IPW method. Chapter 9 will sum up the most

important ideas expressed in the thesis and will give some suggestions for further work.

7



Chapter 2

Dropout Modelling

2.1 Introduction

In this chapter we will consider six general strategies for handling missing data : 1)

Complete Case Analysis (CC), 2) Observed Data Analysis (Obs), 3) Inverse Probability

Weighted Estimating Equations with Missing At Random Assumption (IPW), 4) Linear

Mixed Effect models (LME), 5) Linear Increment models (LI) and 6) Last Observation

Carried Forward (LOCF). We define each method and illustrate how to apply it to estimate

longitudinal model parameters under dropout. In this chapter, we focus on comparing the

results obtained under the dropout models mentioned in the Introduction. These models

are MCAR, MAR, MNAR and SP. All of the methods are compared using simulated and

real data with two timepoints or three timepoints. The most used references here are for

example Diggle et al. [2007], Fitzmaurice et al. [2012] Matthews et al. [2012] and Philipson

et al. [2008].

2.2 Methods of Analysis

2.2.1 Complete Case analysis (CC)

By definition, a Complete Case analysis method includes only complete cases with all

measurements recorded. This approach is simply based on excluding the units that have

missingness at any timepoints. The analysis involves only those individuals who have all

the measurements at all the timepoints from the baseline to the endpoint and also have

observed values for all relevant covariates, see Carpenter and Bartlett1.

We can analyse any data set, and most software provides such analysis routines if we ig-

nore all those cases whose response was not recorded for at least one of the measurements

on an intended occasion. Since the remaining observations have a complete record for

all the intended data, we call it Complete Case analysis. This of course results in loss of

1J. Carpenter and J. Bartlett. Simple ad-hoc methods for coping with missing data. Web-site. URL
http://missingdata.lshtm.ac.uk. [Accessed: 2016-09-02].
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Chapter 2. Dropout Modelling

information as the estimation is for the individuals with complete records and no effort

is made to estimate the dropout mechanism. It may result in biased or unbiased results.

When the observations are missing MCAR we can exclude any number of observations

and the estimation procedures are unbiased. Indeed, in the no missingness situation, an

estimator should be consistent, then the derived complete case analysis is consistent only

if MCAR is valid, (Molenberghs et al. [2004]).

This type of analysis provides a number of advantages. A clear advantage is its easy appli-

cation and it is simple to describe and therefore any software will be able to handle it since

it comes with no missing data. Also, as another advantage, this type of analysis provides

valid results in the case of MCAR. However, this method has its own disadvantages, ex-

cluding individuals with incomplete data may result in the loss of statistical power due to

inefficient estimates. First, there is often huge loss of information. For example, suppose

there are 20 measurements, with 10% of missing data on each measurement. Further,

assume that, on the different measurements, the missingness is independent; then, the

estimated percentage of incomplete observations is as high as 87%. This may result in

huge impact on both precision and power. Even though the reduction of the number of

complete cases will be less severe in the settings that have correlated missingness indica-

tors, the loss of information will usually militate against a complete case analysis. Second,

when the missingness mechanism is MAR instead of MCAR, a severe bias is possible.

2.2.2 Observed Case analysis (Obs)

Observed Case analysis uses as large as possible set of available data to estimate param-

eters. The approach is to exclude units with no data at all intended occasions. This

approach provides an estimation procedure for all observed subjects, hence we do not use

the dropout probabilities in this analysis. For example, one longitudinal study with Ob-

served Case analysis will include all individuals who have any observed responses at any

scheduled timepoint. This type of analysis is easy to implement and provides valid results

in the case of MCAR. Otherwise, the analysis may again produce biased estimates. Some

references call this type of analysis available case analysis, see for instance Gelman and

Hill [2007].

2.2.3 Last Observation Carried Forward (LOCF)

The Last Observation Carried Forward method is applied in the case when longitudinal

measurements are observed for each individual. The LOCF method assumes the same

value for all the subsequent missing values based on the last available response. The

procedure is to carry forward the last observed value or in other words to take the last

observed response and substitute that value into all subsequent missing values. This al-

9
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lows us to pretend that the data are complete since the missing values are filled in, see

Carpenter and Bartlett2. For example, in the two timepoints case, let Y Ri=(Yi1, Yi2) if

Ri=1 and Y Ri=(Yi1, Yi1) if Ri=0.

The LOCF method could incur problems if early dropouts occur and if the response

variable has expected changes over time. It can provide biased treatment comparisons if

there are different rates of dropout at different times. Diggle et al. [2007] noted that there

are several weakness of the LOCF method, for example imputing fixed values at best means

ignoring the random variation. One way to fix this disadvantage is hot deck imputation

which works by sampling those values who dropped out later from a distribution. This

distribution could be an empirical distribution or a distributional model. For more details

see Rubin [1987]. The LOCF method is easy to use and has been adopted in many

applications and disciplines, such as in pharmaceutical trials, despite the valid criticism it

attracted. In general, LOCF is not a recommended method, (Molenberghs et al. [2004]).

2.2.4 Linear Mixed Effect (LME)

A statistical model containing fixed effects and random effects is called a mixed effect

model. These models have been shown to be effective in many disciplines in the biologi-

cal, physical, and social sciences. Usually a linear form is assumed.

Diggle et al. [2007] gave a definition of the response Y in the LME model which is of the

form: (
measured

response

)
=

(
covariate

effects

)
+

(
random

effects

)
+

(
measurement

error

)
.

For example a simplified version of the Laird and Ware [1982] mixed model approach

for longitudinal data would include a random effect in the intercept term in a model for

responses. If Yij is the response at time j on subject i, the model is

Yij = µij + Ui + εij

where µij is the marginal mean, which will usually be a linear function of covariates, εij is

independent Gaussian noise, and Ui is a realisation of a zero mean scalar Gaussian random

variable. Since Ui has zero mean, the marginal mean of Yij remains µij after integrating

out Uij . But since Ui is common to all j, we get dependence between observations on the

same subject. For example if Ui is positive then all values would tend to be above the

marginal mean and so on.

More complex models, with vectors of random effects, can be used to describe both more

2J. Carpenter and J. Bartlett. Simple ad-hoc methods for coping with missing data. Web-site. URL
http://missingdata.lshtm.ac.uk. [Accessed: 2016-09-02].
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complex correlation structures and subject specific covariate effects. A good example is

when trends in time vary between subjects, in which case we might have

Yij = µij + U1i + U2itj + εij .

Here (U1i, U2i) is bivariate Gaussian. In the context of longitudinal data, some reviews of

linear mixed models can be found in Cnaan et al. [1997] and Molenberghs and Verbeke

[2001].

2.2.5 Linear Increments (LI)

Under this approach, the assumption is that increments in responses follow linear models

and the within subject random effects have a martingale structure. This method is used

for processes when we assume the parameter β to vary with time, which is the parameter

in the linear predictor for the mean. However it can give estimates in the case of time

constant parameters too. We will describe the rationale for this approach for the two and

three treatment situations. This will be discussed in more detail in the next chapter. A

simple special case is considered here.

• For two timepoints case:

First, suppose the models for the first and second time response are respectively:

Yi1=µi1 + Ui + εi1 , where µi1=β1 + β2xi, Yi2=µi2 + Ui + εi2, where µi2=β3 + β4xi.

We can rewrite as:

Yi1=β1 + β2xi + Ui + εi1, Yi2=β3 + β4xi + Ui + εi2

Now let Di=Yi2−Yi1. Then we have the increment: D1i=(β3−β1)+(β4−β2)xi+ε
∗
i1,

where ε∗i1=εi2 − εi1.

If we set β3 − β1=γ1 and β4 − β2=γ2, then E(D1i)=E [γ1 + γ2xi], which means we

need to estimate the regression coefficients γ̂1 and γ̂2.

• For the three timepoints case, in addition to what was defined for the two timepoints

case, define D2i=Yi3 − Yi2 The model for the third time response might be:

Yi3=β5 + β6xi + Ui + εi3.

Then we have the increments: D1i=γ1 + γ2xi + ε∗i1 , and D2i=γ3 + γ4xi + ε∗i2,

where ε∗i2=εi3 − εi2, and γ3=β5 − β3 , γ4=β6 − β4.

Then E(D2i)=E [γ3 + γ4xi] which means we need to find the estimated regression

coefficients γ̂1, γ̂2, γ̂3 and γ̂4.

Diggle et al. [2007] showed that a model for the response Y can be defined generally in

terms of linear models on its increments. A full model for this approach will be discussed

in the next chapter. Thereafter, Elgmati et al. [2010] extended the work of Diggle et al.

[2007] within the setting of generalized estimating equations.

One of the most important assumptions of the LI approach is that the residuals ε∗ij follow

a martingale structure, in other words E[ε∗ij |Wj ] = 0 where Wj denotes the history of all
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observations up to time j. There are no further assumptions on the ε∗ij , i.e. there is no

assumption of Gaussian or other distribution, and no requirement for common variance

between or within individuals according to Farewell [2006].

Diggle et al. [2007] state that ”However, the martingale residuals do impose a condition

on the mean of their distribution given their past. This single condition, of unbiased

estimation of the future by the past, is sufficiently strong to be easily dismissed in many

application areas though we note that this can often be overcome by suitable adjustment

of the linear model”.

2.2.6 Inverse Probability Weighted Estimating Equations with MAR

assumption, IPW-MAR

In this method, the assumptions required are a linear model for the mean and a paramet-

ric model for dropout probability. The general idea is to construct weights for complete

cases in order to reduce or remove bias. The sample is divided into subgroups. Each

subgroup includes those individuals with the same baseline and similar response pattern.

Rotnitzky et al. [1998] introduced a weighting method under the MAR assumption to

correctly analyse a generalized estimating equation (GEE). We assume E[Yij |xij ]=xijβ,

where i = 1, . . . , n and j = 1, 2 (in case we have two timepoints) or j = 1, 2, 3 (in case we

have three timepoints) .

First, consider the two timepoints case:

The assumed model is MAR, which is defined in equation (1.5) in the Introduction, ignor-

ing the superscripts, is: πi(θ)=P (R = 1|Yi1, Yi2) = eθ0+θ1Yi1

1+eθ0+θ1Yi1
.

We fit the assumed model by logistic regression. So we choose θ̂ =

(
θ̂0

θ̂1

)
to solve

1

n

∑{
Ri
πi(θ)

− 1−Ri
1− πi(θ)

}( ∂πi
∂θ0
∂πi
∂θ1

)
= 0.

For complete data, we would estimate the parameter β by solving the GEE

n∑
i=1

{xTi1(Yi1 − xi1β) + xTi2(Yi2 − xi2β)} = 0. (2.1)

When data are MCAR, there is consistent estimation of β using only the observed data. As

previously, Ri is the indicator of the observation at time 2, so if individual i was observed

at time 2 thus Ri=1 and Ri=0 otherwise. Then the observed data GEE is

n∑
i=1

{xTi1(Yi1 − xi1β) +Rix
T
i2(Yi2 − xi2β)} = 0. (2.2)
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If the data are MAR an alternative GEE is

n∑
i=1

Ri
πi(θ)

{xTi1(Yi1 − xi1β) + xTi2(Yi2 − xi2β)}+ (1− Ri
πi(θ)

)φ1(YiO) = 0. (2.3)

Here, φ1(YiO) is a vector with the same dimension as β to be chosen by the analyst. This

will give consistent estimates of β and is called the inverse probability weighted GEE.

Determining the correct φ1 is quite difficult, therefore as suggested in Robins et al. [1995]

we will assume φ1 = 0.

When data are MNAR, the dropout model here is equation (1.7) which is defined in the

Introduction. Recall

πi(θ, θ2) = P (R = 1|Yi1, Yi2) =
eθ0+θ1Yi1+θ2Yi2

1 + eθ0+θ1Yi1+θ2Yi2
.

Thus it is clear that P (Ri = 1|Yi1, Yi2) depends on Yi2 and the estimation of π(θ, θ2)

is not straightforward because some of the Yi2 are missing and these are needed for the

estimation procedure. Since the estimation of θ2 is so difficult, a two stage sensitivity

analysis is recommended by Robins et al. [1995]. These authors suggested first to estimate

the dropout parameters (θ0, θ1) for a specified value of θ2, by for example the solution θ̂,

of
n∑
i=1

{1− Ri
πi(θ, θ2)

}πi(θ)

(
1

Yi1

)
= 0 (2.4)

where

πi(θ, θ2) = P (Ri = 1|Y1i, Y2i) =
eθ0+θ1Y1i+θ2Y2i

1 + eθ0+θ1Y1i+θ2Y2i
.

In the second step, the estimate of β can be obtained by solving (2.3) with πi(θ) replaced

by πi(θ̂, θ2). The influence on inference about β̂ can be monitored by repeating this pro-

cedure through a range of plausible values of θ2.

Note that when data are MAR there is a closed form for the estimator:

β̂ =

(
n∑
i=1

Ri

π(θ̂, θ2)
{xTi1xi1 + xTi2xi2}

)−1

×

(
n∑
i=1

Ri

π(θ̂, θ2)
{xTi1Yi1 + xTi2Yi2}

)
(2.5)

Now, consider the three timepoints case. The observation probabilities are:

P (Ri1 = 1|Yi1, Yi2) =
exp(θ0 + θ1Yi1 + θ2Yi2)

1 + exp(θ0 + θ1Yi1 + θ2Yi2)

P (Ri2 = 1|Yi2, Yi3) =
exp(θ0 + θ1Yi2 + θ2Yi3)

1 + exp(θ0 + θ1Yi2 + θ2Yi3)

and a similar method applies as in the two timepoints case. Obviously, this can be gener-

alised to more than three timepoints.
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2.3 Simulations

We demonstrate the different estimation methods in two simulation studies, two timepoints

and three timepoints examples. For each set of parameters we consider sample sizes of

250, 500, and 1000. We simulate MCAR, MAR, MNAR and SP.

2.3.1 Two timepoints simulated data

For each of n =250, 500, and 1000 we took 100 simulations from the model as follows. First

we generated a scalarN(0, 1) variable x, then we generated the longitudinal means µ1=β1+

β2x, µ2=β3 +β4x. This was followed by (Y1, Y2) from a bivariate normal distribution with

mean (µ1, µ2), common variance σ2=σ2
1=σ2

2 and correlation ρ obtained through a shared

parameter U . Missingness for MCAR, MAR and MNAR was generated from the logistic

model:

π(θ, θ2) = P (R = 1|Y1, Y2) =
eθ0+θ1Y1+θ2Y2

1 + eθ0+θ1Y1+θ2Y2

where θ = (θ0, θ1).

Missingness for SP was generated from the logistic model:

π(θ) = P (R = 1|Y1, Y2) =
eθ0+θ1U

1 + eθ0+θ1U
.

We used σ2=1, ρ=0.5, β=(−2,−2,−1,−1). For missing completely at random (MCAR)

we took θ=(1.1, 0) and θ2=0, which gave 25% missingness. Results are presented in Table

2.1. And we also took θ=(0, 0) and θ2=0, which gave 50% missingness, result are shown

in Table 2.2. For missing at random (MAR) we used θ=(2.5, 0.5) and θ2=0, which gave

25% missingness, in Table 2.3, and θ=(1, 0.5) and θ2=0, which gave 50% missingness,

presented in Table 2.4. For missing not at random (MNAR) we used θ = (1.5, 0) and

θ2=0.5, which gave 25% missingness and we used θ = (0.5, 0) and θ2=0.5, which gave

50% missingness. Results are shown in Table 2.5 and 2.6 respectively. Finally, for SP we

used θ = (1, 1), which gave 25% missingness and we used θ = (0, 0.7), which gave 50%

missingness. Results are shown in Tables 2.7 and 2.8 respectively.

Table 2.1 shows the result at 25% missingness. All methods except LOCF seem to work

as we see there is no bias. The LOCF method has bias as (β3, β4) differers from (β1, β2)

meaning that carrying forward Y1 in place of missing Y2 is a mistaken strategy. The stan-

dard errors get smaller as the sample size increases for all the methods. Also, β1 and β2

generally have smaller standard errors than β3 and β4 at any sample size except for the

CC method, where β1, β2, β3 and β4 all have about the same standard errors at each

sample size. The CC and IPW methods often have higher standard error than the other

methods. Note that CC and Obs give the same results for β3 and β4, as both are based

on the available data at time 2. The methods differ at time 1, where the observed data
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method makes use of the first time observations for subjects who subsequently drop out,

whereas CC does not.

Table 2.2 shows the result at 50% missingness. Similar to the previous result, there is no

evidence of bias except for LOCF method. The IPW results have smaller standard errors

than in Table 2.1. Again CC and IPW tend to have higher standard errors than the other

methods.

Table 2.3 shows results under 25% MAR missingness. For the estimates of β3 and β4 we see

considerable upward bias under CC and Obs methods (β3 and β4 tends to be larger than

the true values), some downward bias under LI and LOCF (β3 and β4 tends to be smaller

than the true values), but no bias under IPW and LME, which are both consistent pro-

cedures under MAR dropout. Standard errors are typically similar to Table 2.1 for MCAR.

The reason for the upward bias under CC and Obs is that we have parametrised so that

θ1 = 0.5, meaning high values of Y1 lead to high continuation probabilities. Thus the

observed data contain higher than usual values. For LI on the other hand the estimates at

time 2 are based on the differences Y2 − Y1, for completers. Having higher than expected

Y1 for completers leads to lower than expected differences and negative bias. For LOCF,

the Y1 values of dropouts tend to be low, and extrapolating these to the second timepoint

again leads to negative bias.

Table 2.4 has results for MAR with 50% missingness. The upward bias for CC and Obs

is more severe as is the downward bias for LI and LOCF. Standard errors are higher, and

again there is particular instability for IPW.

Table 2.5 shows results under 25% MNAR missingness. We see considerable upward bias

for β3 and β4 under all methods except under LOCF, for which there is downward bias.

Standard errors are typically similar to Table 2.1 for MCAR.

Table 2.6 has results for MNAR with 50% missingness. The upward bias for CC, Obs,

IPW and LME is again more severe as is the downward bias for LOCF. Standard errors

are higher.

Table 2.7 shows results under 25% SP missingness. All methods give consistent estimates

for β2. All methods except LOCF give consistent estimates for β4. For β3 we see consid-

erable upward bias under all methods except under LOCF where there is downward bias,

but no bias under LI, which is a consistent procedure under SP dropout. Standard errors

are typically similar to Table 2.1 for MCAR.

Table 2.8 has results for SP with 50% missingness. The upward bias for CC, Obs, IPW
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and LME is more severe as is the downward bias for LOCF as expected. Standard errors

are higher.
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Table 2.1: MCAR with 25% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1 = -2 -1.95 -1.99 -1.96 -1.99 -1.99 -1.99

(0.13) (0.06) (0.12) (0.06) (0.06) (0.06)
β2 = -2 -1.99 -2.01 -1.99 -2.01 -2.01 -2.01

(0.14) (0.07) (0.14) (0.07) (0.07) (0.07)
β3 = -1 -0.96 -0.96 -0.96 -0.97 -0.99 -1.75

(0.11) (0.11) (0.11) (0.11) (0.13) (0.07)
β4 = -1 -0.98 -0.98 -0.98 -0.99 -1.01 -1.79

(0.15) (0.15) (0.15) (0.14) (0.14) (0.08)
n=500 β1 = -2 -2.01 -2.00 -2.01 -2.00 -2.00 -2.00

(0.09) (0.05) (0.08) (0.05) (0.05) (0.05)
β2 = -2 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

(0.10) (0.06) (0.10) (0.06) (0.06) (0.06)
β3 = -1 -1.01 -1.01 -1.01 -1.01 -1.00 -1.78

(0.08) (0.08) (0.08) (0.08) (0.09) (0.05)
β4 = -1 -0.99 -0.99 -0.99 -0.99 -0.99 -1.76

(0.11) (0.11) (0.11) (0.10) (0.10) (0.07)
n=1000 β1 = -2 -2.01 -1.99 -2.01 -1.99 -1.99 -1.99

(0.07) (0.03) (0.06) (0.03) (0.03) (0.03)
β2 = -2 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

(0.08) (0.03) (0.08) (0.03) (0.03) (0.03)
β3 = -1 -0.98 -0.98 -0.98 -0.97 -0.96 -1.76

(0.05) (0.05) (0.05) (0.05) (0.06) (0.04)
β4 = -1 -1.00 -1.00 -1.01 -1.00 -1.00 -1.77

(0.07) (0.07) (0.07) (0.06) (0.07) (0.05)
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Table 2.2: MCAR with 50% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1 = -2 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01

(0.10) (0.06) (0.09) (0.06) (0.06) (0.06)
β2 =-2 -2.01 -2.00 -2.01 -2.00 -2.00 -2.00

(0.10) (0.06) (0.10) (0.06) (0.06) (0.06)
β3 =-1 -1.01 -1.01 -1.01 -1.01 -1.01 -1.53

(0.10) (0.10) (0.10) (0.10) (0.11) (0.08)
β4 =-1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.52

(0.09) (0.09) (0.09) (0.08) (0.10) (0.08)
n=500 β1 =-2 -2.01 -2.00 -2.02 -2.00 -2.00 -2.00

(0.07) (0.05) (0.07) (0.05) (0.05) (0.05)
β2 =-2 -1.98 -1.99 -1.98 -1.99 -1.99 -1.99

(0.08) (0.05) (0.08) (0.05) (0.05) (0.05)
β3 =-1 -1.00 -1.00 -1.01 -1.00 -1.00 -1.53

(0.06) (0.06) (0.06) (0.06) (0.07) (0.07)
β4 =-1 -0.99 -0.99 -0.99 -0.99 -1.00 -1.54

(0.07) (0.07) (0.07) (0.06) (0.07) (0.06)
n=1000 β1 = -2 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

(0.05) (0.03) (0.05) (0.03) (0.03) (0.03)
β2 = -2 -2.01 -2.00 -2.01 -2.00 -2.00 -2.00

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
β3 =-1 -0.99 -0.99 -0.99 -0.99 -1.00 -1.52

(0.05) (0.05) (0.05) (0.04) (0.05) (0.04)
β4 =-1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.52

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
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Table 2.3: MAR with 25% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= -2 -1.91 -2.00 -2.01 -2.00 -2.00 -2.00

(0.07) (0.07) (0.08) (0.07) (0.07) (0.07)
β2=-2 -1.93 -1.99 -1.98 -1.99 -1.99 -1.99

(0.07) (0.06) (0.08) (0.06) (0.06) (0.06)
β3=-1 -0.94 -0.94 -0.99 -0.99 -1.04 -1.40

(0.08) (0.08) (0.08) (0.08) (0.08) (0.09)
β4=-1 -0.97 -0.97 -0.99 -1.00 -1.03 -1.44

(0.07) (0.07) (0.08) (0.07) (0.06) (0.09)
n=500 β1= -2 -1.88 -2.00 -1.99 -2.00 -2.00 -2.00

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
β2=-2 -1.94 -2.01 -2.00 -2.01 -2.01 -2.01

(0.06) (0.04) (0.06) (0.04) (0.04) (0.04)
β3=-1 -0.94 -0.94 -0.99 -0.99 -1.05 -1.41

(0.06) (0.06) (0.06) (0.06) (0.05) (0.06)
β4=-1 -0.97 -0.97 -1.01 -1.01 -1.04 -1.45

(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)
n=1000 β1= -2 -1.89 -2.00 -2.00 -2.00 -2.00 -2.00

(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)
β2=-2 -1.93 -2.00 -2.00 -2.00 -2.00 -2.00

(0.03) (0.03) (0.04) (0.03) (0.03) (0.03)
β3=-1 -0.95 -0.95 -1.00 -1.00 -1.06 -1.41

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
β4=-1 -0.97 -0.97 -1.00 -1.00 -1.03 -1.46

(0.04) (0.04) (0.05) (0.04) (0.04) (0.05)
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Table 2.4: MAR with 50% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1 = -2 -1.77 -1.99 -1.99 -1.99 -1.99 -1.99

(0.09) (0.06) (0.09) (0.06) (0.06) (0.06)
β2 =-2 -1.92 -2.00 -1.98 -2.00 -2.00 -2.00

(0.09) (0.05) (0.13) (0.05) (0.05) (0.05)
β3 =-1 -0.88 -0.88 -0.99 -0.99 -1.10 -1.73

(0.10) (0.10) (0.11) (0.08) (0.08) (0.06)
β4 =-1 -0.96 -0.96 -1.00 -1.00 -1.04 -1.71

(0.10) (0.10) (0.14) (0.09) (0.10) (0.09)
n=500 β1 = -2 -1.78 -2.01 -2.01 -2.01 -2.01 -2.01

(0.05) (0.03) (0.07) (0.03) (0.03) (0.03)
β2 =-2 -1.91 -1.99 -2.00 -1.99 -1.99 -1.99

(0.07) (0.05) (0.11) (0.05) (0.05) (0.05)
β3 =-1 -0.89 -0.89 -1.01 -1.00 -1.12 -1.75

(0.07) (0.07) (0.08) (0.07) (0.07) (0.05)
β4 =-1 -0.95 -0.95 -1.01 -1.00 -1.04 -1.70

(0.06) (0.06) (0.10) (0.05) (0.06) (0.06)
n=1000 β1 = -2 -1.76 -2.00 -2.00 -2.00 -2.00 -2.00

(0.05) (0.03) (0.06) (0.03) (0.03) (0.03)
β2 =-2 -1.91 -2.00 -2.01 -2.00 -2.00 -2.00

(0.06) (0.04) (0.08) (0.04) (0.04) (0.04)
β3 =-1 -0.87 -0.87 -0.99 -0.99 -1.11 -1.74

(0.05) (0.05) (0.06) (0.04) (0.05) (0.04)
β4 =-1 -0.95 -0.95 -0.99 -0.99 -1.04 -1.70

(0.05) (0.05) (0.07) (0.05) (0.05) (0.04)
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Table 2.5: MNAR with 25% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= -2 -1.93 -1.99 -2.00 -1.99 -1.99 -1.99

(0.07) (0.08) (0.07) (0.08) (0.08) (0.08)
β2=-2 -1.97 -2.00 -1.99 -2.00 -2.00 -2.00

(0.07) (0.07) (0.08) (0.07) (0.07) (0.07)
β3=-1 -0.86 -0.86 -0.90 -0.90 -0.93 -1.33

(0.07) (0.07) (0.07) (0.07) (0.08) (0.09)
β4=-1 -0.97 -0.97 -0.98 -0.98 -1.00 -1.40

(0.08) (0.08) (0.08) (0.08) (0.08) (0.10)
n=500 β1= -2 -1.93 -2.00 -2.00 -2.00 -2.00 -2.00

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
β2=-2 -1.96 -1.99 -1.98 -1.99 -1.99 -1.99

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
β3=-1 -0.86 -0.86 -0.90 -0.90 -0.93 -1.34

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)
β4=-1 -0.95 -0.95 -0.96 -0.97 -0.98 -1.39

(0.04) (0.04) (0.04) (0.04) (0.05) (0.07)
n=1000 β1= -2 -1.93 -2.00 -2.00 -2.00 -2.00 -2.00

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03)
β2=-2 -1.98 -1.99 -2.00 -1.99 -1.99 -1.99

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
β3=-1 -0.87 -0.87 -0.90 -0.90 -0.94 -1.34

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
β4=-1 -0.95 -0.95 -0.96 -0.96 -0.97 -1.38

(0.05) (0.05) (0.05) (0.04) (0.05) (0.06)
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Table 2.6: MNAR with 50% missing and two timepoints. Simulation results are based on 100
replicates for each combination. Mean estimates of coefficients β from batches of 100 simulations
(standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= -2 -1.89 -1.99 -2.01 -1.99 -1.99 -1.99

(0.09) (0.08) (0.09) (0.08) (0.08) (0.08)
β2=-2 -1.97 -2.00 -2.00 -2.00 -2.00 -2.00

(0.08) (0.07) (0.08) (0.07) (0.07) (0.07)
β3=-1 -0.77 -0.77 -0.83 -0.82 -0.88 -1.55

(0.09) (0.09) (0.08) (0.09) (0.10) (0.09)
β4=-1 -0.96 -0.96 -0.98 -0.98 -0.99 -1.62

(0.10) (0.10) (0.11) (0.10) (0.11) (0.10)
n=500 β1= -2 -1.87 -2.00 -1.99 -2.00 -2.00 -2.00

(0.06) (0.05) (0.07) (0.05) (0.05) (0.05)
β2=-2 -1.95 -1.99 -1.97 -1.99 -1.99 -1.99

(0.06) (0.04) (0.07) (0.04) (0.04) (0.04)
β3=-1 -0.76 -0.76 -0.82 -0.82 -0.89 -1.56

(0.06) (0.06) (0.06) (0.06) (0.07) (0.07)
β4=-1 -0.94 -0.94 -0.96 -0.96 -0.99 -1.62

(0.05) (0.05) (0.05) (0.05) (0.06) (0.08)
n=1000 β1= -2 -1.88 -2.00 -1.99 -2.00 -2.00 -2.00

(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)
β2=-2 -1.96 -1.99 -1.99 -1.99 -1.99 -1.99

(0.06) (0.04) (0.06) (0.04) (0.04) (0.04)
β3=-1 -0.76 -0.76 -0.82 -0.82 -0.88 -1.55

(0.04) (0.04) (0.04) (0.04) (0.05) (0.03)
β4=-1 -0.94 -0.94 -0.96 -0.96 -0.97 -1.60

(0.06) (0.06) (0.06) (0.05) (0.05) (0.05)
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Table 2.7: SP with 25% missing and two timepoints. Simulation results are based on 100 replicates
for each combination. Mean estimates of coefficients β from batches of 100 simulations (standard
errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= -2 -1.87 -2.00 -1.90 -2.00 -2.00 -2.00

(0.07) (0.06) (0.07) (0.06) (0.06) (0.06)
β2=-2 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01

(0.08) (0.06) (0.08) (0.06) (0.06) (0.06)
β3=-1 -0.89 -0.89 -0.90 -0.95 -1.02 -1.30

(0.07) (0.07) (0.06) (0.06) (0.07) (0.08)
β4=-1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.30

(0.08) (0.08) (0.08) (0.08) (0.09) (0.09)
n=500 β1= -2 -1.87 -2.00 -1.89 -2.00 -2.00 -2.00

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
β2=-2 -1.98 -1.98 -1.99 -1.98 -1.98 -1.98

(0.06) (0.05) (0.06) (0.05) (0.05) (0.05)
β3=-1 -0.87 -0.87 -0.88 -0.93 -1.00 -1.29

(0.05) (0.05) (0.05) (0.04) (0.04) (0.05)
β4=-1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.28

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)
n=1000 β1= -2 -1.87 -2.00 -1.90 -2.00 -2.00 -2.00

(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)
β2=-2 -1.99 -1.99 -1.99 -1.99 -1.99 -1.99

(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)
β3=-1 -0.88 -0.88 -0.89 -0.94 -1.01 -1.30

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
β4=-1 -0.99 -0.99 -0.99 -0.99 -1.00 -1.29

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04)
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Table 2.8: SP with 50% missing and two timepoints. Simulation results are based on 100 replicates
for each combination. Mean estimates of coefficients β from batches of 100 simulations (standard
errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1 = -2 -1.82 -1.99 -1.86 -1.99 -1.99 -1.99

(0.08) (0.06) (0.08) (0.06) (0.06) (0.06)
β2 =-2 -1.97 -1.98 -1.97 -1.98 -1.98 -1.98

(0.09) (0.06) (0.09) (0.06) (0.06) (0.06)
β3 =-1 -0.82 -0.82 -0.84 -0.91 -0.99 -1.49

(0.08) (0.08) (0.08) (0.07) (0.08) (0.09)
β4 =-1 -0.98 -0.98 -0.98 -0.99 -1.00 -1.50

(0.08) (0.08) (0.09) (0.08) (0.09) (0.09)
n=500 β1 = -2 -1.82 -2.00 -1.86 -2.00 -2.00 -2.00

(0.06) (0.04) (0.06) (0.04) (0.04) (0.04)
β2 =-2 -1.99 -2.00 -1.99 -2.00 -2.00 -2.00

(0.06) (0.05) (0.06) (0.05) (0.05) (0.05)
β3 =-1 -0.82 -0.82 -0.84 -0.91 -1.00 -1.50

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)
β4 =-1 -0.99 -0.99 -0.99 -0.99 -1.00 -1.49

(0.05) (0.05) (0.05) (0.05) (0.06) (0.07)
n=1000 β1 = -2 -1.83 -2.00 -1.86 -2.00 -2.00 -2.00

(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)
β2 =-2 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

(0.05) (0.03) (0.05) (0.03) (0.03) (0.03)
β3 =-1 -0.83 -0.83 -0.85 -0.92 -1.00 -1.50

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
β4 =-1 -0.99 -0.99 -1.00 -0.99 -0.99 -1.50

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
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2.3.2 Three timepoints simulated data

In this simulation scenario the measurements are scheduled at times t = 1, 2, 3. A logistic

model with linear predictors is used for the probabilities of drop out between times t and

t+1. For each of n =250, 500, and 1000 we took 100 simulations from the model as follows:

First we generated a scalar N(0, 1) variable x, then we generated the longitudinal means

µ1=β1 + β2x , µ2=β3 + β4x and µ3=β5 + β6x. This was followed by (Y1, Y2, Y3) from a

multivariate normal distribution with mean (µ1, µ2, µ3), common variance σ2 and correla-

tion ρ again obtained by a shared random effect U . Missingness was generated from the

logistic model:

π(θ, θ2) = P (Ri1 = 1|Yi1, Yi2) =
exp(θ0 + θ1Yi1 + θ2Yi2)

1 + exp(θ0 + θ1Yi1 + θ2Yi2)

π(θ, θ2) = P (Ri2 = 1|Yi2, Yi3) =
exp(θ0 + θ1Yi2 + θ2Yi3)

1 + exp(θ0 + θ1Yi2 + θ2Yi3)

Note that we use the same parameters θ and θ2 at each dropout time, for simplicity. We

used σ2=1, ρ=0.5, β=(1, 1, 1, 1, 1, 1). For missing completely at random (MCAR) we took

θ=(1.85, 0) and θ2=0 which gave around 25% missingness and θ=(0.9, 0) and θ2=0 which

gave around 50% missingness. For missing at random (MAR) we took θ=(2.6,−0.5) and

θ2=0 which gave around 25% missingness and θ=(1.45,−0.5) and θ2=0 which gave around

50% missingness. For missing not at random (MNAR) we took θ =(2.6,0) and θ2= -0.5

which gave around 25% missingness and θ=(1.45, 0) and θ2=-0.5 which gave around 50%

missingness. For shared parameter (SP) we took θ=(2.31,−1) which gave around 25%

missingness and θ=(0.9,−1) which gave around 50% missingness. Results are presented

in Tables 2.9, 2.10, 2.11 and 2.12.

Tables 2.9 and 2.10 show results for 25% and 50% missingness under MCAR. None of the

methods show any bias this time including LOCF. The reason LOCF works well in this

example is that (β3, β4) is the same as (β1, β2), so that Y1 is representative of missing Y2.

Standard errors decrease with sample size and are broadly similar for the six methods,

except for the CC and IPW at 50% missingness, which lead to more variable estimates.

In addition, in all tables, note that at time 3, CC and Obs give the same estimates for

β5 and β6. The reason is that the CC are subjects who completed to the final timepoint

(time 3 in this example). So at that time the observed data are the complete case people.

At earlier times the observed data are CC plus subjects who will dropout before the end.

Table 2.11 shows that at 25% missingness under MAR model, the LME and IPW methods

work as expected, since MAR is designed for them, and even at the higher missingness

percentage of 50%, we have similar results. As in Tables 2.3 and 2.4, CC and Obs provide

downward bias, and LI and LOCF upward bias at times after the first. The IPW method
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is unstable at the lower sample sizes with 50% missingness.

Table 2.13 shows that at 25% missingness under MNAR model, no methods work as ex-

pected and at the higher missingness percentage of 50%, we have similar results. We see

considerable downward bias for β3, β4, β5 and β6 under all methods. Standard errors are

typically similar to Table 2.9 for MCAR.

Table 2.15 shows that at 25% missingness under SP model, the LI method works as ex-

pected, and even at the higher missingness percentage of 50%, we have similar results. As

in Tables 2.7 and 2.8, CC and Obs provide downward bias, and LOCF upward bias at

times after the first. The LME method has downward bias for the intercept terms β3 and

β5. Standard errors are typically similar to Table 2.9 for MCAR.
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Table 2.9: MCAR with 25% missing and three timepoints. Mean estimates of coefficients β from
batches of 100 simulations (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1=1 0.99 0.99 1.00 0.99 0.99 0.99

(0.13) (0.12) (0.13) (0.12) (0.12) (0.12)
β2=1 1.02 1.01 1.02 1.01 1.01 1.01

(0.13) (0.10) (0.13) (0.10) (0.10) (0.10)
β3=1 1.00 1.00 1.01 1.00 1.01 1.01

(0.13) (0.11) (0.12) (0.11) (0.11) (0.11)
β4=1 1.01 1.01 1.01 1.00 1.00 1.00

(0.13) (0.11) (0.13) (0.11) (0.11) (0.10)
β5=1 0.99 0.99 1.00 1.00 1.00 1.00

(0.13) (0.13) (0.13) (0.13) (0.13) (0.12)
β6=1 1.00 1.00 1.01 1.00 0.99 1.00

(0.12) (0.12) (0.12) (0.11) (0.11) (0.10)
n=500 β1=1 0.98 0.99 0.98 0.99 0.99 0.99

(0.09) (0.07) (0.08) (0.07) (0.07) (0.07)
β2=1 0.98 0.99 0.98 0.99 0.99 0.99

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
β3=1 0.99 0.99 0.99 0.99 0.99 0.99

(0.09) (0.08) (0.08) (0.08) (0.08) (0.08)
β4=1 0.98 0.98 0.98 0.98 0.98 0.99

(0.09) (0.08) (0.09) (0.08) (0.08) (0.08)
β5=1 0.98 0.98 0.98 0.98 0.99 0.99

(0.08) (0.08) (0.07) (0.07) (0.07) (0.07)
β6=1 0.99 0.99 0.99 0.99 0.99 0.99

(0.09) (0.09) (0.09) (0.09) (0.09) (0.08)
n=1000 β1=1 1.00 1.01 1.00 1.01 1.01 1.01

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β2=1 0.99 0.99 1.00 0.99 0.99 0.99

(0.06) (0.05) (0.06) (0.05) (0.05) (0.05)
β3=1 0.99 1.00 1.00 1.00 1.00 1.00

(0.07) (0.06) (0.07) (0.06) (0.07) (0.06)
β4=1 0.99 0.99 0.99 0.99 0.99 0.99

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β5=1 0.99 0.99 0.99 0.99 0.99 0.99

(0.07) (0.07) (0.06) (0.06) (0.06) (0.06)
β6=1 0.99 0.99 0.99 0.99 0.99 0.99

(0.07) (0.07) (0.07) (0.07) (0.07) (0.06)
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Table 2.10: MCAR with 50% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.98 0.99 0.99 0.99 0.99 0.99

(0.16) (0.11) (0.14) (0.11) (0.11) (0.11)
β2=1 1.00 0.99 1.00 0.99 0.99 0.99

(0.15) (0.11) (0.15) (0.11) (0.11) (0.11)
β3=1 0.98 0.99 0.99 0.99 0.99 0.99

(0.17) (0.16) (0.15) (0.14) (0.14) (0.13)
β4=1 1.00 0.99 1.00 0.99 0.99 0.99

(0.14) (0.11) (0.14) (0.10) (0.11) (0.10)
β5=1 0.97 0.97 0.98 0.98 0.98 0.98

(0.17) (0.17) (0.15) (0.14) (0.14) (0.12)
β6=1 1.02 1.02 1.03 1.02 1.01 1.00

(0.17) (0.17) (0.17) (0.15) (0.16) (0.12)
n=500 β1=1 0.99 0.99 1.00 0.99 0.99 0.99

(0.12) (0.07) (0.09) (0.07) (0.07) (0.07)
β2=1 1.01 1.01 1.01 1.01 1.01 1.01

(0.11) (0.08) (0.11) (0.08) (0.08) (0.08)
β3=1 1.00 0.99 1.00 0.99 0.99 0.99

(0.10) (0.09) (0.09) (0.08) (0.08) (0.07)
β4=1 1.02 1.02 1.02 1.02 1.02 1.01

(0.11) (0.10) (0.11) (0.09) (0.09) (0.08)
β5=1 0.99 0.99 1.00 0.99 0.99 0.99

(0.11) (0.11) (0.10) (0.09) (0.09) (0.07)
β6=1 1.02 1.02 1.02 1.02 1.02 1.02

(0.12) (0.12) (0.12) (0.10) (0.11) (0.08)
n=1000 β1=1 1.00 1.01 1.00 1.01 1.01 1.01

(0.07) (0.05) (0.06) (0.05) (0.05) (0.05)
β2=1 1.01 1.01 1.01 1.01 1.01 1.01

(0.06) (0.05) (0.06) (0.05) (0.05) (0.05)
β3=1 1.01 1.00 1.01 1.01 1.01 1.01

(0.07) (0.06) (0.06) (0.06) (0.06) (0.05)
β4=1 0.99 1.00 0.99 0.99 0.99 1.00

(0.07) (0.06) (0.07) (0.06) (0.06) (0.06)
β5=1 1.01 1.01 1.00 1.01 1.00 1.00

(0.07) (0.07) (0.07) (0.07) (0.07) (0.05)
β6=1 1.01 1.01 1.01 1.01 1.01 1.00

(0.08) (0.08) (0.08) (0.07) (0.08) (0.06)
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Table 2.11: MAR with 25% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1=1 0.68 0.98 0.97 0.98 0.98 0.98

(0.13) (0.11) (0.13) (0.11) (0.11) (0.11)
β2=1 0.90 1.00 0.99 1.00 1.00 1.00

(0.12) (0.11) (0.14) (0.11) (0.11) (0.11)
β3=1 0.68 0.86 0.98 0.98 1.05 1.04

(0.12) (0.11) (0.13) (0.11) (0.11) (0.11)
β4=1 0.90 0.96 1.00 1.00 1.03 1.02

(0.12) (0.12) (0.14) (0.11) (0.12) (0.11)
β5=1 0.74 0.74 0.98 0.99 1.11 1.08

(0.14) (0.14) (0.14) (0.13) (0.14) (0.12)
β6=1 0.91 0.91 0.98 0.99 1.03 1.02

(0.12) (0.12) (0.13) (0.12) (0.13) (0.11)
n=500 β1=1 0.69 1.00 1.00 1.00 1.00 1.00

(0.10) (0.08) (0.10) (0.08) (0.08) (0.08)
β2=1 0.90 1.00 1.00 1.00 1.00 1.00

(0.09) (0.08) (0.11) (0.08) (0.08) (0.08)
β3=1 0.68 0.86 0.99 0.99 1.06 1.05

(0.09) (0.08) (0.09) (0.07) (0.08) (0.07)
β4=1 0.91 0.96 1.02 1.01 1.03 1.03

(0.09) (0.08) (0.11) (0.08) (0.08) (0.08)
β5=1 0.75 0.75 1.00 1.00 1.12 1.10

(0.10) (0.10) (0.10) (0.09) (0.09) (0.08)
β6=1 0.92 0.92 1.01 1.00 1.04 1.03

(0.09) (0.09) (0.11) (0.09) (0.09) (0.08)
n=1000 β1=1 0.70 1.01 1.00 1.01 1.01 1.01

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β2=1 0.91 1.01 1.01 1.01 1.01 1.01

(0.06) (0.06) (0.08) (0.06) (0.06) (0.06)
β3=1 0.69 0.87 0.99 1.00 1.07 1.06

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β4=1 0.90 0.96 1.00 1.00 1.03 1.02

(0.06) (0.06) (0.07) (0.06) (0.06) (0.05)
β5=1 0.75 0.75 0.99 1.00 1.13 1.10

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β6=1 0.91 0.91 0.99 0.99 1.04 1.02

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
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Table 2.12: MAR with 50% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.37 0.99 1.00 0.99 0.99 0.99

(0.16) (0.12) (0.23) (0.12) (0.12) (0.12)
β2=1 0.87 1.02 1.06 1.02 1.02 1.02

(0.17) (0.11) (0.30) (0.11) (0.11) (0.11)
β3=1 0.37 0.73 1.00 1.00 1.13 1.09

(0.16) (0.15) (0.22) (0.15) (0.15) (0.13)
β4=1 0.85 0.93 1.02 1.00 1.04 1.02

(0.17) (0.13) (0.29) (0.12) (0.12) (0.10)
β5=1 0.51 0.51 1.00 1.01 1.27 1.15

(0.15) (0.15) (0.20) (0.14) (0.15) (0.12)
β6=1 0.90 0.90 1.04 1.02 1.09 1.03

(0.16) (0.16) (0.29) (0.13) (0.15) (0.10)
n=500 β1=1 0.36 1.00 0.98 1.00 1.00 1.00

(0.10) (0.08) (0.15) (0.08) (0.08) (0.08)
β2=1 0.85 1.01 1.00 1.01 1.01 1.01

(0.12) (0.09) (0.16) (0.09) (0.09) (0.09)
β3=1 0.36 0.73 0.99 1.00 1.14 1.09

(0.10) (0.09) (0.16) (0.08) (0.08) (0.07)
β4=1 0.84 0.94 1.00 1.01 1.05 1.03

(0.12) (0.11) (0.19) (0.10) (0.10) (0.09)
β5=1 0.48 0.48 0.97 0.99 1.26 1.15

(0.11) (0.11) (0.15) (0.09) (0.09) (0.07)
β6=1 0.87 0.87 1.00 1.01 1.08 1.03

(0.11) (0.11) (0.17) (0.10) (0.12) (0.09)
n=1000 β1=1 0.38 1.00 1.00 1.00 1.00 1.00

(0.07) (0.05) (0.10) (0.05) (0.05) (0.05)
β2=1 0.85 1.00 1.00 1.00 1.00 1.00

(0.07) (0.05) (0.11) (0.05) (0.05) (0.05)
β3=1 0.37 0.73 1.00 1.00 1.13 1.09

(0.07) (0.06) (0.11) (0.06) (0.06) (0.05)
β4=1 0.84 0.93 1.00 1.00 1.04 1.01

(0.08) (0.07) (0.11) (0.06) (0.06) (0.05)
β5=1 0.50 0.50 1.00 1.00 1.26 1.15

(0.08) (0.08) (0.10) (0.07) (0.07) (0.05)
β6=1 0.87 0.87 1.00 1.00 1.07 1.02

(0.07) (0.07) (0.12) (0.07) (0.08) (0.06)
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Table 2.13: MNAR with 25% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.75 1.00 0.98 1.00 1.00 1.00

(0.13) (0.11) (0.12) (0.11) (0.11) (0.11)
β2=1 0.91 1.00 0.97 1.00 1.00 1.00

(0.12) (0.11) (0.13) (0.11) (0.11) (0.11)
β3=1 0.70 0.81 0.91 0.89 0.94 0.95

(0.13) (0.12) (0.12) (0.11) (0.12) (0.11)
β4=1 0.90 0.94 0.95 0.97 0.98 0.99

(0.12) (0.12) (0.13) (0.11) (0.12) (0.11)
β5=1 0.69 0.69 0.86 0.87 0.94 0.95

(0.13) (0.13) (0.12) (0.12) (0.12) (0.11)
β6=1 0.90 0.90 0.93 0.96 0.98 0.99

(0.12) (0.12) (0.13) (0.12) (0.12) (0.11)
n=500 β1= 1 0.76 1.00 0.98 1.00 1.00 1.00

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
β2=1 0.92 1.00 0.97 1.00 1.00 1.00

(0.09) (0.08) (0.10) (0.08) (0.08) (0.08)
β3=1 0.69 0.81 0.91 0.89 0.94 0.95

(0.08) (0.08) (0.08) (0.08) (0.08) (0.07)
β4=1 0.90 0.94 0.95 0.96 0.98 0.99

(0.09) (0.08) (0.09) (0.08) (0.08) (0.07)
β5=1 0.69 0.69 0.86 0.87 0.93 0.95

(0.09) (0.09) (0.08) (0.08) (0.08) (0.07)
β6=1 0.90 0.90 0.93 0.96 0.98 0.99

(0.09) (0.09) (0.09) (0.08) (0.08) (0.07)
n=1000 β1= 1 0.75 1.00 0.98 1.00 1.00 1.00

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β2=1 0.91 1.00 0.97 1.00 1.00 1.00

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β3=1 0.69 0.81 0.91 0.89 0.94 0.95

(0.06) (0.06) (0.06) (0.06) (0.06) (0.05)
β4=1 0.90 0.93 0.95 0.96 0.98 0.99

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β5=1 0.69 0.69 0.86 0.87 0.94 0.95

(0.06) (0.06) (0.06) (0.06) (0.06) (0.05)
β6=1 0.90 0.90 0.94 0.96 0.98 0.99

(0.06) (0.06) (0.07) (0.06) (0.06) (0.05)
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Table 2.14: MNAR with 50% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.50 1.01 0.94 1.01 1.01 1.01

(0.15) (0.11) (0.16) (0.11) (0.11) (0.11)
β2=1 0.88 1.01 0.95 1.01 1.01 1.01

(0.15) (0.11) (0.19) (0.11) (0.11) (0.11)
β3=1 0.37 0.59 0.79 0.77 0.87 0.91

(0.14) (0.12) (0.16) (0.12) (0.12) (0.11)
β4=1 0.84 0.89 0.91 0.94 0.97 0.99

(0.15) (0.13) (0.18) (0.12) (0.12) (0.11)
β5=1 0.36 0.36 0.69 0.72 0.86 0.91

(0.15) (0.15) (0.16) (0.13) (0.14) (0.11)
β6=1 0.84 0.84 0.90 0.94 0.97 1.00

(0.15) (0.15) (0.18) (0.13) (0.14) (0.11)
n=500 β1= 1 0.50 1.00 0.95 1.00 1.00 1.00

(0.11) (0.08) (0.11) (0.08) (0.08) (0.08)
β2=1 0.87 1.00 0.95 1.00 1.00 1.00

(0.11) (0.08) (0.14) (0.08) (0.08) (0.08)
β3=1 0.37 0.59 0.80 0.77 0.86 0.91

(0.11) (0.09) (0.11) (0.08) (0.09) (0.08)
β4=1 0.84 0.89 0.90 0.94 0.96 0.99

(0.11) (0.09) (0.13) (0.09) (0.09) (0.08)
β5=1 0.37 0.37 0.70 0.73 0.86 0.91

(0.10) (0.10) (0.11) (0.09) (0.10) (0.08)
β6=1 0.84 0.84 0.89 0.93 0.96 0.99

(0.11) (0.11) (0.12) (0.10) (0.10) (0.08)
n=1000 β1= 1 0.49 1.00 0.95 1.00 1.00 1.00

(0.08) (0.05) (0.08) (0.05) (0.05) (0.05)
β2=1 0.87 1.00 0.95 1.00 1.00 1.00

(0.08) (0.05) (0.09) (0.05) (0.05) (0.05)
β3=1 0.37 0.59 0.80 0.77 0.86 0.91

(0.07) (0.06) (0.07) (0.06) (0.06) (0.05)
β4=1 0.84 0.89 0.91 0.94 0.96 0.99

(0.08) (0.06) (0.09) (0.06) (0.06) (0.05)
β5=1 0.37 0.37 0.70 0.73 0.87 0.91

(0.08) (0.08) (0.08) (0.07) (0.07) (0.05)
β6=1 0.84 0.84 0.89 0.93 0.97 0.99

(0.07) (0.07) (0.09) (0.07) (0.07) (0.06)
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Table 2.15: SP with 25% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.60 1.00 0.81 1.00 1.00 1.00

(0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
β2=1 1.01 1.00 1.09 1.00 1.00 1.00

(0.12) (0.11) (0.13) (0.11) (0.11) (0.11)
β3=1 0.60 0.76 0.81 0.91 1.00 1.00

(0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
β4=1 1.00 1.00 1.08 1.00 1.00 1.00

(0.12) (0.12) (0.13) (0.11) (0.12) (0.11)
β5=1 0.59 0.59 0.76 0.88 0.99 1.00

(0.11) (0.11) (0.12) (0.12) (0.12) (0.11)
β6=1 1.00 1.00 1.06 1.00 1.00 1.00

(0.12) (0.12) (0.13) (0.12) (0.12) (0.11)
n=500 β1= 1 0.60 1.00 0.82 1.00 1.00 1.00

(0.08) (0.08) (0.09) (0.08) (0.08) (0.08)
β2=1 1.00 1.00 1.08 1.00 1.00 1.00

(0.09) (0.08) (0.10) (0.08) (0.08) (0.08)
β3=1 0.60 0.76 0.82 0.92 1.00 1.00

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
β4=1 1.00 1.00 1.09 1.00 1.00 1.00

(0.08) (0.08) (0.09) (0.08) (0.08) (0.08)
β5=1 0.60 0.60 0.76 0.88 1.00 1.00

(0.08) (0.08) (0.08) (0.08) (0.09) (0.08)
β6=1 1.01 1.01 1.07 1.00 1.00 1.00

(0.08) (0.08) (0.09) (0.08) (0.08) (0.08)
n=1000 β1= 1 0.60 1.00 0.82 1.00 1.00 1.00

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β2=1 1.00 1.00 1.09 1.00 1.00 1.00

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β3=1 0.60 0.76 0.82 0.92 1.00 1.00

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β4=1 1.00 1.00 1.09 1.00 1.00 1.00

(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)
β5=1 0.60 0.60 0.76 0.88 1.00 1.00

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
β6=1 1.00 1.00 1.07 1.00 1.00 1.00

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
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Table 2.16: SP with 50% missing and three timepoints. Simulation results are based on 100
replicates for each combination (standard errors in brackets).

Sample True CC Obs IPW LME LI LOCF
size
n=250 β1= 1 0.19 1.00 0.60 1.00 1.00 1.00

(0.14) (0.11) (0.15) (0.11) (0.11) (0.11)
β2=1 1.00 1.00 1.12 1.00 1.00 1.00

(0.14) (0.11) (0.18) (0.11) (0.11) (0.11)
β3=1 0.19 0.50 0.60 0.82 1.00 1.00

(0.14) (0.12) (0.15) (0.12) (0.13) (0.11)
β4=1 1.00 1.00 1.11 1.00 1.00 1.00

(0.14) (0.12) (0.18) (0.12) (0.13) (0.11)
β5=1 0.19 0.19 0.49 0.75 1.00 1.00

(0.13) (0.13) (0.14) (0.13) (0.14) (0.11)
β6=1 1.00 1.00 1.08 1.00 1.00 1.00

(0.14) (0.14) (0.17) (0.13) (0.15) (0.11)
n=500 β1= 1 0.19 1.00 0.61 1.00 1.00 1.00

(0.09) (0.08) (0.11) (0.08) (0.08) (0.08)
β2=1 1.00 1.00 1.12 1.00 1.00 1.00

(0.10) (0.08) (0.13) (0.08) (0.08) (0.08)
β3=1 0.19 0.50 0.61 0.82 1.00 1.00

(0.09) (0.09) (0.10) (0.09) (0.09) (0.08)
β4=1 1.01 1.01 1.12 1.00 1.00 1.00

(0.10) (0.09) (0.14) (0.09) (0.09) (0.08)
β5=1 0.19 0.19 0.49 0.75 1.00 1.00

(0.09) (0.09) (0.10) (0.09) (0.10) (0.08)
β6=1 1.01 1.01 1.09 1.00 1.00 1.00

(0.10) (0.10) (0.12) (0.10) (0.10) (0.08)
n=1000 β1= 1 0.19 1.00 0.61 1.00 1.00 1.00

(0.07) (0.05) (0.08) (0.05) (0.05) (0.05)
β2=1 1.00 1.00 1.13 1.00 1.00 1.00

(0.07) (0.06) (0.10) (0.06) (0.06) (0.06)
β3=1 0.19 0.50 0.61 0.82 1.00 1.00

(0.07) (0.06) (0.08) (0.06) (0.06) (0.05)
β4=1 1.00 1.00 1.12 1.00 1.00 1.00

(0.07) (0.06) (0.10) (0.06) (0.06) (0.06)
β5=1 0.19 0.19 0.49 0.75 1.00 1.00

(0.07) (0.07) (0.07) (0.07) (0.07) (0.06)
β6=1 1.00 1.00 1.09 1.00 1.00 1.00

(0.07) (0.07) (0.09) (0.06) (0.07) (0.06)
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2.4 Applications

2.4.1 Two timepoints data

We consider data from a clinical trial with two treatments and two measurement times

as introduced and analysed by Matthews et al. [2012]. The data are real but not public.

The original trial was randomized and observations were taken pre-randomization and at

two times post-randomization. In their work only the post-randomization observations

were considered. Matthews et al. [2012] state ”For confidentiality reasons we have scaled

all observed responses by the mean and standard deviation of the responses at time 1

and we will refer simply to treatment and response without describing what they are”.

The covariates in this data are only treatment type and time. The parameter vector is

(β1, β2, β3, β4), ignoring the time by treatment interaction. There are 422 subjects.

At time 1, all those subjects provided a response, but 24.4% dropped out by time 2. There

are 212 subjects receiving Treatment A, but only 126 provided a response at time 2 and

the other 86 dropped out hence the missingness percentage is 40.6%. The dropout reason

is not known. For Treatment B, there are 210 subjects, of which 193 subjects continued to

time 2 and hence there are 17 that did not and this gave around 8.1% missingness. Figure

2.1 presents a summary of the data. The left plot shows the mean values at times 1 and 2

of all observed data, split into the two treatment groups. The right plot shows the means

for subjects who completed the trial. Means at time 0 (with no dropout) are not shown,

and both groups have the same values. The impression given by the left plot in that there

is a difference between groups at time 1 but this disappears by time 2. The right plot

shows a different story: There is no difference between treatment groups for those who

complete the trial.

Table 2.17 summarizes the estimates of the coefficients corresponding to the six methods.

The standard errors are shown in Table 2.18 which were calculated using the bootstrap

based on 100 samples. Note β1 and β2 generally have smaller standard errors than β3 and

β4 except for the CC method, where β1, β2, β3 and β4 all have about the same standard

errors. The IPW method has higher standard error than the other methods. Note that

CC and Obs give the same results for β3 and β4 as mentioned before in the simulation

study in Section 2.3.

Figures 2.2 and 2.3 show estimated treatment effects and nominal 95% confidence intervals

for the different fitting methods. Figure 2.2 shows estimated coefficients β1 and β2 for time

1. Looking at the left plot, for β1, the complete case value is significantly lower than the

others, which might have been expected from Figure 2.1. This is consistent with the

previous simulation results. Turning to Figure 2.3 and time 2, there is high variability for

IPW again. The complete case and observed data methods has the least evidence of a

treatment effect, while LOCF has the most. Complete case, observed data and IPW give
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very similar estimates in both plots with LME, LI and LOCF progressively moving away.

Note that only one of the methods -IPW- requires the dropout process to be modelled.

For this we assume a logistic model πi(θ) = expit(θ0 + θ1Y1i) as in equation (1.5). For

reference, the estimates (and standard errors) are θ̂0 = 1.60 (0.16) and θ̂1 = −1.66 (0.18).

Figure 2.1: Two timepoints data. Left plot: Means of observed data. Right plot: Mean for subjects
who completed the trial.
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Table 2.17: Two timepoints data analysis: Estimates of coefficients β for different fitting methods.

β CC Obs IPW LME LI LOCF

β1 -0.27 0.27 0.15 0.27 0.27 0.27
β2 -0.08 -0.55 -0.18 -0.55 -0.55 -0.55
β3 -1.10 -1.10 -0.92 -0.74 -0.56 -0.23
β4 -0.10 -0.10 -0.08 -0.41 -0.56 -0.83
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Table 2.18: Standard errors of estimates of coefficients β for different fitting methods.

s.e(β) CC Obs IPW LME LI LOCF

s.e(β1) 0.07 0.07 0.13 0.07 0.07 0.07
s.e(β2) 0.08 0.09 0.26 0.09 0.09 0.09
s.e(β3) 0.07 0.07 0.12 0.08 0.08 0.09
s.e(β4) 0.09 0.09 0.19 0.10 0.11 0.13

Figure 2.2: Two timepoints example: Estimated coefficients β1 and β2 and nominal 95% confidence
intervals.
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Figure 2.3: Two timepoints example: Estimated coefficients β3 and β4 and nominal 95% confidence
intervals.
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2.4.2 Three timepoints: Schizophrenia data

In this section we present a comparison of the several methods in the analysis of data

from a trial into the treatment of schizophrenia. The trial compared three treatments: A

standard therapy using Haloperidol (Treatment 1), a placebo (Treatment 2), and an exper-

imental therapy using Risperidone (Treatment 3). These data are described in Henderson

et al. [2000], the response is PANSS (positive and negative symptom score, a measure of

mental health, with high values being bad). Values ranged from 30 to 210. Typically we

expect a schizophrenia patient in this clinical trial to have score around 90.

There are in total 518 patients in this study, of which 249 dropped out. Henderson et al.

[2000] stated ”The goal of the study was to compare the three treatments with respect to

their ability to improve (reduce) the mean PANSS score. The patients were observed at

baseline (t =1) and thereafter at weeks 1, 2, 4, 6 and 8 (t=2, 3, 4, 5, 6) of the study”.

The only covariates used here are treatment groups. For this work we will concentrate

on three scheduled measurement times only: At the baseline, week 4, and week 8 i.e. at

times t=(1,4,6).

In Treatment 1 there were 85 subjects, but only 41 subjects provided a response at time 3

and the other 44 subjects dropped out which is equivalent to a 51.8% missing rate. There

were 88 subjects receiving Treatment 2, but only 29 subjects provided a response at time 3

and the other 59 subjects dropped out which is equivalent to 67% missing. Of 345 subjects

receiving Treatment 3, only 199 provided a response at time 3 and the other 146 dropped

out which is equivalent to 42% missing. Hence dropout is the highest in treatment group

2 and the lowest in group 3.
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Figure 2.4 in the left side, shows the observed mean response as a function of time within

each treatment group, i.e. each average is over those patients who have not yet dropped

out. All three groups have a decreasing mean response, perhaps at a slower rate towards

the third timepoint. The overall reduction in mean response within each treatment group

is very roughly from between 90 and 95 to around 70 and 75. This appears close to the

criterion for clinical improvement, which was stated in advance of the trial, to be a re-

duction of 20% in the mean PANSS scores. The decrease in group 2 was smaller overall.

However, at each timepoint these observed means are, necessarily, calculated only from

those subjects who have not yet dropped out. Figure 2.4 in the right side, shows the be-

havior of complete cases: Large differences between groups are evident, with the highest

decrease in the groups 1 and 3 and the lowest in the group 2. Both graphs shows the slope

is dropping more in group 1 and 3, while for group 2 there is more stability (less variability).

Figure 2.4: Schizophrenia data: This figure shows the mean values of observed cases in the left
side and the complete cases in the right side.
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Table 2.19 shows the mean estimates of β for the different fitting methods using a saturated

model with a different parameter for each of the treatment by time combinations. Table

2.20 shows the standard errors, which were calculated using the bootstrap based on 100

random samples. As seen before, the CC and IPW methods have higher standard errors

than the other methods. Note that CC and Obs give the same results for β7, β8 and β9

as explained earlier.

Table 2.19: Schizophrenia data: Estimates of coefficients β for different fitting methods.

CC Obs IPW LME LI LOCF

β1 86.61 93.44 88.57 93.44 93.44 92.56
β2 89.14 92.49 92.22 92.49 92.49 96.93
β3 91.35 92.34 94.43 92.34 92.34 91.42
β4 73.00 80.02 75.60 82.35 84.42 81.04
β5 78.14 85.29 81.70 86.34 87.27 83.12
β6 72.78 76.34 75.52 76.40 76.45 82.55
β7 74.32 74.32 76.55 79.92 85.74 80.16
β8 79.38 79.38 82.19 83.38 88.52 87.23
β9 71.79 71.79 74.05 73.39 75.46 81.41

Table 2.20: Schizophrenia data: Standard error for estimates of coefficients β for different fitting
methods.

CC Obs IPW LME LI LOCF

se(β1) 2.78 1.98 2.99 1.68 1.91 1.98
se(β2) 2.65 2.06 2.81 1.89 1.70 2.06
se(β3) 1.45 0.98 1.44 1.00 1.16 0.98
se(β4) 3.01 2.60 3.25 2.15 2.77 2.64
se(β5) 2.74 2.49 2.92 1.96 2.75 2.29
se(β6) 1.55 1.32 1.50 1.25 1.40 1.15
se(β7) 2.95 2.95 3.17 2.48 3.32 2.51
se(β8) 3.35 3.35 3.53 2.61 4.00 2.60
se(β9) 1.68 1.68 1.67 1.42 1.52 1.09
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Figures 2.5, 2.6 and 2.7 show estimated treatment effects and nominal 95% confidence

intervals for the different fitting methods for times 1, 2 and 3 respectively. In all figures,

the complete case value is lower than the others. This is consistent with the previous

simulation results. There is high variability for the IPW again, but in Figure 2.7 it is even

higher for the LI. In Figure 2.7 we note that Complete Case and Observed data give very

similar estimates in all plots with IPW, LME, LI and LOCF progressively moving away.

Figure 2.5: Estimated parameters β1, β2 and β3 and nominal 95% confidence intervals.
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Figure 2.6: Estimated parameters β4, β5 and β6 and nominal 95% confidence intervals.
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Figure 2.7: Estimated parameters β7, β8 and β9 and nominal 95% confidence intervals.
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2.5 Conclusion and Discussion

In this chapter we described several different methods that can be used for longitudinal

data under MCAR, MAR, MNAR and SP dropout assumptions. We found that only IPW

and LME methods give consistent estimates under MAR, while LI is valid under SP. All

of the methods fail to give consistent estimates under MNAR. In addition, we noted that

the standard errors for the coefficients estimated by the IPW are significantly higher than

for other methods.

We note that in CC and Obs methods there is repetition in the results for the second time

in the two timepoints examples or the third time in case of three timepoints examples.

That is because CC are people who make it to the final timepoint. So at that time the

observed data are the complete case people. At earlier times the observed data are CC

plus people who will dropout before the end. We will investigate the LI performance more

in the next chapter.
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Chapter 3

Performance of Linear Increment

Method Under Shared Parameter,

MAR and MNAR Dropout

3.1 Introduction

In this chapter we investigate the linear increment method (LI) and provide a discussion

of the general model and its assumptions following Diggle et al. [2007]. Furthermore, we

discuss the definition of independent censoring as introduced by Diggle et al. [2007]. We

take the two timepoints situation as a special case and investigate how the LI method

performs under shared parameter, MAR and MNAR dropout. Derivation and illustration

of theoretical least false values are made under MAR and MNAR dropout. To check, we

compare the theoretical least false values with simulation results for selected parameter

combinations. An alternative technique was presented in Aalen and Gunnes [2010], who

introduced a similar method that does not rely on a model for the missingness mechanism

as we do. Using the linear increments model, they introduced a dynamic approach for

reconstructing longitudinal data with missing observations.

In Section 3.2 we introduce the general model and the notation which we will use for

all our analyses. Section 3.3 introduces the two timepoints situation as a special case.

It includes brief details of how to use the extended skewed normal density to find the

expectations needed. Section 3.4 presents the results from analyses of different simulation

studies. Finally, in Section 3.5 we discuss all of our results and give some closing remarks.
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3.2 The General Model

3.2.1 Assumptions

The linear increment model for analysing longitudinal data with dropouts was introduced

by Farewell [2006]. Longitudinal data analysis methods often consider the marginal Gen-

eralized Estimating Equations (GEE) approach. However, this approach does not make

efficient use of time ordering for the process. Diggle et al. [2007] and Aalen and Gunnes

[2010] pointed out the advantages of using the linear increments models to analyse the

dynamic structure of longitudinal data with dropout.

Using the notation found in Diggle et al. [2007], we denote the true history to time t by

Gt = {Y (s), X(s), ε(s) : s = 1, . . . , t}, which includes the response process Y , the covariates

X and the measurement error process ε, up to and including time t. We will assume that

the covariates X(t) are obtained and are known immediately before time t, this timepoint

could be t− 1 or at time 0 for those covariates known at baseline. Then the true history

just before t is defined as:

Gt− = Gt−1 ∪ {X(t)} (3.1)

which includes all information associated with Y,X and ε that are available strictly before

time t. Thus we can say that X(t) might include time varying covariates. We can also

consider a dynamic process for the dropout. Let Ri be an indicator process for subject i,

with Ri(t) = 1 if subject i has not dropped out at time t and is remaining in the study,

and Ri(t) = 0 otherwise. We let Rt be the history of these indicator processes up to time

t. And let Rt− to be the history of the dropout process immediately before time t.

We denote the history of the observed data X, Y and R as defined in Diggle et al. [2007]

as

Ft = {X(s), Y (s), R(s) : s = 1, ..., t}

Ft− = Ft−1 ∪ {X(t), R(t)}.

The increments in Y (t) are defined as ∆Y (t) = Y (t)− Y (t− 1).

Diggle et al. [2007] proposed a linear increment model of the following form:

Y (t) =
t∑

s=1

X(s)β(s) +M(t) + ε(t) (3.2)

where ε(t) is a pure noise term, independent of other components, M(t) is a random effect

and β(s) is a vector of time-varying effects. There are three key components to the model.

• Martingale error structure. Diggle et al. [2007] assume that the random effect is

a martingale process. In words a martingale is a sequence of random variables (a
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stochastic process) with the criterion that the conditional expectation of the next

value in the sequence is equal to the present observed value, and this does not depend

otherwise on earlier values. In general, M(t) is a martingale, hence it meets the

condition of E[M(1)] = 0 and E[M(2)|M(1)] = M(1) and E[M(t)−M(t− 1)] = 0.

• Linear model for changes in expected Y . We will consider this form for our models:

E[∆Y (t)|Gt−] = E[Y (t)− Y (t− 1)|Gt−] (3.3)

where at time t, the mean response of Y (t) is

E[Y (t)|Gt−] = E[(
t∑

s=1

X(s)β(s) +M(t) + ε(t))|Gt−]

= E[

t∑
s=1

X(s)β(s)|Gt−] + E[M(t)|Gt−] + E[ε(t)|Gt−]

= X(1)β(1) +X(2)β(2) + · · ·

+ X(t− 1)β(t− 1) +X(t)β(t) + E[M(t)|Gt−] + E[ε(t)|Gt−].

Note that E[ε(t)|Gt−] = 0 since there is no information available about ε(t) before

time t. Similarly at time t− 1

E[Y (t− 1)|Gt−] = E[
t−1∑
s=1

X(s)β(s) +M(t− 1) + ε(t− 1)]

= E[
t−1∑
s=1

X(s)β(s)] + E[M(t− 1)] + E[ε(t− 1)]

= X(1)β(1) +X(2)β(2) + · · ·

+ X(t− 1)β(t− 1) +M(t− 1) + ε(t− 1).

Thus, using the martingale structure that E[M(t)|Gt−] = M(t− 1), we have

E[Y (t)− Y (t− 1)|Gt−] = X(t)β(t)− ε(t− 1) (3.4)

where ε(t − 1) is the measurement error at time t − 1. Note that we have the

measurement error on the left at t− which is continuous time, while on the right

we have t − 1, as it is in discrete time. Simply we can say the mean difference of

measurement error is −ε(t − 1), since there is no information available about ε(t)

before time t while earlier values are known through Gt−. Diggle et al. [2007] put

forward an idea which links the stochastic processes to the linear increment as the

following: They state ”Incremental models correspond, on the cumulative scale, to

models where the residuals form a kind of random walk, which can be thought of as

additional random effects. To see this, the notion of a transform from the theory of
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discrete stochastic processes is required.” For a reference in the Theory of Discrete

Stochastic Processes see Williams [1991]. Define the cumulative regression functions,

as in Diggle et al. [2007] as

B(t) =

t∑
s=1

β(s),withB(0) = 0.

The transform of B by X, is given by:

X.B(t) =
t∑

s=1

X(s){B(s)−B(s− 1)} =
t∑

s=1

X(s)β(s). (3.5)

It follows that the dynamic linear increments model (3.4) now can be written in the

form

Y (t) = X.B(t) +M(t) + ε(t) (3.6)

where X.B(t) is defined in equation (3.5).

• Independent censoring: The model meets the condition

E[∆Y (t)|Gt−,Rt−] = E[∆Y (t)|Gt−]. (3.7)

This means that additional knowledge of previous observation patterns does not affect the

expected increment given that the time history of X(t) and Y (t) is known.

In the following we will work through the theory of Section 4 in Diggle et al. [2007] to

build a model in our terminology for two timepoints as a special case. We will show that

the model we use later in this chapter (Section 3.3) is a special case of the general model

here. We will assume one time constant covariate x, and let Y be always observed at time

1, so that at the baseline we observe Y1, R, and x. Moreover at time 2, if R = 1, then we

observe Y2 as well. Here

G2 = {Y1, Y2, x, ε1, ε2},G1 = {Y1, x, ε1},

F2 = {Y1, Y2, x, R}, F1 = {Y1, x}, R2 = {R}.
(3.8)

For instance, at time 2; equation (3.7) will be : E[∆Y (2)|G2−,R2−] = E[Y2−Y1|x, Y1, ε1, R].

In our context x is a time constant scalar and the model in (3.2) for time 1 is:

Y1 = β1 + β2x+M1 + ε1. (3.9)

Then, the increment model defined in (3.4) is:

Y2 − Y1 = γ1 + γ2x+ (M2 −M1) + ε2 − ε1 (3.10)

where γ1 = β3 − β1 and γ2 = β4 − β2.
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Note M1 can be found from Y1, x , and ε1, thus at time 2:

Y2 = (β1 + γ1) + (β2 + γ2)x+M2 + ε2

= β3 + β4x+M2 + ε2. (3.11)

In addition, at time 1: B transform x is (x.B)(1) = β1 + β2x, hence the model defined

in (3.6) will be: Y1 = β1 + β2x + M1 + ε1, and this matches the result in equation (3.9).

Similarly, at time 2: (x.B)(2) = (β1 + γ1) + (β2 + γ2)x, and the model defined in (3.6)

will be: Y2 = (β1 + γ1) + (β2 + γ2)x+M2 + ε2. In other words, Y2 = β3 + β4x+M2 + ε2,

and this matches the result in equation (3.11). Note that we will discuss the special case

when M2 = M1 in the next section, and we will assume M2 = M1 = U ∼ N(0, σ2
U ).

3.2.2 No missingness case

First we consider the case that there is no missingness, i.e. for now the complete case is

considered. Following Diggle et al. [2007] Section 4.1.1 we assume we observe Y2, then

the true histories at time 0, 1, 2 respectively are as follows. At time 0, we have G0 = {x}.
At time 1 we have G1 = {x, Y1, ε1}. At time 2 G2 = {x, Y1, Y2, ε1, ε2}, where ε1 and ε2

are the measurement errors. Note that for simplicity, we set Y (0) = ε(0) = 0. Since x is

time-fixed then X(t) = X(t − 1) = x, and the true history defined in (3.1) for this case

(no missingness) is Gt− = Gt−1 ∪{x} = Gt−1. Hence the linear increment model as defined

in (3.4) is: E[∆Y (t)|Gt−] = X(t)β(t)− ε(t− 1). Note that the unconditional expectation

is E[∆Y (t)] = X(t)β(t) as the expected error is zero.

For example: The general model for time 1:

E[∆Y (1)|G0] = E[Y1 − Y0|G0] = E[Y1|x] = X(1)β(1)where β(1) =

(
β1

β2

)
and X(1) =

(
1 x

)
, thus E[∆Y (1)|G0] = β1 + β2x.

Similarly the general model for time 2 is:

E[∆Y (2)|G1] = E[Y(2) − Y(1)|x, Y1, ε1] = X(2)β(2)− ε(1) = γ1 + γ2x− ε1

where G1 = {x, Y1, ε1}, ε1 is the measurement error, β(2) =

(
γ1

γ2

)
=

(
β3 − β1

β4 − β2

)
and X(2) =

(
1 x

)
. This corresponds to Assumption 1. Again the unconditional ex-

pectation is E[∆Y (2)] = γ1 + γ2x as the expected error is zero.

3.2.3 The dropout case

Here we will illustrate the role of history (G ,F ,R) defined previously in (3.8) now in the

case of two timepoints. Suppose we always observe Y1 in sequence R1 = 1, and we might
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observe Y2 some times but not always because of dropout. Thus we must treat R2 as a

random variable, say R2 = R, and the process is Rt. Hence R1 = {.}, R2 = {R}.
The true history will be the same as its definition in the previous section under the no

missingness case because it does not contain R. The observed history at time 0, 1, 2

respectively is: At time 0 F0 = {x}, at time 1 F1 = {x, Y1, R}, and at time 2 F2 =

{x, Y1, Y2, R}. Note this is different from G , as here there is no ε. In general, we will

assume

E[∆Y (t)|Gt−,Rt−] = E[∆Y (t)|Gt−].

It follows that

E[∆Y (t)|x, Y1, ε1, R] = γ1 + γ2x− ε1

and this corresponds to Assumption 3.

We want to find E[∆Y (t)|Ft−] from E[∆Y (t)|Gt−]. In general

EGt−|Ft− [X(t)β(t)−ε(t−1)|Gt−] = Eε|Ft− [X(t)β(t)−ε(t−1)] = X(t)β(t)−E[ε(t−1)|Ft−].

For example at t = 1, E[∆Y (1)|F1−] = E[Y1|x] = β1 +β2x−E[ε1|x], we have assumed ε1

is independent of x, and E[ε1|x] = 0. Therefore, E[Y1|x] = β1 + β2x as expected. Also at

t = 2, E[∆Y (2)|F2−] = γ1 + γ2x− E[ε2|x,R, Y1] = γ1 + γ2x, again as expected.

3.3 Two Timepoints As a Special Case

We will use the longitudinal model defined in the Introduction for two timepoints to gener-

ate the data and the missingness model. In the following we will explore the independent

censoring assumption before continuing to investigate how the LI method performs under

shared parameter, MAR and MNAR dropout.

3.3.1 Independent censoring

Here we investigate whether our models satisfy the independent censoring assumption

(3.7). In the following will explore the SP, MAR and MNAR models and show if the

independent censoring assumption is valid.

Shared parameter

The shared parameter dropout model is defined as:

P (R = 1|U) =
eθ0+θ1U

1 + eθ0+θ1U

where U is a subject specific random effect. We want to investigate if this is independent

censoring.

It is clear that in this model R depends on U , therefore knowing R tells us about U .
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To be independent censoring, we have to verify (3.7) which says E[∆Y (t)|Gt−,Rt−] =

E[∆Y (t)|Gt−]. We attempt to rewrite this in our terminology. On the left hand side of (3.7)

we have G2− = {x, Y1, ε1}, Rt− = {R} then E[∆Y (t)|Gt−,Rt−] = E[∆Y (t)|x, Y1, ε1, R].

Now, since R depends on U , therefore E[Y2 − Y1|x, Y1, ε1, R] = E[Y2 − Y1|x, Y1, ε1, U,R],

but here we assume U is known anyway. Then,

E[Y2 − Y1|x, Y1, ε1, U,R] = E[Y2 − Y1|x, Y1, ε1, U ] = E[Y2 − Y1|x, Y1, ε1]

and this matches the right hand side of (3.7). Thus ∆Y is independent of R, and so it is

independent censoring.

MAR

The MAR dropout model is defined as:

P (R = 1|Y1) =
eθ0+θ1Y1

1 + eθ0+θ1Y1
.

We want to investigate if this is independent censoring.

We will adopt a similar approach to investigating the shared parameter. Here we know

that R depends on Y1. In other words, knowing Y1 tells us about R, therefore

E[Y2 − Y1|x, Y1, ε1, R] = E[Y2 − Y1|x, Y1, ε1]

thus ∆Y is conditionally independent of R, and so it is independent censoring.

MNAR

The MNAR dropout model is defined as:

P (R = 1|Y1, Y2) =
eθ0+θ1Y1+θ2Y2

1 + eθ0+θ1Y1+θ2Y2
.

We want to investigate if this is independent censoring.

Clearly R depends on Y1 and Y2, and hence this is not independent censoring because

E[Y2 − Y1|x, Y1, ε1, R] 6= E[Y2 − Y1|x, Y1, ε1].

3.3.2 Linear increment method with two timepoints

Instead of writing ∆Y (2), we will let Di = Y2i − Y1i. We assume the correct model for

responses, i.e.:

E[Y1i] = β1 + β2xi and E[Y2i] = β3 + β4xi.
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So for fully observed data

E[Di] = (β3 − β1) + (β4 − β2)xi = γ1 + γ2xi say.

We will estimate (β1, β2) by ordinary least squares (OLS) of Y1 on x, and (γ1, γ2) by OLS

of D on x whenever R = 1. Then we take

β̂3 = β̂1 + γ̂1 and β̂4 = β̂2 + γ̂2.

From simple linear regression we know

β̂2 =

∑n
i=1 Y1i(xi − x)∑n
i=1(xi − x)2

and β̂1 = Y1 − β̂2x.

The extra random variable R complicates the behavior at time 2, but we have

γ̂2 =

∑n
i=1RiDi(xi −Rx/R)∑n
i=1Ri(xi −Rx/R)2

and γ̂1 =
RD

R
− γ̂2

Rx

R
. (3.12)

For example, the Rx/R term arises as we use the mean x amongst observed values, which

can be written as
∑n

i=1Rixi/
∑n

i=1Ri. Dividing top and bottom by n allows us to change

the sums to means which is helpful for later use of the laws of large numbers (LLN), for

reference see Ross [2009]. We will study what happens to the estimates under the three

different dropout models, as n increases.

Now let n → ∞. There are five fundamental variables: U , ε1, ε2, R and x. At times

(including in this part) it may be more convenient to work with Y1, Y2 and/or D instead

of U , ε1 and ε2. Note that β̂1 and β̂2 depend only on Y1i and xi, both of which are

always observed, and we can deal with these without referring to the dropout model. We

use a superscript ∗ to imply the limiting value. We will go through this in full, even

though it is standard from linear regression, to illustrate the methods to come. We will

use subscripts to indicate which variables we are considering when taking expectations,

unless it is perfectly clear.

As the sample size increases, the sample means converge to the corresponding expected

values. This implies that

β̂2 → β∗2 =
Ex,Y1 {Y1(x− Ex[x])}
Ex {(x− Ex[x])2}

=
Ex
[
EY1|x {Y1} (x− Ex[x])

]
Ex {(x− Ex[x])2}

=
Ex
[
(βG1 + βG2 x)(x− Ex[x])

]
Ex {(x− Ex[x])2}

= βG1
Ex(x− Ex[x])

Ex {(x− Ex[x])2}
+ βG2

Ex [x(x− Ex[x])]

Ex {(x− Ex[x])2}
= βG2
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as EY1|x[Y1] = βG1 + βG2 x, Ex(x− Ex[x]) = 0 and Ex [x(x− Ex[x])] = Ex
{

(x− Ex[x])2
}

.

Similarly

β̂1 → β∗1 = Ex
{
EY1|x[Y1]− β∗2Ex[x]

}
= Ex

{
βG1 + βG2 x− β∗2Ex[x]

}
= βG1 + βG2 Ex[x]− β∗2Ex[x] = βG1 .

Hence for large samples our estimates at time 1 will converge to the correct (generating)

values. To repeat, this is obvious but helps to illustrate the methods to come.

The coefficients in the model for D are of most interest. As n increases, the LLN implies

that γ̂2 converges to γ∗2 given by

γ̂2 → γ∗2 =
E {RD(x− E[Rx]/E[R])}
E {R(x− E[Rx]/E[R])2}

(3.13)

and

γ̂1 → γ∗1 =
E[RD]

E[R]
− γ∗2

E[Rx]

E[R]
. (3.14)

To make the calculation easier, we can rewrite γ∗2 defined in (3.13) as:

γ∗2 =
E[RDx]− E[RD]E[Rx]/E[R]

E[Rx2]− (E[Rx])2/E[R]
. (3.15)

3.3.3 Performance under shared parameter dropout

We start with equations (3.14) and (3.15). The shared parameter dropout model is

P (R = 1|U) = expit (θ0 + θ1 U)

and the expectation in equations (3.14) and (3.15) is with respect to the five variables: U ,

ε1, ε2, R and x.

First consider ε1 and ε2. Neither R nor x are affected by these and so if we take expectation

with respect to them, only D is affected and

Eε1,ε2|x {D} = γG1 + γG2 x.

Note that we did not write Eε1,ε2|U,x as ε1, ε2 are independent of U (and indeed x, but D

depends on x so we left that in).

So

γ∗2 = γG1
E {R(x− E[Rx]/E[R])}
E {R(x− E[Rx]/E[R])2}

+ γG2
E {Rx(x− E[Rx]/E[R])}
E {R(x− E[Rx]/E[R])2}

where the expectation is now with respect to U , R and x. Under the SP model (1.9),

R depends on U but not x. So E[Rx] = E[R]E[x] and we can deal with the inner
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expectations:

γ∗2 = γG1
E {R(x− E[x])}
E {R(x− E[x])2}

+ γG2
E {Rx(x− E[x])}
E {R(x− E[x])2}

.

Once more R is independent of x and

γ∗2 = γG1
ER,U [R]Ex {(x− E[x])}
ER,U [R]Ex {(x− E[x])2}

+ γG2
ER,U [R]E {x(x− E[x])}
ER,U [R]Ex {(x− E[x])2}

= γG2

as required. Similarly

γ̂1 → γ∗1 =
E[RD]

E[R]
− γG2

E[Rx]

E[R]

= E[D]− γG2 E[x]

= γG1 + γG2 E[x]− γG2 E[x]

= γG1 .

So γ̂1 and γ̂2 converge to the correct values, and in turn so do β̂3 and β̂4 respectively,

and this means that the linear increment method provides consistent estimates under the

shared parameter dropout model.

3.3.4 Performance under MAR

The MAR dropout model is:

P (R = 1|Y1) =
eθ0+θ1Y1

1 + eθ0+θ1Y1
= expit(θ0 + θ1Y1).

Recall the results in the previous chapter, where we found that the LI does not seem to

work under the MAR assumption. Now we will investigate the bias that occurs in the

parameters of the LI model. To see how the LI method works under the MAR model,

we will apply the MAR assumptions to the equations (3.14) and (3.15). Under MAR, R

depends on x through Y1, so E[Rx] 6= E[R]E[x]. To make progress we can use an approx-

imation based on the extended skew normal (ESN) to deal with the inner expectations.

The definition of the ESN is found in the following section.

The Extended Skew Normal Distribution (ESN)

The ESN distribution is described in Johnson et al. [1995]. We will consider the definition

and notation that was given in Ho et al. [2012]. A random variable w has an extended
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skew normal distribution, ESN(0, σ2
w, α, ν), if it has density:

f(w) =
φ(w; 0, σ2

w)Φ(αw + ν)

Φ
(
ν/
√

1 + α2σ2
w

) (3.16)

where φ(.; 0, Σ) is the normal density with mean 0 and dispersion Σ and Φ(.) denotes the

distribution function of a standard normal. Note that f(w) is a density function, then the

integration of f(w) over w equals 1 which implies:∫
w
φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
. (3.17)

The moment generating function (MGF) is:

M(t) = E[et w] =

e
1
2
σ2
w t

2
Φ

[
ασ2

w t+ν√
1+α2σ2

w

]
Φ
[
ν/
√

1 + α2σ2
w

] . (3.18)

Hence, the expectation of w is:

E[w] = M
′
(t)t=0 =

ασ2
w√

1 + α2σ2
w

φ(ν̄)

Φ(ν̄)
, (3.19)

where ν̄ = ν(1 + α2σ2
w)−

1
2 .

The second moment is:

E[w2] = M
′′
(t)t=0 =

σ2
w Φ(ν̄)− ν̄( ασ2

w√
1+α2σ2

w

)2φ(ν̄)

Φ(ν̄)
. (3.20)

Further details are in Appendix A.1.

In the section below, we will be interested in integrals that can be written in terms of

ESN. In particular∫
φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
= Φ(ν̄). (3.21)

∫
wφ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
E[w] = Φ(ν̄)E[w]

= Φ(ν̄)
ασ2

w√
1 + α2σ2

w

φ(ν̄)

Φ(ν̄)

=
ασ2

w φ(ν̄)√
1 + α2σ2

w

(3.22)
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and ∫
w2 φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
E[w2]

= Φ(ν̄)E[w2]

= Φ(ν̄)
σ2
w Φ(ν̄)− ν̄( ασ2

w√
1+α2σ2

w

)2φ(ν̄)

Φ(ν̄)

= σ2
w Φ(ν̄)− ν̄(

ασ2
w√

1 + α2σ2
w

)2φ(ν̄). (3.23)

3.3.5 Performance under MAR (continued) using ESN

Looking at the components of the equation (3.15), we need to find E[R], E[Rx], E[RD],

E[Rx2] and E[RDx] .

• As we know E[R] = E[E[R|x]], thus we have to calculate E[R|x] first, then we can

find E[R]. Note that under MAR, R does not depend on ε2 as it depends only on

x, U and ε1. We have

E[R|x] =

∫ ∞
−∞

P (R = 1|x, ε1, U)f(ε1, U) dε1 dU

=

∫ ∞
−∞

expit{θ0 + θ1Y1}f(ε1, U) dε1 dU

=

∫ ∞
−∞

expit{θ0 + θ1(β1 + β2x) + θ1(U + ε1)}f(ε1, U) dε1 dU

=

∫ ∞
−∞

expit{K1 + θ1w1}f(w1) dw1, say,

where

w1 = ε1 + U (3.24)

K1 = θ0 + θ1(β1 + β2x). (3.25)

We now use an approximation of the expit to the cumulative normal, see Johnson

et al. [1995]:

expit(z) ≈ Φ(c z), c =
16
√

3

15π
. (3.26)

Therefore:

E[R|x] ≈
∫ ∞
−∞

Φ{c(K1 + θ1w1)}f(w1) dw1.

From equation (3.24) w1 = ε1 + U and we assumed in our model in (1.1) that

ε1 ∼ N(0, σ2
ε1) and U ∼ N(0, σ2

U ). Hence we can say that w1 is normally distributed

with mean 0 and variance σ2
w1

, i.e w1 ∼ N(0, σ2
w1

), where σ2
w1

= σ2
ε1 + σ2

U , which
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allows us to replace f(w1) with φ(w1; 0, σ2
w1

) and

E[R|x] ≈
∫ ∞
−∞

Φ{c(K1 + θ1w1)}φ(w1; 0, σ2
w1

) dw1.

The integral is now equivalent to the numerator in (3.16) i.e. the pdf of ESN. We

can thus use equation (3.21) to obtain

E[R|x] ≈ Φ

 cK1√
1 + c2θ2

1σ
2
w1


= Φ

c(θ0 + θ1(β1 + β2x))√
1 + c2θ2

1σ
2
w1


= Φ(A1 +A2x) (3.27)

where we have used equation (3.25) to replace K1 and we have defined A1 =
c√

1+c2θ21σ
2
w1

(θ0 + θ1β1) and A2 = c√
1+c2θ21σ

2
w1

(θ1β2).

Now we can find E[R] by integrating the above expectation in (3.27) over x. Recall

that x ∼ N(0, σ2
x) so

E[R] = Ex[E[R|x]]

≈
∫ ∞
−∞

Φ(A1 +A2x)φ(x; 0, σ2
x)dx

then we use equation (3.21) to obtain

E[R] ≈ Φ

[
A1√

1 + (A2σx)2

]
= Φ(ν1) (3.28)

where ν1 = A1√
1+(A2σx)2

.

• We can calculate E[Rx], using

E[Rx] = Ex[xE[R|x]]

≈
∫ ∞
−∞

xΦ {A1 +A2x}φ(x; 0, σ2
x)dx.

We can use formula (3.22) to perform the integration, and the result obtained is:

E[Rx] =
σ2
xA2√

1 +A2
2σ

2
x

φ

(
A1√

1 +A2
2σ

2
x

)
=

σ2
xA2√

1 +A2
2σ

2
x

φ(ν1). (3.29)
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• We now turn to E[RD], where D = Y2 − Y1 = γ1 + γ2x+ ε2 − ε1. Clearly

E[RD] = E[R(γ1 + γ2x+ ε2 − ε1)]

= γ1E[R] + γ2E[Rx] + E[Rε2]− E[Rε1]. (3.30)

Note that under MAR, we haveE[Rε2] = 0, so

E[RD] = γ1E[R] + γ2E[Rx]− E[Rε1]. (3.31)

We need to calculate E[Rε1] = Eε1 [ε1E[R|ε1]]. Consider first

E[R|ε1] =

∫ ∞
−∞

P (R = 1|x, ε1, U)f(x, U) dx dU

=

∫ ∞
−∞

expit{θ0 + θ1Y1}f(x, U) dx dU

=

∫ ∞
−∞

expit{θ0 + θ1(β1 + β2x+ U + ε1)}f(x, U) dx dU.

Let w2 = K2 + θ1ε1 and w3 = β2x+U , where K2 = θ0 + θ1β1. Then the variance of

w3 is σ2
w3

= β2
2σ

2
x + σ2

U , and the above equation can be rewritten as:

E[R|ε1] =

∫ ∞
−∞

expit{w2 + θ1w3}f(w3) dw3.

We now approximate the expit(z) by {Φ(cz)}, and since w3 ∼ N(0, σ2
w3

) we can say:

E[R|ε1] ≈
∫ ∞
−∞

Φ{c(w2 + θ1w3)}φ(w3; 0, σ2
w3

) dw3

= Φ

 cw2√
1 + c2θ2

1σ
2
w3

 .
Now re arranging the quantity inside we write

E[R|ε1] ≈ Φ [A3 +A4ε1]

where A3 = c(θ0+θ1β1)√
1+c2θ21σ

2
w3

and A4 = cθ1√
1+c2θ21σ

2
w3

.

56



Chapter 3. Performance of Linear Increment Method Under Shared Parameter, MAR
and MNAR Dropout

Now we want to find E[Rε1]. This is

E[Rε1] = Eε1 [ε1E[R|ε1]]

≈ Eε1 [ε1Φ [A3 +A4ε1]]

=

∫
ε1Φ [A3 +A4ε1] f(ε1) dε1

=

∫
ε1Φ [A3 +A4ε1]φ(ε1; 0, σ2

ε1) dε1

=
σ2
ε1A4√

1 +A4σ2
ε1

φ

 A3√
1 +A2

4σ
2
ε1


=

σ2
ε1A4√

1 +A4σ2
ε1

φ(ν2) (3.32)

where we have used (3.22) and we have defined ν2 = A3√
1+A2

4σ
2
ε1

. From equations

(3.28), (3.29), and (3.32), we can now calculate the components required to build up

equation (3.31) to get the value of E[RD] as will be shown later.

• We turn now to E[RDx]. We have

E[RDx] = E[Rx(γ1 + γ2x+ ε2 − ε1)]

= γ1E[Rx] + γ2E[Rx2] + E[Rxε2]− E[Rxε1]

and again, under MAR E[Rxε2] = 0. Then

E[RDx] = γ1E[Rx] + γ2E[Rx2]− E[Rxε1]. (3.33)

It follows that we still need also to calculate E[Rx2] and E[Rxε1]. We start with:

E[Rx2] = Ex[x2E[R|x]]

≈
∫ ∞
−∞

x2Φ {A1 +A2x}φ(x; 0, σ2
x)dx.

Using form (3.23)

E[Rx2] ≈ Φ[ν1]− ν1

(
A2 σ

2
x√

1 +A2
2σ

2
x

)2

φ[ν1]. (3.34)

• To calculate E[Rxε1] we need several stages. First

E[Rxε1] =

∫ ∫ ∫
x ε1 expit{θ0 + θ1(β1 + β2x+ U + ε1)} f(U) f(ε1) f(x)dU dε1 dx.
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Using the approximation of the expit, then

E[Rxε1] ≈
∫ ∫ ∫

x ε1 Φ{c(θ0 + θ1(β1 + β2x+ U + ε1))} f(U) f(ε1) f(x)dU dε1 dx.

First we will integrate out U ,

E[Rxε1] ≈
∫ ∫

x ε1

{∫
Φ{c(θ0 + θ1(β1 + β2x+ U + ε1))} f(U) dU

}
f(ε1) f(x) dε1 dx.

(3.35)

We consider the inner integral, with ε1 and x treated as constants:∫
Φ{c(θ0 + θ1(β1 + β2x+ U + ε1))} f(U) dU =

∫
Φ{K3 +K4U} f(U) dU

where K3 = c(θ0 + θ1(β1 + β2x + ε1)) and K4 = cθ1. Since U ∼ N(0, σ2
U ) we can

write this as∫
Φ{c(θ0 + θ1(β1 + β2x+ U + ε1))} f(U) dU =

∫
Φ{K3 +K4U}φ(U ; 0, σ2

U ) dU.

This is of the form (3.21) and so

∫
Φ{c(θ0 + θ1(β1 + β2x+ U + ε1))} f(U) dU = Φ

 K3√
1 + (K4σ2

U )2

 .(3.36)

We will now consider ε1. Equation (3.36) allows (3.35) to be written as:

E[Rxε1] ≈

∫ ∫
x ε1 Φ

 K3√
1 + (K4σ2

U )2

 f(ε1)f(x) dε1 dx.

Replacing K3 by its value and letting K5 = c(θ0+θ1β1)+cθ1β2x√
1+(K4σU )2

and K6 = cθ1√
1+(K4σU )2

,

then

E[Rxε1] ≈
∫ ∫

x ε1 Φ{K5 +K6ε1}f(ε1)f(x) dε1 dx

=

∫
x

{∫
ε1 Φ{K5 +K6ε1} f(ε1) dε1

}
f(x) dx. (3.37)

Again we consider the inner integral, with x now treated as constant. Since ε1 ∼
N(0, σ2

ε1) we can write this as∫
ε1 Φ{K5 +K6ε1} f(ε1) dε1 =

∫
ε1 Φ{K5 +K6ε1}φ(ε1; 0, σ2

ε1) dε1.
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This matches the form (3.22), thus

∫
ε1 Φ{K5 +K6ε1} f(ε1) dε1 =

K6 σ
2
ε1√

1 + (K6 σε1)2
φ

(
K5√

1 + (K6 σε1)2

)
= K7 φ(K8 +K9x) (3.38)

where K7 =
K6 σ2

ε1√
1+(K6 σε1 )2

, K8 = c(θ0+θ1β1)√
1+(K4σU )2

and K9 = cθ1β2x√
1+(K4σU )2

. Now we will go

back to (3.37) using the result in (3.38):

E[Rxε1] ≈ K7

∫
xφ(K8 +K9x)f(x)dx.

Since x ∼ N(0, σ2
x), thus

E[Rxε1] = K7

∫
xφ(K8 +K9x)φ(x; 0, σ2

x)dx.

Now we will use the result of Appendix A.2 to find the above integration. It follows

that:

E[Rxε1] = −K7
K8K9

(K2
9 + 1)

3
2

e−
1
2
K10 = A5 (3.39)

where K10 =
K2

8

K2
9+1

.

We now have all the terms needed for the limiting value γ∗2 defined in equation (3.15)

and γ∗1 defined in equation (3.14), which can be calculated from equations (3.33), (3.31),

(3.29), (3.28) and (3.34). We do not write the full expression because of the length. But

to summarise:

E[RDx] = γ1E[Rx] + γ2E[Rx2]− E[Rxε1]

≈ γ1
σ2
xA2√

1 +A2
2σ

2
x

φ(ν1) + γ2

Φ[ν1]− ν1

(
A2 σ

2
x√

1 +A2
2σ

2
x

)2

φ[ν1]

−A5. (3.40)

E[RD] = γ1E[R] + γ2E[Rx]− E[Rε1]

≈ γ1Φ(ν1) + γ2

{
σ2
xA2√

1 +A2
2σ

2
x

φ(ν1)

}
− (

σ2
ε1A4√

1 +A4σ2
ε1

φ(ν2)). (3.41)

E[Rx] =
σ2
xA2√

1 +A2
2σ

2
x

φ(ν1). (3.42)

E[R] ≈ Φ(ν1). (3.43)

E[Rx2] ≈ Φ[ν1]− ν1

(
A2 σ

2
x√

1 +A2
2σ

2
x

)2

φ[ν1]. (3.44)
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Then γ∗2 can be calculated from (3.40) to (3.44). We will investigate numerically in Section

3.4. Before then we look at performance under MNAR.

3.3.6 Performance under MNAR

To see how the LI method works under the MNAR model defined in (1.7), we will apply

the MNAR assumptions to the equations (3.15) and (3.14), where the expectation is with

respect to the four variables: ε1, ε2, R and x.

Under the MNAR dropout model, R depends on x. So E[Rx] 6= E[R]E[x] and we have to

use the approximation to the extended skew normal (ESN) to deal with the inner expec-

tations.

For simplicity, we choose θ1 = 0, so we do not need to worry about Y1, which will make

the integrals easier for this description. Calculations for general θ1 have been completed

(and are used later in the thesis).

We need to calculate E[R], E[Rx], E[Rx2], E[RD], E[RDx]. In turn,

E[RD] = E[R(γ1 + γ2x+ ε2 − ε1)] = γ1E[R] + γ2E[Rx] + E[Rε2]− E[Rε1] (3.45)

and

E[RDx] = E[Rx(γ1 + γ2x+ ε2− ε1)] = γ1E[Rx] + γ2E[Rx2] +E[Rxε2]−E[Rxε1] (3.46)

meaning we need E[R], E[Rx], E[Rx2], E[Rε2], [Rxε2], E[Rε1], [Rxε1]. Because we have

taken θ1 = 0, R is independent of ε1 and so E[Rε1] = [Rxε1] = 0, and these terms are

easily dealt with. In order to obtain the other terms, we will consider nested expectations

beginning with R conditioned upon x and ε2, just as in the previous section. Then we can

use similar methods to those for the MAR assumption. Details are omitted but the final
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results are:

E[R|x, ε2] ≈ Φ

[
cF1√

1 + (cθ2σU )2

]
E[R|ε2] ≈ Φ [F4 + F5ε2]

E[R] ≈ Φ

[
F4√

1 + (F5σε2)2

]
(3.47)

E[R|x] ≈ Φ

[
F6√

1 + (F7σε2)2

]

E[Rx] =
σ2
xF9√

1 + (F9σx)2
φ(ν̄2) (3.48)

E[Rx2] ≈ −ν̄2(
F9σ

2
x√

1 + (F9σx)2
)2φ(ν̄2) + σ2

xΦ(ν̄2) (3.49)

E[Rε2] =
σ2
xF5√

1 + (F5σε2)2
φ(ν̄1) (3.50)

E[Rε2 x] = −K B5B6

(B6 + 1)3/2
e
− 1

2
B5
B2
6+1 (3.51)

where, F1 = θ0 + θ2(β3 + β4x+ ε2), F3= cθ2β4, F4= c(θ0+θ2β3)√
1+(F3σx)2

, F5= cθ2√
1+(F3σx)2

,

ν̄1 = F4√
1+(F5σε2 )2

, ν̄2 = F8√
1+(F9σx)2

, F8 = c√
1+(F7σε2 )2

√
1+(cθ2σU )2

[θ0 + θ2β3]

and F9 = c√
1+(F7σε2 )2

√
1+(cθ2σU )2

[θ2β4].

Therefore, equation (3.45) will be:

E[RD] ≈ γ1Φ

[
F4√

1 + (F5σε2)2

]
+ γ2(

σ2
xF9√

1 + (F9σx)2
φ(ν̄2)) + (

σ2
xF5√

1 + (F5σε2)2
φ(ν̄1)).

(3.52)

Similarly, equation (3.46) will be:

E[RDx] ≈ γ1

(
σ2
xF9√

1 + (F9σx)2
φ(ν̄2)

)
+ γ2

(
−ν̄2(

F9σ
2
x√

1 + (F9σx)2
)2φ(ν̄2) + σ2

xΦ(ν̄2)

)

+ (−K B5B6

(B6 + 1)3/2
e
− 1

2
B5
B2
6+1 ).

(3.53)

Now, we have all of the components of (3.45)and (3.46) needed to find the limiting values

γ∗1 and γ∗2 defined in equations (3.15) and (3.14).

In the next section we will show the numerical results of the work which has been done in

theory to investigate the performance of the LI under MAR and MNAR.
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3.4 Numerical Investigation

We will undertake a numerical investigation in two parts. In the first part we want to

check that the theory for our least false values is correct. In the second part we explore in

detail how the misspecification affects the γ estimates, using the theoretical results. Now

that we have working formulas there is no need for simulations here. For example, we

produce contour plots to show how the γs change when the MAR or MNAR coefficients

θ are changed. First we show the limiting values γ∗1 and γ∗2 calculated from equations

(3.40) to (3.44) for MAR work, and from equations (3.47) to (3.53) in the MNAR section,

and demonstrate through simulations that they are correct by comparing the expected

value which is calculated from the formulas mentioned above with the observed values

which are calculated from equation (3.12). We generated a scalar N(0, 1) variable x,

then we generated the longitudinal means µ1=β1 + β2x, µ2=β3 + β4x. This was followed

by (Y1, Y2) from a bivariate normal distribution with mean (µ1, µ2). Missingness was

generated from equations (1.5), (1.7) and (1.10) for the models MAR, MNAR and SP

respectively. In all of the following simulations, unless it is stated otherwise, we take the

parameters σx = σε1 = σε2 = σU =
√

0.5, β=(−2,−2,−1,−1) (and then γ1 = γ2 = 1),

(θsp0 , θ
sp
1 ) = (0,

√
0.5) and for MNAR we choose θMN

1 = 0, so we do not worry about Y1,

which has made the integrals in the theoretical parts easier. We will choose the MAR and

MNAR parameters θ to give a similar dropout rate to SP. This choice of parameters will

keep the dropout percentage always at about 50%. See Appendix A.3.

First we want to know at what n can we be confident that the theory is reasonable. We

compare the theoretical results with the simulated as n increases, with results shown in

Table 3.1 and Table 3.2. Based on this result for each set of parameters we studied sample

size of 50000. In addition, 95% nominal confidence intervals (CI) for the expectations

under SP, MAR and MNAR are shown in Table 3.3, Table 3.4 and Table 3.5 respectively.

Secondly, we will try to find several combinations of (θ0, θ1, θ2) under fixed β and for given

variances σ2
x = 1, σU = σε1 = σε2 =

√
0.5 to keep the total amount of the dropout fixed

at about 50%. We will study the effect of changing θs. Table 3.10 and Table 3.11 show

this effect. In each table the absolute value of the bias in the limiting values γ∗1 and γ∗2
is calculated. Then, for a given θ (and dropout), we will study the effect of changing the

variance parameters. The result are shown in Table 3.12 and Table 3.13.

Finally we produced contour plots shown in Figure 3.1 to Figure 3.4

3.4.1 Comparing the theoretical results with the simulated as n in-

creases

Here we attempt to show what happens as sample size increases, i.e. at what n can we

be confident that the theory is reasonable. Results at n = 50000 show that the simulated
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means all match the theoretical approximations very well, which supports the use of the

theory. The simulations are denoted by for example R̄, and the least false approximations

by for example E[R].

Table 3.1: Comparison of simulated and least false values for n = 1000

n SP MAR MNAR

1000 R̄ 0.49 0.49 0.51
E[R] 0.50 0.50 0.50

Rx -0.01 -0.20 -0.09
E[Rx] 0.00 -0.20 -0.11

RD 0.46 0.22 0.46
E[RD] 0.50 0.25 0.45

RDx 0.40 0.31 0.41
E[RDx] 0.50 0.30 0.39

Rx2 0.45 0.51 0.48
E[Rx2] 0.50 0.50 0.50

γ̂1 0.96 0.84 1.07
γ∗1 1.00 0.88 1.11
γ̂2 0.91 0.93 1.04
γ∗2 1.00 0.95 1.02
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Table 3.2: Comparison of simulated and least false values for n = 10000, 50000

n SP MAR MNAR

10000 R̄ 0.50 0.50 0.50
E[R] 0.50 0.50 0.50

Rx 0.01 -0.20 -0.10
E[Rx] 0.00 -0.20 -0.11

RD 0.51 0.24 0.45
E[RD] 0.50 0.25 0.45

RDx 0.50 0.31 0.42
E[RDx] 0.50 0.30 0.39

Rx2 0.50 0.51 0.52
E[Rx2] 0.50 0.50 0.50

γ̂1 1.01 0.85 1.12
γ∗1 1.00 0.88 1.11
γ̂2 1.00 0.94 1.02
γ∗2 1.00 0.95 1.02

50000 R 0.50 0.50 0.49
E[R] 0.50 0.50 0.50

Rx 0.00 -0.20 -0.11
E[Rx] 0.00 -0.20 -0.11

RD 0.50 0.25 0.44
E[RD] 0.50 0.25 0.45

RDx 0.51 0.30 0.39
E[RDx] 0.50 0.30 0.39

Rx2 0.50 0.50 0.50
E[Rx2] 0.50 0.50 0.50

γ̂1 1.01 0.89 1.13
γ∗1 1.00 0.88 1.11
γ̂2 1.01 0.95 1.03
γ∗2 1.00 0.95 1.02
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3.4.2 The 95% reference interval for the expectations and least false β∗3 ,

β∗4 , γ∗1 and γ∗2 .

Here we will show that for each limiting value calculated by the expectation, the simulated

values (SV) are within noise of the theoretical values (TV) for large sample sizes. We

estimate the noise from the simulations; that is we get a confidence interval from the

simulations and reassurance that the population values are within these. We simulate 100

samples of size 50000, then find the β̂ for each sample then calculate the reference interval

instead of standard confidence interval, so we will say: CI=
¯̂
β ± 2SD(β). We did this for

the SP, MAR and MNAR dropout models, each with just one set of dropout parameters

and all with the missingness percentage at about 50% dropout. The reason for that is if

we used the standard confidence interval, which is CI=
¯̂
β ± 2 SD(β)√

100
as the CI for the true

least false parameter, and if we took the number of repetitions up from 100 to many many

more, it would have zero width. But the TV of course is an approximation, as we had to

move from logit to probit form to get the skew normal results, it is not the exact value.

We know it will not be exactly equal to the true least false parameter, and so for large

enough number of repetitions will never be in the CI. Therefore, what we do is change

from CI to reference interval using ±2SD. This should show that the sample values are

within noise of the TV.

Table 3.3: The 95% reference interval for the expectations under SP using 100 samples of size
50000.

TV Mean Lower Bound Upper Bound
E[R] 0.5000 0.5030 0.4720 0.5340
E[Rx] 0.0000 -0.0212 -0.0657 0.0232
E[RD] 0.5000 0.5062 0.4392 0.5732
E[RDx] 0.5000 0.4698 0.3813 0.5583
E[Rx2] 0.5000 0.5143 0.4471 0.5815

Table 3.4: The 95% reference interval for the expectations under MAR using 100 samples of size
50000.

TV Mean Lower Bound Upper Bound
E[R] 0.5000 0.4920 0.4610 0.5230
E[Rx] -0.1960 -0.1972 -0.2392 -0.1551
E[RD] 0.2550 0.2473 0.1879 0.3068
E[RDx] 0.3040 0.2888 0.2202 0.3573
E[Rx2] 0.5000 0.4992 0.4327 0.5657
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Table 3.5: The 95% reference interval for the expectations under MNAR using 100 samples of size
50000.

TV Mean Lower Bound Upper Bound
E[R] 0.5000 0.4980 0.4670 0.5290
E[Rx] -0.1083 -0.1368 -0.1832 -0.0903
E[RD] 0.4458 0.4368 0.3681 0.5056
E[RDx] 0.3917 0.4314 0.3462 0.5166
E[Rx2] 0.5000 0.5796 0.4985 0.6608

Table 3.6: The 95% reference interval for β∗
3 using 100 samples of size 50000.

TV SV Lower Upper
MAR -1.1158 -1.1192 -1.1288 -1.1096
MNAR -0.8864 -0.8816 -0.8911 -0.8721
SP -1.0000 -0.9995 -1.0081 -0.9910

Table 3.7: The 95% reference interval for β∗
4 using 100 samples of size 50000.

TV SV Lower Upper
MAR -1.0454 -1.0462 -1.0791 -1.0133
MNAR -0.9754 -0.9733 -1.0013 -0.9454
SP -1.0000 -1.0013 -1.0338 -0.9689

Table 3.8: The 95% reference interval for γ∗1 using 100 samples of size 50000.

TV SV Lower Upper
MAR 0.8842 0.8790 0.8523 0.9057
MNAR 1.1136 1.1169 1.0859 1.1480
SP 1.0000 1.0043 0.9760 1.0327

Table 3.9: The 95% reference interval for γ∗2 using 100 samples of size 50000.

TV SV Lower Upper
MAR 0.9546 0.9546 0.9546 0.9546
MNAR 1.0246 1.0269 0.9970 1.0569
SP 1.0000 0.9994 0.9678 1.0311
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3.4.3 The effect of dropout on the limiting values γ∗1 and γ∗2

In Table 3.10, we show γ∗1 and γ∗2 by solving the equations given in Sections 3.3.5 and

3.3.6 for the given values of θsp0 and θsp1 under MAR, with the same parameters used to

generate the logistic model as mentioned before. These values of θ all give a dropout rate

of around 50%. In Table 3.11, we do the same for MNAR.

Table 3.10: Effect on dropout parameters of fitting the LI method under MAR,
where Bias(γ1) and Bias(γ2) are the absolute bias in γ1 and γ2, respectively.

θM0 θM1 γ∗1 γ∗2 Bias(γ1) Bias(γ2)

1 0.5 0.88 0.95 0.12 0.05
-1 -0.5 1.12 0.95 0.12 0.05
2 1 0.79 0.88 0.21 0.12
-2 -1 1.21 0.88 0.21 0.12

Table 3.11: Effect on dropout parameters of fitting the LI method under MNAR,
where Bias(γ1) and Bias(γ2) are the absolute bias in γ1 and γ2, respectively.

θMN
0 θMN

2 γ∗1 γ∗2 Bias(γ1) Bias(γ2)

0.5 0.5 1.11 1.02 0.11 0.02
-0.5 -0.5 0.89 1.02 0.11 0.02

1 1 1.21 1.07 0.21 0.07
-1 -1 0.79 1.07 0.21 0.07

Results in Table 3.10 and Table 3.11 are of main interest. Under MAR, Table 3.10 shows

that the absolute bias in both γ∗1 andγ∗2 become larger as the absolute value of θM1 get

bigger. For negative θM1 , we note that γ∗1 tends to be higher than its true value. The

opposite happens for positive θM1 .

Turning to the next table, under MNAR, γ∗1 tends to be either more or less than its true

value depending upon whether dropout is associated with large Y2 (negative θMN
2 ), or

small Y2 (positive θMN
2 ). If dropout is associated with large Y2, then the mean in the

observed data will be too low, and the wrong missingness model does not compensate for

this. The opposite is true if dropout is associated with small Y2.
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3.4.4 The effect of measurement errors of the random effect and covari-

ate variances on the limiting values γ∗1 and γ∗2

In the following tables we will study the effect of changing the variance of the random

effect and measurement error on the limiting values at different dropout models. We take

σ2
U = σ2

ε1 = σ2
ε2 . Each time, we will keep the same dropout percentage at about 50%.

Table 3.12: The effect of the variance σ2
U on the limiting values γ∗1 and γ∗2 .

SP MAR MNAR

σU=
√

0.5 γ∗1 1.0000 0.8842 1.1136
γ∗2 1.0000 0.9546 1.0246
Bias(γ1) 0.0000 0.1158 0.1136
Bias(γ2) 0.0000 0.0454 0.0246

σU=1 γ∗1 1.0000 0.7774 1.2186
γ∗2 1.0000 0.9152 1.0457
Bias(γ1) 0.0000 0.2226 0.2186
Bias(γ2) 0.0000 0.0848 0.0457

σU=
√

3 γ∗1 1.0000 0.4156 1.5752
γ∗2 1.0000 0.7992 1.1065
Bias(γ1) 0.0000 0.5844 0.5752
Bias(γ2) 0.0000 0.2008 0.1065

σU=
√

6 γ∗1 1.0000 -0.0046 1.9916
γ∗2 1.0000 0.6947 1.1596
Bias(γ1) 0.0000 1.0046 0.9916
Bias(γ2) 0.0000 0.3053 0.1596

σU=
√

12 γ∗1 1.0000 -0.6269 2.6114
γ∗2 1.0000 0.5873 1.2126
Bias(γ1) 0.0000 1.6269 1.6114
Bias(γ2) 0.0000 0.4127 0.2126

Changing the variance parameters and keeping the dropout percentage at about 50% has a

remarkable effect on the bias. From Table 3.12, it is clear that as σU (and consequentially

σε1 and σε2) increases, the limiting values γ∗1 and γ∗2 go further from the true value (γG1 =

1, γG2 = 1) and hence the absolute bias increases, which means that the large error variances

imply poor results. In short we can conclude that the more variability, the more bias. In

Table 3.13 we turn to the effect of variance of the covariate, σ2
x.
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Table 3.13: The effect of the variance σ2
x on the limiting values γ∗1 and γ∗2 .

SP MAR MNAR

σx=
√

0.5 γ∗1 1.0000 0.8855 1.1131
γ∗2 1.0000 0.9521 1.0250
Bias(γ1) 0.0000 0.1145 0.1131
Bias(γ2) 0.0000 0.0479 0.0250

σx=
√

3 γ∗1 1.0000 0.8832 1.1153
γ∗2 1.0000 0.9624 1.0233
Bias(γ1) 0.0000 0.1168 0.1153
Bias(γ2) 0.0000 0.0376 0.0233

σx=
√

9 γ∗1 1.0000 0.8916 1.1170
γ∗2 1.0000 0.9752 1.0201
Bias(γ1) 0.0000 0.1084 0.1170
Bias(γ2) 0.0000 0.0248 0.0201

σx=
√

12 γ∗1 1.0000 0.8981 1.1167
γ∗2 1.0000 0.9798 1.0184
Bias(γ1) 0.0000 0.1019 0.1167
Bias(γ2) 0.0000 0.0202 0.0184

σx=
√

16 γ∗1 1.0000 0.9026 1.1160
γ∗2 1.0000 0.9822 1.0173
Bias(γ1) 0.0000 0.0974 0.1160
Bias(γ2) 0.0000 0.0178 0.0173

σx=
√

20 γ∗1 1.0000 0.9078 1.1148
γ∗2 1.0000 0.9847 1.0160
Bias(γ1) 0.0000 0.0922 0.1148
Bias(γ2) 0.0000 0.0153 0.0160

This time changing σx has little effect on the bias.

• The variance effect at MAR dropout: As σx increases the limiting value γ∗1 gets

slightly closer to the true value which implies smaller absolute bias.

• The variance effect at MNAR dropout: Here we note that the effect on γ∗1 differs

from the effect on γ∗2 . Table 3.13 shows that as σx increases the limiting value γ∗1
goes slightly further from the true value and hence there is slightly bigger absolute

bias. On the other hand, the limiting value γ∗2 gets slightly closer to the true value

as σx increases or we can say that in this case the absolute bias get smaller. But in

both cases the effect is small.
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3.4.5 Contour plots

Here we show how the limiting values γ∗1 and γ∗2 change when we change the MAR or

MNAR parameters. Figures 3.1 to 3.4 present contour plots of least false values γ∗1 and

γ∗2 for a grid with −1.5 < θ0 = θsp0 < 1.5 and −1.5 < θ1 = θsp1 < 1.5. The range of

P (R = 1|Y1, Y2) over the grid is ( 0.2119, 0.7881) under MAR and it is ( 0.1987 ,0.8013)

under MNAR. The legend on the right side of the plot represents the range of the pa-

rameter under study. For example in Figure 3.1, γ∗1 under MAR can take a value from

about 0.7 to 1.3 for the θs changes in aforementioned grid. The white area in the plot

corresponds to the correct value which is γ∗1 = 1.

In Figure 3.1 the biggest change is in the vertical direction, showing that θ1 is most im-

portant. For example, at θ1 = 0 (which is equivalent to MCAR) then γ∗1 = 1 as expected.

For positive θ1, dropout is associated with small Y1, so D tends to be low. Hence γ∗1 is

lower than it should be. The opposite happens for a negative θ1.

In Figure 3.2 we get negative bias as θ1 moves away from zero in either direction. Such an

attenuation of regression effect is common when there are errors in variables, see Carrol

et al. [1995]. We speculate that a similar effect is in play here, for more details see Ap-

pendix A.6.

Turning to MNAR, Figures 3.3 and 3.4 show least false γ∗1 and γ∗2 . In Figure 3.3 as

mentioned above for Figure 3.1, the biggest change here in Figure 3.3 is in the vertical

direction, showing that θ2 is most important. For example, at θ2 = 0 (which is equivalent

to MCAR) then γ∗1 = 1 as expected. For negative θ2, dropout is associated with large Y2,

so D tends to be low. Hence γ∗1 is lower than it should be. The opposite happens for a

positive θ2.

Figure 3.4 is similar to Figure 3.2, in that we get positive bias as θ2 moves away from zero

in either direction. This is the opposite to the MAR effect, because D = Y2 − Y1 and we

expect selectivity in Y2 to have the opposite effect to the same selectivity in Y1 because of

the different sign.
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Figure 3.1: Contour plot of γ∗1 under MAR
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Figure 3.2: Contour plot of γ∗2 under MAR
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Figure 3.3: Contour plot of γ∗1 under MNAR
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Figure 3.4: Contour plot of γ∗2 under MNAR
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3.5 Discussion and Conclusion

In this chapter we calculated the expected value of terms in equations (3.15) and (3.14),

then found the least false values of γ∗1 and γ∗2 . We compared these expected values under

different dropout models to the generating values γG1 and γG2 . We calculated the bias in

the expected parameters at each dropout model. It is clear now that the LI works under

shared parameter, since γ∗2 = γG2 and γ∗1 = γG1 or in other words, the bias is zero. In

contrast, the LI method does not work under MAR and MNAR as there is bias in both

parameters. Results from the contour plots support our conclusions from Table 3.10 and

Table 3.11.
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Chapter 4

Performance of Inverse

Probability Weighting (IPW)

Under Shared Parameter, MAR

and MNAR Dropout

4.1 Introduction

In this chapter we aim to investigate how the IPW method performs under the shared

parameter, MAR and MNAR dropout mechanisms. The derivation and illustration of

least false values are made under SP and MNAR dropout. Under MAR we show that

the method gives consistent estimates. We make a comparison of least-false values with

simulation results for selected parameter combinations to check our calculations.

Aalen and Gunnes [2010] compared the linear increment method with inverse probability

weighting for complete data, and found that the latter method is more general, while the

increment method depends on the assumptions of model linearity. However, they argued

that in a missing data case the linear increments model should usually considered to be

a preferred option over using the inverse probability weighting methods. Matthews et al.

[2012] show that the inverse probability technique has a higher standard error compared

to other techniques as we mentioned in Chapter 2. In general, Diggle et al. [2007] found

that the inverse probability weighting method is inefficient, however they did not explain

why or how. We have looked at the estimates and the standard errors in Chapter 2, and

we found similar results.

For references regarding the IPW method, see Horvitz and Thompson [1952], Robins

et al. [1995] and Hernan et al. [2006]. A comparison between the present method and the

multiple imputation method was conducted by Carpenter et al. [2006]. Ho et al. [2012]

used the inverse probability weighting (IPW) method, which was proposed by Robins and
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colleagues (Robins et al. [1995] and Rotnitzky et al. [1998]). Assuming the data are missing

at random (MAR), but the fact that the data are missing not at random (MNAR), Ho

et al. [2012] investigated the effect of treatment effect estimation under a crossover design.

In this case, the MAR analysis will be biased. They found that the bias is affected by the

parameters, and it could be lower for some chosen sets than for others.

An investigation into the effect of choosing the parameters on the bias was also shown by

Matthews et al. [2012]. We discuss this in our simulation in Section 4.6.

Section 4.2 introduces the two timepoints model as a special case. In Section 4.3 we inves-

tigate the performance of the IPW method under the MAR model. The performance of

the IPW method under MNAR and SP models is shown in Sections 4.4 and 4.5, respec-

tively. They include brief details of how to use the extended skewed normal density to find

the expectation needed as in Chapter 3. Section 4.6 presents the results from analyses of

different simulation studies. Finally, in Section 4.7 we discuss all of our results.

4.2 Two Timepoints As a Special Case: Generating Model

4.2.1 Longitudinal data model

For this chapter we will assume that we have n individuals and two repeated measurements

or in other words two timepoints. Our model is the same as the model used in the previous

chapter.

4.2.2 Estimation of the parameters

According to Ho et al. [2012] and the recap of the inverse probability weighting approach

which is illustrated in Chapter 2, the closed form of the inverse probability estimate of β

is:

β̂ =

(∑ RiX
T
i Xi

πi

)−1(∑ RiX
T
i Yi
πi

−
∑

Ri
1− πi
πi

φ1(Y1, x) +
∑

(1−Ri)φ1(Y1, x)

)
,

(4.1)

where β̂ = (β̂1, β̂2, β̂3, β̂4)T , πi = expit{θ∗0 + θ∗1Y1i}. Here πi is the MAR dropout proba-

bility, possibly estimated. The function φ1 is arbitrary and is investigator chosen. In our

work we can simply ignore φ1 and rewrite β̂ as:

β̂ =

(∑ RiX
T
i Xi

πi

)−1∑ RiX
T
i Yi
πi

. (4.2)

We can split β̂ into:(
β̂1

β̂2

)
=

[∑ Ri
πi

(
1 xi

xi x2
i

)]−1(∑ Ri
πi

(
Y1i

Y1ixi

))
, (4.3)
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and (
β̂3

β̂4

)
=

[∑ Ri
πi

(
1 xi

xi x2
i

)]−1(∑ Ri
πi

(
Y2i

Y2ixi

))
. (4.4)

Since the dropout occurs at the second timepoint, we can concentrate on (β̂3, β̂4), and

thus the coefficients in the model for Y2 are of most interest. We will now work on the

components of equation (4.4).

Clearly ∑ Ri
πi

(
1 xi

xi x2
i

)
=

( ∑ Ri
πi

∑ Ri
πi
xi∑ Ri

πi
xi

∑ Ri
πi
x2
i

)
and also

[∑ Ri
πi

(
1 xi

xi x2
i

)]−1

=
1(∑ Ri

πi

)(∑ Rix2i
πi

)
−
(∑ Rixi

πi

)2


∑ Ri

πi
x2
i −

∑ Ri
πi
xi

−
∑ Ri

πi
xi

∑ Ri
πi

 .

Dividing top and bottom by n allows us to change the sums to means, which is helpful for

later use of the laws of large numbers (LLN). We will study what happens to the estimates

under the three different dropout models, as n increases.

Let n→∞. We use a superscript ∗ to imply the limiting value. As sample size increases,

the sample means converges to the corresponding expected values. This implies that:(
β̂3

β̂4

)
→

(
β∗3
β∗4

)
= E

[
R

π

(
1 x

x x2

)]−1

E

[
R

π

(
Y2

Y2x

)]
. (4.5)

Taking the expectation to be inside the array:

(
β∗3
β∗4

)
=

 E[Rπ ] E[Rxπ ]

E[Rxπ ] E[Rx
2

π ]


−1 E[RY2π ]

E[RY2xπ ]

 . (4.6)

Hence to find the limiting values β∗3 and β∗4 , we need to calculate the expectations E[R/π],

E[Rx/π], E[Rx2/π], E[RY2/π] and E[RY2x/π].

In the above we have assumed π is known. We will assume that if we have to estimate

π then we will make the assumption, perhaps false, of MAR dropout. We need first to

investigate what happens to our estimates as n increases.

Let π̂ = eθ̂0+θ̂1Y1i/{1 + eθ̂0+θ̂1Y1i}. The likelihood and score are
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` =
∑

(Ri log π̂i + (1−Ri) log (1− π̂i))

∂`

∂θ
=

∑(
Ri
π̂i
− 1−Ri

1− π̂i

)(
1

Y1i

)
π̂i(1− π̂i)

=
∑

(Ri(1− π̂i) − π̂i(1−Ri))

(
1

Y1i

)
.

Rearranging, we get the estimating equation:

∑
(Ri − π̂i)

(
1

Y1i

)
= 0. (4.7)

Again, we divide the right and left sides of equation (4.7) by n, and note that since the

right side is zero it stays zero. Using the law of large numbers (LLN), let n → ∞, which

implies θ̂ → θ∗, where the parameter of interest is made up of the least false values θ∗0 and

θ∗1 or what is sometimes called ”the best approximating value”, see Claeskens and Hjort

[2008]. We can find them by applying the LLN, which allows us to change the sums to

expectations in equation (4.7), and this gives:

E

[
(R− π)

(
1

Y1

)]
= 0. (4.8)

Equation (4.8) can be split into two equations:

E[R]− E[expit {θ∗0 + θ∗1Y1}] = 0. (4.9)

E[Y1R]− E[Y1 expit {θ∗0 + θ∗1Y1}] = 0. (4.10)

We will study what happens to the estimates under the three different dropout models,

as n increases. In the next sections we will try to find the components of equations

(4.9) and (4.10) under different dropout models. We assume the fitted model is MAR:

P (R = 1|Y1) = eθ
M
0 +θM1 Y1/{1 + eθ

M
0 +θM1 Y1}, but the truth is either the MNAR model

P (R = 1|Y1, Y2) = eθ
MN
0 +θMN

2 Y2/{1 + eθ
MN
0 +θMN

2 Y2}, or it might be the SP model P (R =

1|U) = eθ
s
0+θs1U/{1 + eθ

s
0+θs1U}.

4.3 Performance under MAR

If the true dropout model is MAR and we fit the same model by maximum likelihood, then

clearly the estimates are consistent and θ∗0 = θM0 and θ∗1 = θM1 . Also ER|Y1,Y2,x[R] = π,

where π = E[expit(θM0 +θM1 Y1)]. Turning to the regression parameters β, from the results

found in Chapter 2 (Tables 2.3 and 2.4), we know that the IPW method provides consistent
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estimates under MAR. We will demonstrate this for completeness. We use subscripts to

indicate which variables we are considering when taking expectations, unless it is perfectly

clear. To see what β̂ converges to, in this case as MAR is correct model, then we can work

on equation (4.5): (
β∗3
β∗4

)
= E

[
R

π

(
1 x

x x2

)]−1

E

[
R

π

(
Y2

Y2x

)]
. (4.11)

We can take each part separately:

E

[
R

π

(
Y2

Y2x

)]
= Ex,Y1,Y2,R

[
R

π

(
Y2

Y2x

)]

= Ex,Y1,Y2

[
ER|Y1,Y2,x

[
R

π

(
Y2

Y2x

)]]
, (4.12)

but we can say ER|Y1,Y2,x [R/π] = 1. Then,

E

[
R

π

(
Y2

Y2x

)]
= Ex,Y1,Y2

[(
Y2

Y2x

)]

=

(
β3 + β4E[x]

β3E[x] + β4E[x2]

)
. (4.13)

Note that for simplicity we write

(
β3

β4

)
instead of

(
βG3
βG4

)
.

Similarly,

E

[
R

π

(
1 x

x x2

)]−1

=

(
1 E(x)

E(x) E(x2)

)−1

=
1

(E(x2)− E(x)2)

(
E(x2) −E(x)

−E(x) 1

)
. (4.14)

Then, from equations (4.13) and (4.14):(
β∗3
β∗4

)
=

1

(E(x2)− E(x)2)

(
β3(E(x2)− E(x)2)

β4(E(x2)− E(x)2)

)

=

(
β3

β4

)

as expected.
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4.4 Performance under Shared Parameter Dropout

Under SP as the true model and MAR as the assumed model, we will estimate the least

false values θ∗0 and θ∗1 using equations (4.9) and (4.10). Recall:

E[R]− E[expit {θ∗0 + θ∗1Y1}] = 0.

E[Y1R]− E[Y1 expit {θ∗0 + θ∗1Y1}] = 0.

We will use an approach similar to that used in Chapter 3 based on the extended skew

normal distribution (ESN).

4.4.1 Calculating the components of equation (4.9)

We start with the first part of equation (4.9). Since under SP, R depends only on U , then

E[R] =

∫
P (R = 1|U)f(U) dU

=

∫
expit {θ0 + θ1U}φ(U ; 0, σ2

U ) dU

≈
∫

Φ[c(θ0 + θ1U)]φ(U ; 0, σ2
U ) dU (4.15)

= Φ

[
c θ0√

1 + (c θ1σU )2

]
. (4.16)

Note that in equation (4.15) we used the approximation of the expit to the cumulative

normal, which we defined in Chapter 3, see Johnson et al. [1995]:

expit(z) ≈ Φ(c z), c =
16
√

3

15π
. (4.17)

Also, we moved to equation (4.16) by using ESN; because the integral is now equivalent

to the left side of formula (A.2) in Appendix A.1. For more details refer to Appendix A.1.

For the second part of equation (4.9) we have

E[ expit {θ∗0 + θ∗1Y1}] = E[ expit {θ∗0 + θ∗1(β1 + β2x+ U + ε1)}] = E[R∗], say.

Thus R∗ depends on x, U and ε1. We need to calculate this expectation in two stages.

First, we calculate the expectation conditional upon x:

E[R∗|x] =

∫
expit {θ∗0 + θ∗1(β1 + β2x) + θ∗1(U + ε1)}f(U, ε1) dU dε1.
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LetU + ε1 = ξ1, thus ξ1 ∼ N(0, σ2
ξ1), where σ2

ξ1 = σ2
U + σ2

ε1 . So (4.18)

E[R∗|x] ≈
∫

Φ[c (θ∗0 + θ∗1(β1 + β2x)) + c θ∗1ξ1]φ(ξ1; 0, σ2
ξ1) dξ1 (4.19)

= Φ

[
c (θ∗0 + θ∗1(β1 + β2x))√

1 + (c θ∗1σξ1)2

]
= Φ [A1 +A2 x] ,

where A1 =
c (θ∗0+θ∗1β1)√
1+(c θ∗1σξ1 )2

and A2 =
c θ∗1β2√

1+(c θ∗1σξ1 )2
. Note that to calculate the integration

in equation (4.19) we again used the ESN formula (A.2) in Appendix A.1 .

Second, we remove the conditioning on x to get

E[R∗] = E[E[R∗|x]] ≈ E [Φ[A1 +A2 x]]

=

∫
Φ[A1 +A2 x]φ(x; 0, σ2

x) dx

= Φ

[
A1√

1 + (A2σx)2

]
. (4.20)

Then from equation (4.16) and (4.20) we can rewrite equation (4.9) to be

E[R]− E[R∗] ≈ Φ

[
c θ0√

1 + (c θ1σU )2

]
− Φ

[
A1√

1 + (A2σx)2

]
= 0. (4.21)

4.4.2 Calculating the components of equation (4.10)

In the following we will work on equation (4.10). We start with the first part:

E[Y1R] = E[Y1 expit {θ0 + θ2U}]

= E[(β1 + β2 x+ U + ε1) expit {θ0 + θ1U}]

= E[β1 expit {θ0 + θ1U}] + E[β2 x expit {θ0 + θ1U}]

+ E[U expit {θ0 + θ1U}] + E[ε1 expit {θ0 + θ1U}].

We have E[β2 x expit {θ0 + θ1U}] = E[ε1 expit {θ0 + θ1U}] = 0, knowing that x and ε1

are independent of U and have zero means. Thus,

E[Y1R] = E[β1 expit {θ0 + θ1U}] + E[U expit {θ0 + θ1U}]

= D1 + D2, say. (4.22)
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We will work on D1 first and then D2. We have:

D1 = E[β1 expit {θ0 + θ1U}]

≈ E[β1Φ[c(θ0 + θ1U)]]

= β1

∫
Φ[c(θ0 + θ1U)]φ(U ; 0, σ2

U ) dU (4.23)

= β1Φ

[
c θ0√

1 + (c θ1 σU )2

]
. (4.24)

And

D2 = E[U expit {θ0 + θ1U}]

≈ E[UΦ[c(θ0 + θ1U)]]

=

∫
UΦ[c(θ0 + θ1U)]φ(U ; 0, σ2

U ) dU (4.25)

=
c σ2

U θ1√
1 + (c θ1 σU )2

φ(ν̄1), (4.26)

where ν̄1 = c θ0√
1+(c θ1 σU )2

. Here for D1, we used formula (A.2) to find the integration in

equation (4.23), while for D2 we used formula (A.7) to find equation (4.25). These formu-

las can be found in Appendix A.1 .

Subsequently, from equations (4.24) and (4.26) we can rewrite equation (4.22) as:

E[Y1R] ≈ β1Φ

[
c θ0√

1 + (c θ1 σU )2

]
+

c σ2
U θ1√

1 + (c θ1 σU )2
φ(ν̄1). (4.27)

Now we will work on the second part of equation (4.10),

E[Y1 expit{θ∗0 + θ∗1Y1}] = E[(β1 + β2 x+ U + ε1) expit{θ∗0 + θ∗1(β1 + β2 x+ U + ε1)}].

Recall ξ1 = ε1 + U as defined in equation (4.18), then

E[Y1 expit{θ∗0 + θ∗1Y1}] = E[β1 expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

+ E[β2 x expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

+ E[ξ1expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

= D3 +D4 +D5. (4.28)
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In the following we will work on equation (4.28). We will start with D3
1:

D3 ≈ β1E[Φ[c (θ∗0 + θ∗1(β1 + β2 x+ ξ1))]]

= β1E[Φ[k1 + k2 x+ k3 ξ1]], say

= β1

∫ ∫
Φ[k1 + k2 x+ k3 ξ1]f(x, ξ1) dx dξ1.

Under SP, x and ξ1 are independent, which allows us to write the joint density function

f(x, ξ1) = f(x)f(ξ1), and, as defined earlier, x and ξ1 are normally distributed, so we can

use φ(.;µ, σ2) instead of f(.). Hence the above integration will be

D3 ≈ β1

∫ ∫
Φ[k1 + k2 x+ k3 ξ1]f(x)f(ξ1) dx dξ1

= β1

∫ ∫
Φ[k1 + k2 x+ k3 ξ1]φ(x; 0, σ2

x)φ(ξ1; 0, σ2
ξ1) dx dξ1

= β1

∫ (∫
Φ[k1 + k2 x+ k3 ξ1]φ(x; 0, σx) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫ (∫
(Φ[k2 x+ k4]φ(x; 0, σ2

x) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1.

We will do the inner integration first using the ESN formula (A.2) in Appendix A.1 , thus

D3 ≈ β1

∫ (
Φ

[
k4√

1 + (k2σx)2

])
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫ (
Φ

[
k1 + k3ξ1√
1 + (k2σx)2

])
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫
Φ [A3 +A4ξ1] φ(ξ1; 0, σ2

ξ1)dξ1.

Again, this integration can be calculated using the same formula. The final result is:

D3 ≈ β1 Φ

[
A3√

1 + (A4σξ1)2

]
, (4.29)

where A3 = k1/{
√

1 + (k2σx)2},A4 = k3/{
√

1 + (k2σx)2}, and k1 = c(θ∗0 + θ∗1β1),

k2 = c(θ∗1β2), k3 = c θ∗1, k4 = k1 + k3ξ1.

For D4:

D4 ≈ β2E[xΦ[c (θ∗0 + θ∗1(β1 + β2 x)) + c θ∗1ξ1]

= β2E[xΦ[k1 + k2 x+ k3 ξ1]]

= β2

∫ ∫
xΦ[k1 + k2 x+ k3 ξ1]f(x, ξ1) dx dξ1.

But under SP, x and ξ1 are independent, which again allows us to write the joint function

1We will use k1, k2, . . . , etc as temporary working notations.
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f(x, ξ1) = f(x)f(ξ1), and, as previously, x and ξ1 are normally distributed, so we can use

φ(.;µ, σ2) instead of f(.). Hence the above will be

D4 ≈ β2

∫ ∫
xΦ[k1 + k2 x+ k3 ξ1]f(x)f(ξ1) dx dξ1

= β2

∫ ∫
xΦ[k1 + k2 x+ k3 ξ1]φ(x; 0, σ2

x)φ(ξ1; 0, σ2
ξ1) dx dξ1

= β2

∫
x

(∫
(Φ[k5 + k3 ξ1]φ(ξ1; 0, σ2

ξ1) dξ1

)
φ(x; 0, σ2

x)dx,

where k5 = k1 + k2 x. We will do the inner integration first using the ESN formula (A.2)

in Appendix A.1 , thus

D4 ≈ β2

∫
x

(
Φ

[
k5√

1 + (k3σξ1)2

])
φ(x; 0, σ2

x)dx

= β2

∫
xΦ

[
k1 + k2 x√
1 + (k3σξ1)2

]
φ(x; 0, σ2

x)dx

= β2

∫
xΦ [A5 +A6 x] φ(x; 0, σ2

x)dx.

Using formula (A.7) in Appendix A.1 to find the integral, we get

D4 ≈ β2
A6 σ

2
x

k6
φ(ν̄2), (4.30)

where A5 = k1√
1+(k3σξ1 )2

, A6 = k2√
1+(k3σξ1 )2

, k6 =
√

1 + (A6σx)2, and ν̄2 = A5
k6
.

Similarly,

D5 ≈ E[ξ1Φ[c (θ∗0 + θ∗1(β1 + β2 x)) + c θ∗1ξ1]]

= E[ξ1 Φ[k1 + k2 x+ k3 ξ1]]

=

∫ ∫
ξ1 Φ[k1 + k2 x+ k3 ξ1]φ(x; 0, σ2

x)φ(ξ1; 0, σ2
ξ1) dx dξ1

=

∫
ξ1

(∫
Φ[k1 + k2 x+ k3 ξ1]φ(x; 0, σ2

x) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1

=

∫
ξ1

(∫
(Φ[k2 x+ k4]φ(x; 0, σ2

x) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1.
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We will do the inner integration first using the ESN formula (A.2) in Appendix A.1, thus

D5 ≈
∫

ξ1

(
Φ

[
k4√

1 + (k2σx)2

])
φ(ξ1; 0, σ2

ξ1)dξ1

=

∫
ξ1 Φ

[
k1 + k3 ξ1√
1 + (k2σx)2

]
φ(ξ1; 0, σ2

ξ1)dξ1

=

∫
ξ1 Φ [A3 +A4ξ1] φ(ξ1; 0, σ2

ξ1)dξ1.

Using formula (A.7) in Appendix A.1 to find the integral,

D5 ≈
A4 σ

2
ξ1

k7
φ(ν̄3), (4.31)

where k7 =
√

1 + (A4σξ1)2 and ν̄3 = A3
k7
.

Thus, we can rewrite equation (4.28) after replacing its components with the corresponding

ones in (4.29), (4.30) and (4.31), and the final form of this equation is:

E[Y1 expit{θ∗0 + θ∗1Y1}] ≈ β1 Φ

[
A3√

1 + (A4σξ1)2

]
+ β2

A6 σ
2
x

k6
φ(ν̄2) +

A4 σ
2
ξ1

k7
φ(ν̄3). (4.32)

Again, we can rewrite equation (4.10) to be:

E[Y1R] −E[Y1 expit {θ∗0 + θ∗1Y1}]

≈ β1Φ

[
c θ0√

1 + (c θ1 σU )2

]
+

c σ2
U θ1√

1 + (c θ1 σU )2
φ(ν̄1)

−

(
β1 Φ

[
A3√

1 + (A4σξ1)2

]
+ β2

A6 σ
2
x

k6
φ(ν̄2) +

A4 σ
2
ξ1

k7
φ(ν̄3)

)
= 0. (4.33)

We need to solve equations (4.21) and (4.33) simultaneously using numerical methods such

as Newton-Raphson, to obtain the least false values of θ0 and θ1. This will be illustrated

later. In the following we will use these values to calculate the least false values β∗3 and

β∗4 .

4.4.3 Calculating the least false values β∗3 and β∗4

Assuming we have the least false values θ∗0 and θ∗1, we can treat them as constants. Recall

equation (4.6), in order to find the least false values β∗3 and β∗4 we need to calculate the

following: E[R/π], E[Rx/π], E[Rx2/π], E[RY2/π] and E[RY2x/π]. Methods are similar

to those used previously and so the calculations and final results are given in Appendix

A.4.
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4.5 Performance under MNAR

Under MNAR as the true model and MAR as the assumed model, we will estimate the

least false values θ∗0 and θ∗1 from equations (4.9) and (4.10), using an approach similar to

that used in Chapter 3, and the previous section.

4.5.1 First: Working on equation (4.9)

In the following we will work on equation (4.9) to find the expected values of its compo-

nents. We start with the first part of equation (4.9), E[R]. Since under MNAR R depends

on x, U and ε2, then we can find the expectation by using the following approach. First,

we find the conditional expectation when x is treated as a constant. We have

E[R|x] = E[ expit {θ0 + θ2Y2}]

≈ E[Φ[c(θ0 + θ2Y2)]]

= E[Φ[c(θ0 + θ2(β3 + β4x+ U + ε2))]]. (4.34)

Let U + ε2 = ξ2, therefore ξ2 ∼ N(0, σ2
ξ2), where σ2

ξ2 = σ2
U + σ2

ε2 . (4.35)

So

E[R|x] ≈ E[Φ[c(θ0 + θ2(β3 + β4x)) + c θ2ξ2]]

= E[Φ[w1 + w2ξ2]]

=

∫
Φ[w1 + w2ξ2]φ(ξ2; 0, σ2

ξ2) dξ2 (4.36)

= Φ

[
w1√

1 + (w2σξ2)2

]
(4.37)

= Φ

[
c(θ0 + θ2β3)√
1 + (cθ2σξ2)2

+
cθ2β4x√

1 + (cθ2σξ2)2

]
(4.38)

= Φ[B1 +B2x], say, (4.39)

where w1 = c(θ0 + θ2(β3 + β4x)) and w2 = c θ2 are now used as working notations.

Since E[R] = E [E[R|x]], then

E[R] ≈ E [Φ[B1 +B2x]]

= Φ

[
B1√

1 + (B2σ2
x)2

]
. (4.40)

The second part of equation (4.9) is:

E[ expit {θ∗0 + θ∗1Y1}] = E[R∗]. (4.41)
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To calculate these expectations, as before we need to do this in two steps. First assume x

is treated as a constant, leading to

E[R∗|x] = E[ expit {θ∗0 + θ∗1(β1 + β2x) + θ∗1(U + ε1)}]

≈ E[Φ[c (θ∗0 + θ∗1(β1 + β2x)) + c θ∗1ξ1]

= E[Φ(w3 + w4ξ1)],

where w3 = c (θ∗0 + θ∗1(β1 + β2x)) and w4 = c θ∗1, and we recall U + ε1 = ξ1 as defined in

equation (4.18). Then

E[R∗|x] ≈
∫

Φ[w3 + w4ξ1]φ(ξ1; 0, σ2
ξ1)dξ1

= Φ

[
w3√

1 + (w4σξ1)2

]

= Φ

[
c (θ∗0 + θ∗1(β1 + β2x))√

1 + (c θ∗1σξ1)2

]
= Φ [B3 +B4 x] , (4.42)

where B3 =
c (θ∗0+θ∗1β1)√
1+(c θ∗1σξ1 )2

and B4 =
c θ∗1β2√

1+(c θ∗1σξ1 )2
.

Then we integrate over x to find

E[R∗] = E[E[R∗|x]] ≈ E [Φ[B3 +B4 x]]

=

∫
Φ[B3 +B4 x]φ(x; 0, σ2

x)dx

= Φ

[
B3√

1 + (B4σx)2

]
. (4.43)

Finally, we can replace the values of equations (4.40) and (4.43) with the corresponding

values in equation (4.9) to give the first estimating equation

E[R]− E[expit {θ∗0 + θ∗1Y1}] = 0,

or equivalently,

E[R]− E[R∗] ≈ Φ
[

B1√
1+(B2σ2

x)2

]
− Φ

[
B3√

1+(B4σx)2

]
= 0. (4.44)

4.5.2 Second: Working on equation (4.10)

In the following we will work on equation (4.10) starting with its first part

E[Y1R] = E[Y1 expit {θ0 + θ2Y2}]

= E[(β1 + β2 x+ U + ε1) expit {θ0 + θ2(β3 + β4 + U + ε2)}].
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We split this into four parts:

E[Y1R] = E[β1 expit {θ0 + θ2(β3 + β4 x+ U + ε2)}]

+ E[β2 x expit {θ0 + θ2(β3 + β4x+ U + ε2)}]

+ E[U expit {θ0 + θ2(β3 + β4x+ U + ε2)}]

+ E[ε1 expit {θ0 + θ2(β3 + β4x+ U + ε2)}]

= F1 + F2 + F3 + F4. (4.45)

In the following we will find each part separately. Firstly

F1 = E[β1 expit {θ0 + θ2(β3 + β4 x+ U + ε2)}]

= E[β1 expit {θ0 + θ2(β3 + β4 x+ ξ2)}]

≈ β1E [Φ[c (θ0 + θ2(β3 + β4 x+ ξ2))]]

= β1E [Φ[c (θ0 + θ2(β3 + β4 x) + c θ2ξ2]]

= β1E [Φ[w5 + w6 x+ w7 ξ2]]

= β1

∫ ∫
Φ[w5 + w6 x+ w7 ξ2]φ(ξ2; 0, σ2

ξ2)φ(x; 0, σ2
x)dξ2dx

= β1

∫ (∫
Φ[w5 + w6 x+ w7 ξ2]φ(ξ2; 0, σ2

ξ2)dξ2

)
φ(x; 0, σ2

x) dx

= β1

∫ (
Φ

[
w5 + w6 x√
1 + (w7 σξ2)2

])
φ(x; 0, σ2

x) dx

= β1

∫
Φ[B5 +B6 x]φ(x; 0, σ2

x) dx

= β1Φ

[
B5√

1 + (B6 σx)2

]
, (4.46)

where B5 = w5√
1+(w7 σξ2 )2

, B6 = w6√
1+(w7 σξ2 )2

, w5 = c (θ0 + θ2 β3), w6 = c (θ2 β4) and

w7 = c θ2.
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Secondly,

F2 = E[β2 x expit {θ0 + θ2(β3 + β4x+ U + ε2)}] (4.47)

≈ E[β2 xΦ[c (θ0 + θ2(β3 + β4 x+ ξ2))]]

= β2E [xΦ[w5 + w6 x+ w7 ξ2]]

= β2

∫ ∫
xΦ[w5 + w6 x+ w7 ξ2]φ(ξ2; 0, σ2

ξ2)φ(x; 0, σ2
x)dξ2dx

= β2

∫
x

(∫
Φ[w5 + w6 x+ w7 ξ2]φ(ξ2; 0, σ2

ξ2)dξ2

)
φ(x; 0, σ2

x) dx

= β2

∫
x

(
Φ

[
w5 + w6 x√
1 + (w7 σξ2)2

])
φ(x; 0, σ2

x) dx

= β2

∫
xΦ[B5 +B6 x]φ(x; 0, σ2

x) dx. (4.48)

Then we can apply formula (A.7), found in Appendix A.1, on equation (4.48), and this

gives:

F2 ≈ β2
σ2
xB6√

1 + (B6σx)2
φ(

B5√
1 + (B6σx)2

). (4.49)

And similarly, F3 is found as

F3 = E[U expit {θ0 + θ2(β3 + β4x+ U + ε2)}]

≈ E[UΦ[c(θ0 + θ2(β3 + U) + cθ2(β4 x+ ε2)]].

Let β4 x+ ε2 = ξ3, thus ξ3 ∼ N(0, σ2
ξ3) where σ2

ξ3 = (β4)2σ2
x + σ2

ε2 .So (4.50)

F3 ≈ E[UΦ[c(θ0 + θ2(β3 + U) + cθ2 ξ3]]

= E[UΦ[w5 + w7 ξ3 + w7 U ]]

=

∫ ∫
U Φ[w5 + w7 ξ3 + w7 U ]φ(ξ3; 0, σ2

ξ3)φ(U ; 0, σ2
U )dξ3dU

=

∫
U

(∫
Φ[w5 + w7 ξ3 + w7 U ]φ(ξ3; 0, σ2

ξ3) dξ3

)
φ(U ; 0, σ2

U ) dU

=

∫
U

(∫
Φ[w8 + w7 ξ3]φ(ξ3; 0, σ2

ξ3) dξ3

)
φ(U ; 0, σ2

U ) dU

=

∫
U

(
Φ

[
w8√

1 + (w7 σξ3)2

])
φ(U ; 0, σ2

U ) dU

=

∫
U Φ[B7 +B8 U ]φ(U ; 0, σ2

U ) dU

=
σ2
UB8√

1 + (B8σU )2
φ(

B7√
1 + (B8σU )2

), (4.51)
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where B7 = w5√
1+(w7 σξ3 )2

, B8 = w7√
1+(w7 σξ3 )2

and w8 = w5 + w7 U.

Finally, for F4 we note that the random variable ε1 is independent of x and U and as it

has a mean of zero.

F4 = E[ε1 expit {θ0 + θ2(β3 + β4x+ U + ε2)}] = 0. (4.52)

Using equations from (4.46) to (4.52) to calculate E[Y1R] in equation (4.45), we find

E[Y1R] ≈ β1Φ

[
B5√

1 + (B6 σx)2

]
+ β2

σ2
xB6√

1 + (B6σx)2
φ(ν̄4) +

σ2
UB8√

1 + (B8σU )2
φ(ν̄5), (4.53)

where ν̄4 = B5√
1+(B6σx)2

and ν̄5 = B7√
1+(B8σU )2

.

We will now work on the second part of equation (4.10). First

E[Y1 expit{θ∗0 + θ∗1Y1}] = E[(β1 + β2 + U + ε1) expit{θ∗0 + θ∗1(β1 + β2 x+ U + ε1)}].

AsU + ε1 = ξ1,

E[Y1 expit{θ∗0 + θ∗1Y1}] = E[β1 expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

+ E[β2 x expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

+ E[ξ1expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

= F5 + F6 + F7. (4.54)

The first of these is

F5 = E[β1 expit{θ∗0 + θ∗1(β1 + β2 x+ ξ1)}]

≈ β1E[Φ[c (θ∗0 + θ∗1(β1 + β2 x+ ξ1))]]

= β1E[Φ[c (θ∗0 + θ∗1(β1 + β2 x)) + c θ∗1ξ1]]

= β1E[Φ[w9 + w10ξ1]]

= β1

∫ ∫
Φ[w9 + w10 x+ w11ξ1]φ(x; 0, σ2

x)φ(ξ1; 0, σ2
ξ1) dx dξ1

= β1

∫ (∫
Φ[w9 + w10 x+ w11ξ1]φ(x; 0, σ2

x) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫ (∫
(Φ[w10 x+ w12]φ(x; 0, σ2

x) dx

)
φ(ξ1; 0, σ2

ξ1)dξ1.

91



Chapter 4. Performance of Inverse Probability Weighting (IPW) Under Shared
Parameter, MAR and MNAR Dropout

We will do the inner integration first using the ESN formula (A.2) in Appendix A.1, thus

F5 ≈ β1

∫ (
Φ

[
w12√

1 + (w10σx)2

])
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫ (
Φ

[
w9 + w11ξ1√
1 + (w10σx)2

])
φ(ξ1; 0, σ2

ξ1)dξ1

= β1

∫
Φ [B9 +B10ξ1] φ(ξ1; 0, σ2

ξ1)dξ1.

Again, this integral can be calculated using the same formula; the final result is:

F5 ≈ β1 Φ

[
B9√

1 + (B10σξ1)2

]
, (4.55)

where B9 = w9√
1+(w10σx)2

, B10 = w11√
1+(w10σx)2

, w9 = c (θ∗0 + θ∗1β1), w10 = c θ∗1 β2, andw11 =

c θ∗1.

Turning to F6 and F7, the final results are

F6 ≈ β2
B12 σ

2
x

w14
φ(ν̄6) (4.56)

F7 ≈
B10 σ

2
ξ1

w15
φ(ν̄7), (4.57)

where B11 = w9√
1+(w11σξ1 )2

, B12 = w10√
1+(w11σξ1 )2

, w13 = w9 + w10 x, w14 =
√

1 + (B12σx)2,

w15 =
√

1 + (B10σξ1)2, ν6 = B11
w14

and ν̄7 = B9
w15

.

Thus, we can rewrite equation (4.54) after replacing its components by the corresponding

ones in (4.55), (4.56) and (4.57) and the final form of this equation is:

E[Y1 expit{θ∗0 +θ∗1Y1}] ≈ β1 Φ

[
B9√

1 + (B10σξ1)2

]
+β2

B12 σ
2
x

w14
φ(ν̄6)+

B10 σ
2
ξ1

w15
φ(ν̄7). (4.58)

We now turn to equation (4.10) under MNAR using equation (4.53) and equation (4.58),

leading to the second estimating equation

E[Y1R] −E[Y1 expit {θ∗0 + θ∗1Y1}]

≈ β1Φ

[
B5√

1 + (B6 σx)2

]
+ β2

σ2
xB6√

1 + (B6σx)2
φ(ν̄4) +

σ2
UB8√

1 + (B8σU )2
φ(ν̄5)

−

(
β1 Φ

[
B9√

1 + (B10σξ1)2

]
+ β2

B12 σ
2
x

w14
φ(ν̄6) +

B10 σ
2
ξ1

w15
φ(ν̄7)

)
= 0. (4.59)

Then we can solve equations (4.44) and (4.59) simultaneously using numerical methods

such as Newton-Raphson, as mentioned in Section 4.4.2, which gives us the limiting values

θ∗0 and θ∗1.
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4.5.3 Calculating the limiting values β∗3 and β∗4

Assuming we have got the least false values θ∗0 and θ∗1 from the previous section, hence we

can treat them as constants. Recall equation (4.6), in order to find the least false values

β∗3 and β∗4 we need to calculate the following: E[R/π], E[Rx/π], E[Rx2/π], E[RY2/π] and

E[RY2x/π]. Unfortunately, there is no closed approximation for these terms, as shown in

Appendix A.5. In the numerical work to follow, we obtain the expectations using Monte

Carlo methods.

4.6 Simulations and Numerical Investigation

We will do this numerical investigation in two parts as in the previous chapter. In the first

part we want to check that the theory and our least false values are correct by comparing

the expected values with the simulated ones. In the second part we explore in detail how

the misspecification affects the β estimates, using the theoretical results. Now that we

have working formulas there is no need for simulations here except under MNAR.

As before we generated a scalar N(0, 1) variable x, then we generated the longitudinal

means µ1=β1 + β2x, µ2=β3 + β4x. This was followed by (Y1, Y2) from a bivariate normal

distribution with mean (µ1, µ2). In all of the following simulations, unless it is stated

otherwise, we take the same parameters as used in the previous chapter. Our choice of

parameters will keep the dropout always about 50%.

Firstly, we want to know at what n can we be confident that the theory is reasonable. We

compare the theoretical results with the simulated means as n increases; the results are

shown in Table 4.1 and Table 4.2. We will see that the simulated values are close to the

corresponding expected values, so indicating that the limiting values found by the theory

are correct for sample size not less than about 100000. Based on this result for each set of

parameters we studied a sample size of 1000000. In addition, the 95% reference intervals

for the least false values under SP, MAR and MNAR are shown in Table 4.3 to Table 4.4.

Secondly, as in the previous chapter, for big samples, we will try to find several combina-

tions of (θ0, θ1, θ2) under fixed β and for a given variances σ2
x = 1, σU = σε1 = σε2 =

√
0.5

to keep the total amount of the dropout fixed and at about 50%. These combinations of

θs are shown in Table 4.5 and Table 4.6. In addition, we calculate the limiting values for

different θ combinations. Moreover, we will suppose that we have a given θ (and dropout),

and we will study the effect of changing the variance parameters. The results are shown

in Table 4.7.

Finally we study the effect of changing θ on β∗3 and β∗4 by producing contour plots shown
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in Figures 4.1 to 4.3.

4.6.1 The limiting values compared to the simulated values for different

sample size

Here we attempt to show what happens as sample size increases, i.e. at what n can we be

confident that the theory is reasonable. One can note that as expected as n increases the

simulated and theoretical values become close to each other. Note that θ̂0 and θ̂1 are the

estimated values produced by the simulations when we fit MAR to data that are MNAR

or SP.

Results at n=100000 show that the simulated values all match the theoretical approxi-

mations very well, which supports the use of the theory. Comparing the result here with

the corresponding result in Chapter 3, we note that here we need a larger sample size to

achieve n that gives us an acceptable result. This may be related to the extra variability

of IPW observed in Chapter 2.

Table 4.1: The limiting values under different sample sizes

n SP MAR MNAR

1000 θ∗0 0.14 1.00 0.48
θ∗1 0.07 0.50 0.24

θ̂0 0.05 1.03 0.47

θ̂1 0.06 0.54 0.22

β∗3 -0.85 -1.00 -0.82
β∗4 -1.00 -1.01 -0.96

β̂3 -0.76 -1.03 -0.75

β̂4 -0.99 -1.04 -0.94

10000 θ∗0 0.14 1.00 0.48
θ∗1 0.07 0.50 0.24

θ̂0 0.15 0.97 0.49

θ̂1 0.07 0.50 0.25

β∗3 -0.85 -1.00 -0.82
β∗4 -1.00 -1.01 -0.96

β̂3 -0.85 -1.02 -0.80

β̂4 -0.99 -1.01 -0.95
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Table 4.2: The limiting values under different sample sizes

n SP MAR MNAR

50000 θ∗0 0.14 1.00 0.48
θ∗1 0.07 0.50 0.24

θ̂0 0.14 1.02 0.48

θ̂1 0.07 0.50 0.24

β∗3 -0.85 -1.00 -0.82
β∗4 -1.00 -1.01 -0.96

β̂3 -0.85 -0.99 -0.81

β̂4 -1.01 -0.98 -0.96

100000 θ∗0 0.14 1.00 0.48
θ∗1 0.07 0.50 0.24

θ̂0 0.14 1.00 0.48

θ̂1 0.07 0.50 0.24

β∗3 -0.85 -1.00 -0.82
β∗4 -1.00 -1.01 -0.96

β̂3 -0.85 -1.00 -0.82

β̂4 -1.00 -1.00 -0.96

500000 θ∗0 0.14 1.00 0.48
θ∗1 0.07 0.50 0.24

θ̂0 0.14 1.00 0.48

θ̂1 0.07 0.50 0.24

β∗3 -0.85 -1.00 -0.82
β∗4 -1.00 -1.00 -0.96

β̂3 -0.85 -1.00 -0.82

β̂4 -1.00 -1.00 -0.96

95



Chapter 4. Performance of Inverse Probability Weighting (IPW) Under Shared
Parameter, MAR and MNAR Dropout

4.6.2 The 95% reference interval for the limiting values

We simulate 100 samples of size 100000, then find the β̂ for each sample then calculate

the reference interval instead of standard confidence interval as mentioned in Chapter 3

Section 3.4.2, so we will say: CI=
¯̂
β ± 2SD(β). We did this for the SP, MAR and MNAR

dropout models, each with just one set of dropout parameters and all with the missingness

percentage at about 50% dropout. Results show that the reference ranges all include the

theoretical values.

Table 4.3: The 95% reference interval for β∗
3 using 100 samples of size 100000.

TV SV Lower Upper
Bound Bound

MAR -0.9920 -1.0009 -1.0114 -0.9903
MNAR -0.8274 -0.8207 -0.8305 -0.8110
SP -0.8285 -0.8472 -0.8533 -0.8411

Table 4.4: The 95% reference interval for β∗
4 using 100 samples of size 100000.

TV SV Lower Upper
Bound Bound

MAR -0.9928 -1.0015 -1.0162 -0.9868
MNAR -0.9638 -0.9591 -0.9697 -0.9486
SP -1.0055 -1.0015 -1.0121 -0.9909
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4.6.3 Effect on dropout parameters of fitting a MAR model when the

true model is MNAR or SP

In Table 4.5, we show θ∗0 and θ∗1 by solving (4.21) and (4.33) for the given values of θsp0 and

θsp1 with the same parameters used to generate the logistic model as mentioned before.

These values of θ all give a dropout rate of around 50%. The columns for β∗3 and β∗4 give

the least false value for β3 and β4, respectively.

In Table 4.6, we show θ∗0 and θ∗1 by solving (4.44) and (4.59) for the given values of θMN
0

and θMN
2 and θMN

1 = 0 with the same parameters used to generate the logistic model as

mentioned before. These values of θ all give a dropout rate of around 50%. The columns

for β∗3 and β∗4 give the least false value for β3 and β4, respectively.

Recall that the true values are βG3 = βG4 = −1.

Table 4.5: Effect of fitting a MAR model when the true model is SP

θsp0 θsp1 θ∗0 θ∗1 β∗3 β∗4

0 -1.414 -0.247 -0.121 -1.275 -1.000
0 -0.707 - 0.132 - 0.066 -1.155 -1.002
0 0.707 0.132 0.066 -0.843 -0.999
0 1.414 0.247 0.121 -0.743 -1.000

Table 4.6: Effect of fitting a MAR model when the true model is MNAR

θMN
0 θMN

2 θ∗0 θ∗1 β∗3 β∗4

-1 -1 -0.871 -0.439 -1.330 -0.869
-0.5 -0.5 -0.507 -0.241 -1.180 -0.960
0.5 0.5 0.479 0.239 -0.819 -0.963

1 1 0.891 0.452 -0.672 -0.881

Results from Table 4.5 and Table 4.6 are what we most care about. Under SP (Table 4.5),

the least false values of β∗4 are very close to the true quantity. Hence we only investigate

the effect of θ on β3. The bias in β3 is larger as the absolute value of θsp1 get bigger.

For negative θsp1 , we note that β3 tends to be smaller than its true value. The chance of

dropout goes up with Y2 in this case, so we lose the large Y2 values and the mean of the

observed data at time 2 is too low. So the intercept term (β3) is too low. A correct inverse

probability model would compensate for this, but the misspecifed one does not do enough.

97



Chapter 4. Performance of Inverse Probability Weighting (IPW) Under Shared
Parameter, MAR and MNAR Dropout

The opposite happens for positive θsp1 .

Turning to the next table, Table 4.6 under MNAR, β4 is biased towards zero as previously

seen (Appendix A.6). But β3 is biased either down or up depending upon whether dropout

is associated with large Y2 (negative θMN
2 ), or small Y2 (positive θMN

2 ) as previously. If

dropout is associated with small Y2, then the mean in the observed data will be too high,

and the wrong missingness model does not compensate for this. The opposite is true if

dropout is associated with large Y2.

98



Chapter 4. Performance of Inverse Probability Weighting (IPW) Under Shared
Parameter, MAR and MNAR Dropout

4.6.4 The effect of the variance of the random effect on the limiting

values β∗3 and β∗4

In the following table we will study the effect of changing the variance of the random effect

on the limiting values at different dropout models. We take σ2
U = σ2

ε1 = σ2
ε2 . Each time,

we will keep the same dropout percentage, which is always about 50%.

Table 4.7: The effect of the variance σ2
U on the limiting values β∗

3 and β∗
4 .

SP MAR MNAR

σU=
√

0.5 β∗3 -0.8380 -1.0020 -0.8210
β∗4 -0.9950 -0.9860 -0.9560
Bias(β3) 0.1620 0.0020 0.1790
Bias(β4) 0.0050 0.0140 0.0440

σU=
√

1 β∗3 -0.7300 -0.9920 -0.6470
β∗4 -1.0050 -0.9900 -0.9300
Bias(β3) 0.2700 0.0080 0.3530
Bias(β4) 0.0050 0.0100 0.0700

σU=
√

3 β∗3 -0.3990 -1.0310 -0.0930
β∗4 -1.0320 -1.0230 -0.8470
Bias(β3) 0.6010 0.0310 0.9070
Bias(β4) 0.0320 0.0230 0.1530

σU=
√

6 β∗3 -0.0220 -1.0450 0.6100
β∗4 -1.0830 -1.0350 -0.7180
Bias(β3) 0.9780 0.0450 1.6100
Bias(β4) 0.0830 0.0350 0.2820

σU=
√

12 β∗3 0.6140 -0.9470 1.7070
β∗4 -1.1640 -0.9630 -0.6090
Bias(β3) 1.6140 0.0530 2.7070
Bias(β4) 0.1640 0.0370 0.3910

As for Chapter 3, changing the variance parameters and keeping the same dropout per-

centage at about 50% has a remarkable effect on the bias. From Table 4.7, it is clear that

as σu (and consequentially σε1 and σε2) increases, the limiting values β∗3 and β∗4 go fur-

ther from the true value (βG3 = −1, βG4 = −1) and hence the bias increases, which means

that the large error variances imply poor results. In short we can conclude that the more

variability, the more bias.
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4.6.5 Contour plots

Here we want to show how the limiting values β∗ change when we change the θs. We

produce contour plots of β∗ for a grid with −1.5 < θsp0 < 1.5 and −1.5 < θsp1 < 1.5. Here

we do not present a plot for β∗4 under SP, because the IPW method gives close estimates

for β4 under SP dropout.

We can conclude from the contour plot of β∗3 under SP (Figure 4.1), that in order to min-

imise the bias in β∗3 , we should choose θ1 to be around zero, which is equivalent to MCAR.

The biggest change is in the vertical direction, for example at θ1 = 0, then β∗3 = −1 as

expected. For negative θ1, the dropout is associated with large Y2, so Y2 tends to be low.

Hence β∗3 is lower than what it should be. The opposite happens for a positive θ1.

Similarly, we can conclude a typical result from Figure 4.2 of β∗3 under MNAR dropout.

For positive θ2, β∗3 is higher than its correct value, hence Y2 tends to be high, while β∗3
will be lower for negative θ2 regardless the value θ0.

In Figure 4.3 we get positive bias as θ2 moves away from zero in either direction. This is

similar to Figure 3.4 in Chapter 3. Refer to Appendix A.6 for more details.
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Figure 4.1: Contour plot of β∗
3 under SP.
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Figure 4.2: Contour plot of β∗
3 under MNAR.
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Figure 4.3: Contour plot of β∗
4 under MNAR.
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4.7 Discussion and Conclusion

In this chapter we calculated the expected values of terms in equations (4.9) and (4.10),

or the least false values of θ∗0 and θ∗1. Then we calculated the least false values of β∗3 and

β∗4 under SP model. We could not find a closed form under MNAR and therefore used

numerical results. We compared these expected values under different dropout models to

the generating values βG3 and βG4 . We calculated the bias in the expected parameters in

each dropout model. As we found in Chapter 2 in Tables 2.3 and 2.4, it is clear that the

IPW works under missing at random (MAR) since β∗3 = βG3 and β∗4 = βG4 , or, in other

words, the bias is zero. In contrast, the IPW method does not seem to work under SP

and MNAR as there is bias in both parameters, the simulation results can be found in

Chapter 2 in Tables 2.6 and 2.8 for MNAR and SP, respectively. We also conclude that

the IPW method gives consistent estimates for β3 under MAR dropout model and also for

β4 under MAR and SP dropout models. Both of them fail to give a consistent estimate

for β3 or β4 under MNAR. Results from the contour plots support our conclusions from

Table 4.5 and Table 4.6. In the next chapter we will investigate the performance of the

CC method and calculate its least false values.
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Chapter 5

Performance of CC Method Under

Shared Parameter, MAR and

MNAR Dropout

5.1 Introduction

In this chapter we investigate the complete case method (CC). Following the methods of

the previous chapters, we take the two timepoints situation as a special case and investigate

how the CC method performs under shared parameter, MAR and MNAR dropout. As

previous, derivation and illustration of theoretical least false values are made under SP and

MNAR dropout. To check, we compare the theoretical least false values with simulation

results for selected parameter combinations. For a reference see Matthews et al. [2012].

As we saw in Chapter 2, we expect loss of information when the Complete Case method

is used and potential bias, except in the case that the data are MCAR.

5.2 Complete Case Method With Two Timepoints

As previous, we assume the generating model for responses is

E[Y1i] = β1 + β2xi and E[Y2i] = β3 + β4xi.

In complete case analysis only observations with values at both timepoints are used. This

means that estimates at time 1 will be affected as well as at time 2. The least squares

estimates for time 1 are

β̂2 =

∑n
i=1RiY1i(xi −Rx/R)∑n
i=1Ri(xi −Rx/R)2

and β̂1 =
RY1

R
− β̂2

Rx

R

or

β̂2 =

∑
Y1ixiRi −

∑
Y1iRi

∑
xiRi/

∑
Ri∑

x2
iRi − (

∑
xiRi)2/

∑
Ri

.
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Similarly

β̂4 =

∑n
i=1RiY2i(xi −Rx/R)∑n
i=1Ri(xi −Rx/R)2

and β̂3 =
RY2

R
− β̂4

Rx

R
(5.1)

or

β̂4 =

∑
Y2ixiRi −

∑
Y2iRi

∑
xiRi/

∑
Ri∑

x2
iRi − (

∑
xiRi)2/

∑
Ri

. (5.2)

The Rx/R term arises as we use the mean x amongst observed values, which can be

written as
∑n

i=1Rixi/
∑n

i=1Ri. Dividing top and bottom by n allows us to change the

sums to means which is helpful for later use of the laws of large numbers (LLN). We

will study what happens to the estimates under the three different dropout models, as n

increases. We will concentrate on β3 and β4, which are the parameters of main interest.

Similar methods can be applied for β1 and β2, though we need to be careful in defining the

dropout model. For example, if the generating model is MAR, dropout (and R) depends

on Y1 but not Y2. If we choose not to use Y1 values when Y2 is missing then this induces

a form of MNAR, as missingness depends on the potentially unused Y1. This would not

be sensible - clearly we should use all information in estimating the time 1 parameters.

Hence we concentrate on time 2 only.

As we have used several times, as n increases, the LLN implies that β̂4 converges to β∗4
given by

β̂4 → β∗4 =
E {RY2(x− E[Rx]/E[R])}
E {R(x− E[Rx]/E[R])2}

(5.3)

and

β̂3 → β∗3 =
E[RY2]

E[R]
− β∗4

E[Rx]

E[R]
. (5.4)

To make the calculation easier, we can rewrite β∗4 defined in (5.3) as:

β∗4 =
E[RY2x]− E[RY2]E[Rx]/E[R]

E[Rx2]− (E[Rx])2/E[R]
. (5.5)

Thus, under each dropout model, we need to find E[R], E[Rx], E[Rx2], E[RY2], E[RY2x],

where E[RY2] = E[R(β3 + β4x + U + ε2)] = β3E[R] + β4E[Rx] + E[RU ] + E[Rε2], and

E[RY2x] = E[Rx(β3 + β4x+ U + ε2)] = β3E[Rx] + β4E[Rx2] + E[RUx] + E[Rxε2].

Now let n → ∞. To recall (see Section 3.3.2 in Chapter 3), there are five fundamental

variables: U , ε1, ε2, R and x. At times (including this part) it may be more convenient to

work with Y1 and Y2 instead of U , ε1 and ε2.

5.3 Performance under Shared Parameter Dropout

Under SP, R depends only on U , and as R is independent of x and we know x ∼ N(0, σ2
x),

then E[Rx] = E[R]E[x] = 0 and E[Rx2] = E[R]E[x2] = σ2
xE[R]. We found E[R] in

equation (4.16) in Chapter 4. Also, E[RY2] = β3E[R] + β4E[Rx] + E[RU ] + E[Rε2].
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As E[Rx] = 0 and E[Rε2] = 0, we still need to calculate E[RU ]:

E[RU ] =

∫
U expit {θ0 + θ1U}φ(U ; 0, σ2

U ) dU

≈
∫

UΦ[c(θ0 + θ1U)]φ(U ; 0, σ2
U ) dU

=
c θ1σ

2
U√

1 + (c θ1σU )2
φ

[
c θ0√

1 + (c θ1σU )2

]
. (5.6)

Hence we get E[RY2] = β3E[R] + E[RU ]. Similarly, E[RY2x] = β3E[Rx] + β4E[Rx2] +

E[RUx] + E[Rε2x].

As E[Rx2] = σ2
xE[R] and E[Rx] = E[Rxε2] = E[RUx] = 0, we get E[RY2x] = β4σ

2
xE[R].

Hence we have all the terms necessary for β∗3 and β∗4 . The results are illustrated in Section

5.6.

5.4 Performance under MAR Dropout

We found E[R], E[Rx], E[Rx2] in equations (3.28), (3.29) and (3.34) respectively in Chap-

ter 3, thus we need here to find E[RY2] and E[RY2x].

Consider E[RY2] = E[R(β3 + β4x + U + ε2)] = β3E[R] + β4E[Rx] + E[RU ] + E[Rε2],

and E[RY2x] = E[Rx(β3 + β4x + U + ε2)] = β3E[Rx] + β4E[Rx2] + E[RUx] + E[Rxε2].

Under MAR, R is independent of ε2, thus E[Rε2]=0 and E[Rxε2]=0. This means we only

need to find E[RU ] and E[RUx]. We start with E[RU ] = Ex[E[RU |x]]. The conditional

expectation is

E[RU |x] =

∫ ∫
U expit {θ0 + θ1Y1}φ(U ; 0, σ2

U )φ(ε1; 0, σ2
ε1)dU dε1

=
σ2
UA4√

1 +A2
4σ

2
U

φ

 A3√
1 +A2

4σ
2
U


where A1 = c(θ0 + θ1β1 +β2x) + cθ1U , A2 = cθ1, A3 = c(θ0+θ1(β1+β2x))√

1+(A2σε1 )2
, A4 = cθ1√

1+(A2σε1 )2
.
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Then

E[RU ] = Ex[E[RU |x]

=
σ2
UA4√

1 +A2
4σ

2
U

∫
φ

 A3√
1 +A2

4σ
2
U

φ(x; 0, σ2
x)dx

=
σ2
UA4√

1 +A2
4σ

2
U

e−
1
2
A7

√
2π
√
A2

6 + 1

where A5 = c(θ0+θ1β1)√
1+(A2σε1 )2

√
1+A2

4σ
2
U

, A6 = c(θ1β2)√
1+(A2σε1 )2

√
1+A2

4σ
2
U

and A7 = A2
5/(A

2
6 + 1).

Similarly E[RUx] = Ex[xE[RU |x]] and

Ex[xE[RU |x]] =

∫
x

σ2
UA4√

1 +A2
4σ

2
U

φ[A5 +A6x]φ(x; 0, σ2
x)dx

=
σ2
UA4√

1 +A2
4σ

2
U

∫
xφ[A5 +A6x]φ(x; 0, σ2

x)dx

E[RUx] =
e−

1
2
A7

√
2π
√
A2

6 + 1
A8

where A8 = −A6A5/(A
2
6 + 1).

Hence we get E[RY2] = β3E[R]+β4E[Rx]+E[RU ] and E[RY2x] = β3E[Rx]+β4E[Rx2]+

E[RUx], and we have all terms needed for the least false calculation.

5.5 Performance under MNAR Dropout

We found E[R], E[Rx], E[Rx2], E[Rε2] and E[Rε2x] in Chapter 3 in equations (3.47),

(3.48), (3.49), (3.50) and (3.51) respectively. Thus we still need to find E[RU ] and E[RUx].

We start with E[RU ] = Ex[E[RU |x]] as previously. This time

E[RU |x] =

∫ ∫
U expit {θ0 + θ2Y2}φ(U ; 0, σ2

U )φ(ε2; 0, σ2
ε2)dU dε2

=
σ2
UB4√

1 +B2
4σ

2
U

φ

 B3√
1 +B2

4σ
2
U


where B1 = c(θ0 + θ2β3 + β4x) + cθ2U , B2 = cθ2, B3 = c(θ0+θ2(β3+β4x))√

1+(B2σε2 )2
and B4 =

cθ2√
1+(B2σε2 )2

.
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Then

E[RU ] = Ex[E[RU |x]

=
σ2
UB4√

1 +B2
4σ

2
U

e−
1
2
B7

√
2π
√
B2

6 + 1

where B7 = B2
5/(B

2
6 + 1).

Similarly, E[RUx] = Ex[xE[RU |x]] and

Ex[xE[RU |x]] =

∫
x

σ2
UB4√

1 +B2
4σ

2
U

φ[B5 +B6x]φ(x; 0, σ2
x)dx

=
σ2
UB4√

1 +B2
4σ

2
U

∫
xφ[B5 +B6x]φ(x; 0, σ2

x)dx

E[RUx] =
e−

1
2
B7

√
2π
√
B2

6 + 1
B8

where B8 = −B6B5/(B
2
6 + 1).

Hence we get E[RY2] = β3E[R] + β4E[Rx] + E[RU ] + E[Rε2] and E[RY2x] = β3E[Rx] +

β4E[Rx2] + E[RUx] + E[Rxε2]. We will now investigate these results numerically.

5.6 Simulations and Numerical Investigation

We will do this numerical investigation in two parts as in the previous chapters. In the first

part we want to check that the theory and our least false values are correct by comparing

the expected values with simulated ones. In the second part we explore in detail how the

misspecification affects the β estimates, using the theoretical results. Now that we have

working formulas there is no need for simulations here.

As before we generated a scalar N(0, 1) variable x, then we generated the longitudinal

means µ1=β1 + β2x, µ2=β3 + β4x. This was followed by (Y1, Y2) from a bivariate normal

distribution with mean (µ1, µ2) using a shared effect U to generate the correlation. In all

of the following simulations, unless it is stated otherwise, we take the same parameters

used in previous chapter. Our choice of parameters will keep the dropout always about

50%.
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5.6.1 The limiting values compared to the simulated values for different

sample size

Here we attempt to show what happens as sample size increases, i.e. at what n can we be

confident that the theory is reasonable. One can note from Table 5.1 as we expected as

n increases the simulated and theoretical values become close to each other. Note that β̂3

and β̂4 are the estimated values produced by the simulations when we fit MAR to data

that are MNAR or SP.

Results at n=100000 show that the simulated values all match the theoretical approxi-

mations very well, which support the use of the theory. Comparing the results here with

the corresponding results in Chapter 3, we note that here we need a larger sample size to

achieve n that gives us an acceptable result. This may be related to the extra variability

of CC observed in Chapter 2, perhaps because we use fewer observations in estimation.

Based on the n = 100000 result, Table 5.2 gives detail on the various components of β∗3
and β∗4 . We see that all dropout methods lead to bias, of generally similar magnitude, but

the causes (the components) can differ considerably.

Table 5.1: The limiting values under different sample sizes

n SP MAR MNAR

1000 β̂3 -0.82 -0.89 -0.78
β∗3 -0.84 -0.90 -0.77

β̂4 -1.11 -0.95 -0.95
β∗4 -1.00 -0.97 -0.95

10000 β̂3 -0.82 -0.88 -0.76
β∗3 -0.84 -0.90 -0.77

β̂4 -1.00 -0.95 -0.94
β∗4 -1.00 -0.97 -0.95

50000 β̂3 -0.84 -0.88 -0.76
β∗3 -0.84 -0.90 -0.77

β̂4 -0.99 -0.95 -0.96
β∗4 -1.00 -0.97 -0.95

100000 β̂3 -0.84 -0.89 -0.77
β∗3 -0.84 -0.90 -0.77

β̂4 -1.00 -0.95 -0.95
β∗4 -1.00 -0.97 -0.95
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Table 5.2: Comparison of simulated and least false values under n = 100000

SP MAR MNAR

R̄ 0.50 0.50 0.50
E[R] 0.50 0.50 0.50
R̄x -0.00 -0.20 -0.11
E[Rx] 0.00 -0.20 -0.11

R̄x2 0.50 0.50 0.50
E[Rx2] 0.50 0.50 0.50
R̄Y2 -0.42 -0.25 -0.28
E[RY2] -0.42 -0.25 -0.28

¯RY2x -0.50 -0.30 -0.39
E[RY2x] -0.50 -0.30 -0.39

β̂3 -0.83 -0.88 -0.76
β∗3 -0.84 -0.90 -0.77

β̂4 -1.00 -0.95 -0.95
β∗4 -1.00 -0.97 -0.95

5.6.2 The 95% nominal CI for the limiting values

Here we will show that for each limiting value calculated by the expectation, the simulated

values (SV) are within noise of the theoretical values (TV) for large sample sizes (n=1000).

We estimate the noise from the simulations; that is we get a confidence interval from the

simulations and reassurance that the population values are within these. We simulate 100

samples of size 1000, then find the β̂ for each sample then calculate the reference interval

instead of standard confidence interval, so we will say: CI=
¯̂
β ± 2SD(β). We did this for

the SP, MAR and MNAR dropout models, each with just one set of dropout parameters

and all with the missingness percentage at about 50% dropout. In Tables 5.3 and 5.4, the

theoretical values are all being within the corresponding reference intervals.

Table 5.3: The 95% reference interval for β∗
3 using 100 samples of size 1000.

TV SV Lower Upper
Bound Bound

MAR -0.8842 -0.8852 -0.9188 -0.8516
MNAR -0.7727 -0.7626 -0.7900 -0.7351
SP -0.8408 -0.8321 -0.8590 -0.8053

5.6.3 The effect of dropout on the limiting values β∗3 and β∗4

We now explore the effect of different dropout parameters under fixed β and σ2
x = 1,

σU = σε1 = σε2 =
√

0.5. We choose values that keep the dropout rate close to 50%, and

use θsp, θM and θMN to denote values under SP, MAR and MNAR respectively. Recall
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Table 5.4: The 95% reference interval for β∗
4 using 100 samples of size 1000.

TV SV Lower Upper
Bound Bound

MAR -0.9546 -0.9536 -0.9877 -0.9194
MNAR -0.9508 -0.9475 -0.9782 -0.9167
SP -1.0000 -0.9996 -1.0249 -0.9743

that the true values are β3 = β4 = −1.

In Table 5.5, we show β∗3 and β∗4 by solving the equations given in Section 5.3 for the given

values of θsp0 and θsp1 under SP, with the same parameters used to generate the logistic

model as mentioned before. These values of θ all give a dropout rate of around 50%.

Under SP, the least false values of β∗4 are very close to the true quantity. Hence we only

investigate the effect of θ’s on β3. The bias in β3 is larger as the value of θsp1 get bigger.

For negative θsp1 , we note that β3 tends to be smaller than its true value. So the chance

of dropout goes up with Y2, so we lose the large Y2 values and the mean of the observed

data at time 2 is too low. So the intercept term (β3) is too low. The opposite happens for

positive θsp1 .

In Table 5.6, we show β∗3 and β∗4 by solving the equations given in Section 5.4 for the

given values of θM0 and θM1 under MAR, with the same parameters used to generate the

logistic model as mentioned before. These values of θ all give a dropout rate of around

50%. Similar conclusions to Table 5.5 are also drawn here for β∗3 . For β∗4 , there is now

bias, which decreases as the negative θM1 increases, while for positive θM1 the bias increases

as the positive θM1 increases.

Turning to the next table, under MNAR, Table 5.7, we show β∗3 and β∗4 by solving the

equations given in Section 5.5 for the given values of θMN
0 and θMN

2 under MNAR, with the

same parameters used to generate the logistic model as mentioned before. These values of

θ all give a dropout rate of around 50%. Similar conclusions to Table 5.6 are also drawn

here for both β∗3 and β∗4 . In Table 5.7 β4 is biased towards zero as previously discussed

(Appendix A.6). But β3 is biased either down or up depending upon whether dropout is

associated with large Y2 (negative θMN
2 ), or small Y2 (positive θMN

2 ). If dropout is asso-

ciated with small Y2, then the mean in the observed data will be too high. The opposite

is true if dropout is associated with large Y2.
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Table 5.5: Effect on dropout parameters of fitting the CC method under SP. True β3 = −1 and
β4=-1.

θsp0 θsp1 β∗3 β∗4
0 −

√
2 -1.2860 -1.0000

0 −
√

0.5 -1.1592 -1.0000

0
√

0.5 -0.8408 -1.0000

0
√

2 -0.7140 -1.0000

Table 5.6: Effect on dropout parameters of fitting the CC method under MAR. True β3 = −1 and
β4=-1.

θM0 θM1 β∗3 β∗4
-2 -1 -1.2097 -0.8809
-1 -0.5 -1.1158 -0.9546
1 0.5 -0.8842 -0.9546
2 1 -0.7903 -0.8809

Table 5.7: Effect on dropout parameters of fitting the CC method under MNAR. True β3 = −1
and β4=-1.

θMN
0 θMN

2 β∗3 β∗4
-1 -1 -1.4147 -0.8504

-0.5 −0.5 -1.2273 -0.9508
0.5 0.5 -0.7727 -0.9508

1 1 -0.5853 -0.8504
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5.6.4 The effect of the variance of the random effect on the limiting

values β∗3 and β∗4

In the following tables we will study the effect of changing the variance of the random

effect and measurement error on the limiting values at different dropout models. We take

σ2
U = σ2

ε1 = σ2
ε2 . Each time, we keep the dropout percentage at about 50%.

Table 5.8: The effect of the variance σ2
U on the limiting values β∗

3 and β∗
4 . True β3 = −1 and

β4=-1.

SP MAR MNAR

σU =
√

0.5 β∗3 -0.8408 -0.8965 -0.7727
β∗4 -1.0000 -0.9665 -0.9508

σU = 1 β∗3 -0.6936 -0.7763 -0.5628
β∗4 -1.0000 -0.9142 -0.9086

σU =
√

3 β∗3 -0.1923 -0.4117 0.1505
β∗4 -1.0000 -0.7964 -0.7870

σU =
√

6 β∗3 0.3946 0.0076 0.9832
β∗4 -1.0000 -0.6938 -0.6807

σU =
√

12 β∗3 1.2705 0.6240 2.2229
β∗4 -1.0000 -0.5841 -0.5748

Changing the variance parameters and keeping the dropout percentage at about 50% has

a remarkable effect on the bias. From Table 5.8, it is clear that as σU (and consequentially

σε1 and σε2) increases, the limiting values β∗3 goes further from the true value (βG3 =

−1, βG4 = −1) and hence the absolute bias increases, which means that the large error

variances imply poor results. In short we can conclude that the more variability, the more

bias.
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5.6.5 Contour plots

Here we want to show how the limiting values β∗ change when we change the dropout

parameter θ. For shared parameter, we produced contour plots of β∗ for a grid with

−1.5 < θsp0 < 1.5 and −1.5 < θsp1 < 1.5 for each dropout model. Figures 5.1 - 5.5 show

the results. We do not present a plot for β∗4 under SP, because the CC method gives close

estimates for β4 and no real bias.

In Figure 5.1, β∗3 under SP can take a value from about −1.4 to −0.6 for the θ in the

aforementioned grid. The white area in the plot corresponds to the correct value which

is βG3 = −1. We can conclude that from the contour plot of β∗3 under SP, that in order

to minimise the bias in β∗3 , we should choose θ1 to be around zero, which is equivalent

to MCAR. The biggest change is in the vertical direction, for example at θ1 = 0, then

β∗3 = −1 as expected. For negative θ1, the dropout is associated with large Y2, so Y2 tends

to be low. Hence β∗3 is lower than what it should be. The opposite happens for a positive θ1.

In Figure 5.2, β∗3 under MAR can take a value from about −1.8 to −0.8 for the chosen

range of θ. For negative θ1, β∗3 get closer to the true value (-1) as θ0 increases. However,

the bias for β∗3 is greater at negative θ1 than at positive θ1. At low θ1 then β∗3 is very low

for low θ0 but high for high θ0. In contrast at high θ1, β∗3 is high for all θ0.

In Figure 5.3, β∗3 under MNAR can take a value from about −2.0 to −0.5 for the chosen

range of θ. Again the bias for β∗3 is greater at negative θ2 than at positive θ2 as happens

in Figure 5.2.

In Figure 5.4, β∗4 under MAR can take a value from about −1.4 to −0.2 for the θs changes

in aforementioned grid. For positive θ1, β∗4 get closer to the true value (-1) as θ0 in-

creases. However, the bias for β∗4 is greater at positive θ1 than at negative θ1. At low θ1

then β∗4 is very low for high θ0 but high for low θ0. In contrast at high θ1, β∗4 is low for all θ0.

In Figure 5.5, β∗4 under MNAR can take a value from about −1.2 to −0.4 for the θs

changes in aforementioned grid. The interpretation is as for the previous Figure.

In conclusion, the dropout model MAR for β∗3 has less bias than the others, while the

dropout model MNAR for β∗4 has more bias than MAR. This is because when we compare

Figure 5.2 with Figures 5.1 and 5.3, we find that the bias area in MAR is smaller than

the bias area in SP and MNAR. Similarly, when comparing Figure 5.4 with Figure 5.5 the

bias area in MAR is larger than the bias area in MNAR. Results from the contour plots

support our conclusions from Table 5.5, Table 5.6 and Table 5.7.

115



Chapter 5. Performance of CC Method Under Shared Parameter, MAR and MNAR
Dropout

Figure 5.1: Contour plot of β∗
3 under SP.
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Figure 5.2: Contour plot of β∗
3 under MAR.
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Figure 5.3: Contour plot of β∗
3 under MNAR.
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Figure 5.4: Contour plot of β∗
4 under MAR.
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Figure 5.5: Contour plot of β∗
4 under MNAR.
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5.7 Discussion and Conclusion

In this chapter we calculated the least false regression values under a complete case analy-

sis. We compared these expected values under different dropout models to the generating

values βG3 and βG4 . We calculated the bias in the expected parameters in each dropout

model. It is clear that the CC does not seem to work under any dropout model as shown

in Tables 5.5 - 5.8 and Figures 5.1 - 5.5; since β∗3 6= βG3 and β∗4 6= βG4 , or, in other words,

there is bias.

It is interesting to note one exception that the CC method gives consistent estimates for

β4 under SP dropout model. This is straightforward. We will turn in the next chapter to

a further analysis of least false values.
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Chapter 6

Performance of The Linear Mixed

Effect Method Under Shared

Parameter, MAR and MNAR

Dropout

6.1 Introduction

In this chapter we investigate the linear mixed effect method (LME) which is based on a

maximum likelihood estimating approach. Following the methods of the previous chap-

ters, we take the two timepoints situation as a special case and investigate how the LME

method performs under shared parameter, MAR and MNAR dropout. Derivation and

illustration of theoretical least false values are made under SP, MAR and MNAR dropout.

To check, we compare the theoretical least false values with simulation results for selected

parameter combinations.

6.2 Linear Mixed Effect Method with Two Timepoints

Maximum likelihood estimation gives consistent estimators under MAR as we found in

Chapter 2. Assuming a Gaussian random intercept model, the score equation of current

interest is:

n∑
i=1

[
Ri

{
XT
i V
−1(Yi −Xiβ̂)

}
+

(1−Ri)
σ2

1

{
xi1(Yi1 − xTi1β̂)

}]
= 0 (6.1)

where Yi = (Yi1, Yi2), Xi is a 2 × 4 design matrix associated with subject i which is

Xi =

(
1 xi 0 0

0 0 1 xi

)
and we have used xTi1 as notation for the first row of Xi, thus
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xTi1 = (1, xi, 0, 0), β̂T = (β̂1, β̂2, β̂3, β̂4), and V =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1, σ2 and ρ

are as defined in the Introduction. We can re arrange the terms in (6.1) to be:

n∑
i=1

[
Ri
{
XT
i V
−1Xi

}
+

(1−Ri)
σ2

1

{
xi1x

T
i1

}]
β̂ =

n∑
i=1

[
Ri
{
XT
i V
−1Yi

}
+

(1−Ri)
σ2

1

{xi1Yi1}
]
.

(6.2)

These components are in detail:

V −1 = K

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
(6.3)

where K = 1/σ2
1σ

2
2(1− ρ2), and

XT
i V
−1Xi = K


σ2

2 σ2
2xi −ρσ1σ2 −ρσ1σ2xi

σ2
2xi σ2

2x
2
i −ρσ1σ2xi −ρσ1σ2x

2
i

−ρσ1σ2 −ρσ1σ2xi σ2
1 σ2

1xi

−ρσ1σ2xi −ρσ1σ2x
2
i σ2

1xi σ2
1x

2
i

 . (6.4)

Also

xi1x
T
i1 =


1 xi 0 0

xi x2
i 0 0

0 0 0 0

0 0 0 0

 . (6.5)

Similarly for the right hand side of equation (6.2)

XT
i V
−1Yi = K


σ2

2Yi1 − ρσ1σ2Yi2

σ2
2Yi1xi − ρσ1σ2Yi2xi

σ2
1Yi2 − ρσ1σ2Yi1

σ2
1Yi2xi − ρσ1σ2Yi1xi

 . (6.6)

Finally

xi1Yi1 =


Yi1

xiYi1

0

0

 . (6.7)

We can collect all of these, divide by n, and use the law of large numbers to replace the

summation by the expectations as the following:

E

[
R
{
XTV −1X

}
+

(1−R)

σ2
1

{
xT1 x1

}]
β∗ = E

[
R
{
XTV −1Y

}
+

(1−R)

σ2
1

{x1Y1}
]

(6.8)
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In the left hand side of equation (6.8) we will have two parts. First

E
[
R
{
XTV −1X

}]
= K


σ2

2E[R] σ2
2E[Rx] −ρσ1σ2E[R] −ρσ1σ2E[Rx]

σ2
2E[Rx] σ2

2E[Rx2] −ρσ1σ2E[Rx] −ρσ1σ2E[Rx2]

−ρσ1σ2E[R] −ρσ1σ2E[Rx] σ2
1E[R] σ2

1E[Rx]

−ρσ1σ2E[Rx] −ρσ1σ2E[Rx2] σ2
1E[Rx] σ2

1E[Rx2]

 ,

(6.9)

and second:

(1−R)

σ2
1

x1x
T
1 =

1

σ2
1


1− E[R] E[x]− E[Rx] 0 0

E[x]− E[Rx] E[x2]− E[Rx2] 0 0

0 0 0 0

0 0 0 0

 . (6.10)

Similarly, the right hand side is

K


σ2

2E[RY1]− ρσ1σ2E[RY2]

σ2
2E[RY1x]− ρσ1σ2E[RY2x]

σ2
1E[RY2]− ρσ1σ2E[RY1]

σ2
1E[RY2x]− ρσ1σ2E[RY1x]

+
1

σ2
1


E[Y1]− E[RY1]

E[Y1x]− E[RY1x]

0

0

 . (6.11)

Finally to find the least false value β∗ we take the inverse of the matrix in the left hand

side of equation (6.8) and multiply this inverse by the matrix in the right hand side, this

will yield the array of the least false values β∗T = (β∗1 , β
∗
2 , β
∗
3 , β
∗
4). Expressions of E[R],

E[Rx], E[Rx2], E[RY1], and E[RY2] have been obtained in the previous chapters under

our different dropout models. In the following section we will show in simulations how

the LME method performs under MAR, SP and MNAR dropout model using a similar

technique.

6.3 Simulations and Numerical Investigation

We will do this numerical investigation in two parts as in the previous chapters. In the

first part we want to check that the theory and our least false values are correct by com-

paring the expected values with simulated ones. In the second part we explore in detail

how the misspecification affects the β estimates, using the theoretical results. Now that

we have working formulas there is no need for simulations here. In all of the following

simulations, unless it is stated otherwise, we take the same parameters used in previous

chapter. Our choice of parameters will keep the dropout always about 50%. So we have

β = (−2,−2,−1,−1), σ2
1 = 0.5, σ2

2 = 0.5, σ2
x=1, ρ = 0.5.
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6.3.1 The limiting values compared to the simulated values for different

sample size

In Table 6.1 we attempt to show what happens as sample size increases, i.e. at what n

can we be confident that the theory is reasonable. One can note as expected that as n

increases the simulated and theoretical values become close to each other.

Results at n=100000 show that the simulated values all match the theoretical approxi-

mations very well, which support the use of the theory. Comparing the result here with

the corresponding result in Chapter 3, we note that here we need a larger sample size to

achieve n that gives us an acceptable result.
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Table 6.1: The limiting values β∗
3 and β∗

4 under different sample sizes

n MAR SP MNAR

1000 β̂3 -0.95 -0.93 -0.86

β̂4 -0.99 -1.00 -0.94
β∗3 -1.00 -0.92 -0.83
β∗4 -1.00 -1.00 -0.96

10000 β̂3 -1.00 -0.91 -0.81

β̂4 -1.02 -1.00 -0.96
β∗3 -1.00 -0.92 -0.83
β∗4 -1.00 -1.00 -0.96

50000 β̂3 -0.99 -0.91 -0.82

β̂4 -1.00 -1.00 -0.95
β∗3 -1.00 -0.92 -0.83
β∗4 -1.00 -1.00 -0.96

100000 β̂3 -1.00 -0.92 -0.82

β̂4 -1.00 -1.00 -0.96
β∗3 -1.00 -0.92 -0.83
β∗4 -1.00 -1.00 -0.96
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6.3.2 The 95% nominal CI for the limiting values

Here we will show that for each limiting value calculated by the expectation, the simulated

values (SV) are within noise of the theoretical values (TV) for large sample sizes using

the methods of previous chapters. Tables 6.2 and 6.3 show that the theoretical least false

values are all within the reference ranges for each dropout model. The MAR model is

included for completeness.

Table 6.2: The 95% reference interval for β∗
3 using 100 samples of size 1000.

TV SV Lower Upper
MAR -1.0000 -0.9995 -1.0353 -0.9637
MNAR -0.8295 -0.8227 -0.8331 -0.8124
SP -0.9204 -0.9209 -0.9430 -0.8987

Table 6.3: The 95% reference interval for β∗
4 using 100 samples of size 1000.

TV SV Lower Upper
MAR -1.0000 -1.0004 -1.0659 -0.9350
MNAR -0.9631 -0.9581 -1.0164 -0.8997
SP -1.0000 -0.9995 -1.0585 -0.9405

127



Chapter 6. Performance of The Linear Mixed Effect Method Under Shared Parameter,
MAR and MNAR Dropout

6.3.3 The effect of dropout probabilities on the limiting values β∗3 and

β∗4

We explore the effect of different dropout parameters under fixed β = (−2,−2,−1,−1),

σ2
x = 1, ρ = 0.5 and σ1 = σ2 =

√
0.5. We choose values that keep the dropout rate close to

50%, and use θsp, θM and θMN to denote values under SP, MAR and MNAR respectively.

As the LME works under MAR, we do not show the table for how the least false values

β∗3 and β∗4 are affected by changing the dropout probabilities under MAR, but we show

the tables under SP and MNAR.

In Tables 6.4 and 6.5, we show β∗3 and β∗4 by solving the equations given in Sections 6.2 and

6.3 for the given values of θsp0 and θsp1 under SP and θMN
0 and θMN

2 under MNAR, with the

same parameters used to generate the logistic model as mentioned before. These values

of θ all give a dropout rate of around 50%. Recall that the true values are β∗3 = β∗4 = −1.

We see that LME seems to work for β∗4 under the SP model because there is no bias for

β∗4 in Table 6.4. Recall that β∗4 was also almost unbiased under IPW (Chapter 4, Table

4.5 ) and CC (Chapter 5, Table 5.5 ).

Table 6.4: Effect of the dropout parameters (θsp0 , θsp1 ) on fitting the LME method under SP. True
β3 = −1 and β4=-1.

θsp0 θsp1 β∗3 β∗4
0

√
0.5 -0.9204 -1.0000

0 −
√

0.5 -1.0796 -1.0000

0
√

2 -0.8570 -1.0000

0 −
√

2 -1.1430 -1.0000

Table 6.5: Effect of the dropout parameters (θMN
0 , θMN

2 ) on fitting the LME method under MNAR.
True β3 = −1 and β4=-1.

θMN
0 θMN

2 β∗3 β∗4
0.5 0.5 -0.8295 -0.9631

-0.5 -0.5 -1.1705 -0.9631
1 1 -0.6889 -0.8878

-1 -1 -1.3111 -0.8878

6.3.4 Contour plots

Here we want to show in plots how the limiting values β∗3 and β∗4 change when we change

the dropout probabilities. We take the dropout probabilities in the range from -1.5 to 1.5.

We do not attach the contour plot for β∗4 under SP as there is no bias, which gives the

value of β∗4 always equals -1 at any θ0 and θ1 in the range (-1.5,1.5). Also, we do not show

the plots under MAR since the LME works under MAR.
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We can conclude that from the contour plot of β∗3 under SP (Figure 6.1), that in order

to minimise the bias in β∗3 , we should choose θ1 to be around zero, which is equivalent to

MCAR. For negative θ1, the dropout is associated with large U , so Y1 and Y2 both tend to

be low. Hence β∗3 is lower than what it should be. The opposite happens for a positive θ1.

The same comments apply to Figure 6.2 which show the contour plot of β∗3 under MNAR.

Figure 6.3 show the contour plot of β∗4 under MNAR. Here we get similar result to Figure

3.2 in Chapter 3. Again we get attenuation as θ2 moves away from zero in either direction.

Figure 6.1: Contour plot of β∗
3 under SP.
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Figure 6.2: Contour plot of β∗
3 under MNAR.
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Figure 6.3: Contour plot of β∗
4 under MNAR.
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6.4 Discussion and Conclusion

In this chapter we calculated the expected values of terms in equation (6.8). We compared

these expected values under different dropout models to the generating values βG3 and βG4 .

We calculated the bias in the expected parameters in each dropout model. It is clear

now that the LME works under MAR, since β∗3 = βG3 and β∗4 = βG4 or in other words, the

asymptotic bias is zero. The maximum likelihood method fails to give a consistent estimate

for β3 or β4 under MNAR. It is interesting to note one exception that the LME method

gives consistent estimates for β4 under SP dropout model, as happened before for the

IPW and CC methods. This may be correct only for the simulation set up used here, but

not in general; we have not been able to show theoretically that there is no asymptotic bias.

To conclude the chapter, we summarize and compare all the least false values derived

using the LI, IPW, CC and LME methods under SP, MAR and MNAR dropout models.

We use the expressions derived in Chapter 3, 4, 5 and the current Chapter 6. Results are

in Tables 6.6, 6.7 and 6.8 respectively. We use β = (−2,−2,−1,−1), θsp0 = 0, θsp1 =
√

0.5,

σ2
x = 1, σU = σε1 = σε2 =

√
0.5. This combination gives the total amount of the dropout

at about 50%.

Table 6.6: Comparing the limiting values β∗
3 and β∗

4 using different methods under SP dropout
model

LI IPW CC LME

β∗3 -1.00 -0.85 -0.84 -0.92
β∗4 -1.00 -1.00 -1.00 -1.00

Table 6.7: Comparing the limiting values β∗
3 and β∗

4 using different methods under MAR dropout
model

LI IPW CC LME

β∗3 -1.12 -1.00 -0.90 -1.00
β∗4 -1.05 -1.00 -0.97 -1.00

Table 6.8: Comparing the limiting values β∗
3 and β∗

4 using different methods under MNAR dropout
model

LI IPW CC LME

β∗3 -0.89 -0.82 -0.77 -0.83
β∗4 -0.98 -0.96 -0.95 -0.96

The linear increment model performs well under shared parameter dropout model (refer

to Chapter 3). Under MAR, with these parameter settings the estimates are biased down-
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wards (more negative), whereas under MNAR they are biased upwards. This is because

for LI the estimates at time 2 are based on the differences Y2 − Y1, for completers. Hav-

ing lower than expected Y1 for completers leads to higher than expected differences and

downwards bias under MAR, the opposite happens for MNAR.

The IPW method is consistent under MAR, as required but has slightly more bias than

LI for β3 but slightly more for β4, in our settings. It performs well for β4 under SP but

has positive bias for β3. The same, under SP, happens for the complete case method CC.

This technique is biased under MAR, and badly biased under MNAR. Finally, the LME

method performs similarly to IPW in the study, at least in terms of least false values. We

have seen previously that it can produce more uncertain estimates however.

Having obtained least false values, in the next chapters we suggest their use in sensitivity

analyses. Before doing so, we will investigate a sensitivity procedure for local misspecifi-

cation as proposed by Copas and Eguchi [2005].
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The effect of local misspecification

of the dropout model when using

likelihood based methods under

the MAR assumption

7.1 Introduction

In the previous chapters, we investigated the consequences of misspecifying the missingness

mechanism by deriving the so called least false values, which are the values the parameter

estimates converge to when the assumptions may be wrong. The knowledge of these least

false values allows us to conduct sensitivity analysis which will be illustrated here for the

LME method in this chapter and also for the IPW method in the next chapter. In both

chapters we will assume the misspecified dropout model is MAR.

As an alternative, Copas and Eguchi [2005], give a formula to estimate the bias under such

misspecification using a likelihood approach. As the LME is a likelihood based method,

we can compare the estimates obtained through the Copas and Eguchi method with the

LME least false estimates. Also, this idea can be adapted for the IPW estimating equation

approach. The procedure will be applied by adding a tilt to the MAR dropout model to

provide what Copas and Eguchi call local misspecification.

As we found in Chapter 2, we know that the CC, Obs, and LOCF methods do not work

under the MAR dropout model, because they gave biased estimates. So we will concen-

trate only on the LME and IPW methods for now.

In this chapter, we will elaborate the local model uncertainty as proposed by Copas and

Eguchi [2005], and illustrate how to apply it both when model misspecification is present
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and when the data is incomplete. Furthermore, we will show that the Copas and Eguchi

method gives very similar results to those we found in the previous chapter. Misspec-

ification will be dealt with assuming MAR where actually the truth is MNAR. Beside

Copas and Eguchi [2005], many other works developed methods to assess the sensitivity

of inference under the MAR assumption; see for example, Luna and Lundin [2014] and

Rosenbaum [2010]. Moreover, Lin et al. [2012] extended the Copas and Eguchi method and

assumed a doubly misspecified model while we have only single missspecification. There

also has been interest in the Copas and Eguchi [2005] method from a Bayes perspective,

see for example Zhu et al. [2014], Daniels and Hogan [2008] and Kosuke et al. [2008].

A description of the Copas and Eguchi method is provided in Section 7.2, followed by an

example for the two timepoints situation in Section 7.3. A simulation study is described

in Section 7.4, the aim being first to make sure that the Copas and Eguchi method is

working and then show the coverage of nominal confidence intervals. A sensitivity analysis

is conducted to assess how inference can depend on missing data. In Section 7.5, we first

apply the methods to the real data example from a clinical trial with two treatments and

two measurement times as introduced and analysed by Matthews et al. [2012]. This data

was described in Chapter 2. We compare the results obtained by our method with the

results found by using the Copas and Eguchi method. Then we apply the methods to the

three timepoints real data example. Finally, conclusions are given in Section 7.6.

7.2 Description of Copas and Eguchi Method

We use the notation of Copas and Eguchi [2005], denoting Z for complete data and Y for

incomplete data. We have two types of model, the true model and the assumed model.

The true model is also called the generating model and it means how the data are actually

generated or simulated. On the other hand, the assumed model or what is also known as

the fitting model is what we fit to data. The true model for complete data is denoted by

gZ = gZ(z;ψ) and the corresponding true model for incomplete data is gY = gY (y : ψ)

which can be derived from gZ . Here ψ is a generic (vector) parameter. The assumed or

working model is a parametric model fZ = fZ(z;ψ) which gives the distribution of Z, and

its marginal density is fY = fY (y : ψ).

Thus

fY =

∫
(y)

fZ dz (7.1)

where the notation (y) means integration over all missing values in Z that are consistent

with the observed Y .

We will provide a method to approximate the bias in the estimation of the parameters

of the misspecified model following Copas and Eguchi [2005]. We will consider MAR as
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the working model and MNAR as the true model. Thus the misspecification is caused by

assuming MAR but the truth is MNAR.

Suppose we have a random sample of n observations, and the true model is given by gZ

which is defined by equation (16) in Copas and Eguchi [2005] as a tilt model:

gZ = gZ(z;ψ, ε, uZ) = fZ(z;ψ) exp{εuZ(z;ψ)}. (7.2)

Thus the misspecification is determined by the quantity εuZ(z;ψ). In this, ε, which is

assumed to be small, measures the size of misspecification while uZ(z;ψ) determines its

direction. We assume that uZ(z;ψ) has zero mean and unit variance under the working

model fZ . The misspecification is local because ε is small. Hence, we can infer that gZ is

close to fZ , and we can write:

gZ
fZ

= exp{εuZ(z;ψ)}.

Now if we actually use the model fZ(z;ψ) to fit the data, then the limiting value of the

MLE ψ̂ as n −→∞ is given by equation (18) in Copas and Eguchi [2005] as:

ψgZ = argψ [Eg{sZ(z;ψ)} = 0]

= ψ + εI−1
Z EfZ {uZ(z;ψ)sZ(z;ψ)} ,

where sZ(·;ψ) = ∂{log(fZ)}/∂ψ and IZ = E[−∂2{log(fZ)}/∂ψ∂θT ] are the score and

information matrix for the model fZ respectively.

But we will fit to fY , the working model for the marginal data. Copas and Eguchi [2005]

show that if equation (7.2) is true and ε is small then a similar approximation holds for

the marginal data Y , i.e.

gY = gY (y;ψ, ε, uY ) = fY (y;ψ) exp{εuY (y;ψ)} (7.3)

where again uY (y;ψ) has zero mean and unit variance. In this case according to equation

(19) in Copas and Eguchi [2005] the limiting value is:

ψgY ≈ ψ + εI−1
Y Ef [uY sY ] = ψ + I−1

Y Ef [εuY sY ] (7.4)

where sY (·;ψ) = ∂{log(fY )}/∂ψ and IY = E
[
−∂2{log(fY )}/∂ψ∂ψT

]
, are the score and

information matrix for the model fY respectively. To calculate the bias, I−1
Y Ef [εuY sY ],

we need to find the tilt εuY . In the next section we will determine how to calculate this

amount under MAR and MNAR in our setting of two timepoints.
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7.3 Copas and Eguchi Method for Two Timepoints Example

The bias consists of, as shown in equation (7.4), the score, information matrix and the

tilt. In order to calculate these components we need first to define the likelihood model

we will use. Under MAR we can choose either of the following equivalent formulations:

L = (f(Y1, Y2)P (R = 1|Y1, Y2))R (f(Y1)P (R = 0|Y1))1−R (7.5)

= (f(Y2|Y1)f(Y1)P (R = 1|Y1, Y2))R (f(Y1)P (R = 0|Y1))1−R . (7.6)

The conditional distribution of Y2 given Y1 is needed quite a lot in this section. Hence,

for simplicity we will use Y21 to denote this quantity. Since f(Y1, Y2) is bivariate normal

in our assumed model we have Y21 ∼ N(µ21, σ21) where µ21 = µ2 + σ2
σ1
ρ(Y1 − µ1) and

σ21 = σ2

√
1− ρ2. Also, we have that the complete data is Z = (Y1, Y2, R) and incomplete

data is Y = (Y1, Y
(R)

2 , R) where

Y
(R)

2 =


Y2, R = 1

undefined, R = 0.

(7.7)

Therefore, at R = 1, Y=Z, but Y will differ from Z at R = 0.

In addition, we define the models fZ , fY , gZ and gY . We assume MAR as the working

model or misspecified model. As we know, under MAR we have P (R = 1|Y1, Y2) = P (R =

1|Y1), then from equation (7.5) the working model for complete data by assuming R = 1

is:

fZ = f(Y1, Y2)P (R = 1|Y1).

Similarly, from equation (7.6) the working model for incomplete data by assuming R = 0

is:

fY = f(Y1)P (R = 0|Y1).

Under MNAR, if we have complete data then we can always set R = 1. Thus, from

equation (7.5), the true model for complete data is

gZ = f(Y1, Y2)P (R = 1|Y1, Y2).

The true model for incomplete data on the other hand is the marginal density:

gY =

∫
y

gZ dz

=

∫
Y R2

f(Y1, Y2)P (R = 1|Y1, Y2) dY R
2 . (7.8)
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Note that the integral is over the missing values Y R
2 . Referring to equation (7.7), we have

that the missing values Y2 are undefined in case that R = 0.

This means that in order to use Copas and Eguchi’s ideas we need to convert the specific

gY in equation (7.8) into the general form of equation (7.3). To do this we will redefine

our MNAR model in tilt form:

P (R = 1|Y1, Y2) = expit{θ0 + θ1Y1} exp{εuY }. (7.9)

where ε = θ2σ21 and uY = uY (y; θ) = (Y2 − µ21)/σ21. For small θ2 this is a good

approximation to the logistic MNAR model used in previous chapters. A more refined

approximation is needed in the next chapter.

Calculation of the terms needed for the bias expression (7.4) is now possible and follows

directly. Details are omitted.

7.4 Simulation Study

In this section we explore how the parameter estimates are affected when we fit a MAR

model to data that are MNAR, and we compare with the values that the Copas and Eguchi

method predicts. The simulation set up used here is β=(−2,−2,−1,−1), θ = (θ0, θ1) =

(−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.5. This gives dropout rate ≈ 40%. Also, based on

equation (7.9), we use the dropout model:

P (R = 1 | Y1, Y2) = π(θ, θ2) = expit (θ0 + θ1Y1 + θ2{Y2 − µ21}) .

where µ21 = µ2 + ρ σ2(Y1 − µ1)/σ1.

The first aim is to show that the Copas and Eguchi method works under different simula-

tion parameters. This can be verified by comparing the results obtained by the Copas and

Eguchi method with the maximum likelihood parameter estimates. The following plots

suggest that the method of Copas and Eguchi works under different parameter sets and

dropout rates. Each plot is based on 20 simulations at sample size of 10000. There are

three lines. The dotted lines (blue lines) show, for each choice of θ2 over a grid from -0.2 to

0.2, the mean estimated values of parameters under a MAR assumption when the data are

really MNAR. The parameters we consider are: β3, β4, σ2
2 and ρ. We do not give results

for β1, β2, and σ2
1 because they are well estimated from the first timepoint observation,

which we have assumed to be fully observed. The solid lines (red lines) show mean values

derived from equation (7.4), using uY and the working score and information. The hori-

zontal lines are at the true values. Figures from 7.1 to 7.4 differ in the parameter sets used

in the simulations. Dropout rates vary between figures, with the highest rate in Figure 7.3.
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We fit the data under a MAR assumption using maximum likelihood and use this fitted

line as a reference. Then, we compare this with the estimates produced using the Copas

and Eguchi method. We find that the dashed line matches the solid one in each Figure

from 7.1 to 7.4. Clearly, this means that the method of Copas and Eguchi works under

MAR. Hence, we can be confident that Copas and Eguchi bias approximation is accurate,

at least for small θ2.

Note that in all Figures from 7.1 to 7.4, at θ2 = 0 the horizontal lines cross the Copas

and Eguchi estimate lines for all parameter estimated. The reason is that at θ2 = 0,

the MAR assumption is valid and thus the estimate will be close to the true value. For

example, in Figure 7.1, when looking at the top-left plot, we can see that at θ2 = 0 the

Copas and Eguchi estimator for β3 equals -1.00 (at the horizontal line ) which is the true

value of β3. Moreover, we note that the β3 and σ2
2 estimates keep the same pattern in

all four figures. In contrast, the β4 and ρ patterns depend upon the parameter sets. For

example, in comparing the β4 pattern in Figures 7.1 and 7.3, it is clear that in Figure

7.1 the estimates of β4 decrease as θ2 increases, whereas in Figure 7.3 the estimates of β4

increase as θ2 increases. A similar note can be made for ρ.
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Figure 7.1: Default parameter set β = (−2,−2,−1,−1), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.5.
This gives dropout rate ≈ 40%. Dashed lines (blue lines): Mean of 20 simulations of sample
size 10000. Solid lines (red lines): Means of corresponding Copas and Eguchi approximations.
Horizontal dotted lines are at the true values.
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Figure 7.2: Parameter set β = (−1,−1, 1, 2), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 2, ρ = 0.5. This gives
dropout rate ≈ 50%. Lines as in Figure 7.1.
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Figure 7.3: Parameter set β = (−2,−2,−1,−1), θ = (−1, 0.5), σ2
1 = 2, σ2

2 = 1, ρ = 0. This gives
dropout rate ≈ 83%. Lines as in Figure 7.1.
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Figure 7.4: Parameter set β = (−2, 0,−2, 0), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.75, and this
set leads to dropout rate ≈ 48%. Lines as in Figure 7.1.
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7.4.1 Comparing the Copas and Eguchi method with LME least false

results

We want now to compare the LME least false results (from Chapter 6 equation (6.8)) with

the Copas and Eguchi [2005] ones. We use sample size 10000 and 10 simulations. The

aim is to show the variation in treatment effect estimates as θ2 varies. We use a grid of

θ2 from -0.2 to 0.2 as previously. We show two examples: Figure 7.5 is produced when we

use β=(-2,-2,-1,-1), θ=(-0.5,0) which gives dropout rate around 60% and Figure 7.6 is for

β=(-1,-1,-1,-1), θ=(-1,0) which gives a higher dropout percentage of around 83%. In both

figures we use θ1 = 0 because the least false calculations under MNAR was based on θ1 = 0

to make the integrations easier. However, later, we will improve the calculations to find

the MNAR least false at any θ1. Here the blue lines (dotted lines) are simulation estimates

using maximum likelihood, the red lines (solid lines) are Copas and Eguchi estimates, and

the light blue lines are the LME least false estimates. These show that the least false,

simulations and Copas and Eguchi results all match well. We can therefore use the least

false results for bias correction as an alternative to Copas and Eguchi. We focus only on

β3 and β4 because the LME method is based only on the Y values, also the LME least

false we found in the previous chapter are only β∗3 and β∗4 .

Figure 7.5: Comparison 1: β = (−2,−2,−1,−1), θ = (−0.5, 0). The blue lines (dotted lines) are
simulation estimates using maximum likelihood, the red lines (solid lines) are Copas and Eguchi
estimates, and the light blue lines are the LME least false estimates.
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Figure 7.6: Comparison 2: β = (−1,−1,−1,−1), θ = (−1, 0). The lines are as in Figure 7.5.

7.4.2 CI coverage for the estimated β3 and β4

The Copas and Eguchi and least false values show how estimates are biased by assuming

MAR when the data are MNAR. The misspecification parameter is θ2, with θ2=0 meaning

no misspecification. If the value of θ2 was known then we could adjust our parameter esti-

mates to take into account the misspecification. This idea will be illustrated in this section.

For a range of true (generating) θ2 we simulate 1000 samples, each of size 1000. In each

case we estimate β3 and β4 using maximum likelihood under a MAR assumption. We

then adjust the estimates using either the estimated Copas and Eguchi bias or the bias

arising through our least false calculations, in both cases taking an assumed θ2. Coverage

of the resulting nominal 95% confidence intervals is then recorded. We do not adjust the

estimated confidence interval width, just its location.

Tables 7.1 - 7.3 give the results. Here we use θT2 for the true θ2, θA2 denotes the assumed

value in adjusting the estimates. Also, we use (β∗∗3 , β∗∗4 ) for the Copas and Eguchi adjust-

ment method and (β∗3 , β
∗
4) for the least false adjustment method.

In Table 7.1 the assumed θ2 is zero, meaning we make no correction. Results at the correct

value of θA2 =0 are good. Otherwise, the CI for β3 goes badly wrong. Note that there is no

correction here, so the Copas and Eguchi and least false results should be the same. Small

differences are just because of the different calculations that are involved. For example
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the least false calculation needs an estimate of σx but Copas and Eguchi does not. We

note that the CI coverage for β4 is not too much affected at any true θ2 in the range

(-0.1,+0.1) that we looked at. For example, at θA2 =-0.1, the CI coverage for β4 is about

95%, whereas there is undercoverage for β3 when θT2 deviates from zero. For example at

θT2 =-0.1, the CI coverage for β3 is about 85%. This indicates that β4 is less sensitive for

the misspecification than β3 in this scenario.

In Table 7.2 we take the assumed value of θ2=-0.1, meaning we think dropout is associated

with high Y2. Things work well if our assumed value is close to the true one, -0.1. Note

that in contrast to the Table 7.1, there is correction here, so the Copas and Eguchi and

least false results will not be the same, for example at θT2 =+0.1, the CI coverage for β∗∗3
is about 62.7%, but the CI coverage for β∗3 is about 57.8%. However, both estimates β∗∗3
and β∗3 have undercoverage as θT2 goes further from the assumed value -0.1.

We provide one more example, when the assumed θ2 is positive. From Table 7.3, we have

the same conclusion as before. For example, when the assumed value is close to the true

value, θT2 =+0.05, there is good coverage for CI for the estimates. In contrast, at θT2 =-0.10,

the CI coverage for β∗∗3 is about 75.1% and the CI coverage for β∗3 is about 72.5%. Again,

β4 seems very robust.
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Table 7.1: CI coverage in percent for the estimated β3 and β4 at assumed θ2=0. We use θT2 for the
true θ2, θA2 for the assumed value in adjusting the estimates, (β∗∗

3 , β∗∗
4 ) for the Copas and Eguchi

adjustment method and (β∗
3 , β

∗
4) for the least false adjustment method. Results based on 1000

samples of size 1000.

θT2 θA2 β∗∗3 β∗∗4 β∗3 β∗4

-0.10 0.00 84.80 95.30 84.90 95.30
-0.09 0.00 85.90 96.70 85.80 96.70
-0.08 0.00 86.80 95.30 86.60 95.20
-0.07 0.00 89.70 94.40 89.70 94.40
-0.06 0.00 92.00 94.70 91.90 94.70
-0.05 0.00 92.00 96.00 91.90 96.00
-0.04 0.00 93.70 95.30 93.60 95.30
-0.03 0.00 95.00 95.00 95.10 94.90
-0.02 0.00 94.60 94.40 94.60 94.60
-0.01 0.00 95.90 96.10 95.70 96.00
0.00 0.00 94.70 95.10 94.70 95.10
0.01 0.00 94.30 95.20 94.40 95.20
0.02 0.00 95.00 95.20 95.00 95.20
0.03 0.00 95.20 94.20 95.00 94.20
0.04 0.00 93.90 94.70 93.90 94.70
0.05 0.00 94.10 95.00 94.00 94.90
0.06 0.00 91.70 94.70 91.70 94.70
0.07 0.00 90.30 95.40 90.20 95.40
0.08 0.00 88.20 94.90 88.20 94.90
0.09 0.00 88.00 95.00 87.80 95.00
0.10 0.00 83.40 95.10 83.60 95.00
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Table 7.2: CI coverage for the estimated β3 and β4 in percent at assumed θ2=-0.1. We use θT2
for the true θ2, θA2 for the assumed value in adjusting the estimates, (β∗∗

3 , β∗∗
4 ) for the Copas and

Eguchi adjustment method and (β∗
3 , β

∗
4) for the least false adjustment method.

θT2 θA2 β∗∗3 β∗∗4 β∗3 β∗4

-0.10 -0.10 95.30 95.40 95.70 95.10
-0.09 -0.10 94.80 95.10 95.50 94.80
-0.08 -0.10 94.10 96.10 94.10 96.00
-0.07 -0.10 95.50 96.70 95.60 95.80
-0.06 -0.10 95.80 95.20 94.90 95.60
-0.05 -0.10 93.40 94.40 92.00 94.50
-0.04 -0.10 93.70 95.10 92.40 95.20
-0.03 -0.10 92.50 94.90 92.00 95.10
-0.02 -0.10 92.40 94.70 90.50 94.80
-0.01 -0.10 91.20 95.10 89.60 95.30
0.00 -0.10 89.30 95.30 87.40 95.40
0.01 -0.10 89.30 95.80 86.40 96.10
0.02 -0.10 86.80 94.50 83.80 94.60
0.03 -0.10 83.70 93.80 81.20 93.80
0.04 -0.10 80.30 95.50 76.70 95.40
0.05 -0.10 76.00 94.30 71.70 94.50
0.06 -0.10 74.40 95.10 70.50 95.00
0.07 -0.10 69.90 95.70 65.60 95.20
0.08 -0.10 65.20 95.10 61.70 95.00
0.09 -0.10 62.20 96.00 58.30 95.80
0.10 -0.10 62.70 93.90 57.80 94.20
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Table 7.3: CI coverage for the estimated β3 and β4 in percent at assumed θ2=0.05. We use θT2
for the true θ2, θA2 for the assumed value in adjusting the estimates, (β∗∗

3 , β∗∗
4 ) for the Copas and

Eguchi adjustment method and (β∗
3 , β

∗
4) for the least false adjustment method.

θT2 θA2 β∗∗3 β∗∗4 β∗3 β∗4

-0.10 0.05 75.10 97.20 72.50 97.30
-0.09 0.05 75.50 95.20 73.70 95.40
-0.08 0.05 79.10 95.10 76.50 95.50
-0.07 0.05 82.10 95.10 79.90 95.10
-0.06 0.05 84.10 96.40 81.70 96.20
-0.05 0.05 86.40 96.40 85.00 96.70
-0.04 0.05 88.70 95.20 87.20 95.30
-0.03 0.05 91.10 94.90 89.90 95.00
-0.02 0.05 91.50 95.20 90.50 95.30
-0.01 0.05 92.60 96.20 91.50 96.00
0.00 0.05 94.30 95.40 93.40 95.50
0.01 0.05 95.30 95.70 94.70 95.60
0.02 0.05 94.40 96.00 94.00 96.00
0.03 0.05 94.80 95.70 94.40 95.40
0.04 0.05 96.00 95.60 95.90 95.20
0.05 0.05 95.60 94.90 95.60 94.60
0.06 0.05 95.10 94.40 95.40 94.10
0.07 0.05 93.60 95.30 94.00 95.00
0.08 0.05 93.80 95.00 94.40 95.10
0.09 0.05 92.10 94.60 92.50 94.80
0.10 0.05 91.70 95.10 92.80 95.20
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7.4.3 Sensitivity analysis

Of course, in practice θ2 is not known. For any given data set, a sensible sensitivity proce-

dure would mean plotting bias-corrected estimates and confidence intervals for a range of

assumed θ2 values. Here we use a grid of assumed θ2 from -0.2 to 0.2. We will show that

for each limiting value calculated by the Copas and Eguchi method, the simulated values

are within noise of the theoretical values for large sample sizes (n=100000). We estimate

the noise from the simulations; that is we get a confidence interval from the simulations

and reassurance that the population values are within these. We did this for a correct

MAR model and after that under true MNAR but MAR is assumed.

Figure 7.7 illustrates when MAR is the correct model (θ2 = 0) and the unadjusted confi-

dence intervals (red lines) include the true parameter values (β3=-1 and β4=-1), as in this

case so do the adjusted ones (blue lines). The horizontal lines are at the true values. We

note that β∗∗3 decreases as θ2 increases whereas β∗∗4 increases as θ2 increases. This is the

opposite to Figure 7.1, which has the same parameter values. The reason is that we are

adjusting for the assumed parameter. For example, at θ2 = −0.2, Figure 7.1 shows that

we expect our MAR estimate to be too low. Hence we adjust for it. But because the true

θ2 is zero in Figure 7.7, we mistakenly over-estimate β3 at θA2 =-0.2. The argument also

applies to β4. Note that β4 has a wider CI than β3.

Figure 7.8 has the true θ2=0.1 so we have fitted MAR to data that are really MNAR. The

lines cross at θ2=0 because we are fitting the same MAR model. The important point is

that we get better estimates of the true β’s at the correct θ2. Also, as mentioned in Figure

7.7, β4 has wider CI than β3.

We note that, both under MAR and MNAR, β3 and β4 have opposite trends; β3 decreases

as θ2 increases whereas β4 increases as θ2 increases.
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Figure 7.7: CI under MAR: β = (−2,−2,−1,−1), θ = (−0.5,−0.5), θT2 =0. The blue lines are the
adjusted estimates, red lines are the unadjusted estimates. The horizontal dotted lines are at the
true values.
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Figure 7.8: CI under MNAR: β = (−2,−2,−1,−1), θ = (−0.5,−0.5), θT2 =0.1. The blue lines are
the adjusted estimates, red lines are the unadjusted estimates. The horizontal lines are at the true
values.
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7.5 Application

7.5.1 Sensitivity analysis: Two timepoints example

In this section we use the two timepoints real data example, which is the same data as

used in Chapter 2. This data is drawn from a clinical trial with two treatments and two

measurement times. The covariates are only treatment type and time. The parameter

vector is (β1, β2, β3, β4), ignoring any time interaction. There are 422 subjects, assigned

to either Treatment A or B. Treatment A is associated with treatment effect x=1 and

treatment B is when x=0. Then, at time 2, the mean of the group receiving Treatment

B is β3 and the mean of the group receiving Treatment A is β3+β4. At time 1, all sub-

jects provided a response, but 24.4% dropped at time 2. There are 212 subjects receiving

Treatment A, but only 126 provided a response by time 2 and the other 86 dropped out.

Hence the missingness percentage is about 40%. The dropout reason is not known. For

Treatment B, there are 210 subjects, of which 193 subjects continued to time 2 and hence

there are 17 that did not and this gave around 8% missingness.

A sensitivity analysis approach (over a grid of θ2) using the Copas and Eguchi and LME

methods is shown in Figure 7.9. The blue lines use Copas and Eguchi method and the

red lines use the least false method. The idea is to adjust the estimate to compensate for

bias from a misspecified MAR fit. So, for example, if we know the least false value under

MAR underestimates a parameter, we add the difference to our estimate to back-calculate.

Dashes are the CIs, based on the MAR standard errors. The first plot shows confidence

intervals for the treatment B mean as the assumed value of θ2 changes. The horizontal

line is the estimate under MAR. The second plot shows the confidence intervals for the

mean of treatment A. The third plot is the difference in means between Treatment A and

B, which yields the treatment effect means i.e. β4 means. In the first plot, the horizontal

line is at -0.74 which is the same value for the LME estimate for β3 in Chapter 2 Table

2.17. Again, the LME estimate for β4 is about -0.40 in both Table 2.17 in Chapter 2 and

here in Figure 7.9. Also, note that β3+β4 equals -1.15. This supports our finding here,

and make us more confident about the results.

The first thing to note is how close the least false and Copas and Eguchi estimates are.

There is almost no difference over this range of θ2. We take θ2 from -1.5 to +1.5. The

value of θ̂1 under MAR is -1.66, meaning the range of θ2 allows Y2 to have the same order

of effect as Y1. Clearly at large values of θ2 we might worry that the misspecification is

not local, which is the assumption of Copas and Eguchi. However, the least false results

apply to any misspecification, not necessarily local, and the fact that Copas and Eguchi is

so close to least false suggests that it can work well even under quite large misspecification.

When θ2 is negative the estimates get adjusted upwards, the opposite for θ2 positive. This

makes sense: At negative θ2 large Y2 values have low probability of staying in the trial.

Hence the observed means are lower than they would be in the hypothetical no-dropout
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Figure 7.9: Two timepoints example: 95% CI for β3 and β4. The blue lines use Copas and Eguchi
method, the red lines use least false method and the horizontal line is at the MAR estimate.
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situation, so we adjust upwards.

The estimates seem to be affected more at positive θ2 than negative. At the very largest

θ2 shown, there would be a significant change in the value of the estimated true mean.

However, there is very little effect of misspecification on the difference between means

(third sub plot), as the adjustments essentially cancel.
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7.5.2 Sensitivity analysis: Three timepoints example

In this section we use the three timepoints schizophrenia data as described in Chapter 2.

This data is from a clinical trial with three treatments and three measurement times. The

covariates are only treatment type and time. There are three treatment groups: group

1 has 85 subjects, group 2 has 88, group 3 has 345. We will have a separate parameter

for the mean of each of the 9 treatment and time combinations. The parameter vector is

(β1, β2, β3) at time 1, (β4, β5, β6) at time 2, and (β7, β8, β9) for groups 1, 2 and 3 respec-

tively at each timepoint.

Of the 518 patients, 249 dropped out and the missingness percentages are around 24% and

48% at the second and third time respectively. Examining missingness according to the

groups shows that treatment group 2 has the highest dropout percentage while treatment

groups 1 and 3 have lower dropout percentage.

We have two dropout models both assumed MAR. The MAR dropout model is (1.6) as

defined in the Introduction.

Figure 7.10: 95% CI for the means for groups of schizophrenia data at time 2 and time 3 using
Copas and Eguchi and LME methods. The blue lines use Copas and Eguchi method, the red lines
use least false method and the horizontal line is at the MAR estimate.
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Figure 7.10 shows estimates of the group means (with CIs) at each of time 2 and time

3. The dotted lines are at the MAR estimates. The CIs are wider for groups 1 and 2

than group 3, because group 3 is much larger. The value of θ1 in the data is around -0.01

(time 2) and -0.03 (time 3). Hence the range of θ2 is chosen to be -0.05 to +0.05, to be of

the same order of magnitude. The Copas and Eguchi method is for local misspecification

which implies θ2 near zero. Note that at positive θ2 there is no adjustment because there

is no bias. The reason is that for the estimated parameters at positive θ2 we expect (in

theory) very little dropout, so there is no need to adjust. Of course in practice there is

dropout, which means positive θ2 is not realistic (in association with the current θ0 and

θ1). For negative θ2 all estimates are adjusted upwards, for the same reasons as for the two

time example. the least false method seems to lead to larger adjustments than Copas and

Eguchi. As mentioned above, Copas and Eguchi is local, meaning if there is a difference for

the more extreme θ2 then probably the least false version should be preferred. The results

are slightly different from Chapter 2 (Table 2.19) because we do not estimate at time 1,

because at time 1 there is no dropout, so we use the full data and thus no misspecification

has occurred. The magnitudes of the adjustment are comparable to those presented (for

a joint modelling strategy) by Henderson et al. [2000] in their analysis of an extended

version of these data.
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Figure 7.11: 95% CI for the differences in means for groups of schizophrenia data at time 2 and
time 3 using Copas and Eguchi and LME methods. The blue lines use Copas and Eguchi method,
the red lines use least false method and the horizontal line is at the MAR estimate.
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Figure 7.11 shows estimates of the treatment effects (group 1 vs group 3 and group 2

versus group 3) at each of time 2 and time 3. There are now dotted lines at zero as well as

the MAR estimate. It is interesting to note that although the mean estimates in Figure

7.10 are severely adjusted, the differences in means have very little adjustment: the two

effects cancel. Results confirm that there is a significant difference between group 2 and

group 3 at both times, and this is maintained even under MNAR. The difference between

group 1 and group 3 is borderline significant under MNAR with θ2 around -0.04, which

would be a very strong effect. High values in these data mean more ill patients. The

positive differences mean group 3 (the new treatment) works best. These are the same

conclusions as Henderson et al. [2000] obtained. We have obtained them without having

to fit a complex MNAR model.
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7.6 Conclusion

In this chapter we derived and explored the Copas and Eguchi [2005] approximation for

the bias raised by the misspecification of the working model. We compared these results

with the LME least false values as obtained in Chapter 6. Moreover, we explained how to

use a sensitivity analysis to see how the methods work under a range of θ2. Finally, we

illustrated results using two real examples.

We found that Copas and Eguchi [2005] method and LME least false match very well.

Both gave very close results over the grid of θ2 we considered. This suggests that our least

false method can provide a credible alternative to Copas and Eguchi in sensitivity analysis.

In fact it might be preferred since there is no assumption of local misspecification.
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Chapter 8

The effect of local misspecification

on dropout probabilities and IPW

estimation

8.1 Introduction

In the previous chapter, we investigated the effect of a tilt or misspecification of the dropout

model when using a likelihood based method under the MAR assumption. Specifically,

we studied and compared the Copas and Eguchi [2005] bias estimate results with the

least false values derived from the LME method. In this chapter, we will take a similar

approach, and again we will assume that MAR is the working model while the truth is

MNAR. We refer to Ho et al. [2012] and adapt their work to our set up. The objectives

here are first to see what the dropout parameters (θ0 and θ1) will converge to when using

the local misspecification method, then, to estimate the regression parameters β using

the IPW method. We develop the Copas and Eguchi [2005] approximation for the non-

likelihood estimating equation approach. Furthermore, we show how sensitive the original

IPW method is to misspecified models.

This chapter contains two main parts: In the first part we concentrate on the estimation

of the dropout parameters of the logistic regression model i.e. θ0 and θ1. The second part

focuses on using the results obtained in the first part to estimate the regression parameters

β when using the IPW estimating equation approach. A full description of the method is

shown in Section 8.2. A simulation study for the first part is described in Section 8.3, the

aim being first to make sure that the local misspecification method is working and then

show the coverage of confidence intervals. A sensitivity analysis is conducted to assess how

inference can depend on missing data. We perform the sensitivity analysis by displaying

the estimators θ0 and θ1 for various choices of θ2. We apply our approach to the analysis

of the real data examples in Section 8.4. Then, in Section 8.5 we do the second part i.e.

investigate the IPW method. Again, we apply the methods to both real data examples in
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Section 8.6. Finally, we summarize the main ideas discussed in this chapter and highlight

the findings in Section 8.7.

8.2 Logistic Regression Method to Estimate the Dropout

Probabilities θ∗0 and θ∗1

In the previous chapter, as mentioned, we concentrated only on the βs. We now consider

what happens to the estimated dropout probabilities when the working model is MAR

but the true model is MNAR. In the previous chapter, we used the dropout model:

P (R = 1 | Y1, Y2) = π(θ, θ2) = expit (θ0 + θ1Y1 + θ2{Y2 − µ21}) .

where µ21 = µ2 +ρ σ2(Y1−µ1)/σ1. However, here we revert to the original dropout model.

Let θ = (θ0, θ1) and

P (R = 1 | Y1, Y2) = π(θ, θ2) = expit (θ0 + θ1Y1 + θ2Y2) .

For small θ2Y2 we can expand1 θ2Y2 about 0 and get

π(θ, θ2) ' π(θ, 0) + θ2Y2 π(θ, 0) (1− π(θ, 0)) . (8.1)

We will be fitting the MAR model to MNAR data using maximum likelihood. Ho et al.

[2012] explained that the parameter estimates (θ̂) will converge to the values (θ∗) that

minimise the expected Kullback-Liebler divergence, and in our case will solve

U(θ∗, θ, θ2) = 0,

where U(θ∗, θ, θ2) is a 2× 1 vector E [π(θ, θ2)− π(θ∗, 0)]

E [Y1{π(θ, θ2)− π(θ∗, 0)}]

 . (8.2)

Expanding in θ∗ about θ

0 = U(θ∗, θ, θ2) ' U(θ, θ, θ2) +
∂U

∂θ∗
(θ∗ − θ). (8.3)

Here ∂U/∂θ∗, evaluated at θ∗ = θ, is the 2× 2 matrix −E [π(θ, 0) (1− π(θ, 0))] −E [Y1 π(θ, 0) (1− π(θ, 0))]

−E [Y1 π(θ, 0) (1− π(θ, 0))] −E
[
Y 2

1 π(θ, 0) (1− π(θ, 0))
]
 . (8.4)

1Expanding f(x) about a means f(x) ≈ f(a) + (x− a) f ′(a).
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Using (8.1)

U(θ, θ, θ2) '

 E [π(θ, 0)− π(θ, 0)]

E [Y1{π(θ, 0)− π(θ, 0)}]

+

 E [θ2Y2π(θ, 0) (1− π(θ, 0))]

E [θ2Y2Y1π(θ, 0) (1− π(θ, 0))]


= 0 + ψ(θ, θ2) (say). (8.5)

Hence using the result of equation (8.5), equation (8.3) yields:

θ∗ ' θ −
(
∂U

∂θ∗

)−1

ψ(θ, θ2). (8.6)

In practice we replace expectations by sample means, and replace the unknown θ by the

estimate θ̂. Note that the approach here, based on small θ2 and expansion of the estimating

equations, is not the same as the previous least false method, which does not assume small

θ2 and solves the estimating equations.

8.3 Simulation Study for the Dropout Probabilities θ

The objective here is to compare the estimates obtained by using the local misspecification

method with logistic regression least false results for a variety of parameter values. We

use the same simulation set up as used in the previous chapter i.e. β=(−2,−2,−1,−1),

θ = (θ0, θ1) = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.5. This gives dropout rate ≈ 40%. The

dropout model we use here is, as mentioned before,

P (R = 1 | Y1, Y2) = π(θ, θ2) = expit (θ0 + θ1Y1 + θ2Y2) .

Results show that both methods work very well, Figure 8.1 and 8.2 illustrate. The left

plot refers to θ0 and the right to θ1. In each plot the blue line shows the average value of

the estimated θ, over 20 simulations, each with sample size n=10000, as we vary the true

(but ignored2) θ2 from -0.2 to +0.2. The estimate of θ0 is very stable but the estimate

of θ1 can be highly affected by ignoring θ2. The red lines in each plot give the expected

estimates derived using the (new) Copas and Eguchi method i.e. the local misspecification

estimation method, which is expressed in equation (8.6). The green lines give the least

false estimates (from Chapter 4 results). Sometimes least false and local misspecification

results are so close that the green line is not visible. The horizontal line is at the true value.

Figures 8.1 and 8.2 differ in the true values of θ0 and θ1. But they both show that the

local misspecification method works, because the estimates derived through equation (8.6)

match the other method estimates over the values of θ2. In Figure 8.1 the horizontal line

2Because we are assuming MAR, the dropout model does not depend on θ2
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and the estimates lines cross at θ2 = 0, in each plot. This is because, in theory, at θ2 = 0

the MAR assumption is valid and so the the estimates will be unbiased which means the

estimates will give the true value. For example, in the right plot, at θ2 = 0 the horizontal

line at the true value (at θ1 = −0.5) crosses the estimates lines, as expected.

Figure 8.1: Parameters θ = (−0.5,−0.5). The blue line shows the average value of the estimated
θ, the red lines give the expected estimates derived by local misspecification. The green lines give
the least false estimates. The horizontal line is at the true value. The left plot is for θ0 and the
right for θ1.
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Figure 8.2: Parameters θ = (1,−1). Lines as Figure 8.1.
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8.3.1 CI coverage for the estimated θ0 and θ1

Here we calculate the 95% confidence interval (CI) coverage percentages for the parameters

of interest θ0 and θ1 by using the three different estimation methods:

• The General Linear Model estimation method (glm). The logistic regression param-

eters are estimated using glm method and they are denoted by θRaw0 and θRaw1 , which

mean raw results or unadjusted.

• The local misspecification method using equation (8.6), the parameters here are

denoted by θ∗∗0 and θ∗∗1 .

• The least false method in Chapter 4, the parameters associated with this method

are denoted by θ∗0 and θ∗1.

For the local misspecification and least false methods, we obtain the CI by shifting the

location by the estimated bias. We will perform three different comparisons. In Table 8.1,

we assume θ2=0, so MAR is correct here. In Table 8.2 and 8.3 we assume MNAR with

assumed θ2 (denoted by θA2 ) =+0.1 and -0.1 respectively. All are based on 1000 simulation

repetitions each of sample size 1000. We calculate the CI coverage under a range of true

θ2 (denoted by θT2 ) from -0.2 to +0.2.

In Table 8.1, we note that all the methods give the same coverage for each of θ0 and also

for θ1 in each row (at the same true θ2). For example, the estimated CI coverage for

θ0 in the third, fifth and seventh columns are identical, also the fourth, sixth and eighth

columns are identical. In addition, the confidence interval coverages are good for θ0 at

all true θ2, because of the stability of the estimates as seen in Figures 8.1 and 8.2. For

θ1, when the MAR model is correct (θT2 =0) all methods perform well, but when it is not

there is serious undercoverage. The reason is that under MAR there is no bias and so all

the methods are supposed to give similar estimates.
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Table 8.1: The CI coverage at assumed θ2=0 in %.

θT2 θA2 θRaw0 θRaw1 θ∗∗0 θ∗∗1 θ∗0 θ∗1

-0.20 0.00 95.10 39.80 95.10 39.80 95.10 39.80
-0.18 0.00 96.20 50.10 96.20 50.10 96.20 50.10
-0.16 0.00 95.90 59.20 95.90 59.20 95.90 59.20
-0.14 0.00 95.30 64.60 95.30 64.60 95.30 64.60
-0.12 0.00 96.00 76.00 96.00 76.00 96.00 76.00
-0.10 0.00 95.50 78.40 95.50 78.40 95.50 78.40
-0.08 0.00 95.80 84.30 95.80 84.30 95.80 84.30
-0.06 0.00 94.80 89.40 94.80 89.40 94.80 89.40
-0.04 0.00 95.20 93.30 95.20 93.30 95.20 93.30
-0.02 0.00 95.80 95.30 95.80 95.30 95.80 95.30
0.00 0.00 95.90 95.60 95.90 95.60 95.90 95.60
0.02 0.00 95.70 95.30 95.70 95.30 95.70 95.30
0.04 0.00 96.10 92.10 96.10 92.10 96.10 92.10
0.06 0.00 95.80 87.60 95.80 87.60 95.80 87.60
0.08 0.00 95.90 80.80 95.90 80.80 95.90 80.80
0.10 0.00 96.00 74.80 96.00 74.80 96.00 74.80
0.12 0.00 95.10 61.90 95.10 61.90 95.10 61.90
0.14 0.00 93.80 53.50 93.80 53.50 93.80 53.50
0.16 0.00 95.00 37.70 95.00 37.70 95.00 37.70
0.18 0.00 96.50 31.10 96.50 31.10 96.50 31.10
0.20 0.00 94.50 21.80 94.50 21.80 94.50 21.80
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Table 8.2: CI coverage at assumed θ2=0.1 in %.

θT2 θA2 θRaw0 θRaw1 θ∗∗0 θ∗∗1 θ∗0 θ∗1

-0.20 0.10 95.40 36.80 95.20 7.00 95.20 6.90
-0.18 0.10 94.80 52.40 94.40 9.40 94.20 9.10
-0.16 0.10 95.70 56.00 95.50 14.10 95.40 13.80
-0.14 0.10 95.50 65.80 95.60 20.70 95.50 20.30
-0.12 0.10 95.30 73.20 95.30 27.60 95.20 27.00
-0.10 0.10 95.90 80.80 95.90 34.60 95.80 34.20
-0.08 0.10 95.60 88.00 95.80 44.20 95.70 43.50
-0.06 0.10 94.60 88.90 94.30 53.70 94.20 52.60
-0.04 0.10 94.70 94.30 95.10 61.80 95.10 61.60
-0.02 0.10 95.90 94.40 95.70 65.70 95.80 65.40
0.00 0.10 95.70 96.30 95.80 74.60 95.60 74.40
0.02 0.10 95.20 93.20 94.90 84.70 94.90 84.20
0.04 0.10 95.70 92.60 95.50 89.20 95.60 88.60
0.06 0.10 96.40 88.50 96.70 93.50 96.60 93.30
0.08 0.10 94.50 81.30 94.50 94.70 94.50 94.60
0.10 0.10 95.50 73.00 95.60 95.80 95.60 95.60
0.12 0.10 96.00 61.40 96.20 93.40 96.10 93.50
0.14 0.10 95.70 52.70 95.30 90.80 95.30 90.80
0.16 0.10 95.10 41.60 95.30 88.50 95.30 88.60
0.18 0.10 95.10 29.70 94.80 80.00 94.80 80.30
0.20 0.10 94.90 22.20 95.00 69.20 95.10 69.60

Table 8.2 provides an example for the CI coverages when the MNAR assumption is valid,

and we assume θ2=+0.1. The coverages of θRaw0 , θ∗∗0 and θ∗0 are good at any true θ2 in the

range (-0.2, +0.2). Turning to the coverage of different estimates of θ1, the glm estimate,

θRaw1 , gives good coverage (about 95%) only at true θ2 =0. However, for θ∗∗1 and θ∗1, both

corrections work very well when the assumed θ2 matches the true value (0.1) as expected

(no bias). However, when the assumed θ2 is wrong, the coverage of θ∗∗1 and θ∗1 decreases

dramatically and reach only around 7% at true θ2=-0.2. The poor coverage rates of the

nominal confidence intervals are due to the bias and not to poor variance estimation,

argued Robins et al. [1995].
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When the assumed θ2 is -0.1, Table 8.3 leads to similar conclusions as in Table 8.2. As

assumed θ2 has opposite sign of the assumed θ2 in the previous table, the most underco-

varges now are associated with the positive values of true θ2. Again, θ0 estimators give

good coverage for all true θ2 in (-0.2,+0.2). Turning to the θ1 estimators, the CI coverage

for θRaw1 is good (96.20%) when data is really MAR (at θT2 = 0). On the other hand, θRaw1

CI coverage decreases as true θ2 goes further from zero in both directions, as seen before

in Table 8.2. Regarding the CI coverages for the estimates θ∗∗1 and θ∗1, they both have

good coverage only when θT2 = θA2 ( at true θ2 = −0.1), but otherwise they have serious

undercoverage.

Table 8.3: CI coverage at assumed θ2=-0.1 in %.

θT2 θA2 θRaw0 θRaw1 θ∗∗0 θ∗∗1 θ∗0 θ∗1

-0.20 -0.10 95.80 41.90 95.90 82.00 96.00 81.00
-0.18 -0.10 95.50 47.70 95.60 88.00 95.50 87.80
-0.16 -0.10 96.00 55.70 96.20 91.00 96.00 91.00
-0.14 -0.10 97.10 66.00 97.10 94.20 97.00 93.90
-0.12 -0.10 94.90 72.20 94.70 95.10 94.70 94.90
-0.10 -0.10 95.00 79.90 95.00 95.40 95.00 95.40
-0.08 -0.10 94.80 86.90 94.80 93.60 94.80 93.40
-0.06 -0.10 95.50 90.60 95.10 91.90 95.10 91.90
-0.04 -0.10 96.00 93.90 95.70 90.60 95.80 90.90
-0.02 -0.10 96.00 94.50 96.10 83.00 96.10 83.80
0.00 -0.10 94.40 96.20 94.20 77.10 94.20 77.50
0.02 -0.10 95.50 93.50 95.50 65.70 95.40 66.20
0.04 -0.10 95.60 92.00 95.50 58.70 95.50 59.10
0.06 -0.10 94.90 87.20 95.00 47.20 94.70 47.40
0.08 -0.10 95.50 81.50 95.30 34.50 95.30 35.10
0.10 -0.10 95.00 75.20 95.40 29.20 95.20 29.40
0.12 -0.10 96.40 67.30 96.30 21.00 96.20 21.70
0.14 -0.10 95.00 51.10 94.70 12.10 94.80 12.40
0.16 -0.10 95.80 41.40 95.70 7.10 95.50 7.30
0.18 -0.10 95.90 32.90 95.90 4.80 96.00 4.80
0.20 -0.10 95.60 22.70 95.10 2.60 94.90 2.60
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8.3.2 Sensitivity analysis using simulated data

We simulate two data sets of sample size 1000, one with true θ2=0 assuming MAR and

the other with true θ2=0.5 (MNAR). In both data sets we use the dropout parameters

θ0 = −0.5 and θ1 = −0.5. We use a grid of assumed θ2 from -1.0 to 1.0 to estimate the

model coefficients (θ0, θ1) using the local misspecification and least false methods. Next the

confidence intervals for the estimates of θ = (θ0, θ1) are adjusted for the various assumed

θ2. Figures 8.3 and 8.4 illustrate. The blue lines are when we use local misspecification

for adjustment, the red lines are for the least false values and the horizontal lines are at

the true values (at θ0 = −0.5 and θ1 = −0.5).

Figure 8.3: The 95% CI of θ0 and θ1 under MAR. We use θ0 = −0.5, θ1 = −0.5 and true θ2 = 0.
The blue lines are local misspecification, the red for least false and the horizontal lines are at the
MAR maximum likelihood estimates.
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The left plot of Figure 8.3 is for θ0, the right for θ1. Similarly to the results found in Table

8.1, the left plot shows that θ0 is not substantially affected by the different assumed values

of θ2. In contrast, the right plot shows that θ1 is highly affected by changes in assumed

θ2. Local misspecification and least false values estimates are very similar in how they

respond to the change of assumed θ2 in both plots, the lines are close. However, there is
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some curvature for low θ2 under least false but not local misspecification as shown in the

right plot.

Figure 8.4: The 95% CI of θ0 and θ1 under MNAR. We use θ0 = −0.5, θ1 = −0.5 and true θ2 = 0.5.
Lines as in Figure 8.3.
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Figure 8.4 is obtained when the data really are MNAR. To compare with Figure 8.3, the

left plot in Figure 8.4 shows that the θ0 estimates are more sensitive to the variation of

assumed θ2, as the slope of the lines is clearly greater. Again, the least false estimates for

θ0 and θ1 show curvature for low θ2. Note that at assumed θ2 =0 the horizontal line and

the estimates lines cross. For example, in the right plot, at assumed θ2 =0, the lines cross

at around θ1=-0.3, which is the maximum likelihood estimate of the dropout parameter

θ1 under MAR. Clearly this estimate is biased due to the misspecification of fitting MAR

to MNAR data. At θ2 = 0 the CIs in each plot do not include the true value of θ0 and θ1

respectively.
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8.4 Application

8.4.1 Sensitivity analysis: Two timepoints example

In this section we use the two timepoints real data example, which is the same data as

used in Chapter 7. There are two treatments and two measurement times. The covariates

are only treatment type and time. There are 422 participants, assigned to either Treat-

ment A or B. At time 1, all subjects provided a response, but 24.4% dropped out at time 2.

A sensitivity analysis approach over a grid of assumed θ2 from -1.5 to +1.5 using the

local misspecification and least false method is shown in Figure 8.5. The left plot shows

confidence intervals for θ0 as the assumed value of θ2 varies. The right plot shows the

confidence intervals for θ1 for different assumed θ2. The blue lines are local misspecification

(estimates and the 95% CI) and the red are least false. The horizontal line is the estimate

under MAR.

Figure 8.5: The 95% CI for θ0 and θ1: Two timepoints example. The left plot refers to θ0 and the
right is for θ1. The blue lines are local misspecification estimates and the red lines are the least
false. The horizontal line is the estimate under MAR.
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Figure 8.5 shows how we should adjust the confidence intervals for θ0 and θ1, obtained
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under MAR, under the assumption that θ2 is not zero. The MAR estimates are 1.60 and -

1.66 for θ0 and θ1 respectively, and so θ2 in +/- 1.5 is believable. The local misspecification

bias adjustment seems linear in this example. Least false has some curvature at the lowest

θ2 but is otherwise very close to local misspecification result. The plot is qualitatively

similar to Figure 8.4, which used simulated data. Note that the CI width for θ0 and θ1 is

approximately equal. Also, both of the estimates go further from zero as θ2 increases.

Table 8.4: Summary of MAR logistic regression coefficients θ0 and θ1: Two timepoints example.

Coefficient Estimate s.e z value

θ0 1.60 0.16 9.95
θ1 -1.66 0.18 -9.30

Results obtained from Table 8.4 match the results of Figure 8.5. The standard error (s.e)

for θ1 equals 0.18 which is almost equal to the standard error for θ0=0.16. The z values

for both θ0 and θ1 indicate that the values of θ0 and θ1 are significantly different from

zero.

8.4.2 Sensitivity analysis: Three timepoints example

In this section we use the same three timepoints data as used in Chapter 7. This data

(schizophrenia) is from a clinical trial with three treatment groups and three measure-

ment times. As mentioned before in Chapter 7, the trial compared three treatments: A

standard therapy (Treatment 1), a placebo (Treatment 2), and an experimental therapy

(Treatment 3). The response is PANSS (positive and negative symptom score, a measure

of mental health, with high values being bad). Values ranged from 30 to 210. Typically

we expect a schizophrenia patient in this clinical trial to have score around 90. Of the

518 patients, 249 dropped out and the missingness percentages are around 24% and 48%

at the second and third times respectively. We assume that the dropout depends on the

response Y (PANSS) but not treatment groups. The missingness according to the groups

shows that treatment group 2 has the highest dropout percentage while treatment groups

1 and 3 have lower dropout percentages.

The MAR dropout model is (1.6) as defined in the Introduction.
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Figure 8.6: The 95% CI for θ0 and θ1 between time 1 and 2: Three timepoints example. Lines as
Figure 8.5.
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Figure 8.6 shows the 95% CI for the estimates of θ0 and θ1 between time 1 and 2 and

Figure 8.7 is for CI of estimates between time 2 and 3. We take a grid of assumed θ2 from

-0.05 to +0.05, since the estimate under MAR is θ1=-0.01 for dropout between time 1 and

2, and -0.03 for dropout between time 2 and 3. The horizontal line is the estimate under

MAR. The red lines are the least false values (estimates and the 95% CI) and the blue

lines are the local misspecification estimates.
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Figure 8.7: The 95% CI for θ0 and θ1 between time 2 and 3: Three timepoints example. Lines as
Figure 8.5.
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Table 8.5: Summary of MAR logistic regression coefficients: Three timepoints example, data
between time 1 and 2

Coefficient Estimate s.e z value

θ0 2.37 0.53 4.48
θ1 -0.01 0.01 -2.33

In Table 8.5, the results obtained match Figure 8.6. The standard error (s.e) for θ0 =0.53

which is greater than the standard error for θ1=0.01, which is clearly seen in the figure as

θ0 has wider CI than θ1. The z values for both θ0 and θ1 indicate that the values of θ0

and θ1 are significantly different from zero.

Table 8.6: Summary of MAR logistic regression coefficients: Three timepoints example, data
between time 2 and 3

Coefficient Estimate s.e z value

θ0 3.51 0.48 7.38
θ1 -0.03 0.01 -6.12

From Table 8.5 the value of θ̂0 between time 1 and time 2 under MAR is 2.4, while θ̂1=-

0.01. The dropout probability estimates under MAR between time 2 and 3, as shown in

Table 8.6, are θ̂0=3.5, θ̂1=-0.03. The results obtained from Table 8.6 match Figure 8.7.

The standard error (s.e) for θ1 is 0.01 which is less than the standard error for θ0=0.48,

that is clear in the figure as θ0 has wider CI than θ1. The z values for both θ0 and θ1

indicate that the values of θ0 and θ1 are significantly different from zero.

8.5 Local Misspecification by IPW Method

The aim in this section is to estimate the parameters of the estimating equation (GEE)

i.e. β’s by using the IPW method which depends on the results obtained in the first part

of this chapter. We use Copas and Eguchi method again to get the local misspecification

estimates. Similar to the approach used in Chapter 7, again in this chapter we compare

the estimates based on local misspecification with the simulation estimates. We will not

use the least false values derived through the IPW method which we calculated in Chap-

ter 4 because there is no closed form for β∗3 and β∗4 under MNAR but instead they are

obtained by numerical calculations, as mentioned in Chapter 4. We know from Chapter

2 that the IPW works under missing at random (MAR) so we will consider the working

model is MAR while the truth is MNAR.
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8.5.1 Simulation study

We use our familiar notation. For comparison, we first compute the β3 estimates and

the β4 estimates using the local misspecification method and IPW estimation method

in simulations. We conduct four simulation examples that differed in the choice of the

parameters. Each simulation experiment was based on 20 repetitions each of size 1000.

We take the average for the estimates over these runs. Figures 8.8, 8.9, 8.10 and 8.11

show mean simulation estimates and mean local misspecification approximations for four

examples, each of which is calculated over a grid of θ2 in the range (-0.2,0.2). The blue

lines (dotted lines) are the mean estimated values of β3 and β4 under a MAR assumption

when the data are really MNAR using simulations. The red lines (solid lines) show mean

values derived from the local misspecification method.

The main objective of these figures is to reassure us that the local misspecification method

gives estimates matching those that are obtained using the IPW method. The idea is we

know that the IPW is consistent under MAR and so this estimating equation has to work.

We only use the observed subjects at time 2. The results obtained here are similar to

what we found in the equivalent figures in Chapter 7. There are some differences in the

estimates but they both have the same magnitude. For example, in comparing Figure 8.8

here with Figure 7.1 in Chapter 7, where we used the same parameter set used here, it

is clear that the estimates of β3 increase as the assumed value of θ2 increases. Also, in

Figure 7.1 in Chapter 7 and Figure 8.8 here in this chapter, the β4 estimate decreases as

θ2 increases. And again, the two lines cross at θ2=0, which means MAR data. Generally

the local misspecification method matches the estimated IPW values, though there are

some differences for the most extreme θ2.
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Figure 8.8: Parameters β = (−2,−2,−1,−1), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.5. This
gives dropout rate ≈ 40%. The blue lines are the average estimates over 20 simulations using IPW
estimation. The red lines are the local misspecification estimates. The horizontal lines are at the
true values.
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Figure 8.9: Parameters β = (−1,−1, 1, 2), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 2, ρ = 0.5. This gives
dropout rate ≈ 50%. Lines as in Figure 8.8
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Figure 8.10: The parameter set used here is β = (−2,−2,−1,−1), θ = (−1, 0.5), σ2
1 = 2, σ2

2 = 1,
ρ = 0. This gives dropout rate ≈ 83%. Lines as in Figure 8.8
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Figure 8.11: We use β = (−2, 0,−2, 0), θ = (−0.5,−0.5), σ2
1 = 1, σ2

2 = 1, ρ = 0.75, and this set
leads to dropout rate ≈ 48%. Lines as in Figure 8.8
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8.5.2 The CI coverage for the estimated β3 and β4

Here we calculate the 95% CI coverage for the local misspecification estimates obtained

using the IPW method, which are denoted by β∗∗3 and β∗∗4 . We present three different

examples, we use assumed θ2=0 in Table 8.7, assumed θ2=-0.05 in Table 8.8 and assumed

θ2=+0.05 in Table 8.9. Each simulation experiment was based on 1000 repetitions at

sample size 1000. Table 8.7 reports the coverage probability of nominal 95% confidence

Table 8.7: The CI coverage at assumed θ2=0 in %.

θT2 θA2 β∗∗3 β∗∗4

-0.10 0.00 90.50 90.70
-0.09 0.00 90.10 94.10
-0.08 0.00 91.90 91.20
-0.07 0.00 93.40 94.10
-0.06 0.00 93.60 94.10
-0.05 0.00 94.10 92.50
-0.04 0.00 94.80 94.70
-0.03 0.00 94.30 93.00
-0.02 0.00 94.30 93.90
-0.01 0.00 94.70 94.10
0.00 0.00 95.90 94.40
0.01 0.00 96.70 94.70
0.02 0.00 95.60 94.60
0.03 0.00 94.90 94.50
0.04 0.00 95.10 94.20
0.05 0.00 94.00 94.10
0.06 0.00 92.00 94.60
0.07 0.00 94.20 92.80
0.08 0.00 93.80 94.40
0.09 0.00 93.90 94.70
0.10 0.00 93.30 94.40

intervals, for the estimates of β∗∗3 and β∗∗4 when assuming MAR. Since the estimators of

β3 and β4 at true θ2=0 were unbiased, thus the coverage probabilities are very close to

the nominal level of 95%. Otherwise, there is slight undercoverage for the CIs of β3 and

β4 when the true θ2 differs from zero.
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Table 8.8: The CI coverage at assumed θ2=-0.05 in %.

θT2 θA2 β∗∗3 β∗∗4

-0.10 -0.05 95.00 92.90
-0.09 -0.05 96.00 94.40
-0.08 -0.05 95.20 93.60
-0.07 -0.05 93.50 92.80
-0.06 -0.05 94.00 93.20
-0.05 -0.05 94.80 93.30
-0.04 -0.05 94.20 93.40
-0.03 -0.05 93.10 95.10
-0.02 -0.05 90.60 92.80
-0.01 -0.05 92.20 93.00
0.00 -0.05 91.50 93.60
0.01 -0.05 91.30 92.40
0.02 -0.05 87.90 92.20
0.03 -0.05 91.10 93.50
0.04 -0.05 87.20 94.20
0.05 -0.05 86.70 92.50
0.06 -0.05 84.90 93.60
0.07 -0.05 81.80 91.80
0.08 -0.05 83.50 93.20
0.09 -0.05 79.50 91.40
0.10 -0.05 80.80 92.00

Table 8.8 shows that unless true θ2=-0.05 the estimators β∗∗3 and β∗∗4 are biased, and this

bias leads to undercoverage. For example, at true θ2=0.10, the coverage of β∗∗3 decreased

roughly by 14%. Also, note that β∗∗3 has a decreasing coverage as true θ2 increases, while

in Table 8.9, β3 has the opposite pattern, i.e. the coverage increases as true θ2 increases.

In conclusion, if true θ2 and assumed θ2 are the same (so we assumed right) then we expect

95% coverage. If assumed θ2 is a long way from true θ2 then coverage is expected to be

poor. However, β3 seems to be more affected than β4.
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Table 8.9: The CI coverage at assumed θ2=0.05 in %.

θT2 θA2 β∗∗3 β∗∗4

-0.10 0.05 77.40 89.60
-0.09 0.05 78.70 91.40
-0.08 0.05 82.60 90.60
-0.07 0.05 81.30 90.70
-0.06 0.05 83.30 91.00
-0.05 0.05 86.70 92.40
-0.04 0.05 87.10 92.70
-0.03 0.05 88.10 93.80
-0.02 0.05 88.80 91.80
-0.01 0.05 90.50 93.30
0.00 0.05 91.10 93.40
0.01 0.05 93.30 93.90
0.02 0.05 92.90 92.90
0.03 0.05 93.10 95.50
0.04 0.05 94.00 94.30
0.05 0.05 94.70 94.00
0.06 0.05 95.30 94.30
0.07 0.05 95.80 94.20
0.08 0.05 95.00 94.30
0.09 0.05 95.80 93.10
0.10 0.05 96.50 94.40
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8.5.3 Sensitivity analysis using simulated data

In this section we perform a sensitivity analysis to examine how our inferences concerning

the regression parameters β change as θ2 varies over a range of (-0.1,+0.1). In Figure

8.12, MAR is correct and the unadjusted confidence intervals (red lines) include the true

parameter values (-1 and -1), as in this case so do the adjusted ones (blue lines). It is

clear that the CIs for β4 are wider and this is consistent with our finding in the earlier

tables where the CI coverages for β4 were greater than the β3 CI coverage. In Figure 8.13

we have fitted MAR to data that are really MNAR. The best estimates, as expected, are

at the true θ2. Of course we would not know that in practice, as mentioned in Chapter 7.

This figure is equivalent to Figure 7.8 in Chapter 7.

Figure 8.12: The 95% CI of β3 and β4 under MAR. We use β3=-1, β4=-1, θ0 = −0.5, θ1 = −0.5
and θ2 = 0. The red lines are the unadjusted confidence intervals, and the adjusted ones are the
blue lines.
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Figure 8.13: The 95% CI of β3 and β4. We use β3=-1, β4=-1, θ0 = −0.5, θ1 = −0.5 and θ2 = 0.1
so MNAR assumption is valid here. Lines as in Figure 8.12.
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8.6 Application

8.6.1 Sensitivity of the IPW: Two timepoints example

Figure 8.14: The 95% CI of β3 and β4 under MAR: Two timepoints example

−0.4 −0.2 0.0 0.2 0.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

θ2

M
ea

n 
gr

ou
p 

0

−0.4 −0.2 0.0 0.2 0.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

θ2

M
ea

n 
gr

ou
p 

1

−0.4 −0.2 0.0 0.2 0.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

θ2

Tr
ea

tm
en

t e
ffe

ct

In this section we use the two timepoints data as introduced previously in this chapter in

Section 8.4.1. Similar to Chapter 7 work, the first plot shows confidence intervals for the

group 0 mean (Treatment A group), as the assumed value of θ2 changes. The horizontal

line is the estimate under MAR. The second plot is the same for the Treatment B group

(group 1). The third plot is the difference, which is the treatment effect. The upper

horizontal line is at zero. This time there seems to be a lot of sensitivity to θ2, which can

lead to significantly positive or significantly negative treatment effect estimates. We can

conclude from these results that the IPW method is much more sensitive than maximum

likelihood to misspecification.
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Sensitivity of the IPW method: Three timepoints example

In this section we use the three timepoints data (schizophrenia) used in Section 8.4.2. In

group 1 (Treatment 1) there were 85 patients, but only 41 patients provided a response at

time 3 and the other 44 patients dropped out which is equivalent to 51.8% missing rate.

There were 88 patients in group 2 receiving Treatment 2, but only 29 patients provided

a response at time 3 and the other 59 patients dropped out which is equivalent to 67%

missing. Of 345 patients receiving Treatment 3 (group 3), only 199 provided a response

at time 3 and the other 146 dropped out which is equivalent to 42% missing. Hence the

highest dropout rate is in treatment group 2 and the lowest in group 3. We summarise

the dropout percentages for each treatment group in Table 8.10.

The top-left plot in Figure 8.15 provides a 95% CI for the differences in means for group

1 and 3 at time 2 (β6 - β4). The down-left is for (β6 - β5), the top-right is for (β9 - β7)

and finally the down-right is for (β9 - β8).

Table 8.10: Summary of dropout percentages for treatment groups

Group 1 Group 2 Group3

Time 2 24% 36% 20%
Time 3 52% 67% 42%

Figure 8.15 looks quite different to the equivalent plot produced for the LME in Chapter

7. There is a much greater effect of θ2 in Figure 8.15 than in Figure 7.11. In Figure 8.15,

θ2 goes from +/- 0.004, but in Figure 7.11 it is +/- 0.04. The reason is as mentioned

before that the IPW method is much more sensitive than LME method. However, similar

to the LME plot, Figure 8.15 indicates that the differences in means of treatment groups

taken in pairs have wider 95% CIs at time 3 than the CIs at time 2. As mentioned in

Chapter 7, the results are slightly different from Chapter 2 (Table 2.19) because we do

not estimate at time 1.
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Figure 8.15: The 95% CI for the differences in means for groups in the schizophrenia data between
time 1 and 2 and between time 2 and 3.
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8.7 Conclusion

In this chapter we investigated the effect of local misspecification on dropout probability

and IPW estimates. We started with the estimate of the dropout probability (first part)

and then we used these estimates to calculate the IPW estimates of regression effects

(second part). The main objective is to show that the Copas and Eguchi method to

estimate the misspecification is working for the IPW method. We showed how the IPW

method is more sensitive to the misspecification by comparing the results obtained here

with the previous chapter for the LME method.
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Chapter 9

Conclusion and Further Work

9.1 Summary of the Thesis

This last chapter summarizes what is discussed in this thesis about the dropout modeling

investigation. Some methods used to handle longitudinal data with dropout were pre-

sented. We used the dropout models introduced by Little and Rubin [2002]. The dropout

models can be one of the following types: Missing Completely at Random (MCAR), Miss-

ing at Random (MAR), Missing Not at Random (MNAR) and Shared Parameter (SP).

The following six general strategies were considered for handling missing data : 1) Com-

plete Case analysis (CC), 2) Observed data analysis (Obs), 3) Inverse Probability Weighted

Estimating Equations with Missing at Random Assumption (IPW), 4) Linear Mixed Ef-

fect models (LME), 5) Linear Increment models (LI) and 6) Last Observation Carried

Forward (LOCF). In Chapter 2, we estimated the parameters of the longitudinal model

under MCAR, MAR, MNAR and SP for both simulated data and real data assuming that

there are only either two or three scheduled measurements times, for simplicity. We found

that all methods work under the MCAR model as expected. Also, the LI method gave

consistent estimates under the SP model. The IPW and LME gave consistent estimates

under MAR, while no method worked under MNAR.

Then, by deriving the so called least false values, we investigated the consequences of mis-

specifying the missingness mechanism. We described this method in detail for the Linear

Increment method (LI) in Chapter 3. Then, in Chapter 4, we applied the same procedure

to investigate the IPW method. In Chapters 5 and 6 we investigated the CC and LME

methods respectively. In all cases we looked at SP, MAR and MNAR droput. In order

to calculate the least false values, we adopted the procedures used by Ho et al. [2012] to

our setting. We gave closed form expressions to calculate the least false values β∗3 and β∗4
for LI, CC and LME methods. For IPW we could provide a closed form for β∗3 under SP,

MAR and MNAR while for β∗4 we failed to find closed form under MNAR and we used a

numerical calculation instead.
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The knowledge of the least false values allowed us to conduct sensitivity analysis which

was illustrated in Chapters 7 and 8. Using a likelihood approach, Copas and Eguchi [2005]

gave a formula to estimate the bias under the misspecification. The LME is a likelihood

based method, and this idea also was adapted for the IPW estimating equation approach.

We compared the results found by using Copas and Eguchi method with the results ob-

tained by our method. We concluded that the IPW method is much more sensitive to

misspecification than the LME method. Also, we applied the Copas and Eguchi method

and our method to estimate the bias for the real data examples.

9.2 Further Work

In this section we consider some limitations of our work and indicate how it might be

extended.

9.2.1 Generalization to more than one continuous covariate

Throughout this thesis we assumed the model to have one covariate but we can also

generalise this to have more than one covariate. First, it is straightforward to show that

the methods that work for one covariate still work for any number. In particular linear

increments under shared parameter dropout, and IPW and LME under MAR all give

consistent estimates however many covariates there are. To illustrate other situations we

consider linear increments under MAR dropout but now with two independent standard

normal distributed covariates x1 and x2.

As before we will let Di = Y2i − Y1i. We assume the correct model for responses, i.e.:

E[Y1i] = β1 + β2xi1 + β3xi2 and E[Y2i] = β4 + β5xi1 + β6xi2.

So for fully observed data

E[Di] = (β4 − β1) + (β5 − β2)xi1 + (β6 − β3)xi2 = γ1 + γ2xi1 + γ3xi2 say.

The parameter estimates are available in closed form.

γ̂3 =

(∑
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γ̂1 =
RD

R
− γ̂2

Rx1

R
− γ̂3

Rx2

R
.

The superscript (M) is used to indicate that the data are mean corrected, based on the

means for the relevant observed data.

As sample size increases these converge to

γ∗3 =
E[RD(M)x

(M)
2 ]E[R(x

(M)
1 )2]− E[RD(M)x

(M)
1 ]E[Rx

(M)
1 x

(M)
2 ]

E[R(x
(M)
1 )2]E[R(x

(M)
2 )2]−

(
E[Rx

(M)
1 x

(M)
2 ]

)2 (9.1)

γ∗2 =
E[RD(M)x

(M)
1 ]E[R(x

(M)
2 )2]− E[RD(M)x

(M)
2 ]E[Rx

(M)
1 x

(M)
2 ]

E[R(x
(M)
1 )2]ER(x

(M)
2 )2]−

(
E[Rx

(M)
1 x

(M)
2 ]

)2 (9.2)

γ∗1 =
E[RD]

E[R]
− γ∗2

E[Rx1]

E[R]
− γ∗3

E[Rx2]

E[R]
. (9.3)

The same ideas of Chapter 3 can be used to obtain these. For example consider E[R].

Following the approach presented in Chapter 3, as we know E[R] = E[E[R|x1, x2]], thus

we have to calculate E[R|x1, x2] first, then we can find E[R]. Note that under MAR, R

does not depend on ε2 as it depends only on x1, x2, U and ε1. Also, we assume that x1 is

independent of x2. We have

E[R|x1, x2] =

∫
P (R = 1|x1, x2, ε1, U)f(ε1, U) dε1 dU

=

∫
expit{θ0 + θ1Y1}f(ε1, U) dε1 dU

=

∫
expit{θ0 + θ1(β1 + β2x1 + β3x2) + θ1(U + ε1)}f(ε1, U) dε1 dU

=

∫
expit{K1 + θ1w1}f(w1) dw1, say,

where

w1 = ε1 + U (9.4)

K1 = θ0 + θ1(β1 + β2x1 + β3x2). (9.5)

We now use an approximation of the expit to the cumulative normal. Therefore:

E[R|x1, x2] ≈
∫
Φ{c(K1 + θ1w1)}f(w1) dw1.

Note that w1 is normally distributed with mean 0 and variance σ2
w1

, i.e w1 ∼ N(0, σ2
w1

),

where σ2
w1

= σ2
ε1 + σ2

U , which allows us to replace f(w1) with φ(w1; 0, σ2
w1

) and

E[R|x1, x2] ≈
∫ ∞
−∞

Φ{c(K1 + θ1w1)}φ(w1; 0, σ2
w1

) dw1.
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Thus,

E[R|x1, x2] ≈ Φ

 cK1√
1 + c2θ2

1σ
2
w1


= Φ

c(θ0 + θ1(β1 + β2x1 + β3x2))√
1 + c2θ2

1σ
2
w1


= Φ(A1 +A2x1 +A3x2) (9.6)

where we have used equation (9.5) to replace K1 and we have defined A1 = c(θ0+θ1β1)√
1+c2θ21σ

2
w1

,

A2 = c(θ1β2)√
1+c2θ21σ

2
w1

and A3 = c(θ1β3)√
1+c2θ21σ

2
w1

.

Now we can find E[R] by integrating the above expectation in (9.6) over x1 then x2.

Assume that x1 ∼ N(0, σ2
x1) independent of x2 ∼ N(0, σ2

x2) so

E[R] = Ex1,x2 [E[R|x1, x2]]

≈
∫ ∫

Φ(A1 +A2x1 +A3x2)φ(x1; 0, σ2
x1)φ(x2; 0, σ2

x2)dx1dx2

=

∫
Φ

[
A1 +A2x1√
1 + (A3σx2)2

]
φ(x1; 0, σ2

x1)dx1

=

∫
Φ[A4 +A5x1]φ(x1; 0, σ2

x1)dx1

= Φ

[
A4√

1 + (A3σx2)2
√

1 + (A5σx1)2

]
. (9.7)

where A4 = A1/
√

1 + (A3σx2)2 and A5 = A2/
√

1 + (A3σx2)2.

The same ideas can be used to obtain the other expressions and hence the least false

values. This extends in principle to any number of N(0, 1) covariates, though of course

the computations become very tedious.

9.2.2 Generalization to categorical covariate

Most of the theory was based on N(0, 1) covariates but in the real data there was a binary

treatment indicator. In Chapters 2, 7 and 8 we used the two timepoints real data example.

There are 422 subjects, assigned to either Treatment A or B. Treatment A is associated

with treatment effect x=1 and treatment B is when x=0. Then, at time 2, the mean of

the group receiving Treatment B is β3 and the mean of the group receiving Treatment A

is β3+β4.

Thus, to calculate the least false value for categorical data, we estimated θ from the

combined data. Because x is binary we can do one group at a time. We set the coefficients
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of x to zero, and it will not matter what σx is. Simply we assumed β2 and β4 are zero. We

estimated β1 and β3 from the means of the data, one group at a time and with different

values (but common θ) for the different groups. The same idea will generalise beyond

binary covariates to more general categorical ones: Simply consider one group at a time,

as in the previous section. However, the work will become increasingly tedious as the

number of categories increase or the number of covariates increases.

9.2.3 Generalization to multiple timepoints

The least false calculations can be expanded to include more than two timepoints. In

Chapters 3, 4, 5, and 6 we found the least false values for the two timepoints example.

Then in Chapters 7 and 8 we applied the approach used for two timepoints data in the case

of three timepoints data by breaking down the three timepoints data to get two data sets

at each timepoint. We used treatment 3 as the baseline because it is the largest group.

We split this data into four separate data sets, by comparing treatment group 1 with

treatment group 3 at time 2 and did the same at time 3. Then we compared treatment

group 2 with group 3 at time 2 and again at time 3. Thus one can calculate the least false

values for a data set with more than two timepoints using a similar approach of taking

the data as subgroups.

This strategy might have some complications, however, if we will apply it for multiple

timepoints as more than three timepoints. For studies with long follow up periods, the

proportion of individuals with missing data can be substantial and clearly the proportion

dropped out increases with time. That is in the case of multiple timepoints the sample

size decreases from one timepoint to the next one and at the final timepoint we might

have a very large dropout rate or in other words few observations remaining in the data

set. This loss of information certainty will impact the estimation efficiency. For exam-

ple, suppose there are 10 measurements, with 10% of missing data on each measurement.

Suppose, further, that missingness on the different measurements is independent. Then,

the estimated percentage of incomplete observations is as high as 60% and we would not

recommend analysis of data with such a high missing rate.

We tried to use the existing routines in the R code to manage more than three timepoint

data. The code can be used as it is to estimate any data set using either the Obs data

analysis or the LME methods. For CC, LI and LOCF method the R code can be easily

adapted to estimate the parameters of four timepoints and then to five timepoints and so

on. Each data set needs separate R code to estimate its parameters using these methods.

However, for the IPW method the R code used to estimate the data is complicated and

depends on many sub-functions each designed either for two timepoints or three time-

points. These functions can be easily changed to give the estimate for more than three

timepoints. Many other works simulate data for more than three timepoints and find the
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estimates under the IPW method, see for example Rotnitzky et al. [1998].

9.3 Recommendations

9.3.1 Choice of the method

We also can give a recommendation for the method to be chosen in an analysis by compar-

ing these methods in their estimation efficiency. We can conclude that the LOCF is not

recommended because it does not give a consistent estimate under any dropout model.

Although the CC and Obs analysis methods are easy to apply, they suffer from loss of in-

formation and bias issues which make them again not recommended, except in the case of

MCAR, where CC and Obs give consistent estimate but with quite large standard errors.

The LI works under SP and MCAR. The IPW and LME work under MAR and MCAR. If

the dropout model is MAR, we would recommend LME because the IPW is more sensitive

to the dropout and gives large standard errors as we have seen in Chapters 2 and 8. In

conclusion, since the MAR dropout model is more common than the others then the LME

method can be the most recommended method for the analysis of longitudinal data with

dropout.

9.3.2 The variance

Furthermore, in Chapter 3 we investigated the effect of the variance σ2
U on the limiting

values γ∗1 and γ∗2 using simulated data. We found that changing the variance parameters

and keeping the dropout percentage at about 50% has a remarkable effect on the bias. As

σU (and consequentially σε1 and σε2) increases, the limiting values γ∗1 and γ∗2 go further

from the true value (γG1 = 1, γG2 = 1) and hence the absolute bias increases, which means

that the large error variances imply poor results. Similarly, in Chapter 4, we studied the

effect of the variance σ2
U on the limiting values β∗3 and β∗4 . As for Chapter 3, changing

the variance parameters and keeping the same dropout percentage at about 50% has a

remarkable effect on the bias. It was clear that as σu (and consequentially σε1 and σε2)

increases, the limiting values β∗3 and β∗4 go further from the true value (βG3 = −1, βG4 = −1)

and hence the bias increases, which means that the large error variances imply poor results.

In short we can conclude that the more variability, the more bias. This is an area for further

work.

9.3.3 Discussing the dropout rate

The dropout rate increases from the current measurement to the upcoming timepoint,

because we assume monotone dropout. That is at the baseline we have full data and then

at next timepoint some observations are lost and the missingness percentage will increase
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among the following timepoints. For example at the baseline we have 100% of the obser-

vations then at time two we have only 90% which means the dropout rate is 10% at time

one, again at time three say 10% of the current observations are missing thus the total

dropout is 19% and so on.

We simulated the data under the final dropout rate at 25% and at 50% and we found that

the bias is worse when the dropout rate increases so we choose the dropout rate 40% or

50% to make the bias clearer. However at a lower bias rate such as 15% or 10% some of

these methods might not show much bias though they do show bias when the dropout rate

increases. Some of the methods are more affected by the dropout rate. For example, the

LI method is least affected by the dropout rate increasing while the CC and Obs methods

are more affected by increasing of the dropout rate. The dropout rate has a moderate

effect on IPW and LME. The bias under MNAR and SP models is higher and clear even

at the low dropout rate of 25%. Overall our recommendations is not to attempt to analyse

data with more than 50% missingness.

All methods rely on untestable assumptions and at high dropout rates the influence of

theses assumptions becomes progressively more pronounced.

9.3.4 Choice of the dropout model

Finally, we can recommend the dropout models MAR and SP models as they are well

known. Sensitivity analysis is also recommended as we showed in Chapter 7 and 8.

To sum this chapter up, we discussed some natural extensions to the work presented in

this thesis and we gave recommendations for the different choices available for the methods

and the dropout model.
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Appendix A

A.1 The Extended Skew-Normal Distribution (ESN)

The ESN distribution is described in Johnson et al. [1995]. We will consider the definition

and notations of the extended skew-normal distribution that was given in Ho et al. [2012].

A random variable w has an extended skew-normal distribution, ESN(0, σ2
w, α, ν), if it

has density:

f(w) =
φ(w; 0, σ2

w)Φ(αw + ν)

Φ
(
ν/
√

1 + α2σ2
w

) (A.1)

where φ(.; 0, Σ) is the normal density with mean 0 and dispersion Σ and Φ(.) denotes the

distribution function of a standard normal. Note that f(w) is a density function, then the

integration of f(w) over w equals 1 which implies:∫
w
φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
. (A.2)

The moment generating function (MGF) is:

M(t) = E[et w] =

e
1
2
σ2
w t

2
Φ

[
ασ2

w t+ν√
1+α2σ2

w

]
Φ
[
ν/
√

1 + α2σ2
w

] . (A.3)

Hence, the expectation of w is:

E[w] = M
′
(t)t=0 =

ασ2
w√

1 + α2σ2
w

φ(ν̄)

Φ(ν̄)
, (A.4)

where ν̄ = ν(1 + α2σ2
w)−

1
2 .

The second moment is:

E[w2] = M
′′
(t)t=0 =

σ2
w Φ(ν̄)− ν̄( ασ2

w√
1+α2σ2

w

)2φ(ν̄)

Φ(ν̄)
. (A.5)
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We are interested in integrals that can be written in terms of ESN. In particular,∫
φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
= Φ(ν̄) (A.6)

∫
wφ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
E[w] = Φ(ν̄)E[w]

= Φ(ν̄)
ασ2

w√
1 + α2σ2

w

φ(ν̄)

Φ(ν̄)

=
ασ2

w φ(ν̄)√
1 + α2σ2

w

, (A.7)

and ∫
w2 φ(w; 0, σ2

w)Φ(αw + ν) dw = Φ
(
ν/
√

1 + α2σ2
w

)
E[w2]

= Φ(ν̄)E[w2]

= Φ(ν̄)
σ2
w Φ(ν̄)− ν̄( ασ2

w√
1+α2σ2

w

)2φ(ν̄)

Φ(ν̄)

= σ2
w Φ(ν̄)− ν̄(

ασ2
w√

1 + α2σ2
w

)2φ(ν̄). (A.8)

Also we want to find ∫
w etw Φ[ν + αw]φ(w) dw. (A.9)

We know the MGF of w is:

E[etw] =

∫
etw Φ[ν + αw]φ(w)dw (A.10)

= KΦ

[
ασ2

wt+ ν√
1 + α2σ2

w

]
e

1
2
σ2
wt

2
, say. (A.11)

We differentiate it with respect to t, thus equation (A.10) will be

∂

∂t
E[etw]

=
∂

∂t

∫
etw Φ[ν + αw]φ(w) dw

=

∫
∂

∂t
etw Φ[ν + αw]φ(w) dw
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=

∫
wetw Φ[ν + αw]φ(w) dw,

and this is exactly what we need in equation (A.9). Hence from equation (A.11)

∫
w etw Φ[ν + αw]φ(w) dw =

∂

∂t
KΦ

[
ασ2

wt+ ν√
1 + α2σ2

w

]
e

1
2
σ2
wt

2

= K σ2
w t e

1
2
σ2
wt

2
Φ

[
ασ2

wt+ ν√
1 + α2σ2

w

]

+ K e
1
2
σ2
wt

2 ασ2
w√

1 + α2σ2
w

φ

(
ασ2

wt+ ν√
1 + α2σ2

w

)
. (A.12)

where K = 1/Φ[ν̄].

A.2 Calculating Integral of the Form
∫
xφ(ax+ b)φ(x) dx

To calculate an integration containing two normal densities we use the following:

∫
xφ(ax+ b)φ(x) dx =

∫
x

2π
e−

1
2

(ax+b)2 e−
1
2
x2 dx

=

∫
x

2π
e−

1
2

(ax+b)2+x2 dx.

Let (ax+ b)2 + x2 = (a2 + 1)x2 + 2abx+ b2 = (a2 + 1)(x− c)2 + d, where c = − ab
a2+1

and

d = b2

a2+1
. Then,∫

xφ(ax+ b)φ(x) dx =

∫
x

2π
e−

1
2

((a2+1)(x−c)2+d) dx

=
e−

1
2
d

√
2π
√
a2 + 1

∫
x
√
a2 + 1√
2π

e−
1
2

(a2+1)(x−c)2 dx

=
e−

1
2
d

√
2π
√
a2 + 1

∫
xφ(x;µ, σ2

x) dx

=
e−

1
2
d

√
2π
√
a2 + 1

µ

where µ = c, σ2
x = 1

a2+1
.
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A.3 How to Choose θ for Different Dropout Models to Keep

the Dropout Rate at about 50%.

The SP model is: expit(θsp0 + θsp1 U). First we choose (θsp0 , θ
sp
1 ) for shared parameter that

make the dropout percentage always at about 50%. Note that these θs do not depend on β.

We know that under SP model,

E[R] =

∫
P (R = 1|U)f(U) dU

≈ Φ

[
cθsp0√

1 + (cθsp1 σU )2

]
.

As we want to keep the amount of dropout at 50%, thus we should have E[R] = 0.5. This

implies Φ

[
cθsp0√

1+(cθsp1 σU )2

]
= 0.5, but Φ[.] is the cumulative standard normal, then we have

to set

[
cθsp0√

1+(cθsp1 σU )2

]
to zero. To make a fraction equals 0 either the numerator equals 0

or the denominator is large enough comparing to the numerator. We will choose that the

numerator equals 0, hence θsp0 = 0, and we can choose any value for θ1.

Then under MAR model:

expit (θM0 + θM1 Y1)=expit (θM0 + θM1 (β1 + β2x+ U + ε1)). Taking only the θ parts

θM0 + θM1 (β1 + β2x+ U + ε1).At x = 0, we can set θsp0 = θM0 + θM1 β1,

and var (θM1 (U + ε1)) = var (θsp1 U). If σ2
U = σ2

ε1 , then θM1 =
θsp1√

2

and θM0 = θsp0 − θM1 β1 = θsp0 − β1
θsp1√

2
.

Similarly for MNAR, the model is:

expit (θN0 + θN1 Y2)=expit (θN0 + θN1 (β3 + β4x+ U + ε2)). Taking only the θ parts:

θN0 + θ
MN |
1 (β3 + β4x+ U + ε2).At x = 0, set θsp0 = θN0 + θN1 β3,

and var (θN1 (U + ε2)) = var(θsp1 U). If σ2
U = σ2

ε2 , then θN1 =
θsp1√

2

thus θN0 = θsp0 − θN1 β3 = θsp0 − β3
θsp1√

2
.

Different combinations of θ under different dropout models are shown in Table A.1.

Table A.1: Different combinations of θ

SP
(θ0, θ1)

MAR
(θ0, θ1)

MNAR,
θ1 = 0
(θ0, θ2)

(0,
√

0.5) (1,0.5) (0.5,0.5)

(0,−
√

0.5) (-1,-0.5) (-0.5,-0.5)

(0,
√

2) (2,1) (1,1)

(0,−
√

2) (-2,-1) (-1,-1)
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A.4 Calculating β∗3 and β∗4 under SP for the IPW Method

Here we will calculate the following expectation in order to find β∗3 and β∗4 as it is defined

in the following: (
β∗3
β∗4

)
=

(
E[Rπ ] E[Rxπ ]

E[Rxπ ] E[Rx
2

π ]

)−1(
E[RY2π ]

E[RY2xπ ].

)
. (A.13)

We will use θ∗0 and θ∗1 in calculating the aforementioned expectations in the above equation.

Thus we need to calculate E[R/π], E[Rx/π], E[Rx2/π], E[RY2/π] and E[RY2x/π].

We start with,

E[
R

π
] = E[R

{1 + e{θ
∗
0+θ∗1Y1}}

e{θ
∗
0+θ∗1Y1}

]

= E[Re−{θ
∗
0+θ∗1Y1}] + E[R]. (A.14)

We have found E[R] in equation (4.16). Thus now we only have to calculate the first part:

E[Re−{θ
∗
0+θ∗1Y1}] = E[expit{θ0 + θ1U}e−{θ

∗
0+θ∗1Y1}]

≈ E[e−θ
∗
0−θ∗1Y1Φ[c(θ0 + θ1U)]]

= E[e−θ
∗
0−θ∗1(β1+β2x+U+ε1)Φ[c(θ0 + θ1U)]].

For simplicity we fix x and take the expectation with respect to U and ε1. Rewrite the

above expectation as

E[Re−{θ
∗
0+θ∗1Y1}|x] ≈ a1E[ea1U+a2ε1Φ[a3 + a4U ]], (A.15)

where a1 = e−θ
∗
0−θ∗1(β1+β2x), a2 = −θ∗1, a3 = cθ0 and a4 = cθ1. As we know, ε1 is

independent of the others, therefore we can say:

E[Re−{θ
∗
0+θ∗1Y1}|x] ≈ a1E[ea2ε1 ]E[ea1UΦ[a3 + a4U ]]. (A.16)

Since ε1 ∼ N(0, σ2
ε1), thus we can calculate E[ea2ε1 ] using the moment generating function

(MGF) of the normal distribution, as

E[ea2ε1 ] = e−
1
2

(a2σε1 )2 = C1, say. (A.17)

The rest of equation (A.16) is

E[ea1UΦ[a3 + a4U ]] =

∫
Φ[a3 + a4U ]ea1Uφ(U ; 0, σ2

U ) dU.

In this case, the integral is now equivalent to formula (A.3) in Appendix A in Chapter 3;

and hence this expectation equals the moment generating function of the ESN, which is
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given by

E[ea1U ] = MU (a2)

=

e
1
2
σ2
U a

2
2Φ

[
a24σ

2
U a2+a3√
1+a24σ

2
U

]
Φ
[
a3/
√

1 + a2
4σ

2
U

] (A.18)

= a5e
1
2
σ2
U a

2
2Φ

a2
4σ

2
U a2 + a3√
1 + a2

4σ
2
U

 = C2, say. (A.19)

where a5 = 1/Φ[ν̄] and ν̄ = a3(1 + a2
4σ

2
U )−

1
2 We will apply the result of equation (A.19)

and equation (A.17) to equation (A.16):

E[Re−{θ
∗
0+θ∗1Y1}|x] = a1C1C2. (A.20)

Then taking the integral over x

E[Re−{θ
∗
0+θ∗1Y1}] =

∫
x
a1C1C2φ(x) dx

= C1C2

∫
a1φ(x) dx

= C1C2C3

∫
ea2β2xφ(x) dx

= C1C2C3e
1
2

(a2β2σx)2 (A.21)

where C3 = e−θ
∗
0−θ∗1β1 Hence equation (A.14) will be

E[
R

π
] = C1C2C3e

1
2

(a2β2σx)2 + E[R]

≈ C1C2C3e
1
2

(a2β2σx)2 + Φ

[
a3√

1 + (a4σ2
x)2

]
. (A.22)

Note that E[R] was calculated in equation (4.16) The final result can be written as:

E[
R

π
] = J1. (A.23)

As x is independent of R under SP dropout, and it has mean of zero and variance of σ2
x,

then it is expected to get:

E[
Rx

π
] = 0 = J2, say (A.24)

E[
Rx2

π
] = σ2

xE[
R

π
] = σ2

x(J1) = J3 say. (A.25)
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In the following we will work on E[RY2/π] and E[RY2x/π].

E[
RY2

π
] = E[RY2e

−{θ∗0+θ∗1Y1}] + E[RY2].

The second term is

E[RY2|x] = E[(β3 + β4x+ U + ε2)R]

= a6E[R] + E[UR] + E[R]E[ε2]

= a6E[R] + E[UR].

We have

E[UR] = E[Uexpit{θ0 + θ1U}]

≈ E[UΦ[a3 + a4U ]]

=
a4 σ

2
U φ(ν̄)√

1 + a2
4σ

2
U

.

Also

E[RY2|x] ≈ a6Φ

[
a3√

1 + (a4σ2
x)2

]
+

a4 σ
2
U φ(ν̄)√

1 + a2
4σ

2
U

where a6 = β3 + β4x. Taking the integral over x

E[RY2] ≈

Φ[ a3√
1 + (a4σ2

x)2

]
+

a4 σ
2
U φ(ν̄)√

1 + a2
4σ

2
U

∫ a6φ(x) dx

= C4

∫
(β3 + β4x)φ(x) dx

= C4β3
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where C4 = Φ

[
a3√

1+(a4σ2
x)2

]
+

a4 σ2
U φ(ν̄)√

1+a24σ
2
U

. Next

E[RY2e
−{θ∗0+θ∗1Y1}|x] = E[(β3 + β4x+ U + ε2)Re−{θ

∗
0+θ∗1(β1+β2x+U+ε1)}]

= E[(a6 + U + ε2) expit{θ0 + θ1U}e−{θ
∗
0+θ∗1(a7+U+ε1)}]

≈ E[(a6 + U + ε2)Φ{c(θ0 + θ1U)}e−{θ∗0+θ∗1(a7+U+ε1)}]

= e−{θ
∗
0+θ∗1a6}E[(a6 + U + ε2)Φ{c(θ0 + θ1U)}e−{θ∗1(U+ε1)}]

= a1E[a6 Φ{c(θ0 + θ1U)}e−{θ∗1(U+ε1)}]

+ a1E[U Φ{c(θ0 + θ1U)}e−{θ∗1(U+ε1)}]

+ a1E[ε2 Φ{c(θ0 + θ1U)}e−{θ∗1(U+ε1)}]

= G1 +G2 +G3,

where a7 = β1 + β2x. Since ε2 is independent of the others terms, then G3=0. The final

results for G1 and G2 are:

G1 = a5a1C1C2

G2 = a1C1C5,

where C1 and C2 as defined previously in this section, and C5 is

C5 = E[U Φ{c(θ0 + θ1U)}e−{θ∗1U}]

= E[U Φ{a7 + a8U)}e−{θ∗1U}]

=

∫
U Φ{a7 + a8U)}e−{θ∗1U}φ(U ; 0, σ2

U ) dU

=
∂

∂a2
a6Φ

a4σ
2
Ua2 + a3√

1 + a2
4σ

2
U

 e 1
2
σ2
Ua

2
2

= a2a6σ
2
UΦ

a4σ
2
Ua2 + a3√

1 + a2
4σ

2
U

 e 1
2
σ2
Ua

2
2 + a6

a4σ
2
U√

1 + a2
4σ

2
U

φ

a4σ
2
Ua2 + a3√

1 + a2
4σ

2
U

 e 1
2
σ2
Ua

2
2

= a6C6

where C6 = a2σ
2
UΦ

[
a4σ2

Ua2+a3√
1+a24σ

2
U

]
e

1
2
σ2
Ua

2
2 +

a4σ2
U√

1+a24σ
2
U

φ

[
a4σ2

Ua2+a3√
1+a24σ

2
U

]
e

1
2
σ2
Ua

2
2 .

Note that we used formula (A.12) in Appendix A in Chapter 3 to calculate the above

integral.

Next

E[RY2e
−{θ∗0+θ∗1Y1}|x] = a5a1C1C2 + a1C1C5

= a5C1C2e
−θ∗0−θ∗1(β1+β2x) + (β3 + β4x)e−θ

∗
0−θ∗1(β1+β2x)C1C6.
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Then finally taking the integral over x

E[RY2e
−{θ∗0+θ∗1Y1}] =

∫
(G1 +G2)φ(x) dx

=

∫
G1φ(x) dx+

∫
G2φ(x) dx

=

∫
a5a1C1C2φ(x) dx+

∫
a1C1C5φ(x) dx

= a5C1C2

∫
e−θ

∗
0−θ∗1(β1+β2x)φ(x) dx+ C1C6

∫
(β3 + β4x)e−θ

∗
0−θ∗1(β1+β2x)φ(x) dx

= a5C1C2C3e
1
2

(a2β2σx)2 + C1C6β3C3e
1
2

(a2β2σx)2 + C1C6β4C3

∫
xea2β2xφ(x) dx

= C7 + C1C6β4C3

∫
xea2β2xφ(x) dx

= C7 + C1C6β4C3σ
2
xa2β2e

a2β2x

where C7 = a5C1C2C3e
1
2

(a2β2σx)2 +C1C6β3C3e
1
2

(a2β2σx)2 . We will simply say E[RY2/π] =

J4.

Similarly,

E[
RxY2

π
] = E[RxY2e

−{θ∗0+θ∗1Y1}] + E[RxY2]

= G4 +G5, say.

The final results are

G4 = C1C3σ
2
xe

1
2

(a2β2σx)2
(
a5C2a2β2 + β3C6a2β2 + β4C6 + β4C6(a2β2)2σ2

x

)
,

and

G5 = β4σ
2
xΦ

[
a3√

1 + (a4σ2
x)2

]
.

A.5 Calculating β∗3 and β∗4 under MNAR for the IPW Method

Here we attempt to calculate the following expectation in order to find β∗3 and β∗4 , defined

by (
β∗3
β∗4

)
=

(
E[Rπ ] E[Rxπ ]

E[Rxπ ] E[Rx
2

π ]

)−1(
E[RY2π ]

E[RY2xπ ]

)
. (A.26)

We will use θ∗0 and θ∗1 in calculating the aforementioned expectations in the above equation

thus we need to calculate the following:

E[R/π], E[Rx/π], E[Rx2/π], E[RY2/π] and E[RY2x/π].

We start with,
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E[
R

π
] = E[R

{1 + e{θ
∗
0+θ∗1Y1}}

e{θ
∗
0+θ∗1Y1}

]

= E[Re−{θ
∗
0+θ∗1Y1}] + E[R]. (A.27)

We have found E[R] in equation (4.40), thus now we only have to calculate the first part,

E[Re−{θ
∗
0+θ∗1Y1}] = E[expit{θ0 + θ2Y2}e−{θ

∗
0+θ∗1Y1}]

≈ E[e−θ
∗
0−θ∗1Y1Φ[c(θ0 + θ2Y2)]]

= E[e−θ
∗
0−θ∗1(β1+β2x+U+ε1)Φ[c(θ0 + θ2(β3 + β4x+ U + ε2))]].

For simplicity we fix x and take the expectation with respect to U , ε1 and ε2. Rewrite the

above expectation as

E[Re−{θ
∗
0+θ∗1Y1}|x] ≈ b1E[eb2U+b2ε1Φ[b3 + b4U + b4ε2]], (A.28)

where b1 = e−θ
∗
0−θ∗1(β1+β2x), b2 = −θ∗1, b3 = c(θ0 + θ2(β3 + β4x) and b4 = cθ2.

As we know, ε1 is independent of the others, therefore we can say:

E[Re−{θ
∗
0+θ∗1Y1}|x] ≈ b1E[eb2ε1 ]E[eb2UΦ[b3 + b4U + b4ε2]], (A.29)

Since ε1 ∼ N(0, σ2
ε1), thus we can calculate E[eb2ε1 ] using the moment generating function

(MGF) of the normal distribution, as

E[eb2ε1 ] = e−
1
2

(b2σε1 )2 = L1, say. (A.30)

The rest of equation (A.29) is

E[eb2UΦ[b3 + b4U + b4ε2]] =

∫ ∫
Φ[b3 + b4U + b4ε2]eb2Uφ(ε2; 0, σ2

ε2)φ(U ; 0, σ2
U ) dε2 dU

=

∫ (∫
Φ[b3 + b4U + b4ε2]φ(ε2; 0, σ2

ε2) dε2

)
eb2Uφ(U ; 0, σ2

U ) dU

=

∫ (
Φ

[
b3 + b4U√
1 + (b4σε2)2

])
eb2Uφ(U ; 0, σ2

U ) dU

=

∫
eb2UΦ[b5 + b6U ]φ(U ; 0, σ2

U ) dU.

where b5 = b3√
1+(b4σε2 )2

and b6 = b4√
1+(b4σε2 )2

.

In this case, the integral is now equivalent to formula (A.3) in Appendix A in Chapter 3;

and hence this expectation equals the moment generating function of the ESN, which is
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given by

E[eb2U ] = MU (b2)

=

e
1
2
σ2
U b

2
2Φ

[
b26σ

2
U b2+b5√
1+b26σ

2
U

]
Φ
[
b5/
√

1 + b26σ
2
U

] = L2, say. (A.31)

We will apply the result of equation (A.31) and equation (A.30) to equation (A.29):

E[Re−{θ
∗
0+θ∗1Y1}|x] = b1L1L2. (A.32)

Taking the integral over x:

E[Re−{θ
∗
0+θ∗1Y1}] =

∫
b1L1L2φ(x) dx

= L1

∫
b1L2φ(x) dx.

Noting that b1, b3, b5 and b6 involve x, to make progress we need to be able to evaluate

integrals of the form ∫
g1(x)

Φ[g2(x)]

Φ[g3(x)]
φ(x) dx.

these are completely intractable and hence we are unable to use our method to approximate

E[R/π]. Similar difficulties occur with the other expectations and so we need numerical

methods to evaluate the performance of the IPW method under MNAR dropout.

A.6 Attenuation of Slope under Misspecification

In Figure 3.2 we saw that the slope coefficient γ∗2 decreased towards zero under MAR

whether θ1 was positive or negative. We had similar effects for γ∗2 under MNAR in Figure

3.4 as θ2 changes and for β∗4 under MNAR in Figure 4.3. Intuitively it seems strange

that the bias can be in the same direction for any non zero value of the misspecification

parameter θ1 or θ2.

The reason can be explained in the following simple diagram, which shows four obser-

vations over two x values. Suppose missingness depends on Y through a parameter θ,

with θ = 0 implying MCAR. Suppose θ > 0. Then we have more dropout at the very

lowest Y values, i.e the blue points in the figure. On the other hand if θ < 0 we have

disproportionate dropout amongst the very highest Y values, i.e the red points. In both

cases we can see by inspection of the plot that the fitted line without either red or blue

points, will be flatter, i.e slope closer to zero.
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Figure A.1: Plot of simple regression

x

Y
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