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Abstract

Ageing is a natural process, which is characterised by progressive decline in physiological
functions and increased susceptibility to disease and death. Brain is particularly susceptible to
structural and functional changes, which is more evident in disorders associated with ageing
such as Alzheimer disease (AD). Copper is necessary for the protection against oxidative
stress, energy production and neurotransmitter processing in the brain. However, higher
copper levels can increase oxidative stress, resulting in neuronal damage. In order to avoid
copper induced cytotoxicity, cells have to regulate copper levels through distribution into
three intracellular pathways. By identifying changes in the copper pathways in the healthy and
AD brain and by estimating the effects of copper chelation or supplementation in model cell
line a better understanding of copper function in the brain will be obtained. In order to
accomplish that copper, activity and protein levels of cytochrome ¢ oxidase (COX) and
superoxide dismutase (SOD) were measured in the healthy, AD brain and in HEK293 cell
treated with copper chelators or supplemented with copper. Copper concentration was
significantly decrease by more than 40% in healthy ageing brain and in the AD brain. Copper
loss did not seem to affect the activity or protein level of the COX and SOD, since their levels
were significantly increased in the ageing and AD brain. On the other hand, cells treated with
copper chelators for three days faced a more than 75% decrease in intracellular copper
concentration, which led to a more than 85% inhibition of the COX and SOD activity.
Copper levels should be regulated properly in order to meet body’s metabolic demands and
avoid cytotoxicity. Brain seems to have a mechanism where its energy demands have to be
fulfilled even under low copper concentrations. Whereas, the prolonged and severe copper
loss can dramatically affect the energy production and antioxidant defence systems which

could be fatal to the cells.
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1 Introduction



1.1 Copper in mammalian cells

Copper is an essential trace element found in a variety of cells and tissues, with the highest
concentrations being found in organs such as liver and brain®. Copper ions exist in both
oxidized, cupric (Cu?*), and reduced, cuprous (Cu'*) states®. Copper’s ability to accept and
donate electrons has been utilized in various biological possesses such as mitochondrial
respiration, tissue formation, pigmentation, iron oxidation, neurotransmitter processing and

antioxidant defence® 4,

Mammals obtain copper mainly from sources such as oysters, liver, nuts, legumes, whole
grains and beans®. Generally, copper absorption in the gut depends on dietary habits, food
choices or supplementary vitamins and minerals which may promote or inhibit its
absorption®. About 30-40% of the ingested copper, mostly Cu?*, is absorbed in the small
intestine and to lesser extent in the stomach®. The absorbed copper, from the small intestine,
is transported through intestinal cells to the blood where it is found predominantly bound to
albumin (Ab) and transcuprein, a protein that belongs to the macroglobulin family® 9.
Copper will be transported to the liver where it can be stored within hepatocytes, secreted into
plasma by incorporation into Ceruloplasmin (Cp) or excreted into the bile®”. The World
Health Organization (WHQO) has announced that the minimum requirements for copper are 0.6
mg/day for a woman and 0.7 mg/day for men. The body has established a homeostatic
regulation mechanism via increased adsorption or excretion in order to fulfil the body

requirements and avoid toxicity®.

Copper levels have to be regulated properly since an imbalance on its levels can increase
oxidative stress, lead to neuronal damage and initiate degradation of proteins, DNA and
lipids. The effects of copper metabolism imbalance can be seen in two rare disorders,
Wilson’s and Menkes disease. Wilson’s disease is an autosomal recessive metabolic disorder
characterised by increased levels of copper in the liver and brain and by specific symptoms
including hepatic, ophthalmological, neurological and/or psychiatric changes®?. Menkes
disease is an X-linked copper deficiency disorder where patients exhibit severe mental and
developmental impairment®?. The clinical symptoms of Menkes disease include progressive
neurological degeneration, connective tissue abnormalities, muscular hypotonia and
hypopigmentation of skin and hair*?. Except of these two neurodegenerative disorders
studies have shown that copper is also implicated with other neurological diseases such as
Alzheimer’s (AD)®* 4 or Parkinson (PD)®% 19, Several studies have shown that copper and

copper binding protein are facing significant changes in the AD brain but that will be further
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discuss at section 1.5.2. As far as it concerns the implication of copper in PD a study from
Popescu et al. where they used rapid-scanning x-ray fluorescence, has shown that copper
levels were decreased in the PD brain but only in substantia nigra, one of the most affected
brain regions in PD cases®). However, in that study they do not report if that change was
statistical significant. The results from Popescu and college study are in good agreement with
a study coming from Dexter et al. who used inductively coupled plasma spectrometry (ICP-
MS) to measure copper in frozen brain tissue!® 17, In that study Dexter et al. showed a
general non-significant copper loss in the PD brain with only substantia nigra presenting a
statistical significant copper loss of more than 35%®7).

1.2 The mechanism of copper toxicity

The benefits of utilizing copper for cellular processes come at a price since copper can cause
cellular toxicity. The main theory about copper induced cellular toxicity is based on the ability
of copper ions to participate in the formation of reactive oxygen species (ROS). In the
presence of superoxide (O2) or reducing agents such as ascorbic acid or glutathione (GSH),
Cu?* can be reduced to Cu'* (equation 1.1), which is capable of catalysing the formation of
hydroxyl radicals (OH®) from hydrogen peroxide (H.O>) via the Haber-Weiss reaction
(equation 1.2)@,

02 + Cu**— 02 + Cu?* (1.1)
Cul* + H02 — Cu?" + OH + OH*® (1.2)

The produced hydroxyl radicals are the most powerful oxidizing radical likely to arise in
biological systems and can react with almost every biological molecule within the cell®®),
Hydroxyl radicals are able to abstract a hydrogen form unsaturated fatty acids leading to lipid
radical formation which can eventually lead to the repetitive formation of short-chain alkanes
and lipid acid aldehydes, resulting in the disruption of the lipid membrane*®. Proteins are
also another possible target where the oxidation can be initiated by the binding of reduced
copper to enzymes where it will form a coordination complex which consequently will react
with hydrogen peroxide to form hydroxyl radicals?®. The produced hydroxyl radicals can
abstract hydrogen from amino-bearing carbon, leading to the formation of a carbon-centred
protein radical that undergoes a series of reactions, resulting in the hydrolysis of the amino
group and the formation of an aldehyde or protein carbonyl®®. The same reactions can be
driven by iron, via Fenton chemistry, where the produced hydroxyl radical can act as oxidants

of DNA and cause both mutagenesis and lethality to the cells@V.
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The mechanisms of copper induced toxicity have been studied in both mammalian and
bacterial cells. A recent study in Escherichia coli has shown that copper is capable of rapidly
inactivating the catalytic iron-sulfur cluster of dehydratases®?. This enzyme family has
representatives in central catabolic and biosynthetic pathways and is vulnerable to chemical
damage because their clusters are substantially exposed to solvent®). The iron-sulfur clusters
are vulnerable to molecules such as O2™ and H20: since they are small enough to invade the
active site, where they coordinate and oxidise the iron-sulfur active site®”. Macomber et al.
showed that these clusters are the primary target of copper®@?. Copper will displace the iron
atoms from the solvent exposed cluster which suggest that copper damages the dehydratases
by liganding to the coordinating sulfur atoms®?. The observation that copper can damage
iron-sulfur clusters in E.coli revealed the possibility that the released iron atoms will
potentially overload in the cells and proportionately will accelerate any iron-based Fenton

chemistry which can cause DNA damage or stimulate excessive iron import into the cells®?.

Studies from copper overload disorders have shown that mitochondria are one of the targets
for copper toxicity, since copper can oxidise the mitochondrial lipid membrane and damage
the enzymes of the tricarboxylic acid cycle and oxidative phosphorylation®. Copper induced
mitochondrial toxicity has been studied in hepatocytes and neuronal cell lines and in both
cases increased copper concentrations stimulated the production of ROS which eventually led
to decreased cell viability®@® 27, Studies in rat hepatocytes has shown that copper can cause
not only a rapid decline in the mitochondrial membrane potential (A%¥m) and induce the
increased formation of mitochondrial derived ROS but also induce the increased cellular lipid
peroxidation and the depletion of reduced GSH®®), Similar findings have also been observed
in a neuronal cell line, where copper accumulated inside the mitochondria causing initially
metabolic arrest which eventually led to cell death because of increased ROS production®),
Mitochondrial proteins were also targets of copper induced toxicity since the proteins that
form the Complex | (NDUFs) of the respiratory chain were significantly decreased by higher

copper concentrations®®).

1.3 Copper homeostasis pathway in mammalian cells

Inside the human body, cells have to maintain copper levels within a range in order to meet

both the cellular metabolic demands for copper but also to avoid cytotoxicity. Hence, specific
mechanisms are needed to regulate the dynamic fluctuations of extracellular and intracellular
copper levels®®. Mammalian cells need to regulate copper concentration not only at the level

of a single cell, but also at the whole organism, since certain organs have specific demands for
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copper which reflect their normal function in the body®. After insertion in cells, copper can
be distributed into three different pathways: secretory, mitochondrial and cytosolic.

1.3.1 Copper influx into cells

Copper uptake on the apical surface of intestinal epithelial cells is mediated primarily through
the specific copper transporter, copper transporter 1 (Ctr1/SLC31A1)@%, and to lesser extent,
the divalent metal transporter 1 (DMT1/SLC11A2)GY. Ctrl is ubiquitously expressed in all
tissues and is particularly abundant in the gut, choroid plexus of the brain, renal tubules and in
connective tissues of the eye, ovary and testis®?),

1.3.1.1 Copper transporter 1 (Ctrl)

Ctrl is an integral membrane protein that is structurally and functionally conserved from yeast
to humans, composed of 190 amino acids in human with a molecular mass of 23 kDa®?,
Mammalian Ctrl has an overall architecture consisting of an extracellular N-terminal domain,
three transmembrane domains and an intracellular C-terminal domain containing a cysteine-
histidine cluster (HCH) ®2. Ctr1 contains on its sequence certain elements that are essential
for copper uptake which are the MX3M motif on the second transmembrane domain and two
methionine (M1 and M2) and two histidine (H1 and H2) rich motifs on the N-terminal. The
last two elements are also significant in copper binding/sensing activity @3- with the
methionines on M2 being particularly important for copper transport activity under copper

limited conditions®4 36),

In the cell membrane Ctrl has to be oligomerized as a trimer in order to form a pore that
allows copper to pass through the plasma membrane®’: %), Copper uptake by Ctr1 is not
dependent on ATP hydrolysis or an ion gradient and the whole mechanism of copper transport
though the pore is not fully elucidated®” *®. The suggested mechanism supports that copper
ions are reduced extracellularly maybe by binding to the methionine and histidine rich
domains in the N-terminal which is followed by shuttling of the reduced copper ion in
through the pore®”38), The last stop of copper is the HCH motif in the C-terminal which
seems to act as an open/close switch of the internal pore. A recent study has determined the

copper binding affinity or association constant (Kp) of the HCH motif as 4.3 x 103 M9,

In cells, Ctrl is found in two locations: the plasma membrane and intracellular vesicles and
Ctrl regulation of localization depends on extracellular copper levels (Figure 1.1)“%4b,
Molloy et al. reported that at very low copper concentration (less than 1 uM) the majority of

Ctrl was detectable at the plasma membrane and a small amount (14%) in internal vesicles®),
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When extracellular copper levels were between a range of 2.5-100 uM this triggered the
internalization rate of Ctrl, resulting in a greater proportion of Ctr1, more than 40%, locating
in the intracellular compartment®Y. When copper was removed from the extracellular media,
the internalization rate of Ctrl returned back to the original value where Ctrl mainly localized

to the plasma membrane®“?.
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Figure 1.1 Representative Model of Copper Homeostasis Pathways in Mammalian Cells.

In the cell membrane copper uptake is mediated through Ctrl. Inside the cells copper is
initially bound to thiol metabolites such as glutathione (GSH) and then is distributed into
three different pathways. In the cytosolic pathway, the copper chaperone for Cu,Zn
superoxide dismutase (CCS) delivers copper to the Cu,Zn superoxide dismutase 1 (SOD1) in
the cytosol. In the secretory pathway, the chaperone Atox1 (human antioxidant protein 1) will
transport copper to the copper-transporting P-type ATPases, ATP7a/b, in the Golgi
membranes for incorporation into newly synthesized proteins/enzymes or excretion from the
cells. In the mitochondrial pathway, an unknown molecule transfers copper to the
mitochondrial inner membrane where is required for the functionn of cytochrome c oxidase
(COX). Excess of copper will be stored in metallothioneins (MTSs). Figure was adapted from
Cotruvo et al.*),

After transportation of copper into the cytosol a ligand exchange will take place between
copper which is bound to the CHC motif of Ctrl and intracellular molecules such as copper
chaperones or GSH®". A study from Maryon and colleagues has tried to identify which are

the possible intracellular copper acceptors in cells that overexpress Ctrl and found that GSH
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is possibly the first molecule to accept copper from Ctr1“4. They concluded this since
overexpression of the copper chaperones did not affect cellular copper uptake, but depletion
of GSH (by inhibiting its synthesis) caused significant inhibition of copper uptake®®. The
GSH copper affinity K is around 1 x 101! M which places it the lowest amongst the other
copper binding chaperones®. Even if GSH has the lowest Ky, its levels are considerably
higher in the cytosol which further supports the idea that copper is first transported to GSH
and then GSH delivers copper to the chaperons (Figure 1.1)“4,

The importance of Ctrl function in the body has been studied in a mouse model which
showed that Ctrl is essential for the embryonic development. The deletion of Ctrl gene was
embryonic lethal, possibly because of the reduced supply of copper in the developing
embryo®2 %), Heterozygous mice for Ctrl (mouse Ctrl is 90% identical to human®”) showed
that copper levels in the brain and spleen decreased by 50% but in other organs such as liver,
kidneys and intestine copper levels remained unchanged®?“®, The above observations
suggest that Ctrl is more important for copper supplementation in the brain and spleen
compared to other organs which might have a Ctr1-independent copper import system®®, The
existence of the Ctrl-indepedent copper transport system was further supported from studies
with embryonic Ctr1-homozygous knockout cells which were able to transport 30% of the

extracellular copper®®,

In the brain, the highest expression levels of Ctrl were detected in the choroid plexus and
capillary endothelial cells“59, In the choroid plexus Ctrl is mainly located in the apical
membrane where it might extract copper from the cerebrospinal fluid (CSF), a function that is
related to the proposed role of the choroid plexus in maintenance of copper homeostasis in
brain extracellular fluid“® %%, In brain capillary endothelia cells, Ctr1 is located on the luminal
side where it probably regulates copper uptake from the blood®®. Ctr1 is also expressed in
neurons in different brain regions such as visual cortex, anterior cingulate cortex, caudate and

putamen, whilst in cerebellum Ctrl is mainly expressed in Bergmann glia®®.

1.3.2 The secretory pathway of copper homeostasis

Once absorbed, copper needs to be transferred out of the intestinal enterocytes to the blood
and also to sites of synthesis of copper-containing proteins within cells. In the human body
there are a number of secreted and plasma membrane proteins that require copper for their
function. Copper must therefore be transferred to the Golgi compartment where it will be

incorporated into newly synthesized proteins, such as the multicopper ferroxidases Cp and

Hephaestin, tyrosinase, lysyl oxidase and blood clotting factors. In the cytosol the dedicated
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copper chaperone Atox1 (human antioxidant protein 1 or HAH1) delivers copper to the
copper-transporting P-type ATPases, ATP7a and ATP7b, located in the trans-Golgi
membrane, where copper can be incorporated into newly synthesized proteins or secreted
from the cells (Figure 1.1).

1.3.2.1 The Atox1 copper chaperone

Atox1 was the first copper chaperone to be identified and it consists of 68 amino acids with a
molecular mass of 7.5 kDa®Y. Atox1 contains the highly conserved copper binding domain,
MXCXXC®52) near its N-terminus where it binds copper with a Ky around 6 x 107 M5
53, On its sequence Atox1 also contains a nuclear localization signal (NLS), KKTGK motif,
near its C-terminus®® 54, In the human body the expression of Atox1 is abundant and is
ubiquitously expressed in both peripheral tissues and in the central nervous system (CNS)®Y,
In the brain, the highest protein levels of Atox1 were found in the choroid plexus and

substantia nigra®® 5%,

Atox1, in addition to its function as a copper chaperone, has a suggested second role in
mammalian cells that of a transcription factor. Studies from Itoh and colleagues have
indicated that Atox1 functions as a copper dependent transcription factor which induces the
expression of cyclin D1 and the extracellular Cu,Zn Superoxide Dismutase 3 (SOD3)®* 5,
Cyclin D1, is an important regulator of G:-S cell cycle progression and SOD3 is an
extracellular enzyme that requires copper for its activity which acquires it through the
secretory pathway®®. Initially, Itoh et al. found that in mouse embryonic fibroblasts (MEFs)
copper normally increases proliferation but in Atox1 deficient MEFs, their proliferation was
decreases independent of copper concentration in their growth medium. It seems that in MEFs
there is an Atox1 dependent increase in the mMRNA and protein expression of cyclin D164,
The study from Itoh et al. established, for the first time, that copper can regulate the
transcription factor function of Atox1 at multiple steps which include: nuclear transport, DNA
binding to the promoter region of cyclin D1 and transcriptional activation®®. In another study
by Itoh and colleagues, it was demonstrated that Atox1 regulates not only the catalytic activity
of SOD3 but also its transcription®®.

The importance of Atox1 in the body was also demonstrated by the effects of Atox1 gene
disruption in mice®”. Knockout mice face severe phenotypic alteration which includes failure
to thrive, growth retardation, congenital eye defects, hypopigmentation and seizures®”. The

Atox1 knockout phenotype was similar to that observed in mice when they experienced a



copper deprived diet from early in life®®. Also, the lack of Atox1 in cells resulted in

accumulation and failure to excrete copper from the cells®”.

1.3.2.2 Copper-transporting P-type ATPases: ATP7a and ATP7b

Human cells contain two homologues of the copper ATPases: ATP7a and ATP7b®% 69 which
undergo ATP-dependent cycles of phosphorylation and dephosphorylation in order to catalyze
the translocation of copper across cellular membranes®?. ATP7a and ATP7b have a dual role
in the cells: 1) a biosynthetic role, where they deliver copper to various secreted enzymes
such as SOD3®?, tyrosinase®® and peptidylglycine a-amidating monooxygenase (PAM)®©4),
and 2) a homeostatic role where they export excess copper from the cells®. Under normal
conditions, ATP7a and ATP7b are localized to the trans-Golgi network (TGN) where they
provide copper to cuproenzymes synthesised in the secretory pathway(©? 66),

ATP7a and ATP7b are 160-170 kDa membrane proteins with very similar structure and
function sharing 60% amino acid identity®®. Both ATP7a and ATP7b consist of eight
transmembrane domains which form a pore through the cell membranes for copper
translocation with a large cytosolic N-terminus domain which contains six copper binding
domains with a conserved GMXCXXC motif®®. ATP7a and ATP7b obtain copper through
interaction with Atox1 copper binding domain which is similar to their own copper binding
domains®” and in order to translocate copper into the lumen of the Golgi ATP7a/b undergo
cycles of phosphorylation dephosphorylation. Competition experiments were used to
determine the Ky affinity of the six ATP7a and ATP7b copper binding domains and based on
these experiments the six copper binding sites of ATP7b have a Ky varying from 2.2 x 10%°
M to 4.7 x 10 M1 53, Whereas ATP7a copper binding sites appear to have a higher Ky
which is between the range of 9.6 x 10* to 3.8 x 10 M1 (45.53),

The mechanism that regulated the cellular copper levels, by the copper-ATPases transporters,
is based on their cellular localization in response to changes in the intracellular copper
concentration®® %), When cellular copper levels are higher ATP7a and ATP7b will traffic
from the TGN to the cell membrane in order to export the excess copper’®. The mechanism
of translocation of ATP7a/b has been observed in both polarized cells (Caco-2, HepG2, WIF-
B)("* ™) and non-polarized cells (CHO-K1, human fibroblasts, HeLa)®® 7. In non-polarized
cells the transporters traffic to the plasma membrane and/or to distinct cytosolic vesicles close
to the plasma membrane®®. In polarized cells, ATP7a traffics from the TGN to a recycling

vesicular pool which is located in the basolateral membrane®® 7, whereas ATP7b traffics to



sub-apical vesicles. When copper levels return back to normal/non-toxic for the cell type
levels, ATP7a and ATP7b recycle back to the TGN(®6:68.71),

ATP7a is ubiquitously expressed in all tissues except liver and according to some studies is
important for the supply of copper both to and within the different brain regions. ATP7a
highest expression levels in the brain are detected in the cerebellum and on the basolateral
surface of the polarized choroid plexus cells®®. ATP7b expression has a more limited pattern,
with liver being the highest expressing organ(’®, where ATP7b is also the only copper-
transporting P-type ATPase, with lowest levels observed in the kidneys, placenta, heart and
brain®®. ATP7b’s function in the brain is not completely understood but ATP7b is expressed
in many brain regions including the hippocampus, Purkinje cells in cerebellum, in cerebral

capillaries and in the apical membrane of choroidal epithelial cells“® 7,

The importance of ATP7a and ATP7b in the human body can be appreciated in cases where
these genes are absent or inactivated as happens with the inherited disorders Menkes and
Wilson’s disease. Mutations in the ATP7a gene are responsible for Menkes disease which is
mainly caused by impaired intestinal absorption that leads to systemic copper deficiency and
eventually reduced activity of important copper binding enzymes. ATP7b mutations lead to
Wilson’s disease where inactivation of ATP7b results in impaired copper excretion from the
liver and consequently accumulation which results in hepatic copper overload, liver damage,
apoptotic cell death and release of free copper into the plasma and CSF * 7®, In Wilson’s

disease copper deposition also occurs in the eye and the basal ganglia of the brain.

1.3.2.3 Secreted copper binding proteins

As already mentioned above quite a few secreted proteins require copper for their function or
activity with the most abundant of them both being Cp which is a ferroxidase that contains
copper and plays an essential role in iron homeostasis in mammalian cell”. Cp belong to a
multicopper oxidase family of enzymes that utilizes the electron chemistry of bound copper
ions to couple iron oxidation with the four-electron reduction of dioxygen”. In the human
body Cp is synthesized in hepatocytes where it incorporates six copper atoms and is then
secreted into the plasma where it carries 95% of the serum copper(® 7. Cp binds copper with
Kp at the level of 10° M9 Studies have shown that copper levels do not affect the rate of
Cp synthesis or secretion, however failure to incorporate copper during its synthesis will
result in unstable apo-protein that is devoid of oxidase activity and which starts degrading
rapidly in the plasma®Y. In the brain, two different isoforms of Cp have been identified with

one at approximately 135 kDa which may represent the glycosylphosphatidylinositol (GPI)-
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anchored Cp (GPI-Cp) form of Cp that is bound to the cell membranes of astrocytes. The
second isoform of Cp at 125 kDa may represent the secreted form of Cp (sCp)©2 83,

1.3.3 The mitochondrial copper pathway

Mitochondria are dynamic organelles that localize within the cytosol and are essential for
several cellular metabolic pathways®* 8%, Mitochondria are responsible for the production of
ATP through oxidative phosphorylation, serve as calcium stores and play an important role in
programmed cell death®* 8%, Mitochondria are also responsible for the production of the
majority of the ROS in the cells since they are by-product of the oxidative phosphorylation®®.
The mitochondrion is surrounded by two phospholipid bilayer membranes, the inner and outer
membrane, and together they create two different mitochondrial compartments: the internal
matrix and the inter-membrane space (IMS)®4. Mitochondria require copper for the function
of cytochrome ¢ oxidase (COX), the terminal enzyme of the respiratory electron transport
chain (Figure 1.1). COX reduces molecular oxygen to water by using electrons from
cytochrome ¢, and couples this to the pumping of protons from the matrix into the IMS @),

Mammalian COX is a 205 kDa hetero-oligomeric complex that is localized in the inner
mitochondrial membrane®®. It consists of 13 subunits encoded by both mitochondrial and
nuclear genes. The three mitochondria encoded subunits, COX1, COX2 and COX3, form the
core of the enzyme which incorporates all necessary redox-active cofactors® 89, The
remaining 10 subunits are all nuclear encoded, synthesized in the cytoplasm and required for
the stability/protection of the core enzyme and to regulate its activity®® 89, The enzyme was
originally crystallized as a dimer with interaction between the subcomplexes taking place
through COX6a and COX6b® %9, The dimerization of COX probably plays a structural role

which offers maximum stability to the complex©% %D,

COX contains four redox-active centres which consists by two heme a moieties and three
copper ions which are contained within the conserved domains of COX1 (a, azand Cug) and
COX2 (Cua). The mononuclear Cug sit in COX1 interacts with heme az to form a
heterobimetallic heme as-Cug centre®® 929 Whereas the Cua site contained within the
COX2 exists as a cysteine-bridged, binuclear, mixed covalent centre (Cu?*/Cu'*)®. 9294 The
oxygen reductions requires four electrons which are transferred from the reduced cytochrome
¢ (Fe?*-cytochrome ¢ ) to the Cua centre and subsequently to the low spin heme a which is
located in COX1@8:92%4) From heme a, electrons are transferred intermolecularly to the heme
az-Cug centre where the bound molecular oxygen which will be reduced to water (equation

1.3)®8:9299 The K, affinity has only been determined for the Cul* site of the COX2 and is
11



1.7 x 10%6 M145:99)_Copper is essential not only for the catalytic activity of COX but also for
its biogenesis, assembly and stability. Studies have shown that when copper is absent from
COX1 and particularly from COX2 that will initiate their degradation which will eventually
lead to failure of the final complex assembly®©8: %7,

4 Fe**-cytochrome ¢ + 8 H'in + O, — 4 Fe*-cytochrome c + 2 HoO + 4 HYor (1.3)

Since the insertion of copper into COX takes place within the mitochondrial IMS, copper has
to be transferred into mitochondria however how copper is trafficked to the mitochondria still
remain an open question. Initially, several proteins (COX17, COX19 and COX23) have been
considered for that role on the base of their dual localisation in both the cytosol and the
mitochondrial IMS as well as on the base of the effects that they cause in COX activity on
their deficiency®-199), Consequent studies have shown that none of this protein have any role
in copper shuttling to the mitochondria but each protein has its own role within the IMS in
copper trafficking®° 192, Recently, studies have shown that a labile pool of copper exist in
the mitochondria of both yeast and human cells which was proposed to act as the source of
copper for COX10L:193) The labile copper pool is formed by a low mass ligand complex that

resides within the matrix and stably bind Cu* in an anionic complex (CuL)®0%103),

By an unknown mechanism, copper from the mitochondria matrix pool will be used to
metallate the COX17 in the IMS. COX17 is a small (7 kDa) cysteine rich protein that contains
the CXoC copper binding motif additional to that it has also two cysteines in close proximity
to the CXoC motif which will form a CC-Cu'* binding site®®. The Ky, for COX17 has be
determined as 5.7 x 10® M*9, As already mentioned COX17 exist in both the cytosol and
the IMS and initially was believed to be the chaperone that transports copper to the
mitochondria. However, an elegant tethering experiment in yeast showed that COX17 does
not need to leave the IMS in order to obtain copper and deliver to COX but it is possible to
obtain copper within the IMS®%D, In the IMS COX17 can deliver copper to Sco1/2 and
COX11 which eventually transfer copper to the Cua centre of COX2 and the Cug centre of
COX1, respectively (Figure 1.2)(10%:105.106) The Sco proteins are integral inner membrane
proteins components that are consisting by a globular copper binding domain which protrudes
into the IMS®%), A single Cu** binding site is formed by the cysteines residues of the CXsC
motif and the histidine residue found within the globular domain®®, Both Sco proteins bind
copper with similar K, of 2.7 to 3.2 x 10* M1 “3_Sco’s are anchored in the inner membrane

through a single N-terminal transmembrane helix which is more important for Scol
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function®®. The conformer of Sco2 resembles that of Scol with the exception that Sco2

seems to exhibit greater conformational dynamics19),

COX17 ’ CulL Cytoplasm

Outer mitochondrial

’ membrane
cuL@p T GoxR—
COX11
@ Inner mitochondrial
membrane
Inter-membrane >
space
- Scol ——
COX2
Sco2  Matrix

Figure 1.2 Copper Insertion into COX in the IMS.

Mitochondria obtain copper through an unknown copper ligand (CuL). In the IMS copper is
bound to COX17 which delivers copper to either Scol/2 or COX11. Scol with the
collaboration of Sco2 transfers copper to COX2. COX11 transfers copper to COX1 which
will then initiate the assembly of COX complex. Figure was adapted from Cotruvo et al.*®.
Studies in mammalian cells have shown that Scol and Sco2 have non-overlapping but
cooperative functions in the maturation of the Cua centre of the COX2 subunit®!?, The
specific mechanism of copper delivery to the Cua centre in COX2 by the Sco proteins has
been studied mostly in human fibroblasts and the proposed mechanism suggests that
Cul*Sco2 initially associates with the newly synthesized COX2 which then triggers the
recruitment of Scol in the COX2-Sco2 complex. Then, Scol will obtain copper from
COX173D, A temporally distinct complex consisting of Sco1-Sco2-COX2 is then formed
(Figure 1.2)D. Copper is then transferred sequentially by each Sco protein to from the Cua
centre which will result to the dissociation of the ternary complex and incorporation of the
mature COX2 into the nascent complex that start to assemble*V). After copper is transferred
to COX2, Sco2 acts as a thiol-disulphide oxidoreductase in order to oxidize the cysteines of
Scol, a reaction that will prime the cysteines of both Scol and Sco2 ready to initiate a new
round of COX2 synthesis and maturation!V), The dissociation of COX2 from the temporal
complex and insertion to the nascent complex is triggered by the full formation of the Cua
centre and re-priming of the Sco cysteines*, What is not yet clear is whether Sco1l delivers
both Cu'* and Cu?*ions in order to build the binuclear, mixed valence Cua centre in COX2,

and if Scol does not undertake this role from where does COX2 obtain the Cu?*112), Studies
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in human fibroblasts have shown that COX2 requires copper insertion for maturation and
stabilization and lack of the Cua centre will cause COX2 degradation(®® 119,

The Cusg centre is located in the hydrophobic interior of COX1 formed by one copper ion
coordinated with three histidine residues and is in close proximity with the heme as group®®),
COX1 is the only universally expressed mitochondrial subunit of COX but how copper enters
COX1 is not completely understood in mammalian cells although some studies from yeast
propose a mechanism where the COX11 assembly factor is involved in the formation of Cus
centre%), COX11 is anchored to the inner membrane by a single transmembrane helix
whereas its C-terminal domain protrudes to the IMS where Cu'* is also bound®¥. Cu'*is
bound to three conserved cysteine residues which seems to have an important role is COX
function since mutations in these residues has as a result not only reduce Cu**-binding but
also reduced COX activity®). Cul* transfer from COX11 to COX1 appears to occur in the
nascent COX1 protein during its insertion and folding to the inner membrane®®. Since the
Cugsite is heterobimetallic site consisting by Cu'* and heme as, the insertion of copper to
COX1 might happen parallel to the incorporation of heme as in the protein?”,

The assembly process of COX has been identified by conducting two dimensional gel
electrophoresis in human cell lysates and the results showed that the process takes place in
three steps and is initiated around a seed formed by COX15: 118119 The first step is the
insertion of the metal co-factors (Cug and heme a/az) at COX1, which occurs after or during
COX1 insertion into the inner membrane (subcomplex 1, S1)©6 118.119) cOX4 and COXS5 are
then added to the mature COX1 to form the S2 subcomplex®® 118 119 Incorporation of the
metallated COX2 and the remaining structural subunits (COX3, COX5b, COX6b, COX6c,
COXT7a or b, COX7c and COX8) will form the S3 subcomplex and the final complex (S4)
will be formed with the insertion of the COX6a and COX7a or COX7b (Figure 1.3)(6118.119)

COX5a
COX4 COX4-5a COX2-Cu COX3
coX1 (1) \ » COX1-4-5a ¥> COX1-4-5a-2 s3 Monomer (S4)
N
Hemea Heme a COX5b, COX6b ~ COX6, COX7a or b
and Cug COX6c, COX7a or b
COX7c, COX8

Figure 1.3 Proposed Model of COX Assembly in Human Cells.

The assembly of the COX initiated around a seed form by COX1. The different proteins and
prosthetic groups are also indicated. Subcomplex, S1-S4, indicate the identified assembly
intermediate. Dimerization of the 13 subunit holo-enzyme will form the final COX complex.
(Adapted from Stiburerek et al.®®)
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1.3.4 The copper pathway in the cytosol

In the cytosolic pathway, copper is delivered to Cu,Zn superoxide dismutase 1 (SOD1) by the
copper chaperone for SOD1 (CCS) (Figure 1.1). SOD1 is a cytosolic enzyme that requires
copper for its activity in the cellular antioxidant defence system. In mammals, CSS and SOD1
are ubiquitously expressed in all tissues and are mainly localized in the cytosol and to lesser
extent in the mitochondrial IMS (<1%)®2°-122)_ Of the two cytosolic chaperones, CCS levels
appears to be about ten times lower than that of Atox1 (3.2 x 10° copies of Atox1/cell
compared to 1.5 x 10* copies of CCS/cell)*¥). CCS protein levels seems also to be less
compared to SOD1 since studies in human cells have shown that its concentration is half
relative to SOD1 (around 70-45 uM for SOD1 and 15-50 uM for CCS)*2%:123),

1.3.4.1 Copper chaperone for the Cu,Zn superoxide dismutase (CCS)

Almost 20 years ago CCS was identified by Culotta et al. as the copper chaperone that not
only delivers copper into Sod1 in yeast cells but it is also responsible for its activation?4,
Culotta et al. used yeast cells mutated for the Ccs gene and transfection with a human CCS
construct was able to restore yeast Sod1 activity*?. The specific role of yeast Ccs was also
indicated by the fact that in the mutant yeast cells for Ccs copper trafficking/activity in the

other two pathways (secretory and mitochondrial) was not affected®24),

Human CCS is a homodimer of 30 kDa subunits and each monomer is composed of three
different domains (D). An N-terminal (D1) which is structurally homologous to the yeast
Atx1 (it has a ferredoxin fold) and contains the MXCXXC copper binding motif where Cu**
is bound25:128) |t has been reported that the human D1 domain is essential for copper
acquisition in vivo?”) whereas the yeast Ccs D1 is important for copper insertion into Sod1
under copper limited conditions in vitro®?®, D2 of CCS is structurally similar to SOD1 and
mediates interaction with SOD1%2?®), The human D2 is unable to bind copper however it binds
zinc ions with the same ligands as SOD1, which are absent from the yeast D2 domain. Zinc
binding to CCS seems to be important for CCS function since it contributes to CCS
stabilization*?®. The C-terminal domain of CCS (D3) is a short 30-40 amino acid sequence
that contains the CXC (Cys-246 and Cys-246) copper binding motif?®, CCS D3 is highly
conserved amongst organisms and is required for SOD1 activation?®). The Ky has been
determined for the different domains of CCS and the holo-protein which is on the range of 4.1
x 10* to 5.5 x 10Y7 M5 130) The affinity for D1 was estimated at 5.5 x 10" M* and for D3
of around 6.4 x 106 M%), D1 affinity for copper is 10 fold higher than that of D3 which

further supports the opinion that D1 is important for copper acquisition*3),
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CCS is ubiquitously expressed in the human body but highly expressed in the liver and
kidneys3D. CCS is also expressed in great abundance in the brain, where it is mainly detected
in neurons, to a lesser extent in the astrocytes, and in the spinal cord where CCS is highly
expressed in motor neurons®®Y. The importance of CCS for SOD1 activity has been shown
initially in studies with deficient Ccc yeast cells and was further established by studies with
CCS knockout mice®?* 132 The CCS knockout mice they were viable however the exhibit
remarkable loss of SOD1 activity especially in the liver and kidneys, without the protein
levels of SOD1 been effected®®?. Wong et al. were the first to report that in CCS deficient
mice there was an alternative mechanism of copper acquisition for SOD1 since in some
tissues SOD1 was active but at lower levels, a pathway that was later established by Carrol et
al. in experiments with yeast systems (see section 1.3.4.2)(32133) Another important finding
from the Wong et al. study was that in the liver and kidneys copper incorporation to SOD1
was higher relative to fibroblasts or neuronal cells which probably implies that mammalian
cells have different capacity for copper, where certain cells require higher intracellular copper

concentration whereas other have lower requirements for copper®®2.

Intracellular copper levels also seem to regulate the protein levels of CCS®27: 13413 nitjally,
a study in rats on a copper deficient diet showed that CCS levels were 2 to 3 fold higher in
tissues such as liver, heart, brain and kidneys but at the same time CCS mRNA levels
remained unchanged which implied a post-transcriptional mechanism of CCS turnover®3®,
Studies in different cell lines, (H411E, HepG2 hepatocytes and fibroblasts) investigated the
effects of copper chelation on CCS protein expression?” 134 and found that under low
cellular copper levels, CCS shows increased protein stability but when copper levels return to
concentration where they normally grow or to higher due to addition of extra copper, this
promotes CCS degradation through the 26S proteasome®®. A study in CCS knockout
fibroblasts has shown that the CXC motif in D3 plays an important role in CCS copper-
dependent regulation and turnover, since mutation of the two cysteines has the effect of

making CCS unable to respond to higher or lower copper levels®??,

1.3.4.2 The Cu,Zn superoxide dismutase 1 (SOD1)

SODL1 is mainly found as a dimmer of 32 kDa which contains one copper and zinc ion per
subunit and catalyses the disproportionation reaction of superoxide anion to oxygen and
hydrogen peroxide at a bound copper ion (equation 1.4 and 1.5)%). This represents an
important reaction for the cellular antioxidant defence system which prevents the oxidative

damage of proteins, DNA and lipids®*®. SOD1 is a remarkable stable enzyme in the
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homodimer form however the nascent monomer requires several post-translational
modifications which includes incorporation of zinc and copper ion and the formation of
intrasubunit disulphide bond between the Cys57 and Cys146 near the active site®™?). In a
study conducted by Banci et al. they used cells that overexpressed SOD1 and grown without
the addition of extra copper or zinc“?Y. In that study they showed that SOD1 exists in two
forms in a monomeric apo form (metal free) and a dimeric form where zinc is bound to each
monomer of SOD1¢2D, In these form of SOD1 the cysteines that are responsible for the

formation of the intrasubunit disulphide bond were reduced®??,

Oz + Zn?*,Cu?*-SOD1 — Zn?*,Cu**-SOD1 + O, (1.4)
Zn?* Cu**-SOD1 + Oz + 2H* — Zn?*,Cu?*-SOD1 + H,0> (1.5)

A number of studies have tried to identify the mechanism of CCS-dependent SOD1
maturation and activation®?% 12:138) The current model of SOD1 activation by CCS was
based on a study by Banci and colleagues in 2012 where they conducted experiments with
electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR)®3®, The
proposed model for SOD1 activation involves at least six steps (Figure 1.4); initially, the
nascent apo-SOD1 monomer acquires zinc from an unknown source creating the E,Zn?*-
SOD1 monomer a process which also provides structural integrity to the protein (Step 1)?3®
139) The E,Zn?* SOD1 will form a heterodimer with a Cu'*-CCS (Step 2), D1 of CCS will
transfer copper to SOD1 (Step 3) and then an important disulphide bond has to be formed in
SOD1 which occurs into two sequential steps®38: 139, In the first step, an intermolecular bond
is formed between the Cys244 of CCS D3 with the Cys57 of SOD1138 139 |n the second step
and with the presence of oxygen, an intramolecular disulphide bond will be formed in SOD1
between Cys57 and Cys149 (Step 4)®3814D |t is worth mentioning that not only Cys244 but
also Cys264 of D3 has an important role for the disulfide isomerase activity, since single site
mutations reduce SOD1 oxidation rate in similar way to the double site mutations*3®), The
mature SOD1 monomer will be released from the heterodimer (Step 5) and then will interact
with another mature SOD1 monomer in order to form the final dimeric active SOD1 enzyme
(Step 6)1%9),
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Figure 1.4 Proposed Mechanism of CCS Dependent Activation of SOD1.
SOD1 initially acquires zinc in the cytosol and then forms a heterodimer with copper loaded
CCS. Copper will be transferred to SOD1 via D1 of CCS and then an intermolecular
disulphide bond between Cys244 of CCS D3 and Cys57 of SOD1 will be formed.
Consequently, in the presence of oxygen an intramolecular disulphide bond will be formed
between Cys57 and Cys149 of SOD1 which will result in the formation of a mature SODL1.
The final active enzyme will result after dimerization of the mature monomers. (Modified
from Banci et al. 2012(%9)
An in vivo study by Caruano-Yzermans proposed a slightly different mechanism based on
experiments with CCS fibroblasts?”). The proposed mechanism from that study supports that
CCS delivers copper to SOD1 through a series of intra- and intermolecular transitions which
includes copper movement from CCS D1 to the CXC motif on CCS D3, from where it will
finally be transferred to SOD1%?"), Another major finding from the study from Caruano-
Yzermans et al. was that the D1 in the human cells is required for the CCS-dependent copper
delivery to SOD1 something which is not observed in yeast cells®?% 127, Another study has
tried to clarify the CCS-dependent activation of SOD1 by using in-cell NMR in transfected
cells with SOD1 or CCS and found that only 25% of the cells overexpressing SOD1 had
incorporated copper when grown in the presence of copper, and the remaining protein stayed
unfolded and monomeric in the cytosol®?Y, Copper loading into SOD1 and formation of the
essential disulphide bond was only achieved in cells that co-express SOD1 and CCS®?V, The
study from Banci et al. also established that CCS, promotes the formation of the disulfide
bond in SODL1 in the absence of copper, a mechanism that is not observed in acellular

systemst2b),

CCS-independent activation of SOD1 was mainly studied by Culotta’s group where they

identified that mammalian or yeast cells that they did not express Ccs or CCS were still able
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to maintain some of the activity of the human SOD1 and that the reduced GSH was required
for the its activation®®®, Based on these studies, CCS-independent activation occurs rapidly in
vivo within cells with pre-existing apo-SOD1 molecules and that the system used the same
pool of available copper as the CCS-dependent activation pathway®*?. The formation of the
important disulfide bond in SOD1 also occurred even under severe copper depletion
conditions in the CCS-independent activation pathway®%. Another difference between the
two pathways is that in the CCS-dependent pathway, oxygen is essential for the activation of
SOD1, but in the CCS-independent pathway, SOD1 can be activated under hypoxic or anoxic
conditions indicating that oxygen is not required for activation of SOD114Y,

The importance of SOD1 in human development can be seen from knockout mice and
disorders caused by mutations in the SOD1 gene. SOD1 knockout mice have reduced life
span, develop liver cancers and exhibit peripheral neuropathy*4?. They also have increased
oxidative stress and oxidative damage in all tissues which is accompanied by accelerated loss
of skeletal muscle mass4®), Mutations in the SOD1 gene are associated with the development
of familial amyotrophic lateral sclerosis (FALS) a disorder characterized by selective
degeneration of the motor neuron in the brain and spinal cord, leading to paralysis and death
within five years®*%. More than 150 mutations, throughout the SOD1 gene have been linked
with FALS where a toxic gain of function of the mutant protein is suggested since no loss of
enzymatic activity is observed in the patients4>46) The majority of SOD1 mutations in

FALS will probably lead to protein misfolding and aggregation4?),

1.4 Alzheimer Disease (AD)

It has been more than 100 years since Alois Alzheimer first reported a case of a women who
suffered from a peculiar type of dementia®®. Clinically, dementia is defined as a syndrome
characterized by decrease in cognitive abilities (memory, language, and learning), which are
represented by a decline in the intellectual functions of the person sufficient to interfere with
the everyday activities of that individual®#® 59, Alzheimer’s disease is considered to be the
most common type of dementia and estimates that it contributes to more than 60 to 80% of
the dementia cases in the elderly®! 152 AD is at the moment the fourth most common cause
of death in the developing world and the estimated number of cases worldwide is around 30
million, a number which is expected to quadruple by 2050, making AD one of the most
important global health issues®. In the UK the number of people affected by AD is more

than half a million54,
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AD cases are divided into two broad categories arbitrarily based on the age of onset: the early
onset or familial form of AD (EOAD) and late onset form of AD (LOAD). LOAD is the most
common form of AD accounting for over 90% of cases with the clinopathological symptoms
starting to appear after 65 years of age and its development has been correlated with genetic
risk factors such as apolipoprotein E (ApoE) and advancing age®®. EOAD is normally
considered to be a much rarer disorder with the majority of symptoms starting to appear from
30 to 65 years and accounts for less than 10% of the AD cases®®). Perhaps more than 20% of
the EOAD cases belong to the familial AD cases which are due to the autosomal dominant
inheritance of fully penetrant mutations in the presenilin 1 (PSEN1), presenilin 2 (PSEN2) or
amyloid precursor protein (APP) genes®”. Whilst both types show the classical symptoms
and pathological features of AD, EOAD tends to be a more severe disease both clinically and
pathologically*®® 19 The main stratification criterion between the EOAD and LOAD cases
is based on the age of onset where patients starting developing AD before the age of 65 will
be categorised as EOAD cases whereas the rest as LOAD.

AD affects people in different ways but in both EOAD and LOAD the initial symptom is
gradually worsening ability to remember new information. Some of the most common
symptoms of AD are: memory loss that disrupts daily life, challenges in planning or solving
problems, confusion with time or place, changes in mood and personality, including apathy
and depression®®, The above symptoms are correlated with the neuropathological findings of
the disease which are progressive neuronal loss in key brain areas such as cortex and
hippocampus, brain atrophy, amyloid containing senile plaques and neurofibrillary tangle
(NFT) formation (Figure 1.5)*9),

Neurofibrillary tangles (NFTSs) are intracellular structures composed mainly from the
hyperphosphorylated, aggregated form of the microtubule-binding protein, tau (Figure
1.5B)“6Y, Tau is synthesized and produced in all neurons and its normal function is binding to
tubulin and stabilization of microtubules®®?. In AD, tau becomes hyperphosphorylated which
causes tau proteins to fold from an unfolded monomer to a more structured form as paired
helical filaments (PHF) which are capable of self-aggregating®®?. Ultimately that will lead to
the formation of NFTSs as large accumulations of PHF in the cell bodies and dystrophic
neurites“®V). In the brain, NFTs are mainly detected in the trans-entorhinal and entorhinal
layer, but at later stage of the disease they are spread throughout the brain from allocortex and
into neocortex%®. The aggregated forms of tau can cause cytotoxicity which leads to
neuronal death, also the increased density of the NFTs is correlated with the severity of the

clinical pathology of the disease®6.
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Healthy brain P AD brain

Figure 1.5 Pathological Characteristics of the AD Brain

(A) Cross sectioning of an AD brain that shows atrophy and shrinking relative to healthy
brain. (B) Immunostaining for the identification of amyloid plaques and NFTs in AD.
(Obtained from Blennow et al.4%)

Amyloid plaques are accumulations of a hydrophobic peptide in the extracellular space of the
brain. The principal component of plaques is the amyloid beta (AB) peptide; a 38- to 43-
amino acid peptide derived from the amyloid precursor protein (APP) which is formed by [3-
secretase (BACE1) and y-secretase cleavage of APP (Figure 1.5B and 1.6)*%%). Within
plaques, AP is present as aggregated insoluble forms including fibrils, as well as
oligomers, AD is considered as a disorder of protein aggregation in which the
accumulation and aggregation of AP peptide and tau are the main pathological hallmarks of
the disease. However, there are many additional cellular pathways, processes and molecules

involved in AD pathogenesis, which may play an important role in the progress of the disease.

1.4.1 The amyloid pathway

It is more than twenty years since the amyloid cascade hypothesis was first used to explain the
cause of AD pathogenesis®®¥. According to that hypothesis, an imbalance between the
production and clearance of AP in the brain is the initiating event for the pathogenesis of the
disease, which will ultimately lead to neuronal degeneration and dementia®* 1% A levels
can be elevated by an imbalance between AB production and/or clearance, with increased AP
production suggested to characterise more the EOAD cases and decreased Ap clearance the

LOADM 4168 The amyloid cascade hypothesis was initially based on finding from in vitro
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and in vivo studies, but later it was further supported by the identification of genetic mutations
associated with EOAD cases(6¢ 167,

The presence of Ap in the brain is suggested to trigger various events which lead to neuronal
damage, mitochondrial dysfunction, activation of oxidative stress, an inflammatory response,
decreased neuroplasticity and apoptosis®. The above events are initiated by increased ABaz
oligomer formation, which causes subtle, then severe and ultimately permanent changes in
synaptic function®®®. In parallel, AB4> forms microscopic deposits in the brain parenchyma,
which appear first as relatively benign diffuse AB accumulation and as they begin to acquire
more fibrils of Ap and a transformation into compact A occur, the local inflammatory
response (microgliosis and astocytosis) is initiated which further contributes to synaptic spine
loss and neuronal dystrophy6 6% Qvertime, these events result in oxidative stress, altered
metal (for example copper) homeostasis and other additional biochemical changes. The
cascade culminates in widespread synaptic/neuronal dysfunction and cell death, leading to
progressive dementia associated with Ap pathology*6+ 166.170)

The amyloid cascade hypothesis seems to explain and incorporate several aspects of AD
pathogenesis, such as pathology, phenotype occurring by gene mutations and genetic risk
factors, but there are a few limitations regarding that hypothesis. First, neuropathological
studies have failed to find any significant correlation between the AB amyloid plaque density
and the severity of dementia®’?. The presence of the AB peptide in the non-demented elderly
people which in some cases is comparable with those found in AD patients is not consistent
with the hypothesis®’Y. Second, the majority of the cell and animal studies concerning AD
are based on mutations associated with EOAD cases which accounts for only a minority of the
dementia cases and not with LOAD which is far more common but without any associated
mutations and with only a few risk factors contributing to its progress:’?. This hypothesis
does not consider the interaction of Ap with NFTs which are also present in the AD brain’®),
Mutations in tau protein have been correlated with another type of dementia, autosomal
dominant frontotemporal lobar degeneration, where tau pathology is similar to AD but the
patients lacks the presence of Ap plaques’™). Thus, tau pathology can cause, on its own,

neuronal loss and dementia.

1.4.1.1 Amyloid precursor protein (APP)

APP is a type | transmembrane glycoprotein which is expressed in both neuronal and extra-
neuronal cells, and in most cells of the body®™. APP is conserved between organisms and is
member of a family that includes the APP-like proteins, APLP1 and APLP2(™, APP has
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three different major isoforms within the brain (APPsgs, APP751, APP770) with all three
containing the ApB sequencing, but the APPsgs is the most abundant and highest expressed in

neuronal cells®76: 177

Structurally, APP consists of a small cytoplasmic tail and a large extracellular domain, which
consists of an E1 and E2 domain (Figure 1.7A)27®. The E1 domain is a cysteine-rich region
which is further subdivided to growth factor domain (GFD) and copper binding domain"9,
After the cysteine-rich region the next domains are, in order: an acidic-rich region, a Kunitz-
type protease inhibitor (KPI) domain, an OX2 domain, a glycosylated E2/CAPPD domain, an
unstructured domain immediately before the transmembrane domain and a small cytoplasmic
tail which is involved in various cellular processes through a variety of protein interactions’®:
180,181) The range of APP isoforms occurs due to alternative splicing and in particular of exon
7 and 8 which contain the KPI and OX2 domains® 181, The AB region itself includes 28
amino acids from the unstructured extracellular domain and 12-14 amino acids from the

transmembrane domain@"®,

The normal role of APP in the brain and other organs is not fully understood but is under
intensive study attempting to explain its function. One proposed function of APP is related to
cell-cell interaction and cell-substrate adhesion which are consistent with its role in
developmental processes‘®?). Some of the functions that APP is involved are: migration of
neuronal precursor cells to the nascent cortical plate®®®, cell cycle progression of neural stem
cells 9 formation of neuromuscular junctions®®® and involvement in homeostasis of

important metals such as calcium and copper(86.187),

In cells, APP is metabolized by two alternative pathways, the non-amyloidogenic and the
amyloidogenic®®®, In the non-amyloidogenic pathway, which accounts for more than 90%, a-
secretase cleaves APP within the Ap sequence and generates the soluble N-terminal
ectodomain (SAPPa) and a C-terminal fragment C83 (CTFa)*8 %), Then y-secretase cleaves
the C83 fragment into a small nontoxic peptide, p3, and to the cytoplasmic polypeptide APP
intracellular domain (AICD)“%®), In the amyloidogenic pathway, BACE1 cleaves APP in
order to produce the N-terminal ectodomain (SAPPf) and a C-terminal fragment, C99 (CTFp)
which is subsequently cleaved by y-secretase to generate the AB peptide and AICD (Figure
1.6)19),
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Figure 1.6 Diagram Representation of the Two APP Processing Pathways.

In the non-amyloidogenic pathway a-secretase cleaves APP within the AP sequence and
produces the soluble extracellular sAPPa fragment and C83 membrane bound domains. Then
y-secretase will cleave C83 which will produce the intracellular AICD and the small p3
peptide. In the amyloidogenic pathway BACEL cleaves initially APP and produces the
soluble sAPPJ and the C99 fragment which will be further cleaved by y-secretase in order to
generate the different AP peptides and AICD. Different AB peptides aggregate under certain
conditions and eventually will form the Ap amyloid plaques. (Adapted from Zhang et al’®))

APP metabolism appears to involve an interaction with copper. APP structure has a copper
binding site and several studies have shown that plays an important role in copper
metabolism®’), APP strongly bind Cu?* (Kparound 108 M) and reduce it to Cu®* in vitro%
193)_ Studies in mice and different cells have shown that copper can regulate both the
expression and localization of APP in the cells®®"- 1% Knockout mice for APP contained
higher copper levels in the cortex, and mice that overexpressing APP had lower copper levels
in the brain relative to controls®®®. Further studies with mouse primary cortical neurons have
shown similar results with the mice but when APP was overexpressed in Human Embryonic
Kidney cell (HEK293) copper was accumulated in the cells which was attributed to increase
APP-mediated capacity to reduce extracellular Cu?*¢ 197 Another point of conflict, about
APP function in copper homeostasis, concerns the role of APP in copper induced toxicity
where in primarily cortical neurons APP levels were correlated with increased sensitivity to

copper but in HEK293 cells APP acted protectively against copper induced toxicity(%5: 197 198),
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Figure 1.7 Schematic representation of APP and BACEL structure.

(A) The APP family contains the conserved E1 and E2 domains in the extracellular region.
The extracellular domains are subdivided into growth factor domain, copper binding domain,
acidic domain, KPI domain, OX2 an unstructured domain, the glycosylated CAPPD domain
and the Ap domain. The inset displays the Ap sequence along with the cleavage sites for each
secretase. The amino acids highlighted in red are mutations that have been identified to
correlate with increase/decrease activity of the respective secretase. (Adapted from Barnham
et al.%9) (B) Schematic representation of BACE1 structure. BACEL1 is synthesized as a
precursor protein with a signal peptide (SP) and a pro-domain (Pro), both of which are
removed in the Golgi network. The mature BACEL is inserted into membrane through a
single transmembrane domain which places the two active sites (DTGS) on the extracellular
part. The small cytoplasmic domain of BACE1 contains four cysteine residues that undergo
pal(grgi;[oylation where also copper is bound with high affinity. (Adapted from Kandalepas et
al.?0h)

A number of mutations have been identified in APP gene and are known to cause the
inherited form of EOAD. The majority of them are missense mutations located in exons 16
and 17 which places them at either close to C-terminal y-secretase cleavage site or to N-
terminal BACE1 cleavage site®®®. Also, another mutation has been identified inside the Ap
sequencing close to o-secretase cleavage site®®?, The above mutations have different effects
to AP production which can lead to selective increase of AP peptides ending at 42/43,
increased heterogeneity of secreted AB peptides, increased hydrophobicity or enhanced
protofibril formation°? 202 Recently, a coding mutation has been identified in APP gene,
close to BACEL1 cleavage site, that acts protectively against AD and cognitive decline in the
elderly people without AD?%), Studies in cells transfected with that protective mutated
variant of APP showed decreased production of SAPP ectodomain which was also

accompanied with slightly higher levels of SAPPa ectodomain(@®®),
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1.4.1.2 The g-site APP-cleaving enzyme (BACEL) as p-secretase

Almost two decades ago, five independent groups identified the pB-site APP-cleaving enzyme
(BACE1) as B-secretase®%4298)_ The five groups used different approaches, such as cloning,
genomic strategies and biochemical purification, which established BACEL1 as p-secretase.
Some of the observations which characterized p-secretase as BACE1 was that both of these
enzymes activities are predominantly expressed in the brain®%:2%), required a low pH range
in order to be active®®®, and for that reason they primarily localized within endosomes and
the Golgi apparatus®@°®),

The specific role of BACE in the amyloid pathway was also confirmed with overexpression
or gene silencing studies for BACEL. Accordingly, overexpression of BACEL1 in cells which
also co-expressed the wild-type or Swedish mutated APP, led to increase production of Ap,
which was accompanied by increased production of C99, sAPPp and decreased levels of
SAPPa(?04208) Both gene interference experiments in cells and BACE1 knockout mice
showed that BACE1 deletion was responsible for the decreased production of both Ap and
SAPPB which was also consistent with increased levels of SAPP(2%:207:210) The cleavage
specificity of BACE1 was confirmed by sequencing and mass spectrometry which revealed
that BACE1 cleaves APP only at Asp*™ or Glu*!! (295.208) The specificity of BACE1 was
further demonstrated by experiments with APP carrying the Swedish mutation where BACE1

was able to cleave APP at higher rate relative to wild type APP (20 208),

BACEL1 gene encodes for a 70 kDa type | transmembrane aspartyl protease related to pepsins
and retroviral aspartic proteases®42%)_ The structure of BACE1 consists of an N-terminal
signal peptide, followed by a pro-domain, a protease domain, a single transmembrane domain
and short cytosolic domain (Figure 1.7B)(?04-208.21D The protease domain consists of two
aspartic active site motifs which are spaced 200 residues apart and contain the highly
conserved sequence defining the aspartic proteases, DT/SGS/T®%), The N-signal peptide is
responsible for BACEL1 translocation to the endoplasmic reticulum where BACEL is
glycosylated at four asparagine residues and transiently acetylated on seven arginine
residues®?. After translocation into Golgi apparatus, complex cardohydrates are attached to
BACE1 and the N-terminal signal peptide together with the pro-domain are removed@%* 213
214 After maturation, BACE1 is transferred from the trans-Golgi network to the cell surface

where it undergoes recycling between the early endosomes and the plasma membrane(?*> 216),

BACEL is susceptible to other post-translation modifications which occur mainly in the

cytoplasmic domain. The C-terminal domain is phosphorylated at Ser 498 which together
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with a di-leucine motif regulates BACEL recycling between the cell surface and the
endosomal compartments®>216), BACE1 also undergoes palmitoylation at four cysteine
residues, which facilitates BACE1 targeting to lipids rafts®'"). Those cysteine residues are
also responsible for binding Cu**?'®_ BACE1 binds copper with high affinity (K 2.3 x 107
M) and it is postulated that BACE1 obtains copper through interaction with cytosolic
CCS(30.218) BACE1 interaction with copper homeostasis has also been studied where it has
been found that BACE1 overexpression causes reduced SOD1 activity in cells, which might
correlate with reduced availability of CCS for SOD1 activation or by directly influencing
copper loading into SOD1 by favouring copper transfer to BACE1?%®). A study with known
copper chelator, trientine, has shown that copper chelation reduces BACE1 protein and
activity levels without effecting BACE1 mRNA levels®?!9),

Several studies have measured BACEL protein levels and activity in the AD brain and they
showed that BACEL levels were increased by 2-fold in frontal and temporal cortex, which
was accompanied by higher levels of its proteolytic products and activity®?® 22, Mutations in
the APP gene, close to the BACEL1 cleavage site, have been associated with both EOAD
pathology and a decreased risk for AD which signifies the importance of BACE1 in AD
progression®®®, Based on the role of BACE1 in AD pathogenesis, on its properties, and on
the finding that initial analysis from BACE1 knockout mice did not reveal any effect on gross
behaviour, neuromuscular function, tissue morphology or histology, BACEL inhibitors have

become one of the most promising therapeutic targets for AD@0:222),

1.4.1.3 The y-secretase complex

The y-secretase complex belongs to a family of intramembrane proteases which are
characterized by fact that they are able to cleave their substrates within the lipid bilayer, with
a process termed as regulated intramembrane proteolysis??®. y-secretase is a 230 kDa
complex consisting of four subunits, the presenilins (PS, PSEN1 and PSEN2), nicastrin,
anterior pharynx defective (APH -1) and presinilin enhancer 2 (PEN-2)??4, The catalytic core
of y-secretase consists of a PS, which are multi-transmembrane proteins with more than nine
transmembrane domains, with the N-terminal domain located in the cytosol and the C-
terminal domain exposed to the luminal/extracellular space®®?. Full length PS is inactive and
requires endoproteolytic cleavage between the transmembrane domain 6 and 7 of the nascent
protein which generates a 28 kDa N-terminal fragment (NTF) and a 17 kDa C-terminal
fragment (CTF)®@2), PS, NTF and CTF bind to form the stable and active PS heterodimers at

1:1 stoichiometry(?25),
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In order to form a stable, mature and active PS the presence of the other components of the y-
secretase complex is necessary. Nicastrin is a 130 kDa type | transmembrane protein which
acts as a scaffolding protein within the complex?2”). The proposed role of nicastin is to bind,
with its free N-terminal ectodomain, the different substrates of y-secretase, acting as substrate
receptor®®, PEN-2 is a transmembrane protein and its function is probably related to PS
stabilization within the complex®?%. APH-1 function is still not clear but some studies suggest
that one of its roles is to contribute to the assembly and activity of the mature complex and to
present substrates to PS®@30 231,

Until now more than 150 mutations, responsible for EOAD, have been identified in both
PSEN1 and PSEN2 genes, with the majority of them within the PSEN1 gene®2. Mutations in
PSEN1/2 are most likely linked with APP processing and all appear to increase the production
of APa2, which is considered to be more prone to form aggregates®3?). These mutations also
seem to affect APP trafficking in the cells which results in decreased delivery of APP to cell
surface and enhancement of the amyloidogenic pathway by increasing the AB production®¥.

1.4.1.4 The p-amyloid peptide (Ap)

Amyloid fibrils are self-assembled, fibrillar structures of small peptides that are able to fold in
an alternative, B-rich form@%, Amyloid plaques in the AD brain are mainly composed by A
peptides ranging from 39 to 43 amino acids, with the two major forms being the Ao which is
prevalent under normal conditions and the ABs2 which is the major component of the diffuse
plaques®®. These peptides are composed of the hydrophilic N-terminal and a hydrophobic C-
terminal®®. Normally, Ap forms amyloid fibrils by conformational changes from the native
random coil state to an a-helical intermediate which results in the formation of a p-sheet

amyloid monomer that is able to self-aggregate into fibrils3®),

Changes in Ap metabolism are considered as the initiating factors that lead to the final
formation of plaques. One initial factor is the increased accumulation of the total Ap which
probably occurs due to either increased production and/or reduced clearance*4 168 The
enhanced ABa, accumulation in the AD brain has as a result, an increased ABa2/ APao ratio
which leads to oligomer formation and gradually to benign diffuse (non-fibrillar) Ap plaque
formation64 168 Diffuse plaques start to acquire more Ap fibrils and eventually form the
final aggregated (insoluble) forms of AB%*1%6) These amyloid plagques are also surrounded

by swollen, degenerating neurites, and increased microgliosis and astocytosis?),

Synchrotron based infrared imaging, X-ray imagining and X-ray emission studies have shown

that inside senile plagues metals are also present including copper, zinc, iron and
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manganese®® 29 Copper is able to bind to multiple sites in the first 16 amino acids of the
AP peptide with affinities (Kp) varying from 0.025 to 40 nM23®_ Because Ap has strongly
redox-active properties it makes able to reduce both iron and copper upon binding in vitro®49,
When bound to ApB, metals can reduce molecular oxygen to H>O> and the latter to OH® which
have as a consequence the generation of ROS directly (Figure 1.8A)?4% 241 The amount of
reduced ions and ROS are dependent on the length of the AB peptide, generally ABs>> AB4o>>
Ap2s, a chemical relationship which is possibly correlated with the neurotoxicity of these
peptides®9. In vitro studies have shown that AB binds copper with differing stoichiometry
which affects both the H.02 degradation and A plaque formation®*?. Generally, in 1 copper:
1 AB stiochiometry, the highest H.O> degradation was observed where AB plaques starting
forming non-fibrillar aggregates (Figure 1.8B)?*?). These observations suggest that copper is
potentially able to trigger AB plaque formation in the AD brain%®),
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Figure 1.8 Copper and AP Interaction

(A) Proposed mechanism of ROS production by the redox active Cu-Ap peptide. (Adapted
from Pithadia et al 2012?%Y). (B) Incubation of AB peptide with copper induces the formation
of distinct aggregates which has a different capacity for H.O, degradation. Without
exogenous copper addition or at a ratio of 1 copper: 4 Ap peptides, Ap forms typical amyloid
fibrils and H2O> degradation is equivalent to copper concentration. In 1:1 ratio higher
degradation of H20- is observed and Ap forms amorphous/non-fibrillaly aggregates (Adapted
from Mayes et al.3?)

1.5 The function of copper in the healthy brain and its association with AD

After absorption from the small intestine copper is delivered to the liver or kKidneys for

utilisation. In the liver, copper will be incorporated to Cp and secreted into blood in order to
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be transferred to different tissues and organs. In serum, the majority of copper is tightly bound
to Cp (60-70%) and the rest loosely bound to Ab, transcuprein and amino acids®?4®),

1.5.1 Copper metabolism and function in the healthy brain

Copper is the third most abundant metal in the brain after iron and zinc indicating the
significance of this metal for the brain function®”. In the brain copper will be delivered from
these molecules and its transportation into the brain is regulated by the brain’s vascular barrier
system®%. The brain barrier system consists of the blood-brain barrier (BBB) and the blood-
cerebrospinal fluid barrier (BCB) ?*4). The BBB functions to separate the blood circulation
from the brain interstitial fluid, and BCB to separate the blood from the CSF?*. The absence

of any barrier between CSF and interstitial fluid allows the free exchange of fluids®*%.

The BBB continues where the brain capillaries extended into the whole brain, is structurally
composed by epithelial cells that line with the cerebral capillaries and have tight junctions
between the adjacent cells®*4). The permeability across the BBB is highly dependent on the
size and lipophilicity of the molecules; more complex molecules being transported through
certain pathways at the BBB®?*4), BCB is located within the choroid plexus, a vascularised and
polarized tissue, which is located on top of the four brain ventricles, and its main structure is

the tight junction of choroidal epithelial cells*4.

The exact mechanism of copper import-export in the brain is not completely understood but it
is postulated that copper coming from the blood stream enters the brain mainly through the
BBB®0:243.245) Copper is primarily transported as free, unbound ions which are taken up by
Ctrl in cerebral capillary epithelial cells, and from there copper chaperone Atox1 delivers
copper to ATP7a/b which then translocates copper to the abluminal membrane in order to
release copper into the brain interstitial fluid for further transport and metabolism®?: 243 245),
Copper may flow from the brain parenchyma to the CSF within the brain ventricles, where
once again it can be imported to choroidal epithelial microvilli by either Ctrl or DMT160: 243,
245 Small amount of copper can also be removed by the CSF bulk flow to the arachnoid

granulations for excretion from the brain (Figure 1.9)®0:243.245),
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Figure 1.9 Copper Transportation in the Brain is Regulated by the Brain Barrier System.

Free copper or bound to Cp and other proteins are transported, at the BBB, into cerebral
endothelial cells by Ctrl or DMT1. Atox1 will then deliver copper to ATP7a/b in order to
export into interstitial fluids, where copper can be utilized by neurons or glial cells. Excess of
copper is released to the CSF where is taken up by Ctrl and DMTL, at the BCB, and within
chc(Jrc)JidaI epithelial microvilli where is released back to the blood. (Adapted from Zheng et
al.“9)

The normal healthy brain contains about 3.1 to 5.1 pg/ g wet tissue copper and the CSF
contains about 0.3 to 0.5 uM of copper, but copper is not evenly distributed in the brain® 48),
Generally, grey matter has more than twice the amount of copper (1.6-6.5 ug/ g wet tissue)
relative to the white matter (0.9-2.5 ug/ g wet tissue)*6246) | Substantia nigra and locus
coeruleus are the highest copper containing regions amongst the other brain regions, since
they both are pigmented tissues which contain catecholaminergic cells that require copper for
their cellular processes®48). On the other hand, the thalamus is the brain region with the
lowest copper levels®). A recent study that used Laser Ablation Inductively Coupled Plasma
Mass Spectrometry ( LA-ICP-MS) was able to identify differences in copper concentrations
in the levels of individual cell populations in the brain, and they found that glial cells are most

enriched in copper relative to neuronal cells%®),

1.5.2 Implications of copper homeostasis pathways in AD pathogenesis

As previously discussed, (see section 1.4.1.1-4) it is clear that copper amongst other metals
plays an important role in AD pathogenesis, which has led to the “metal theory” in order to
explain the disease pathogenesis. Further support to the theory that metal/copper homeostasis
has a significant role in AD came from studies that showed decreased activity of two

important copper binding enzymes necessary for cell function, COX and SOD1, in the AD
brain(249-253),
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Several studies have attempted to measure copper levels in the AD brain, but these are not
always in agreement. In 2007 Magaki et al. measured the levels of copper in frontal cortex
and hippocampus grey and white matter of controls, mild-moderate AD and severe AD cases
using graphite furnace atomic absorption spectrometry (GFAAS)®@¥, They showed that total
copper levels in severe AD were higher in the frontal cortex compared to the hippocampus in
normal brain. Compared to controls, total copper, in severe AD was significantly lower in the
frontal cortex gray matter but there was no difference in the total copper concentration in the
hippocampus in AD®4_ The findings from Magaki et al. are in agreement with a study from
Deibel et al. who reported decreased copper levels in the AD brain®. Decreased copper was
not seen in mild-moderate AD but only in severe AD, suggesting that this phenomenon of
reduced copper may only occur at a later stage of the disease progress ** 24, This
phenomenon might be explained based on the hypothesis that overproduction of APP and AP
shift copper into the extracellular space from the intracellular compartment and thus cause a
deficiency of intracellular copper in the AD brain®@),

In a study by James et al., the levels of both total copper and redox-active labile copper in the
frontal and temporal lobe were measured®®®). A significant decrease was also observed in the
mass fraction of copper (umol copper per g wet tissue) in the frontal and temporal lobe in AD
samples compared to controls (13% and 18% respectively)®®. But when the total copper
content was normalized with the protein levels there was no difference in copper between the
two groups®®. It was also reported that AD brain contains higher amounts of redox-active
exchangeable copper which was significantly positively correlated with increased oxidative
damage®®, It is interesting to note, that in AD patients there are increased levels of copper in
the CSF and plasma in contrast with the decreased copper levels found in the brain®®. All the
above mentioned studies that have measured copper levels or protein/activity of copper
binding enzymes in the AD brain have mainly used cases that belong either to the LOAD
subtype, based on the age criteria, or use a mixture of both EOAD and LOAD cases. That
might explain why the results are quite controversial and also indicating the necessity of a

study that will map these variables in both AD subtypes.

A better understanding of copper implication in AD has come from the usage of techniques
that directly monitor metal distribution in the brain such as X-ray absorption and ICP-MS
techniques that can directly measure copper-protein complexes. Two of these techniques have
already mentioned above, X-ray imagining and LA-ICP-MS, where they have been used to
detect/measure copper in correlation with protein or in the levels of a single cell population.

The LA-ICP-MS works by laser ablate small particles of solid samples that are then carried by
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a gas to an ICP-MS for metal specific detection®®”259), The LA-ICP-MS is a semi-
quantitative technique with detection limit of 0.01 ug/g tissue, spatial resolution of 15-50 um
and 200 pm of analytical depth®®). The synchrotron based X-ray fluorescence microscopy
(SXRF) techniques are able to provide a more quantitative and highly sensitive probe for the
detection of copper and other metals in biological systems®®"2%), These techniques have a
detection limit of 0.1-1 pg/g tissue, spatial resolution of 0.03-0.2 um and more than 100 um of
analytical depth®®. The implementation and development of these techniques will provide
valuable information of how metal ions change in neurodegenerative disorder and how metals

such as copper or iron contribute to the oxidative stress that has been found in the brain.

1.6 The “metal theory” of neurodegeneration

The evidences that were presented in the previous section of this chapter are suggesting that
abnormal interactions with biological metals, such as copper, iron and zinc are upstream of
the AD pathophysiology®@®®. These metal interactions with AD was considered to be a novel
drug target for the disease which led to the development of the “metal theory” of
neurodegeneration®?. The “metal theory” supports that by normalizing metal ion
homeostasis and the same time disrupting the resistant dimeric Ap can be a good target for
intervening with AD progression®®, Both copper supplementation and chelation therapy
have been tested as potential treatments for AD however; the results from these types of
clinical trials did not give any promising outcome. In the next sections, an overview of the up

to now studies regarding these therapeutic approaches will be further analysed.

1.6.1 Copper chelation or supplementation as potential therapeutic agents for AD

An efficient treatment for AD is not yet available with the only approved FDA compounds
being drugs that target symptomatic effects such as memory deficits and behavioural changes.
The approved drugs are mainly based on the knowledge that in the AD brain there are
neurotransmitter disturbances which have led to development of the acetylcholinesterase
inhibitors (AChEIs) and memantine®@®® 261 AChEIs are used to enhance cholinergic
neurotransmission by increasing the availability of acetylocholine and menantine, an N-
methyl-D-aspartase (NMDA) receptor antagonist, is used to protect neurons against glutamate
mediated excitotoxicity without preventing the normal function of the NMDA receptor (260 261,
However, both strategies are not expected to change the course of the disease but to

temporally alleviate some of the symptoms of AD.
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The last few decades have seen a number of different therapeutic approaches tested in both
animal and human trials but none of these have been able to obtain final FDA approval. The
main drug candidates for AD are divided into two categories; the disease modifiers, which
include secretase inhibitors, A fibrilization inhibitors, Ap immunotherapy or anti-tau drugs,
and the epidemiology based drugs which are mainly anti-inflammatory drugs, cholesterol-
lowering drugs, oestrogens and antioxidants. Given the fact that the majority of these drugs
has failed to improve the clinical condition of the patients, the exploration of different
pathways as potential therapeutic targets has been studied. The last two decades has seen the
hypothesis of targeting metals in AD as an alternative and more tractable therapeutic approach
which has led to clinical trials with two copper chelators, Clioquinol and PBT2, and the use of

copper containing drugs.

1.6.1.1 Clioquinol and PBT2

5-Chloro-7-iodo-quinolin-8-ol, Clioquinol (CQ), is a derivative of 8-hydroxyquinoline which
was used as antiparasitic agent for intestinal amoebiasis. CQ was explored as potential drug
for AD since it has a moderate affinity for copper and zinc (Kocy is 8 x 10° M and Kpzn is 1.4
x 107 M1)@62)_Initially, it was considered that CQ acts as a chelator but recent studies have
shown that CQ acts as copper/zinc ionophore, with its role being to redistribute these metals
into cells%3 264 The initial studies with CQ have shown that it rapidly clears aggregates of
synthetic or AD derived AP in vitro and dramatically reduces Ap plaque formation (by 49%)
in 15 month old APPTg2567 mice which were treated with CQ for 9 weeks®®®). At the same
time, the levels of copper and zinc were significantly increased in the APPTg2567 mice
brain®®®). A small phase Il clinical trial with 32 AD patients and a case study where AD
patients were treated orally with CQ for 34 weeks, showed a lowering of ABa. in the CSF
which was also accompanied by a slower rate of cognitive decline(%® 267 Even if the results
from these studies were promising, large scale manufacturing of the compound made the

development of the drug unviable.

White et al. proposed that CQ has dual role in the brain first in metal sequestration by
removing copper and zinc from extracellular A plaques and secondly as a stimulator of Ap
degradation pathways by activating an intracellular metal dependent signalling cascade®¢®),
This study used CHO and mouse neuroblastoma cells that overexpressed APP and they
observed a decrease in AP levels, which was accompanied by increased copper and zinc
uptake in the cells®®®). The proposed mechanism of action for CQ in the cells was suggested

to initially activate the PI3K/Akt signalling pathway that leads to the phosphorylation of INK
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and ERK1/2 which stimulates intracellular neuroprotective pathways®®®. This pathway will
eventually culminate in an upregulation of the activity of two matrix metalloproteinase
(MMP2 and MMP3) which will start to degrade extracellular Ap (Figure 1.10)5®),

PBT2 (Prana Biotechnology) is a second generation 8-hydroxyquinoline derived from CQ
which has been shown to have better therapeutic effects in both AD mouse models and in a
phase Il clinical trial with AD patients. In vivo studies with an AD mouse model treated orally
with PBT2 revealed that PBT2 crossed more effectively the BBB, reduced the AB amyloid
burden and also restored cognitive function back to the levels of healthy mice®%®). The initial
results from a phase Il clinical trial with 78 AD patients showed that after 12 weeks of 250
mg PBT2 daily oral administration there was significant decrease in CSF A levels and
improvements in some of the performed cognitive performance tests®®. Unfortunately,
recently it has been announced by Prana Biotechnology that a 12 month phase Il clinical trial
with 56 AD patients failed to show any significant loss of Af plaques in AD brain relative to
healthy controls (Prana Biotechnology, News Room).

As an 8-hydroxyquinoline, PBT2 is able to coordinate with copper and zinc in 2:1 ratio,
which is accompanied by deprotonation of the phenol proton(®3:270.:2"3) pPBT?2 eventually
forms a neutral complex with metal ions, making it able to cross cell membranes and transfer
these metals in the cells?®% 279, The moderate affinity of PBT2 for these metals improves their
bioavailability inside the cells which enables activation of neuroprotective pathways within
cells@’, The mechanism of action for PBT2 has been studied in SH-SY5Y cells where PBT2
in concert with zinc inhibited the dephosphorylating activity of calcineurin, which resulted in
decreased tau phosphorylation, and increased phosphorylation of several downstream targets
such as CREB, CaMKII and decreased caspase 3 activity and finally the activation of the
MMP2/3 (Figure 1.10)(70.271),

1.6.1.2 Copper supplementation therapy

It is well established that copper can enhance AP toxicity in vitro hinting at the important role
of copper in AD pathogenesis. On the other hand, lower levels of copper in AD brain and
mouse models for AD imply that copper deficiency contributes also to neurodegeneration®®,
The potential that copper deficiency might play a role in AD pathology was studied initially
in an AD transgenic mouse model where they showed that copper supplementation can
increased bioavailable copper in the brain, restore SOD1 activity, decrease Ap in the brain
and prevent premature death®"? 273, The above observations lead Kessler et al. in 2008, into

pilot clinical trial phase Il study with AD patients that received 8 mg copper daily for 12
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months but the results from the study showed no improvement in the cognitive abilities of the
AD patients®®®2263) However, they observed a statistical significant 10% decrease (non-
parametric Wilcoxon test, p=0.04) in CSF A4 levels in the copper treated group but the
same time the placebo group presented a much higher 30% decrease (non-parametric
Wilcoxon test, p=0.001) in ABaz levels@’* 275 Kessler et al. study showed that long-term
copper supplementation can be excluded as a risk factor for AD based on the decrease CSF
ApBas2 levels in both groups @727 The levels of Apaz in the CSF is a biomarker of AD
pathogenesis and the decreased levels are correlated with the severity of disease progress®?’®).
That indicates that copper supplementation in patients that have already developed AD might

not be appropriate.

A Clioquinol (CQ)
Cl

CQ/PBT2
_

CQ-Cu-CQ + solubilize AR —» AR degradation

PBT2-Cu-PBT2 \

Increase MMP2/3

extracellular
+ Cu

PBT2

|

Activate neuroprotective pathways
(ERK1/2, JNK)

Intracellular

Figure 1.10 Schematic representation of Clioquinol (CQ) and PBT2 as well as their Mechanism of
Action in Cells.

(A) Chemical structures of CQ and PBT2. (B) Proposed mechanism of action for CQ and PBT2 in
AD brain. CQ and PBT2 remove copper from AB amyloid plaques in the process of solubilising
Ap. Additionally, the CQ-Cu/PBT2-Cu complexes are able to cross cellular membranes and make
copper available to cells. In that process they also activate intracellular neuroprotective pathways
and MMP2/3 proteinases that will start degrading AB. (Adapted from Barnham et al.%%)
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1.7 Study aims and objectives

Alzheimer disease is a neurodegenerative disorder that mostly affects the elderly and whilst
several aspects of the biology of the disorder are already known, there is still no available
treatment. The last two decades have seen an increasing number of studies which have shown
that copper plays an important role in AD pathogenesis and targeting copper levels may
potentially lead to a new therapeutic strategy for AD. The aim of this thesis is to study the
routes by which copper enters and is distributed around cells and to identify the potential role
of copper in AD pathogenesis. To accomplish this we will examine the following questions:

1. Are changes of important copper homeostasis pathway components observed not only
in affected brain regions of LOAD and EOAD brains but also in the healthy ageing
brain?

2. How does copper normally distribute in a model mammalian cell line, HEK293 cells,
and how does the balance of copper change when the levels of one of the cytosolic
chaperones is changed?

3. Can different therapeutic and non-therapeutic copper chelators and copper containing
compounds be used to alter the copper distribution inside mammalian cells and
associated copper related enzyme activities, and can these compounds be used as

possible targets for AD treatment?

The overall aim of the project is to identify if there is a link between AD and copper
homeostasis and to explore the mechanism of copper prioritization in a cell. In order to
achieve these goals different experimental techniques have been used. Initially, brain samples
from post mortem LOAD, EOAD and healthy control were analysed in order to determine the
levels of copper, the activity of two important cellular copper binding enzymes (SOD and
COX) and the levels of various copper binding proteins. The usage of both EOAD and LOAD
cases was consider important as to understand how copper homeostasis pathways are
changing in the both AD subtypes. As mentioned above, the already published studies have
only focused on the LOAD or used mixed AD cases and taking into consideration that the two
AD subtypes are having significant pathological differences the separation into different
groups was considered important in order to get a clear view of the copper homeostasis

pathways in the AD brain.

In order to explore the mechanism of copper distribution and how different copper chelators
affect copper homeostasis pathways, a model cell line was used to initially identify the toxic

levels of the tested drugs, and then the effects on the intracellular copper levels, activity of
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COX and SOD, and their respective protein levels. HEK293 cells were selected for the these
experiments since it is a typical epithelial cell line which allows easy manipulation and can be
grown in high quantities as was found necessary for several experiments. The HEK293 cell
line was initially derived in 1973 by exposing a human embryonic kidney cell culture to
sheared DNA of adenovirus type 5 (AD5)?"", Since then HEK293 cells and derivatives have
been the most frequently used cells after HeLa cells in cell biology studies?’®. HEK293 cells
are often used as a model for studying the transforming/oncogenic properties of cancer related
genes but sometimes this cell line is incorrectly used as a non-tumorigenic or even “normal”

human cell line®@™,
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2 Material and Methods
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2.1 Clinical material

To investigate the possible role of copper in ageing and AD, a study involving post-mortem
human brain tissue was undertaken. Brain tissues from frontal and temporal cortex, and
cerebellum were obtained from Newcastle Brain Tissue Resources (NBTR), Newcastle
University. Ethical approval for the study was provided by the National Research Ethics
Service. Three different groups were included in the present study: EOAD, LOAD, and aged
matched healthy control cases for both AD groups which showed an absence of any clinically
significant neurological or psychiatric history and who showed age related neuropathology
according to standard accepted criteria. Cases of AD showed a clinical history compatible
with typical symptoms of AD with progressive decline in cognition and activities of daily
living on clinical review and showed abundant senile plaque and neurofibrillary tangle
deposition in cortical grey matter sufficient to fulfil accepted neuropathological criteria for
AD. Cases of AD were cognitively assessed during life and were known to have been
severely demented at time of death. Approximately 0.4 g of snap frozen grey matter tissue
was dissected by Dr Chris Morris from medial temporal cortex (Brodmann Area 21), lateral
frontal cortex (Brodmann Area 9) and lateral cerebellar cortex. Tissue was rapidly thawed and
the majority of the white matter dissected off and the remaining grey matter used partly for
metal analysis (see section 2.3) and the remainder homogenised for protein analysis (see
section 2.2). Brain tissue is divided into grey matter, which consists mainly from neuron cell
bodies and dendrites and the white matter, which consist, by myelinated axons and supporting
oligodendrocytes. In the present study, only the grey matter was used for the protein/enzyme
and metal analysis since studies have shown that the AD brain presents more severe grey
matter associated changes (e.g atrophy) and to lesser extend white matter changes8?,
Furthermore, studies have shown that the grey matter contains higher copper levels compare
to the white matter possibly reflecting the requirement for copper in the neuronal cell bodies

and dendrites processes (e.g. neurotransmission) @47,

Details about the groups that were used are shown in Table 2.1 for the control cases and in
Table 2.2 for the AD groups where post mortem delay, age, sex and pH of the brain are
presented. Determination of the brain’s pH is a standard procedure, which is conducted by the
NBTR staff during the processing of a new brain tissue. The pH is used as a surrogate
measurement of pro-mortem agonal state which is correlated with prolonged death and
hypoxia and normally low pH indicates high amount of lactic acid®®®. The majority of the

cases had pH 6.0-7.2, which is in the acceptable range and only a few cases had pH below 6.0.
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Case Age of death Braak stage Post mortem Sex pH
(years) delay (hours)

1 64 1 89 F 6.60
2 68 0 54 M 6.27
3 63 0 30 M 7.16
4 73 0 25 M 6.45
5 69 1 48 M 6.70
6 54 0 9 M 6.81
7 69 0 45 F 6.43
8" 67 0 10 M 7.23
9 65 1 28 M 6.67
10" 64 0 23 F 6.80
117 67 0 20 M 6.95
12 66 0 9 M 7.22
13 67 0 22 M 6.89
14 51 2/3 9 F 5.69
15 87 2 8 M 6.39
16 88 3 22 F 5.90
17 89 3 34 F 6.20
18 96 3 29 F 5.53
19 74 1 49 F 6.1
20 81 2 43 M 6.05
21 94 2 50 F N/A
22 89 2 24 F 6.36
23 80 2 16 M 6.10
24 88 2 26 M 6.30
25 88 2 28 M N/A
26 80 2 31 F 6.10
27 80 2 25 F N/A

Table 2.1 Demographic Information Regarding the Control Group.

Case 1-14 were used as control for the EOAD group and case 15-27 for the LOAD group.*,
cases indicated are not included in the cerebellum analysis. F: female, M: male, N/A: data not
available.
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Case | Diagnosis Age of Age of Braak Family Post mortem | Sex | pH
onset death stage history delay (hours)
(years) (years)
1* EOAD 60 64 6 Neg 28 M | 6.50
2* EOAD 52 59 5 Neg 44 M | 6.13
3 EOAD 51 63 6 Neg 11 F | 6.50
4* EOAD N/A 64 N/A Pos N/A F | 6.04
5 EOAD 55 70 6 Neg 24 M | 6.43
6 EOAD 52 62 6 Neg 48 M | 6.22
7 EOAD 57 69 6 Neg 11 M | 6.21
8 EOAD 65 71 6 Neg 31 F | 6.35
9 EOAD 60 72 6 Neg 4 F | 6.47
10 EOAD N/A 64 6 Pos 39 M | 6.94
11* EOAD 61 64 6 Neg 10 M | 5.96
12 EOAD 60 63 6 Neg 55 M | 6.37
13 EOAD N/A 64 6 Neg 48 M | 6.00
14 EOAD 58 78 6 Neg 40 F | 6.07
15 EOAD 62 76 6 Neg 37 F | 5.53
16 EOAD 65 68 6 Neg 24 M | 6.10
17 LOAD 68 80 6 Neg 24 M | 5.95
18 LOAD 76 87 6 Neg 22 M | 6.40
19 LOAD 72 75 6 Neg 33 F | 6.20
20 LOAD 84 92 6 Neg 40 M | 5.90
21 LOAD 85 93 5 Neg 34 F | 6.80
22 LOAD 72 85 6 Neg 29 M | 5.60
23 LOAD 67 78 6 Neg 37 M | 5.70
24 LOAD 73 80 6 Neg 32 F N/A
25 LOAD 78 87 6 Neg 21 M | 6.23
26 LOAD 78 81 6 Neg 83 F | 6.40
27 LOAD 93 96 6 Neg 74 M | 5.90
28 LOAD 69 76 6 Neg 53 M | 6.10
29 LOAD 71 76 6 Neg 23 M | 6.50

Table 2.2 Demographic Information Regarding the EOAD and LOAD Groups.

Case 9 had a PSEN1 R269H mutation and case 10 had a PSEN1 A246G. *, cases indicated
are not included in the cerebellum analysis. F: female; M: male; N/A: data not available; Neg:
negative; Pos: positive.
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In order to see if the pH is affected by age or post mortem delay Spearman rank test (see
section 2.12.1) was conducted for the three different groups (controls, EOAD and LOAD). A
significant correlation was observed between pH and age in the control group (rs=0.785,
p<0.0001, n=22) but not in the EOAD (rs=-0.019, p=0.952, n=12) or LOAD (rs=-0.198,
p=0.462, n=16) group. Post mortem delay did not present any significant correlation with the
pH in the control (rs=-0.289, p=0.192, n=22), EOAD (rs=-0.156, p=0.572, n=16) or LOAD
(rs=-0.252, p=0.428, n=12) group.

2.2 Tissue preparation

In order to determine the proteins and enzyme activity levels in the brain, frozen grey matter
tissue was homogenised by using an ULTRA-TURRAX® Tube Drive homogeniser.
Approximately 0.2 g frozen tissue from all groups’ frontal and temporal cortex grey matter
and cerebellum were homogenised in ice-cold 0.2 M triethylammonium bicarbonate (Sigma
Aldrich, Poole, UK) which contained proteases inhibitor tablets also (Complete
ethylenediaminetetraacetic acid (EDTA) free (Roche, Welwyn Garden City, UK)) in order to
obtain a 10% w/v homogenate in the end. Aliquots were prepared and stored at -30° C until

used for analysis.

2.3 Metal analysis from brain tissue with inductively coupled plasma mass
spectrometry (ICP-MS)

Frozen brain (0.05-0.2 g) tissue was initially weighed in a three place balance and then
digested with 50% HNOs in order to obtain 10% w/v of brain digest [SpA Grade, 80% Nitric
Acid (Romil, Cambridge UK) diluted with double distilled deionised water (>18MQ, Milli-Q,
Millipore, UK)] and incubated for 48 hours at 50° C. In order to determine metal content
samples were analysed by using inductively coupled plasma emission mass spectrometry
(ICP-MS) Thermo Scientific X Series'" in both standard and collision cell technology (CCT)
mode by using 7% (v/v) H in He as the collision gas, with in-sample switching between CCT
and normal modes. All the dilutions for the sample preparation were made with a
diluter/dispenser (MICROLAB 530B, Hamilton. Bonaduz AG, CH). Prior to analysis the
brain samples were diluted fifty times with a diluent containing, 0.5% HNOz (Romil), 0.1%
triton X-100 (Romil) and 1 ug/ml Rb, 1 ug/ml Ir, 10 ug/ml Ga and 200 ug/ml Gold SPEX
(SPEX CertiPrep) as internal standards. The samples were analysed based on a standard
addition method which required four diluted samples for each brain and then in the respective
sample 0, 10, 20 and 50 pl of standard A containing, 5% HNO3z, 200 mg/L Fe, 80 mg/L Cu,

400 mg/L Zn, 0.04 mg/L Sn, 50 mg/L Spex Hg and Spex custom mixed (50 mg/L Ba, Be, Cr,
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Co, As, Mo, Cd, Cs, Pt, Tl, U, 100 mg/L Mn, 500 mg/L Pb, 1000mg/L Al, Se (SPEX
CertiPrep)), was added.

ICP-MS measures both oxidised and reduced forms of copper in the brain. It is worth
mentioning that brain pH could affect the oxidation state of copper since is well known that
under acidic conditions of pH 5.0 to 6.0 copper exist mainly in the form of Cu?*. Some of the
brain samples had pH around that range and in order to determine if there is any correlation
between these two variables Spearman rank test was conducted (see section 2.12.1). No
significant correlation was observed between pH and copper levels for the control cases
(Frontal cortex: rs=0.280, p=0.205, n=22; Temporal cortex: rs=0.310, p=0.152, n=22;
Cerebellum: rs=0.442, p=0.072, n=17), the LOAD group (Frontal cortex: rs=-0.628, p=0.028,
n=13; Temporal cortex: rs=-0.287, p=0.364, n=13; Cerebellum: rs=-0.574, p=0.053, n=13) and
the EOAD group (Frontal cortex: rs=-0.101, p=0.708, n=16; Temporal cortex: rs=0.014,
p=0.956, n=16; Cerebellum: rs=0.531, p=0.075, n=12).

2.4 Protein concentration determination with Bradford assay

Protein concentration within homogenized samples was determined by using Bradford’s
method®®? using a bovine serum albumin (BSA) standard curve. Standards of BSA (Pierce,
Thermo Scientific) were prepared with concentrations of 1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,
0.05 and 0 mg/ml. Brain homogenates and HEK293 lysates were sonicated for 10 seconds
with a sonic probe and then in a sonic bath on ice (40 min for brain and 20 min for cell
samples) and then diluted from 1:5 to 1:20 v/v in water. Fifteen microlitres of BSA standards
and 15 ul of sample were loaded into respective 1 ml plastic cuvettes in triplicate. In each
cuvette, 1 ml of Bradford reagent (Thermo Scientific) was added and incubated for 20 min at
room temperature. The absorbance was measured at 595 nm on a spectrophotometer
(PerkinElmer). The sample concentration was determined based on the BSA standard curve
and samples immediately assayed for mitochondrial enzyme activity. Brain samples for
Western Blot analyses had sodium dodecyl sulfate (SDS) (Ambion, Thermo Scientific) added
to a final concentration of 0.2% before sonication and protein determination followed the

same protocol as above.

2.5 Western blot analysis

Western blot analysis was performed by using one-dimensional SDS gel electrophoresis of
proteins with NUPAGENovex (Invitrogen, Thermo Scientific, Cramlington UK) pre-cast gels.

Ten micrograms protein extract from brain or cell sample was prepared containing 1x

44



NuPAGE LDS sample buffer (Invitrogen) and 1x NuPAGE Sample reducing agent
(Invitrogen). Samples were vortexed and heated for 10 min at 70°C, and then loaded into
NovexNuPAGE 4-12% precast gels (Invitrogen) along with SeeBlue pre-stained standard
(Invitrogen) molecular weight marker. The gels were electrophoresed in 1x NuPAGE (3-(N-
morpholino) propane sulfonic acid) MOPS or (2-(N-morpholino) ethane sulfonic acid) MES
(pH 7.3-7.7, Invitrogen) running buffer. MOPS running buffer was used to resolve proteins at
a molecular weight from10-200 kDa and MES for low molecular weight (5-50 kDa) proteins.
To the inner chamber of the electrophoresis tank 0.25% antioxidant (a proprietary reagent,
Invitrogen) was added and the samples electrophoresed for 20 min at 120 V and for 70 min at
160 V. Samples were transferred to nitrocellulose membranes with iBlot transfer stacks
(Invitrogen) at 20 V for 8 min. Membranes were stained with Ponceau S (Sigma Aldrich) for
one minute and were washed with MilliQ water. Membranes were cut in strips based on
molecular weight of the protein of interest (Table 2.3) and washed twice for 10 min with 1x
Tris buffered saline (TBS: 50 mM TrisHCI, pH 7.4 and 150 mM NacCl) (Santa Cruz
Biotechnology, Texas USA) containing 0.2% Tween 100 (Sigma Aldrich) (TBS-T).
Membranes were blocked for 1 h in 5% non-fat dry milk in TBS-T at room temperature and
then incubated for one hour at room temperature (RT) or overnight (O/N) with the primary
antibody. Primary antibodies were diluted (Table 2.3) in 5% non-fat dry milk in TBS-T for
the incubations. Two 10 min washes followed with TBS-T and then incubation with
appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies (Table 2.4) for 30
min at RT.

Membranes were then washed with TBS-T for approximately 1 h and developed by using the
enhanced chemiluminescence system Pierce ECL plus substrate (Thermo Scientific)
according to the manufacturer’s instructions. Substrate A and Substrate B were mixed in a
40:1 ratio and incubated with the membranes for 2 min and then the membranes were
transferred to cassettes. Membranes were exposed to autoradiography film (Kodak, Sigma
Aldrich) to detect the chemiluminescent signal. For proteins with a molecular weight close to
that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) which was used as a loading
control, membranes were stripped of the initial antibodies by incubating them with 60 mM
TrisHCI (Sigma Aldrich) pH 6.8, 2% SDS (Santa Cruz Biotechnology) and 0.6%
mercaptoethanol (Sigma Aldrich) for 1 h at 50 ° C. Membranes were then washed with TBS-T
followed by blocking in 5% non-fat dry milk and incubation with the new antibody as

described previously.
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Protein of Molecular | Dilution | Incubation Supplier Secondary Antibody
interest Weight
Atox1 7 kDa 1:5,000 1hRT Abcam Mouse 19G-HRP
CCS 25/29 kDa | 1:2,000 1hRT Santa Cruz Rabbit 19G-HRP
Biotechnology
SOD1 16 kDa 1:8,000 1hRT Abcam Rabbit 19gG-HRP
SOD2 25 kDa 1:10,000 1hRT Abcam Mouse 1gG-HRP
VDAC1 30/35 kDa | 1:8,000 1hRT Abcam Mouse IgG-HRP
coxi1! 35kDa | 1:8,000 1hRT Abcam Mouse IgG-HRP
COX2 25 kDa 1:8,000 1hRT Abcam Mouse 19G-HRP
ATP7a 178 kDa 1:500 O/N Santa Cruz Mouse 19G-HRP
Biotechnology
Sco2 28 kDa 1:2,000 1hRT Proteintech Rabbit 1gG-HRP
Ctrl 28 kDa 1:20,000 1hRT Abcam Rabbit 1gG-HRP
DDK 1:2,000 1hRT Cell signalling Mouse 1gG-HRP
NDAFV1 51 kDa 1:1,000 1hRT Abcam Mouse 1gG-HRP
NDAFS1 54 kDa 1:5,000 1hRT Santa Cruz Goat 1gG-HRP
Biotechnology
GAPDH-HRP 36 kDa 1:2,000 1hRT Santa Cruz
Biotechnology

Table 2.3 Molecular Weight of the Analysed Proteins and Dilutions of the Primary
Antibodies.

Secondary Antibodies Dilution Supplier
Horseradish peroxidase (HRP)—conjugated anti-mouse 1:4,000 Abcam
Horseradish peroxidase (HRP)—conjugated anti-rabbit 1:4,000 Dako
Horseradish peroxidase (HRP)—conjugated anti-goat 1:4,000 Dako

Table 2.4 Dilutions of Secondary Antibodies.

The X ray films of the western blots were scanned using a flatbed scanner and band intensity
was analysed using ImageJ software®®®. The GAPDH band was used to normalise the results

and the mean for the protein of interest/GAPDH ratio were calculated for all samples.

! Samples were heated at 50° C before loading into NovexNUuPAGE 4-12% precast gels.
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2.6 HEK293 cell culture

The HEK293 human embryonic kidney cell (CRL-1573) line was obtained from American
Type Culture Collection (ATCC) and the culture method was according to supplier

instructions for the cell line.

2.6.1 HEK?293 culture method

The majority of the cell culture has been performed in T75 cm? tissue culture flasks. The
initial culture was started from frozen stocks of cells. Cells were defrosted for a few seconds
in water bath at 37°C and then added, drop by drop, into pre-warmed fresh growth medium
containing Dulbecco's Modified Eagle’s Medium (Sigma Aldrich), 10% FBS (Sigma
Aldrich), 1x non- essential amino acids (Sigma Aldrich), 3.5 ng/ml fungizone (Invitrogen)
and 2 mM L-glutamine, 100U penicillin and 0.1 mg/ml streptomycin solution (Sigma
Aldrich). Cells were then washed by centrifugation for 5 min at 200 rpm, resuspended into 5
ml fresh medium and seeded into a T25 cm? flask. Cells were incubated in 95% air, 5% CO;
at 37°C for 24 hours and the spent medium was replaced with fresh medium. Cells were left
to grown until reached maximum confluency. Generally cells were subcultured every three
days using a 1:3 split ratio. The old culture medium was removed, discarded and 3 ml of 1x
trypsin in 0.02% EDTA solution (Sigma Aldrich) added to the cells and incubated for 3 min.
Cells were resuspended with 5 ml fresh medium and then pelleted by centrifuging for 5 min at
200 rpm at RT. The supernatant was discarded and the cells resuspended with 5 ml medium

and aliquots of the cell suspension placed into new culture flasks.

2.6.2 Cell viability assays

2.6.2.1 Alamar Blue assay

For the determination of copper (Cu(NOs). ), bathocuproinedisulfonic acid (BCS) and D-
penicillamine (D-pen) (Sigma Aldrich) toxicity, HEK293 cells were seeded into a 48-well
plate at 60,000 cells per well in 350 pl growth medium. After 24 h cells were treated with
different concentrations of Cu(NOs)2, BCS or D-pen (4 replicates for each concentration)
including cell treated with the diluent that was used to dissolve the compound (or referred as
vehicle). For toxicity determination a range of concentrations was used for exposure times
ranging from 24-72 h. In order to measure cell viability 0.01% of Alamar Blue [resazurin
(Sigma Aldrich) 1 mg/ml in 1x phosphate buffered saline (1x PBS: 137 mM NaCl, 2.7 mM
KCI, 8 mM NaxHPO4, 1.46 mM KH2POg4) (Sigma Aldrich)] was added to each well and
incubated for 2-4 h. After incubation, 100 ul of each sample medium was transferred to a 96-
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well plate. Samples were measured using a fluorescence plate reader using an excitation
wavelength of 530 nm and emission at 590 nm. For the determination of cell viability the
emission mean of each 4 replicate set of samples was divided by the mean of the vehicle
treated samples to provide a proportion of cells surviving. After incubation with Alamar Blue,
the remaining spent medium was replaced with fresh containing the appropriate concentration
of compound and incubated further to allow 48 or 72 h exposure.

2.6.22 MTT assay

Using Alamar Blue on cells treated with ammonium tetrathiomolybdate (TTM, Sigma
Aldrich) showed abnormal results and therefore the assay was altered to reflect this. HEK293
cells were seeded into 48-well plates at 60,000 cells per well in 350 ul growth medium
including wells with just medium for background correction. After 24 h cells were treated
with different concentrations of TTM (4 replicates for each concentration) including cell
treated with the diluent that was used to dissolve the compound (or referred as vehicle). For
TTM toxicity a range of 1 uM to 333 uM was used for exposure times from 24 to 72 h. In
order to measure cell viability, after 24 h, 0.5 mg/ml MTT (MTT 5 mg/ml in 1x PBS (Sigma
Aldrich)) was added in each well and incubated for 4 h. After incubation the supernatant was
removed and the formed crystals were resuspended with 400 ul Isopropanol/10% Triton/0.05
M HCI. The plate was incubated for 1 h in the dark and after incubation 100 ul of each sample
was transferred to a 96-well plate. Samples were measured by using a plate reader and
absorbance at 570 nm was determined. For the determination of cell viability the absorbance
mean of each 4 replicate set of samples was divided by the mean of the vehicle treated

samples. The same protocol was followed for 48 and 72 h plates.

2.6.3 HEK?293 cell growth curve

HEK293 cells were seeded onto 6-well plates at 3x 10° cells/ well in 3 ml grown medium.
After 24 h cells were treated with 200 uM BCS, 10 uM Cu(NOs)2, 350 uM D-pen or 2 uM
TTM. In each plate three wells were used as a control and the other three were treated with
the test compound. Cell viability, cell number and medium pH were determined for five
continuous days. The pH determination was performed in 900 ul cell medium by using a
micro pH meter (Thermo Scientific), calibration of the pH meter was performed daily as a
baseline before measuring the samples. In order to measure cell viability Alamar Blue assay
was used for BCS, Cu(NOs3), and D-pen and MTT assay for TTM ( see section 2.6.2.1 and
2.6.2.2) . Afterwards, cells were washed twice with PBS, trypsinized, resuspended with 500
ul 1 x PBS and centrifuged for 5 min at 200 rpm. The cell pellets were resuspended in 1 ml
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1x PBS and 20 pl of each sample was stained with 0.04% Trypan blue and the viable cells
were counted by using a Neubauer counting chamber.

2.6.4 Copper manipulation in HEK293 cells

Stocks of cells were maintained in growth medium and subcultured into new T175 cm? tissue
culture flasks (107 cells/ T175 cm? flask into 25 ml medium) and left to attach for 24 hours.
The spent medium was replaced with fresh medium containing 50 uM BCS, 200 uM BCS, 10
uM Cu(NO3)2, 350 uM D-pen, or 2 uM TTM or medium (as control) and left to incubate for
24, 48 or 72 h. The experiment was performed in triplicate for each condition. After 24 and 48
h incubation, cells were rinsed twice with 1x PBS and then incubated with 5 ml 1x trypsin-
EDTA solution. Cells were resuspended with 7 ml 1x PBS and pelleted by centrifugation at
200 rpm for 5 min. A second wash with 4 ml 1x PBS was followed and the pellets were
resuspended with 4 ml 1x PBS, and 20 ul of each sample was used for cell counting with a
Neubauer counting chamber. The 4 ml cell suspension was centrifuged at 200 rpm for 5 min
and the final pellet was resuspended in 100 pl ice cold cell lysis buffer (1x TBS and 0.32 M
sucrose (Sigma Aldrich)). After 72 h cells were rinsed with 1x PBS, trypsinazed, pelleted and
washed twice with 4 ml 1x PBS. After the second wash and cell counting, 1 ml of the cell
suspension was pelleted by centrifugation at 200 rpm for 5 min and resuspened with 100 pl
ice cold cell lysis buffer for protein analysis and the remaining 3 ml centrifuged at 200 rpm
for 5 min and the final pellet resuspended with 1 ml 65% HNO3 (Millipore) and digested for
24 h at 50° C. Additionally, 1 ml of the spent cell growth medium was digested with 1 ml
65% HNO:s. Cells after resuspension with lysis buffer were sonicated for 10 seconds with a

sonic probe and then sonicated for 20 min in a sonic bath on ice and stored at -80° C until use.

2.6.4.1 Metal analysis from cellular samples with inductively coupled plasma mass
spectrometry (ICP-MS)

Digested HEK?293 cell and spent cell culture medium were diluted 5 times with 2% HNO3
containing 20 ug/L Co and Ag as internal standards (see section 2.6.4). For the cell digest,
standard solutions were prepared in a range of 0 to 60 pg/L Cu, Zn, Fe, Mn in buffer that
contained 14% HNOs and 20 pg/L Co and Ag. The above standards were used for a
calibration curved from which the sample metal content was calculated. For the spent cellular
medium, standards were also prepared in a range of 0 to 100 pg/L Cu, Zn, Fe, Mn in buffer
that contained 7% HNOs and 20 pg/L Co and Ag. All the samples were analysed using a
Thermo Electron Corp., Series X' both in standard mode and collision cell technology (CCT)
mode with He of high-purity grade as collision gas.
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2.7 Activity assays

2.7.1 Mitochondrial activity assays

Cytochrome c¢ oxidase (COX) and Citrate synthase (CS) activity assays were performed based
on previously described protocols which are in use within the National Health Service
Mitochondrial Disorders Diagnostic Laboratories®®¥). The assays were performed with cell or
brain homogenates on a PerkinElmer spectrophotometer at 30° C.

2.7.1.1 Cytochrome c oxidase (COX) activity assay

The specific activity of mitochondrial COX was measured by following the oxidation of the
reduced cytochrome ¢ (Fe?*-cytochrome c) at 550 nm (extinction coefficient for the reduced
Fe?*-cytochrome ¢ at 550 nm is Esso = 29.0 mM™ cmt). As the apparent affinity constant K,
for the substrate (reduced Fe?*-cytochrome c) and the dissociation constant K; for the product
(oxidised Fe3*-cytochrome c) are similar (see equation 1.3, section 1.3.3), the reaction rate
decays pseudoexponentially during the assay as the substrate is oxidized, so the activity is
expressed as an apparent first-order rate constant (K/sec) rather than an initial rate.

Initially, the Fe?*-cytochrome ¢ was prepared by reducing the oxidised Fe3*-cytochrome ¢
with ascorbic acid and in order to do that 50 milligrams of Fe**-cytochrome ¢ (Sigma
Aldrich) were diluted with 5 ml 20 mM potassium phosphate (KH2POa, Sigma Aldrich) pH
7.4 (assay buffer). To 1 ml Fe3*-cytochrome c solution (bark red colour), a few grains of solid
L-ascorbic acid (Fluka, Sigma Aldrich) was added in order to reduce the Fe**-cytochrome ¢ to
Fe?*-cytochrome c. The reaction is complete when the colour of cytochrome ¢ has turned into
bright red-pink. L-ascorbic acid was removed from the mixture by desalting on a PD10
column (GE healthcare, Amersham UK). The column has had been equilibrated with the
assay buffer before loading the Fe?*-cytochrome c. The bright red-pink fraction of the eluted
Fe?*-cytochrome ¢ was collected and stored at -30° C, where it was stored for up to two
weeks. The concentration of Fe?*-cytochrome ¢ was estimated by measuring the absorbance at
550 nm and the quality of Fe?*-cytochrome ¢ from the ratio of the absorbance at 550 nm and
at 565 nm. In order to determine the Fe?*-cytochrome ¢ concentration the absorbance was
zero by using the assay buffer and then a baseline measured was recorded from 600 nm to 500
nm. The reduced Fe?*-cytochrome ¢ was diluted 200 fold with assay buffer and then the
absorbance was recorded from 600 nm to 500 nm. In order to determine the quality of the
reduced Fe**-cytochrome c, the ratio of Delta Asso/ Delta Ases (Delta A=ADbS peak - ADS baseline)
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was calculated. If the ratio was <6 the Fe?*-cytochrome ¢ was too oxidized to be used. The
concentration of the reduced Fe**-cytochrome ¢ was calculated based on equation 2.1:

Delta Absssg " 1000

29 sample volume

Fe?*-cytochrome ¢ concentration (mM) =

(2.1)

where Delta Abssso is the difference in absorbance between the peak and baseline of the trace
at 550 nm, 29 is the extinction coefficient for reduced Fe?*-cytochrome ¢ (mM*cm™?) at 550

nm and sample volume is in pl.

One millilitre plastic cuvettes were filled with an appropriate volume of assay buffer which
had been placed in a 30° C water bath to equilibrate. The following reaction reagents, 0.345
mM DDM (Melford, Ipswich UK), 15 uM Fe?*-cytochrome ¢ (kept on ice), were added,
mixed gently and placed in the spectrophotometer. The absorbance was “zeroed” and baseline
rate (nonenzymatic blank) was recorded for 30 to 50 seconds, then 10 pg of cell sample or 50
ug brain sample were added, gently mixed and the decrease in absorbance was recorded for
about 5 min in order to allow the measurement of the enzyme-catalyzed oxidation of Fe?*-
cytochrome c. At the end of the reaction a few grains of potassium ferricyanide (Fluka) were
added to oxidize the remaining Fe?*-cytochrome c, the sample was gently mixed and the
absorbance change was recorded until it became a flat line which was used as an endpoint

reading for the final reaction calculation.

In order to calculate the activity, 6 time points were picked with their respective absorbance
values (AbsTo-AbsTs) while the curve is in the exponential phase along with the end point
absorbance value. The final COX activity was calculated based on the equation 2.2:

A A
lo gX—5 -lo gx—l)

COX activity (102 K/sec) = [( time period v

sample volume

] * 2.303 * * dilution factor * 1000 ( 2. 2)

where A (absorbance change) = AbsTend -AbsTo, X1=AbSTend —AbST1, Xs5=AbsTeng —AbsTs,
time period (sec) is the time difference between AbsT1 and AbsTs, 2.303 is the conversion

factor for log10 to natural log, sample volume is in pl and K is the first-order rate constant.

2.7.1.2 Citrate synthase (CS) activity assay

CS is the most commonly assayed mitochondrial matrix marker enzyme to assess
mitochondrial content. The activity of CS is routinely used as a reference when expressing
activities of respiratory chain complex enzymes; the ratio of COX/CS is the preferred way of
expressing the COX activity data. The specific activity of mitochondrial CS is measured by
following the CoASH released from acetyl-CoA during the enzymatic synthesis of citrate,
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which reacts with 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) to yield the 5-thio-2-
nitrobenzoate ion at 412 nm (extinction coefficient at 412 nm is E412=13.6 mM™*cm?).

The CS activity was determined by following the absorbance change at 412 nm. In 1 ml
cuvettes 0.1 M TrisHCI pH 8 (assay buffer), 100 uM DTNB (10 mM DTNB stock solution
was diluted in assay buffer (Sigma Aldrich), 1% Triton (Sigma Aldrich), 10 mM EDTA
(Sigma Aldrich), 100 uM Acety-CoA (Sigma Aldrich) and 10 ug of cell sample or 50 pg
brain sample were added. The content of the cuvette was mixed gently and placed in the
spectrophotometer. The absorbance was “zeroed” and a base line rate was recorded for 10 to
50 seconds then 250 uM of oxaloacetate (Sigma Aldrich) (1 M oxaloacetate was freshly
diluted with 2 M KHCOs (Sigma Aldrich) and then a working solution of 50 mM
oxaloacetate was prepared by diluting it with assay buffer) was added into the cuvette and
gently mixed to start the reaction and record the slope (Abs/min) of the increase in absorbance
over 5 min. CS activity was calculated (equation 2.3) as the slope (Abs/min) of the enzyme-
catalysed formation of 5-thio-2-nitrobenzoate ion activity and expressed as nmols 5-thio-2-
nitrobenzoate ion/min as follows:

slope (Abs/min) " 1000
13.6 sample volume

CS activity (nmols/min)= * dilution factor * 1000 (2. 3)

where slope (Abs/min) = Absrz - Absti/ T2 — T1, 13.6 is the is the extinction coefficient for

DTNB in Tris buffer (mM*cm™) at 412 nm and sample volume is in pl.

2.7.2 SOD activity assay

SOD activity was measured based on the commercially available SOD assay kit from Sigma
Aldrich with modifications. SOD activity of the cell or brain samples was determined based
on an inhibition curve made with SOD from bovine erythrocytes (Sigma Aldrich). Initially,
SOD standards were prepared containing 50, 25, 10, 5, 4, 3, 2, 1, 0.5 U/ml. The suggested
assay volumes from the datasheet were adjusted to be compatible with 1 ml plastic cuvettes
by increasing the volumes by 4. In order to measure the activity of the samples 10 ug brain 50
ug cell were used in the assay. The assay required the preparation of the next black samples in

order to measure the percentage inhibition.

Blank 1: ddH>O, WST working solution and enzyme working solution.
Blank 2: test sample, WST working solution and dilution duffer.
Blank 3: ddH.O, WST working solution and dilution buffer.
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The final mixtures were incubated at 37° C for 10, 20 and 30 min and the absorbance was
measured at 450 nm. SOD activity was calculated based on the equation 2.4:

SOD activity (inhibition rate %) = {[(Absb‘af‘“‘Absb‘an“)‘(“bssample ‘Absb‘a“kz)]} £100 (2.4)

(Absplank 1 - AbSpank 3)

where AbSpiank1, AbSbiank2, AbSpiank2 and Abssample is the measured absorbance at 450 nm of the
respective sample.

In order to calculate the units of SOD in the cell or brain samples plots of the % inhibition
versus Log (Units/ml) of SOD standards were made in Origin 7 software and a sigmoidal
curve was fitted to the data. From the given equation the Units/ml of the unknown samples
were able to be calculated which were finally transformed to U/mg of protein based on the
protein amount that was used for the assay.

2.8 Seahorse Cell Mito Stress Test Kit

The Cell Mito Stress test (Seahorse Bioscience) measures the key parameters of
mitochondrial function by directly measuring the oxygen consumption rate (OCR) of the cells
(Figure 2.1). The kit uses modulators of respiration that target compounds of the electron
transport chain (ETC) in the mitochondria to reveal key parameters of metabolic function.
Oligomycin, carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and a mix of
rotenone and antimycin A are serially injected onto live cells in order to measure ATP
production, maximal mitochondrial respiration, and non-mitochondrial respiration,
respectively. Proton leak and spare respiration capacity can then be calculated by using these
parameters and the basal respiration rate. Each one of the above mentioned compounds targets
a specific compound in the ETC. Oligomycin inhibits the ATP synthase (complex V) and the
decrease in OCR following oligomycin injections correlates with the mitochondrial
respiration associated with cellular ATP production. FCCP is an uncoupling agent that
collapses the proton gradient and disrupts the A%m. As a result, electron flow through the
ETC is uninhibited and oxygen is maximally consumed by Complex IV. The FCCP-
stimulated OCR can therefore be used to calculate the spare respiratory capacity, defined as
the differences between maximal respiration and basal respiration. Spare respiratory capacity
is a measure of the cells’ ability to respond to increased energy demand. The last injection is a
mix of rotenone, a Complex | inhibitor, and antimycin A, a Complex Il inhibitor, which will
shut down mitochondrial respiration and allow the calculation of non-mitochondrial

respiration driven by processes outside of the mitochondria.
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Figure 2.1 Cell Mito Stress Test

(A) Profile of the key parameters of the mitochondrial respirations and (B) modulators of the
ETC. The figure copied and modified from the Seahorse Bioscience manual.

The assay was performed in the Institute of Genetic Medicine (IGM), Newcastle University
under the guidance of Dr. Aurora Gomez-Duran. The experimental protocol was adjusted
based on the manufacturer’s instructions. Initially, 5,000 cells/ well were seeded into a 96-
well XF Cell Culture Microplate by using 75 pl of growth medium. After 24 hours the
medium was discarded and replaced with fresh medium containing the appropriate treatments.
For the Seahorse assay, the following conditions were tested: 1x PBS, 50 uM BCS, 200 uM
BCS, 0.5 uM TTM, 2 uM TTM and 10 uM Cu(NOs3).. For each condition, at least 9 wells per
treatment were used. The plate was incubated with the treatments for 72 h before analysis.
Twenty four h prior to analysis the sensor cartridge XF Calibrant was hydrated with XF
Buffer and placed at 37° C in a non-CO; incubator O/N. On the analysis day, the assay was
prepared by adding to the XF Base Medium 25 mM glucose, 1 mM sodium pyruvate, 2 mM
glutamine and the pH was adjusted at 7.4. The cell culture microplate was removed from the
CO2 incubator and the old cell culture medium was replaced with warmed assay medium by
using a multichannel pipette. The plate was incubated for 1 h at 37°C in a non-CO; incubator.
For the assay, the following four injections were used: 1.5 uM oligomycin, 0.5 uM FCCP, 0.5
UM FCCP and 1 uM rotenone/antimycin A. Fresh stocks of the working concentrations were
prepared prior to starting the assay and diluted with assay buffer. From each working solution,
25 pl were loaded into the appropriate port in the hydrated sensor cartridge which was then
placed in the analyser for calibration. Following the use of the calibration plate within the

sensor, the calibration plate was replaced with the cell culture microplate.

After the analysis, the spent medium was discarded and 20 pl of cell lysis buffer was added to
each well. The plate was incubated on ice for 1 h and then a Bradford assay was used for the
determination of the protein concentration. Due to the small volume of the samples the assay

was performed in a plate reader. From each well 3 ul of lysate was loaded in duplicate in a
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96-well plate together with BSA standards (0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and
0.8 mg/ml). Two hundred and fifty microliters of Bradford reagent was added and the plate
was incubated for 20 min at room temperature prior reading the absorbance at 595 nm in a
plate reader (BioRad). The data were analysed on Wave software (Seahorse Bioscience) and
the final results presented as pmoles/min/mg of protein.

2.9 Fluorescence Activated Cell Sorting (FACS)

2.9.1 Sample generation

To determine if treatments caused changes in mitochondrial morphology or mitochondrial
production of ROS we used fluorescence activated cell sorting (FACS). HEK293 cells were
seeded into 6-well plates in 3 ml growth medium at a density of 3x 10° cells cells/well and
incubated overnight to allow recovery before treatment. Cell were treated with 1x PBS, 200
UM BCS, 2 uM TTM, 350 uM D-pen, 10 uM Cu(NOs3)2 and 5 uM H,O; as a positive control
in triplicate for 72 h before being rinsed twice with 1x PBS, trypsinized and centrifuged at
200 rpm for 5 min. Pellets were resuspended in 500 pl 1x PBS/0.5% BSA containing 5 uM
MitoSOX Red (Invitrogen) and 200 nM MitoTracker Green FM (Invitrogen). Cells were then
incubated for 15 min before being spun down and resuspend in 1 ml 1x PBS/0.5% BSA. Cells
were washed once more with 1x PBS/0.5% BSA before the cell pellets were resuspended in
500 pl of 1x PBS/0.5% BSA.

2.9.2 FACS

Data was collected on a FACSCanto Il flow cytometer (BD Bioscience, Oxford, UK) using
FACSDiva v6.1.2 software. One thousand events were analysed and a signal threshold was
applied for forward scatter (FSC-A), which measures approximate cell size, and side scatter
(SSC-A), which measures cell granularity and internal complexity, to exclude debris and a
single cell population was gated in order to measure the fluorescence of that specific cell
population. Since MitoSOX red and MitoTracker green show spectral overlap over common
wavelengths (510/580-42 nm and 490/516-30 nm, respectively), when the emission of one
fluorochrome is detected by a detector designated for another, it is impossible to separate the
two signals optically and for that reason a compensation correction was applied to the raw
data to remove the effects of the spillover emission. For that reason unstained cell and single
stained cells were initially analysed in order ensure that the positive stained population was

aligned with the correct fluorescent channel. Analysis of the double stained cells was
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followed, and collection and analysis of the data was performed with the FACSDiva software

and the raw fluorescence values for each fluorochrome were used for statistical analysis.

2.10 Transfection of HEK?293 cells

2.10.1 Transfection protocols

For the transfection of the HEK293 cells, the pCMV6-an-DDK mammalian expression vector
was used which has DDK tag on its N-terminus for ease identification of the protein product
using a DDK antibody. In order to determine the best transfection procedure the next two
approaches were tested by using a plasmid caring the GFP protein (Origene plasmid
PS100048/ pCMV6-an-mGFP). Initially, in 4-well culture slide HEK293 were seeded in
density of 4,000 cells into 250 ul growth medium and left to attach overnight. After 24 hours
the next transfection protocols were tested.

2.10.1.1 Polyethylenimine (PEI) transfection

In a sterile tube 1 ml of serum-free DMEM and 7 ug plasmid DNA (pCMV6-an-
MGFP/pCMV6-an-DDK_CCS/pCMV6-an-DDK_Atox1) and 20 pug/ml PEI were mixed,
vortexed and incubated at RT for 10 min. Thirty and sixty microlitres of the mixture were

added in each chamber and incubate for 24 h.

2.10.1.2 Calcium phosphate transfection

Into a 5 ml aliquote of 2x Hepes Buffer Salina (HBS) Na;HPO4 (Sigma Aldrich) was added to
final concentration of 1.73 mM which was mixed and filtered sterile. Five hundred microlitres
of the HBS (Invitrogen) mixture was transferred to a 15 ml tube. In a sterile tube 10 pg of the
plasmid DNA (pCMV6-an-mGFP/pCMV6-an-DDK_CCS/pCMV6-an-DDK_Atox1), 61 pl of
2 M CaCl; (Sigma Aldrich) and sterile H.O up to 500 pl were added. The mixture with the
DNA was added drop by drop to the HBS buffer whilst vortexing. Five min incubation at RT
was followed and then 30 ul and 60 pl of the mixture was added to each chamber. Transfected

cells were left for 24 h.

In all the above mentioned protocols prior to the addition of the transfection mixture the old
medium was discarded and replaced with fresh. After 24 h the medium that contained the
transfection reagents were removed from the cells and replaced with fresh growth medium
which was left for 72 h in order to accomplish maximum expression. The transfection

efficiency of each method was determined by checking the number of transfected cells with
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GFP under a fluorescent microscope (Zeiss). The transfection efficiency was similar for the
two protocols with PEI method giving a slightly better yield.

2.10.2 Copper manipulation in HEK293 transfected cells

HEK 293 cells were seeded into T25cm? flasks (800.000 cells/ 5 ml media) and left to
adherent for 24 hours and transfection with PEI was followed (see section 2.11.1.1). Twenty
four hours post-transfection the spent medium was replaced with fresh containing the
appropriate treatment (200 uM BCS, 2 uM TTM, 10 uM Cu(NO3).) and left to incubate for
72 h. After 72 h, cells were washed twice with 1x PBS, 50 ul cell lysis buffer was added, cell
were scraped, incubated on ice for a few minutes and scraped again before collection. Lysed
cell samples were sonicated for 10 seconds with a sonic probe, 20 min on a sonic bath on ice
and stored at -80°C.

2.11 Immunofluorescence

Immunofluorescence staining was performed on the transfected cells for Atox1. Seventy-two
hours post-transfection the spent medium was removed and the cells were rinsed twice with
1x PBS for 5 min, fixed with 4% formaldehyde (Sigma Aldrich, diluted in 1x PBS) for 15
min and washed again twice with 1x PBS. Slides were taken immediately to the staining
protocol where they were blocked for 1 h with 1x PBS/5% normal goat serum/0.3% triton.
After 1 h incubation with mouse anti-Atox1 diluted 1:1000 in buffer containing 1x PBS/1%
BSA/0.3% triton, cells were given 3 washes for 5 min with 1x PBS, followed by incubation
with secondary goat anti-mouse Alex-Fluoro 488 (Invitrogen). Slides were washed three
times with 1x PBS for 5 min before removing the slide chamber then placed for 30 sec in
DAPI/PBS in order to stain the cell nuclei. Slides were visualized under a fluorescent
microscope where images were captured with AxionVison software under identical exposure

times.

2.12 Statistical analysis

Statistical analysis for both brain and cell study was performed in GraphPad Prism 5. All data
are presented as mean (SD) as a preferred way of describing the variability around the sample

population(®),
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2.12.1 Statistical analysis for brain samples data set

A non-parametric t- test (Mann-Whitney U test) was used to analyse between two group
variables (controls versus LOAD or EOAD) since in the majority of the data sets fail to pass
the F test for equal variances and the D'Agostino & Pearson omnibus normality test.
Spearman’s rank test was used to define if there was any correlation between variables in the
different groups, such as age versus metal levels or activity/protein levels. A Kruskal-Wallis
test followed by Dunn's Multiple Comparison post-test was used in order to determine
differences amongst the different brain regions. For the non-parametric test (Mann-Whitney U
test and Kruskal-Wallis) p values less than 0.05 were consider as statistical significant
whereas for the correlation analysis values less than 0.01 were consider as significant.

2.12.2 Statistical analysis for cell sample data set

The obtained data from the toxicity and growth curves were analysed with a two-way
ANOVA since we wanted to determine the effects of variables between time and treatments.
In order to determine if there was any significant difference between treatments, a Bonferroni
post-test was performed and p values less than 0.05 were consider as statistical significant. A
one-way ANOVA was used to analyse data set with different treatments and the in-between
group variable difference was determined by a Tukey’s post-test and p values less than 0.05

were consider as statistical significant.
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3 The role of copper homeostasis pathways in the ageing brain
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3.1 Introduction

Ageing is a natural process which is characterized by progressive decline in physiological
functions, behavioural capacity, and increased susceptibility to disease and death®®®), In
developing countries the average life expectancy is higher than 70 years with some people
living to more than 100 years. The increasing life span has produced an increase in age
associated health problems and some of these are correlated with changes in brain function.
Over the years, a number of theories have been used to explain the natural process of ageing
with one of the most accepted being the “free radical theory of ageing”?®". This theory
proposes that ageing is a combination of free radical induced damage to cellular
macromolecules and the inability of the cell to balance these changes with an efficient
mechanism of antioxidant defence®®”. The origin of this theory goes back to almost one
century ago when Pearl introduced the “rate of living theory” suggesting that the lifespan of
every individual depends on the rate they utilize energy and on the genetically determined
amount of energy consumed during adult life@®®. Generally Pearl’s theory supports that the
longevity of an organism is inversely correlated with the metabolic activity: increase
metabolic activity results in decrease longevity whereas factors that decrease the metabolic

rate can contribute to longevity@®),

The “free radical theory of ageing” was originally proposed by Harman in the mid-1950s and
suggests that free radicals which are produced during aerobic respiration have a significant
impact on cell components, causing increased damage over the normal lifespan which
eventually results in ageing and death@®?, Initially it was believed that the free radicals are
mostly produced through reactions involving molecular oxygen which is catalysed within
cells by oxidative enzymes and enhanced in the presence of transition metals such iron and
copper®®), Later, Harman expanded the theory by including mitochondria in the
physiological process of ageing since they are responsible for generating a significant amount
of cellular energy by consuming the majority of the intracellular oxygen®®”. This addition led
to the new improved “mitochondrial free radical theory of ageing” which supports that
oxidative stress attacks mitochondria, leading to increased oxidative damage and as the
damage progresses mitochondria become less efficient ?7). Mitochondria will eventually lose
their function and release more oxygen radicals which will increase the oxidative damage and

will culminate in accumulation of dysfunctional mitochondria within cells with ageing(: 287,

Several studies have shown that the brain is particularly susceptible to both structural and

functional changes with ageing. Brain mass decreases by up to 3% by the age of 50 and
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people of more than 80 years exhibit a 10% brain mass loss relative to younger persons
brains®@®?, Studies with magnetic resonance imaging (MRI) and voxel based morphometry
(VBM) have shown that the brain’s grey and white matter volume decreases with ageing
especially in regions such as prefrontal, parietal and temporal cortex®®® 2% At a cellular
level, shortening of the telomeres, activation of tumour suppressor genes, accumulation of
mitochondrial and nuclear DNA damage, oxidative stress, and mild chronic inflammation are

some of the ageing characteristics of the brain®®®),

Copper as a redox metal has the potential to generate free radicals in the brain and could
contribute to the “free radical theory of ageing”. Copper is also required for the activity of two
central enzymes in the theory, the mitochondrial COX and the antioxidant defence enzyme
SOD. Understanding how copper, copper binding enzymes and proteins correlate with ageing
in different brain regions will allow us to understand better the natural process of ageing and
if they are factors that can enhance brain longevity.

3.2 Aims

The aim of this chapter is to identify if there is a correlation between ageing, copper levels,
activity levels of COX and SOD, and important copper binding proteins in two different brain
regions, frontal and temporal cortex. Correlations between the above mentioned variables
were also determined to establish if there were any linkages. Brain homogenates from healthy
control samples were analysed by ICP-MS, COX and SOD activity and samples were

arranged by increasing age for protein levels measurement by Western blot.
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3.3 Results

3.3.1 Identifying changes in copper levels, COX and SOD activity in the healthy brain
with ageing

Initially ICP-MS analysis was used in order to determine the copper levels in 27 brain
samples coming from normally aged people in two different brain regions, frontal and
temporal cortex. These two brain regions were selected since changes with aging have been
observed in the cortex; also, they are two of the most affected brain regions in age related
disorders such as AD. A partial analysis in cerebellum was conducted since due to time
limitation it was not possible to finalise the protein analysis in that brain region®®2°D), The
obtained results regarding copper levels, SOD and COX/CS activity for cerebellum are
reported in Appendix A. By arranging the measured copper levels by chronological order we
observed that copper levels started to decline with increasing age at death, and similar
findings were also observed for SOD and COX activity. In order to confirm our observation
we used Spearman’s rank statistical test since the data failed to pass the D'Agostino &
Pearson omnibus normality test. Multiple statistical tests were performed which increases the
possibility of obtaining false positive results by chance at p<0.05. In order to avoid this,

statistical significance was set at p values of less than 0.01.

A significant negative correlation between age and copper levels in both frontal (rs=-0.617,
n=27, p=0.0006) and temporal cortex (rs=-0.535, n=27, p=0.0041) was identified (Figure
3.1A). The result indicates that there is a moderate to strong correlation which shows that in
the healthy brain copper levels are decreasing with age. In the same brain samples, total SOD
activity was measured in the homogenates and the relative units per mg of protein calculated.
SOD activity was also tested for correlation and a significant positive correlation between age
of death and activity was observed in temporal cortex (rs=0.5801, n=27, p=0.0025). In frontal
cortex there was also a positive correlation (rs=0.4564, n=27, p=0.0167) but the change was
not significant based on the multiple comparison correction that we set. In temporal cortex
and to a lesser extent in frontal cortex, there is a moderate increase in SOD activity during

ageing in the healthy brain (Figure 3.1B).

In the same brain homogenates we also measured COX and CS activity. Both assays were
conducted the same day and from the same brain aliquot in order to ensure comparability. The
final activity of Complex 1V is expressed as a ratio of COX relative to the CS. The COX/CS

ratio was also examined in order to identify if there was a correlation with ageing and again
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there was a significant positive correlation in temporal cortex COX/CS activity (rs=0.522,
n=27, p=0.0051) but not in frontal cortex COX/CS activity (rs=0.346, n=27, p=0.076) (Figure
3.1C). Whilst the correlation in frontal cortex was not significant, as with temporal cortex,

activity was increased with ageing
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Further COX/CS and SOD activity were correlated with copper levels in both brain regions.
Correlating COX/CS with copper levels did not reveal any significant association for either of
the brain regions (Table 3.1 and 3.2) although for SOD there was a negative correlation in
temporal cortex (rs=-0.4431, n=27, p=0.026) but this was not significant following correction
for multiple testing. Whilst not significant, the correlation between SOD activity and copper
levels suggests that in both frontal and temporal cortex when copper levels are increasing
SOD activity is decreasing (Figure 3.1D, E).

3.3.2 Changes in COX complex proteins in the ageing brain

The two catalytic protein subunits of COX, COX1 and COX2, both bind copper and are
necessary for complex activity. Western blotting was used to measure the protein levels of
COX1, COX2 and VDAC1 in 25 brain samples. Two of the control cases were excluded from
the analysis due to lack of space in the gels and based on the fact that there were 2 other cases
with the same age. The brain samples from frontal and temporal cortex were loaded with
increasing age at death order and the membranes were incubated with antibodies for the
protein of interest. Representative Western blots from both brain regions for COX1, COX2
and VDACL are presented in Figure 3.2A, B, D and E. The measured relative protein levels
were correlated with the age of death of control samples and the analysis showed that for
COX1 protein levels there was a positive correlation with increasing age of the controls. In
frontal cortex (rs=0.7636, n=25, p<0.0001) there was a strong and significant increase in
COX1 protein levels as the brain gets older. Similar increase was also observed in temporal
cortex (rs=0.441, n=25, p=0.0273) but the correlation was not statistical significant (Figure
3.2C). On the other hand, COX2 protein levels showed a negative correlation with ageing
which means that as the brain gets older there is less COX2 protein especially in temporal
cortex (rs=-0.5702, n=25, p=0.0029). Similar trend was also observed in frontal cortex (rs=-

0.3079, n=25, p=0.1344) but again the changes was not considered significant (Figure 3.2F).
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Figure 3.2 COX1, COX2 and VDACL Protein analysis in Frontal and Temporal Cortex and
Correlation with Age of Death in Healthy Human Brain.

Western blot analysis for COX1 or COX2 in (A, D) frontal and (B, E) temporal cortex.

Correlation with age of death for (C) COX1 and (F) COX2 protein levels normalised with

GAPDH in both frontal and temporal cortex. The protein levels were measured by
semiquantitate Western blot analysis in single determinations. Spearman rs correlation is

reported and p values less than 0.01 were considered statistically significant and *, p<0.01;

***, p<0.0001.
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COX2 and COX1 protein were examined for potential correlations between their levels and
COXI/CS activity. For COX1, no significant correlation is observed in either frontal or
temporal cortex and COX/CS (Table 3.1 and 3.2). However, for COX2 a negative correlation
was detected in both frontal and temporal cortex. In temporal cortex, COX2 protein levels
significantly decreased with increasing COX/CS activity (rs=-0.5831, n=25, p=0.002) (Figure
3.3B). In frontal cortex (rs=-0.376, n=25, p=0.065) a trend towards a similar correlation was
observed although this failed to reach significance (Figure 3.3A).
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Figure 3.3 Graphical representation of COX2 Protein Levels Correlated with COX/CS
Activity.

(A) Frontal and (B) temporal cortex COX/CS activity correlated with COX2 protein levels
normalised with GAPDH. Spearman rs correlation is reported and p values less than 0.01 were
considered statistically significant and *, p<0.01.

COX1 and COX2 are mitochondrial DNA encoded proteins and for that reason mitochondrial
mass levels were measured by using VDAC1, a mitochondrial loading control, however no
significant change with ageing was observed, with only a moderate not significant trend
towards a decrease in frontal cortex (rs=-0.500, n=25, p=0.011) being present (Table 3.2 and
3.3). Since COX1 and COX2 are mitochondrial proteins, the normalized ratio with VDAC1
was analysed in order to determine changes with ageing. COX1/VDACL ratio showed a
similar increase with ageing but the ratio of COX2/VDACL1 showed opposite results to that of
COX2. COX2/VDACI1 ratio in frontal cortex showed a trend towards a positive correlation
with increasing age at death (rs=0.359, n=25, p=0.078) although this was opposite to the effect
of what was observed in temporal cortex (rs=-0.537, n=25, p=0.006). This finding is possibly
due to the decreased VDACL levels in frontal cortex with ageing which is not observed in
temporal cortex where mitochondria levels do not change. Tables 3.1 and 3.2 presents further

correlations with different variables for the mitochondrial related proteins and activity.
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Frontal Cortex Copper levels | COX/CS activity | VDACL protein | COX1 protein COX1/VDAC1 COX2 protein COX2/VDAC1
(ng/g tissue) (10" K/nmoles) levels levels protein levels levels protein levels
Age of death rs=-0.617, n=27 | r:=0.3469, n=27 | rs=-0.500, n=25 | rs=0.7636, n=25 | r=0.846, n=25 r=-0.307, n=25 r=0.359, n=25
(years) p=0.0006 (**) p=0.076 p=0.011 p<0.0001 (***) | p<0.0001 (***) p=0.134, NS p=0.078, NS
Decrease NS NS Increase Increase
Copper levels rs=0.101, n=27 rs=-0.485, n=25 | rs=-0.536, n=25 rs=0.305, n=25 rs=-0.245, n=25
(ng/g tissue) p=0.632 p=0.021 p=0.006 (*) p=0.138, NS p=0.239
NS NS Decrease NS
COXI/CS activity rs=-0.068, n=25 | r=0.195, n=25 r=0.173, n=25 r=-0.376, n=25 r==-0.320, n=25
(10" K/nmoles) p=0.748 p=0.351 p=0.408 p=0.064, NS p=0.119
NS NS NS NS
VDACLI protein rs=-0.529, n=25 rs=0.486, n=25
levels p=0.007 (*) p=0.014, NS
Decrease
COX1 protein rs=-0.119, n=25 r=0.419, n=25
levels p=0.470, NS p=0.037, NS
COX1/VDAC1 rs=-0.160, n=25 rs=0.592, n=25
protein levels p=0.445, NS p=0.002
Increase (*)

Table 3.1 Correlations between Mitochondrial Enzymes and Copper in the Ageing Human Frontal Cortex.

Spearman rank (rs) test was used to identify correlation in frontal cortex of control brain samples with variables being age of death, copper levels,

COXI/CS activity, VDAC1, COX1 and COX2 protein levels. Values highlighted with red indicate statistical significant changes where p values less
than 0.01 were considered statistically significant. *, p<0.01; **, p<0.001; ***, p<0.0001; NS: non-significant.
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Temporal cortex | Copper levels COXI/CS activity | VDACL protein | COX1 protein COX1/VDAC1 COX2 protein COX2/VDAC1
(ng/g tissue) (10" K/nmoles) levels levels protein levels levels protein levels
Age of death rs=-0.535, n=27 rs=0.5229, n=27 rs=-0.007, n=25 | r=0.441, n=25 rs=0.382, n=25 r=-0.570, n=25 | rs=-0.537, n=25
(years) p=0.0041 (*) p=0.0051 (*) p=0.975 p=0.0273 p=0.059 p 0.0029 (*) p=0.006 (*)
Decrease Increase NS NS NS Decrease Decrease
Copper levels rs=-0.266, n=27 rs=-0.173, n=25 rs=-0.149, n=25 rs=0.356, n=25 rs=0.481, n=25
(ng/g tissue) p=0.198 p=0.408 p=0.476 p=0.081 p=0.015
NS NS NS NS NS
COXIJCS activity r=-0.152, n=25 | r=0.056, n=25 r==0.275, n=25 r=-0.583, n=25 rs=-0.341, n=25
(10" K/nmoles) p=0.486 p=0.790 p=0.184 p=0.002 (*) p=0.096
NS NS NS Decrease NS
VDAC1 protein r=0.372, n=25 r=0.399, n=25
levels p=0.067, NS p=0.048, NS
COX1 protein rs=0.074, n=25 r=-0.245, n=25
levels p=0.726 p=0.239
NS NS
COX1/VDAC1 rs=-0.405, n=25 rs=0.275, n=25
protein levels p=0.045 p=0.184
NS NS

Table 3.2 Correlations between Mitochondrial Enzymes and Copper in the Ageing Human Temporal Cortex

Spearman (rs) rank test was used to identify correlation in temporal cortex of control brain samples with variables being age of death, copper levels,
COXICS activity, VDACL1, COX1 and COX2 protein levels. Values highlighted with red indicate statistical significant changes where p values less
than 0.01 were considered statistically significant. *, p<0.01; NS: non-significant.
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3.3.3 Proteins related to SOD activity change in the ageing brain

Proteins that directly regulate SOD activity (SOD1, SOD2 and CCS) were also measured in
order to see how they were affected by ageing, SOD activity or copper levels. Representative
Western blots from both brain regions for CCS, SOD1 and SOD?2 are presented in Figure
3.4A, B, C and D. The relative protein levels of each protein were correlated with the age of
death which revealed that for CCS there was a significant positive correlation in temporal
cortex (rs=0.690, n=25, p=0.0001) and a trend towards a significance in frontal cortex
(rs=0.4419, n=25, p=0.027) with CCS levels increasing with ageing (Figure 3.4E)

Similar results were obtained for SOD1 protein levels where there was a significant positive
correlation in temporal cortex (rs=0.7047, n=25, p<0.0001) but not in frontal cortex (rs=0.187,
n=25, p=0.373). For SOD1, in temporal cortex, there was a strong increase in its levels as
ageing progresses (Figure 3.4F). Whilst in frontal cortex there was no significant change of
SODL1 levels with ageing, the pattern was similar to temporal cortex. SOD2 protein levels
were also seen to be increasing with ageing but the correlation was not significant for either
frontal (rs=0.451, n=25, p=0.024) or temporal cortex (rs=0.435, n=25, p=0.03) (Figure 3.4G).

CCS is responsible for delivering copper and activating SOD1 in the cytosol. A positive
correlation between CCS and SOD1 protein levels was showing that CCS protein levels are
increasing together with SOD1 protein levels. A significant correlation was observed in
temporal cortex (rs=0.795, n=25, p+0.0001) with a similar trend in frontal cortex (rs=0.474,
n=25, p=0.016) although this failed to reach significance following correction (Figure 3.5A
and B). Total SOD activity consists of the combined activities of SOD1 and SOD2 and
therefore possible correlations amongst them was examined. A positive correlation was
observed between SOD activity and SOD1 protein levels with an increase in temporal cortex
(rs=0.6323, n=25, p=0.0007) although in frontal cortex (rs=0.187, n=25, p=0.380), despite
there being a similar positive association, the correlation was not significant (Figure 3.5C and
D). In frontal cortex a positive correlation between SOD2 protein levels and SOD activity was
observed (rs=0.570, n=25, p=0.002) although this failed to reach significance within the
temporal cortex (rs=0.4277, n=25, p=0.03) (Figure 3.5E and F). Table 3.3 and 3.4 present a
summary of the correlations and additional variables including copper, protein levels, and
SOD activity where trend towards a significant correlation was seen in temporal cortex

between CCS protein levels and SOD activity.
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Figure 3.4 CCS, SOD1 and SOD2 Protein Analysis in Frontal and Temporal Cortex and
Correlation with the Age of Death in Healthy Brain.

Western blot analysis for CCS and SOD1 or SOD2 in (A, C) frontal and (B, D) temporal
cortex. Correlation with age of death for (E) CCS (F) SOD1 and (G) SOD2 protein levels
normalised with GAPDH in both frontal and temporal cortex. The protein levels were
measured by semiquantitate Western blot analysis in single determinations. Spearman rs
correlation for n=25 samples is reported and p values less than 0.01 were considered
statistically significant. **, p<0.001; ***, p<0.0001.
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Figure 3.5 Graphical Representation of Correlations between CCS, SOD1 and SOD?2 Protein
Levels with SOD Activity or SOD1 Protein Levels.

CCS protein levels were positive correlated with SOD1 protein levels in (A) frontal and (B)
temporal cortex. SOD activity is also positive correlated with either SOD1 or SOD2 protein
levels respectively in (C, E) frontal or (D, F) temporal cortex. Spearman rs correlation for
n=25 samples is reported and p values less than 0.01 were considered statistically significant.
*, p<0.01; **<0.001.
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Frontal Copper levels | SOD activity | SOD1 protein | CCS protein | SOD2 protein
cortex (ng/g tissue) (U/mg) levels levels levels
rs=-0.617, n=27 r=0.4564, | rs=0.186,n=25 | rs=0.4419, rs=0.4508,
Age of death
p=0.0006 (**) n=27 p=0.373 n=25 n=25
(years)
Decrease p=0.0167 NS p=0.027 p=0.0237
NS NS NS
rs=-0.187, rs=-0.142, rs=-0.260,
Copper
n=25 n=25 n=25
levels
; p=0.384 p=0.497 p=0.209
(ng/g tissue)
NS NS NS
r:=0.183, n=25 rs=0.024, rs=0.570,
SOD
o p=0.380 n=25 n=25
activity
NS p=0.908 p=0.002 (*)
(U/mg)
NS Increase
rs=0.473, rs=0.234, n=25
SOD1
; n=25 p=0.261
protein
p=0.016 NS
levels
NS

Table 3.3 Correlation between Protein and Enzyme Activity in the Ageing Human Frontal

Cortex.

Spearman (rs) rank test was used to identify correlations in frontal cortex between age,
copper, SOD activity and the protein levels of CCS, SOD1, SOD2 and as well as different
combinations amongst these. Values highlighted with red indicate statistical significant

changes where p values less than 0.01 were considered statistically significant. *, p<0.01; **,
p<0.001; NS: non-significant.
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Copper SOD activity | SODL1 protein CCS protein SOD2
Temporal .
levels (U/mg) levels levels protein
cortex _
(ng/g tissue) levels
Age of rs=-0.535, rs=0.5801, rs=0.7047, n=25 | r=0.690, n=25 rs=0.435,
death n=27 n=27 p<0.0001 (***) [ p=0.0001 (**) n=25
(years) p=0.0041 (*) | p=0.0025 (**) Increase Increase p=0.0298
Decrease Increase NS
rs=-0.4431, rs=-0.356, n=25 | rs=-0.191, n=25
Copper
n=27 p=0.078 p=0.361
levels
(nalg tissue) p=0.026 NS NS
n issue
g/9 NS
rs=0.6323 n=25 | rs=0.477, n=25 r=0.427,
SOD
. p=0.0007 (**) p=0.016 n=25
activity
(Ulmg) Increase NS p=0.03
m
0 NS
rs=0.795, n=25 rs=0.467,
SOD1
; p<0.0001 (***) n=25
protein
Increase p=0.019
levels
NS

Table 3.4 Correlation between Proteins and Enzyme Activity in the Ageing Human Temporal
Cortex.

Spearman (rs) rank test was used to identify correlations in temporal cortex between age,
copper, SOD activity and the protein levels of CCS, SOD1, SOD2 and as well as different
combinations amongst these. Values highlighted with red indicate statistical significant
changes where p values less than 0.01 were considered statistically significant. *, p<0.01; **,
p<0.001; NS: non-significant.

3.3.4 Effects of ageing brain on other copper binding proteins

The overall aims of the study was to measure the activity /protein levels of key components of
the three copper pathways, however, we encountered some difficulties in the process.
Initially, we wanted to study the expression/activity of a secreted copper binding enzyme in
both the brain samples and the HEK293. However, the HEK293 did not express the majority
of these enzymes and Cp activity/protein levels could not be used since the cell were grown in
the presence of bovine serum (contains bovine Cp) and we would not be able to separate the
different forms. Then, we attempted to measure the activity levels of the copper dependent
ferroxidase Hephaestin but the assay was not giving reproducible results. Since we were not
able to measure the activity levels of a copper secreted enzyme, we focused on measuring the

protein levels of key components of the secretory copper pathway such as ATP7a, Atox1 and
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Hephaestin. We attempted to measure Cp levels in the ageing brain but the used antibody did
not work well when the analysis was conducted and due to time restrictions, we were not able
to repeat the analysis. In the general attempt to measure representative proteins from all
pathways, Sco2 protein levels were measured too, however, the results were not significant
and for that reason they are presented in this section. The results from the Spearman rank tests
frontal and temporal cortex are presented in Table 3.5. Generally, the results did not show
statistical significance for the majority of these proteins after correction for multiple testing
and also there were some inconsistencies between the two brain regions. For example ATP7a
showed a trend towards positive correlation in temporal cortex (rs=0.3882, n=25, p=0.0937)
but negative in frontal cortex (rs=-0.2404, n=25, p=0.247). Furthermore, the analysis showed
that Sco2 protein levels were increasing with ageing in frontal cortex (rs=0.5521, n=25,
p=0.0042) but not changing at all in temporal cortex (rs=-0.05, n=25, p=0.8092). Hephaestin
protein levels were significantly increasing with ageing in temporal cortex (rs=0.5421, n=25,
p=0.0051) but not in frontal cortex (rs=0.1399, n=25, p=0.5049). No significant correlation

was observed between the above mention proteins and copper levels in either brain regions.

Frontal cortex Temporal cortex
Protein of
Age of death Copper levels Age of death Copper levels
interest . S L -
(years) (ng/g tissue) (years) (ng/g tissue)
ATP7a rs=-0.2404, n=25 | rs=0.1862, n=25, rs=0.3425, n=25, | rs=-0.2877, n=25,
protein levels p=0.247 p=0.373 p=0.0937 p=0.1632
NS NS NS NS
; r=0.5521, n=25 | r=-0.3231, n=25 | rs=0.0508, n=25 | rs=-0.1808, n=25
Sco2 protein
. p=0.0042 (*) p=0.1152 p=0.8092 p=0.3872
evels
Increase NS NS NS
; rs=0.1399, n=25 rs=-0.2469, n=25 | rs=0.5421, n=25 rs=-0.4362, n=25
Hephaestin
; p=0.5049 p=0.2341 p=0.0051 (*) p=0.293
protein levels
NS NS Increase NS
; rs=0.3679, n=25 | rs=-0.0746, n=25 rs=-0.161, n=25 rs=0.2192, n=25,
Atox1 protein
p=0.0707 p=0.723 p=0.4419 p=0.2924
levels
NS NS NS NS

Table 3.5 Correlation between Proteins and Copper in the Ageing Human Frontal and

Temporal Cortex.

Spearman (rs) rank analysis for the protein levels of ATP7a, Sco2. Hepahaestin and Atox1 in
frontal and temporal cortex are correlated with age of death and copper levels Values
highlighted with red indicate statistical significant changes where p values less than 0.01 were
considered statistically significant. *, p<0.01; **, p<0.001; NS: non-significant.
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3.4 Discussion

The aim of this chapter was to identify how copper homeostasis pathway associates with the
process of healthy ageing in the brain. Copper can be toxic in high levels but under normal
conditions is required for the activity of two important cellular enzymes, COX and SOD1.
Both of these enzymes play a central role in the “mitochondrial free radical theory of ageing”
since COX contributes directly to ROS production and SOD1 is responsible for the
elimination of the superoxide free radical. It is known that in the ageing brain, mitochondria
are potentially dysfunctional and produced ROS are elevated as a possible consequence. The
main source of the mitochondrial derived ROS is Complex | and to lesser extent Complex
1118 Complex | mainly releases superoxide anions into the mitochondrial matrix and
Complex 111 to both sides of the inner membrane, which makes Complex Il derived ROS
more accessible to the cell cytosol®?). In mitochondria, ROS production depends on the A¥nm
which under normal conditions is around 100-140 mV although when A% goes above 150-
200 mV an increased production of ROS occurs®®,

ROS are also produced by other molecules in the cells such as from NADPH oxidase in the
plasma membrane, peroxisomes, cytochrome P450, xanthine oxidase, monoamine oxidase,
cyclooxygenase and lipoxygenase. Transition metals such copper and iron can produce ROS
through Fenton or Haber-Weiss reactions where they form hydroxyl radicals by oxidizing
H>0>. The role of iron has also been studied in the ageing brain and is well established that

iron accumulates in the brain with ageing 4.

By analysing 27 healthy brain samples varying from age 51 to 96 we identified that copper
levels significantly decrease as the brain ages (Figure 3.1A). Decreased copper levels in
frontal and temporal cortex might be explained by low dietary copper uptake and gradual
weight loss that is normally observed in the elderly people®®®). Few studies have attempted to
measure copper in the normal fully developed brain with the first coming from Bonilla et al.
who also showed a negative correlation between copper and age*®). However, a more recent
study from Ramos et al. showed that copper levels showed a small, non-significant
decline®®®®, Studies with animals have attempted to establish a correlation between copper
levels and age in the brain however, these have found that copper accumulates in the brain

with ageing®®":2%),

The differences amongst studies, especially in humans, might depend on different variables,
such as number of samples, post-mortem delay, sample preparation or even the different

copper determination procedure. It is worth mentioning that the mean copper concentration
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from our study is 4.41+1.05 pg/qg tissue is close to that of Bonilla et al. (5.43+0.71 ug/g
tissue) but almost four times less than Ramos et al. reported (217 ug/g tissue)(46:2%), This
indicates that small differences in the sample preparation or alternative protocols for analysis
can lead to large differences between studies. As far as it concerns the opposite effect that we
observed between human and animal studies this can be attributed to the fact that 1-2 years
old animals might not be consider as senescence/aged. The observation of accumulated
copper in the animals’ brain might reflect the events that happen in the human brain during
the childhood and adolescent. Based on a study, where synchrotron X-ray microscopy was
used in paraffin fixed post-mortem brain tissue, copper concentration seems to increase over
the first 20 years of the human life and then a decrease seems to occur in copper levels?®®,
The increased requirement for copper for the first 20 years possibly reflects developmental
processes of the brain since in that stage copper is required for the function of COX and
SOD1 in the developing neurons as well as for the myelination of the neuronal axons©®,

3.4.1 The “mitochondrial free radical theory” in the ageing brain

The “mitochondrial free radical theory” suggests that an imbalance between ROS production
and the antioxidant defence mechanism is causative in ageing®® 27)_ A number of studies
have tried to measure ROS levels, the activity of the mitochondrial respiratory complexes, and
activity of the antioxidant defence enzymes in different human or animal tissues. In this study,
we have focussed on measuring the enzyme activity of these two systems (mitochondrial and
antioxidant defence) and determined the protein levels which regulate and contribute to the

two systems.

3.4.1.1 Are mitochondria malfunctioning in the healthy human brain?

Two different brain regions were used and the results were similar between them with only
small differences observed, probably related to local brain regional changes (further discussed
in section 3.5.2). Mitochondrial levels were not significantly changed with ageing in either
brain regions although there was a moderate increase in COX/CS activity with ageing (Table
3.1 and 3.2). The brain is the highest consumer of energy substrates in the body where
normally it metabolizes 60% of glucose and 20% of oxygen®> 30, Neurons mainly produce
ATP through the respiratory chain since they require ATP for maintaining ion homeostasis
and membrane potentials. Given this high metabolic demand it is not surprising that COX/CS
activity was found to be increasing with ageing, in order to maintain the energy demand in the

non-dividing and long-living neurones. Another possible reason might be due to neuronal
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atrophy which is typical in the ageing brain®®), the remaining “healthy” neurons increase
metabolic activity to compensate for the neuronal loss in a specific brain region.

Numerous studies have tried to measure the activity of all the electron transport chain
complexes, with the majority of these having been conducted in mice or rats and only a few
studies in human tissues. COX activity has been measured in skeletal muscle mitochondria
where no change in activity was observed with ageing®®. However, the reported ageing
studies in mice and rats using different tissues (liver, heart, skeletal muscles and brain) show
variable changes from increases to decreases or no change in COX activity©®4 309, |t is worth
mentioning that studies with isolated mitochondria from mouse brain have reported both a
decrease and an increase in COX activity®®. Once again, what these studies define as an
aged animal might not be representative of the human ageing brain since they use animals
from 1.5 to 2 years old. Other factors such as the tissue preparation or even the differences in
the methodologies and substrates that they used to conduct the assays may contribute to the
variability between studies. Another important factor that none of these studies took into
consideration was to use a control of the variable degrees of mitochondrial enrichment in the
brain tissue, such as CS activity. In the present study, by correcting COX activity with CS
activity, using brain samples with small post-mortem delays and cases with a wide range of

ages, we enhanced the accuracy and reliability of the results.

For the first time we report the protein levels of the two core catalytic subunits of COX,
COX1 and COX2, in the ageing brain (Figure 3.2). Part of the mitochondrial free radical
theory supports that mitochondria become deficient in enzyme activity with ageing because
increased ROS production causes mutation in both the mitochondrial and nuclear DNA.
Changes in the DNA consequently affect the protein synthesis of the respective gene products
and in mitochondrial DNA this may be COX1 or COX2. We found that COX1 levels are
strongly increasing, and COX2 levels are decreasing with ageing (Figure 3.2). COXL1 is the
first protein that enters in the assembly process of the complex, and contains three of the
redox centres that are required for COX activity©®® 118119 The fact that COX1 increases in the
same way as COX/CS activity possibly signifies the importance of COXL1 in the final
complex activity (Figure 3.2). COX1 contains the Cug redox site although COX1 protein
levels did not seem to correlate with copper levels, on the contrary, COX1 protein levels are
increasing when copper levels are decreasing even if the correlation was not strong enough to

be considered significant (Tables 3.1 and 3.2 as well as Figures 3.2 and 3.3)
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While COX1 levels did not seem to be affected by either copper or COX/CS activity, COX2
levels were significantly dependent on COX/CS activity and possibly on copper levels
(Tables 3.1 and 3.2 as well as Figure 3.3). COX2 contains the Cua site and becomes part of
the complex at a later stage of COX assembly©®: 118 119 \Whilst the correlation between
copper levels and COX2 protein only showed a trend towards significance in the temporal
cortex (Table 3.2) it indicates that COX2 protein levels are increasing when copper levels are
higher. This may explain why COX2 decreases with age since copper levels are also
decreasing in the ageing brain. COX2 is known to require insertion of copper at the Cua site
before being assembled into the full COX complex and studies, mainly in yeast, have shown
that unassembled copper deficient COX2 is rapidly degraded by the ATP-Zn?" dependent
YME1p protease®” %), If, therefore, COX2 does not have copper it will not enter the
complex and will be degraded. The current study shows that COX2 protein levels are
decreasing when COX/CS activity is higher. In the brain, neurons are long-lived with a slow
turnover of both mitochondria and mitochondrial components with a half-life of 4-6
weeks®??, Under these conditions, the COX complex will continue being active but no
assembly of new complexes may take place until necessary. It is possible that in the ageing
brain decreased levels of copper leads to degradation of COX2 with only sufficient COX2
available to meet the demands of increased COX/CS due to the high metabolic demand in the
brain. This might imply that copper pools within the brain could be redistributed during
ageing to maintain certain key enzymes such as COX. Whilst the total copper pool might be
depleted with age, certain enzymes are protected to maintain adequate brain function, and in

this instance, copper availability to COX2 might be a rate limiting step.

3.4.1.2 How is the brain responding to ROS production?

It is well established from studies in both humans and animals that ROS levels increase with
ageing®%-31Y, The most commonly used markers for measuring the accumulation of oxidative
stress are oxidative induced modifications to macromolecules such as proteins, DNA and
lipids. In the ageing brain it has been shown that increased production of the oxidative DNA
damage marker, 8-hydroxyl-2"-deoxyguanosine®'?, and increased levels of lipid peroxidation
malondialdehyde and protein oxidation carbonyl markers occur®-31D, In a recent study
Venkateshappa et al. reported that different brain region exhibit differences in protein
oxidation®® 319 The study reported that in frontal cortex, protein oxidation was higher
compared to hippocampus and substantia nigra or to cerebellum and striatum where no

change with age was observed®3 314),
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Cells, in order to defend against oxidative stress, have evolved different antioxidant defence
enzymes. The first defence line comes with SOD, both in the cytosol and the mitochondria,
which degrade oxygen radicals derived from the mitochondria or other sources. Mitochondria
produce increased ROS not only when respiratory chain enzymes are blocked, but also when
they function at higher rates. Even if they are not producing ROS directly from COX, we can
assume that increased COX activity will be accompanied by increased activity of the other
mitochondrial enzyme complexes and increased membrane potential which will further
enhance the production of oxygen radicals. The ageing brain in order to defend against the
increased production of ROS has to increase the activity of SOD.

In the healthy brain we found that total SOD activity increases with ageing. The total SOD
activity that we measured in this study represents the activity of both the Cu,Zn-SOD1 and the
mitochondrial Mn-SOD?2 and potentially the secreted Cu,Zn-SOD3. In human brain the
concentration of SOD1 has been reported to be 6 to 7 times more than that of SOD2, therefore
total SOD activity potentially reflects more SOD1 related activity®'®. The increased activity
of SOD identified in ageing was perhaps not surprising if we consider that higher levels of
ROS may be produced in the ageing brain, thereby requiring an increased antioxidant defence
system of the brain. Several studies, predominantly in different mammalian species, have
been conducted in order to investigate how SOD activity correlates with age®® 31", Such
results are however quite contradictory since studies in mouse brain report both increase or
decrease in SOD activity with ageing®!® or no change or a decrease in the rat brain®!®: 320,
Variances in these studies may reflect differences in the procedures used to measure SOD

activity and also the ages of the animals which were quite different.

One study conducted by Venkateshappa et al. which measured SOD activity in human frontal
cortex showed no significant change in total SOD activity with ageing®'®. One possible
reason for the difference between the current and Venkateshappa study is the usage of cases
with a broader age range (0.01 to 80 years) where only 10 cases were between 50 to 80 years
whereas the majority of our cases are between 50 and 100 years®'®, By using such a broad
age range, particularly infant tissue where the brain is not fully developed, might have masked

any real changes that occur later in life observed in our study.

SOD protein levels related to SOD activity have not been measured previously in animal
studies. SOD1 and SOD2 protein levels in the current studies show increases with ageing,
possibly reflecting the need for more active SOD (Figure 3.4). By correlating SOD1 and

SOD2 protein levels with the total SOD activity this was confirmed showing a positive
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correlation (Table 3.3, 3.4 and Figure 3.5). SODL1 requires copper for its activity however,
correlating SODL1 levels with brain copper levels showed the absence of any correlation
(Table 3.3 and 3.4). SODL1 is a relatively stable enzyme when active (35-40 hours half-life)
which possibly indicates that the requirement for antioxidant defence is important with SOD1
being activate even at low copper levels®** 32D, Furthermore, SOD1 protein is mainly as an
apo-form, without bound metals, and the protein determination reflects both apo- and holo-
SOD1®2Y, Increased SOD activity might also occur due to increased levels of CCS, the
protein which is responsible for the delivery of copper to SOD1 and its activation. CCS
protein levels were not only strongly increased with age in the brain but a positive correlation
with SOD1 protein levels was observed which may indicate that when there is more SOD1
protein CCS levels are higher (Table 3.3, 3.4 and Figure 3.5). Increased CCS levels might
reflect either the requirement derived from an increased need for activation of SOD1 in the
ageing brain, or by the presence of less copper in the brain. Studies in cells and mice have
shown that CCS levels are regulated by copper availability, generally under copper depleting
conditions CCS protein levels are increased¥. The correlation between CCS and copper was
not significant but it does show that at lower copper levels CCS protein levels were higher
along with SOD1.

One possible assumption may be that since SOD is more active in the brain, the observed
oxidative stress and ageing processes should be reduced due to lower levels free radicals.
Unfortunately, SOD is also responsible for the production of another ROS product, since
during the detoxification of superoxide, H2O> is generated as by-product. Consequently cells
contain two further enzymes in the first line of antioxidant defence: catalase (CAT) and
glutathione peroxidase (GPx), which both detoxify H2O,. CAT monitors H2O in the
extracellular space and also reduces peroxisomal H20. to oxygen and water while GPx acts in
the cytosol and mitochondria. Even though the brain has a high demand for ROS
detoxification due to high mitochondrial activity, it also contains lower concentrations of
antioxidant defence enzymes compared to other tissues of the body®??). Few studies have
measured CAT or GPx levels in the human brain, with the majority of the studies having been
performed in mice or rats. In the human brain, based on the studies of Venkateshappa et al.,
CAT activity decreased with ageing in the substantia nigra, hippocampus, and striatum but
increased in the frontal cortex®'® 3149, GPx activity on the other hand decreased in cerebellum
and substantia nigra, but no change was observed in frontal cortex, striatum or hippocampus.
These studies indicate that different brain regions may have different demands for antioxidant

defence mechanisms which possibly dependent on the function of the brain region and its
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metabolic demand. Studies coming from animals are again quite controversial since no
change, increases or decreases of CAT activity have been reported in different brain regions
in mouse or rat brain®¢ 318 Most animal studies however show that GPx activity increases in

the brain with age which may be due to the increased formation of H,O, with ageing©!8-319),

Figure 3.6 represents a proposed mechanism of ROS production and antioxidant defence in
the brain during ageing based on our findings. According to that model increase activity of
COXI/CS indicates increase function of the respiratory chain which will elevate the production
of oxygen radicals. Cells in order to defend against them increase the activity and the protein
levels of SOD1/2 in the cytosol and mitochondria. SOD1 activity is mainly regulated by
copper and CCS availability based in our findings copper depletion cause increase expression
of CCS which was also positive correlated with SOD1 protein levels and activity. However,
for an improved understanding of the ageing mechanisms in the brain it would be important to
measure the activity levels of mitochondrial Complex I and 111 which are known to generate
mitochondrial ROS. Also, measuring the activity and protein levels of other antioxidant
defence enzymes (CAT, GPx) will provide better understanding of how the function of the

SOD integrates with ageing mechanisms.
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Figure 3.6 A Proposed Mechanism of ROS Production and Antioxidant Defence in the
Ageing Brain.

The proposed mechanism suggest that increase COX/CS activity will generate higher levels
of ROS which will require more active SOD in the mitochondria and the cytosol in order to
defend against them. Copper availability seems to regulate mainly the protein levels of CCS
rather than COX or SOD activity, signifying the importance of these enzymes in the brain
function. Highlighted with red boxes are the different sources of ROS in the cell.

81



3.4.2 Differences between frontal and temporal cortex in the ageing brain

The brain faces not only biochemical and molecular changes with ageing but also
morphological changes. According to morphological studies, each brain region faces different
changes with the cortex being the most affected, although some cortical regions are relatively
spared. Several studies with MRI scans in the age groups from 0.1 to 100 years have shown
that the brain loses volume and weight with ageing which is more prominent after the age of
about 50 to 60 20291 These changes are suggested to be occurring due to neuronal loss,
reduction in neuron size, loss of synapses and pruning of dendritic trees. Changes in both grey
and white matter are observed with ageing, with grey matter declining linearly with age and
resulting in a final loss of about 10% of the neurons within the cortex®%?. On the other hand,
white matter volume appears to increase through childhood and into adulthood and then starts
to decrease after the age of about 60©%2),

The cerebral cortex is one of the most affected areas in the brain but the changes are not
globally and evenly distributed, different cortical regions are affected more than others.
Frontal cortex is responsible for executive processes, speech and social functions and
temporal cortex for visual memories, processes involved in hearing, language recognition and
new memories. Studies have shown that frontal and temporal cortex are affected in slightly
different ways. In frontal cortex there is an approximately 50% decrease in neuronal density
whereas temporal cortex exhibits a 60% decrease which is also accompanied by a similar
decrease in dendritic trees®?%, Also, in both brain regions, differences in the size of the
neurons were observed with ageing, generally the density of the larger neurons was decreased

although some changes in the smaller neurons were present®23:324),

Based on the above observations the small differences in copper containing enzymes and
protein levels with ageing could be attributed to the morphological neuronal changes in
frontal and temporal cortex regions. Generally, we observed that in temporal cortex the
majority of the studied proteins, COX/CS and SOD activity were significantly changed with
ageing compared to frontal cortex where in some cases there was no significant change or the
correlation was not as strong as in temporal cortex. One possibility is that the higher neuronal
loss in temporal cortex has as a consequence the effect of making the mitochondria in the
remaining neurons to increase their metabolic rate in order to compensate for the increased
energy demands. A net effect being greater metabolic demand on the remaining neurones to

maintain the same level of function for the specific anatomical region. However, the changes
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in copper levels were quite similar in both brain regions possibly signifying that copper is
evenly distributed in the cortex.

3.4.3 Do other copper binding proteins change with ageing in the brain?

The present study did not reveal any particular change in the levels of other copper binding
proteins in the ageing brain. We only observed a small increase in the protein levels of Sco2
in frontal cortex and Hephaestin in temporal cortex. For the remaining of the studied proteins
(ATP7a and Atox1), no significant change was observed with ageing or between different
brain regions (Table 3.5). Hephaestin is a homologue of Cp and is a membrane bound multi-
copper ferroxidase necessary for iron transportation®. It is more abundant in the intestine
but is also expressed in brain regions such as cortex, hippocampus and substantia nigra®>,
Haphaestin levels showed increase with ageing (Table 3.5) in both frontal and temporal cortex
although this was only significant in temporal cortex which might represent either the higher
iron accumulation in that brain region®2® or differences in local demand for copper and iron.
Sco2 is localized in the mitochondria and is responsible for copper insertion to COX2; the
increased levels in frontal cortex (Table 3.5) might be correlated with the less severe changes
that were observed in frontal cortex for both COX2 protein levels and COX activity generally.
On the other hand, in temporal cortex where more severe changes in COX/CS activity and
COX2 levels are observed Sco2 protein levels are not changing at all since there is reduced

available COX2 to utilise copper.

3.4.4 Conclusions

In the current study, for first time we have identified that copper, two of the most important
copper binding enzymes, COX and SODL1, and different copper binding proteins are playing
an important role in the ageing brain. We show for first time that in the ageing brain
mitochondrial respiration is increased possibly due to increased demands for energy which
has as a result increased production of oxygen radicals in the neurones. The brain in order to
defend against the increased ROS production increases the antioxidant defence mechanisms
by increasing SOD activity. The higher activity of COX and SOD enzymes was accompanied
also by increased protein levels of their respective proteins (COX1 or SOD1/2) or others
proteins that are required for their activity (CCS). Decreased copper levels play a significant
role in ageing since lower levels have an effect in the protein levels of CCS and COX2 in the
brain. From the above data we can conclude that the major components of the copper

homeostasis pathway play central role in the progression of ageing in the healthy brain.
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In order to obtain a better understanding of how copper metabolism affects the ageing brain
studying its pathway in other brain regions such as hippocampus, substantia nigra, locus
coeruleus or cerebellum will provide a better overview. For cerebellum we have initial results
that showed a tendency for decrease copper and activity levels (See Appendix A). Obtaining
samples from substantia nigra and locus coeruleus which have the highest copper
concentration in the brain will help us to better elucidate the copper metabolism in the ageing
brain. By studying how other metals such as iron, manganese or zinc are correlated with
ageing or proteins that act as cofactors will help us understand better how metals generally
affect ageing in the healthy brain and potentially in neurodegenerative disorders.
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4 Aninvestigation of copper homeostasis in early onset and late onset

Alzheimer’s disease brain
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4.1 Introduction

AD cases are classified in two subtypes based on the year of onset of dementia, EOAD and
LOAD, and while these show common clinicopathological characteristics they often differ in
the neuropathological features and clinical symptoms. The differences between EOAD and
LOAD, typically include an earlier age of symptom onset, unusual behaviours, marked
psychiatric changes, seizures, myoclonous, bradykinesia and aphasia, although these are not

always universal®% 327,

In both subtypes, the neuropathological progression of the disorder is similar and is suggested
to follow certain stages. Braak and Braak classified these stages based on the topographical
distribution of amyloid plaques, NFTs and neuritic plaques (NPs)16% 328 NPs are composed
of abnormal, dystrophic neuronal processes filled with AT8-ir non-argyrophilic material, and
cellular processes composed by argyrophili tau aggregates, along with astrocytes and
microglia cells. AP deposits accompany NPs in the form of peripheral infiltrations and,
frequently, compact cores. The main staging system introduced by Braak and Braak is based
on the presence of NFTs and NPs in the brain®% 328 According to the system in stage | and

Il the lesions start to affect the allocortex and specifically the transentorhinal region and only
mild lesions in hippocampus CA1 region are observed. In stage 11, the lesions extend into the
cortex of the fusiform and lingual gyri and the already affected regions present a more severe
phenotype®®3328) Also, lesions in the hippocampus start to become more apparent and appear
in other hippocampal sub-regions (CA2, CA3 and CA4)162328) | stage 1V, the pathology
extends into the neocortex where dense NPs start to appear in the middle temporal gyrus and a
rapid decrease in the severity of the lesions occurs at the transition to the superior temporal
gyrus®3328) | esjons in stage V extend widely into the first temporal gyrus and in other areas
such as frontal and parietal cortex% 328 |n stage VI, the pathology reaches secondary and

primary cortex areas, the occipital lobe and extends into the striate area (Figure 4.1A)163328),

A phase system has been introduced in order to monitor the development and progression of
AP deposits in the brain. In phase 1, isolated plaques start to develop at one or more sites in
the basal temporal and the orbitofrontal cortex®?%. In phase 2, additional plaques are found in
the allocortex and amygdala with AB deposits starting to develop in all high order association
areas of the neocortex®?, A further expansion of AB deposits signifies phase 3 where they
extend into secondary neocortical fields, striatum, in the perforant pathway and

presubiculum®9, In phase 4, AB plaques can been seen in all areas of the neocortex and reach
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the mesencephalon, particularly the inferior colliculi®®). At phase 5, AB deposits reach the
lower brainstem and cerebellar cortex (Figure 4.1B)®29),

Whilst EOAD and LOAD have a common neuropathology, EOAD frequently shows a more
severe and extensive degeneration in the affected brain areas with lesions often extending into
the cerebellum. Histopathology studies from post-mortem brain tissues and pre-mortem
studies with neuroimaging (VBM, PET, and MRI) have revealed the presence of metabolic
differences between the two subtypest°® 280,330,331 " A greater burden of NFTs and NPs
throughout the EOAD brain have been confirmed by histopathological studies®>® 332, Greater
atrophy in different brain regions but especially in the EOAD temporal cortex has been
observed and occurs probably due to more marked neuronal loss, cell shrinkage and/or
synaptic loss*%%333-335) The cerebellum is often less affected in AD however studies have
shown Purkinje cell loss and increased astrocytosis in the EOAD cerebellum relative to
LOAD®39), Similar observation has also been observed in pre-mortem MRI based
neuroimaging studies using VBM which have shown increased cortical atrophy in the
parietal, posterior cingulate and precuneal regions of EOAD relative to LOAD®),
Topographic studies with MRI scans have shown that grey matter in EOAD patients is often
more atrophic than in LOAD patients which reveals the presence of topographic specificity

where cortical areas were more atrophic in EOAD, and hippocampus in LOAD brain(89,

Certain common characteristics of the AD brain are oxidative stress, lipid peroxidation,
mitochondrial malfunction and neuronal death which are mainly induced by the increased
accumulation of AB and NFTs®37:3%) A petter understanding of how all these characteristics
correlate with AD clinicopathological features and pathogenesis may eventually lead to either
a new therapeutic route or ways to prevent the disorder initiation. The last few decades have
shown that metals and especially copper play an important role in AD pathogenesis but until
now there has not been a study investigating the different aspects of its pathways in these two

AD subtypes.

87



A Neurofibrillary stages of Alzheimer's disease

transentorhinal | - Il limbic 1l - IV
Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Figure 4.1 NFT Staging and Ap Phases in the AD Brain.

A) The six NFT stages can be distinguished in the top part of the figures and the bottom shows a diagram of the development of intraneuronal tau
lesions. B) Representation of the 5 phases of AP plaques development and progression in the brain. (Copied from Braak H et al, 2015619),
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4.2 Aims

The purpose of this chapter is to identify the role of copper homeostasis pathways in EOAD
and LOAD brain. Levels of copper, COX and SOD activity as well as various copper binding
proteins were measured in frontal, temporal cortex and cerebellar brain samples from EOAD,
LOAD and aged matched controls for both subtypes. The changes between the two AD
subtypes and their aged matched controls were identified and a comparison between EOAD
and LOAD as well as changes between different brain region were examined in order to
determine if changes related to possible pathological changes.
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4.3 Results

Brain samples from three different regions (frontal, temporal cortex and cerebellum) were
analysed for the determination of a range of metals by ICP-MS, for COX and SOD activity
and for protein levels by Western blot as previously. The brains were separated into different
groups. Group one contained EOAD cases, clinically and neuropathologically verified, and
their respective age matched controls. A second group contained pathologically and clinically
verified LOAD cases with their respective age matched controls. In the first group (EOAD
group) we obtained matched frontal and temporal cortex from 16 EOAD and 14 control cases
but with matched cerebellum for only 12 EOAD and 9 control cases. In the LOAD group, we
acquired 13 LOAD and 13 controls with matched frontal, temporal cortex and cerebellum. A
nonparametric t-test (Mann Whitney test) was used to identify the in-between group
differences since in some cases the samples were not normally distributed since they failed to
pass the D'Agostino & Pearson omnibus normality test and the F-test for variances.

4.3.1 Levels of copper and other metals in the EOAD and LOAD brain compared to
aged matched controls

Initially in order to identify if there were variances amongst the four subgroups a Kruskal-
Wallis test was performed in the next groups: controls for EOAD and LOAD cases, EOAD,
and LOAD. For copper levels the statistical analysis showed that there were significant
variances amongst the groups in frontal (p<0.0001), temporal (p<0.0001) cortex and
cerebellum (p=0.0178). The above only indicates that they are significant changes amongst
the groups and in order to further identify them we conducted a nonparametric t-test between

the EOAD or LOAD cases and their respective age matched controls.

The analysis revealed that in the EOAD brain there was a decrease in copper levels in all three
regions relative to healthy controls. In frontal and temporal cortex there was a 41%
(nonparametric t-test, p=0.0004) and 43% (nonparametric t-test, p<0.0001) decrease of copper
respectively, which was statistically significant. In EOAD cerebellum, whilst there was a 25%
decrease in copper levels this failed to reach significance (nonparametric t-test, p=0.0507)
(Figure 4.2A). In the LOAD brain, copper levels decreased in the neocortex relative to healthy
controls but not in the cerebellum. In frontal cortex, there was 14% (nonparametric t-test,
p=0.111) decrease in copper although the difference was not statistically significant. In
temporal cortex copper levels were significantly decreased by 24% (nonparametric t-test,
p=0.04) whereas in cerebellar copper levels did not change significantly (nonparametric t-test,
p=1; Figure 4.2B).
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During the analysis we were able to determine also the concentration of other metals such as
zinc, manganese and iron where we also observed small changes. In EOAD frontal cortex
manganese levels decreased by 12% with the change showing a trend towards significance
(nonparametric t-test, p=0.088) and in temporal cortex iron levels were significantly increased
by 17% (non-parametric t-test, p=0.026). In the LOAD brain no change in the rest of the
studied metals was observed in any of the brain regions. For more details, see supplementary
data Table B.1 and B.2.
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Figure 4.2 Copper Levels in Frontal, Temporal Cortex and Cerebellum.

Copper was determined by using ICP-MS in (A) EOAD and (B) LOAD brain and values
compared to their respective age matched controls. Data were analysed with nonparametric t-
test and *, p<0.05; ***, p<0.001.

4.3.2 Activity levels of copper binding enzymes in EOAD and LOAD brains

The activity levels of COX, CS and SOD were measured in the same brain samples as used
for copper determination where COX and CS activity was measured in brain homogenates
that were not freeze-thawed and SOD activity from the same aliquots that had been frozen.
The independent COX and CS activities are presented as well as the ratio of COX/CS.

The determined activity levels of COX, CS and COX/CS in all three brain regions in the
EOAD and LOAD groups where initially analysed by Kruskal-Wallis test in order to identify
the presence of variances amongst the different groups. The analysis revealed that COX/CS
ratio did not significantly changes amongst the different groups with the change in temporal
cortex (p=0.085) and cerebellum (p=0.088) being in the margins of significance. However, for
COX activity the analysis identified the presence of significant changes amongst the groups in
temporal cortex (p=0.016) and cerebellum (p=0.029) but not in frontal cortex (p=0.19).
Significant changes were also identified amongst the different groups in frontal (p<0.0001),

temporal (p<0.0001) and cerebellum (p=0.0171) for CS activity. Consequently, a
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nonparametric t-test was used to identify changes between the EOAD or LOAD cases and
their respective control group.

In all three EOAD brain regions COX activity was decreased by 14% but the change was not
statistically significant in the majority of these except EOAD frontal cortex which showed a
trend towards significance (nonparametric t-test, p=0.07) (Figure 4.3A). In LOAD brain COX
activity was reduced by 14% in frontal cortex but not significantly (nonparametric t-test,
p=0.329) however in temporal cortex a significant 50% decrease was observed
(nonparametric t-test, p=0.012; Figure 4.3B). CS activity in all three brain regions in both
groups showed lower levels compared to controls. In the EOAD frontal and temporal cortex
CS was significantly decreased by 25% (nonparametric t-test, p<0.0001) and 30%
(nonparametric t-test, p<0.0001) respectively relative to age matched controls whereas in
cerebellum the 11% decrease was not statistically significant (nonparametric t-test, p=0.308;
Figure 4.3C). A similar trend was also observed in LOAD frontal and temporal cortex where
CS was significantly decreased by 16% (nonparametric t-test, p=0.0183) and 33%
(nonparametric t-test, p=0.001) respectively however in cerebellum there was no change
(nonparametric t-test, p=0.959; Figure 4.3D)

The final COX/CS ratio in all EOAD brain regions was increased compared to age matched
controls. In frontal cortex a small 14% increase was present but the difference was not
statistically significant (nonparametric t-test, p=0.119) although in temporal cortex the 25%
increase relative to age matched control was significant (nonparametric t-test, p=0.016). The
COXICS activity in EOAD cerebellum was higher by 7% although this was not significant
(nonparametric t-test, p=0.441; Figure 4.3E). However, in LOAD brain regions, COX/CS did
not significantly change in frontal cortex (nonparametric t-test, p=0.608), in temporal cortex
there was a 23% loss of COX/CS (non-parametric t-test, p=0.1) and a 6% decrease in

cerebellum (nonparametric t-test, p=0.441) compared to age matched controls (Figure 4.3F).
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Figure 4.3 Activity of COX, CS and COX/CS in EOAD and LOAD brain tissue.

Activity of COX, CS and the final COX/CS ratio was measured in frontal, temporal cortex
and cerebellum of (A, C and E) EOAD and (B, D and F) LOAD brains compared to age
matched controls, respectively. Data were analysed with a nonparametric t-test and *, p<0.05;

** <0.01; *** p<0.001.
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Kruskal-Wallis test was also performed regarding SOD activity and the presence of
significant variances were identified in frontal (p=0.0032) and temporal (p<0.0001) cortex but
not in cerebellum which was in the margins of significance (p=0.0563). Generally total SOD
activity was higher in the AD brain in both EOAD and LOAD groups. In EOAD frontal
cortex and cerebellum a small non-significant increase of 8% (nonparametric t-test, p=0.289)
and 4% (nonparametric t-test, p=0.1551) was observed, respectively. However, in EOAD
temporal cortex SOD activity was significantly increased by 54% compared to age matched
controls (nonparametric t-test, p=0.0016; Figure 4.4A). In LOAD frontal and temporal cortex
total SOD activity increased by 11% (nonparametric t-test, p=0.199) and 12% (nonparametric
t-test, p=0.174) respectively and a similar non-significant change was observed in the

cerebellum (nonparametric t-test, p=0.626; Figure 4.4B).
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Figure 4.4 Total SOD activity in EOAD and LOAD brain.

Total SOD activity was determined in frontal, temporal cortex and cerebellum from (A)
EOAD and (B) LOAD brains and compared to age matched controls. Data were analysed with
a nonparametric t-test and **, p<0.01.

4.3.3 Comparison of copper and activities of COX, CS and SOD in EOAD and LOAD

brain

In order to examine if there are changes in copper or activity of COX, CS and SOD between
the EOAD and LOAD brains which might indicate differences due to pathology we compared
results from the three studied brain regions. The analysis revealed that copper levels did not
differ in the EOAD brain compared to LOAD in any of the three regions. Frontal cortex
copper levels increased by 14% (nonparametric t-test, p=0.160) in LOAD brain, also a small

increase in LOAD temporal cortex compared to EOAD was present (nonparametric t-test,
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p=0.982) and in LOAD cerebellum copper levels decreased by 12% compared to EOAD
(nonparametric t-test, p=0.341; Figure 4.5A).

Comparison of EOAD and LOAD tissues showed changes in the COX, CS and the COX/CS
ratio. In LOAD frontal cortex, COX activity was non-significantly increased by 7% compared
to EOAD (nonparametric t-test, p=0.323) but in LOAD temporal cortex a significant 26%
decrease was observed compared to EOAD (nonparametric t-test, p=0.041). Similarly, in
LOAD cerebellum COX activity decreased by 21% showing a trend towards significance
(nonparametric t-test, p=0.0685; Figure 4.5B). A similar trend was also present for the CS
activity however the changes were smaller and not significant (nonparametric t-test, p=0.469
for frontal cortex, p=0.100 for temporal cortex, p=0.187 for cerebellum; Figure 4.5C). The
ratio of COX/CS did not show any change between EOAD and LOAD although it is worth
noting that LOAD temporal cortex showed a non-significant 17% decrease (nonparametric t-
test, p=0.30). In cerebellum, COX/CS activity decreased by 11% in LOAD brain compared to
EOAD cerebellum which was significant (nonparametric t-test, p=0.027; Figure 4.5D).

Differences in SOD activity levels were observed between the EOAD and LOAD brains. A
general increase in SOD was observed in all three LOAD brain regions compared to EOAD
with in frontal cortex the 35% change being significant (nonparametric t-test, p=0.004). In
LOAD temporal cortex, SOD activity was higher by 22% compared to EOAD with the
change showing a trend towards significance (nonparametric t-test, p=0.083). Similarly, in
cerebellum a 12% increase in LOAD brain SOD activity compared to EOAD cerebellum was

observed showing a trend towards significance (nonparametric t-test, p=0.077; Figure 4.5E).

In order to identify if variables such as age of death, age at onset of dementia, or duration of
the disease showed any correlation with copper levels or SOD and COX/CS activity,
Spearman’s rank correlation was performed on variables. We identified that in EOAD brain a
positive correlation between the activity levels of SOD and the age of death was present, with
an increase of SOD activity with increasing age of death in both frontal (rs=0.6229, n=16,
p=0.0099) and temporal (rs=0.6946, n=16, p=0.0028) cortex. However, in EOAD cerebellum,
the change was not statistically significant (rs=0.4912, n=12, p=0.1048; Figure 4.6A). In all
LOAD brain regions, no significant correlation between age of death and SOD activity was
observed (Figure 4.6B).
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determined and compared between EOAD
and LOAD cases. Data were analysed with
a nonparametric t-test and *, p<0.05; **
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Figure 4.6 Graphical Representation of the Correlation between SOD activity and Age of
Death in the EOAD and LOAD brain.

Comparisons were made between SOD activity and age at death in (A) EOAD cases where in
frontal cortex (rs=0.6229, n=16, p=0.0099), temporal cortex (rs=0.6946, n=16, p=0.0028) and
cerebellum (rs=0.4912, n=12, p=0.1048) a positive correlation was present. In (B) LOAD
cases in frontal cortex (rs=0.011, n=12, p=0.97), temporal cortex (rs=0.08, n=12, p=0.78) and
cerebellum (rs=0.325, n=12, p=0.277) non-significant correlations between SOD activity and
age at death were observed.

4.3.4 Comparison of copper binding protein levels in EOAD and LOAD brains and

healthy controls

The levels of selective copper binding proteins were measured in frontal and temporal cortex
of the EOAD and LOAD groups. Due to lack of space in the gels for Western blotting it was
only possible to load 12 controls and 12 AD cases and the criteria for the exclusion were
based on the lack of any item of clinical information or if there were cases with similar
characteristics. Cerebellum was not analysed for protein levels since no significant change
was observed in copper/activity levels in both groups. In the following sections, the changes

in the protein levels are presented as percentage change of the respective control group.

4.3.4.1 Levels of mitochondria-associated copper binding proteins

The protein levels of the two copper binding subunits of COX, COX1 and COX2, as well as
Sco2 were measured in both the EOAD and LOAD groups along with VDACL1 as a
mitochondrial mass marker. Figures 4. 7A and B show representative Western blots for
COX1 and VDAC1 in frontal and temporal cortex of the EOAD group. The analysis revealed
that in the EOAD brain COX1 levels relative to total protein levels (total COX1) decreased by
26% in frontal cortex (nonparametric t-test, p=0.002) and by 15% in temporal cortex
(nonparametric t-test, p=0.193; Figure 4.7C). Significant mitochondrial loss was also
observed in EOAD frontal and temporal cortex as indicated by VDAC1 protein levels where a

26% (nonparametric t-test, p=0.001) and 20% decrease (nonparametric t-test, p=0.014) was
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measured in EOAD frontal and temporal cortex, respectively (Figure 4.7D). Since COX1 is
encoded by mitochondrial DNA and localized to mitochondria, COX1 levels were normalized
with VDAC1 where we found a small decrease in frontal’s cortex COX1/VDACL ratio (7%,
nonparametric t-test, p=0.7) but in temporal cortex the COX1/VDACI ratio increased non-
significantly by 13% (nonparametric t-test, p=0.518; Figure 4.7E).

In the LOAD group, COX1 and VDACL levels were also determined in frontal and temporal
cortex (see Figure 4.7F and G). In LOAD brain, total COX1 protein levels decreased by 18%
in frontal cortex (nonparametric t-test, p=0.236) but no major change in temporal cortex
(nonparametric t-test, p=0.505; Figure 4.7H). VDACL1 levels showed a significant decrease in
both LOAD frontal and temporal cortex; where a 45% (nonparametric t-test, p=0.0005) and
39% (nonparametric t-test, p=0.0006: Figure 4.71) mitochondrial/VDAC1 loss was measured,
respectively. The normalized protein levels of COX1 with VDACL increased in both LOAD
frontal and temporal cortex by 22% (nonparametric t-test, p=0.549) and 41% (nonparametric
t-test, p=0.001), respectively (Figure 4.7J).

Protein levels of COX2 were also measured in EOAD (Figure 4.8A and B) and LOAD
(Figure 4.8E and F) frontal and temporal cortex. COX2 was significantly decreased by 19%
(nonparametric t-test, p=0.001) and 33% (nonparametric t-test, p=0.0003) in EOAD frontal
and temporal cortex, respectively (Figure 4.8C). The normalized levels of COX2 with
VDACL1 were non-significantly increased by 12% (nonparametric t-test, p=0.23) in EOAD
frontal cortex but only in temporal cortex the 19% decrease was statistical significant
(nonparametric t-test, p=0.0073; Figure 4.8D). In LOAD brain COX2 protein levels were
statistically significant decrease in both brain regions with frontal cortex losing 34%
(nonparametric t-test, p=0.001) and temporal cortex 21% (nonparametric t-test, p=0.0019) of
COX2 (Figure 4.8G). In LOAD brain the COX2/VDACL ratio increased in both frontal (20%;
nonparametric t-test, p=0.141) and temporal cortex (16%; nonparametric t-test, p=0.441) but

the change was not significant (Figure 4.8H).
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Figure 4.7 COX1 and VDACL1 Protein Levels in EOAD and LOAD Frontal and Temporal
Cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, F)
frontal and (B, G) temporal cortex as well as their respective densitometric analysis of (C, H)
COX1 and (D, I) VDACL1 normalized with GAPDH and (E, L) COX1 normalized to VDACI.
Data were analysed with a nonparametric t-test and *, p<0.05; **, p<0.01;***, p<0.001.
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Figure 4.8 COX2 Protein Levels in EOAD and LOAD Frontal and Temporal cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, E)
frontal and (B, F) temporal cortex along with their respective densitometric analysis of COX2

normalized with (C, G) GAPDH or (D, H) VDAC1. Data were analysed with a nonparametric
t-test and **, p<0.01; ***, p<0.001.

100



Sco2 protein levels were also determined in EOAD (Figure 4.9A and B) and LOAD (Figure
4.9D and E) frontal and temporal cortex. Sco2 protein levels were significantly decreased by
42% (nonparametric t-test, p=0.0001) in the EOAD frontal cortex whereas temporal cortex
showed only a 19% decrease (nonparametric t-test, p=0.03; Figure 4.9C). In LOAD frontal
and temporal cortex Sco2 was decreased by 14% but the difference was statistically
significant only in temporal cortex (nonparametric t-test, p=0.037) and close to pass the
statistical test in frontal cortex (nonparametric t-test, p=0.088: Figure 4.9F).
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Figure 4.9 Sco2 Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots of Sco2 from EOAD or LOAD and their age matched control in
(A, D) frontal and (B, E) temporal cortex along with their respective (C, F) densitometric
analysis of Sco2 normalized with GAPDH. Data were analysed with a nonparametric t-test
and *, p<0.05; ***, p<0.001.

4.3.4.2 Levels of copper binding proteins related to the cytosolic pathway

In the cytosolic pathway the protein levels of the two major components, CCS and SOD1
were measured and significant changes were observed for both. The protein levels of the
cytosolic chaperone CCS were measured in EOAD (Figure 4.10A and B) and LOAD (Figure
4.10D and E) frontal and temporal cortex. In EOAD frontal cortex, CCS was significantly
decreased by 25% (nonparametric t-test, p<0.0001) but in temporal cortex only a small 13%
decrease was measured which showed a trend towards statistical significance (nonparametric
t-test, p=0.053; Figure 4.10C). On the other hand, CCS protein levels increased in LOAD

frontal and temporal cortex and similarly the change was only significant in frontal cortex

101



where a 26% (nonparametric t-test, p=0.014) increase was observed and not in temporal
cortex (8%; nonparametric t-test, p=0.26; Figure 4.10D).
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Figure 4.10 CCS Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, D)
frontal and (B, E) temporal cortex as well as their respective (C, F) densitometric analysis of

CCS normalized with GAPDH. Data were analysed with a nonparametric t-test and *, p<0.05;
*** p<0.001.

SODL1 protein levels were also determined in both EOAD (Figure 4.11A and B) and LOAD
groups (Figure 4.11D and E). Similar to CCS, SOD1 protein levels decreased in EOAD
frontal and temporal cortex where a statistical significant 28% loss (nonparametric t-test,
p<0.0001) was observed in frontal cortex but no change in temporal cortex (nonparametric t-
test, p=0.665) was observed (Figure 4.11C). In the LOAD brain, a significant increase in both
brain regions was present for SOD1 protein levels where a 30% (nonparametric t-test,

p<0.0001) and 41% (nonparametric t-test, p=0.0009) increase was measured in frontal and
temporal cortex respectively (Figure 4.11F).
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Figure 4.11 SOD1 Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, D)
frontal and (B, E) temporal cortex along with their respective (C, F) densitometric analysis of
SOD1 normalized with GAPDH. Data were analysed with a nonparametric t-test and ***,
p<0.001.

Measuring the protein levels of SOD2 was also important in order to understand how the
levels of SOD2 might contribute to the total SOD activity. SOD2 protein levels were
determined in both brain regions of the EOAD (Figure 4.12A and B) and LOAD (Figure
4.12E and F) groups. In EOAD frontal cortex SOD2 protein levels were significantly
decreased by 16% (nonparametric t-test, p=0.04) but in temporal cortex its levels were
increased by 16% though not significantly (nonparametric t-test, p=0.078; Figure 4.12C).
Since SOD2 localized in the mitochondria SOD2 levels were also measured relative to
VDACL1 where a non-significant increase of 14% (nonparametric t-test, p=0.185) and 16%
(nonparametric t-test, p=0.425) was observed in frontal and temporal cortex respectively for
EOAD (Figure 4.12D). A statistically significant protein loss of SOD2 was observed in
LOAD frontal (28%; nonparametric t-test, p=0.008) and temporal (17%; nonparametric t-test,
p=0.007) cortex, however, the SOD2/VDACL ratio did not change statistically even if there
was a 29% increase (nonparametric t-test, p=0.193; Figure 4.12G and H).
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Figure 4.12 SOD2 Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, E)
frontal and (B, F) temporal cortex as well as their respective densitometric analysis of SOD2

normalized with (C, G) GAPDH and (D, H) VDACL. Data were analysed with a
nonparametric t-test and *, p<0.05; **, p<0.01.
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4.3.4.3 Levels of copper binding proteins related to the secretory pathway

In the secretory pathway of copper metabolism we measured the levels of a key copper
binding proteins (Atox1, ATP7a, Cp and Ctrl). For the protein levels of Ctrl, Atox1 and
ATP7a we did not observe any statistically significant change in the studied brain regions
with the exception of the EOAD temporal cortex where all three proteins decreased by 23%
(nonparametric t-test, p=0.0007), 43% (nonparametric t-test, p=0.0003) and 24%
(nonparametric t-test, p=0.0017) respectively. See supplementary figures B.1 to B.3 for more
details. However, for the levels of the secreted enzyme Cp we observed various changes in
both brain regions and groups. In the brain, we were also able to identify the two different
isoforms of (GPI-Cp and sCp) where we determined their levels in EOAD (Figure 4.13A and
B) and LOAD (Figure 4.13E and F) frontal and temporal cortex. In EOAD, the protein levels
of GPI-Cp were significantly increased by 37% in frontal (nonparametric t-test, p=0.035) and
by 50% in temporal cortex (nonparametric t-test, p=0.026; Figure 4.13C). The levels of sCp
decreased by 25% (nonparametric t-test, p=0.112) and 4% (nonparametric t-test, p=0.623) in
frontal and temporal cortex respectively, but the changes were not statistically significant
(Figure 4.13D). In LOAD frontal cortex, the protein levels of Cp were significantly decreased
by 27% for the GPI-Cp (nonparametric t-test, p=0.006) although there was no decrease in
temporal cortex (nonparametric t-test, p=0.505). A decrease of 30% for the sCp
(nonparametric t-test, p=0.015) was observed in frontal cortex however, in LOAD temporal

cortex sCp did not show any significant change (nonparametric t-test, p=0.328).
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Figure 4.13 Cp Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched control in (A, E)
frontal and (B, F) temporal cortex along with their respective densitometric analysis of (C, G)
membrane bound GPI-Cp (135 kDa) and (D, H) secreted sCp (125 kDa) normalized with
GAPDH. Data were analysed with nonparametric t-test and *, p<0.05; **, p<0.01.
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4.3.5 Identifying regional differences in the EOAD and LOAD brains

In order to investigate if the levels of copper, SOD and COX/CS activity differed between the
EOAD or LOAD brain regions, a Kruskal-Wallis test was used with Dunn's Multiple
Comparison post-test in order to determine which regions differ from each other. In both the
EOAD and LOAD brains copper levels were significantly higher in cerebellum compared to
frontal (Kruskal-Wallis, p<0.001 in EOAD and p<0.01 in LOAD) and temporal cortex
(Kruskal-Wallis, p<0.001 in both LOAD and EOAD). No difference was observed between
frontal and temporal cortex in either EOAD or LOAD brains (Kruskal-Wallis, p>0.05; Figure
4.14A and B).

On the other hand, the COX/CS activity in EOAD cerebellum was significantly lower
compared to either frontal (Kruskal-Wallis, p<0.001) or temporal cortex (Kruskal-Wallis,
p<0.001). Between frontal and temporal cortex in EOAD brain no change was identified
(Kruskal-Wallis, p>0.05). COX/CS activity was also significant lower in LOAD cerebellum
but only compared to frontal cortex (Kruskal-Wallis, p<0.01). The activity in LOAD temporal
cortex was lower relative to frontal (Kruskal-Wallis, p>0.05) but the change was not
statistically significant compared to the other two brain regions (Kruskal-Wallis, p>0.05;
Figure 4.14C and D).

SOD activity in the EOAD temporal cortex (Kruskal-Wallis, p<0.05) and cerebellum
(Kruskal-Wallis, p<0.05) was higher compared to frontal cortex although no significant
change was observed between the temporal cortex (Kruskal-Wallis, p>0.05) and cerebellum
(Kruskal-Wallis, p>0.05). In LOAD brain even if SOD activity appeared to be higher in
temporal cortex relative to frontal cortex (Kruskal-Wallis, p<0.05), the change was not
statistically significant. SOD activity in LOAD cerebellum did not also seem to differ
significantly from frontal (Kruskal-Wallis, p>0.05) or temporal cortex (Kruskal-Wallis,
p>0.05; Figure 4.14E and F).
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Figure 4.14 Regional Differences in Copper, COX/CS or SOD Activity in the AD Brain.

For copper levels in the (A) EOAD and (B) LOAD brain cases, cerebellar, frontal and
temporal cortex were compared. For COX/CS or SOD activity in (C, E) EOAD and (D, F)
LOAD brain cases were compared. Data were analysed with Kruskal-Wallis test followed by
post-test Dunn's Multiple Comparison test to determine if regional differences in levels were
apparent and *, p<0.05; **, p<0.01;***, p<0.001.
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4.4 Discussion

The aim of this chapter was to study if there is any connection between the copper
homeostatic pathway and AD. For many years, the role of certain metals in AD has gained
considerable acceptance in relation to the classic amyloid cascade hypothesis but until now
the reported results from different studies studying this “metal hypothesis” have proved quite
controversial, particularly in relation to the role of copper in AD pathogenesis. In the current
study we aimed to answer the question of whether copper is altered and consequently
implicated in AD pathology. To achieve this we measured in the same brain samples copper,
activity and protein levels of major components of the three intracellular copper pathways.
Further, in order to gain a better understanding of all different aspects of AD pathology we

examined the role of copper homeostasis in the two AD subtypes: early onset and late onset.

Copper as a redox-active metal is required for a number of metabolic processes in the brain
(energy production, antioxidant defence, and neurotransmitter synthesis). Furthermore, copper
has a strong potential to participate in free radical chemistry and for that reason its distribution
and delivery is carefully regulated by intracellular proteins (chapter 1). This handling system
manages to maintain free copper ions to less than one per cell®*), Several studies have tried
to measure copper levels, activity of SOD and COX as well as copper binding proteins in the
AD brain, mainly in the age range of the LOAD cases, but the results are quite controversial

since some reports showed decrease, no change or increased levels of the studied variable.

4.4.1 Differences in the two AD subtypes for copper demand

In order to obtain a better understating of the role of copper homeostasis in the AD brain we
initially measured copper levels in frontal, temporal cortex and cerebellum from both EOAD
and LOAD cases and compared these with suitably age matched controls. In all three EOAD
brain regions, a marked loss of copper was observed especially in temporal cortex where the
decrease reached almost 45%. On the other hand, in LOAD brain the changes were not as
severe as in EOAD brain since only in temporal cortex the observed decrease was significant
different (Figure 4.2). Comparing copper levels between EOAD and LOAD brain regions
failed to show any significant difference with only a small increase in LOAD frontal and

temporal cortex and a small decrease in cerebellum (Figure 4.5).

The marked copper loss that we observed in the EOAD frontal and temporal cortex compared
to age matched control and to LOAD brain can be either attributed to the greater

neuronal/synaptic loss and atrophy in the EOAD brain or to the decline of copper
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concentration with increasing age in the brain (as discussed in chapter 3). Studies have shown
that the EOAD temporal cortex exhibits 40-60% greater atrophy compared to healthy controls
whereas the LOAD temporal cortex faces only 70-80%34. Similarly, frontal cortex in the
EOAD brain shows 29-46% atrophy in terms of volume loss whereas the LOAD brain only
18% loss compared to healthy controls®*%. Also, in the EOAD brain the synaptic loss can
reach more than 50% in frontal and temporal cortex relative to LOAD brain®®. The severity
of change found in the EOAD brain has been further established by studies which counted
neurons and demonstrated that the EOAD frontal cortex exhibits more than 20% neuronal loss
compared to LOAD and almost 40% relative to healthy controls®3 340:34) |n the EOAD
temporal cortex the neuronal loss can reach the 50-60% in certain regions compared to
healthy controls and 15-25% relative to LOAD brain®35 340340 However, cerebellum appears
to be less affected especially in the LOAD brain where normally only a few amyloid plaques
are present, although in EOAD the cerebellum may have slightly increased AD pathology
since a lower Purkinje cells density and higher astrocytosis has been observed compared to
both controls and LOAD®29),

From the above mentioned results and observations we can conclude that the considerable
copper loss that we identified in the EOAD brain is an effect of the greater atrophy, neuronal
and synaptic loss which occurs in these brain regions. On the other hand, the changes in the
LOAD brain compared to age matched controls are a combination of reduced copper levels
with ageing and increased AD pathology. The controls from the EOAD group had on average
in frontal and temporal cortex 5892 and 4503 ng Cu/g tissue compared to control from the
LOAD group where copper levels were 3860 and 3568 ng Cu/ g tissue respectively, which
makes them to differ by more than 30%. The small increase in copper levels in LOAD brain
relative to EOAD probably occurs from the small differences in pathology between the two

subtypes of the disease.

In cerebellum, copper levels were higher than those found in control, EOAD and LOAD
frontal and temporal cortex which is also in agreement with previous studies that measured
copper in different brain region of either healthy controls or AD cases* %2, Our study
showed that copper levels decreased by 25% in EOAD cerebellum but the change was only
marginally significant. On the other hand, in LOAD cerebellum copper did not change
relative to age matched controls (Figure 4.2). That difference probably reflects the pathology
in EOAD cerebellum which is more severe and relative absence in the LOAD cerebellum. In
LOAD cerebellum copper levels were slightly lower compared to EOAD which probably

occurs due to the normal decrease of copper with ageing since the controls for the EOAD
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cases contained more than 32% copper compared to the LOAD controls (7915 ng Cu/g tissue
for the EOAD controls and 5372 Cu/g tissue for the LOAD controls; Appendix A).

Several studies have measured copper levels in different AD brain regions where they used
frozen brain tissue for the determination, however, the results are controversial. The majority
of the studies were mainly focused on LOAD cases with Plantin et al. in 1987 reporting a
40% decrease in copper levels in temporal and frontal cortex®*®), Unfortunately, in this study
details about the sample age were not apparent and so we cannot place them in an AD subtype
(e.g. EOAD or LOAD), however, even if they used different determination technique for
copper levels (gamma spectrum and Ge(Li) detector) the copper levels determined by Plantin
and colleagues are quite close to the current determinations for the LOAD group (around
3.51-3.06 pg Cu/g for the controls and 2.14-1.81 pg Cu/g for the AD)®*). Deibel et al. in
1996 used LOAD cases and showed 20% decrease of copper in temporal cortex and 11% in
cerebellum but the change was not statistically significant®®. The reported percentage change
in Deibel and colleague study is close to that found in the current study for temporal cortex
(24%) although in the current study this change was statistically significant®®. The difference
between the studies might due to either the different determination technique for copper

(instrumental neutron activation analysis (INAA)) or sample preparation®®,

In a study, Loeffler et al. used similar cohort of AD samples and measured copper with AAS,
copper levels were higher in frontal cortex but the difference was again not statistically
significant®*¥. A recent studies from Magaki et al. showed that copper levels were
significantly decreased in frontal cortex but they used cases with an age range of 50-94 years
which includes both of our AD subtypes®>¥, Despite the use of GFAAS to determine copper
levels in the AD brain and ages of cases which include both EOAD and LOAD the reported
copper concentration was from 3.9 to 6.9 ug Cu/g which is quite close to the current levels of
copper for the same brain region. Rembach et al. measured copper in LOAD frontal cortex
with ICP-MS and showed again that copper levels were significantly decreased in AD
brain®*), The reported concentration from Rembach et al. is close to ours for that region
(3.33 pg/g wet weight for the controls and 2.29 pg/g wet weight for the AD) but our current
study failed to see any significant change in LOAD frontal cortex, possibly due to the

different number of cases since they used almost 3 times as many©4®,

From the above we can conclude that our results from the LOAD group are in good
agreement with the majority of the above mentioned studies. Especially with the studies that

reported similar copper concentration to ours and percentage changes in the same brain
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regions. In relation to copper levels in the EOAD brain, our study seems to be the first to
report the decrease copper levels in EOAD and also to identify small changes between EOAD
and LOAD brains.

4.4.2 How is the mitochondria copper pathway affected in the AD brain?

One of the common characteristics of patients with AD is a decrease in glucose metabolism as
seen with PET scans, a feature which occurs early in the disease course and which may
precede cognitive deficits®4®:347), The main source of energy in the brain is via aerobic
metabolism, by breakdown of glucose via glycolysis and eventually through mitochondrial
oxidative phosphorylation. The terminal enzyme of the respiratory chain, COX, requires
copper for its activity and based on our observation of copper deficiency in both EOAD and
LOAD brain and already published data from PET studies, this led us to investigate COX
activity and protein levels in EOAD and LOAD subtypes.

4.4.2.1 COXI/CS activity is not affected in the AD brain

Our results showed a general decrease in COX activity in all brain regions in the EOAD and
LOAD brains but only in LOAD temporal cortex the change was statistically significant.
However, when COX activity was corrected for mitochondrial content in the brain
homogenates, by using CS activity as a reference, these differences were no longer present.
This change appears to be due to the significant decrease of CS activity in both EOAD and
LOAD frontal and temporal cortex which implies that the decrease COX activity is due to
mitochondrial loss in the brain rather than copper deficiency (Figure 4.3). The mitochondrial
loss was further supported by a decrease in protein levels of VDACL in these two brain
regions (Figure 4.7D and I). The fact that in the EOAD temporal cortex the ratio of COX/CS
is higher comes as a result of the greater mitochondrial loss (as indicated by the CS activity)
relative to the smaller decrease of COX activity which indicates that the remaining
mitochondria have to increase their function in order to compensate for the general energy
deficiency in that specific brain region. In LOAD temporal cortex the ratio of COX/CS is

lower since the remaining mitochondria have an even higher deficiency in COX activity.

The last three decades numerous studies have tried to determine COX activity in different
brain regions by using frozen tissue with the observed results dividing into two categories the
first one where they reported significant loss of COX activity in the AD brain(24%-251. 348-350)
and a second where no significant change was observed®5-3%), The majority of the studies

followed similar methodology to determine COX activity but they differed in the number of
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cases that they used, age of the groups, post-mortem delay and in some cases if they used CS
to normalize the COX activity. Table 4.1 presents information about known studies that
measured COX activity in AD brain (age range, COX and CS activity, brain region etc.).

Studies from Mutisya et al. and Maurer et al. measured COX and CS activity in frontal and
temporal cortex and showed decreased activity of both COX and COX/CS ratio, however,
these studies only noted that CS did not change between AD and controls®?4® 25%:348) parker et
al, Wong-Riley et al. and Bosetti et al. measured only COX activity in either brain
hemisection or different regions and observed a marked decrease in COX activity especially
in affected brain regions such temporal cortex and hippocampus but these studies lack any
correction for differences in mitochondrial enrichment (@5 349 3%) However, studies from Kish
et al. and Cooper et al. showed that both COX and CS activity decreased in affected brain
regions such as frontal and temporal cortex but when they normalized COX with CS activity
no change was observed®*-%%3), Reports from Reichmann et al. and Cavelier et al. showed a
small decrease of COX activity in the AD brain but the changes were not statistically
significant® 3%, |t is worth mentioning that the majority of the above studies did not
separate their AD cases into EOAD or LOAD, based on the age of onset, but mainly used
cases that included both subtypes.

The above mentioned studies differed in the age of the samples or post-mortem delay. Our
study has the unigue characteristic that subdivided the AD cases into two groups where no
statistical significant difference was observed for either age (controls for EOAD 64.7 £ 5.6;
EOAD 66.9 + 5.1, p=0.815; controls for LOAD 85.6 + 6.0 and LOAD 83.5 + 6.7, p=0.302) or
post-mortem delay (controls for EOAD 30.0 + 21.6; EOAD 30.6 + 15.4, p=0.526; controls for
LOAD 29.9 + 11.6 and LOAD 38.8 £ 19.8, p=0.304). Few of the above mentioned studies
have determined if there was any significant correlation of post-mortem delay with

mitochondrial enzyme activities which might have affect the final measured activity(?4° 359,

We conducted Spearman rank test in order to identify possible correlation between COX, CS
activity and post-mortem delay where we found that the controls for the EOAD cases
presented a negative and marginally significant correlation between post-mortem delay and
COX activity in frontal cortex (rs=-0.541, n=14, p=0.046). A significant negative correlation
between post-mortem delay and CS activity was also observed in the controls of the EOAD
cases both in frontal (rs=-0.695, n=14, p=0.006) and temporal cortex (rs=-0.638, n=14,
p=0.014). No other significant correlation for COX, CS or COX/CS activity in both groups

and brain regions was observed.
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Age PM Activity (% changes to controls)
Author Case Brain region
(years) (hours) COX CS COXI/CS
Parker et | Controls (n=8) | 729+5.2 | 11.8+25 ) o
| atzs0) Brain hemisection 53% decrease (p<0.001) NE NE
al. AD (n=9) | 772+34 | 99+17
75.9+27% | 94+13 _ 20-30% decrease
Parietal cortex 12-16% decrease (NS) NR
Controls 70.1+£35 | 11.8+13 (p<0.001)
(n=15-23) 72.8+3.6 24+1.3
) Frontal cortex 22% decrease (NS) NR 26% decrease (p<0.05)
Mutisya et 739+3.0 | 123x16
al *P(s0) 735+3.0 | 10.7+15 25-27% decrease
Temporal cortex 15-21% decrease (p<0.05) NR
75.3+2.6 8.7+1.2 (p<0.01)
AD (n=19-23)
732120 9.2+1.1 o
Occipital cortex 40% decrease (p<0.001) NR 29% decrease (p<0.001)
743+22 | 11.7+13
Frontal cortex NS NR 35% decrease (NS)
Maurer et Controls o o
Temporal cortex 53.6% decrease (p<0.07) NR 63% decrease (p<0.01)
al bG4®)
Hippocampus 60% decrease (p<0.002) NR 65% decrease (p<0.002)
AD
o o Cerebellum NS NR NS
Prefrontal cortex 40% decrease (p<0.01) NE NE
Controls 73 i
11 Superior temporal
Wong-Riley (n=18) 50% decrease (p<0.001) NE NE
gyrous
et al.”(4
76 Hippocampus ~35% decrease (p<0.05) NE NE
AD (n=51) 8
Cerebellum ~35% decrease (p<0.05) NE NE

2 In this study they used different cohort of cases for the respective brain region that they studied. The age and post-mortem delays are arranged based on the mentioned brain regions.
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Controls 69.4+8 28.2 +13.9 Frontal cortex 22% decrease (p=0.11) NS NS
2+13.
Maurer et (n=13) Temporal cortex 37% decrease (p=0.006) NS 63% decrease (p=0.001)
al.”@9 746+7.3 Hippocampus 52% decrease (p=0.003) NS 56% decrease (p<0.001)
AD (n=23) 28.6 +6.7
Cerebellum NS NS NS
Controls 63.4+£9.1 | Within24
Motor cortex 10% decrease (NS) NE NE
Bosetti et (n=20) hours
al 2(350) .
' 65.2+£8.5 | Within24 )
AD (n=20) H Hippocampus 35-40% decrease (p<0.05) NE NE
ours
16% decrease
Frontal cortex 26% decrease (p<0.01) NR
Controls (p<0.01)
69 +2 12+1
N (n=30) Temporal cortex 17% decrease (p<0.05) NR NR
Kish et
| bas) Parietal cortex 16% decrease (p=0.055) NR NR
al.
Occipital cortex 5% decrease (NS) NR NR
AD (n=19) 73+2 101 Putamen NS NR NR
Hippocampus 20% increase (NS) NR NR
Cooper et ContrOIS - _
Temporal lobe 9% decrease 5% decrease NS
al.bG53) AD
Within 6 Parietal cortex 25% decrease (NS) NE NE
Controls (n=7) 77+9
Reichmann hours Temporal cortex 24% decrease (NS) NE NE
et al.”® Within 6 Entorhinal cortex 26% decrease (NS) NE NE
AD (n=7) 7719 i
hours Hippocampus 10% decrease (NS) NE NE
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NE NE
) Controls (n=5) - - Frontal cortex NS
Cavelier et
al.b (355) Occipital cortex NS NE NE
AD (n=6) . . i
Parietal cortex NS NE NE
Controls 26% decrease
69 + 3 11+1 Temporal cortex 32% decrease (p<0.001) 8% decrease (NS)
_ (n=13) (p<0.001)
Kish et
by ] 23% decrease
al b5 Parietal cortex 32% decrease (p<0.001) 8% decrease (NS)
AD (n=15) 72+2 8+1 (p<0.001)
Occipital cortex NS NE NE

Table 4.1 Summary of Studies Measuring COX Activity in AD brain.

The numbers of studied cases, age, post-mortem delay (PM) and percentage change as well as the statistical change are presented. a, studies that

conducted the assays in isolated mitochondria from frozen tissue. b, studies that conducted the assay in total brain homogenates from frozen tissue. NR:
not reported; NE: not examined; NS: non-significant

116




Another factor which might affect the COX and CS activity is the pH of the brain which is
used as an index of the agonal status of the person and is normally altered in brain of patients
who died with protracted illness8% 356357 |n our study groups we observed that there was a
statistical significant difference between the pH of the EOAD and their age matched controls
(controls 6.78 £ 0.29 and EOAD 6.23 £ 0.30, p<0.0003) but no difference in the LOAD and
their respective controls (controls 6.06 £+ 0.25 and LOAD 6.13 + 0.32, p=0.557). The
significant pH change between the controls and the EOAD cases might occur from the post-
mortem delay since there was a strong negative correlation between the pH and post-mortem
delay of the controls. It is worth mentioning that the EOAD controls had the highest pH value
relative to the rest of the groups. In order to check if the pH effects the COX and CS activity
we correlated pH with activity and only temporal cortex of the controls for the LOAD cases
showed a negative and marginally significant correlation (rs=-0.615, n=11, p=0.044) with
COX activity. Taking into consideration that the observed correlations between post-mortem
delay or pH with COX or CS activity occur only in certain brain regions or groups and the
absence of any particular pattern we can conclude that these changes possibly represents
minor characteristics of the studied specimens. The absence of a significant effect of post-
mortem delay, pH or the agonal stage of the patients in COX or CS activity has also been
confirmed by studied from Yates et al. and Perry et al.®* %7, Finally, our results are in
agreement with studies of Cooper et al., and Reichmann et al., and particularly with the
results of Kish et al. who measured COX and CS activity in AD brain and took into

consideration how post-mortem delay and pH could affect COX and CS activity©5% 352,

In relation to the differences between the EOAD and LOAD brains for COX and CS activity,
we only observed small changes in temporal cortex and cerebellum. Normally the EOAD
brain is considered more atrophic with greater neuronal/synaptic loss®® 334, Based on these
facts it was expected that COX and CS activity would be higher in the LOAD brain than in
the EOAD but we showed that temporal cortex, the most affected brain region in AD, COX
activity and COX/CS ratios were lower in the LOAD brain compared to EOAD (Figure 4.5).
Since mitochondrial oxidative phosphorylation takes place mainly in neurons and the EOAD
temporal cortex exhibits the greatest neuronal loss, it is possible that in order to compensate
for the high energy demands the remaining mitochondria have to increase their respiration to
maintain energy levels. This can also be seen in cerebellum where in LOAD brain normally
there is negligible AD pathology but in EOAD an increased neuronal loss and astrogliosis is
observed. In agreement with the findings in the temporal cortex in EOAD, cerebellar COX

activity and COX/CS ratio were higher which possibly represents an attempt by the remaining
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mitochondria in the neurons to fulfil that region’s energy demands (Figure 4.5). Based on
electron microscopy studies the majority of the mitochondria are localised in neurons since
they require energy for various processes such as neurotransmission and synaptic
development®8-369) The same electron microscopy studies have also shown that the neuronal
dendrites in AD brain are facing extensive mitochondria loss compare to healthy controls©®
39) Manczak et al. made a similar conclusion in a study where they measured mRNA levels
of COX1 and COX2 in AD brain and found increased expression for both genes®?. These
authors suggested that the increased COX gene expression was either a functional
compensation mechanism by the remaining neurons or a mitochondrial alteration related to
increased oxidative damage in the AD brain®?%., Taking into consideration our results,
Manczak et al. study and the results from the electron microscopy studies of reduced
mitochondria number in the synaptic cliff, we can conclude that a functional compensation
mechanism could happen in the AD brain. Since our finding showed that the EOAD brain
regions, which exhibits the greatest neuronal loss, had higher COX activity compared to
LOAD which has at least 10-20% more neurons.

4.4.2.2 COX subunits in the AD brain

In order to further understand how copper and COX activity is regulated in the AD brain we
measured the protein levels, by Western blotting, of the two core subunits, COX1 and COX2
as well as the levels of Sco2 which together with Scol incorporate copper into COX2 (section
1.3.3). During the Western blot analysis, gels that contain samples from EOAD or LOAD are
only compared with their respective age matched controls and for one brain region at a time.
For that reason, any comparison of protein levels between EOAD and LOAD are not able to
be performed with the given data. In relation to the regional differences of the studied groups,
since the brain specimens are obtained from the same individual, we can only assume that the

differences between frontal and temporal cortex represents regional brain changes.

As already noted, the mitochondrial loss was further supported by measuring VDACL levels
in the brain extracts where a 20-45% decrease was observed in the different regions of the
EOAD and LOAD brain tissue (Figure 4.7D and I). In the IMS, COX assembly initiates
around a seed formed by COX1 which has already obtained the three redox centres (heme a
and heme az-Cusg). Our analysis showed that there was a small protein loss of COX1, relative
to total protein levels, especially in the EOAD frontal cortex. However, in LOAD temporal
cortex no change in COX1 protein levels was observed. The small decrease of total COX1

levels likely represents mitochondrial loss in the EOAD frontal cortex since when we
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normalised COX1 levels with VDACL1 no change or in some cases higher COX1/VDAC1
ratio was observed in both AD subtypes. For example in LOAD temporal cortex,
COX1/VDACL levels increased by 45% since in that brain region there was a 30%
mitochondrial loss but at the same time the total COX1 protein levels remained unchanged
(Figure 4.7).

It is well know that in temporal cortex, in both LOAD and EOAD brain, there is higher
neuronal and synaptic loss compared to frontal cortex®52 but in our cases we showed that
frontal cortex lost more mitochondria and COX1 protein which might suggest that the
remaining neurons in temporal cortex are attempting to maintain mitochondria in order to
fulfil the local energy demand by increasing protein synthesis in a functionally important
brain region. The higher ratio of COX1/VDACL1 in temporal cortex in both AD subtypes
furthers supports this concept (Figure 4.7E and J). The total protein levels COX2 and its
assembly protein Sco2, were significantly decreased in both brain regions in EOAD and
LOAD (Figure 4.8 and 4.9). Once again when COX2 protein levels were normalized with
VDACI1 a non-significant change was present in the majority of the studied brain regions and
groups. The only exception was the EOAD temporal cortex where the COX2/VDACI1 ratio
decreased possibly due to the higher total COX2 protein loss in that region compared to
mitochondria loss (Figure 4.8D). A possible reason for seeing greater loss of COX2 in EOAD
temporal cortex might be correlated with the marked copper decrease. In order for COX2 to
take part in COX biogenesis, it requires the Cua centre, a process which is coupled with the
function of Scol and Sco2 in the IMS®®®), However, Sco2 seems to have a second role in
addition to metalation, that of regulating COX2 protein synthesis which has been
demonstrated in studies with human Sco2 deficient fibroblasts*'Y. Combining these facts
with our observations that Sco2 protein levels decreased in the EOAD temporal cortex we
might conclude that Sco2 deficiency affects either COX2 synthesis or lower copper levels
induce COX2 degradation since without the Cua centre, COX2 cannot enter the assembly
pathway and remains in the IMS where dedicated mitochondrial proteases will begin
degrading COX2.

It is worth mentioning that LOAD frontal cortex had the highest mitochondrial percentage
change compared to age matched controls which was followed by the highest loss in COX2
protein levels. In chapter 3 we have shown that in frontal cortex there was a (non-significant)
decline of mitochondrial levels with ageing which might have contributed to the higher
percentage change in the LOAD frontal cortex compared to temporal cortex. In relation to

Sco2 protein, we can see that Sco2 levels decreased in a similar way to that of COX2. Sco2 is
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localized in the mitochondria but is nuclear encoded and multiple factors such as copper
levels or mitochondria availability can affect its protein synthesis.

Our results of decreased total COX1 and COX2 protein levels in the AD brain are in
agreement with a study by Kish et al. who used different cohort of samples and experimental
approaches for protein determination but reported a decrease of COX1 and COX2 levels in
temporal cortex(®2), Taking into consideration the above mentioned results about COX
activity and protein levels we can conclude that the observed changes in the AD brain are a
combination of neuronal and consequent mitochondria loss with the remaining mitochondria
trying to increase their function rate in order to compensate and fulfil the great energy demand
of the affected brain regions.

4.4.3 Cytosolic copper binding pathway proteins in AD

Oxidative stress has been proposed to play an important role in the pathogenic mechanism of
AD pathology®4. Several studied have reported increased markers of oxidative cellular
damage such as lipid peroxidation, oxidative damage of proteins and DNA in the most
affected AD brain regions®®3 365 366)  Accordingly, one of the main sources of ROS
production in the AD brain is the AP peptide which in the presence of metals such copper and
iron can mediate an O,-dependent cell free H.O- generation®*® 367, Nonetheless, cells have
evolved an antioxidant defence mechanism with the first line of defence being SODL1 in the

cytosol and SOD2 in the mitochondria matrix®6®),

4.43.1 SOD activity is increased in the affected AD brain

Our study showed that the most severely affected brain region in the AD brain exhibited the
highest percentage increase of total SOD activity. Generally no statistical significant change
was observed in EOAD and LOAD frontal cortex and cerebellum. However, in EOAD
temporal cortex a greater than 50% increase in SOD activity was observed compared to age
matched controls. Total SOD activity was higher in LOAD temporal cortex but the change
was not statistically significant (Figure 4.4). The general increase in SOD activity in the AD
affected regions indicates an attempt by the brain to defend against increased oxidative stress
occurring from either the increased of ROS generation from the accumulated AP or even from

the increased function of the remaining mitochondria.

EOAD temporal cortex showed the highest percentage change in SOD activity compared to
age matched controls amongst the rest of the studied regions and AD cases (Figure 4.4).

Multiple factors could induce high activity in this severely affected brain region in AD®%9),
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During the progress of AD pathogenesis temporal cortex is affected in the intermediate stages
(Braak stage I11-1V) and also in the final stages (Braak stage V-VI) the amount of lesions and
the long-lasting severe oxidative damage is higher relative to the other brain regions63 328),
Potentially, the increase of COX/CS activity that we identified in EOAD temporal cortex
could also induce higher ROS production coming from the mitochondrial respiratory chain
which will require more active SOD. Several studies have shown that within plaques metal
such as copper and iron are “trapped” and in the presence of AP they generate ROS via the
Fenton reaction®®. Our findings showed that EOAD temporal cortex might have the lowest
copper levels in the AD brain but at the same time had the highest iron levels which can
increase the production of ROS and further trigger the activation of SOD in the brain (see
table B.1 in supplementary data).With an increase in SOD activity in the AD brain the logical
assumption will be that oxidative stress should be less. However, during its catalytic activity
SOD generates another ROS product, H20.. Another possibility for not seeing a decrease in
oxidative stress in the AD brain might be due to the balance between ROS production and
degradation by SOD where the brain produces more ROS which SOD is able to eliminate.

Several studies have tried to determine SOD activity in the AD brain by using frozen tissue
archived and the majority of these show either a small non-significant or significant increase
in the affected AD brain regions. Our results are not completely comparable with these studies
since the majority of the previous studies used a mixture of EOAD and LOAD cases or just
LOAD. Of these, Ramassamy et al. who measured SOD activity in LOAD frontal cortex, did
not observe any change in total SOD which is in agreement with our observation®"®,
Similarly, Karelson et al. measured SOD activity in LOAD frontal and temporal cortex where
they observed a significant increase only in temporal cortex®®). We also showed a 12%
increase in LOAD temporal cortex but the change was not significant. The differences
between the Karelson et al. study and ours might be either due to a smaller cohort of samples
(7 cases vs. 13 cases), sample preparation or post-mortem delay. A study from Schuessel et
al. who used frontal and temporal cortex and cerebellum from LOAD cases reported a
significant increase of SOD1 activity in all three brain regions, even in the less effected
LOAD cerebellum®™, The total SOD activity that we measured contains the activities from
both SOD1 and SOD2 but in the brain the amount of SOD2 is less and therefore the majority
of the measured activity may represent SOD1. However, we cannot directly infer an increase

in SOD1 activity over SOD2 without measuring these separately.

Studies that used mixed cases of EOAD and LOAD, based on age criteria, from Gsell et al.

and Lovell et al. reported increased total SOD activity in the AD frontal, temporal cortex and
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cerebellum but the change was not significant®’?. Their observed changes might not be
significant but both studies reported that AD temporal cortex had higher SOD activity
compared to age matched controls. On the other hand, a study from Marcus et al. reported a
marked decrease (more than 80%) in total SOD activity in frontal, temporal cortex and
cerebellum®@®, In this study they potentially used EOAD cases and quercetin as substrate in
order to measure SOD activity, although these differences may not explain the considerable
change in SOD activity not only compared to our study but also to the other published reports.

Our observation on SOD activity in LOAD brains is consistent with already published reports
which suggests that the regional oxidative damage in the AD brain induces the increased
activity of SOD. Our finding is further supported by the increased activity of SOD in all
LOAD brain regions compared to EOAD (Figure 4.5). The difference between the two AD
subtypes can be attributed to different factors but the most likely are higher neuron loss which
leads to less protein generally in the EOAD brain compared to LOAD especially in
cerebellum which is less affected in LOAD®%+3%)_ Fyrther, SOD1 requires copper for its
activity but in the EOAD brain copper levels are lower compared to LOAD. The lower copper
levels could possibly effect the activation of SOD1 in the brain. Additionally, as discussed in
Chapter 3, SOD activity increases with ageing in the healthy brain, the EOAD cases being
younger compared to LOAD suggesting that the observed difference may be a simple effect
of different age groups. The most likely explanation is the general impact of ageing on the
brain. This is further supported by the fact that in the EOAD frontal and temporal cortex,
SOD activity increases as the AD brain gets older (Figure 4.6). The same trend was also
present in the LOAD brain regions and EOAD cerebellum although the correlation was not
significant. Taking into consideration all the above, we might conclude that the increased
activity in the AD brain is due to higher oxidative stress and that the differences between
LOAD and EOAD reflects both the normal ageing impact on SOD activity and the decrease
of SOD1/2 protein levels that we observed in the EOAD brain.

4.4.3.2 Levels of SOD and CCS proteins in the AD brain

To further understand how SOD activity is regulated in the AD brain we determined the
proteins directly involved in SOD activity, SOD1, SOD2 and CCS. SOD1 requires CCS in
order to be activated and we observed that their protein levels follow the same trend in all
studied brain regions and groups. For example in EOAD frontal cortex both protein levels
decreased by more than 25% relative to age matched controls (Figure 4.10 and 4.11).

Similarly in LOAD frontal and temporal cortex both SOD1 and CCS increased compared to
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controls. In EOAD temporal cortex, where we observed the highest percentage change of
SOD activity, the protein levels of SOD1 and CCS did not however change. One possible
assumption is that the CCS and SOD1 protein levels are correlated more with neuronal loss in
the affected brain regions since both are mainly localized in neurons31-373), Even if the
EOAD temporal cortex exhibits higher neuron loss compared to frontal cortex, SOD1 and
CCS protein levels still do not change compared to age matched controls in the current study.
Combining the observations that in frontal cortex a 25% decrease of SOD1/CCS protein
levels caused an 8% increase in SOD activity and in temporal cortex no change in the proteins
had as a result a 54% increase in activity shows that the mechanism which regulates both the
protein levels and the activity of SOD may be the oxidative stress in the respective brain
region (Figures 4.5A and 4.11 C)

In relation to the increased protein levels of SOD1 and CCS in the LOAD frontal and
temporal cortex, the change is possibly due to a combination of the increased oxidative stress
that occurs normally with ageing and which is further enhanced by AD pathology. The higher
SODL1 protein levels in the LOAD frontal (30%) and temporal (41%) cortex might suggest
that the final activity should be significantly higher, however, studies have shown that SOD1
remains in apo-SOD1 form if there is reduced available copper in the cells (Figure 4.11F)G2D,
Based on our results copper levels are lower in both brain regions which will result in lower

activation rate of SOD1 and accumulation of nascent protein in the brain.

Several studies in mice and different cell lines have shown that CCS protein levels are
regulated by copper availability and that lower levels induce a higher expression rate®3%. Our
results in the LOAD brain are in agreement with that observation since we showed higher
expression of CCS in the copper deficient frontal and temporal cortex. However, in EOAD
frontal and temporal cortex CCS levels were lower relative to age matched controls even if
these brain regions exhibited the highest copper loss (Figure 4.10). A possible reason for this
discrepancy might be due to either higher neuronal loss in these brain regions or by the fact

that there was less SOD1 protein to activate.

Previous studies have shown that CCS is implicated with the amyloid pathway by regulating
BACEL1 through interaction with the small cytoplasmic domain of BACEL1 in order to transfer
copper and possibly regulate its activity or localization®*®). Also, studies have shown that
higher levels of BACEL1 results in lower SOD1 activity and that CCS deficiency induced
higher levels of AB?8 37 _|n the present study, we were not able to measure BACE1 protein

levels or activity but it is well established that in AD brain BACE1 levels and activity are
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higher(220.221.375.376) Compining the published data about BACE1 and the current study for
SOD activity we can conclude that increased BACEL levels do not seem to have any impact
on SOD activity in the AD brain, on the contrary, higher activity was observed. In relation to
the interaction of CCS with BACE1 we cannot draw any conclusion with the given data since

no direct comparison can be made from our samples as to how these two proteins interact.

SOD2 is also directly implicated with SOD activity and our analysis showed that SOD2
protein levels decreased in all brain regions of the EOAD and LOAD brain except in EOAD
temporal cortex where SOD?2 levels were non-significantly increased (Figure 4.12). This
specific result could be attributed to the higher observed percentage change of SOD activity in
the EOAD temporal cortex. In the other brain regions, SOD2 protein decreased which
potentially correlates with the mitochondrial loss in these regions. However, when normalized
with VDACL the final ratio for SOD2 was higher in all brain regions of both AD subtypes.
The increased antioxidant defence in the mitochondria matrix by SOD2 may be expected
since the respiratory chain function is increased (based on the COX/CS activity) which will
induce higher production of ROS and will require more active SOD2 protein within
mitochondria to neutralise ROS. It is also worth noting that we did not observed any change
in manganese levels in any of the study brain regions and AD subtypes (Table B.1 and B.2

supplementary data).

The current study appears to be the first to report the protein levels of SOD1 and SOD2 in the
EOAD brain since the previous studies determined SOD protein levels only in LOAD brains
where they observed results are variable. Kurobe et al. determined SOD1 and SOD?2 protein
levels by using an immunoassay in the cerebral cortex and found no change in SOD1 levels
and a non-significant increase in SOD2 protein levels®®. Also, Kato et al. reported a small
but non-significant increase in SOD1 and SOD2 levels in frontal and temporal cortex in
LOAD cases®"). Murakami et al. used Western blotting in order to determine SOD1 and
SOD2 protein levels in LOAD frontal cortex where a significant decrease in SOD1 protein
levels was reported®®. Our study and the ones from Kurobe et al. and Kato et al. are in
agreement in the trend for higher SOD1 in the cortex and the small differences might occur
due to the experimental approach (immunoassay vs. Western blot)©> 377, Other possible
factors such as the different cohorts of cases or post-mortem delay, which might have affected
protein degradation, can contribute to small differences between studies. It is worth
mentioning our specimens did not show any correlation between post-mortem delay and

SOD1/2 protein levels. Murakami et al. also used Western blot in order to determine SOD
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protein levels but differences in the antibodies or type of membrane and even the
clinicopathological features of the cases could contribute to the final result.

From the above we can conclude that the decrease copper levels in AD does not seem to
effect either SOD activity or its protein levels. In contrast, the long-lasting severe oxidative
stress in the AD brain seems to regulate both the activity of SOD and the levels of proteins
associated with its activity. The majority of the current results are in good agreement with
already published data although we report for first time CCS protein levels in the EOAD and
LOAD brains as well as SOD activity and its protein levels in the EOAD brain.

4.4.4 The copper secretory pathway in the AD brain

The major components of secretory pathway consist of the cytosolic chaperone Atox1 and the
transporters ATP7a and ATP7b in the Golgi membrane which are responsible for the
incorporation of copper into newly synthesized enzymes such Cp, Hephaestin or PAM, and
also for the efflux of excess copper from the cells. In the present study we were able to
determine only the protein levels of the Atox1, ATP7a and Cp in the studied brain regions. In
addition to the above mentioned proteins we also determined the protein levels of Ctrl.

Our results showed that Ctrl, Atox1 and ATP7a protein levels were significantly decreased
only in EOAD temporal cortex (Figures B.1 to B.3). These three proteins play a regulatory
role in copper influx-efflux in the cells and the fact that all of them decreased in the most
affected brain region in AD might indicate that either the neuron loss or the highest copper
loss in EOAD temporal cortex associates with protein changes. However, studies with cells
have shown that copper levels do not affect the total Ctrl or ATP7a protein levels but their
localization in the cells“! 859 Based on these studies we can conclude that the loss in

protein levels in EOAD temporal cortex is due to extensive neuronal loss in that brain region.

In the AD brain we observed extensive changes in the protein levels of the secreted sCp and
on astrocyte membrane bound GPI-Cp®2 83, In our study both isoforms of Cp were present in
frontal and temporal cortex where we observed that their levels changed in a non-consistent
way between the two AD subtypes. Studies have shown that sCp levels are lower in the brain,
compared to GPI-Cp €283 (which can also be seen from our analysis) and sCp is mainly
located in the CSF. Our study has shown that sCp levels were generally decreased only in
frontal cortex of the EOAD and LOAD brains compared to their respective age matched
controls with the change being significant only in the LOAD brain (Figure 4.13D and H). The

fact that sCp decreases by more than 20% in frontal cortex and not in temporal cortex could
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indicate that there is a local regulatory mechanism of Cp degradation in the CSF or plasma

which might also correlate with iron concentrations in the respective brain regions.

In order to further investigate if iron levels change between brain regions and if there is a
correlation with sCp initially we compared iron levels between frontal and temporal cortex.
No significant change was observed for iron levels in the different groups (non-parametric t-
test, control group: p=0.315; LOAD group: p=0.6.444; EOAD group: p=0.174). Copper levels
also did not present any significant change between these two brain regions in the different
study groups (Figure 4.14 and supplementary data appendix A.2). The expression levels of
sCp were then correlated with iron levels where a non-significant positive trend was observed
in the frontal and temporal cortex of the both AD subtypes (LOAD frontal cortex: rs=0.083,
p=0.795, n=12; LOAD temporal cortex: rs=0.269, p=0.539, n=8; EOAD frontal cortex:
rs=0.406, p=0.190, n=12; EOAD temporal cortex: rs=0.239, p=0.354, n=12). These results
indicate that there is a correlation between sCp and iron levels which seems to approach
significance in temporal cortex. The failure to reach significance it might be due to the small

sample number.

The expression levels of GPI-Cp in the two AD subtypes appear more complicated. In the
EOAD brain we showed that GPI-Cp levels increased in both frontal and temporal cortex
which matches with the increased astrocytosis in these two brain region and which is
generally higher compared to LOAD (Figure 4.13C and G)©7. However, the decreased GPI-
Cp levels in LOAD cortex and especially in frontal cortex can possibly be explained more by
less astrocytosis in the LOAD brain rather than change in iron homeostasis since no

significant change in iron concentration was observed.

The current study appears to be the first to identify the protein levels of Ctrl, Atox1 and
ATP7a in the AD brain, however, previous studies have determined Cp levels. In the first
study Connor et al. used Western blot in order to measure Cp levels in temporal cortex and
reported a 35% decrease by using cases consisting of both EOAD and LOAD. In the second,
Loeffler et al. used ELISA in order to determine Cp levels in different LOAD brain regions
and showed increased levels in frontal and temporal cortex and cerebellum however in the
same study they also reported increased copper levels in frontal cortex which is in contrast to
our observations®*4, These studies present quite contradictory results which could be either
due to the different type of assay that they used to determine Cp levels or even the cohort of
samples. Both of the above mentioned studies fail to identify the two different isoform of Cp

in the brain and based on our results these isoforms change in a different way in the AD brain.
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4.45 Differences in regional brain copper, COX/CS and SOD activity in AD

One of the most common pathological characteristic in AD brain is the differences in atrophy,
neuronal/synaptic loss, amyloid burden and neuroinflammation amongst different brain
regions. Temporal cortex is the most severely affected area in AD with perhaps slightly
reduced pathology in frontal cortex and a generally limited pathology in cerebellum®®2,
These gradients in the severity can be seen in the copper levels amongst the brain regions in
the EOAD and LOAD brain where in the most affected, frontal and temporal cortex, copper
levels were significantly lower compared to cerebellum where normally there is no pathology.
The difference between frontal and temporal cortex whilst not significant, showed that the
most severely affected temporal cortex had lower copper (Figure 4.14A and B).

COXICS activity follow a different pattern where the most affected brain regions, frontal and
temporal cortex, had higher levels compared to cerebellum. As mentioned previously, frontal
and temporal cortex shows a higher neuronal and mitochondrial loss, so the increased activity
under these conditions suggests an attempt of the remaining mitochondria to fulfil the energy
demand of the brain. This trend is observed in both EOAD and LOAD brains with the only
exception being in the LOAD temporal cortex where COX/CS was higher relative to
cerebellum although the change was not statistically significant, possible due to the variability
(higher standard deviation) of the samples. In EOAD and LOAD cortex there was no
difference in the activity between both regions and both exhibited similar mitochondrial loss
based on the CS activity (Figure 4.14C and D).

SOD activity in AD brain showed some variability. In the LOAD brain SOD activity levels do
not significantly vary amongst brain regions however its levels were higher in temporal cortex
possibly due to higher oxidative stress in that region. In the EOAD brain, SOD activity was
higher in temporal cortex and cerebellum compared to frontal cortex (Figure 4.14E and F).
The increased SOD activity in EOAD temporal cortex was perhaps expected due to the higher
oxidative stress in that brain region relative to the rest. The increased SOD activity in the
EOAD cerebellum can be attributed either to the higher copper levels which can trigger the
ROS production in the presence of AP or due to the different cell types in cerebellum which

could produce more ROS and further require more active SOD in order to eliminate ROS.

To summarise, our results confirm that regional changes in the AD brain pathology can affect
copper molecules and pathways. Changes in copper levels, SOD and COX/CS activity are

highly correlated with the atrophy and neuronal loss as well as to the energy demand and the
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by-products occurring during the evolution of the disease (e.g. ROS production) in the
specific brain regions.

4.5 Conclusions

The main finding from this chapter is that in LOAD and EOAD brains we observed decrease
copper levels relative to age matched controls, however the lower levels of copper did not
seem to have any impact in the activity or protein levels of important for the neuronal
enzymes, COX and SOD1. The identified changes in the AD brain for COX mainly occur due
to mitochondrial loss and the efforts of the remaining mitochondria to compensate for the
neuronal loss and fulfil the energy demands of the diseased brain. Similarly, the increased
SOD activity correlates more with the higher oxidative stress observed in the AD brain since
more ROS may be produced from the deposition of amyloid-beta, the increased mitochondrial
oxidative phosphorylation and also the astrocytosis found in the AD brain. Generally no
major differences were observed between the EOAD and LOAD brains for copper levels,
COXI/CS and SOD activity which suggests that the small variations are possibly due to either
pathological changes or the impact of the normal ageing process as discussed in chapter 3.

In order to get a full picture of how copper homeostasis pathways are implicated with AD we
need to study its effects in BACEL protein and activity levels. Then we will be able to draw
conclusion of how and if CCS protein levels or copper availability affects BACE1 function.
Also, identifying the effects of copper deficiency on one of the enzymes that belong to the
secretory copper pathway such as PAM or lysil oxidase might give better indication of how
the available copper is prioritized inside the neurons/brain. Extending the present study into
other affected brain regions such as hippocampus or parietal and occipital cortex could further
enhance our understanding about how copper homeostasis is implicated with AD

pathogenesis.

The strategy of using copper chelators as way of treating AD might not be the best way
forward since our results showed a copper deficient brain where the copper dependent
enzymes still function in response to other factors. Taking into consideration that clinical
trials with copper chelators fail to have any beneficial effect in the AD patients a
reconsideration of this approach may provide better results (see sections 1.6.1). Combining
our results from the healthy ageing brain and the AD brain, we can conclude that a strategy of

increased copper consumption may be beneficial in both the elderly and AD patients.
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The best approach of treating AD and ageing generally might be the consumption of products
with high copper (beef liver, seafood and goat cheese etc.) or even vitamin copper containing
supplements from early in life. Copper supplementation maybe more beneficial in early stage
of human life or in the early stages of the AD pathogenesis since based on Kessler et al. study
a significant decrease of A4z in the CSF of AD patients was observed when copper was used
to treat AD patients?’* 275, Decreased levels of ABs; are correlated with the severity of the
disease and as Kessler et al. study showed that by supplemented copper in cases were
amyloid plaques are already present it will not improved the progress of the disease. That
suggests that copper needs to be supplemented way before symptoms of AD or ageing start to
appear.

By using the copper supplementation approach a few variables need to be taken into
consideration such as delivery into the brain, copper induce toxicity to other organs and
interaction with other metal pathways. Initially, it is of major significance that supplemented
copper should target mainly the brain in order to avoid copper overload in peripheral tissues,
which could cause toxicity. Now days the majority of the drugs/compounds can be modified
in order to be able to cross the BBB or even target specific organs only. The dose of
supplemented copper should be non-toxic in order to avoid intoxication of other organs or
enzymes/proteins. One of the mechanisms of copper toxicity is occurring due its ability to
replace iron from the iron-sulfur clusters®?. A number of important for the cell survival
enzymes require iron for their function (Complex | of the ETC) whereas other enzymes
require both of these metals for their function (COX, Cp). For that reason the levels of the
supplemented copper needs to be properly regulated in order to avoid malfunction of other
iron-dependent enzymes and to avoid the release of free iron in the cells which can generated
more reactive superoxide anions. Finally, the copper supplementation approach should be
considered at the early stages of the AD pathogenesis, before the accumulation of copper in
amyloid plagues, since the supplemented copper could potentially increase formation of

aggregates.
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5 Manipulation of copper levels in HEK293 cells and the effect on copper

the homeostasis pathways
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5.1 Introduction

The essential role of copper in biological systems is well established. However, copper can be
toxic if its levels are not properly regulated since imbalance in copper levels can cause serious
health problems including neurodegenerative symptoms®®®, cardiovascular structural and
functional defects® and deregulation of inflammatory response®V, The effects of copper

overload or deficiency are most evident in the two rare disorder Wilson’s and Menkes disease.

Combined approaches are required in order to understand the diverse metabolic functions of
copper in cells. Both copper supplementation and chelation strategies have been used
throughout the years in order to study copper related biological functions®®?. The effects of
copper supplementation or overload, as already discussed in chapter 1, is normally used to
study the effects of copper on different cell lines. However, copper chelators have been
proven to be useful in clinical approaches to manipulate disease conditions due to alterations
in copper metabolism®3. Three main aspects exists around the copper chelator usage: 1)
understanding the molecular basis of copper and copper binding proteins in biological
systems, 2) treatment of disease due to alterations of copper metabolism and 3) the diagnostic
implications for copper metabolic disorders®®. A number of copper chelating agents have
been widely used in clinical and experimental studies such as EDTA, tetraethylenepentamine
(TEPA), D-penicillamine (D-pen), tetrathiomolybdate (TTM), CQ, trientine and
bathocuproine disulfonate (BCS). In the present study we focused on BCS, TTM and D-pen
as chelating agents given their existing and potential therapeutic use and their main

characteristics will be discussed in the next sections.

5.1.1 Bathocuproine disulfonate (BCS)

One of the most well-known and commonly used chelator in cell biology experiments is BCS
which selectively chelates Cu* (Figure 5.1A)8). BCS is can bind Cu*?, forcing copper into a
tetrahedral geometry and inducing the reduction from Cu?*to Cu'*, when the reduced state of
copper has been achieved, the complex is stabilized and cannot participate in redox cyclesG,
BCS is a sulfonated derivative of bathocupreine which gives BCS water soluble
characteristics, and inhibits copper mediated toxicity by forming hydrophilic complexes with
Cu?*(8) BCS has been used in experimental setting to inhibit copper dependent redox
cycling mainly because: 1) BCS is charged and cannot form lipophilic complexes with copper
which makes BCS/copper complexes cell membrane impermeable, and 2) since Cu?* is the

dominant form of copper in the extracellular environment, the use of BCS promotes the
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reduction of Cu?* to Cu'* and the consequent stabilized BCS/copper complex which suppress
the copper dependent redox cycle®838) BCS binds copper in 2:1 stoichiometry.

A B S c CH, 0
NaO3S /= /> SOsNa [l HSM
> _|\|A|O_ > H,yC x OH
S HN 0
HaC CHs " \f
NH NEL

Figure 5.1 Chemical structure of the copper chelators.

(A) bathocuproine disulfonate (BCS), (B) tetrathiomolybdate (TTM) and (C) D-penicillamine
(D-pen).

5.1.2 Tetrathiomolybdate (TTM)

TTM has a simple structure involving a molybdenum atom surrounded by four sulfhydryl
groups (Figure 5.1B) and can be mainly found in ammonium or choline salts but the
compound is quite unstable when exposed to air and moisture since oxygen can replace the
sulfur within TTM. TTM chelation properties are based on the fact that it reacts with
inorganic copper forming a heterobimetalic complex through the Mo-S-Cu cluster®®), TTM
is the third most commonly used medication for Wilson disease although only the Europe
Medicines Agency (EMA) has approved its marketing authorization (EU/3/12/1089).

The mechanism of action of TTM is unique compared to some of the other copper chelators
which depends on the route of administration. When TTM is orally administered with food,
TTM forms tripartite complexes with food proteins and copper in the digestive bolus,
preventing TTM/copper complexes being absorbed®8 389 |f taken between meals, TTM will
be absorbed in the blood stream where it will form tripartite complexes with albumin and
serum copper, resulting in depletion of endogenous copper and making it unavailable for
intracellular processes®® 389 This complex is so stable that is accumulated in the blood and
reaches a plateau after 1 or 2 weeks of continued drug administration®®®, then will slowly
start degrading in the liver and the components will excreted in the bile®®®, The majority of
the studies agree that TTM is able to cross the cell membrane and form complexes with

intracellular copper storage proteins such as MTs(®%%:392),

5.1.3 D-penicillamine (D-pen)

D-pen is an aminothiol which contains amino, thiol and carboxylate groups within the

molecule (Figure 5.1C) that makes it able to chelate both Cu'* and Cu*2. D-pen binds Cu?*
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and reduces it in the process of chelation to Cu**®%®), Even if the metal binding ability of D-
pen is low, it is believed that it constitutes an effective treatment for Wilson’s disease.
Experiments have shown that D-pen is only poorly chelates copper bound to albumin in the
human serum compared to treintine or TTM®®¥, D-pen has a unique feature that exhibits
reductive activity through its thiolate group®®. The hypothesized mechanism of action for D-
pen supports that the reduction of the D-pen/copper complex would be accompanied by a
change in conformation from preferred square planar geometry to a tetrahedral geometry
which is also accompanied by charge change®®®. The above mentioned changes are less
favourable for protein interaction and based on the fact that D-pen is able to reduce Cu?* to
Cu** and then chelate both of them simultaneously®®®. During the process of D-pen/copper
complex formation H>O is produced which contributes to cytotoxicity in cells and also
explain the suggested use of D-pen as a potential therapeutic agent for cancer %6397,

The strategy of copper chelation therapy has been studied as extensively as the investigation
of copper function in the cells. Chelation is an important strategy which allows the study of
how copper deficiency can affect cellular processes related to copper transport, storage and
usage. A typical approach is to change the availability of copper and then observe the changes
in subsequent copper dependent processes®®. Studies with copper chelators are focused on
one of the respective intracellular pathways however in the present study we tried to measure
the effects of copper chelation or supplementation in all three intracellular pathways at

multiple levels (copper availability, activity of copper binding enzymes and protein levels).

5.2 Aims

The aims of this chapter are to understand how copper is prioritized in a model cell line. The
present study has the unique characteristic that copper levels, activities of COX and SOD as

well as protein levels of the three intracellular copper pathways were determined in the same
batch of cells. Also, we tested how copper supplementation, different copper chelators (BCS,

TTM and D-pen) and exposure times affected the different pathways.

Furthermore, by using the Seahorse Mito Stress test we were able to identify how the different
chelators affect the energy production of cells since copper is required for the function of the
terminal enzyme of the mitochondrial respiratory chain, COX. Mitochondrial derived ROS
and mitochondria function was further determined in cell samples since some of the studied

chelators can contribute to the generation of ROS or target mitochondrial function.
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5.3 Results

All the experiments have been performed in HEK293 cells and the presented results are
aggregated from more than two independent experiments. The number of technical replicates
will be stated in the figure legend together with the statistical test which was used for the
respective analysis.

5.3.1 Toxic levels of selective copper chelators and copper supplementation as well as
their effects in HEK?293 cell growth

Both high and low levels of copper can cause problems to cell viability and therefore before
culturing cells under excess or depleted copper conditions it was necessary to identify the
concentrations which were not toxic for the HEK293 cells. Cell were cultured in the presence
of Cu(NO:s)2 as copper supplementation and BCS, TTM and D-pen as copper chelators.
Generally, the minimum toxic dose is considered to be the concentration at which the cells
still retained at least 80% of their viability in the absence of any treatment. Afterwards the
selected concentration of each compound was further used to study its effects in cell growth.

In order to determine the levels of viable cells in the presence of different concentrations of
Cu(NO3)2, BCS and D-pen, an Alamar Blue assay was used, and for TTM the MTT assay was
used. The Alamar Blue assay monitors the reducing environment of the living cells by
utilizing the ability of the non-fluorescent dye resazurin which can be reduced to the highly
fluorescent resorufin. Alamar Blue acts as intermediate electron acceptor in the electron
transport chain without interfering with the normal transfer of the electrons®®®). Therefore,
Alamar Blue can be reduced by NADPH, FADPH, FMNH, NADH and cytochromes®%),
Utilizing these properties of Alamar Blue, we were able to identify the toxic levels of
Cu(NO3)2, BCS and D-pen at three different time points, 24, 48 and 72 hours after exposure.
Prior to the addition of Alamar Blue the cells were checked visually under the microscope for

general viability and growth levels.

5.3.1.1 Toxicity of Cu(NOs), and its effects in HEK293 cell growth

Initially we determined the toxic levels of Cu(NOs). by using a range of concentrations from
1to 120 uM, and the results were analysed with two-way ANOVA for variances followed by
Bonferroni post-test. The statistical analysis revealed that both time and different
concentrations (two-way ANOVA, p<0.001) have an effect on cell viability and that when

copper levels increased by more than 10 uM after 48 hours, they caused a significant change
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in cell viability compared to the 72 hour treatment (two-way ANOVA, p<0.05). As can be
seen from figure 5.2A, the concentration of copper demonstrating at least 80% cell viability
was 40 uM Cu(NOs),. The basal growth medium of the HEK293 contains around 300 nM
copper based on our ICP-MS determination (data not shown) which is over 100 times less
than the toxic dose. However, in order to avoid any potential toxic effects of copper, for
further experiments 10 uM Cu(NO3z)2 was used.

During the experimental procedures with different chelators a change in the colour of the
medium was noticed. The normal pink colour of the medium was turned yellow after 72 hours
incubation with TTM and BCS indicating a possible metabolic shift from oxidative
phosphorylation to glycolysis for energy production. To further identify the effects of this
change, cell growth curves were performed where cell number, pH of the spent cell medium
and viability were measured for 5 continuous days for all of the chelators and Cu(NOs)2. The
results from each variable were analysed with two-way ANOVA followed by Bonferroni
post-test in order to identify differences with variables of time and treatments.

Figure 5.2B-D presents the effects of 10 uM Cu(NOs) in cell number, pH of the growth
medium and viability as determined by the Alamar Blue assay. We observed that 10 uM
Cu(NO:3) has no significant effect in cell growth rate since no change was observed between
treated and control cell (two-way ANOVA, p>0.05), however the statistical analysis revealed
that time has a significant effect on the cell number which resembled normal cell growth
(two-way ANOVA, p<0.001, Figure 5.2B). Also, from all growth experiments we were able
to determine the doubling time for the HEK293 as ~36 hours. No significant change in the
medium pH in the copper treated cells was observed compared to untreated cells (two-way
ANOVA, p>0.05) though a significant decline with time was observed (two-way ANOVA,
p<0.001) since the pH of the medium normally decreased overtime because cells have utilized
the majority of the important nutrients for their growth and survival (Figure 5.2C). Cell
viability was measure at 30 min and 1 hour after the addition of the dye and the analysis
revealed that there was a significant increase in fluorescence absorbance of the Alamar Blue
with time in both time points (two-way ANOVA, p<0.001) and that at Day 5 the copper
treated cells exhibited a significantly higher absorbance compared to the controls (two-way
ANOVA, p<0.05) possibly due to the slightly higher cell number in the copper treated cells at
that time point (Figure 5.2D). The increase in Alamar Blue absorbance during time in the

control cells signified an increased cell number.
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Figure 5.2 Toxicity and Growth Curve of Copper on HEK293 cells.

(A) Alamar Blue assay was used for the determination of copper toxicity (n=3). Effects of 10 uM Cu(NOs)2 on (B) cell number, (C) medium pH and (D)
viability by Alamar Blue were measured for 5 continuous days (n=1). The growth curve for copper supplementation in cells has been repeated by more
than 3 times however the presented results are from one experiment which contained all the studied variables. A repetition was not necessary since there
was no significant effect. Data were analysed with two-way ANOVA followed by Bonferroni post-test and *, p<0.05; **, p<0.01; ***, p<0.001.
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5.3.1.2 Toxicity of BCS and its effect in HEK293 cell growth

To determine toxic levels of the copper chelator BCS, a range of concentrations from 50 uM
to 1.2 mM were used. The statistical analysis revealed that after 48 hours, concentrations
above 400 uM BCS caused a significant decrease in cell viability (two-way ANOVA, p<0.01
between 48 hours and 72 hours as well as p<0.05 between 24 hours and 72 hours; Figure
5.3A). However, 80% of the cells were still viable when BCS reach the 1 mM (two-way
ANOVA, p<0.001 after 72 hours). The concentration that was selected for further use was
200 puM BCS since there was no significant change in cell viability (two-way ANOVA,
p>0.05), corresponding with previous studies also.

One of the compounds that induced the pH change in the cell growth medium was BCS which
we further established by conducting growth curves. Figure 5.3B-D presents the results from
the growth rate of cells treated with 200 uM BCS which showed that at Day 4 the BCS treated
cells stopped growing and reached the plateau phase compared to controls (Figure 5.3B). The
statistical analysis showed that there was a significant difference between BCS treated and
control cells at Day 4 and Day 5 (two-way ANOVA, p<0.001) where the untreated cells had
double the cell number relative to BCS treated cultures.

The 200 uM BCS also caused a significant decrease in the medium pH from Day 3 where we
initially detected a significant decrease of 0.2 pH units which by Day 5 of treatment was more
than 0.5 pH units change (two-way ANOVA, p<0.001; Figure 5.3C). In relation to cell
viability of the BCS treated cells, an increase in Alamar Blue fluorescence from Day 3 was
seen in both 30 min and 1 hour of incubation which continued until Day 5 (Figure 5.3D). The
statistical analysis showed that the increase in the fluorescence was significant only from Day
3 to Day 5 (two-way ANOVA, p<0.001). At Day 5 after 1 hour incubation with Alamar Blue
the change in the fluorescence absorbance was not as significantly different as compared to 30
min incubation or previous time points which suggests that the treated cells had metabolized
the majority of the substrate (two-way ANOVA, p<0.05).
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Figure 5.3 Toxicity and Growth Curve of BCS on HEK293 cells.

(A) Alamar Blue assay was used for the determination of BCS toxicity (n=3). The effects of 200 uM BCS on the (B) cell number, (C) pH of the cell
medium and (D) viability by Alamar Blue were measured for 5 continuous days (n=3). Data were analysed with two-way ANOVA followed by

Bonferroni post-test and *, p<0.05; **, p<0.01; ***, p<0.001
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5.3.1.3 Toxicity of TTM and its effects in HEK293 cell growth

For the determination of TTM toxicity we were not able to use Alamar Blue since there was a
positive correlation between TTM concentrations and measured fluorescence absorbance
since during the visual inspection of the plate we showed that cells treated with the highest
TTM concentrations were dead whereas the assay indicated that they were still viable. The
above observation indicated that TTM has some sort of auto-fluorescence property and in
order to eliminate it different approaches were tested. Initially, we modified the Alamar Blue
protocol by replacing the spent medium, which contained the TTM, with fresh medium
containing Alamar Blue or washing the cells with PBS before adding Alamar Blue. These
approaches improved to a small degree the final results however there was still background
coming from TTM (data not shown).

In order to accurately measure TTM toxicity we used the MTT viability assay. The assay
relies on the reductive colouring reagent (tetrazolium salt) and the mitochondrial
dehydrogenase activities to determine the cell viability with a colorimetric method. In viable
cells MTT is mainly reduced by the NADH, FADH, FMNH and NADH to an insoluble
formazan®®. For the determination of TTM toxicity a range of 1 to 333 pM concentrations
was used. After 24 hours of treatment an increase in viability was observed for the majority of
the tested concentrations however at 48 hours a significant decrease occurred which was
further enhanced at 72 hours (Figure 4.4A). The lowest toxic concentration for TTM was
estimated to be around 6 UM and therefore we used 2 uM TTM since more than 90% of the
cells were still viable and a significant change was due to increased viability at 24 hours
compared to the other two time points (two-way ANOVA, p<0.001 between 24 and 48 hours/
p<0.05 between 24 and 72 hours).

Cell growth curves were conducted with 2 uM TTM and figure 5.4B presents the effects of
TTM on cell number where an inhibition of the growth rate in the treated cells from Day 3
was seen which progressed to approximately three times fewer cells by Day 5. The statistical
analysis revealed that the decrease in cell number in the TTM treated cells was significant
only from Day 3 to Day 5 (two-way ANOVA, p<0.01 at Day 1 and p<0.001 for Day 4 and 5).
The TTM treated cells presented similar pH change to the BCS treated cells where at Day 3 a
decrease of 0.2 pH units was identified although the change was not significant (two-way
ANOVA, p>0.05). At Day 4 and 5 the decrease was more than 0.5 pH units, and statistically
significant (two-way ANOVA, p<0.001; Figure 5.4C). The effects on viability determined by

the MTT assay showed a gradual decrease in absorbance from Day 2, in the treated cells,
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although the change was significant only at Day 4 and 5 compared to untreated cells (two-way
ANOVA, p<0.001, Figure 5.4D).

5.3.1.4 Toxicity of D-pen and its effects on HEK293 cell growth

In order to determine the toxic levels of D-pen in HEK293 cells we performed Alamar Blue
assays. Initially a range of 1 to 400 uM of D-pen was tested which did not show any major
change in the viability (data not shown). Then a range of 250 to 650 uM of D-pen was further
examined however the results were variable for each repetition and it was not able to
accurately determine the toxic dose for D-pen. The aggregated data from 3 independent
experiments are presented at Figure 5.5A were no significant change was observed for any of
the tested concentrations of D-pen, however, the two-way ANOVA identified a small
difference amongst the different concentration which indicates that different concentration of
D-pen had a small impact on cell viability (p=0.039). The selection of the D-pen
concentration for further experiments was based on the Alamar Blue assays and an MTT
assay after 72 hours of treatment (data not shown) where concentrations above 400 uM D-pen
showed less than 80% viability. Based on the above criteria 350 UM D-pen was selected for

subsequent experiments.

The effects of 350 uM D-pen on cell growth using cell number, pH of the medium, and
viability were determined for 5 continuous days. The analysis revealed that the D-pen treated
cells did not show any significant change in the cell number (two-way ANOVA, p>0.05;
Figure 5.5B) or pH (two-way ANOVA, p>0.05; Figure 5.5C) compared to untreated cells.
However, a small but significant increase in viability by using Alamar Blue assay was
identified at Day 4 and 5 after 1 hour incubation with the substrate (two-way ANOVA,
p<0.01; Figure 5.5D).
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Figure 5.4 Toxicity and Growth Curve of TTM on HEK?293 cells.

(A) MTT assay was used for the determination of TTM toxicity (n=1). The presented results are representative of only one experiment in that range of
concentrations. The effects of 2 uM TTM on the (B) cell number, (C) pH of the cell growth medium and (D) viability by MTT assay were measured for
5 continuous days (n=2). Data were analysed with two-way ANOVA followed by Bonferroni post-test and *, p<0.05; **, p<0.01; ***, p<0.001.
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Figure 5.5 Toxicity and Growth Curve of D-pen on HEK293 cells.

(A) Alamar Blue assay was used for the determination of D-pen toxicity (n=3). The effects of the 350 uM D-pen on the (B) cell number, (C) pH of
the cell growth medium and (D) viability by Alamar Blue assay were determined for 5 continuous days (n=2). Data were analysed with two-way
ANOVA followed by Bonferroni post-test and *, p<0.05; **, p<0.01; ***, p<0.001.
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5.3.2 Effects of copper supplementation and chelation in cellular copper levels

In the next stage we wanted to determine the effects of copper supplementation and chelation
on the cellular copper levels and on the three intracellular copper pathways during a set time
period. All the cell experiments were performed in T175 cm? flasks in order to be able to
obtain enough cell/protein to conduct all the desired experiments. After treatment cells were
harvested at Day 1, 2 and 3, however in the first two time points the cell quantity was not
enough in order to conduct both metal analysis by ICP-MS and activity/protein analyses. For
that reason we were able to measure the intracellular copper levels only at Day 3.

Figure 5.6 presents the intracellular copper levels expressed two different ways as either
copper atoms per cell or as nmoles of copper per mg of total protein. Copper levels in the
spent medium are presented too. The results are aggregates from three independent
experiments and each treatment is presented compared to its respective experimental controls.
In order to identify statistical differences between controls and treated cells as well as
amongst different treatments, one-way ANOVA analysis was conducted followed by Tukey
post-test. The only exception was cell treated with 10 uM Cu(NOs3)./copper where a non-
parametric t-test (Mann-Whitney) had to be conducted in order to compare its levels with the
respective control cells since the copper treated samples failed to past an F-test for variances.
Any comparison amongst the other treatments and the copper treated cells was not possible
since the statistical test could not detect any difference due to the large standard deviation in

the copper treated cells which was masking any specific difference.

As can been seen from figure 5.6 A and B, the copper atoms/cell or nmoles/mg protein in the
different experimental controls was similar which indicates the reproducibility and
consistency of our experimental approach. Initially, by treating the HEK293 cells with copper
we were able to demonstrate a statistically significant increase in the intracellular Cu
atoms/cell and in the nmoles Cu/mg protein (nonparametric t test, p<0.0001). The
concentration of copper in the medium of the treated cells was around 10 uM, almost 60-
times more than in the medium of the untreated cells and in agreement with the initial added

copper concentration (nonparametric t-test, p<0.0001; Figure 5.6C).

The intracellular copper levels were also determined in the presence of different copper
chelators. For BCS we tested two different concentrations a 50 UM and 200 uM where both of
these showed a decrease by more than 80% of the intracellular copper levels, based on the two
determination methods, (one-way ANOVA, p<0.001; Figure 5.6A and B). The measured

intracellular copper levels were lower in the BCS treated cells however the copper
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concentration in the spent medium of the treated cells had higher copper levels compared to
untreated cells. The medium from the 50 uM BCS treatment showed a non-significant 40%
increase in copper levels (one-way ANOVA, p>0.05), whereas the 70% increase in copper
that was observed in the medium from the 200 uM BCS treated cells was significant (one-
way ANOVA, p<0.01). The medium from the 200 uM BCS treated cells had 20% more
copper than the 50 uM BCS treated cells however, the difference was not significant (one-
way ANOVA, p>0.05; Figure 5.6C).

Similar effects on the intracellular copper levels were observed when cells were treated with 2
MM TTM for 3 days. Both of the analyses showed that intracellular copper was significantly
decreased by more than 85% (one-way ANOVA, p<0.001 for Cu atoms/cell and p<0.01 for
nmoles Cu/mg protein; Figure 5.6A and B). However, the copper concentration in the spent
medium in the TTM treated cells was non-significantly decreased by over 60% (one-way
ANOVA, p>0.05; Figure 5.6C). At this point, we have to mention that even if the experiments
have been repeated three times in one of the repetitions a few samples were contaminated
with copper, for unknown reason, and for that reason we had to exclude the contaminated
samples from the final analysis. Also, one of the medium analysis for copper levels was
excluded as the ICP-MS machine was unable to detect any copper in the medium samples

which may be due to the performance of the machine or that particular batch of medium.

The last copper chelator, D-pen, was tested at a concentration of 350 UM over 3 days. The
ICP-M analysis for D-pen showed a small but non-significant 30% increase in intracellular
copper levels when calculated as Cu atoms/cell and a small non-significant 13% increase
when calculated as nmoles/mg protein (one-way ANOVA, p>0.05) compared to controls
(Figure 5.6A and B). The copper concentration in the medium of the D-pen treated cells was
reduced non-significantly by over 60% which may correlate with the slightly higher
intracellular copper levels (one-way ANOVA, p>0.05; Figure 5.6C). The D-pen treatments
were conducted and analysed at the same time as the TTM treated cells and similar problems
occurred during the analysis and for that reason the same exclusion criteria should be applied.
We identified differences in the intracellular copper levels amongst the tested copper
chelators or concentrations. In both ways of analyzing copper levels there was no difference
amongst the cell treated with 50, 200 uM BCS or 2 uM TTM (one-way ANOVA, p>0.05).
However, the copper levels in the D-pen treated cells were significantly higher compared to
the other chelators (one-way ANOVA, p<0.001; Figure 5.6A and B). No significant
difference was observed amongst the spent medium of the treated cells (one-way ANOVA,

p>0.05; Figure 5.6C).
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Figure 5.6 Copper Levels in HEK293 Cells Treated with
Copper or Chelating Agents.

Copper levels were measured by ICP-MS following exposure
of HEK293 cells to 10 uM Cu(NO3). (n=3), 50 uM BCS
(n=2), 200 uM BCS (n=3), 2 uM TTM (n=3) or 350 uM D-
pen (n=3) for 3 days. Results are presented compared to their
respective experimental control/untreated cells. The
intracellular copper levels are presented as (A) Cu atoms/cell
or (B) nmoles Cu/mg protein in cells. (C) Copper
concentration in the spent medium. Data for copper treatment
were analysed with a nonparametric t-test and the remaining
data with one-way ANOVA followed by Tukey post-test. *
indicates significant differences between control and treated
cells and # amongst different treatments. *, p<0.05; **,
p<0.01; *** or ###, p<0.001.



5.3.3 Effects of copper supplementation and chelation in the mitochondrial copper

pathway

Following copper or chelators exposure we analysed the cell lysates obtained from Day 1, 2
and 3 for activity levels of COX and CS as well as for the levels of mitochondrial-associated
proteins. In first instance we determined the activity levels of COX and CS by using 10 pg
cell extra for each assay and with all the samples representing a particular day assayed
together. In the next sections we only present results from Day 1 and 3 since no major
difference was observed between Day 2 and the other two time points.

5.3.3.1 Copper chelation causes significant inhibition of COX/CS activity

Figure 5.7 presents the COX/CS activity from Day 1 and 3 from the different treatments that
we tested compared to their respective experimental controls. We identified significant
decrease in COX/CS activity overtime only in the BCS and TTM treated cells.
Supplementation with copper did not have any major effect in the COX/CS activity with
activity increased non-significantly by 10% at Day 1 and 3 (one-way ANOVA, p>0.05). In
the BCS treated cells, COX/CS activity gradually decreased overtime since at Day 1 activity
was significantly reduced by 30-40% which led to further reductions by Day 3, to
approximately 80%, of control values compared to untreated cells (one-way ANOVA,
p<0.001). The two BCS concentrations (50 uM and 200 uM) showed similar activity on both
days with no significant difference observed between them (one-way ANOVA, p>0.05;
Figure 5.7A and B). Similar effects on COX/CS activity was also observed when cells were
treated with 2 uM TTM. At Day 1 in the TTM treated cells, COX/CS activity was
significantly reduced by 48% and by Day 3 the decrease reached over 80% of control activity
(one-way ANOVA, p<0.001). Treatment of cells with 350 uM D-pen did not show any
significant impact on the COX/CS activity either at Day 1 or 3 (one-way ANOVA, p>0.05).

We also compared the COX/CS activity amongst the different treatments where we identified
that the activity of the D-pen treated cells was significantly higher compared to BCS and
TTM treated cells on both days (one-way ANOVA p<0.001; Figure 5.7A and B). The copper
treated cells showed significantly higher activity only compared to BCS and TTM treated
cells but not to D-pen only at Day 3 (one-way ANOVA, p>0.05 at Day 1 and p<0.001 at Day

3, data not shown).
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Figure 5.7 COX/CS Activity in HEK293 cells Treated with Copper or Chelating Agents.

HEK?293 cells were treated with 10 uM Cu(NO3)2 (n=3), 50 uM BCS (n=2), 200 uM BCS
(n=3), 2 UM TTM (n=3) or 350 uM D-pen (n=3) for 1 or 3 days. The final COX/CS activity
from (A) Day 1 and (B) Day 3 is presented compared to respective experimental controls for
each treatment. Data were analysed with one-way ANOVA followed by Tukey post-test. *
indicates significant differences between control and treated cells and # amongst different
treatments. *** or ###, p<0.001.

In an attempt to identify the lowest BCS and TTM concentration that had the lowest impact
in COX/CS, we treated cells with 0.5 and 5 uM BCS and 0.5 uM TTM and measured the
activity at Day 3. We found that 0.5 uM BCS did not show any significant change in COX/CS
activity (one-way ANOVA, p>0.05) and 5 uM BCS only reduced by COX/CS activity by
40% (one-way ANOVA, p<0.001). The 0.5 uM TTM had a similar effect to the 2 uM
treatment since the COX/CS activity was significantly reduced to 80% of control (one-way

ANOVA, p<0.001, supplementary data Figure B.4A).

5.3.3.2 Changes in mitochondrial copper containing proteins after copper

supplementation or chelation

In order to further understand how copper supplementation and chelation effect both COX
and mitochondrial function we measured the protein levels of COX1 and COX2 and the levels
of mitochondria via VDAC1. We further decided to analyze Complex | protein levels since
several studies have shown that COX interacts and forms supercomplexes with Complex 1409
and so we determined the levels NDUFS1 and NDUFV1. Western blot analysis was
performed on two different data sets, the first one which contained control, 50 uM BCS, 200
MM BCS and 10 uM Cu(NOs)./copper treated HEK293 cells and the second one with control,
2 UM TTM and 350 uM D-pen from Day 1 and Day 3, respectively. The separation was based
on the way that the initial experiments were conducted. Since the two sets of treatments were

run on different gels, we were only able to compare with one-way ANOVA followed by
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Tukey post-test treatments that were run on the same gel. The results from the Western blot
analysis are presented as percentage change of the control/untreated cells and aggregates from
two independent experiments are shown. The third experimental replicate was not analysed

since no major difference was noticed between the first two analysed experiments.

The protein levels of COX1 and VDAC1 were measured from Day 1 and Day 3 in the
copper/BCS (Figure 5.8A) and TTM/D-pen (Figure 5.8B) treated cells. The densitometric
analysis showed that at Day 1 total COX1 protein levels did not change in the presence of any
of the treatments (one-way ANOVA, p>0.05; Figure 5.8C) compared to control cells. At Day
3 COX1 protein levels were significantly increased by 31% in the presence of copper (one-
way ANOVA, p<0.05) whereas a non-significant 22% and 15% decrease was observed in
cells treated with 50 and 200 uM BCS, respectively (one-way ANOVA, p>0.05). COX1
protein levels, at Day 3, were significantly decreased by 21% in cells treated with 2 uM TTM
(one-way ANOVA, p<0.01), whereas 350 uM D-pen did not show any significant effect (one-
way ANOVA, p>0.05; Figure 5.8D). The statistical analysis also showed that in the copper
treated cells at Day 3, COX1 protein levels were significantly higher compared to 50 and 200
UM BCS (one-way ANOVA, p<0.001). Similarly, the D-pen treated cells had higher COX1
protein levels relative to the TTM treated cells (one-way ANOVA, p<0.001; Figure 5.8D)
whereas at Day 1 no significant change was observed amongst the different treatments (one-
way ANOVA, p>0.05, Figure 5.8C).

Mitochondria levels, based on VDACI protein levels, did not seem to show any significant
change under the majority of the treatments. At Day 1 no change in VDACI protein levels
was observed in any of the treatments relative to the untreated cells (one-way ANOVA,
p>0.05; Figure 5.8E). However, at Day 3 in the D-pen treated cells, VDACL1 protein levels
were significantly increased by 12% relative to control cells (one-way ANOVA, p<0.05;
Figure 5.8F). No other significant change in VDACL levels amongst cells treated with copper,
BCS or TTM and their respective controls was observed. Next, changes amongst the different
treatments were examined at Day 1 and a significant increase in VDACLI protein levels was
observed in cells treated with D-pen compared to TTM (one-way ANOVA, p<0.01) whereas
at Day 3 there was a significant increase in VDAC1 protein levels in copper treated cells
compared to cells treated with 50 uM BCS (one-way ANOVA, p<0.01; Figure 5.8E and F).

For the COX1/VDACL1 an opposite trend was observed between the two time points for the
tested conditions. At Day 1 the ratio of COX1/VDACL1 was significantly increased by 21%,
13% and 21% in cells treated with copper, 50 and 200 uM BCS, respectively, compared to
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controls (one-way ANOVA, p<0.001 for copper treated and p<0.01 in the BCS treated; Figure
5.8G). In TTM and D-pen treated cells no change was observed in the COX1/VDACI ratio
(one-way ANOVA, p>0.05). At Day 3 the COX1/VDACI ratio was significantly decreased
by 19% and 25% in the 200 uM BCS and 2 uM TTM treated cells (one-way ANOVA, p<0.05
in the BCS and p<0.001 in the TTM) respectively, whereas in the copper, 50 uM BCS and D-
pen treated cells no change was observed (one-way ANOVA, p>0.05; Figure 5.8H). We also
examined if the COX1/VDACLI ratio changed amongst treatments where at Day 1 a
significant increase in cells treated with copper was seen compared to cells treated with 200
UM BCS (one-way ANOVA, p<0.05; Figure 5.8G). Similarly, at Day 3 the VDAC1/COX1
ratio was significantly higher in copper treated cells compared to both 50 and 200 uM BCS
treated cells (one-way ANOVA, p<0.01). Furthermore, cells treated with 350 uM D-pen
showed a higher COX1/VDACL ratio relative to TTM treated cells (one-way ANOVA,
p<0.001, Figure 5.8H).

150



A Day 1 Day 3 B Day 1 Day 3

COXT Muumummimmmen 08-S COXT S -
VDACT ™% e o o o o o o0 S e VDACT o o o o o o o e o -
GAPDH S5 asian o o e e — GAPDH == - ———— -

S ST S L& o F & &

N 2 A2 @ & A2 2 @ N Q O Q

< X & N » N [N < »

IS N ¥ oF &° oF & At o F
PR RS RS R

c COX1 Day 1 D COX1 Day 3

160 160-

140- 140 I
5120- 2\':;12()
2 100 5 100
H 3
< 807 < 80
= >
£ 60 g 60
Q [
© 40 & 404

20 20

o- oL ——

> > & > o > > o > W 3y .o > .o > > &
C Y OO & O P & & & oY & O & O C & &
FO & S &K GO &F&F S &
FF T F¢ ¢ FO FF T JT¢ J¢ O
Q&° S RN Vv o N B ) Vv o
oF i o oF > oS

E VDAC1 Day 1 F VDAC1 Day 3
160 160
140 FB—\ 140

g 120 g 120

g 100 g 100

2 g0 k]

° 80 : 80

g 60 g 60

[}

x40 € 40
20 20

0 0-

S 3 O P2 e S S & S N O 2 S & S S &
FO & SR KL & &£ <« o® & o & o C & &© &
& 0)@ S Fg S & &0 S & R & R & S & &
& B > v N & B ) v o
-&Q ay ,@‘7 v B

G COX1/VDAC1 Day 1 H COX1/VDAC1 Day 3
1601 # 160~

Kk k

140- 140

T 1204 = = 120-

£ 1001 s 100

] 3

< 80 ° 807

B >3

£ 60 g 60

[} [

@ 40 © 40
20 20

ol b Ll et 0-

SNy $E e S & Sy & SE S O
FO¥ FF FF & FO¥ FF FFP & & A
S S & F @& F T SN R F@ F¢ Fg
& S $ Vv o & o ) Vv o
oF % o o > oS

Figure 5.8 COX1 and VDACL Protein Levels in HEK293 Cells Treated with Copper or
Chelating Agents.

HEK293 cells were treated with 10 pM Cu(NO3)2, 50 uM BCS, 200 uM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NO3z)2 (n=2) and (B) 2 uM TTM or 350
UM D-pen (n=2) at Dayl and 3. Densitometric analysis of COX1 and VDAC1 normalized
with GAPDH at (C, E) Day 1 and (D, F) Day 3. Densitometric analysis of COX1 normalized
with VDACL at (G) Day 1 and (H) Day 3. Data were analysed with one-way ANOVA
followed by Tukey post-test. * indicates significant differences between control and treated
cells and # amongst different treatments. *, p<0.05; ** or ##, p<0.01; *** or ###, p<0.001.
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The protein levels of COX2 were also measured and representative Western blots from the
copper, BCS, TTM, or D-pen treated cells are presented in figure 5.9A and B. COX2 protein
levels showed a more than 65% protein loss at Day 1 in the BCS and TTM treated cells
relative to their respective controls (one-way ANOVA, p<0.001; Figure 5.9C). At Day 3 the
protein levels of COX2 disappeared completely from cells treated with 200 uM BCS and 2
MM TTM whereas in cell treated with 50 uM BCS only 12% of COX2 protein remained (one-
way ANOVA, p<0.001; Figure 5.9D). At Day 1 the copper treated cells showed a significant
26% decrease in COX2 protein levels compared to untreated cells (one-way ANOVA,
p<0.001) with at Day 3 presenting a non-significant increase of 11% (one-way ANOVA,
p>0.05; Figure 5.9C and D). By comparing the protein levels of COX2 amongst different
treatments we found that at Day 1 COX2 was significantly higher in the copper treated cells
relative to the BCS treated (one-way ANOVA, p<0.05 for the 50 uM BCS and p<0.001 for
the 200 uM BCS) and in the D-pen compared to TTM treated cells (one-way ANOVA,
p<0.01). Similar effects were also observed at Day 3 (one-way ANOVA, p<0.001; Figure
5.9C and D).

The normalized levels of COX2 with VDAC1 were also examined where similar results with
COX2 protein alone were obtained. At Day 1 the ratio of COX2/VDAC1 was significantly
decreased by 33%, 36% and 63% in the 50 uM BCS, 200 uM BCS and 2 uM TTM treated
cells compared to their respective controls (one-way ANOVA, p<0.001; Figure 5.9E). A
small non-significant 19% decrease in the COX2/VDACL ratio was observed in cells treated
with 350 uM D-pen (one-way ANOVA, p>0.05, Figure 5.9E). At Day 3 the COX2/VDAC1
ratio was negligible in cells treated with 200 uM BCS and 2 uM TTM whereas cells treated
with 50 UM BCS retained 10% of the normal COX2/VDAC1 ratio (one-way ANOVA,
p<0.001, Figure 5.9F). The COX2/VDACI ratio did not change in the copper or D-pen
treated cells at Day 3 (one-way ANOVA, p>0.05; Figure 5.9F). Comparing differences in the
COX2/VDACI ratio amongst the tested treatments showed that at both Day 1 and 3 the
COX2/VDACI1 ratio was significantly higher in the copper treated cells compared to the BCS
treated cells (one-way ANOVA, p<0.001) and also in the D-pen relative to the TTM treated
cells (one-way ANOVA, p<0.01 at Day 1 and p<0.001 at Day 3; Figure 5.9E and F).
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Figure 5.9 COX2 Protein Levels in HEK293 cells Treated with Copper or Chelating Agents.

HEK293 cells were treated with 10 pM Cu(NOs)2, 50 uM BCS, 200 pM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 pM Cu(NO3z)2 (n=2) and (B) 2 uM TTM or 350
UM D-pen (n=2) from Day 1 and 3. Densitometric analysis of COX2 normalized with
GAPDH at (C) Day 1 and (D) Day 3 as well as with VDAC1 at (E) Day 1 and (F) Day 3.
Data were analysed with one-way ANOVA followed by Tukey post-test.* indicates
significant differences between control and treated cells and the # amongst different
treatments. #, p<0.05; ##, p<0.01; *** or ###, p<0.00.
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Complex 1 is the largest enzyme of the oxidative phosphorylation system which catalyzes the
oxidation of NADH and reduction of ubiquinone, utilizing the energy generated by this
process to translocate protons across the mitochondrial inner membrane®®, Complex |
consists of over 44 different subunits, with seven encoded by the mitochondrial DNA and the
remaining from the nucleus®®?. Complex I is organized into three functional modules, the
dehydrogenase, the hydrogenase and the proton-translocation modules“®?, NDFUS1 and
NDUFV1 are nuclear encoded subunits which form the dehydrogenase module with NDUFS1
being the largest protein of the complex (75 kDa) and a component of the four iron-sulfur
clusters of the enzyme®®?. It may also form part of the active site where NADH is oxidized.
NDUFV1 is 51 kDa protein that carries the NADH-binding site as well as flavin
mononucleotide (FMN) and an iron-sulfur binding site%V,

Initially, we determined the protein levels of NDUFV1 in copper/BCS (Figure 5.10A) and the
TTM/D-pen (Figure 5.10B) treated groups of the cells from Day 1 and 3 where only small
changes were observed between treated and control cells. At Day 1 NDUFV1 protein levels
were significantly decreased by 22% and 19% in cells treated with copper (one-way ANOVA,
p<0.01) and 200 uM BCS (one-way ANOVA, p<0.05), respectively, however no significant
change was present in the other treatments compared to their respective controls (one-way
ANOVA, p>0.05; Figure 5.10C). At Day 3 NDUFV1 protein levels were higher by 17%, 27%
and 12% in the copper, 200 uM BCS and 350 uM D-pen treated cells, respectively, but the
changes were not significant (one-way ANOVA, p>0.05; Figure 5.10D). The rest treatments
did not show any significant difference relative to their control cells. When we examine if
NDUFV1 protein changed compared to different treatments no significant change was present
at Day 1 or 3 (one-way ANOVA, p>0.05; Figure 5.10C and D).

As a mitochondrial protein and also a major subunit of Complex I, NDUFV1 protein levels
were normalized to VDACL. The NDUFV1/VDACLI ratio was significantly decreased by
10% and 20% in cells treated with 2 uM TTM (one-way ANOVA, p<0.05) and 350 uM D-
pen (one-way ANOVA, p<0.001), respectively, at Day 1. A non-significant 13% decrease
was identified in cells treated with copper although no other significant changes were seen for
any other treatment (one-way ANOVA, p>0.05; Figure 5.10E). At Day 3 a non-significant
increase of 15% and 21% in the NDUFV1/VDACLI ratio was observed in cells treated with 50
or 200 uM BCS (one-way ANOVA, p>0.05), respectively. A 10% increase was also observed
in the D-pen treated cells though the change was not significant (one-way ANOVA, p>0.05;
Figure 5.10F). By comparing the NDUFV1/VDACL1 ratio amongst different treatments we

identified a significant change between the TTM and D-pen treated cells at Day 1, with the
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TTM treated cells presenting higher NDUFV1/VDACL ratio (one-way ANOVA, p<0.05;
Figure 5.10E). No significant change was observed amongst the other treatments at Day 1 or 3
(one-way ANOVA, p>0.05; Figure 5.10E and F).
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Figure 5.10 NDUFV1 Protein Levels in HEK293 cells Treated with Copper or Chelating
Agents.

HEK293 cells were treated with 10 pM Cu(NO3)2, 50 uM BCS, 200 pM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NO3z)2 (n=2) and (B) 2 uM TTM or 350
UM D-pen (n=2) at Day 1 and 3. Densitometric analysis of NDUFV1 normalized with
GAPDH at (C) Day 1 and (D) Day 3 as well as with VDAC1 at (E) Day 1 and (F) Day 3.
Data were analysed with one-way ANOVA followed by Tukey post-test. * indicates
significant differences between control and treated cells and # amongst different treatments. *
or #, p<0.05; **, p<0.01; *** | p<0.001.
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By visually examining the bands in the Western blot films it was obvious that the protein
levels of NDUFV1 in the controls were lower at Day 3 compared to Day 1. In order to
examine if there was an actual decrease in NDUFV1 protein levels throughout the
experimental period, the band intensity from Day 1 and Day 3 were plotted next to each other
for all the tested conditions and two-way ANOVA followed by Bonferroni post-test was used.
The statistical analysis revealed that time and different treatments had an impact of NDUFV1
or NDUFV1/VDACL protein levels (two-way ANOVA, p<0.0001). Figure 5.11 demonstrates
the relative protein levels of NDUFV1 and NDUFV1/VDACI ratio where we can see that
under all conditions the levels of NDUFV1 or NDUV1/VDAC1 were significantly decreased
at Day 3 compared to Day 1. NDUFV1 protein levels and NDUFV1/VDACLI ratio were
decreased by more than 50%, particularly in controls (two-way ANOVA, p<0.001) and in the
treated cells were decreased by 30-40% between Day 1 and 3.

[ Day1 B
Il Day3

%W W
illl

@ 9
\? ,]’Q‘

2.57 25, 5 [ Day 1

Il Day3
2.0
1.5 ’—A—‘
1.0
0.5 0.5 I
~

Relative protein levels of NDUFV1 »

0.0-

Relative protein levels of NDUFV1/VDAC1

& g P
& 3
&

S &
\“Q

Q

v’oo

Figure 5.11 Change of NDUFV1 Protein Levels Overtime in Controls, Copper or Chelating
Agent Treated HEK293 Cells.

Comparison of the relative protein levels of (A) NDUFV1 and (B) NDUFV1/VDCAL
between Day 1 and Day 3 for the next conditions: controls (n=2), 10 uM Cu(NO3)2 (n=2), 50
UM BCS (n=2), 200 uM BCS (n=2), 2 uM TTM (n=2) or 350 uM D-pen (n=2). Data were
analysed with two-way ANOVA followed by Bonferroni post-test and *, p<0.05; **, p<0.01;
*** p<0.001.

NDUFSL1 protein levels were also determined in both copper/BCS (Figure 5.12A) and
TTM/D-pen (Figure 5.12B) treated cell groups where no major changes were observed. At
Day 1 the NDUFS1 protein levels were significantly decrease by 14% in cells treated with
copper compared to controls (one-way ANOVA, p<0.05; Figure 5.12C). At Day 3 the change
in the copper treated cells was not apparent whereas in the 350 uM D-pen treated cells
NDUFSL1 protein levels were significantly increased by 20% (one-way ANOVA, p<0.01;
Figure 5.12D). In the remaining treatments no significant change was observed compared to

controls or amongst the different treatments at Day 1 and 3 (one-way ANOVA, p>0.05). Also,
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the NDUFS1/VDACIL ratio did not present any change between treated and controls cells
(one-way ANOVA, p>0.05) except at Day 3 where a significant increase in cells treated with
50 uM BCS was seen compared to copper treated cells (one-way ANOVA, p<0.01; Figure
5.12E and F).
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Figure 5.12 NDUFS1 Protein Levels in HEK293 cells Treated with Copper or Chelating
Agents.

HEK293 cells were treated with 10 pM Cu(NO3)2, 50 uM BCS, 200 uM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 puM Cu(NOz3)2 (n=1) and (B) 2 uM TTM or 350
UM D-pen (n=2) at Day 1 and Day 3. Densitometric analysis of NDUFV1 normalized with
GAPDH at (C) Day 1 and (D) Day 3 as well as with VDAC1 at (E) Day 1 and (F) Day 3.
Data were analysed with one-way ANOVA followed by Tukey post-test. * indicates
significant differences between control and treated cells and # amongst different treatments. *,
p<0.05; ** or ##, p<0.01.
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5.3.3.3 Mitochondrial bioenergetics in HEK?293 cells treated with copper chelators

The reduced COX activity and subunit protein levels indicate the presence of possible
dysfunction in the mitochondrial respiratory chain. In order to provide a better understanding
we utilized an available Seahorse assay in order to monitor the cellular respiration rate in a
multi-well format with attached cells. The Seahorse analyser can measure simultaneously the
proton and oxygen levels in a very small volume of medium above a monolayer of cultured
cells02-404) By measuring the oxygen consumption rate (OCR) in the cells, an indicator of
mitochondrial respiration, valuable knowledge about the physiological state of the cells and
the alterations of the state of those cells can be obtained. Cells have a second source of ATP
production via glycolysis where glucose is converted into lactate independently of oxygen.
The measurement of the produced lactic acid can be indirectly measured via the protons
released into the extracellular medium. Therefore, the extracellular acidification rate (ECAR)
obtained from a Seahorse assay reflects the glycolytic function in the cells.

The cell respiratory control was measured in the presence of 50 uM BCS, 200 uM BCS, 0.5
MM TTM, 2 uM TTM and 10 uM Cu(NOz)./copper after three days of treatment since this
time point showed the highest loss of COX/CS activity and protein levels. The OCR
(pmoles/min/ug protein) and the ECAR (mpH/min/ug protein) for all the treatments were
analysed and plots were generated in order to identify changes in mitochondrial respiration
and glycolysis. Figure 5.13 presents the graphical representation of OCR and ECAR under the
studied conditions. The basal ECAR was calculated as the average rate of the three time
points before the addition of oligomycin which blocks the mitochondrial ATP synthase®“®)
where a non-significantly increase of 0.5 mpH/min/ug protein in cells treated with 200 uM
BCS was observed (one-way ANOVA, p>0.05) whereas in the 2 uM TTM treated the 1.5
mpH/min/ug protein increase was statistical significant (one-way ANOVA, p<0.05; Figure
5.14D). The higher ECAR indicates the preference of the cells for using glucose for
glycolysis which is also in agreement with the results we obtained by measuring the medium
pH under the same conditions (Figure 5.3C, 5.4C and 5.13D, E). Cells treated with copper did
not present any significant change in the ECAR levels (Figure 5.13F and 5.14D).
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Figure 5.13 Cell Respiratory Control in HEK293 cells after 3 Days Treatment with Copper or Chelating Agents as Determined by the Seahorse Mito
Stress Kit.

Graphical representation of the OCR and ECAR in cell treated with (A and D) 50 or 200 uM BCS, (B and E) 0.50r 2 uM TTM and (C and F) 10 uM
Cu(NOz)2, respectively. The assay was repeated once under the present condition however a pilot study had been conducted before which showed
similar results with the one that is currently reported.
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By visually inspecting the graphical representation of the OCR small changes in the areas that
correspond to maximal respiration or spare capacity in the TTM and copper treated cells were
seen (Figure 5.13A to C). The data from the Seahorse analyser were subjected to the XF
Stress Test Report Generator where we were able to calculate the basal respiration, proton
leak, maximal respiration, spare respiratory capacity, non-mitochondrial respiration, ATP
production and coupling efficiency. All the above measured modules provide indications of
mitochondrial function and are presented in Figure 5.14.

The results were analysed with one-way ANOVA followed by Tukey post-test where
significant changes were only observed in the spare respiratory capacity and in the coupling
efficiency. Basal respiration is mainly controlled by the ATP production and proton leak®
and showed a non-significant increase of 12% and 8% in cells treated with 50 uM BCS and
copper, respectively (one-way ANOVA, p>0.05; Figure 5.14A). The ATP production in the
cells is estimated by the decrease in respiration on inhibition of the ATP synthase after the
addition of oligomycin. Our results showed that when cells were treated with 50 uM BCS and
copper, a non-significant increase of 15% and 9%, respectively, occurred in the ATP
production (one-way ANOVA, p>0.05; Figure 5.14A). By measuring respiration in the
presence of oligomycin we were able to directly measure the proton leak rate across the
mitochondrial membrane in situ. The analysis revealed the presence of a non-significant
decrease of 14% and 16% in proton leak when cells were grown in the presence of 200 uM
BCS and 2 uM TTM (one-way ANOVA, p>0.05; Figure 5.14A).

The maximal respiration which depends on the addition of the uncoupler FCCP was
determined by using two injections of FCCP (0.5 uM each) in order to achieve a gradually
and fully uncontrolled respiration and yet limiting the drop of the Dym. The calculated
maximal respiration was increased by 22% in the cells treated with 2 uM TTM with the
change not being significant possibly due to the high standard deviation (one-way ANOVA,
p>0.05; Figure 5.14B). A small non-significant increase in maximal respiration was observed
in the cells treated with 50 uM BCS and 0.5 uM TTM (one-way ANOVA, p>0.05). The spare
respiratory capacity reflects the ability of substrate supply and electron transport in response
to an increased energy demand®“” which under the experimental conditions presented a
significant 55% increase in cells treated with 2 uM TTM (one-way ANOVA, p<0.05; Figure
5.14B). A small non-significant increases were present in the remaining treatments such as in
the 0.5 uM TTM treated cells where the spare capacity was higher by 18% (one-way
ANOVA, p>0.05). Significant changes in spare capacity were observed with cells treated with
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2 UM TTM compared to cells treated with 200 uM BCS and copper (one-way ANOVA,
p<0.05; Figure 5.14B).

In cells, non-mitochondrial respiration accounts for 10% of the total respiration and is due to
various desaturase and detoxification enzymes®®®. A small non-statistical increase in the non-
mitochondrial respiration rate was present with all treatments for example, cells treated with
50 uM BCS and 2 uM TTM showing up to an 13% increase (one-way ANOVA, p>0.05;
Figure 5.14B).

From the data we were also able to calculate the coupling efficiency which shows the fraction
of the basal mitochondrial oxygen consumption that is derived from the ATP synthase. The
coupling efficiency is different amongst cell types for example hepatocytes have
approximately 70% and pancreatic B-cells 30%“%® 419, The coupling efficiency of the
HEK?293 was determined as 79% and a significant increase of 2-3% was observed in the cells
treated with BCS (one-way ANOVA, p<0.01) and TTM (one-way ANOVA, p<0.001) with
the changes in all four treatments being significant. In the copper treated cells no change was
observed compared to the untreated cells (one-way ANOVA, p>0.05), however, its coupling
efficiency was significantly lower when compared to the TTM treated cells (one-way
ANOVA, p<0.05 for 0.5 uM TTM and p<0.01 for 2 uM TTM; Figure 5.14C).

In order to obtain a full understanding of mitochondrial function under the tested experimental
conditions we measured the mitochondrial mass by staining the cells with MitoTracker green.
MitoTracker green is mainly used in flow cytometry to identify mitochondrial mass due to its
ability to become fluorescent when it is accumulated in the mitochondrial lipid
environment®? with accumulation being independent of the Dym®*'?). HEK293 were treated
with 200 uM BCS, 2 uM TTM, 350 uM D-pen and 10 uM Cu(NOs)./copper for 3 days and
by using flow cytometry, we determined their effects on MitoTracker green fluorescence
intensity. The emission of MitoTracker green was measured in single cell populations (Figure
5.15A) and initially histograms were plotted for MitoTracker green fluorescence emission
(488/530-30) where no major differences were observed (Figure 5.15B-F). The measured
mean fluorescence intensity was used to conduct statistical analysis in order to identify if
there was any significant change in mitochondrial mass after the cell treatment. Figure 5.15G
presents the percentage change of MitoTracker green intensity where no significant change
was observed in any of the used treatments compared to untreated cells or amongst the
different treatments (one-way ANOVA, p>0.05). However, it is worth mentioning that the

mitochondrial mass as indicated by the MitoTracker green intensity, was lower by 22% and
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17% in cells treated with 200 uM BCS and 2 uM TTM, respectively. Under the same
experimental conditions the mitochondrial levels as determined by VDACL protein analysis
did not present any major change (Figure 5.8F). The small variation between the two methods
might be due to the fact that Western blotting is a semi-quantified method whereas FACS is
fully quantified.
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Figure 5.14 OCR and ECAR Comparison in HEK293 cells after 3 Days Treatment with
Copper or Chelating Agents for the Different Respiratory Chain Modules.

Graphical representation of (A) the basal respiration, ATP production and proton leak, (B)
maximal respiration, spare (respiratory) capacity and non-mitochondrial/non-mito respiration
as well as (C) coupling efficiency in cells treated with 50 uM BCS, 200 uM BCS, 0.5 uM
TTM, 2 uM TTM or 10 uM Cu(NOs).. The reported values were calculated from the obtained
data from the analyser which subsequently applied to the XF Mito Stress Test Report
Generator. (D) Basal ECAR was calculated by combining the average of the three time points
before the addition of oligomycin. Data were analysed with one-way ANOVA followed by
Tukey post-test. * indicates significant differences between control and treated cells and #
amongst different treatments. #, p<0.05; ** or ##, p<0.01; ***, p<0.001.
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Figure 5.15 Flow Cytometry Analysis using MitoTracker green in HEK293 cells Treated with Copper or Chelating Agents.

HEK?293 cells were treated with 200 uM BCS, 10 uM Cu(NOs3)2, 2 UM TTM or 350 uM D-pen for 3 days and then treated with MitoTracker Green and
analysed by using flow cytometry. (A) Single cell populations were gated for the analysis by using the forward scatter light (FCS) and side scatter light
(SCS). In the single cell population the MitoTracker fluorescence intensity was determined. Representative histograms of Mito Tracker emission for (B)
control cells and cell treated with (C) 200 uM BCS, (D) 2 uM TTM, (E) 350 uM D-pen and (F) 10 uM Cu(NO:s)2. (G) Percentage change of the
MitoTracker mean intensity amongst the different treatments. Data were analysed with one-way ANOVA followed by Tukey post-test were no
statistical change was observed.
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5.3.4 The effects of copper supplementation and chelation in the cytosolic copper

pathway

5.3.4.1 Copper chelation severely affects SOD activity in HEK293 cells

After the determination of COX and CS activities, the same cell extracts were used for the
determination of SOD activity. The total SOD activity was measured at Day 1 and 3 in cells
treated with 10 uM Cu(NO3)2/copper, 50 uM BCS, 200 uM BCS, 2 uM TTM or 350 uM D-
pen with significant activity loss found in cells grown in the presence of BCS or TTM.

At Day 1 SOD activity was significantly decreased by 55% in the BCS treated cells (one-way
ANOVA, p<0.001) compared to control whereas the TTM treated cells showed a much more
severe loss of SOD activity with activity decrease by 87% (one-way ANOVA, p<0.001). D-
pen showed a minor effect on SOD activity with a significant 8% decrease (one-way
ANOVA, p<0.05) probably due to the small standard deviation in both D-pen treated cells
and controls. The impact of a small or higher standard deviation in the statistical analysis can
be seen in the case of copper treated cells since the 8% increase was not significant due to a
higher standard deviation (one-way ANOVA, p>0.05). The difference in SOD activity
amongst the different copper chelators was examined where we found that cells treated with
350uM D-pen had significantly higher SOD activity compared to the BCS or TTM treated
cells (one-way ANOVA, p<0.001). At Day 1 SOD activity was significantly higher in cells
treated with 200 uM BCS relative to TTM treated cells (one-way ANOVA, p<0.05; Figure
5.16A). The copper treated cells also had higher SOD activity relative to the BCS and TTM
treated cells but not to D-pen treated cells (one-way ANOVA, p<0.001, data not shown).

SOD activity at Day 3 exhibited an even greater loss in the TTM and BCS treated cells since
67% decrease in the 50 UM BCS and an 82% decrease in the 200 uM BCS treated cells was
observed with both changes being significant compared to untreated cells (one-way ANOVA,
p<0.001). In TTM treated cells there was only 10% of SOD activity remaining (one-way
ANOVA, p<0.001). The copper and D-pen treated cells did not show any change in total SOD
activity (one-way ANOVA, p>0.05). Next we examined if there were changes in SOD
activity amongst the different copper chelators with the analysis showing that D-pen treated
cells had higher activity relative to the BCS and TTM treated cells (one-way ANOVA,
p<0.001). No significant difference was observed amongst the BCS and TTM treated cells
(one-way ANOVA, p>0.05; Figure 5.16B). SOD activity in the copper treated cells was also
significantly higher than the BCS and TTM treated cells (one-way ANOVA, p<0.001) but not

compared with the D-pen treated cells (one-way ANOVA, p>0.05, data not shown).
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Figure 5.16 Total SOD Activity in HEK293 cell Treated with Copper or Chelating Agents.

Total SOD activity was determined in HEK293 cells treated with either 10 uM Cu(NOz3)
(n=3), 50 uM BCS (n=2), 200 uM BCS (n=3), 2 uM TTM (n=3) or 350 UM D-pen (n=3) at
(A) Day 1 or (B) Day 3. Data were analysed with one-way ANOVA followed by Tukey post-
test. * indicates significant differences between control and treated cells and # amongst
different treatments. #, p<0.05; *** or ###, p<0.001.

In order to determine the concentration of BCS and TTM that had the lowest impact in SOD
activity a test experiment was run where cells were grown in the presence of 0.5 and 5 uM
BCS and 0.5 uM TTM for 3 days. The measured SOD activity in the cell lysates showed that
when BCS concentration was decreased an order of magnitude it induced an approximate
doubling of SOD activity. For example at 50 uM BCS SOD activity was approximately 2.8
U/mg but at 5 uM BCS SOD activity was around 6 U/mg and at 0.5 uM BCS around 10
U/mg. The 35% decrease in SOD activity in cells treated with 5 uM BCS was also significant
(one-way ANOVA, p<0.01) whereas in the 0.5 uM BCS it was not considered significant
(one-way ANOVA, p>0.05). Cells treated with 0.5 uM TTM still showed greater than 80%
decrease in total SOD activity even if the TTM concentration was quartered (one-way
ANOVA, p<0.001, see supplementary Figure B.4B).

5.3.4.2 No change in the cytosolic copper binding protein levels following copper or

copper chelator treatment

The protein levels of CCS, SOD1 as well as SOD2 were determined using the established
experimental conditions and in general, no significant changes were observed for SOD
proteins with only mirror changes to CCS protein. CCS protein levels from Day 1 and 3 were
determined in the copper/BCS (Figure 5.17A) and TTM/D-pen (Figure 5.17B) treated cell
groups. At Day 1 CCS protein levels were significantly increased by 43% in cells treated with
200 uM BCS (one-way ANOVA, p<0.01) with a smaller non-significant 12% increase in
cells treated with 50 uM BCS (one-way ANOVA, p>0.05) being present too. TTM and D-pen
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did not seem to have similar effects on CCS levels since no significant changes was seen
(one-way ANOVA, p>0.05). Supplementing cells with copper showed a significant 32%
increase of CCS protein levels (one-way ANOVA, p<0.05). By examining if there were
changes amongst the different treatments we found that at Day 1 cells treated with 200 uM
BCS had higher CCS protein levels compared to cells treated with 50 uM BCS (one-way
ANOVA, p<0.01; Figure 5.17C). At Day 3 no significant change was seen between control
and treated cells or amongst different treatments (one-way ANOVA, p>0.05; Figure 5.17D).
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Figure 5.17 CCS Protein Levels in HEK293 cell Treated with Copper or Chelating Agents.

HEK293 cells were treated with 10 pM Cu(NO3)2, 50 uM BCS, 200 pM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
HEK293 cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NOs), (n=1) and (B) 2 uM
TTM or 350 uM D-pen (n=1) at Day 1 and 3. Densitometric analysis of CCS normalized with
GAPDH at (C) Day 1 and (D) Day 3. Data were analysed with one-way ANOVA followed by
Tukey post-test. * indicates significant differences between control and treated cells and #
amongst different treatments. * or #, p<0.05; **, p<0.01.

Next we determined the protein levels of SOD1 at Day 1 and 3 in copper/BCS (Figure 5.18A)
or TTM/D-pen (Figure 5.18B) treated cell groups. The statistical analysis revealed the
absence of any significant change in SOD1 protein levels with any of the treatments
compared to untreated cells or amongst the different treatments at Day 1 (one-way ANOVA,
p>0.05; Figure 5.18C). At Day 3 SOD1 protein levels were significantly decreased by 10% in
cells treated with 350 UM D-pen (one-way ANOVA, p<0.05). Cell treated with 200 uM BCS

also showed a 13% loss of SOD1 protein levels compared to controls but the change was not
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significant (one-way ANOVA, p>0.05). At Day 3 no other changes were observed in SOD1
protein levels (one-way ANOVA, p>0.05; Figure 5.18D).
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Figure 5.18 SOD1 Protein Levels in HEK293 cells Treated with Copper or Copper Chelators.

HEK293 cells were treated with 10 pM Cu(NO3)2, 50 uM BCS, 200 pM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 pM Cu(NO3z)2 (n=1) and (B) 2 uM TTM or 350
MM D-pen (n=1) at Day 1 and 3. Densitometric analysis of SOD1 normalized with GAPDH at
(C) Day 1 and (D) Day 3. Data were analysed with one-way ANOVA followed by Tukey
post-test. * indicates significant differences between control and treated cells. *, p<0.05.

SOD2 protein levels were also determined at Day 1 and 3 in cells treated with copper/BCS
(Figure 5.19A) and TTM/D-pen (Figure 5.19B). No significant change was observed in SOD2
protein levels at Day 1 or 3 either compared to controls or amongst different treatments (one-
way ANOVA, p>0.05; Figure 5.19C and D). Since SOD2 is so important for the mitochondria
antioxidant defense system its levels were also normalized with VDACL1. At Day 1 the
SOD2/VDACLI ratio did not change under any of the tested conditions however in the TTM
treated cells the ratio was non-significantly lower by 29% (one-way ANOVA, p>0.05; Figure
5.19E). At Day 3 SOD2/VDACI ratio seemed to be significantly higher by 22% in cells
treated with 200 uM BCS (one-way ANOVA, p<0.01), however, no other treatment showed
any change relative to their control (one-way ANOVA, p>0.05). Also, by comparing the
different treatments we identified that cells treated with 200 uM BCS had higher
SOD2/VDCAL ratio compared to ones treated with 50 uM BCS (one-way ANOVA, p<0.01;
Figure 5.19F).
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Figure 5.19 SOD2 Protein Levels in HEK293 cells treated Copper or Chelating Agents.

HEK293 cells were treated with 10 pM Cu(NOs)2, 50 uM BCS, 200 pM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NO3z)2 (n=2) and (B) 2 uM TTM or 350
UM D-pen (n=2) at Day 1 and 3. Densitometric analysis of SOD2 normalized with GAPDH at
(C) Day 1 and (D) Day 3 as well as with VDACL at (E) Day 1 and (F) Day 3. Data were
analysed with one-way ANOVA followed by Tukey post-test. * indicates significant
differences between control and treated cells and # amongst different treatments. ** or ##,
p<0.01.
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5.3.5 Increased production of mitochondrial derived superoxide anions in BCS and
TTM treated cells

The mitochondrial dysfunction and the decrease in SOD activity in the BCS and TTM treated
cells led us to investigate if the mitochondria produced superoxide anions change under these
conditions. In order to measure the superoxide anions in the treated cell flow cytometry was
employed along with staining cells with MitoSOX red, a fluorogenic dye selective for
mitochondrial superoxide in live cells®'®. MitoSOX red localizes into cellular mitochondria
where it is readily oxidized by superoxide anions but not by other sources of reactive oxygen

or nitrogen species“!?),

The mitochondrial superoxide anions were measured in cells treated with 200 uM BCS, 2 uyM
TTM, 350 uM D-pen and 10 uM Cu(NOs). as well as in cells treated with 5 uM H2O> as a
positive control. Cells were stained with MitoSOX red after 3 days of treatment prior to
analysis with flow cytometry. Figure 5.20A to F presents the histograms from the different
treatments where a shift and a second peak is observed in the BCS and TTM treated cells. The
mean fluorescence of MitoSOX red (488/ 585-42) was then applied and analysed in order to
identify changes amongst the different treatments and the control. Mitochondrial superoxide
anions were significantly higher by 52% and 83% in the BCS (one-way ANOVA, p<0.05)
and TTM (one-way ANOVA, p<0.001) treated cells, respectively, compared to control cells.
In the copper treated cells a non-significant 19% increase was observed (one-way ANOVA,
p>0.05), but in the D-pen treated cells no change in the mitochondrial superoxide anions was
observed (one-way ANOVA, p>0.05). We also determined if the levels of superoxide anions
were different amongst the treatments where we found that in the BCS (one-way ANOVA,
p<0.05) and TTM (one-way ANOVA, p<0.001) treated cells superoxide anions were
significantly higher compared to copper treated cells. Also, the TTM treated cells produced
higher levels of mitochondria derived superoxide anions relative to D-pen treated cells (one-
way ANOVA, P<0.01; Figure 5.20G).
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Figure 5.20 Flow Cytometry Analysis of Mitochondrial Superoxide Production in HEK293
cells Treated with Copper or Chelating Agents.

Representative histograms of MitoSOX red emission for (A) control cells and cells treated with
(B) 200 uM BCS, (C) 2 uM TTM, (D) 350 uM D-pen, (E) 10 pM Cu(NOs). and (F) H20.. (G)
Percentage change of the MitoSOX red mean intensity amongst the different treatments. Data
were analysed with one-way ANOVA followed by Tukey post-test where H>O2 was not taken
into consideration. * indicates significant differences between control and treated cells and #
amongst different treatments. * or #, p<0.05/ ##, p<0.01/ *** or ###, p<0.001.
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5.3.6 Copper supplementation or chelation effects on the copper secretory pathway

From the copper secretory pathways we were only able to determine the protein levels of
Atox1 and ATP7a in the HEK293 cells. The cells did not express many of the copper binding
enzymes such as PAM or lysisl oxidase. Initially, we measured the protein levels of Atox1 at
Day 1 and 3 in cells treated with copper/BCS (Figure 5.21A) or TTM/D-pen (Figure 5.21B).
At Day 1 no significant change was observed in the protein levels of Atox1 under any of the
conditions compared to controls or amongst different treatments (one-way ANOVA, p>0.05)
with only a small non-significant decrease in Atox1 protein levels (14-19%) being observed
in the BCS and TTM treated cells (one-way ANOVA, p>0.05; Figure 5.21C). At Day 3,
Atox1 protein levels were significantly decreased by 24% in cells treated with copper (one-
way ANOVA, p<0.01) and also decreased by 25% following 200 uM BCS treatment (one-
way ANOVA, p<0.01). Cells treated with 350 uM D-pen showed a significant 43% increase
in Atox1 protein levels compared to control (one-way ANOVA, p<0.05). At Day 3 Atox1
levels were higher by 32% in the TTM treated cells relative to controls but the change was not
significant (one-way ANOVA, p>0.05; Figure 5.21D). Next we examined if there were
changes amongst the different treatments although there were no significant changes observed
at Day 1 (one-way ANOVA, p>0.05), at Day 3, cells treated with 50 uM BCS had higher
Atox1 protein levels compared to cells treated with 200 uM BCS (one-way ANOVA, p<0.05;
Figure 5.21C and D).

Finally, ATP7a protein levels were determined at Day 1 and 3 in the copper/BCS (Figure
5.22A) and TTM/D-pen (Figure 5.22B) treated cell where minor changes were only observed
at Day 3. No significant change in ATP7a protein levels was observed at Day 1 with the only
change being a small non-significant 13% decrease in the copper treated cells (one-way
ANOVA, p>0.05; Figure 5.22C). At Day 3 ATP7a protein levels were significantly higher by
20% in the copper treated cells compared to controls (one-way ANOVA, p<0.05). The
remaining of the treatments did not show any significant change except of a small non-
significant 12% increase of ATP7a protein levels in the D-pen treated cells (one-way
ANOVA, p>0.05; Figure 5.22D). The comparison amongst different treatments did not reveal
any change at Day 1 but at Day 3 ATP7a protein levels were significantly higher in the copper
treated cells relative to the ones treated with 200 uM BCS (one-way ANOVA, p<0.05; Figure
5.22C and D).
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Figure 5.21 Atox1 Protein Levels in HEK293 cell treated with Copper or Chelating Agents.

HEK?293 cells were treated with 10 uM Cu(NOs)2, 50 uM BCS, 200 uM BCS, 2 uM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NOs)2 (n=1) or (B) 2 uM TTM or 350
MM D-pen (n=1) at Day 1 and 3. Densitometric analysis of Atox1 normalized with GAPDH at
(C) Day 1 and (D) Day 3. Data were analysed with one-way ANOVA followed by Tukey
post-test. * indicates significant differences between control and treated cells and # amongst
different treatments. * or #, p<0.05; **, p<0.01.
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Figure 5.22 ATP7a Protein levels in HEK293 cell treated with Copper or Chelating Agents.

HEK?293 cells were treated with 10 uM Cu(NOs)2, 50 uM BCS, 200 pM BCS, 2 yM TTM
and 350 uM D-pen for 1 or 3 days and proteins extracted. Representative Western blots from
cells treated with (A) 50, 200 uM BCS or 10 uM Cu(NOs)2 (n=1) and (B) 2 uM TTM or 350
MM D-pen (n=1) at Dayl and 3. Densitometric analysis of ATP7a normalized with GAPDH at
(C) Day 1 and (D) Day 3. Data were analysed with one-way ANOVA followed by Tukey
post-test. * indicates significant differences between control and treated cells and # amongst
different treatments. * or #, p<0.05.
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5.4 Discussion

Our data analysis from the AD and the ageing brains has shown that the brain faces copper
deficiency however the activity of two of the most important copper containing enzymes for
the cell survival, SOD and COX, do not seem to be affected. In order to investigate if the
effects of copper deficiency in the brain are correlated more with pathology and the brain’s
energy demands or with cell type requirements we used the model cell line HEK293 to study
the effects of both copper deficiency and supplementation. Studies have shown that different
mammalian cell lines possess different intracellular copper chelating capacity and that some
cells can tolerate higher copper levels*32. For that reason we initially determined the toxic
levels of both copper and specific chelators in the HEK293 cells.

Generally, we observed that HEK293 cells can tolerate up to 40 uM copper in their growth
medium which is lower when compared to other cells lines such as MEFs where studies have
used more than 150 UM copper or in SH-SY5Y which can tolerate up to 300 uM copper®?”:
414 Since we wanted to avoid cytotoxicity and subsequent effects on protein expression, 10
MM of copper was selected for experimental usage (Figure 5.2A). We also showed that cells
can well tolerate BCS since toxicity first started to appear at over 1 mM which is well above
what has been used in other studies (Figure 5.3A). Normally, studies with MEFs or K562
cells, have used BCS concentrations from 10 to 30 up to 200 M, since we wanted also to be

able to compare our results with published data, we used 200 pM BCS?27:415),

Whilst BCS is considered to have the highest chelation affinity for copper®® it required more
than 400 uM in order to see a significant effect on cell viability whereas with TTM, similar
effects were observed with only 4 uM TTM which is almost 100 times less than BCS (Figure
5.3A and 5.4A). Other cell lines such as human umbilical vein endothelial cells (HUVEC) or
cancer cells (YPEN-1/ ECC-1) show similar toxicity for TTM since they showed decrease
viability at concentrations around 5 uM®% 417 Taking our results and other published studies
into consideration 2 UM TTM was selected experimentally. D-pen did not present any major
toxic effect in the HEK293 cells up to the concentrations that we tested (650 uM; Figure
5.5A) similarly studies with MCF-7 or HL-60 cells did not show any effect on viability when
cells were treated with up to 400 puM D-pen®:-397)_In order to select a concentration to
continue experimentally with D-pen we also used the MTT assay which is used as an
indicator of mitochondrial function, we were able to identify that concentrations around 350

UM can cause small changes in the cell viability or mitochondrial function.
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5.4.1 Shift to glycolysis for energy production in cells treated with BCS or TTM

Mammalian cell lines require constant availability of carbon, nitrogen, energy (ATP) and
reductant (NADPH) in order to sustain their anabolic function® 4, The main source of
energy in the cells is from mitochondrial oxidative phosphorylation which utilizes glucose in
order to produce up to 36 moles of ATP however, cells contain a second source of ATP from
glycolysis where glucose can be converted to lactate to generate 2 moles of ATP ), Under
normal condition in cells, 57% of ATP derives from oxidative phosphorylation, 38% from
glycolysis and 5% from substrate level phosphorylation within the Krebs cycle®®®, Cells will
turn to glycolysis as a main source of energy production if mitochondrial oxidative
phosphorylation is inhibited. The shift to glycolysis is associated with an increase in lactate
production®® which can be easily detected visually by changes in the cell medium when it
contains phenol red as an observed colour change. Phenol red is turned yellow when the pH in
the medium is below 7. Normally during glycolysis, lactate protons are generated which
decreases cellular pH“?9), A significant change in medium pH was observed only in cells
treated with 200 uM BCS and 2 uM TTM after 3 days (Figure 5.3C and 5.4C). We normally
observed a decrease in medium pH in control cells which is considered normal since the cells
utilize the glucose in the medium for their growth. However, in the BCS and TTM treated
cells that decrease was noticeably higher since they differed by up to 0.6 pH units (Figure
5.3C and 5.4C). The shift toward glycolysis was further established when we measured the
ECAR rate in cells treated with BCS and TTM where an increase in the rate was observed
even before the addition on oligomycin in the cells which blocks the ATP synthase and shifts
the energy production toward glycolysis (Figure 5.13D, E and 5.14D). A study from Cooper
et al. in feline cardiomyocytes have also shown that ECAR was increased in the presence of

potassium cyanide which completely inhibits the COX activity®?Y,

In order to ensure that the change in pH was a result of shifting to glycolysis for energy
production and not an increase in growth rate of the treated cells we also measured the cell
number under the same conditions where we found that both TTM and BCS inhibit cell
growth. In addition to showing that the pH change from Day 3 in the presence of both
chelators, the cells also enter a stationary phase at different time points. The BCS treated cells
stopped growing from Day 4 whereas in the TTM treated cells stopped from Day 3 (Figure
5.3B and 5.4B). Furthermore, the BCS treated cells started dying at Day 5 whereas the TTM
treated cells continue growing but at a very slow rate. It is worth mentioning that in both

treatments the cell number is approximately half of what is observed in the untreated cells.
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To the best of our knowledge, no other study has measured the extracellular pH or cell growth
of HEK293 cells in the presence of these two copper chelators however there are some studies
that have measured the effect of copper chelation on the cell growth of different cell lines. In
one of these K562 cells were treated with different concentrations of BCS which showed an
inhibition of cell growth from Day 3 when cells were treated with 30 uM BCS“!®, TTM was
also able to inhibit cell growth and proliferation in both BCT3 and ovarian carcinoma A2780

cell only after 2 days of treatment*??,

The inhibition of cell growth can be attributed to either reduced energy/ATP levels or due to
inhibition of proteins that regulate the cell cycle. Mitosis is a highly energetically demanding
process which is mainly fulfilled by oxidative phosphorylation and secondarily by
glycolysis®?®). Based on the shift towards glycolysis, which produces enough ATP only to
sustain cell survival, cells appear to be placed in cycle arrest since cells are unable to produce
sufficient ATP for cell division. It is also worth mentioning that BCS after Day 5 might
trigger the apoptotic pathway in the cells since a decrease in cell number is observed.
Mitochondrial malfunction and an increase in oxidative stress can trigger programmed cell
death and based on our finding BCS treated cells exhibit both of these which could eventually

lead to apoptosis after prolonged exposure to BCS.

Furthermore, in the presence of BCS and TTM we measured the cell viability however, since
we used different methods for its determination we cannot make direct comparisons. In the
BCS treated cells an increase in fluorescence intensity was observed from Day 3 which was
further increased by Day 5 (Figure 5.3D). The increased absorbance suggests that in the BCS
treated cells more rezasurin is reduced to resorufin which implies that more electrons are
available for its reduction. Increased Alamar Blue (rezasurin) reduction probably signifies
some form of metabolic impairment coming from mitochondria since Alamar Blue is mainly
reduced by molecules that belong to the ETC (NADPH, FADH, cytochromes etc). On the
other hand, in the TTM treated cells a decrease in MTT reduction was observed from Day 4
which correlates with either lower cell levels or potentially indicates that the cells have lower

reducing power coming from metabolic changes in the mitochondria (Figure 5.4D).

BCS and TTM showed similar effects on the pH and cell number but the BCS treated cells
appear to reduce more Alamar Blue whereas the TTM treated less MTT. The only difference
between the two dyes is that Alamar Blue can be reduced by cytochromes but MTT is not able
to do this. Taking into consideration the decreased COX/CS activity in the BCS or TTM

treated cells (Figure 5.7) we can assume that there is more available cytochrome ¢ which can

176



be used to reduce the Alamar Blue and that is why there is an observed higher reduction of
Alamar Blue in the BCS treated cells. The current study appears to be the only study which
has measured the effects of TTM and BCS for prolonged periods on cell viability.

Our findings about D-pen are of interest in relation to our findings with BCS and TTM. The
absence of any major effect in the pH or cell number and the small increase in Alamar Blue
fluorescence intensity which may simply reflect a slightly higher cell number at Day 4 and 5
or prolonged growth of the cells (Figure 5.5) differs from TTM and BCS. This may indicate
that if D-pen does affect intracellular copper it does so in a different way to BCS and TTM.
Copper also did not have any significant effect on cell number or pH and, again, the slight
increase in Alamar Blue by Day 5 is probably due to prolonged incubation with copper
(Figure 5.2). The results on growth for copper first of all suggest that under basal conditions
HEK?293 cells have adequate supplies of copper for growth, and furthermore have adequate

resource to store copper intracellularly.

5.4.2 The copper chelators BCS and TTM are able to reduce intracellular copper

levels

To determine if the copper chelators can sufficiently deplete cellular copper levels we
measured the intracellular copper concentration by ICP-MS. The analysis revealed that indeed
we were able to manipulate the cellular levels by either adding more copper or depleting it
with appropriate copper chelators. Under the experimental conditions we were able to
measure copper only after 3 days treatment with the respective compound where we found
that copper supplementation can increase intracellular copper levels by about an order of
magnitude and copper chelation with BCS and TTM can decrease cellular copper content by
more than 80%. The D-pen treated cells instead of measuring reduced intracellular copper

levels a small but non-significant increase of 15% was observed (Figure 5.6).

The copper levels were compared in two different ways using copper atoms per cell or by
using nmoles copper per mg of protein. That was used in order to be able to see if they were
changed at the single cell level since some treatments caused inhibition of the growth rate and
also based on the protein concentration in case some of the treatments had an effect on the
protein levels. It is worth mentioning that the intracellular levels of copper that we determined
for the HEK293 cells are in agreement with a study from Gibon et al. who measured copper
levels with AAS and define them as 11.9 g copper/ gr protein or 0.18 nmoles/mg protein
which are almost identical with the one that we measured in the control cells (Figure 5.6)“?%,

Unfortunately, HEK293 cells have not been used in many studies with copper chelators and
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so data are unavailable in order to make comparisons with. The data for intracellular copper
levels when cells were grown in the presence of different copper chelators showed an
unexpected pattern. Initially we observed that both cells treated with the impermeable
BCS®®) or the membrane permeable TTM copper chelator®?® reduced the intracellular
copper levels. However, the membrane impermeable D-pen®?6:42") increased non-significantly
the intracellular copper levels. One assumption is that since TTM is membrane permeable it
will cross the cell membrane, remove copper from the copper binding/storage proteins or
copper that is imported into the cells by the transporters and accumulate in the cytosol or
lysosomes. However, we showed that TTM had a similar effect on intracellular copper levels
to the membrane impermeable chelator BCS which chelates copper in the extracellular space
and prevents copper from being available to the cells. The increased concentration of copper
in the extracellular medium was further confirmed by the increased concentration in the
medium of the BCS treated cells. In the TTM treated cells copper was lower in the spent
medium which is difficult to explain if TTM is able to cross the cell membrane since no
copper was detected either in the extracellular medium or inside the cells. To further
investigate this issue we also measured molybdenum levels in the cell digests and spent
medium where we showed a 4-fold increase in intracellular molybdenum levels and
molybdenum in the spent medium was at 2 UM (data not shown), identical to the applied
amount of TTM.

This finding suggests that a small amount of TTM is able to enter the cell but is then secreted
back into the medium. The high amounts of molybdenum within the media suggests that the
majority of TTM stays outside the cells, and so here it may act in a similar way to BCS in
chelating extracellular copper. However, it still does not answer the question of the reduced
levels of copper in the medium. One potential answer derives from a study where HUVEK
cells were treated for 16 hours with TTM and then intracellular levels of molybdenum
measured by ICP-MS®“?)_ In that study, they identified a positive correlation between the
intracellular molybdenum concentration with the concentration of TTM they used to treat the
cells“®), Furthermore, they monitored the levels of molybdenum 24 hours after removing
TTM where they showed a gradual decrease in intracellular molybdenum levels over a 24
hour period“?®. Similar observations were also made in animals treated with TTM and copper
levels were measured in liver samples at different time points which showed that after 2 days
of TTM administration copper levels were higher however after 5 days the liver copper levels

dropped significantly“?®). Both studies seem to show that cells are initially importing TTM
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where it chelates all the available intracellular copper and then efflux the TTM/copper
complex back to the medium.

It still remains to answer why the TTM treatment causes reduced copper in the spent medium.
It is suggested that TTM can chelate copper in a 1:3 ratio and it mainly removes copper that is
bound to MTs®®), Ogra et al. established in Long-Evans rats the mechanism of copper
removal by TTM from MTs where it was suggested that initially TTM interacts with MT and
then it forms a TTM/copper complex releasing MT, with the final complex being soluble®®V,
The study from Ogra et al. also support that the molar ratio of TTM/MT should be around 1
since higher TTM concentrations can cause precipitation of copper together with
molybdenum probably by forming insoluble TTM/copper polymers®®), Under the present
experimental conditions we did not determine the intracellular concentration of MT in the
HEK?293 cells however we know that copper concentration in the growth medium is around
0.35 uM which is 6 times less of the TTM concentration ( 2 uM) that we used to treat the
cells. Based on the above it is possible that TTM/copper complexes formed of insoluble
polymers which precipitated in the culture flasks which is why we were unable to detect it in
the spent medium. The extensive washes with PBS during sample preparation removed these
TTM/copper polymers from the flasks and any cells making the TTM/copper complexes

impossible to detect in the cell digests.

D-pen, the most common treatment for Wilson’s disease, under our experimental conditions
was not able to reduce the intracellular copper but caused a small non-significant increase in
copper levels. The mechanism of action of D-pen is not fully understood but according to
certain studies, D-pen has poor chelator affinity for copper under normal conditions®*?%. Riha
et al. reported that D-pen was able to chelate only 26% of the Cul* and 15% of Cu?* at ratio
of 400:1 D-pen to copper®?®, Several studies have also shown that D-pen is not able to cross
the cell membrane since it is extremely hydrophilic3® and studies with mouse fibroblasts
have shown that D-pen uptake rate was over 100 times lower than L-Den since D-pen cannot
utilize the amino acid transport system in order to gain access to the cytosol“?®), The above
observation was further supported by a study in HL-60 cells which were treated with 100 uM
D-pen for 4 hours and then D-pen concentration in the cell supernatant was determined by
high-performance liquid chromatography (HPLC) where no change on its concentration was
observed®?”, Taking into consideration the above mentioned studies on D-pen, the increased
concentration of copper in the cell digest accompanied by the loss of copper concentration the
cell medium cannot be explained by the mechanism of action of D-pen, however, a study

from Schumacher and colleagues supports that D-pen can possibly act at the membrane levels
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to inhibit lymphocyte stimulation3Y. Based on that study it is possible that the D-pen/copper
complex is probably “bound” to a membrane protein(s) and the extensive washes do not
remove the complex from the cell surface which results in the increased copper concentrations
in the cell digests. That could also explain why there is a 15% difference between the Cu
atoms/cell and nmoles Cu/mg protein since the D-pen/copper complexes are accumulating in
the cell surface without causing any major effect in the intracellular protein levels.

To the best of our knowledge, non-transfected HEK293 cells have not been used extensively
to study the effects of copper chelation or supplementation on copper intracellular pathways,
nonetheless, the effects of BCS, TTM and D-pen in other cell lines such as astrocytes or
hepatocytes have been tested“324%), The only study that used HEK293 cells and determined
copper levels in cell treated with 200 uM BCS for 20 hours by using a fluorescence copper
sensor and X-ray fluorescence microscopy, found that copper levels were decreased by
around 30%“39), Similar results were also observed in astrocytes where cells incubated with
100 uM BCS and copper levels in both cell digests and medium were determined®®. In that
study they observed a gradual decrease of intracellular copper levels which was accompanied
by progressive increase of copper in the medium®3®. The 50% decrease of intracellular
copper concentration was accompanied by 50% increase of copper in the spent medium after
only 24 hours incubation with BCS“3%), TTM was also able to decrease by 90% the
intracellular copper levels of astrocytes treated with 100 uM TTM for 24 hours, a

concentration that was also non-toxic to the cells®32),

TTM and D-pen have been most frequently used in studies with mouse hepatocytes since liver
is the most affected organ in Wilson’s disease patients*3* 43¥), Studies with hepatocytes have
shown that 25 uM TTM can cause copper deficiency very rapidly since they were able to
decrease the intracellular copper levels by 43% after only 18 hours as determined by using
AAS“_In that study they also measured the copper uptake rate of the cells which was
significantly lower in cells treated with TTM®*%, Based on these observations they suggested
that TTM acts by increasing the efflux rate, decreasing the rate of uptake and then overtime
mobilizing intracellular copper storage™®*. TTM did not seem to have the same effect in all
cell types since in the same study they treated human fibroblasts with TTM and found that
TTM did not affect either copper uptake or its intracellular levels®3®, Differences amongst
these cell lines might simply reflect the requirement of each cell line for copper or the
different capacity for intracellular copper chelation which is further supported by our results
where we observed that in HEK293 cells TTM or BCS are able to decrease intracellular

copper levels by more than 80%. Studies in hepatocytes have shown that D-pen was unable to
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decrease intracellular copper levels or the uptake rate of copper even after 40 hours incubation
with 100 uM D-pen and in some cases it caused an increase in intracellular copper levels“®®,
This chelating function of D-pen was attributed more to its structure since it contains an
amino acid with sulphydryl group as well as an a-amino and cardoxylin acid group®®®. These
two groups are able to chelate Cu?* ions in a bidentate or tridentate complex“®®. Based on
these properties of D-pen they suggested that D-pen binds copper which is capable of rapid
exchange and therefore the complex acts as a substrate for the transport system which
stabilizes the rate of copper uptake and release®®. Our results using D-pen in HEK293 cells
are in agreement with this possible function of D-pen since we do not see any major change in
intracellular copper levels.

5.4.3 The activities of COX/CS and SOD are severely affected in BCSand TTM

treated cells

The treatment with BCS and TTM caused significant loss of intracellular copper which
consequently affect the activity of two important cellular enzymes, COX and SOD. COX/CS
activity in the BCS and TTM treated cells was decreased in a time dependent manner with at
Day 3 only half the COX/CS activity remaining relative to Day 1. One copper ion is chelated
by two BCS molecules and by titrating the BCS concentration we found that as long as BCS
is an excess it can cause a similar effect on COX/CS activity overtime. When BCS was 10-
fold higher than that is required to chelate all available copper in the medium (5 uM BCS for
0.35 uM copper in the growth medium) it was able to decrease COX/CS by only 30% at Day
3, approximately half of what 50 and 200 uM BCS can achieve but similar to Day 1 effect
(Figure 5.7 and B.4). TTM can chelate up to three copper ions per molecule and our findings
shows that TTM can cause slightly greater inhibition of COX/CS activity (Figure 5.7). Also,
lower TTM concentrations (0.5 uM) did not change the effect on the final COX/CS activity
overtime (Figure B.4A). It is also worth mentioning that both BCS and TTM are able to
markedly reduce the protein levels of COX2 overtime however BCS and TTM only caused a
minor decrease in COX1 protein levels at Day 3, around 20% (Figure 5.8 and 5.9). For further

discussion see section 5.4.3.

BCS also had a similar effect on SOD activity overtime since we initially showed that SOD
activity was decreased by 50% at Day 1 and by 70-80% at Day 3 (Figure 5.16). A similar
pattern to COX/CS activity was also observed when we titrated BCS and measured SOD
activity since the 5 uM BCS only inhibited SOD activity by 35% at Day 3 (Figure B.4B). The

effect of TTM on SOD activity was greater than BCS and appeared time and concentration
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independent since more than an 80% decrease was measured both at Day 1 and 3 and also
when cells were treated with 0.5 or 2 uM TTM (Figure 5.16 and B.4B). Although SOD
activity was severely affected by BCS and TTM, the protein levels of SOD1 and SOD2 did
not change which indicated that when copper is not available SOD1 remains in the cytosol in
apo-SOD1 form until it acquires copper (Figure 5.18 and 5.19).

From the above results it seems that the first enzyme to be affected by copper depletion is
SOD and that BCS and TTM have different mechanisms of action. Both copper chelators
decreased intracellular copper levels to the same extent but we showed that SOD is affected
more severely and earlier in the time course than COX/CS activity which could occur from
either due to the different turnover rates of the respective proteins or to their subcellular
localization and copper availability within the organelle. In addition, BCS and TTM appear to
have different effects on the activity of these two enzymes which potentially correlate with
their extracellular and intracellular localization. Given the different results for extracellular
copper, BCS and TTM appear to work by slightly different mechanisms of action, even if the

final result is similar.

BCS is unable to cross the cellular membrane however it reduces the intracellular copper
levels and SOD activity by 80% and COX/CS by 70% at Day 3. The gradual decrease in SOD
and COX/CS activities indicates that the cells contain stored copper in dedicated copper
ligands. For SOD1 the protein responsible for the delivery/storage of its copper is CCS which
is also able to sense the copper availability and adjust CCS protein levels“34. In our results
we also showed that CCS protein levels increase at Day 1 in the BCS treated cells in response
to copper limitation however by Day 3 CCS levels returned to normal (Figure 5.17). CCS
half-life has been estimated around 17-20 hours whereas SOD1 is around 35-40 hours3* 321
which indicates that in the first 24 hours CCS protein levels were increased due to copper
limitation and then start degrading and that by Day 3 is the intermediate of a degradation and
synthesis cycle of the protein. Based on this, it is possible that by Day 1 there is a fraction of
CCS that still contained copper and was able to incorporate copper into SOD1 but as time
progresses and the existing CCS starts to degrade or lose copper, the newly synthesized

protein will not be able to acquire copper, and so will not activate SOD1 in the cytosol.

The ligand that transfers copper to the mitochondria is yet unknown however studies have
shown that mitochondria contain their own pool of copper within the mitochondrial
matrix®®. Both mitochondria and theis proteins have around a 100 hour turn over*37-43®)

which possibly explains why the remaining COX/CS activity was slightly higher in the
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treated cells on both days. That suggests that the already formed complexes remain intact and
able to use the incorporated copper to fulfil the cellular energy demands however, newly
synthesized proteins are affected by copper availability since COX2 appears to be lost very
rapidly. Another possible reason why COX retains greater activity following copper chelation
might be correlated with the fact that mitochondria have their own pool of copper which
seems to be higher compared to other copper storage locations in the cytosol. Based on study
in HUVEC cells, mitochondria contain about 10-times more copper relative to cytosol0%439),
Taking this into consideration it is possible that since BCS chelates the extracellular copper,
cells are not able to import copper and as they are growing and undergoing cycles of protein
degradation and synthesis they have to use their already stored copper which is also going to

be eventually “released” in the extracellular space during these processes.

TTM has the property of being able to cross the cell membrane which may allow TTM to
remove copper more efficiently from proteins localized in the cytosol and potentially at later
stages from the mitochondria. The initial observations on TTM suggests that TTM is able to
remove copper efficiently when copper is bound to MTs in the liver of LEC rats and from Cp
in the serum, however, more recent studies have shown that TTM can also remove copper
from Atox1 and SOD1 in the cytosol*?® 440-442) jyarez et al. reported that TTM is able to
inhibit the activity of SOD1 not only in human HUVEC cells but also in a purified SOD1
isolated from bovine heart®?5 449 |n that study they incubated purified bovine SOD1 with
increasing concentrations of TTM and found that SOD1 1Cs was around 0.33 uM TTM after
24 hours incubation and that the maximal inhibition was achieved after 16 hours of
incubation. These results are in agreement with our findings since we also found that 2 uM
TTM inhibits SOD activity and that after 24 hours there was more than 85% inhibition
without affecting the protein levels of SOD1 and SOD2. Copper atoms in SOD1 dimers are
well protected, not easily accessible and also SOD1 binds copper with high affinity®> 443)
which raises the question of how TTM is able to get into the dimer and remove the copper
atoms. A possible reason for being able to remove copper from SOD1 might be the small

structure of TTM which allows easy access to SOD1 dimer where it removes copper.

An alternative possibility is that TTM removes copper from the cytosolic chaperones Atox1
and CCS. A study by Alvarez et al. showed that TTM can form stable complexes with Atox1
in solution by forming a sulfur-bridged copper molybdenum cluster®#2). In this cluster an
Atox1 trimer is coordinated with four copper ions and one TTM molecule®?. CCS D1 is
structurally homologous to Atox1@2%128) and possible interactions amongst the copper ions,

TTM and CCS might also occur which is more likely to happen rather than through TTM
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directly removing copper from SOD1. Further, experiments should be conducted with human
SOD1 and CCS proteins in order to identify from where TTM is efficiently removing copper.
The possibility of removing copper from both proteins simultaneously should be also
examined. It is worth mentioning that in the TTM treated cells the expected decrease in CCS
protein levels under copper depleting conditions was not observed at either Day 1 or Day 3
even if intracellular copper levels were reduced by more than 80% (Figure 5.17). That
observation could further support the idea that TTM forms a complex with CCS which might
stabilize CCS and prevent or slow the degradation process.

COXI/CS activity was also affected in the TTM treated cells in a time dependent manner but at
a slightly higher rate than with BCS which might be due to the fact that TTM is possibly
removing copper initially from the ligand that delivers copper to the mitochondria which
makes mitochondria dependent on the matrix pool of copper for COX activity. Another
possibility is that TTM can enter mitochondria at a slower rate and start removing copper
from the mitochondrial copper-binding proteins after removing cytosolic copper. COX2
protein levels appear to be rapidly affected by TTM as COX2 was reduced to only 30% of
control COX2 within 24 hours.

Copper supplementation or D-pen use had no major effect on COX/CS or SOD activity. Even
when the intracellular copper levels were increased by an order of magnitude, no change in
COXICS or SOD activity was observed, possibly due to an efficient copper storage or efflux
system of the cells, and use of a copper concentration that was not toxic to cells and did not
induce any damage (Figure 5.7 and 5.17). Our results show that D-pen was unable to either
effect the cell growth or change the intracellular copper levels however, based on its
mechanisms of action, it would be expected to affect SOD activity since D-pen can produce
H.0- during chelation of Cu?* to Cu'*(%:39 At Day 1, although we observed a significant
8% decrease in SOD activity, changes at these levels, especially in cells, might not be of
biological significance (Figure 5.16) and similarly SOD1 protein levels by Day 3 only show a
10% decrease (Figure 5.18). Our conclusion is that D-pen is not able to induce any major
change in the intracellular copper pathways in HEK293 cells even if studies in Wistar rats
treated with D-pen show a significant decrease of both SOD and COX in different tissues“*
445 “including heart, brain and kidneys which lose more than 50% of COX activity whereas
SOD activity was decreased by 20-30% in the liver, kidneys and red cells after D-pen

treatment for 20 days®44 445),
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Our results concerning copper chelation are in agreement with studies that have been
conducted in cancer cell lines such as ECC-1, IGROV-1 and BTC3 as well as HUVEC and
MEFs. Copper chelators have been studied extensively in cancer cell lines due to the pro-
angiogenic properties of copper since it acts as a cofactor for several proteins such as VEGF,
basic fibroblast growth factor (b0FGF) and angiogenin and targeting angiogenesis is
considered an effective anti-cancer therapeutic strategy¢ 44, HEK293 is also an induced
tumorogenic cell line and therefore comparison of the effects of copper chelation amongst the
different cell lines can be performed.

One study that used TTM to treat HUVEC cells and study the effect on cell proliferation and
SOD activity found that TTM can inhibit cell proliferation with an 1Cso around 1.4 uM,
accompanied by a decrease in cellular SOD activity after 48 hours incubation with 7 uM
TTM®25), However, in that study, COX activity did not change even with 100 uM TTM®“2), A
study with BTC3 cells showed that TTM was able to reduce COX activity by 50% after
treatment with 10 uM for 24 hours where they also observed decrease in A¥m which further
indicated diminished activity of the electron transport chain and consequent mitochondrial
dysfunction®??, Similar results were also reported from tumours derived from mice treated
with TTM daily for three weeks?? where both cells and tumours showed higher lactate
levels indicating a shift to glycolysis for energy production®??, Whilst not using CS to
normalize COX activity, the effect of TTM on COX activity is similar to the current study
despite slightly different TTM concentrations“?),

Further studies on TTM and COX activity showed not only that COX activity is gradually
decreased overtime but also the decrease is highly dependent in the cell line®'®, ECC-1,
IGROV-1 and 2008 cell lines treated with 30 uM TTM showed after 24 hours that COX was
decreased by 80%, 100%, 50%, respectively“!®) which may indicate that any effect of TTM
is dependent on a cells requirements for copper and energy demands“*®). Once again in that
study while CS was not used to normalize COX activity, the large loss of COX especially in
the ECC-1 and IGROV-1 cells, are unlikely to change the final results*®).

Other chelators such as TEPA and trientine (which is the second most common treatment for
Wilson’s disease) have been studied. Studies with TEPA in HL-60 and C,Ci cell lines have
shown that TEPA is able to inhibit by over 60-80% the activities of both SOD and COX after
92 hours incubation at 50 pM®*48 449 | the same study, cells treated with 25 pM copper
showed no change in either SOD or COX activity“*?). Trientine has been used to treat SH-

SY5Y cells where prolonged (more than 10 days) exposure caused a significant decrease in
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both COX and SOD activity with SOD showing a more acute lose (80% after 3 days) whereas
COX declined gradually with the activity being eliminated after 9 days of treatment“4), Both
TEPA and trientine are cell membrane permeable and their effects on SOD and COX activity
are similar to our studies with TTM©84),

Our findings on SOD and COX activity in HEK293 cells after treatment with BCS and TTM
are in agreement with already published studies in other cell lines treated with TTM and also
compared to other copper chelators. The general conclusion from our results and published
studies indicate that copper deficiency initially inhibits SOD and then mitochondrial function.

5.4.4 Copper chelation with BCS and TTM affects mitochondrial proteins

As noted previously, the protein levels of COX2 but not COX1, were significantly affected in
the BCS and TTM treated cells, despite both proteins being part of the catalytic core of COX.
COX1 did however, show a 20% decrease in the BCS and TTM treated cells at Day 3 but not
at Day 1 (Figure 5.8C and D). Under our experimental conditions the levels of mitochondria
(VDAC1) did not show any major change even if the mitochondrial mass assessed by
MitoTracker green show a small non-significant change in the BCS and TTM treated cells
(Figure and 5.8E, F and 5.15). COX1 protein levels relative to VDAC1 were initially higher
at Day 1 and then declined at Day 3 (Figure 5.8G and H) which possibly suggests that the
mitochondria detect the lack of COX activity and respond by producing more of the protein
that initiates the assembly of COX. In the absence of available copper to create the Cug
centre, COX1 will begin to degrade by dedicated proteases in the IMS, a process which may
take longer compared to COX2¢":3%) The half-life of the COX subunits has been determined
in a hepatoma monolayer culture to be more than 100 hours although studies in fibroblasts
have shown that COX half-life was around 48 hours®¥"- 459, Possibly the difference in the
half-life reflects more the cell type rather than the biogenesis of the complex. In our results we
showed that the protein levels of COX1 start to decrease after 72 hours which in between the
two cell lines. One assumption is that lack of copper will initiate a faster degradation of
COX1, however, it seems that the protein is more stable for a certain period of time which

might depend on the incorporation of the heme a/as in the protein during its biogenesis.

Little is known about how copper and heme a/as are inserted into COX1 and the main

indications come from studies in yeast and fibroblasts from patients carrying a mutation in
one of the assembly factors (COX10, COX15 or SURF-1). Based on these studies after the
translation and incorporation of COX1 in the IMS, the hemeylation begins shortly after “5%

452) COX10 and COX15 play important roles in heme a biosynthesis since studies with
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fibroblasts missing these proteins have shown that COX1 becomes very unstable and
susceptible to degradation®®452), Copper incorporation into COX1 seems to happen at later
stage or simultaneously by COX111%.116) | yeast strains lacking COX11 or Scol were
peroxide sensitive due to the accumulation of COX1-heme a/as intermediate®). Also, in
COX11 deficient yeast the degradation rate is higher compared to COX1 which further
supports that COX2 is prone to degradation when complex biogenesis is inhibited “5®),
Similarly, in mammalian cells containing a mutated form of the SURF1 assembly factor,
COX1 protein levels accumulated together with COX4 and COX5a suggesting that heme az is
present in the subcomplex®?.

In the current study COX11 is unable to insert copper into COX1 due to copper deficiency
combined with the lack of COX2 protein which is unable to block the channel within the IMS
side of COX1 where heme a/as is inserted 1% 453 \We can assume that the incorporation of
heme a/az into COX1 will stabilize the protein for a certain period of time and then the lack of
copper will initiate its degradation as we start seeing at Day 3. The lack of a significant effect
of copper depletion in COX1 was also present in the brain studies of the healthy controls and
AD cases where we observed that the reduced copper levels did not cause any major decrease
in COX1 levels which seems to be able to sustain its expression or degradation rate for a
longer period. A similar effect was also present in a study that treated mice for 25 days with

BCS and which showed only a small decrease in COX1 protein levels“*,

The protein levels of COX2 are severely affected by TTM and BCS chelation. From Day 1
COX2 protein levels were decreased by more than 50% in the BCS treated cells and by 70%
in the TTM treated cells (Figure 5.9). Once again the TTM treated cells seems to be affected
more than the BCS probably due to TTM intracellular localization which enables it to either
remove copper directly from COX2 or the ligand that delivers copper to the mitochondria. As
previously discussed, COX2 seems to be more sensitive to copper deficiency where the lack
of copper incorporation and assembly into newly synthesized complexes trigger COX2
degradation by dedicated proteases in the IMS®7-309) Our results are in agreement with
studies in K562 cells which treated with 10 and 20 uM BCS and found that COX2 protein
levels were decreased by more than 50% after 3 days®'®. Similar findings with 125 uM
trientine in SH-SY5Y cells showed COX2 protein levels also decreased by more than 70%
after 3 days treatment# 4%, Prolonged exposure with trientine caused the complete
elimination of COX2 protein levels®'¥. Taking into consideration our results and already
published studies we can conclude that copper deficiency mainly affects the protein levels of

COX2 rather than COX1 possibly due to its later stage of incorporation in COX biogenesis or
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due to the lack of cofactors that can stabilize COX2 for longer or because COX2 contains a
more sensitive degradation feedback mechanism which will be activated immediately after
failure of copper incorporation. The only exception based in our data is D-pen which was not
able to cause any biological significant change in the protein levels of COX or in the
mitochondrial mass (Figure 5.8, 5.9 and 5.15).

Copper supplementation did not cause any major effect on mitochondrial levels however it
seems that copper supplementation can induce some changes in COX protein levels (Figure
5.8, 5.9 and 5.15). At Day 3 both COX1 and COX2 protein levels were increased in the
presence of 10 uM copper although only the 31% increase of COX1 was significant which
suggests that prolonged incubation with copper may induce transcriptional activation through
metal or oxidative stress mediated mechanisms“®). Another possible reason may be due to
the slightly higher levels (11%) of mitochondria/\VDACL1 since the ratio of COX1/VDAC1
did not show any significant change under these conditions. At Day 1 COX2 protein levels
were lower by 26% in the copper treated cells but the same time the COX2/VDACL ratio did
not change which may reflect a small mitochondrial loss.

Recent studies have shown that COX in the mitochondria is associated with Complex | and 11
in order to form supercomplexes or “respirasome”*%?. The role of supercomplexes is not
clear but may involve either substrate channelling or complex stability®®, Schagger et al. has
proposed a model of the network in the mammalian respiratory chain complexes which
postulates that mitochondria have two copies of the large building block complex comprising
Complexes I, Il and IV (I1111121V4) and a smaller single building block without Complex |
(11121V4)“% In order to understand if the effects of COX have any impact in the
supercomplex formation and on mitochondrial respiratory function we measured the protein
levels of two major subunits of Complex I. Functionally, Complex 1 is divided into a
dehydrogenase module, which oxidises NADH, a hydrogenase module, which transfers the
electrons and has been suggested to operate as a redox-driven proton pump, and a transporter
module, proposed to act as a conformation-driven proton pump®“". The dehydrogenase
module consists of NDUFV1, NDUFV2 and NDUFS1 subunits, the hydrogenase module of at
least the NDUFS2, NDUFS3, NDUFS8, ND1 and ND5 subunits and the transporter module
of at least ND2, ND3, ND4, ND4L and ND6 subunits®?. In the current study we determined
the protein levels of the NDUFV1 and NDUFS1 of the behydrogenase module due to the
significance of their function in Complex | activity. NDUFV1 contains the first NADH
binding site and also binds the FMN, providing the conversion of the 2-electron donor NADH

to 1-electron transferring iron-sulfur clusterss®. Whereas, NDUFS1 contains four out of the
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seven iron-sulfur clusters which are essential for the activity of Complex 145, Our results
showed that the protein levels of NDUFS1 did not seem to be affected by BCS or TTM
treatments however, at Day 3 D-pen caused a 20% increase in NDUFSL1 protein levels (Figure
5.12). The increased levels of NDUFSL1 in the D-pen treated cells possibly correlates with the
higher mitochondrial levels (12%) since when normalized with VDACL no significant
increase in NDUFS1 was observed. Why D-pen causes a small increase in mitochondria

levels is unclear given our data and since it is unclear what are its exact mechanisms of action.

Copper supplementation appears to affect the protein levels of both NDUFS1 and NDUFV1
similarly. Initially, at Day 1 both proteins decreased by 22% and 14% respectively, however,
by Day 3 their levels returned to normal or even increased. This suggests that initially copper
may be toxic to cells but after longer exposure the cells are able to compensate, possibly by
producing intracellular copper chelators such as MTs, and can adjust their protein levels based
on the environmental copper concentration. It is well established that copper is able to replace
the iron within the iron-sulfur clusters and induce toxicity and since both NDUFS1 and
NDUFV1 have these clusters we can assume that copper initially is able to affect NDUFS1
and NDUFV1 stability or degradation rates®?. Similar effects have also been observed in SY-
SY5Y cells where the levels of proteins consisting the Complex | were significantly decreased

in the presence of 150 or 300 uM copper after 24 hours of treatment®®.

In relation to protein levels of NDUFV1 we observed, especially in the untreated cells, that
the levels of NDUFV1 decreased overtime by as much as 50% and secondly that treatment
with 200 uM BCS affects NDUFV1 protein levels (Figure 5.10 and 5.11). NDUFV1 assembly
into Complex | is suggested to occur by two models, the de novo or the “exchange pathway”.
The de novo route supports that assembly takes place in multiple-steps where initially several
subunits are first combined into smaller intermediates of the three functional modules and
subsequently the holo-enzyme is formed by joining these preassembled modules“®®, The
“exchange pathway” is parallel to the de novo pathway and suggests that newly imported
subunits replace their previously incorporated counterparts in the holo-enzyme®“®9, In the
“exchange pathway”, Dieteren et al. measured the live cell dynamics of NDUFV1 together
with Complex | proteins and showed that about half of the NDUFV1 protein exists in a
mobile fraction whereas NDUFV1 in the dehydrogenase module exists mainly as a membrane
bound form®“®Y), The above suggests that under normal conditions the dehydrogenase module
is assembled in a subunit-by-subunit manner on the surface of the mitochondrial inner
membrane bound Complex I intermediate, which further supports that this module is highly

dynamic and its assembly-disassembly depends on cellular needs®“Y,
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By blocking mitochondrial protein syntheses by adding chloramphenicol they found that
Complex | is extensively broken down into intermediates which under normal conditions is
avoided by continuous exchange with the bound subunitsé?, Dieteren and colleagues also
suggested that increased superoxide production can cause instability of the protein and initiate
its degradation“®?), Based on these findings, under our experimental conditions the fact that
only NDUFV1 decreases overtime may suggest that the exchange rate between bound and
unbound protein is slow with Day 3 being the midpoint of NDUFV1 protein degradation and
synthesis. By Day 3 the control cells have reached maximum confluency which possibly
places them in the stationary phase and cells consequently reduce mitochondrial respiration
and protein synthesis for energy conservation. Also, Dieteran et al. suggested that increased
superoxide anion production by mitochondria can induce the degradation of NDUFV1
however based on our results with BCS the superoxide anions were higher by almost 60-80%
but the protein levels of NDUFV1 were increased by 27% relative to controls and in the TTM
treated cells, where superoxide anion production was also increased, NDUFV1 protein levels
did not change (Figure 5.10 and 5.20).

Studies in mouse fibroblasts lacking the COX10 assembly factor have shown significant
decrease in the assembly and stability of Complex 1459, The complete lack of COX10 results
in faster degradation of Complex I and that low levels of COX activity or assembled complex
were able to retain the function of Complex 1V, This observation is more likely to explain
why in the BCS treated cells NDUFV1 protein levels were higher, but also why cells by Day
3 even when COX2 was completely absent they still retained around 10-20% of COX/CS
activity since cells can maintain the assembly of the preformed Complex I in the
supercomplexes. This is further supported by the fact that the acute presence of BCS (Day 1)
caused a small decrease in NDUFV1 protein levels but the longer exposure triggered a
mechanism of Complex | survival (Figure 5.10). Further studies will need to be conducted in
order to understand the interactions of these two complexes and to determine how Complex |

activity is affected.

Taking into consideration all the above mentioned findings we can conclude that NDUFV1
protein levels are possibly decreasing overtime due to adjustment to the cell needs or because
even under normal conditions as cell grow they will produce more superoxide anions and this
will have an impact to NDUFV1 protein levels“®D. The effects of copper chelation on
Complex | proteins may be correlated with undefined mechanisms which attempts to stabilize

mitochondrial supercomplexes to maintain maximal respiration.
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5.4.5 Does copper chelation affect mitochondrial bioenergetics?

Mitochondria play an essential role in cellular energy metabolism and mitochondrial Aym is a
key indicator of cell viability since loss of the Ay is associated with cellular stress and
dissipation of Aym may promote apoptosis“®?. The Aym is generated by the accumulation of
the proton driven electrochemical gradient across the IMS, as a result of the activity of the
protein complexes of the ETC as well as from the integrity of the inner membrane®?,
Electrons are normally generated by the oxidation of the reduced NADH at Complex I and
from oxidation of succinate by Complex I11, and flow through the ETC with oxygen being the
final electron acceptor at COX®“6%), Electron transport through ETC is coupled with proton
translocation by the inner membrane Complexes I, 11 and 1V“%), This activity generates the
electrochemical proton gradient, which is utilized by the mitochondrial ATP synthase for the
production of ATP“®%). The proton pumps of the ETC together with the ATP synthase create
proton circuits across the inner membrane, which is central to mitochondrial bioenergetics and

cellular homeostasis®" 462-464),

Identifying changes in the respiratory state of a cell is of major importance and cells have
evolved multiple levels of regulation. In the intact cell the major modulator of the respiratory
state is the balance of ATP demand with substrate availability. However, other factors such as
ROS, cellular/intracellular calcium signalling pools and the redox state of the ETC can
influence respiratory activity“®®, Recently, a simple mitochondrial function test has been
produced which can be used to examine cellular energetics®%24%4), The assay uses inhibitors
of the respiratory chain components and uncoupling agents to examine and quantify ATP-
linked oxygen consumption, proton leak, non-mitochondrial oxygen consumption, maximal
respiratory capacity, spare capacity as well as coupling efficiency“2-4%4, Oligomycin is used
to examine the coupling efficiency and allows the calculation of the basal oxygen
consumption that is related to ATP demand which can also be ascribed to proton leak 02404
466) Under our experimental conditions we did not observe any significant change in basal
respiration in cells treated with TTM, BCS or copper, however, they were some minor
changes in cell treated with 50 uM BCS which showed a non-significant increase indicating
that under this condition the cells are facing increased ATP demand which forces them to
consume more oxygen for ATP production. Under the same conditions ATP production was
also higher (Figure 5.13A). The fact that the basal respiration rate was unaffected in the
presence of BCS and TTM was surprising since we knew that under these conditions only 10-
20% of COX activity remained. That observation could be possibly explained by studies

which have shown that superoxide anions, which are produced by Complex I and Ill, can
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directly reduce cytochrome c, and the reduced cytochrome c can directly pass its electrons
into COX, resulting in enhancement of the basal respiration rate“67-46%_ Under our
experimental conditions we know that in the BCS and TTM treated cell mitochondrial
superoxide anions are increased by more than 60% based on the increased fluorescence
intensity of MitoSOX red (Figure 5.20). Given that COX is only functioning at a very low
rate, cytochrome c is available for reduction by other molecules such as superoxide anions,
and given that in the BCS and TTM treated cells there is increased production of superoxide
anions we can hypothesise that a reduction of cytochrome ¢ will occur which makes it able to
pass the electrons to COX resulting in mitochondrial respiration.

Studies with the Seahorse mitochondrial stress test have shown decreased basal respiration in
the presence of BCS or TTM. K562 cells treated with 10 or 20 uM BCS showed more than
50% decrease in basal respiration and ECC-1 cells grown in the presence of 30 uM TTM
showed a similar effect was present™® 416). However, both studies failed to normalize the
measured OCR (pmoles/min) with the corresponding protein levels or cell number“*5 416),
Our results also showed 30% decrease in basal respiration and 19% in ATP production in cell
treated with 2 uM TTM in the absence of a normalization step. Our studies show that by Day
3 inthe TTM treated cells the growth rate had been significantly inhibited and the reduced
OCR in pmoles/min may simply represent the lower cell number. However, in a study that
isolated mitochondria from mouse liver treated with BCS for 25 days, the basal respiration

was higher indicating that deficiency of COX is not a limiting factor for total respiration*,

Coupling efficiently is a bioenergetics parameter that reflects multiple processes underlying
oxidative phosphorylation such as ATP turnover and proton leak across the inner membrane
which can also be quantified individually by inspecting the oxygen consumption ratee: 470),
The coupling efficiency represents the proportion of respiratory activity that is used to make
ATP and is significantly higher in cells treated with BCS or TTM. Coupling efficiently is
around 79% in the HEK293 cells which is similar to other human cell lines such as L6
myoblasts and myotubes (around 80%)“™V. In the presence of BCS an increase by more than
2% and in TTM by 3% of coupling efficiency was observed and these changes further
indicate that mitochondria are using the majority of the oxygen to produce ATP (Figure 5.13
C). The changes are so small that erase the question of how biological significant are they.
Even if studied in different cell lines have indicated similar changes as significant®’* 472 it is
still possible that they might not represent a functional change in the cells. Further study is
required in order to understand if that small change reflects a real biological changes in

mitochondrial function.
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Proton leak can take place at two places: through mitochondrial anion carriers or through the
lipid bilayer®”®. In cells treated with 200 uM BCS and 2 pM TTM we observed a small non-
significant decrease in proton leak (15% and 16% respectively) which indicated that under the
conditions where COX activity is less active there is also less proton leak between the inner
membrane and the mitochondrial matrix. COX is one of the complexes that is responsible for
the proton leakage and since in the BCS and TTM treated cells COX is impaired and less able
to pump protons across the membrane. This decreased proton leak will also affect the ATP
synthase function which eventually results in less ATP production by the mitochondria
although under the current conditions no change was observed in ATP production. The lack of
effect on ATP production from the mitochondria has also been seen in studies with mice fed a
copper deficient diet where both COX activity and basal respiration were decreased in copper
deficient hearts but there was no change in ATP synthase®,

The addition of the uncoupler FCCP allowed the determination of the maximal respiration
and the spare capacity®). FCCP allows protons to cross the mitochondrial inner membrane
disrupting the proton gradient and dissociating oxidation in the respiratory chain from
phosphorylation, which allows the function of the ETC to be evaluated separately from
potential changes in ATP synthase’®). After the addition of FCCP we showed an increase in
the maximal respiratory capacity especially in cells treated with 2 uM TTM. However, the
22% increase was not considered significant (Figure 5.13B). The increase in maximal
respiration indicates that in the TTM treated cells protons are flowing faster or that the proton
gradient formed in the inner membrane was higher either due to an increased level of protons

or due to disruption in the Aym which allows easier transfer of protons.

By subtracting the basal respiration rate from the maximal respiration rate we were able to
calculate the spare respiratory capacity an important bioenergetics marker which shows the
extra mitochondrial capacity available in a cell to produce energy under conditions of
increased work or stress and which is thought to be important for long-term cellular survival
and function®”-47®)_We observed that the 2 uM TTM treated cells had 50% more spare
capacity (Figure 5.13B). Under these conditions, cells have maximal COX and SOD
deficiency however the ETC of the HEK293 cells is still able to move protons from the
mitochondrial matrix into the inner membrane in the presence of the uncoupler FCCP. A
possible explanation might be due to an increased mitochondrial mass however MitoTracker
green studies suggested a 17% non-significant decrease (Figure 5.15). Since the mitochondrial
mass is not changing and the remaining COX activity is less than 20% we can assume that the

increased respiratory capacity indicates a disruption in the Aym. The catalytic activity of COX
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is also regulated by the mitochondrial Aym®""4"® and since in the TTM treated cells there is
no copper to catalyse the reduction of oxygen to water and transfer protons from the matrix to
the inner membrane, this will result in a decrease of the Aym. Lastly, the mitochondrial
bioenergetics assay allows determination of the non-mitochondrial oxygen consumption
which was less than 10% of total oxygen consumption in HEK293 cells“%®. No significant

change was observed in the non-mitochondrial oxygen consumption rate with any condition.

Control over oxygen consumption is a combination of different factors including the ability of
the respiratory chain to transport electrons, the availability of oxidizable substrate and
transport into the mitochondrial membrane, in addition to ATP turnover“®®. Mitochondrial
bioenergetics analysis in cells treated with copper chelators (BCS and TTM) showed that
mitochondrial function alters since the inhibition of COX causes only minor effects on the
ETC. Generally, mitochondria are still able to respire following copper chelation or
supplementation since no significant change in the basal and ATP production was observed.
This indicated that ATP synthase is still functioning and that electrons are able to reach the
synthase possibly via reduction of the available cytochrome ¢ by superoxide anions.
Furthermore, the increased maximal respiratory capacity in the TTM treated cells indicates
that mitochondria are able to respond to changes in conditions where important cofactors are
missing, by changing the regulation of certain enzymes. What was surprising is that even if
glycolysis was unregulated, as indicated by both increase ECAR and lower pH (Figure 5.3,
5.4 and 5.14) this did not seem to affect oxidative phosphorylation since studies have shown
that glycolytic intermediates regulate negatively the oxidative phosphorylation (Crabtree
effect)“®. The above might indicate that copper chelators can cause up-regulation of some of
the enzymes in the glycolytic pathway which results in increased production of lactic acid. It
is also worth mentioning that only the intracellular copper chelator TTM caused significant
changes not only in mitochondrial biogenetics, but also in glycolysis, since at Day 3 the
ECAR was slightly higher in the TTM treated compared to BCS treated cells (Figure 5.14D).

Studies in primary cardiomyocytes with complete inhibition of COX with the addition of 2
mM potassium cyanide have shown that the basal OCR is decreased by more than 80% and
the ECAR increased by almost 50-fold“®%), These findings suggest that when COX is
completely inhibited the ECT is non-functional and that cells have to turn completely to
glycolysis to fulfil their energy demands®?. A possible explanation why copper chelation
does not cause the same effect in the mitochondrial bioenergetics and glycolysis might be due
to the different mechanism of inhibition between potassium cyanide and chelators. Cyanide

inhibits COX activity by binding to the Cug and heme as site in COX1 whereas the copper
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chelators only remove the copper from COX2 and slowly from COX1“8D, As discussed
above, neither TTM or BCS had major effects in COX1 protein levels until later stages of the
experiments which further supports the suggestion that if there is not complete inhibition of
all the redox centres of COX, the enzyme is still able to function at low levels. On the other
hand, cyanide which seems to inhibit two out of the four redox centres causes total inhibition
of COX activity.

5.4.6 Protein levels in the copper secretory pathway are not significantly affected by
copper chelation

In the secretory pathway we were able to measure only the protein levels of the cytosolic
chaperone Atox1 and its target protein ATP7a since we were able to identify other secreted
enzymes. Also, we could not use the activity of Cp since the growth medium contained serum
which has high amount of bovine derived Cp. For Atox1 protein levels we saw no significant
change in any of the tested conditions at Day 1, however, by Day 3 Atox1 protein levels
decreased in cells treated with copper or BCS and increased in the TTM and D-pen treated
cells. Studies in HeLa cells have shown that Atox1 half-life is around 72 hours and that
copper levels did not have any impact on either its levels or degradation rate*®?, The
decreased levels of Atox1 by Day 3 in the copper and BCS treated cells may represents the
natural degradation process of Atox1 in the cells. However, the fact that in the TTM treated
cells Atox1 protein levels increased by Day 3 might be correlated with the ability of TTM to
form complexes with Atox1. Since at Day 3 the majority of the copper has been already
removed from the cells TTM might have formed stable complexes with Atox1 which inhibits

the Atox1degradation process42).

Why D-pen is able to induce increased expression of Atox1 is unclear since in the D-pen
treated cells intracellular copper levels were slightly increased although D-pen is unable to
cross the cell membrane and directly interact with Atox1. A possible reason for the increased
Atox1 levels in the D-pen treated cells might be correlated with the transcription factor
function of Atox1 which is able to regulate not only the protein levels but also the activity of
SOD36%5%6) SOD3 is an extracellular Cu/Zn SOD which is responsible for the dismutation of
superoxide in the extracellular space®® %8, Since D-pen is not able to cross the cell membrane
and that in the process of copper chelation D-pen generates ROSG%: 397 this may require
higher levels of extracellular SOD3. Increased demand for SOD3 might regulate the
intracellular protein levels of Atox1 which will further initiate the transcription of SODS3.

Unfortunately, under the current experimental conditions we are not able to separate the
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activities of the three SOD proteins and were unable to determine SOD3 protein levels in

either cells extracts or spent medium.

The protein levels of ATP7a did not change in the majority of the experimental conditions and
time points, with the only exception being Day 3 in the copper treated cells where ATP7a
protein was significantly increased by 20%. Experiments in different cell lines have shown
that copper chelation or supplementation does not affect the expression levels but the
localization of ATP7a in the cell®%9_ Under normal conditions ATP7a localize to the Golgi
membrane but when copper levels are higher it shuttles to the cell membrane in order to
export excess copper from the cells®® 9. In copper depleting conditions ATP7a is retained in
the Golgi membrane without effecting the protein levels® ¢ which is consistent with our
results from treatments with different copper chelators. The 20% increase in ATP7a in copper
treated HEK293 cells might be correlated with excess copper concentration with chronic
rather than acute exposure inducing a slight increase in ATP7a expression.

From the above mentioned results we can conclude that copper chelation or supplementation
does not cause any major effect in the copper secretory pathway and some of the effects in
Atox1 might be correlated with its half-life or the mechanism of action of the compound.
Finding a way to measure accurately the activity of a secreted copper binding enzyme might

give better insight of how copper availability regulates the secretory pathway.

5.5 Conclusions

In the current study we identified the effects of copper chelation on intracellular copper
pathways. We showed that the extracellular copper chelator BCS and the intracellular copper
chelator TTM affected the activity of two important cell enzymes, SOD and COX. Generally,
the two chelators seem to act in a similar way on the activity or the protein levels of these two
enzymes, however the ability of TTM to cross the cell membrane leads to rapid inactivation
of SOD in the cytosol and induces a slightly higher deficiency of COX activity and greater
loss of COX2 protein levels.

An initial finding was that cells shift to glycolysis for ATP production which was identified
initially due to decreased pH in the cell medium and further supported by the increased ECAR
in the BCS and TTM treated cells. However, the bioenergetics study showed that even if
COX activity was significantly reduced, mitochondria are still able to function since no
change in basal respiration and ATP production was observed. The only major difference was

seen in the spare respiratory capacity which was increased only in cells treated with TTM
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which indicates that protons and substrates are more available and implies that the ETC either
does not utilize these or that the AWn is abnormal and allows substrates to circulate through

different mitochondrial membrane compartments.

Based on the above, copper deficiency causes a significant loss in COX and SOD activity
which contradicts our findings in the healthy ageing and AD brain. In the brain, we showed
that even if copper is lower the activities of SOD and COX are not significantly changed, on
the contrary, COX and SOD were higher in some cases. The difference between the cell and
brain study might be different for two reasons. First, both the AD and healthy ageing brains
face only mild copper deficiency (around 45%) but in the cell study copper decreased by more
than 80%. Cells may require substantial copper loss before an impact on the activity or
protein levels of COX and SOD are seen which further signifies that cells prioritize the
available copper towards the function of antioxidant defence and energy production systems
which are important for the survival of the cells. Secondly, the brain is a complex system that
consists of multiple different cell types and the effects on the activity of SOD and COX may
be regulated by multiple signals. The in vivo system that we used consists only of one cell
type which responds to signals about the availability of necessary nutrients for its survival; on
the other hand, in the brain neurons, astrocytes and glia, cells have to collaborate in order to
maintain correct brain function. If the brain showed more than an 80% decrease in copper

levels the consequences would likely be similar to that observed in the HEK293 cells.

In the present study we were unable to determine the effects of copper chelation on the
amyloid pathways. It will be interesting to know if the major effects on mitochondrial
function and SOD activity which may have a significant role in the AD pathogenesis, can
elevate or decrease amyloid production, and how the two copper binding proteins APP and
BACE]1 are affected by copper deficient conditions. Even if HEK293 cells are useful for
identification of basal changes these may not be an appropriate cell line to correlate with
studies on neural cells. The above experiments should also be conducted in neuroblastoma,
stem cell derived neurons or even astrocytes in order to be able to draw the appropriate
conclusions about the effects of copper chelation in neural function. Furthermore, the effects
of copper chelation in the remaining of the respiratory chain complexes and on the glycolitic
pathway should be determined in order to obtain a comprehensive view of how copper

deficiency and excess affects these two energy production pathways.
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6 Effects of copper chelation in HEK?293 cells overexpressing the cytosolic

copper chaperones
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6.1 Introduction

HEK?293 cells has been extensively used for transient gene expression studies as a result of
the ease of transfection, ability to grow quickly in both adherent and suspension culture, and
low cost methodologies for transfection and maintenance®®. HEK293 cells can be used for
stable and transient gene expression studies, however, a preference towards transient
transfection has grown due to cost-effectiveness and speed compared to establishing stable
cell lines*®¥. The transfection methodology works by introducing a plasmid vector such as
those containing the strong Cytomegalovirus (CMV) promoter which very effectively uses the
cell’s synthetic protein machinery and forces the translation of gene products®®. Plasmids
contain sequences from different species and tissue origins can vary in their efficiency of
translation and export, and most importantly, type and extent of post-translational
modification (glycosylation, folding, acetylation etc.)®). In order to obtain successful
transfection, these factors need to be taken into consideration initially by selecting the correct
cell line and the appropriate expression vector.

Very few studies have overexpressed proteins from the copper homeostasis pathway and
studied their function in relationship to other copper containing proteins. One study using the
derivative HEK293 FLP-In"™MT-Rex™ cell line was used to overexpress Ctrl, CCS or Atox1
to identify where copper is delivered after influx into cells by Ctr1“#. This study found that
cytosolic Atox1 levels are higher than CCS levels in HEK293®4, Other studies have used
HEK293T to overexpress SOD1 and CCS to identify post-translational maturation processes
and how these proteins interact in live cells using NMR®?D., Also, to overexpress SOD1, CCS,
and Copper Metabolism (Murrl) Domain Containing 1 (COMMD1) to determine how protein
post-translational modification regulates the final maturation and activation of SOD1 (),
However, there is a lack of studies that use overexpression of either CCS or Atox1 to study

the effects on intracellular copper pathways.

6.2 Aim

The purpose of this chapter was to transiently overexpress CCS and Atox1 in HEK293 cells
and study their effects on the three intracellular copper pathways under normal and copper
depleting conditions. In order to accomplish our goals we cloned CCS and Atox1 genes into
the mammalian expression vector pPCMV6-an-DDK and studied the effects on the activity and
protein levels of copper binding proteins under normal conditions and in the presence of BCS

and TTM to alter the cytosolic and mitochondria pathways.
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6.3 Results

To overexpress CCS or Atox1 in the HEK293 cells we cloned the 825 bp coding sequence of
CCS or the 207 bp coding sequence of Atox1 into the mammalian expression vector pCMV6-
an-DDK (5929 bp) (Figure 5.1A and B) by following standard procedures. For reasons of
simplicity the pCMV6-an-DDK_Atox1 will be referred to as pCMV6_Atox1, the pPCMV6-an-
DDK_CCS as pCMV6_CCS and the pCMV6-an_DDK as pCMV6.

A

Sgflf

Stop codone
pCMV6-an-DDK_Atox1

or
pCMV6_Atox1 E o

Figure 6.1 Schematic Representation of the Expression Vectors.

The pCMV6-an-DDK vector was used to clone the genes of (A) Atox1 (207 bp) and (B) CCS
(825 bp). The required elements for the expression or replication of the vector in mammalian
or E.coli cells are presented. SV40 origin of replication for mammalian cells, ColE1 origin of
replication for high copies of plasmid in bacteria, fi ori for bacterial replication, CMV
promoter, neomycin (neo) and ampicillin (amp) resistance genes for selection in mammalian
or bacterial cells, respectively.

pCMV6-an-DDK_CCS
or
pCMV6_CCS

6.3.1 Transfection of HEK293 with pCMV6_Atox1 and its effects in the copper

homeostasis pathways

To determine the appropriate transfection protocol for HEK293 cells and the pCMV6
expression vector, two different protocols were tested: calcium phosphate and PEI. Four-
chamber slides were used to determine the transfection efficiency of each method by using a
plasmid carrying the green fluorescence protein ().CMV6_GFP) and by adding different
amounts of transfection reagent/DNA to each chamber. Twenty four hours after transfection,
cell medium was replaced and cells left to grow for 3 additional days (referred to as 3 days

post-transfection) and the transfection efficiency determined using fluorescence microscopy.

Transfection of pPCMV6_GFP with calcium phosphate (Figure 6.2A) and PEI (Figure 6.2C)
showed the highest efficiency, with calcium phosphate transfecting around 7.5% and PEI

reagent transfecting approximately 5% of the cells. Since transfection efficiency was low, we
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additionally determined transfection efficiency by immunofluorescence in cells transfected
with pCMV6_Atox1 by staining the cells for Atox1 3 days post-transfection. This also
demonstrated that transfection efficiency was low with calcium phosphate method showing
8% (based on the fluorescence intensity) and with the PEI method approximately 15% (Figure
6.2B and C).

A B
Calcium Phosphate/pCMV6_GFP Calcium Phosphate/pCMV6_Atox1

C D

PElI/pCMV6_GFP PEI/pCMV6_Atox1

Figure 6.2 Determination of Transfection Efficiency in HEK293 cells.

Cells were transfected with a pCMV6_GFP plasmid expressing the green fluorescent protein
or pPCMV6_Atoxl (green) with (A, C) calcium phosphate or (B, D) PEI transfection reagent.
Figures were captured under identical exposure times (59 msec) on Zeiss fluorescent
microscope using an x20 objective lens. DAPI (blue) was used to stain nuclei.

Parallel to these experiments we also determined the protein levels of Atox1 where when 15%
of the cell population was transfected with PEI/pCMV _Atox1 the levels of Atox1 were
increased by more than 100-fold (Figure 6.3). Based on this we continued experimentally and
treated the cells which overexpress Atox1 with 200 uM BCS and 2 uM TTM.
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6.3.1.1 Effects of copper chelation in cells overexpressing Atox1

Experiments with transfected cells were performed into T25cm? to determine overexpression
levels of Atox1 and consequently the effects on other copper binding proteins. Protein levels
of Atox1 in cells transfected with pCMV6 or pPCMV6_Atox1 in the presence or absence of
200 pM BCS and 2 uM TTM were determined using Western blot analysis with Atox1 and
DDK tag antibodies (Figure 6.3A). In cells transfected with pCMV6_Atox1 the expression of
exogenous Atox1 was markedly higher compared to endogenous Atox1 as can been seen from
both the Atox1 and DDK bands. The presented film for Atox1 was overexposed to show both
endogenous and overexpressed/exogenous protein, although accurate determination of Atox1

expression levels were performed with different films.

To determine differences between treatments in cells transfected with pCMV®6 or
pCMV6_Atox1 a two-way ANOVA was performed which revealed a significant interaction
(p=0.015) between the variables and that both treatment (p<0.0157) and transfection
(p<0.0001) had a significant effect on Atox1 protein levels. In untreated cells transfected with
pCMV6_Atox1, Atox1 levels were increased by more than 120-fold (two-way ANOVA,
p<0.001), whereas in cells treated with BCS or TTM and transfected with pPCMV6_Atox1,
Atox1 protein levels were higher by almost 200-fold (two-way ANOVA, p<0.001). Atox1
protein levels in cells transfected with pCMV6_Atox1 were significantly higher in cells
transfected with Atox1 and treated with BCS (one-way ANOVA, Tukey post-test p<0.05) and
TTM (one-way ANOVA, Tukey post-test p<0.01; Figure 6.3C).

Under the same experimental conditions we also determined CCS (Figure 6.4A) and SOD1
levels (Figure 6.4C). For CCS, two-way ANOVA analysis revealed the absence of any
significant difference following transfection (two-way ANOVA, p=0.267) or interaction
between variables (two-way ANOVA, p=0.619). However a statistically significant effect of
treatment was seen (two-way ANOVA, p=0.0024) though post-hoc analysis failed to identify
any changes (two-way ANOVA, p>0.05) between them. No significant differences in CCS
protein levels were seen with pCMV6 or pCMV6_Atox1 or with 200 uM BCS or 2 uM TTM
(one-way ANOVA, p>0.05; Figure 6.4B).

Analysis of SOD1 protein showed an effect of transfection with pCMV6_Atox1 (two-way
ANOVA, p=0.0054), with an 18% decrease in SOD1 in untreated cells transfected with
pCMV6_Atoxl relative to cells transfected with empty vector (two-way ANOVA, p<0.05).
SOD1 protein levels were decreased by 20% (one-way ANOVA, p<0.05) in cells treated with
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2 UM TTM and transfected with pCMV6_Atox1 compared to cells treated also with TTM and
transfected with an empty vector (Figure 6.4D).

A Control 200 yM BCS 2uM TTM
Atox1 ‘ ‘ ‘overexpressed
— - —— “ WSS endogenous
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Figure 6.3 Expression Levels of Atox1 in Cells Transfected with pPCMV6_Atox1 and
Treated with 200 uM BCS and 2 uM TTM.

A) Representative Western blot analysis of cells transfected with pCMV6 or pPCMV6_Atox1
and treated 200 uM BCS and 2 uM TTM 3 days post transfection (n=2). The blots were
probed with antibodies for Atox1 and DDK which further confirmed the presence of the
transfected protein. B) Densitometric analysis of the overexpressed Atox1 under the tested
conditions. Two-way ANOVA followed by Bonferroni post-test was used to determine
differences between treatments and transfection conditions where ***, p<0.001. One-way
ANOVA followed by Tukey post-test was used to identify changes amongst the different
groups where #, p<0.05 and ##, p<0.01.
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Figure 6.4 Expression Levels of CCS and SOD1 in Atox1 Transfected HEK293 Cells Treated
with 200 uM BCS and 2 pM TTM.

Representative Western blot analysis of (A) CCS and (C) SOD1 in cells transfected with
pCMV6 or pCMV6_Atox1 and treated with 200 uM BCS and 2 uM TTM 3 days post
transfection (n=2). Densitometric analysis of (B) CCS and (D) SOD1 proteins under the tested
conditions. Two way ANOVA followed by Bonferroni post-test was used to identify
differences between treatments and transfection conditions where *, p<0.05. One way
ANOVA followed by Tukey post-test was used to identify changes amongst the different
groups where no significant difference was present.

In the mitochondrial copper pathway, COX2 protein levels were the most severely affected by
BCS or TTM treatment and based on this we analysed the effect of Atox1 overexpression.
COX2 and VDAC1 protein levels in cells transfected with pCMV6 or pCMV6_Atox1 and
treated with 200 uM BCS and 2 uM TTM (Figure 6.5A) showed that pPCMV6_Atox1
transfection did not prevent COX2 protein loss following BCS or TTM treatment (two-way
ANOVA, p=0.043) whereas overexpression of Atox1 caused a significant 18% increase of
COX2 protein (two-way ANOVA, p<0.05). Furthermore, COX2 protein levels in control cells
transfected with pCMV6_Atox1 had higher COX2 levels compared to cells treated with BCS
or TTM and transfected with pPCMV6_Atox1 (one-way ANOVA, p<0.001, Figure 6.5B).

Mitochondrial mass showed significant changes between treatments (two-way ANOVA,
p=0.024) though post-test analysis did not show any significant change between groups
(p>0.05) despite a 20% increase in VDACL protein in cells transfected with pCMV6_Atox1
and treated with 200 uM BCS compared to cells transfected with an empty vector and treated
with BCS (two way ANOVA, p>0.05). In HEK?293 transfected with pCMV6_Atox1 and
treated 200 uM BCS significantly higher VDAC1 levels were observed compared to cells

treated with 2 uM TTM and overexpressing Atox1 (one-way ANOVA, p<0.05; Figure 6.5C).
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The COX2/VDAC1 ratio was examined and treatments had a significant effect (two-way
ANOVA, p<0.0001) due to COX2 loss in BCS and TTM treated cells. The COX2/VDAC1
ratio was significantly lower by 15% in untreated cells overexpressing Atox1 (p<0.05; Figure
6.5D). By comparing the different groups, the COX2/VDACI ratio was higher in untreated
transfected cells with pPCMV6_Atox1 compared to cells treated with BCS or TTM and
overexpressing Atox1 (one-way ANOVA, p<0.001; Figure 6.5D).
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Figure 6.5 Expression Levels of COX2 and VDACL in Cells Transfected with
pCMV6_Atox1 and Treated with 200 uM BCS and 2 uM TTM.

Representative Western blot analysis of (A) COX2 and VDACL in cells transfected with
pCMV6 or pCMV6_Atox1 and treated with 200 uM BCS and 2 uM TTM 3 days post
transfection (n=2). Densitometric analysis of (B) COX2 and (C) VDACL1 normalized with
GAPDH as well as (D) COX2 normalized with VDACL under the tested conditions. Two-way
ANOVA followed by Bonferroni post-test was used to determine differences between
treatments and transfection conditions where *, p<0.05. One-way ANOVA followed by
Tukey post-test was used to identify changes amongst the different groups where #, p<0.05
and ###, p<0.001.

Since overexpression of Atox1 and treatment with BCS or TTM showed similar results to
non-transfected cells (see chapter 5) we determined COX/CS and SOD activity in transfected
cells with empty vector or pPCMV6_Atox1. COX/CS activity did not change in cells
overexpressing Atox1 (t-test, p=0.7456) however SOD activity was statistically significant
lower by 17% (t-test, p=0.004) in cells transfected with pCMV6_Atox1 (Figure 6.6) which

was similar to an 18% loss of SOD1 protein under the same conditions.
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Figure 6.6 Activity Levels of Copper Binding Enzymes in Cells Overexpressing Atox1.
Activity of (A) COX/CS and (B) SOD in cells transfected with pCMV6 or pPCMV6_Atox1 as
determined 3 days post transfection. Data were analysed with t-test and **, p<0.01.
The results indicate that Atox1 overexpression does not cause any major effect on either the
activity or levels of copper containing proteins. Furthermore, protein levels of the target
protein, ATP7a, did not change following Atox1 overexpression or treatment (data not
shown). Combining the absence of any effect in the intracellular copper pathways and the low
transfection efficiency of the plasmid we did not continue further experimentally with the

HEK?293 cells overexpressing Atox1.

6.3.2 Transfection of HEK293 cells with pCMV6_CCS

Transfection of HEK293 cells with the pCMV6_CCS using similar conditions to Atox1 failed
to show successful transfection using antibodies for both CCS and the DDK tag (data not
shown). Changing the plasmid and again using the standardized conditions we were unable to
detect CCS overexpression (data not shown). Using increased plasmid concentrations of 14
pg and different volumes of PEI/DNA in each flask (400-800 ul) showed low level CCS
expression at 600 pl and 800 pl PEI/DNA when we used CCS and DDK tag antibodies
(Figure 6.7). The 600 pl showed faint CCS bands and a 50% increase of CCS although the
DDK antibody did not detect any overexpressed protein (Figure 6.7B). Using 800 ul of
PEI/DNA CCS expression increased by 3-fold however the cells appeared unhealthy and the
majority started dying or stopped growing (possibly due to PEI toxicity). Under these
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conditions, the DDK antibody gave faint CCS bands. Statistical analysis using one-way
ANOVA followed by Tukey post-test showed that cells transfected with pPCMV6_CCS and
800 ul PEI/DNA had higher total CCS protein levels relative to cells transfected with pPCMV6
(p<0.001) and against lower PEI/DNA transfection (p<0.001; Figure 6.7B). Given the high
levels of plasmid required to increase CCS expression and the effects on cell viability/growth
after the transfection we did not continue further experimentally.
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Figure 6.7 Protein Levels of CCS in HEK293 Cells Transfected with pPCMV_CCS.

A) Representative Western blot analysis from cells transfected with 14 ug plasmid where
different volumes PEI/DNA were used. The protein expression was determined with both a
CCS and DDK antibody 3 days post transfection. B) Densitometric analysis of CCS protein
levels under the tested conditions. Data were analysed with one-way ANOVA followed by
Tukey’s post-test and *** or ###, p<0.001.
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6.4 Discussion

HEK?293 cells are a common cell line used in transfection experiments especially when
determining the function of specific proteins in relation to particular cellular
processes/pathways. We utilised HEK293 cells to overexpress the two copper chaperones,
CCS and Atox1, to understand their function in relation to the three intracellular copper
pathways. To accomplish this we cloned CCS and Atox1 cDNA into the pCMV6 mammalian
expression vector which has been successfully used in transfection studies with HEK293 and
also other cell lines“®-4%9), However, under our experimental conditions the transfection with
CCS was unsuccessful and for Atox1 transfection efficiency was low however the protein

levels in individual cells were markedly increased.

6.4.1 Transfection with pPCMV6_Atox1 had low efficiency but increased protein

expression

We were only able to transfect 15% of the cell population with pPCMV6_Atox1 (Figure 6.2)
when using the PEI method despite Atox1 protein levels being increased by more than 120-
fold (Figure 6.3). Both results are unusual since typical transfection efficiencies with
HEK?293 cells is above 50% and protein levels are normally increased by 40 to 50-fold“®V. In
our study (Figure 6.2D) cells transfected with Atox1 showed high fluorescence intensity but
in only about 15% of the cell population. This markedly increased protein expression of
Atox1 from only 15% of the cells may be detrimental and trigger various intracellular
pathways (e.g. proteasomal degradation) or affect other cellular signalling pathways. Given
these findings, we wanted to further understand if the transfected cells showed changes in
copper containing proteins and if copper chelation could affect this phenomenon. We
observed that cells which overexpress Atox1 and treated with 200 uM BCS or 2 uM TTM
had significantly higher Atox1 levels compared to non-chelated cells transfected with
pCMV6_Atoxl, indicating that either the copper chelators TTM and BCS enhance the
plasmid uptake by the cells, regulate transcription factors which promote transcription of the
epigenetic plasmid, or there is decreased degradation of Atox1. As discussed (Chapter 5),
TTM forms complexes with Atox1 which may enhance the stability of the transfected protein

in the treated cells leading to higher intracellular protein levels (Figure 6.3)®42),

Overexpression of Atox1 did not affect cytosolic CCS protein levels since no change on its
levels were observed under any of the studied conditions. However, Atox1 overexpression
appeared to significantly decrease SOD1 protein levels by 18% in both untreated cells and

cells treated with 2 uM TTM (Figure 6.4) along with a significant 17% decrease in SOD
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activity in untreated cells transfected with pCMV6_Atox1 (Figure 6.6B). These changes (less
than 20%), particularly with a 100-fold increase in Atox1, might not be of biological
significance. These changes in SOD1 may however be limited to those 15% of the cells
transfected with Atox1, potentially suggesting SOD1 is markedly decreased in specific cells.
Overexpressing Atox1 by more than 100-fold in the cytosol may trigger degradation or other
signalling pathways in the cells which might affect other cytosolic protein levels.

Atox1 overexpression caused only minor effects on COX2 or COX2/VDACL expression with
less than a 20% increase or decrease (Figure 6.5), or in COX/CS activity (Figure 6.6A) and
my reflect changes in intracellular protein synthesis pathways. COX2 is a mitochondrial
encoded protein and does not depend on nuclear transcription or cytosolic translation for its
synthesis. That, overexpression of a cytosolic chaperone has no effect on mitochondrial
encoded proteins can be seen when cells are treated with BCS or TTM since overexpression
of Atox1 was unable to prevent the effect on COX2 protein levels (Figure 6.5).

From the above we can conclude that Atox1 overexpression to only 15% of the cells
population did not induce any major changes in the protein levels or activity of other copper
binding proteins even if Atox1 protein levels were increased by 100-fold. One caveat to this
may however be that changes are seen in those cells that are transfected, but these changes are

not seen due to dilution of effects in untransfected cells.

6.4.2 HEK?293 cells were not able to transfect with the pCMV6_CCS

Our attempts to overexpress CCS in HEK293 cells were unsuccessful, producing either no
CCS expression or minimal increases accompanied by toxicity. Both CCS and Atox1 were
cloned in the same expression vector and the only difference may be the insert size since
Atox1 consists of only 207 bp and encodes a 7 kDa protein whereas CCS is larger with a 825
bp cDNA producing a 28 kDa protein. It is possible that cells are able to take up smaller
plasmids and express smaller proteins more efficiently, and indeed increasing insert size
significantly decreases promoter activity, an effect which is seen in multiple cell types®“%2 4%3),
Another possible factor which could have contributed to absent CCS expression compared to
Atox1 might be the normal cellular regulatory mechanism of these proteins since one study
has shown that Atox1 is more abundant compared to CCS in HEK293 cells possibly reflecting

the intracellular requirement for these proteins®“.
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6.4.3 Future directions

Multiple factors could have contributed to the unsuccessful (CCS) or low transfection
efficiency (Atox1) including: DNA structure, size of the vector, stability during intracellular
routing, the amount of plasmid that reaches the nucleus, the cell cycle phase during
transfection, the passage of the cells and confluence, and cell growth medium.

It is generally believed that the super-coiled form of the plasmid is the physiologically active
conformation and that this is the preferable form for transfection of mammalian cells“%%.
Normally the quality of high yield super-coiled plasmid depends on the strain of E.coli that
the plasmid was extracted from, in this study we used the common JM101 strain however
some studies suggest that Dh5a or XL 1-Blue strains can produce higher quality super-coiled
plasmid®). This may have affected the quality of the plasmid since we could only extract 2-4
pg/pl plasmid from 100 ml culture. Poor super-coiled content may also result from sequences
within the plasmid such as segments with predominantly purines and AT-rich sequences
which can lead to the formation of intramolecular triplexes (H-DNA)“%), These sequences are
common in eukaryotic DNA and their presence leads to nicking by endogenous nucleases due
to the occurrence of single-stranded DNA along with plasmid DNA®“®"). This may contribute
to the low yield from the larger pCMV6_CCS which was almost half (2.4 pg/ul) to the
smaller pPCMV6_Atox1 plasmid (3.5 pg/ul). Inverting the orientation of bacterial ori relative
to the eukaryotic expression cassette or by increasing the distance between the ori and these
elements can eliminate H-DNA formation“®® and since the bacterial fi ori is close to the
eukaryotic expression cassette in pPCMV6 (Figure 6.1) another vector with improved features

may be able to produce high-quality super-coiled plasmid.

Plasmid size is able to modulate gene transfer efficiency since transfection efficiency of
lipoplexes (liposomes and DNA) containing smaller plasmids is greater than lipoplexes
containing the same molarity of larger plasmids“®®. The significance of vector size in the
expression transfection efficiency in different cell lines has been shown that the addition of
0.65 kb insert on a 5.1 kb vector can cause more than a 30% decrease in promoter/enhancer
activity in HEK293 cells and to more than 50% in Jurkat or K562 cells“®?). In the current
study the vector is more than 5.9 kb and the final size is 6.2 and 6.7 for Atox1 and CCS
respectively. These studies are in line with our finding of the larger pPCMV6_CCS vector
having absent expression and the smaller pPCMV6_Atox1 showing only low transfection
efficiency. A possible solution to that problem could be a smaller vector, less than 5 kb, or

vector with less bacterial elements in the backbone. The pCMV6 contains the neomycin
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selection marker for the establishment of stable cell lines however in our hands cells were
dying after the addition of G418 due to the low transfection efficiency. Since transient
transfection is considered more cost-effective, a vector without a neomycin cassette will
significantly reduce the size of the expression vector. Another option could be to replace
ampicillin or kanamycin (830 bp or 890 bp) resistance cassettes with the much smaller
zeomine (400 bp) bacterial selection marker®%,

PEI is a cost-effective transfection reagent which is an effective cationic compound for in
vitro delivery of plasmid DNA to mammalian cells. PEI condenses DNA and the formed
complexes (polyplexes) are taken up through interactions with heparan sulphate
proteoglycans expressed in the cell membrane, followed by endocytosis into acidified
endosomal compartments. Once inside the cells the polyplexes have to overcome several
major hurdles such as endolysosomal entrapment, cytosolic sequestration, nuclear exclusion
of the DNA and metabolic degradation®®V. Nucleases can start degrading the plasmid DNA
after delivery to the cells and during trafficking to the nucleus which can be overcome by
using circular rather than linear plasmids which are more assessable to nucleases®%). Also,
elements of the vector’s sequence can be designed to maximize survival in hostile cell
environments®®®, Studies have shown that six homo-purine rich sequences, located inside the
polyA signal of the bovine growth hormone (BGH), and an 11-base long inverted repeat in
the ColE1 ori are more susceptible to nucleases and that results can be improved by replacing
the BGHpolyA with the SV40polyA®®, The pCMV®6 vector contains only the ColE1 ori on
its sequence and the BGHpolyA is replaced with hGHpolyA. If SV40polyA significantly
increases the half-life of super-coiled plasmid in the mammalian cytosol, an expression vector

with this element might enhance the protein expression of our genes.

Furthermore, several bottlenecks in the process of plasmid DNA delivery to nucleus occur
since after PEI transfection both positive and negative HEK293-EBNAL cells show equal
amounts of plasmid DNA however, positive cells show 3-fold higher plasmid content in their
nucleus than in negative cells®%). Apparently, untransfected cells can show significant
amounts of plasmid DNA but transcription capability of the plasmid is inefficient and seems
to depend on the physiological condition of the cells, indicating that optimal protein
production requires the right balance between delivering enough complexes of PEI/DNA to
the nucleus without causing adverse effects on the cells®%). Variable levels of plasmid can be
delivered to the nucleus which consequently determines if a cell will produce protein or not.
Current research has evolved techniques to isolate cells that only express the desired protein.

By using FACS cell sorting or a similar system we could possibly isolate only the cells that
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overexpress CCS or Atox1 in order to grow only the positively transfected cells and then
conduct further experiments in a cell population where all cells express the exogenous
protein.

Another important factor that plays significant role in transfection efficiency and consequent
protein expression is the cells condition which includes the cell cycle phase, passage of the
cells and confluence during the transfection. A study in CHO cells has shown that when cells
were synchronized before transfection by using minosine to inhibit ribonucleotide reductase,
it was possible to gain a higher transfection efficiency when cells were in the S-phase®%),
This suggests that a certain period is required during cell cycle progression for the
transfection reagent and DNA in endosomes/lysosomes to become distributed within the
cells®%), At mitosis, when the nuclear membrane disintegrates, and before it is reformed the
plasmid DNA will have increased chances to be enclosed within the newly formed nucleus if

it is in close proximity®%),

It is generally accepted that HEK293 cells can be grown for 20-30 passages (around 4 months
if cells are passaged twice a week) after initially reviving cells and throughout this time are
considered stable“). After obtaining HEK293 cells from ATCC, we made several aliquots
of early passage cells and these cells were only grown for 20 passages. For the transfection
experiments both early and late passage cells were used without any change to the final
results. Another factor which could affect transfection is cell confluence since transfection
with PEI requires 40-50% confluence. In the current studies, confluence was around 30-40%
as afterwards we wanted to treat the cells for 3 additional days and by that stage the cells
would have been over-confluent and possibly forming micro-islands. This may not be
considered ideal since the cells will lose the normal monolayer formation and in order to
avoid this we decreased the initial seeding density by 10-20%. However, if by increasing the
initial seeding density we were able to transfect the HEK293 cells more efficiently, we could
possibly treat the cells for 2 instead of 3 days since at this time point cells showed similar

changes in copper proteins to cells at 3 days.

Finally, some studies indicate that the presence of FBS in the medium can inhibit transfection
efficiency with PEI®%), The HEK?293 cells were grown in the presence of 10% FBS and the
PEI/DNA complex was prepared in serum free medium since certain proteins in serum can
inhibit formation of the complexes. Four hundred microliters of PEI/DNA were added to the
growth medium of the cells which reduced the final FBS concentration to 9%. However, 24

hours post-transfection the medium was replaced with 10% FBS medium therefore if high
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serum concentrations contributes to the low transfection efficiency it may be possible to grow
cells in lower serum concentrations or even serum free conditions during the transfection

procedure, since HEK293 cells can be grown successfully in 0-2% serum conditions®?,

In summary, it may be possible to change the expression vector and then apply small
modifications to the transfection protocol in order to accomplish the overexpression of CCS
and Atox1. A possible vector is the pCMV-tag epitope tagging vector from Agilent
Technologies which is only 4.3 kb and with the addition of CCS or Atox1, the final plasmid it
will not exceed the 5.1 kb which may provide maximal expression®?). Furthermore, the
vector contains the strong CMV promoter and the Kozak sequence and the more efficient
SV40polyA to significantly increase the half-life of the super-coiled plasmid in the
mammalian cytosol. The vector still has the fi ori for single strand DNA rescue and the pUC
ori for high copy number replication in E.coli. The vector has the slightly smaller kanamycin
resistance gene instead of ampicillin for bacterial selection although it still contains the
neomycin resistance cassette for selection in mammalian cells. Moreover, the plasmid carries
on its N or C-terminus Flag or myc tags to discriminate endogenous from exogenous protein
expression. Finally, by applying small modifications to the transfection protocol including
PEI/DNA ratio, serum in growth medium or cell confluence, we may obtain improved

transfection results.

6.5 Conclusions

Transfection with the pCMV6_CCS vector was unsuccessful and with the pPCMV6_Atox1 we
were only able to transfect 15% of the cells but with a 100-times increase in Atox1 protein.
Neither of the situations were ideal since they were not representative of the majority of the
cell population. Furthermore, since 15% of the cell population expressed Atox1 by more than
100-times, this may have caused further problems to the cells including altered proteasomal
degradation, cycle arrest or apoptosis. Using these conditions however, Atox1 overexpression
does not seem to cause any major effect in the copper homeostasis pathways or inhibit the
effects of copper chelation. Cloning CCS or Atox1 into a smaller vector with less
backbone/bacterial elements may improve the transfection efficiency and consequently

protein overexpression.
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7 Summary
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7.1 Introduction

The aim of this thesis was to investigate the link between copper homeostasis and AD
pathogenesis and additionally to explore the mechanisms of copper prioritization in
mammalian cells. Previous studies have suggested that copper chelation could work as a
potential therapeutic strategy for AD. Our study has shown that both in healthy ageing and in
AD, the brain shows a significant loss of copper accompanied by changes in the activity and
protein levels of important copper binding enzymes/proteins. Furthermore, using an in vivo
cell model we were able to show that extensive and chronic copper loss could ultimately lead
to loss of cellular antioxidant defence and energy production systems.

7.2 Function of copper homeostasis pathway in the ageing and AD brain

One major finding of the brain study is that both ageing and AD brain show major copper
loss, essential for the function of two important cell survival enzymes, COX and SOD.
However, neither SOD nor COX appears affected by copper availability since for both
enzymes their activity or protein levels were increased or unaffected. This suggests that other
factors possibly contribute to the regulation of these enzymes in the brain considering the
brain’s high consumption of energy substrates with 60% of glucose and 20% of body oxygen
being utilised® 3V along with increased amount of ROS as by-products ¢%-311, The
combination of neuronal/mitochondrial loss found in the AD brain and, minimally, with
ageing together with an increased energy demand for neuronal function may lead to increased
COX activity which is accompanied by increased SOD activity to defend against the
increasing mitochondrial ROS production. Despite an almost 50% copper loss in the brain,
copper binding enzymes were still able to function. Nonetheless, copper deficiency affected

the levels of various copper binding proteins including COX2 and CCS.

The general conclusion from the brain study was that the main effects, especially in the AD
brain, is that the pathological changes resulting in neuronal loss leads to mitochondrial
deficiency and loss of mitochondrial proteins. Increased oxidative stress in the AD brain due
to astrocytosis, brain inflammation or amyloid and tau deposition leads to increase SOD
activity. The influence of AD pathology on protein, activity, and copper levels can also be
seen in the differences between EOAD and LOAD cases where we identified that the most
severely affected EOAD cases showed greater changes. Given our results from both the AD
and ageing brain, even when copper is reduced, brain neurons are utilizing available copper to

maintain mitochondrial function and antioxidant defences.
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The theory of treating AD with copper chelators may not be a viable option since our results
showed that there is already limited availability of copper. In the brain copper exists in two
main oxidation forms the Cu* which is normally located in the reducing intracellular
environment and the Cu?* which is dominant in the more oxidised extracellular
environment®®), The levels of the extracellular Cu?* vary, from 0.5-2.5 uM in the CSF up to
30 uM in the synaptic cleft®®®. The intracellular Cu'* levels within neurons can reach 2 to 3
fold higher concentrations compare to extracellular copper levels®%). The proposed chelation
theory suggests that metal chelators such as CQ will sequester Cu?* from the plaques and then
redistributed in neurons®®® 264 In our study, we measured total brain copper levels
(extracellular and intracellular), including the copper within amyloid plaques, and showed a
loss. Based on our findings and taking into consideration that the Cu?* is not the most
abundant form of copper in the brain; the chelation strategy might need to be reconsidered and
possibly changed to a copper supplementation strategy. The supplementation approach is
probably more suitable for people before dementia onset and particularly in people with a
family history of AD or increased risk factors. Furthermore, our cell study showed the
potential effects of copper chelation on cell function, with an almost complete loss of SOD
and COX activity. Our studies suggest that people need to increase copper intake, as they get
older especially after the age of 70. A diet enriched with copper might be helpful beginning in

the fifties, which could be later enhanced by copper containing supplements at later ages.

7.3 Copper chelation inhibits the function of the mitochondrial and cytosolic copper

pathways

In the present study, HEK293 cells were used to determine the effects of different copper
chelators and supplementation on intracellular copper pathways. From our results we showed
that only extracellular BCS and intracellular TTM copper chelators were able to significantly
inhibit the activity and/or protein levels of SOD and COX in the cytosol and mitochondria by
reducing the intracellular copper levels by more than 80%. The effects of these two copper
chelators on COX and SOD function is highly dependent on their mechanism of action since
we showed that the cell permeable TTM induced either higher or faster loss of the activity of

these proteins.

The inhibition of COX and consequently of the mitochondrial respiratory function led to a
shift in glycolysis for energy production as indicated by the low pH measurement and
increased ECAR. However, the bioenergetics analysis showed that cells are still able to

function under these conditions since no change in basal respiration and ATP production was
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observed. The only difference, that of bioenergetics function, was the increased spare
respiratory capacity in the TTM treated cells indicating that either the AW, is disrupted or that
ETC is not utilizing the available substrates for its function. It is worth noting that only the
intracellular copper chelator was able to induce these changes whereas the extracellular BCS
did not affect the mitochondrial bioenergetics even when both chelators were able to reduce
COX activity by a similar level. Based on the above we can conclude that the cellular
localization of the drug/treatment plays an important role in protein regulation.

The HEK?293 results may indicate potential changes during brain copper deficiency. Although
HEK293 may not be an exact model for neural cell populations, studies have shown that
HEK?293 express certain neuronal proteins®®®, and the potential outcome of conditions where
copper is almost absent can be observed. Copper utilisation for systems other than energy
production and oxidative stress defence, is important for the function of other proteins
associated with connective tissue, neurotransmitter synthesis and melanin production. Copper
loss of over 80% will reduce the activity of COX and SOD, increase oxidative stress, and
reduce efficient communication between neurons due to reduced neurotransmitter processing,
potentially leading to neuronal death. All these results further signify the importance of
copper not only on single cell function but also in a complicated and multiply regulated

system such as the brain.

7.4  Study limitations

A major limitation of the present study was the reduced success with CCS and Atox1
transfection where we were not able to overexpress CCS and with Atox1 we could only
transfect 15% of the cells. Given time limitations we were unable to clone these genes in
another mammalian expression vector to obtain better transfection efficiency and
overexpression of the transgene. From the limited results from Atox1 it seems that Atox1
overexpression is not able to induce any major changes in the intracellular copper pathways
and therefore focusing only on experiments with cells that overexpress CCS may be more

appropriate.

One limitation of the current cell study was that we were unable to determine copper levels
from Day 1 and 2. Our aim was to determine both copper levels and activity/protein levels
from the same butch of cells however; there were insufficient cells at Day 1 and 2 to conduct
all of the assays. A separate set of experiments only determining the copper concentration
under the tested conditions will help us understand if intracellular copper decreases gradually

or acutely after treatment with BCS and TTM.
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An important limitation of the present study was the usage of an epithelia cell line (HEK293)
as model for a neurodegenerative disorder. Using neuronal cell lines such as SH-SY5Y cells
or neuronal stem cells would be more appropriate in order to draw conclusions about the
function of copper homeostasis pathways in AD or the ageing brain and if a copper chelation
or supplementation strategy could be helpful for neuronal/brain function. Furthermore, the
current study lacked any correlation of the copper homeostasis pathways with the amyloid
pathways both in the cell and brain studies. Measuring the activity of BACE1, since it binds
copper and interacts with CCS, in our cell and brain samples would provide valuable
information about the correlation of these two pathways. Unfortunately, our attempts to
measure BACEL protein levels were unsuccessful since the protein is highly glycosylated and
we were unable to measure BACE1 accurately with Western blotting. The assay to measure
BACEZ1 activity is laborious, costly and difficult to establish especially in brain samples and
for that reason we were unable to conduct or find collaborators for this work. However,
obtaining this information on BACE1 will enlighten our understanding about the connection

of these two pathways.

Another limitation of the present study was that in both the brain and cell studies we mainly
focused on complex 1V (COX) function in the ETC however, there were significant
indications that other ETC complexes are also affected under our experimental conditions,
particularly complex I. For the brain study it is of major importance to measure the activity
and protein levels of complex | and 111, the main sources of superoxide anions, and also
determine potential changes in other antioxidant deference enzymes. In the cell study,
determining the activity of the other ETC complexes will possibly help us understand why the
basal OCR does not change and why COX still retains 20% of its activity under conditions of

almost complete copper deficiency.

Due to time constraints the levels of copper binding proteins were not determined in
cerebellum from the healthy cases or in AD cases. Even though in AD brain we did not show
a significant change in copper or activity levels of SOD and COX/CS still it would be
interesting to know if the levels of certain proteins where we observed significant changes in
frontal and temporal cortex such as COX2, VDACL1 and SOD1 are also affected in AD
cerebellum. Similarly, since these proteins change with age, studying cerebellum will provide

further information on the ageing process in functionally different brain regions.
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7.5 Future Directions

The results of this thesis have opened up various avenues for further investigations in both the
brain and the cell studies.

7.5.1 Further brain studies

The study of the ageing healthy brain and AD was conducted only in cerebellum, frontal and
temporal cortex including more brain regions such as hippocampus, putamen, occipital and
parietal cortex or substantia nigra and locus coeruleus we will able to obtain a more global
picture of how copper pathways contribute not only to normal ageing but also the progress of
a neurodegenerative disorder such as AD. The above mentioned brain regions were selected
in order to get a broader idea of how copper homeostasis pathway is changing in functional
different brain areas which also consist from different types of neuronal cells. In addition, the
majority of these brain regions (hippocampus, occipital cortex, substantia nigra etc.) are
severely affected in neurodegenerative disorders. Substantia nigra and locus are also having
the highest copper concentration in the brain since they require copper for the pigmentation of
catecholamine neurons“® “®) and further investigation will provide a better inside of how these

regions are affected by ageing or neurodegenerative disorders.

Including additional cases in the study would also be helpful since it will increase the
statistical power of the analysis, allowing more robust results especially in instances where
changes were only marginally significant (see cerebellum analysis for copper in EOAD).
Furthermore, in the present study we only used the grey matter to determine the copper
concentration and activity/protein levels of various copper binding proteins. Studying these
variables in the white matter, it might give valuable information regarding the role of copper
homeostasis pathways in the whole brain tissue. A few studies have shown decrease copper
levels in the AD white matter®* and that copper deficiency can lead to demyelination of the

axons and oligodendrocyte damage®.

Recently studies have shown that transition metals including copper can interact with ao-
synuclein, which can lead to protein aggregation in the neurons. Also, it seems that -
synuclein is able to reduce Cu?* to Cul* intracellularly leading to the production of the
highly reactive H.0,®'). Two major disorders, Parkinson and Dementia with Lewy Body
(DLB) are presenting pathology related to aggregations of a-synuclein. As already mentioned
in the introduction section, a few studies have shown change in copper levels in PD substansia

nigra however to my best knowledge they are not many studies that have measured the
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different components of the copper homeostasis pathway in these two disorders. By including
PD and DLB cases a better insight of how copper homeostasis pathway is implicated in other
neurodegenerative disorder will be obtained.

In the present study we have indications that ROS production and antioxidant defence
mechanisms are increased in both AD and in the healthy ageing brain. Measuring the activity
and protein levels of complex | and 11, the two major sources of mitochondria-derived ROS,
will further support the theory that increased function of the respiratory chain has as a result
an increased production of ROS which will require more active SOD. Determining the
protein/activity levels of the other enzymes responsible for the antioxidant defence system in
the brain, CAT and GPx, we may be able to understand why there is an increased oxidative

stress in the brain, even when the first line of antioxidant defence is increased.

Both the AD and ageing brain faces copper deficiency and it is well established that copper
levels can change the localization of certain proteins in cells including Ctrl or ATP7a1 ), In
the present study we did not identify any change in Ctrl or ATP7a protein levels however
copper deficiency might alter their distribution and immunohistochemical approaches in
tissue sections could identify if there is any difference in their localization. It would also be
helpful to correlate the increased or decreased protein levels observed in the AD brain with
specific cell populations in the brain since we know there is neuronal loss which could lead to
decrease levels of certain proteins, along with increased astrogliosis which could result in

higher protein expression.

By measuring the activity and protein levels of BACEL1 in the studied cases we will be able to
directly correlate if a pathway involving copper homeostasis is implicated with AD
pathogenesis. BACE1 not only binds copper on its N-terminus but also interacts with CCS
and it will be interesting to know if brain copper deficiency has any effect on BACE1 activity

or protein levels and how these correlate with CCS protein levels or SOD1 activity*®),

In the current study we were able to compare AD subtypes (EOAD and LOAD) for copper
and activity of COX/CS and SOD, but not for protein levels since the cases were analysed in
different gels. It will be interesting to compare these two subtypes for the protein levels also,

especially where significant changes occurred such as with SOD1, CCS, COX2 or VDACI1.

7.5.2 Further cell studies

Accomplishing the overexpression of the cytosolic chaperones, CCS and Atox1, in the

HEK293 cells will provide further information about copper prioritization in cells. It will be
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interesting to see what happens when cells overexpress CCS and treated with copper chelators
(BCS and TTM) and if this will reverse or partially inhibit the effects on SOD activity. It will
also be interesting to see what happens when copper chaperones are knocked-down by using
either siRNA or in MEFs with CCS or Atox1 knockout and how this affects the activity or
protein levels of SOD and COX and especially in combination with copper chelators.

The present study demonstrated certain findings concerning mitochondrial function under
copper chelating conditions which could not be entirely explained with the present data set.
To obtain a better understanding about mitochondrial function it will be necessary to measure
the activity of the ETC complexes and especially Complex I. While the remaining ETC
complexes may not require copper for activity, it appears that when one ETC complex is
down-regulated the remaining complexes appear to compensate for the loss. This could be
achieved in part by using Blue-Native PAGE on isolated mitochondria to see how copper
chelation affects the holo-complexes and the respirasomes. Also, by measuring the AW, and
ATP turnover in treated cells it may be possible to understand the effects of copper chelation
on the ETC and why the decreased COX activity does not affect the OCR. Under copper
chelating conditions the protein levels of COX2 are severely affected from Day 1 (more than
70% of the protein is lost) and therefore determining how fast copper chelation affects COX2
levels by collecting cells samples every 2-4 hours up to Day 3 (when there is no COX2
remaining) will provide further information on how COX2 is regulated by copper availability.
Experiments involving 2 or 3 days of treatment with BCS or TTM and then placing cells in
normal or copper supplemented medium would provide information on reversibility of
effects. By collecting cell samples over 24-48 hours, the effects on COX and SOD activity

could be determined to see how long it takes to return levels back to normal.

In the present study we showed that the protein levels NDUFV1 of complex | decrease over
time. It will be interesting to see if complex | activity is affected in a similar way and if other
proteins needed for complex | function, both mitochondrial and nuclear encoded subunits
such ND1, NDUFB8 or NDUFS4 or NDUFS6, show similar trends. Furthermore, identifying
the time point where NDUFV1 declines and if levels return to normal after Day 3 will be

important by undertaking a thorough time course experiment.

One major finding of the present study was the shift to glycolysis for energy production
although we did not determine any part of this pathway how it is affected during copper
deficiency. One of the most accurate ways of measuring the shift towards glycolysis is by

determining lactate levels in the cell medium. Several methods are available to determine
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lactate however it is necessary to deproteinate cell medium before use since FBS contains
high levels of lactate dehydrogenase which is able to convert lactate to pyruvate. Determining
the activity and protein levels of rate limiting glycolytic enzymes such as Hexokinase,
Phosphofructokinase, and Pyruvate kinase would provide an understanding of how this
pathway is regulated under copper chelating conditions.

Measuring the effects of copper chelation on the amyloid pathway and particularly on BACE1
activity and protein will provide information on how these pathways are linked and which
therapeutic strategy, copper chelation or supplementation, might improve not only AD
patients, but also healthy people. Measuring Ap and APP levels since both can bind copper
and studies have shown that their function depends on copper concentration would be

worthwhile in this context.

HEK293 cells whilst having some neuronal derived genes®® still cannot be considered an
accurate model for normal neurones or neurodegeneration. For that reason the experiments in
HEK?293 cells should be repeated in neuronal stem cell derived human neurones. Under these
experimental conditions the effects of stem cell transfection with BACE1 or APP and the
effects of copper chelation on the amyloid pathway under conditions known to produce
increased AP levels and can lead to AD could be studied. This would provide the necessary

information on how copper manipulation affects neuronal function in both health and disease.

7.6 Final conclusions

In conclusion, the main results of this thesis suggest that copper homeostasis pathways are not
directly implicated with AD since the majority of our findings are either due to mitochondrial/
neuronal loss or to increased oxidative stress. We showed that both in ageing and in the AD
brain copper deficiency is present although that does not seem to affect the activity of COX
and SOD. Changes in copper levels have also been observed in PD, another age associated
disorder, where significant copper loss was observed in sabstantia nigra the most affected area
in the PD brain@® 17, Clinical trials with copper chelation or supplementation have been only
conducted with AD patients and to my best knowledge not in another age-associated disorder
and as already has been discussed in introduction (section 1.6.1) both approaches fail to
benefit the AD patients. Through the cell studies, we were able to identify the possible
consequences of extensive copper deficiency on two important for the cell survival enzymes,
COX and SOD which further support that balancing copper levels properly is important for

the function of cells and consequently whole tissues.
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A. Appendix A: Decreased copper levels in the ageing cerebellum
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In the current investigation we were unable to complete the analysis of the cerebellum
samples. However, the acquired data for copper levels and activity of SOD and COX in the
ageing cerebellum are in good agreement with those we obtained in frontal and temporal

cortex.

A.1 Results: Investigating copper and activity levels in ageing cerebellum

We were only able to obtain cerebellum samples from 22 healthy control cases. Similar to
frontal and temporal cortex, Spearman’s rank test was used to identify correlations between
age of death and copper or activity levels. In cerebellum, a statistically significant negative
correlation was observed between age and copper levels (rs=-0.587, n=22, p=0.0041; Figure
A.1A). The result indicates that there is a moderate correlation which shows that in the
healthy cerebellum copper levels decrease with age, consistent with the results in frontal and
temporal cortex (section 3.3.1). In cerebellum, SOD activity increased with age however the
change was not statistically significant (rs=0.441, n=22, p=0.039; Figure A.1B). The COX/CS
activity ratio did not show any change with age in cerebellum (rs=-0.05, n=22, p=0.816),
although in frontal and temporal cortex there was a positive correlation between age and
COXI/CS activity (Figure A.1C). In cerebellum, no other correlation was identified between
copper and activity of SOD or COX/CS (data not shown).

As discussed in chapter 3 each brain regions demonstrates different changes with ageing with
cortex being most affected. In order to examine if copper levels and activity of SOD or
COXI/CS differed amongst brain regions a Kruskal-Wallis test followed by Dunn’s Multiple
Comparison post-test was performed. The analysis revealed that even if all three brain regions
face similar decrease with age, cerebellum had significantly (p<0.001) higher copper levels
compared to frontal and temporal cortex (Figure A.2A). A similar trend was also observed for
SOD activity since cerebellum had significantly higher activity compared to frontal cortex
(p<0.05) but not compared to temporal cortex (p>0.05). COX/CS activity in cerebellum was
significantly lower compared to both frontal (p<0.001) and temporal cortex (p<0.001).
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Figure A. 1 Graphical representation of Copper Correlations in Cerebellum.

Age of death of the control samples was correlated with (A) copper levels, (B) SOD activity and (C) COX/CS activity in cerebellum. Spearman rs
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Figure A. 2 Graphical Representation of the Regional Differences in Copper, COX/CS or SOD Activity in the Healthy Brain.

Cerebellar, frontal and temporal cortex were compared for (A) copper levels, (B) SOD and (C) COX/CS activity. Data were analysed with Kruskal-

Wallis test followed by Dunn's Multiple Comparison post-test in order to determine if regional differences in levels were apparent and *, p<0.05 ; ***

p<0.001.
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A.2 Discussion

The above results with cerebellum are in good agreement with those from frontal and
temporal cortex. Copper levels in cerebellum decrease with age although it appears that
cerebellum contains higher copper levels compared to cortex (Figure A.1A and A.2A).
Previously published studies have also reported that copper concentration in cerebellum is
higher compared to other brain regions®* 342 possibly reflecting local demands for higher
copper content or due the presence of different cell types in cerebellum compared to cortex.
Studies have shown that Purkinje cells in cerebellum show high expression levels of the
copper transporters Ctrl and ATP7a/b which play a fundamental role in copper acquisition

and distribution in cells and tissues®® 73,

Studies have shown that cerebellar grey and white matter volume declines with age but white
matter shows a significantly more rapid volume loss compared to grey ©'2. Even if
cerebellum shows atrophy and volume loss with ageing, this does not appear to affect
COXI/CS activity, rather activity levels seem to be stable throughout life (Figure A.1B).
However, COX/CS activity in the cerebellum appears to be significantly lower compared to
cortex (Figure A.2B) reflecting a lower energetic demand, possibly representing the local cell
types. Cortex consists of excitatory projection neurons whereas cerebellum contains Purkinje
cells and granule cells where potentially these cell types contains fewer mitochondria. To
obtain a better understanding of mitochondrial function and COX/CS activity in the
cerebellum it would be useful to determine the effects of ageing on mitochondrial VDAC1,
COX1 and COX2 proteins.

In the cerebellum, SOD activity also increased with age but the change was not statistically
significant however SOD activity seems to be significantly higher in cerebellum relative to
frontal and temporal cortex (Figure A.1C and A.2C). Studies have shown that the cerebellum
has an elevated antioxidant defence mechanism compared to other brain regions which makes
it more resistance to oxidative damage®'® 5%, In our study we did notice that cerebellum had
higher antioxidant defence through higher SOD activity which could be attributed to higher
SOD?2 levels in cerebellum as shown previously®*®). The increased SOD activity in the ageing
brain is correlated more with increased ROS production, which might not be produced by the
mitochondria since COX/CS activity does not change, but possibly from other sources in
cerebellum: cerebellum shows the highest brain copper concentrations which may trigger the
production of ROS via the Haber-Weiss reaction. However, in order to get a better

understanding of the antioxidant defence system in cerebellum SODs protein levels should be
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determined and directly correlated with SOD activity. Our result of a non-significant increase
in SOD activity with ageing in cerebellum is in agreement with a previous study which

reported a non-significant increase in SOD activity with ageing®*®,

From the above results we can conclude that decreased copper levels accompanied by
increased activity of SOD or COX/CS is a general feature of the ageing brain since
anatomically and structurally different brain regions (cortex and cerebellum) show similar
results. Furthermore, we show that healthy and functionally different brain regions have
higher or lower requirements for copper and activity of certain enzymes which may depend
on regional brain function and possibly the local cellular population.
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B.1 Supplementary Figures
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Figure B. 1 Ctrl Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched controls in (A, D)
frontal and (B, E) temporal cortex and their respective (C, F) densitometric analysis of Ctrl
normalized with GAPDH. Data were analysed with a nonparametric t-test and ***, p<0.001.
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Figure B. 2 Atox1 Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched controls in (A, D)
frontal and (B, E) temporal cortex and their respective (C, F) densitometric analysis of Atox1
normalized with GAPDH. Data were analysed with a nonparametric t-test and ***, p<0.001.
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Figure B. 3 ATP7a Protein Levels in EOAD and LOAD Frontal and Temporal Cortex.

Representative Western blots from EOAD or LOAD and their age matched controls in (A, D)
frontal and (B, E) temporal cortex and their respective (C, F) densitometric analysis of
ATP7a normalized with GAPDH. Data were analysed with a nonparametric t-test and **,
p<0.01.
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Figure B. 4 Effects of 0.5 uM, 5 uM BCS or 0.5 uM TTM on COX and SOD activity in
HEK?293 cells.

(A) COXI/CS activity was determined after 3 days exposure and activity was negatively
correlated with BCS concentration. The 0.5 uM TTM appeared to have similar effects to 2
uM TTM. (B) SOD activity was determined after 3 days exposure where SOD activity was
negatively correlated with the BCS concentration and 0.5 uM TTM appeared to have a similar
effect on SOD activity compared with 2 uM TTM. Data were analysed with one-way
ANOVA followed by Tukey post-test. * indicates significant differences between control and
treated cells, and # amongst different treatments. ** or ##, p<0.01; *** or ###, p<0.001.
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B.2 Supplementary Tables

Frontal cortex Temporal cortex Cerebellum
(ng/g tissue) (ng/g tissue) (ng/g tissue)
Metal Cu Zn Mn Fe Cu Zn Mn Fe Cu Zn Mn Fe
Control 5892 + 13754 + 53180 + 4503 + 14456 + 49275+ | 7915+ | 16138+ 55546 +
3 233 +50 189 + 37 363 +99
(n=14) 923 1054 10754 726 2051 11447 2102 3855 14349
EOAD? 2913 + 13745 + 57180 2623 + 14722 £ 57586 5923 + 15273 £ 55432 +
206 + 35 203 £33 361+ 78
(n=16) 1249 3310 12133 1036 2300 10366 1947 2272 17776
P value 0.0004 0.546 0.088 0.603 <0.0001 0.917 0.371 0.026 0.0507 0.545 1.0 0.859
41% No 12% 7% 43% No 8% 17% 25% 5% No No
% Change . . )
decrease | change decrease increase | decrease change increase | increase | decrease | decrease change change

Table B. 1 Selected Metal Levels in Frontal, Temporal cortex and Cerebellum EOAD and age matched control brains.
Percentage change compared to controls and p values are also reported.

% For cerebellum levels from 9 controls and 12 EOAD cases are presented.
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Frontal cortex

Temporal cortex

Cerebellum

(ng/ g tissue) (ng/ g tissue) (ng/ g tissue)
Metal Cu Zn Mn Fe Cu Zn Mn Fe Cu Zn Mn Fe
Control 3860 + 12892 + 48058 + 3568 + 13105 + 187 + 47205 + 5372+ | 12678 £ 52074 +
212 + 37 341+ 64
(n=13) 833 3507 9243 969 2756 42 10827 1278 2314 19816
LOAD 3317 11564 + 45991 + 2714 12949 + 185 + 48049 * 5247 + 12446 + 46130
190+ 21 327 £ 61
(n=13) 880 1788 8764 854 2013 32 10402 1205 1797 11664
P value 0.111 0.608 0.150 0.644 0.04 0.681 0.919 0.797 1.0 0.758 0.572 0.356
14% 10% 11% 4% 24% No No No No No 4% 12%
% Change
decrease | decrease | decrease | decrease | decrease change change change change change | decrease | decrease

Table B. 2 Selected Metal Levels in Frontal, Temporal cortex and Cerebellum LOAD and age matched control brains.

Percentage change compared to controls and p values are also reported.
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