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Abstract

Individual peripheral gustatory neurons in insects encode stimulus category (e.g. sweet, 

bitter) and concentration as a tonic rate of spiking that adapts with prolonged stimulation.  While 

individual chemosensory neurons have been shown to interact through mutual inhibition, this 

interaction does not affect stimulus coding by the activated neuron.  Here, I report the first 

evidence of a coherent, temporal pattern of spiking produced by the interaction of the gustatory 

receptor neurons (GRNs) within sensilla present on the mouthparts of bumblebees (Bombus 

terrestris) that encodes information about sugar concentration. Stimulation of gustatory sensilla 

with sucrose concentrations >10 mM elicited bursts of spikes riding on an oscillation in voltage 

of ~20 Hz. The concentration response function of spiking and bursting was sugar-identity 

specific, and only concentrations that produced bursting in the GRNs elicited the bee’s feeding 

reflex. Bursting bee GRNs exhibited a low rate of adaptation (0.002 s adaptation after 1 s of 

stimulation) compared to rates measured from other insect species’ GRNs. These data are the first

to show that primary chemosensory neurons encode stimulus features such as concentration as a 

coherent temporal pattern of spiking produced as an interaction between two neurons. I propose 

that 1) the silent period between bursts is driven by the spike after-hyperpolarization of one 

neuron, which inhibits spiking of its neighboring neuron through an inhibitory lateral interaction, 

and 2) bursting is a novel mechanism evolved to allow persistent high frequency spiking during 

fluid consumption. Finally, I show that neural activity can be monitored from the bee’s central 

nervous system, which allows future experiments to question the function of this coherent and 

structured GRN activity in driving post-synaptic responses.  
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Chapter 1. General Introduction

1.1 Abstract

One of the primal instincts of any living animal is to feed.  To identify palatable food, 

animals ranging from insects to vertebrates have developed efficient neural circuits that mediate 

the sense of taste, known as gustation.  The gustatory circuit functions to encode taste stimuli into

information that can be interpreted by the brain.  The brain then coordinates behaviors that 

enables the location of food and  quick avoidance of potentially harmful compounds. Given that 

taste is such a fundamental sense,  exploring its structural and functional organization can help 

reveal the basic principles underlying sensory coding and behavior.

A large contribution to understanding the mechanisms of gustation comes from studies in 

insects.  In this chapter, I describe the  organization, structure and function of the insect gustatory 

neurons at the periphery and their first synaptic relay within the sub-esophageal zone (SEZ) of 

the brain.  In particular, I will focus on the coding strategies used by the GRNs and will compare 

them to the well studied olfactory circuitry, which like gustation is mediated by chemosensory 

neurons.  I will then describe what is known about gustatory coding within the insect SEZ.  

Finally, I will discuss how the bumble bee could be used as a model for studying the principles of

gustation.

1.2 Introduction

Insects detect food using peripheral gustatory receptor neurons (GRNs).  The dendrites of 

4-5 GRNs are housed within hair-like structures called contact chemoreceptor sensilla (figure 1.1 

a), which are distributed on the mouthparts, antennae, feet, wings and ovipositor (for reviews see 

[1]–[3].  When the sensillum comes in contact with a tastant, the tastant molecules activate 

receptors present on the GRN dendrites, which evokes a train of action potentials (spikes) from 

the GRN soma [4]–[6].  The GRN spike train encodes for concentration as well as the taste 

category to which the stimulus belongs to, i.e.  bitter (and other aversive compounds), sweet, 

water (or solutions with low osmolarity), and salt  [1], [7]–[11].   
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The GRN axons project onto post-synaptic neurons in the SEZ (figure 1.1 b), which is the

first region of gustatory processing in the insect brain [11]–[13]. Several interneurons separate 

these GRN axons from the motor neurons that are located in the SEZ [14], [15].  These 

interneurons integrate GRN input, along with input from other senses such as olfaction [12] and 

internal cues such as satiety [16]–[19].  They then synapse onto motor neurons to drive the 

initiation, continuation or cessation of feeding.  

Figure 1. Insect gustatory machinery. a) Diagram of a typical insect contact chemosensillum 

(figure modified from [20]), showing accessory cells and GRNs.  b) Side-view of the brain of a 

honey bee (modified from Snodgrass 1956).  GRN axons enter the SEZ, which is located below 

the esophagus.  The SEZ is fused to the brain in bees [22], flies [12], [15] and lepidopterans 

[20].   In comparison, insects such as cockroach  [23] and locusts [24] have circumesophageal 

connectives that separates the brain and the SEZ.  
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1.2.1 Structure and function of GRNs

The sense of taste starts within the sensilla. When the sensillum comes in contact with a 

chemical compound, the molecules enter its terminal pore and activate receptors present on the 

GRN dendrites.  Imaging and genetic studies in Drosophila have revealed a variety of receptor 

types that interact with tastants.  Most sweet compounds, as well as some pheromones and 

cuticular hydrocarbons, bind to gustatory receptors (Grs) [25], [26].  Grs are suggested to form 

ligand-activated cation channels [27][28], similar to olfactory receptors (ORs, [29], [30]).  

However, some reports suggest that Grs could also be G-protein coupled receptors [27].    GR5a, 

GR64a and GR64f are required by Drosophila for sensing most sugars except for fructose [31], 

[32], whereas GR43a responds specifically to fructose [33].  Gustatory receptors are also 

responsible for detection of aversive bitter compounds such as caffeine, and in Drosophila 

include Gr 32a, Gr33a, Gr39a, Gr66a and Gr89a [34].   Some aversive compounds such as 

aristolochic acid [35] and camphor [36] activate transient receptor potential (TRP) cation 

channels  via a transduction pathway involving phospolipase C  [37].  TRP channels are largely 

permeable to Ca2+.  Another class of receptors, the ionotropic receptors (IRs), are activated by 

ligands such as Na+ ions  and signal the presence of low concentrations of salt [38] as well as 

pheromones [39]. The ppk28 receptor, which belongs to the family of pickpocket receptors, 

mediates the detection of pure water or low osmolarity solutions [40].  

When a receptor is activated, it initiates an intracellular signal transduction mechanism 

that involves a combination of secondary messengers [41], [42] and cation channels [28], [37]. 

Ca2+ imaging in Xenopus oocyte cells that expressed Bombyx mori Gr9 revealed that they 

responded to fructose with an influx of extracellular Ca2+ [28]. Using electrophysiology 

techniques that allow for monitoring neural activity extracellular to the GRNs within individual 

sensilla [4], [43],  it was revealed that the signal transduction process generates a low frequency 

(<10 Hz) receptor potential across the dendritic membrane [44].  The receptor potential is 

passively transmitted along the dendrite towards the GRN soma, located some tens of microns 

below the base of the sensillum [20], [45],  where it evokes a train of spikes  [46]. The spike train

encodes stimulus relevant information.  
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Each GRN within a sensillum expresses receptors that are activated by molecules 

belonging to individual taste categories.  For instance, the GRs and TRP receptors that are 

activated by bitter molecules and certain aversive compounds are expressed on the ‘bitter-

sensing’ GRN  [47], [48].  Similarly, sugar binding GRs are expressed on a ‘sweet-sensing’ GRN 

[26], [31], [49], and IRs that are activated by low salt concentrations are expressed on the ‘low-

salt concentration’ sensing’ GRN. There is also a GRN responsive to water (low osmolarity; for 

review see [2]).    

1.2.2 Coding at the periphery

Peripheral chemosensory neurons in insects, such as GRNs and olfactory receptor neurons

(ORNs), encode quality and quantity of chemical stimuli through a train of action potentials.  The

coding problem faced by ORNs tend to be quite complex; odours are often composed of hundreds

of volatile compounds [50], and changes in odour concentration can lead to changes in perceived 

qualities (for review see [51]).  To deal with this complexity, ORNs use efficient coding strategies

(figure 1.2 a).  They encode odours through temporally structured spike responses, with 

structures varying from inhibition of baseline spiking activity to brief periods of excitation and 

inhibition, and responses outlasting the stimulation period [52], [53].  These temporally diverse 

responses are spatially distributed across the population of ORNs [53]. Further, ORNs represent 

concentration in part through the intensity of spike firing [54]. 

As for odours, the foods insects feed on can be complex with regards to number of 

constituent tastant molecules. For example, the nectar bees feed on can contain hundreds of 

individual components [55].  However,  GRNs exhibit a different coding strategy as compared to 

ORNs for dealing with this large stimulus space (figure 1.2 b).  As described in section 1.2.1, the 

activity of each GRN encodes a specific taste category.  This has given rise to a ‘labeled line’ 

model for gustatory coding, which is suggested to allow for the gustatory system to drastically 

reduce the complexity arising from a large stimulus space.  In fact, early studies suggested that 

GRNs reduce the stimulus space even further, by classifying all compounds as either 

‘stimulating’ or ‘deterrent’ [56].  For example, the bitter GRN would be  ‘deterrent’  since it 

responds to unfavorable high salt concentrations [38] and repellent pheromones [9].  
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In comparison to ORNs, GRNs exhibit simple patterns of spiking (figure 1.2 b ii).  GRN 

spike trains are typically characterized by a ~0.1 s phasic increase in spiking frequency that 

gradually adapts to tonic firing over the course of stimulation [7], [57]–[60].  Further, the 

intensity of the spiking response is found to be concentration dependent [25], [59], [61]–[66].  

Ultimately, the activity of GRNs encode taste category, while the rate of firing of action 

potentials encodes concentration.  

Figure 1.2 (legend on next page)
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Figure 1.2 :  Olfactory and gustatory coding.  a i)  ORNs are located in groups, with two or four

units per sensillum [67].  Odour molecules enter the sensillum through pores, and bind to 

olfactory receptors (ORs).  Each ORN expresses one or only a few ORs [68].  a ii left) Raster 

plots for multiple odours (separated by horizontal lines) presented over multiple trials (rows) 

shows that ORN responses are temporally heterogeneous.  a ii right) ORN responses are 

spatially distributed. Figures modified from [53] a iii) Glomeruli within the AL receive axons of 

ORNs that express the same OR (indicated by color).  b i) Similar to ORNs, the GRNs within a 

sensillum are tuned to specific groups of tastant chemicals based on the receptors (GRs) they 

express (represented by colours).  b ii left) GRNs encode concentration through rate of firing  

(recordings from moth, H. virescens [65]).  b ii right) Unlike ORN spike responses, GRN 

responses are not heterogeneous, as shown in Drosophila [8], blowfly (P. regina)  [69], mosquito

(A. gambiae) [70], butterfly (P. xuthus) [71] and honey bee (A. mellifera) [72]. b iii) Sucrose and

bitter GRNs synapse onto distinct populations of downstream neurons, similar to the wiring in 

the olfactory circuit. However, these postsynaptic neurons are spatially distributed in the SEZ 

(figure from [73]) ET: esophageal tract.  Top row of a and b from [3].  

1.2.3 Interactions between chemosensory neurons that could participate in coding

In olfaction, there is evidence that the spiking responses of neighboring ORNs are not 

completely independent of each other  [74]–[76].  For example in a Drosophila sensillum, the 

spiking activity of one ORN appeared to inhibit the activity of its neighboring ORN, and was 

predicted to do so through a non-synaptic interaction between the two neurons, since there is no 

evidence for synapses at the level of the chemosensory sensilla [15], [75].  Instead, the interaction

was suggested to be driven by a lateral ephaptic interaction. In an ephaptic interaction, the 

electric field associated with the activity of one neuron affects the excitability of neurons that are 

in close proximity of it [76]–[78]. In vertebrates, ephaptic coupling between neurons has been 

shown to inhibit spiking for a few milliseconds [79], or even mediate transmission of spikes 

between axons of neurons which do not have a myelin sheath [80].  The close proximity of the 

ORNs within the sensillum environment along with the fact that insect neurons are unmyelinated 

makes ephaptic coupling possible between these neurons.  This suggests that interactions between

the ORNs could contribute to olfactory coding at the periphery, which is referred to as an ‘across-

fiber’ model for coding.  
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There are a few inconclusive studies that suggest lateral interactions could occur between 

GRNs of a sensillum as well. White et al. [81]  found that the tarsal gustatory sensilla of 

grasshoppers possess a GRN responsive to nicotine hydrogen tartarate,  whose spiking activity 

inhibited for a brief period of time (order of 0.01 s) by the occasional spontaneous activity of a 

second GRN. This suggests that the second GRN drives an inhibition that prevents spiking from 

the first GRN.  

White et al. suggested that a gap junction could mediate this inhibition.  Gap junctions are

protein channels that connect neighboring neurons and allow flow of electric current [82], and 

can therefore mediate transmission of a depolarizing or hyperpolarizing potential between 

neurons to modulate activity [83]–[86].  Only a few studies report evidence for gap junctions in 

insect chemosensory neurons. One detailed study of contact chemosensilla in the inner cavity of 

the cockroach hypopharynx identified gap-junction like articulations among its GRN dendrites 

(a.k.a inedite jonction intercellulaire, [87]. Similarly, Ma [66] reported connections like gap 

junctions among the ciliary connective tissues of the GRN dendrites of the maxillary sensillar 

styloconicum of larvae of the cabbage moth, Pieris brassica. These are the only studies I know of

where gap-junction like connections have been reported among the dendrites of GRNs. Whether 

or not this is a general feature of GRNs in insects, therefore, remains uncertain.

The activity of a sugar responsive GRN can also be inhibited by mixing a toxic compound

such as quinine with the stimulating solution [70], [88]–[90].  In the same way, the activity of 

bitter responsive GRNs can be inhibited by the presence of sugars or acids [57].  While this form 

of inhibition could also convey stimulus relevant information, it arises from direct interaction of 

the ligand with the signal transduction mechanisms of the sugar-sensing neuron [89].  Overall, 

peripheral gustatory coding is considered to be driven by ‘labelled lines’, with little cross-talk 

between GRNs.  

1.2.4 Taste integration downstream to the GRNs

The central nervous system integrates input from the peripheral neurons to coordinate 

behavior.  Coding has been well studied in the insect antennal lobe (AL), which receives the 
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axonal projections of ORNs (figure 1.2 a iii).  As described above, the ORNs represent quantity 

and quality of stimuli through spatially distributed and temporally structured trains of action 

potentials  [53], [54].   ORN axons are organized into glomeruli within the antennal lobe, in 

accordance to the receptors they express  [91].  This structured and organized input along with 

feedback inhibition from interneurons [92], [93]  drives coherent activity from neural ensembles, 

which aids in stimulus discrimination  [94], drives activity in higher brain regions involved in 

learning and memory [95], and is finally reflected in behavior [74].   

 Like the AL, the insect SEZ exhibits a certain level of organization of gustatory input.  

The SEZ receives GRN axonal projections from across the insect’s body into specific zones, 

which reflect their organ of origin [9], [22], [96]. For example, studies in the bee have shown that

the majority of the SEZ is divided into the labial, maxillary and mandibular neuromeres, that 

receive input from those respective mouthpart organs [22]. Further, studies in Drosophila have 

revealed that the axonal projections of the GRNs exhibit a certain level of functional organization

as well :  sweet, bitter and low-salt responsive GRNs synapse onto mostly non-overlapping (yet 

spatially distributed) subsets of post-synaptic neurons [31], [38], [48], [73], [97] (figure 1.2 b iii).

The activity of sweet-responsive and bitter-responsive GRNs evokes attractive and aversive 

behaviors, respectively [47]. 

        

Studies in Drosophila have shown that GRN axons synapse onto interneurons within the 

SEZ  [15].  These interneurons coordinate motor neuron activity which control the various groups

of muscles that drive proboscis extension and ingestion [15], [98].  An early study in blowflies 

suggested that, based on the time taken for muscle activity to be evoked after stimulating a 

gustatory sensillum, there were at least two orders of interneurons that the GRN input passed 

through before synapsing onto motor neurons.  It was shown in Drosophila as well that GRNs do 

not directly synapse onto motor neurons [15].  

 Studies in Drosophila have revealed the roles of some of these interneurons in integrating

GRN input and in controlling feeding motor programs.  One such set of GABAergic interneurons

was found to drive a selective presynaptic inhibition of sweet GRN axonal input but not bitter 

GRN input, which could function as a gain mechanism to ensure toxic bitter compounds are not 
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consumed [92].   A set of four inhibitory GABAergic neurons were discovered which keeps 

feeding behaviors under inhibition unless they receive excitatory input [99].  A set of 12 

cholinergic interneurons were found to be activated by sweet GRN input and modulated by 

satiety, and functioned to control ingestion [100].  Another set of feeding interneurons were found

to control the initiation of feeding [101].  

The internal state of the insect plays a role in controlling these feeding circuits as well.  

For example, thirst in Drosophila can convert water avoidance into water seeking behaviors 

[102].  Hunger can make insects more tolerant to toxins (such as bitter compounds) in food [17], 

[18].  The internal state could be under neuromodulatory control [17], [18] or even under the 

control of gustatory receptors that function as nutrient sensors in the brain [33].  

   The features of the GRN spike train that are important for driving downstream 

responses are still unknown.   Studies in blowfly show that the intensity of GRN spiking activity 

within the first 0.03 s of stimulation is enough to drive muscle activity [14]. Studies in the 

blowfly and Drosophila suggest that the interneurons retain information regarding the strength of 

the GRN input, and ultimately drive graded activity from the motor neurons [14], [15]. This 

suggests that a population of GRNs spiking close to their thresholds is important for driving 

downstream activity [103].  Recordings from moth GRNs suggest that tastant specific 

information is initially encoded by spatio-temporal patterns of GRN activity, and that this 

information is temporally transformed over synapses [103], similar to that observed in the 

olfactory circuit.  The mechanisms driving this transformation of GRN input are yet to be 

answered.  

1.2.5 Gustation in  bees

Taste plays an important role in the life cycle of a bee. Worker bees are bestowed with 

the task of foraging for nectar and pollen, which they convert into honey and bee bread.  Bees 

belong to the order Hymenoptera, along with ants, wasps and sawflies.  Like ants and termites, 

bees are social insects, and therefore the food they collect is used to sustain their entire colony.  

Honey bees have been shown to pass on information regarding quality and profitability of the 
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food source to other workers so return trips can be planned, through behaviors like the waggle 

dance [104].  

Nectar and pollen are made up of hundreds of components, including water, 

carbohydrates, proteins, amino acids, salts, fats, vitamins and minerals [55], [105]. Carbohydrates

are of particular importance as they provide the main source of energy for sustained flight and 

other metabolic processes [106]. In floral nectar, one of the main foods of bees, sucrose, glucose 

and fructose make up the major carbohydrate constituents to which bees exhibit strong behavioral

preferences [107], [108].  

The proboscis of bees is specialized for acquiring nectar from flowers.  It is comprised 

of the labium which includes the labial palps and glossa, and the maxillae which includes the 

maxillary palps and the galea (figure 1.3)  [21], [109], [110].  The movement of the proboscis is 

controlled by several sets of muscles, which have been described in detail by Snodgrass [21].  In 

particular, the M17 pair of muscles are responsible for the retraction of the entire proboscis, and 

are commonly recorded from to track feeding behaviors [111], [112].  While feeding nectar, the 

galea and labial palps form a tube around the glossa through which liquids can be sucked into the 

mouth through the action of cibarial muscles [21]. The back and forth movement of the glossa 

functions to draw nectar into the proboscis.  

Figure 1.3: Mouthparts of the bumble bee B. terrestris.  
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Contact chemoreceptor sensilla are distributed on the surface of the bee’s mouthparts 

[45].  Bees have a very small repertoire of functional GRs with which they detect tastants, with 

12 in A. mellifera and 23 in B. terrestris [113], [114].  In comparison, this count is much higher 

for D. melanogaster and A. gambiae which have 68 and 76 functional GRs,  respectively [115].  

This suggests that the bee’s gustatory machinery is limited and could be tuned for detecting the 

subsets of tastants that are essential for their survival.  

Studies in honey bees have helped understand how gustatory input is integrated with 

higher brain regions involved in learning and memory.  Classic Pavlovian conditioning shows 

that bees can form strong associations between a gustatory reward and an olfactory or visual 

stimulus (for review see [116]).  An early study revealed a neuron within the maxillary neuromere

of the SEZ (VUMmx1 neuron) that mediates the reward value during this learning process [117]–

[119].  

 Recent behavioral experiments have shown that bumble bees exhibit complicated  

behaviors that are unique even among insects.  For example, they have been shown to learn an 

operant learning task to acquire sugars [120], [121].   Like honey bees, bumble bees are able to 

associate an odour with a sugar reward [122] as well. Unlike honey bees, bumble bees do not 

communicate information about nectar sources through a waggle dance, nor do they exhibit 

trophollaxis; instead, foragers unload their nectar into honey pots that other foragers can taste to 

plan foraging trips [123].     Carbohydrates are particularly important for bumble bees as they 

have a very high metabolic rate for flight [124], and travel for distances up to 3km on each 

foraging trip [125].     Of the carbohydrates, B.terrestris exhibits most preference for sucrose, 

glucose and fructose [126], [127].  Due to this necessity for carbohydrates, it would not be 

surprising if bumble bees developed a specific advantage when it comes to detecting them in 

nectar.  

1.3 Future of insect taste study

Insects have been shown to exhibit elegant coding strategies to deal with environmental 

stimuli to coordinate rapid and complex behaviors.  They are by no means a simple model for 

understanding the coding mechanisms used by sensory circuits.  However, they do present a 
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system that can be manipulated using genetic and electrophysiological techniques which allows 

for understanding the fundamentals underlying sensory coding.  In particular for gustation, it is 

easier to access individual neurons at different levels of processing using intracellular recording 

techniques, which allows for studying the coding strategies that occur at the millisecond time 

scale.  Drosophila possesses a powerful genetic tool-kit that allows for observing the contribution

of specific subsets of neurons.  Insects like the honey bee present robust feeding behaviors such 

as the proboscis extension response (PER) that allows for comparison of qualities of different 

stimuli.  

 The principles of gustation in insects are somewhat similar to those of mammals [108], 

[128].  For example, the mammalian taste receptor cells that express the receptors to which 

tastants bind are grouped in taste buds [129], with each cell tuned to different taste categories : 

salt, sweet, bitter, sour and umami (i.e meaty taste, mediated by cells expressing receptors that 

bind to glutamate) [130].   These taste receptor cells activate primary afferent neurons that carry 

the information towards several taste processing regions within the brain [1], [2].  Further, the 

sweet and bitter pathways are found to evoke attractive and aversive behaviors, respectively 

[131], [132].   Therefore,  discoveries made in the insect gustatory system can help elucidate how

animals have solved the problem of the coordination of feeding and the representation of taste 

stimuli in the brain.

Finally, while the coding strategies used by the peripheral taste neurons have been well 

documented, there are still many questions that remain to be answered regarding how taste is 

integrated at downstream regions.  Studies in Drosophila are starting to unravel the function of 

the neurons within the SEZ, and experiments in bees are revealing the complexity of the 

involvement of learning and memory in driving decisions to feed.  Future research will reveal 

whether the gustatory circuitry has evolved to reduce the vast tastant stimulus space into only a 

few perceived taste categories, or whether the brain has a role in reconstructing the input based 

on spatially and temporally structured activity.  The latter case would allow for an expansion in 

the number of perceived tastes, or allow for a more detailed discrimination between quality and 

quantity of different tastant chemicals, similar to what is found in olfaction.
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Chapter 2.0 Spike Sorting and Burst Detection in Sensillum Recordings

2.1 Abstract

In insects, gustatory receptor neurons (GRNs) are responsible for encoding taste 

information through trains of action potentials.  The activity of groups of GRNs within individual

sensilla can be recorded using the tip and tungsten extracellular recording techniques.  These 

recordings can then be coupled with spike sorting and analyses of spike timing to understand how

the population of GRNs encodes taste information.  However, existing spike sorting methods 

available for sensillum recordings produces an output that is limited in interpretation, primarily 

because they sort spike waveforms from single channels of recording, rely on manual detection of

superpositions, and do not have methods to estimate the quality of sorting.  For detecting burst 

positions in a spike train, available methods are designed for higher-order neurons which exhibit 

spontaneous activity, rather than an increase in ISI that reflects adaptation as in GRNs. In this 

chapter, I describe 1) a spike sorting technique for sensillum recordings based on methods 

developed by Pouzat et al.  [133] and Hill et al. [134] that covers for the aforementioned 

limitations in sorting spikes from sensillum recordings, and 2) a method for detecting burst 

positions that takes adaptation into account by using a time-varying inter-spike interval (ISI) 

threshold.  These methods will be used to analyze data in Chapter 3.

2.2 Introduction

Neural activity is accompanied by the movement of ions across neuronal membranes, 

resulting in a potential difference at a given location within the extracellular medium relative to a 

far away electrode.  To a first approximation, the potentials of all nearby neurons will summate at

this location, and the difference between this summed potential with respect to a far away 

reference potential  can be monitored by an extracellular electrode [134]–[136].  The resulting 

local field potential (LFP) varies over different time scales, i.e., frequencies, which range 

between 1 and 7000 Hz [137], [138].  For example, graded currents contribute to the LFP below 

300 Hz  [139].   Such currents, for example those associated with the receptor potential, are 

generated by the signal transduction mechanisms either due to ligand binding [44], [76] or 

activation of subthreshold ion channels [28].   Action potentials on the other hand typically 
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contribute to the LFP in the 300-7000 Hz range [136], [137].  However, action potentials can also

be associated with low frequency components, such as after-hyperpolarizations (AHPs) that can 

contribute to the LFP below 300 Hz  [135], [140]–[142].   

Both receptor potential- and action potential-associated components contribute to the LFP

measured from first order of gustatory neurons (gustatory receptor neurons, GRNs) in insects [5],

[44], [60]. GRNs are organized in groups of 2-5 units, and their dendrites are housed in hair-like 

sensilla [10], [20], [45], [66], [70], [71], [143]–[145].  When the sensillum comes in contact with 

a tastant, the molecules enter through the terminal pore and bind to gustatory receptors (GRs) 

present on the dendrites.  This generates a receptor potential at the level of the dendrite [44], that 

is passively transmitted to the GRN soma where it evokes action potentials [5], [46].   The LFP 

evoked by GRN activity can be studied using extracellular electrodes such as the tip electrode  

[43], as well as the tungsten and side-wall electrodes.

 In the tip recording method [43], a glass capillary electrode is filled with a tastant 

solution and is positioned onto the hair-like sensillum.  Along with the receptor potential, the tip 

electrode monitors ‘return currents’, which are currents associated with action potentials 

generated near the cell body that are transmitted back into the sensillum via its outer lymphatic 

cavity [5]. Some studies also show that the dendrites possess ion channels, which could allow 

active anti-dromic propagation into the sensillum via the dendrites [146].    The tip recording 

technique has been used to reveal that GRNs encode tastant stimuli through trains of action 

potentials [6], [44], [60], [147], that different compounds can either activate or inhibit GRN 

activity [7], [63], [89], and that individual GRNs respond to tastant stimuli through a phasic 

increase in spiking frequency that adapts over time  [25], [59], [61]–[66].  

In the tungsten recording method, a sharpened tungsten wire is pushed a few microns into 

the socket at the base of the sensillum [148]–[150], and allows for monitoring GRN activity 

before, during and after stimulating the sensillum with a tip electrode.   This is similar to the 

‘side-wall’ recording technique, where a glass capillary tube filled with electrolyte is either 

pushed into the base of the sensillum [146] or is touched to the wall of the sensillum [6], [44], 

[60].  A side-wall electrode offers lower impedance (and thus lower noise in a recording) at the 

16



expense of a fragile electrode.  These methods have been used in Drosophila [150] and S. 

littoralis [149] to monitor GRN activity beyond the stimulation period, and in several other 

insects to characterize the contribution of different currents distributed along the length of the 

sensillum to the generation of action potentials [5], [46], [146].   

Sensillum recordings measure the LFP contributed by the activity of all GRNs within a 

sensillum.  There are several analysis techniques for isolating the activity of individual GRNs 

from this measured LFP.  These techniques make use of the fact that the action potentials of each 

GRN will have unique waveforms on the recording electrodes, depending on factors such as the 

distribution of ionic channels generating the spikes, the distance of these ion channels from the 

recording electrode, and resistance of the extracellular medium [135], [137], [138], [151]. 

Filtering methods can be used to extract the higher frequency action potentials.  This is done by 

removing the lower frequency graded potentials as well as  ‘noise’ frequencies i.e frequencies 

that are not contributed by neural activity.   Once the action potentials are isolated, a process 

known as spike sorting can be used to attribute the spikes to the GRNs that generate them [133], 

[134], [152], [153].  

2.2.1 Introduction to spike sorting

Spike sorting involves two separate steps: 1) clustering and 2) classification.  During 

clustering, spike waveforms are first extracted from the recording channels.  Then, specific 

features (parameters) of the spike waveforms are chosen to compare across the dataset.  The 

spikes are then divided into separate clusters based on these parameters.  Spike templates are then

generated from each cluster, and finally the quality of clustering was estimated using statistical 

techniques.  

During classification, superposition waveforms are first isolated from the dataset. 

Superposition waveforms are generated when two or more neurons fire within a small time 

window, such that their individual waveforms add up (i.e are superposed).  The time window is 

described by the absolute refractory period (ARP) for a neuron, which is defined as the minimum 

time required for a single neuron to fire two sequential action potentials.   The ARP is generated 

due to the fact that the voltage gated Na+ channels that contribute to the rising phase of an action 
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potential need time to recover before firing another action potential.  In addition, the delayed 

closing of K+ channels generates a spike after-hyperpolarization (AHP) that lasts for a short 

period of time, and which makes it difficult for the voltage gated Na+ channels to get re-activated.

For most  neurons, the ARP is > 2 ms [133], [136], [152]. Then, all spike waveforms are 

classified to either the cluster templates or superposition templates.  Finally, the quality of 

classification is quantified through statistics.  Many programs have been developed that 

implement these sorting techniques using different statistics and analyses. 

 Spike sorting programs such as DbWave [154]  and AutoSpike (Syntech) have 

specifically been developed to sort spike waveforms from sensillum recordings. These programs 

have been designed to sort spikes obtained from single channels of recording.    To cluster spikes,

user-selected parameters such as amplitude and width are first obtained.  These parameters  are 

plotted against each other to visually split the dataset into separate clusters and to visually detect 

outliers that arise from superpositions. Each cluster is assumed to belong to a separate neuron, 

and hence there is no further classification or estimation of cluster quality done on the dataset. 

This describes a very basic spike sorting algorithm, which works for most sensillum recordings 

due to the fact that individual neurons appear with distinct amplitudes on the recording channels  

[155], [156].  Further, there are only between 2-4 neurons within each sensillum, of which only a 

few are activated by stimulation [7].    

Sorting spikes from recordings made from the brain are more complicated, since there are 

a larger number of neurons and spike shapes from each neuron are not as distinct. Further, it is 

often required to accurately classify superpositions, particularly when studying the temporal 

structure of spiking activity of individual neurons.  Several spike sorting programs have been 

developed for such recordings, such as PouzatSort [133], UltraMegaSort2000 [134] and 

WaveClust [153].  In comparison to the spike sorting programs available for sensillum recordings

as described above, these programs compare spike waveforms obtained from multiple 

extracellular electrodes that simultaneously monitor neural activity.  This sorting technique makes

use of the fact that spike waveforms will have different shapes on each electrode based on the 

proximity of the neuron to the electrode. Entire segments of these spike waveforms are used as 

parameters for sorting and generating templates to which spikes and superpositions are classified.
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Finally, these programs allow for quantifying the quality of clustering and classification.  While 

the analysis techniques used for sorting vary between these programs, they all share a common 

procedure, which I will briefly describe below.  

In the first step of clustering, spike waveforms are extracted from each filtered recording 

channel.  For each spike, only those segments that exhibit the most variance across the dataset are

chosen. Each datapoint along these segments are used as a parameters for comparison. The 

number of parameters can be reduced through a principal component analysis (PCA)  [133], 

[152], [153], [157] or via a Kolmogrov-Smirnov test [153], [158].  In PCA, data is plotted into 

new coordinates such that the first dimension describes the most variance, the second dimension 

the next most variance and so on.  In this way, only a few dimensions that describe most of the 

variance can be used and the rest can be ignored.  The Kolmogrov-Smirnov test selects only those

parameters across the dataset that are not normally distributed, as is the noise. 

These reduced number of parameters are then used for clustering waveforms.  For smaller

datasets, K-means clustering can be used, in which the parameters are clustered based on their 

distances from a user-defined number of centroids [159].  Another method is to decide the 

number of clusters based on the lowest Bayesian Information Criterion (BIC, [159]).  The BIC 

includes a penalty term that increases when data is overfitted due to increasing the number of 

parameters in the model. For larger datasets, the expectation maximization algorithm can be used,

which generates the ‘best’ model from a given number of units in a dataset, and is also useful for 

incomplete datasets  [160]. Fee et al. [137] use a method to calculate ‘interface energy’ that 

produces large values when two different clusters are very close to each other. Blatt et al.  

[161] describe a method to calculate cluster ‘temperature’, which describes a cluster as consisting

of neighboring points that have a high probability of simultaneously changing their state 

(considering a limited number of possible state changes). 

Once spikes have been sorted into different clusters, their separation is quantified.  This 

can be done by observing if the residuals of each cluster exhibit large, apparently non-random 

variations, which could indicate the presence of multiple units in the cluster. Another method is to

measures the distance between clusters using a joint Fisher’s Linear Discriminant Analysis 
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(LDA), which projects data onto the axis that is best for separation of different clusters [133], 

[134].  These clusters are then used to generate spike templates.  

In the first stage of classification, superposition waveforms are detected.  This can be 

done by calculating the Mahalanobis distance of every spike waveform from the median spike 

waveform, and then setting a distance threshold; any spike waveform having a distance greater 

than this threshold is considered as a superposition [133].  The Mahalanobis distance is a multi-

dimensional generalization of the idea of finding how many standard deviations that a datapoint 

is from the mean of the dataset; this is done along each principal component axis.   This method 

takes into account the co-variance of the dataset, which accommodates, for example, drift in 

spike shape (for example due to movement of the recording electrode).     Finally, all spikes are 

classified to a superposition template or the cluster templates.  This can be done by obtaining the 

minimum Euclidean distance between a spike and each template (Euclidean distance is obtained 

from the Mahalanobis distance after rescaling each principal component axis to have unit 

variance)  [133], [134].  

Once the spikes are classified, the quality of classification is estimated.  This can be done 

by calculating the percentage of false positives arising from refractory period violations,  false 

positives and false negatives in classification due to overlap between two clusters, and 

determining false negatives due to spikes falling below the set threshold for detecting spikes 

[134]. Further visual estimates of classification quality can be done by observing the distribution 

of ISIs for each unit.  For sensory neurons like GRNs, the distribution of ISIs of a response is 

often well described by an exponential distribution [10].

2.2.2 Burst detection

Once spikes have been sorted, the contribution of individual neurons to the spike train can

be studied.  Most insect GRNs can be characterized by a brief (order of ~0.1 s) increase in the 

rate of firing of action potentials that gradually adapts over time [25], [59], [61]–[66].  For 

sensory neurons like GRNs that exhibit adaptation, the ISIs over time can typically be 

represented by a fitted non-linear function, such as a logarithmic [162], power [163] or 

exponential fit [164].  Deviations from these fits would then be indicative of processes other than 
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adaptation that are involved in driving neural activity.  For example, ISIs at a time point that are 

several multiples greater than that estimated by the fit could indicate that spikes are organized in 

bursts, with long periods of silence between bursts.  

 In this chapter, I present a method for spike sorting sensillum recordings using methods 

developed by [133] and [134]. These techniques were required to accurately characterize the 

burst spiking evoked when stimulating gustatory sensilla in B. terrestris.   I also describe a time-

varying burst detection method for detecting burst positions in neurons such as GRNs that exhibit

adaptation in spike frequency over time.  In the discussion, I compare these methods to existing 

methods for spike sorting sensillum recordings and to existing methods for detecting bursts in 

spike trains. Additionally, I have included the details of how to implement these methods in the 

MATLAB environment.   
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2.3 Methods

2.3.1 Symbols and terminology

For the following section, MATLAB script will be written in font UbuntuMono.    The 

term PouzatSort will refer to all the methods and scripts that were adapted from [133], [134] and 

adapted to the MATLAB platform by the lab of Dr. Stopfer (for examples of use in locust and 

moth see [103], [165]

2.3.2 Physiological preparation

B. terrestris were caught as they emerged from their colony.  Colonies were provided by 

Koppert Biological Systems, NATURPOL, Netherlands.  Bees were immobilized on ice and then 

fixed in a restraining harness as described in [116].  To avoid mouthpart movements, the M17 

muscles [21] and the labial, maxillary and mandibular nerves were severed.  The base of the galea

were then held down in dental wax with ‘U’ shaped wire pins.  

2.3.3 Dual tip-tungsten recording

A dual tip-tungsten recording method was used to measure the responses of 100 mM 

sucrose from the A-type sensilla present on the galea of B. terrestris.  To fabricate the tungsten 

electrode, a 0.05 mm outer diameter (OD) uninsulated tungsten wire was sharpened by 

electrolysis.  A 15 mm length of tungsten wire was attached to the positive lead of a 3 V AC 

power supply, and set on a vertical manipulator.  Below it, a 1000 mM solution of KOH was 

placed in a petri dish, and a carbon electrode (made from pencil lead) dipped in it acted as a 

connection to the negative terminal of the power supply.  A horizontally placed microscope was 

used to view the tungsten wire.  The wire was sharpened by repeatedly dipping into the KOH 

solution.  For the first dip, approximately 50% of the wire was submerged, and for the second dip

onwards, 25% of the wire was submerged.  The wire was dipped for varying durations, until a 

suitable tip sharpness was obtained (tip sharpness <1 µm).  

The tip electrode was a 1.5 mm outer diameter capillary tube, pulled to a tip size of ~3 

µm.   A chlorinated silver wire (0.5 mm outer diameter) acted as a connection between the 

solution in the tip electrode and the headstage.  Another chlorinated silver wire was placed in the 
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head capsule, which served as the ground wire.  Wires were chlorinated by leaving them in a 

flask of bleach overnight.   The electrode and amplifier setup is described in figure 2.1 a.  

For a typical recording procedure, both headstage amplifiers were attached to two 

different Sutter manipulators (MPC-200, Sutter Instrument,USA).  The preparation was viewed 

under a microscope (M205C, Leica, Germany) at a magnification of 256X.  The tungsten 

electrode approached the base of an A-type sensillum at approximately a 30º angle, and was 

pushed ~1 mm into the cuticle. Typically, if the electrode was positioned properly, a few spikes 

(probably from the sensillum’s mechanoreceptor) could be seen in the recording trace.  

Channel data from both the tip and tungsten electrodes were imported into the MATLAB 

environment for analysis. Data from each channel was stored as a vector of samples, with each 

sample being a voltage measurment at a specific timestamp (time of arrival of that spike, with 

respect to stimulus onset).  These channel data are referred to as Rw(t) and Rc(t) for the tungsten 

and tip channels, respectively.  

2.3.4 Spike sorting

Generating initial variables 

The function designed in PouzatSort were implemented in the MATLAB environment. All

scripts were modified to run with tip-tungsten data.  Spike sorting starts with the function 

pouzatsort(), which takes input as:

pouzatsort(opts);

Or, the function adapted to specifically deal with tip-tungsten recordings (which is used in this 

analysis) is:

pouzatsortASH(opts);
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opts is a structure that contains several fields, each which carries information about the 

experiment for the spike sorting process.  The tip-tungsten data is first stored in the opts 

structure, which is then saved as a specific file format that can be run with 

pouzatsortASH(opts). The contents of the opts structure is described below:

step# Function/Variable Description

1 opts.chdata(1,:)=RNc*pow2(16)/1000 ; 

opts.chdata(2,:)=RNw*pow2(16)/1000; 

%converting channel data to 16-bit signed 

integer format (meaning values are set to 

range between -215:215-1),  and scaling to 

an amplitude range <104  (data gets clipped

otherwise!).  RN is filtered and normalized 

channel data, see below. 

2 opts.prefix= ‘suc’; %setting the title of the file, based on what

stimulus was tested

3 opts.spkchan=[1 2]; %setting how many channels that are 

being used

4 writeOneChannel(opts.chdata(1,:), …

opts.prefix,opts.spkchan(1));

writeOneChannel(opts.chdata(2,:), …

opts.prefix,opts.spkchan(2));

%generating the file type that can be run 

with  pouzatsortASH()

The function writeOneChannel() generates the following file types that can be run with 

pouzatsortASH():

suc_t01.01

suc_t01.02

The folder in which these files are saved has to be the current working directory when calling 

pouzatsortASH().  Once this is done, the opts structure is built further:
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Step# Variable Description

1 opts.fs=fs; %sampling rate

2 opts.bndx= ‘ ’; %has to be set empty for tip-tungsten recordings

3 opts.ntrials=1; %since only one stimulus trial was made

4 opts.mf=1; %multiplication factor, set as 1 if detecting peaks, -1 if detecting 

troughs

5 opts.bandlims =

[300 3000];

%setting the pass band for filtering, which is implemented by a 2nd 

order butter filter 

At this stage, the function pouzatsortASH() is called.   Calling this function starts the spike 

sorting process, and takes the user through a series of thresholding stages.  This is called as:

spikes=pouzatsortASH(opts) 

where spikes is the output of the clustering process.  The different stages of the spike sorting 

process are detailed below.  

Filtering

In the first step of sorting in pouzatsortASH(), the channel data is filtered using a 2nd 

order Butterworth filter.  The pass-band used is set in the field opts.bandlims:

opts.bandlims = [300 3000];   %setting the pass band for filtering

A description of how this filter works and how it is implemented is described as follows. 

Rw(t) and Rc(t) were first filtered to preserve only those frequencies that contribute to the spike 

waveforms.  To observe the frequency components in a trace, a power spectral density (PSD) 

estimate was calculated using the Welch’s averaged, modified periodogram method via the 

pwelch() function in MATLAB, using a 6000 sample window with a 300 sample overlap. 

Wn=[300 3000]; % pass-band for filtering

[B,A]=butter(N,Wn/(fs/2), ‘bandpass’) %building a Butterworth filter with order N 
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Rfilt=filtfilt(B,A,R(t)); % applying the filter on Rw(t) or Rc(t)

Where fs is the sampling rate.  The function filtfilt() is a forward reverse filter that 

maintains the phase of the signal, which is required as the Butterworth filter in this pass band is 

non-zero and non-linear.  I wrote a function ashfilt() that uses a 2nd order butter filter, and 

allows the user to select the pass-band, and the ‘type’ of filter i.e lowpass, highpass, bandpass or 

bandstop:

ashfilt(R(t),Wn, ‘type’, fs)

An additional filter type is the tolerance zone filter , which preserves frequencies near the 

edges of the pass-band to produce a more stable filter.  This is built as follows:

Tolerance zone filter:

Wp = [ 700 8000]/(fs/2); %pass band for filtering

Ws = [ 500 10000]/(fs/2); %transition zone

[N,Wn] = buttord(Wp, Ws, 3, 20); %determining filter parameters: 3dB tolerance in the

pass band, and at least 20dB attenuation in the stop-

zone

[B,A]=butter(N,Wn) %building the tolerance zone filter

Rfilt=filtfilt(B,A,Data); % applying the filter

 Filtered data is then normalized to the median absolute deviation (MAD) of the channel 

data.  The MAD is a measure similar to the standard deviation (SD), but is not sensitive to the 

presence of outliers in the dataset. Normalization is implemented as follows:

RN=Rfilt/[1.48*mad(Rfilt)]; %Normalizing data to MAD of stimulation period

where 1.48 is a constant that is used when the distribution is normal, as is the case for the 

distribution of noise frequencies.
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Spike detection

pouzatsortASH() requires a vertical threshold Vt to be selected for each recording.   It 

then applies three fixed thresholds thr1, thr2 and shadow to detect spike positions.  An index is 

considered as a spike if it crosses both the lower threshold thr1=[2/3*Vt]/ std(RN) and upper 

threshold thr2=Vt/ std(RN).   A subsequent index had to drop below thr1 before exceeding thr2

and had to be separated by a minimum distance of shadow=2/3 s.  This spike detection method 

was advantageous as it required a single vertical user defined threshold for each trace.   These 

thresholds can be set in the opts structure as follows:

opts.rthresh=Vt;

opts.thr1=thr1;

opts.thr2=thr2 ;

opts.shadow=shadow;

The way these thresholds are applied are described as follows.  The function  

schmidttriggerZA_auto() applies the two vertical thresholds thr1 and thr2 to RN  and uses 

findpeaks() to apply the shadow threshold.  These functions are called as follows:

Step# Function Description

1 [sp sizes]=schmidttriggerZA_auto(RN, ...

[],thr1,thr2) 

%To get initial timestamps (sp) 

and amplitudes (sizes) of spikes 

in RN using thresholds thr1 and  

thr2

2 spikeArray=zeros(1,max(sp)+1)

[sp indices]=sort(sp)

spikeArray(sp)=sizes(indices);

%creating the vector spikeArray, 

which will contain the sizes of the 

spikes detected in their 

corresponding time indexes

3 [~,ind]=findpeaks(spikeArray, …  

‘minpeakdistance’,ceil(shadow*fs/1000) 

 using findpeaks() to remove the 

smaller peaks that are within the 

shadow period. fs=sampling rate
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Outside pouzatsortASH(), I created a function ashpeaks() that automatically does all 

these steps.  This function opens a window for each channel that is given as input, so that the user

can select a vertical threshold Vt for each channel.  

Spike sorting

 Once spikes were detected in both channels, spike timestamps that have the maximum 

amplitude from both channels are chosen to form the vector of spike times ind. ind is then used 

to extract the waveforms of the spikes for each channel, by using a window 0.0035 s to the left 

and right of each index.  This results in two matrices of waveforms, one for each channel, having

ind rows and 0.0035*fs columns.  For every pair of corresponding spike waveforms from both 

channels, only the one with the maximum amplitude is taken for each spike time index  to form a 

matrix spkmax of waveforms. These waveforms are used for thresholding, to choose which 

segments of the spike waveforms will be used for comparison in the sorting procedure. Only 

those segments of spkmax that exhibit the most variation are used for the sorting process.  

Choosing these segments involves 3 thresholding steps: choosing a window spwin where spikes 

in spkmax exhibit the most variation, removing the portions of the waveforms around the peak 

using a vertical threshold threshv2 to prevent high amplitude artifacts, and setting an envelope 

around spkmax to remove noisy spikes and superpositions.    

To choose spwin, a figure is presented of the median spkmax waveform, along with the 

MAD (median average deviation) of spkmax and  the MAD of all data outside of spiking events, 

i.e channel noise. spwin is then chosen as the window where the MAD  separates from the 

channel noise.  Next, a figure is presented to choose threshold threshv2 as a multiple of the SD 

of spkmax to ignore the central peak of spikes that have high amplitudes.    Then, a figure is 

presented to select the envelope threshold threshv around spkmax to remove noisy waveforms 

that exceed the envelope.   

The resulting length of the segments that are used for comparison is referred to the 

dimensionality of the dataset.   The next step involves principal component analysis (PCA) on 

these segments to reduce the number of dimensions even further.  The user chooses a reduced 

number of dimensions (ndim) to use for sorting.  Using too many dimensions should be avoided, 
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since noisy dimensions affect clustering.   Next, the first three dimensions are plotted in a 3d 

graph, and the user chooses a range of cluster sizes (nclusts) that the data should be split into, 

depending on how separated the clusters appear in the plot.  The cluster number that gives the 

lowest BIC value is used for sorting spikes.  

To skip these user selection steps, the variables can be defined in the opts structure as:

opts.spwin=[0.001 0.003];

opts.threshv2=5;

opts.threshv1=4;

opts.ndim=5;

opts.nclusts=2;

The output of pouzatsortASH() is the spikes structure which has the following fields:

# Variable Description

spikes.info %Contains info used to generate the files during 

writeOneChannel()

spikes.opts

spikes.params

%Contains all the info used in the sorting steps described above

spikes.waveforms %Waveforms (spk) of the spikes detected 

spikes.spiketimes %timestamps (ind) of the spikes

spikes.assigns %To which cluster each ind and spk belong to 
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Once this stage of sorting is complete, the clusters are estimated for separation.  The data 

that is used for these estimations are the ndim dimensions obtained from PCA.  The functions that

are useful for this are:

# Function Description

1 fldplot_tot(spikes) %joint fisher linear discriminant.  The pairwise distance

for each cluster is plotted, and a separation value ‘d’ is 

calculated.  d>4 is a good indication of well separated 

clusters

2 plot_clustmodwaves(spikes,1)  %plots all waveforms of each cluster

3 plot_clustmodres(spikes1) %plots the residuals of each cluster on top of the 

channel MAD. 

4 plot_cluschan(spikes, … 

opts.ch(n,:),opts.fs)

 %plots the channel data with detected spike 

timestamps as dots, with different colored dots 

referring to different clusters. 

  If any changes had to be made for the clusters, the following functions can be used:

# Function Description

1 removeoutliers_aut(spikes,val) % removes outliers for each cluster that are val 

Euclidean distance away from the dataset

2 removeoutliers_aut(spikes,’’,n,’’

) 

% to manually select a threshold val by 

visualizing the Euclidean distance distribution of

cluster n, to remove outliers

3 removeoutliers_man(spikes,n)  %to manually remove individual waveforms 

from cluster n

4 mergeclusts(spikes,c1,c2) % to merge two clusters c1 and c2 into one 

cluster

5 splitclusts(spikes,c,n)  % to split cluster c into n clusters

The final clusters are saved in the structure spikes1.
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Spike Classification

This stage uses the same opts structure that was used for sorting, and any thresholds that need to 

be varied should be updated.  For instance, if during sorting it was found that opts.rthresh was 

set too high resulting in undetected spikes, the value should be changed before continuing. 

Classification is then called as:

sz=pouzatclassASH(spikes1,opts);

Where the output sz will contain the fields describing the classification.  The first step of 

classification is to detect superposition features, which occur when two spikes fire within a small 

time interval of each other.   This is done based on a threshold distance measure (Fig. 2.8).  First, 

the Mahalanobis distances of the spikes for each cluster are calculated from their median spike 

shapes.  Then, a threshold  (xval) is automatically generated using the covariance of noise.  The 

noise covariance is calculated by randomly choosing segments in the data trace that are not near 

spike features and constructing a matrix of these segments, and then taking the covariance of this 

matrix. Next, The PCA of this noise covariance is calculated, and the number of dimensions (r) 

that describes 90% of the variance of this dataset is found. Finally, the inverse chi-squared 

cumulative distribution function with r degrees of freedom is calculated at 99% probability to 

determine the distance threshold:

xval=chi2inv(0.99,r); %calculating superposition threshold

Figure 2.1 : Detecting superposition features. 

Superpositions are detected as spikes whose 

Mahalanobis distances (bars) are greater than 

a threshold xval (dashed line) calculated from 

the noise estimate from the trace.   
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Spikes with distances >xval are classified as superposition spikes.  Spikes within the xval

threshold are matched to one of the templates that was generated for each cluster.  This is done by

calculating the Euclidean distance of the spike to each cluster template, and attributing the spike 

to the cluster to which it has the minimum Euclidean distance.  Next, superposition templates are 

constructed using templates from each cluster, and the spikes with distances greater than xval are 

matched to them, using the minimum Euclidean distance criterion.  

Estimating quality of classification

Errors that arise due to refractory period violations, overlaps between clusters and missed 

spikes due to thresholding are estimated to determine the quality of classification.  These error 

percentages are calculated using the function:

[fpos,fneg,fres1,fres2,fres3]= toterr_rt(sz);

fres1 is the percentage of false positives due to refractory period violations, which occur when 

two spikes of the same cluster fall within 0.002 s of each other.  fres2 is the percentage of false 

positives and false negatives due to the overlap between two clusters.  This is calculated by first 

running a PCA on the waveforms and obtaining the number of dimensions that describe 98% of 

the variance.  Multivariate gaussians are then fit to each cluster to obtain the overlap.  For 

example, the false positive percentage in cluster 1 would refer to the waveforms of neuron 2 that 

were classified to neuron 1, while the false negative percentage in cluster 1 would refer to the 

waveforms of neuron 1 that were assigned to neuron 2.   fres3 is the false negatives due to 

spikes falling below the set Vt threshold, which are calculated by plotting the differences of each 

spike peak from the Vt threshold, and estimating how many spikes were missed from the 

distribution of these distances.  fpos and fneg calculate the cumulative false positives and false 

negatives from these errors for each cluster.   

This completes the sorting and classification by PouzatSort.  

32



2.3.5 Burst detection

Burst detection was done by plotting a fit to the ISI of each spiking event.  The ISI for a 

spike was calculated as the duration following the spike before another spike is seen.   The spike 

timestamps were stored in the vector ind and the ISIs were stored in the vector isi.   A minimum

of 4 spikes / s was required for fitting.  For a logarithmic fit, the equation  y=a*log(b*x+c) was 

used, where y is the independent variable (isi) and x is the dependent variable (ind).    a, b and 

c were set to take values between 0 and infinity (Inf).  Values greater than zero were chosen due 

to the adaptive nature of neural firing, which results in an increase in isi and ind over time.  To 

give greater weight to smaller ISIs, a weight vector wt was set as 1/isi.   After constructing the 

fit, the isi values that exceed a threshold of two times the fit at their corresponding time points 

are considered as ISIs belonging to end of burst spikes.   These curve fitting steps were done in 

MATLAB as:

# Function/variable Description

Setting fit parameters:

1 ft.type=(‘a*log(b*x+c)’, …  

’independent’,’x’,’dependent’,’y’)

%specifying the fit type

2 ft.opts=fitoptions(ft.type) %generating the options for the desired fit 

type

3 ft.opts.Lower=[0 0 0]; %set the lower thresholds for the variables

4 ft.opts.Higher=[Inf Inf Inf]; %set the upper thresholds for the variables

5 ft.opts.StartPoint=[0.2 0.6 0.9]; %setting a starting point for variables of the 

fit

6 ft.opts.Robust=LAR;  %using robust least squares regression

7 ft.win=[0:0.01:1]; %time intervals over which to evaluate the fit

Implimenting Fit:

8 ft.out=fit(ind,isi,ft.type,ft.opts) %calculating the fit for each timepoint 

specified in ind

Evaluating Fit:

9 ft_eval=feval(ft_out,ft.win); %calculating the fit for each timepoint 

specified in ind
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Finding Outliers:

10 out_ind=find(isi./ft.out>2); %find the indexes where the isi is greater than

2 times the fit that was calculated for each ind

corresponding to the isi.  

The function ash_logfit() implements the above steps and outputs the end of burst ISIs, and is 

called as:

[save_fit, marker,eob]=asheob(ind,win);

where save_fit is the saved logarithmic evaluated over the time intervals in win, marker gives a

0 or 1 depending on whether the fit was successful or not, and eob gives the end of burst 

timestamps.  

Reference [166] developed a method for detecting inter-burst intervals using a static ISI 

threshold.  In this method, all ISIs less than the mean ISI are taken to give a vector Lt. 

Sequential spikes having a mean value less than the mean of Lt are considered as the spikes 

within a burst. 
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2.4 Results

2.4.1 Dual channel (tip + tungsten electrode) sensillum recordings

The activity of GRNs were monitored from the longer (~20 µm) A-type galeal contact 

chemoreceptor sensilla in the buff-tailed bumble bee Bombus terrestris using two extracellular 

electrodes:  a glass capillary electrode filled with the tastant solution placed at the sensillum tip, 

and a tungsten electrode inserted about 1 mm into the base of the sensillum.   This allowed for 

monitoring activity at two separate locations along the length of the sensillum.  The diagram for 

this setup and the amplifier connections are shown in figure 2.2 a (see methods for details).  

Using 100 mM sucrose as the stimulant, the GRNs were found to respond with bursts of 

spiking activity along with a low frequency oscillation in potential that were measurable by both 

electrodes  (figure 2.1 b). The response starts when the tip electrode makes contact with the 

sensillum and ends when it loses contact.  This contact is associated with a high amplitude 

deflection in potential in both recordings (contact artifact), which lasts approximately 0.1 s from 

stimulus onset.  During this time, spikes waveforms are distorted in both channels.   The 

potentials associated with each spiking event lasted approximately 0.005 s (figure 2.1 b right). 

Figure 2.2 (legend on next page)
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Figure 2.1: Dual tungsten- tip recording setup.  a) left Positions of tip and tungsten electrodes 

(schematized), as shown on a TEM of a galeal A-type sensillum.   Right) A chlorinated silver 

wire connects the tastant solution within the tip electrode to a headstage-amplifier (Syntech, 

Germany), which in turn is connected to a TastePROBE (Syntech, Germany).  The tungsten 

electrode is connected to the positive input of an A-M systems 1800 headstage amplifier, while 

the negative and ground terminals were shorted and fixed to the ground wire.  The ground wire 

was an Ag/AgCl wire inserted into the head capsule of the bee.  The output of these two channels 

(ch1 and ch2) are amplified (10X) and filtered (10-10,000 Hz) using an AC amplifier (AM-

systems 1800) , and acquired (digital acquisition,DAQ) at 30,000 Hz (DataTranslations)  b) 100 

mM sucrose stimulation shows that the first 0.1 s (gray window) is associated with a contact 

artifact.  The spiking and low frequency oscillations can be observed after the initial 0.1 s (green 

window).  The median spike waveforms show that the action potentials last approximately 0.005 

s (starting with the sharp depolarization and ending with the after-hyperpolarization; dotted red 

lines).  

To characterize the spiking component of the GRN response, recordings were filtered 

between 300-3000 Hz  (figure 2.3 a ; see methods and next section for filtering).  Spikes in the tip

recording could not be detected in a 0.5 s time window after stimulus onset and before stimulus 

offset, due to the influence of the contact artifact. However, spikes in these durations can still be 

detected in the tungsten recording.  

There were two observable differences in the spike waveforms from both channels (figure

2.3 b).  First, the spikes from the tip electrode reached peak amplitude  0.30 ± 0.03 x 10-3 s (mean 

± SD; n=5 recordings, 5 animals obtained from 1s stimulations) after the spikes in the tungsten 

recording.  Second, spikes from the tungsten recording had a shorter width (half height width, 

hhw=0.6 x 10-3 s) in comparison to the spikes from the tip electrode (hhw= 0.8 x 10-3s; n=5 

recordings, 5 animals, obtained from 1 s stimulations). 

 The longer width of the spikes in the tip recording resulted in a poor resolution for 

detecting superpositions (figure 2.3 c), with the minimum time required for two subsequent spike 

peaks to be detected being greater than 0.001 s for the tip recording.  In comparison, tungsten 
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electrode recorded spike peaks could be detected when spikes were separated by as little as 

0.0005 s. GRN spiking activity was also associated with a decrease in spike amplitude over the 

course of stimulation (figure 2.2 d). This amplitude decrease was larger in the tip recording as 

compared to the tungsten recording over a 1 s duration. 

Figure 2.2 (legend on next page)
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Figure 2.3: Dual channel recording for studying GRN responses.  a) 300-3000 Hz band-pass 

filtered tip and tungsten recordings show that contact artifact distorts spike waveforms around 

the stimulus onset (left) and offset (right) in the tip recording, but not in the tungsten recording. 

b) Median spike waveforms from both channels reveal differences in time to spike peak and spike 

width.  c) Example superpositions show that the tip recording allows less temporal resolution for 

detecting separate peaks of superpositions as compared to the tungsten recordings.  Labels refer 

to the time interval between the peaks of each superposed spike (blue, 0.5 ms; red, 1ms).  Median

spike waveform (grey) is shown for comparison.   d left) Median waveforms from the initial (0.1-

0.3 s duration) and final (0.9-1.1 s duration) durations of the recordings show that the amplitude 

decreases over the course of stimulation.  d middle) Average decrease in amplitude (crosses) for 

tungsten spikes (blue dots) and tip spikes (black dots) over recordings.  Amplitude normalized to 

the initial amplitude (n=5 recordings, 5 animals). d right)  The residuals of the spike waveforms 

from the tip channel (normalized to the standard deviation of the waveforms) exceed a 95% 

confidence interval (pink region) set around the noise estimate for the channels (dashed line) 

near the spike peak, indicating a strong influence of the decreasing spike amplitude.  Waveforms 

are centered at 1 because they have been normalized to the channel noise.  

2.4.2 Optimal filtering for tip and tungsten recordings

 To determine the pass-band for filtering the tip and tungsten recordings to extract spike 

waveforms, I plotted a Welch’s power spectral density estimate using the acquired channel data 

(figure 2.4 a).  The most prominent frequency components (those having the largest magnitude)  

lie within the first 1000 Hz for both channels. The first 10-50 Hz form the oscillatory component.

The 100-300 Hz components on the other hand contribute to the slow time scale components 

associated with each action potential, e.g the spike after-hyperpolarization or the passive currents 

associated with each action potential (figure 2.4 b).  The 100-300 Hz frequencies are  prominent 

in the tip recording but are mostly absent in the tungsten recording.  Since frequencies below 300 

Hz  do not reflect the conductances that generate the spiking events [137], [138] they can safely 

be removed.   
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A pass-band for filtering was set between 300-3000 Hz.   I applied several filter designs 

on the dataset  (figure 2.4 c; see methods for filter implementation).  A 2nd order Butterworth filter

was found to work adequately in the chosen pass-band, and hence was used for all filtering 

purposes.  This filter functioned similarly to a 3rd order Butterworth filter used in [133].  While a 

tolerance zone filter (Fee, Mitra, and Kleinfeld 1996)  was better at preserving frequencies near 

the pass-band cutoffs (300 and 3000 Hz), this was not found to change the outcome during spike 

sorting (data not shown).  The Butterworth filter in this pass-band was non-zero and non-linear 

(figure 2.4 d).  Sample filtered traces are shown in figure 2.4 e.  

Figure 2.4 (legend on next page)
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Figure 2.4 : Filtering tip and tungsten recordings. a)  A Welch’s power spectral density (PSD) 

estimate shows that the prominent frequency components lie in the first 1000 Hz for both 

channels.  b) 10-50 Hz components (dotted line) and 100-300 Hz components (dashed line) 

contribute to the low frequencies associated with the 100 mM sucrose response, as seen against 

the unfiltered tip and tungsten recordings. c) PSD of different types of filters in the bandwidth 

range of 300-3000 Hz, plotted against the PSD of the unfiltered trace. The 2nd order filter was 

used for remainder of the analysis. d) A Butterworth filter in the 300-3000 Hz range has a non-

zero, non-linear phase response. e) Filtered trace after applying the 2nd order Butterworth filter 

in the 300-3000 Hz band-pass range.  Traces reveal superpositions (horizontal bars) and distinct

spike waveforms (arrows), suggesting the  presence of multiple active GRNs.

2.4.3 Sorting

Spikes from filtered tip and tungsten recordings obtained from 100 mM sucrose 

stimulation (figure 2.4 e) were sorted using a method developed by Pouzat et al.  [133] and Hill 

et al.  [134]  (adapted to the MATLAB platform by the lab of Dr. Mark Stopfer, see methods) 

which shall henceforth be referred to as PouzatSort.  These techniques have never been applied to

sensillum recordings before, and hence had to be standardized to account for the specific features 

of the spike waveforms from the tip and tungsten recordings.  

For the clustering stage of spike sorting, spike timestamps (time points where spikes are 

located) were first detected from the filtered tip and tungsten recordings.  This was done by 

setting a single user-defined horizontal threshold line for each recording channel (see methods).  

As a result, a vector (sequence) of spike timestamps (time point defining the arrival of the spike, 

in relation to the stimulus onset) were obtained, such that each spike timestamp had a 

corresponding waveform from each channel.  These timestamps were used to extract the 

corresponding spike waveforms from each channel.  Only those spikes in a 0.1-1.1 s duration 

after stimulus onset were used for sorting, since the first 0.1 s after stimulus onset was associated 

with a large deflection in potential that distorted spike shapes. 

PouzatSort uses entire segments of the waveforms for comparisons; each datapoint along 

these segments is used as a parameter for clustering.  This involves choosing those segments that 
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exhibit the most variance across the tip and tungsten spike waveforms, which is done in three 

steps.  First, the median absolute deviation (MAD) of the spike waveforms is plotted (figure 2.5 

a).  This showed that most of the variance between waveforms is observed in a 0.001s-0.003 s 

window to the left and right of the spike peak, and hence spike waveforms were  truncated to this 

window.  Second, a horizontal threshold line delimiting 4*SD of the waveforms was used to 

remove segments of the spike waveforms that lie above this threshold (figure 2.5 b).  This was 

required since the spike amplitudes in both the tip and tungsten electrodes decreased over the 

course of the recording. Third, waveforms falling outside a 5*SD envelope set around the spike 

waveforms were removed (figure 2.5 c).  This functions to get rid of superposition waveforms 

and noise artifacts before generating spike templates.  

The segments defined by these three thresholds were applied to all the spike waveforms.  

Each corresponding waveform from each channel was then concatenated (linked together side-

by-side) to form one continuous waveform per spike timestamp.  These thresholds could be 

applied to all recordings, making any user input unnecessary during this stage of sorting.  Finally,

a principal component analysis (PCA) on the set of concatenated waveforms revealed that the 

first five principal components accounted for more than 95% of the variance (figure 2.5  d).  

Therefore, instead of using the entire length of the concatenated waveforms, only the first five 

principal components per waveform were used as parameters for comparison.   

Next, the first five principal components obtained as described above were used to split 

the spike waveform dataset into two clusters.  Two clusters were chosen since the 100 mM 

sucrose recordings exhibited superpositions and visually distinguishable spike shapes that suggest

at least two separate active GRNs (figure 2.4 e).   The concatenated waveforms for each cluster 

and from both channels are shown in figure 2.5 e.  

To estimate for cluster quality, the residuals were plotted for each cluster (figure 2.5 e).  If

the residuals fell within 1.5 * the standard deviation of the noise estimate for each channel (see 

methods), the spike waveforms of that cluster are similar to each other and likely belong to the 

same GRN.    1.5*SD was used as a threshold to accommodate for the decrease in spike 

amplitude over the course of the recording.  To observe whether the each cluster was well 
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separated from each other, a Fisher's Linear Discriminant Analysis (LDA) was done on the first 

five principal components obtained from PCA.  Recordings were only used for classification if 

the Fisher's LDA revealed a separation greater than 4 (figure 2.5 f);  which is considered to be a 

cutoff for well separated clusters [134].  Sorting was efficient for the dual-channel recordings, 

with 10 out of 11 recordings yielding well separated clusters (N=11 animals).  The median spike 

shape from each cluster was used as a template. 

Figure 2.5 : Sorting spikes from 1 s stimulation with 100 mM sucrose. a) Median absolute 

deviation (MAD; red trace) of the spike waveforms against the channel noise (horizontal dashed 

line). Spike waveforms were restricted to the window enclosed by vertical grey lines.  b) 

Horizontal thresholds lines (in multiples of SD of the waveforms) plotted on the median spike 
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waveform.  c) Envelope thresholds plotted around the spike waveforms (dotted grey waveforms).  

d) Proportion of total variance accounted by each of the 10 largest eigenvectors of the 

covariance matrix of all detected waveforms.    e top) Spike waveforms from each channel after 

clustering.  Middle and bottom) Residuals of both clusters, along with the noise estimate (dashed

line) and 95% confidence interval around the noise estimate (pink box).  f) A joint Fisher's LDA 

using the 5 dimensions obtained from PCA. 

2.4.4 Classification

In the first step of classification, superposition waveforms are identified by setting a 

Mahalanobis distance threshold from each spike template derived from the channel noise [133] ; 

see methods).   Spike waveforms from the dataset that have a distance greater than this threshold 

are labeled as superposition waveforms.  All spikes were then classified to either the cluster 

templates or the superposition templates, using a minimum Euclidean distance measure.  

To estimate the quality of classification, the error percentages arising from 1) false 

positives due to refractory period violations, 2) false positives and false negatives in classification

due to overlap between two clusters, and 3) false negatives due to spikes falling below the set 

threshold for detecting spikes were measured, using methods developed by [134] (see methods). 

If all errors fell under 10% of the dataset for the 1 s recordings, the recording was considered well

sorted and was used for further analysis.   Using this procedure, 5 of the 10 recordings yielded 

two separate clusters with less than 10% errors.  Visually estimating the accuracy of classification

by looking for missed superpositions and incorrect classifications revealed an accurate detection 

of superpositions and classification in these 5 recordings (Table 2.1 i ).  As a result, spike sorting 

revealed the presence of two classes of spikes, termed as Class 1 and Class 2 (spike timestamps 

shown in figure 2.6 a).  

2.4.5 PouzatSort using single channel recordings

The sections above described sorting (section 2.4.3) and classification (section 2.4.4) 

when two channels were used (i.e tip and tungsten channels).  I next compared the efficiency of 

sorting when single channels of recording (either the tip channel or the tungsten channel) were 

used for sorting spikes.  Using the 5 recordings that yielded low errors after classification when 
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both channels were used (section 2.4.4), I found that using spikes from only the tungsten 

electrode yielded a much higher error percentage from false positives and false negatives 

associated with overlap between the two clusters, with < 71%  errors across the 5 recordings 

(Table 2.1 ii).  This indicates that the spike waveforms between clusters are not very different.  As

a result, there were a high number of visually detected errors;  over the 5 recordings, I found on 

average 3 errors due to misclassification and on average 2 errors due to missed superpositions 

(Table 2.1 ii, figure 2.6 b). 

In comparison, using spikes from only the tip electrode recording yielded lower error 

percentages, with < 26% errors across recordings (Table 2.1 iii).  While the visually detected 

errors due to misclassification were negligible when using the tip recordings, there was a high 

error count for missed superpositions (6 errors on average over recordings; Table 2.1 iii, figure 

2.6 c).  Together, these data show that sorting spike waveforms using both the tip and tungsten 

electrodes results in a more efficient spike sorting and classification, as compared to when sorting

is done using either the tip or the tungsten channels in isolation. 

Table 2.1 (legend on next page)
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 Recording #

fpos (%) fpos, fneg (%) Fneg (%)
i)  1 0 0

2 0 0
3 0 0
4 0 0
5 0 0

ii) Tungsten channel 1 3 11
2 2 2
3 2 0
4 2 2
5 0 0

iii) Tip channel 1 11 0
2 4 1
3 8 0
4 5 0
5 0 0

Cluster1,Cluster2
Refractor
y period 

violations

Overlap 
between 
clusters

Spikes 
falling below 

threshold

Missed 
super-

positions
Misclassi-

fication

Tung+Tip 
Channels 0,0 2,0 ; 0,4 0,0

0,0 0,0 ; 0,0 0,0
0,0 1,1 ; 4,5 0,0
0,0 0,0 ; 1,0 0,0
3,0 0,0 ; 0,10 0,0

0,23 24,55 ; 11,5 0,0
0,0 15,0 ; 0,3 0,0
0,0 1,35 ; 9,0 0,0
0,0 9,71 ; 14,2 0,0
0,0 2,0 ; 0,0 0,0

0,0 1,5 ; 19,4 0,0
0,0 1,1 ; 8,10 0,0
0,0 0,0 ; 5,1 0,0
0,0 5,2 ; 10,26 0,0
0,0 1,1 ; 11,18 0,0



Table 2.1.  Comparison of errors from sorting and classification when using individual vs both

channels.  Sorting done using spikes from i) both tip and tungsten recordings, ii) only the 

tungsten recording or iii) only the tip recording channel.  False positive (fpos) and false negative 

(fneg) rates contributed by refractory violations, overlap between clusters, and missed spikes due

to incorrect thresholding, for the Class1 (black)  and Class2 (magenta) spikes are shown for all 

three scenarios.  The last two columns show the number of visually detected errors due to missed 

superpositions and misclassification.

Figure 2.6.  Classification using dual-channel vs single channel recordings.  a) Using spikes 

from both the tip recording (trace in [b]) and the tungsten recording (trace in [c]), spikes were 

classified as Class1 and Class2.  b) Sorting and classification using spike waveforms from only 

the tip channel and c)  using waveforms only from the tungsten channel.  Boxes indicate visually 

detected errors (in comparison to [a]) which arise from missed superpositions (purple boxes) or 

misclassification of spikes (pink boxes).  
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2.4.6 End of burst detection

Tip recordings made from galeal GRNs show that sucrose evokes a dose-dependent 

increase in spiking and bursting (figure 2.7).  In order to quantify the bursting nature over 

concentration and determine whether the two GRNs revealed from spike sorting fell at specific 

positions within the burst structure, it was necessary to detect the burst positions from these 

recordings.  A plot of the ISI histograms over concentration (figure 2.7 a) shows that for lower 

concentrations, the histogram is more spread out which reflects the more random spike firing of 

GRNs.  The absence of any structure in spike timing is also observed in a scatterplot of the  nth vs 

(n+1)th ISI (figure 2.7 b) .  

However, as the concentration is increased, the  ISI histogram becomes progressively 

bimodal, which reflects the structure burst firing of spikes. The shorter mode represents the ISIs 

of the spikes within bursts (within-burst intervals) and the longer mode represents the inter-burst 

intervals.  Similarly, the scatterplot shows that  data points cluster into four separate quadrants, 

where the third quadrant represents within-burst intervals and the first and fourth quadrants 

represent the inter-burst intervals.  Adaptation in spiking frequency will cause the ISI distribution 

to spread diagonally across the first quadrant and into the second quadrant.  The easiest way to 

detect burst positions from these traces would be to choose an ISI threshold which separates the 

two modes of the ISI histogram, or which separates the different clusters in the scatterplots.  

However, it is immediately apparent that a single ISI threshold cannot be used over recordings 

from different concentrations.  Therefore, an ISI threshold has to be generated for each trace.  
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Figure 2.7: A single ISI threshold cannot be used across recordings from different 

concentrations.  a) ISI histograms made from 1 s recordings to increasing concentrations of 

sucrose.  Bimodal distribution at higher concentrations is indicative of burst firing.  b) Plotting 

the ISIs as a scatterplot of the nth vs (n+1)th ISI shows that at higher concentrations, datapoints 

cluster in the third and fourth quadrants, which is indicative of bursting.  c) Corresponding 

recordings obtained from the tip electrode.  

 One way to generate an ISI threshold per trace would be to use a static ISI threshold (a 

threshold that remains constant over time) for each recording, either selected manually or derived

from the ISI dataset for the recording.  While a static ISI threshold would work well for 

recordings whose ISI modes are well separated (e.g figure 2.7 row 4), it becomes difficult to 
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obtain an efficient threshold for longer recordings due to the effect of adaptation in spike firing, 

which can be observed as an increase in ISI over the course of the recording (figure 2.8a).  This 

causes the separate modes of the ISI histogram to be less distinguishable (figure 2.8 b).   Due to  

adaptation, a threshold derived from the mean ISI for each trace as described by reference 

[166] was not efficient for detecting burst positions (figure 2.8 a red dots).  

 In order to account for this increase in ISI as GRN activity adapted, I applied a time-

varying threshold to detect the longer inter-burst intervals from the population of ISIs (figure 2.8 

c).  This was done by constructing a fit to the spike time vs ISI data and using a multiple of this 

fit to detect inter-burst intervals.  ISIs were calculated as the time following a spike event until a 

subsequent spike event. The fit was weighted towards the shorter within-burst intervals by using 

weights proportional to 1/ISI and using least absolute residuals fitting to minimize the influence 

of outliers. Using a three-term logarithmic fit having equation a*log(b*x+c) and a threshold of 

two times this fit was efficient in detecting inter-burst intervals for up to 5 s from stimulus onset 

for 100 mM sucrose recordings (example for detected bursts shown in figure 2.8 a, green circles).

A similar efficiency was observed with a two-term power fit having equation a*x^b; while the 

logarithmic fit detected 67±33 bursts from 11 recordings, the power fit detected 66±32 bursts 

from the same recordings.  Both the two term power fit and three term logarithmic fit were 

efficient at detecting bursts from 1 s recordings obtained from different concentrations of sucrose 

as well (data not shown).  
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Figure 2.8 : End of burst detection using time-varying threshold.  a) Segments of a sample 

recording from a 5 s stimulation with 100 mM sucrose.   Detecting end of burst positions using a 

static threshold (red dots; [166] is inefficient.  This is due to the increase in ISI over time as GRN

spiking adapts.  b) Histogram of ISIs for the 5 s recording shown in (a).  Due to adaptation, there

is no clear bi-modal structure in the histogram which would normally be indicative of burst 

spiking.  c) Time varying burst detection, by fitting either a three-parameter logarithmic (solid 

red line) or a three-parameter power (solid green line) equation to the ISIs as a function of the 

spike timestamps (black dots) and using a threshold of two times these fits (dashed lines) as a 

threshold for detecting inter-burst intervals (green circles).  Burst positions detected using a 

logarithmic fit are shown in (a) (green circles).  
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2.5 Discussion

The tip and tungsten recording methods are widely used for monitoring activity of GRNs 

within gustatory sensillia.  Current spike sorting programs that are available for sensillum 

recordings are designed to sort spikes obtained from single channels of recording.  In this chapter,

I present the first spike sorting method (adapted from methods developed by Pouzat et al. [133]

 and Hill et al. [134] for sensillum recordings, which uses spike waveforms obtained from both 

tip and tungsten electrodes that simultaneously monitor sensillum activity.   Further, I develop a 

new burst detection method for detecting bursts in traces that exhibit adaptation over the course 

of stimulation.      

2.5.1 Sorting spiking activity from GRNs

The existing spike sorting programs available for sensillum recordings, such as DbWave 

[154] and AutoSpike (Syntech), are generally adequate for sorting tip or tungsten recordings. This

is because each GRN within a sensillum has a distinct spike amplitude that is apparent on tip or 

tungsten recordings  [8], [89], [156], which allows for using simple sorting procedures to detect 

them.  Further, each sensillum contains a small population of 2-5 GRNs [10], [20], [45], [66], 

[70], [71], [144], with each GRN responding to a largely non-overlapping set of tastant molecules

[7]–[10].   Finally, most studies are interested in detecting the presence or absence of GRN 

activity [18], [34], and hence accuracy of sorting is not of primary concern.  For example, visual 

thresholds are used to detect clusters and superpositions are often manually detected [8], [72].

However, the responses exhibited by GRNs within galeal sensilla in B. terrestris were 

unlike those exhibited in most other insect species.  Stimulating these sensilla with 100 mM 

sucrose evoked a burst spiking response from the GRNs.  Tip and tungsten recordings revealed 

two visually distinct spike shapes as well as superpositions in these recordings, each of which 

appeared to fire at a specific position within the burst structure.      Therefore, in order to 

accurately characterize this response, I needed a sorting method that 1) required minimal user 

input, to remove bias from the sorting procedure,  2) allowed for estimating the quality of 

classification, to convincingly argue for the presence of multiple active neurons, and  3) uses 
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multiple parameters for comparison, particularly since the second GRN activity was very low 

(~17 spikes/s) and often was associated with the first GRN as a superposition (~10 

superpositions/s; see chapter 3). Further, spike amplitude and width were often found to decrease 

over the course of a sensillum recording, which makes these parameters less efficient for sorting. 

The sorting method provided by references [133] and [134] allowed me to accurately sort and 

classify the burst responses.

Spikes from both tip and tungsten channels, obtained from the 0.1-1.1 s window after 

stimulus onset, were used for sorting.  The first 0.1 s window was skipped due to the presence of 

the large deflection in potential associated with stimulus onset.  The deflection in part represents 

an artifact associated when the glass capillary electrode touches the sensillum, and also carries 

information about the receptor potential  [44].  

PouzatSort required very little user input during the spike sorting process.  The only user 

defined threshold was for choosing a horizontal threshold line for detecting spikes.  After this, the

only user input was for estimating the quality of the clusters for generating spike templates, and 

estimating the quality of classification.   This required manual removal of outlying noisy spikes 

or clusters, if required.  

PouzatSort uses entire segments of spike waveforms from both the tip and the tungsten 

recording electrodes as parameters for spike sorting.  Apart from providing a larger set of 

parameters for comparisons, using both channels also resulted in a lower error percentage from 

classification, as compared to when individual channels were used.  The high error percentage 

when only the tungsten channel was used for sorting was mostly due to the similarity between the

Class 1 and Class 2 spike waveforms, which resulted in incorrect classification.  This similarity 

between the Class 1 and Class 2 spike waveforms in the tungsten recording could be due to the 

tungsten electrode being within equal proximity from both GRNs.  For the tip recording, 

superpositions were not efficiently detected.  This is possibly due to the large width of the spikes, 

which makes it difficult to detect the separate peaks of a superpositon; the peaks fuse together to 

form one contiguous waveform.  The large spike width could be due to the nature of the tip 

recording, which monitors return currents associated with action potentials that are passively 
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transmitted into the sensillum from a region near the cell body via the outer dendritic lymph [4]–

[6]. 

The tip and tungsten recordings were often associated with a decrease in spike amplitude 

over the duration of the recording.  This has been observed for sensillum recordings in other 

insects as well, and is suggested to be dependent on spike frequency  and the intensity of the 

receptor potential [60].  To accommodate for the decrease in amplitude, PouzatSort removes a 

segment of the waveform around the peak of the spike before comparing spike waveforms.  

Overall, PouzatSort proved to be a very powerful tool for sorting spikes using both the tip

and tungsten recordings.  Using this method, I was able to sort 1 s recordings made with 100 mM 

sucrose stimulation, with 5 out of 11 recordings yielding less than 10% errors.  PouzatSort 

provides a convincing way of suggesting the presence of multiple active neurons as opposed to 

existing sorting methods available for sensillum recordings. 

2.5.2 Burst detection

 Burst spiking is generally a feature of higher order neurons which do not exhibit a strong 

adaptation in spiking rate over time [166]–[168].   For this reason, bursts in recordings from these

neurons can be detected using static ISI thresholds (thresholds that do not change over time).  

This can be done either by setting user-defined ISI thresholds [167] or thresholds derived from 

the ISI data [166], [168].  

However, two features of GRN activity prevented static ISI thresholds from being 

implemented in the sucrose recordings.  First, the distribution of ISIs depended on the 

concentration of the stimulus; for low concentrations, spiking frequency was low and hence the 

ISIs were large.  The distribution of these large ISIs at low concentrations overlaps with the 

distribution of inter-burst intervals associated with the higher concentration stimulations.  This 

means that the same ISI threshold could not be used over different concentrations.  Second, the 

ISIs increased over the course of stimulation as the GRNs adapted.  A time-varying threshold was

therefore designed to account for adaptation in GRN activity, and the threshold was derived from 
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the ISIs of each dataset to account for the change in concentration.  To the best of my knowledge,

a burst detection method for neurons exhibiting adaptation has not been described before.  

 Power and logarithmic equations are commonly used for fitting ISI data as a function of 

spike timestamps for neurons exhibiting adaptation [162], [163].   Both a 3-term logarithmic 

equation and 3 term power equations, using weights proportional to 1/ISI and robust least squares

regression, were found to be best at fitting the 100 mM sucrose recordings.  A threshold of two 

times these fits were efficient at detecting bursts for up to 5 s  of stimulation, as well as 1 s 

recordings made and over increasing concentrations of sucrose.

2.5.3 Concluding Remarks

This chapter shows that methods for spike sorting that were developed for multi-channel 

extracellular recordings made from central brain regions can be used for sorting and classification

of spikes from sensillum recordings measured using tip and tungsten electrodes. The efficiency 

for obtaining well classified recordings was less than 50%, with 5 of 11 recordings yielding less 

than 10% errors.  However, it provides a more convincing way of suggesting the presence of 

multiple active neurons as opposed to existing sorting methods available for sensillum 

recordings, particularly due to its minimal user input and analyses to estimate quality of sorting. 

Further, it allows using multiple channels of recording, which improves spike sorting. It remains 

to be seen whether PouzatSort can be used to sort sensillum recordings which exhibit more than 

two active GRNs.

Finally, I show that a time-varying burst detection method using a three-parameter 

logarithmic curve can be used to detect burst positions for up to 5s from stimulus onset for 

100mM sucrose recordings, and from 1s recordings obtained from increasing concentrations of 

sucrose. The simplicity of this method makes it usable for detecting bursts in any other neuron 

that exhibits a similar adaptation.  Even if the adaptation rates are different, a suitable fit and 

threshold can be chosen depending on the dataset.  

53



54



Chapter 3.   Bee Gustatory Neurons Encode Sugar Concentration as a

Coherent Temporal Pattern of Spiking

3.1 Abstract

The gustatory system encodes taste stimuli to drive appropriate feeding behaviors.  In 

insects, individual first-order gustatory neurons are commonly observed to encode stimulus 

intensity by a brief increase in rate of spiking that adapts with prolonged stimulation. In this 

study, I report my findings that showcase the first evidence of a coherent, temporal pattern of 

spiking produced by the interaction of the gustatory receptor neurons (GRNs) of the mouthparts 

of bumble bees (Bombus terrestris) that encodes information about sugar concentration. 

Stimulation of gustatory sensilla with sucrose concentrations >10 mM elicited bursts of spikes 

riding on an oscillation in voltage of ~21 Hz. Each burst was defined by the activity of one sugar 

sensing neuron that was active within the burst until punctuated by a final ‘end of burst’ spike by 

a second neuron. The activity of these neurons adapted over time and resulted in a tonic, 

unstructured firing.   Bursting bee GRNs exhibited a high rate of firing that persisted for longer 

durations than any other GRN reported thus far. Only concentrations that evoked threshold 

spiking activity from both GRNs were found to elicit the bee’s feeding reflex.  These data are the 

first to show that primary chemosensory neurons encode stimulus features such as concentration 

as a coherent temporal pattern of spiking, and suggests that it is driven by an interaction between 

two neurons. 

3.2 Introduction

Primary chemosensory neurons in insects translate chemical information into action 

potentials that are assembled by the brain to form representations of complex, natural stimuli. 

Hair-like sensilla house the dendrites of 2-5 chemosensory neurons in a tightly packed space 

surrounded by lymph through which molecules pass prior to binding with receptors on the 

dendritic membranes  [10], [20], [45], [66], [70], [71], [143]–[145]. Studies in several insects 

suggest that the olfactory receptor neurons  (ORNs) within sensilla do not have independent rates 

of firing [74]–[76]. It was shown in Drosophila that when one ORN within a sensillum begins 

spiking in response to stimulation, the spiking activity of its neighboring ORN is inhibited. This 

form of lateral inhibition is thought to occur through an ephaptic interaction, whereby the electric
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field associated with spiking activity of a neuron modifies the excitability of neighboring neurons

[75]. By inhibiting its neighbor, an ORN affects downstream coding through its influence on the 

antennal lobe circuitry that encodes odour representations [53], [54]. However, there is little 

evidence to date that explores how an interaction between neurons of a sensillum could affect the 

information encoded by the rate of firing of the activated neuron.   

Gustatory receptor neurons (GRNs) in insects encode taste category (e.g. sweet or bitter)

in part through the spiking responses of GRNs [1], [7]–[11] that express receptors that bind to

individual taste categories  [9], [26], [31], [47], [48].  For example,  in  Drosophila,  sugars like

sucrose elicit spikes from a single type of GRN per sensillum that expresses several gustatory

receptors  (GRs)  that  are  sensitive  to  sugars  [48].  Like  ORNs,  sugar-sensing  GRNs  encode

stimulus concentration as a sigmoidal increase in rate of firing in blowflies  [61], [156], [169],

fruit  flies  [57],  [155],  [170],  moths  [65],  [90],  mosquito  [171],  butterflies  [66],  [71],  and

honeybees  [63].  In most insects where such recordings have been reported,  GRNs produce a

phasic burst of spiking during the first ~100-200 ms of stimulation, and the frequency decreases

over time as the neurons adapt until it reaches tonic firing [56]–[59], [63], [172]. 

Lateral inhibition as seen in ORNs is not commonly observed in GRNs.  A study in 

gustatory sensilla of grasshoppers show that they possess a GRN responsive to nicotine hydrogen

tartarate, which was inhibited for a brief period of time (order of 0.01 s) by the occasional activity

of a second GRN [81]. A similar observation was made in cockroach antennal sensilla when 

stimulated with sucrose [173].  Activated sugar-sensing GRNs can also be inhibited by the 

presence of some toxic compounds [70], [89], [90], but this form of inhibition arises from direct 

interaction of the ligand with the sugar-sensing neuron.  

In this chapter, I recorded from the GRNs of the mouthparts of adult worker bumblebees 

to identify the thresholds for sugar detection that were necessary to elicit feeding.  Sugars are 

particularly important for bees as they provide the major source of energy required for flight 

[106], [125], and they form a major component of the food bumble bees provide for their colony 

[105], [174].   Bumble bees in particular have been shown to acquire complex behaviors 

associated with a carbohydrate reward ([120]–[122]).  Unexpectedly, I found that B. terrestris 

GRNs exhibited a novel, coherent temporal pattern of spiking characterized by bursts of rapid 

spiking activity formed from the interaction of two neurons. Production of bursting in these 
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neurons was a function of sugar concentration, depended on sugar identity, and correlated with 

the initiation of feeding. In contrast to other sensory neurons and other insect GRNs, bursting bee

GRNs exhibited very low rates of adaptation in response to prolonged stimulation, indicating a 

novel role for bursting in sensory neurons that is likely to function to promote the continuation of 

feeding during fluid consumption. 
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3.3 Methods

3.3.1 Bumblebees

Experiments were performed on female (worker) Bombus terrestris audax (Koppert Biological 

Systems, NATURPOL, the Netherlands). Colonies were maintained  at 24 ±1°C and 28 ±1% 

relative humidity with natural light conditions, and fed commercial pollen and sugar solution bee 

food.

3.3.2 Electrophysiological recordings

Bees were chill-immobilized and  harnessed as described in reference [116].  Mouthpart 

nerves were then severed by making an incision at the base of the mouthparts, to prevent 

movement.  The galea were then oriented with the help of wire pins on a wax base.  

The tip electrode recording method, originally described by Hodgson et al. ([64]) was 

used to stimulate sensilla and record the responses of their GRNs, as described in Chapter 2.  

Briefly, a glass capillary electrode was filled with the stimulating solution and placed on the tip of

a sensillum.  A chlorinated silver wire served to connect the solution to a headstage which in turn 

was connected to a TastePROBE amplifier (TastePROBE, Syntech, Germany).  The output of this

amplifier was connected to an AC amplifier (AM-systems 1800) which was set to filter the signal

between 10-10000 Hz and apply a gain of 100x.   A minimum latency period of 3 minutes was 

allowed between stimulations from the same sensillum to avoid adaptation.  

In some experiments, a sharpened tungsten electrode was used to monitor GRN activity 

simultaneously with the tip electrode.  Tungsten electrodes were prepared by electrolytically 

sharpening a 0.05 mm outer diameter uninsulated tungsten wire by repeatedly dipping in a 250 

mM KOH solution attached to a 3V AC power supply.  The tungsten electrode was attached to a 

headstage (AM-systems 1800), and was pushed a few microns into the base of the sensillum 

using a motorized micro-manipulator (MPC-200, Sutter Instrument, USA).

3.3.3 Data acquisition, filtering and normalization

Signals were digitized (DT9803 Data Translation) and acquired using DbWave (version 

4.2014.3.22). Acquired signals were imported into MATLAB (The Mathworks) for analysis. 

Using MATLAB, stimulus onset and offset were determined by the contact artifacts from the tip 
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electrode recording.  Signals were filtered in the appropriate pass-band using a 2nd order 

Butterworth filter. Band-stop filters constructed using a 1 Hz window around 50, 100, 150 and 

200Hz were then implemented to remove line noise frequencies.  The filtered signal was then 

normalized to the estimate for noise in the filtered signal.  This noise estimate was calculated as 

1.48 * median absolute deviation (MAD) of the filtered signal.  The MAD is a measure similar to

the standard deviation (SD), but is not sensitive to the presence of outliers in the dataset.  1.48 is 

a constant that is used when the distribution is normal, as is the case for the distribution of noise 

frequencies.

3.3.4 Nerve recordings

To measure responses from the maxillary nerve, a 0.025 mm OD tungsten wire was used, 

with ~0.5 mm of the polyamide insulation removed from the tip.  The wire was pushed into the 

base of an ablated galea, until it reached a position ~2 mm from the tip of the galea (near the 

maxillary palp), and was positioned as close to the maxillary nerve as possible.  This wire was 

connected to a head stage (AM-systems 1800).  Sensilla were stimulated using the tip recording 

technique. Data from the tungsten wire electrode and the tip electrodes were acquired, filtered 

and normalized as described for the sensillum recordings.  For recordings where two neighboring 

A-type sensilla were stimulated with tip electrodes, whichever electrode made contact with its 

sensillum first was used to define the stimulus onset time.  

3.3.5 Spike Sorting

Spike waveforms obtained from both the tip and tungsten electrodes were sorted using a  

semi-automated, model based spike sorting method  developed by [133] and [134]  that has been 

used for spike sorting gustatory recordings in M.sexta [103], [165], implemented in MATLAB.  

This method is described in detail in Chapter 2.  Briefly, this method can be divided into two 

steps: clustering and classification.  In the clustering step, spike waveforms are first detected 

from a 0.1-1.1 s window after stimulus onset.  A series of thresholds are then used to 1) choose a 

window around the peak of the spike waveform to use for comparisons, 2) remove a segment 

around the amplitude peak of each spike waveform, and 3) remove noisy waveforms that lie 

outside a threshold standard deviation envelope around the waveforms. Noisy waveforms can 

arise due to artifacts in the recording, or from superposition features that arise when multiple 
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neurons fire action potentials very close together such that their waveforms add together.   A 

principal component analysis (PCA) is then done on the segments of the spike waveforms that 

remain after these three steps of thresholding.  In the 100 mM sucrose recordings obtained from 

the A-type sensilla, there was evidence for at least two separate active GRNs.  My aim was 

therefore to detect the positions of these two GRNs within the recording trace.  I therefore used 

the first 5 principal components to divide the dataset into two clusters. 

 The quality of clustering is estimated by 1) plotting the residuals of each cluster (average 

of differences between each spike waveform from the median waveform of the cluster). 

Recordings are only used if the residuals fall near a 95% confidence interval set around the noise 

estimate for the trace. 2) A Fisher’s Linear Discriminant Analysis (LDA) between the two clusters

using the 5 principal components obtained from the PCA.  The Fisher’s LDA projects data onto 

the axis that is best for separation of different clusters.  If clusters are not well separated, the LDA

reports a small ‘distance’ value between the two clusters.  Recordings are used only if the 

Fisher’s LDA yields a distance > 4.  The median spike waveform of each cluster was used as the 

cluster template.

In the classification stage, each spike waveform in the recording is attributed to a cluster.  

First, superposition waveforms are detected.  This is done by first calculating the Mahalanobis 

distance of each spike of a cluster from the median spike waveform of that cluster.  Then, a 

threshold distance is derived from the channel noise as described in Chapter 2.  Any waveform 

having a distance greater than this threshold is considered a superposition spike.  Superposition 

spikes are then classified to superposition templates, while the remaining spikes are classified to 

the cluster templates, using a minimum Euclidean distance measure.   To estimate the quality of 

classification, the percentage of Type-1 and Type-2 errors are obtained.  These result from 1) 

false positives from refractory period violations, 2) false positives and false negatives due to 

overlap between both clusters, and 3) false negatives due to missed spikes from thresholding 

during detection.  If the percentage of Type-1 and Type-2 errors fell beneath 10% of the dataset, 

the recording was considered to be well sorted.  To sort spikes obtained from the 30 s tip 

recordings, I followed the same procedure but used spikes obtained between 1 and 30 s from 

stimulus onset. 
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3.3.6 Frequency analysis

To measure the frequency of oscillations, recordings were first bandpass filtered between 

10-3000Hz. Then, Welch’s averaged periodogram method was used to estimate the Power 

Spectral Density (PSD) of the recording trace, using a Hanning window of 6000 samples and a 

300 sample overlap with a sampling rate of 30 kHz, for 0.1 Hz increments between 10-100 Hz.  

For tungsten recordings, the PSD was estimated for three time windows: 0.7 to -0.2 s before 

stimulus onset, 0.1 s to 0.6 s after stimulus onset and 0.2 s - 0.7 s after stimulus offset.  

The power of the oscillatory components were measured from the 0.1 – 0.6 s window 

after stimulus onset from the tip recordings.  Recordings were first band-pass filtered between 10-

3000 Hz.  Then, the signal was normalized to a noise estimate, calculated by first filtering the 

signal between 300 – 3000 Hz and obtaining the noise estimate as 1.48*MAD(filtered signal).  

Welch’s averaged periodogram method was then used to obtain the peak frequency component in 

the 10-3000 Hz range.

3.3.7 End of Burst detection 

A burst detection method was developed based on inter-spike intervals (ISIs) of a 

recording.  Bursts were only detected from traces having a minimum of 4 spikes, otherwise the 

trace was considered to have no bursts. The inter-spike interval (ISI) for each spike was 

calculated as the duration following the spike until the next spike is found. ISIs less than 0.001 s 

were then removed.  A logarithmic curve having equation y=a*log(b*x+c)  was fit to the spike 

timestamps (x) vs ISI (y). The lower and upper limits of a,b and c were set as 0 and infinity, 

respectively.  Weights proportional to 1/y were used (inverse of the ISI), and the fit was made 

using robust least-squares regression.    A spike timestamp was considered as an end of burst  

spike if its ISI  exceeded a value of 2 times the fit at that time point (see figure 2.8 for example).
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3.3.8 Analyses of the spike and burst frequencies in function of the sugar concentrations

To evaluate the effect of the sugar concentrations on the spiking and bursting rates generated by 

the GRNs, a 3-parameters log-logistic model having equation

f(x) =  b/(1+ea(log(x)-c)) 

was fitted to the data with the drm command from the R (3.3.2) package drc [175]. x denotes the  

concentration, f(x) denotes the response (i.e spike frequency), parameter a  the steepness of the 

dose-response curve,parameter b denotes the upper asymptote or limit of the response, and 

parameter c denotes the EC50 (i.e the concentration where 50% of the maximum response is 

reached).  Differences between the c parameter (EC50) were assessed with the SI command in R 

whereas differences between the b parameter (upper asymptote) were assessed using the 

compParm command in R. Credit for this method goes to Dr. Sebastien Kessler, post-doctoral 

researcher in Prof. Geraldine Wright’s lab, who taught me how to implement this analysis.

3.3.9 Proboscis Extension Response

To measure behavioural responses in function of sugar concentrations, bumblebees were 

harnessed as described above and starved for 3 to 8 hours at room temperature in a dark 

environment. Mouthparts were stimulated with a droplet of tastant stimuli of varying 

concentrations.  Behaviors were video recorded with a digital microscope (Dinolite), and 

MATLAB custom software was used to track the position of the mouthparts. This was done by 

defining a movement threshold as two times the maximum movement obtained from a control 

water stimulus.  To test whether the probability of  eliciting “twitching” or PER behaviors 

depends on concentration and sugars, separate logistic regressions were fitted to  the data for each

behavior. 
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3.4 Results

3.4.1 Mouthparts

 The proboscis of bumblebees is formed by the maxillae and the labium. The labium is 

made of the glossa and the labial palps whereas each maxilla are composed of a galea and a small

maxillary palp present at the base of the galea (figure 3.1 a).  Scanning electron microscopy 

(SEM) shows that the galea contain  two morphologically distinct contact chemosensilla present 

on the outer ridge: the longer (~20 um) A-type and shorter (<10 um) B-type (figure 3.1 b) 

sensilla. Transmission electron microscopy (TEM) cross sections at the middle of an A-type 

sensilla revealed the presence of an outer and an inner cavity within the cuticle of the sensillum.  

The inner cavity contains the dendrites of 4 GRNs  (figure 3.1 c).   

Figure 3.1 (legend on next page)
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Figure 3.1:  Distribution of sensilla on mouthparts of B. terrestris. a) The galea, labial palps 

and glossa form the prominent mouthparts of the proboscis in B. terrestris.   b)  The galea 

possess the longer ‘A-type’ sensilla (white arrows) and the shorter ‘B-type’  sensilla (red arrows) 

that have a diameter of ~5 um.   c) TEM cross sections of the ‘A-type’  sensilla show that they 

house the dendrites [d] of 4 GRNs. These dendrites are ~0.25 μm in diameter, and are tightly 

clustered within a inner cavity [i], which is encompassed by an outer cavity [o].  Figure shows 

two overlaid images, obtained at different magnifications.

The activity of A-type GRNs was monitored using two electrodes placed at different 

positions along the length of the sensillum; a tip electrode [64] placed at the tip of the sensillum 

and a sharpened tungsten electrode punctured ~1 mm into the base of the sensillum (see 

methods).  Using these techniques, it was found that 91% of the tested A-type sensilla did not 

possess a GRN responsive to distilled water (n=80 sensilla, 26 animals).  My investigation was 

focused on the A-type sensilla that did not exhibit a water responsive GRN, and which were 

located distally on the galea.  The responses of these sensilla were measured to sucrose 

stimulation.  

3.4.2 Sucrose stimulation evokes a burst spiking response involving multiple GRNs

GRNs are found to encode the quality and category of sweet taste stimuli as a rate of 

spiking that adapts with prolonged stimulation [7], [31].  Unexpectedly, I found that stimulating 

the A-type sensilla with 100 mM sucrose instead evoked bursts of spikes and a low frequency 

oscillation (figure 3.2 a).  This burst pattern was measured by both the tip and tungsten 

electrodes.  

My first aim was to characterize the spiking component of this response.  All values in 

this section are represented as mean ± standard deviation (SD) and were obtained from 1 s 

recordings from 5 separate animals, unless otherwise stated.  From filtered recordings (pass-band 

300-3000Hz), it was revealed that spikes from the tip recording have 1) a larger half-height width

and 2) reach peak amplitude 0.2±0.1 x10-3 s later than spikes from the tungsten recording (figure 

3.2 b). Visual inspection of filtered recordings from both recording electrodes shows the presence

of spike waveforms having different shapes, as well as superpositions features that arise due to 

the summation of action potentials from separate neurons (figure 3.2 b top).  The presence of 
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multiple spike waveforms and superpositions suggests the activity of multiple GRNs in the 

response to sucrose.  By sorting spikes using a method that compares filtered spike waveforms 

obtained from both channels of recording [133], [134] ; see methods), two spike clusters were 

detected, termed as Class 1 and Class 2 (figure 3.2 c).  The superposition features detected during

spike sorting (10±4 superpositions per recording) were attributed to the activity of the Class 1 and

Class 2 spikes (figure 3.2 d).  Over recordings, the firing rates of the Class 1 and Class 2 spikes 

were 81±15 spikes/s and  17±7 spikes/s, respectively.  

The spiking activity of these two spike classes formed the burst response to 100 mM 

sucrose (17±7 bursts per recording; see methods for burst detection).  This burst pattern of firing 

could be characterized by the multi-modal distribution in the ISIs caused by firing of both spike 

classes ( figure 3.2 e).  The positions of the Class1 and Class2 spikes within the burst structure 

were well organized; more than 95% of bursts  (83/87 bursts, n=5 recordings, 5 animals) were 

formed from the activity of one or more spikes of the Class 1 neuron followed by a single spike 

from the Class 2 neuron.  Each burst of spikes was followed by an inter-burst interval of 29±7 

x10-3  s.    The ISI of the last two spikes of the burst ranged between 0-0.01 s (figure 3.2 e inset), 

and there were a minimum of 2 spikes within each burst.  
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Figure 3.2 (legend on next page)
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Figure 3.2: Coherent, multi-unit burst response from GRNs in an A-type sensillum to 100 mM 

sucrose stimulation a) Tip and tungsten electrode recordings show spiking, bursting and low 

frequency oscillations are evoked during stimulation. Traces in a-d are normalized to the noise 

estimate for each channel. b) Top: Bandpass filtered (300-3000 Hz) recordings used for spike 

sorting.  Bottom: Spikes propagate anti-dromically i.e from the tungsten electrode towards the tip

electrode. c) Spikes from bandpass filtered recordings were sorted to reveal two clusters of 

spikes, termed as Class 1  and Class 2  spikes.   d) Example detected superpositions (ISI< 2 ms) 

that were attributed to the firing of a Class 1 and Class 2 spike. A Class 1 and Class 2 spike 

separated by 3 ms (grey waveforms) are shown for comparison. e) The ISI histogram for Class 1 

and Class 2 spikes has two visually distinct modes, indicating burst firing. Inset shows ISI 

histogram of last two spikes of each burst (end of burst ISI).   f)  Welch’s power spectral density 

estimates from 10-100 Hz filtered tungsten recordings using 0.5 s durations before, during and 

after stimulation.  The power of the peak frequency during stimulation was significantly greater 

than before and after stimulation.   g) A rose plot derived from a Hilbert’s transform on 10-100 

Hz filtered tungsten traces using 1 s of recording shows that the Class 1 and Class 2 spikes fire at

specific phases of the oscillatory component.   (inset) a sample unfiltered tungsten recording 

trace showing the typical structure of Class 1 and Class 2 spike firing.    All panels were obtained

from the recording shown in (a).

The spiking response to 100 mM sucrose was also associated with a low frequency 

oscillation in voltage. A power spectral density (PSD) estimate on the 10-100 Hz filtered tungsten

recordings (see methods) revealed that the peak frequency of these oscillations ranged between 

17-26 Hz (figure 3.2 f).   A power estimate of these peak frequencies revealed that the power was 

significantly higher during stimulation as compared to the baselines (p<0.001, 1-way ANOVA, 

F2,12=8.4; n=5 recordings, 5 animals; see methods), indicating that the oscillatory component is 

restricted to the stimulation period.    Spikes were located at specific phases of this oscillatory 

component; Class 1 spikes fired around the peak with a mean at the 17±72° phase , and the  Class

2 spike fired  near the negative slope with a median at the 83±36° phase (figure 3.2 g). 
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The tungsten electrode recording also revealed that sucrose responsive GRN spiking 

activity was mostly restricted to the stimulation period (baseline firing=3±1 spikes/s, mean±STE; 

n=17 sensilla, 11 animals).  The spiking frequency reached its peak within 0.01 s from stimulus 

onset and returned to baseline within 0.025 s from stimulus offset (figure 3.3).   Further, bending 

the sensillum revealed that the A-type sensilla possess a mechanoreceptor neuron  (figure 3.4).  

Bending the sensillum while stimulating with 100 mM sucrose showed that the mechanoreceptor 

neuron had a distinct spike waveform in comparison to the sucrose responsive GRNs, indicating 

that the mechanoreceptor is not involved in the burst response to sucrose (figure 3.4 b). The 

mechanoreceptor neuron dendrite appears to be located at the base of the A-type sensillum, as 

indicated by a TEM (figure 3.4 c).  

Figure 3.3:  Spiking activity is restricted to stimulation period. a) 300-3000 Hz filtered tungsten

recordings were used to monitor spiking activity (black dots) around the stimulus onset (green 

line) and offset (red line). b)  A histogram of average spike count per 0.005 s bin (black bars; 

averaged over n=17 sensilla, 11 animals) shows that spiking response is restricted to stimulation 

period.  Time to peak (dashed line) and time to baseline (dashed line) shows that the response is 

tightly bound to the stimulus onset and offset (baseline calculated as mean of the average spike 

count per 0.005 s bin calculated over the -1.1:-0.1s duration)  
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Figure 3.4.   A-type sensilla possess a mechanoreceptor  a) A TEM image at the level of an A-

type sensillum base shows the presence of four GRN dendrites [d] and what appears to be a 

larger mechanoreceptor dendrite (m), encompassed by the outer lymphatic cavity [l].  b) 

Tungsten recording shows spikes of mechanoreceptor, activated by bending the sensillum.   c)   

Bending the sensillum (onset shown by black arrow) during the sucrose stimulation (onset shown 

by blue arrow) shows that sucrose and mechanoreceptor spikes (blue and black dots/waveforms, 

respectively) have visually distinct waveforms, indicating that the mechanoreceptor neuron is 

distinct from the GRNs activated by sucrose.  

3.4.3 Bursting GRNs adapt over multiple time scales

A common feature of chemosensory neurons is that they adapt to prolonged stimulation.  

This adaptation can be observed as a decrease in the frequency of spiking i.e an increase in ISI 

over time.  To measure the rate of adaptation of the Class 1 neuron, I fit a linear equation to its 

ISIs as a function of the spike timestamps over time.  Surprisingly, the spiking activity of the 

Class 1 neuron did not exhibit a continuous adaptation.  Instead, slopes of linear equation fit to 

Class 1 ISIs within bursts decreased,  indicating acceleration in spiking over the course of the 

burst.  However, this was only true for bursts having short duration (where the duration of a burst 

was defined as the time between its preceding Class 2 neuron spike and its terminal Class 2 

neuron spike, i.e the Class 2 neuron ISI for that burst).  For bursts having duration > 0.1 s, the 
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Class 1 neuron instead adapted over the course of the burst (figure 3.5 b).  Over the course of the 

1 s stimulation however, the Class 1 neuron spike frequency adapted (figure 3.5 ci).  The short-

duration bursts were more likely to occur early in the recording, and as the stimulation continued,

the bursts became longer (figure 3.5 c).  This was due to the adaptation in  Class 2 firing rate over

the duration of stimulation, which resulted in an increase in burst duration (figure 3.5 cii).  The 

Class 1 neuron spiking frequency adapted by 0.002 ± 0.000 s (mean ± standard error of mean) 

over 1 s of stimulation and the Class 2 neuron spiking frequency adapted by 0.041 ± 0.005 s  

(figure 3.5 d; recordings had a minimum of 10 bursts / 1 s; n=23 recordings, 23 animals).  

Figure 3.5 (legend on next page)
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Figure 3.5: Adaptation depends on burst duration  a) Detected spikes in a segment of a 

recording, assuming Class 1 neuron spikes within bursts (open circles) and Class 2 neuron spikes

at end of bursts (crosses).  A linear equation (red line) was fit to the first N-1 Class 1 spikes per 

burst (open black circles).   b) The slope of the linear fit was significantly dependent on burst 

duration, as shown from a  non-linear model (y=a*exp(b*x); dashed red line; p<0.001) made to 

slopes obtained from bursts over several recordings (n=312 bursts, 11 recordings from 11 

animals, using recordings with at least 3 bursts).     Bursts with duration <~0.1 s had negative 

slopes, as indicated by the fit approaching a value of zero at this duration.   This correlation is 

maintained for most bursts over a 1 s recording, as shown by linear fits for individual bursts (red 

lines) in a sample recording in ci. c) Linear fits (dashed lines) to the Class 1 ISIs (ci) and Class 2

ISIs (cii) show different rates of adaptation over 1 s.  The slopes of these fits are shown for 

several recordings in [d].  Note that the y-axis in [d] is plotted on a logarithmic time scale. 

To see how long the burst structure was maintained, I stimulated the sensilla for 30 s with 

100 mM sucrose.  A sample tip electrode recording shows that the initial portion of the response 

is characterized by the structured burst firing of spikes, which changes over the course of 

stimulation as the GRNs adapt (figure 3.6 a).   Sorting the spikes for the recording shown in 

figure 3.6 a revealed that the Class 1 and Class 2 neuron spikes are found at specific phases of the

burst structure in the initial part of the recording, but fire more randomly as they adapt over the 

30 s duration. A plot of the variance in ISI (per 0.3 s time bin) over time for several recordings 

suggests that the coherent burst structure persists for up to 4 s (figure 3.6 b).   

To measure the time course of adaptation in spiking activity, the spike count (per 0.3 s 

bin) was plotted over the 30 s duration (figure 3.6 c).  For recordings with high levels of bursting 

(>10 bursts in the first 1 s of stimulation) the spike rate increases up to ~1 s from stimulus onset 

and then rapidly decreases. At around 4 s, the rate of change in spiking slowed slightly for the 

remainder of the recording.  This indicates that there are multiple time  courses over which GRN 

spiking activity adapts.  It was interesting to note that unlike for the high burst recordings, 

recordings with low levels of bursting (<10 bursts in the first 1 s) exhibited no initial increase in 

spiking rate from stimulus onset.  Further, the GRNs in these recordings appeared to adapt faster; 

the spike count rapidly decreased up to 2 s after which the rate of change was nearly constant.  
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Figure 3.6 (legend on next page)
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Figure 3.6 : Bursting is associated with low variance in ISI.  a) Segments of a 30 s stimulation 

with 100 mM sucrose obtained using the tip electrode recording method.  The burst structure 

changes over the time course of stimulation as GRNs adapt. b) A plot of variance in ISI per 0.3 s 

time bin (using both Class 1 and Class 2 neuron spikes in the 0.1-30 s duration) for 15 

recordings obtained from 15 animals.  A one-term exponential fit made to these data reaches 5% 

of its maximum (red line) after 4 s of stimulation, suggesting that the burst structure persists for 

at least 4 s.  c) Plotting the spike frequency (per 0.3 s time bin) shows that GRN spiking activity 

adapts over multiple time scales for  recordings with high levels of bursting (recordings that had 

>10 bursts in the first 1s of stimulation; n=11 recordings; red traces). In comparison, low burst 

recordings (<10 bursts in first 1 s; n=4 recordings; blue traces) adapt much faster.  Note that the

x-axis in b and c are plotted on logarithmic time scale. 

Since the coherent burst structure persisted for up to 4 s, I monitored the adaptation of the 

Class 1 neuron spikes located within bursts (figure 3.5 a), for the 4 s duration.  In contrast to the 

spike count which peaks 1 s after stimulus onset,  the peak Class 1 neuron ISI is found at the 

stimulus onset (figure 3.7 a).   The rate of adaptation in Class 1 neuron spiking appears to depend 

on the number of bursts in the recording, suggesting that bursting could provide a mechanism that

allows for prolonged rapid Class 1 neuron spiking within the burst structure.  

To put these recordings in the context of other research, I compared the adaptation of 

Class 1 neuron ISIs of B. terrestris to the adaptation of ISIs in 8 other insect species (figure 3.7 

b).  At  stimulus onset, the Class 1 neuron ISI was near 0.005 s for B. terrestris, which is similar 

to the ISIs reported in fruit fly (D. melanogaster, [57]), tobacco hornworm larvae (M. sexta, 

[90]),blowflies (P. regina, [176]), the honeybee (A. mellifera, [63]), cabbage white butterfly 

caterpillar (P. brassicae, [56] and mosquitoes (A. gambiae, [70]; A. aegypti, [172]).  Within 1 s of

stimulus onset, the firing activity of sucrose GRNs in Drosophila, mosquito and M. sexta 

caterpillar almost stopped spiking, indicating that they have adapted completely.   At 3 s after 

stimulus onset, recordings from B. terrestris have the shortest ISI, indicating that its GRNs 

exhibit the highest persistent spiking frequency for this duration among these insects.    The 

GRNs of the butterfly, the honeybee, and the Mediterranean fruit fly (C.capitata, [177]) have a 

slow adaptation rate as well, but these species  have a lower rate of spiking  than B.terrestris. 
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 Figure 3.7: Class1 spiking in B. terrestris exhibits a low rate of adaptation in comparison to 

other insects.  a) The ISIs of Class 1 neuron spikes within bursts were monitored over a 4 s 

duration of stimulation by fitting a three-term logarithmic equation to its ISIs over time (same as 

for burst detection, see methods).  Recordings with higher burst count (number of bursts 

indicated by color) are associated with a prolonged fast rate of spiking (i.e low rate of 

adaptation). Using the median of these fits (dashed black line) as a measure for the ISIs,  B. 

terrestris was found to have the shortest ISI (highest firing rate) after 1 s from stimulus onset in 

comparison to other insects (b).  

3.4.4 Bursting response is generated within individual sensilla and is transmitted towards the

sub-esophageal zone (SEZ)

The axons of galeal GRNs project via the maxillary nerve (MxN) and synapse within the 

sub-esophageal zone (SEZ) in the brain.   To observe which features of the burst response are sent

towards the SEZ, a galeal A-type sensillum was stimulated with a tip electrode while recording 

from the MxN at a position approximately 1 mm downstream from the sensillum (figure 3.8 a; 

see methods). Recordings revealed that spiking, bursting and the underlying oscillatory 

component were present in the nerve recording (figure 3.8 b), indicating that these features could 

persist up to the level of the SEZ to provide stimulus relevant information to post-synaptic 

neurons.  In addition, the nerve recording revealed the presence of superposition features and 
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distinct spike waveforms characteristic of the Class 1 neuron spikes (within bursts) and Class 2 

neuron spikes (at end of bursts).  

Figure 3.8 (legend on next page)
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Figure 3.8:  GRN activity is not coherent between sensilla.  a)  Recording setup for monitoring 

MxN nerve activity using a tungsten wire electrode during stimulation of an A-type sensillum 

with a tip electrode.   b) Both channels of recording reveal bursts of spikes (open circles), low 

frequency oscillations, superposition features (bars) and distinct shorter spike shapes (Class 2 

neuron spikes) at end of burst positions (closed circles).  c) Simultaneous recordings from two 

neighboring A-type sensilla (sensillum 1 (S1), top; sensillum 2 (S2), middle) and the MxN 

(bottom trace).   The MxN recording shows spikes (dots) and oscillations summed across both 

sensilla.  d) A spike time cross correlogram between the spike times from S1 and S2, obtained by 

shifting the spike time vector of S1 (a vector of zeros having length equal to the duration of the 

recording x sampling rate, with a value of 1 at each spike time) to the left and right (indicated by 

lag on the x-axis) of the spike time vector for S2 and calculating the correlation at each lag.   

This shows an absence of any correlation (black trace), which is clearly seen in comparison to 

the cross correlation between the cumulative spike times across both sensilla (S1+S2) and the 

MxN (blue trace).  e) A cross correlogram between the 10-60 Hz filtered recordings from S1 and 

S2 shows an absence of correlation in low frequency components (black trace).  Adding these low

frequencies from both sensilla (S1+S2) however does show coherence with the MxN (blue trace). 

Cross correlograms in c) and d) are averages over 3 trials from the same sensillum.  

To test whether the burst response to sucrose was synchronized between sensilla, 

two galeal A-type sensilla were stimulated with separate tip electrodes while monitoring the 

activity from the MxN (figure 3.8 c).  The nerve recording shows that spikes from both sensilla 

were transmitted towards the SEZ.  Further, this transmission was independent of the silent 

period of the neighboring sensillum;  spikes in one sensillum were present during the inhibitory 

period in the other sensillum. A spike time cross-correlogram between the two tip recordings 

shows the absence of any correlation in spike timing between the two sensilla during stimulation 

with 100 mM sucrose (figure 3.8 d, black trace).   This is intuitively seen from the two sensillum 

recordings in figure 3.8 c, since the spike times in both sensilla do not appear to align.  However, 

combining the spike times across both sensilla and taking a cross correlogram with the spike 

times in the MxN recording shows that the spikes are transmitted along the MxN, with a short lag

(i.e time delay in transmission) lasting about 0.1 ms.  Further, a cross-correlogram between the 

10-60 Hz filtered tip recordings shows that the oscillatory components do not indicate coherence, 
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which suggests that their activity is not coupled (figure 3.8 e, black trace).   This is intuitively 

apparent from the sensillum recordings as well, since the oscillatory components do not appear to

be phase locked. Again, combining the low frequencies across both sensilla and obtaining the 

cross-correlogram with the low frequency components of the MxN recording reveals that the low 

frequency components are present in the MxN recording as well, showing that the MxN carries 

the oscillatory components of both sensilla.  Taken together, these results show that the silent 

period of each sensillum does not affect spiking in neighboring sensilla, and each sensillum 

transmits both spiking and oscillatory components via the MxN.  

3.4.5 Burst response encodes for concentration

GRNs encode concentration as a dose-dependent increase in the rate of firing of action 

potentials. To measure how the activity of both the Class 1 and Class 2 neurons varied over 

concentration, I stimulated A-type sensilla with increasing concentration of sucrose using a tip 

electrode.  Both the Class 1 neuron (measured as number of spikes in 1 s of stimulation)  and the 

Class 2 neuron (measured as number of bursts in 1 s of stimulation; figure 3.9 a) exhibited an 

increase in their spiking rate over concentration.  The Class 1 neuron started firing at 

concentrations > 5 mM, whereas the Class 2 neuron fired at higher concentrations i.e > 25 mM.  

There was also a concentration dependent increase in the power of the underlying oscillatory 

component ( figure 3.9 b; see methods).  The peak oscillatory power  revealed a significant effect 

of concentration on the activity of sucrose responsive GRNs (Kruskal-Wallis, p<0.001, n=11 

sensilla, 7 animals; figure 3.9 c).  
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Figure 3.9: Spiking, bursting and oscillatory power are concentration dependent.  a) Tip 

recordings show that stimulating a sensillum with increasing concentrations of sucrose evokes a 

concentration dependent increase in spiking and bursting. The corresponding power spectral 

density estimates for each of these recordings are shown in b. c) The maximum power in the 10-

60 Hz range increases as a function of concentration (N=11 sensilla, 7 animals).  

A similar trend can be seen from a sample recording from a B-type sensillum, which 

additionally possess a water responsive GRN (figure 3.10).   The water-responsive GRN is 

silenced as the concentration of sucrose is increased; this is indicated by the presence of 

superposition waveforms i.e summation of action potentials from both neurons when they fall 

within a small time window (figure 3.10, arrows). This time window is defined by the absolute 

refractory period, which is the minimum time required for a neuron to fire two subsequent action 

potentials.  These results indicate that the Class 1 neuron spiking and Class 2 neuron spiking 

activity is concentration dependent.  
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Figure 3.10: B-type sensillum exhibit burst response to sucrose. a) A TEM shows that the B-

type sensilla contain the dendrites of 5 GRNs.  b)  Tip recordings from a B-type sensillum 

stimulated from 0 mM - 100 mM, in that order.  B-type sensilla possessed a water responsive 

GRN (top trace), whose activity was silenced with increasing concentration of sucrose; this is 

indicated by the presence of superposition waveforms (arrows) at 5 mM sucrose, which occur 

when two or more neurons fire action potentials within a small time window defined by the 

absolute refractory period for a neuron.  From 10mM onwards the water GRN activity is 

inhibited and only the sucrose GRNs are activated.  100mM sucrose evoked 106 ± 9 spikes/s and 

8±3 bursts/s (mean±SEM, n=11 sensilla, 7 animals). The bottom most 0 mM recording shows 

that the water-responsive GRN activity is recovered.

In comparison to the galea, sensilla on the labial palps exhibited a far reduced rate of 

spiking and bursting over increasing concentrations of sucrose, with approximately 32 spikes/s 

and 3 bursts/s at the plateau of the dose response curves (figure 3.11).  This shows that the burst 

spiking response is spatially distributed across the mouthpart sensilla.  
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Figure 3.11: Sucrose responses from labial palp sensilla.  a) A TEM of the labial palps shows 

that, like the galea, the labial palps possess sensilla of two distinct lengths.  b) Stimulating a 

longer sensillum (outlined red in [a]) with increasing concentrations of sucrose shows that it 

does not possess a water responsive GRN, and exhibits slow rate of firing and almost no bursting

over concentration.  This is reflected in a dose-response curve for spiking and bursting over 

concentration (c).  N=13 animals, 1-2 sensilla per animal).   

3.4.6 Proboscis extension is initiated at the threshold of GRN activity for different sugars 

Apart from sucrose, nectar contains high concentrations of two other carbohydrates: 

fructose and glucose.   To observe whether the burst response was common to sugars, I stimulated

A-type sensilla with 100 mM fructose and glucose.  While stimulation with fructose evoked a 

strong burst response similar to sucrose, stimulation with glucose evoked weak bursting at this 

concentration (figure 3.12 a).  

To observe the concentration dependence for spiking and bursting for these three sugars, 

A-type sensilla were stimulated with increasing concentrations for sucrose, fructose and glucose. 

The spike frequency of both the Class 1 neuron (measured as total spike count in 1 s of 

stimulation) and the Class 2 neuron (measured as burst count in 1 s of stimulation) were modeled 

with a three-parameter log-logistic fit, made to each sugar (see methods for fitting for summary 

of the models; figure 3.12 b ).   The models for all three sugars reveal a concentration dependent 

increase in spiking activity for the Class 1 neuron (Table 3.1).  A comparison between the models 
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for each sugar revealed a significant difference between their EC50 values (effective concentration

at 50% of upper asymptote), which shows that the Class 1 GRN is most sensitive to lower 

concentrations of sucrose, followed by fructose and then glucose (Table 3.2).  Further, the models

revealed that the upper asymptote of Class 1 spiking frequency for each sugar were significantly 

different from each other, with fructose evoking the highest rate of spiking followed by sucrose 

and then glucose (Table 3.3).  This indicates that the Class 1 neuron encodes sugar quality in part 

through its rate of spiking.

Applying the three term log-logistic model to the Class 2 neuron activity revealed a 

concentration dependent increase in spiking rate for sucrose and fructose (Table 3.4).  The model 

for glucose did not give an accurate estimate for the onset of the Class 2 neuron activity to 

glucose stimulation nor the onset of the asymptote.  However, it predicted that it was activated 

and reached its plateau at glucose concentrations above 100 mM.  At the plateau for spiking, the 

models show that sucrose and fructose exhibit significantly higher Class 2 spiking rate as 

compared to glucose (Table 3.5).  Further, the Class 2 GRN was more sensitive to lower 

concentrations of sucrose as compared to glucose, as indicated by a significantly smaller EC50 

(Table 3.6).  
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Table 3.1: Summary of the three-parameter log-logistic model having equation                   

f(x)=b/(1+ea(log(x)-c)),  for the Class 1 spiking frequency (Hz; estimated as number of spikes in 1 
s of recording) in function of the increasing concentration. The parameter a refers to the 
steepness of the model, the parameter b refers to the upper asymptote, the parameter c refers to 
the effective concentration at 50% (EC50, the point at which the rate of firing reaches half of its 
maximum value).   A model was fitted for each sugar tested (fructose, sucrose and glucose).  The 
t-statistics and corresponding p-values are for testing the null hypotheses that the parameters are 
equal to 0.  All three parameters for the curve for each sugar are significantly different from 0 (all
p<0.05). 
Sugar Parameter Estimate Std. error t-value p-value
fructose a (steepness) -2.2 0.3 -6.7 0.00

b (upper 
asymptote)

111.6 4.0 27.7 0.01

c (EC50) 15.2 1.4 11.1 0.00

sucrose a -1.7 0.2 -7.1 0.00

b 94.6 3.3 29.0 0.00

c 7.1  0.7 9.8 0.00

glucose a -1.7 0.5 -3.3 0.00

b 68.4 7.1 9.7 0.00

c 67.8 13.7 5.0 0.00

Table 3.2:    The parameter c (EC50) of the log-logistic equation for the Class 1 spiking rate are 
significantly different between all combinations of sugars. 

Comparison t-value p-value
Fructose-glucose -15.7 <0.001
Fructose-sucrose 3.9 <0.001
Glucose-sucrose 4.0 <0.001

Table 3.3:    The parameter b (upper asymptote) of the log-logistic equation for the Class 1 
spiking rate are significantly different between all three sugars.  

Comparison Difference Std. error t-value p-value
Fructose-glucose 43.2 8.1 5.3 0.0000
Fructose-sucrose 16.9 5.2 3.3 0.0013
Glucose-sucrose -26.2 7.8 -3.4 0.0009
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Table 3.4: Summary of the 3-parameters log-logistic model (same as used for the Class 1 spikes 
in table 3.1) for the Class 2 neuron spiking frequency in function of the increasing concentration 
of fructose, sucrose and glucose. The parameter a for glucose was not significant, indicating that 
the model is not accurate at predicting the onset of the Class 2 neuron response to glucose 
stimulation as well as the onset of the asymptote.  

Sugar Parameter Estimate Std. error t-value p-value

fructose a (steepness) -3.3 1.7 -2.0 0.0498

b (upper 
asymptote)

22.8 1.9 12.3 0.0000

c (EC50) 25.2 3.4 7.5 0.0000

sucrose a -1.5 0.5 -3.1 0.0020

b 17.9 2.0 8.9 0.0000

c 16.6 5 3.3 0.0010

glucose a -4.9 10.7 -0.5 0.6454

b 7.6 3.0 2.5 0.0123

c 88.3 35.6 2.5 0.0140
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Table 3.5:    The c parameter (EC50) of the log-logistic equation for the Class 2 spiking rate are 
significantly different between sucrose and glucose

Comparison t-value p-value
Fructose-glucose -5.8 0.08
Fructose-sucrose 1.0 0.15
Glucose-sucrose 1.6 < 0.05

Table 3.6:    The b parameter (upper asymptote) of the log-logistic equation for the Class 2 
spiking rate are significantly different between fructose and sucrose in comparison to glucose.

Comparison Difference Std.error t-value p-value
Fructose-glucose 15.2 3.5 4.3 0.0000
Fructose-sucrose 4.9 2.7 1.8 0.0759
Glucose-sucrose -10.3 3.6 -2.9 0.0047
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Figure 3.12: Feeding behaviors are evoked at threshold of GRN activity  a) Tungsten  

recordings from the same sensillum, in response to the three major sugar components in nectar.  

All three sugars evoke burst firing, but with different intensities.  b) Three-parameter log-logistic 

equations were fit to the spiking (solid traces) and bursting (dashed traces) responses averaged 

over recordings, for all three sugars (see methods; n>10 animals per sugar).   The crosses and 

triangles indicate the EC50 values for spiking and bursting, respectively c) top: cartoon showing 

‘twitching’ and PER behaviors after stimulus onset.  Bottom) Histograms of onset times for 

‘twitching’ and PER (grey and black bars, respectively), compiled from trials using sucrose, 

fructose and glucose (N=233 trials for twitching, N=173 trials for PER) of varying 

concentrations (0,10,25,50,100,250,500,1000 mM)  d) concentration dependence on the 

‘twitching’ (dashed lines) and PER (solid lines) behaviors over concentration for the three sugars

(N>19 animals tested for each sugar). 
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The activity of GRNs are responsible for driving feeding related behaviors.  Stimulating 

the mouthparts of B. terrestris with droplets of sugar solutions of varying concentrations evoked 

two distinct feeding responses that occurred within 1 s from stimulus onset (figure 3.12 c).  The 

first behavior was described as a ‘twitching’ of the mouthparts, which was defined as a threshold 

movement of the mouthparts in response to the stimulus (see methods).  The ‘twitching’ behavior 

was evoked near 0.25 s from stimulus onset.  At certain high stimulus concentrations, ‘twitching’ 

would lead to to full proboscis extension and licking (proboscis extension response [PER]).  PER 

was initiated after nearly 0.6 s from stimulus onset.   These two behaviors show that GRN 

activity in the first 1 s of stimulation is responsible for driving proboscis extension.

The probability of producing ‘twitching’ or PER increased over concentration (twitching: 

GLM, 7
2 = 118, p< 0.001; PER: GLM, 4

2 = 51.4, p < 0.001) and depended on the sugar used to 

stimulate the mouthparts (twitching: GLM, 2
2 = 10.9, p = 0.004; PER: GLM,  2

2 = 5.83, p= 

0.054; figure 3.12 b).  Bees were found to exhibit the twitching behavior earliest for fructose at 

concentrations above 100 mM, followed by sucrose at concentrations greater than 250 mM and 

glucose above 500 mM.   For all three sugars, these were the concentrations at which both the 

Class 1 and Class 2 neurons reached their threshold of spiking, as described in figure 3.13 d 

However, bees were only interesting in feeding at even higher concentrations than those that 

evoked twitching for all three sugars; they exhibited PER for fructose above 500 mM and for 

both sucrose and glucose this was closer to 1000 mM.    In general,  fructose and sucrose were 

the most likely to produce the two behaviors, and stimulation with fructose and sucrose elicited 

both responses at earlier concentrations than glucose (lsd, all p< 0.050).

To observe whether the burst response was common to bumble bees, I stimulated A-type 

galeal sensilla in Bombus pascorum  (Scopoli) with 100 mM sucrose (figure 3.12).  The 

recordings revealed the characteristic burst structure with two visually distinct spike waveforms.  

I extended the study to fructose and glucose as well, and found that while responses to all sugars 

exhibited bursting, there was an apparent difference in the magnitude of activity between sugars, 

with fructose and sucrose evoking higher spiking and bursting than glucose.  
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Figure 3.13: Bombus pascorum A-type sensilla exhibit burst spiking GRNs.  a) Tip recordings 

made from Bombus pascorum galeal A-type sensilla, to 100 mM sucrose, fructose and glucose.  

Fructose and sucrose exhibit strong bursting (end of burst positions indicated by open circles, 

spike positions by solid circles), whereas glucose exhibits few to no bursts.  b) The mean 

frequency of spiking and bursting in the 0.05-1.05 s duration from stimulus onset were greater 

for fructose and sucrose  as compared to glucose (Mean±SEM; n=1-3 sensilla per animal, 3 

animals).
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3.5 Discussion

3.5.1 Characterizing the gustatory sensilla in B. terrestris

The distribution of gustatory sensilla on the galea of the bumble bee Bombus terrestris  

was similar to that described for the honey bee (A. mellifera [45], [109] and other species of 

bumble bees [110].  The longer A-type and shorter B-type galeal sensilla of B. terrestris are 

referred to in A. mellifera as the longer sensilla chaetica (~40 µm) and shorter basiconica (<10 

µm) respectively [45].  

In B. terrestris, the A-type sensilla possess 4 GRNs, as do the sensilla chaetica in A. 

mellifera [45].  This is similar to other insects whose sensilla possess between 2-5 GRNs as well 

[10], [20], [66], [70], [71], [144].  The dendrites of the B. terrestris sensilla are tightly packed 

within an inner lymphatic cavity, similar to that of butterflies [66], [71]. In comparison, there is a 

larger spacing between the dendrites in moth [20], A. gambiae  Kessler et al. 2013), Drosophila 

[143], [144] and blowfly (Phormia regina; [20].

Using the tip and tungsten electrodes,  I found that GRN activity is mostly restricted to the

stimulation period. This suggests that these GRNs transmit information primarily via an increase 

in spiking activity.  In comparison, olfactory receptor neurons (ORNs) encode stimulus 

information through inhibition in baseline activity as well as through spiking activity that outlasts

the stimulation period  [53].  While tungsten recordings in Drosophila [150] and cotton leafworm

(S.littoralis; [149]) also suggest response types similar to ORNs, these studies did not test how 

repeatable the response structures were to determine their role in gustatory coding.  

From the tip and tungsten recordings, I found that the GRN action potentials travel anti-

dromically.  Previous studies in other insect species’ gustatory sensilla suggest that spikes are 

transmitted from an initiation site at the cell body up through the sensillum [4]–[6]. This could 

occur either by active propagation through the dendrite [6] or by  passive transmission through 

the inner and outer lymphatic cavities of the sensillum [5], [60].    In the bumblebee, I measured 

anti-dromic conduction velocity of spikes within the A-type sensillum to be ~0.1 m / s  (0.25 x 
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10-3 s between spike peaks with ~10 µm distance between tip and tungsten electrodes). This slow 

conduction suggests spikes are passively transmitted via the sensillum lymph, as suggested by 

[5].  

3.5.2 Two GRNs are involved in the burst response

In most insects, only a single GRN within each sensillum responds to stimulation with 

sucrose, including blowfly [7], [61], [156], Drosophila [8], [25], [170], moth [65], [90], ants 

[178] and butterfly [66], [71].  In B. terrestris, there was strong evidence to suggest that the burst 

response to sugars involved the activity of at least two separate GRNs.  First, spike sorting tip and

tungsten recordings obtained from stimulating A-type sensilla with 100 mM sucrose revealed two

well separated spike clusters (Class 1 and Class 2 spikes) that had distinct waveforms on  both 

electrodes.  Differences in spike shape could arise due to the relative proximity of the recording 

electrodes to each GRN soma, where the spikes are initiated [4]–[6], and resistance in the 

extracellular medium [135].  

Second, sorting revealed the presence of superposition waveforms.  In sensillum 

recordings, as in other extracellular records of neural activity, superposition features arise when 

multiple neurons fire within a small time window such that their action potentials summate.  The 

time window is described by the absolute refractory period (ARP), which is the minimum time 

required for a neuron to fire an action potential following a previous action potential [89], [155], 

[156].  The ARP is due to the inactivation of the Na+ channels that generate the rising phase of 

the action potential, which take time to reactivate again.  Further, the K+ channels that are 

responsible for the falling phase of the action potential exhibit delayed closing, such that the 

potential drops below membrane potential which makes it more difficult to fire a subsequent 

action potential.  

On the other hand, superpositions can also arise from individual neurons that have 

multiple spike initiation zones (SIZs).  If an action potential is initiated at both SIZs 

simultaneously, they can be monitored as a superposition feature by an extracellular electrode.  

Extracellular recordings made from GRNs in a cockroach gustatory sensilla [146] revealed 

superposition features that were due to spiking activity from an SIZ in the distal dendrite and 
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another SIZ ~250 µm away, near the GRN soma.  However in this study, the superpositions 

always had the same distance between spike peaks, whereas for B. terrestris the peaks of 

superpositions were separated between 0-0.002 s.  Further, the A-type sensilla are <20 µm long, 

which means that a spike initiated at the distal dendrite would propagate towards the soma 

(located some tens of microns below the sensillum base in most insects; [20], [179]) within the 

somatic ARP and prevent an additional spike from firing.  It is therefore unlikely that the 

superposition features are due to action potentials generated at multiple SIZs within the GRN. 

Superposition features could also arise when a spike propagates along different dendritic 

branches of the same neuron [180], [181].  However, GRN dendrites of insects like bees are 

single fibers [20], [45].   Finally, visually distinct spike waveforms and superpositions were 

present in recordings at the level of the GRN axons from the MxN, which strongly suggests that 

at least two separate GRNs are active during sucrose stimulation.

The Class 1 neuron was active within bursts, and its activity was terminated by the single 

action potential of the Class 2 neuron at the end of bursts (figure 3.2).  Each burst consisted of at 

least one GRN1 and GRN2 spike, and hence a minimum of 2 spikes defined each burst.  This 

presents the first evidence from sensillum recordings where multiple GRNs are involved in a 

structured pattern of activity.   While  studies in other insects suggest that multiple GRNs within 

each sensillum can be activated by sucrose  [18], [182] or that there are multiple GRNs within 

each sensillum that are responsive to different sugars [183], [184], the spiking response of the 

GRNs in these insects do not follow any apparent structure.

The absence of a water response from the A-type sensilla indicates the water sensitive 

GRN was not involved in the burst structure.   Even for the B-type sensilla, which possess 5 

GRNs of which one responds to water, the water responsive GRN is silenced by the activity of 

the sucrose GRNs.  The burst response did not involve the mechanoreceptor neuron either, as the 

mechanoreceptor had a distinct spike waveform.  In comparison to the galeal sensilla, sensilla on 

the labial palp responded to sucrose stimulation with mostly a single GRN and a reduced 

magnitude of spiking and bursting.  
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3.5.3 Possible mechanisms driving bursting in A-type sensilla 

This study provides the first evidence for a persistent burst structure in first order neurons.

Most existing descriptions of bursting are exhibited by higher-order neurons, and are driven 

either through intrinsic mechanisms  [185]–[189] or via synaptic interaction between neurons 

[186].   It is unlikely that the GRN bursting in B. terrestris is driven by synaptic mechanisms, as 

the first synapse for GRNs is considered to be within the sub-esophageal zone (SEZ) in the insect

brain [15].  Lemon and Turner [187] describe a neuron intrinsic mechanism that drives bursting, 

in pyramidal neurons of weakly electric fish.  This mechanism involves a back-propagation of 

spikes from the soma into the dendrites, which generates a return current that contributes to a 

depolarization following the somatic spike. This depolarization builds up over the course of the 

burst until a final ‘doublet spike’ is fired, with the second spike of the doublet falling outside the 

somatic ARP.  The ‘doublet spike’ inactivates Na+ channels and generates an hyperpolarization 

which terminates the burst.  However, it is unlikely that this mechanism of bursting in pyramidal 

neurons as described by [187]  explains the burst structure observed in B. terrestris GRNs, for 

two main reasons.  First, the pyramidal neurons never exhibited spikes within the ARP, whereas 

spike superpositions having action potential peaks within the ARP were common in the A-type 

sensilla of B. terrestris.  Second, ISIs did not always decrease over the burst duration in B. 

terrestris as they did for pyramidal neurons; instead, ISIs increased over longer duration bursts.   

Instead, it is likely that an interaction between both GRNs is driving the burst structure.  

This is indicated by 1) both GRNs firing at specific phases of the burst structure, and 2) the fact 

that the spike timing of the Class 1 neuron was dependent on Class 2 neuron spiking activity.   

There are at least two separate mechanisms which drive this burst structure: one which drives 

GRN spiking activity and another which drives inhibition between bursts. These are described in 

the following sections. 

3.5.4 Mechanisms driving GRN spiking

The spike timing of both classes of GRNs was strongly correlated in the first 1 second of 

the recording.  However, as the GRNs adapted during longer recordings, we found that the 

correlation in their activity disappeared as a result of their different adaptation rates. In fact, the 
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Class 2 neuron had ~20x higher adaptation rate than the Class 1 neuron.  This suggests that each 

GRN is independently activated by the sugar ligand. When a compound is a good ligand for the 

receptor, it will bind with high efficiency at low concentrations. In our recordings, the Class 1 

neruon was activated by lower concentrations of sugars than the Class 2 neuron. The response 

tuning curves towards sucrose, fructose, and glucose were very similar for both neurons, with the 

threshold for detection shifted towards higher concentrations for the Class 2 neuron.

Alternately, only the Class 1 neuron possesses the sucrose binding GR, and activity of the 

Class 1 neuron induces a Class 2 neuron spike through an excitatory lateral interaction.  Such an 

lateral interaction should be non-synaptic, as the first region of synapse for GRNs is within the 

sub-esophageal zone (SEZ) [45], [92]. The close proximity of the dendrites within the A-type 

sensilla, along with the fact that insect neurons are non-myelinated  [190], [191], could allow for 

two well known types of lateral interactions between these GRNs : 1) interaction via electrical 

synapses such as gap junctions, and 2) ephaptic interactions.  

Gap junctions are protein channels that form connections between cell bodies, axons or 

dendrites of neighboring neurons, and allow flow of electric current, small metabolites and 

intracellular signaling molecules (for review see [192]).  They can mediate the transmission of 

depolarizing and hyperpolarizing potentials between neurons, as shown for coupled interneurons 

in the vertebrate neocortex [84], [85].  The close proximity of the GRN dendrites within the A-

type sensillum could allow for the presence of a gap junction between both classes of GRNs, and 

could therefore allow the Class 1 neuron spikes to drive depolarizations in the Class 2 neuron to 

eventually generate a spike.  Only a few studies report evidence for gap junctions in insect 

chemosensory neurons. One detailed study of contact chemosensilla in the inner cavity of the 

cockroach hypopharynx identified gap-junction like articulations among its GRN dendrites (a.k.a 

inedite jonction intercellulaire, [87]. Similarly, Ma [66] reported connections like gap junctions 

among the ciliary connective tissues of the GRN dendrites of the maxillary sensillar styloconicum

of larvae of the cabbage moth, Pieris brassica. These are the only studies I know of where gap-

junction like connections have been reported among the dendrites of GRNs. Whether or not this 

is a general feature of GRNs in insects, therefore, remains uncertain.
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In an ephaptic interaction, the electric field associated with the spiking activity of a 

neuron   modifies the excitability of a neighboring neuron, depending on their electrical and 

anatomical proximity [76]–[78].  This could allow for an action potential to evoke a 

depolarization in an ephaptically coupled neuron that leads to the generation of a spike.  Such a 

spike ‘transmission’ was shown to occur between axons in vertebrate [193] and squid [194], with 

delays in transmission varying between tens to hundreds of milliseconds.  

3.5.5 Mechanisms driving inhibition between bursts

The periods between bursts are most likely held under an inhibition which prevents 

spiking from both GRNs.  As the inhibition wears off, the Class 1 neuron spiking activity picks 

up again; this describes the decrease in ISI over the course of short duration bursts.  The shape of 

the Class 2 neuron spike in unfiltered recordings (figure 3.6 a), along with the fact that its spikes 

are located at the negative phase of the underlying oscillation, suggests that the Class 2 neuron 

spike is associated with an after-hyperpolarization (AHP) that generates this inhibitory period.

 A spike AHP refers to the phase following the peak of an action potential where the 

neurons membrane potential falls below the resting potential.  This occurs due to the delayed 

closing of K+ channels which are responsible for repolarizing the membrane, which functions to 

raise the threshold of generating subsequent action potentials for varying durations of time [195], 

[196].   For action potentials, the AHP is of short duration (~1 ms; [140]).   However, an AHP can

last longer if the activity of the K+ channels are modified.   For example, in hippocampal neurons 

of guinea pigs  [197], mice [198] and rats [140], [199], bursts of action potentials lead to a Ca2+-

mediated increase in permeability to K+ at the soma that results in an extended AHP.  This AHP 

takes between 50-100 ms (‘medium’ AHP duration; [140]–[142]) or even up to 1 s (‘slow’ AHP 

duration) or 1 minute (sensory neurons in the CNS of leech, [200]) to repolarize.  

AHPs have been shown to effect neural spiking activity.  For example, inter-ictal spiking 

activity (durations of activity between epileptic neural events) is associated with AHPs that are 

suggested to play a key role in preventing epileptic discharge [201].   In the burst response in B. 

terrestris, the IBI lasts ~0.029 s which is near the time scale for a medium AHP. A 

hyperpolarization generated by the Class 2 neuron could effect the Class 1 neuron through a gap 
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junction. This is because gap junctions have been shown to efficiently transmit low frequencies 

such as hyperpolarizations  [192].  The AHP can account for the observed low frequency 

oscillation in the tip and tungsten recordings. It could also account for the oscillations in the 

maxillary nerve recording, if the GRN axons possess the same ion channels that produce the 

AHPs.  However as far as I know, AHPs have not yet been shown to be transmitted across the 

length of a neuron.

 In the insect antennal lobe, oscillations observed in LFP recordings are generated by 

synchronous firing in a population of neurons within the antennal lobes [202], which is driven by 

the inhibitory GABAergic feedback provided by interneurons [94], [95].  It is unlikely that these 

oscillations in the A-type sensilla are driven by synchronous GRN activity, because there are only

two active GRNs during the response and there are only 4 GRNs within each sensillum.  

Inhibition in spike firing could also be mediated through ephaptic interactions between 

neurons.  Inhibitory ephaptic interactions have been described for the Purkinje cells in mice 

[203], [204] and Mauthner cells in teleost fish [79], [205].  The spike initiation zones (SIZs) near 

the axon hillock of these neurons are surrounded by dendrites.  The electric field associated with 

the dendritic activity influences the potential around the SIZ, which generates a hyperpolarization

that inhibits spiking for a duration of the order of ~0.001 s [79]. While the sensillum environment

could allow for an inhibitory ephaptic interaction between neurons [75], it is unlikely that this is 

the mechanism that drives the inhibitory period following the Class 2 neuron spikes since the 

inter-burst interval (~0.029 s) was approximately 10 times longer than the inhibitory periods 

described for the Purkinje and Mauthner cells.  

In sensillum recordings, low range frequencies (<300 Hz) are assumed to be contributed 

by receptor potentials.  Receptor potentials are a form of graded potentials (potentials established 

from passive diffusion of ions), and are associated with the transduction mechanisms that are 

initiated when a tastant molecule binds to a GR.  However, receptor potentials for sensilla are 

typically described at the onset and offset of a stimulus [44], [147], [206], which does not 

describe the persistent oscillation exhibited in the sucrose response.  
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For some invertebrate first order sensory neurons [207], [208], graded potentials have 

been shown to be transmitted for distances up to 1cm.  However, these neurons have high space 

constants (a measure that describes how far graded potentials can be passively transmitted 

through a neuron) due to their large diameters (~25 µm).  In comparison, the axons of GRNs are 

very short (~3 µm; [112], [209], which suggests that the passive diffusion of ions would not reach

the brain.  

3.5.6 Possible functions of bursting

Burst firing has been observed in several vertebrate neurons, and have been documented 

to drive a variety of functions regarding processing of information.  For example, thalamic relay 

neurons, which relay retinal information to the cortex, exhibit both tonic and burst firing modes, 

each of which effects the way the neurons respond to incoming input [210].  In weakly electric 

fish, bursting in the second order pyramidal neurons extract stimulus specific information [211].  

Bursts have also been suggested to increase the reliability of synaptic transmission through 

facilitation [189], [212], [213], lead to synaptic potentiation [211], [214] and plasticity [188], as 

well as allow for selective communication between neurons [215].  

 In the insect antennal lobe (AL; brain region that receives axonal projections of ORNs) 

and the optic lobe (brain region for processing visual stimuli), temporally structured spiking 

activity is implicated in stimulus coding. For example, fly visual neurons encode for stimulus 

relevant information through short sequences of spikes [210] as well as over multiple longer time 

scales as the neurons adapt to the stimulus [216], [217].  In the AL, temporally structured spike 

trains and oscillations  have been shown to drive synchrony between populations of neurons 

which aids in stimulus discrimination [53], [218].  The burst response of B. terrestris GRNs was 

temporally structured as well, with ISIs decreasing over short duration bursts and exhibiting 

multiple time scales of adaptation over a 30 s period of stimulation.  Unlike for the AL, the 

structured spike firing and oscillations did not function to drive synchrony between neighboring 

sensilla.  Whether the temporal structure could encode for information is cannot be deduced from

the limited types of stimuli I used here. 
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The B. terrestris GRNs encoded concentration through a concentration dependent 

increase in the rate of spiking and bursting, as well as the power of the underlying oscillatory 

component.  In insects, GRNs synapse onto neurons in the SEZ, which in turn coordinates the 

activity of motor neurons that generate proboscis extension and food ingestion [15].  While the 

activity of most insect GRNs is concentration dependent, there are only a few studies that reveal a

direct correlation between GRN spiking intensity and motor activity that controls feeding 

behaviors [14], [15].    In this study, I found instead that feeding behaviors are initiated at 

concentrations that evoke threshold spiking from the Class 1 and Class 2 neurons.  This suggests 

that the threshold activity of a population of GRNs drives behavior [103].

The burst structure to sucrose persisted for up to 4 s from stimulus onset.  This falls 

within the time window (1-5 s) that bees spend accessing and ingesting nectar from individual 

flowers [219].  This short time window could be due to the low volume of nectar in flowers, 

which is typically less than 6 µl [219].  When bees encounter larger volumes of solution, their 

first bouts of feeding typically last for 1-5 s as well [220].  This suggests that the burst portion of 

the GRN response is important for driving natural feeding behaviors in bumble bees.

This study suggests a novel mechanism for burst firing in prolonging adaptation.  Burst 

firing in B. terrestris was associated with GRN 1 spiking activity that continued to adapt even 

after 30 s of stimulation.  This extended adaptation could be associated with the fact that B. 

terrestris can spend up to  60s feeding on a large source of food [220]. Further, bumble bees 

forage not only for satiety but to provide food for their colony, and have been shown to ingest up 

to 50 µl of food on a single feeding session [220].  This could predict that they need a strong 

driving form of gustatory input to maintain continuous feeding on a solution.  Finally, B. 

terrestris exhibited the highest firing rate of the GRN1 activity in comparison to studies in other 

insect species, after just 3 s of stimulation.  The burst structure could therefore provides bumble 

bees with a unique advantage when it comes to detecting sucrose.  
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3.6 Conclusion

From these studies, it can be seen that bumble bees like B. terrestris and B. pascorum 

present a unique model for studying how peripheral gustatory neurons encode for taste stimuli.  

The GRNs of galeal sensilla in bumble bees interact with each other to form a temporally 

structured representation for sugars like sucrose, glucose and fructose at the periphery.  The data 

presented here are the first to show 1) that first order neurons can respond to stimulation with a 

persistent burst structure of spike firing with a coherent oscillatory component, 2) that bursting 

can be driven by two separate neurons firing at specific phases in the burst structure,  and 3) a 

burst firing response that is concentration dependent.  

 The data suggest that bursting could allow for a persistent high rate of spike firing of the 

most responsive class of gustatory neuron in the response (Class 1 neuron).  This would be the 

first time that bursting was reported as a mechanism for resisting spike frequency adaptation.  

Feeding behavior is correlated to the threshold of spiking and bursting, suggesting that a 

population of neurons are required to drive behavior. 
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Chapter 4. Recording Gustatory Neuron Activity From Central Locations in 

the Bumble Bee

4.1 Abstract

Studying how gustatory stimuli are encoded, distributed and integrated by gustatory 

neurons at the periphery and in the central nervous system is fundamental for understanding how 

feeding behaviors are controlled.  In insects, the coding structure of peripheral gustatory neurons 

(gustatory receptor neurons, GRNs) has been well documented through microscopy, genetics, 

imaging and electrophysiology.  In contrast,  the way gustatory information is transformed over 

synapses and how neural ensembles at different levels of the brain represent quality and quantity 

of tastant information at any given time to drive behavior has not been thoroughly examined.   In 

the previous chapters, I have established the bumble bee B. terrestris possesses GRNs within 

their galeal sensilla that exhibit a unique coding strategy.  This was described by bursts of action 

potentials that appears to be driven by an interaction between neighboring GRNs of a sensillum.  

My next goal was to develop a method to observe how the coherent activity from these GRNs 

coordinates activity from downstream neurons in the bee’s brain.  Further, I wanted to access the 

GRNs individually using intracellular methods, in order to approach the mechanism that drives 

the interaction.  In this chapter, I show how to approach these goals in an American species of 

bumble bee, Bombus impatiens.  I present a dissection procedure for accessing the mouthpart 

nerves that carry the axons of GRNs, and the primary gustatory region (sub-esophageal zone, 

SEZ) at the level of the brain.  I use techniques such as dye staining and intracellular and 

extracellular recording to monitor the activity of these neurons.  

4.2 Introduction

All sensory circuits share similar fundamental features for processing stimuli : stimulus 

relevant information is initially encoded by peripheral neurons, this information is distributed and

integrated within the central nervous system, and as a result motor output is coordinated to 

generate an appropriate behavior.   In insects, the sense of taste, known as gustation, starts with 

the peripheral gustatory receptor neurons (GRNs).  The structure of firing and coding 

characteristics used by GRNs have been well documented across a variety of insect species.  
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GRNs are organized in groups of 2-5 units, with their dendrites housed by hair-like sensilla that 

are distributed across the insect’s body  [10], [20], [45], [66], [70], [71], [143]–[145].   Each GRN

within a sensillum is activated by tastants belonging to one of the four taste categories: bitter (or 

aversive compounds), sweet, water (or solutions with low osmolarities), and salt [9], [26], [31], 

[47], [48].  Once activated, the GRN generates a train of spikes, whose structure is characterized 

as a brief (~100ms) increase in spiking frequency that adapts with prolonged stimulation to tonic 

firing [56]–[59], [63], [172].  In this way, GRN spiking activity encodes taste category, and the rate

of firing of action potentials encodes concentration [1], [7]–[11].

The axons of these GRNs project into the sub-esophageal zone (SEZ), which is the first 

region of gustatory processing in the insect brain.  The SEZ has been characterized in detail in 

several insects with regards to the organization of its gustatory input.  The SEZ receives GRN 

axonal projections from across the insect’s body into specific zones, which reflect their organ of 

origin [9], [22], [96]. For example, studies in the bee have shown that the majority of the SEZ is 

divided into the labial, maxillary and mandibular neuromeres, that receive input from those 

respective mouthpart organs [22]. Studies in Drosophila have revealed that the axonal projections

of the GRNs exhibit a certain level of functional organization as well :  sweet and bitter GRNs 

synapse onto mostly non-overlapping (yet spatially distributed) subsets of post-synaptic neurons 

[31], [48], [73], [97], and their activity evokes attractive and aversive behaviors, respectively 

[47]. 

Studies in Drosophila are starting to reveal how gustatory input is integrated within the 

SEZ.  For example, one study revealed the function of GABAergic interneurons in regulating the 

pre-synaptic output of sweet responsive GRNs,  to act as a gain mechanism for detecting bitter 

compounds [92].  Other studies have revealed several interneurons that coordinate the activity of 

motor neurons involved in initiation, continuation and cessation of feeding [99]–[101].  On the 

other hand, there is also almost nothing known about the importance of the structure of the GRN 

spike trains in driving downstream activity.  In the insect olfactory circuit, temporally structured 

spiking activity of the peripheral olfactory neurons  [53], [54] has been shown to drive coherent 

and oscillatory activity from ensembles of downstream neurons [92]–[94], which aids in stimulus

discrimination  ([218]).  In the insect visual circuit, stimulus relevant information is encoded by 
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statistics in spike timing [210], [216].  This indicates that the temporal structure of GRN activity 

could influence how information is coded and integrated in the SEZ.  

Studies in blowfly show that the intensity of GRN spiking activity within the first 0.03 s 

of stimulation is enough to drive muscle activity [14]. Studies in the blowfly and Drosophila 

show that the interneurons retain information regarding the strength of the GRN input to drive a 

graded activity from the motor neurons [14], [15]. Recordings from moth GRNs suggest that 

tastant specific information is initially encoded by spatio-temporal patterns of GRN activity, and 

that this information is temporally transformed over synapses [103], similar to that observed in 

the olfactory circuit.  The mechanisms driving this transformation of GRN input and their role in 

gustatory coding and integration within the SEZ is yet to be answered.  

 Bees provide a perfect model for studying strategies used by gustatory circuits.  This is 

because their gustatory circuitry needs to be efficient for encoding tastants, which would enable 

them to find the most rewarding sources of nectar and pollen, as well as to build associations with

location and floral cues to plan return visits  [120], [121], [124].  In my previous work (Chapter 

2), I show that bumble bee GRNs exhibit unique strategies for encoding sugars that are not 

observed in any other insect.  These data showed that a subset of maxillary sensilla responded 

with bursts of spikes involving two GRNs when stimulated with sucrose (figure 3.2).   

Understanding how this burst structure contributes to driving behavior would require recordings 

to be made from individual populations of gustatory neurons at regions downstream to the 

sensilla. 

In this chapter, I describe a dissection protocol that allows for accessing the gustatory 

regions of the bumble bee B. impatiens.  This gives access to the MxN and the SEZ, so that 

populations of neurons can be monitored using extracellular electrodes and individual neurons 

can be monitored using intracellular electrodes.  To obtain extracellular recordings, I use twisted 

tungsten wire electrodes.  Each neuron will have a unique spike shape on each electrode, based 

on its proximity from the recording electrode and resistance of the extracellular medium [135], 

[138].  I then use a spike sorting method developed by [133] and [134] to monitor the activity of 

individual neural units in the recording.  For intracellular recordings, I use a blind sharp electrode
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recording technique, by which a sharp glass electrode is lowered into the region of interest until it

punctures a neuron. Finally, I stain the nerves with dyes such as rhodamine to observe their 

projections into the gustatory regions.  The advantages and limitations of these techniques for B. 

impatiens are then discussed.
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4.3 Methods

4.3.1 Bees

Female Bombus impatiens (Koppert Biologial Systems, NATURPOL, Netherlands) were used for

all physiological studies.  Bees were first cold anesthetized and pushed through a cut pipette tube 

until only their heads stuck out.  Using a wax melter, wax was applied to the body of the bee to 

keep it in place in the tube.  To access the gustatory regions of the brain, the dissection can be 

made from either the dorsal side of the head or from the ventral side.  The entire preparation takes

approximately 45 minutes.  

4.3.2 Dye staining 

To stain nerves, a pressure ejection technique was used.  A glass capillary electrode 

(Sutter Instruments) was first pulled to a tip diameter of 1 µm using a horizontal electrode puller 

(P87, Sutter Instruments).  The electrode tip was then broken using fine forceps, so its diameter 

was just smaller than the diameter of the nerve of interest (~0.02 mm for the MxN).  This 

capillary was attached to a suction electrode holder, and the tip of the electrode was positioned 

next to the open end of the severed nerve.  A small amount of suction was applied so that the 

nerve entered into the tip of the capillary.  Best results for staining are obtained when there is a 

tight seal formed by the nerve and the electrode tip, as it prevents any dye in the electrode from 

leaking out.  The electrode is then filled with a 4% solution of rhodamine dye made in 100 mM 

LiCl, and is kept on the nerve for 3 hours to allow the dye to be taken up by the nerve.  During 

this time, the brain should be covered with saline to prevent the preparation from drying up.  

After 3 hours, the region of interest (brain if a back-filling was done or the mouthpart if a 

forward-filling was done) is excised and placed in a 1 ml tube filled with fixative in a phosphate 

buffer (4% paraformaldehyde in 200 mM Sorenson’s PBS), and is kept in the fridge overnight.  

This is followed by a wash with an ethanol series (30%, 50%, 70%, 90%, 100%), allowing at 

least 15 minutes in each solution.  At this point the sheath is removed.  The tissue is then cleared 

with methyl salicylate and is sandwiched between a conical glass slide and a glass coverslip 

without applying too much pressure on the tissue.  The sample can then be imaged with a 

confocal microscope.
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4.3.3 Electrophysiology

The brain and nerves are coated with a thin sheath that has to be removed to allow for 

recording from the neurons using extracellular and intracellular electrodes.  Further, the muscles 

have to be inhibited to prevent movement and to prevent spikes from the neuro-muscular junction

from being picked up by extracellular recording electrodes.  Muscle spikes can be identified by 

their large amplitude and width, and a strong low frequency component (Fig. 4.1).  Their 

presence in the recording makes spike sorting difficult as they interfere with the spike shapes 

recorded from the MxN, even after filtering out the low frequency components.  Recordings are 

only used if the muscle spikes are absent.  To remove the sheath and inhibit muscle activity, the 

wax cup around the bees brain is filled with a solution of 0.5 µg collagenase/dispase (Roche 

Diagnostics) in 100 µl of saline. After two minutes, the brain is washed thoroughly with saline.  

Care must be taken not to use a high concentration of collagenase or keep the solution for too 

long as it can damage the neurons.  At this point, the sheath can be teased apart using fine 

forceps.  For the MxN, the sheath appears like a sleeve  that can be pulled back to reveal the 

underlying axons that constitute the nerve.  

Figure 4.1.  Muscle spikes contaminate the extracellular recording.  Example sorted spikes 

from an extracellular recording made from the MxN show the presence of spikes having multiple 

amplitudes and widths (red waveform represents mean waveform of each cluster, in black is the 

standard deviation [SD] of all waveforms in each cluster).  Larger spikes are most probably from

muscle activity originating from outside the MxN (first 4 waveforms), whereas smaller spikes are 

from activity of axons carried by the MxN (last two waveforms). The larger spikes drown out the 

smaller spikes, as can be seen in the first panel (arrow points to a smaller MxN spike that rides 
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on top of the larger spike). Y-axis is amplitude (Amp) normalized to the MAD of the waveforms of

the clusters.  

For multichannel extracellular recordings, twisted wire electrodes were used.  Three or 

four tungsten wires having outer diameter 0.013 mm (Sandvik- KANTHAL wire with polyamide 

coating) were fixed between two pieces of tape, and one end was suspended from a horizontal 

rod.  The other end was loosely clipped to a rotor which revolves at a steady rate to twist the 

wires.  When the process of twisting builds up certain tension, the bottom piece of tape is 

naturally released from the rotor.  A heat gun is used to melt the coating around the wires, and 

then the wires are allowed to untwist until they come to a standstill.   Carbide scissors (Biomed 

instruments, 4.5 inch straight sharp points, 25 mm blades) are then used to cut the wire at the 

twisted end at a 90 degree angle. The face of the exposed tips of the tungsten wires form a 

rhombus.  The loose end of the wires are then fixed into separate channels of a 16 dip pin.  A thin 

capillary electrode is then fed onto the twisted portion of the wires, and is held in place by a piece

of wax to the 16 dip pin.  Finally, another 16 dip pin is used to sandwich the glass electrode and 

tungsten wires to hold them in place, and is glued to the first pin.  

The tip of the tungsten electrodes are then electroplated with gold.  This is done by 

supplying a 3.3 Hz square pulse (VC 1002 Function Generator attached to a 360 WPI Stimulus 

Isolator which is powered by an A362 WPI battery charger) to an impedance meter, which is 

connected across two terminals: one terminal connecting to an individual tungsten wire and the 

other to a drop of gold solution.  When the tungsten wire is dipped into the gold solution, the 

portion of the wire that is not covered by insulation is electroplated with gold.  The square pulse 

is applied until a 100 kΩ impedance is achieved. 

Intracellular recordings were made using a blind sharp electrode recording technique.  

Borosilicate glass capillaries (1.0mm outer diameter, Sutter Instruments) were pulled to an 

impedance of 90 MΩ using a horizontal puller (P87 Sutter Instrument Company). Electrodes 

were filled with a 0.2 M LiCl solution which acted as the electrolyte, and were attached via a 

chlorinated silver wire to a headstage (Axon Instruments, HS-2A, gain x 0.1) which was 

connected to an AxoClamp-2B amplifier (Axon Instruments).  The electrode was fixed to a 

mechanical manipulator (Leica Leitz) and was positioned with its tip vertical to the region of 

105



interest.  It was then lowered until a neuron was impaled.  Data were sampled at 20,000 Hz 

(custom LabVIEW software), amplified 3000 times, and post-acquisition filtered between 300 Hz

to 7000 Hz.

4.3.4 Tastant delivery

After making a dorsal preparation, the MdN are severed to prevent movement of the 

mandibles.  This allows for the mouthparts to be extended to allow for tastant delivery.  The 

mouthparts are propped on a glass slide, and the glass slide is fixed with wax to the base of the 

tube that holds the bee. A tastant delivery system (Bioscience tools, PC-16 controller driven by 

Manostat Compulab 3) then pumps the tastant solution onto the mouthparts. This tastant system 

was set up to supply a 2 second flow of distilled water, followed by a 3 second flow of tastant 

solution, and finally a 3 second wash with distilled water.  This was repeated for as many 

stimulations as required.  

4.3.5 Spike sorting

The same technique was used as described in Chapter 2 for spike sorting the multi-

channel tungsten recordings.  The only difference here was that three or four channels of 

recording were used for the sorting procedure.  Spike waveforms from all channels that exhibited 

prominent peaks of action potentials were used.  
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4.4 Results

4.4.1 Physiological preparation

The axons of GRNs project towards the sub-esophageal zone (SEZ) via the MxN, 

which in insects like the bumble bee can be accessed from either the dorsal or ventral sides of the 

head.   For a ventral preparation, the head was tilted up and fixed in place by building a column 

of wax on either side of the head just under the eyes.  To prevent the mandibles from closing on 

the mouthparts, incisions are then made a few millimeters into the cuticle below the mandibles to 

cut the muscles which control their movement.  

The mouthparts are then pushed forwards along the elbow joint between the cardo and the

base of the cardo, which exposes the membranous floor of the proboscis fossa (figure 4.2 a). The 

nerves from the SEZ leading towards the mouthparts are slack, which allow for the mouthparts to

be moved forwards without damaging the nerves.  The mouthparts are then kept in place by 

threading them through plastic tubing, and fixing the plastic tubing to the top of the head using 

wax.  A wax dome is then built around the head capsule and is filled with a few drops of 

Manduca physiological saline [221]. Next, an incision is made in the proboscis fossa and the 

cardo are cut at the base on both sides.  The thin layer of trachea that is underneath the fossa is 

then removed, which exposes part of the SEZ and the mouthpart nerves (figure 4.2 b).
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Figure. 4.2: Ventral dissection.  a) Ventral view of the bee head, anterior end facing the bottom 

of the page.  Pushing the mouthparts forward exposes the  proboscis fossa.  Making an incision 

in the fossa exposes the sub-esophageal zone (SEZ) (b)  Md, mandibles; Prm, prementum; LbN, 

labial nerve; MxN, maxillary nerve; MdN, mandibular nerve.  Figure 4.1 a obtained from 

Snodgrass 1956

While the ventral preparation provides a way to reach the nerves and SEZ with minimal 

dissection, it was associated with several complications.  First, the animals show a high tendency 

of either dying (4 out of 7 preparations died), as indicated by the absence of spiking activity from 

extracellular recordings made from the SEZ and the absence of any physical movement from the 

bee.  The remaining 3 bees did not exhibit any response to tastant stimulation.  Second, it was 

difficult to de-sheath the nerve and SEZ due to the fact that the working area for using forceps is 

very small in a ventral preparation.  Finally, it was difficult to get the esophagus to stop 

generating movement, even if a muscle-dissolving enzyme such as collagenase is used. 

Approaching the SEZ from the dorsal side of the head overcomes these complications. 

The dorsal head capsule of B. impatiens measures approximately 2.5 x 3.0 x 3.5 mm (anterior-

posterior x dorso-ventral x lateral ; see figure 1.2 a for orientation). To make a dorsal preparation,

the head is fixed in place with drops of wax on the sides of the head.  A wax dome is then built 

around the head to hold saline.  The antennae are then gently threaded through plastic tubing to 

prevent any injury, and the tubing was fixed to the wax dome.  The resulting setup is shown in 

figure 4.3 a.  

Incisions are made in the head capsule as shown in figure 4.3 a, and the antennae are 

gently pulled to the sides, making sure not sever the antennal nerves.  This serves to pull apart the

antennal lobes by their antennal nerves, which allows better access to the SEZ.  It additionally 

allows for measuring responses of SEZ neurons that receive input from antennal olfactory 

neurons. Next, the fat bodies and tracheae are removed, which exposes the esophagus (figure 4.3 

b).  An incision is made in the esophagus and it is gently pulled towards the back of the head 

capsule.   Severing the esophagus prevents the pumping movement of the gut which leads to an 
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unstable preparation. Care has to be taken at this stage as it is easy to damage the mouthpart 

nerves, which lie just under the esophagus.  Further, the forceps have to keep the esophagus 

pinched while making the incision, otherwise digestive fluids can flow into the brain which 

causes immediate damage to the neurons.  Another pair of forceps should be used to tease apart 

the trachea connecting the ventral side of the esophagus to the nerves and the SEZ.  A drop of 

wax is used to fix the esophagus to the wax dome.  At this stage, the brain should be quite dry 

which makes it easy to observe the three pairs of mouthpart nerves (figure 4.2 c).  The 

preparation can now be used to access the mouthpart nerves for staining, or can be readied for 

electrophysiological recording.  The entire dorsal preparation takes approximately 45 minutes. 

Figure 4.3 (legend on next page)
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 Figure 4.3 :  Dorsal preparation.  a) The bee is held in a tube with the head sticking out. 

Antennae (Ant.) are threaded through silicone tubing and fixed to the wax dome built around the 

head.  Incisions are made in the head capsule as indicated by dotted lines, which allow the 

cuticle at the base of the antennae to be pulled to the sides (arrows).  b) View of the brain 

immediately after pulling apart the antennae.  An incision (dashed blue line) is made in the 

esophagus (Eso, outlined by dashed yellow lines) and it is pulled towards the back of the head 

capsule (arrow).   c) View of the dorsal dissection after moving the esophagus. SEZ: sub-

esophageal zone (anterior surface outlined in orange), MdN: mandibular nerve, MxN: maxillary 

nerve, LbN: labial nerve, AL: antennal lobe (outlined in pink).  

4.4.2 Accessing the MxN

My next aim was to identify each of the three pairs of nerves extending from the SEZ.    

Each mouthpart nerve has a diameter of approximately 0.1mm, and are arranged dorso-ventrally 

in two rows (figure 4.2 b).   I used a pressure injection technique that stains individual nerves 

with rhodamine (see methods) to observe their projection within the head capsule (figure 4.4 a).  

The most dorsal nerve was found to extend approximately 2 mm into the mandibles.  This nerve 

branched at multiple positions into various muscle regions (figure 4.4 b).  Severing the nerve 

revealed that these muscles controlled the movement of the mandibles, indicating that this was 

the mandibular nerve (MdN).   Forward-staining the most ventral nerves revealed that they 

extend into the prementum, which indicate that these are the labial nerves (LbN).  Finally, 

forward-staining the nerves between the MdN and LbN showed that they extend into the galea, 

indicating that this is the MxN.  The MxN was found to branch at several positions before 

reaching the galea (figure 4.4 c), suggesting that it carries the axons of efferent motor neurons as 

well.  

Next, I observed the projection of the stained MxN into the galea.  To do this, I made use 

of the fact that the galea is made up of a dorsal and a ventral cuticular layers that can be teased 

apart to expose the MxN.  A confocal image taken near the galeal tip after forward staining the 

MxN reveals a cell body located below and laterally displaced from the base of a B-type 

sensillum (figure 4.4 d).  The position of this cell body suggests it belongs to a GRN, with its 

axon projecting towards the MxN.  While this technique describes a feasible way to access GRNs
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within the galea, it needs to be developed as it was difficult to obtain a preparation where the 

GRNs did not appear damaged.  

Figure 4.4 (legend on next page)
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 Figure 4.4.  Organization of mouthpart nerves and SEZ in the bumble bee brain.    a) 

Approximate paths followed by the various mouthpart nerves from the SEZ, shown on a drawing 

of the head of B. terrestris.  Red boxes are approximate locations from where confocal images of 

forward-stained nerves in b) c) and d) were obtained. The MdN (b) and MxN (c) exhibit 

branching into muscle regions on their way to the mouthparts.  White arrows point at branches, 

red arrows indicate main nerves and point in the direction of the mouthparts.  d) Forward staining

of the MxN within the galea shows what appears to be the cell body of a GRN with its axon 

projecting towards the MxN (indicated by red arrow).  AL, Antennal Lobe; SEZ, Sub-esophageal 

ganglion; MdN, Mandibular nerve; MxN, Maxillary nerve; LbN, Labial nerve; Ant. , Antenna; 

Md, Mandible; Mx, Maxilla; Lb, Labia.  

4.4.3 Electrophysiology from MxN

My next aim was to record from populations of GRNs by placing an extracellular 

electrode on the MxN.  From histology, it was determined that the best way to access the MxN 

was from a dorsal dissection and at a position near its entry into the SEZ.  At this position, the 

diameter of the MxN was ~0.02 mm.  An extracellular electrode made of three or four twisted 

tungsten wires (each having outer diameter of 0.012 mm; see methods) was used to measure 

activity.  Upon contact with the MxN, spiking activity was observed on each of the channels 

(figure 4.5 a).  This activity could be monitored while stimulating the mouthparts with tastants.  

The spikes from these recordings were sorted using a technique that compares waveforms 

across all channels, developed by Pouzat et al.  [133] and Hill et al.  [134].  Multiple spike 

waveforms could be observed, each of which had a unique shape on each recording channel 

(figure 4.5 b).  Spikes from the MxN typically lasted under 0.002 s. In some recordings, the 

electrodes picked up large spikes having large amplitudes and widths up to 0.004 s (figure 4.7) 

which are most probably from muscles that were not inactivated by collagenase.  Recordings with

these large spikes were not used for analysis.  Spikes within each cluster exhibit a noticeable 

variability (figure 4.5 c).  This indicates that there is only a limited certainty for which the spikes 

for each cluster can be determined to belong to a single neuron.  However, clusters were well 

separated from each other (figure 4.5 d, e), and estimating the percentage of errors during 

classification (see methods) reveals that a subset of the detected clusters have less than 5% errors 
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(clusters 1 and 2 in figure 4.5 a).  This strongly suggests that each cluster consists of spikes that 

arise from the activity of different neurons.  

These results show that extracellular recordings from the MxN using twisted tungsten 

electrodes can be used to measure the activity of GRNs, and sorting techniques can be used to 

separate the spiking activity from different GRNs with a high level of confidence.  In this way, 

four out of seven recordings provided well separated spike clusters (n=7 animals).  Using this 

technique, I observed neural responses that varied in intensity and duration.   Some recordings 

revealed units that responded with an inhibition in spiking activity during stimulation, others 

exhibited excitation, and some units did not respond at all to stimulation (figure  4.4 f,g,h).  I also

found units whose response structures varied with 1M sucrose and 100mM NaCl (figure 4.4 h). 

Figure 4.5 (figure on next page):  Extracellular twisted tungsten wire recording from MxN.  a)

Spikes are monitored by two out of three wires (channels 1 and 3).  b) Spike waveforms were 

sorted to reveal three clusters (represented by each row), which had unique waveforms on on 

each tungsten wire (represented by each column). The Y-axis represents amplitude (Amp) 

normalized to the median absolute deviation of the waveforms of each cluster.  c) Residuals for 

each cluster show that there is a lot of variability in spike shape within each cluster, suggesting 

possible contamination with multiple units.  d) Projecting the first 3 largest principal components

(PC) of each cluster shows that clusters are well separated from each other.  e) A Fisher’s Linear

Discriminant Analysis between the spikes of each cluster (using the first five principal 

components of the waveforms of each cluster; see methods) reveals good separation (d>4) 

between all three clusters. f) Raster plots show the activity of spikes (each row represents an 

individual trial) .  b-f represent spike sorting from the recording shown in a.   g) A recording from

another preparation shows a well separated cluster exhibiting an excitatory response to 1000 

mM sucrose.  h) A recording from yet another preparation shows a unit responding with an 

increase in spiking frequency to 1000 mM sucrose (top), and excitation followed by inhibition in 

spiking to 100mM NaCl (bottom). Shaded regions indicate duration of stimulus application.
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Figure 4.5 (legend on previous page)
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To monitor the activity of individual neurons within the MxN, a sharp electrode recording

technique was used (see methods).   A sample recording shows that action potentials can be 

monitored from  individual axons while stimulating the mouthparts with a tastant solution (figure 

4.6).   The rising and falling phases of the spikes lasted approximately 0.002 s, and were followed

by a short after-hyperpolarization (~0.003 s).  The efficiency of obtaining an intracellular 

recording was very low, with only 2 out of 8 preparations yielding recordings. Further, recordings

were only stable for a short duration of time, as indicated by the decrease in spike amplitude 

within the first one minute of recording.     

 Figure 4.6:  Intracellular recording from MxN  a) Stimulation with 1000 mM sucrose evoked 

spikes in a sample intracellular recording made using the sharp electrode technique. Spikes 

lasted approximately 0.002 s.  b) Spikes initially had large amplitudes, but they gradually 

decreased over the course of the recording.

4.4.4 Recording from the SEZ

To monitor how the gustatory input from the GRNs transforms over synapses, recordings 

have to be made from the post-synaptic neurons within the SEZ.  The SEZ in B. impatiens 

measures approximately  0.7 x 0.45 x 0.4 mm (anterior-posterior x dorso-ventral x lateral; figure 

4.7 a).  To locate where galeal GRNs project in the SEZ, I first back-filled the MxN with dextran-

rhodamine (see methods).  Confocal images show branching near the anterior surface, near the 

site of entry of the MxN.  The axons of GRNs project bilaterally, and are observed to branch 

dorsally and ventrally.  The branches are seen to extend to the posterior end of the SEZ, and 

appear to terminate in the bulbous region that extends into the ventral nerve chord.
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Targeting extracellular twisted wire electrodes at the regions where the MxN projects into 

the SEZ revealed that neural activity could be monitored in response to tastant stimulation (figure

4.7 b).  Spike sorting allowed for monitoring individual units.  Extracellular recordings were 

efficiently obtainable from the SEZ, with 7 of 10 preparations yielding responses.  The high 

efficiency is probably due to the ease of removing the surrounding sheath after softening it with 

collagenase, and since any muscle activity disappears when the electrode makes contact with the 

neurons of the SEZ.    

 

Figure 4.7 (legend on next page)
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Figure 4.7 .  Projections of MxN in SEZ and extracellular recordings from SEZ.  a) Back-

filling the MxN with rhodamine for two separate brains shows axonal projections near the 

ventral region (left) and bilaterally through the SEZ (right), with a prominent region of synapse 

within the posterior bulbous region that extends into the ventral nerve chord.  Site of entry of 

MxN is indicated by red arrow.   b) The best isolated cluster from an extracellular recording 

shows an excitatory response to 1000 mM sucrose, but no response to 100 mM NaCl.  c) A 

recording from a different animal shows a unit that exhibits a rebound inhibition to 1000 mM 

sucrose.  Shaded regions depict duration of stimulus application, each row of the raster 

represents a trial. ET: Esophageal tract, region through which esophagus passes dorsal to the 

SEZ.

It was also possible to obtain intracellular recordings from the SEZ with high efficiency, 

with 8/15 bees yielding stable recordings.   Sample intracellular recordings made from the SEZ of

B. impatiens reveal a variety of spike shapes and response characteristics to tastant stimuli (figure

4.8).  Spike widths from different neurons varied from 0.5 ms to 2 ms.  Measuring spiking 

responses to sucrose and NaCl from these neurons suggest that some neurons are tuned to 

respond to NaCl and not sucrose while others respond to both tastants to different degrees.    

Intracellular recordings from the SEZ were stable, which allowed for recordings to be made for 

up to 5 minutes, and allowed for multiple stimulations with different tastants.  
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 Figure 4.8 :  Intracellular recordings from SOG.  Recordings showcase the diversity in 

response structures of different neurons. a) A neuron selectively responsive to 100 mM NaCl 

(shaded pink region indicates period of 100 mM NaCl stimulation, whereas shaded yellow region

indicates 100 mM sucrose stimulation).  b) A neuron responding to both 1000 mM sucrose and 

100 mM NaCl  c) A sucrose responsive neuron whose spike waveform has a large depolarizing 

after-potential. d) A neuron that responds with only a few spikes. e) A neuron that is inhibited 

during sucrose stimulation.
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4.5 Discussion

In this chapter, I showed for the first time in bees that it is possible to monitor neural 

spiking activity using extracellular recording methods from the MxN and SEZ.   Combined with 

spike sorting methods, the activity of individual units could be monitored from both of these 

regions.   Further, I was able to stain the MxN to observe its branching pattern within the SEZ, as 

well as obtain obtain intracellular recordings from the SEZ. 

The dissection procedure for reaching the gustatory regions of B. impatiens was quite 

tricky for several reasons.  First, the head capsule of B. impatiens is small, similar to that of a 

honey bee (1.0 x 3 x 3.3 mm; anteroposterior x dorsoventral x lateral [22], see figure 1.1 for 

orientation).  Second, the SEZ had to be accessed from the dorsal side of the head capsule.  This 

required manipulation of the antennal nerves and esophagus, and it was difficult not to damage 

the mouthpart nerves in the process of the preparation.  While it would be easier to access the 

SEZ from the ventral side of the head capsule as it lies just underneath the mouthparts, ventral 

preparations in B. impatiens often resulted in either 1) the bee dying or 2)  no measurable activity 

from the SEZ when recording with extracellular electrodes.  This could be due to the strain put on

the mouthpart nerves and the ventral nerve chords while making the preparation, which required 

the mouthparts to be pushed forwards and the head tilted upwards.  However, ventral preparations

were used for recordings in moth [103] and honey bees [117], which means that it could work for

bumble bees with a modified preparation method.      

The structure of the SEZ in B. impatiens was similar to that described by Rehder [22] for 

the honey bee;  the SEZ was fused to the rest of the brain and it gave rise to the mandibular, 

maxillary and labial nerves.  While the significance of a fusion between the different brain 

regions is still not understood, it could offer an advantage for sensory integration if different 

sensory regions are clustered close together.  Back-filling the MxN revealed that GRN axons are 

widely distributed in the brain.  However, there were two particular regions of dense staining near

the posterior and the anteroventral regions, similar to that described in the honey bee [22] and 

moth (M. sexta) [179].  
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Using 3-4 twisted tungsten wire electrodes, I was able to obtain extracellular recordings 

from the MxN.  Sorting spikes using waveforms from each of these electrodes, I found it was 

possible to obtain well separated clusters that allowed for monitoring individual neurons with 

decent efficiency (4/7 recordings yielded well separated spike clusters).  Sorted recordings 

revealed responses characterized by inhibition and excitation from baseline spiking activity, and 

revealed neurons responsive to both sucrose and NaCl with different response structures.  These 

types of response structures were observed from MxN recordings made from the moth as well 

[103].

It was interesting to see inhibitory responses as well evidence of neurons responding to 

both sweet and salty stimuli, as these types of responses were not observed from sensillum 

recordings in B. terrestris.  This could suggest that there are sensilla on the maxillary mouthparts 

of bumble bees that exhibit baseline activity and broadly tuned GRNs that I have not yet recorded

from, as were found for Drosophila  [150] and S. littoralis [149].  However, it should be noted 

that the MxN in B. impatiens was found to carry efferent motor axons as well, as observed for 

honey bees [22].  It is therefore not certain whether the recordings were from afferent GRN input 

or efferent motor neuron activity.  This problem can be addressed by using multiple electrodes 

positioned at different locations along the MxN, which would allow for obtaining the direction of

propagation of the action potentials.  In moths, the MxN carries only afferent GRN axons [222], 

which is why there was no issue in interpreting those extracellular recordings [103].

One of the drawbacks of the MxN extracellular recordings was that the spikes within each

detected cluster often exhibited a high variability.  This could in part be due to the small width of 

the MxN (~0.02 mm), which allowed only three or four tungsten wires (each having an outer 

diameter of 0.013 mm) to fit on the nerve.  Of these wires, only two generally picked up spiking 

features.   One possible fix for this is to increase the surface area of contact between the wires 

and the nerve, by cutting the wires at a 45 degree angle [137], instead of a 90 degree angle as was

done for these experiments. I should also try using tetrodes with wires arranged in a linear array 

[151].   A suction electrode could also work as an alternative, by which the nerve is cut and the 

exposed end is suctioned into a glass capillary electrode.  This would allow for recording 

responses of subsets of maxillary sensilla.  Suction electrodes have been used to monitor the 
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activity of antennal nerves while stimulating olfactory receptor neurons (ORNs) in Drosophila 

[223].  

Obtaining sharp electrode intracellular recordings from the MxN was very difficult.  

Recordings were unstable, lasting only up to 1.5 minutes from impaling the neuron.  This could 

be due to an unstable preparation, or due to the fact that B. impatiens GRNs have very thin axons 

(~2 µm). However, sharp electrodes have been used to obtain recordings from axons in the MxN 

in moths [103], antennal lobe of locust [224], and from the SEZ in honey bee [117] which have 

similar axon widths [48], [112], [209].  This  suggests that recordings can be made from B. 

impatiens as well, given a more stable preparation. I could try making the preparation more stable

by applying a light upward force on the MxN using a hook electrode.  

In comparison to the MxN, extracellular recordings were much easier to obtain from the 

SEZ.   Spike sorting produced well separated clusters and revealed units that responded with 

excitatory, inhibitory and stimulus-specific responses.  This method can therefore be used to 

study how the temporal structure of GRN input transforms across synapses.  It was also much 

easier to obtain sharp electrode recordings from neurons within the SEZ.  Recordings were stable 

for up to 7 minutes from stimulus onset, which allowed for multiple stimulations with different 

tastants.  Future experiments should be aimed towards staining neurons within the SEZ with dyes

like dextran.  This will allow for determining whether the neuron under observation is a first 

order neuron, depending on whether the axon projects into the MxN. 

One of the goals of these experiments was to standardize a method that would allow me to

record from the SEZ in B. terrestris to study the GRN burst response exhibited to sucrose.   

Given that the head capsule is much larger for B. terrestris ( 1.5 x 3.5 x 3.6 mm; anteroposterior x

dorsoventral x lateral) in comparison to B. impatiens, accessing the SEZ for intracellular and 

extracellular recording should be easier.  Further, I found that B. terrestris was in comparison a 

more robust species of bumble bee, which would allow for the recording preparation to last much

longer without the animal dying. 
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Overall, the efficiency of obtaining extracellular recordings from the MxN and SEZ, and 

intracellular recordings from the SEZ in B.impatiens suggests that these methods can be used in 

B. terrestris.  Future experiments should be aimed towards obtaining intracellular recordings 

from the MxN, as these will be required to understand the burst spiking response.  Extracellular 

recordings from the SEZ would reveal whether the burst structure and oscillation functions to 

drive coherent activity from neural ensembles, as they do within the insect antennal lobe (which 

receives axons of ORNs) [218], [225].  These methods will allow me to explore the novel 

mechanisms utilized by bumble bees for encoding gustatory stimuli.  
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Chapter 5. General Discussion

The decision of when to feed is a problem faced by all animals.  At first glance, this 

gustatory problem is quite complex even for an insect like a bee.  The nectar it feeds on contains 

hundreds of tastant chemicals including carbohydrates, salts, vitamins, proteins and fats, each of 

which it has to be able to detect in a food source since absence of these lead to different diseases 

[55].  Further, certain food sources can be laced with toxins that the bee has to avoid.  However, 

decades of research in insects have revealed an efficient organization and coding strategy 

exhibited by the insect peripheral gustatory neurons (gustatory receptor neurons, GRNs) that 

allows for dealing with this complexity.  This strategy involves 1) GRNs tuned to respond to 

individual tastant categories (e.g sweet, bitter), which form the concept of a ‘labeled line’ model 

for gustatory coding [1], [7]–[11],  and 2) encoding concentration through the rate of firing of 

action potentials (spikes) [46], [60].  For example in Drosophila, each hair-like sensillum 

possesses one sweet gustatory receptor neuron (GRN) that responds to compounds like sugars 

with a concentration dependent change in the firing rate of spikes [57], [155].  The spike train is 

characterized as a brief increase in spiking frequency that adapts with prolonged stimulation to 

reach a tonic firing [7], [60].  This coding strategy is found to be quite similar for animals ranging

from insects to vertebrates (for review see [2]). 

My initial interest was to characterize the responses of GRNs from mouthpart sensilla in 

the bumble bee B. terrestris to different tastants.  Unexpectedly, I found that GRNs within galeal 

sensilla exhibited a unique response structure when stimulated with sucrose.  This structure was 

characterized by bursts of spiking activity that was coherent with a low frequency oscillation in 

voltage.  The rate of spiking and bursting, as well as the power of the oscillatory component, 

were concentration dependent.   There were two GRNs participating in the burst response, and 

there was evidence that they interact with each other to generate the burst structure.  Further, the 

burst structure was exhibited in response to two other sugars, glucose and fructose.  This shows 

that the coding strategy used by the GRNs of B. terrestris for detecting these sugars deviates from

the typical ‘labeled line’ coding used by most insect GRNs as described above. The goal of my 

thesis was to 1) describe and characterize this burst structure to sucrose, 2) suggest a possible 

mechanism which drives the burst structure, 3) suggest potential functions for stimulus coding 
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and behavior, and 4) to discuss the implications of bursting in the field of peripheral gustatory 

coding.  

5.1 Coding by the bumble bee GRNs

  The burst response to sugars was exhibited by the two types of sensilla present on the 

galeal mouthparts of B. terrestris.  At least two of the 4 GRNs in the A-type sensilla (5 GRNs in 

the B-type sensilla) were active in the burst structure, with each burst comprising of at least one 

Class 1 neuron spike within bursts and a Class 2 neuron spike at the end of bursts.  The GRNs 

within these sensilla exhibited little to no baseline activity (~3 spikes / s) and their response to 

sucrose was largely restricted to the stimulation period.  This burst response did not involve the 

water responsive GRN nor the mechanoreceptor also present in the sensilla.  

These data provide the first evidence that multiple GRNs within the same sensillum can 

respond to sucrose stimulation with a structured firing of spikes.  While  studies in other insects 

suggest that multiple GRNs within each sensillum can be activated by sucrose  [18], [182] or that 

there are multiple GRNs within each sensillum that are responsive to different sugars [183], 

[184], the spiking responses do not follow any apparent structure as they do in B. terrestris.

   The fact that the Class 1 and Class 2 neurons were phase locked to specific positions 

within the burst structure suggests that both GRNs exhibit a degree of interaction which drives 

bursting.  There are two mechanisms that are involved in the burst response, one which drives 

GRN spiking activity and another which drives inhibition between bursts.  One possible 

mechanism that drives spiking is that both GRNs possess sugar binding GRs such that each GRN 

fires with its own rate of spiking. Alternately, it is possible that only the Class 1 neuron possesses 

the sugar binding GR, and the activity of Class 1 neuron in turn activates Class 2 neuron through 

a lateral interaction.  There are two well known types of lateral interactions;  those mediated by 

electrical synapses such as gap junctions, and ephaptic interactions.  

Gap junctions are channels between neurons that allow the flow of electric current (for 

review see [82].   The close proximity of the GRN dendrites within the galeal sensilla could allow

the presence of gap junctions between these neurons.  While gap junctions are commonly 
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observed in the insect nervous system [226], only a few inconclusive reports have suggested they 

exist between GRNs [66], [87].    In an ephaptic interaction, the electric field associated with the 

activity of a neuron (such as a spike) modifies the excitability of a neighboring neuron (e.g. 

causes a depolarizing or hyperpolarizing potential), depending on their electrical and anatomical 

proximity (for review see [76]–[78]). The sensillum environment provides an electrically isolated

environment that could allow for ephaptic interactions [75].  

The period of silence between bursts could be mediated by an inhibitory lateral 

interaction.  This could start with a spike after-hyperpolarization (AHP) that appears to follow 

each Class 2 neuron spike (as indicated by its shape and since the Class 2 neuron spikes are 

located on the falling phase of the underlying oscillation).  AHPs decrease the excitability of a 

neuron for durations that can last up to 0.1 s [140]–[142], [197]–[199], which is the same time 

frame as the inter-burst interval (~0.029 s).  Gap junctions have been shown to efficiently 

transmit low frequencies, which makes it possible that an AHP in the Class 2 neuron spike could 

inhibit the Class 1 neuron spiking via a gap junction.  

The burst response to sugars therefore most likely involves a combination of independent 

responses via GRs and interactions via gap junctions and ephaptic coupling. These data are the 

first to suggest that a non-synaptic lateral interaction between neurons can drive bursting.  Most 

other studies describe bursting either for individual neurons that are driven by intrinsic 

mechanisms [185]–[189], or that involve synaptic input that coordinates bursting [186].

White et al.  [81] described a similar inhibitory lateral interaction in the tarsal gustatory 

sensilla in grasshopper.  A GRN activated by nicotine hydrogen tartarate was inhibited by the 

occasional activity of a second GRN, for a duration of the same time scale as the inter-burst 

interval.  Together with findings in B. terrestris, these studies suggest that GRNs of a sensillum 

can represent taste across fibers.  

Overall, the GRNs within galeal sensilla in bumble bees appear to encode taste stimuli 

through temporally structured responses that involves interactions between neighboring GRNs 

within each sensillum.  These features are shared by olfactory receptor neurons as well;  ORNs 
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encode stimulus relevant information through temporally structured trains of spikes, and 

neighboring ORNs interact through lateral interactions [75]. This gives rise to an ‘across-fiber’ 

model of coding, which means that a single chemical stimulus is represented by a population of 

neurons within each sensillum.

5.2 Function of bursting

Temporally structured spiking and oscillations are commonly observed within the insect 

antennal lobe (AL, region within the brain that receives ORN axons).  In the AL, one of their 

main functions is to drive synchrony between populations of downstream neurons [225] which 

aids in stimulus discrimination [218].  The bursting and oscillations exhibited by the GRNs in the 

A-type sensilla of B. terrestris did not function to drive coherence between sensilla.  Their 

function downstream within the SEZ remains to be elucidated.  

The B. terrestris GRNs encoded concentration through a concentration dependent 

increase in the rate of spiking and bursting, as well as the power of the underlying oscillatory 

component.  While the spiking activity of most insect GRNs is concentration-dependent, it is still 

not clear whether this concentration dependent spiking activity is directly correlated to behavior; 

only a few studies in blowfly and Drosophila reveal such a correlation [14], [15].    In this study, 

I found instead that feeding behaviors are initiated at the threshold of spiking and bursting 

activity from the GRNs.  This suggests that the threshold activity of a population of GRNs is 

responsible for driving behavior [103].

Bees have been observed to spend between 1-5 s accessing and ingesting nectar from 

individual flowers [219].  Given that the burst structure persisted for up to 4 s from stimulus 

onset, this could indicate that the bursting component of the GRN response is important for 

driving natural feeding behaviors in bumble bees.  The activity of the Class 1 neuron (which fired

within bursts) exhibited a very low rate of adaptation in comparison to other insect species, and 

continuously adapted over a 30 s duration of stimulation.  The adaptation of the Class 1 neuron 

spiking activity appeared to be dependent on the intensity of bursting, which indicates that 

bursting could function to prolong adaptation of the Class 1 neuron.  This could play a role in 
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driving the continuation of feeding, as bees have been observed to spend long durations of time 

(up to 60 s) consuming large quantities of food (up to 50 µl) on a single feeding session [220].   

5.3 Studying gustatory coding at the level of the brain in bumble bees

In order to understand the mechanisms that drive this bursting activity from GRNs, it is 

essential to obtain intracellular recordings from individual GRNs.  In Chapter 4, I show that it is 

possible to obtain intracellular sharp electrode recordings from the maxillary nerve (MxN) which 

carries the GRN axons towards the SEZ.  One drawback of these recordings was that I could not 

monitor activity for long periods of time.  However, sharp electrode recordings have been 

obtained from the axons in the MxN in moths  [103] and the antennal lobe of locust [224],  which

have similar axon widths as bumble bees (~2 µm) [48], [112], [209]. This suggests that the 

intracellular recordings from the bumble bee MxN could be improved given a mechanically more

stable preparation.

Studies in the Drosophila olfactory circuit revealed that the structure and organization of 

the ORN input within the antennal lobe is important for driving synchronous and temporally 

structured activity from post-synaptic neurons [53].  This activity in turn drives oscillations in 

LFP that aids in stimulus discrimination [218], [225].  In comparison, the importance of the 

temporal structure and organization of the GRN input to the SEZ is still unknown.  The presence 

of spiking, bursting and oscillatory components in the GRN response make bumble bees an 

interesting system to study coding within the SEZ.

Studies in Drosophila have revealed GRN input is organized within the SEZ; sweet and 

bitter GRNs synapse onto a largely non-overlapping subset of post-synaptic neurons.  However, 

these post-synaptic neurons are widely distributed throughout the SEZ.  Therefore, extracellular 

recording techniques will have to be used to monitor how the structure of the GRN input is 

transformed and represented across synapses and populations of neurons.  On the other hand, 

intracellular recordings can reveal which features of the GRN burst response is transmitted across

synapses.  In Chapter 4, I showed that both intracellular and extracellular recordings can be 

efficiently obtained from the SEZ in bumble bees.  These studies have also been done in moth, 

where it was shown that GRN input is dynamically transformed across synapses [103].  
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5.4 New tools for spike sorting and burst detection from sensillum recordings

In order to accurately characterize the burst response, I needed to sort the spikes from the 

sensillum recordings.  This required a method that 1) required minimal user input, to remove bias

from the sorting procedure,  2) allowed for estimating the quality of classification, to 

convincingly argue for the presence of multiple active neurons, and  3) uses multiple parameters 

for comparison, particularly since the second GRN activity was very low and often was 

associated with the first GRN as a superposition.   These three features were not provided by the 

existing spike sorting techniques available for sensillum recordings, such as DbWave [154] and 

AutoSpike (Syntech).  These programs have many stages that require user-input, since they use 

visual estimates for clustering spikes and require visual detection of superpositions.  In addition, 

they do not allow for estimating the quality of sorting.  Finally, they use a reduced number of 

parameters for the sorting procedure; spikes are obtained from single channels of recording, and 

comparisons are made between a few user-selected parameters such as spike amplitude or width.  

In Chapter 2, I showed that the spike sorting methods developed by Pouzat et al. 

[133] and Hill et al. [134], which I refer to as PouzatSort, cover for the limitations mentioned 

above and could be used to sort spikes from sensillum recordings. PouzatSort compares entire 

spike waveforms obtained from both recording electrodes for the sorting procedure.  This 

increases the number of parameters available for sorting and reduces the errors from 

classification.  PouzatSort only required user-input at two stages : the first was to choose a 

horizontal threshold line to detect spikes, and the second was to merge, split and ‘clean’ (i.e. 

remove noisy waveforms from) clusters after sorting.  Superpositions on the other hand were 

automatically detected.  After classification, PouzatSort allows for estimating the quality of the 

sorting procedure by estimating the errors arising from refractory period violations, overlap 

between clusters and missed spikes from thresholding. If cumulative errors fall under 10% of the 

dataset, the sensillum recording was considered to be well sorted.

 It remains to be seen whether PouzatSort can be used to sort sensillum recordings which 

exhibit more than two active GRNs. In Chapter 2, I showed that this method could also be used to

sort spikes from 30 s recordings made only using the tip electrode. However, the efficiency 

sorting using the 30 s tip recordings was very low (3/15 yielded <10% errors).  Overall, while the
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efficiency of PouzatSort was low (5/11 tip-tungsten channel recordings yielded <10% errors), it 

allowed for an accurate sorting and classification of spikes with minimal user interface.  

In order to understand the mechanisms driving bursting, I needed to observe the position 

of each GRN spike within a burst.  Existing burst detection methods are developed for higher-

order neurons that do not exhibit strong adaptation over time.  Hence, static ISI thresholds are 

often used to detect bursts [166]–[168].  The GRN activity on the other hand exhibited a strong 

adaptation over the course of stimulation.  I therefore developed a time-varying burst detection 

method, which involved fitting a three-parameter logarithmic equation to the ISI data over time, 

and using a threshold of 2 times this fit to detect inter-burst intervals.  This method was useful for

detecting burst positions for up to 5 s from stimulus onset, and for varying concentrations of 

sugars.  The simplicity of this method makes it usable for detecting bursts in any other neuron 

that exhibits a similar adaptation.  Even if the adaptation rates are different, a suitable fit and 

threshold can be chosen depending on the dataset.  

5.5 Conclusion

 For most insects, GRNs encode stimuli via labeled lines and respond with a brief  

increase in spiking activity that quickly adapts.  Bumble bee GRNs on the other hand exhibit 

bursts of spiking activity that is driven by interactions between two neighboring GRNs, which 

allows for extended periods of rapid spike firing. Given that carbohydrates are one of the most 

important components of a bee’s diet, it is not surprising that the bumble bee GRNs exhibit a 

unique coding strategy for detecting them.  While this coding strategy could be important for 

driving natural foraging behaviors and continuation of feeding, this is yet to be conclusively 

determined.  This study sets the scene for exploring a novel form of sensory coding.  Future work

should be aimed at obtaining recordings from individual and populations of neurons within the 

SEZ to reveal how the burst response coordinates downstream activity to drive behavior.  
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