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Preface 

This thesis describes research that was undertaken as part of an Engineering Doctorate 

(EngD) in Biopharmaceutical Process Development which was carried out in collaboration 

with Britest Ltd. and sponsored by the Engineering and Physical Sciences Research Council 

(EPSRC) (Grant number EP/G037620/1).  

Being an industry sponsored Engineering Doctorate, the project reflects the research 

requirements of Britest Ltd., and was conducted with an industrial focus.  

The work considers the toolkit with the aim of developing tools to allow Britest to move into 

the bioprocessing sector. Tools suitable for application to bioprocessing are required before 

companies from the bioprocessing sector can be confident that membership of Britest Ltd. 

will be beneficial, and the associated cost justified.  

The thesis sets out recommendations for tools to Britest Ltd. that have been made based on 

the outcomes of the research. 
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Abstract 

Many types of knowledge exist within a bioprocess, but the utilisation of this knowledge is 

not always as straightforward as collecting and analysing data. The Quality by Design 

initiative (ICH Guideline, 2009) has increased the need for thorough process understanding 

within bioprocessing. Fundamental process understanding is imperative to adequately 

implement a QbD approach to a bioprocess. Formalised knowledge capture techniques have 

been developed previously (West, 1992; Ranjan et al., 2002; Stowell, 2013), but these tend to 

be designed only to capture information rather than increase understanding. Equally, 

modelling techniques can be utilised to predict process behaviour and therefore increase 

understanding, but these rely on the user to have an understanding of the underlying science. 

This can be problematic in interdisciplinary industries such as bioprocessing, as there are 

many factors to build into a model. With this in mind, this research considers the Britest tools 

with respect specifically to biotechnological applications, and formulates a whole bioprocess 

development methodology. The Britest tools are a suite of qualitative tools and 

methodologies which were designed to highlight the knowledge gaps within chemical and 

physical processes, and to promote innovative process design solutions. The tools can help to 

identify areas where optimisation may be possible, and also increase the understanding of the 

process as a whole across a range of disciplines.  

The Britest tools were first considered with respect to four bioprocesses (Monoclonal 

Antibody production, Insulin production, Waste Water Treatment and Penicillin production), 

simulated within SuperPro Designer. The range of processes gave an indication of breadth of 

application, while the depth of information available in the simulations allowed the research 

to be unhindered by data availability. From here, several gaps within the toolkit were 

identified, including the potential for variability and the interactions between multiple 

parameters.  
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Variability is inherent within a bioprocess, and the reduction of this variability is a key driver 

for the implementation for QbD. The Reaction/Reagent Transformation Tracker (R2T2) was 

designed to capture this variability, and allow the user to evaluate the potential for various 

scenarios to arise. The tool facilitates a whole process view, without the information 

becoming overwhelming and confusing for the users.  

Understanding the interactions between Critical Quality Attributes (CQAs) and Critical 

Process Parameters (CPPs) is essential to the successful implementation of QbD, and was not 

covered by the original Britest toolkit. To combat this the Interaction Analysis Table (IAT) 

was created. The tool was designed to be applied in the early stages of process development, 

to guide the application of Design of Experiments (DoE) approaches when data is in short 

supply but process knowledge is available. Finally, the IAT was evaluated for sensitivity, to 

investigate the potential influence of uncertainty/human error on the outcome. The work 

identified a parameter and a threshold value enabling the user to assess the confidence in the 

proposed process analysis outcome. 

This work sought to develop novel knowledge management tools which had been designed 

specifically for application to bioprocessing. It aimed to establish the applicability of the 

Britest toolkit for this purpose, as Britest tools have only previously been applied to chemical 

and physical processes. A Britest toolkit for bioprocessing could be utilised to aid in the 

adoption of a QbD approach, through tools specifically designed to capture the knowledge of 

the process. This knowledge would be difficult to adequately represent in statistical models 

and could be lost between disciplines without a structured methodology to apply. The toolkit 

can be used to facilitate better communication in an interdisciplinary environment, and 

provide key information to enable better process design from an early stage. 
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Chapter 1 Introduction 

1.1 Research Objectives 

This Engineering Doctorate (EngD) thesis has presented work undertaken in collaboration 

with Britest Ltd to develop the Britest tools for application to bioprocessing. This 

research aimed to: 

1. Develop novel knowledge management tools designed specifically for 

bioprocessing 

2. Test these tools on a range of industrially relevant datasets 

3. Identify the stage of process development at which the tools would add the most 

value 

4. Compare these to alternative methods of enhancing process understanding 

5. Investigate whether the Britest tools could be applied to bioprocessing to fill the 

gaps identified in objectives 1-4 

The following chapter gives an insight into the background of the subject areas which 

relate closely to the topic of this research, and an overview of the research structure.  

1.2 Bioprocessing 

Bioprocessing is generally the method of choice for the manufacture of biological 

molecules, as recreating the same chemical structure using chemical synthesis methods 

can be difficult and expensive. A typical bioprocess is split into two sections, upstream 

processing where the cell line is grown and the product synthesised, and downstream 

processing where the cell mass and other contaminants are removed and the product is 

captured in a pure form. Often downstream processing units are those which have 

previously been developed and employed in chemical processing, such as 
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chromatography, filtration and centrifugation, whereas upstream processing is more 

specialised. The cell line must be selected, and then manipulated to produce the desired 

product correctly. This in itself can be complicated, as variation in cell line can cause 

significant variation within the product.  

Genome manipulation for this purpose has been applied to many organisms including 

whole plants, whole insects, whole animals and a range of cell culture types (Gordon et 

al., 1980; Shinmyo et al., 2004; Van Der Vossen et al., 2005). Within cell culture there 

are 4 main expression system options which are widely used: mammalian, insect, yeast 

and bacteria. Each of these has its own merits and drawbacks (Table 1.1), and all have 

their place in both research and industrial systems. In general, micro-organisms are the 

favoured host due to the rapid generation time, higher reliability and ease of handling. 

They have been used for many years and so a range of well characterized expression 

systems are available. However for some large molecules, in particular monoclonal 

antibodies, mammalian expression systems would be the host of choice, due to their 

enhanced ability to produce complex proteins.   
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Table 1.1 - Characteristics of production systems used within bioprocessing. Taken from Fernandez and Hoeffler (1998).  

CHARACTERISTICS E. COLI YEAST INSECT CELLS MAMMALIAN CELLS 

CELL GROWTH rapid (30 min) rapid (90 min) slow (18-24 h) slow (24 h) 

COMPLEXITY OF GROWTH 
MEDIUM 

minimum minimum complex complex 

COST OF GROWTH MEDIUM low low high high 

EXPRESSION LEVEL high low - high low - high low - moderate 

EXTRACELLULAR 
EXPRESSION 

secretion to periplasm secretion to medium secretion to medium secretion to medium 

POSTTRANSLATIONAL 
MODIFICATIONS 

  

PROTEIN FOLDING refolding usually 
required 

refolding may be 
required 

proper folding proper folding 

N-LINKED 
GLYCOSYLATION 

none high mannose simple, no sialic acid complex 

O-LINKED 
GLYCOSYLATION 

no yes yes yes 

PHOSPHORYLATION no yes yes yes 

ACETYLATION no yes yes yes 

ACYLATION no yes yes yes 

GAMMA-
CARBOXYLATION 

no no no yes 
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1.3 Upstream processing 

This research begins by considering a multitude of bioprocesses, however the focus of the 

later stages of research was on bioprocesses employing microbial expression hosts. This was 

due to the availability of microbial upstream and downstream datasets for tool testing 

(Chapters 5 and 6). Microbial expression systems are typically used for proteins with no or 

simple post translational modifications, or those which can be modified post translation 

chemically after cell fermentation. A microbial cultivation, or indeed a cultivation of any cell 

type, will involve four stages of growth: the lag, log, stationary and death phases (Figure 1.1). 

In the lag phase the bacteria will be starting to double in number with each generation, 

causing a slow rise in cell number as the micro-organism adapts to the conditions for the 

cultivation. In the log phase exponential growth is observed as the cell doubling causes this 

sharp rise in number. At the stationary phase, the rate of cells being produced is equal to the 

rate at which cells are dying. It is during the log and stationary phases of cell culture where 

the cells are the most productive in terms of product generation. During the stationary phase 

toxic metabolites will start to accumulate, and the nutrient supply will be depleted, which will 

cause a shift into the death phase, where cells are being produced more slowly than they are 

dying.  

 

Figure 1.1 - Stages of growth within a cultivation. Taken from Wang et al. (2015). 



5 

 

Microbial cultivations generally use simple media, and have a rapid generation time. This 

combined with a long history of use and regulatory approval makes them an attractive host 

system for simple products such as peptides, or precursor molecules where post cultivation 

processing can configure the correct product. The nutrient requirements of a cultivation will 

differ depending on the strain being used and the fermentation conditions being implemented, 

however in general the bacteria will require a carbon source, a nitrogen source and trace 

minerals. Microbial cultivations have been used for a variety of different purposes, over an 

extended period of history. These purposes include, but are not limited to, waste treatment, 

food and drink production and recombinant protein production.  

There are a range of reasons for employing a recombinant protein expression system in 

industry or research. Research may use this approach to understand a protein in greater detail 

or for reverse genetic engineering, where the gene encoding a protein is available but the 

protein itself is not, and to investigate Structure-Activity Relationships (SAR) (Stewart et al., 

1986; De Lalla et al., 1996; Chapman et al., 1998). It may also facilitate development of 

novel proteins (Zoller, 1992). Industrial processes use recombinant expression systems to 

produce large quantities of a desired protein which may have a range of applications, 

including therapeutic. The protein may only be available from natural sources in small 

quantities, making extraction from the natural source economically unviable. Alternatively 

the natural source may be toxic or difficult to handle. One instance of this would be the 

chlorotoxin protein, which is scorpion derived. In this case, although the protein has clear 

therapeutic potential (Xiang et al., 2011; Graf et al., 2012), the associated handling of a large 

number of scorpions would make the industrial process both logistically complex and 

dangerous. The alternative to this situation is to transform a cell line to express the 

chlorotoxin, making large volumes easy to obtain and simplifying the extraction and 

purification processes. This holds the additional benefit of reducing the ethical concerns, and 
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makes any product suitable for vegetarians. The production of insulin from animals including 

pigs had not only made it unsuitable for vegetarians, but the differences in structure made it 

unreliable and often unpredictable. The advent of homologous expression systems has 

eliminated this problem, as the human insulin protein can be produced in large volumes using 

cell culture (Bell et al., 1984; Chen et al., 1995). While there are a variety of reasons for 

employing recombinant protein production, the most lucrative market is undoubtedly for 

production of therapeutic proteins, an important part of the growing pharmaceutical market.  

1.4 Downstream Processing 

Downstream processing within bioprocessing is generally comprised of centrifugation, 

chromatography and filtration, in various combinations. Cell lysis will be included if the 

product is intracellular, and can employ mechanical or chemical mode of actions. Past the 

initial purification stage downstream processes can vary widely depending on the product and 

host, and any further chemical processing required. However monoclonal antibody 

production has become well understood, with generalised platform processes being found to 

be broadly applicable (Birch and Racher, 2006; Kelley, 2007; Shukla et al., 2007; Hogwood 

et al., 2013). Within these platforms Protein A purification is generally the most expensive 

stage of the process. The purification of monoclonal antibodies, and associated challenges, 

has been discussed at length by Sommerfeld and Strube (2005), Shukla et al. (2007), and by 

Shukla and Thömmes (2010). Organisations have been active in the pursuit of an alternative 

technology, discussed in detail by Ghose et al. (2006), but the high efficiency of Protein A 

chromatography, combined with high levels of understanding and a well-documented history 

of use, mean that it remains an attractive process choice, despite the associated cost. An 

increase in titre, with claims of titres in excess of 10g/L (Kelley, 2009), has increased the 

potential for profit from each batch; however it has also increased the burden on downstream 

processing to be able to purify such concentrated solutions. 
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Alternative modes of chromatography are detailed in Table 1.2, with associated references for 

more detailed reviews of mode of action and applicability.  

Table 1.2 - Types of chromatography available with accompanying references. 

MODE OF ACTION OVERVIEW 

AFFINITY 

CHROMATOGRAPHY 

Exploits interactions between molecules to 

separate impurities from the desired 

product (e.g. Protein a chromatography) 

(HOBER ET 

AL., 2007) 

IMMOBILISED 

METAL ION 

CHROMATOGRAPHY 

(IMAC) 

The product displays a tag which binds 

selectively to the metal ions within the 

column (e.g. His-tags) 

(BLOCK ET AL., 

2009) 

ION EXCHANGE 

CHROMATOGRAPHY 

(IEX) 

Separates molecules based on their 

isoelectric points (e.g. Anion 

exchange/cation exchange) 

(STANTON, 

2004) 

SIZE EXCLUSION 

CHROMATOGRAPHY 

(SEC) 

Separates molecules based on their size 

(CALIBRATION 

ET AL., 1994) 

HYDROPHOBIC 

INTERACTION 

CHROMATOGRAPHY 

(HIC)  

Uses hydrophobicity properties of the 

product to separate from impurities 

(OCHOA, 1978) 

MIXED-MODE 

CHROMATOGRAPHY 

(MMC) 

Incorporates multiple modes of 

chromatography on a single resin 

(MCLAUGHLIN, 

1989) 

   

Recent trends point to improving abilities to obtain higher titres in upstream processing 

(Kamachi, 2016; Chen et al., 2017), and in light of this there has been a shift within the 

bioprocessing sector from considering the upstream product production to be the limiting 

factor for final product yield to the downstream capacity becoming the limiting factor 

(Gronemeyer et al., 2014; Pinto et al., 2015). In light of this, it is important that any tools 
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developed within this research are applicable to both upstream and downstream production to 

ensure the bottleneck can be addressed regardless of where in the process it is occurring.  

1.5 The Biopharmaceutical Industry 

The term bioprocessing can cover a range of sectors, including waste water treatment, 

biological therapeutic production, biofuel production, and even food production e.g. marmite 

(Hassan and Heath, 1986; Grady Jr et al., 2011; Bornscheuer et al., 2012; Cheng et al., 2012; 

Liu et al., 2014; Marmite Museum, 2015). The tools developed within this research were 

designed with broad applicability in mind, particularly within Chapter 3. However, the focus 

of the research has been on biopharmaceutical processing, due to the highly competitive 

nature of the market creating a clear need for streamlined process development, which 

effective knowledge management has been shown to support (Pan and Scarbrough, 1999).  

Therapeutic pharmaceutical developments, and advances in diagnostics, have been a major 

contributor to not only the increase in life expectancy, but also the rise in quality of life. 

When the sponsor of this research, Britest, was established in 2001, the average life 

expectancy globally was 66.7 years. By 2015 when this research was in progress, this had 

extended to 71.4 years. In the UK alone the rise was from 78 to 81.2 years (WHO, 2017). The 

pharmaceutical drug market is worth billions of pounds each year, and this is increasing year 

on year as new drugs are discovered, new processes for production developed and new 

diseases emerge. Altogether the top ten pharmaceutical companies had revenue values in 

2016 in excess of US$440 billion (Datta (2016), Table 1.3), and sales values are set to rise 

over the course of the next ten years.  
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Table 1.3 - Top ten pharmaceutical companies by revenue in 2016. Sourced from Datta (2016). 

COMPANY TOTAL REVENUE IN 2016 (US$bn) 

JOHNSON & JOHNSON $70.1 

BAYER $51.4 

NOVARTIS $49.4 

PFIZER $48.9 

ROCHE $48.1 

MERCK & CO. $39.5 

SANOFI GENZYME $34.5 

GILEAD $32.6 

ASTRAZENECA $24.7 

GLAXOSMITHKLINE $23.9 

 

To generate revenues of this magnitude, pharmaceutical companies have multiple products, 

often for multiple indications, and they invest significant amounts of their money into 

research and development for drug discovery and development. Pipelines can be extensive 

(Citeline (2014), Table 1.4), and billions of dollars are spent on Research & Development 

(R&D) each year to maintain market share (Carroll (2016), Table 1.5/Figure 1.2). 
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Table 1.4 - Top ten pharmaceutical companies by number of pipeline drugs in 2014. Sourced from Citeline (2014). 

COMPANY DRUGS IN PIPELINE 

 GLAXOSMITHKLINE  261 

 ROCHE 248 

 NOVARTIS 223 

PFIZER 205 

ASTRAZENECA 197 

 MERCK&CO 186 

 SANOFI 180 

 JOHNSON & JOHNSON 164 

 BRISTOL-MYERS SQUIBB  133 

 TAKEDA 132 

 

Table 1.5 - Top ten pharmaceutical companies by R&D spend in 2015. Sourced from Carroll (2016).  

COMPANY R&D SPEND IN 2015 (US$bn) 

ROCHE $9.7 

JOHNSON & JOHNSON $9.0 

NOVARTIS $8.9 

PFIZER $7.7 

MERCK & CO. $6.7 

BRISTOL-MYERS SQUIBB $5.9 

ASTRAZENECA $5.6 

SANOFI $5.6 

ELI LILLY $4.8 

GLAXOSMITHKLINE $4.4 
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Figure 1.2 – Bubble chart showing the top 15 pharmaceutical companies total revenue compared to R&D spend in 2016. 

The size of the bubbles corresponds to the size of the company.  

 

These R&D programmes give rise to multiple drug candidates, for a range of indications, 

however the risky business of pharmaceutical production often results in promising lead 

molecules being rejected after significant sums of money have been invested in development. 

At the time of writing, there are 622 drugs in Phase I clinical trials, 597 in Phase II and 285 in 

Phase III (DataMonitor, 2016). Studies have shown that 10,000 drug candidates must be 

investigated to give rise to a single patented molecule (Figure 1.3, Guilfoyle (2016)). This is 

generally due to adverse effects encountered during trials, or the drug showing a lack of 

efficacy. As a result, pharmaceutical companies must have the R&D costs for 10,000 

candidate drugs to be covered by a single successful drug product. This has led to a high 

value market, where the ability to predict a drugs performance or manufacturability comes 

with a high value.  
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Figure 1.3 - The number of drug candidates progressing at each stage of a pharmaceutical development pipeline. 

Reproduced from Guilfoyle (2016). 

The pharmaceutical landscape is changing every year, however in 2016 the majority of R&D 

pipeline outputs were anticipated to be in oncology (Figure 1.4). Oncology is a large market 

($107 Billion in 2015, IMSHealth (2016)), which covers a variety of diseases, each of which 

have associated variations. Spanning the breadth of the pharmaceutical landscape, chemical 

compounds have previously been at the heart of the development pipeline, but advances in 

recent years have made biologics serious contenders as treatment options for a range of 

conditions. In 2015, just under 3,000 biological products were either marketed or approved 

for market (DataMonitor, 2016), treating a range of conditions from diabetes to Multiple 

Sclerosis to wrinkles. Though the benefits are clear, the production of biological products can 

be problematic due to the uncertainty and variability associated with live biological systems, 

and the range of expertise required to design a successful bioprocess.  
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Figure 1.4 - Biopharmaceutical pipeline drugs by indication in 2016. Sourced from Guilfoyle (2016). The numbers indicate 

the exact number of drugs in development for each indication at the time of writing.  

1.6 Knowledge Management  

The competitive nature of the pharmaceutical industry is clear, and the potential for a 

company to make significant profit in the biologics sector is considerable. This being said, 

the high failure rate of potential drug candidates, combined with long development times and 

a reduced patent lifetime (due to the length of time candidates take to develop), means that 

companies operating in this space must maximise their efficiency to successfully tap into this 

market potential. In an interdisciplinary sector such as bioprocessing, the successful 

management of the different types of knowledge is vital for efficient process design, and so 

knowledge management (KM) could be a useful technique to maximise potential value within 

a business.  

Knowledge can exist in many forms within an organisation, broadly being split into tacit and 

explicit (Nonaka, 1994; Polanyi and Sen, 2009). Explicit knowledge is easily communicated 
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and captured (Duffy, 2000), either through technical documentation, operating procedures or 

data. This knowledge can be transferred between individuals or departments with minimal 

requirement for formal transfer activities. Conversely, tacit knowledge could be the beliefs or 

viewpoint of an individual, or the application of ability (Scott, 1998). This is more difficult to 

communicate and transfer, and as a result formal KM techniques have been created to attempt 

to simplify tacit knowledge transfer and capture. It is common that the two cannot easily be 

separated, and that some tacit knowledge can be required to successfully apply or understand 

explicit knowledge (Wakefield, 2005).  

There are many management techniques which can be employed in a multitude of sectors to 

aid in the application of knowledge management. Knowledge Management was defined by 

Bassi (1997) as the “creation, acquisition, sharing and utilisation of knowledge for the 

promotion of organisational performance”, and within Quality by Design (QbD) as “a 

systematic approach to acquiring, analysing, storing and disseminating information related to 

products, manufacturing processes and components” (I.C.H Guideline, 2008).  Many types of 

knowledge exist within a business, but the presence of knowledge does not always mean that 

the knowledge is fully utilised. Knowledge can be used to achieve a desired outcome, or 

indeed to avoid a negative outcome. Knowledge was said to be only part of a larger 

relationship within a successful business (Andersen, 1999); this relationship is shown in 

Figure 1.5.  
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Figure 1.5 - Showing the relationships between data, information, knowledge and wisdom. Adapted from Andersen (1999).  

It is clear from Figure 1.5, that while knowledge is important to improve a process, it is not in 

itself a way of determining best practices. Data is required to generate information, and from 

this knowledge can be assembled. Armed with this knowledge, a company can seek wisdom, 

the use of this knowledge to change the company reaction to a situation. This was devised 

with respect to the business model; however parallels could be drawn between this hierarchy 

and the Quality by Design initiative in bioprocessing. The data, in the case of QbD would be 

the readings from probes and results from analytical methods. The information would be 

features or characteristics that could be inferred from these results or readings. The 

knowledge would be the understanding of whether these readings and results were 

conforming to predetermined quality standards. The wisdom to be able to act on this 

information within a pre-defined parameter space is the underlying principle of QbD.  

Capturing and using knowledge can be a powerful ethos within a business; a central store of 

information can be invaluable not only for troubleshooting purposes, but also to allow the 

best decisions to be reached first time. Making information available to employees can aid 

their understanding of a process or business, and its effective sharing through the business 

can facilitate communication between departments (De Vries et al., 2006). The most effective 
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knowledge stores employ a structured approach, to ensure straightforward navigation and full 

utilisation of the resource within the business (Wen, 2009).  

The high volume of data generated by companies has meant a trend towards using software 

and databases for this capture and storing of knowledge. While this can be invaluable for raw 

data storage, such as readings from probes, it can make navigation and analysis of this 

information difficult for the individual. The programmes used can be complex to implement 

and run (Liao, 2003). In addition, it is not unimaginable for a company to employ the 

program as the solution to knowledge sharing, rather than as part of a larger company ethos. 

In fact if the information is not used then it is of little benefit to the company. There is 

additionally the ongoing battle with maintaining the database, not only to ensure the 

information within it is up to date, but also to ensure it is running effectively (Liao, 2003). 

However, each of these is transcended by the difficulty in obtaining tacit knowledge from 

employees. While there is much to be gained from readings and measurements, the 

experience of operators of a process can be as valuable, if not more so.  

Many knowledge elicitation techniques are available and have been used in bioprocessing. 

The KATKit was one such system developed previously (Ranjan et al., 2002), which focused 

on how to best draw out the relevant knowledge from process experts. The early stages of the 

KATkit system involved knowledge elicitation using a unique exception logic, which was 

used to create rules for the various fermentations running at an industrial partner site (Eli 

Lilly). The knowledge elicitation technique relied on an independent elicitation facilitator 

running the sessions, and documenting the outcomes. These were then coded into a software 

based control system to be implemented on the site. While this gave a significant benefit to 

the company, the requirements in terms of time were significant (many person months), and 

the requirement for an independent elicitation expert trained in the KATkit approach made it 
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unsuitable for large scale integration into Eli Lilly. However, the approach itself was shown 

to be a valid knowledge elicitation technique which could add value to a bioprocess.  

Different knowledge management strategies suit different organisations (Kim et al., 2014), 

and there is not a one size fits all approach. With that in mind, this research sought to 

ascertain the potential value of the Britest approach for bioprocessing. Bioprocessing is an 

industry which relies on efficient interdisciplinary working, and the effective management of 

the different areas of knowledge within a plant or process can be key to the success of a 

bioprocessing business. Experience in working on a plant or process is invaluable to process 

development, and this is demonstrated through the expanding Contract Manufacturing 

(CMO) market within bioprocessing. The experience a CMO derives from working on a 

variety of products is invaluable, and is the reason that the CMO market in bioprocessing is 

expanding (Stanton, 2015).  

However, even in the established CMOs, the sharing of this knowledge relies on effective 

communication skills. Technology transfer and process design are core capabilities for 

organisations within contract manufacturing in any sector, however for these to be effectively 

employed communication skills are key (Santoro and Gopalakrishnan, 2001). However in 

companies not specialising in this, effective communication can be problematic. This 

becomes increasingly difficult when bioprocesses are involved, as the range of skills required 

is broad. Effective knowledge capture and management techniques have previously been 

examined in relation to technology transfer (Salazar Alvarez, 2003; Wakefield, 2005), and it 

has been shown that by employing KM techniques to streamline communication channels 

organisations can reduce the number of mistakes made during development, and potentially 

therefore increase organisational effectiveness and reduce time to market (Pan and 

Scarbrough, 1999; Ofek and Sarvary, 2001).  
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1.7 Quality by Design  

The ability to successfully manage the knowledge within a process is undoubtedly valuable, 

especially within a sector involving so many different disciplines such as bioprocessing. The 

extended time it takes to market a biopharmaceutical, combined with the tremendous 

associated costs, makes every potential saving of significant importance. The highly 

regulated environment that pharmaceutical companies operate in only adds to the pressure to 

perform in a maximally efficient manner. In light of this, any approach which can be adopted 

to give a competitive advantage could add significant value to a pharmaceutical company. 

The concept of incorporating Quality by Design into pharmaceutical production has therefore 

been met with great interest by companies operating in this space.  

Quality by Design was originally defined as “A maximally efficient, agile, flexible 

pharmaceutical manufacturing sector that reliably produces high quality drug products 

without extensive regulatory oversight” (Woodcock, 2005). The traditional approach to 

producing pharmaceutical drug products was to follow a set protocol, with the aim of 

achieving a consistent result. However, this does not account for changes in raw material 

quality, environmental influences, and other uncontrollable factors. The QbD approach, in its 

simplest sense, allows for those variations to be taken into account, and the process changed 

within certain parameters to counteract the sources of variability. The range of conditions the 

process can operate within is termed the design space (FDA, 2006), and the ability to move 

the process around this design space to obtain a consistent product quality is the driver behind 

QbD. To achieve a QbD approach in a process, the various parameters making up the design 

space must be measured and controlled. In light of this, the Process Analytical Technology 

(PAT) guidelines followed from the QbD guidelines (FDA, 2004). PAT, in its broadest sense, 

covers the instrumentation and techniques used to ensure the process remains in its allocated 

design space.  
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The process would typically not operate within the whole of the design space. Generally the 

scheme outlined in Figure 1.6 would be followed, where the characterised space is large, the 

design space is a smaller part of the characterised space, and the control space, where the 

process operates, is smaller still. 

  

Figure 1.6 - Schematic of the relationships between characterised, design and control space. 

 

The characterised space defines the whole area of knowledge. It encompasses not only the 

right result from the process, but also the potential wrong results. These may at times be too 

extreme to correct through a change in processing, and so the design space is a smaller subset 

in which corrections can be made to ensure product quality. Within the design space, some 

corrective measures may be too extreme or costly to feasibly implement, and so the control 

space becomes the smaller space within this in which making the changes would be a viable 

option, both economically and safely.  
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Each company will have an individual approach to defining the design and control space. The 

varying strategies will have varying degrees of robustness, but are generally based on a 

combination of process understanding and experimentation. There is not currently a standard 

approach which is recommended, and this means there can be no guarantee of the robustness 

of the design space identified. Harms et al. (2008) attempted to define the design space for 

fermentation of Pichia pastoris. To achieve this they first characterised the process risk using 

Failure Modes and Effects Analysis (FMEA), followed by the development of a scale down 

model. This was followed by characterising the process. The resulting design space was a 

combination of temperature, pH and dissolved oxygen, which were all defined as key process 

parameters. Three Optical Density (OD) readings, at the start, of the inoculum and at 

induction, were all shown not to impact the process performance, in addition to the feed rate. 

As a result these were not included in the design space. While this approach did create a 

design space for the fermentation, it would be difficult to replicate in processes where scale 

down alternatives were not available, or in whole process examples (Harms et al., 2008). The 

temptation could be to create a design space for each unit operation, however as Zhou and 

Titchener‐Hooker (1999) have shown; adopting a Windows of Operation approach is more 

effective for optimising the process outcome. Performing the same level of characterisation 

and risk analysis for a whole process, particularly for mammalian cell culture based processes 

with their associated high complexity, would be challenging and may not generate a design 

space with an associated high level of confidence.  

In addition to facilitating the QbD approach to processing, effective knowledge capture has 

been correlated with organisational effectiveness (Gold and Arvind Malhotra, 2001), and 

many ways of facilitating this capture are available. Knowledge management in its entirety 

has been identified as possibly the biggest challenge for QbD implementation. Indeed, it has 

been claimed that without effective knowledge management approaches, it is not feasible to 
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understand how the attributes of a product affect the safety and efficacy of the product 

(Herwig et al., 2015), and by extension it is therefore difficult to see how effective QbD 

manufacturing processes could be implemented without these KM systems.  

The knowledge required to implement a QbD approach is outlined in Figure 1.7, taken from 

(Herwig et al., 2015). This clearly demonstrates the importance of effective KM strategies 

over the product lifecycle to the stage of manufacture. As the life cycle progresses and 

intellectual property protection such as patents expire the importance of understanding only 

increases, as efficiency must be improved to maintain the economic viability of the product.  

 

Figure 1.7 - Knowledge required at each stage of the bioprocess development timeline. Taken from Herwig et al. (2015). 

Abbreviations: QbD-Quality by Design, QTPP – Quality Target Product Profile, CQA – Critical Quality Attribute. 

Knowledge indicator is the total amount of required knowledge, shown here compared to the stage of development.  

Process improvement and adoption of QbD through KM can be achieved through various 

tools, which can include but are not limited to data capture, text mining, visualisation tools, 

statistical analysers, and collaboration tools (Steinberg and Bursztyn, 2010; Schild and 

Fuchslueger, 2012; Turkay et al., 2013; Giridhar et al., 2014; Otasek et al., 2014). The range 

of tools to suit an array of purposes is wide, and suitability will depend on a range of factors. 

One of the key reasons for employing KM strategies and QbD processes is process 

improvement. This thesis will first discuss two potential options for process improvement 

tools currently employed within bioprocessing, BioSolve and Six Sigma, before moving on to 

discuss the Britest methodologies, the focus of this research, in Chapter 2.  
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1.8 Process Understanding Tools  

The following BioSolve case study was sourced from BioSolve directly, with the aim of 

illustrating the industrial applicability of tools of this nature. Results generated are the work 

of BioSolve, and have not been generated as a part of this research.  

1.8.1 BioSolve  

BioSolve is the core product from the company BioPharm Services, which was established in 

1998 to create problem-solving software aimed at biologics, facilities and business strategy. 

BioSolve is designed to aid in the decision making process on a biological process. It aims to 

reduce manufacturing costs and aid the decision making process by incorporating the 

business perspective, rather than relying on the underlying science alone. The results are 

generated based on financial and process information, such as costs, timings, profit, materials 

and sales value.  

Many approaches have been taken to improving the decision processes associated with 

monoclonal antibody production, and one of the most well-known examples would be that 

constructed by the C.M.C. Biotech Working Group (2009). This example is widely cited as 

an approach to implementing a QbD approach to a biological process. It relied on 

fundamental scientific understanding combined with scoring systems, designed to be used in 

conjunction with cost benefit analysis. An additional case study of using BioSolve on a 

Monoclonal Antibody (mAb) production process was constructed by BioPharm (2014), 

focusing more on the financial and numerical analysis than the underlying science of the 

process. It aims to address three main areas of concern in mAb production, outlined in Figure 

1.8. 
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Figure 1.8 - Three areas of investigation and resulting conclusions from the case study of mAb production using BioSolve. 

Taken from BioPharm (2014). 

  

The case study constructed by BioSolve considered each of these three questions in turn. 

Stainless steel is not a flexible technology, and as such the process must be robust and the 

market well established to make this a viable choice. This is a high risk approach, and the 

BioSolve software could be applied by a user when working on a process to investigate the 

impact of scale and titre on the capital investment required, allowing the user to make a 

decision based on both science and business case information.  

In terms of single use facilities, the capital investment costs are lower, and there is a much 

greater degree of flexibility. For this case study, BioSolve was used to determine the harvest 

strategy which would give the highest yield without negating the increased productivity with 

the associated cost increase. The optimum option for pooling was also considered. The 

capital investment required was $250 million, a saving of over a million dollars when 

compared to the stainless steel version of the same process.  
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BioSolve was also used within the case study to investigate the potential of continuous 

processing. For this business case, a perfusion titre was set at 1g/L, lower than the fed batch 

titre of 5g/L. The process modelled was a 2000L bioreactor scale, which is smaller than the 

scales for the previous two business cases. However, the capital investment was found to be 

smaller, and the source of the biggest costs could be attributed to resin and media costs. 

When compared to the stainless steel option, a reduction was seen in cost of goods (down 

10%), and upfront capital investment was reduced by 73%.  

In summary, BioSolve allowed the user to make process decisions based not only on the 

scientific or engineering merit on an option, but also on the business case being presented. 

The models can be customised to a specific process or market, giving the user enhanced 

functionality and applicability. BioSolve can be a valuable asset to a company wishing to 

explore options for processing without expensive experimentation or building complex 

mathematical models. However, it relies on user information being correct, and the correct 

interpretation of the results to provide the full benefit. It also cannot analyse the fundamental 

science behind the process, or suggest alternatives which have not been input. The tool will 

improve in performance as more data is available, which is a limitation if large datasets are 

not available for a particular process, and conclusions are limited to the conditions in which 

there is data available. While it has clear potential benefits, in itself it will not increase 

interdisciplinary working, and like any tool should only be employed where suitable and not 

as a quick fix to a problem.  

1.8.2 Six Sigma 

Six Sigma is a methodology which is regularly employed across a multitude of sectors to 

enhance process efficiency. It was developed in 1986 (Motorola, 2009), and is currently used 

in a range of process sectors (McClusky, 2000; Buss and Ivey, 2001; Antony and Banuelas, 
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2002; De Feo and Bar-El, 2002). It is a set of tools for process improvement that has a base in 

statistical analysis and predictions. The Six Sigma approach is based on three assertions: 

 Continuous improvement is vital to running a successful process 

 Processes have both business and engineering aspects that can be measured, analysed, 

controlled and improved.  

 To obtain the best process, all levels of the business must be committed to improving 

the process.  

The Six Sigma process is outlined in ISO 13053:2011 (2011). Within Six Sigma there are two 

methodologies for a project, one for improving an existing process (DMAIC), and one for 

designing a new process (DMADV) (De Feo and Barnard, 2003). Within both of these are 

five phases, outlined in Figure 1.9.  

  

Figure 1.9 - Acronyms for two methodologies employed in Six Sigma. 

Both the DMAIC and the DMADV start with the definition, measuring and analysis, for 

understanding of the system and alternative process designs respectively, of the system. From 

DMAIC

• Define
• Measure
• Analyse
• Improve
• Control

DMADV

• Define
• Measure
• Analyse
• Design
• Verify
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here, the DMAIC methodology moves onto optimising the process using tools from within 

the toolkit. In contrast, the DMADV moves onto designing the new process using the results 

from the preceding analysis step. The DMAIC ends with the control stage, to correct 

deviations from the desired outcome before they result in a whole process failure. The 

DMADV methodology ends in the verification of the design, through experimentation and 

pilot runs, prior to running the process at full scale. A range of tools are encompassed within 

these methodologies, some based in statistical analysis, and some thought process tools.  

With respect to bioprocessing, Dassau et al. (2006) employed the methodologies alongside 

process modelling techniques to consider a penicillin fermentation. After three cycles of Six 

Sigma evaluation of the process, the final conditions led to a 40% reduction in batch time, a 

17% increase in throughput yield and a 33% reduction in impurities. The authors attribute the 

success to the adoption of a plant-wide approach to process improvement, previously 

discussed (Zhou and Titchener-Hooker, 1999), which would not have been adopted without 

the aid of the Six-Sigma methodologies. The adoption of a whole process view requires a 

shift in organisational culture, and the use of knowledge management tools to aid this shift 

was undoubtedly beneficial in the case presented by (Dassau et al., 2006) 

While the Six Sigma approach has many advantages, including wide applicability and a 

statistical basis for improvement, there are some drawbacks. The use of Six Sigma is within 

an organisation, and so any lessons that can be learned are only internal and not from other 

companies. Limited cross sector learning has been highlighted as a weakness within the 

pharmaceutical industry (Smith, 2014), and methods which promote looking only internally 

for improvement could potentially limit the improvement to the process and effective 

innovation. The tools follow a rigid structure, and while this could be considered a benefit, it 

could also limit the ability of the methods to diagnose a problem.  
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While both BioSolve and Six Sigma are viable options for enhancing process efficiency, 

neither will capture the fundamental science, nor explore process development options at an 

early stage of development. Both of these requirements are key to facilitate the adoption of a 

QbD approach in bioprocessing. BioSolve is a valuable tool for economic analysis, but 

cannot incorporate the underlying science behind the process design, and this could have a 

resounding impact of the process design. For example, if there was a technical feasibility 

impact for a processing option, this could not be incorporated other than as a cost. Conversely 

Six Sigma can be used to aid the capture of the fundamental science, but follows a set 

structure and does not necessarily lend itself to innovative process design.  

1.9 Britest  

This thesis is focused on the development of knowledge capture tools for application to 

bioprocessing specifically, starting from the Britest tools which were developed for chemical 

and physical processing. The research has been undertaken for an Engineering Doctorate, and 

is therefore sponsored industrially, in this case by Britest Ltd.  

While tools such as BioSolve and Six Sigma can be employed for the continuous 

improvement of processes, and to investigate the impact of changes, Britest operates at a 

more fundamental level. The Britest tools aim to capture and explore the underlying science 

of the process, facilitating interdisciplinary communication and capturing the specialist 

knowledge of each discipline in a structured manner. The tools were initially developed as 

part of an EPSRC funded collaboration between The University of Manchester Institute of 

Science and Technology (UMIST), Imperial College London and University of Leeds, and in 

2001 Britest was formally established as a company to maintain and develop the tools and 

methodologies. The name Britest was created from the acronym:  

Best Route Innovative Technology Evaluation and Selection Techniques 
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It is a not-for-profit membership-based organisation, currently encompassing twenty 

industrial and academic partners. The industrial members and associates are drawn from the 

pharmaceutical, fine and speciality chemical sectors. The inclusion of academic members, 

including Newcastle University, is intended to bridge the gap between academia and industry, 

thus ensuring that academic developments are applied to real-world problems. The open 

innovation model promoted by Britest gives members access not only to the tools, 

methodologies and enablers, but additionally to the knowledge and experience of other 

members. This provides an avenue for open discussion of processing problems between 

organisations, allowing each member to draw on the expertise of others without worries of 

confidentiality breaches. Often the answer to a process problem may come from a different 

industry sector, which would be less likely to be generated outside of the Britest consortium. 

This research arose from a need identified within the consortium for application of the Britest 

tools to bioprocessing. At the time, Britest identified a growing interest within the consortium 

around bioprocessing. The project was approached from an academic perspective with an 

academic consortium member (Newcastle University). The aim of this research was to test 

the tools on a range of bioprocesses, and to investigate the potential for application to 

bioprocessing as a whole. The industrially based nature of an EngD means that the research 

must not only advance an area of knowledge, but also provide a business benefit for the 

sponsoring company. This thesis advances knowledge management within bioprocessing, and 

the resulting toolkit allows Britest to pursue recruiting new members from the bioprocessing 

community.  

The research presented within this thesis sought to answer the following research questions: 

Can the Britest tools which have been developed for Chemical and Physical processing be 

applied to Bioprocessing? Do they add value? Are adaptations/modifications required? 
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The work developed novel knowledge management tools specifically designed for capture 

and transfer of knowledge generated within bioprocessing. The ability of these tools to 

capture relevant and useful bioprocessing knowledge was assessed by understanding the most 

important factors within bioprocessing from both a technological and economic perspective. 

These were designed specifically with the adoption of a QbD approach to processing in mind, 

as this was an area identified as being a current major challenge within bioprocessing where 

tools such as those contained within Britest could add significant value.   

1.10 Thesis Structure 

The chapters in this thesis present the work carried out over the course of the 

Engineering Doctorate study. This thesis begins by discussing the current Britest tools in 

detail (Chapter 2), to ensure the reader has a clear understanding of how the tools are 

intended to work and the form in which they existed prior to the commencement of this 

research. Chapter 3 moves on to discuss applying the tools to four virtual bioprocesses using 

SuperPro Designer, to test the potential applicability on a whole bioprocess without the 

constraints of a real industrial process. From here, a gap was identified to drive the 

development of the Interaction Analysis Table (IAT), and development and testing on 

upstream and downstream processes are discussed in Chapters 4, 5 and 6 respectively. The 

thesis concludes with Chapter 7 which investigates the sensitivity of the weighting system 

within the IAT, to better understand the potential limitations or drawbacks of the tool.  

Chapter 8 presents the research conclusions, and a summary of the impact the research has 

had on the industrial sponsor. 

Chapter 2-The Britest Tools and Methodology 

This chapter will present the reader with the information on the Britest tools, how each of 

them works and an example of when they were used. This shows how the tools would be 

used on a chemical or physical process to add value to a process, which is necessary to 
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understand prior to considering whether they would be applicable to a bioprocess. It also 

covers the background to the Britest tools and methodology.  

Chapter 3-Virtual Bioprocessing 

Chapter 3 will consider the application of the Britest tools to four separate bioprocesses, 

using virtual processes simulated in SuperPro Designer. These cover four main sectors within 

bioprocessing: high value low volume (Monoclonal Antibody production), low value high 

volume (Insulin production), secondary metabolite production (Penicillin V) and waste water 

treatment. The chapter will focus on adaptations made to the tools with respect to the insulin 

production process, as the following chapters focus on microbial processing. This chapter 

presents the Reaction/Reagent/Transformation Tracker (R2T2), a new tool which was 

developed in response to limitations identified by the simulated Britest study. It also 

identifies a need for a tool to facilitate linking Critical Quality Attributes (CQAs) to Critical 

Process Parameters (CPPs), in keeping with the QbD initiative.  

Chapter 4-Interaction Analysis Table Development 

This chapter focuses on the requirement identified in Chapter 3 for a tool to facilitate the 

linking of CQAs and CPPs, and develops the Interaction Analysis Table (IAT) for this 

purpose. A range of options for tool development are discussed, with the final tool being 

presented at the conclusion of the chapter.  

Chapter 5-IAT Upstream Testing 

This chapter tests the newly developed IAT tool on an upstream dataset from early stage 

process development on a microbial process. The dataset is a publicly available academic 

dataset from Technical University Berlin (TUB), where a range of processing conditions 

were tested with respect to production of Alcohol Dehydrogenase (ADH).  
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Chapter 6-IAT Downstream Testing 

This chapter tests the newly developed IAT tool on a downstream dataset from early stage 

process development on a microbial process. The dataset is a publicly available academic 

dataset from Technical University Berlin (TUB), where a range of reagents were tested with 

respect to cell lysis.  

Chapter 7-Sensitivity Analysis 

Chapter 7 concludes the thesis by investigating the effect of variability in the weightings of 

an IAT on the outcome. Two sets of IATs were simulated using Microsoft Excel (2010), one 

set with five outcomes and the other with ten outcomes. Each IAT consisted of ten parameter 

rows, with relationships and weightings simulated using random number generators. 

Weightings were investigated to ±1, to ascertain the impact of the inherent variability on the 

outcome of the tool. The work identified factors which could be used reliably to infer 

sensitivity and confidence in the result without the need for complex simulations, allowing 

the Britest consortium to use the tool and to have an indication of the reliability of the 

outcome through using a simple calculation which can be performed by hand on an IAT of 

any size. This chapter concludes the work presented in this thesis, along with making 

recommendations for the implementation of the new Britest tools on bioprocesses, and 

suggestions for future developments to the toolkit. 

Chapter 8 – Research Conclusion and Industrial Impact 

Chapter 8 concludes the research, and the impact the research presented in this thesis has had 

on Britest, the industrial sponsor. It includes statements from Britest members around both 

the R2T2 and the IAT, the membership increase to Britest as a result of the work, and the 

John Borland award which was presented to the authors in 2016 in recognition of the 

innovative approaches used in the research.  
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Chapter 2 The Britest Tools and Methodology 

2.1 Introduction 

Chapter 2 will discuss the application of the Britest tools to the simple process of making 

a cup of coffee. This aims to give the reader a working understanding of the toolkit, and 

the potential benefits each tool brings to a process, in a format which can be related to a 

broad audience. It will introduce the company background and structure, before moving 

onto considering each tool in turn, explaining the features of each tool along with the 

benefits it could bring.  

Britest began in 1998 as a joint industry/academic collaborative research project funded 

by the Engineering and Physical Sciences Research Council (EPSRC). The project, which 

included academic and industrial partners, established collaborative thinking on radical 

new process design methodologies that could lead to greater understanding and drive 

significant improvements in sustainable manufacturing.  Output from this collaborative 

project generated a set of innovative tools and methodologies which allow the analysis of 

product development and manufacturing processes to demonstrate where and how major 

improvements could be made.    

In 2001, Britest was formally established as a company to maintain and develop the tools 

and methodologies. It is a not-for-profit membership-based organisation, currently 

encompassing 20 industrial and academic partners. The industrial members are drawn 

from the pharmaceutical, fine and speciality chemicals sectors.  The inclusion of 

academic members, including Newcastle University, is intended to bridge the gap 

between academia and industry, thus ensuring that academic developments are applied in 

real-world problems. The open innovation model promoted by Britest gives members 

access not only to the tools, methodologies and enablers, but additionally to the 
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knowledge of other members. This provides an avenue for open discussion of processing 

problems between organisations, allowing each member to draw on the expertise of 

others without worries of confidentiality breaches. Often the answer to a process problem 

may come from a different industry sector, and the breadth of the Britest consortium 

facilitates collaborations of this nature.  

The Britest tools can help to identify the best opportunities for process optimisation, and 

also increase understanding of the process as a whole, across a range of disciplines, 

considering the process as a whole and acting to highlight the ‘unknown unknowns’ 

within a process to identify areas where more understanding could prove beneficial. As 

reported by Britest, these tools have generated over £1 billion of value to member 

companies since they were first introduced (Britest, 2017), and it is anticipated that 

expansion into new areas such as bioprocessing will see this figure rise. 

This research project was sponsored by Britest to aid the move into the bioprocessing 

sector, which would not be possible without a working toolkit to extend value to existing 

members, and also attract new member companies/institutions. This was in response to a 

need identified by the consortium members, some of whom are involved with 

bioprocessing already. Bioprocessing relies on the combination of a range of disciplines 

working collaboratively. The people involved in bioprocess development have a range of 

backgrounds, including biology, chemistry, engineering (chemical, biological and even 

mechanical), statistics and business management. The complexity of a biological process 

and the range of people involved can make effective communication problematic, and 

this, combined with the unpredictable nature of biological systems, creates a challenging 

environment in which to operate. As discussed in Chapter 1, the Quality by Design (QbD) 

initiative from the FDA (I.C.H Guideline, 2009) has shifted the focus of bioprocess 

development teams, from simply developing a fixed process which works most of the 
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time, to the specification of a design space in which the process can operate flexibly to 

ensure a consistent product regardless of variation between factors such as raw materials. 

The specification of an effective design space has made it even more important for 

bioprocessing professionals to communicate effectively and capture the basic process 

understanding which has led them to their desired design space. In light of the importance 

of effective communication, and emphasis on better process understanding, bioprocessing 

is an area where tools such as the Britest tools could add significant value. It is this 

challenge which this research aims to tackle.  

This chapter will introduce the Britest toolkit as it currently exists, developed for 

application to chemical and physical processing.  

2.2 Britest Toolkit 

The current Britest toolkit consists of a number of tools and methodologies, designed to 

be applied to processes in different ways depending on the problem under consideration. 

Each will be suitable for different parts of the process, and could highlight different 

unknowns within the same process.  The tools were designed to be applied by 

multidisciplinary teams, and therefore ease of application is imperative. A Britest study is 

generally supported by one or more facilitators, including people from a range of 

backgrounds. The following sections will give the reader an understanding of how each of 

the core tools is intended to be applied within a Britest study. For this purpose, two 

options were considered. Ideally a real process example would have been employed, to 

thoroughly demonstrate to the reader the Britest tools being applied within the context for 

which they were developed. However, the restrictions associated with process specific 

examples meant that this was not possible. Real process examples of the tools in use have 

been shared only within the Britest consortium, and so inclusion of these in this thesis 
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would not be possible due to the associated confidentiality agreements. Examples of 

using each tool on a single process were not available within the Britest consortium, and 

the use of a single process is the most effective method of showing the different benefits 

brought about by each individual tool.  

In lieu of a process example for illustration purposes, the process of making a cup of 

coffee was utilised. The process involves phase changes and reactions much like a 

processing example, but does not have associated intellectual property. Additionally the 

process of making a cup of coffee is able to be understood by a reader of any background, 

unlike many chemical/physical processing examples.  

Some tools have an inherent variability in application method, and so users will have their 

own preference as to what works best for their team or process. The description in this 

Chapter is not an exhaustive manual for tool application, but is intended to give the reader 

a basic understanding of the Britest toolkit in the state it existed prior to research 

commencement. The tools and their intended purpose/outcome are outlined in Table 2.1, 

along with their associated detail level, advantages and disadvantages when considered 

with respect to bioprocessing requirements. This is followed by more detailed application 

information in specific sections. 
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Table 2.1 - The Britest tools, purposes and relative strengths and drawbacks. 

Tool Purpose Resulting 

Detail 

Level 

Strengths Drawbacks 

Initial Screening 

Analysis (ISA) 

Construct an overview of 

the process and inform 

subsequent tool use 

Overview-

Low 

Consistent starting point for a 

Britest study to focus the people 

and give direction 

Can generate large amounts of information  

Process 

Information 

Summary Map 

(PrISM) 

A high level overview of 

the key stages in a 

process, summarises 

process inputs and 

outputs, records key 

information [associated 

with each process stage, 

input and output] 

Overview Easy to understand, reduces 

process complexity, quick to 

apply, captures high level 

technoeconomic drivers 

Can oversimplify, no intermediates captured 

Process 

Definition 

Diagram (PDD) 

Task-based whole process 

representation, showing 

where process materials 

are introduced and/or 

removed from the 

process, the phases 

present throughout each 

task, phase changes (e.g. 

dissolution, gas evolution, 

etc.), key energy balances 

Medium Independent of scale/equipment, 

cross-disciplinary, information 

rich 

Time consuming to construct for long 

processes, less beneficial in single phase 

processes 
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Tool Purpose Resulting 

Detail 

Level 

Strengths Drawbacks 

Rich Diagrams 

(Pictures/ 

Cartoons) 

Rich Pictures/Cartoons 

are a way of visualising 

what is happening at a 

specific point within the 

process. 

Dependant 

on the 

purpose, can 

range from 

Low to 

High.  

Flexible, detail level defined by 

the user to give the desired 

benefit. 

Lack of structure could lead to multiple 

versions being generated before relevant 

info is captured.  

Transformation 

Map  

A graphical portrayal 

of the network of 

transformations that 

convert raw materials into 

products within a process 

task. They should include 

both desired and 

undesired 

transformations, to 

support the use of other 

tools (e.g. Driving Force 

Analysis) to identify 

operating strategies 

favouring the desired 

transformations. 

High Forces user to consider all 

potential reactions, applicable 

across scales. Particularly useful 

for understanding multi-phase 

transformations 

Time consuming if lots of detail required, 

multiple unknowns limits benefits. Can be 

confusing for large molecules. 

Driving Force 

Analysis (DFA) 

A qualitative model of the 

competing driving forces 

within a process to enable 

the identification of 

High Systematic application, helps 

understand impact of process 

changes, structured output 

Requires completed Transformation Map, 

limited scope for inclusion of complex 

relationships 
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Tool Purpose Resulting 

Detail 

Level 

Strengths Drawbacks 

potential operating 

strategies. 

Transformation, 

Entities, 

Properties, 

Physics, 

Parameters, 

Order of 

Magnitude 

(TE3PO) 

A tool used to record and 

analyse knowledge about 

transformations where the 

presence of parallel rate 

processes means that 

rates need to be balanced 

in order to deliver the 

optimum outcome 

Medium Information rich, breaks down 

process, macro/micro scale. Very 

useful for analysis of physical 

processes. 

Difficult to interlink transformations, could 

be time consuming 
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2.3 Initial Screening Analysis 

The Initial Screening Analysis (ISA) methodology is the starting point for Britest studies, 

allowing an overview of the process to be assembled. It can identify constraints on the 

process, either real or perceived, and is useful for noting key inputs and wastes.  

The methodology consists of six steps (Figure 2.1). Through the application of this 

methodology, it should become clear where process improvement may be possible based 

on broader techno-economic drivers, for example through the increase of yield, reduction 

of waste, reduction in batch time or increase of throughput. The ISA is used to help the 

facilitator identify the additional tools which will be most beneficial, and the appropriate 

order for application.  
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Figure 2.1 - ISA for coffee extraction process. Taken from Britest training materials. 

2.4 Process Information Summary Map 

During the ISA discussion, it is common to require an overview representation of the 

whole process. This could demonstrate how the actions performed in the process are 

relating to the product itself, giving an action to positively influence the final product 

quality, help to highlight the tasks which are likely to provide the largest benefits to the 

whole process, or where the cost/value of the process lies.  

Define the Problem

•Coffee can be of variable quality

•We want to drink consistently good coffee

•We need to devise a process to make a cup of coffee of 
consistently good quality

Define the Objective

•Understand the coffee process to identify possible causes of 
the problems

•Create an action plan to investigate the knowledge gaps and 
move towards a process to make a cup of coffee of 
consistently good quality

Define the Constraints

•Cost per cup < $0.25

•Capital available for equipment < $150

•Starting material is coffee beans

•Local mains water is to be used, with electric heating

Product

•Product is a longer espresso-type coffee

•Good flavour: Not too bitter; Not too weak. 

•Good aroma

•Good “mouth feel”: No large grounds in suspension; Not 
watery

•Good appearance: Good “crema” (i.e. natural foam) on the 
surface
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There are two tools aimed at representing whole processes, the Process Information 

Summary Map (PrISM) and the Process Definition Diagram (PDD). The PrISM is part of 

the ISA methodology, and so can be applied during early discussions to give a high level 

overview of the whole process. The PDD is constructed when more detailed process 

analysis is required.  

In the PrISM (Figure 2.2), all inputs and outputs of each stage of the process are 

identified, including any waste. It is also useful to capture factors such as costs, step 

timescale, processing conditions and the yield of each step, which is analogous to value 

stream mapping within the Lean Toolkit. In this way the relative potential for process 

improvement of each step, for example based on cost, processing time or yield can be 

easily identified. Options for reducing cost, waste or increasing yield can be proposed. 

The output from this analysis is often surprising, as the stages which process 

technologists wish to consider may not be the ones with the greatest improvement 

potential. The PrISM can show more detail by including a table of inputs and outputs, for 

example to highlight potential quality assurance (QA) issues. 

 

Figure 2.2- PrISM including inputs and outputs table for coffee extraction. Taken from the Britest training material. 
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2.5 Process Definition Diagram 

In a complex process, or when a high level of detail is required, the PrISM can only 

provide a limited degree of insight into a process. A higher level of detail can be achieved 

by employing a PDD. The PDD was first constructed by Wall et al. (2001) , and though 

the style has changed over time, the principle remains widely applicable within 

processing (Teoh et al., 2015). The PDD allows the process to be split into stages, 

without the restriction of unit operations. The detail generated is higher than that of a 

chemical equation. The pictorial representation makes it understandable to a team with a 

range of technical specialisations, facilitating effective communication.  

A PDD is a form of State Task Network (Wall et al., 2001). It consists of a series of 

boxes representing each of the tasks involved in a process, filled with a representation of 

the phases within a process. It encourages visualisation of the process as a set of tasks, not 

corresponding specifically to unit operations or particular types of equipment. It is a way 

of showing the physical changes occurring to the materials as they pass through the 

process, potentially influencing the CQA’s of the product. Each box can show the change 

in phase ratios over time, capturing the accumulation or depletion of a phase. Energy 

streams are often included, to show where heating, cooling or mixing would be applied.  

Each box is given a title to represent what is happening within that stage, for example 

Separation, Wetting, Mixing, and is numbered according to the order in which it occurs 

within the process, as shown in Figure 2.3. It is notable that stages will often not be 

named in terms of equipment, but rather in terms of the purpose of the step. For example 

solid/liquid separation could be used to represent a filter or a centrifuge. This allows 

alternative options to be considered, though it can be useful to include the current 

methodology as an annotation. The boxes are typically numbered in ascending multiple of 
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ten, to allow other stages to be added with ease if it becomes apparent that a stage would 

be better represented by splitting into several boxes.  

For explanation purposes, Figure 2.3 shows a PDD of the process of making a cup of 

coffee. Initially the beans are ground and the water heated (Boxes 10 and 20). The beans 

then leach into the water and are filtered (Boxes 30 and 40). This generates grounds for 

disposal and the remaining coffee can have milk and sugar added according to taste (Box 

50). While making a cup of coffee may appear simple, the PDD highlights the frequency 

and number of phase changes, and when applying to a complex chemical process the 

PDDs can give valuable information.  

 

30 Leach 40 Separate

H: Coffee 
+ grounds

G: Hot 
water

20 Heat

10 Size reduction

C: Ground 
coffee

D: Water

E: Heat

A: Coffee 
beans

B: Energy

J: Black, 
unsweetened 

coffee50 Mix

F: Air and 
water vapour

K: Cream

L: Sugar

M: White, 
sweet coffee

I: Grounds

 

Figure 2.3 - An example of the PDD tool, representing coffee extraction. Taken from the Britest training materials. In 

this PDD white indicates a liquid, green indicates a gas phase, grey a solid phase, darker grey a denser solid and red an 

organic liquid. The circles between boxes indicate a multi-phase addition.  

Annotations on boxes are useful, usually noted underneath the box in bullet point form. 

This captures additional important information to ensure the process as a whole is 

considered. PDDs have been used previously within technology transfer, process 

troubleshooting and to compare process options.  
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2.6 Rich Diagrams 

2.6.1 Rich Pictures 

Rich Pictures are a way of visualising what is happening at a specific point within the 

process. This could be mixing within a reactor, cleaning of pipes or any other part of the 

process. A typical Rich Picture will be a result of one stage of the PDD being identified as 

of particular interest, or the box not fully representing the reactions occurring. As an 

example, within a reactor it could identify issues such as inadequate mixing, the 

development of “hot spots”, adhesion to walls, or settling.  

Any scale can be used for rich pictures: either the whole unit can be drawn, or a smaller 

sub-section can be drawn. It is common to begin by drawing the whole unit but the result 

to be the need for further rich pictures to be drawn at a different scales, e.g. to focus on 

the macro (equipment), micro (solid/liquid structure) or molecular scale. Figure 2.4 shows 

a Rich Picture of a cup of coffee. This shows how solids and oils may be suspended in the 

aqueous phase, and provides understanding of the settled solids and the foam at the 

surface of the drink. These may seem trivial in the context of a cup of coffee, but in an 

industrial process inadequate mixing could be a serious hindrance. These are particularly 

useful in investigating localised effects and for troubleshooting.  
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Figure 2.4 - An example Rich Picture showing coffee extraction. Taken from the Britest training materials. 

2.6.2 Rich Cartoons 

A rich cartoon is similar to a rich picture, but depicts the changes over a period of time 

rather than at one particular point in the process, much like a cartoon strip. This could aid 

in the visualisation of the process at a more in-depth level than the PDD.  

2.7 Transformation Maps 

The transformation map (TM) is intended as a method to explore all of the possible 

reactions or physical transformations that could take place within a single task, either 

desired or undesired. Used correctly, it can identify what causes these reactions to occur 

at a faster or slower rate. This can allow the selection of process conditions to push the 

reaction down the desired route, and to minimise undesired transformations.  

It requires the equations for the reactions, and knowledge of all of the species potentially 

present. Initially a list of all species is constructed, prior to generation of the equations. 

The final step is to put these into a sequence for the reaction, and it is useful to colour 

code arrows to represent whether a reaction is desired or undesired.  It is important to 

indicate whether a transformation is reversible or irreversible; note that mass transfer 

processes are by definition reversible. In the example process of making a cup of coffee, a 
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TM for the extraction of flavour from the beans may look like the one shown in Figure 

2.5. Note that the different phases (solid, liquid and gas) are specifically highlighted to 

ensure that any mass transfer processes are captured.  

air

solid aqueous

moist solid

“good” flavours(s)

“bitter” flavours(s)

“good” flavours(aq)

“bitter” flavours(aq)

H2O(l)
+ dry solid

oils(l)

foam

organic
+ H2O

+ air bubbles

+ suspended 

solids

air

“burnt” flavour

[1]

[6]
[5]

[MT2]

[MT3]

[MT4]

[R7]

 

Figure 2.5 - Transformation map for the potential reactions within a coffee extraction. Taken from the Britest training 

materials. 

2.8 Driving Force Analysis 

In a typical Britest session, the Transformation Map is often followed by construction of a 

Driving Force Analysis (DFA) table (Sharratt et al., 2003). The DFA table provides a 

structured approach to understanding the impact of each process driving force on the 

outcome of an individual transformation. Each column represents an individual 

transformation shown in the TM, and each row is a component or condition which may 

influence the transformation. It has been shown to be beneficial to colour code the 

columns according to whether a reaction is desired (usually green), or undesired (usually 

red). The table is completed by capturing the impact of the individual driving forces on 

each transformation using simple symbols such as plus and minus signs. It can also be 

useful to describe specific rates of reaction using words such as seconds or minutes.  
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To highlight the applicability of the symbols, the example of coffee extraction is outlined 

in Table 2.2. The headers in the DFA correlate to the reactions in the Transformation 

Map. The abbreviations MT and R are often used to differentiate mass transfer and 

reactions respectively.  

Table 2.2 - An example DFA based on the process of coffee extraction. Taken from the Britest training materials. 

Columns correspond to the reactions in the Transformation Map (Figure 2.5). 

 

Through filling in this table for each reaction, considering each influencing factor, it is 

possible to identify possible process operating strategies which may favour the desired 

reactions, and minimise undesired ones. In this example undesired reactions could be 

leaving the beans to brew for too long leading to bitter flavours, or the addition of too 

much milk or sugar. It would also demonstrate the addition of milk linking with cooling 

the temperature, which may or may not be desired.  

2.9 Transformations Entities Properties Physics Parameters and Order of 

Magnitude (TE3PO) Table 

The TE3PO table is a tool used to record and analyse knowledge about transformations. It 

is similar to a Driving Force Analysis table but was developed to capture information 
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about parallel rate processes where the rates need to be balanced in order to deliver the 

desired transformations such as physical processing operations and polymerisation 

chemistry.  

The TE3PO draws upon information captured in Rich Pictures and Cartoons, and/or 

Transformation Maps. It structures and summarises process knowledge to aid in the 

troubleshooting of the process, identification of key parameters for process modelling and 

identification of knowledge gaps for planning experimental approach. An example 

TE3PO table is shown here in Figure 2.6.  

 

Figure 2.6 - TE3PO for the coffee extraction process. Taken from Britest training material. 

Within the TE3PO table, each row corresponds to a single transformation, and the 

entities, properties, parameters and physics associated with the transformation are listed. 

There could be multiple entries in the subsequent columns, but transformations should 

always be considered independently. Through the completion of the TE3PO table the user 

can identify unknown influences requiring experimental clarification, highly influential 

parameters or help the user to identify the most important transformations to consider at 

an early stage of process development.  
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2.10 Summary 

Chapter 2 of this thesis discussed the Britest toolkit in detail, to allow the reader to gain a 

working knowledge and appreciation of how the tools work. This gives the reader the 

appropriate understanding of the Britest tools to comprehend the research presented in 

this thesis. The tools were demonstrated on a simple process of making a cup of coffee, to 

allow a reader of any background to appreciate the methods involved. This highlighted 

the salient features of each tool, how they could be applied to a process, and the benefits 

each could bring. Chapter 3 will move on to consider the application of the Britest tools 

to bioprocessing specifically, using virtual processes in SuperPro Designer, before the 

remainder of the research presents developments and investigations within the toolkit 

which are required to adapt the Britest tools for effective use within bioprocessing.  
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Chapter 3 Virtual Bioprocessing 

3.1 Introduction 

The previous chapters have discussed the background to the work (Chapter 1) and introduced 

the reader to the Britest toolkit in its original form (Chapter 2). This thesis aims to develop 

the Britest tools for bioprocessing, and this chapter discusses the application of the toolkit to 

a range of simulated processes using SuperPro Designer (Petrides et al., 2002b), to act as 

“best case scenario” examples of processes where variability is not influencing the outcome 

and data is available for each component for the duration of the process.  

The design and development of sustainable and innovative processes is a challenge across a 

broad range of manufacturing sectors, especially in the high value sectors.  Key difficulties 

include:  pressure on development lead times to reduce time to market; complex systems 

where chemical, physical and/or biological properties are not fully understood; poor 

communication of critical process information between different technical disciplines; lack of 

detailed understanding of whole process challenges within a process made up of a number of 

separate unit operations; identification of viable process flowsheet concepts, and rapid 

identification of the most viable options. 

In recent years, there has been great progress in the development of tools to support the 

design and development of chemical and biological processes (Zhou and Titchener‐Hooker, 

1999; Kalil et al., 2000; Petrides et al., 2002b; Posch et al., 2013; Petrides et al., 2014). Many 

of these are based on computational simulation of the different unit operations, and the 

integration of these operations into whole process flowsheets. In general, however, such 

approaches require large amounts of quantitative data about the different process steps. While 

some individual steps can be modelled based solely on theoretical data, the development of a 
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whole process model during the early stages of process design can be extremely challenging 

as a result of limited quantitative data availability. Computational simulation approaches are 

also often highly complex, requiring an expert user and significant periods of time to deliver 

a robust model.  Furthermore, multidisciplinary communication of input and output from 

these models is often difficult for non-expert users. 

The challenges posed by the complexity of the products/processes and highly regulated 

character of the industry exacerbate these issues within the bioprocessing/biopharmaceutical 

industry sector. Whilst the introduction of Quality by Design (QbD) and Process Analytical 

Technologies (PAT) (FDA, 2004; I.C.H Guideline, 2009) has contributed to the generation of 

much richer datasets through the bioprocess design and development process, it also raises 

additional challenges. The identification of Critical Quality Attributes (CQAs), Critical 

Process Parameters (CPPs) and the definition of the design and control space are frequently 

not straightforward, although fundamental to the process understanding and the ability to 

effectively control the process (Harms et al., 2008; Rathore, 2009; Abu‐Absi et al., 2010; 

Glassey et al., 2011; Kumar et al., 2014). 

Different approaches to defining the design and control space have varying degrees of 

robustness, but are generally based on a combination of process understanding and 

experimentation (Rathore, 2009). There is not currently a standard approach which is 

recommended, and this means there can be no guarantee of the robustness of the design space 

generated.  

In addition to facilitating the QbD approach in processing, effective knowledge capture has 

been correlated with organisational effectiveness (Gold and Arvind Malhotra, 2001).  In order 

to be useful, however, it is important that any knowledge capture approach used is able to 
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organise the information in a manner that enables its effective future use and supports process 

understanding.  

One approach to the challenges of knowledge capture in scientific and engineering based 

companies, developed by Britest Ltd., has found broad use across the chemical-using sectors 

such as pharmaceuticals, and fine, speciality and consumer chemicals industries (Wall et al., 

2001). As previously discussed in Chapter 2, the Britest approach uses a set of qualitative and 

semi-quantitative tools and methodologies to enable cross-disciplinary understanding of 

industrial processes, therefore supporting innovative whole process design. The tools are 

deliberately designed to be complementary to more quantitative approaches such as 

computational process modelling, economic modelling or fluid dynamics calculations. This 

approach is not an expert system, and it is intended to be usable by technologists of all 

disciplines. 

In this work, process simulations were used to provide a range of virtual biological processes 

on which to test the Britest toolkit. The virtual processes were available within SuperPro 

Designer (Petrides et al., 1998; Petrides et al., 2002a; Harrison et al., 2015), and provided a 

“best case scenario” where all process units had significant information available. This level 

of detail would likely be unavailable on an industrial process in early stages of development, 

and so the simulations allowed testing of the tools where practical constraints and data 

availability were not a concern. It was anticipated that applicability to bioprocesses could be 

established, and required developments identified to enable the next stage of the research to 

test the developed toolkit on a process which better represents the level of detail available on 

an industrial process. Four types of bioprocess, spanning four markets, were selected to 

demonstrate broad applicability across a range of bioprocesses (Figure 3.1). These were 

monoclonal antibody (mAb) production, insulin production using E. coli, wastewater 
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treatment and penicillin V production. For the purpose of this chapter of the thesis, the focus 

will be on insulin production through an E. coli host expression system. The completed 

Britest tools for the remaining three bioprocesses are included in Supplementary Material as 

Appendix A.  

 

Figure 3.1 - The four types of bioprocess, and their associated markets, being considered for this research. 

3.2 Methods  

3.2.1 Process Simulation 

The model process selected for detailed discussion in this chapter, the production of insulin 

from E. coli, is a complex process, which can be carried out using two methods (Kamionka, 

2011). Either the chains could be synthesised separately and mixed, reduced and reoxidised 

after purification (Goeddel et al., 1979). Alternatively, the bacterial culture produces 

proinsulin, which then undergoes extensive downstream processing to give biologically 

active insulin (Zündorf and Dingermann, 2001).  
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In this case, the proinsulin method was simulated using SuperPro Designer. This simulation 

of insulin expression in E. coli has been presented previously as part of Chapter 12 in 

Bioseparations Science and Engineering (Harrison et al., 2015). The process scheme is 

summarised in Figure 3.2. The fermentation, producing Trp-LE-MET-proinsulin precursor, is 

performed in bioreactors using transformed E. coli cells. The fermentation duration is 18h 

and it is performed at 37oC. The product is formed as inclusion bodies and a total yield of 

30g/L is obtained. The primary recovery consists of cell lysis and purification of inclusion 

bodies, through centrifugation for cell separation, homogenisation to lyse the cells and then 

further centrifugation to separate the inclusion bodies from cellular debris. A detergent 

(Triton-X-100) is then added prior to the final centrifugation step, to aid further separation of 

the inclusion bodies. The reaction section of the downstream process starts with solubilising 

the inclusion bodies using urea and 2-mercaptoethanol to break the disulphide bonds prior to 

concentration through diafiltration. The solubilised inclusion bodies are then cleaved with 

cyanogen bromide to remove the signal sequence, and evaporated before sulfitolysis results 

in protein unfolding. The next stage is S-seraphose chromatography, followed by refolding 

and the final step, again using 2-mercaptoethanol. The resulting protein is purified with 

Hydrophobic Interaction Chromatography (HIC) before being cleaved enzymatically with 

trypsin to remove the C-terminal peptide. The final purification consists of four 

chromatography stages, followed by crystallisation of the insulin. Centrifugation is used to 

recover the crystals for freeze drying.  

3.2.2 Qualitative Process Understanding Tools 

The Britest tools were applied according to a framework developed for a chemical processing 

study. The main objectives of applying the tools in this case study were: 

 To capture the purpose of each stage of the process and how it works 

 To identify the potential for improvement within the process 
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 To outline experiments required to further understand and optimise the process 

While the purpose of the work presented within this case study was to identify gaps within 

the toolkit in relation to bioprocessing, the study was designed to mirror the typical aims of a 

study supported by the Britest tools. Were the process not simulated, the study would be used 

to capture process understanding in each stage, in addition to exploring the underlying 

science of the process and identifying potential opportunities for process improvement. They 

could also be used for whole process analysis/design, to determine the impact of changes in 

one stage on others.  The Britest tools are also particularly useful for facilitating 

interdisciplinary knowledge transfer, by providing a visual approach to knowledge capture, 

which is nonetheless based on the fundamental science under investigation.  Such an 

approach is particularly pertinent to the bioprocessing sector, where many different 

disciplines can be involved in a single process, and effective communication of information 

between different disciplines can be extremely challenging. 

The key tools are outlined previously as part of Chapter 2. Each tool was considered in turn, 

and relevant advantages and disadvantages used to determine which tools would be most 

appropriate for application to this particular bioprocess to achieve the intended knowledge 

outcomes. This study focussed on the Process Information Summary Map (PrISM), the 

Process Definition Diagram (PDD) and the TE3PO. The Transformation Map and Driving 

Force Analysis (DFA) are targeted at developing understanding of the chemical reactions 

occurring within a single process task, which was deemed too complex to consider for the 

fermentation step. The tools could be used within downstream processing steps, but this 

wasn’t carried out within this study as the downstream processing units used in chemical 

processes do not differ significantly between chemical and biological processes. In the course 
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of this work, a new tool was developed (the Reaction/Reagent Transformation Tracker 

(R2T2)) and it was employed to further enhance process understanding.  

The PrISM captures key data on all stages within a process, along with the inputs and outputs 

for each stage.  This tool helps the team to focus their activities on the most appropriate parts 

of the process by providing an overview of the most critical material, time and energy 

dependencies.  

The Process Definition Diagram (Wall et al., 2001) is a tool that enables process 

technologists to describe a process independently of scale and equipment. It is a form of State 

Task Network, describing the process as a sequence of tasks that are performed to transform 

starting materials into products.  The PDD provides an information rich summary of part or 

all of a process, which has been used for purposes such as cross-disciplinary knowledge 

sharing, whole process design, process technology transfer, and troubleshooting. The PDD 

uses a pre-defined set of symbols to denote the number and type of phases present in each 

process task as the presence of multiple phases can add significant complexity and risk to the 

scale-up of chemical and biochemical processes. 

The TE3PO table is used to better understand the conversions and reactions when a driving 

force analysis is not possible. The tool was developed for physical processes, where clearly 

defined intermediates and reactions are not available or not fully understood. It is particularly 

useful when seeking to understand and balance reaction rates.  
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3.2.3 Simulated Bioprocesses 
 

As mentioned earlier, this thesis chapter will focus on the production of insulin from E. coli. 

The insulin process starts with the fermentation, and then moves into primary recovery using 

a combination of centrifugation, blending and homogenisation to fully lyse the cells. This is 

followed by the solubilisation of the inclusion bodies, and a range of reactions to obtain the 

correct folding of the protein. The process ends with several filtration and purification steps 

to ensure the correct purity is obtained, excluding incorrectly folded proteins.  

 

Figure 3.2 - Process outline for insulin production within SuperPro Designer. This was the process on which the Britest 

study was conducted. 
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The Penicillin V process also starts with fermentation, and is followed by primary recovery 

where the biomass is removed. The resulting broth is cooled and acidified to ensure the 

correct form of penicillin is produced. This is then purified using solvent washes, and 

centrifuged to purify the solids. These are subjected to fluid bed drying to remove any 

remaining solvent before leaving the process, and to ensure that the final product does not 

contain more than 0.05% water.  

 

Figure 3.3 - Process outline for the Penicillin V production process. 

The waste water treatment process starts with the mixing of influent, which is treated with 

two aerobic bio-oxidation steps prior to polymer addition at the second mixing stage. The 

polymer addition is designed to encourage the growth of flocs, increasing treatment 
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Figure 3.4 - Process outline for one of the branches of the Industrial Wastewater Treatment process. 

 

Figure 3.5 - Process outline for the second branch of the Industrial Wastewater Treatment process. 
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Figure 3.6 - Process outline for the monoclonal antibody production process. 

Additional bioprocesses included in this work are detailed for information and their 

associated Britest studies are included in Appendix A.  

3.3 Results  

The PrISM for the insulin model process considered in this research is shown in part in Figure 

3.7. In this representation, the process has been split into four high-level stages: fermentation, 

primary recovery, reactions and final purification. To complete the PrISM tool first the 

central column representing the various stages of the process were considered. Each central 

box was sized according to the length of that section of the process. For example, the 

reactions box was bigger than both the fermentation and primary recovery stages, as it takes 

106h vs 34h and 30h respectively. This would give the user an indication of where the most 

time is being spent during the process, and this could be a factor worth investigating in 

further detail later in the Britest study, as time savings can often lead to cost savings.  

Once the central column was completed for the four overarching stages, each stage had its 

associated inputs and waste captured in tables on the left and right hand side on the 

corresponding box. For example, in the fermentation Ammonia, Glucose, Nitrogen, Oxygen, 
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Dioxide, Nitrogen and Oxygen. Anything else produced in the fermentation (e.g. biomass, 

insulin) is taken forwards through the process, and so is not captured in the outputs table. The 

amount of each reagent used is captured, as is the amount of each waste component 

produced. This could help the user to identify reagents which are used in excessively large 

amounts, which could indicate a process inefficiency.  

The final stage of tool completion is to consider the costs associated with each reagent. 

Initially raw costs were used, but the high number of reagents (particularly in the reactions 

phase of the process) made it difficult for the user to discern the difference between each 

cost. To alleviate this, cost categories were introduced. The cut off points for each category 

would vary between processes, the cut off values applied for this study are shown in Table 

3.1. 

Table 3.1 - Cost category assignation based on US$ cost per unit. 

COST CATEGORY COST PER UNIT (US$) 

1 ≤1 

2 ≤10 

3 ≤20 

4 ≤100 

5 ≤1000 

6 ≤5,000 

7 ≤20,000 

8 ≤100,000 

9 ≤500,000 

10 >500,000 
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The introduction of these cost categories enables the user to quickly discern the most 

expensive reagents being used, which could be used to focus the Britest study direction if 

there were alternatives to the expensive reagent available. This would be especially useful if 

an expensive reagent was being used in large amounts, and would allow this to be quickly 

identified for further investigation. In some cases this may be unavoidable (e.g. in the case of 

using a Protein A chromatography stage in monoclonal antibody production (Shukla et al., 

2007; Ayyar et al., 2012; Bolton and Mehta, 2016)) , but in many situations a process could 

be altered to reduce the requirement for the expensive reagent, or indeed a cheaper alternative 

could be identified.  

Within the insulin production process the most expensive reagents were the enzymes, and the 

main waste was generated at the reaction stage within the downstream processing (stage 3).  

This was also the longest stage of the process and additionally generated the highest 

contribution to the product cost (Figure 3.7).   
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Figure 3.7 - Extract from the PrISM for the Insulin production process covering the reactions stage. The central box is sized 

relative to the duration of each step. The box on the left identifies additions to the process at each stage, the box on the right 

identifies additions to the process at each stage, the box on the right identifies waste leaving the process. 

 

In a traditional Britest study, the next step would be to complete a PDD for the reactions 

section of the process, as this is where the PrISM has identified the most potential for cost 

and time reductions to be made. However, the use of the PDD is already well established 

within the Britest consortium for downstream processing units from chemical processes. In 

light of this, the PDD was constructed for the upstream processing (fermentation) stage, to 

investigate its applicability to biochemical transformations, rather than chemical or physical 

transformations as has been its primary application to date.  

The PDD (Wall et al., 2001) provides a task-based process overview, which also includes a 

notation that captures the states present during the course of a process (Figure 3.8). 

Completing the PDD the user begins by constructing the first task box, in this case solution 
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prep and sterilise. The task boxes are labelled in multiples of ten, to allow the user to 

retrospectively add boxes if tasks are missed without having to change the entire PDD 

numbering system. The task box is filled with the relevant patterns/shapes to represent the 

different phases present within a process task, and the additions to the task are captured using 

circles and arrows showing where the component is added or removed. For example in this 

case the first task box is has a small amount of grey denoted by a triangle, where the media 

powder is added to liquid and dissolved (therefore the powder amount decreases). The rest of 

the box is left white to denote an aqueous liquid state. Water is shown to be added by the 

white circle, and heat is applied which is denoted by the blue circle at the top of the task box. 

Process conditions will always be denoted at the top of the task box in this manner, to avoid 

confusing them with material inputs. The colour coding system used for this process (Figure 

14) is outlined in Table 3.2. Once the first task box is completed, the user would create the 

next task box (in this case 20, prep for fermentation) and continue to complete based on the 

components of this task. This would continue until the process or section had been fully 

captured.  

Table 3.2 - Colours used within the PDD and what these represent within the PDD. 

Colour Represents 

White Liquid 

Green Gas 

Grey Solid 

Blue Heat 
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Figure 3.8 - Process Definition Diagram for the upstream stages of the Insulin production process. The different colours 

present in each box represent a different phase, as outlined in Table 3.2 (white-liquid, green-gas, grey-solid and blue-heat). 

In this PDD the cells are represented as a solid. 

As noted in the previous section, the focus is not on equipment but rather process tasks, 

allowing changes to be considered independent of the “unit operation” thinking.  The second 

level of detail is the capture of the phases present in each task, which can be critical in 

determining the complexity of many chemical and physical processes but can under-represent 

the complexity of many bioprocesses, owing to the presence of multiple components within 

both solid and aqueous phases. Annotations can be added, which could include operating 

parameters, observations, common issues etc.  

After tool redevelopment, the tool was constructed in a similar manner, but using additional 

colouring to represent the different components present in each stage rather than simply the 

stage, to ascertain whether the addition of this information would add more value than the 

traditional PDD. While the act of tracking the components was useful for the purpose of 

better understanding what is happening at each stage of the process (vs Figure 3.8 where 

limited information is shown), the resulting PDD contained such a diverse range of colours 

and patterns that the user required a key to remember what each colour/pattern combination 

represented. It is worth noting that the same colour was used more than once with different 
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patterns, as otherwise there were not sufficient different colours to capture the number of 

components in the process.  

As this tool was constructed using a single user, the necessitation of a key to understand the 

output highlighted the unsuitability of the tool for detailed analysis of bioprocesses where 

understanding of individual components is critical, though the ability to track reagents 

showed the potential to add value. In addition, the time taken to create the PDD with separate 

components was significant and would not be realistic for inclusion in the Britest study unless 

only a highly restricted section of the process was selected for very detailed investigation 

(e.g. a single unit operation). Based on this analysis, there was a clear need for an alternative 

tool that allowed the components of a process to be tracked, thus giving scope for 

understanding potential for process variability and improvement. 

A new tool called the Reaction/Reagent Transformation Tracker (R2T2) was conceived to fill 

this gap. This tool aims to show how the amount of each process component changes through 

the course of the process, to provide a high-level view of the whole process. Colour coding is 

employed to capture the inherent variability when considering a biological system, allowing 

for understanding of the challenges involved in development of a process that delivers a 

consistent output. Incorporation of the variability in this manner helps to tackle the second 

aim of understanding the potential for improvement in the process. Each of the process 

stages, and the whole process, can be viewed in relation to the best and the worst-case 

scenarios, akin to a cost benefit analysis.  

To construct the R2T2, the user begins by identifying the process sections (e.g. fermentation, 

primary recovery, reactions, formulation etc.) to list along the top of the tool, with each 

section corresponding to a column. There is a column on the left for each reagent to be listed, 

and the next column allows the user to note the purpose of the reagent (e.g. buffer 
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component/growth media/promote inclusion body refolding). This would ensure that 

everyone within a Britest study understood why each reagent was included, promoting 

effective communication between technologists involved in up- and down-stream, along with 

business stakeholders. A column on the right-hand side of the table is left to allow the capture 

of the final concentration of the formulation, either in % or in absolute amount. It would also 

allow the indication of any limits for purity of the final product, where the amount of an 

impurity has an upper limit at which it can be present and still acceptable.  

From here, the R2T2 is ready to complete. The user can either list each reagent one at a time, 

and then track across the stages with a line the levels at which it is present at each stage, or 

could list all reagents first and then draw the tracking line after the list has been compiled. In 

this case, the list of reagents was generated in whole before tracking was captured, but this 

would likely be more difficult on a process which was not simulated. SuperPro Designer 

allowed the list of reagents to be exported into the R2T2 directly, streamlining the application 

process.  

As this was a simulated process, there was no variability to be captured in the R2T2. 

However, different coloured lines could be used on the R2T2 to represent different scenarios. 

This could include red lines for a poor process, or green lines for a successful process. This 

would allow the user to identify where the most critical discrepancies occur. This could 

influence process monitoring options via the application of Process Analytical Technology 

(PAT), or could identify where experimentation would be required to reduce variability by 

changing the process in some way. The final stage of the R2T2 is to colour any cells in a 

solid colour where a reagent is not present within a process stage. In this case the colour 

orange was used to represent when a reagent was not present.  
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In this case study, the R2T2 generated the process overview shown in Figure 3.9. From this, it 

is evident that the biomass is eliminated completely during the primary recovery stages of the 

process. It is also clear that the insulin is only produced within the final stage of the process, 

and the requirement for the production of precursors is more apparent. The extent of reagents 

required to produce the insulin is easier to comprehend, and this highlights the required focus 

on downstream processing for process improvement. When considering the process using 

conventional methods, it may be tempting to focus on improving the yield from the 

fermentation, however the output from R2T2 makes it clear that the process improvement 

effort would be better expended on improving the downstream conversion reactions and 

purification scheme. The R2T2 took less time to complete than the PDD, and provided a 

whole process view that was more appropriate than the PDD for a bioprocess of this type. 

Additionally, the tool is simple to understand and apply, which are key criteria for delivering 

a new tool that will find broader application. The R2T2 fills a performance gap that cannot 

easily be addressed using the PDD tool.  These tools are very complementary in nature, and 

the decision on whether to use PDD, R2T2, or both will depend on the problem being 

considered, the timelines, and the data available to the team.   
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Figure 3.9 - Extract from the R2T2 of the process. Each reagent and its purpose is captured in the column on the left. The 

process stages make up the remaining columns. The reagent's presence is then tracked through the process with the blue line. 

Orange boxes indicate the absence of the reagent. 

 

The Transformation, Entities, Properties, Physics, Parameters and Order of Magnitude 

(TE3PO) tool was employed in an attempt to link the process parameters with the outcomes 

for specific process tasks.  This tool has been used to support understanding of complex 

physical processes such as milling, where balancing of input parameters related to both the 

input material and the equipment is necessary to deliver a desired outcome.  For this study 

fermentation was selected for testing tool applicability, for the same reasons as the PDD 

above. Previous work illustrates the applicability to downstream operations, but application 

to fermentation is as yet unproven. The cellular growth aspect of fermentation was 

anticipated to be the aspect of the process which the tool had not already been tested on. 

There are many metabolic pathways within fermentation, and these are too numerous to be 

captured in a tool such as the TE3PO. Therefore, rather than considering each metabolic 

reaction as a separate reaction, a higher level overview approach was adopted. The aim of 

applying the TE3PO was to be able to link the process parameters and their associated impact 

on the fermentation outcome. The higher-level approach included reactions such as cell 
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growth, rather than individual pathways, to capture the relevant effect of each process 

parameter instead of all possible changes at a cellular level.  

The tool was used to assess the cell growth within the fermenter shown in Table 3.3.  

Although it does not provide a direct means of optimisation for the cell growth, the tool can 

help in defining which parameters or properties could have an impact on a particular 

transformation.  This is valuable information in helping to define which of these are fixed, 

and which can potentially be varied and to what extent.  

 One challenge identified is the fact that the metabolic pathways involved in bioprocesses are 

generally interlinked, whereas this tool considers each of the transformations separately, at 

least in its current form. While there was some benefit in using the tool to understand how 

particular parameters could influence the output of multiple transformations, the practicality 

of applying it to deliver deeper understanding of a fermentation process was more 

problematic.  In metabolic pathways many of the reactions are interlinked, and not all are 

identified or understood. An alternative approach could be to capture all of the known 

reactions using a table of this type, and try to use the information collated to identify trends in 

the impact of input parameters and material properties on the overall output. However, to 

construct this tool in this level of detail would take a great deal of time, and once constructed 

the resulting table would contain such a high volume of information and conditions that it 

would be impossible to draw conclusions from the information. In addition, when the TE3PO 

was used to consider high level transformations (e.g. cell growth), the volume of information 

was too high to be suitable to draw conclusions from upstream processing because there were 

too many factors involved to draw meaningful conclusions. Based on this analysis, there is a 

requirement for a tool capable of linking the process parameters of a fermentation to the 

outputs. However, the TE3PO tool cannot deliver this requirement in its current form. 
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Table 3.3 - TE3PO for fermentation. 

Transformation Entities Properties Physics Parameters Order of 
Magnitude 

Bioreaction-
growth and 
production 

Ammonia Liquid 
phase, grow 
to high cell 

density, 
productivity, 
ease of lysis, 
morphology, 

product 
structure 

KLa Reactor geometry, 
Oxygen transfer, 

mass transfer, 
agitation, 

temperature, 
feedstock 

composition, 
starting inoculum 

concentration, 
pressure, osmotic 

pressure 

 

Glucose 

Nitrogen 

Oxygen 

Salts 
Water 
Inoculum 

 

 

 

 

 

  

 

 

3.4 Alternative Bioprocesses 
 

This chapter has focussed specifically on the production of insulin by an E. coli expression 

system. However, the tools were evaluated with respect to multiple bioprocesses (Appendix 

A). For the purpose of this thesis, the outcomes regarding applicability to the broader 

bioprocessing industry have been summarised for the reader in Table 3.4. Each tool was 

evaluated with respect to the various processes and anticipated shortcomings documented, 

including the tools developed within the course of this work (R2T2 and TACO). 
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Table 3.4 - The challenges associated with applying Britest tools to the different types of simulated process being considered within Chapter 3. 

Britest Tool Aims Changes so 
far 

Specific 
Process 

Specific Process Challenges Resulting proposed 
changes 

Completion 
Time 

PrISM Whole process overview, 
identify highest waste 
contributors, where 
product is lost, most 

expensive reagents, most 
time consuming steps 

Addition of a 
cost 

category, 
colour 

coding of 
reagent 

amounts 

Waste 
water 

treatment 

Simple process-process 
sections could be too high 
level. Process splits - no 
definitive backbone 

Use unit operations for 
simple processes. Use 
branches to allow the 
split.  

30mins - 1 
hour 

PenV Simple process-process 
sections could be too high 
level 

Use unit operations for 
simple processes 

30mins - 1 
hour 

MAb Platform processes generally 
used so limited benefit 

Templates could be 
generated and edited  

30mins - 1 
hour 

PDD Whole process knowledge 
capture, at a higher level of 

detail than the PrISM. 
Facilitate communication 
in interdisciplinary teams. 

Show the states present 
within a process, identify 
where multiple states are 

present, show the 
experience the materials 
have through the process 

Trialled 
breaking 

down into 
reagents, the 

use of high 
level 

sections, 
both deemed 
unsuccessful 

Waste 
water 

treatment 

Capture of different species 
information 

None: tool deemed not 
appropriate for this 
information 

½-1 day 

PenV Highly complex liquids None: other tools 
better suited 

½-1 day 

MAb Highly complex liquids None: other tools 
better suited 

½-1 day 

Rich Pictures Detailed capture of a 
specific part/sequence of 

the process 

None-
applicable 

without 
changes 

Waste 
water 

treatment 

Highly variable process-will 
depend on feed, several may 
be needed 

Use on a specific 
problem, not on all 
potential situations 

30mins-1 
hour 

PenV None None 30mins-1 
hour 

MAb None None 1 hour 
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Britest Tool Aims Changes so 
far 

Specific 
Process 

Specific Process Challenges Resulting proposed 
changes 

Completion 
Time 

TE3PO Link reactions with 
controlling parameters 

Targeted to 
specific 

reactions, 
not suitable 

for whole 
process use 

Waste 
water 

treatment 

Species interactions are 
highly complex 

This tool will be unable 
to capture this 
information-
potentially better 
suited to a 
Transformation Map. 
Limited applicability-
TM probably better 
suited 

1 hour 

PenV Secondary metabolite 
production, therefore 
production will be more 
complex 

Take care when 
targeting, applicable 
but must be used with 
caution 

1-2 hours 

MAb Eukaryotic expression 
systems more complex still, 
combined with a complex 
molecule. Production 
influences often not well 
understood 
 
 
 
 
 
 
 
 
 

Metabolic pathways 
too complex and not 
well enough 
understood. Some 
potential for 
application if large 
amounts of data are 
present.  

1-2 hours 



  74 

 

Britest Tool Aims Changes so 
far 

Specific 
Process 

Specific Process Challenges Resulting proposed 
changes 

Completion 
Time 

R2T2 Track reagents through the 
process, capture process 

variability, identify 
unknowns 

NA Waste 
water 

treatment 

 Variability is associated to 
different types of feed-not 
always the same process. 
Species dynamics not 
captured.  

Construct more than 
one R2T2 for various 
commonly treated 
waste streams. 
Alternatively focus on 
high, medium and low 
toxicity waste, using 
colour coding to 
distinguish.  
 

1 hour per 
stream. 60-90 
mins for one 
with all info 
on one.  

PenV None None 1 hour 

MAb None None 
 
 
 
 
 

1 hour 
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Table 3.4 shows that while all the processes are biological in basis, the applicability of the 

tools remains variable and dependent on the process itself. This is not dissimilar to the 

application of tools to chemical and physical processes, where the application of different 

tools to particular processes can vary greatly, depending on the problem being addressed.  

The variability reinforces the importance of developing the frameworks for tool 

application. Appropriate frameworks for application would help users to streamline the 

application of the tools, and facilitate development of an appropriate level of process 

understanding.  

3.5 Discussion 

This qualitative study of the insulin production process found results at each stage of the 

study. Initially, the PrISM was employed. Within the completion of this tool, the highest 

waste stream was identified, along with the most time-consuming stage of the process. 

The most expensive reagents were the enzymes. The tool gives a basic overview of the 

process in a clear and efficient manner, thus demonstrating its applicability to 

bioprocessing. The underlying concept of the tool is beneficial to a bioprocess, and the 

simple format in which it is employed is not so simplistic as to reduce the value of the 

contained information.  

Within a process running using a QbD approach, the ability to demonstrate clearly 

process understanding is invaluable when applying for regulatory approval for a product 

(I.C.H Guideline, 2009; Zelenetz et al., 2011; Wang and Chow, 2012). The PrISM tool 

has been demonstrated as an efficient way to summarise a process into a succinct format 

without losing crucial information about how the process operates. The PrISM could be 

used as a means to identify the section of the process with the most potential for 

improvement; from here efforts to decrease waste or enhance reaction efficiency can be 

investigated, either experimentally or theoretically through further tool application. The 
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clear explanation of why a change to a process could be required and where the efforts for 

change would be focussed could be crucial in justifying the changes. Additionally, if a 

PrISM was constructed for multiple scenarios it could be used to support the varying 

action required within the QbD approach to facilitate the same end result. Quality 

Attributes with respect to cost could be identified, but these could not be related to the 

CQAs of the product. The value of cost modelling within a process has been 

demonstrated previously within bioprocessing (Sinclair and Monge, 2002; Farid, 2007; 

Jiménez-González and Woodley, 2010), however these models are often complex and 

difficult to interpret. BioSolve is one tool which currently works on the cost modelling 

basis within bioprocessing, and while the benefit of detailed costs understanding is clear, 

the capturing of the cost information in a format which all employees could understand 

(such as a PrISM) could be useful for ensuring a broad understanding across the whole 

plant.  

Following this, the PDD was tested on the simulated process.  While this tool can be 

useful as a means of reviewing a process as a whole, facilitating communication between 

interdisciplinary teams and knowledge capture, in the case of the fermentation stage it 

proved difficult to achieve a balance between too much and insufficient detail. When used 

in its conventional form, where states present within each task are captured, the 

prevalence of a dominant liquid phase meant limited information could be gained from 

this aspect of the tool. However, when the liquid was split into components, the content of 

the liquids meant that the resulting PDD was highly complex and therefore could be 

difficult to understand. Knowledge transfer tools are most effective when easy completion 

and understanding enable effective knowledge capture (Gupta et al., 2000; Goh, 2002; 

Tamer Cavusgil et al., 2003). In the case of the PDD, the changes which were predicted 

to add benefit to process understanding negated this through the added complexity. It was 
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concluded that within a biological process, the ability to track individual reagents would 

provide greater benefit than representing the phases present.  

The R2T2 is a novel knowledge management tool which was developed as a direct result 

of this study. The ability to view a snapshot of how each process component changes over 

the course of the process is envisaged to be beneficial in both knowledge capture and 

process improvement. The resulting process snapshot aims to provide a method for the 

capture of reagent purpose, gain/loss and final concentration. With respect to this process, 

those aims were met through the R2T2 in a manner which was found to be both user 

friendly and information rich. The ability to use colour coding to capture potential 

variability within a process was found to be of particular interest to biologically based 

processes, where reducing variability can be a key concern.  

The ability to pinpoint the source of variability within a process, and consider the options 

available for reduction would be highly beneficial in a QbD process. In this tool, 

criticality of process components could be ascertained, but like with the PrISM tool, this 

could not be related to the CQAs through the R2T2 tool alone. The identification of 

variability and the attribution of this to a cause is the first step an organisation could take 

in effective process control. Without knowing why the resulting product from a process 

varies, it is impossible for the process owner to attempt to control this. In this case the 

process was simulated, and so no robust assessment of variability could be made. It is 

hypothesised that one important source would be the fermentation, as has been shown to 

be the case in previous studies (Neves et al., 2001; Defernez et al., 2007; Montague et al., 

2008; Delvigne et al., 2014). If this was found to be the case, the process owner could 

increase monitoring efforts in the reactor to more tightly control the resulting broth, and 

therefore reduce the variability for the primary recovery. If the variability could not be 

controlled within the reactor, then it is possible that the conditions for the biomass 
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removal could be altered to accommodate the output from the fermentation and obtain the 

optimum results regardless. This is the underlying principle of QbD, and the R2T2 has 

been shown in this example to be of benefit in the early phases of implementing this 

approach.  

The weakness of this study was the inability to correlate the CQAs with their controlling 

CPPs, facilitating the successful application of the QbD approach. A new tool would be 

required to fill this knowledge management gap in a simpler format. Whilst a new tool 

was not developed as part of this study, subsequent chapters will discuss how this was 

achieved.  

The techniques employed for this qualitative understanding study originated from the 

Britest toolkit, which was developed for enhancing process understanding of chemical 

and physical processing. The study aimed to investigate the applicability to bioprocesses, 

and to overcome any potential gaps within the toolkit. It was clear from the PDD that the 

increased complexity within a biologically based process was the most significant barrier 

to application. The development of the R2T2 from this shows that the implementation can 

be critical to the capture of knowledge. The PDD could be used to capture the same 

information but was difficult to interpret. This demonstrates clearly the requirement for 

structured knowledge capture and management, rather than reliance on regulatory or 

internal documentation.  

This study established the possibility of applying the current Britest tools to bioprocessing 

to enhance process understanding. While not all of the tools were directly transferable, it 

is envisaged that through further tool development, to allow for the complexity of a 

biological process to be captured, a user friendly qualitative toolkit for bioprocess 

understanding could be constructed. The value of such a toolkit is challenging to quantify. 
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However, the requirement for enhanced process understanding underlies the QbD 

initiative, a growing driver in industrial bioprocess development (Chhatre et al., 2011; 

Neubauer et al., 2013; Rathore, 2014).   

The final stage in the study was the more detailed understanding of the fermentation, 

which was undertaken through the TE3PO table. The TE3PO is the tool within this study 

which showed the most potential to be able to correlate the CQAs with their controlling 

CPPs, facilitating the application of the QbD approach. Linking of process parameters 

and outcomes is generally performed using Design of Experiments (DoE) (Bade et al., 

2012; Zhang and Mao, 2016), however in a data lean environment a tool such as the 

TE3PO to link the anticipated effects could be useful for influencing the experimental 

approach. However, while the information was captured, again this was not in a user-

friendly format and it was clear that a new tool would be required to fill this knowledge 

management gap in a simpler format.  

The techniques employed for this qualitative understanding study originated from the 

Britest toolkit, which was developed for enhancing process understanding of chemical 

and physical processing. The study aimed to investigate the applicability to bioprocesses, 

and to overcome any potential gaps within the toolkit. It was clear from both the PDD and 

the TE3PO that the increased complexity within a biologically based process was the 

most significant barrier to application. The development of the R2T2 from this shows that 

the implementation can be critical to the capture of knowledge. The PDD could be used to 

capture the same information but was difficult to interpret. This demonstrates clearly the 

requirement for structured knowledge capture and management, rather than reliance on 

regulatory or internal documentation. The TE3PO table is another clear example of where 

the knowledge is successfully captured but the use of the knowledge is potentially limited 

through the representation. A tool to enable these effects to be captured visually for 
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clearer understanding would be highly beneficial to achieving the aim of the tool while 

maximising usability.  

This study established the possibility of applying the current Britest tools to bioprocessing 

to enhance process understanding. While not all of the tools were directly transferable, it 

is envisaged that through further tool development, to allow for the complexity of a 

biological process to be captured, a user friendly qualitative toolkit for bioprocess 

understanding could be constructed. The value of such a toolkit is challenging to quantify. 

However, the requirement for enhanced process understanding underlies the QbD 

initiative, a growing driver in industrial bioprocess development.  

3.6 Summary  

This chapter considered the application of the Britest qualitative knowledge capture tools 

outlined in Chapter 2 to a simulated bioprocess to ascertain the potential for employing 

the tools within the bioprocessing sector. It is anticipated that the requirement for 

methods such as those presented within this research will increase as the QbD approach 

becomes more widespread within bioprocessing. Some of the Britest tools were found to 

be directly transferable, particularly the Process Information Summary Map, while the 

Process Definition Diagram has a clear gap in capturing the complexity of bioprocesses. 

More specifically, this relates to effective capture of the complexity of homogeneous 

phases containing multiple components.  In light of this challenge, a novel knowledge 

capture tool (the Reaction/Reagent Transformation Tracker) was developed to provide a 

means of tracking multiple components through a whole process.  

Overall, this highlights the value of using qualitative tools such as those developed by 

Britest to support whole process understanding and knowledge transfer for complex 

biological processes.  However, it also flags the limitations of the existing tools, and 
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demonstrates the requirement for new or amended tools to be developed to fill the current 

gaps, in particular the linking of CQAs to CPPs. With the increasing pressures to improve 

process understanding (I.C.H Guideline, 2009) to comply with the Quality by Design 

initiative, tools such as these can play an important role in enhancing cross-disciplinary 

process understanding in complex biological systems.  Qualitative tools of this type can 

also provide an invaluable means of identifying the depth of knowledge and 

understanding of a process, and thus support targeting of more detailed experimental 

and/or modelling studies. 

From here, the next stage of the research was to investigate Britest tool application to 

more realistic datasets where information was incomplete. However, the work on virtual 

processes highlighted the need for a tool to link the process parameters and outcomes. 

Chapter 4 discusses the development of a tool for this purpose (the Interaction Analysis 

Table-IAT) before Chapters 5 and 6 move onto considering this tool with respect to 

Upstream and Downstream processing datasets from academic studies, before Chapter 7 

investigates the tools sensitivity.  
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Chapter 4 Interaction Analysis Table Development 

4.1 Introduction 

The previous Chapters of this thesis discussed the background to the research (Chapter 1), and the 

Britest tools both in their original format (Chapter 2) and adapted for bioprocessing through 

simulated processes in SuperPro Designer (Chapter 3). SuperPro Designer allowed the toolkit to 

be tested on ideal processes, where data was available for each stage of the process and values 

were fixed. At this stage in the research a basic Britest toolkit was constructed for bioprocessing, 

and the next stage was to test this toolkit on processes which better represents a real-world 

scenario. When this section of the research was commenced, a further gap was identified and a 

new tool required to fill the gap was developed. To this end, this Chapter will focus on the 

development of the Interaction Analysis Table (IAT).  

Quality by Design (QbD), as previously discussed in Chapter 1, is becoming increasingly 

important within the bioprocessing sector (I.C.H Guideline, 2009; Jiang et al., 2010; Chhatre et 

al., 2011; Rathore, 2014). The implementation of QbD relies on a high level of process 

understanding, accompanied by a high level of knowledge of the product. Thorough process 

understanding will enable a flexible process to be adopted, where changes can be made 

throughout process operation, to rectify problems as they arise, to reduce lost batches, increase 

confidence in product quality, and reduce the environmental footprint of processes (Junker, 2010; 

Koch, 2011; Neubauer et al., 2013). This clear added value means more companies are investing 

time early in the process development stages to ensure this level of control could be achieved on 

the final process through high levels of process understanding. High throughput automated 

systems such as the ambr250TM (Sartorius Stedim/TAP Biosystems, (Ngibuini, 2017)) and 

MicroMatrixTM (Applikon, (Bareither and Pollard, 2011)) are making it easier than ever before to 

generate this process understanding at the early stages of bioprocess development, to increase 

confidence before scale up. These techniques are capable of generating large amounts of data, 

however uncertainty can then arise in the analysis and interpretation of these large amounts of 
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data due to wide range of data analysis techniques being available, and at times a lack of 

mechanistic understanding (Charaniya et al., 2008; Ündey et al., 2010; Mercier et al., 2014).  

One of the main features of a successful QbD approach is being able to accurately predict the 

effect a change in process parameters will have on the quality attributes of the product. This can 

be achieved through first principles models, or data analysis when large datasets are available, but 

can be problematic in early stage process development, where available data may be limited. 

Design of Experiments (DoE) is often employed to test the effects of multiple parameters on 

process outcomes; however, the successful application of DoE requires the identification of the 

appropriate parameters and their associated ranges (Harms et al., 2008; Streefland et al., 2009; 

Abu‐Absi et al., 2010). Currently the success of the approach relies on the expertise of the user, 

which is not always applied in a structured and reproducible manner. The IAT was developed to 

support the application of a DoE approach to optimisation, with the aim of generating a structured 

approach to DoE implementation. Other uses have included the supporting of scientific rationale 

behind effects of parameters on process outcomes, and to bridge the gap between data based and 

first principles models. 

However, while DoE is a powerful technique when applied correctly, if applied incorrectly the 

time and money required to develop a process can increase drastically. It is not uncommon for 

companies to employ a screening round of DoE prior to a full DoE experimental set up, to ensure 

the design covers the optimum design space prior to investing large amounts of money and time 

(Mandenius and Brundin, 2008; Shivhare and McCreath, 2010; Kumar et al., 2014). While this 

approach is undoubtedly valuable, its successful application relies on the user’s process 

knowledge. This is the point of development at which the Britest tools could provide value to the 

bioprocessing industry. The Britest tools have previously generated significant benefits within 

other industries (Infineum, 2011; Johnson-Matthey, 2014), and would be applied to guide an 

experimental approach to process development. The tools at this stage in the research were able to 

consider various aspects of a bioprocess, and showed they could be used successfully to capture 

relevant information specific to bioprocessing.  
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In spite of this successful application to a range of bioprocesses, the tools were unable to 

satisfactorily link the process parameters to the process outcomes, a key consideration during 

bioprocess development. In light of this, a new tool was sought to facilitate this linking, to ensure 

the Britest tools were able to provide value to a bioprocess development study and therefore be 

attractive to the bioprocessing industry. The IAT originated from an industrial collaboration 

between Britest, AbbVie and Pfizer, to meet a requirement for a tool to support whole process 

understanding of antibiotic fermentation processes. The IAT is not currently part of the core 

Britest toolkit, due to issues arising in early stage testing. The tool has been reported to be 

difficult to implement, problematic to interpret and requires an experienced facilitator as it is not 

as visual or intuitive as the rest of the Britest toolkit. The aim of this work was to redevelop the 

tool, resulting in an IAT which was easier to apply to a process, and gave a more easily 

interpreted output.  

The original IAT was named the (F)IAT (Fermentation IAT), and was developed as a direct result 

of a wish to link the fermentation process parameters to the properties of the final fermentation 

broth. The tool was based on the Driving Force Analysis (DFA), in which symbols such as + and 

– represent the effect a condition or component has on each outcome. The DFA was developed 

for chemical processing, and so requires the user to consider each transformation (chemical or 

physical) possible in the process stage being investigated. These include both desired and 

undesired reactions. For a chemical process, this list of potential transformations can vary. 

However, in E. coli the list of metabolic reactions possible is in excess of 700 (Karp et al., 1996; 

Ouzounis and Karp, 2000). This is only the core metabolism, and does not include those pathways 

involved in recombinant expression of a protein. For a mammalian cell line, the potential 

metabolic reactions would be even greater, and so the DFA would not be a suitable tool for this 

purpose. A higher-level approach was sought in the original (F)IAT development. The developed 

tool was thought to be applicable and useable by those involved in its development, however at 

the beta-testing stage other Britest users found it difficult to understand and so it has not been 

included within the broader Britest toolkit to date. Rather than develop a new tool from scratch, 
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this work focussed on considering whether the (F)IAT could add value if some further 

development work was carried out to overcome the issues raised with applicability and added 

value in the original beta-test.  

For this work, a dataset originating at the Technical University of Berlin (TUB) was employed. A 

small set of experiments were performed to produce Alcohol Dehydrogenase (ADH) using E. coli 

as an expression system (Knepper et al., 2014). The rest of the Britest toolkit provided little 

support in interpreting this dataset, and the benefit of a working IAT was clear. The high 

complexity of fermentation was a large driver for the development of the IAT; most of the current 

Britest tools were developed to be applied to relatively simple chemical processes where the 

complexity is significantly lower. Additionally, the variation of input parameters across the 

process can have a significant effect on process outcomes that occur further downstream, and the 

current Britest toolkit is not capable of tracking these effects. To this end, the IAT was 

redeveloped to allow datasets from biopharmaceutical development of this nature to be analysed 

using the Britest approach. The implementation of the redeveloped IAT for application to 

upstream data is discussed in detail in Chapter 5. This Chapter will focus on the development of 

the tool from the original version of the IAT into a new tool which overcomes many of the issues 

reported in beta-testing previously, with the aim of developing an IAT which is user friendly, 

adds value to a Britest study, and is able to link the CPPs of a fermentation to the CQAs. The 

ability to utilise the tool in other areas in which Britest are active was considered throughout 

development, in addition to the ability of the tool to be applied to other process units rather than 

being restricted to fermentation.  

4.2 Methods 

4.2.1 Assessment of Current Tool  

A subsection of the original (F)IAT for illustration purposes is shown in Figure 4.1. This 

subsection describes the main aspects of the tool.  
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Figure 4.1 -Section of an IAT produced by AbbVie which has been anonymised for the purpose of this thesis. Down 

the left hand side the constraints and parameters are listed, and the outcomes are listed along the top. The rating is 

decided with the business and process benefit of the outcome in mind. 

The tool comprises of two tables, one focussing on effects of process parameters on process 

outcomes, and the other on the constraints of the process. These are displayed one under the other, 

and while a column by column approach is recommended, the two are completed in parallel. The 

first step the user would follow would be to construct these tables, with the constraints and 

parameters as rows, and the outcomes as columns. These could be identified from previous tools, 

for example in the original (F)IAT work these were derived from a PDD. To illustrate, constraints 

could be factors such as “fermenter must be kept below 150oC”. Parameters could be media 

components, temperature, dO2, pH etc. Outcomes would be anything which could be measured or 

observed about the outcome, which in a fermentation could be cell mass, viable cell count, lactate, 

product yield, product stability etc.  

After the table is constructed and the constraints, parameters and outcomes noted, the outcomes 

are then designated weightings. These weightings indicate their importance to the process from 

both a technical and business perspective, as assessed using the Britest Initial Screening Analysis 
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(ISA) methodology. For example, an outcome which makes the process more efficient but does 

not lower costs could be attributed a score of 5 or 6, showing there is some benefit to improving 

the outcome but it is not perhaps as substantial as another factor which both improves the process 

and reduces cost (which could be designated a 9). Scores can range from 1-10, with 1 being least 

influential and 10 being most influential. A score can be replicated; the system is to score 

outcomes rather than to rank them in order. User judgement is required for designating these 

weightings, and it is anticipated that this could spark discussion between individuals.  

Once the outcomes have all been attributed weighting scores, the table is filled in. Each cell in the 

table is used to examine the impact of the factor in the row on the outcome in the column. This 

can be represented by several symbols, which were based on those used for the DFA tool. A 

single plus sign shows a positive relationship, i.e. that an increase in the parameter will cause an 

increase in the associated outcome. A double plus sign indicates that this effect is more substantial 

than in those attributed a single plus. An example of this could be the effect of increasing a key 

nutrient on biomass level. Following this trend, a minus sign would indicate that an increase in the 

parameter causes a decrease in the associated outcome, and a double minus would be used to 

indicate a stronger inhibition.  

Not all relationships are linear, and an asymptotic relationship is particularly common in 

bioprocessing. Where live cells are being handled in upstream processing this asymptotic 

relationship could be expected from almost every parameter within the process. To reflect this, the 

plus or minus sign is followed by an S. An L would be used to indicate that this constraint reached 

a limiting value. The final symbol, a question mark, would be used to indicate an unknown effect.  

The intended outcomes of the IAT were two-fold. Firstly, the tool would be used to interrogate 

the process in a structured manner, to allow the degree of knowledge and understanding to be 

captured. Secondly the completed tool could act as a visual log of the key interactions within the 

fermentation process. In its original state the IAT could be used to serve this purpose, however the 

knowledge captured and visual log were only able to be understood by those involved in the 
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original Britest study where the IAT was constructed. Individual cells could be annotated with 

additional observations using Microsoft Excel, but this did not make interpretation easier. Tests 

where other users were asked to interpret an IAT they had not been involved in constructing 

showed that they found it challenging to understand exactly what had been noted. As such, the 

tool could be used by an individual, but the knowledge was less easily transferable across 

individuals or teams, and it was this limitation that this study aimed to address.  

The preliminary consideration of the tool for the linking of process parameters and outcomes 

showed several areas in which redevelopment would be required. The first of these was the high 

level of complexity of the tool. The inclusion of two tables, with differences between symbols 

being difficult to ascertain at a glance, each contributed to making the tool complicated to 

implement on a process. This complexity was the overarching problem with the tool in its original 

form, but additional concerns included the ambiguity of the weightings and output, the time to 

complete and the limited scope of information obtained and captured within the tool. Each 

concern about the tool was considered in a structured manner, with various options for 

redevelopment being trialled until an optimal solution was obtained. The flow of redevelopment is 

shown as Figure 4.2. Each development to the tool had at least one alternative considered.  

 

Figure 4.2 - The work flow for the tool development. The over-arching sections show the four areas for tool 

improvement considered. The sub-sections of each show the options which were considered. 
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4.2.2 Table Structure 

Two options were considered for the table structure. The original approach had two tables 

constructed in parallel, and examined together when considering potential changes to a process. 

Both aspects of the table are important within bioprocessing, but simultaneous examination was a 

main contributing factor to the high complexity of the tool. The options considered for 

overcoming this limitation were to amalgamate the tables into one, or to consider them 

independently in sequence rather than simultaneously.  

4.2.3 Capture System 

Three methods for capturing the information were tested: a numerical system, a colour-based 

system or a shape-based system. Numbers could be employed to give a scoring system, resulting 

in a quantitative tool. Positive numbers could indicate the strength of the positive interaction, and 

negative indicate the strength of the negative interaction. Colours could be used in a system 

similar to heat mapping where green spots indicated the best results, and red indicated adverse 

results. Alternatively, shapes could be used to generate a “reaction profile” to show the 

relationships between the parameters and outcomes.  

4.2.4 Weightings 

A numerical system was originally applied for the weighting of outcomes. The weighting system 

was tested with a numerical system, an alphabetical system and a colour based system. The 

various weighting systems were tested to ascertain which would be the most user-friendly. In 

addition to testing different methods for implementation, the categories were more clearly 

defined, and a system to incorporate these weightings into a final output was sought.  

4.2.5 Final Output 

The original tool did not have a clear output to identify opportunities for process improvement. 

While the completion of the tool is of value, and a conclusive output is not always sought from a 
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Britest tool, when linking the process parameters to outcomes the anticipated benefit would be to 

make a change to the process to positively influence the outcome. The decision to change would 

be better supported by the clear output of a tool than by subjective interpretation where results 

could be ambiguous. Outputs of a qualitative and quantitative nature were tested.  

4.3 Results and Discussion 

4.3.1 Table Structure 

Amalgamation of two tables was the first option considered, with the intention to integrate the 

table of limitations into the table of reactant relationships. This had already been partially 

achieved through the use of the “L” symbol to indicate limiting values for constraints. However, 

this increases the amount of information contained within the single table, which could increase 

the complexity. One of the overriding concerns about applying the IAT successfully is the 

inability to draw a clear conclusion from the information contained within the cells, and the 

addition of further symbols is unlikely to reduce complexity. Instead, the two components of the 

table were split to be utilised separately.  

In Chapter 3 of this thesis, the application of structured methodology for tool employment within 

a study has shown promise. Splitting of the table into two separate parts would enable a more 

flexible methodology for bioprocess analysis and design. The work in Chapter 3 showed the 

bioprocess type (e.g. antibiotic production, monoclonal antibody production, etc.) influenced the 

manner in which tools were applied. It is possible that the IAT may require adaptation for use on 

different bioprocess types. However, currently it is suggested that at the start of the Britest study, 

the ISA methodology would be employed to guide which table would be most beneficial to 

complete first. It is anticipated that rather than bioprocess type, the scenario in which the tool is 

being employed will be used to determine the order in which the two tables are completed. If a 

process is already running within a regulated environment, for example, then it may be more 

suitable to complete the constraints table before the effects table, as the constraints will greatly 

limit the changes which could be made. Conversely, if a process is in the early design stages and 
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has a large amount of scope for changes to be made, then examining the interactions before the 

constraints would be more appropriate.  

4.3.2 Capture System 

One of the primary barriers to effective tool employment on process was the ambiguous 

interpretation of results. While this was partially overcome through the introduction of a scoring 

system (discussed in the next section), the use of symbols such as +. – etc. for information capture 

was seen as a key factor in the complex nature of the tool. The symbol-based system had two 

main issues: the difficulty in distinguishing the symbols from each other, and the lack of depth to 

the information captured except through the use of hidden annotations. Considering these in turn, 

the difficulty in distinguishing symbols led to the decision to use a visual system that could be 

interpreted at a glance. This approach has been employed in previous tool development work, in 

particular on the R2T2 and Process Definition Diagram (PDD), and has been shown to increase 

information accessibility when conclusions need to be drawn with limited time and resources for 

detailed analysis. The lack of depth was due to the lack of variation within the symbols, meaning 

only basic relationships could be captured in the tool. This approach is successful in the DFA for 

chemical processes but the increased complexity of bioprocesses makes this approach less 

suitable. Asymptotic relationships could be shown using the original symbol-based system. 

However, there are a huge range of reaction profiles for biological reactions. Reactions can have 

an optimum value, especially when enzymes are involved, or may have a sudden plateau rather 

than an asymptote. Neither of these options could be captured satisfactorily in the original IAT. 

Multiple signs could be used to show particularly strong or weak interactions, but this was not a 

strongly visual way of showing how the increased outputs compared to each other. The IAT 

output was a classic case of needing to meet two opposing criteria. More information was 

required within the IAT but in increasing the detail level the tool then becomes more difficult to 

understand. Satisfying both of these criteria simultaneously required major changes to the tool. 

The methods employed for this were colour and shape, eventually surpassed by a combination of 

the two approaches.  
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Initially it was envisaged that colour could be used to create a “heat-map” approach to finding the 

optimum performance conditions. Each cell was defined in terms of high and low parameter and 

outcome combination (shown in Figure 4.3), and the colours red, yellow green were used to show 

the effect of the parameter on the outcome at a particular spot. This was effective at showing the 

best space in which to operate the reaction, but was not as simple to construct on a computer. An 

illustration was carried out by hand, which has been the standard approach for all Britest tools; 

however with the recent introduction of the Facilitator Support Tool (FST), which allows capture 

of the output from a Britest study in electronic fashion, it would be more beneficial for the Britest 

members if tools could be constructed easily in electronic form. To combat this, row was split into 

three in Microsoft Excel (Figure 4.3). The splitting into three allowed a universally familiar traffic 

light system to be applied to indicate which levels of each parameter would lead to the optimal 

response.  The ideal outcome for the tool in this form would be a green colour across a single 

level of a parameter. For example, in the case of Parameter 1 in Figure 4.3, a medium level would 

be the optimal solution, as green (good) results are seen for outcomes 1 and 3, and a yellow 

(moderate) result seen for outcome 2. This is not the perfect result, but is better than at high levels 

of parameter 1 (where a red-poor-result is seen for outcome 2), or at low levels of parameter 1 

where outcome 2 shows a good result, but outcomes 1 and 3 show poor and moderate results 

respectively. In this case there would be a compromise made on outcome 2, to preserve the 

positive results for the other 2 outcomes.  
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Figure 4.3 - Heat map IAT showing how the colour coding system could work if employed in the IAT. 

This approach overcame the issues around application on an electronic platform, but was only 

capable of showing high, medium and low levels of each parameter/outcome. More cells would 

give better resolution, but would also make it more difficult to interpret at a glance. When this 

approach was enlisted for the original AbbVie version of the IAT, it was difficult to ascertain 

where each parameter and outcome started and ended. While this showed the lack of depth of 

information with the symbol-based system had been overcome, it did not satisfy the ease of 

understanding criterion for tool development.  

The initial colour coding scheme appeared to generate a tool which satisfied both criteria to a 

limited extent, and so this approach was examined in greater detail. The ability to easily visualise 

the process parameter levels which corresponded to the desired process outcomes was a strength 

of the colour-based system. Nevertheless, the colours did not capture the response in its entirety. 

If three parameters had a positive linear effect on a particular outcome, the differences in impact 

were not captured. The complex nature of bioprocesses, especially fermentation, means that the 

relationships between parameters and outcomes do not always fall within set categories. For 

example, a linear increase may suddenly cease when a parameter reaches a certain level, or a 

slight decrease may increase drastically below a certain threshold value. These intricacies could 

be better captured by the colour-coding system than the previous symbol-based system. However, 

a method utilising shapes was devised which was fully capable of capturing the detail of these 
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relationships, in a comparable way to the outputs from DoE approaches (Figure 4.4). The shapes 

system could be completed using Microsoft Excel using the Shapes function. The resulting tool 

was effectively a grid of “reaction profiles” showing where optima existed, which reactions were 

positively/negatively linear (and to what degree), and allowed asymptotic curves to be captured in 

more detail than the original “S”. The location of the asymptote was now shown relative to the 

high and low levels of each parameter/outcome combination, rather than simply showing that an 

asymptote existed.  

 

Figure 4.4 - IAT constructed using a combination of shapes and colour to represent the interactions between process 

parameters and outcomes. Cells filled in red are unknown relationships, cells filled in black are where no relationship 

exists. 

The shape system worked well for capturing the reactions within the process, and was a marked 

improvement for implementation from the colour system. The lack of colour made the tool 

difficult to interpret at a glance, and so some colour was incorporated to show where the process 

would need to operate to obtain the optimum result for each outcome. Outcomes were split into 

desirable (yellow) and undesirable (blue), and the areas in the cells corresponding to the optimum 

value for each outcome (maximised for desirable, minimised for undesirable) was highlighted 

with the corresponding colour. The colours yellow and blue were selected as a result of previous 

feedback around red/green colour-blind users, but these could be changed based on user 

preference.  

The resulting tool, at this stage of development, consisted of a structured approach for 

implementation, and also showed in an information-rich manner where the process should be 
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operated for optimum output. The next stage of development was to consider the action required 

when optimum conditions for a process parameter were different for multiple outcomes.  

4.3.3 Weightings 

The original tool contained weightings for the outcomes relating to the impact on the process and 

the business. These were displayed at the bottom of the tool as the final row. This removed the 

focus on the weightings, and so the first stage of development was to move this to become the 

row underneath the outcomes. In this way, it was more obvious which outcome corresponded with 

which weighting.  

Weightings were displayed using a numerical system, balancing both the business and process 

benefits. The incorporation of these into a single value meant that it could be unclear when 

revisiting the tool at a later date on what basis the weighting was assigned. To rectify this, the 

weightings were split into two. Each outcome was assigned a weighting with a value between 1 

and 5 for the potential business benefit, and then a second weighting between 1 and 5 for the 

potential process benefit. In the initial development version, the weightings remained separate, 

but when the tool was redeveloped further a row for combining the scores was added. This is 

discussed further in the next section, and the weighting system robustness (along with alternative 

systems) is discussed in detail in Chapter 7.  

The final development was the added level of clarity when considering the weighting assignment. 

The original system comprised of only two defined levels (1 being “Improvement in outcome is 

unnecessary for business and process needs” and 10 being “Improvement in outcome would have 

significant process and business benefit”), meaning that some variability could be introduced 

between users. While systems of this nature are common in QbD assessments (C.M.C Biotech 

Working Group, 2009; Patil and Pethe, 2013; Kepert et al., 2016), they do not fully capture the 

process as a whole, only the most critical parameters/outcomes. Qualitative tools are notoriously 

difficult to reproduce in a consistent manner (Konstantinov and Yoshida, 1992; De Ruyter and 

Scholl, 1998; Patton, 1999; Glassey et al., 2000) and as this is a long known weakness of the 
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approach, a more robust weighting assigning system was devised. Weightings for the outcomes 

had a value of between 1 and 5, and the associated importance of the outcome for the 

improvement of the business/process is outlined in Table 4.1. The same weighting categories are 

used for both business and process impacts.  

 

Table 4.1 - The weighting scale and the corresponding definition for use within the IAT 

Weighting Business Case Definition Process Case Definition 

1 Unimportant to business case Unimportant to process 

2 Slightly Important to business 

case 

Slightly Important to process 

3 Important to business case Important to process 

4 Very Important to business case Very Important to process 

5 Critical to business case Critical to process 

The more clear definition of the weightings aims to reduce the potential for ambiguity across 

different users, however ambiguity and alternative systems are discussed in more detail in chapter 

7.  

4.4.4 Final Output 

The final output of the tool was an important consideration for tool development. As with many 

of the Britest tools, the original output for the IAT was the completed tool, with decisions about 

further work or process changes being based on the discussion generated through completing the 
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tool. While qualitative output of this nature is valuable, the IAT as a tool was shown to lend itself 

to an output of a semi-quantitative nature. The revised tool, at the stage of development discussed, 

consisted of coloured “profiles” as an indicator of the interactions between each parameter and 

outcome, weightings to show how important the improvement of each outcome would be to the 

business and process respectively. Additionally, in practice, the focus of the ISA analysis and 

output should be guided by the ISA to ensure maximum benefit to the stakeholders. While the 

potential for improvement can be seen from analysis of the “profiles”, there was no output to 

show how contradicting optima could be best handled. For example, a parameter may positively 

influence one outcome, but negatively influence another, and while the weightings may make it 

obvious which outcome would be more important to improve, this is not as clear when high 

numbers of outputs and parameters are being considered. To rectify this, a scoring system was 

devised to allow the balancing of outcomes to be shown in relation to the parameters.  

The scoring system is not complex, allowing it to be calculated by hand rather than using complex 

computer software. Three columns were added to the end of the IAT, labelled “Drive to Increase”, 

“Optimum” and “Drive to Decrease”. They could either be calculated separately for the business 

and process (using the two individual weighting values), or the weightings could be added (or 

multiplied if the user felt appropriate) together to give an overall weighting from 2-10 which 

could be used. This would be determined by the user, and could be the subject of further tool 

development as case studies are constructed.  

The score is then generated using the coloured areas of each cell in the table. If the coloured area 

is to the right of the cell then it is a drive to increase (as this corresponds with high levels of the 

parameter), and the weighting for that combination is added to the “Drive to Increase” column as 

a positive integer (blue circles on Figure 4.5). These are added up to give a final score for the 

“Drive to Increase”. This score will always be positive and represents the overall incentive to 

increase each parameter in turn. If the coloured area is to the left of the cell then it represents a 

“Drive to Decrease”, and so the weightings from these columns are converted to be negative, and 
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are subtracted from each other in this column. This gives an overall negative value in the “Drive 

to Decrease” column for each parameter in turn (red circles in Figure 4.5).  

The ‘Optimum’ column is employed if the coloured area is in the centre of the cell, usually when 

a bell shaped curve has been required. It is calculated in the same manner as the “Drive to 

Increase/Decrease” columns, and is positive. A diagram showing the calculation of two of the 

three score columns is shown as Figure 4.5, to illustrate the generation of the final output in a 

simplified form.  

 

Figure 4.5 - Calculation of the "Drive to Increase/Decrease" columns in the IAT. The blue circles represent scores to be 

added to the "Drive to Increase" column, and the red circles represent scores to be added to the "Drive to Decrease 

column". 

Once the values for these final columns are calculated, they can be used to determine a future plan 

for optimisation. The parameters which have a large difference between one column and the other 

two show a clear incentive to make a change to the process. Those which have very little 

difference show no incentive to change the process from current operating conditions. This 

system does not make the tool fully quantitative, but the ability to compare outcomes using 

numerical measures means it can be classed as semi-quantitative. This is not as powerful as a 

large dataset where multiple studies have been employed and effects can be statistically analysed, 

but is powerful enough to inform the design of such studies. Potential improvements are not in 

absolute values, but in relation to the other parameters which it is proposed would be of great 

value in early stage studies where data is not available. The final IAT is shown in Figure 4.6. 



  99 

 

 

Figure 4.6 - Final version of the IAT. This is a much more visual tool that that originally devised (Figure 4.1), and 

gives the user a clearer course of action following tool utilisation. 

4.4.5 IAT completion 

In chapter 2 of this work, the simple process of making a cup of coffee was used to illustrate how 

the Britest toolkit would be used on a process, without a requirement for any detailed scientific 

knowledge. For the same reason the IAT was constructed for the same simple process, to 

demonstrate how the tool would be constructed and applied. 

The first stage of the IAT is to complete the outcomes list, where each column is attributed an 

outcome associated with the process (Figure 4.7), in this case desired sweetness, temperature, 

bitter flavour and calorie content. The parameters are then completed down the rows, in this case 

amount of coffee beans, sugar, milk and water temperature.  

 

Figure 4.7 - The first 2 stages of building the IAT, in this case for the process of making a cup of coffee. 

From this stage, the weightings are then completed, where the business case and potential for 

process improvement are considered using the guide set out in Table 4.1, shown here in Figure 

4.8. In this example of making a cup of coffee, sweetness was deemed a 3 with respect to business 

case (as it could incur an extra business cost if provided free to the customer), and a 3 with respect 

to process improvement (as it is not the primary attribute of a cup of coffee). Assuming the coffee 
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was a standard filter coffee, temperature would be an important attribute to increase, giving it a 4 

with respect to process improvement, and a 4 with respect to business case as a cold cup of coffee 

could prevent repeat business. An unpleasant and bitter flavour would be a 5 with respect to 

process improvement, as it is critical to providing a quality product, however was only designated 

a 3 with respect to business case as often other factors such as convenience can maintain customer 

levels. Calorie content would vary depending on the customer, and so was attributed a 1 with 

respect to business case and a 1 with respect to process improvement. In a real-world example this 

weighting assignation would be carried out by an interdisciplinary team.  

 

Figure 4.8 - IAT for making a cup of coffee once the weightings have been attributed according to the system in Table 

4.1. 

The next stage of the IAT completion process is to show where relationships do not exist (in 

black), and if relationships do exist what the relationship looks like. In this case (Figure 4.9) for 

example there is no relationship between the amount of beans and both temperature and calorie 

content, and the amount of sugar does not influence the temperature of the coffee. However the 

more milk that is added to the coffee, the lower the temperature will be. In addition, the more 

sugar that is added the higher the calorie content. At this stage desirability of a quality is not 

indicated by colour, the relationship is therefore shown with white shapes. 
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Figure 4.9 - Relationships between the parameters and outcomes for making a cup of coffee, shown in the IAT. 

The next stage of completing the IAT is to consider the desired area of operation using the 

shading system. Yellow is used for features which are desirable, blue for those which are 

undesirable. This is due to the relative rarity of blue/yellow colour blindness (also known as 

Tritanopia) compared to red/green colour blindness (Simunovic, 2010), and ensures the broad 

majority of potential users would be able to distinguish between the colours used. The area of the 

shape which represents the desired outcome is the area which is shaded. In this example (Figure 

4.10), the assumed desire was a standard filter coffee with milk and one sugar. This is why the 

middle of the amount of sugar vs sweetener (shown in the red oval) is shaded in the centre. If the 

drinker preferred 3 or 4 sugars, the area towards the right-hand side would be shaded instead to 

indicate this preference. Conversely the unpleasant flavour associated with using water which is 

too hot was sought to be avoided, and so the area towards the left for the shape was shaded blue 

(shown in the green oval).  

 

Figure 4.10 - The IAT for making a coffee with milk and one sugar when shading is completed. Yellow shading 

indicates desirable characteristics, blue indicates undesirable. 
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The final stage is to complete the calculation to give the drive to increase and decrease each 

parameter, illustrated previously in Figure 4.5. In this case (Figure 4.11) there is a drive to limit 

the amount of coffee beans and sugar used, a drive to decrease the amount of milk in the coffee, 

and a drive to maximise the temperature of the water but only to a defined limit.  

 

Figure 4.11 - The completed IAT for making a cup of coffee where the drinker wishes for milk and one sugar. 

4.5 Summary  

This chapter showed the redevelopment process for the IAT tool. The tool was originally 

developed through industrial collaboration, but had several associated challenges which prevented 

Britest integrating it into the standard the toolkit. The tool was redeveloped through structured 

changes to the table layout, order of application, information capture system, weightings, and the 

addition of a scoring function to generate a conclusive final output. The new IAT offers a user-

friendly approach to systematically analyse the potential impact of each process parameter on 

each process outcome. The effective linking of parameters and outcomes is imperative to the 

adoption of a QbD approach to bioprocessing. In order to be able to make changes to a process 

during operation to positively influence the outcome, the operator must fully understand the link 

between process parameters and product attributes. Without this understanding, the impact of 

changing the process cannot be fully understood, and so changes cannot be performed with 

confidence. The IAT would be used to encourage the linking of the parameters and outcomes 

from an early stage of process design/optimisation, supporting effective experimental design. The 

IAT tool would be particularly well suited to early stage studies where there is a major drive to 

“do more with less” on a short timescale. This tool could be used to help minimise the 
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experimental burden in these development stages, and ensure that experimental plans are based on 

clear process understanding. The semi-quantitative nature can aid the user in prioritising the 

further sets of experimentation to be performed.  

The subsequent Chapters will test the IAT on upstream and downstream unit operations (Chapters 

5 and 6 respectively) to ascertain the ability of the tool to handle the range of data types which 

can be generated within bioprocessing. Chapters 5 and 6 discuss the application of the tool to 

datasets accessed through an academic collaboration, due to limitations in suitable data 

availability from within the Britest consortium. Finally, Chapter 7 explores the sensitivity of the 

weightings within the IAT.  
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Chapter 5 Upstream Testing of the Interaction Analysis Table (IAT)  

5.1 Introduction 

The previous chapters of this thesis have set out the bioprocessing background (Chapter 1), the 

Britest tools in their original form (Chapter 2), the basic redeveloped toolkit using “best case 

scenario” simulated processes (Chapter 3) and the redevelopment of the Interaction Analysis 

Table (IAT) tool (Chapter 4). This Chapter will focus on the application of this tool to an 

upstream processing dataset which was originally generated as part of a research study at 

Technical University Berlin (TUB), exploring the optimisation of heterologous protein production 

in E. coli. .  

Heterologous protein production is the manipulation of an organism to produce a protein which 

would not be produced in the untransformed “wild-type” organism. It employs the recombinant 

gene sequence for a polypeptide to produce the protein. This manipulation has been applied to 

many organisms including whole plants, whole insects, whole animals and a range of cell culture 

types (Gordon et al., 1980; Shinmyo et al., 2004; Van Der Vossen et al., 2005). As discussed in 

Chapter 1, there are four main options for host expression system which are widely used: 

mammalian, insect, yeast and bacteria. Each of these has its own merits and drawbacks, and all 

have their place in both research and industrial systems. In general, micro-organisms are the 

favoured host due to the rapid generation time, higher reliability and ease of handling (Sadava et 

al., 2009; Edwards, 2011). They have been used for many years and so a range of well 

characterized expression systems are available.  

Escherichia coli (E. coli) is a common host for the expression of proteins which do not require 

complex post-translational modifications to be applied, usually proteins of prokaryotic origin. For 

this study, E. coli was employed to recombinantly express alcohol dehydrogenase (ADH). The 

ADH produced within this study is derived from Lactobacillus. Alcohol dehydrogenase is an 

enzyme often used as a biocatalyst (Leuchs and Greiner, 2011) to catalyse the reduction of 

carbonyl compounds to enantioenriched (r)-alcohols in an enantioselective manner (Müller et al., 
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2005). It is known for its versatility, making it a valuable product within the biotechnology 

market. Other attractive properties include the stereo-selectivity, producing almost exclusively 

(R)-alcohols (Leuchs and Greiner, 2011), and the substrate specificity (Wolberg et al., 2001; 

Ernst et al., 2005). It is effective in a range of atypical conditions including in the presence of 

organic solvents and gaseous reactants (Leuchs and Greiner, 2011). It has been suggested that its 

activity could be further enhanced by supplementing with co-factors (Machielsen et al., 2009). 

The main drawback to any biocatalyst is the high purification costs incurred when compared to 

chemical catalysts (Faber, 2011). Host cell proteins must be fully eliminated from the enzymes to 

ensure additional unwanted reactions are avoided (Bommarius and Riebel-Bommarius, 2007). 

Whole cell systems can be employed to reduce purification costs for the biocatalyst producer, but 

with this comes the increased risk of undesired reactions. In addition, both purified enzymes and 

whole cell systems may have a narrow range of process conditions under which the desired 

catalytic reaction occurs. Enzymes which arise naturally from a biological origin tend to be 

sensitive to temperature and pH, which is not always beneficial depending on the desired reaction 

conditions (Zhao, 2006). Within industry, Lactobacillus derived ADH is used to produce chiral 

alcohols, which may be used as building blocks within fine chemical and pharmaceutical 

production (Schmid et al., 2001; Schoemaker et al., 2003; Panke et al., 2004).  

The Bioprocess Engineering group at TUB performed a series of optimisation experiments for the 

production of ADH from E. coli, investigating the effect of three media components on the 

outputs of the process (Knepper, 2014). The outputs were measured at specific time-points, which 

were not always equidistant. This led to the generation of a dataset containing 24 experiments, 

which did not contain evenly spaced sampling points, and did not have readings for all outputs at 

all time-points. While 24 experiments are not a large dataset, the original work involved visual 

analysis of the results using line graphs, with no structured approach to data analysis being 

employed. For a single factor this approach would not be impractical, however with 24 

experiments to compare consisting of three factors and five outputs the comparison was time 
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consuming. Additionally, there was the possibility that different people analysing the results 

would come to different conclusions, due to the lack of structure in the analysis.  

The IAT was identified as being the tool most suited to a study of this nature. This was due to the 

upstream focus of the study, as previous work has shown the high level of complexity within 

fermentation makes the Britest tools difficult to apply. The IAT was designed to link process 

parameters to outcomes, which is consistent with the dataset generated through these experiments. 

Once the tool had been redeveloped to overcome the problematic application process (Chapter 4), 

the TUB dataset was used as an alpha-test of the tool in its redeveloped form.  

This Chapter reports the application of IAT for analysis of the dataset generated by TUB, and 

compares the outcome of this analysis to the conclusions drawn in the original study, and the 

outcome of a statistical analysis of the dataset using Design of Experiments (DoE).  

5.2 Methods  

5.2.1 Experimental 

The production of ADH in E. coli was sought to be optimised in these experiments, where the 

ADH was recombinantly expressed. The ADH in this case was simply a protein which could be 

measured easily and is reliably produced, creating a model system, rather than a molecule which 

would be industrially beneficial. The dataset focussed on investigating the effects of changing 

three media components on the outcome of the fermentations.  

The experimental methodology was performed as reported by Knepper et al. (2014). In summary, 

the E. coli was grown in 96-well microplates in an orbital shaker and attached to a liquid handling 

system to allow automated sampling. Three media components were used at differing levels to 

examine their effect on the output of the fermentation. These are detailed in Table 5.1. Reagent A 

is a glucose-releasing biocatalyst. Measurements taken were cell growth (using OD600), 

concentrations of acetate and glucose, activity of ADH and the pH. The measurement 

methodology is detailed by Knepper (2014) and Ukkonen (2011).  
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Table 5.1 - Summary of the experiments performed for the TUB study. A tick indicates the level of a component used 

in an experiment; cells filled in black indicate this level of a component was not present in the experiment. 

Experiment 

Reagent A Lactose Glucose 

0.6 U L-1 1 U L-1 0g L-1 0.5 g L-1 0g L-1 0.5 g L-1 1 g L-1 

A  

 

 

 

 

  

B 

 

  

 

 

  

C  

  

  

  

D 

 

 

 

  

  

E  

  

 

 

 

 

F 

 

 

 

 

 

 

 

G  

  

 

  

 

H 

 

 

 

 

  

 

5.2.2 Original Analysis 

The original work sought to demonstrate the benefit of an automated system for optimisation 

work of this nature, and so no statistical analysis of the results was performed. Instead, the 

experiment which yielded the highest result for ADH activity was selected as representing the 

optimal conditions. Verbal discussions with the TUB researchers indicated that an attempt was 

made to understand the relationships between parameters and outcomes, but that this did not 

enhance process understanding due to the complex nature of the dataset.  

5.2.3 IAT Analysis 

The dataset generated by TUB contained process parameters and outputs, but had no structured 

methodology in place for analysis of the results. The conclusions drawn by the TUB researchers 
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were not a result of structured analysis, and did not consider each of the potential interactions 

present within the fermentation. The IAT was employed to test whether the tool could have 

identified interactions further to the original study. The IAT was completed from the study data, 

and was compared to the original output after completion. This ensured that conclusions from the 

tool were not being drawn with bias towards the original results. The IAT was completed with 

respect to the final values for each output. This was recorded at 44.3 hours for ADH activity, 

OD600 and pH, and 36.9 hours for acetate and glucose concentrations. The weightings within the 

IAT as defined in Chapter 4 are usually comprised of two individual weightings, related to the 

business benefit and the process benefit (discussed in Chapter 4). For this study they were 

generated only with respect to the process, as the academic nature of the study meant that no 

business benefit could be readily attributed.  

5.2.4 Design Expert 9 

Subsequent to qualitative analysis through the original study, and semi-quantitative analysis 

through the IAT, the results were analysed with Design Expert 9 TM, a software package intended 

to statistically evaluate Design of Experiments results. This study used a historic design to analyse 

the results from TUB. This ensured that the existing experimental setup and results available 

would be analysed, and extra experiments would not be required. The average values for each 

response were used for the analysis, meaning no replicates could be incorporated into the model. 

The p-value for significance was set at 0.05. Each response was considered individually, prior to 

optimisation to maximise cell specific productivity.  

5.3 Results and Discussion  

5.3.1 Original Analysis 

The full results for each experiment are shown within Table 5.2. The TUB analysis concluded that 

the optimum conditions for the production of ADH from E. coli in the microwell plate system 

were as set for experiment G (shown as Figure 5.1-graph of outputs), which contained 0.6U/L of 
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Reagent A, 0.5g/L Lactose and 1g/L Glucose. As previously stated, this conclusion was based on 

the highest value of ADH activity, as attempts to understand the interactions between the 

parameters and outputs were time consuming and did not yield satisfactory results. Analysis of 

this nature with complex systems such as fermentation is unlikely to be predictive, as the 

understanding of the relationships between parameters and outputs is limited.  

Table 5.2 - The results obtained from each experiment (Knepper, 2014) 

Experiment OD600 pH Glucose 

(g/L) 

Acetate 

(g/L) 

ADH Activity 

(U/L) 

A 4.9 6.6 0.5 3.2 216.1 

B 7.2 6.4 0.6 4.8 184.5 

C 15.1 6.1 0.8 8.1 215.9 

D 17.9 6.1 0.9 8.2 435.6 

E 17.3 6.1 0.9 10.0 1096.3 

F 20.0 6.1 0.9 8.7 854.0 

G 15.8 6.1 0.7 8.0 1352.8 

H 16.8 6.0 0.8 8.5 1255.8 
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Figure 5.1 - The experiment determined to be the optimum conditions by the original research analysis. Reproduced 

from Knepper et al. (Knepper, 2014). The top graph (c) shows the OD600 measurements (solid circles) over the course 

of the fermentation and the final ADH activity levels (solid bar). The middle graph (f) shows the change in acetate 

(diamonds) and pH (solid triangles) over the course of the fermentation. The bottom graph (i) shows the change in 

glucose (circles) and culture volume (solid squares) over the course of the fermentation.  

5.3.2 IAT Analysis 

The IAT was constructed by considering each outcome individually, with ADH activity being the 

last to be completed. This ensured that the tool was not reverse engineered to fit the TUB 

researchers’ optimum, and instead arrived at the conclusion in an independent, structured manner.  

The IAT constructed from the results is shown as Figure 5.2. 
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The weightings were assigned based on process benefits alone, consistent with the scale outlined 

in Chapter 2, due to the academic nature of the study. The overall growth was assigned a 

weighting of seven. The growth of the cells is imperative to the production of the ADH; however 

increasing cell specific productivity would be more beneficial than simply enhancing growth, 

justifying the value of seven. The acetate and pH deviations were both assigned weightings of 

four. Considering these in turn, an increasing acetate level will inhibit ADH production to an 

extent, but the cell growth and viability is inherently linked to the acetate production (Takahashi 

et al., 1999). A weighting of four was therefore appropriate to demonstrate there is an adverse 

impact to acetate generation, but this is considered a necessary sacrifice within the system. 

Acetate is a waste product from the fermentation, when more cells are present more ADH will be 

produced, but more acetate will also be produced (Luli and Strohl, 1990; Han et al., 1992). The 

pH deviations are similar in that the pH will always change within fermentation as waste products 

are produced. E. coli is known to produce acidic waste, therefore lowering the pH as cell growth 

occurs. This is exactly the effect seen in each of these experiments, making this acidic waste the 

likely reason for a reduction in pH. If no waste was produced the cells would not be growing and 

therefore no ADH would be produced. The final weighting was the ADH, attributed a value of 

ten. The ADH is the target product and maximisation of this was the primary aim of the 

experiments. Its value is critical in deciding the next round of optimisation, hence the highest 

weighting.   

For simplicity and due to the sparse nature of the dataset, relationships between each parameter 

and outcome were assumed to be linear. The restriction of parameters to two or three levels meant 

that it was not possible to demonstrate asymptotic relationships, or those involving plateaus. It is 

recognised that the cell growth is likely to show an asymptotic relationship with all parameters if 

tested over a sufficiently wide range, which would require further experimentation to fully 

characterise.  

For each parameter there was a compromise to be made between outcomes, showing the value of 

the weightings to the tool. This is common within bioprocessing, where waste will often inhibit 
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outcomes as previously discussed (Takahashi et al., 1999). It is possible that other weightings for 

waste products would yield different results, and this sensitivity to weightings is investigated and 

discussed in Chapter 7.  The IAT results indicate that the most significant factor for consideration 

in the next round of optimisation would be the increase of glucose concentration, followed by a 

reduction in the quantity of reagent A. As these are both linked to glucose levels, it would suggest 

that adding glucose as an individual component, rather than under the control of a biocatalyst, 

would better promote the production of ADH. If this strategy for optimisation was pursued, it 

would be notable that the oxygen in the fermentation would be depleted faster, and more waste 

would be produced. While the addition of glucose as an individual component would be possible 

within the fermentation, it does not consider the variation in availability of glucose over a period 

of time. Reagent A is employed to ensure sustained release of glucose through the fermentation, 

to enhance cell viability and production towards the end of the experiment. This is intended to 

simulate the fed-batch bioreactor environment. As with any data analysis tool, it is important, 

when using the IAT on a dataset, to incorporate the results with process knowledge, and in this 

case that could mean testing several combinations of glucose and reagent A both above and below 

the optimum indicated by the IAT. Lactose was the factor which showed the least potential to 

improve the process, having no discernible impact on the overall ADH activity. Irrespective of 

this, it was shown to have a positive influence on cell growth, and so would be worth including in 

future experimentation. E. coli has been shown to prefer glucose as a sugar source, and so the 

importance of lactose to cell growth could indicate that the cells do not have sufficient glucose for 

sustained growth (Donovan, 1996). In light of this, it would be proposed that the lactose could be 

investigated over a smaller range than the glucose, as it is anticipated its effects will be negated if 

sufficient glucose is present.  

The consistent output between the IAT and the original investigation reinforces the usefulness of 

the tool. The IAT provided a structured methodology which could have aided the conclusion to be 

reached in a more robust manner. Additionally, a mechanistic justification was provided, rather 

than an empirical analysis based on evaluation of line graphs. It allowed the consideration of each 
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parameter’s influence, which was not possible with the unstructured data analysis approach used 

in the original research. It also gave a clear direction for the subsequent optimisation experiments, 

and there were significant associated time savings.  

When performing optimisation, many approaches are available. One Factor at a Time (OFAT) 

experiments can be useful for initial screening, but cannot identify interactions between factors. 

Design of Experiment approaches are designed to test for these interactions between factors to 

find the true optimum of a system. The IAT considers each factor individually, and so DoE was 

employed to compare the results from the IAT with an alternative approach which is quantitative 

and capable of predicting interactions between factors.  

 

Figure 5.2 - IAT for the ADH fermentation. Each column corresponds to a measured output of the fermentation. Each 

row corresponds to the components being investigated. Shapes coloured yellow correspond to outputs sought to be 

maximised, Shapes coloured blue are sought to be minimised. Dotted shapes are used when no relationship could be 

discerned. 

 

The IAT showed that the optimum conditions would be with low levels of Reagent A, and high 

levels of both lactose and glucose. This corresponded to experiment G, which was the experiment 

which the TUB researchers selected as the optimum. This consistency reinforced the tool 

accuracy; however, the additional information generated by the IAT would allow the TUB 

researchers to consider strategies for further optimisation, unlike the original analysis. 
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5.3.3 Design Expert 9 

Experimental design analysis was performed using Design Expert 9 TM. A historic design was 

generated, and the results analysed with respect to each output individually before using the 

model generated for optimisation of the fermentation as a whole.  

In light of the limitations of historic DoE analysis, it is important to highlight that the analysis was 

performed only to give an alternative analysis for comparison to both the original study and the 

IAT. It was not intended to generate a comprehensive model of the behaviours displayed within 

the fermentation and would certainly not be considered adequate for the purposes of optimisation 

and scale up. Each response was modelled separately prior to optimisation of the system using the 

five models generated.  

Cell Growth (OD600) 

Cell growth, measured through OD600, was the first response considered. The normal plot of 

residuals (Figure 5.3) indicated that the significant term with respect to this response was lactose. 

The terms within the model all fell close to the line, indicating that the model was a good fit and 

noise levels were low. The ANOVA for this model attributed lactose a p-value of 0.0002, 

indicating a high level of statistical significance.  
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Figure 5.3 - Normal plot for the consideration of OD600 as a response. Lactose is shown to be significant through the 

distance from the normal effect line. 

Considering the predicted vs actual plot (Figure 5.4) the results split into two clear sections, 

consisting of high and low values, but the trends within these groups could not be captured by the 

model. This is a result of the categorical nature of the analysis, and could be overcome if a 

response surface design was performed.  

 

Figure 5.4 - Predicted vs actual plot for OD600 
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The results showed the overall trend for the effect of lactose concentration on OD600 had been 

captured by the model, as points lie within a reasonable distance of the black solid line. All points 

would have fallen on the line if a perfect prediction had been achieved. The One Factor plot 

(Figure 5.5) did show a strong correlation between Lactose and OD600 response, increasing 

confidence in the model. When lactose was absent from the fermentation, cell growth was much 

lower than when lactose was present. The effects fall within a reasonably narrow 95% confidence 

limit, shown in Figure 5.5 as a dotted line, showing a high level of confidence in the inferred 

relationship.  

 

Figure 5.5 – One factor plot for OD600 

pH 

Lactose was the most significant factor with respect to pH (p-value 0.0003), which was not 

unexpected. The pH of the fermentation will decrease as a result of waste product accumulation, 

which is directly linked to cell growth. Lactose is known to increase waste production (Donovan, 

1996).  High numbers of cells will mean a large amount of waste is generated, which will change 

the pH by a greater amount, as the pH was uncontrolled within the fermentation.  
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The groupings of high and low values were evident in this analysis, as with the analysis for OD600. 

This is shown as Figure 5.6, the predicted vs actual plot, where two discrete groups were seen, 

one at low pH values, and another at higher pH values. The high variability within the group at 

higher pH further demonstrates the shortcomings of this type of analysis, but the general trend is 

captured. However, in this case there was increased variability within the categories, meaning the 

model was not as accurate as the previous analysis. The causes of this are likely not restricted to 

the categorical nature of the analysis. It would be anticipated that multiple factors are affecting the 

final pH which were not included within the model  

 

Figure 5.6 - Predicted vs Actual plot for pH 

The results showed the overall trend for the effect of lactose concentration on pH had been 

captured by the model, as points lie within a reasonable distance of the black solid line. All points 

had fallen on the line if a perfect prediction had been achieved. As with the analysis for OD600 the 

One-Factor plot (Figure 5.7), shows the 95% confidence intervals were reasonably narrow, 

though broader than for the cell growth analysis, and at higher levels of lactose the pH was 

decreased.  
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Figure 5.7 – One factor plot showing the interaction between lactose and pH  

Acetate 

As with pH, acetate concentration is related to cell growth and therefore OD600. It was thus 

unsurprising that the results for this outcome were consistent with the pH and cell growth 

analyses in that lactose was the only significant factor with a p-value of 0.0005. The normal plot 

of residuals (Figure 5.8) showed noise within the model, potentially indicating a factor causing an 

effect which was not included within the model.  

Design-Expert® Software

Factor Coding: Actual

pH

95% CI Bands

X1 = B: Lactose

Actual Factors

A: Reagent A = 0.8

C: Glucose = 0.5

B: Lactose (g/L)

0 0.1 0.2 0.3 0.4 0.5

p
H

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

One Factor



119 

 

 

Figure 5.8 – Normal plot of residuals for the consideration of Acetate as a response 

In keeping with previous analysis, the predicted outcome fell within reasonable 95% confidence 

interval on the one factor plot (Figure 5.9), indicating that the additional effect was not significant 

enough to undermine the relationship being inferred.  

 

Figure 5.9 – One factor plot showing the effect of lactose concentration on acetate concentration 
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Glucose 

Glucose was a medium component in two forms: active and inactive. The glucose measurements 

at the end of the fermentation would therefore be affected to three factors: the initial amounts of 

glucose and Reagent A respectively, and the amount of cell growth. When more cells were 

present, the glucose would be consumed faster, potentially leading to lower final values. It was 

therefore unsurprising that the significant term for the model was again lactose, the alternative 

source of carbon within the cultivation. This had a significance value of 0.0049, which was the 

highest significance value seen for lactose. This makes this the relationship most likely to be 

affected by noise, backed up by the normal residuals plot (Figure 5.10). 

 

Figure 5.10 – Normal plot of residuals for glucose as a response 

The One-Factor plot (Figure 5.11) shows this relationship, where high levels of lactose gave rise 

to higher levels of glucose. The 95% confidence intervals were fairly broad, consistent with the 

high levels of noise indicated in the Normal Plot of Residuals.  
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Figure 5.11 – One factor plot showing the effect of lactose concentration on glucose concentration 

 

ADH Activity 

All other factors were directly linked to cell growth, and so similar results were anticipated for 

ADH activity, as the most biomass present the likely more ADH being produced. The 

experiments generating higher cell numbers were anticipated to also generate high levels of ADH 

and ideally ADH activity, though activity is not always directly correlated to protein yield. It was 

therefore expected that lactose would again be the significant influencing factor on this attribute. 

It was therefore surprising that glucose was shown to be the only significant term for this model 

(Figure 5.12). The significance value of 0.0001 indicated this was a highly statistically significant 

effect.  
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Figure 5.12 – Predicted vs actual plot for ADH activity 

The predicted vs actual plot, Figure 5.13, showed a much-improved resolution within the model 

but this could be attributed to the higher number of levels within the glucose category when 

compared to lactose rather than an improvement in the model. The One-Factor plot shown here as 

Figure 5.13 did indicate that the model fit was improved, a much smaller 95% confidence 

interval.  
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Figure 5.13 – One factor plot showing the effect of glucose concentration on ADH activity 

Optimisation 

Once the responses were modelled individually, Design Expert 9 TM was employed to optimise the 

output. As there were no process specific criteria to meet, no threshold levels were set, and the 

objectives for optimisation were instead to minimise OD600 and maximise ADH activity. This 

would find the conditions which produced the most productive cells, rather than simply 

maximising cell number. If this process was scaled up this would allow the fermentation to be 

performed in a smaller bioreactor while maintaining product yield, and thus maximising profit as 

smaller bioreactors would be cheaper to operate and run. It would also minimise the size of the 

downstream processing capability required, as smaller fermentation broth volumes would be 

present. The optimal solution for this goal is shown in Figure 5.14, suggesting that lactose was to 

be minimised, and glucose was to be maximised. Only lactose and glucose levels could be 

optimised, as Reagent A was not shown to impact any of the responses measured within this 

study. This was a predictable output for optimisation, as lactose had been shown to positively 

influence cell growth related responses (OD600, pH, Acetate and glucose consumption), and 

glucose was shown to maximise ADH activity (Figure 5.15).  
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Figure 5.14 – Optimisation plot showing the optimal solution determined by DE9 

 

Figure 5.15 – Response surface for the optimisation work performed in DE9 
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IAT was completed, lactose was shown to be linked only to cell growth rather than production, 

indicating the understanding of the results had been enhanced by employing the IAT. Donovan 

(1996) discussed the role of lactose in growth being linked to low levels of glucose, which would 

suggest that the glucose levels employed within the study are not sufficient. The induction system 

used in the study was auto-induction, which relies on the metabolic shift (Studier, 2005) from 

glucose to lactose metabolism. Once this shift occurs, the energy within the cell will be 

channelled into protein production, rather than cell growth (Studier, 2005). Therefore, low levels 

of glucose will cause this shift to happen earlier in the fermentation, resulting in fewer cells 

capable of producing ADH. This reduced number of cells is the likely cause of the reduced levels 

of ADH activity.  

The IAT tool has been shown through this study to be applicable to a fermentation to enhance 

process understanding and offer a robust structured manner for data analysis. The visual nature of 

the tool make it more user friendly, and especially useful in a team including non-experts. It is 

important to note that the tool is not intended to replace alternative analysis methods. The 

comparison to Design Expert 9 TM results shows the importance of such analyses, and that the two 

can be complementary to each other. The IAT attributed the importance of lactose to cell growth, 

which had not been previously identified by the original study. The quantitative analysis in 

Design Expert 9 TM identified glucose as being key to maximising ADH activity, reinforcing the 

previous qualitative analysis. This would have made experiments G and H the optima if this was 

the only goal for optimisation. When optimisation was performed from a whole process 

perspective, i.e. minimising downstream recovery while maximising product, the models 

predicted that a low level of lactose and high level of glucose would be optimal. These 

experiments were not performed and so it is not possible to infer the model accuracy from the 

data available. This was the same conclusion as the IAT would have generated under the same 

optimisation criteria, further reinforcing the value of the tool.  



126 

 

5.4 Summary  

This chapter examined the value of three analysis methods for a set of experiments: 

unstructured/qualitative, structured/semi-quantitative and Design of Experiments. The qualitative 

analysis was limited in that it could select the best output of the experiments performed, but was 

unable to infer relationships or attribute the results to an individual factor. It was time consuming 

to perform and was not structured. The semi-quantitative analysis using the IAT could not only 

select the higher output for the experiments performed, but could additionally infer which 

parameter was controlling which aspect of the output. This led to the conclusion that further 

experimentation would be required to optimise the fermentation in a whole-process manner as 

low levels of lactose were identified as minimising the cell growth but high levels of glucose 

would maximise the ADH activity. This is the same conclusion derived by the DoE, but with one 

minor difference. The IAT results indicated that Reagent A did influence the fermentation, and 

needed to be minimised to enhance the ADH activity. However this relationship was not 

identified through Design Expert 9 TM. This could either indicate that the IAT was attributing 

significance to non-significant differences, an inherent risk of using methods with a qualitative 

nature. However, it could also indicate that the use of process knowledge employed when 

completing an IAT has identified a relationship that, while statistically insignificant at the range 

selected, could show greater influence over the fermentation if investigated across a larger range.   

This work demonstrated the clear benefit of employing a semi-quantitative analysis method such 

as the IAT. The tool drew conclusions superior to the original qualitative analysis as it could 

attribute the impact of lactose being primarily on growth rather than production which was not 

discussed within the original research. However as previously discussed there would be further 

work required to verify the findings of the tool experimentally. From a tool development 

perspective, this study showed that the IAT in this form is able to be applied to a fermentation 

dataset and draw valuable conclusions. The next stage of tool development would be to test the 

IAT on a dataset incorporating downstream data, which could either be purely downstream data 

or ideally incorporating outputs from both upstream and downstream unit operations.  
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The next stage of this work (Chapter 6) moves on to consider the application of the IAT to a 

downstream dataset, following from the successful application to upstream data in this chapter. 

From here, the effect of the weightings was investigated using sensitivity analysis (Chapter 7) to 

ascertain the reliability of the tool outputs. 
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Chapter 6 Downstream Testing of the Interaction Analysis Table (IAT) 

6.1 Introduction 

The previous chapter discussed the application of the IAT tool to a fermentation, as the 

original purpose that the tool was developed for and which is the key difference between 

chemical and biochemical processes. The successful application to upstream processing is 

a good indicator that application to bioprocessing in general will be successful. However, 

to conclusively demonstrate applicability within bioprocessing, a downstream dataset was 

used to apply the IAT, to establish the applicability to a bioprocess as a whole rather than 

only certain parts of the process.  

Downstream processing encompasses the cell lysis and subsequent purification processes 

to separate the product from impurities generated during the upstream phase of the 

process. This chapter will focus on Britest tool application to the cell lysis stage of the 

process.  

As in previous chapters, public datasets were used for the testing, in this case from work 

performed by Glauche et al. (2016). This overcomes any confidentiality concerns, and 

also ensures that the dataset is from an early stage of bioprocess development, which 

would be difficult to source from within the Britest membership. The data relates to a. E. 

coli cell lysis experiment, where the group sought to optimise the lysis buffer used for the 

process. The buffer system was selected as the group work on developing high-

throughput platforms, and the buffer system for cell lysis would enable automation to be 

employed, increasing throughput and reducing labour requirements.  

The lysis buffer components were Lysozyme, Polymyxin B, Triton-X and EDTA. 

Lysozyme is an enzyme which breaks peptidoglycan bonds within the bacterial cell wall. 
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Derived originally from hen egg white, the mode of action is well documented (Weibull, 

1953; Chassy and Giuffrida, 1980), and it has been used for cell lysis processes for many 

years. It is a staple component of “off the shelf” kits for cell lysis, and so is widely 

applied in academic research and small scale industrial research. Polymyxin B also 

attacks the cell wall of bacteria to cause lysis, however it is only effective in gram-

negative bacteria such as E. coli, as the thicker membrane in gram-positive bacteria 

inhibits activity (Newton, 1956). In gram-negative bacteria it binds to a negatively 

charged site in the lipopolysaccharide layer, destabilising the outer membrane (Zavascki 

et al., 2007). Triton-X is a detergent which has a range of protein denaturing applications, 

most commonly in SDS-PAGE gels and as part of the extraction buffer in DNA 

extraction kits (Van Tongeren et al., 2011; Lever et al., 2015). Ethylenediaminetetraacetic 

acid (EDTA) is well known for its ability to sequester metal ions. Within the context of 

protein extraction it is generally included to inhibit cation-dependant proteases (Wu and 

Tai, 2004), and so in this study it was included to preserve the protein and activity, rather 

than enhance cell lysis. Within the original study, three of the four reagents in the buffer 

were included to directly lyse the E. coli cells, and EDTA was included to ensure the 

extracted protein was not degraded. It is expected that the three lysis reagents would work 

synergistically, and that the maximum amount of lysis would be seen by including these 

multiple lysis agents with differing modes of action. This would ensure the highest 

amount of protein were released from the cells, and the EDTA would preserve the protein 

for analysis.  

The data originates from two DoE campaigns, performed in sequence. The initial DoE 

identified that the boundaries set for each component were sub-optimal and would not 

give the highest yields of protein possible from the E. coli. The second DoE did find the 

optimal conditions, with the experimental boundaries set from the information gained 
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from the first set of experiments. This study aimed to ascertain whether the first 

experiments could have been reduced in number, or indeed avoided completely, if the 

IAT had been employed by the group prior to commencing the experimental work. The 

group are well established in working on E. coli based processes, and so a certain level of 

process knowledge and understanding is assumed. While the IAT has been investigated in 

this research project for its potential to add value during early process development, it 

would not be intended to be applied by people with no knowledge of the process 

whatsoever. This is consistent with the other Britest tools, where the quality of knowledge 

extracted and process understanding gained will depend on the experience and knowledge 

of the participants. This is explored further in relation to the IAT specifically in Chapter 7 

of this thesis through sensitivity analysis.  

This study focussed on the IAT application to the dataset, assuming a basic level of 

process understanding within the original research group. As the experimental work had 

already been performed, and the results published, it was not possible to ascertain the 

level of process understanding within the group at the time when the IAT would have 

been applied. In light of this, the study focussed on investigating the number of 

experiments required to complete the IAT using the limits set within the first DoE. The 

design would have been constructed by the group anticipating that further DoE were 

unlikely to be required, as they expected the optimum to exist between the original limits. 

The screening design that the IAT offers relies on an understanding of the interactions 

between each parameter and outcome, although identifying a lack of understanding can 

be beneficial. It is likely that within a group of process experts, the process knowledge 

assumed to be present within the group would likely eliminate some of these experiments. 

The reduction of experimental burden during early process development stages would 

streamline the development process with respect to both cost and time, which are the two 
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most important factors in industrial process development. The potential for significant 

cost and time savings through the reduction of experimental burden would provide a 

robust business case for bioprocessing companies to adopt the Britest toolkit, including 

the IAT.  

6.2 Methods 

6.2.1 IAT 

Completing the IAT is performed first by setting up a table with the components (EDTA, 

Lysozyme, Polymyxin-B and Triton-X) listed in the first column. The next 2 columns 

correspond to the outcomes. In this case the outcomes were soluble protein and β-

galactosidase. Soluble protein is the amount of soluble protein measured in the samples. 

The β-galactosidase represents enzyme activity. Weightings were not included within this 

IAT. As in previous work, the study was academic in context and it was not known what 

the associated business benefit would be if scale up work was performed. With respect to 

the technical benefit, the outcomes were approximately equal, therefore the weightings 

would have been identical and would not have provided extra information to the analysis. 

The cells within the IAT are filled with a shape indicating the nature of the relationship 

between the component and outcome. For the purpose of this study all relationships were 

assumed to be linear, though it is recognised that this is not always the case, and a non-

linear relationship is more common with an optimum value between the upper and lower 

bounds. The colour yellow is then used to highlight the level at which the outcome is 

highest, to allow for ease of understanding. For example, if a high amount of EDTA 

resulted in a high amount of soluble protein, the area on the right hand side on the cell 

would be shaded yellow (as shown in the generic example in Figure 6.1). In this case both 

outcomes were sought to be maximised, so yellow was the only colour required. Blue can 
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be used to shade optimal operating areas in the case of undesirable outcomes such as 

impurities. 

 

 

Figure 6.1 - Generic IAT to show how the tool would usually appear. 

 

Within this research three IATs were constructed. These represented three stages of 

process development, and are outlined in Figure 6.2. In the first two instances the results 

from the two DoE datasets were used to complete the IAT, simulating a later stage 

process development study where data is abundant. In the third IAT, a more data lean 

environment was simulated, to investigate the potential for the IAT to add value in an 

early stage of process development.  
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Figure 6.2 - Showing the flow of work for this section of the research. 

 

The first IAT sorted the results by high to low, for each outcome individually. Cut off 

points were used to define which experiments yielded a “high” or “low” result. The 

experiments yielding the highest and lowest results for each outcome were examined 

visually for any obvious patterns or consistencies (e.g. all low EDTA values/all high 

lysozyme values). With respect to soluble protein, results over 1.4 were selected as being 

“high”, and results lower than 0.5 were selected as being “low”. With respect to β-

galactosidase, results over 0.3 were selected as being “high”, and results below 0.01 were 

selected as being “low”. The conditions which gave rise to these high and low results 

were then examined to ascertain whether there were any trends within these sets of 

results. This reflected a situation in which the IAT was less likely to be employed in 

isolation, as statistical analysis techniques would likely be used to complement the 

process understanding generated by qualitative tools such as the IAT.  
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The second IAT method again used the results from both complete datasets, amalgamated 

together. Both sets of results were represented graphically using line graphs for each 

individual parameter, and obviously high or low results examined and their associated 

conditions used to complete an IAT. This meant fewer results were used to construct the 

IAT than in the first IAT, but the potential to conclude a trend with an anomalous result 

was increased.  

In the third IAT method a data lean environment was simulated. This reflected the 

situation in which the IAT would likely provide maximum benefit, where process 

knowledge may exist but a complete DoE dataset may not yet be available. The IAT was 

initially constructed in a blank format, and a list of desired experiments which would be 

performed as the next stage of the investigation were constructed. No prior knowledge of 

the relationships between parameters and outcomes was assumed. The list of desired 

experiments is included below as Table 6.1. Each parameter would be investigated at a 

high and low point, and at a mid-point when not at an extreme value. The exception to 

this was lysozyme, as this is well understood and it was not unreasonable to assume this 

relationship would be well known by the experts involved in a Britest study.  

 

 

 

 

 



135 

 

Table 6.1 - The screening design used in this research to generate the IAT. Results were simulated using DE9 software, 

as none of these experiments were performed in the original design.  

EDTA (mM) Polymyxin B (µM) Triton X (%) Lysozyme (U/ml) 

0.5 25 1.367 9000 

10 25 1.367 9000 

5.25 0.1 1.367 9000 

5.25 50 1.367 9000 

5.25 25 0.1 9000 

5.25 25 2 9000 

0.5 25 1.367 300 

10 25 1.367 300 

5.25 0.1 1.367 300 

5.25 50 1.367 300 

5.25 25 0.1 300 

5.25 25 2 300 

 

In the case of each of these experiments, the results were not already available as part of 

the datasets generated by Glauche et al. (2016). To overcome this limitation in results, 

Design Expert 9TM (DE9) was employed as a tool to construct a model of the data and 

predict what the results would likely have been if the experiments had been performed.  

6.2.2 Design of Experiments  

Design of Experiment analysis was performed in Design Expert 9 TM, to facilitate 

completion of the IAT under data lean conditions as described above. Additionally, the 

analysis was used to determine optimal conditions for the process to compare to the three 

IATs generated from the datasets. This would ascertain whether the completion of the 
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minimal screening experiments required to complete the IAT could have led the authors 

to the same conclusion as the more complex and time/labour intensive initial DoE study.  

A “Historical” Design of Experiments (DoE) analysis approach was employed for this 

study, due to the experimental design and results already being available from previous 

analyses. DE9 was used to generate a model which could predict the values for both 

soluble protein and β-galactosidase under experimental conditions which were not 

original experimental design points. A response surface was used, as all factors were 

Numeric rather than Categoric. This analysis was restricted to the first DoE dataset, 

which contained 91 experiments, and not the subsequent second DoE dataset where the 

experimental boundaries were revised based on the output of the initial 91 experiments.  

6.3 Results and Discussion  

For the initial IAT the outputs from the original study were used, combining the results 

from both datasets. This was to ascertain whether the IAT could add value to a study if 

data availability was not restricted, unlike in the above example where only 12 

experimental points were selected. Working in a data lean environment is an important 

potential benefit of the IAT, and this would be a key phase of application. However it was 

recognised that an organisation may have extensive data from previous experiments or 

process runs which they want to use to derive process understanding, and may not have 

the in-house statistical experience to generate a meaningful analysis. Equally the 

statistical analysis may not deliver a meaningful output, if the system under investigation 

has not been adequately analysed. In this case, the IAT could be combined with plant 

knowledge from the experts on site to derive some value, though value can be added 

through complementary statistical analysis. In this instance, the IAT would not replace 
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statistical analysis, but could aid process understanding in a resource restricted 

environment.  

The results from both DoE campaigns were sorted into order according to the results for 

both β-galactosidase and amount of soluble protein. The trends from the highest and 

lowest results for each criteria were determined by eye, and this was used to complete an 

IAT (Figure 6.3). 

 

Figure 6.3- IAT using the best and worst results obtained within the datasets. The result of stage 1 of the research. 

This analysis concluded different optima to the original authors, and the screening IAT 

approach outlined above. This analysis suggested that for a high β-galactosidase output 

EDTA would need to be minimised, Polymyxin B would need to be minimised, and 

lysozyme would need to be maximised. For maximum soluble protein production 

Polymyxin B would need to be maximised and lysozyme minimised. Triton-X was not 

shown to be impacting the results. While there was some overlap, particularly in the 

desire to minimise EDTA and maximise lysozyme, the lack of complete agreement would 

give a cause for concern if the IAT was intended to be used on large datasets. It would 

appear that the complexity of the dataset, combined with the various interactions, would 

make IAT application benefit limited, and in fact if employed on a process dataset could 

lead to adverse process impacts.  
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The second method devised to employ the IAT on the large dataset was to use line graphs 

(included in electronic Appendix B) to show the results for each parameter, and any 

pattern which was evident was used to complete the IAT. For example if a result was 

particularly high the experimental conditions associated with that point would be 

highlighted as being advantageous in the IAT. The resulting IAT is shown in Figure 6.5. 

The various graphs produced from the dataset are included as Appendix B, Figure 6.4 

comparing the EDTA concentration to the soluble protein yield is included as an 

illustrative example.  

 

Figure 6.4 - Graph showing the EDTA concentration and the associated amounts of soluble protein. 

 

Figure 6.5 - IAT using the obviously best and worst results from line graphs of the datasets. The result of stage 2 of the 

research. 

In this case, the results showed there was no correlation between any of the factors and 

soluble protein output, which the detailed data analysis shows to be incorrect. The 
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minimisation of EDTA remains consistent, with all other factors to be maximised. This is 

more consistent with the detailed statistical analysis, but the lack of any effect shown 

between the reagents and soluble protein levels would still suggest a limitation in the IAT 

application to large datasets.  

To this point the IAT has been discussed in relation to scenarios where data is available. 

This is analogous to the use of Six Sigma tools (Harry, 1998; Pande et al., 2000; Pyzdek 

and Keller, 2014) for continuous process improvement. Studies of this nature are used 

widely in industry to examine established processes. This could be to reduce process 

time, reduce raw material costs, improve safety, or to aid the decision making process 

(Harry, 1998; Eldridge et al., 2006; Kumar and Sosnoski, 2009; Yang and Hsieh, 2009). 

Evaluation of process options is also a frequent occurrence in Contract 

Manufacturing/Research Organisations (CMOs), where technology transfer is a regular 

activity. From the work performed to this point in the research, the IAT has been shown 

to be applicable to scenarios where data and process knowledge are available, however 

the above discussed limitations would suggest that combining tools of this type with 

complementary statistical analysis could give an added benefit.  

Following this established process investigation, the IAT was examined for applicability 

to a process where data availability was limited. This mirrored more closely the early 

stage of process development, where the IAT was anticipated to add significant value. 

From the initial list of screening experiments which would be desired, those for which 

results were not available within the two DoE campaign datasets were simulated using 

DE9. Only the results from the first DoE campaign dataset were used for the DE9 

analysis. It is worth noting that in the course of the original work the authors found 

ETDA to be irrelevant, and so the second DoE study was performed without this as a 

factor, in addition to moving the design space based on the original analysis. The aim of 
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this study was to determine whether the IAT could have been used to create a better 

design from the beginning of the research, and so it was more appropriate to consider the 

first design in isolation as this was created with the same information that the IAT would 

have been created with.  

It was anticipated that the lysozyme would have a significant effect on the outcome of the 

lysis. In light of this, the results were considered with respect to high and low levels of 

lysozyme initially, and it was the effect of the other 3 reagents which were investigated. 

Lysozyme is well understood and has a well characterised mode of action, meaning it was 

deemed reasonable to assume this positive linear correlation would be generally accepted 

within a Britest study.  

The IAT would require the effect of EDTA, Polymyxin B and Triton-X to be understood 

independent of each other. The interactions between reagents are not insignificant, but 

this is where the IAT is distinguished from more complex data analysis methods. It has 

been shown to be able to be applied when little data is available, and given the significant 

amounts of data required for interaction analysis, it was considered that a basic screening 

dataset would be suitable for completing the IAT in this instance.  

The results from the predictive experiments are shown in Table 6.2 and Table 6.3, with an 

indication of the results seen with respect to both β-galactosidase and Soluble Protein 

(activity and solubility). The resulting IAT is shown as Figure 6.6.  
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Table 6.2 - Results from the IAT screening experiments at high lysozyme concentrations. 

High Lysozyme 

EDTA 

(mM) 

Polymyxin B 

(µM) 

Triton X 

(%) 

Lysozyme 

(U/ml) 

β-galactosidase 

(U/ml) 

Soluble 

Protein (g/L) 

0.5 25 1.367 9000 Med/High Med 

10 25 1.367 9000 Med Med/Low 

5.25 0.1 1.367 9000 Low Low 

5.25 50 1.367 9000 Med Med 

5.25 25 0.1 9000 Low Low 

5.25 25 2 9000 High High 

 

Table 6.3 - Results from the IAT screening experiments at low lysozyme concentrations. 

Low Lysozyme 

EDTA 

(mM) 

Polymyxin B 

(µM) 

Triton X 

(%) 

Lysozyme 

(U/ml) 

β-galactosidase 

(U/ml) 

Soluble 

Protein (g/L) 

0.5 25 1.367 300 Med High 

10 25 1.367 300 Low Med 

5.25 0.1 1.367 300 Low Low 

5.25 50 1.367 300 Low Low 

5.25 25 0.1 300 Low Low 

5.25 25 2 300 Med High 
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Figure 6.6 - IAT generated using the results from the IAT screening experiments. The result of stage 3 of the research. 

As predicted by the IAT, the optimal results were found at high levels of lysozyme, when 

the cells would be lysed most effectively (e.g. Figure 6.7 and Figure 6.8). The presence of 

a set of results where high levels of activity and soluble protein are present would indicate 

that an optimal solution can be obtained.  

 

Figure 6.7 - Beta-galactosidase assay result at low levels of EDTA and high levels of lysozyme in relation to Triton-X 

and Polymyxin B concentrations. Generated using DE9. 
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Figure 6.8 - Soluble Protein result at low levels of EDTA and high levels of lysozyme in relation to Triton-X and 

Polymyxin B concentrations. Generated using DE9. 

Using this scheme for completing the IAT would have required 12 experiments. This 
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carried out to ascertain whether this would give a different result to both the IAT’s 

generated, and the original author conclusions. When the output was optimised for 

maximum soluble protein and β-galactosidase (Figure 6.9 and Figure 6.10) there was a 
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would indicate that higher values for the reagents would have been selected. This was 

exactly what Glauche et al. (2016) decided to pursue for the second DoE they performed 

on this process, although they omitted EDTA as a factor. 

 

Figure 6.9 - Optimal solution for maximising soluble protein and beta-galactosidase using DE9. 

 

Figure 6.10 - Response surface showing the relationship between EDTA and Triton X at mid-levels of Polymyxin B 

and Lysozyme. Created using DE9. 
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levels of Polymyxin B and low levels of EDTA. This was relatively consistent with the 

IAT suggested optima, with the exception of Polymyxin B. However the conclusions 

were drawn using both DoE campaign results, rather than the initial campaign as in the 

IAT. Therefore it is possible than an optimum value of Polymyxin B exists above the 

limits for the first DoE campaign but at the medium point in the second campaign.  

EDTA was not shown in the original research to be influencing the output of the 

experiments, leading to the removal of this factor for the second DoE campaign. In the 

DoE model generated for this research EDTA was shown to be adversely impacting the 

β-galactosidase results. In the optimisation from this model it was suggested that the 

levels of EDTA should be minimised, which is consistent with the original approach. 

Polymyxin B was shown in this work to be required at a high level, which was consistent 

with the original research. The second DoE included in the original work increased the 

amount of Polymyxin B used, which would have been the decision taken had the authors 

used the proposed screening approach to build an IAT. Triton X had a significant 

influence on the output of the experiments, and again this was consistent with the original 

research. As with Polymyxin B this was increased in the second DoE, which would have 

been the case had the IAT been implemented in the original work. Lysozyme is a well 

understood enzyme used broadly to lyse E. coli cells at a range of scales and for a range 

of purposes. In light of this, it was unsurprising that better results were seen at higher 

concentrations of lysozyme. It is anticipated that experiments to demonstrate this may 

have been carried out for completeness had the original authors opted for the proposed 

screening IAT approach, however given the extensive history of application this may 

have been considered unnecessary for an early stage study.  

Glauche et al. (2016) completed 91 experiments to obtain this information, to allow the 

authors to determine the optimal design space required for a more detailed second DoE. 
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The proposed screening IAT approach outlined within this work would suggest that the 

authors could have completed only 12 screening experiments and combined the output 

with an IAT focussed Britest study to conclude the same design space was required. This 

would have saved significant resource and time, not only in the experimental set up and 

clean up, but also in the data analysis. One author spent a significant amount of time (>1 

day) analysing the results, before presenting their analysis to the group for discussion. 

Had an IAT been employed it is likely that the analysis and redesigned experimental 

space could have been achieved within half a day. The reduction in number of 

experiments required would also have saved significant time. While the equipment 

employed is a high-throughput system and reductions in time may be incremental, they 

are accompanied by a reduction in the associated costs (e.g. set up, analysis and 

materials) which can be a significant factor when conducting research. 

It is anticipated that the proposed screening IAT approach discussed above would mirror 

the approach taken by the original authors, had they been aware of the IAT at the point of 

conducting their original research. However, this work also considered whether the IAT 

could have been applied by the original authors if they had applied the IAT after their first 

DoE. The Britest approach is commonly used once development has started, especially 

when problems are encountered, and so it was important to understand whether the IAT 

had the potential to bring benefit in later stage studies if needed.  

It is likely that in reality, the screening dataset could be replaced (at least partially, if not 

in whole) by knowledge from the team. For the purpose of this study, as the experiments 

had already been performed, it would not have been possible to perform a Britest study to 

create an IAT with the team’s knowledge before the experimental data had been 

understood. The team had already analysed significant amounts of data from the 

experiments and so their knowledge level would be greatly enhanced compared to that of 
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when the study was first developed. This would have made the Britest study not a true 

reflection of the knowledge level at an early stage of development, and so the DE9 

analysis was employed to fill this gap.  

Tools for process understanding where data is already available are generally statistical in 

nature, and while these have been shown to add significant value to a process the 

implications if the analysis is incorrect can be significant. Combining these statistical 

tools with qualitative knowledge tools, such as those offered by Britest, to enhance the 

value derived from statistical tools can only aid in delivering value to organisations. At 

earlier stages in process development where data on a process is scarce, qualitative tools 

could been employed to allow options to be explored without significant resource 

requirements. This is one area where the IAT would be expected to add value to an 

organisation, as it can be used with minimal data, and can be tailored to the users’ 

requirements.  

Six Sigma provides value to a variety of industries (Koning et al., 2006; Saleh et al., 

2007; Junker et al., 2011; Siddh et al., 2014; Antony et al., 2016), in addition to a range 

of other knowledge management techniques discussed in Chapter 1. Design of 

Experiments is also engaged as an approach in a variety of specialities, ranging from drug 

discovery to motor manufacturing (Tye, 2004; Franceschini and Macchietto, 2008; 

Sakkas et al., 2010; Ford, 2011; Kumar et al., 2014), and is particularly useful in early 

process design. While the value of an analysis approach which is statistical in nature 

which is capable of modelling complex system behaviour is clear, the ability of users to 

successfully apply the approach can be less successful. There are a broad range of design 

options available for studies (Montgomery, 1991), and the deciding on the design to 

select is not the only aspect which can cause difficulty. The selection of the appropriate 

boundaries within which to base the design is critical to the success of the experimental 
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campaign, but relies on a level of expertise which can be lacking, especially within early 

process design stages.  

In cases where data is not available to support a process decision, especially in 

commercial environments where costs can be tightly controlled, tools such as the IAT can 

add value to users, particularly when combined with other complementary approaches. 

Not only can the IAT facilitate effective communication and provide a system for 

knowledge capture, but also requires the user to justify design parameter selection. This 

can be key for avoiding poor experimental design, which can be an expensive mistake for 

organisations in terms of wasted resource and costly errors. The combination of 

qualitative tools, such as some of those contained within the Six Sigma toolkit, with 

Design of Experiments approaches can ensure organisations have the highest chance of 

success when implementing a DoE (Conklin, 2004; Raisinghani et al., 2005). Six Sigma 

tools can be employed to aid a user in applying DoE designs (García-López et al., 2015; 

Gupta et al., 2016), and the IAT has been shown through this research to be a viable 

alternative, which was specifically designed with bioprocessing in mind.  

6.4 Summary 

This study considered the application of the IAT tool to a downstream process, cell lysis 

of E. coli. Chapter 5 discussed the successful application of the IAT to an upstream 

process, and this chapter followed on to ascertain whether the tool could be applied to 

other stages of the process, and potentially to the whole process if sufficient process 

knowledge existed within a team.  

The IAT was applied using two methodologies, to the whole dataset available in the 

original study. The application within these examples was less successful, though it is 

recognised that this could be aided by using process knowledge combined with the data 
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available rather than relying on data alone as in this study. Previously the IAT was 

developed for an antibiotic fermentation where large amounts of data were available, and 

it aided in focussing the users on the important interactions within the fermentation. 

However, it is clear that the IAT can add significant value in early process development, 

where knowledge is relied on for effective experimental design.  

Following this, the study considered how the IAT would be applied within a Britest study. 

It is anticipated that this would be at an early stage of investigation, where little to no data 

existed. Britest tools have added value in early process design (Sharratt et al., 2003), and 

so the IAT was applied to construct a desired screening dataset to reflect a common data 

limited scenario. Some of the experimental points required for this were not directly 

available, and so a historic DoE approach was employed to predict what the values for 

these data points would have been. This approach is not without its limitations, but for the 

purposes of this research it was assumed that the approach would be sufficient to reflect a 

level of assumed process knowledge present within a Britest study.  

In this IAT approach, the IAT was able to ascertain the same conclusions about optimal 

design space as the original research, and had it been applied the experimental 

requirements could have been dropped from 91 separate experiments to only 12, with the 

associated time and cost savings. This is clear evidence for the value of Britest 

application to process development in the early, data limited, stages. While the IAT 

analysis would lack the statistical element of DoE analysis, the same conclusion would 

have been drawn, and the statistical approach used from there to further investigate the 

design space would have ensured robustness within the process development. This is 

without considering the additional benefits of more efficient teamwork and 

communication, or the impact if multiple process units were considered, or multiple 

Britest tools employed.  
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Further work has been done to assess the IAT application to chromatography datasets. 

This utilised datasets originating from a biopharmaceutical company, and due to 

confidentiality restrictions the work may not be included as part of this thesis. The IAT 

was able to draw conclusions from the dataset, but separate IATs were required for each 

resin being investigated. This would suggest the IAT would be better suited to 

optimisation experiments rather than selecting resins/membranes, unless comparisons of 

running conditions were required.  

In conclusion, the IAT is a powerful process understanding tool, which can be applied to 

both upstream and downstream processes. Deriving the most value from the IAT would 

be through application in very early process design/optimisation stages, when data is not 

available and process knowledge and understanding is the main driver for the work. This 

is consistent with the intention of the IAT, and also with the other Britest tools. Where 

complex statistical analysis is possible this would be the preferable option provided 

sufficient underpinning mechanistic understanding exists to ensure that the statistical 

analysis is properly set up. However at early stages where resources may be limited 

qualitative process understanding tools such as those presented in this thesis add 

significant value while minimising the resource required to add value. The application of 

the IAT to both upstream and downstream units is promising, and it is not inconceivable 

that the IAT could be applied to multiple unit operations or indeed a whole process. This 

would add significant value to a company, not only in terms of better process design but 

also in aiding in the development of a QbD approach to process design.  

This chapter, combined with Chapter 5 focussing on upstream application, clearly 

demonstrates the value of applying the IAT in a data-lean, early process development 

stage of a bioprocess. The applicability to both upstream and downstream units means the 

tool shows promise for whole-process application, which would be a significant benefit 
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from a user perspective. It would provide a structured framework for considering the 

process design of a bioprocess, to aid intelligent experimental design. In addition to the 

benefit to the user, this provides a notable benefit for Britest with respect to attracting 

new members from within bioprocessing. However, the IAT is limited by the knowledge 

within the user group. If the users have little to no process understanding, the resulting 

IAT would be of no benefit. However, the process of identifying where process 

understanding is limited can itself be useful for an organisation, and this is a purpose for 

which the Britest tools have found broad applicability. The limitations around a lack of 

process understanding are particularly evident in relation to the weighting attribution 

system, and so having established applicability to both up and downstream processing 

units, investigation into this sensitivity was the next stage of the research (Chapter 7).  
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Chapter 7 Sensitivity Analysis within the Interaction Analysis Table 

(IAT) 

7.1 Introduction 

This research originated with an investigation into the applicability of the Britest toolkit 

to bioprocesses, simulated using SuperPro Designer (Chapter 3). This resulted in the 

development of the R2T2 tool, and a basic bio-suitable Britest toolkit ready for 

application to a range of industrial bioprocesses. From here, the tools were applied to 

academic datasets, and it was found that linking of the process inputs to process outputs 

would be a valuable addition to the toolkit. This took the form of the IAT tool, developed 

in industry in collaboration with AbbVie and Pfizer but not in a stage of development 

suitable for inclusion in the Britest toolkit. As previously discussed in detail (Chapter 4), 

the tool required significant redevelopment, before being applied successfully to both 

upstream and downstream data sets (Chapters 5 and 6).  

The IAT was subsequently tested on academic datasets, in addition to industrial processes 

by Britest members, and was shown to enhance process understanding, while retaining its 

user friendly character. AbbVie gave positive feedback having employed the new IAT on 

their in-house bioprocesses, and feedback from the Britest Member’s Day IAT workshop 

(2015) was overwhelmingly positive. This is discussed in more detail in Chapter 8. The 

designated system for attributing weightings was a feature many users found beneficial, 

however the question of incorrect weighting was raised. Weightings have a subjective 

element, which can be influenced by the experts included within the Britest study. The 

tables described in Chapter 4 for attributing weightings were designed with this in mind, 

as a method of limiting the potential for ambiguous weightings, but the qualitative nature 
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of a Britest study means that this potential shortcoming of the IAT cannot be fully 

eradicated. Therefore, different teams may attribute different weightings, generating 

different results. While the weighting definition tables go some way towards limiting the 

scope for incorrect weighting attribution, the sensitivity of these weightings remained 

unknown. For this reason, the study described in this Chapter was devised.  

Multiple systems are available to aid in the adoption of quality by design (I.C.H 

Guideline, 2009). These range from basic flow charts, to more complex statistical 

methods such as Failure Mode and Effects Analysis (FMEA) or Monte Carlo Simulations 

(MCS). Failure Modes and Effects Analysis (FMEA) is a systematic method used to pre-

empt causes of failure, to enable preventative action to be taken to minimise loss or 

disruption in the case of a failure occurring. This may be minimising with respect to loss 

of product, plant time or profit, depending on the process and value of the product. The 

standard form for this analysis comprises of identifying the potential problems, and then 

analysing the effectiveness of the remedial action which could be taken (Stamatis, 2003). 

This is shown in more detail in Figure 7.1: 
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Figure 7.1 - Detailing the stages required for a FMEA analysis in the order they would be applied. Adapted from 

Gilchrist (1993). 

FMEA follows a logical set of steps in an ordered fashion, with clear actions being 

generated at each step. In this sense it is a strong method for implementation in an 

industrial process as each stage has a purpose and the strong pattern should make it easy 

to follow with sufficient process understanding. However, it is not fully quantitative and 

so has limitations for applicability to complex risk scenarios. 

Monte Carlo simulations (MCS) are the most widely applicable method for full risk 

quantification, rather than the semi-quantitative previously discussed. It allows weights 

and cost functions to be applied to variables, and combines this information with 

probability distributions to give a full risk analysis with a statistical basis to be 

constructed.  

In its very basic form, the Monte Carlo method is similar to what if analysis in that it 

accounts for every possible outcome (Vose, 1996). The key difference is that it accounts 

for every possible value within a range, and uses the probability to weight how likely this 

Step 1
•Identification and listing of modes of failure and consequent faults

Step 2
•Assessing likelihood of faults occurring

Step 3
•Assess chance of fault detection

Step 4
•Assess severity of consequences of the fault

Step 5
•Calculate a measure of risk

Step 6
•Rank faults on the basis of the risk

Step 7
•Action on high-risk problems

Step 8
•Check effectiveness of the action, using revised measure of risk
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value is of occurring. In contrast, what if analysis is a crude methodology where sets of 

values are decided upon for each variable. The statistical basis for the Monte Carlo means 

that the models generated are of high quality and can be accurately used to describe the 

risk within a process (Vose, 1996). Both FMEA and MCS have been used to examine 

sensitivity and risk within a range of bioprocesses (Marchal et al., 2001; Biwer et al., 

2005; Mollah, 2005; Farid, 2007; Witcher, 2014).  

The ability to demonstrate process understanding is critical to regulatory approval for a 

product, and typically a range of techniques would be employed to examine the potential 

risks associated with a product/process. Within process understanding tools, weighting or 

scoring systems are not uncommon. They can be highly beneficial when seeking to 

understand the criticality of process conditions or outcomes. This is especially relevant to 

both the QbD approach, and risk assessment approaches. One example of using scores 

within process understanding tools is the A-Mab case study (C.M.C. Biotech Working 

Group, 2009). Several tools were developed within this work, and most employed a 

scoring system. The scoring systems employed varied with tools used, and each system 

was developed for the tool it is employed with, rather than utilising a single scoring 

system for all tools. As an example, Tool #1 encompassed an “Impact Score” and an 

“Uncertainty Score”. Definitions for these are laid out in Tables 1 and 2. Within the A-

Mab case study, these tools were used to investigate the risk for various characteristics of 

a product in terms of uncertainty (Tool #1,Table 7.1) and likelihood (Tool #2, Table 7.2) 

of occurrence.  The Impact Score ranges from 2-20, and the Uncertainty Score ranged 

from 1 to 7. Using these scores, the Risk Score is calculated by multiplying the two 

together. The ability to use tools of this nature to critically consider the risk associated 

with a product, in this case a monoclonal antibody, is invaluable when considering the 

product in terms of regulatory approval. The pre-determined categories, similar to the 
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IAT, make the potential for ambiguity in assigning criticality minimal, but not 

unimaginable.  

Table 7.1 - Tool #1 from the A-Mab Case Study C.M.C Biotech Working Group (2009). Abbreviations – 

PK=pharmacokinetics, PD=pharmacodynamics, ATA=anti-therapeutic antibody, AE=Adverse Effects.  

Impact Score Biological 

Activity or 

Efficacy 

PK/PDa Immunogenicity Safety 

Very High 

(20) 

Very 

Significant 

Change 

Significant 

Change on PK 

ATA detected 

and confers 

limits on safety 

Irreversible 

AEs 

High (16) Significant 

Change 

Moderate 

Change with 

impact on PD 

ATA detected 

and confers 

limits on efficacy 

Reversible 

AEs 

Moderate 

(12) 

Moderate 

Change 

Moderate 

Change with 

no impact on 

PD 

ATA detected 

with in vivo 

effect that can be 

managed 

Manageable 

AEs 

Low (4) Acceptable 

Change 

Acceptable 

Change with 

no impact on 

PD 

ATA detected 

with minimal in 

vivo effect 

Minor, 

transient AEs 

None(2) No Change No impact on 

PK or PD 

ATA not 

detected or ATA 

detected with no 

relevant in vivo 

effect 

No AEs 
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Table 7.2 - Tool #2 from the A-Mab Case Study C.M.C Biotech Working Group (2009). 

Uncertainty Score Description (Variants and 

Host Related Impurities) 

Description (Process Raw 

Material)a 

7 (Very High) No Information (New 

Variant) 

No Information (new 

impurity) 

5 (High) Published external 

literature for variant in 

related molecule 

- 

3 (Moderate) Nonclinical or in vitro data 

with this molecule. Data 

(nonclinical, in vitro or 

clinical) from a similar 

class of molecule. 

Component used in 

Previous Processes 

2 (Low) Variant has been present in 

material used in clinical 

trials. 

- 

1 (Very Low) Impact of specific variant 

established in Clinical 

Studies with this molecule. 

Generally Regarded as 

Safe (GRAS) or studied in 

clinical trials 

While both tools gave the user an assessment of the risks involved, and the criticality of a 

characteristic to the success of the process, neither could definitively attribute criticality. 

Results were broadly consistent across both tools, with only minor inconsistencies in 

criticality. The main difference between these tools and the Britest tools is the limited 

ability of the A-Mab tools to increase process understanding. The A-Mab tools rely on the 

user understanding the quality attributes of the product prior to tool employment. 

However, the Britest tools would aim to enhance the process understanding through 

structured application requiring all known information relating to the process/product to 

be captured within the tool. A user could be unaware of a quality attribute when 

employing the A-Mab tools and could remain unaware after tool completion, whereas the 

Britest tools would aim to uncover the knowledge gaps, allowing the user(s) to investigate 

further.  
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Sensitivity analysis is the process of understanding how a change in designated conditions 

would affect the final output of a calculation or process. It can be performed in a 

multitude of software packages including, but not restricted to, MATLAB, Microsoft 

Excel and Minitab. Sensitivity can be tested either by changing multiple inputs 

simultaneously (similar to DoE experimental designs), or through changing each factor 

individually. In the case of investigations represented in this chapter, it was more 

appropriate to consider the changes simultaneously. It is possible to be incorrect on every 

single weighting, or on only one, and so by testing all weightings simultaneously, the 

impact of all possible scenarios could be investigated and understood.  

The following chapter investigates the impact of a weighting within the IAT being 

incorrect by a value of ± 1. The IATs within this study have all been generated using 

random number generators unless otherwise stated. All possible combinations of 

weightings were simulated, and relationships generated at random. Ten parameters were 

simulated for each set of weightings. This totalled 25 IATs, or 250 parameters, for each 

number of outcomes (5 and 10) tested in this case.  

The work aimed to ascertain at what point a parameter score could be considered reliable. 

A result was considered 100% reliable if 100% of the possible results generated the same 

indicated direction of change to the parameter. For example, if a parameter had a score of 

+5, for this to be considered 100% reliable all of the possible results would have to be 

positive in value. For the purpose of this work, it was assumed that the initial randomly 

generated result was the correct result, and the possible variations of ±1 were the 

permutations that could have been generated in a Britest study. It also tested whether this 

was possible to determine without running the extensive simulations. The study then 

moves on to consider the effect of a score variability of ±3, and the effect of employing 

an alternative weighting system. The IAT weighting system was compared to a system 
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employed within one of the Britest members, a multinational pharmaceutical company. 

The system preferred by this multinational utilises 1, 5 and 10 as weightings. For this 

comparison, a sample of IATs had their weightings converted to this system to ascertain 

the impact of this on the overall score for each parameter. The study concludes by 

considering the sensitivity of an IAT generated by AbbVie in the initial tool development 

work.  

7.2 Methods 

7.2.1 Simulations 

The IAT has not currently been launched within Britest as a tool. In the absence of access 

to IATs generated as a result of Britest studies, simulated IATs were created for the 

purposes of sensitivity analysis. Microsoft Excel (USA, 2013) was used to create 50 

IATs. Twenty five of the IATs had ten parameters and five outcomes. The remaining 

twenty five had ten parameters and ten outcomes. All random number generators were set 

to generate using a normal distribution and were required to be whole numbers. 

Each simulation started with using a random number generator to give the weighting 

values (red box, Figure 7.2). The RANDBETWEEN function was used to create five or 

ten weightings between 2 and 10. The lower bound and upper bounds were set in line 

with the possible lowest and highest weightings when an IAT is created within a Britest 

study using the system first described in Chapter 4.  
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Figure 7.2 - Example IAT where the red box highlights the outcomes and associated weightings, and the black box 

highlights the relationships between the parameters and outcomes (+1 for positive, 0 for none, -1 for negative). 

 

The randomly generated weightings were then transferred into a Table shown in Figure 

7.3. This was then completed to show the possible weightings if the weighting of 

respective outcomes was incorrect by ±1. In the example case shown in Figures 7.1 and 

7.2 this gave 8, 9 and 10 as possible weightings for Outcome 2. If the weighting was 

assigned as 2 (Outcome 4), then only 2 and 3 would be considered, as it would not be 

possible to generate an IAT with a weighting of less than 2. Likewise if a weighting was 

assigned a 10 (Outcome 1) then only 9 and 10 would be considered as it would not be 

possible to generate an IAT with a weighting of greater than 10.  

 

Figure 7.3 - Example of the Table used for the query function to generate all possible combinations of the weightings 

±1. 

Tables such as Figure 7.3 were used to generate all possible combinations of each 

column. This was completed using the Microsoft Query Function. Figure 7.4 shows an 

example result which would be obtained. In this case, the result contained 26245 possible 

combinations.  
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Figure 7.4 - Example output from the Query function. 

Once weightings were assigned and combinations had been generated, the relationships 

between each parameter and outcome were simulated, again using the RANDBETWEEN 

function. In this case the relationships could be -1, 0 or +1. A -1 represented a negative 

relationship, a 0 indicated no relationship, and +1 indicated a positive relationship. Across 

each parameter the relationships used for the simulation included both positive and 

negative relationships (Black square, Figure 7.2). If a parameter has an exclusively 

positive or negative influence on all outcomes then the overall drive direction will remain 

unchanged regardless of the weighting values.  

The completion of both weightings and parameters then allowed the sensitivity of each 

result to be tested. The scores for drive to increase/decrease were generated separately. 
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Their formulas are shown below in word form, and in Microsoft Excel format, 

respectively: 

Drive to Increase:  

If the original weighting multiplied by the relationship is more than zero then 

show the value of the corresponding cell from the possible combinations, if it 

is less than or equal to 0 then show 0. 

=IF(($B$10*$B$11)>0,Variations!A2,IF(($B$10*$B$11)<=0,0)) 

Drive to Decrease: 

If the original weighting multiplied by the relationship is less than zero then 

show the value of the corresponding cell from the possible combinations 

multiplied by minus 1, if it is more than or equal to 0 then show 0. 

=IF(($B$10*$B$11)<0,(Variations!A2*-1),IF(($B$10*$B$11)>=0,0)) 

Where “Variations!” refers to the sheet in which the possible combinations of the 

weightings is contained.  

In these, cell B10 (red) in Figure 7.5 contained the original weighting, and cell B11 (blue) 

contained the parameter relationship to the outcome. “Variations!A2” linked to the first 

row in the sheet containing each possible combination. This calculation is shown in 

Figure 7.5. 
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Figure 7.5 - Example output for each Parameter in the IAT. 

This formula was used to generate the possible scores for each row in the variations table, 

resulting in an output similar to that shown as an example in Figure 7.5. The overall score 

was also calculated for each row, giving the whole range of possible scores for the 

parameter and weightings (green-Figure 7.5).   

A range of statistics was produced for each parameter. The Mean, Mode, highest value 

and lowest value were all included, along with the % of overall scores which were 

positive, zero and negative. A graph of results such as that shown in Figure 7.6 was 

produced.  
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Figure 7.6 - Example graph of results showing the possible scores for each combination of weightings for a single 

parameter. 
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Figure 7.7 - Final IAT including summary statistics (rounded to 2 decimal places) 
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This process was repeated for ten parameters for each IAT (Figure 7.7), resulting in ten 

graphs and ten sets of summary statistics. Fifty IATs in total were generated, twenty five 

with five outcomes and twenty five with ten outcomes, all with ten parameters.  

7.2.2 Alternative weighting system 

A subset of IATs were tested with the alternative weighing system. To convert from the 

original system, a limit of ±2 was applied. This meant any value of 2 was designated a 1, 

any values between 3 and 7 were designated 5, and any values 8 or over were designated 

a 10. The score for each parameter was compared to that of the original IAT. 

7.2.3 Industrial Case Study 

The IAT constructed by AbbVie for their antibiotic fermentation was tested using the 

sensitivity analysis method described above. The random numbers were replaced with the 

numbers attributed by AbbVie, but the generation of variations and the calculation 

methods remained the same as described above. It is notable that the weightings were 

attributed without using the system presented within Chapter 4. Additionally, the original 

IAT contained eleven outcomes, which was beyond the computing capability of 

Microsoft Excel. In light of this, one outcome was removed from the IAT to give ten 

outcomes which would make the sensitivity analysis possible. This outcome was selected 

as it had the lowest weighting value (1), and therefore AbbVie had deemed to the least 

influential of the possible outcomes.  For the purpose of this thesis in light of 

confidentiality restrictions the outcomes and parameters for the fermentation have had to 

be anonymised.  
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7.3 Results and Discussion 

This work aimed to test how sensitive to change the weightings of the IAT were with a 

small and large number of outcomes. The weightings within the IAT are attributed by 

experts working on a process, and each person may have a different view as to the 

importance of an outcome depending on their area of expertise. This ambiguity could be a 

shortcoming in the tool, and this study sought to ascertain how confident users of the tool 

could be in the resulting scores.  

Initially Microsoft Excel (USA, 2013) was used to generate IATs using random number 

generators, to allow a test on a high number of completed tools without requiring 

information from a high number of industrial processes, which could be difficult to 

obtain. In addition to the results from the simulations, this gave rise to a spreadsheet 

which could be used on a real IAT to ascertain weighting sensitivity in a quick and 

efficient manner. This will allow organisations from the Britest consortium to make a 

business case for any arising work from Britest studies involving the IAT with 

confidence.  

All IATs had ten parameters, with randomly generated relationships to the outcomes. All 

parameters contained a mix of positive and negative relationships, as anything with 

exclusively positive or negative relationships would give 100% confidence regardless of 

the variations in weightings. Initially the work focussed on simulated IATs with 5 

outcomes, before moving onto consider 10 outcomes. The effect of the weightings of the 

outcomes being incorrect by ±1 number was investigated. For example, if an outcome 

was assigned a weighting of 6 the work would examine the effect of it being 5, 6 or 7.  

For each IAT, the 5/10 outcomes were varied by ±1 and all possible combinations of 

these were generated in Excel. These were then tested with the various parameter 
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relationships to generate all possible scores for each parameter if the weighting was 

incorrect by ±1. The results were summarised with the number of parameters involved in 

the relationship, mean, mode, drive to increase, drive to decrease, score, range and 

confidence. The confidence was defined as the number of possible results which would 

result in the same action on the parameter (i.e. generated a positive or negative score) as 

a % of the total possible number of results (Equation 7.1). The results from the IATs are 

shown in full in Appendix C. Results were summarised as Table 7.3.   

Equation 7.1 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
 𝑥 100 
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Table 7.3 - Format for results from the IATs generated. 
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1 4 2 2 4 14 -11 3 2.5 3 14 11 25 2.5 3 -7 90.74 0.75 

1 5 1 2 3 4 -11 -7 -7 -7 4 11 15 7 7 -6 100 -2.33 

1 6 2 2 4 7 -19 -12 -11.5 -12 7 19 26 11.5 12 -7 100 -3 

1 7 1 2 3 8 -7 1 1 1 8 7 15 1 1 -6 62.96 0.33 

1 8 2 1 3 13 -3 10 10 10 13 3 16 10 10 -6 100 3.33 
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                                  
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Initially it was hypothesised that a correlation would be likely between confidence and score, 

with the resulting graphs from 5 and 10 outcomes respectively shown in Figure 7.8. The 

anticipated correlation was confirmed, with 100% confidence being more prevalent in results 

with higher scores. However, a single threshold value could not be ascertained. For example, 

in one case, a score of 9 did not give 100% confidence, but in another the score of 3 did give 

100% confidence.  

 

Figure 7.8 - Graphs comparing the score of each IAT to the confidence in the result. Results from the IATs with 5 outcomes 

as graph a, those with 10 outcomes as graph b. 

Despite a clear trend, there was a lack of a defined threshold value, and so the overall “drive” 

was tested against confidence, i.e. the drive to increase and decrease values added together 

without the negative prefix for the drive to decrease. So a drive to increase of 10 and a drive 

to decrease of -12 would give a total of 22 rather than the original score of -2. This yielded 

poor results, with no correlation within the results. Next the difference between the mean or 

mode and the original score was examined, on the basis that this difference would be lower in 

the cases where confidence was high. This also yielded no discernible pattern, and so the 

range was compared to the confidence. It was assumed that cases with a high range would 

show a low confidence value, but this was also shown not to be the case. All results from 

these investigations are included in Appendix C.  

a b 
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Detailed examination of Figure 7.8 (weighted score vs confidence) showed that the number 

of parameters was influencing the results. In light of this, a weighted score was calculated by 

dividing the score by the number of parameters involved. The results are shown in Figure 7.9.  

 

Figure 7.9 - Constant value (Score/Number of Parameters) against the confidence in the result. Results from the IATs with 5 

outcomes are on the left, those with 10 outcomes on the right. 

Starting with Figure 7.9a, where IATs with 5 outcomes were considered, the graph would 

indicate that results with a weighted score closer to zero are more likely to have low 

confidence. While the original hypothesis for the work proposed that a threshold score could 

be possible, past which point confidence would be high, that was shown not to be the case in 

Figure 7.8. However, the plotting of the weighted score against the confidence shows that a 

threshold value is present, when the number of parameters is accounted for. Figure 7.9a 

shows that for 5 outcomes, this threshold is 1.2, and the Figure 12b shows the same 

relationship is true for IATs with 10 outcomes, though the threshold in that case is 1 

(indicated by the red dashed lines).  

These threshold values suggest that to be confident in the results from an IAT the number of 

parameters involved needs to be low, or the score needs to be high. For example, a 

relationship where 3 parameters are involved and the weightings are all 8 or above would 

give a result with a high level of confidence. Conversely a relationship involving 7 

parameters, all of which are weighted between 4 and 6, would be less certain. Following the 

a b 
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trend identified from the IATs with 5 and 10 outcomes, it would appear that as the number of 

parameters increases, the threshold value decreases. This trend held true for the AbbVie IAT 

(Table 7.4), where the only parameter showing less than 100% confidence (Parameter 3 

level) had a constant value of 1, with a score of 3 and 3 parameters involved. The confidence 

level was 96%, showing the probability of being incorrect was low, though it was surprising 

that this showed any ambiguity and the weighted score should be used only as an indication 

of likely confidence and not a steadfast rule. From here several further research questions 

were raised.  
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Table 7.4 – IAT and associated summary statistics from AbbVie.  
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Operating  

Conditions 

(Parameters) 

 

3 5 5 7 10 5 8 5 8 4 

Parameter 1 1 1 0 1 0 -1 0 0 0 0 15 -5 10 100 0 0 2.5 

Parameter 2 1 1 1 1 1 -1 1 0 0 0 38 -5 33 100 0 0 4.71 

Parameter 3 1 1 0 0 0 -1 0 0 0 0 8 -5 3 96.3 3.7 0 1 

Parameter 4 0 0 1 0 1 0 0 0 0 0 15 0 15 100 0 0 7.5 

Parameter 5 0 0 0 0 0 0 0 1 1 0 13 0 13 100 0 0 6.5 

Parameter 6 0 0 1 1 1 0 1 -1 0 0 30 -5 25 100 0 0 5 

Parameter 7 1 0 -1 1 -1 -1 0 0 0 -1 10 -24 -14 0 0 100 -2.33 

Parameter 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 
 

Parameter 9 1 1 0 0 0 1 0 0 0 0 13 0 13 100 0 0 4.33 

Parameter 10 1 1 0 0 0 1 0 0 0 1 17 0 17 100 0 0 4.25 

Parameter 11 0 0 -1 0 -1 0 1 0 -1 0 8 -23 -15 0 0 100 -3.75 
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It was not possible within the study to test all arising hypotheses, and so three research 

questions were selected for further investigation. Firstly, it was decided to investigate the 

effect of greater uncertainty on the threshold value. Rather than test all possible options, it 

was decided that change of outcome weightings by ±3, using just the extreme values would 

give an adequate indication of whether it was possible to reach a situation where 100% 

confidence is not possible. Secondly, the effect of the number of outcomes on threshold value 

was tested. Microsoft Excel was not capable of testing more than ten outcomes, however 5 

IATs were generated with 7 outcomes to be used as indicators of threshold value effect. It 

was anticipated that the threshold value for these would lie around 1.1 as this was directly in 

the middle of the thresholds for 5 and 10 outcomes. Lastly, the results from the sensitivity of 

the current weighting system were compared to that of a QbD accepted system. The 1, 5, 10 

system for importance is used, for example, in a major pharmaceutical Britest member 

company currently when carrying out risk analysis for QbD. Compared with the weighting 

system proposed for the IAT, this forces the user to separate attributes by greater margins, to 

ensure the most critical attributes are the most obvious. However, this enhanced separation is 

also expected to increase the error impact. Comparing the two systems aimed to allow the 

user to determine the most appropriate weighting system for the Britest study.  

Considering first the increased error size, it was found that this increased the threshold value 

significantly, to 2.1 (5 outcomes). The high rate of error made it difficult to obtain any results 

with 100% confidence, but this did happen in some cases. The test was done with IATs 1-5, 

where the relationships remained the same to allow for direct comparison, and only the 

high/low values were changed. Most results did not have 100% confidence, though in a 

minority of cases this was achieved.  
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The threshold value for 7 outcomes was found to be between 1 and 1.2, as predicted (Figure 

7.10). The smaller sample size made it difficult to determine a threshold as conclusively as in 

the IATs with 5 and 10 outcomes, but parameters associated with a weighted score of 1.2 or 

above resulted consistently in a 100% confidence value, with occasional incidences of 100% 

confidence at a weighted score of 1.0. If this trend continues beyond the number of outcomes 

tested then the higher the number of outcomes, the lower the threshold value for 100% 

confidence. This is highly significant when applying the IAT within bioprocessing, where the 

number of outcomes could be high, or when applying the IAT to multiple unit operations 

where many outcomes could be measured.  

 

Figure 7.10 - Score vs constant for IATs with 7 outcomes. 

Comparing the IAT weighting system to the QbD scoring system was achieved by using 

IATs 1-5, and converting the scores to the QbD system. In this system, any value of 2 or 

below was designated a 1, values between 3 and 7 were designated 5, and values 8 or over 

were assigned a 10. In most cases, the weighting system was shown not to affect the overall 
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outcome. Most parameters would have different scores, and so prioritisation of experiments 

may be altered, but in general scores remained positive or negative. However in some cases, 

the scores changed from positive to negative, or vice versa. The exaggeration of effects 

through using a 1, 5, 10 system is potentially powerful for minimising ambiguity when 

constructing an IAT, but this could also reduce confidence in the result and also potentially 

negatively impact the process by suggesting  a drive to decrease a parameter when an 

increase is required. Therefore the original structured weighting system for the IAT which 

utilises two sets of scores out of 5 combining business and process benefit has been shown to 

be a superior system. The concern over a group being unable to agree on a weighting, or 

being reluctant to fully utilise the range of weightings available should be overcome through 

the clear categories provided for the business and process benefit. In addition to this, the 

ability to use the score and number of parameters involved to indicate the likely reliability of 

the weightings to within ±1 will ensure any possible ambiguity is understood prior to 

experimentation being carried out.  

Within the AbbVie IAT case, the change in scoring system did not affect the way in which a 

parameter would be altered. Scores varied slightly in value, but the overall drive to increase 

or decrease a parameter was unaffected. However, the IAT contained only one parameter 

which did not generate 100% confidence (Parameter 3, Table 7.4), and 50% of the outcomes 

fitted with the 1, 5, 10 system without alteration. In a more varied IAT these results could 

have been different.  

7.4 Summary  

This study examined the impact of the weighting sensitivity on the outcomes of the IAT tool, 

to ascertain the impact of human error on the outcomes from the tool. While it was 

anticipated that the score alone could be used to infer the confidence in the results, it was 
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found that the number of parameters contributing to the score was required to be considered. 

Dividing the score by this gave a reliable indication of the confidence in the results, though 

the number of outcomes influenced the point past which the confidence would be 100%. If a 

larger error in outcome weighting was considered (±3 rather than ±1) then the threshold value 

increased, and it was rare to see a result which displayed 100% confidence. The 

implementation of the structured weighting attribution system should minimise error, and the 

calculation of the threshold value of the weighted score will allow users to determine not only 

which parameters could be negatively impacting the process the most but also which can be 

changed with the highest degree of confidence. Finally an alternative weighting system not 

designed specifically for the IAT was considered, which was shown to adversely affect 

results in rare cases, suggesting that the original structured approach would be better suited to 

the IAT tool.  

Across a multitude of industries weighting systems are employed for a multitude of purposes 

(Burgess and Brennan, 2001; Kleiner et al., 2005; Shaeri et al., 2006; Kumschick et al., 2015; 

Valtorta et al., 2015; Nentwig et al., 2016). A range of systems exist, and each will have 

associated merits and drawbacks for the situation it is applied within, and the system is often 

employed by organisations based on historical application rather than critical assessment of 

these. As pharmaceutical industry adopts a “Quality by Design” (I.C.H Guideline, 2009) 

approach, qualitative process understanding tools will become invaluable. While tools of this 

nature undoubtedly add value to a process, this work highlights the importance of considering 

the potential for error arising from such systems. This work clearly demonstrates the benefits 

of considering the possible ambiguity being introduced into a decision making process 

through these weighting systems, and the caution with which they should be applied within 

high value processes such as in the biopharmaceutical industry.  
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Chapter 8 Research Conclusion and Industrial Impact 

8.1 Research Conclusion  

This Engineering Doctorate (EngD) thesis has presented work undertaken in collaboration 

with Britest Ltd to develop the Britest tools for application to bioprocessing. The need for 

knowledge management tools within bioprocessing to support QbD adoption has been 

identified as a challenge (Herwig et al., 2015), and this research sought to fill this gap 

through the creation of tools designed for this purpose. 

This research aimed to: 

1. Develop novel knowledge management tools designed specifically for 

bioprocessing  

2. Investigate whether the Britest tools could be applied to bioprocessing to perform 

this function 

3. Test these tools on a range of industrially relevant datasets 

4. Identify the stage of process development at which the tools would add the most 

value 

5. Compare these to alternative methods of enhancing process understanding 

Considering these in turn, the work developed two new novel knowledge management 

tools for bioprocessing, the R2T2 and the IAT.  The R2T2 was a redevelopment of the 

PDD, and the successful demonstration of application to virtual bioprocesses was deemed 

sufficient to add value to bioprocessing. The IAT was redeveloped significantly from an 

earlier Britest development, and as such was tested on upstream and downstream datasets 

to establish suitability for bioprocessing. In addition to these new tools, some tools from 

within the Britest toolkit such as the ISA/PrISM were shown to be directly applicable 



 179 

 

(Chapter 3), whereas others such as the PDD did not address some key features of 

bioprocessing in their original format.  

The focus of the work has been on developing the IAT (Chapter 4), and testing it on 

industrially relevant upstream and downstream datasets (Chapters 5 & 6), before testing 

the sensitivity of the weightings included within the tool (Chapter 7). The research has 

successfully demonstrated the benefits of applying tools of this kind within bioprocess 

development, and the limitations of such approaches. The resulting toolkit designed for 

application to bioprocesses is ready for Britest to deploy into their wider membership. 

The work presented in this thesis has been shown to add significant value in the early 

stages of process development, where there is a requirement for tools designed to 

facilitate interdisciplinary, using qualitative approaches which can be applied in data lean 

environments following a structured format to give a consistent output, thus overcoming 

the various shortcomings of the identified alternatives.  

Current tools to support QbD adoption and the early stages of process development work 

in a range of ways, each with their own associated shortcomings. Software 

implementation methods can use sophisticated systems to generate consistent outputs, but 

they struggle to overcome the challenges associated with interdisciplinary working (Liao, 

2003). Frameworks which follow a structured application flow give support to 

interdisciplinary teams but do not have a consistent structured output for ease of 

knowledge transfer (Rathore, 2009). Mathematical modelling can capture highly detailed 

relationships but require a high level of data to generate a useful model. Finally more 

qualitative tools such as Six Sigma (Motorola, 2009) give a consistent output with a 

structured approach designed to facilitate interdisciplinary working, but these were 

designed for broad application, not specifically to support QbD and bioprocess 
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development. Within Chapters 5 and 6 the IAT outputs were compared with the original 

analysis, and reanalysis using a DoE simulation approach which assumed no experimental 

design information was present. The IAT gave consistent outputs to the original research, 

and could have significantly reduced the number of experiments required for optimisation 

had it been employed in the original experimental design.   

8.2 Industrial Impact 

The EngD is differentiated from a PhD through the industrial sponsorship, and so a 

successful project must not only advance knowledge in the project area, but a benefit for 

the industrial sponsor from the research should be demonstrated. In the course of this 

research several Britest member companies have been presented with the research 

outcomes, through regular Britest-wide bioprocessing teleconferences, individual 

interactions, Britest Members Day presentations/posters and through Britest studies. 

Feedback has been overwhelmingly positive on both the R2T2 and the IAT, both from 

companies directly involved in their development (in particular AbbVie), and those not 

directly involved in the research (in particular Johnson Matthey, Infineum, AstraZeneca 

and Shasun). The industrial impact of this research is shown best through the comments 

received after presenting the work as part of a workshop at a Britest Members day in 

October 2015. The session included an introduction to the project, followed by both the 

R2T2 and the IAT being explained to the audience. The audience was then invited to give 

feedback and discuss the potential for using both tools within their companies.  

Question – Do you feel that the IAT could be applied to any of the process challenges 

you encounter in your own work? If so please indicate which ones. 

AbbVie – Yes, we have utilised and plan to continue to utilise the IAT for fermentation 

technology transfer and continuous improvement. We would specifically use it for: 
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 Initial review of technology transfer data 

 Review of internal pilot plant data prior to scale up 

 Review of production data for further process understanding and continuous 

improvement 

FFIC – I think the tool may have potential in the area of physical processing-however 

it’s difficult to judge until I have more experience of the tool. 

AstraZeneca – Yes, I’m looking at some polymerisation and both the IAT and R2T2 could 

be applicable. 

ICES – Partially. It might provide a link between the biologists and engineers to provide 

clear communication and mutual understanding.  

Question – Do you feel that the R2T2 could be applied to any of the process 

challenges you encounter in your own work? If so, please indicate which ones. 

AbbVie – Yes, this tool is useful for any downstream process where impurity clearance is 

important (should be broadly useful). 

FFIC – I think the tool may have potential in both physical processing and chemical 

processing, in particular where multiple phases are present. As with the IAT it’s difficult 

to judge until I have experience using the tool. 

AstraZeneca – Yes, I’m looking at some polymerisation and both tools could be 

applicable. 

Shasun – I can see it might be useful for chemical processes to track what’s going on in 

the reaction mixture during processing operations – raw material consumption, product 

formation, impurity generation etc. 
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ICES – Yes, need to track progress through process. 

Question: What are your immediate impressions on the structure of the R2T2, and 

its potential ease of use? 

AbbVie – I think the tool structure is simple and effective. Would make sure to tie the 

process tasks to PDD number. 

FFIC – difficult to comment as I have no experience. 

AstraZeneca – I think a chemistry version would be a mixture between a PDD and DFA. 

This could be useful and is a current gap. 

Shasun – Looks good and intuitive. A scale on each box may be useful if tracking. 

After the conclusion of this research, in January 2017, Biogen became Associates of 

Britest (Britest, 2017).  The developing interest in bioprocessing demonstrated in this 

research was one of the key features that encouraged them to take this decision. In 

addition interactions between Britest and a mid-sized multinational pharmaceutical 

company have been opened as a direct consequence of presenting the research contained 

within Chapter 7 at the ESBES conference in Dublin in September 2016 (McLachlan, 

2016).  

Since the research project ended, the IAT and R2T2 have both been used by Britest in 

studies focussing on formulation. This clearly demonstrates the applicability across 

disciplines. While application to areas outside of bioprocessing was not a major driver in 

tool development, it is an additional benefit to Britest and is in keeping with the broad 

applicability of the rest of the toolkit.  
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This research project was awarded the John Borland Award in October 2016, for making 

a significant contribution to innovation within Britest. The award recipient is determined 

by the scientific advisory board from within Britest, and this project was chosen to be the 

inaugural recipient from a range of projects being carried both within academia and 

industry (CPI, 2016).  
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