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ABSTRACT 

During the last four decades there has been considerable development in voltage 

source converters (VSCs), which are widely contributed in multilevel converter 

topologies. Since then, multilevel VSC topologies have been used for applications with 

different power rating owing to the improvement of the output waveforms quality and 

minimising filtering requirements. In comparison with the conventional multilevel 

converters, modular multilevel converter (MMC) is considered as the most attractive 

topology for high and medium-power applications mainly due to the series connection 

of a high number of submodules (SMs).  

The challenges associated with the implementation of a high number of SMs 

includes: voltage-balancing of the distributed SM, cost, reliability and the increased 

complexity in the circuit configuration. Furthermore, achieving efficient and fast 

closed-loop control of the MMC requires the accurate knowledge of the voltage and 

current measurements, which means a considerable number of sensors are usually 

required to operate the MMCs.    

The main objective of this research is to propose several novel strategies for the 

converter to achieve voltage-balancing with fewer number of sensors to produce 

comparable performance to the sensor-based method. Four different sensorless 

schemes have been investigated, where two are current sensorless-based techniques 

and two are voltage sensorless-based techniques. The proposed current sensorless 

schemes are based on developed sorting algorithm, and the proposed voltage 

sensorless schemes employ two novel different recursive algorithms with the standard 

sorting algorithm. In regards to the voltage sensorless schemes, the first proposed 

method uses an exponentially weighted recursive least square (ERLS) algorithm, while 

the second proposed method employs a Kalman filter (KF) to estimate the SM 

capacitor voltages. Capacitance uncertainty has been investigated for the proposed 

voltage sensorless schemes. The proposed methods have been implemented via 

simulation but also on a scaled-down laboratory prototype.  
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The thesis also deals with capacitor diagnosis where a new scheme has been 

proposed which may be used for health monitoring technique, a comparison with an 

existing technique has been evaluated.  

Detailed simulations and experimental tests are carried out to investigate the 

performance of the proposed sensorless schemes, and results are compared with the 

sensor-based approach. These various schemes have been implemented and tested in 

real-time using a commercial floating point microcontroller where a 4-level single-

phase MMC was employed. The results achieved for these novel schemes show an 

important improvement in the performance of the MMC under different operation 

conditions while fewer sensors were used.    
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CHAPTER 1  

INTRODUCTION  

 

 

 

 

1.1 Voltage Source-Based Converters  

It is well known that the growth in the need for power electronic converters has been 

exponential due to the increased demand for medium-and high-power applications. 

These applications are usually operated based on voltage source converters (VSCs), 

which are mainly driven by medium-and high-power semiconductor devices such as 

the metal-oxide semiconductor field-effect transistor (MOSFET), the insulated gate 

bipolar transistor (IGBT) and the integrated gate commutated thyristor (IGCT). Two-

level and multilevel converters can now be found everywhere. However, as the main 

advantages of multilevel converters is the increase in output power level, this increase 

in VSC-based systems provides significant improvements over two-level VSC 

topologies. These include reduced filtering size and the low switching frequency 

required, which lead to lower switching losses. In addition, multilevel VSC topologies 

provide reduced semiconductor stresses due to distribution of the switching effort 

between the high numbers of semiconductor switches involved [1-4].  
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1.2 Challenges Associated with Multilevel Converters  

Different multilevel converter topologies have already been used in industry. One of 

the most attractive topologies for medium-and high-power applications is modular 

multilevel converter (MMC). More details as well as the most attractive features of 

MMCs compared to other conventional multilevel converter topologies are presented 

in Chapter 2.   

Despite the use of multilevel topologies, each topology provides certain advantages; 

however, a number of challenges in their operation are also apparent, such as, reducing 

switching frequencies and the control of internal and output converter signals. Voltage 

and current control requirements are one of the most important challenges with these 

converters. Due to the high numbers of components which are usually involved in the 

multilevel converter structure, achieving such control increases overall system 

complexity and therefore decreases reliability. These two concerns of complexity and 

reliability specifically for MMCs are the main focus of this thesis.            

1.3 Objectives of the Thesis 

The main objectives of the thesis are: 

 To conduct a comprehensive study that contributes to the development of 

multilevel converters in general.  

 To investigate the requirements and issues associated with MMCs. 

 To propose novel voltage-balancing methods that can reduce the complexity 

and therefore the cost of the MMC when a medium or high output level of the 

converter is required. Usually with the conventional voltage-balancing 

methods, high number of sensors are needed.  Therefore, the objectives of this 

research focus on developing new online sensorless schemes which can 

achieve the voltage-balancing of the converter with fewer voltage and current 

sensors.  
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 To develop a new online health condition monitoring scheme for the 

capacitors used in the series connected SMs which can improve MMC 

reliability.  

 To develop a scaled down experimental set-up system that confirms the 

effectiveness of all proposed sensorless methods in this work.     

1.4 Topologies and Tools Used  

The results achieved in this work are based on detailed simulation and experimental 

analysis. The simulation results obtained in the thesis are provided by simulations in 

MATLAB/Simulink/Simpower, of which two different versions have been used (2012 

© and 2015 ©). The experimental results achieved in Chapters 4, 5 and 6 are 

implemented using the TMS320F28335 microcontroller from the Texas Instruments 

semiconductor manufacturing company. The implementation of the methods proposed 

in those chapters are uploaded to the digital signal processor (DSP) with the help of 

Code Composer Studio (CCS5.5) development tools from the same supplier (Texas 

Instruments). A scaled down 4-level MMC is developed to validate all suggested 

sensorless schemes. Details of the practical implementation are presented in Chapter 

3.     

1.5 Thesis Contributions and Publications 

 The work reported in this thesis focuses on reducing the complexity of the MMC 

and improving its reliability under different operating conditions. The main 

contributions of the thesis are summarised as follows: 

 Two current sensorless approaches are investigated for the converter to achieve 

voltage stability with lower cost and complexity (Chapter 4). In the first 

proposed method, monitoring load current is only required for the controller, 

whereas the second proposed scheme does not require any current monitor to 

achieve the voltage-balancing of the converter.  
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 A novel voltage sensorless scheme is proposed based on an exponentially 

weighted recursive least square (ERLS) algorithm (Chapter 5). The proposed 

technique is performed and evaluated at steady-state and dynamic conditions for 

both simulation and practical studies.       

 A novel voltage sensorless approach is proposed for the converter based on the 

Kalman filter (KF) algorithm (Chapter 6). Employing KF with the converter is 

used for the first time to address the issue of the high numbers of voltage sensors 

required. . 

 A new capacitance estimation scheme is proposed for the converter to improve 

system reliability.     

 A comprehensive understanding is developed of the MMCs requirement and 

issues. 

The work presented in this thesis has resulted in a number of published and 

submitted papers to different international conferences and journals as follows: 

1. O. Abushafa, M. Dahidah, S Gadoue, and David Atkinson “Submodule Voltage 

Estimation Scheme in Modular Multilevel Converters with Reduced Voltage 

Sensors Based on Kalman Filter Approach,” submitted to IEEE Transactions on 

Industrial Electronics, 17-TIE-0266, 2017. 

2. O. Abushafa, S. Gadoue, M. Dahidah, and D. Atkinson “Capacitor Voltage 

Estimation Scheme with Reduced Number of Sensors for Modular Multilevel 

Converters” submitted to IEEE Transactions on Emerging and Selected Topics 

in Power Electronics, JESTPE-2017-09-0606.  

3. O. Abushafa, S. Gadoue, M. Dahidah, and D. Aktinson, "Capacitor Voltage 

Estimation in Modular Multilevel Converters using a Kalman Filter Algorithm," 

in International Conference on Industrial Technology (ICIT), Seville, IEEE, 

2015, pp. 3016-3021. 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517
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4. O. Abushafa, S. Gadoue, M. Dahidah, and D. Atkinson, “A New Scheme for 

Monitoring Submodule Capacitance in Modular Multilevel Converter”, in 

Power Electronic and Machines Drives (PEMD), 2016, IET, Glasgow. 

5. O. Abushafa, S. Gadoue, M. Dahidah, D. Atkinson, and S. Ethni, "Control 

Strategies for Capacitor Voltage Balancing in Modular Multilevel 

Converters."in the 7th International Renewable Energy Congress (IRNC), 2016, 

IEEE, Hammamet, pp. 1-6. 

Throughout the study period, various academic awards have been recevied which 

are listed below: 

 First place for the “Best Paper Presentation” in the Annual Research 

Conference 2016 (ARC-2016) at Newcastle University. 

  Third Place for the “Best Paper” in the (ARC-2016) of Newcastle 

University. 

  Best Presentation of research in the Electrical Power Group at the School of 

Electrical and Electronic Engineering (ARC-2015) of Newcastle University. 

1.6   Layout of the Thesis 

The thesis is organised in 8 chapters as follows: 

Chapter 2 presents details of the MMC in terms of structure, principles of operation, 

modelling and control strategies needed. Greater emphasis is given to up-to-date 

attempts to reduce the converter’s complexity. This includes achieving converter 

stability with fewer voltage and current sensors, and different methods are reviewed 

and discussed. The chapter also provides a literature review on capacitance estimation 

strategies.        

Chapter 3 provides details of the experimental set-up used in this work. It describes 

selected components in the converter, including the voltage and current sensors used. 

In addition, it also provides a brief description of selected digital signal processors. 
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Following this, the procedure used for implementing all methods proposed in Chapters 

4-6 is detailed.     

Chapter 4 presents two current sensorless methods for the MMC. A detailed 

description of the conventional voltage-balancing scheme based on a sorting algorithm 

is discussed first in the chapter. This conventional scheme is also used in Chapters 5-

7.  Extensive simulation and experimental results that compare the two proposed 

methods with the conventional voltage-balancing method are then provided in the rest 

of the chapter.  

Chapter 5 proposes a novel voltage-balancing method with fewer voltage sensors. 

An ERLS algorithm is employed in this chapter to achieve voltage-balancing with 

lower complexity. Simulation and experimental studies under different operating 

conditions are discussed along with the manner in which the proposed scheme is 

implemented.  

Chapter 6 introduces another novel voltage-balancing method based on reducing the 

number of voltage sensors required. This chapter suggests the use of the KF for the 

converter. Similar to that in Chapter 5, the results of the scheme proposed in Chapter 

6 demonstrate the effectiveness of the proposed algorithm under steady-state and 

dynamic operating conditions. All the obtained results are experimentally verified 

using the test rig described in Chapter 3.     

Chapter 7 describes a new approach for capacitance estimation based on the KF 

algorithm. The method is compared with an existing approach based on a recursive 

algorithm and both methods are validated through simulation analyses.    

Finally, Chapter 8 concludes the work, summarises the contributions of the study 

and makes some possible suggestions for future work.    
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CHAPTER 2  

MODULAR MULTILEVEL 

CONVERTER: PRINCIPLES OF 

OPERATION, MODELLING & 

CONTROL, AND APPLICATIONS   

 

 

 

2.1 Introduction 

The importance of using power conversion is described in this part of the chapter, 

where the focus is mainly on the MMC. Using power converters is essential nowadays 

to convert power from one form into another (e.g. AC-DC, DC-AC, AC-AC or DC-

DC). However, some challenges remain. The power obtained from such conversion is 

controlled based on the demand of the application via semiconductor switches.  The 

power can be boosted, bucked or similar to the input level; however, the output 

frequency may also be different. The application attached to the converter decides this 

demand. In general, power converters can be found everywhere; in houses, or work, 

in industry, in various modes of transportation such as trains and electrical vehicle, 

and in hospitals. 
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 Many studies are still being carried out to overcome the challenges associated with 

converters. There are many areas which still need to be improved in this regard. As a 

researcher with engineering background, three main areas are always under the 

microscope: the efficiency, cost and reliability of the targeted system. Details about 

these three gaps are addressed later in main body of the thesis including the rest of this 

chapter.  

2.2 Conventional Multilevel Converters 

A brief introduction to the conventional multilevel converters and their applications 

is provided here prior to introducing MMC topology. Three main multilevel converter 

topologies are well-developed and commonly used [1]. These include  neutral point 

clamped (NPC) converter [5], cascaded H-bridge converter (CHC) [6] and flying 

capacitor converter (FCC) [7]. According to one review [2], these converters were first 

proposed more than four decades. A single phase (one-leg) illustrations of these 

topologies are shown in Fig. 2.2.   

Other variations of multilevel converters, including hybrid and matrix 

configurations have been also investigated and reported in the literature (see Fig. 2.1). 

Examples of the Hybrid topologies is a combination between NPC and CHC or FCC 

and CHC [8]. The combination of two conventional or not conventional multilevel 

converter usually provide more features to the system. For example, the combination 

between NPC and CHC reduces the common mode voltage and improves power 

quality [9].      

 All aforementioned conventional technologies have been widely examined and 

accepted. They were introduced in the market and have been used in real applications 

for some time in various industrial applications for both medium and high power 

voltage rate [8].  
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Fig. 2.1. Classification of medium and high voltage multilevel converters. 
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Fig 2.2. Conventional multilevel converter topologies: (a) Three-level NPC 

converter, (b) Three-level FCC and (c) Five-level CHC. 

2.3 The MMC: Structure and Principles of Operation 

Fig. 2.3 shows the basic circuit configuration of a three-phase MMC. The converter 

consists of two arms; each of which has a series connection of cascaded submodules 

SMs and an arm inductor (Ls). In most cases the configuration of these SMs is a half-

bridge configuration as illustrated in Fig. 2.3 (b). Although the name MMC is usually 

related to half-bridge configurations; however, different arrangements can also be 

found in the literature  such as full-bridge SM,  three-level FCC, three-level NPC or 

hybrid arrangements [10]. The application will define the type of SM configuration 

which fits the system better [11]. 
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Fig 2.3. Block diagram of MMC. (a) Three-phase block diagram. (b) Half-

bridge SM configuration.  

Considering the half-bridge configuration in Fig. 2.3, three switching states exist 

based on the status of  𝑆x and 𝑆x̅. In state one, both 𝑆x and 𝑆x̅ are OFF, and this may 

happens during start-up or in the case of series failure [12], but this state is usually 

omitted during software simulation. In the second state,  𝑆x is switched ON and  𝑆x̅ 

remains OFF, the output voltage is equal to the voltage across the capacitor C𝑥 (𝐕𝑐𝑥), 

where  𝑥 = 1,2, …  2𝑛 , and 𝑛  is the number of SMs per arm. The charging and 

discharging of the SM capacitor depends on the direction of the current passing 
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through this SM, and this state is known as the ON state [13]. In state three, the SM 

voltage output is zero (OFF state), and this occurred when 𝑆x̅ is ON and 𝑆x is OFF.  

For clarity purpose, the directions of the current flowing through both diodes and 

semiconductor switches in the three states are depicted in table 2.1, whereas, table 2.2 

shows the only two main switching states during normal operating conditions [12] [14].   

The buffer inductors (Ls) in Fig. 2.3 have an important role in the operation of MMC. 

They not only assist in reducing the circulating current within the converter arms [15], 

but they also support the system when faults occur [16]. 

Total arm resistance (Ra) shown in the figure are usually omitted in the converter 

model; however, for the sake of accuracy, this small resistor should be added to the 

overall mathematical model.  

Table 2.1. Current flow directions in the half bridge SM 

State One State Two State Three 

V SM

D1

C

  D2

+

-

xS

xS

 

D1

C

  D2

+

-

V SM
xS

xS

 

V SM

D1

C

  D2

+

-

xS

xS

 

V SM

D1

C

  D2

+

-

xS

xS

 

V SM

D1

C

  
D2

+

-

xS

xS

 

V SM

D1

C

  D2

+

-

xS

xS

 

Table 2.2. Switching signals and the output states of the SM   

State of the SM 𝑺𝐱 𝑺𝐱
̅̅ ̅ VSM 

ON ON OFF 𝐕𝑐𝑥 

Off (bypassed) OFF ON 0 
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2.4 Currents Analysis in MMC 

As the operation of MMC relies on the different currents following through the 

circuit, it is therefore essential to understand these currents in order to fully understand 

the operation of converter. Fig. 2.3 illustrates the directions of currents in the MMC, 

which are: output current  (𝑖𝑙𝑜𝑎𝑑) , DC link current(𝐼𝑑𝑐) , arms currents (𝑖𝑢𝑝) and 

(𝑖𝑙𝑜𝑤𝑒𝑟)  and circulating current  (𝑖𝑐𝑖𝑟) . These are defined in more details in the 

following paragraphs.    

2.4.1 Output and Arm Currents  

 The output current (𝑖𝑙𝑜𝑎𝑑−𝑝ℎ)  can be calculated by subtracting the lower arm 

current from the upper arm current within the same phase, thus 𝑖𝑙𝑜𝑎𝑑−𝑝ℎ  is defined as 

[17]: 

                    𝒊𝒍𝒐𝒂𝒅−𝒑𝒉 = 𝒊𝒖−𝒑𝒉 − 𝒊𝒍−𝒑𝒉  where  𝒑𝒉 = 𝒂, 𝒃 𝒐𝒓 𝒄                         (2.1) 

where the upper (𝑖𝑢−𝑝ℎ) and lower (𝑖𝑙−𝑝ℎ) arm currents are defined by equations (2.2) 

and (2.3) respectively: 

                                     𝒊𝒖−𝒑𝒉 = 𝒊𝒄𝒊𝒓−𝒑𝒉  +  
𝒊𝒍𝒐𝒂𝒅−𝒑𝒉

𝟐
                                         (2.2) 

                                      𝒊𝒍−𝒑𝒉 = 𝒊𝒄𝒊𝒓−𝒑𝒉 −
𝒊𝒍𝒐𝒂𝒅−𝒑𝒉

𝟐
                                            (2.3) 

2.4.2 The Circulating Current  

By substituting 𝑖𝑙𝑜𝑎𝑑−𝑝ℎ  in equation (2.1) into (2.2) or (2.3) the definition of 

circulating current can then be defined as: 

                                       𝒊𝒄𝒊𝒓−𝒑𝒉 =   
𝒊𝒖−𝒑𝒉+𝒊𝒍−𝒑𝒉

𝟐
                                                   (2.4) 

This current is one of the main challenges in the MMC circuit, and many studies 

have investigated different means to supress or minimise it. Large circulating current  

can seriously influence the semiconductor components,  increases losses and leads 

high voltage ripple  in the SM capacitors [18].       
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2.5  The MMC Output Voltage 

As shown in Fig. 2. 3(a), the output voltage of phase-leg a of the converter (𝑢𝑎) can 

be expressed as follows [19]: 

                                        𝒖𝒂 =
𝒖𝒍−𝒖𝒖

𝟐
−

𝑳𝒔

𝟐

𝒅𝒊𝒍𝒐𝒂𝒅−𝒑𝒉

𝒅𝒕
                                             (2.5)                          

where 𝑢𝑢 is the total output voltage of the upper cascaded SMS (from 1 to 𝑛) and 𝑢𝑙 is 

the total output voltage of the lower cascaded SMS (from (𝑛 + 1) to 2𝑛).  

The total output voltage levels (N) that can be achieved using this multilevel 

topology is 𝑁 = (1 + 𝑛) (line-neutral), where 𝑛 is the number of SM per arm. Higher 

output levels can be achieved up to 2𝑛 + 1, where the arms of the same phase are 

modulated independently [20]. More information about increasing output level is 

presented in Chapter 4.   

2.6 Features Associated with the MMC Topology 

Due to the modular construction of the MMC in comparison with two, three and 

some conventional multilevel VSC converters, the MMC topology has the following 

features [12, 21, 22]: 

 Low harmonics can be achieved in the output voltage and current waveforms 

because of the series connection of high number of SMs. 

 Reduced size (or even no) of filtering circuit.  

 Generally, the MMC has low switching losses due to the low switching 

frequency required. 

 Due to the fact that each SM has its own DC capacitor, the DC linked capacitor 

can be neglected [22]. Consequently, this will decrease the total cost of the 

converter connection as well as improving its performance and reliability in 

the case the appearance of faults [16]. As is known, the presence of a DC 
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capacitor will cause a high surge current plus consequent damage to the system, 

particularly when a fault at the DC bus side is not prevented [22].     

 In a DC link when a pole-to-pole fault occurs, the total system stability can be 

recovered quickly because only a few sub-module capacitors are discharged.   

 Arm inductance does not have any side-effects on the systems operation. On 

the contrary, it supports system stability.    

 Similar to the CHC converter, it has scalability and flexibility by adding 

identical SM cells.  

 Fault tolerant feature (i.e. in the case of a sudden fault occurring in one of the 

SMs, the other residual SMs can manage system stability without switching off 

the whole leg (phase) when an appropriate control method is used. Only 

unhealthy cells should be bypassed).  

2.7 MMC Modulation Strategies  

This section reviews the most commonly used up-to-date modulation strategies for 

controlling voltage capacitors (voltage-balancing control) in MMCs. Over the last few 

years, different modulation strategies have been developed and investigated for 

MMCs. Regardless of the applications, Fig. 2.4 classifies these methods into two main 

groups: space vector-based algorithms and voltage level-based algorithms. The range 

of switching frequency has also been taken into consideration in this categorisation. 

To date, very few studies control the MMC based on the space-vector algorithm [23], 

whereas the majority of recent studies are based on voltage level-based algorithms as 

can be seen in the figure. Although multicarrier pulse width modulation (PWM)-based 

algorithms are classified as high switching frequency algorithms, most of the recent 

literature still consider them. This is mainly because of their ease of implementation 

when a sorting algorithm is used. However, several attempts have been reported to 

achieve successful voltage-balancing with lower switching frequency when the 

multicarrier PWM-based algorithm is used. For example, an improved phase-shifted-



Modular Multilevel Converter                                                                        Chapter 2  

16 

 

 

based algorithm has been proposed for the hybrid MMC [24]. [23] [25] [26] [20] [27] 

[28] [29] [30] [31] [32] [33] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. MMC Modulation Strategies.  

2.8 Challenges Associated with the MMC 

Despite the attractive features of the MMC which have been mentioned in section 

2.6, there are some challenges associated with this kind of multilevel converters, 

especially if a high output level is required. Therefore, maintaining the voltage-

balancing control of the capacitors’ voltage requires many voltage sensors due to the 

use of high number of semiconductor devices and SM capacitors, which in turns 

increases the cost and the complexity of the system.  

Another considerable challenge is the reliability of the converter. This is mainly 

because of the series connection of such components (i.e. semiconductor switches and 

SM capacitors). In addition to voltage-balancing control, the circulating current which 
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appears within the converter’s leg is another challenge (i.e. current control issue). This 

current influences the level of voltage ripple within the SM capacitors.  The main 

challenges associated with MMCs are surmised below: 

 Voltage control (voltage-balancing of SM capacitor voltages) 

 Current control (circulating current within the converter legs which may 

effect on the SM voltage ripple). 

 Reliability and complexity due to the series connection of high number of 

SMs. 

 Parameter design (mainly for SM capacitance C𝑥 and arm inductance Ls)    

There have been great efforts put by the researchers towards addressing the voltage 

and current control issues. Three main control objectives for the MMC are widely 

considered in the literature, which are input current, output voltage and output current 

[34]. In this study, only the output voltage issue is investigated, aiming to achieve 

capacitor voltage-balancing with fewer voltage and current sensors. Whereas the issue 

of inner circulating current within each phase is beyond the scope of this study.  

2.9 Control of SM Capacitor Voltage with Voltage and Current Sensors 

The majority of the existing solutions for voltage-balancing rely on monitoring each 

individual SMs voltage and arm current. However, due to the fact that MMCs are 

usually designed with high output levels, this means high numbers of voltage sensors 

are also required. For example the commissioned MMC converter presented in [35] 

utilizes hundreds of SMs per arm, which requires enormous numbers of voltage 

sensors in order to achieve the voltage-balancing of the SMs capacitors. The control 

of SM capacitor voltage with voltage and current sensors has been extensively 

investigated in recent research [27, 28, 30, 36, 37], but many voltage sensors are 

always used in such studies. However, it would be preferable if this issue could be 

resolved with lower cost and complexity. 
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2.9.1 Averaging and Balancing Control Method  

 This method has been presented in [28], where two steps were used to regulate the 

converter’s voltages: averaging control and balancing control. Both steps are based 

upon a simple proportional integral (PI) controller. In the averaging step, the average 

voltage arm is forced to follow its command value. An inner current loop is also 

included in this step so that the averaging voltage follows its command voltage without 

being affected by the converter load.  However, a higher number of sensors still needed 

for measuring and monitoring all SM capacitors. Another disadvantage associated with 

this method is that, when the structure of the MMC is being changed, such as when 

the output level is increased, the parameters of the controller must be retuned again. In 

addition, in the case of a fault, when one SM is being bypassed, the proportional and 

integral gains of the PI controller need to be readjusted.     

2.9.2 Sorting Algorithm-based Method 

Regardless to the modulation strategies used, such as those illustrated in Fig. 2.4, the 

idea of a sorting algorithm-based method is to sort all arm SM voltages in 

descending/ascending order [31]. This means monitoring all SMs’ voltages are 

required. In the Figure bellow the main requirement steps of achieving voltage-

balancing control are shown. By considering the upper arm, the lowest capacitors will 

be charged when the upper current is positive and their values will be increased. 

However, if the upper current is negative, the capacitors with the highest value will be 

discharged. The number of capacitors that should be involved in the process is also 

defined by the algorithm. On the other side of the converter, the lower control 

algorithm works exactly in the same way. However, charging or discharging actions 

in the lower part of the converter depend on the direction of the lower arm current 

rather than the upper arm current. Similarly, the lowest capacitors will be charged 

when the lower current is positive and their values increases. Conversely, if the lower 

current is negative, the capacitors with the highest value will be discharged [31]. In 

terms of the computational complexity, this method does not require high execution 

time, however and similar to averaging and balancing control method, complexity 
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might be an issue due to high measurement signals involved in the process. More 

details on this principle are explained in Chapter 4. 
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Fig 2.5. Block diagram of voltage-balancing control based on sorting 

algorithm scheme.  

 

2.10 Control of SM Capacitor Voltage with Fewer Sensors 

While most of the reported literature is sensor-based methods, however there have 

been few attempts to reduce the number of the voltage and current sensors. The 

following sub-sections classify the up-to-date proposed methods into four main 

groups.  

2.10.1 Sorting Algorithm Methods with Fewer Current Sensors 

Reducing the number of required current sensors has been recently considered by 

few researchers. For instance, in two recent studies [29] and [38], different methods 
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are introduced and demonstrated with both simulation and practical results. High 

frequency current components have been analyzed and controlled for the SM 

capacitors under different operating conditions [29]. Alternatively, the switching 

frequency of the semiconductor switch has been  controlled and minimized [38]. The 

limitation of these methods is that only PS-PWM modulation technique can be used to 

control the converter. However, in comparison with the conventional sorting 

algorithm, arm currents are not required in achieving the voltage-balancing of the 

system.  

In more recent study [23], another attempt to control SM voltage with fewer current 

sensors has been proposed, where a different modulation strategy was employed to the 

converter based on a dual space-vector pulse-width modulation (SVPWM) technique. 

In comparison with [29] and [38], the number of current sensor required for the MMC 

is one per phase, whilst the other two methods don’t require any. Whereas, all methods 

including SVPWM-based technique are based on voltage sorting mechanism.        

2.10.2 Observer-based Methods 

Observer-based schemes are based on estimating capacitor voltages by monitoring 

only input and output signals, where usually the DC-link voltage and arm currents are 

required. Fig. 2.6 shows a general block diagram of the observer-based methods. Thus, 

to design such a sensorless control scheme, it is necessary to investigate the 

observability of the converter [39]. It has been reported that the MMC is observable 

when the switch at the targeted state is on [40]. In one recent study [40], the proposed 

observer is employed for the MMC as a fault detection scheme where the algorithm 

used is based on a sliding mode observer. The sliding mode observer has also been 

proposed for the CHC [41, 42]. Although it is known that the slide mode-based 

algorithm is robust against parameter uncertainty in the system equations, however, 

capacitance uncertainty in the SM has not been investigated neither in [40] nor in [42].   

It is important to validate the converter with such deviations representing capacitance 

uncertainty, especially when the application requires high voltage levels. In another 

recent study, a KF-based observer has also been proposed for the MMC [43]. One 

important feature of the KF approach is the ability of the algorithm to cope with both 
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measurement and processing noise disturbances. However, capacitance deviation was 

not investigated in this study either. 

DC-link voltage

Proposed observer based on 
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Fig 2.6. General block diagram of the observe-based method 

An improvement to the latter research [40] involves the estimation of the capacitance 

value as well as the capacitor voltage of the SM capacitors was subsequently proposed 

in [44]. Although this improves the robustness of the system against capacitance 

uncertainty, however, the effect of the variation associated with the arm inductance 

value was not considered in the observer design. On the other hand, the authors in the 

same study [44] have proved that the converter can perform well with up to +10% of 

the nominal arm inductor value. However, it can be summarised that, none of the 

observer-based methods consider arm inductance variation in the design analysis.         

2.10.3 Sorting Algorithm Methods with Fewer Voltage Sensors 

In this group of methods and the observer-based methods have just mentioned above, 

a sorting algorithm is commonly used to control the voltages of SM capacitors. 

However, the technique presented here is based on measuring the total arm voltages 

rather than the DC-link voltage. On the other hand, similar to the observer-based 

methods, arm currents are also considered in the design.  
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A majority of the recent proposed methods [45-47], the estimation techniques used 

are based on prediction and correction stages. In the prediction stage, an initial 

estimation from the straightforward relationship (see equation (2.6)) between the 

capacitor current and voltage along with the capacitance value are used as follows: 

                                𝐕𝒄𝟏(𝒕) =  
𝟏

𝑪𝟏
 ∫ 𝑰(𝒕)𝑺𝒏(𝒕) 𝒅(𝒕)

𝒕

𝒕𝟎
+ 𝐕𝒄𝟏(𝒕)                           (2.6) 

 One critical issue with this step is the accumulated error caused by the integrator 

effect in equation (2.6). In [45], the error between the actual and the estimated arm 

voltages has been found to be divided equally between the number of inserted SM. 

This error is then used to correct each estimated voltage.  

In more recent research [46, 47], the voltage-balancing of a seven-level MMC has 

been achieved with important reductions in the number of voltage sensors required, 

where the lowest number of voltage sensors needed are two when 7-level MMC is 

used. Two sensors contribute to measuring the total arm voltage of the converter. The 

increase in the number of arm voltage sensors required in these studies reduces the 

error in the individual SM capacitor estimation voltage. On the other hand, the main 

concern with these methods is that an advanced voltage-balancing method must be 

incorporated to guarantee stability. In addition, if the MMC level is higher than 7, more 

voltage sensors per arm are needed.  

2.10.4 Open-loop Control Methods   

Different attempts based on open-loop schemes have been suggested, where fixed 

PWM signals have been applied to the converter switches [48, 49]. Although these 

proposed schemes do not use any sensors, since they do not require any form of 

feedback control, the well-known limitations of open-loop control schemes may 

threaten the performance of the system with such control scheme.  

2.11 Capacitance Estimation 

 As shown earlier in section 2.8, reliability in the MMC is considered as another 

important issue. Faults in any MMC components may cause serious problems. It is 
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known that the failure rates in power electronic components are usually caused by six 

main factors as illustrated by Fig. 2.7. It is well known also that the passive 

components, such as the electrolytic capacitor, will gradually deteriorate with time 

[50]. As a result, the performance of the capacitor decreases due to changes in its 

internal equivalent series resistance (ESR) [51]. It is therefore clear that passive 

components such as capacitors cause the highest number of potential failures, as 

reported from several surveys from various companies [52]. However, for the MMC, 

not many studies so far have investigated the capacitance estimation, and only two 

recent studies have dealt with this issue [44] [53].  For that reason, such issue should 

be further investigated as well. For example, the capacitance estimation has been used 

as a part of an observer-based method to estimate the SM capacitor voltage [44]. The 

estimation of SM capacitance is used to improve the performance of the proposed 

sensorless scheme. Whereas in  another study [53], the RLS algorithm was proposed 

to estimate the SM capacitance of the converter.  

 

Fig. 2.7. Percentages of failure rates in power electronic devices.    

2.12 MMC Applications 

Multilevel converters have gained great attention in medium and high power 

applications due to their distinctive features, especially the modularity and the high 

quality of the output waveforms [5, 6]. Usually, these converters employ self-
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commutated semiconductor switching devices such as IGBTs, IGCTs, etc. These self-

commutated converters bring significant improvement to the utility in many aspects 

such as reactive power support, power factor correction, harmonic compensation and 

most importantly reduced filtering requirement [54].  

Nowadays, multilevel converters are used in many different applications; for 

instance, pumps, gas turbine starters, reactive power compensation, submarine, 

compressors, fans, wind turbines, storage device conversion, mixers and high voltage 

direct current (HVDC) [55]. The following paragraphs mainly focus on the 

applications of MMCs, which in Fig. 2.8 are classified into three main application 

areas.  

2.12.1 Energy Generation  

Due to the high power involved in the conventional and renewable power generation, 

it is important to use a high quality of power conversion with high capability [56]. 

Whereas, and owing to the high demand for having clean power sources, such as 

photovoltaic generation, fuel cells and wind turbine, the numbers of distributed 

generations (DGs) have significantly increased. Therefore, more multilevel power 

converters would be needed in order to convert the energy from these sources for the 

network. The MMC, for example, has been suggested as a DC-DC converter to boost 

power before connecting the resource to the grid [57-62]. In some other studies, the 

MMC has also proven to work as a buck converter [57, 63]. Furthermore, the double 

star bridge cell (based on full-bridge) configuration is capable of tolerating a high 

range of voltage deviations in the DC-link voltage, due to its greater ability to buck 

and boost the DC-link voltage in both rectification and inversion sides. Therefore, the 

MMC with a full-bridge configuration is appropriate for renewable resources such as 

solar and wind power, where weather conditions always vary, which means that the 

DC-link input voltage will be affected.  
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2.12.2 Transmission, Supporting Network and Distribution Systems  

Examples of the use of multilevel converters in transmission systems are the HVDC, 

the static synchronous compensator (STATCOM), active filters and flexible AC 

transmission systems (FACTS) [64].  

One of the most promising applications based on the MMC is HVDC [15, 65-69]. 

For instance, double star chopper cell based on half-bridge configuration is suitable 

for HVDC and back-to-back systems [15]. A good and real example of employing 

MMC into the network is now allocated in a project called “Trans Bay Cable”, the 

converter consists of 200 SMs per phase [70]. For transmitting 400 MVA rated power 

in that project, 600 SMs are required for each terminal converter.  

It is well known that power supply companies have the responsibility to deliver a 

high power quality to the end terminal networks. In this final stage of delivering power 

to consumers, power electronic conversion plays a key role. Another promising 

application of MMC usage is the battery energy storage system (BESS) which can be 

connected to support a weak grid before delivering power to customers [15].  

2.12.3 End-User and Stand Alone Usage Areas  

Meanwhile, it is assumed to have a good power quality at this stage of delivering 

power to costumer; however, and regardless to power quality received, connecting any 

application including stand-alone to the grid, needs a suitable power electronic 

converter [71]. MMCs have also been proven to be suitable for different applications 

in this usage area. In [72] for example, the MMC has been employed for electrical 

vehicle where the traditional battery management system (BMS) of electric vehicles is 

replaced by the control of the MMC. The proposed topology integrates the BMS in the 

system, without the necessity for more balancing circuits. Another usage of MMC in 

medium power application has been proposed where an induction motor drive with 

two different configurations has been investigated [73]. Other promising applications 

based on drives is also been proven for the MMC [72-75]. 

Examples of the most promising application of the MMCs based on the area of usage 

are illustrated in the figure below:  
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Fig 2.8. Classify MMC applications. 

2.13 Chapter Summary 

The importance of power conversion has been explained first in this chapter. Most 

common circuit topologies of multilevel converters with a focus on the MMC circuit 

configuration and principles of operation, have been demonstrated. Mathematical 

representations of converter’s voltage and currents have also been stated.  

In addition, Chapter 2 has described the most commonly used voltage-balancing 

control methods. A classification of these control methods has also been provided as 

well as the PWM techniques used. The speed of switching frequency used in the most 

well-known existing control methods was also considered. The focus in this 

classification was based on achieving voltage-balancing with fewer sensors, where 

four different groups of methods have been reviewed. In addition, as another challenge 

facing MMCs, the capacitance estimation of the converter’s SMs has been briefly 

reviewed.       
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The chapter has also provided and classified the most attractive applications for 

MMCs. The advantages and challenges associated with MMCs among other 

conventional multilevel converters have also been presented. 

Next chapter focuses on the experimental set-up system. In addition to the 

implementation requirement, it also describes most of the selected components in the 

converter.         
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CHAPTER 3  

THE EXPERIMENTAL SET-UP 

SYSTEM  

 

 

 

3.1 Introduction 

To practically evaluate and validate the proposed schemes in this thesis, an 

implementation in real time is required. A test rig has been developed specifically for 

this project. However some potential future works have also been considered in the 

design. Compared to the simulation studies, a scaled-down system is used here; 

however, the circuit was initially designed for 800W operation. This mainly involves 

a single-phase 4-level MMC with a dynamic load, DC power supply, number of 

voltage and current sensors, interphase circuits, dual gate drives and control board. A 

general block diagram of the whole experimental set-up system is illustrated in Fig. 

3.1. Some of these components mentioned above are described in more details in the 

following sections.  

3.2 The 4-Level Single-Phase MMC and R-L Load 

Three SMs and two inductors ( sL ) per arm are used in the design. An IRF530N 

power MOSFET is used to construct the converter’s SMs. More information about the 

MOSFET used in this project is detailed in the datasheet. The half-bridge SM capacitor 
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used as demonstrated in Fig. 3.2 is the VISHAY 56 1000μF 63 V DC with ± 20% 

tolerance.  

 
Fig 3.1. Block diagram of the experimental set-up. 
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Fig 3.2. Half-bridge SM configuration. (a) A photograph of the SM. (b) 

Schematic diagram of the SM. 
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A dynamic load is attached to the converter to test the performance of the proposed 

methods during different load conditions. As shown in Fig. 3.3, two parallel resistors 

( 1R  and 2R ) and a tapped inductor are connected to the output of the converter. Two 

cases are considered in most studies: 

 In the normal operation (case one), 1R  is connected in series with the load    

inductor ( L ) where 1R = 33 Ω and L = 4 mH while 2R (68 Ω) is disconnected.  

 In case two, two actions have been considered in order to further validate the 

proposed methods against step changes in the load. Firstly, a sudden change 

from 1R  to 2R  is applied whilst L is still connected in series. The load current 

( loadi ) is decreased by around 100%. Secondly, another sudden change from 

2R to 1R  is applied where the current is approximately doubled to reach its 

original value.  A manual two-way switch is used to alternate between 1R  and

2R as shown in Fig. 3.3.  

 

(a) 

Two way switch
L  

 1R

2R

loadi

 

(b) 

Fig 3.3. Dynamic R-L load configuration. (a) Photograph of the experimental 

load. (b) Schematic diagram of the load. 



 The Experimental Setup System                                                                    Chapter 3  

31 

 

 

3.3 Microprocessor Control System 

  To control the 4-level single-phase MMC described earlier, a TMS320F28335 

floating point microcontroller is used. The TMS320F28335 is a member of the Texas 

Instruments C2000 family. In comparison to the fixed point microcontroller from the 

same supplier (Texas Instruments), the TMS320F28335-based floating point 

microcontroller offers about 50 percent more in the overall performance [76].   

In order to implement and evaluate the proposed estimation schemes and the 

voltage-balancing algorithm using the TMS320F28335 microcontroller, Code 

Composer Studio (CCS5.5) development tools from Texas Instruments is used on the 

host ControlDesk (laptop) to generate the C-code. This was achieved with the help of 

the MATLAB/Simulink package, where the Simulink Embedded Target Support 

Package (TSP) and Real-Time Workshop Embedded Coder (RT-WEC) are employed. 

These tools provide a number of useful features, such as a quick and easy way to 

generate C-code, and the implementation and evaluation of proposed control schemes 

in a real-time environment.  An External MATLAB mode is also used, where the data 

inside the DSP can be accessed in real-time processing. This feature (i.e. External 

MATLAB mode) provides the ability to tune some adjustable parameters in the 

developed algorithms when the converter is processing in real-time. However, for most 

of the proposed methods, off-line tuning was achieved first, and consequently the real-

time tuning is then accomplished. This technique helps in avoiding the use of any 

inappropriate parameter values which might damage the circuit.   

The execution time of the proposed voltage estimation methods was approximately 

34μs, this may lead to the use of a faster and more powerful processor when higher 

output voltage levels are needed especially for three phase applications. However, for 

the investigated current sensorless schemes, the execution time was low for all 

investigated schemes. It should also be noted that most of the MMCs applications are 

three phase based systems. In other words, microprocessors with parallel processing 

capabilities must be used for such applications (i.e. three phase with high output 

voltage levels) to guarantee an appropriate processing time. This condition is only for 

the proposed voltage sensorless schemes. Nevertheless, FPGA boards for example are 
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a very attractive and cost-effective alternative parallel processing which may reduce 

computation time by processing independent calculation concurrently.    

3.4 Hardware Implementation and Microprocessor Setting 

The converter is fed with an EX354RT TRIPLE 300W power supply, where the 

input DC volt is 60V for most of the experimental tests. A photograph of the whole 

experimental test bench system is illustrated in Fig. 3.4. Other details of the hardware 

implementation system, including converter parameters, are summarized in table 3.1. 

Eleven analogue input signals from the test rig are processed inside the controller; 

three of which are current signals and eight voltage signals. The sampling frequency (

samplingf ) which was used for all experimental tests are samplingf = 20kH.  Three CAS-15 

current sensors are used to monitor the upper and lower arm and output currents  

 

Fig 3.4. Photograph of the experimental test bench. 
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of the converter, while six LV25-P voltage sensors are used to monitor the SM voltages 

in order to evaluate the estimated voltages against their measured values. Although the 

three current sensors are not used for some sensorless current methods; these sensors 

are still required for the evaluation and comparison investigation with sensor-based 

current method. Another two voltage sensors are also used to measure the upper and 

lower arm voltages. These two voltage sensors (AD215AY isolation amplifier) are 

necessary for the proposed voltage estimation methods to estimate the six SM voltages 

of the converter. 

The CAS-15 sensors require a +5V supply whilst the LV25-P voltage sensors require 

± 15V supplies (see Fig. 3.1). Owing to the limited range of the analogy to digital 

converter (ADC) input channels of the controller, extra interphase circuits (e.g. voltage 

divider circuit) are implemented to the general control board to be compatible with the 

limited 0-3V range of the ADC input channels. The built-in ADCs sample the input 

current and voltage signals. The sampled data is then executed according to the 

software control algorithms.  

Table 3.1. Experimental Parameters  

Parameter Value 

SM capacitor ( C ) 1000 µF 

Modulation index ( im ) 0.9 

DC-link voltage ( dcV ) 60V 

Output frequency ( f ) 50 Hz 

Carrier frequency ( cf ) 2.5 kHz 

Number of SM per leg ( N ) 6 

Load resistor ( R ) 33 Ω 

Arm inductor ( SL ) 1 mH 

Load inductor ( L ) 4 mH 

Sampling frequency ( samplingf ) 20 kHz 
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Fig 3.5. Dual gate drive. 

The output of the controller provides the PWM signals for the 4-level MMC. Due to 

the feature associated with the TMS320F28335, where the processor can generate 6 

dual PWM signals, 6 dual gate drive boards are used for the converter (see Fig. 3.5). 

The design of these boards is beyond the scope of the present research. Each PWM

signal within the same couple (i.e. xPWM and xPWM ) is generated so as to be 

complementary to the other. All of these signals are switched at the switching 

frequency obtained for the voltage-balancing algorithm where the reference carrier 

signals are 2.5 kHz.  The dead-time between xPWM and xPWM  is set at 3μs. The 

PWM  signals generated are then passed through the input side of the dual gate drive, 

as shown in Fig 3.5. Random samples of the switching signals after balancing voltages 

across 1C , 2C  and 3C  for the three upper arm switches ( 1PWM , 2PWM and 3PWM ) 

are shown in Fig. 3.6. The converter is then controlled with such signals. 

Switch xS  

interphase 

Switch 
xS  

interphase 

Isolation Input side 
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Fig 3.6. Sample of the three upper arm switches (
1

PWM , 
2

PWM and
3

PWM ). 

3.5 Chapter Summary 

 This chapter has focused on the experimental set-up system used to verify the 

effectiveness of the developed schemes based on a 4-level MMC controlled by a 

TMS320F28335 floating point microcontroller. The main hardware components in 

addition to software configurations involved in the system have also been described. 

The main procedure behind the hardware implementation in real-time processing has 

been introduced; and this configuration set-up is followed in the subsequent chapters 

(Chapter 4-6). 
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CHAPTER 4  

PROPOSED CURRENT 

SENSORLESS METHODS 

 

 

 

 

4.1 Introduction 

The experimental set-up described in the last chapter is used here to validate the 

proposed current sensorless methods in this chapter. Different schemes of modified 

conventional sorting algorithm with lower complexity are proposed in order to balance 

the voltages of SM capacitors for the MMC. Two different procedures are investigated 

in this chapter. In comparison with conventional sensor-based methods, the main idea 

here is to achieve voltage-balancing within the MMC arms with fewer current sensors.  

In comparison with recent studies [29] [38] of reducing current sensor numbers, the 

proposed methods in this chapter can be used with both level shifted (LS)-PWM and 

phase shifted (PS)-PWM. The two different proposed methods are examined under 

different operating conditions; for instance, with a sudden change in the DC source or 

when different load values are applied. The advantage of such sensorless control 

methods is to simplify hardware communication in general. Moreover, the reliability 
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of the MMC is also improved. Simulations and practical analyses of a single-phase 

MMC are conducted to show the effectiveness of the proposed methods.  

4.2 Conventional method (sensor-based method) 

The idea behind the conventional method is to control the converter voltages by 

sorting all SM voltages in descending / ascending order [30,31].  For example, if the 

upper arm is considered, the lowest capacitors’ voltages will be charged when the 

upper current is positive and their value will be increased. On the other hand, when the 

upper current is negative, the capacitors with the highest value will be discharged. The 

algorithm also defines how many capacitors should be involved in the process. In other 

words, for each output voltage level, there is a required number of capacitors that need 

to be charged or discharged, and this number is defined by the intersection of the 

fundamental sine wave signal and the carrier signals used [30,31]. For the lower arm, 

the charging or discharging actions of the converter depend on the direction of the 

lower arm current rather than that of the upper arm current. Similarly, the lowest 

capacitors will be charged when the lower current is positive and their value increases. 

The main difference between the conventional and the proposed sensorless methods is 

the method used to make decisions regarding charging and discharging. 

4.3 Load Current Monitoring Method 

Compared with the conventional sorting algorithm method [30], only one sensor per 

leg is required to monitor the load current in this method. The proposed voltage-

balancing method is based on several steps, where a sine wave reference signal is 

compared first with carrier waveforms. These carriers are generated either from a LS-

PWM or a PS-PWM strategy. Fig. 4.1 illustrated these two groups in (a-c) and (d) and 

(e) respectively.  



Proposed Sensorless Current Methods                                                             Chapter 4  

38 

 

 

 

Fig 4.1. LS-PWM and PS-PWM techniques.  

In LS-PWM three different techniques can be used: phase disposition (PD)-PWM, 

opposition disposition (POD)-PWM and alternative phase opposition disposition 

(APOD)-PWM. The number of carrier signals required for an 𝑁-level MMC is  𝑟 

where 𝑟 = 𝑁-1. For the PD-PWM technique,  𝑟 carrier signals with the same phase 

shift are used; however, they are different in magnitude as can be seen in Fig. 4.1(a). 

For the POD-PWM technique, there is a 180° phase shift between the positive and 

negative carriers as shown in Fig. 4.1 (b), while in APOD-PWM the carrier signals in 

each of two subsequent levels are shifted by 180° (Fig. 4 (c)).       

Meanwhile, PS-PWM can also be used for the proposed methods. Two common 

techniques are used: PS-PWM and saw tooth (ST)-PWM. In comparison with LS-
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PWM techniques, the applied carrier signals have the same amplitude; however, they 

are shifted horizontally by angle 𝛂 as shown in Fig. 4.1(d) and (e). For an 𝑁-level 

MMC, the angle 𝛂 is defined by [16]:     

                                                       𝛂 =
𝟑𝟔𝟎

𝑵−𝟏
                                                     4.1) 

Although all aforementioned PWM techniques can be used; however, and for 

simplicity only, PD-PWM is used in the simulation and experimental analyses here.  

In the second step of implementing the algorithm, the number of SMs to be involved 

(𝛽) are defined for the upper and lower algorithms.  

For ease of demonstration, assume that the PD-PWM is used for a four-level MMC 

only as shown in Fig. 4.2 and Fig. 4.3. Therefore, the number of SMs required for each 

level can be determined as follows: 

 For level one, the number of the involved SMs for the upper arm, which is 

activated and deactivated by switches  𝑆1 − 𝑆3 , is 3. In the same 

instantaneous time, the number required for the lower arm is 0. The total 

should be always 3 for the whole period of this level (i.e. 𝛽𝑢𝑝𝑝𝑒𝑟 + 𝛽𝑙𝑜𝑤𝑒𝑟=3). 

 For level two, the number of the involved SMs for the upper armو which is 

activated and deactivated by switches 𝑆1 − 𝑆3 is 2 (𝛽𝑢𝑝𝑝𝑒𝑟= 2). In the same 

instantaneous time, the lower number required for the arm is 1 (𝛽𝑙𝑜𝑤𝑒𝑟=1). 

 For level three, the number of the SMs involved for the upper arm, which is 

activated and deactivated by switches 𝑆1 − 𝑆3 is 1. In the same time, the 

lower arm required number is 2.  

 For level four, the number of the involved SMs for the upper arm which is 

activated and deactivated by switches 𝑆1 − 𝑆3, is 0. In the same time, the 

number required for the lower arm for 𝛽𝑙𝑜𝑤𝑒𝑟 is 3. 

For all levels, the number of the SMs required for lower and upper arm should be 3 

(i.e. 𝛽𝑢𝑝𝑝𝑒𝑟 +  𝛽𝑙𝑜𝑤𝑒𝑟 = 3)   
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In parallel with the number of SM required as just described, a sorting mechanism 

is also involved in the algorithms. In this step, for each measurement period,   arm 

voltages are sorted in ascending and descending order.  
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Fig 4.2 General block diagram of the implementation of the load current 

monitoring method on a 4-level MMC.   
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Fig 4.3. Load current monitoring method for N-level MMC level.    

 In the third step, as can be seen from Figs. 4.2 and 4.3, the charging and discharging 

of the SM capacitors relies on the direction of the load current. If the load current is 

positive, the upper targeted SM capacitors which have the lowest value will be charged. 

On the other hand, when the load current is negative, the targeted SM capacitors (i.e. 

the capacitors with the highest values) will be discharged. In both cases S1 must be on 

and 𝑆1̅ must be off. Identifying the required SM capacitor to be charged or discharged 

is based on the sorting mechanism as shown in Fig 4.3. 

For the lower arm, the same principle applies; however, an inverted load current (iinv-

Load) is inserted into the algorithm which satisfies the following formula: 
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                                           𝒊𝒍𝒐𝒂𝒅 + 𝒊𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒅 𝒍𝒐𝒂𝒅 = 0                                        (4.2) 

Therefore, the switching signals obtained will be distributed between the upper and 

lower arms and therefore control the converter.  

4.4  Sensor-never Current Monitoring Method    

 Fig 4.4 illustrates the proposed method. Similar to the conventional methods which 

have been briefly described earlier for the control of SM capacitor voltages with 

voltage and current sensors, a sine wave reference signal (sin2πft) is also used here. 

The method proposed here is similar to the load current monitoring method where 

same numbers of carrier signals and of SMs to be involved are also applied to the 

algorithm. The sorting mechanism for all converter SM voltages is similar. However, 

the charging and discharging of the converter capacitors are based on the sin2πft 

direction and not the arm current directions.  
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Fig 4.4 Sensor-never current monitoring method for N-level MMC  

For the upper arm SMs, as in the load current monitoring method, the lowest 

capacitors will be charged and the highest capacitors will be discharged, but the 

reference signal (sin2πft) rather than the load current direction will make the decision 

concerning the status charging or discharging of the capacitor. To control the lower 

arm capacitors, the reference signal is shifted by ± π to the lower half of the converter. 

In the case of HVDC systems, for example, or any closed-loop control application 

where the MMC is connected to the grid, the control signal of the closed loop controller 

can be used for the algorithm. In other words, the decision about which capacitor is 
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being charged or discharged will depend on the direction of the controlled control 

signal rather than the sinewave reference signal. 

An example is given in table 4.1 to show the importance of the reduction in sensor 

numbers that the proposed methods can achieve in comparison with conventional 

sensor-based schemes.  

Table 4.1 Comparison of the number of current sensors required for the 

MMC.   

Methods    Application  Number of sensors 

Conventional methods 
HVDC 12 

Motor drive 6 

Load current monitoring method 
HVDC 6 

Motor drives 3 

Sensor-never current monitoring 

method 

HVDC Zero 

Motor drives Zero 

4.5 Increasing the Output Level of the Converter 

Due the ability of the proposed methods to achieve voltage-balancing with LS-PWM 

techniques, increasing the output level of the converter is possible. The 2N+1 level can 

be achieved by using an interleaving modulation technique [77]. Fig. 4.5 illustrates the 

interleaving modulation technique for a 5-level MMC where the PD-PWM method is 

used. As can be noted from the figure, the four carrier signals of the lower arm are 

shifted by 180 degrees with respect to the upper arm carrier signals. Applying this 

technique will increase the MMC output level from N+1 to 2N+1. Results and 

discussion are provided in the next sections.      
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Fig 4.5 Interleaving modulation technique based on PD-PWM Scheme. 

4.6 Simulation Results  

The results achieved here are divided into two different MMC levels. Firstly, the 4-

level MMC is simulated to investigate the two proposed current sensorless methods, 

and different operating conditions are examined in this part of the results. The second 

part of the simulated results focuses on the interleaving modulation technique where a 

5-level MMC is used. The reason for two different levels being used is because the 

experimental set-up system is designed on a 4-level MMC only, whilst the interleaving 

scheme does appear better with an odd number of levels, such as 5, 7 and 9-levels. 

Therefore, an extension in the converter levels is applied to further investigate the 

increasing output voltage level of the converter. The parameters of the converter are 

explained in the following sub-sections.   

4.6.1 Output Results of the Converter with Load Current Monitoring Method, 

Sensor-Never Current Monitoring Method and Conventional Method.   

The single-phase 4-level MMC is simulated where the converter is fed with 480 DC 

V, 3 SMs are used for the upper arm and the same number for the lower arm, each of 
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which has an arm inductor of 1 mH and three 2 mF capacitors. The SMs are switched 

at a carrier switching frequency of 2.5 kHz. The same operating conditions and 

parameters are applied to all methods. In addition, similar tests are examined here; 

however, the idea is to evaluate and validate the proposed methods with exactly the 

same conditions so that a comparison between the proposed current sensorless 

schemes can be made.    

4.6.1.1 Steady-State Operating Condition  

In this test, the converter is assumed to work on a constant R-L load with values of 

R=33 Ω and L= 10 mH. The output current and voltage waveforms are shown in Figs. 

4.6-4.8. In all figures the voltage across 𝐶1 is also shown in Fig 4.6 (c), Fig. 4.7 (c) and 

Fig. 4.8 (c). The reference voltage signal is evaluated at a fundamental frequency of 

50 Hz. The response of the converter under normal operating conditions is very similar 

for the proposed and conventional methods, and it is hard to observe any differences 

between figures.  

It should be noted that the output currents in all methods have some noise; however, 

this is mainly because of the low output voltage level used (i.e. 4-level only) and low 

arm inductance value (Ls =1 mH).    
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Fig 4.6 Simulation results of the output waveforms of the proposed load 

current monitoring method. (a) Output load voltage. (b) Output load current (c) 

Voltage across C1. (d) Upper and lower arm currents.   
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Fig 4.7 Simulation results of the output waveforms of the proposed sensor-

never current monitoring method. (a) Output load voltage. (b) Output load 

current (c) Voltage across C1. (d) Upper and lower arm currents.   
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Fig 4.8 Simulation results of the output waveforms of the conventional 

method. (a) Output load voltage. (b) Output load current (c) Voltage across C1. 

(d) Upper and lower arm currents 
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Fig. 4.9 investigates the performance of the first proposed method in terms of the 

converter output signals where a sudden change in the DC-source is applied at 0.4s. 

The DC-source is increased by 50% from 480V to 720V. Fig 4.9 (b) shows the effect 

of this change on the voltage at 𝐶1.  In these selected results the arm capacitors are 

0.3 0.32 0.34 0.36 0.38 0.4
-500

0

500

Time (s)

V
o
lt

ag
e 

(V
)

 

 

0.3 0.32 0.34 0.36 0.38 0.4
-10

0

10

Time (s)

C
u
rr

en
t 

(A
)

 

 

0.3 0.32 0.34 0.36 0.38 0.4
100

150

200

Time (s)

V
o
lt

ag
e 

(V
)

 

 

0.3 0.32 0.34 0.36 0.38 0.4

-10

0

10

20

Time (s)

C
u
rr

en
t 

(A
)

 

 

V
output

i
output

V
c1

i
u

i
l

(a)

(c)

(b)

(d)



Proposed Sensorless Current Methods                                                             Chapter 4  

50 

 

 

assumed to be pre-charged (i.e. the initial value of all capacitors are 
𝑉𝑑𝑐

𝑛
 ). It can be 

noted that the proposed method successfully tracks the reference value, and it takes 

only around 0.2s to reach the second reference value of 240V. Both output voltage and 

current reach stability after 0.2s as well.  

In comparison with the results of the previous method shown in Fig.4.9 and the 

present results in Fig. 4.10, both tests also show similar output waveform responses in 

terms of settling time, output load current and voltage. On the other hand, the only 

difference which can be observed is in the shape of the voltage across SM1. Similar to 

the results for the conventional method presented in Fig. 11, the output waveforms are 

close to those obtained from the proposed sensorless methods. However, the voltage 

across SM1 shows rather more oscillation, while the average value of Vc1 in Fig. 11 

(c) is closer to the reference value (240V).      
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Fig 4.9 Simulation results of the effect of DC step change on the converter 

waveforms under load current monitoring scheme. (a) Output load voltage. (b) 

Output load current (c) Voltage across C1.    
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Fig 4.10. Simulation results of the effect of DC step change on the converter 

waveforms under sensor-never monitoring scheme. (a) Output load voltage. (b) 

Output load current (c) Voltage across C1.    
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Fig 4.11 Simulation results of the effect of DC step change on the converter 

waveforms under conventional scheme. (a) Output load voltage. (b) Output load 

current (c) Voltage across C1 

4.6.1.3 Effect of Different Inductive Load Values on the Performance   

 To farther validate the proposed method, the inductive load in the converter is 

applied with three different phase shifts between the inductor (L) and resistor (R), so 

that three different power factors are investigated. The evaluation of the influence of 

the three different values of the load inductance of 30, 55 and 155 mH on converter 

performance is shown in Fig 4.12, Fig 4.13 and Fig 4.14 where the voltage at 𝐶1 is 

considered as an example.  
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Fig 4.12 Simulation results of the investigation of 𝐕𝐜𝟏 with three different 

values of inductive load for the load current monitoring scheme. 

Since the sensor-never proposed method does not monitor any currents, this test was 

necessary to evaluate the second proposed scheme in terms of having an application 

with high phase shift difference between its output load voltage and current. However 

and interestingly, it has been found that the second proposed method shows robustness 

against this assumption. Fig. 4.13 confirms the ability of the proposed sensor-never 

method to cope with three different inductor values. In comparison with the sensor-

based conventional method, the proposed methods show some advantages when the 

load has high values of inductance.       

 

Fig 4.13 Simulation results of the investigation of 𝐕𝐜𝟏 with three different 

values of inductive load for the sensor-never current monitoring scheme. 
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Fig 4.14 Simulation results of the investigation of 𝐕𝐜𝟏 with three different 

values of inductive load for the conventional scheme.  

4.6.1.4 Step Change in the Load Condition.  

To further confirm the effectiveness of the proposed methods, a step change in the 

load condition is applied to the converter. Fig. 4.15 shows the response of the output 

load current when the load is changed. This assumed change makes the load increase 

by 100% at 0.5s. As can be observed from Fig. 4.15 (b), the voltage for the first upper 

SM still tracks the required value.   

The results presented in Fig. 4.16 are very close to those presented in Fig. 4.15 and 

Fig 4.17, and both proposed methods confirm the effectiveness of the proposed 

methods under this condition. 
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Fig 4.15 Simulation results of applying step change in the load condition for 

the load current monitoring method. 

 

Fig 4.16 Simulation results of applying step change in the load condition for 

the sensor-never current monitoring method. 
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Fig 4.17 Simulation results of applying step change in the load condition for 

the sensor-based method. 

 

4.6.1.5 Increasing the Output Level of the Converter for the Load Current 

Monitoring Method  

Figs. 4.18-20 show the output response when the interleaving modulation scheme is 

applied for the proposed schemes and the conventional sensor-based scheme at 1s. The 

parameters used in this analysis are similar to those in the previous tests, and the only 

difference here is in the output level of the converter which has been increased from 

4- to 5 level. 

 As can be seen from the figures, the output voltage is increased from 5- to 9-level, 

which reflects positively on the output load current waveform. This means a 

considerable reduction in filtering size can be achieved. On the other hand, the 

circulating and arm currents have increased for all methods.    
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Fig 4.18 Simulation results of applying interleaving modulation scheme on 5-

level MMC for load current monitoring method. (a) Output load voltage. (b) 

Output load current. (c) Circulating current. (d) Upper and lower arm currents.      

The interleaving modulation scheme is also implementable for the sensor-never 

current monitoring method; however, similar to the current monitoring method, the 

circulating current is also increased as can be observed in Fig. 4.19.  
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Fig 4.19 Simulation results of applying interleaving modulation scheme on 5-

level MMC for sensor-never current monitoring method. (a) Output load 

voltage. (b) Output load current. (c) Circulating current. (d) Upper and lower 

arm currents.     
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Fig 4.20 Simulation results of applying interleaving modulation scheme on 5-

level MMC for sensor-based method. (a) Output load voltage. (b) Output load 

current. (c) Circulating current. (d) Upper and lower arm currents.     

4.7 Experimental Results  

 Extensive experimental tests were carried out to verify the pre-obtained simulation 

results in practical environment.  

4.7.1 Steady-State Results 

To further experimentally validate the simulation results under normal operating 

conditions, a scaled-down system is used here. Details of the parameters used and 
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control set-up system are presented in Chapter 3. Figs. 4.21-23 illustrate the output 

voltage, the upper three SM voltages and the load current. The output current is 

compared with load voltage and shown in Fig. 4.24-26. Importantly, there is excellent 

agreement with the original simulation results in Figs. 4.6-8 and those presented here 

if the power rating difference is taken into consideration.  

 

Fig 4.21 Experimental results for the output and three upper SMs voltage of 

the load current monitoring scheme.  

 

 

Fig 4.22 Experimental results for the output and three upper SMs voltage of 

the sensor-never current monitoring scheme.  
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Fig 4.23 Experimental results for the output and three upper SMs voltage of 

the sensor-based scheme. 

 

 

Fig 4.24 Experimental results for the output voltage and current of the load 

current monitoring proposed scheme.   
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Fig 4.25 Experimental results for the output voltage and current of the sensor-

never current monitoring proposed scheme.  

  

 

Fig 4.26 Experimental results for the output voltage and current of the sensor-

based scheme.   
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4.7.2 Dynamic Results 

After developing confidence concerning steady-state operation, the dynamic 

operation of the proposed schemes was considered. Firstly a sudden increase in DC 

voltage was applied with the proposed methods in Figs. 4.27 and 4.28. The first SM 

was selected as an example in order to evaluate the voltage-balancing of the converter. 

In comparison with the sensor-never scheme, the load current monitoring scheme 

requires more time to reach the reference SM voltage (i.e. 𝐕𝐜𝟏−reference= 20 v), whilst 

the sensor-never current monitoring scheme has a higher overshoot value. However, 

both sets of results are within the acceptable range, which once again confirms the 

capability of the proposed methods. 

On the other hand, the same test is applied for the conventional sensor-based method 

in Fig. 4.29. As can be seen from the figure, the voltage across 𝐶1 also very rapidly 

tracks its reference value. In contrast with the simulation studies, an averaging filter is 

applied for all SM voltages for the practical implementation before applying the 

voltage-balancing control algorithm. The general standard averaging filter used for 

𝐕𝒄𝟏 is shown in Fig. 4.30 where, in this implementation, the delay element D is 5 

which satisfies the following formula: 

                𝐕𝒄𝟏(𝑡𝑖) 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  =  
1

D
 [𝐕𝒄𝟏(𝑡𝑖) + 𝐕𝒄𝟏(𝑡𝑖−1) + ⋯+ 𝐕𝒄𝟏(𝑡𝑖−4)]             (4.3)  

Finally, and to further validate these methods, a common dynamic change test was 

applied and the results are shown in Fig. 4.31, 4.32 and 4.33 respectively. An increase 

and decrease in the load condition values by approximately 100% were applied to 

MMC. The converter successfully dealt with such changes, and the three upper SM 

voltages presented in the figures prove this for all methods.   
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Fig 4.27 Experimental results of step change in the DC voltage and its impact 

on the voltage across Vc1 / Applied for the load current monitoring proposed 

scheme.   

 

 

Fig 4.28 Experimental results of step change in the DC voltage and its impact 

on the voltage across Vc1 / Applied for the sensor-never current monitoring 

proposed scheme.   
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Fig 4.29 Experimental results of step change in the DC voltage and its impact 

on the voltage across Vc1 / Applied for the sensor-based scheme.   
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Fig 4.30 Standard averaging filter used in the experimental implementation.    
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Fig 4.31. Experimental results of step changes in the load condition of the load 

current monitoring proposed scheme.  

 

 

Fig 4.32.  Experimental results of step changes in the load condition of the 

sensor-never current monitoring proposed scheme. 
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Fig 4.33 Experimental results of step changes in the load condition of the 

sensor-based scheme. 

4.8 Chapter Summary 

In this Chapter, voltage balancing control methods have been proposed for the MMC. 

Two different procedures have been investigated, where the idea was to demonstrate 

the ability to balance the SM voltage capacitors with fewer current sensors by 

modifying the conventional sorting algorithm used in previous studies. The first 

involves only one current sensor per leg, while the second method achieves voltage 

balancing without any current sensors. With these proposed methods, different PWM 

modulation techniques can be used. Simulation and experimental studies for both 

methods show and confirm the performance on a 4-level MMC under different 

operating conditions.  

There are similarity in the two investigated methods in terms of steady-state and 

dynamic performance. However, following table summarises the differences and 

performances of all proposed methods versus the conventional method: 
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Table 4.2. Comparisons of the proposed methods versus the conventional 

method used. 

Methods    Steady-state 

condition   

Dynamic 

condition 

Required 

current sensors  

Load current 

monitoring method 

vs conventional 

method  

 Output voltages and 

currents are almost 

similar.  

 Circulating currents are 

almost the same.  

 Voltage ripples are similar 

for low inductance load 

value. However, for higher 

inductance load, the 

conventional method has 

higher voltage ripples.   

Voltage across 

capacitors has more 

oscillation.   

1 vs 2 for each 

phase 

Sensor-never 

current monitoring 

method vs 

conventional 

method 

 Output voltages and 

currents are almost 

similar.  

 Circulating currents are 

almost the same.  

 Voltage ripples are similar 

for low inductance load 

value. However, for higher 

inductance load, the 

conventional method has 

higher voltage ripples.  

Voltage across 

capacitors has more 

oscillation.   

zero vs 2 for 

each phase 

“It should be noted that for all methods, the converter parameters may have different impact on 

the performance”  

The next Chapter discusses achieving voltage-balancing of the converter with fewer 

voltage sensors not fewer current sensors, where a new algorithm is introduced with 

the conventional sorting algorithm.   
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CHAPTER 5  

PROPOSED SENSORLESS 

VOLTAGE ESTIMATION 

METHOD BASED ON 

EXPONENTIALLY WEIGHTED 

RECURSIVE LEAST SQUARE 

ALGORITHM 

 

 

 

5.1 Introduction 

    As mentioned earlier in Chapters 2, the most promising application for the MMC 

requires a high number of SMs [35].  This means that the same numbers of voltage 

sensors must be used with the sensor-based measurement technique. Not only are the 

cost and complexity increased, but reliability can also be seen as another issue where 

the converter consists of a series of cascaded SMs. Therefore, a scheme to overcome 

this issue is proposed in this chapter.  
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This chapter proposes a solution to the voltage-balancing control issue which is 

always associated with the MMC. With the proposed scheme, voltage-balancing of the 

converter is achieved with fewer voltage sensors. In the proposed estimation technique, 

an ERLS algorithm is employed for the first time in MMC applications to estimate the 

voltage across each SM capacitor. Various simulation and experimental tests are 

performed to evaluate the effectiveness of the proposed method at different load 

conditions. Comparisons with the sensor-based measurement technique are also 

included in the chapter analysis. 

The proposed technique requires only the measurement of the total arm voltage and 

the switching states of the SMs. These switching values are obtained from the 

controller used and hence no extra sensors are required. In comparison to [46, 47], the 

use of this algorithm does not require an advanced voltage-balancing method since any 

conventional or simple scheme can be applied. Compared to observer-based methods 

the variation in the arm inductance is a critical issue, this method is completely 

independent of such variation, because the measurement of voltages across arm 

inductors is not required by the algorithm. Details will be given in the section 

explaining the algorithm design.  

Before describing the ERLS algorithm, other basic algorithms which are the basis 

of the ERLS algorithm need to be reviewed in the following two sections along with a 

discussion of suitability of these basic algorithms for the MMC.   

5.2 Least Square (LS) Algorithm  

The least square (LS) algorithm is a mathematical process which is used to identify 

unknown parameters for a real physical model from other data accessible within the 

same model [78]. This has to be expressed mathematically in a very accurate way in 

order to achieve high accuracy in estimation results (as precise as the mathematical 

model is as accurate as the estimated results can be achieved). Although this algorithm 

is not used in the proposed method, it is important to explain the principle behind it as 

most recursive algorithm families are based on similar concepts.  
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Assume that a real model is represented by the following mathematical model, where 

the aim is to identify the values of 𝛉1(𝑡𝑖)
, 𝛉2(𝑡𝑖)

, … 𝛉𝑛(𝑡𝑖)
: 

                       𝐲(𝒕𝒊) = 𝒛𝟏(𝒕𝒊)
𝛉𝟏(𝒕𝒊) + 𝒛𝟐(𝒕𝒊)

𝛉𝟐(𝒕𝒊) + ⋯+ 𝒛𝒏(𝒕𝒊)
𝛉𝒏(𝒕𝒊)                  (5.1) 

in which 𝑖 = 1, 2, 3, … 𝑗, 𝐲(𝑡𝑖)
 is the available measured data, 𝑧1(𝑡𝑖)

, 𝑧2(𝑡𝑖)
, … 𝑧𝑛(𝑡𝑖)

 are 

other known variables and 𝛉1(𝑡𝑖)
, 𝛉2(𝑡𝑖)

, … 𝛉𝑛(𝑡𝑖)
 are the unknown parameters. 

Therefore, (5.1) can be rewritten in matrix form as follows:  

                                                  𝐲(𝒕𝒊) = (𝒕𝒊)

𝑻
𝛉(𝒕𝒊)                                                     (5.2) 

where        

(1)

(2)

( )


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y

y
y

y N
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z (N) z (N) z (N)
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 
 

 and 𝛉 =

[
 
 
 
 
𝛉𝟏

𝛉𝟐

𝛉𝟑

⋮
𝛉𝒏]

 
 
 
 

                       

The estimated value of 𝛉 is given by [78]: 

                                         𝛉̂ = [
𝑻

]−𝟏 𝑻
𝐲                                                  (5.3) 

One critical issue of the LS algorithm is the matrix inverse[
𝑇

]−1 which needs 

to be recalculated for every new measurement which means that all previous data 

needs to be stored. This means that the LS algorithm is valid for off-line estimation 

problems only [78].  

5.3 Conventional RLS Algorithm  

Due to the limitations of the LS algorithm mentioned above, recursive LS (RLS) 

algorithms were proposed for real-time implementation issues [78, 79].  

The arrangement of the conventional RLS algorithm is summarised in sequence in 

table 5.1 [80]. The mathematical derivation of this algorithm is detailed in Appendix 

A. However, in table 5.1, steps (3-6) may be suitable only if the model described in 

(5.2) has constant dynamic behaviour. However, MMCs might exhibit variable 

dynamic behaviour, such as step changes in load value or any other sudden changes in 

the system’s conditions. In addition, applying a closed-loop control strategy where 
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PWM patterns vary with time may also affect the estimation results. This means that 

the conventional RLS is not suitable for the target application of MMC. Therefore, a 

developed adaptive scheme of the conventional RLS algorithm must be used instead.   

Table 5.1 Conventional RLS adaptive algorithm 

Step Action and related equation 

1.  Initialisation Initiate  𝑃(𝑡0) and 𝛉̂(𝑡0) 

2.  Activate the algorithm For 𝑖 = 1, 2, 3, … 𝑗 

3.  Calculate the gain 𝐾(𝑡𝑖)
= 

𝑃(𝑡𝑖−1) 𝑧(𝑡𝑖)
 

(𝑧𝑇
(𝑡𝑖)

 𝑃(𝑡𝑖−1) 𝑧(𝑡𝑖)
+ 1)

 

4.  Calculate prediction error 𝑒𝐲(𝑡𝑖)
= 𝐲(𝑡𝑖)

− 𝐲̂(𝑡𝑖)
,   𝐲̂(𝑡𝑖)

= 𝑧𝑇
(𝑡𝑖)

𝛉̂(𝑡𝑖)
 

5.  Update the parameter 𝛉̂ 𝛉̂(𝑡𝑖)
= 𝛉̂(𝑡𝑖−1) + 𝐾(𝑡𝑖)

𝑒𝐲(𝑡𝑖)
 

6.  Update the covariance matrix 

( p ) 
         

11 ( )
        

iii
t

T

ii
tt tt

ZP P k P


  
  

 

5.4 Exponentially Weighted RLS Algorithm    

To cope with the issues mentioned with the previous algorithms, the ERLS algorithm 

is proposed for the MMC. It is also named as RLS with forgetting factor algorithm [80, 

81]. The core concept of the forgetting factor algorithm scheme is to give less weight 

to elder data and more weight to new data by adding a coefficient called a forgetting 

factor. The cost function of the ERLS algorithm is given as follows [82]:   

                                𝑱𝒖 = ∑  𝝀𝒋−𝒊( 𝐲(𝒕𝒊) − 𝒛(𝒕𝒊)
𝑻 𝛉̂(𝒕𝒊))

𝟐𝒋
𝒊=𝟏                                         (5.4) 

where   is known as the forgetting factor as mentioned above. The smaller the 

forgetting factor, the faster the tracking of a time-varying unknown parameter will be; 

however, the algorithm will be more sensitive to noise. Therefore, care has to be taken 

when   is chosen. It should be noted that each system has its own standard of 
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choosing this factor. However, it is recommended that this factor should be chosen 

within the range of:   0 1 λ  [83].  

Similar to step four in table 5.1, the estimated value of 𝛉(𝒕𝒊) is defined by: 

                                 𝛉̂(𝒕𝒊) = 𝛉̂(𝒕𝒊−𝟏) + 𝑲(𝒕𝒊)𝒆𝐲(𝒕𝒊)
                                              (5.5)               

However, 
 it

K  here is given by:  

                                     𝑲(𝒕𝒊) = 
𝑷(𝒕𝒊−𝟏) 𝒛(𝒕𝒊)

 

(𝒛𝑻
(𝒕𝒊)

 𝑷(𝒕𝒊−𝟏) 𝒛(𝒕𝒊)
+𝝀)

                                          (5.6)              

and the covariance matrix will be: 

                 
         

1 1

1
ii i i

ttt t t
P P k z P

( )
( )         

 

  
  

                                       (5.7)  

Table 5.2 summarises the sequence of operation of the ERLS algorithm.   

Table 5.2 ERLS adaptive algorithm 

Step Action and related equation 

1. Initialisation Initiate 𝑃(𝑡0), 𝛉̂(𝑡0) and  𝜆 

2. Calculate the gain 𝐾(𝑡𝑖)
= 

𝑃(𝑡𝑖−1) 𝑧(𝑡𝑖)
 

(𝑧𝑇
(𝑡𝑖)

 𝑃(𝑡𝑖−1) 𝑧(𝑡𝑖)
+ 𝜆)

 

3. Calculate prediction error 
𝑒𝐲(𝑡𝑖)

= 𝐲(𝑡𝑖)
− 𝐲̂(𝑡𝑖)

, 

  𝐲̂(𝑡𝑖)
= 𝑧𝑇

(𝑡𝑖)
𝛉̂(𝑡𝑖)

 

4. Update the parameter θ̂  𝛉̂(𝑡𝑖)
= 𝛉̂(𝑡𝑖)

+ 𝐾(𝑡𝑖)
𝒆𝐲(𝑡𝑖)

 

5. Update the covariance matrix   

𝑃 
         

1 1

1
i i i i it t t t

T

t
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5.5 Proposed Estimation Technique  

Fig. 5.1 shows a single-phase MMC based on the half-bridge configuration. In this 

research, only the half-bridge configuration is examined.  
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Fig 5.1. Block diagram of MMC. (a) Single-phase (one-leg) Block diagram. (b) 

Half-bridge SM configuration. 

5.5.1 Modelling and System Configuration of the SMs  

In the proposed scheme, only one voltage sensor is required for each arm as 

illustrated in Fig. 5.2.  Interestingly, it has been found that there is a similarity between 

the linear model described for the previous algorithms and the relationship between 

total arm voltage, SM voltages and the switching states of the converter.  

Two sensors are used in the proposed scheme (i.e. upper and lower sensors). The upper 

sensor is connected at the output of the series-cascaded SMs, where the connection is 

performed between the top terminal point of the first SM (SM1) and the bottom 
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terminal point of the last SM (SMn) within this arm. Similar to the upper arm, the 

sensor for the lower arm is connected between SM(n+1) and SM2n.  

SM1

SM2

SMn

         

uu

 

Upper Voltage 

Sensor

To the positive connection

 point of the Vdc   

To the top connection point of the upper arm inductor Ls

(a)

To the negative connection point of the Vdc   

         

ul

 

To the lower connection point of the lower arm 

inductor Ls

SM(n+1)

SM(n+2)

SM2n

Lower Voltage 

Sensor

(b)

     Line 1

 

Fig 5.2. Connection arrangement of the proposed measuring technique for the 

MMC. (a) Upper voltage sensor arrangement. (b) Lower voltage sensor 

arrangement. 

This arrangement makes the method independent of parameter variation associated 

with the arm inductor value. For an N-level converter; where 𝑁 = (1 + 𝑛), the total 

voltage SMs of the upper and lower arms in Fig. 5.2 can be modelled respectively as 

follows: 
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𝐮𝑢(𝑡0) = 𝑆1(𝑡0) 𝐕𝑐1(𝑡0) + ⋯+ 𝑆𝑛(𝑡0) 𝐕𝑐𝑛(𝑡0) 

𝐮𝑢(𝑡1) = 𝑆1(𝑡1) 𝐕𝑐1(𝑡1) + ⋯+ 𝑆𝑛(𝑡1) 𝐕𝑐𝑛(𝑡1) 

⋮    =         ⋮                  +⋯+            ⋮ 

𝐮𝑢(𝑡𝑗) = 𝑆1(𝑡𝑗) 𝐕𝑐1(𝑡𝑗) + ⋯+ 𝑆𝑛(𝑡𝑗) 𝐕𝑐𝑛(𝑡𝑗) 

 

5.8) 

 

𝐮𝑙(𝑡0) = 𝑆𝑛+1(𝑡0) 𝐕𝑐(𝑛+1)(𝑡0) + ⋯+ 𝑆2𝑛(𝑡0) 𝐕𝑐2𝑛(𝑡0) 

 𝐮𝑙(𝑡1) = 𝑆𝑛+1(𝑡1) 𝐕𝑐(𝑛+1)(𝑡1) + ⋯+ 𝑆2𝑛(𝑡1) 𝐕𝑐2𝑛(𝑡1) 

⋮    =                ⋮                      +⋯+       ⋮ 

 𝐮𝑙(𝑡𝑗) =  𝑆𝑛+1(𝑡𝑗) 𝐕𝑐(𝑛+1)(𝑡𝑗) + ⋯+ 𝑆2𝑛(𝑡𝑗) 𝐕𝑐2𝑛(𝑡𝑗) 

5.9) 

 

where 𝑡1 − 𝑡0 = 𝑡2 − 𝑡1 = ⋯ = 𝑡𝑗 − 𝑡𝑗−1 = ∆𝑡 (sampling period). 

Note that, in (5.8) and (5.9) the upper switch (Sx) (where 𝑥 = 1,2, …  2𝑛) is the main 

switch responsible for charging and discharging the SM’s capacitor. It also worth 

noting that due to the small internal resistance of the semiconductor switch, the voltage 

drop caused by Sx is neglected in this analysis. Furthermore, knowledge of the 

switching states, obtained directly from the controller, without including the voltage 

drop has been proven to be sufficient for different estimation methods [40, 44, 46]. 

However, while this drop is described as negligible in [40, 44, 46], the actual values 

are not indicated. Nevertheless, it is easy to estimate this drop in order to improve the 

accuracy of the proposed model. The experimental results section of this chapter gives 

more details on the effect of voltage drop on the system model.  

5.5.2 Proposed Voltage Estimation Technique 

It is found that, by employing this algorithm to the MMC model which was described 

earlier in equation (5.1) and (5.2), the estimation of the individual SM voltage can be 

accomplished. The arm voltage model of the upper and lower arm in (5.8) and (5.9) 

can be rewritten as follows: 

                                 𝐮𝐮(𝐭𝐢)
= [𝑺𝐓

𝐱(𝐭𝐢)
][𝐕𝐜𝐱(𝐭𝐢)

]                                        (5.10) 
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                       𝐮𝒍(𝒕𝒊)
= [𝑺𝑻

𝒙(𝒕𝒊)
] [𝐕𝒄𝒙(𝒕𝒊)

]                                       (5.11)  

Note that, in equation (5.10) 𝑥 = 1, 2, … 𝑛 and in equation (5.11) 𝑥 = (𝑛 + 1), (𝑛 +

2),… 2𝑛.  

where 𝑖 = 1, 2, 3, … 𝑗, note that, similar to (5.1), equations (5.8) and (5.9) are also 

linear. Similarity in these equations (i.e. (5.1), (5.8) and (5.9)) allows applying the 

ERLS algorithm to the MMC arm voltage model easily. The only difference is to 

substitute 𝐲(𝑡𝑖)
, 𝑧(𝑡𝑖)

 and 𝛉(𝑡𝑖)
 in equation (5.1) by total SM arm voltage (  𝐮𝑢(𝑡𝑖)

 or 

𝐮𝑙(𝑡𝑖)
), switching states (𝑆𝑥(𝑡𝑖)

) and SM voltage 𝐕𝑐𝑥(𝑡𝑖)
.   

Since the ERLS algorithm is applied to the upper and lower arms independently, 

only the upper arm is described in this section. 

To initiate the ERLS estimation algorithm as illustrated in table 5.2, 𝑃(𝑡𝑖)
 

(covariance matrix), 𝜆  and  𝐕̂𝑐𝑥(𝑡𝑖)
 (estimated SM voltage) must be specified with 

initial values of 𝑃(𝑡0), 0.851 and  𝐕̂𝑐𝑥(𝑡0)
 respectively, in which: 

                                               𝑷(𝒕𝟎) = 𝑮𝑰                                                         (5.12)            

In (5.12), 𝐺 is a constant positive number, (and it is preferable for 𝐺 to be a large 

number [83]). In this implementation 𝐺=1× 103  and 𝐼  is an 𝑛 × 𝑛 identity matrix, 

where 𝑛 is the number of SMs within the upper arm, whilst 𝐕̂𝑐𝑥(𝑡0) is assumed to be 

zero (i.e. the capacitors considered initially uncharged). 

After defining  𝑃(𝑡0) and 𝐕̂𝑐𝑥(𝑡0)
, an adaptive gain 𝐾(𝑡𝑖)

 is calculated based on the 

sequence implementation shown in table 5.2 as: 

                                 𝑲(𝒕𝒊) = 
𝑷(𝒕𝒊−𝟏) 𝑺𝒙(𝒕𝒊)

 

(𝑺𝒙(𝒕𝒊)
𝑻  𝑷(𝒕𝒊−𝟏)𝑺𝒙(𝒕𝒊)

 +𝝀)
                                  (5.13) 

The main idea of the proposed estimation algorithm is to minimise the error between 

the total measured arm SMs voltages ( 𝐮𝑢(𝑡𝑖)
) and their estimated values      ( 𝐮̂𝑢(𝑡𝑖)

): 

                                     𝒆𝐮(𝒕𝒊)
=  𝐮𝒖(𝒕𝒊)

− 𝐮̂𝒖(𝒕𝒊)
                                           (5.14) 
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where 𝑒𝐮(𝑡𝑖)
 is the prediction error for the total voltage SMs of the upper arm. The cost 

function for the total arm voltage which identifies the weighted sum of the quadratic 

error is given by: 

                                         𝑱𝒖 = ∑  𝝀𝒋−𝒊(  𝐮𝒖(𝒕𝒊)
− 𝐮̂𝒖(𝒕𝒊)

)𝟐𝒋
𝒊=𝟏                         (5.15)    

To estimate the voltage value in one prediction step ahead, the previous voltage at 

 𝑡𝑖−1  (  𝐕̂𝑐𝑥(𝑡𝑖−1) ) has to be included in the algorithm process as well as the error 

calculated in (5.14) multiplied by the adaptive gain (𝐾(𝑡𝑖)
) which has been calculated 

in (5.13). In the first initial step  𝐕̂𝑐𝑥(𝑡0)
= 𝐕̂𝑐𝑥(𝑡𝑖−1) = 0, and therefore achieving this 

goal for the estimation of the upper capacitor voltages at  𝑡𝑖  is realized as follows: 

                                    𝐕̂𝒄𝒙(𝒕𝒊)
= 𝐕̂𝒄𝒙(𝒕𝒊−𝟏)

+ 𝑲(𝒕𝒊) 𝒆𝐮(𝒕𝒊)
                                    (5.16) 

The new covariance matrix (𝑃(𝑡𝑖)
) is then updated with 𝐾(𝑡𝑖)

 as follows: 

                      𝑷(𝒕𝒊) = ( 
𝟏

𝝀
 ) [( 𝑷(𝒕𝒊−𝟏)) − ( 

𝑷(𝒕𝒊−𝟏) 𝑺𝒙(𝒕𝒊)
 𝑺

𝒙(𝒕𝒊)
𝑻   𝑷(𝒕𝒊−𝟏)

(𝝀+ 𝑺𝒙(𝒕𝒊
𝑻  𝑷(𝒕𝒊−𝟏) 𝑺𝒙(𝒕𝒊)

)
 )]                (5.17) 

For simplicity, the proposed algorithm steps are summarised in the flowchart shown 

in Fig. 5.3. 

The block diagram of the proposed estimation topology, including the voltage-

balancing algorithm for the upper arm, is shown in Fig. 5.4. For the lower arm of the 

converter, the same algorithms are processed. However, some rearrangements have to 

be considered. For example, in (6.13), (6.16) and (6.17) 𝑥 = 𝑛 + 1, 𝑛 + 2… .2𝑛 

instead of 𝑥 = 1,2…𝑛. It is worth noting that the sorting algorithm used in Fig. 5.4 is 

similar to that presented in [30], and it should be also noted that the voltage-balancing 

(i.e. the sorting algorithm) used in this thesis has nothing to do with the proposed 

estimation method. However, in the present research, achieving voltage-balancing 

relies on estimated voltages of the SM capacitors rather than their measured values. 

Therefore, sorting these voltages ( 𝐕̂𝑐1~ 𝐕̂𝑐𝑛  and 𝐕̂𝑐(𝑛+1)~ 𝐕̂𝑐2𝑛 ) is evaluated in 

descending order to charge and discharge the most desired capacitors; where the states 

of the capacitors (charging and discharging) depend on arm current direction. 

Therefore, monitoring the arm current is mandatory. Furthermore, phase disposition 
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sinusoidal pulse-width modulation (PD-PWM) strategy is used, where 𝑟 carrier signals 

with the same phase and different levels are required for N-level. The voltage-

balancing method used for the upper arm is shown in Fig. 5.5, where more details 

about the technique can be found in [30].           

No

Start

Read total SMs voltages 

(upper and lower)

Initiate: estimated 

voltages, P(tₒ) , λ  and i=0

i=i+1

Calculate k(ti)

Calculate errors in 

(5.14) 

i = j

End

Calculate estimated 

voltages from (5.16) 

Yes

Update  P(ti)

 

Fig 5.3. Flow chart of the proposed SM voltage estimation method for the 

upper arm. 

    As a result, 𝑃𝑊𝑀𝑛 and 𝑃𝑊𝑀𝑛 ̅ will be applied to the converter with a unit delay 

(𝑍−1)  in order to activate 𝑆n and  𝑆𝑛, respectively in the appropriate time. A dead-
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time period is added to 𝑃𝑊𝑀𝑛 ̅ before switching 𝑆𝑛. In consequence of a very small 

voltage drop caused when 𝑆n and  𝑆𝑛  are activated, it is assumed that 𝑃𝑊𝑀𝑛 = 𝑆𝑛 

and 𝑃𝑊𝑀𝑛 ̅ = 𝑆𝑛.         

Proposed 
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1
ˆ
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ui uu

Unit Delay

Conversion and 

dead-time process

Conversion and 

dead-time process

1PWM

nPWM
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Fig 5.4. The proposed estimation method and the associated sorting 

algorithms for the upper arm control. 
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Fig 5.5. Block diagram of the upper arm voltage-balancing strategy used. 

5.6 Simulation Results 

In order to verify the proposed estimation scheme for the MMC, a single-phase 9-

level MMC is considered and simulated. Eight SMs per arm (𝑥 = 16) are used to 

construct this converter and only one voltage sensor for each arm is used. The system 

parameters are tabulated in table 5.3.  

5.6.1 Conventional RLS Results 

Although it has been mentioned earlier in this chapter that the conventional RLS 

scheme is not suitable for the MMC; however, giving a proof and showing the 

sequence of all of the mentioned methods might give a sense of what can be done in 

the future to improve the existing study.  

In this part of the simulation study, only the voltage across 𝐶1 (𝐕𝒄𝟏) is investigated. 

As expected, the error between the measured and estimated voltage is high and 
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unacceptable, as shown in Fig. 5.6. However, the estimated value still follows the real 

signal (𝐕𝒄𝟏(𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐝)), and this tracking encourages the belief that developments of the 

conventional RLS might provide a solution.     

Table 5.3 Parameters of the simulated 9-level single-phase MMC 

Parameter Value 

SM capacitor (𝐶) 2000 µF 

Modulation index (𝑚𝑖) 0.80 

DC-link voltage (V𝑑𝑐) 10 kV 

Output frequency (𝑓) 50 Hz 

Carrier switching frequency (𝑓
𝑐
) 2.5 kHz 

Number of SM per leg (𝑁) 16 

Load resistor (R) 33 Ω 

Arm inductor (LS) 1.2 mH 

Load inductor (L) 15 mH 

Sampling frequency (𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) 20 kHz 
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Fig 5.6. Simulation results of the 9-level MMC with the conventional RLS 

scheme. 

5.6.2 ERLS Results  

The effectiveness of the proposed technique is confirmed by different simulation 

results which include steady-state and dynamic condition analyses as discussed in the 

following cases. 

5.6.2.1 The Performance of the Proposed Method for Normal Operating 

Conditions. 

In this case the performance of the 9-level MMC is evaluated under normal steady-

state operating conditions, where the converter is assumed to work with a constant R-

L load. Voltage sensors are used for each SM at first to measure the capacitor voltages 

as shown in Fig. 5.7 (a)-(c). The performance of the converter with the proposed 

method is illustrated in Fig. 5.8 (a)-(c). Owing to a small error between the measured 

and estimated voltages, voltages across the upper arm capacitors in Fig. 5.8 (a) show 

extra deviation compared to those presented in Fig. 5.7 (a). However, this small 

difference between the two signals does not have any notable effect on the converter 

output voltage and current as can be clearly seen from Fig. 5.8 (b), and (c). This 

confirms the accuracy of the proposed technique. Moreover, it should also be noted 

that the sensor-based measurement technique requires 16 voltage sensors for the 9-
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level MMC, while the proposed measuring technique needs only two voltage sensors 

to achieve voltage-balancing of the converter.  

The voltage across capacitors in the simulation results for this chapter and next 

chapter appeared to be different from what is in the literature due to the converter was 

designed with the aim of using the smallest size of the SM capacitors possible.  

 

Fig 5.7. Simulation results of the 9-level MMC with the sensor-based 

measuring technique. (a)  Upper capacitor voltages ( 1 8C C
V V ). (b) Output 

current. (c) Output voltage. 
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Fig 5.8. Simulation results of the 9-level MMC with the proposed estimation 

scheme and nominal parameters (a) Upper capacitor voltages ( 1 8C C
V V ). (b) 

Output current. (c) Output voltage. 
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SM capacitance are carried out to illustrate the robustness of the proposed method in 

estimating the capacitor voltages. In this case, 𝐶1 with different deviations (i.e. ±22%, 

±40%, and ±70%) is selected as an example.  

 

Fig 5.9. Simulation results of the upper arm capacitor errors with variations 

in all capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±22% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±22%. (c) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the capacitors 

values are : 2440 µF ,1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, 

and 3000 µF respectively. (d) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the values 

are : 1560 µF ,1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, and 3000 

µF respectively.   
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The other capacitors 𝐶2~𝐶8 are also given different deviation values to emulate the 

close to reality situation where all capacitors possibly deviate from their nominal 

values.  

 

Fig 5.10. Simulation results of the upper arm capacitor errors with variations 

in all capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±40% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±40%. (c) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the capacitors 

values are : 2800 µF ,1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, 

and 3000 µF respectively. (d) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the values 

are : 1200 µF, 1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, and 3000 

µF respectively.   
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For 𝐶2~𝐶8 the deviations considered are: -25%, -12%, +7%, -16%, +40%, -30%, 

and +50%, which results in the values of 𝐶2~𝐶8 as: 1500 µF, 1760 µF, 2140 µF, 1680 

µF, 2800 µF, 1400 µF, and 3000 µF, respectively.  

 

Fig 5.11. Simulation results of the upper arm capacitor errors with variations 

in all capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±70% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±70%. (c) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the capacitors 

values are : 3400 µF ,1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, 

and 3000 µF respectively. (d) Estimated voltages for (𝑪𝟏~𝑪𝟖) where the values 

are : 600 µF, 1500 µF, 1760 µF, 2140 µF, 1680 µF, 2800 µF, 1400 µF, and 3000 

µF respectively. 
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Fig. 5.9(a) shows the measured and estimated voltages across 𝐶1  where ±22% 

deviation are considered, four signals (𝐕𝑐1 estimated / measured with +22% deviations 

and 𝐕𝑐1 estimated / measured with -22%) are illustrated in the figure.  

In Fig. 5.9(b), it can be noted that the maximum error when 𝐶1 has variations of 

±22% is almost 3% only. The effect of ±22% deviation of 𝐶1  in addition to the 

deviations of 𝐶2~𝐶8 on the all arm capacitor, are illustrated in Fig. 5.9(c) and (d) 

respectively. The maximum error can be seen in Fig. 5.9(c) and (d) is around 8%. As 

can be noted from the figures (Fig. 5.9(c) and (d)), the maximum error appears when 

the deviation considered for 𝐶6  and  𝐶8 were 40% and 50%. However, in the real 

capacitors it is unlikely to have such deviations.   

Furthermore, when the capacitor (𝐶1) has a tolerance of ±40%, the maximum error 

can be noticed is almost less than 4% as depicted in Fig. 5.10(b). Interestingly, the 

error remains minimal even when all other capacitors (𝐶2~𝐶8) deviated too as shown 

in Fig. 5.10(c) and (d). These results strongly suggest that the proposed method is 

suitable for real implementations where the manufacturing tolerance of the capacitors 

usually does not exceed ± 20% of their nominal values.  

It is worth noting that the reason for these errors being so small is that the proposed 

estimation method does not involve the capacitance parameter in its algorithm process, 

as can be seen from equation (5.10) and (5.11). When a larger variation of ± 70% is 

considered, the error can reach 12% as shown in Fig. 5.11(b). However, in real 

implementations, it is unlikely that such large capacitance deviations (i.e. ± 70%) 

would occur.  

5.6.2.3 Performance of the Proposed Method during Step Load Change 

The performance of the proposed method is now examined for a step change in load. 

In this study, voltage across 𝐶1 (𝐕𝑐1) is selected as an example. As depicted in Fig. 

5.12, the load is increased by 100% at time t= 0.3s and back to the original load at t = 

0.4s. Remarkably, in both cases; the estimated voltage value (𝐕̂𝑐1) perfectly tracks the 

measured voltage, as demonstrated in Fig. 5.12 (b). 
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Fig 5.12. Simulation results for the 9-level MMC with step load change. (a) 

Output current. (b) Upper arm capacitor voltages across 1C . 

5.6.2.4 Start-up and Low Carrier Switching Frequency Performance.   

 In this part of the simulation study, start-up performance and operation with 

different low carrier switching frequencies are investigated.  

 
Fig 5.13. Start-up transient condition performance of the proposed estimation 

method / simulation results. 
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Fig. 5.13 shows the performance of the proposed estimation method during the start-

up transient condition. It is clear that the proposed ERLS algorithm tracks the 

measured voltage very quickly; only one sampling time ( 
1

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(20 𝑘 𝐻𝑧)
= 5× 10−5) 

is required to start tracking the measured value. 

 

Fig 5.14. Effect of the carrier switching frequency on the proposed estimation 

method. (a) 𝒇𝒄 =2.5 kHz. (b) 𝒇𝒄 =1.5 kHz. (c) 𝒇𝒄 = 750 Hz. (d) 𝒇𝒄 = 250 Hz. (e) 

𝒇𝒄 = 45 Hz / simulation results. 
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Due to the possibility of the MMC to work on low switching frequency when a 

different voltage-balancing control method is used, a further investigation with 

different frequencies values are performed in Fig. 5.14. Five carrier switching 

frequencies are evaluated respectively: 𝑓𝒄 = 2500, 1500, 750, 250 and 45 Hz. It can be 

noted that for the all cases, the proposed algorithm performs well even with a carrier 

switching frequency lower than the fundamental frequency (i.e. when 𝑓𝒄 =45 only).      

5.6.2.5 Performance of the Proposed Method during DC Fault.   

A fault is applied to the system to further validate the method where the DC voltage 

of the converter is dropped suddenly by 90%. Fig. 5.15(a) and (b) show the 

corresponding changes in the output current and voltage when the estimation method 

is used.  
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Fig 5.15. Simulation results of the performance of the proposed method 

during a DC fault. (a) The output current response. (b) The output voltage 

response.   

In addition, Fig 5.15(c) shows the measured and estimated voltage across 𝐶1. It is 

obvious that the estimated voltage can successfully track this extreme change in both 

transient as well as steady state conditions.    

5.6.2.6  The Performance of the ERLS Method with a High Number of SMs  

 In this section of the analysis results, the proposed method is applied to a high MMC 

level and evaluated. Fig 5.16-18 show the performance of the proposed method with 

32, 64 and 204 SMs per leg.  
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Fig 5.16 Simulation results of the performance of the proposed method with 

32 SMs per leg (𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈=35 kHz). (a) Output current. (c) Output voltage. (c)  

Upper capacitor voltages  𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟏𝟔.  (d) Upper capacitor voltages 𝐕𝒄𝟏~ 𝐕𝒄𝟏𝟔.   

It is clear from the figures that all simulated levels performed well which once again 

confirms the proposed scheme; however, the required sampling frequency is 

proportional to the level required which may affect computation time. This can be 

addressed with more an advanced and powerful processor.  
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Fig 5.17 Simulation results of the performance of the proposed method with 

64 SM per leg (𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈< 50 kHz). (a) Output current. (c) Output voltage. (c)  

Upper capacitor voltages 𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟑𝟐 . (d) Upper capacitor voltages 𝐕𝒄𝟏~ 𝐕𝒄𝟑𝟐  

Alternative, more sensors can be added within each arm based on the same 

connection arrangement described earlier in 5.6. For instance, technologies with 

parallel processing capabilities such as FPGA boards are a very attractive and cost-

effective alternative parallel processing which can reduce computation time by 

processing independent calculation concurrently.   
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Fig 5.18 Simulation results of the performance of the proposed method with 

204 SM per leg (𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈=250 kHz). (a) Output current. (c) Output voltage. (c)  

Upper capacitor voltages 𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟏𝟎𝟐 . (d) Upper capacitor voltages  𝐕𝒄𝟏~ 𝐕𝒄𝟏𝟎𝟐   

It should note that the MMC is commonly used for lower SM based-applications 

where the required SMs is around 10 SM per leg only. For example, drive applications 

presented in [73-75] require 30 voltage sensors if a sensor-based method is used 

whereas with the proposed method only requires 6 sensors to achieve system stability. 
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5.7 Experimental Results 

To further validate the proposed method, extensive experimental test are carried out 

in this section. As mentioned in Chapter 3, a scaled down 4-level MMC system with 

the pre-mentioned parameters are used to evaluate the proposed estimation technique. 

Five main points are investigated here; the effect of SM voltage drop on the system’s 

model; the performance of the MMC in normal operating conditions; the effect of a 

load step change on converter performance where the proposed method is applied; the 

effect of a fault in the DC source on the estimation value; and finally an extreme 

increase in DC voltage.       

5.7.1 Impact of Voltage Drop on the System Model 

Realistically there will always be some deviations between ideal and practical 

systems caused by various factors. The voltage drop due to the internal resistance of 

the semiconductor devices (
 x dropS ) and the stray impedance of the connecting wires  (

Line x  dropV  ) are two examples. To experimentally validate the assumption made earlier 

that this voltage drop has a minimal effect on the performance of the proposed method 

and can be ignored; equation (5.10) is experimentally implemented as example and the 

result is shown in Fig. 5.19. This was accomplished using External MATLAB mode, 

where the data inside the DSP can be accessed in real-time processing. As it can be 

clearly seen from Fig. 5.19, there is a very small difference between the two signals 

(blue and red), which is caused by the practical aspects explained above. This therefore 

confirms the assumption made earlier that these voltage drops can be safely neglected 

in the calculation without having a significant impact on the system model. However, 

for a more accurate formula of the four-level MMC, equation (5.10) can be rewritten 

as follows:  

𝐮𝒖 = 𝑺𝟏 ∗ 𝐕𝒄𝟏 + 𝑺𝟏 𝒅𝒓𝒐𝒑 + 𝐕𝑳𝒊𝒏𝒆 𝟏 𝒅𝒓𝒐𝒐𝒑 + ⋯+ 𝑺𝟑 ∗ 𝐕𝒄𝟑 + 𝑺𝟑 𝒅𝒓𝒐𝒑 + 𝐕𝑳𝒊𝒏𝒆 𝟑 𝒅𝒓𝒐𝒑 5.18) 

Note: see Fig 5.2 for the V𝐿𝑖𝑛𝑒 𝑛 𝑑𝑟𝑜𝑜𝑝 
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Fig 5.19. Experimental results for measured (𝐮𝒖) and calculated 𝑺𝟏𝐕𝒄𝟏 +
𝑺𝟐𝐕𝒄𝟐 + 𝑺𝟑𝐕𝒄𝟑 total upper arm voltage. 

For the lower arm, it should be noted that a similar equation can be written for 𝐮𝑙, 

Fig. 5.20 illustrates 𝐮𝑢  in comparison with the total lower arm voltage  𝐮𝑙  and the 

output voltage 𝐮𝑎.  

 

Fig 5.20. Total upper arm voltage (𝐮𝒖), output voltage (𝐮𝒂) and lower arm 

voltage (𝐮𝒍) / Experimental results. 
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5.7.2 Steady-State Condition Results 

Experimental results of the sensor-based measurement and the proposed technique 

based on the steady-state condition are presented in Figs. 5.21 and 5.22. Figs. 5.21 (a) 

and 5.22 (a) show the three upper SM capacitor voltages (
1 3c c

V ~ V ). It can be observed 

that Fig 5.22 (a) shows a slight deviation in comparison with Fig. 5.21 (a). However, 

this does not have a notable impact either on the output current or on the output voltage 

as illustrated in Fig. 5.22 (b).  

 

 

Fig 5.21. Experimental results of the sensor-based estimation method. (a) 

Three upper SM voltage capacitors. (b) Output current and voltage. 
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Interestingly, zoomed-in samples of Fig 5.21 (b) and 5.22 (b) verify this; however, 

only very small differences in the voltage waveforms can be observed as shown in Fig. 

5.23, which is acceptable for the reduction in sensors count. Furthermore, with the 

proposed scheme, the same number of two sensors is sufficient to achieve voltage-

balancing for even the 𝑁-level MMC. Additionally, comparison between the voltage 

across 𝐶1  achieved from the conventional sensor-based method and the proposed 

estimated method is illustrated in Fig. 5.24.    

 

 

Fig 5.22. Experimental results of the proposed estimation method. (a) Three 

upper SM voltage capacitors. (b) Output current and voltage. 
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Fig 5.23. Experimental results of the output current and voltage. (a) Results of 

the sensor-based measurement technique. (b) Results of the proposed estimation 

technique. 
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Fig 5.24. Experimental results of the voltage comparison between the 

conventional sensor-based method and the proposed method across 𝑪𝟏. 

5.7.3 Results for Load Step Change Condition  

To further validate the robustness of the proposed technique for a step change in the 

load, additional experimental tests have been conducted by altering the load resistance 

(R). An additional resistance of 68 Ω is added in parallel and then removed from the 

load to stimulate the step change in the load.  

 

Fig 5.25.  Experimental results of the proposed scheme performance at step 

changes (increase and decrease) in the load resistor (R). 
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As can be noted from Fig. 5.25, the converter was able to successfully achieve 

voltage-balancing. It is also worth noting that, because the additional load is switched 

in and out manually, a small dead-time can be seen in Fig. 5.25. 

5.7.4  Effect of a Fault in the DC Source on the Voltage Estimation Value 

Other dynamic analyses have been conducted to verify the proposed method in the 

case of a DC voltage fault occurs and when a sudden extreme change in the DC voltage 

is applied to the converter. Fig. 5.26 illustrates the DC voltage fault when the input 

voltage has been decreased by ≈ 90%. Interestingly, the results obtained here confirm 

the simulation results given in Fig. 5.15, and the only difference which can be observed 

is in the discharge time. In comparison with the simulation results obtained earlier, the 

practical results suggest that more time is needed for discharge to occur; however, this 

is logical due to the practical requirements of the implementation. 

 

Fig 5.26. Fault occur in the DC voltage and the corresponding changes in 𝐕𝐜𝟏, 

output voltage and current / Experimental results.   

5.7.5 Effect of an Extreme Increase in DC Voltage 

An extra extreme change is also investigated in Fig. 5.27. In this figure, an increase 

of approximately 90% in the DC voltage is applied to the converter. The proposed 
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method quickly and successfully responds to this change. It can be observed that the 

𝐕̂c1 can successfully follow up this change to reach its reference value (
Vdc

𝑛
). 

 

Fig 5.27. Extreme increase in the DC voltage value and corresponding 

changes in the 𝑽𝒄𝟏, output voltage and current / Experimental results. 

5.8 Chapter Summary 

In this chapter, a novel estimation technique for MMC has been proposed in which 

a novel SM voltage estimation scheme has been developed using the ERLS algorithm. 

The ERLS algorithm was successfully employed for the first time to control the SM 

capacitor voltages of the MMC. Detailed simulation and experimental tests for a 

single-phase MMC are conducted to demonstrate the effectiveness of the proposed 

scheme in various normal and dynamic change conditions. Different tests have been 

carried out for the converter to investigate the effect of capacitance deviations, 

different carrier switching frequencies effect, a sudden change in load conditions, DC 

faults and the start-up transient condition. The results show that the proposed technique 

is capable of providing accurate voltage estimation and achieving voltage-balancing 

in the converter with only one voltage sensor per arm. The effect of voltage drops in 

the SM switch and wire resistance between SMs on the proposed model has been also 

evaluated. With this proposed technique, any voltage-balancing method can be used. 

This improvement allows a significant reduction in the number of voltage sensors 
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required. As a result, this improvement will reduce the total cost and the complexity 

of the converter. The application of this technique will also improve the system 

reliability, especially when the MMC reaches high output levels.  

The proposed method was successfully validated in terms of variation in SM 

capacitance, where high tolerances in capacitance values have been considered. 

However, it would be preferable if more accurate results could be achieved in terms of 

capacitance uncertainty, which is the purpose of the next chapter, where a new 

implementation of Kalman filter algorithm is proposed.  
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CHAPTER 6  

PROPOSED SENSORLESS 

VOLTAGE ESTIMATION 

METHOD BASED ON KALMAN 

FILTER ALGORITHM  

 

 

6.1 Introduction 

This chapter proposes another solution to the voltage-balancing control issue of the 

MMC previously discussed in Chapter 2. There is a similarity between the method 

proposed in the previous chapter (Chapter 5) and the one proposed in this chapter 

where two voltage sensors (per phase) are used to achieve the voltage-balancing of the 

converter. However, a different technique, based on a (KF) algorithm, is used here 

with the aim of gaining more accurate estimation results. In the proposed scheme, a 

(KF) algorithm is employed. The KF is used in an original way in this research for the 

MMC.  

Although KF has been used in [43] to estimate voltage across SM capacitors, the 

concept used in that study was based on an observer technique which is totally different 

from the present proposal. In fact, two problems were associated with the previous 

study [43]: parameter uncertainty concerning SM capacitance, and arm inductance 
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values. Meanwhile in the proposed KF method and the ERLS method proposed in 

Chapter 5, arm inductance variations are not any more problem.  

This chapter also aims to improve the previous estimation strategy presented in 

Chapter 5 against SM capacitance uncertainty. Numerous simulations and 

experimental tests are performed to assess the effectiveness of the proposed KF 

scheme. The results are compared with those of the sensor-based measurement 

technique. Further discussion is also included in the chapter summary comparing the 

ERLS method (described in Chapter 5) and the KF method in terms of robustness 

against capacitance deviation and the accuracy. 

6.2 Kalman Filter  

 The KF is a sequential mathematical-based estimator [84] which is widely used in 

power electronics applications to estimate state and system parameters in differential 

equations or state-space model representations. The KF has the ability to consider the 

effect of measurement noise which may be caused by sensors [85-87]. It is also 

guaranteed to cope with white Gaussian processing noise [87]. This makes this 

algorithm more superior to some other recursive algorithms, such as conventional RLS 

and RLS with forgetting factor algorithm.  

Table 6.1 shows the generalised sequence for KF implementation when a linear 

system is implemented. For simplicity, it is assumed that a linear regression dynamic 

system can be described as follows: 

                                         𝛉(𝒕𝒊) = 𝛉(𝒕𝒊−𝟏) + 𝒘(𝒕𝒊)                                             (6.1) 

                                          𝐲(𝒕𝒊) = ∅(𝒕𝒊)
𝑻 𝛉(𝒕𝒊) + 𝒗(𝒕𝒊)                                         (6.2) 

where only the input (∅(𝑡𝑖)
𝑇 ) and the output (𝐲(𝒕𝒊)) of the system are measurable. In 

equations (6.1) and (6.2) 𝛉(𝑡𝑖)
 represents the unknown parameter of the model which 

is required to be estimated, 𝑤(𝑡𝑖)
  is the processing noise with covariance matrix 𝑄(𝑡𝑖)

 

which is also known as a random vector that drives the parameter changes, in which 

𝑄(𝑡𝑖)
 is an N × N diagonal matrix. In equation (6.2) 𝑣(𝒕𝒊) is the measurement noise with 

variance 𝑟(𝑡𝑖) where 𝑟(𝑡𝑖) is a positive real number (𝑟(𝑡𝑖) > 0). 
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Table. 6.1. General KF Sequence for Linear Regression Dynamic System 

Implementation 

Step Action and related equation 

1. Initialisation Initiate 𝑃(𝑡0), 𝛉̂(𝑡0), 𝑄(𝑡𝑖)
 and 𝑟(𝑡𝑖) 

2. Activate the algorithm with 

the same sampling period 

(∆𝑡) 

For, 𝑡𝑖 = 𝑡1,𝑡2 …𝑡𝑗 where 

∆𝑡 = 𝑡2−𝑡1 = ⋯ = 𝑡𝑗 − 𝑡𝑗−1 

3. Calculate the Kalman gain 𝐾(𝑡𝑖)
= 

𝑃(𝑡𝑖−1) ∅(𝑡𝑖)
 

(∅𝑇
(𝑡𝑖)

 𝑃(𝑡𝑖−1) ∅(𝑡𝑖)
+ 𝑟(𝑡𝑖))

 

4. Calculate the prediction error 𝑒𝒚(𝑡𝑖)
= 𝐲(𝑡𝑖)

− 𝐲̂(𝑡𝑖)
 

5. Update the parameter 𝛉̂(𝑡𝑖)
 𝛉̂(𝑡𝑖)

= 𝛉̂(𝑡𝑖)
+ 𝐾(𝑡𝑖)

𝑒𝐲(𝑡𝑖)
 

6. Update the covariance matrix 

                          𝑃(𝑡𝑖) 
𝑃(𝑡𝑖) = 𝑃(𝑡𝑖−1)  [

𝑃(𝑡𝑖−1)∅(𝑡𝑖)∅(𝒕𝒊)
𝑻 𝑃(𝑡𝑖−1)

𝑟(𝑡𝑖) + ∅(𝒕𝒊)
𝑻 𝑃(𝑡𝑖−1)∅(𝑡𝑖)

+ 𝑄(𝑡𝑖)] 

 

6.3 Proposed Kalman Filter Voltage Estimation Scheme 

The proposed sensors arrangement for the upper and lower arm of the MMC is 

shown in Fig. 6.1.  

Due to the similarity between the linear regression dynamic model described in 

equations (6.1) and (6.2) and the voltage MMC model described earlier in Chapter 5 

(in equations (5.10) and (5.11), a new updated model can be formulated for the MMC. 

Therefore, incorporating measurement and processing noise into the model gives the 

following developed model:  

                                       𝐕𝐜𝐱(𝐭𝐢)
= 𝐕𝐜𝐱(𝐭𝐢−𝟏) + 𝐰(𝐭𝐢)                                              (6.3) 
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                            𝐮𝐮(𝐭𝐢)
= ∑  {[𝑺𝑻

𝒙(𝒕𝒊)
] [𝐕𝐜𝐱(𝐭𝐢)

] + 𝒗𝒙(𝒕𝒊)} 
𝐧
𝐱=𝟏                          (6.4) 

                   𝐮𝐥(𝒕𝒊)
= ∑  {[𝑺𝑻

𝒙(𝒕𝒊)
] [𝐕𝐜𝐱(𝐭𝐢)

] + 𝒗𝒙(𝒕𝒊)} 
𝟐𝒏
𝒙=(𝒏+𝟏)                          (6.5) 

Because the upper arm implementation is independent of the lower arm, only the 

upper arm is described here. Therefore, following the general sequence illustrated in 

table 6.1, this results in the following implementation: 

To initially activate the proposed KF algorithm, the covariance matrix (𝑃(𝑡𝑖)
), and 

estimated voltage ( 𝐕̂𝑐𝑥 (𝑡𝑖)
 ) should be initialized with 𝑃(𝑡0)  and  𝐕̂𝑐𝑥 (𝑡0) . As in 

conventional recursive algorithms, 𝑃(𝑡0) in the KF algorithm is 𝑃(𝑡𝑖)
= 𝐺𝐼, where 𝐺 is 

a large and positive constant number whilst I is an 𝑥 × 𝑥 identity matrix. An adaptive 

Kalman gain is then calculated as follows: 

                                  𝑲(𝒕𝒊) = 
𝑷(𝒕𝒊−𝟏)  𝒔𝒙(𝒕𝒊)

 

(𝑺𝐓
𝐱(𝐭𝐢)

 𝑷(𝒕𝒊−𝟏) 𝒔𝒙(𝒕𝒊)
+𝒓(𝒕𝒊)

)
                                   (6.6) 

Based on the sequence of implementation in table 6.1, the error of the upper arm is 

calculated as follows: 

                                    𝒆𝐮(𝒕𝒊)
=  𝐮𝒖(𝒕𝒊)

− 𝐮̂𝒖(𝒕𝒊)
                                           (6.7) 

As the first sampling time is processed, 𝑃(𝑡𝑖−1) = 𝑃(𝑡0), and the variance coefficient 

𝑟(𝑡𝑖) in this implementation of the KF is defined as a constant number for the whole 

sampling period, therefore it is assumed that: 𝑟(𝑡1)=𝑟(𝑡2)= …𝑟(𝑡𝑗)
. The SM voltage 

estimation values for the upper arm are then updated with the error calculated using 

equation (6.7) and the Kalman gain derived from equation (6.6) and the previously 

estimated values (𝐕̂𝑐𝑥 (𝑡𝑖−1)). Therefore, to estimate these voltages in one prediction 

step ahead, the upper SM voltage estimated values can be identified as follows: 

                                    𝐕̂𝒄𝒙(𝒕𝒊)
= 𝐕̂𝒄𝒙(𝒕𝒊−𝟏)

+ 𝑲(𝒕𝒊) 𝒆𝐮(𝒕𝒊)
                                 (6.8) 

To further enhance the algorithm, the new covariance matrix is then updated 

recursively with the values 𝐾(𝑡𝑖)
 and 𝑄(𝑡𝑖)

 as shown in table 6.1. Therefore, a new 

prediction step ahead of 𝑃(𝑡𝑖−1) can be calculated as follows: 
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                      𝑷(𝒕𝒊) = 𝑷(𝒕𝒊−𝟏) − [
𝑷(𝒕𝒊−𝟏)𝒔𝒙(𝒕𝒊)

  𝑺
𝒙(𝐭𝐢)
𝐓 𝑷(𝒕𝒊−𝟏)

𝒓(𝒕𝒊)
+𝑺

𝒙(𝐭𝐢)
𝐓 𝑷(𝒕𝒊−𝟏) 𝒔𝒙(𝒕𝒊)

+ 𝑸(𝒕𝒊)]                       (6.9) 
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Fig 6.1. The proposed sensors arrangement. a) Block diagram of single-phase 

(one-leg) MMC with the proposed sensors. (b) Sensor-based SM arrangement.  

The proposed upper arm estimation scheme with its associated voltage-balancing 

control is shown in Fig. 6.2. The voltage-balancing algorithm used here is similar to 

the algorithm presented in [30]. As previously mentioned in Chapter 5, it is worth 

noting that the voltage-balancing method used in this research has nothing to do with 
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the proposed estimation scheme and any other voltage control method can be used with 

this proposed estimation scheme.  In comparison with the algorithm presented in [30], 

the voltage-balancing of the SM capacitors used here depends on the estimated 

voltages (𝐕̂𝑐1~ 𝐕̂𝑐𝑛)  rather than the actual voltages. Additionally, a unit delay(𝑍−1) 

is applied to the switching patterns (𝑃𝑊𝑀1, 𝑃𝑊𝑀2, …𝑃𝑊𝑀𝑛) obtained in order to 

activate 𝑆1, 𝑆2, … 𝑆𝑛 at the appropriate time (see Fig. 6.2). 
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Fig 6.2. Upper arm proposed estimation scheme and associated voltage-

balancing control.   

6.4 Simulation Results 

A single-phase 9-level MMC is also simulated in this chapter with the aim of 

validating the proposed estimation scheme. Sixteen SMs are used per leg, while only 
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one voltage sensor is used instead of eight sensors per arm. The converter, DC source 

value and load parameters are the same as in the previous chapter (see table 5.3). The 

validation of the proposed method is confirmed below according to the results of 

different simulation studies.  

6.4.1 The Performance of the Proposed Method for Normal Operating 

Conditions. 

In this part of the simulation study, a comparison of the proposed estimation scheme 

and a sensor-based scheme is conducted with a constant R-L load. Fig. 6.3 shows the 

performance of the converter waveforms where voltage sensors are used for each SM 

(sensor-based method). In contrast, Fig. 6.4 illustrates the performance of the proposed 

estimation scheme under the same load conditions.  
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Fig 6.3. Steady-state simulation results for the 9-level MC with the sensor-

based method. (a)  Upper capacitor voltages  𝑽𝒄𝟏~ 𝑽𝒄𝟖. (b) Output current. (c) 

Output voltage. 

In comparing the two methods, only small deviations in the upper arm SM voltages 

can be observed (see Fig. 6.4 (a)). However, this error does not have any noticeable 

effect on either the output voltage waveform or the output current waveform. It should 

be noted that, with the proposed method, only two voltage sensors are used rather than 

sixteen when the sensor-based method is used. 
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Fig 6.4. Steady-state simulation results for the 9-level MMC with the proposed 

estimation scheme. (a)  Upper capacitor voltages 𝑽𝒄𝟏~ 𝑽𝒄𝟖. (b) Output current. 

(c) Output voltage. 

6.4.2 Performance of the Proposed Method with Capacitance Deviation 

In comparison with the observer-based methods which were proposed in [40, 44], 

the method proposed here is independent of variations in arm inductance. This is 

because the arm inductor is not involved in the algorithm design. However, further 

investigation in terms of capacitance uncertainty is required.  
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Fig 6.5. Simulation results of the upper arm voltages with deviations for all 

arm capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±15% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±15%. (c) Estimated voltages for all arm capacitors (𝑪𝟏~𝑪𝟖) 

when the deviation is +15%. (d) Estimated voltages for all arm capacitors 

(𝑪𝟏~𝑪𝟖) when the deviation is -15%.   

Extensive simulation results have been carried out to validate the robustness of the 

proposed estimation method against capacitance deviation. Here, 𝐶1 is chosen as an 

example with different values of deviations: ±15%, ±30%, and ±80%. For each case, 

random values are chosen for the other SM arm capacitances (𝐶2~𝐶8). For example, 
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as shown in Fig. 6.5 when 𝐶1 has deviations of ±15% from its nominal value (case I), 

𝐶2~𝐶8 are also given random deviations of -20%, +10%, +5%, -15%, +40%, -30%, 

and +60%  which result in values of 1600 µF, 2200 µF, 2100 µF, 1700 µF, 2800 µF, 

1400 µF, and 3200 µF respectively. For case I, Fig. 6.5(a) shows the measured and 

estimated voltage for 𝐶1 where ±15% variation is considered, and Fig. 6.5(b) illustrates 

the error for ±15% variation. It can be observed that the maximum error is only around 

0.8%. Figs. 6.5(c) and 6.5(d) show the effect of these variations on the other arm 

capacitors.  

Table 6.2. Capacitance Variations in (𝑪𝟏~𝑪𝟖) 

Capacitor 

Case I 

𝑪𝟏 = ±15% of 

its nominal 

Case II 

𝑪𝟏 = ±30% of 

its nominal 

Case III 

𝑪𝟏 = ±80% of its 

nominal 

C2 -20% =1600µF +5% =2100µF +40% =2800µF 

C3 +10% =2200µF -15% =1700µF -30% =1400µF 

C4 +5% =2100µF +40% =2800µF +60% =3200µF 

C5 -15% =1700µF -30% =1400µF -20% =1600µF 

C6 +40% =2800µF +60% =3200µF +10% =2200µF 

C7 -30% =1400µF -20% =1600µF +5% =2100µF 

C8 +60% =3200µF +10% =2200µF -15% =1700µF 
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Fig 6.6. Simulation results of the upper arm voltages with deviations for all 

arm capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±30% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±30%. (c) Estimated voltages for all arm capacitors (𝑪𝟏~𝑪𝟖) 

when the deviation is +30%. (d) Estimated voltages for all arm capacitors 

(𝑪𝟏~𝑪𝟖) when the deviation is -30%.   

For case II, 𝐶1 is given as ±30% variations of its nominal value while the other 

capacitors are given different random values as illustrated in table 6.2. The error when 

the variation in 𝐶1 is given as +30% is almost 0.8%; however, with -30% variation the 
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maximum error can be observed to be around 1.6%. Similarly for case III, when the 

deviation is +80%, the error is only about 0.9%. However for -80% deviation, the 

maximum error is 8%. It should be noted that this tolerance of -80% in capacitance 

variation would not be expected in real implementations. 

 

Fig 6.7. Simulation results of the upper arm voltages with deviations for all 

arm capacitors. (a) Measured and estimated voltage across 𝑪𝟏 with ±80% 

variations. (b) Errors between the measured and estimated voltage values when 

𝑪𝟏variations are ±80%. (c) Estimated voltages for all arm capacitors (𝑪𝟏~𝑪𝟖) 

when the deviation is +80%. (d) Estimated voltages for all arm capacitors 

(𝑪𝟏~𝑪𝟖) when the deviation is -80%. 
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6.4.3 Effect of Load Change on Performance  

To further validate the proposed estimation scheme, a dynamic test is also carried 

out. ±100% step change in the load conditions are applied to the converter as shown 

in Fig. 6.8. At 0.3s the R-L load was increased first by +100% and then at 0.4s it was 

forced back to the previous value.  The effect of these changes on voltage estimation 

across 𝐶1 is shown in Fig. 6.8(b). For both cases when the load increases or decreases, 

the error does not exceed 0.6% as can be seen in Fig. 6.8(c).     

 

Fig 6.8. Simulation results of the effect of step load change on the 9-level 

MMC. (a) Output current. (b) Voltages across 𝑪𝟏. (c) Error. 
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6.4.4 The Effect of Low Carrier Frequency on Performance 

Owing to the ability of the MMC to work at different carrier switching frequency 

when other voltage-balancing control methods are used, the proposed estimation 

method is further investigated, as shown in Fig. 6.9.  

 

Fig 6.9. Performance of the proposed estimation scheme when low switching 

operating frequencies are used.  (a)  Measured and estimated voltage values 

when 𝒇𝒄 = 𝟏. 𝟓 kHz. (b) Error across 𝑪𝟏 when 𝒇𝒄 = 𝟏. 𝟓 kHz. (c) Measured and 

estimated voltage values when 𝒇𝒄 = 𝟕𝟓𝟎 kHz. (d) Error across 𝑪𝟏 when 𝒇𝒄 =
𝟕𝟓𝟎 Hz (e) Measured and estimated voltage values when 𝒇𝒄 = 𝟒𝟓 Hz. (f) Error 

across 𝑪𝟏 when 𝒇𝒄 = 𝟒𝟓 Hz / Simulation results. 
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The effect of different low carrier frequencies are shown respectively (𝑓𝑐 =1500, 

250 and 45 Hz). For all operating frequencies used the error of the estimation value 

across 𝐶1 does not exceed 0.8%. 

6.4.5 DC Fault and Start-up Performance 

To further validate the proposed estimation scheme, a fault in the DC source is 

applied to the MMC.  

 

Fig 6.10. Simulation results of the performance of the proposed method 

during DC fault. (a) Output current response. (b) Output voltage response. (c) 

The effect of the DC fault on the estimation of voltage value at 𝑪𝟏.   

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

Time (s)

V
o
lt

ag
e 

(V
)

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1
x 10

4

Time (s)

V
o
lt

ag
e 

(V
)

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500

0

500

1000

1500

Time (s)

V
o
lt

ag
e 

(V
)

 

 

i
output

0.35 0.4 0.45

0

500

1000

V
output

V
c1

 
Meas

V
c1

 
Est

(a)

(b)

(c)



Voltage Sensorless Proposed Method based on KF Algorithm                       Chapter 6  

123 

 

 

In this case study, a sudden drop of 90% in the DC is considered. The corresponding 

changes in the output waveforms of the converter as well as the performance of the 

estimation of voltage value at 𝐶1 are shown in Fig. 6.10 (a), (b) and (c) respectively.  

The start-up voltage estimation performance at 𝐶1 is shown in Fig. 6.11. For the 

measured voltage, the capacitor is assumed to be pre-charged at its reference value (i.e. 

𝐕̂𝑐1(𝑡0)
= 1250 V). From the figure it can be seen that the proposed KF estimation 

algorithm tracks the measured voltage very rapidly; it takes only one sampling time 

(
1

20 𝑘 𝐻𝑧
= 5 ∗ 10−5) for the algorithm to start tracking the measured value.  

 

Fig 6.11. Performance of the proposed estimation scheme under start-up 

transit condition / Simulation results. 
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Fig 6.12 The performance of the proposed KF with 32 SMs per leg 

(𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈=20 kHz). (a) Output current. (c) Output voltage. (c)  Upper capacitor 

voltages  𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟏𝟔. . (d) Upper capacitor voltages 𝐕𝒄𝟏~ 𝐕𝒄𝟏𝟔 / Simulation results. 
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Fig 6.13 The performance of the proposed KF with 64 SMs per leg 

(𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈=20 kHz). (a) Output current. (c) Output voltage. (c)  Upper capacitor 

voltages  𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟑𝟐. . (d) Upper capacitor voltages 𝐕𝒄𝟏~ 𝐕𝒄𝟑𝟐 / Simulation results.  
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Fig 6.14 The performance of the proposed KF with 204 SMs per leg 

(𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈=20 kHz). (a) Output current. (c) Output voltage. (c)  Upper capacitor 

voltages  𝐕̂𝒄𝟏~ 𝐕̂𝒄𝟏𝟎𝟐. (d) Upper capacitor voltages 𝐕𝒄𝟏~ 𝐕𝒄𝟏𝟎𝟐 / Simulation 

results.  

6.5 Experimental Results 
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load conditions (up and down), a fault in the DC voltage and the corresponding 

changes which result, and the effect of an extreme increase in the DC voltage on the 

performance of the proposed method. The parameters of experimental tests are given 

in Chapter 4. 

In comparison with the simulation studies, some experimental tests are already 

included in this practical implementation; however, they are not directly presented in 

the analysis. For example, variation in capacitance is considered, since the capacitor 

used already has a possible variation of ± 20% according to the datasheet from the 

manufacturer. 

6.5.1 Steady-State Operation Performance 

A comparison has been made between the proposed estimation scheme and the 

sensor-based method to verify the simulation results. A constant R-L load is applied 

to the converter, and its output waveforms are illustrated in Fig. 6.15 based on the 

sensor-based method. The three upper capacitor voltages are shown in Fig. 6.15 (a), 

whilst the output load current and voltage waveforms are shown in Fig. 6.15 (b).  

In comparison with the proposed estimation scheme, Fig. 6.16 (b) shows no 

differences in terms of the output converter waveforms for current and voltage. 

However, similar to the results achieved earlier in the simulation analysis, the three 

capacitor voltages shown in Fig. 6.16 (a) exhibit slight deviations in comparison with 

those in Fig. 6.15(a). However, as described above, there is no marked impact on the 

output waveforms of the converter, which confirms the simulation results.  Fig. 6.17 

shows the voltages across 𝐶1 when the sensor-based method (𝐕𝑐1 measured) and the 

proposed method (𝐕̂𝑐1 estimated) are used. 
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Fig 6.15. Experimental results of the sensor-based method at constant R-L 

load. (a) Upper SM voltage capacitors. (b) Output current and voltage 

waveforms. 
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Fig 6.16. Experimental results of the proposed estimation scheme at constant 

R-L load. (a) Upper SM voltage capacitors. (b) Output current and voltage 

waveforms. 
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Fig 6.17. Experimental results of the voltages across 𝑪𝟏 when the sensor-based 

method and proposed estimation scheme are used. 

6.5.2 Effect of Load Change on Performance 

Further validation in a dynamic change analysis is illustrated in Fig. 6.18. In this 

study, step changes in the load condition are applied to the MMC when the load 

resistance (R) is changed. The value of  R is altered between 33 Ω and 68 Ω first, and 

then between 68 Ω and 33 Ω. For both cases of increases and decreases, as can be seen 

in Fig. 6.18, the capacitor voltages still track the reference value (
Vdc

𝑛
), which confirms 

the simulation results obtained earlier. 

 

Fig 6.18. Step load change analysis of the load resistance (𝐑) in the proposed 

method / Experimental results. 
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6.5.3 The effect of a Fault in the DC Source on the Estimation Value 

To further confirm the robustness of the proposed scheme in terms of more dynamic 

changes, another case has been investigated. A DC voltage fault is applied to the MMC 

by applying a sudden extreme change in the DC voltage to the converter. The DC input 

voltage of the converter has been decreased by ≈ 90%. Although this is an extreme 

change in the DC voltage, the proposed scheme successfully tracks this change as 

shown in Fig. 6.19 where the estimated voltage 𝐕̂𝑐1 in Fig. 6.19 achieves its reference 

value (
Vdc

𝑛
).  

 

Fig 6.19. Fault in the DC voltage value and corresponding changes in 

converter waveforms / Experimental results. 

6.5.4 Extreme Increase in the DC Source 

An extra change is also examined in Fig. 6.20 where a sudden increase change is 

applied to the converter this time. In this investigation, a sudden increase of around 

90% in the DC voltage is applied to the system. It can be observed from Fig. 6.20 that 

the voltage across 𝐶1 rapidly and successfully reacts to this change. 
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Fig 6.20. Extreme increase in DC voltage and corresponding changes in 

converter waveforms / Experimental results. 

6.5.5 Comparison of ERLS and KF Proposed Methods. 

Due to the similarity between the tests applied for ERLS and KF in the proposed 

methods in this chapter and Chapter 5, a comparison is made in this section to further 

evaluate the differences between them. In general the proposed method using the KF 

algorithm method is superior to the ERLS-based method. For the steady-state 

operating condition, both methods perform well; however, the KF shows important 

improvement in terms of voltage ripple in the estimated voltage values. This can be 

noticed in Fig. 5.8 (a) and 6.4 (a).   

On the other hand, the results of some other tests, such as start-up, the effect of low 

carrier frequency, step change in load and DC voltage conditions, are almost the same 

for both experimental and simulation results. However, if high level is required for the 

MMC, the ERLS method requires higher sampling frequency. This may affect the 

computation time, as can be understood from Figs 5.16-5.18 and Figs 6.12-6.14 in 

sections 5.9 and 6.5. For example, when the level required for the converter was 16 

and 102, the sampling frequencies needed for the ERLS were 35 and 250 kHz 

respectively; while the KF requires only 20 kHz for all levels presented. This gives the 

KF scheme another advantageous feature in comparison with the ERLS scheme.    
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The effect of variation in capacitance on the estimation value is also improved by 

using the KF approach. This can be clearly observed from Figs 5.8-5.10 and 6.5-6.7. 

An example of this improvement is given in Figure 6.7(b) when a large deviation of 

+80% is considered for the KF approach, and the maximum error found is 

approximately 0.9%. Meanwhile when a deviation of +70% is considered for ERLS, 

the maximum error is around 5% as shown in Fig. 5.11(b). 

6.6 Chapter Summary 

 This chapter proposes another new estimation method for MMC where a novel 

employment of the KF algorithm is developed for the converter. Comprehensive 

studies of a one-leg MMC have been conducted to demonstrate the effectiveness of 

the proposed scheme in simulation and experimental environment analyses. Extensive 

steady-state and dynamic analyses are performed. The results show that the proposed 

estimation scheme succeeded in providing accurate estimation results, and therefore 

the voltage- balancing of the MMC is achieved with only one voltage sensor per arm.  

In comparison with the method proposed in Chapter 5, the method presented here 

shows better performance, this is surmised in the table below: 

Table 6.3. Comparisons between KF and ERLS proposed methods.  

Methods    Steady-state / 

Dynamic 

conditions   

Parameter 

uncertainty  

Sampling 

frequency   

KF method vs 

ERLS method  

Output voltages and 

currents are similar. 

However, voltage ripples 

for all capacitors are 

lower.   

 

 

KF method has 

much lower error.   

20 kHz is only required for 

the proposed KF method, 

while with the ERLS 

method, the sampling 

frequencies needed were 

proportional to the 

converter output level 

required.  
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The improvement in the effect of capacitance deviations in the SM capacitance has 

led the present author to use the KF algorithm as an alternative solution for some 

existing health monitoring schemes, as discussed in the next chapter.   
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CHAPTER 7  

PROPOSED SCHEME FOR 

MONITORING SUBMODULE 

CAPACITANCE 

 

 

 

 

7.1 Introduction 

 Despite the modularity of the MMC structure, where the converter consists of a 

cascaded series of SMs, this feature does easily allow increases and decreases in its 

output level. However, the SMs involved in the converter structure make the reliability 

of the converter another significant challenge, particularly when the MMC has a high 

number of SMs. In other words, the series connection of SMs may cause a significant 

problem if a fault suddenly occurs, which means that the whole leg of the converter 

will be disconnected. This might lead to disaster if the application of the MMC is an 

HVDC system, for example. Usually a converter with such an application is 

responsible for converting power in megawatts. Therefore, it is important to monitor 

the SM components.  
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Up to now, most researchers have focused on fault detection only [47, 86, 88], where 

the idea in such studies is to detect and locate faults within an acceptable time. 

However, the monitoring and diagnosis of the condition of an MMC component before 

a fault occurs would be preferable. Consequently, any component which does not 

match the required health condition can be bypassed and replaced. Therefore, applying 

such a method will help in replacing any weak capacitor before a fault occurs.  

This chapter presents a novel online capacitance estimation scheme based on the KF 

algorithm. This proposed technique is used for the first time for the MMC.  

7.2 Proposed KF Capacitance Estimation Method  

KF and RLS algorithms are investigated in this chapter. Although the RLS algorithm 

has been proposed for the MMC [53] as a capacitance estimation technique; however, 

its employment in this thesis is slightly different due to the use of a different voltage-

balancing control method. As in previous chapters, a conventional sorting algorithm is 

used here, whereas the previous work [53] uses an averaging and balancing control 

approach. Nevertheless, the RLS algorithm is mainly used in this chapter to compare 

the outcomes from the proposed KF capacitance estimation method and the existing 

RLS scheme.  

 The proposed KF method is achieved through a sequence of two steps: current 

estimation and capacitance estimation. Details are given in the following paragraphs. 

7.2.1 Current Estimation  

 The proposed capacitance estimation method basically involves a calculation using 

the well-known relationship between the voltage difference between a capacitor’s 

plates and the current passing through it. This relationship is expressed as:  

                                             𝒊𝑪𝑿(𝒕) = 𝐂𝐗  
𝒅𝒗𝐂𝐗

𝒅(𝒕)
                                                    (7.1) 

where x is the number of capacitors within the leg.  

 Fig 7.1 illustrates a block diagram of the proposed method for upper arm capacitors 

only. However, for the lower arm, the lower current and corresponding PWM signals 



Health Monitoring Proposed Schemes for MMC                                            Chapter 7  

137 

 

 

and capacitor voltage signals are used instead. In the current estimation block shown 

in Fig 7.1 (b), and regardless of the direction of the upper arm current (𝑖𝑢𝑝) illustrated 

in Fig 7.1 (a), the estimated current (𝑖C𝑥−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
) passes through the required capacitor 

can be calculated from the upper arm current and the upper switching state (Sx) of the 

targeted SMx as follows: 

                                           𝒊𝐂𝒙−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅
= 𝒊𝒖𝒑  𝑺𝐱                                             (7.2) 

On the other hand, due to a voltage drop caused by the semiconductor switch, some 

error is expected. Although this error has been proven earlier to be minor (see section 

5.7.1 in the experimental results); however, in the capacitance estimation method, any 

error between the estimated and real capacitor current might cause a high error in 

results. For a more accurate representation of the estimation current, equation (7.2) is 

updated to (7.3). Note that this error (𝑖𝑒𝑟𝑟𝑜𝑟) is reported in the simulation studies 

section. 

                                       𝒊𝐂𝒙−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅
= 𝒊𝒖𝒑  𝑺𝐱 + 𝒊𝒆𝒓𝒓𝒐𝒓                                   (7.3) 
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ui
D1

  D2

+

-

xS

xS

cxV

+

-

D1

Cx

  
D2

xS

xS

cxV
Cx

Step 2 / 

Capacitance 

Estimation 

Based upon KF

 Equ (7.3)-(7.6)  

Step 1 /

Current 

Estimation

Equ (7.2)

xS

cxV

cx Estimated
i



(b)
 

Fig 7.1. Block diagram of the proposed capacitance estimation method for the 

half-bridge MMC. (a) Current direction through SM. (b) proposed current and 

capacitance estimation steps.   
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7.2.2 Capacitance Estimation  

The KF algorithm has been discussed in Chapter 6 in some detail. To employ this 

algorithm with the aim of estimating SM capacitance, the following advanced 

calculations should be accomplished: 

                      𝐂𝒙−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅(𝒕𝒊)  = 𝐂𝒙−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅(𝒕𝒊−𝟏) + 𝑲(𝒕𝒊)𝒆(𝒕𝒊)                    (7.4) 

                      𝑲(𝒕𝒊)  = [
[𝑷(𝒕𝒊−𝟏) 

𝒅(𝐕𝒄𝒙(𝒕𝒊
)

𝑻 )

𝒅(𝒕𝒊)
]

[𝟏+
𝒅(𝐕𝑪𝒙(𝒕𝒊)

)

𝒅(𝒕𝒊)
𝑷(𝒕𝒊−𝟏)

 𝒅(𝐕𝑪𝒙(𝒕𝒊)
𝑻 )

𝒅(𝒕𝒊)
]

]                                       (7.5) 

                       𝒑(𝒕𝒊)  = 𝑷(𝒕𝒊−𝟏) − [ 𝑲(𝒕𝒊)

𝒅(𝐕𝒄𝒙
(𝒕𝒊)

𝑻 )

𝒅(𝒕𝒊)

𝑷(𝒕𝒊−𝟏) + 𝑸]                             (7.6) 

where 𝐾 is the Kalman gain, 𝑒 is the error between the measured and the estimated  

capacitor current value, 𝑃 is the covariance matrix (1×1 dimension) and 𝑄 is the error 

covariance matrix (1×1 dimension). The initial values of the updated covariance 

matrix and the error covariance matrix have been tuned manually.  

As can be noticed from equations (7.1) – (7.6) no high order matrices are used in the 

calculation, and all parameters are 1×1 dimension only. This makes the proposed 

scheme very fast and implementable without any execution time issues.     

In an earlier study [89], it was reported that the electrolytic capacitor is classified as 

a failure when the ESR is doubled and its capacitance decreases by up to 20% of its 

nominal value. However, the nominal value must be confirmed experimentally before 

applying the proposed estimation method. Hence, applying this method will help the 

operator of the MMC to replace any weak capacitor before a fault occurs. This can be 

achieved without switching off all SMs, but just bypassing the unhealthy SM in the 

circuit. Consequently, these actions will guarantee continuous power through the 

MMC without a loss of energy. 

7.3 Results 

As compared with RLS (with the forgotten factor), the analyses presented here were 

conducted to evaluate the performance of the proposed scheme under different 
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operating conditions. The parameters used in these analyses are summarised in table 

7.1, where as in other chapters, a single-phase MMC was considered. The capacitance 

value of the first SM is investigated in all subsequent tests.  

Table 7.1. System parameters 

Parameter Value 

Modulation index (mi) 0.9 

DC-link voltage (𝑉𝑑𝑐) (480 & 960) V 

Number of SMs (𝑛) 3 

Switching frequency 2.5 k Hz 

Load resistor (R) (33 & 66) Ω 

Inductive load (L) (1.2 & 2.4) mH 

SM capacitor (1.0 & 2.0) mF 

Arm inductance (𝐿𝑠) 1 mH 

Sampling frequency 

(𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) 
20 kHz 

7.3.1 Steady-State Results 

The error of the estimated current is presented first in Fig.7.2. A comparison is made 

in the figure between the actual current which flows though the capacitor and the 

estimated current given by equation (7.2). As expected, an error exists due to the 

voltage drop and leakage current during the ON/OFF operation of the semiconductor 

switch. This error may accumulate with time if no further action is taken in the 

algorithm to minimise that effect. However, and due to the actual voltage across the 

targeted capacitor being measured, this action is used as a correction step which will 

correct the error shown in Fig. 7.2 (c).  
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Fig 7.2 Investigation of the current estimation step of the proposed scheme. (a) 

Estimated current through C1. (b) Measured current through C1. (c) Error 

between estimated and measured current. (d) Upper arm current/ Simulation 

results.   

In the second step of the algorithm, where the voltage across 𝐶1 is measured and 

used to correct the aforementioned error, the performance of the proposed KF is 

reported in Fig. 7.3. In this test, the converter is assumed to work under normal 

operating conditions. The parameters used are similar to those presented in table 7.1, 

whereas the DC voltage used is 480V, R = 33Ω and L=1.2mH. In comparison with the 

RLS scheme in the same figure, the proposed scheme achieves an important 
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improvement in terms of the ripple amount in the estimated value. This can be 

observed in the value of error shown in Fig. 7.3 (a) and (b) where the reference value 

of 𝐶 is 1mF. On the other hand, the two methods have similar settling times.  

 

Fig 7.3 Steady-state performance. (a) Capacitance estimation based on RLS 

algorithm. (b) Capacitance estimation based on KF algorithm / Simulation 

results.   
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7.3.2 Dynamic Results 

Two tests were conducted to simulate and evaluate the proposed method under 

abnormal operating conditions. In Fig. 7.4, a step change in the input DC voltage was 

applied first at 1s. It is clear that the proposed scheme still shows a superiority even 

with such dynamic change. As can be seen in the figure, when the voltage is increased 

at 1s, the RLS estimation scheme has a higher overshoot error than the KF method.      

 

Fig 7.4 Capacitance estimation with step change in the DC source. (a) 

Capacitance estimation based on RLS algorithm. (b) Capacitance estimation 

based on KF algorithm / Simulation results.   
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To further validate the proposed method under another dynamic change, a sudden 

change in the load condition was applied to the MMC. Fig. 7.5 shows the response for 

the two methods when the converter load is increased and decreased by 100% at 0.5s 

and 0.6s respectively. Interestingly, the proposed KF method still shows superiority.  

 

Fig 7.5 Capacitance estimation with step change in the load condition. (a) 

Capacitance estimation based on RLS algorithm. (b) Capacitance estimation 

based on KF algorithm / Simulation results.   
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Fig 7.6. Capacitance estimation with step change in the SM capacitance value 

from 1.0 mF to 2.0 mF / Simulation results. 

 

7.4 Chapter Summary  

In this chapter, an online condition monitoring method for capacitors in the MMC is 
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proposed method can be considered to be a very competitive solution in terms of 

reliability issues. The method is based on the KF approach, where comparisons have 

been made with the RLS algorithm. The results show very good performance with 

different operating conditions. The results obtained have verified the proposed method 

for a four-level MMC. Therefore, the idea can be attractive for HVDC systems where 

the MMC can include hundreds of SMs.  
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CHAPTER 8  

CONCLUSIONS AND FUTURE 

WORK   

 

 

 

 

8.1 Summary 

The aim of this chapter is to sum-up the findings and conclusions of the present study 

and to offer suggestions for some possible future work to extend the research. The 

work described in this thesis has focused on attempts to improve the overall 

performance of the MMC. A general framework on the requirements of challenges 

associated with MMCs has been presented. The main objective was to develop 

different estimation techniques to reduce overall system complexity. The work in this 

study has been divided into two main objectives: the design of sensorless based 

methods to achieve the voltage-balancing of the converter with fewer sensors, and an 

online capacitance estimation scheme which may improve the converter’s reliability.  

 Chapter 2, discussed the most common challenges which are usually linked to 

MMCs. Achieving the voltage-balancing of the SM at lower cost has been investigated, 

considering up-to-date proposals in recent studies. Four groups of sensorless schemes 

were reviewed, which mainly consist of observer-based methods, open-loop control 
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methods, and sorting algorithm-based methods with fewer voltage and current sensors. 

One disadvantage of observer-based schemes is parameter uncertainty. As stated 

earlier in Chapter 2, no single study has fully determined the effect of the variation 

associated with arm inductance value on system performance. Instead, only the effect 

of variations in capacitance has been considered in previous studies. In the second 

group, different open-loop control methods were reviewed. Although these topologies 

do not use any form of feedback control, the well-known weaknesses of open-loop 

control methods can significantly compromise performance, especially when the 

MMC operates in conditions of dynamic change. Therefore, and due to the ease of 

implementing sorting algorithms, more attention was paid to the third and fourth 

groups of methods using soring algorithm-based techniques with fewer voltage and 

current sensors in order to devise new schemes for accomplishing converter stability 

with the minimum possible number of sensors.  

An experimental set-up system has been developed in Chapter 3 before discussing 

the outcomes achieved using all of the proposed methods. Following this, detailed 

information on the system’s implementation with sensorless and sensor-based 

proposed schemes was presented. The sensorless schemes were divided into two 

groups: current sensorless and voltage sensorless schemes.  

The current sensorless schemes were evaluated and compared with the conventional 

sensor-based sorting algorithm scheme. In the first current sensorless scheme, the 

value of phase load current was used by the controller rather than arm load current. 

This improvement led to a 50% saving in sensor count when a comparison was made 

with the sensor-based scheme. In the second scheme, a further improvement in the 

number of sensors needed was achieved. Values of neither phase load current nor 

upper or lower arm current were needed to achieve the voltage-balancing of the 

converter topology. With the proposed methods, different PWM modulation 

techniques can be used.  A further outcome with these two methods was that, both 

were able to easily increase their voltage levels with the use of a common interleaving 

technique. This means that a reduction in filtering size can be achieved. The methods 

were evaluated in simulation and practical studies with different voltage scales. 
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Different input and output conditions were applied to the system, including step 

changes in load state. Interestingly, the two methods showed some improvements 

when a load with a high inductance value was applied. Although the conventional 

sensor-based method showed higher oscillation, the average value of SM voltage was 

closer to its reference. These were the main outcomes of Chapter 4. 

Two novel voltage sensorless methods have been also developed. Two original 

recursive algorithms are proposed for the MMC for the use in the voltage estimation 

technique.  The techniques have some similarities in terms of the measurement used 

as input to the controller. In comparison with the sensor-based scheme, only the total 

arm voltages and switching pattern are required, with no additional hardware sensors 

needed. Although the use of a switching pattern is commonly used in estimation 

techniques, this research has proven for the first time, that the voltage drop caused by 

the semiconductor switch and the stray impedance of connecting wires have minimal 

effects on performance. Therefore, this outcome may support any other future 

estimation schemes which rely on switching patterns. 

 Different algorithms are combined with the conventional sorting algorithm in 

Chapters 5 and 6 in order to achieve an accurate SM estimation value. The ERLS-

based method was developed first and its success has been confirmed by the results of 

extensive simulations and experiments. Various dynamic and steady-state analyses 

have been confirmed in practice for a 4-level MMC. In the simulation studies, a 9-

level MMC has been successfully validated. The tests conducted evaluated the effect 

of different carrier switching frequencies, a sudden change in load conditions, the start-

up transient condition, and DC faults. Interestingly a high level of agreement has been 

achieved for all tests between the simulation and experimental results obtained for the 

prototype.  

One more important test was carried out for the converter to investigate the effect of 

deviation in capacitance on system performance. The effect of this type of deviation 

could theoretically have no effect on accuracy, since the proposed technique relies only 

on the SM voltages, arm voltage and the switching states and is independent of 

capacitance. However, further investigations of such deviations has also conducted in 
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Chapter 5. The results showed only a minor effect on estimation accuracy when high 

tolerances in SM capacitance values were considered. However, achieving more 

accurate results in terms of capacitance uncertainty would be preferable, which was 

the purpose of Chapter 6.  

Another novel recursive algorithm was proposed based on the KF approach. In 

common with the proposed ERLS method, thus scheme does not require any specific 

control method to regulate capacitor voltage within the converter. Any conventional 

control method can be used with both the ERLS and KF algorithms. Therefore similar 

tests were carried out with the KF-based method. Some of the tests for normal and 

abnormal operating conditions showed similar performance levels in terms of the 

accuracy of the estimated values. Practical and simulation results of the tests 

investigating the effect of a step change in load and DC voltage conditions, and the 

consequences of low carrier frequency and start-up performance were nearly the same. 

Nevertheless, in comparison with the ERLS method, some of the KF results showed 

even better performance, such as in the effect of voltage ripple in the SM estimation 

value for normal operating conditions. Moreover, it was clearly observed that when 

the output level required for the MMC was high, the ERLS scheme needed a higher 

sampling frequency than the KF approach. Using the KF technique, only 20 kHz was 

sufficient for all simulated levels, while with ERLS the sampling frequency was 

proportional to the converter output voltage level needed. For the simulated levels of 

16, 32 and 102 the sampling frequencies needed were 35, <50 and 250 kHz 

respectively.  In addition, capacitance deviation had less effect compared to the ERLS-

based method, thus demonstrating the superiority of the KF.         

This improvement in parameter uncertainty paved the way for further investigation 

to develop a new scheme for capacitance estimation as discussed in Chapter 7. The 

studies reviewed in Chapter 2 only used the RLS algorithm as a capacitance estimation 

technique, and as the KF gave better results in terms of the effect of capacitance 

deviation in Chapter 6, it was expected that it may also give better results for 

capacitance estimation. Indeed, it has been found that the KF performed better than 

the RLS-based approach. Tests were carried out on a 4-level MMC for different 
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operating conditions. The proposed online estimation scheme can improve system 

reliability and, therefore, the idea can be attractive for HVDC systems where the MMC 

can include hundreds of cells.       

To sum up, this research has achieved the main objectives stated earlier in Chapter 

1. Therefore, it can be said that applying such contributions may improve MMC 

performance with lower cost and complexity.     

8.2 Future Work 

The work achieved in this thesis leads to the possibility of further investigation, this 

including the following: 

 Applying the proposed voltage estimation schemes with different multilevel 

converters such as FCC and CHB converters. 

 Extending the implementation of the proposed voltage estimation algorithms 

with parallel processor features such as the FPGA.  

 Investigate other recursive algorithms and compare them with the proposed 

capacitance and voltage estimation schemes. 

 Combination of the proposed current and voltage sensorless schemes and 

investigate the outcome results. This may include: combination of load 

current monitoring method with ERLS / Kalman filter voltage sensorless 

method or sensor-never current monitoring scheme with ERLS / Kalman 

filter voltage sensorless method.    

 Developing alternative or hybrid configurations of multilevel topologies 

which may reduce the drawbacks of multilevel converters in general.     
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APPENDIX A 

Derivation of RLS Algorithm 

Explaining the equations stated in table 5.1, requires the general model which is 

described in (5.1)-(5.3). By considering the matrix form of (5.2) the estimation value 

of θ is given by [81]:  

                              θ̂(𝑡𝑖)
= [ (𝑡𝑖)

𝑇

(𝑡𝑖)
]−1

(𝑡𝑖)
𝑇 y(𝑡𝑖)

                                            (A.1) 

For simplicity redefine (𝑡𝑖)
 Substute Thus, the derivation can be given as follows:  

First define (𝑡𝑖)

𝑇

(𝑡𝑖)
= 𝑃−1

(𝑡𝑖)
,  

Thus                        𝑃−1
(𝑡𝑖)

= ∑ z(𝑡𝑖)
z(𝑡𝑖)
𝑇 =

𝑡𝑖
𝑡0

∑ 𝑧(𝑡𝑖)
𝑧(𝑡𝑖)

𝑇 + 𝑧(𝑡𝑖)
𝑧(𝑡𝑖)

𝑇𝑡𝑖−1
𝑡0

              (A.2) 

                                        𝑃−1
(𝑡𝑖)

= 𝑃−1
(𝑡𝑖−1) + 𝑧(𝑡𝑖)

𝑧(𝑡𝑖)
𝑇                                     (A.3) 

The term (𝑡𝑖)

𝑇
y(𝑡𝑖)

 in (A.1) can be rewritten as follows: 

                                     (𝑡𝑖)

𝑇
y(𝑡𝑖)

= (𝑡𝑖−1)

𝑇
y(𝑡𝑖)

+𝑧(𝑡𝑖)
𝑧(𝑡𝑖)

𝑇                                  (A.4) 

Recall (A.1) and (𝑡𝑖)

𝑇

(𝑡𝑖)
 by 𝑃−1

(𝑡𝑖)
 and substitute (A.4) into (A.1): 

                  θ̂(𝑡𝑖)
= 𝑃(𝑡𝑖) (𝑡𝑖)

𝑇 y(𝑡𝑖)
= 𝑃(𝑡𝑖)

( (𝑡𝑖−1)

𝑇
y(𝑡𝑖−1) + 𝑧(𝑡𝑖)

𝑦(𝑡𝑖)
)                 (A.5) 

Because the parameter estimate of θ̂(𝑡𝑖)
 at the time instant (𝑡𝑖−1), can be given as: 

                                  θ̂(𝑡𝑖−1) = 𝑃(𝑡𝑖−1) (𝑡𝑖−1)
𝑇 y(𝑡𝑖−1)                                            (A.6) 

and                             𝑃−1
(𝑡𝑖−1)θ̂(𝑡𝑖−1) = (𝑡𝑖−1)

𝑇 y(𝑡𝑖−1)                                       (A.7) 
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Therefore,  

                            θ̂(𝑡𝑖)
= θ̂(𝑡𝑖−1) + 𝑃(𝑡𝑖)

𝑧(𝑡𝑖)
(𝑦(𝑡𝑖)

− 𝑧(𝑡𝑖)
𝑇 θ̂(𝑡𝑖−1))                         (A.8) 

                                       θ̂(𝑡𝑖)
= θ̂(𝑡𝑖−1) + 𝐾(𝑡𝑖)

𝑒y(𝑡𝑖)
                                          (A.9) 

Where                              𝑒y(𝑡𝑖)
= 𝑦(𝑡𝑖)

− 𝑧(𝑡𝑖)
𝑇 θ̂(𝑡𝑖−1)                                                (A.10) 

                                              , 𝐾(𝑡𝑖)
= 𝑃(𝑡𝑖)

𝑧(𝑡𝑖)
                                                    (A.11) 

And                                  𝑃(𝑡𝑖)
= (𝑃−1

(𝑡𝑖−1) + 𝑧(𝑡𝑖)
𝑧(𝑡𝑖)

𝑇 )−1                                 (A.12) 

In order to find the invers of (A.12), a mathematical expression called the matrix 

inversion lemma is used: 

                    (𝐴 + 𝐵𝐶𝐷)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1                 (A.13) 

The expression given in (A.13) is called matrix inversion lemma, and by rearrange 

(A.13) with A= 𝑃−1
(𝑡𝑖−1), 𝐵 = 𝑧(𝑡𝑖)

, 𝐶 = 1, and 𝐷 = 𝑧𝑇
(𝑡𝑖)

, the covariance matrix 

𝑃(𝑡𝑖)
 can be written as: 

                               𝑃(𝑡𝑖)
= 𝑃(𝑡𝑖−1) −

𝑃(𝑡𝑖−1)𝑧(𝑡𝑖)
𝑧
(𝑡𝑖)
𝑇 𝑃(𝑡𝑖−1)

1+𝑧
(𝑡𝑖)
𝑇 𝑃(𝑡𝑖−1)𝑧(𝑡𝑖)

                                 (A.14) 

From (A.9) and (A.12) the gain 𝐾(𝑡𝑖)
 can by rewritten by: 

                                           𝐾(𝑡𝑖)
=

𝑃(𝑡𝑖−1)𝑧(𝑡𝑖)

1+𝑧
(𝑡𝑖)
𝑇 𝑃(𝑡𝑖−1)𝑧(𝑡𝑖)

                                           (A.15) 

                              θ̂(𝑡𝑖)
= θ̂(𝑡𝑖−1) + 𝐾(𝑡𝑖)

(𝑦(𝑡𝑖)
− 𝑧(𝑡𝑖)

𝑇 θ̂(𝑡𝑖−1))                           (A.16) 

 

 



Blank Page 

160 

 

 

 

 

 

 



Blank Page 

161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


