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Abstract

A triangle group is denoted by A(p, ¢, ) and has finite presentation

Alp,q,r) = (z,yl|z" = y? = (zy)" = 1).

In the 1960’s Higman conjectured that almost every triangle group has among its
homomorphic images all but finitely many of the alternating groups. This was
proved by Everitt in [6].

In this thesis, we combine permutation representations using the methods used
in the proof of Higman’s conjecture. We do some experiments by using GAP code
and then we examine the situations where the composition of a number of coset
diagrams for a triangle group is imprimitive. Chapter [I] provides the introduction
of the thesis. Chapter [2] contains some basic results from group theory and defini-
tions. In Chapter |3| we describe our construction that builds compositions of coset
diagrams. In Chapter [4] we describe three situations that make the composition
of coset diagrams imprimitive and prove some results about the structure of the
permutation groups we construct. We conduct experiments based on the theorems
we proved and analyse the experiments. In Chapter [5| we prove that if a triangle
group G has an alternating group as a finite quotient of degree deg > 6 containing
at least one handle, then G has a quotient C’geg_l X Ageg. We also prove that if,
for an integer m # deg — 1 such that m > 4 and the alternating group 4,, can be
generated by two product of disjoint p-cycles, and a triangle group G has a quotient

Ageg containing two disjoint handles, then G also has a quotient A,, ! Ageg.
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Chapter 1

Introduction

The intent of this chapteris to explain the objective of the thesis. Section is
precisely about the groups of isometries of the hyperbolic plane with some basic
definitions. In Section we define Fuchsian groups and its fundamental regions
for the action of it on the hyperbolic plane. In Section we describe some of
the examples of Fuchsian group. Section is about the outline of the thesis and
Section describes a history of Higman’s conjecture on which the problem of this

thesis is based upon.

1.1 Hyperbolic plane

Suppose C is a complex plane. Define H? = {z =z +iy € C |y >0} = {2z € C |
Im(z) > 0} as the upper half plane. When H? is equipped with the hyperbolic metric
ds = \/dz? + dy?/y = |dz|/Im(z), it becomes a model of the hyperbolic plane. The
boundary OH? defined by

OH? =RUoco C CU
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where oo means a point at infinity.
The above hyperbolic metric can be used to find the hyperbolic length of a
differentiable path v : I — H? defined by (t) = z(t) + iy(t) = 2(¢) by integrating

over its domain. This length is given by

V@R i
L(fy):/o Mdt:/o Ol

Definition 1.1. Let a,b € H2. The hyperbolic distance p(a,b) between a,b € H? is

defined by

d(a,b) = inf {L(c) | o is a differentiable path with end points a,b}

and this gives a metric on H?2.

Definition 1.2. Let d be the metric on H? given by . We define a topology on
H? determinded by the metric d. A set U C H? is open in this topology if for all

uw € U there is a § > 0 such that

Bs(u) = {v : d(v,u) <6} C U.

Then these U form a topology on H?.

Definition 1.3. A geodesic in H? (the path of shortest hyperbolic length) is defined
by a set of straight lines Iy and ly which are either semi-circles orthogonal to R or

vertical lines, as in Fig. [1.1]

Definition 1.4. A triangle in H? is defined as the region bounded by three geodesics
such that not all lines meet at one point and if two lines intersect then they meet in

H? U OHZ.
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l

Figure 1.1: Geodesics

The following Fig. illustrate the four types of triangle in H?Z.

(a) (b) () (d)

Figure 1.2: Types of triangles

Definition 1.5. An isometry of hyperbolic plane is a function f : H?> — H? such that
for any a,b € H?, we have p(a,b) = p(f(a), f(b)). In other words, a transformation

of H? onto itself is called an isometry if it preserves the hyperbolic distance on H?2.

The set of isometries of H?

Isom(H?) = {f: H*> — H?: fis an isometry}

forms a group under the operation of composition. The topology on Isom(H?) called

the compact-open topology. The multiplication and inverses of their elements are
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homeomorphisms, that is, continous functions. Thus, the set of isometries of the
hyperbolic plane is a topological group. It turns out that there are reflections in

geodesics of H2. Let Isom™ (H?) be those isometries that preserve orientation.

1.2 Fuchsian groups

A discrete subgroup of Isom(H?) is called a Fuchsian group if it consists of ori-
entation preserving transformations. Equivalently, a Fuchsian group is a group of
isometries acting discontinously on H?. Let G C Isom(H?) be a subgroup. It acts
discontinously on H? if and only if each z € H? has a neighbour N such that
fIN)NN =¢ forall f €G.

Fuchsian groups can also be envisioned by their fundamental regions. Let I" be a
Fuchsian group acting on the hyperbolic plane H2. Then F is a fundamental region
for I' if ' is a closed set such that UpepT(F') is the entire hyperbolic plane and
FeNT(F°) =10, for all T € I', where F° is the interior of F' [9, p. 240]. The set
{T(F):T € I'} is called a tessellation of H?.

Every Fuchsian group possess a nice (connected and convex) fundamental region.

Example 1.6. As described in [9], let T be a hyperbolic triangle, with vertices
V1, Ve, V3, angles w/my, m/me, /Mg at these vertices and sides My, My, M3 oppo-
site these vertices, as illustrated in the Fig. [1.5 Let R; be the hyperbolic refection
in the hyperbolic line containing M;, (i = 1,2,3), and let I'* be the group generated
by the reflections Ry, Ro, R3. Since Ry does not preserve orientation, I'* is not a
Fuchsian group. However, we consider I' = I'* N Isom™ (H?). Then I'* is the union
of two I'- cosets, for example I'* = I' U 'Ry, for if S € I'*\ I then SRy is the
composition of two orientation-reversing isometries, so it is orientation-preserving

and therefore SRy € Tsom™ (H?).
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Figure 1.3

It can be shown that {T'(7)|T € I'*} form a tessellation of the hyperbolic plane,
that is, no two I'*-images of T overlap and every point of H? belongs to some I'*-
image of 7. It follows that 7 is a fundamental region for I'* and T U RiT is a

fundamental region of I'. Because T is a triangle, we call I' a triangle group.

V3 /X AN U2

Figure 1.4

It turns out that the general form of a fundamental region is as shown in Fig.

which has signature (g; my, ma, ..., m,).
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Figure 1.5: Fundamental region

The area of this region is

4 1

w(F) =2m{(29 =2) + > (1 - —)}. (1.1)
i=1 i
A finite presentation of Fuchsian group I" with signature (g;my,...,m,) is given
in terms of r generators x4, ..., x, and 2g generators ai, by, as, bs, . .., a4, b, with the
relations
o =ay? = =x)" = [ag,b1]. . [ag, bylzy ..oz = 1

1.3 Examples of Fuchsian groups

1.3.1 Triangle groups

A triangle group has signature (0;m;, ms, m3) and has presentation

(X1, Xo, X[ XT" = X7 = X = X1X0X5 = 1),
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Let z = X1, y = Xy and (zy) ' = X, Xy, it gives the following

(z,ylz™ =y™ = (zy)™ = 1),

where my, ms, m3 are integers greater than one.

The area p in equationmust be positive for Fuchsian groups. For (0;my, ms, m3)
we must have 1 — (m% + m% + m%) > 0 to get a Fuchsian group. For example (2,3, 3),
(2,3,4), (2,3,5), (2,3,6), (3,3,3) are not Fuchsian groups. Throughout this thesis
we use the following definition of a triangle group that is equivalent to the above

definition.

Definition 1.7. Triangle groups are denoted by A(p,q,r) with2 <p < q <r. The

group A(p,q,r) has finite presentation:

Ap,q,r) = (z,y: 2P = y? = (zy)" = 1).

In this thesis, p will usually be prime. However, we shall not assume that in general.
In our main work of this thesis r will be finite, however, in some contexts it can be

infinite.

1.3.2 Modular groups

In the notation of defnition [I.7, a modular group is a triangle group with signature

(0;2,3,00) and has presentation
(X1, Xo, X3 X? = X3 = X1 XoX3=1)
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It turns out that the modular group is isomorphic to PSLy(Z). A fundamental region

of the modular group on the upper half plane is shown in Fig. [I.6]

-1 1

Figure 1.6: Fundamental region of modular group

1.3.3 Free groups of rank 2

Free group of rank 2 with signature (0;00,00,00) is a Fuchsian group and has

presentation

(X1, Xo, X5 X1 X0 X5 =1)
=7 % 7.

Fig. shows the action of free group of rank 2 on the upper half plane.

l la

I3

Figure 1.7: Fundamental region of free group of rank 2

1.4 Outline

This thesis develops a technique to combine permutation representations out of

methods used in the proof of Higman’s conjecture. By Lemma 2.1 of Everitt’s paper



Chapter 1. Introduction

[6], to prove Higman’s conjecture it is enough to prove if for all hyperbolic triangle

groups A(p, q,r) with either
1. 2 < p < ¢ < r distinct primes.
2. the triangle groups (2,4, 7) for r > 5 a prime.

3. the groups (2,3,8), (2,3,9), (2,3,10), (2,3,12), (2,3,15), (2,3,25), (2,4,6),
(2,4,8), (2,4,9), (2,5,6), (2,5,9) and (3,4,5).

4. non-triangle groups parametrised as (2,3, 3,3) and (3, 3, 3, 3).

In fact, Everitt’s theorem proves that most hyperbolic triangle groups A(p, g, 1)
map onto all but finitely many alternating groups. This thesis specifically examines
the situations where the composition of a number of coset diagrams for a triangle
group A(p, g, ) is an imprimitive group, and analyses the structure of this imprim-
itive group.

Chapter [I] provides the introduction of the thesis. It explains some of the his-
torical background, the research objective and lists the main results of this work.

Chapter [2| contains some definitions and basic results from group theory in par-
ticular permutation group theory which are required to prove the main results of the
thesis. It also contains the definitions of coset diagrams and linear representation.

Chapter [3 defines the techniques of composition of ¢ coset diagrams where ¢t < p,
illustrating with some examples and experiments that are shown in the Table [3.1]
These experiments show us that very often the composition of distinct coset dia-
grams is primitive. We have been unable to decide in general whether or not the
composition of permutation representations is primitive. However, we can find cer-
tain situations where the composition of a number of coset diagrams for a A(p, ¢, )

is imprimitive.
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In chapter [ three different types of composition of coset diagrams are defined
that produce imprimitive permutation images of triangle groups. We give some
partial analysis of those permutation groups in Theorems [4.1] and 4.5 Theorem
[4.3]is special but less interesting, giving an imprimitive permutation representation
whenever we start with an imprimitive representation. However, Theorem and
are interesting because they always give us imprimitive representations as a
quotient whatever we start with. We use GAP programmes to perform experiments
based on the construction of these theorems that helps us to find the structure of
a group N that is the kernel of the permutation images of a triangle group and
lead us to prove a lemma. Some interesting observations are found from these
experiments, in particular what kind of groups we get as a quotient when we start
with a representation that is the alternating group.

Chapter [5| concludes this thesis by analysing the constructions of Theorem
and and the observations we investigated from experiments in Chapter [4] par-
ticularly in the cases where they are built out of images that are alternating groups.
Theorem and Theorem describe the structure of the groups built using the
constructions of Theorem (4.1l and Theorem L5l In the case where G has a finite
quotient that is an alternating group of deg > 6 containing at least one handle,
then G has a quotient C’;}eg*l X Ageg. Moreover, for an integer m # deg — 1 such
that m > 4 and if the alternating group A,, can be generated by two products of
disjoint p-cycles, and a triangle group G has a quotient Age, containing two disjoint
handles, then G also has a quotient A, ! Aqes. We conjecture in the end that for
most G = A(p, q,r)

G — C’Seg_l X Adeg

and

G - Am l Adeg

10
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where m € Z such that A,, can be generated by two elements of order p and

m # deg — 1. The appendices contain GAP code that we used to compute examples.

1.5 History of Higman’s Conjecture

In the 1960’s Higman conjectured that "Every Fuchsian group has among its ho-
momorphic images all but finitely many of the alternating groups"'. In particular,
the conjecture asserts that every hyperbolic triangle group surjects onto almost all
alternating groups.

Two techniques are used to prove this conjecture and allow us to build higher

degree coset diagrams for A(p, q,r) as follows.

1. Composition: combining coset tables for a given group A(p,q,r), in order to

get coset tables for that group in arbitrarily many degrees.

2. Boosting: converting coset diagrams for a given A(p, ¢, ) into coset diagrams

for various A(p, ¢, ") with " > r.

Higman proposed the method of composition of coset diagrams to prove his
conjecture and proved his result for the triangle groups A(2,3,7) and A(2,4,5)
by using coset diagrams and their composition. In 1981, Conder used the method
of composition and proved his conjecture for the group (2,3, k), for all £ > 7 [2].
Following the same technique Mushtaq and Rota proved the result for all A(2,1,m),
for all even [ > 6. Later Mushtaq and Servatius proved the result for A(2,¢q,r)
for all 5 < ¢ < r [12]. In 1994 Everitt found the same result for A(2,4,r) for
all » > 6 [5]. In 2000 Everitt proved the conjecture of Higman [6], later it was
reproved by Liebeck and Shalev [11] and see also a paper of Dunfield and Thurston
[4]. In 2013 his student Kousar improved this result by working on Non-Euclidean

crystallographic groups [10].

11
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A recent article by Nebe, Parker and Rees [I3] examines a general method for

composition.

12



Chapter 2

Background from group theory

This chapter contains background material from group theory that we shall need in
the remainder of the thesis [15] [16].

We shall use the following notation. S({2) will denote the group of all permu-
tations on a set {2 and A({2) the subgroup of all even permutations (acting on the
right). Further, S,, and A,, will denote the groups of all permutations and even per-
mutations, respectively, of the set {1,2,...,n}. We use the notation z¥ to denote

the conjugate y~lxy, as is consistent for right actions.

2.1 General results

Theorem 2.1 (Cayley’s Theorem). Every group G can be embedded as a subgroup
of S(G). In particular, if |G| = n, then G can be embedded in S,,.

Theorem 2.2 (Isomorphism Theorem). (a) Let f : G — H be a homomorphism
with kernel K. Then K is a normal subgroup of G and G/K = Imf.

(b) Let N and T be subgroups of G with N normal in G. Then N NT is normal in
T and T/(NNT) = NT/N.

13
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(c) Let K < H < G, where both K and H are normal subgroups of G. Then H/K

is a normal subgroup of G/K and

(G/K)/(H/K) = G/H.

Theorem 2.3. (Jordan-Holder) Suppose G is a finite group with two composition

series say

1=Gy<xGi1<Gy<«...<G,, =G

and

1=Ky <K, < Ky<«...<K,=G
such that Giy1/G; and K11/ K; are simple for each i. Then m = n, and there is a
permutation f: {1,....,m} — {1,...,m} such that for each i,
Gi/Gir = Ky / Ky
Definition 2.4. If a,b € G, the commutator of a and b, denoted by [a,b], is

[a,b] = a b tab.

Note that some authors define the commutator as aba='b='. Our notation is consis-
tent with a right action.
The commutator subgroup (or derived subgroup) of G, denoted by G', is the

subgroup of G generated by all commutators.

The commutator subgroup G’ is a normal subgroup of G. The quotient G/G’ is
called the derived quotient. It is abelian and it is the maximal abelian quotient of

G.

14
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Theorem 2.5. If K Q G, then G/K is abelian if and only if G' < K.

Example 2.6. Consider a triangle group G = A(2,3,8). Then G/G' = (X,Y|X? =
LY? = 1,(XY)® = 1,XY = YX) with X = 2G and Y = yG'. We get 1 =
(XY)® = X8Y® =Y~ which implies Y = 1. Hence G/G' = (X|X? =1) = ().
Example 2.7. Consider a triangle group G = A(2,4,9). Then G/G' = (X, Y |X? =
Yi=(XY)?=1,XY =YX) with X =2G" and Y = yG'. We get 1 = (XY)?, by
squaring 1 = (XY)1® = X818 = V2 which implies Y? = 1. Also, 1 = (XY)? =
X%Y? = XY, so X =Y. Hence

Example 2.8. Consider a triangle group G = A(2,3,9). Then G/G' = (X, Y|X? =
Y3=(XY)? =1,XY =YX) with X =2G" and Y = yG'. We get 1 = (XY)? =

X9, which implies X = 1. So we have
G/G' =({Y|Y?=1)=Cs
Lemma 2.9. Let G be the triangle group A(p, q,r) with2 < p < q < r with p prime.

Then if plr, G/G" = Cp X Cgeaqry and if p{r, G/G" = Cy, where b = gcd(q,p).

Proof. The derived quotient of the triangle group A(p, ¢, ) denoted by G /G’ is the

abelian group with finite presentation

(X,)Y|XP=Y9=(XY) =1,XY =YX). (2.1)

where X = zG’" and Y = yG'.
If p|r then (XY)" = Y" and then Y” = 1 and Y? = 1. This implies that
yeed(er) — 1.

15
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In that case
G/G' = (X, Y|XP = V&) = 1, XY =V X) 2 C) x Cyeagn)

If p tr, there exists s € Z such that r = sp + d, where 0 < d < p.

We have 1 = (XY)" = X"Y" = X4Y". Also gcd(p,d) = 1, so there exist u,v € Z
such that 1 = up + vd. So X = Xu+vd = Xvd — Y= Hence X can be written as
some power of Y.

We also have (XY)" = 1. So (XY)” = 1, which implies Y"” = 1 and Y? = 1. By
substituting X = Y =" in presentation ({2.1]), we see that X? =Y """ = (Y'P)"V =1,
also (XY)" = Y"1=™) = 1. We know that gcd(pr,7(1—rv)) = pr, because p | 1 —rv
due to 1 = up+vd = up+v(r — sp), which implies 1 —rv = p(u — s). Therefore,
can be reduced to the following presentation G/G" = (Y | Y9 = Y = 1). Hence,
Y has order b = gcd(q, p).

This gives G/G' = (Y | Y’ =1). O

Corollary 2.10. Ifp < q <r and p is a prime integer, then A(p,q,r) has C, as a

quotient if and only if p|qr.

2.2 Combining and decomposing groups

2.2.1 Direct products

Definition 2.11 (Direct product). Where Hy, Hs, ..., H, are groups then the (ex-
ternal) direct product Hy x Hy X -+ -x H,, of Hy, Ha, ..., H, is the group of all n-tuples

(hi, ..., hy), multiplied componentwise.

We note that the direct product has subgroups isomorphic to each of the groups
H;.

16
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If a group G is isomorphic to the direct product Hy x Hy--- x H, then we say
that G has a decomposition as an (internal) direct product. In that case G has
(normal) subgroups isomorphic to Hy, ..., H,, and is generated by those subgroups.

In fact we have the following result.

Theorem 2.12 (Internal Direct Product Theorem). Let G be a group whose identity
is {e}. Let Hy, H,...H, be a sequence of subgroups of G. Then G is the internal

direct product of {H;}1<i<n if and only if
1. G=HHy,.. . H,
2. For eachi=1,2,...,n we have H; N (Hy ... H;_1H;y ... H,) = {e}.
3. H;<G,Vie{l,...,n}

Example 2.13. The Klein four-group

V=A{0, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

has a decomposition as a direct product Cy x Cs.

2.2.2 Subgroups of direct products

Note that a subgroup of a direct product S = T} x - - - X T}, need not itself be a direct
product of k subgroups of Ti,...,Ty. For instance, when T} = Ty, = --- T, =T,
then for any subgroup K C T, the group {(z,z, - ,x) : x € K} is a subgroup of
S, that is isomorphic to K. It is certainly not a direct product of k subgroups of
Ty, ..., Ty.

We call a subgroup L of S a subdirect product if for each i, the natural projection

from L to T; maps L onto T; In particular, when 77 = T, = --- = T}, = T, the

17
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subdirect product of S of the form {(z,x,--- ,x) : x € T} is called the full diagonal
subgroup of S.

The following result is [7] [Lemma 1.4.1(ii)] (with some changes in notation; e.g.
we have not used Fawcett’s notation ‘subdirect subgroup’, which seems unnecessary

in our situation). We shall need the result later.

Lemma 2.14 (Fawcett’s Lemma). Let S =T X Ty X -+ - X Ty, be a direct product of
isomorphic non-abelian, simple groups Ty,..., Ty (k > 1). Let M be a subgroup of
S and I:={1,...,k}. If M is a subdirect product of S, then M is a direct product
H; x---xH; , where each H; (withj € J = {j1,...,Jjr}) is a full diagonal subgroup
of some subproduct T;, X --- x T, with I; = {iy,...,is}, and I is partitioned by the
I

j-

2.2.3 Semidirect products

Definition 2.15. Given groups H, K, and a map ¢ : K — Aut(H) (defining a right
action of K on H), we define the semidirect product of H by K, denoted by
H x4 K (or just Hx K), to be the set {(h,k) : h € H, k € K} equipped with the
product

() (s, o) = (a5 k)

-1
Often we may omit the ¢ and write simply hgl ; we note that within the semidi-

rect product this corresponds to the product kihok; !, that is the conjugate of hy by
kit

We note that H x K has subgroups {(h,e) : h € H} and {(e,k) : k € K}
isomorphic to H, K respectively, and that the first of these is a normal subgroup. If
the action of K on H is trivial, then H x K is isomorphic to H x K.

If a group G is isomorphic to a semidirect product H x K, then we say that G

18
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has a decomposition as a semidirect product. In that case G has a normal subgroup
Hy := {(h,e) : h € H} isomorphic to H and a subgroup K, := {(e,k) : k € K}
isomorphic to K. Then K, is called a complement of Hy, that is G = HyK, and
HoN Ky = {e}. In particular Ky = G/Hy. Often we shall simply use the names

[’[7 K for Ho, KQ.

Example 2.16. The symmetric group Sy can be decomposed as the semidirect prod-
uct of the Klein four-group V' and Ss, alternatively as the semidirect product of A4
and Cl.

2.2.4 Extension of one group by another

The semidirect product is also called a split extension. In general we say that a
group FE is an extension of N by Q if N < E and E/N = @ and we write ' = N.Q.
Note that @) need not be a subgroup of E. If () is a subgroup of E such that
Q@ NN =1, then we say that F is a split extension of N by @, in that case F is
isomorphic to a semidirect product N x ). Otherwise we say that E is a non-split
extension of N by Q.

Note that some authors use the notation ).N rather than N.Q) for the same
extension; our notation is consistent for a right action. The term cover of () is also

used, instead of extension by Q).

Example 2.17. C} is a non-split extension Cy.Cy. It’s clear that the extension can’t

split, because Cy only has one subgroup of order 2 (which is normal).

Example 2.18. The Mathieu group My is a non-split extension Ag.Co. It turns
out that the extension can not split because all of the elements of order 2 in My are

within its commutator subgroup, which is Ag.
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Example 2.19. SL(2,3) is a non-split extension 2.Ay, SL(2,5) is a non-split ex-
tension 2. A5 and SL(2,9) is a non-split extension 2.Ag. It is clear that none of these
extensions can split since none of SL(2,3), SL(2,5) or SL(2,9) can have a subgroup

of index 2, since their derived subgroups have indices 3,1 and 1, respectively. (See

Theorem

If G is an extension of N by () for which N is abelian, then the conjugation action
of G on N induces an action of () on N. Hence, in particular, if N is elementary
abelian, NV is a module for () under this action.

Note that a subgroup of a split extension need not itself be split.

2.2.5 Schur multipliers

The Schur multiplier of a group @ gives information about which non-split extensions
of the form N.(Q) can exist; The Schur multiplier is defined to be the kernel of a
homorphism to () from a Schur cover. A Schur cover is defined to be any extension
E = N.Q that is maximal subject to N C Z(E)N[E, E]; the conditions on N ensure
in particular that F is non-split. There may be more than one Schur cover, but the
Schur multiplier is uniquely defined. The Schur multipliers of the alternating groups
were computed by Schur (1911)[I7]; for n > 4, the Schur multiplier for A4, is Cy
except when n = 6,7, when it is Cs. As a consequence of this, we can deduce that
any extension of C, by A,, with p an odd prime and n not equal to 5 or 6 must split.

The following description is taken from [22].

Let S, be a non-split extension of Cy by S,. Where (aq,...,ax) is a k-cycle in
S, we denote by %[ay, ..., ax] the two elements of S that map to (a,...,ax) € Sy

under the natural homomorphism, v : S, = S,. Every element of S, can be repre-

sented as a product +[aq, ..., ak,|[b1, ..., bg,)[c1, ..., Crs] - - ., where (aq, ..., ax, ), (b, ...

(¢1,...,Cks), ... are disjoint cycles. However, notice that the elements [ay, ..., ax]

20
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and [as, as, ..., ay, a1] of S, are not necessarily equal in S, even though they map
to the same permutation.
In order to understand multiplication in S, we need more information. We

define, for each odd permutation 7 € S,,,

[ihﬂiﬁ = _[iwajﬂ]'

We also define

[a1,a2, e ;ak] = [ahaz][ahas] s [al,ak]-

Finally, in order for all products to be defined, we need to define the products
(£[i, j])?. Either these are equal to e or they are all equal to —e.

The two possible choices we make here determine which of the two possible non-
split extensions C5.S,, we have. There is only one non-split extension Cs.A4,,, and it
is a subgroup of each of the extensions C5.S,.

So let’s suppose that we have (%[i, j])> = e for all 7, 7. Then multiplication in

S, is completely defined. Notice that for all i, j we have

(i, 5] = [i, j].
But also, by definition
[i, ] [6.] — —[i(i’j)7j(i’j)]
= _[j’ Z]

So in fact [1, j] = —[j, 1]
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We illustrate the rules of multiplication with some examples:

2,1,3][3,1,4] = [2,1][2, 3][3, 1][3, 4]
= [2,1][2, 3][3, 1][2, 3][2, 3][3, 4]
= [2,1][3, 1]%¥[2,3][3, 4]
= —[2,1][2, 1][2, 3][3, 4]
= —[2,3][3,4] = [3,2][3,4]

=[3,2,4]

We also have

2,1,3]° = [2,1][2,3][2, 1][2, 3][2, 1][2, 3]

= [2,3]21]2, 1]
= —[1,3] x —[3,1]
= —[1,3] x [1,3] = —[1,3]* = —e

So [2,1, 3] has order 6 in S,. We see that S, has A, = Cy.A, as a subgroup. That

consists of all elements 7 for which 7 is an even permutation.

Lemma 2.20. Forn > 4,

1. The group A,, does not contain any subgroup isomorphic to A,,.

2. The subgroup of A, consisting of all elements +[r] for which © € A, fives the

point n is isomorphic to A,_1.

Proof. Let v : S, — S, be the natural map. Then V(ftn) = A,. The kernel of v

has order 2. Suppose that K is a subgroup of A, isomorphic to A,. Then v(K) is

a subgroup of A,, and is a quotient of K by a normal subgroup of K of order 1 or 2
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which is ker(v) N K. Since K = A,, and A,, has no normal subgroup of order 2, we
must have ker(v) N K = {e} and so in fact v(K) = K = A,,. So K must contain
exactly one of +[r] and —[x] for each 7™ € A, since v|k is injective.

In particular K must contain elements of the form =4[a;, as, as] that map to 3-
cycles (ay, as, az) and they must have the same order as their images in v(K). Since
+]a1, as, as] has order 6, and (aq, as, az) has order 3, we cannot have [aq, as, az] in
K, but must have instead —[ay, as, ag] (which has order 3).

So in particular —[1,2, 3], —[1,2,4] € K. But now

—[1,2,3] x —[1,2,4] = [1,2,3][1,2,4]
= [1,2][1, 3][1, 2][1, 4]
= [1,2]7'[1, 3][1, 2][1, 4]
= [1,3]"2]1,4]
= —[102, 3021, 4]

= —[2,3][1,4].

We also see that

(—[2,3][1,4])* = [2,3][1, 4][2, 3][1, 4]
= [1,4)®9[1, 4]
= _[1(2’3)’ 4(2’3)] [17 4]

= —[1,4]* = -1,

so —[2,3][1,4] has order 4, not 2. But if K = A, then the product of —[1,2, 3]
and —[1, 2, 4], which map to (1,2,3) and (1,2,4), must have order 2. So we have a

contradiction.

23



Chapter 2. Background from group theory

(2) is immediate. The set {+[n] : 7 € A, fixing n} defines the group A,_; by

exactly the same construction we just described for A.,.

2.2.6 Wreath product

Definition 2.21 (Wreath product). Let S C §(£2) be a permutation group on a set
Q2 =A{1,2,...,deg} and Q a group. (For ease of notation, we write io rather that i’
for the image of i under o.) Then the wreath product Q1S of Q by S is defined
as follows.

First we define Q¢ to be the (external) direct product of deg copies of Q, the
group of all deg-tuples (p1,...,Pdeg), Pi € Q. We can define R; C Q%€ to be
the subgroup of all elements with p; = 1 for j # i. Then R; = @, and we see
that Q% = Ry --- Raeg s the internal direct product of the subgroups R;. Where
r= (p1,..,Pdeg) € QI we call vy = (1,...,1,p;,1,...,1) € R; the component of
rin R;.

We can define an action of S on Q% as follows. Forr € Q8. 0 € S,

g

r= (pb cee 7pdeg) — r? = (plo'—l .- ~pdega—1)-

We observe that

P in position i p in position j

1. Lpl...... 1) =7 (1, 1,p,...,1)

iff jo~t =1, that is iff j = ioc. Hence we see that o permutes the subgroups R;, with
R? = Ry, and, for r € QI°€, the j-th component (r°); of r° is rjo-1.

Using the action of S on Q%&, we can define the semidirect product Q% x S as
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the set of all pairs (r,o) multiplied by the rule

-1 ’

(r,o)(r, O’l) = (rr'" ,o0)

We define the wreath product Q1S to be this semidirect product.

We see that the set of all pairs (r,1) with 7 € Q9 is a normal subgroup of the
wreath product isomorphic to Q4% and that the set C of all pairs (1,0) with o € S
is a complement of this.

If @ is a permutation group, of a finite set B, that is Q C S(B), then Q.S is a
subgroup of S(B x {2), as follows. Each element of Q1S has a unique representation
as a pair (r,0) with r € Q%8 o € S, and as above, we write r = 71 ...74eg, With

r; € R;. Under the action of (r,0) = (r1...7deg, 0),

(b,7) s (077, i0)

To see that this is a permutation representation of () ¢ .S, we need to check that
if we apply first (r,0) and then (r/,0’) to (b,i) we get the same result as when we

apply the product (r,o)(r’,0’). But now,

(by) = (b7 o) ) (b))

1

, [ /U—l
= Yo 100" ) = v t1oo ) = ', 100
(b7 ioa") = (07 iga!) = (b7 ) igo)

/_—1

_ (b7i)(r7"°' ,o0") _ (b’i>(r,a)(r’,o’)’

as we need.

In particular we notice the actions of the normal subgroup Q9 and its comple-
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ment C, with

(b,i) =D (b7, 4)

(b, 1) =3 (b, i0)

Now suppose that U is the disjoint union of sets By, ..., Bgeg, such that each
B; for i = {1,...,deg} are of equal size. Then there is a bijection between U and
B x 2, that maps b; to the set {(b,4) : b € B}. So Q.S can be seen as a subgroup
of S(U).

Example 2.22. We can decompose the group D as C31Cs, because Dy = C2 x Cy.
We know that Cs 2 Sy = {(), (1,2)} and Cs = {e, a}.

Cy x Cy = {(e,€), (e, a), (a,e), (a,a)}. The elements of (Cy x Cy) x Cy are
{((e,e),0), (e,a), ), ((a,e), (), ((a,a), (), ((e, €)(1,2)), ((e, a), (1,2)),
((a,€),(1,2)), ((a,a), (1,2))}.

2.3 Permutation representations

Let G be a group. Then a permutation representation of GG on a set (2 is a
homomorphism 7 from G to a subgroup of S({2); its image is the subgroup 7 (G).

When w € 2, we'll write w™9) for the image of w under the permutation 7(g).

Definition 2.23. When a group G acts on a set {2 via 7w, a typical point o € (2 is
moved by elements of G to various other points. The set of these images is called

the orbit of a under G; we denote it by
a™(G) = {a™@ |z € GY.
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Definition 2.24. A group G acting on a set 2 is said to be transitive on (2 if it

has only one orbit, and so o™ = 2 for all o € 2.

Definition 2.25. A group G is acting on a set {2 and o € {2, the stabilizer of «,

denoted by G, or stab(a) is defined to be
Go={2€G|a™™ =a}.

Note that the kernel of the action is the intersection of all point stabilisers, or
also the core of the subgroup of H = G, in G if the action is transitive, and is given
by

() stab(a)

Definition 2.26. Permutation representations w, 7 of G on (2,2 are equivalent

if there exists a bijection [ : 2 — (2" such that, for all g € G and all w € 12,

F@m) = f@)" .

Theorem 2.27. [1]] Let G be a group, acting transitively on a set 2. Let o be an
element of (2, and let H = stab(«). Then the action of G on {2 is equivalent to the

action of G on the right cosets of stab(a) by right multiplication.

2.4 Coset diagrams

A coset diagram is a generalised form of a Cayley graph. It is in fact the graph whose
vertices represents the cosets of a subgroup of finite index of the finitely presented
groups, where the number of vertices is the degree or index of the subgroup. Suppose
G = (S| R) is a group with S = sy, s9, ... as the set of generators and R is the set

of relations. Two vertices, U and V in the coset diagram are joined by an edge s
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directed from U to V when Us, = V', where s is one of the generators of the group.
This definition allow loops in the graph that is defined by fixed elements i.e. vertex
V' is joined to itself by the generator sy, satisfying Vs, = V. These fixed elements
are represented by heavy dots in the coset diagram of a triangle group, where it
applies to fixed points of one of the generators of a given group.

In the following example we have used heavy dots for a point that is fixed by a

generator y.

Example 2.28. Take a triangle group

(z,y: 2 =y*=(zy)" =1)

and consider a transitive permutation representation (on 14 points) given by assign-
ing permutations

x acts as (3,4)(5,7)(6,8)(9,12)(10,13)(11, 14)

y acts as (1,2,3)(4,5,6)(7,9,10)(8,11,12)

This can be represented by the coset diagram in Fig.

Note that all points in each cycle of y are permuted anticlockwise.

2.5 Primitive and imprimitive permutation groups

Definition 2.29. Let 7(G) be a permutation group acting on a set §2 via a homo-
morphism w. The subset X of (2 is said to be a block of w(G) if for every g € G
either X™9) = X or X™9 N X = 0.

Here, X™9) = {279) . € X} is the set. The sets 2, () and the singletons {x} are

the trivial blocks of w(G) acting on a set (2.[1)]

Definition 2.30. Suppose that a group w(G) be a transitive action of a group G on

set 2. Then w(QG) is said to be imprimitive or act imprimitively, if there is at least
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4

7 8
10 13 14 11/
—————o

Figure 2.1: Coset diagram

one non-trivial block X. The images of a block form a partition of the set {2 into

disjoint sets of equal size. Otherwise w(QG) is said to be primitive, or act primitively.

Example 2.31. The triangle group A(2,3,6) acts on a set 2 = {1,2,..,6} with
transitive permutation representation given by w(x) = (3,4), n(y) = (1,2, 3)(4,5,6),
and 7(zy) = (1,2,3,5,6,4) that is imprimitive with blocks

[[1,5], 2, 6], (3, 4]].

Lemma 2.32. (Jordan’s Theorem [21]). Let w(G) be a primitive permutation group
of degree deg containing a prime cycle for some prime ¢ < n — 3. Then w(G) is

either the alternating group A, or the symmetric group S,.

Lemma 2.33. (Everitt’s Lemma [0]). Let H = (x1,xs, ...,k be a transitive action
of a group of degree deg containing a prime cycle . For each x;, suppose there is a

point in the support of p whose image under x; is also in the support of . Then H
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s primitive.

Lemma 2.34. Suppose that H C S(§2) acts imprimitively with blocks By, ..., By.

Then the subgroup N = {h € H : B;" = B; Vi} is normal in H.
Proof. N is the kernel of the induced action of H on {Bjy, ..., By}. O

The following result is essentially from [I, Theorem 1.8], which refers to [I§] for

a proof. The proof we give is due to [§]

Proposition 2.35. Let H C S(U) act transitively and imprimitively on a set U
with block system B = {B, ..., Baeg}, and let 2 ={1,... deg}.

Let Ji,...,Jaeg € H be the setwise stabilisers of the blocks By, ..., Baeg and let
Ky, ..., Kqeg be the pointwise stabilisers of those blocks. Let v : H — Sqeg define
the action of H on the block system B and let N = ﬂ?iglJi be the kernel of 1.

Let Q; € S(U) be the group of permutations of B; defined by the action of J; on
B; (so Q; = J;/K;), and fixing all points of U \ B;, and let P; C QQ; C S(U) be the
group of permutations of B; defined by the action of N on B; (so P, = N/N N Kj;).

Then the groups Q; are all isomorphic to a single group (Q, and pairwise commute.

Further H is isomorphic to a subgroup of

Q1Q2 - Qaeg X Y(H) = Qdeg X p(H),

that is, H is isomorphic to a subgroup of H C QU(H), and N is isomorphic to a

subgroup of Py -+ - Pyeg.

Proof. Note that, for h € H and i € £2, we have J = Jum), and hence Q" = Qv .
Choose t; = 1 and, for each i € 2 with i > 1, choose t; € H with BY = B;: or,
equivalently, 1¥%) = i. So {t; : i € £2} is a right transversal of J; in H and, for each

i € 2, we have Q) = Q.

30



Chapter 2. Background from group theory

Let m := |By|, and label the points of By as (1,1),(2,1),...,(m,1). Then for
each i € {2, we can use t; to label the points of B; as (1,1),(2,47),...,(m,i), where
(b,7) := (b,1)" for 1 < b < m. So we have now identified & with B x 2.

For each ¢; € @1, we can define a corresponding permutation ¢ € S(B), with
B = {1,2,...,deg}) by b7 = b where (b,1) = (V/,1). Let Q = {q : ¢1 € @1}
and define the isomorphism 71 : @ — @1 by 71(¢) = ¢;. Then, for each i € {2,

tiand define an isomorphism

define the isomorphism 7; : Q@ — Q; by 7:(q) = 11(q)
7: Q% — R by 7(r) = [L;en 7(ri), where r; € Q is the i-th component of r € Q9.

Now, for 7;,(q) € Q;, and b € B, we have
(b,i)”(q) — (b7i>t[171(11)ti _ (b, 1)7'1(‘1)ti _ (bq7 1)%‘ _ (bq,i).

So, for 7 € R with components r; € Q and 7(r) = [L;c 7:(r;), we have (b,7)™(") =
(b,4)7(7) = (bri 4) for all b € B, i € §2. In other words, by using the isomorphism
7 to identify Q48 with R, we see that the action of R on U is the same as in the
permutation wreath product @) ¢S defined above.

We also need to consider the action of the complement in the wreath product.
Define a monomorphism ¢ : ¢(H) = S — S(U) as follows. For each b € B,
c(1(g)) acts on the set {(b,7) : i € 2} in the same way as ¥(g) acts on (2; that is,
(b,3)°®W) = (p,i¥9)). Define C = {c(c) : ¢ € S}. Now we see that the action of C
on {2 is also the same as in the permutation wreath product Q¢S defined above, so
the subgroup (R, C') of S(U) is the semidirect product R x C, and can be identified
with QU .S.

To finish, we need to see that H C R x C.

Let h € H and 0 = ¢(h) € S. Then, for each i € 2, we have B! = B;, and,

tiht !
10

since B! = B;, we have B’ — By; that is, h; := t;ht;; € Jy. Let h; € Q1 be the

induced action of ¢;ht;;' on By and 7; := Tfl(}_li) € Q. Let r = [Lieq i
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We claim that h = 7(r)c(o) € RC, which will prove the result. Note that
7(r) = [licq 7i(rs)- Let (b,i) € B x 2. So (b,i)" = (V',io) for some V' € B. Then,

from the definition of the elements t;, we have
(b, 1)]’Lz — (b’ l)tiht;gl — (b,l.)ht;”l — (b/’io_)ti;l _ (b/, 1)

and hence (b,4)7?) = (b, 7))t hiti = (V7). Since (V/,9)°®) = (V/,io) = (b,i)", we see

that (b, ) has the same image under h as under 7(r)c(o), which proves the claim. [

Notation : For the rest of this thesis, whenever we have a group H C S(U),
acting transitively and imprimitively on & with block system B = {Bj, ..., Byeg},
we shall use the notation of this lemma. So ¢ : H — S(B) will define the action
of H on B, and N its kernel. We denote Ji,. .., Jyeg as the setwise stabilisers of
By, ..., Baeg in H and K, . .., K4eg Will be the pointwise stabilisers of By, . .., Bgeg in
H. Moreover, P, = N/NNK; and Q; = J;/K; such that P; C @, fori = {1,...,deg}.

2.6 Linear representations

An n-dimensional linear representation of a group G over a field K is a homomor-
phism p : G — GL,(K), that is a homomorphism from G into the group of all n x n
invertible matrices over K. For v a row vector of length n and g € G, the image of

v under p(g) is then the matrix product vp(g).

Definition 2.36. A representation p : G — GL,(K) is said to be faithful if Kerp =

{1}; that is, if the identity element of G is the only element g for which p(g) = I,,.

Proposition 2.37. Every permutation group G C Sqee has a faithful deg-dimensional

linear representation, over any field K.
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Proof. If K is a field, let e;,...,eqeq denote the standard basis of the deg dimen-
sional vector space V over K (that is, ej,...,eqes form the rows of a deg x deg
identity matrix l4e). Given a permutation a € G, we form the associated permu-
tation matrix P, over the field K by permutating the rows of Ije; i.e, the rows
of P, are eiq,...,€dega- We can easily check that the map o — F, is an injective
homomorphism from G to G Lge(K). For each ¢, the basis vector e; of V' is mapped
by P, to €. O

It follows that the set of all permutation matrices over the field K denoted by
P(deg, K) is a group isomorphic to Sgeg.

We call p as defined the permutation representation of G, and we call the asso-
ciated module the permutation module of G' denoted by Wye, or W.

Suppose that K is the field of the integers mod p, where p is prime.

When G = Sgeg 01 Ageg, the permutation module W has just two non-trivial,
proper submodules. Where ey, ..., eqeq is the standard basis as above, then W :=
<Z?§% e;) is a one-dimensional submodule and Weg—1 1= {v = S Ne s B ) =
0} is a (deg — 1)-dimensional submodule.

When p does not divide deg, we can write

1 deg 1

ej:—ZeH—d—GgZ(ej—ei)

deg ;= i#j

e Wi+ Wdeg—l-

So, W = Wi + Weeg—1.
If p t deg then Z?igl e; & Waeg—1. So clearly Wy N Wyeg—1 = {0}, and so W =
Wi @& Weeg—1-

But if p divides deg, then W is a submodule of Wes—1. In that case, the quotient

module Wyeg_1/W; is an irreducible module of dimension p — 2 for G.
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For the group Age; we also have the following result.

Lemma 2.38 (Wagner’s lemma). [19, [20] The minimal dimension of a non-trivial

faithful representation of Agey over F, is

either deg—1,if ptdeg and (deg> 8 or (p =2 and deg > 6))

or deg—2,if p|deg and (deg> 8 or (p=2 and deg > 6)).
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Composition

This chapter illustrates the idea of composition and the algorithms we developed to
compose coset diagrams for p = 2 or odd, which is described in [6]. In Section |3.1}
we describe how we compose t < p coset diagrams to get a transitive diagram.
We illustrate this with some detailed examples. We also provide a table of further

examples.

3.1 Composition of up to p coset diagrams

Here we use a number of coset tables for the triangle groups,

G=Ap,q,r)=(x,y: 2" =y? = (zy)")

where x and y are generators of the triangle group of order p and ¢ respectively.

Definition 3.1. In an arbitrary permutation representation © of G, two points a
and b, which are fived by 7(x) such that (w(z)w(y))* map a to b, form a k-handle

and are denoted by [a, b] [5].

The following picture of handles is for the triangle group when p = 2 and ¢ = 3.
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b a

VANERWAN

(a) 1-handle (b) 2-handle
b a

AN AN

(¢) 3-handle

The idea for composition is the following: if we have p coset diagrams of degrees
deg;,deg,, .., deg, for the triangle group G, each having k-handles then we can join
them together by using these handles to find a coset diagram of GG of some larger
degree.

Suppose that ¢ is an integer with ¢ < p. Then we define U (or U, if it is necessary
to specify t) to be the disjoint union of 21, (2, ..., ;. We shall use this notation
throughout the remainder of the thesis. The following proof of the theorem is a new

(algebraic) proof of Proposition 3.1 in [6].

Theorem 3.2. Suppose that for some t < p. If G = A(p,q,r) has transitive
permutation representations i, ..., m on distinct, disjoint, finite sets {21,...,82,
and that [a1,b1], ..., [ay, by] are all k-handles, with [a;, b;] a handle in £2;,. If j; = ju
for i #14', then suppose that the handles [a;, b;] and [a;y,by] are disjoint. Now define

permutations ¢, ¢, of U = U, via

¢a: = 7T1(l')"'77t<1')0(a1,"' 7ap)(bb7bp—1a"' >b1)a

oy = m(y) - m(y).
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Then ¢, ¢, are the images of x and y for a transitive permutation representation ¢

of G on U.

Proof. We need to show that ¢f = 1,¢7 = 1 and (¢.¢,)" = 1. We know that
m(x)P = 1,m(z)? = 1,...,m(z)? = 1 and (ay,...,a,)" = (by,...,01)7 = 1, so clearly
¢? = 1. Similarly m(y)? = mo(y)? = ... = m(y)? = 1, therefore (¢,)? = 1. To finish
we need to verify that (¢,¢,)" = 1. Now consider the cycle of ¢, ¢, that contains a;.

Suppose that the cycle of 7;,(x)m;, (y) that contains a; has length s such that s|r.

Then it also contains b; and satisfies the following equations a:“ @ _ a;, b;r” @ _ b;,
. k . s—k
a’ ()™ b; and b?“(xy) = a;. Now we have
k—1 s—(k+1)
a; Gz dy a;bjil (Pzdy) N b7j+1 ¢z¢y> b;by (P dy) S Q. (31)
This implies
1+k—14+14s—k—1
a; ($ay) > Gy, (32)
S0,
a; —>(¢x(by) a;, (33)

and we see that a;, and b;1; are together in a cycle of length s for ¢,¢, that contains
some points from the cycle of 7, (x)7;,(y) containing a; and b; and some points from
the cycle of 7;,,, (z)7;,,,(y) containing a;1q and b;y1. We see also that a cycle of
¢.¢, that contains no a; has the same length as a cycle of 7;(z)7;(y) for some j. So
(Gatpy)” = 1.

Now define ¢ : G — S(U) by ¢(z) = ¢, ¢(y) = ¢, and extending multiplica-
tively. We have proved that ¢ is a homomorphism, defining an action of G on
U.

To prove that the action of G on the set U defined by ¢ is transitive, we need to

check that for all z, 2’ € U, g € G with 299 = 2. We have the following cases
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Case 1: If 2,2 € (2; are in the same subset, then 3¢ € G such that 279 = 2/,

because G is transitive on the set (2;. We can write

g = iyt gy gtk

it is possible that ; = 0 or j; = 0. Now we define zg = z and

(91 . xil
27 = w;’z(y ) wy = Zgz( )
(2 (212
29 = wgz(y ) Wo = Z;ﬁ( )
Tk 2tk

=2 = wZ’(y ) wy = z,:’_(f ).

We want to find ¢’ € G such that ¢(¢') maps z to 2’ through the same points of
20 = Z,W1, 21, ... Wg, 2, = 2" as m;(g) does. For this, we know that m;(y) acts on (2

just as ¢(y) does, however, m;(z) and ¢(z) do not act the same on the set {2;. In

fact, for each £, wj'™") = wf™"") however, ;'™ = 27" unless z = a; or z = by

If z = a; or b; then z;”(w) = 2. So in that case wyy; = z,. We form ¢’ from g by

deleting from g all those 2% for which z, = a; or b;. Then we have 299 = o

Case 2: If z € (2 and 2/ € (2;, where i # j then ¢(27~") maps a; to a;.

Then 3g1, go, g5 € G such that 22 = q;, o2 = aj, af(‘%)

; = 2. This implies

2P(91)0(92)¢(93) — o/ o yP(919293) — N

Example 3.3. Consider an action w of the triangle group A(5,7,11) on a set of 14
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points. We can find m with

m(x) =(3,5,9,11,6)
m(y) =(1,2,4,8,13,7,3)(5,10,14,12,6,11,9)

m(zy) = (1,2,4,8,13,7,3,10, 14, 12, 6)

Let my, mo, T3, Ty, w5 all equivalent to w, define five coset diagrams, say Dy, Do, ..., D5
corresponding to the triangle group A(5,7,11) each of degree 14. The cycles of the
images xy for each of the diagrams are;

Dy : (1,2=a4,4,6,11=b1,13,14,12,9,5,3);

Dy : (15,16=a4,18,20,25=b,,27,28,26,23,19,17);

Ds : (29,30=a3,32,34,39=b3,41,42,40,37,33,531);

Dy : (43,44=04,406,48,53=by,55,56,54,51,47,45);

Ds : (57,58=as,60,62,67=b5,69,70,68,65,61,59),

where the diagrams in figure[3.4 are on disjoint domains {1,...,14}, {15,...,28}
ete. Here a; and b; fori = 1,2,3,4,5 satisfies ar'™ = a;, b7 = b; and a?i(xy)3 =
i.e. lai,b;] are all 3-handles. We can compose the above coset diagrams by us-
ing handles, a;,b; (i = 1...5) which gives us two 5-cycles (ay,aq, a3, aq,as) and
(bs, by, b3, ba, b1) of x. We then have the cycles of ¢(xy) in G:
(1,58=a5,4,6,11=by,13,1/,12,9,5,3)

(2=a,,18,20,25=b,,27,28,26,23,19,17,15)

(16=as,32,34,39=b3,41,42,40,37,33,31,29)
(80=a3,46,48,53=by,55,56,54,51,47,45,43)
(44 =a4,60,62,67=bs,69,70,68,65,61,59,57).

Now we see that each cycle for ¢(xy) contains a;, biy1 and has order 11.
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2-diagrams

Figure 3.2: Composition of five coset diagrams

The following example illustrates the argument we used to prove transitivity.

Example 3.4. Consider a triangle group A(2,3,7). Two equivalent representation
of degree 7, w1 and mo are defined by

mi(x) = (3,4)(6,7)

m(y) = (1,2,3)(4,5,6)

3

mo(z) = (10,11)(13, 14)

(
(
1(zy) = (1,2,3,5,6,7,4), with handles a; = 1,by = 2 and
() =
m(y) = (8,9,10)(11,12,13)
(

mo(zy) = (8,9,10,12,13,14,11), with handles ay = 8,by = 9. The permutations
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¢(x), p(y) of Theorem [3.2] are:

d(z) = (3,4)(6,7)(10,11)(13,14)(1,8)(2,9)
o(y) = (1,2,3)(4,5,6)(8,9,10)(11,12,13)

o(ry) =(1,9,3,5,6,7,4)(2,10,12,13,14,11,8)

We illustrate case 1 of the transitivity proof of Theorem[3.2. For instance we examine

points 1 and 7 in 1 = {1,...,7}. The word g = (yx)* sends 1 to 7 under the

representation mwy, because

We remove the letters from g which fix points of {21 in the above calculation. The

resulting word is ¢ = y*xy?x. Fach prefix of ¢ sends 1 € 2, to a different image

under w1, as the calculation

1 71 (y) 9 nl(y)/ 3 mi () 4 ™1 (y) 5 w(z) 5 m1(y), 6 mi () 7

7

The same is true of g under the representation ¢, because

o),

B, o W), 5 BE) ), o B o 90,

So, ¢(¢') = o(y)*(d(2)d(y)) 2 (). Using GAP we see that $(G) = C3.PSL(3,2) has
order 1344.

Example 3.5. The triangle group A(3,5,7) acts on a set £2 = {1,2,...,14} with
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transitive permutation representation m such that

m(x) = (3,5,6)(9,11,12)(10, 13, 14)
m(y) = (1,2,4,7,3)(5,8,6,10,9)

m(xy) = (1,2,4,7,3,8,6)(5,10,13,14,9,11, 12)

has handles [1,2],[4,7]. We set t = 2, and use both handles in the first copy of

the diagram, [1,2] in the second copy. After composition we have the permutations

¢(x), p(y):

o(z) = (1,15,4)(2,7,16)(3,5,6)(9, 11, 12)(10, 13, 14)(17, 19, 20)(23, 25, 26) (24, 27, 28)
oly) = (1,2,4,7,3)(5,8,6,10,9)(15, 16, 18,21, 17)(19, 22, 20, 24, 23)
d(zy) = (1,16,4,2,3,8,6)(5,10,13,14,9,11,12)(7,18, 21, 17,22, 20, 15)(19, 24, 27, 28,

23,25, 26)

The cycles (ay,as,as) and (bs,ba, by) are (1,15,4) and (2,7,16). Using GAP we see
that ¢(G) = Ass.

Example 3.6. Consider two inequivalent representation m and my by using low
index sybgroup algorithm in GAP of the triangle group A(2,3,7) of degree 7, where
m has permutation representations m(x) = (3,4)(6,7), m(y) = (1,2,3)(4,5,6),
has handle ay = 1,by = 2, and my is defined by m(x) = (3,4)(5,7), m(y) =
(1,2,3)(4,5,6), has handle ay = 1,by = 2. Suppose that these two permutation repre-
sentations are equivalent, then there exist a map f : {2 — (2 where 2 = {1,...,7},
so that for all w € 2 and for all g € G, it satisfies f(w™9)) = f(w)™W). In
particular, f would have to map the fized point of y in the first representation

m(g) to the fized points of y in the second representation mo(g). So we see that
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f(7) = 7. But then since 7 (zy*) = (3,4)(6,7)(1,3,2)(4,6,5) = (1,3,6,7,5,4,2)
and my(zy?) = (3,4)(5,7)(1,3,2)(4,6,5) = (1,3,6,5,7,4,2), applying the rule with
g =xy* and w = 7, we must have f(5) =4, f(4) = 2. This gives us a contradiction
because 2 is fized by x but 4 is not. Hence these two permutation representations are
inequivalent because of two distinct quotients that are isomorphic to PSL(3,2). Using

GAP we see that both have structure description PSL(3,2). Using the construction
of Theorem[3.9 the permutations ¢(z), ¢(y) on {1,...,14} are:

() = (1,8)(2,9)(3,4)(6,7)(10,11)(12, 14)

o(y) = (1,2,3)(4,5,6)(8,9,10)(11, 12,13)

We find the group generated by ¢(z), ¢(y) is primitive and has structure description
PSL(2,13) by using GAP of order 1092.

Example 3.7. Consider two inequivalent representation of the triangle group A(2,4,7)
of degree 7 my, defined by m (z) = (3,5)(4,6), m(y) = (1,2,4,3)(5,7), has handle
a; = 7,bp = 2 and ms, defined by mo(z) = (3,5)(4,6), m(y) = (1,2,4,3)(6,7),
has handle ay = 1,by = 7. Using GAP we can see, both have structure description

PSL(3,2). Using the construction of Theorem[3.9 the permutations ¢(x), ¢(y) are:

o(x) = (2,14)(3,5)(4,6)(7,8)(10,12)(11, 13)

o(y) = (1,2,4,3)(5,7)(8,9,11,10)(13, 14)

In the following diagram red edges represents the composition with generator m(x)
and black edges represents the composition with generator m(y). Fized points of m;(x)
for i ={1,2} have shown by heavy red dots and fized points of m;(y) for i = {1,2}

have shown by heavy black dots in the diagram.
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2 1 7
'
o
16 4 3 5
]
\‘ 'l
14 9 8 .-
13 11 0 1

- -m"

Using GAP we find the group generated by ¢(x),¢(y) is imprimitive and has

structure description ([1.=5 Cy : A(7)) : Cy = Cy L Ay of order 322560.

The following table illustrates the construction of Theorem [3.2] We abbreviate

Structure Description as S.D. We used GAP to find the structure description for the

groups 7(G) and ¢(G).

Group Deg | S.D of #(G) | Handles Chosen Handles Dego(G) | Info about ¢(G).
6 CQ X A4 Hl’ QL [57 6”
(2,3,6) [(1,2],[1,2]11 12 ((ca X c4) 3 c3) X2
6 C2 X A4 [[11 2}7 [57 6”
7 PSL(3,2) (11, 2] .
(2,3,7) [[1,2],[1, 211 14 (¢3 x PSL(3,2)
7 PSL(3,2) (1, 2]]x
71 PSL(372) [[172“1
(2,3,7) ([1,2],[1,2]1x 14 PSL(2,13)
72 PSL(372) [[172“1
71 PSL(372) [[275“2
(2, 3, 7) [[27 5]7 [67 1]]2 14 PSL(Q’ 13)
T2 PSL(3,2) (6, 1]]2
71| PSL(3,2) ([1,5]]3
(2,3,7) [[1,5],[6,2]]s 14 PSL(2,13)
72 PSL(372) [[6’ 2“3
14 PSL(2,13) ([1,2]]1
(2,3,7) (11,2, [1, 2] 28 PSL(2,13)
14 PSL(2,13) (11, 2]
15 Alt(42) [[1,2]]1
(2,3,7) (11,2, [1,2] 57 Alt(57)
42 Alt(15) [[1,2], [41, 42]]1
15 Alt(42) [[1,2])1
(2, 3, 7) [[1» 2}7 [41» 42]]1 57 Alt(57)
42 Alt(15) [[1,2], [41,42]]1
557 15 Alt(15) ([1,2]]1 19112 75 AI(78
b b b b b t
( ) 63 Alt(63) [[1,2]1 2. 1.2l ™
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Group Deg | S.D of n(G) | Handles Chosen Handles Deggp(G) | Info about ¢(G).
571 | PSL(3,7) (120, 32]]1
(2,3,19) (120, 32], [24, 42]]1 114 Alt(114)
575 | PSL(3,7) (124, 42], [47, 17])1
571 PSL(3,7) (120, 32]]1
(2,3,19) [[20, 32], [47, 17]]1 114 Alt(114)
57y | PSL(3,7) | [[24,42],[47,17]
311 | PSL(3,5) | [[28,31]]
(2,3,31) (128, 31], 25, 26]]1 62 Alt(62)
315 | PSL(3,5) (126, 25]]
71 PSL(3,2) ([1,2]]1 )
(2,4,7) [11,2],[1,2]]1 14 ((HZE?CQ) : PSL(3,2))
T2 PSL(3,2) [[1,2]]1
71 PSL(3,2) [[7,1]2
(2,4,7) [[7,1],[2,7]]2 14 Alt(14)
T2 PSL(3,2) (12, 7]]2
71 PSL(3,2) [7,2]]s )
(2,4,7) [17,2], [1, 7113 14 ((IT{=Pe2) : A7) i c2
72 | PSL(3,2) (11,75
21; | PSL(3,4) ([11,13]]4
(2,5,7) [[11,13], [15, 16]] 42 Alt(42)
21, | PSL(3,4) [[16,15])1
31, | PSL(3,5) | [[28,15]]
(2,4,31) ([28, 15].[15, 18]]1 62 Alt(62)
31y | PSL(3,5) (15, 18]]
311 | PSL(3,5) ([1,6]]
(2,5,31) [[1,6],[1,6]]1 62 Alt(62)
312 | PSL(3,5) [[1,6]]
71 PSL(3,2) [[1,2]]1
(2,7,7) [[1,2],[1,2]h 14 Alt(14)
T2 PSL(3,2) (11,21
71 PSL(3,2) [[7,1]2
(2’ 7, 7) [[77 1}7 [276”2 14 PSL(27 13)
T2 PSL(3,2) [[2,6]]2
71 PSL(3,2) [[7,2]]s
(2’ 7, 7) [[7» 2}7 [17 6”3 14 Alt(14)
T2 PSL(3,2) [[1,6]]3
214 PSL(3,4) ([1,3]1
(2’ 7, 7) [[1)3]7 [173]]1 42 Alt(42)
21y | PSL(3,4) ([1, 3]]2
571 | PSL(3,7) [[1,8],[1,9]1
(2,7,19) [1,8], [1,8]]1 114 Alt(114)
572 PSL(37 ) [[1’8}7[14’ 2”1
15 | Alt(15) 11,21
(3,3,5) 15 Alt(15) [[1,2]]1 [[1,2],[1,2],[1,2]]1 45 NotAlternating
15 Al¢(15) [[1,2])1
15 Al¢(15) [[1,2])1
(3,35 |15 | Ai(s) 11, 2]} 01,211,212 | 50 Alt(50)
20 | Alt(20) 11, 2]
14 Alt(14) ([1,2]]1
(3,3,7) | 14 | Alt(14) 11,211 (11,2, 11,2, (1, 2]]1 42 NotAlternating
14| Alt(14) (1, 2]
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Group Deg | S.D of n(G) | Handles Chosen Handles Deggp(G) | Info about ¢(G).
131 PSL(3,3) (11, 2]
(3,3,13) | 131 PSL(3,3) (1, 2] [11,2],[1,2], [1,2]]1 39 2984572656
132 PSL(3,3) [[1,2]1
131 PSL(3,3) [[1,2]1
(3,3,13) | 132 PSL(3,3) (11, 2] [1,2],[1,2], [3,4]]1 39 2984572656
133 PSL(3,3) (13,4]]1
14 Alt(14) ([1,2],[4, 7)1
(3,5,7) 14 Alt(14) (11,2],[4, 7)1 [11,2],[1,2], [1,2]]1 42 NotAlternating
14 Alt(14) [[1,2],[4,7h
14 Alt(14) [[1,2],[4, 7
(3,5,7) 14 Alt(14) ([1,2],[4, 7)1 [1,2],[4,7], [1,2]]1 42 Alt(42)
14 Alt(14) ([1,2],[4, 7)1
14 Alt(14) ([1,2],[4, 7)1
(3,5,7) 14 Ale(14) ([1,2],[4, 7)1 [1,2],[4,7], [4, 7] 42 Ale(42)
14 Alt(14) [[1,2],[4, 71
14 Alt(14) ([1,2],[4, 7)1
(3,5,7) 14 Alt(14) [[1,2],[4, 71 (14,71, 14,71, 4, 11 42 NotAlternating
14 Alt(14) ([1,2],[4, 7)1
14 Alt(14) ([1,2],[2,4],[4, 7)1
(3,5,7) 14 Ale(14) (11,2],12,4],[4, 7)1 [11,2],[1,2], [2,4]]1 43 Alt(43)
15 Alt(15) ([1,2],12,4], [4, 71
14 Alt(14) (11,2],12,4], [4, 7)1
(3,5,7) 14 Alt(14) [[1,2],[2,4], [4, 71 [[1,2],[1,2],[1,2]]1 43 Alt(43)
15 Alt(15) ([1,2],[2,4],[4, 7)1
14 Alt(14) (11,4],[2,7], 17, 8]]2
(3,5,7) 14 Ale(14) ([1,4],12,7], 17, 8]]2 [11,4],[1,4], [1,4]2 43 Alt(43)
15 Alt(15) ([1,4],12,7],[11,12]]2
14 Ale(14) (11,4],12,7],[7,8]]2
(3,5,7) 14 Alt(14) [[1,4],[2,7],[7, 8]]2 [[1,4],[2,7],[11,12]]2 | 43 Alt(43)
15 Alt(15) [[1,4],]2,7],[11,12]]2
14 Alt(14) [[1,2],[4, 71
(3,5,9) 14 Ale(14) ([1,2],[4, 7)1 [1,2],[1,2], [1,2]]: 42 NotAlternating
14 Ale(14) (11,2],[4, 7)1
14 Ale(14) (11,2],[4, 7)1
(3,5,9) 14 Alt(14) ([1,2],[4, 7)1 [1,2],[4,7], [1,2]]1 42 Alt(42)
14 Alt(14) ([1,2],[4, 71
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Group | Deg | S.D of (G) | Handles Chosen Handles Degp(G) | Info about ¢(G).
14 | At(14) (11,2, [4, 7)1
(3,5,9) | 14 | Alt(14) 11,2, 4, 71 11,2, 4,7, 4, 71 42 Alt(42)
14 | Ait(14) [1,2], [4, 7]
14 | Ait(14) [[1,2], [4, 7]
(3,5,9) | 14 | A(14) [[1,2], [4, 7] 14, 7], [4,7], [4, 7)1 42 Alt(42)
14 | At(14) [1,2], [4, 7))
14 | Ait(14) [[1,4], 12, 7]]2
(3,5,9) | 14 | Alt(14) [[1,4],[2,7]]2 [[1,4],[1,4],[1,4]2 42 NotAlternating
14 | Alt(14) [[1,4], (2, 7]]2
14 | Ait(14) [[1,4], (2, 7]]2
(3,5,9) | 14 | Ait(14) [[1,4], (2, 7]]2 [1,4],[2,7], [1,4]2 42 Alt(42)
14 | Ait(14) [[1,4], 12, 7]]2
11| Ar(1) [1,2], 12, 4], [4, 7)1
(3,5,11) | 11 | Alt(11) [[1,2],[2,4], [4, 7)1 [[4,7],[4,7],[4, 7)1 33 NotAlternating
11| A1) (1,21, 2, 4], [4, 7)1
11| Ai(11) (11,2, [2, 4], [4, 7|1
(3,5,11) | 11 | Ait(11) (L,20,12,4], 4,70 | [[1,2),[4,7),[4, 7] 33 Alt(33)
11| Ar(1) [1,2], 12, 4], [4, 7)1
14 | Ait(14) (11, 2])1
(3,5,11) | 14 | Alt(14) 11,21 11,2, 11,21, [1, 2] 42 NotAlternating
14 | At(14) (I
14 | Alt(14) 11,21
(3,5,11) | 14 | Ait(14) (1, 2]]1 [1,2], 1,21, [3, 1)1 50 Alt(50)
14 | Ait(14) (11, 2])1
21, | PSL(3,4) | [[1,2]x
(3,7,7) | 21, | PSL(3,4) | [[1,2]h (1,2],[1,2], [1, 2] 63 70293573524160
215 | PSL(3,4) 11,21

Table 3.1: Composition

These experiments show that very often composition gives us a primitive group

and most of the time that primitive group is alternating. When the group is not

primitive, in fact it seems that almost always we are in one of the situations that

we investigate in the next chapter.




Chapter 4

Imprimitive composition

In the first Section of this chapter we use the method of composition that we
described in Chapter [3]to construct particular representations of G' that we will prove
to be imprimitive. Then in the second Section we compute a number of examples,
and display the results in a table. Our experiments lead us to the theorems in the

following chapter.

4.1 Imprimitive constructions

Theorem 4.1. Let G, my,...,m, be as in Theorem [3.4, with t = p where p is prime.
Suppose that, for some finite set §2 of size deg and a permutation representation 7
of G on §2, each 7; is equivalent to w, via a bijection f;. Suppose further that each
(ai, b;) is a handle of (2;, the image of a handle (a,b) of (2.

Now, for w € (2, define B, CU wvia

B, ={fi(w):i=1,...p},
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and let

B={B,:we 2}

Then the action 1 of the permutation group H := ¢(G) on B is equivalent to the
action of m(G) on §2. H acts imprimitively on U with blocks of imprimitivity B,.

Let ¢, N, J;, K;, Qi, B; be as defined in Section [2.5 Then Q is cyclic of order
p and N is elementary abelian of order at most p%&. Then H is isomorphic to a
subgroup of C, L y(H) and the action of H on N by conjugation induces an action
of W(H). Under this action N is a submodule of the deg-dimensional permutation
module over F,, for the subgroup ¥(H) of S(£2).

Proof. For w € (2, for all g € G, and for i = 1, .., p, we have

filw™) = fi(w)™. (4.1)

Recall that for ¢ = p, we have

¢r = m(x)---mp(x)o(ar,...,ap)(by,by_1,--b1)

¢y = Wl(y)"'ﬂ'p@)'

We want to prove that the action of H = ¢(G) on B is equivalent to the action
of m(G) on 2. We need a bijection F': {2 — B so that for allw € 2, all g € G

F(w™9)) = F(w)?®,

We define F' : 2 — B by F(w) = B,. We need to check that F is a bijection.
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Clearly it is surjective. Now,

Fw) = FW) = {filw).. folw)} ={A)... fp(w)}

Since f;(w), fi(w') € £2; and the sets (2;’s are disjoint, this implies that f;(w) = fi(w')
for each 7. So since each f; is a bijection, we get w = w'.
It remains to check that F(w™9)) = F(w)?W ie. B = (B,)?Y for all g € G,

w € (2. First suppose that g =y, for all w, the image of B,, under ¢(y) is

BW = { f1(w)™ W) fo(w)™W), ...,fp(w)“p(y)}

— {fl(w“(y)),fg(w”(y)), - fp(w”(y))}

= Dyym(y) -
Now suppose that g = z if w # a,b we have B%®) = B ... Finally

Bf(x) ={ay,as, ..., ap}¢(z)

= {as,as, ..., ap, a1}

= Ba = Ba”(z)
and
b { Py Uly oo oy pfl} b pr(z) -

So for all w, B¢® = B_ ... Since G is generated by x and y this proves that
Bf(g) = B, and hence F' is an equivalence.
Now the sets B, are blocks of imprimitivity for ¢ if and only if for each w € 2,

g € G either B, = B, s or B, N B s = 0.
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So suppose that B, N B9 # (). Then, since B?Y = B ., we have fi(w) =
fi(w™@) for some i, j. Since ;N 2; = (), we have i = j. Then since f; is a bijection
we have w = w™9) and B, = B ) = Bf(g).

Let J;, K, P;, Q; be as defined in Section 2.5 By Proposition H is isomor-
phic to a subgroup of Q1¢(H) and N to a subgroup of Pi P, - - - Pyeg, Where @ = Q)
for each 1.

In order to find N we need to identify the groups Q; and P;.

J, is the subgroup of H that fixes B, setwise. So ¢(z) € J,, since ¢(z) fixes the
block B,. In fact ¢(z) permutes the points of B, in a p-cycle. We claim that for

any g € G, for any blocks B, = {c1,...,¢,}, Be = {c},...,c}, if cf(g) = ¢ then

7 p
#(9) /

Civk = Cjtk-

We justify our claim by examining the actions of the generators ¢(z), ¢(y) on

p(x)

the union U of the blocks. For g = z, ¢(z) acts on B, B, via a; ' = a;41 and
afﬁ) = a4 and bﬁ(x) = b,_1 and bﬁ(_xl) = b,_5. Otherwise it maps ¢; € B. to some

¢, € By. For g =y, ¢(y) maps each ¢; to some ¢,.

So if ¢(g) € J, then it preserves the cyclic order of B,. So J,/K, = @Q, is
contained in a cyclic group of order p. Then since ¢(x) acts on B, as an element of
order p, we see that J,/K, contains the cyclic group of order p; hence J,/ K, = C,.
It follows from transitivity that for each ¢, we have Q; = J;/K; = C,,.

Now P, € Qi. So N C P+ Paeg C Q1+ Qaeg = Q. Hence N is at most
Cgeg. So it is elementary abelian of order at most pd°s.

Now we consider the action of H on N by conjugation. Since NN is abelian, N is
in the kernel of this action and so there is an induced action of ¢»(H) on N. It follows

from the decription of the wreath product that 9°® is the permutation module for

Y(H). So N C Q%8 must be a submodule of that permutation module.
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Example 4.2. Consider a triangle group (2,3,7) and two equivalent representa-
tions of degree 7. Then w1, defined by m(x) = (3,4)(6,7), m(y) = (1,2,3)(4,5,6),
has handle a1 = 1,b; = 2 and ms, defined by m(x) = (10,11)(13,14) m(y) =
(8,9,10)(11,12,13) has handle ay = 8,by = 9. Using Theorem[3.2), the permutations
o), 8(y) are:

o(z) = (3,4)(6,7)(10,11)(13,14)(1,8)(2,9)

o(y) = (1,2,3)(4,5,6)(8,9,10)(11,12,13)

Using Theorem[4.1], we see that the group H generated by ¢(x) and ¢(y) is imprim-
itive of degree 14, with blocks [[1,8],[2,9], [3,10], [4, 11], [5,12], [6, 13], [7, 14]]. Using
GAP, ¢(G) has structure description ([T'=3 Cs).PSL(3,2).

Also, we see that Jy, the subgroup of H that fizes the block By = [1,8] setwise,

is generated by

(3,4,10,11)(6,14,13,7), (3,13,10,6)(4, 14,11,7),
(2,3,6)(4,7,12)(5, 11, 14)(9,10,13), (2,9)(3,7)(4,13)(5,12)(6, 11)(10, 14),

(1,8)(2,9)(3,4)(6,7)(10, 11)(13, 14).

and N (the intersection of the subgroups J;) is generated by

(1,8)(4,11)(5,12)(7,14), (3,10)(4,11)(6,13)(7,14),

(2,9)(5,12)(6,13)(7, 14).

Now we compute generators for (), the permutation group defined by the action
of J1 on By, and Py, the permutation group defined by the action of N on By, by

deleting all cycles from the generators of Ji, N that involve points of U outside Bj.
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We see that

Theorem 4.3. Suppose that G = A(p,q,r) has a permutation representation © on
a finite set £2, and let hy = ¢, hy, ... h, : {2 — (2 be permutations of {2 that commute

with w, that is, they satisfy
hi(w™ ) = (hy(w))™ @ Yw € 2,9 € G. (4.2)

Now suppose that (a,b) is a k-handle for w, and for each i, define a; = h;(a),b; =
hi(b). Suppose that the points a1, by, as,bs, ..., ap, b, are all distinct. Define ¢ : G —
S(92) as in Theorem[3.9

Let

and let

B={B,:we 2}

Then the action of ¢(G) on B is equivalent to the action of m(G) on 2. And the
sets B, are blocks of imprimitivity for the action of ¢(G) on 2 if and only if they

are blocks of imprimitivity for the action of m(G) on (2.

Proof. We have a™@)" = b, so af(xy)k = hi(a)™* = h;(a™@)") = hy(b) = b; and
a?(m) = hi(a)™® = hi(a™®) = hy(a) = a;. Similarly, bf(m) = b;. Therefore, a;,b; for

i = {1,...,p} are all handles. Our conditions ensure that for i # ¢, the handles

[a;, b;] and [a}, b}] are always disjoint. As in the proof of Theorem |4.1] we see that

1) 71
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the image of B, under ¢(y) is

B = {hi(w) ™ si=1...p}

— {hi(wﬂ(y)) ci=1...p} = By = Bg(y)_

Similarly
B*® =B

w

a) = BT®),

SO

Bf(g) = B .a = B™9.

w w

The sets B,, are blocks for ¢(G) acting on {2 if and only if B,NB%Y) = () whenever
B9 £ B, and they are blocks for 7(G) acting on §2 if and only if B, N BT = ()
whenever B™9) #£ B,,. So since BT = B%W  the B, are blocks of imprimitivity for
¢(@Q) if and only if they are blocks of imprimitivity for 7(G).

O

Example 4.4. Consider a triangle group (2,3,6), and the representation w of degree
6 defined by m(z) = (3,4), m(y) = (1,2,3)(4,5,6). This has handles a; = 1,b; = 2
and ay = 5,by = 6. The group w(G) is imprimitive as shown in the figure with
blocks of imprimitiviy denoted by heavy coloured dots. Where hy = ¢ and hy must
map [1,5] to [2,6] and commute with w(z) and 7(y). Here, ha = (1,5)(2,6)(3,4).

After composition we have the permutations ¢(x), ¢(y) are:

¢(5L‘) = (17 5) (27 6)(37 4)

(b(y) = (17 2, 3) (47 5, 6)

Using Theorem the group H generated by ¢(x), ¢(y) is imprimitive with blocks
By = {hi(1),ho(1)} = {L,5}, By = {h1(2),h2(2)} = {2,6}, Bs = {mi(3), h2(3)} =

o4



Chapter 4. Imprimitive composition

5 6

Figure 4.1: Blocks of imprimitivity

{3,4} of degree 6 and has structure description Cs. Here Jy, the subgroup of H that
fizes the block By = [1,5] setwise is equal to ((1,5)(2,6)(3,4)), and is also equal to
N, the subgroup of H that fixes each of the blocks setwise. Now () that is induced
by the action of Jy on By is the group generated by ((1,5)) and is equal to Py, that

is induced by the action of N on Bj.

Theorem 4.5. Suppose that G = A(p, q,r) has a transitive permutation represen-
tation m: G — S(§2) of degree deg with disjoint k-handles (a,b) and (c,d), for some
k.

Let m be an integer, and suppose that &« = aq--- g and 3 = [y --- [ are two
permutations, both products of disjoint p-cycles (the o; and B;), that generate a
transitive subgroup of S,,.

Then we can make a transitive permutation representation ¢ of G of degree mdeg

as follows.
Suppose that m = 7 and that 7y, ..., 7, are representations equivalent to ™ on
{deg+1,...,2deg}, {2deg+1,,...,3deg},...,{(m—1)deg+1,...,mdeg}, and let

(ai, b;), (ci,d;) be the copies of the handles (a,b) and (c,d) in ;.
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Then for each of the cycles a; = (i1, ...,1,) of a, we define

Yi = (ail, . ,aip)(bz-p, . 7bi1)>

and for each of the cycles B; = (j1,...,Jp) of B, we define

5]' = (Cjn P ,ij)(djp, Ce 7dj1)'

Then we define

p(x) = m(x)ma(z) - mm(T) 1172 Y0102+ -+ 0y

o(y) = my)ma(y) - Tm(y).

Let

B={B,:we R}
The action v of H := ¢(G) on B is equivalent to the action of w(G) on (2.
The representation ¢ is imprimitive with blocks
B, = {w,deg + w,2deg + w, ..., (m — 1)deg + w},
for each w € 2. Let J;, K;, P;, Q; be as defined in Section [2.5 Then Q; = (., ).
Hence H is isomorphic to a subgroup of {c, B) Vip(H).

Proof. Since we could construct ¢ by repeating the construction of Theorem 3.2 it
is clear we have a permutation representation ¢ of degree mdeg. To see that the

sets B, are blocks, we consider their images under ¢(y) and ¢(z). We see that

B2W = {™W) deg + w™™ | .. (m — 1)deg + w ™™} = B_.w)
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Similarly, if w # a, b, ¢, d then image of B, under ¢(z) is

B@ = {™@ deg +w™@, .. (m — 1)deg + w™ @} = B ().

Finally, for w = a,b,c,d we have BY® = B, = B, B,f’(x) = By = By,
B¢® = B, = B and By = By = Byew.

So for all w, g € G B®Y = B .. This proves that the action of ¢(G) of B is
equivalent to the action of 7(G) on set 2. Then just as in Theorem we can see
that B, are blocks of imprimitivity for the image of G under ¢.

To prove that @, = («, ), we prove first that Q, C («, ) and then that
Qa 2 (@, ).

To prove that @, C («, 3), we need to show that for any g € G with ¢(g) € J,,
®(g) acts on B, as an element of (o, ().

Let g = 2yt ... a%yo* where ¢(g) = ¢(x)2p(y)’t ... ¢p(x)rd(y)’* € J,. Define

20,21, -, 2, = a €U with @’ € B,, by

i j 7 J ir Jr
N )N . O ke L) LN

Let ai,...,aqeg be the points of B,. Where the points of (2 are labelled
1,2,...,deg, the construction ensures that the point a, of B, C U is numbered
a+ (¢ —1)deg. So now suppose that a; = a + (¢ — 1)deg is an arbitrary point of B,

for some ¢ € {1...m} We have

(a+ (0 —1)deg)?@ = a + (££7€?+€" _ 1)deg
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where each & = 1, o, ™!, 3, 37! such that

1 if z; € B, U B, U B.U By,
« if z; € By,
& = a~t if z; € By,

ﬁ if Z; € BC,

Bil if z; € By.

So ¢(g) acts on B, as £1¢%2 ... & € (a, 8). This shows that Q, C («, ).

We see easily that ¢(z) € J, N J, N J.N Jy, and that the element ¢(z) permutes
the points of B, in the same way that « permutes the points of {1,...,m}.

To complete the proof that («, ) C @, we need to find a conjugate of ¢(x),
#(9)p(x)p(g)~t, that acts on B, as . For this, we choose g € G to be a shortest
possible word in x and y such that m(g) (acting on 2 = {1,2,..., deg}) takes a to

c. Define zy, 21, ..., 2; € {2 such that

m(@i)m(y)  w(ai2)m(yi2) (@' )m(y’)
a = 2 21 > 29 ... 8k—1 ————> 2k = C.

m(zhit1)

(@) _ _
= z; and z; = 2j, SO we

Suppose z; = a,b,c,d for j < k. Then 2]
can leave out z%+! and get a shorter choice for g. This cannot happen, so we can
assume that z; ¢ {a,b,c,d} for j < k. We choose i; = 0 since a™® = a. So
(a+ (£ —1)deg)?®™ = 2 4 (¢ — 1)deg.

21 # {a,b, ¢, d} by assumption as above. So (z+(£—1)deg)?®? = 2|+ (/—1)deg
for some 2, # 21, and (2, + (£ — a)deg)?®™ = 2z, + (£ — 1)deg.

2o & {a,b,c,d} provided that 2 < k, and we continue as above.
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We end up with, for each ¢,

(a+ (£ —1)deg)®?® = ¢+ (£ — 1)deg
(a+ (0° —1)deg)®@ = ¢+ (£f — 1)deg
(a+ (£ —1)deg)?9?® = ¢ 4 (% — 1)deg

(a+ (€ — 1)deg)?@o@9) ™" — ¢ 4 (07 — 1)deg

So ¢(g)p(x)p(g)~t acts on B, as 3. This shows that («, 3) C Q,. Hence, Q, =
(v, B). To finish we apply Proposition [2.35]
]

Example 4.6. Let G be the A(3,2,7) triangle group, consider a representation of

degree 56 and let p =3, m = 6. We can find © with

m(z) = (2,3,4)(5,7,8)(6,9,10)(11,13,14)(15, 16, 17)(18, 19, 20)(21, 23, 24)
(22,25, 26)(27,29, 30)(28, 31, 32)(34, 36, 37)(35, 38, 39) (40, 41, 42)
(43,44, 45)(46, 47, 48)(49, 51,52)(50, 53, 54),

m(y) = (1,2)(3,5)(4,6)(7,9)(8,11)(10,12)(13, 15)(14, 16)(17, 18)(19, 21)
(20,22)(23, 26)(24, 27)(25, 28)(29, 33)(30, 34)(31, 35) (32, 36)(37, 38)

(39,40)(41, 43)(42, 44) (45, 46) (47, 49) (48, 50) (51, 54) (52, 55)(53, 56).

Then w(G) has structure description Asg and has 4-handles (a,b) = (1,12) and
(c,d) = (55,56). Now let

= Q10 = (172,3)(47576)a 6 - 51 = (273,4)

We can see that {c, B) = Ag. We set m; = m and then make 7y, ..., 7 by shifting
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the domain of ™ by each of 56,112,168,224 and 280. In that case we have

a1 =1, a=56+1=57, a3 =112+ 1 =113, ay = 168 + 1 = 169,

a5 = 224+ 1 = 225, ag = 280 + 1 = 281,

by =12, by = 56 + 12 = 68, by = 112 + 12 = 124, b, = 168 + 12 = 180,
bs = 224 + 12 = 236, bs = 280 + 12 = 292,

¢1 =55, c3 = 56 4 55 = 111, ¢3 = 112 + 55 = 167, ¢4 = 168 + 55 = 223,
5 = 224 + 55 = 279, g = 280 + 55 = 335

dy = 56, dy = 56 + 56 = 112, d3 = 112 + 56 = 168, dy = 168 + 56 = 224,

ds = 224 4+ 56 = 280, dg = 280 + 56 = 336.

So
v = (1,57,113)(124,68,12),
v = (169,225,281)(292, 236, 180),
o = (111,167,223)(224,168,112),
and so

o(x) = m(x)m(x)ms(z)my(x)ms(z)me(x) (1,57, 113)(124, 68, 12)
(169, 225, 281)(292, 236, 180)(111, 167, 223) (224, 168, 112),

o(y) = m(y)ma(y)ms(y)ma(y)ms(y)me(y).-

According to GAP, Q1 = J;/K; = Ag and P, = N/N N K, = As. By Theorem
H - Aﬁzlp(H) Here H = A%G X ./456 = A6 ! A56-
Example 4.7. Let G be the A(2,5,5) triangle group with a representation of degree
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10, and let p = 2,m = 4. We can find © with

7(x) = (3,5)(6,8)

(y) = (1,2,4,6,3)(5,7,9,10,8)

Then 7(G) has structure description Cq x Cs = Cy1C5 and has 1-handles (a,b) =
(1,2) and (¢,d) = (7,9). Now let

a=(1,2)(3,4) and B = (2,3).

Then {(a, ) = Ds. We set m; = 7 and then make m,..., 74 by shifting the

domain of m by each of 10,20 and 30. In that case we have

a1 =1,a,=10+1=11,a3=20+1=21, ay =30 + 1 = 31
by =2,by=10+2=12, by =20+2=22 b, =30+ 2 = 32
1 ="7,c=10+7T=17,c3=20+7=27,¢c, =304+ 7 =37

dy=9,d,=10+9=19,d3=204+9=29,dy =30+9 =39

So

7= (1,11)(12,2),
72 = (21,31)(32,22),

& = (17,27)(29,19),
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and hence

o(r) = m(x)m(x)ms(x)ma(x)(1,11)(12,2)(21,31)(32,22)(17,27)(29, 19)

oly) = m(y)ma(y)ms(y)ma(y).

Applying Theorem we see that H = (p(x), ¢(y)) is imprimitive with blocks
[1,11,21,31],[2,12,22,32], [3, 13, 23, 33|, [4, 14, 24, 34], [5, 15, 25, 35], [6, 16, 26, 36],
[7,17,27,37],[8, 18,28, 38],[9, 19, 29, 39|, [10, 20, 30, 40] each of size 4. The group
has order 81920. As in the theorem , we define Jy to be the subgroup of H that fixes
the block By = [1,11,21,31] setwise, and N to be the group the fizes each of the
blocks setwise.

Using GAP we see that

J1 = ((6,16,36,26)(8,28,38,18), (6,36)(8,38)(16, 26)(18, 28),
(4,14, 34, 24)(10,30,40,20), (4, 34)(10,40)(14, 24)(20, 30),
(3,5)(6,8)(7,17)(9,19)(11, 21)(12,22)(13, 15)(16, 18)(23, 25)(26, 28)
(27,37)(29, 39)(33,35)(36,38),  (3,13,33,23)(5, 25,35, 15),
(3,15,23,35, 33,25, 13, 5)(4, 10)(9, 19)(12, 22)(14, 20)(24, 30)(29, 39) (34, 40),
(3,33)(5,35)(13, 23)(15, 25),
(2,9,12,29,32,39,22,19)(3,5)(6,16)(13, 15)(18, 28)(23, 25)(26, 36)(33, 35),
(2,12,32,22)(9,29,39,19), (2,32)(9,39)(12,22)(19, 29),

(1,11,31,21)(7,27,37,17), (1,31)(7,37)(11,21)(17,27)),
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and

N = {(3,13,33,23)(5,25, 35, 15),
(3,13,33,23)(5, 25, 35, 15)(6, 26, 36, 16)(8, 18, 38, 28),
(3,13,33,23)(4, 14, 34, 24) (5, 25, 35, 15)(10, 30, 40, 20),
(1,21,31,11)(3, 13,33, 23)(5, 25, 35, 15)(7, 17, 37, 27),

(1,21,31,11)(2,12,32,22)(3,13,33,23)(5, 25,35, 15)(7, 17, 37, 27)(9, 29, 39, 19)).

Now (by suppressing in each case cycles involving points outside By ), we see that
Q1= ((11,21),(1,11,31,21),(1,31)) = Dg and P, = {(1,21,31,11)) = C}.

We have the blocks By = [1,11,21,31], By = [2,12,22,32], By = [7,17,21, 37]
and By = [9,19,29,39]. Here we can find a conjugate ¢(z) which is ¢(y)*d(z)d(y)

that acts on By as 8 = (11,21) such that

o)1 o(@)o(y) - d(@) - Sy e(2)e(y)

1 > > 7 > 1
() o(2)e(y ¢($)/ o7 ¢(y)* p(x)9(y)

112 ) 17
o) o(x)6(w)

21

P(z

)> 17 <¢>(y)4<25(90)<25(y)>

0(2) ory W) 6(x)6(y)

21 > 27

4 x
31 P(y) ¢ ( )¢(y)> 37

11

37 31

4.2 Experiments

In order to study the results of experiments based on Theorem we need the
following Lemma. It enables us to find the structure of N when the examples are

too big for GAP to give us full information.

Lemma 4.8. Suppose that 7(G) is a group acting on set {2 and H is the permutation
group ¢(G) acting on set U as defined in Theorems or and let ¢ define the
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action of H on the set B of blocks. Let N = Ker(y) be the normal subgroup of H
that fizes each block B; as a set. Now let M; be the normal subgroup of N that fixes
the block B; pointwise .

Choose {i1,...,ix} so that

but suppose that each subgroup

Ny, = M;, "My, 0o My, O M, (e M,
is non trivial and isomorphic to a subgroup M. Then if |N| = |[M|¥, we have N is
a direct product of k copies of M.
Proof. We see that
Ni1 N Nz’gNig . le C Nil N Mi1
= M;, N M, ...0 M;, N M, (4.3)

= {e}.

Now we claim that if n;, € N;, and n;, € N; with n;, # n;, , then n;n,;, =
N, N;,. Since both N;,, N; —are normal subgroups of N, we see that the commutator
Of nil s Wi,

— -1, -1
[nizvnim] = NN, My, Ny € N;, N N;,..

Equation clearly implies that N;, N N;,, = {e}, and so it follows that n;n;, =
n;, i, as required. So the product N, ...N;, is a direct product, isomorphic to
MP¥. Since it has the same size as N, and is certainly a subgroup of N, we see that

it is equal to V. O
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Example 4.9. Let G be a (2,5,5) triangle group, and © a permutation representa-

tion of degree 10, defined by

m(z) = (3,5)(6,8),

m(y) = (1,2,4,6,3)(5,7,9,10,8),

with 1-handles [1,2],[7,9]. For m = 4 and o = (1,2)(3,4), 5 = (2,3), ¢(G)
acts imprimitively on the set U = {1,...,40} with blocks Bi,Bs,..., By as

[1,11,21,31],...,[10,21,31,41]. We find

M:MlmMgﬂMgmM4,

here M fixes By, Bs, B3, By pointwise and fivzes Bg as a set (it also fizes
Bs, By, By, Byg pointwise and Bs as a set). We find M N Mg = {1}. Here |M| =4
and |[N| = 1024 = 4. We see that N is a direct product of groups isomorphic to M.
i.e.

N:N1XN2XN3XN4XN6

where Ng = M.

Ng = My N MyN MsN My =M
Ny = My N\ My My N Mg
Ny = M; N My My N Mg
N3 = M; N My N My N Mg

N4:M1QMQHMSDM6
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We know that N17N2, N3, N4 Q M(;, SO N1N2N3N4 Q M6

Ng N N1 Ny N3Ny
C Ng N Mg
=M, N Myn Msn My N Mg

— {1}.

Since

Ny = {((1,21,31,11)(7,17, 37, 27))
Ny = {((2,12,32,22)(9, 29, 39, 19))
N; = ((3,13,33,23)(5, 25, 35, 15))
Ny = {((4, 14, 34, 24)(10, 30, 40, 20))

Ns = ((6, 26,36, 16)(8, 18, 38, 28)),

and each cycle is of order 4 and disjoint, the elements that generate the N;’s com-

mute. The following diagram describes how m diagrams are joined by using the

handles as defined in o and 3.
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Chapter 4. Imprimitive composition

a=(1,2) a=(1,2) a=(1,2)(34)
B=0 B=(23) B=1(23)

Figure 4.2: m-Composition
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Chapter 4. Imprimitive composition

Example 4.10. Consider a triangle group (2,3,8), and the representation 7w of de-
gree 10 defined by m(z) = (2,4)(3,5)(6,7)(8,10), m(y) = (1,2,3)(4,6,5)(7,8,9).
This has handles a = 1,b = 9. The group ©(G) is Ay acting primitively on

{1,2,...,10}. After composition we have the permutations ¢(z), p(y) given by

o(x) = (1,11)(2,4)(3,5)(6,7)(8,10)(9, 19)(12, 14)(13, 15)(16, 17)(18, 20)

o(y) = (1,2,3)(4,6,5)(7,8,9)(11,12, 13)(14, 16, 15)(17, 18, 19).

Using Theorem the group H generated by ¢(x), ¢(y) is imprimitive with blocks

and has structure description Cy X Aqp.
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Chapter 4. Imprimitive composition

The following observation from the experiments above motivate us to prove the
theorems in Chapter [5

In Table we have seen when 7(G) = Ageg then N is the direct product of
deg — 1 copies of C), except when G = A(2,3,8) and p = 2 and 7(G) = Ay, in this
case we have N = Cy. We also note that when n(G) = M2 and for G = (2,4,7)
such that 7(G) = PSL(3,2) then we have N is the direct product of deg — 1 copies
of C,. When n(G) = PSL(2,13) then N is the trivial group.

In Table we observed that when 7(G) = Ageg and (o, 5) = A, for m >
5 then |N| = |(a, B)]98. We also found examples where 7(G) = Agee for G =
(3,5,7), (3,5,9) and (3,5,11) and m = 4 for which we have (o, 8) = A4 then |N| #
|{cr, B)]9°8. Moreover, we can see that when 7(G) = PSL(3,7) and (a, 3) = Cy x Cy

then N is the direct product of deg copies of {(a, 3).
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Chapter 5

Imprimitive composition with

alternating groups

In this chapter we prove the results that we analysed from the experiments in Chap-
ter 4 Here we find the structures of the groups built out of the constructions of
Theorem and Theorem [4.5] We also find some conjectures in the end of the
theorems. Section illustrates the future work describing the approach to prove

the conjectures we made.

Theorem 5.1. Suppose that G = A(p,q,r) is a triangle group with p prime, p <
q < r. Suppose that w(G) = Aqeg and H = ¢(G) is constructed as in Theorem [{.1]

Assume the notation of Theorem[{.1. Suppose that deg > 6. Then either
1. plgr, p|deg and H = C), X Ageg, 0T
2. H= Cﬁeg_l X Adeg -

Note that the second case might occur even when plqr and p|deg.

Proof. By Theorem , H is isomorphic to a subgroup of C, ¢(H) = Cgeg x(H).
And since ¢(H) = 7(G) = Adeg, we have H C CJ°8 X Agee. In fact H = N. Age,.
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Chapter 5. Imprimitive composition with alternating groups

In addition we know from Theorem that NV C C’I‘feg is a submodule of the
deg-dimensional permutation module Wge, for Ageg. It is possible that we have
N =1.

We hope to prove that, except in the situation which can only occur for the
particular values of p,d covered in (1), the normal subgroup N is isomorphic to
Cies—1,

First we show that N # 1. If N = 1, then H = ¢(H) = Ageg. In that case
the group J,, (which stabilises B, as a set) is isomorphic to Ageg—1. However,
by Theorem J, acts on B, as ()., which is cyclic of order p. So there is a
homomorphism from J, to C), i.e. there is a homomorphism from Age—1 to C,.
Now the kernel of this homomorphism is a normal subgroup of Ages—1 of index p.
Since if deg — 1 > 5, the group Aqeg—1 is simple, but this cannot happen.

Now we need to show that NN is a submodule of Wyee—1. Examining the con-
struction of H = ¢(G) we see that H is generated by

¢ = m(x)m2(2) .. .Wp(a:)TaTb_l

where 7, = (wy,wa, ..., w,) and

Now define
C ={m(g)m(g)...m(9) : g € G}

and

V= {7 tw,W € D)

both subgroups of S(U). We see that V' is isomorphic to the (deg — 1)-dimensional
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Chapter 5. Imprimitive composition with alternating groups

submodule Wyeg—1 of Q4% for Agee, and C' is isomorphic to 7(G) = Agee. Then
¢z, ¢y can both be written as products within C'V, so H which is generated by ¢,
and ¢, is a subgroup of Wyeg_1 X Ageg. In particular N C Wyee_1, so |N| < pies=1,
Hence N is a non-trivial submodule of Wyeg_1.

Waeg—1 has no proper submodules unless p divides deg. If p|deg then the trivial
permutation module W is a submodule of Wyee—1. So if p does not divide deg we
see that we must have N = Wyeg_1.

So suppose now that p|deg, that N is the trivial submodule W; of Wyee_1, and
s0 H = N. Ageg = Cp.Adeg. We look at J,, the stabiliser of B,. We have 9(J,) =
Adeg—1. We also have @), = C,. So J, has a quotient isomorphic to C,. So J,
maps onto C), and also maps onto Age,—1. By the Jordan-Hélder Theorem ,
Jo = Cp.Ageg—1 Where C), and Ageg—1 are simple and their intersection is the identity
subgroup. So J, must be split.

We see that H must also be a split extension in this case, because the non-
split extensions are well known by [17], see Section , in particular Lemma m
The non-split extension C,.Aqeg can only exist when p = 2 and cannot admit such
subgroups J, as above.

So the extension N.Aq4eg splits, then, since the action of Age, on N is trivial, we
must have a direct product, H = C), X Ageg, and so are in case (1). In that case C,
is a homomorphic image of G = A(p, q,r), and hence an abelian quotient of it. But
from Corollary , we know that G/G’ can only map onto C, when p|qr.

If N = Wieg—1, then H is an extension of Cgeg_l by Ageg. So now H is a subgroup
of Waeg—1 X Adeg of order pi®e=1.| Ayeq|. Hence H is the whole of Waeg—1 % Ageg and

the result is proved.

The following is an immediate corollary of the theorem.
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Chapter 5. Imprimitive composition with alternating groups

Corollary 5.2. Suppose that G = A(p,q,r) is a triangle group with p prime, p <
q < r. Suppose that deg > 6 and in addition p 1 qr and p { deg. Then provided
that G has a quotient Aqeg containing at least one handle, G also has a quotient

C;)ieg—l X Adeg .

Theorem 5.3. Suppose that G = A(p,q,r) is a triangle group with p prime, p <
q < r. Suppose that m(G) = Ageg and H = ¢(G) is constructed as in Theorem [{.5,
Assume the notation of Theorem . Suppose that deg > 6 and {(«, 5) = A,,, where
m # deg—1 and m > 5. Then H = A, 1 Adeg -

Proof. By Theorem H is isomorphic to a subgroup of A, 1¢)(H) = A% x Ageg.
Then N, the kernel of the map ¢ : H — Aqeg is a subgroup of A% and H = N.Ageg.
In order to prove the result, we need simply to prove that N is the whole of Ade.

To prove this property for N, we need to use a result of [7], which we have
described in Section [2.2.2]

We have N CT; X Ty X - -+ X Tyeq, where T; = A, for each i.

By Fawcett’s Lemma [2.14] N is a direct product of groups H; - - - H, where each
H; is a full diagonal subgroup of [[;e7, Ti, and Iy, . .., I, is a partition of {1,...,deg}.
Now the partition must be preserved by ¥(H) = Aqeg, in its action on N by conju-
gation. Since Aqeg acts primitively, so either we have r = 1 and I; = {1,...,deg}
or we have r = deg and [; = {j} for each j.

In the first case we have N = A,, and in the second case we have

N=A,xA, X ---xA,.

deg times

When N = A,, then we have H = A,,,. Age,-
Considering the subgroup J,, which maps onto A,,, we see that in this case H

must be the direct product A, X Ages. So then H is the direct product of N (=2 A,,)
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and its complement

C ={m(g),m(g),---,mm(g) : g € G}.

Then every element of H can be written as a product nc where n € N, ¢ € C

and the elements n,c commute. Now ¢(z) = ¢1ny, where

¢ = m(z)me(x) - mp(2)

ny =1 Y010

and ¢(y) € C. Since H is generated by ¢(x) and ¢(y), we see that N must be cyclic,
generated by vy -+ -0y - - - d;, and hence N is cyclic of order p.

This contradicts the fact that N = A,, for m > 3 and so this case is excluded. [

The following is an immediate corollary.

Corollary 5.4. Suppose that G = A(p,q,r) is a triangle group with p prime, p <
q < r. Suppose that deg > 6, and that for some m not equal to deg—1 the alternating
group A,, can be generated by two p-cycles. Then provided that G has a quotient

Adeg containing two disjoint handles, G also has a quotient A, U Ageg.
Our results suggest the following two conjectures.

Conjecture 5.5. Suppose that G = A(p,q,r) is a triangle group with p prime,

p < q <r. Then for all but finitely many integers deg, G maps on to C’Seg*l X Adeg -

Conjecture 5.6. Suppose that G = A(p,q,r) is a triangle group with p prime
p < q < r and choose m such that the alternating group A,, can be generated by 2

p-cycles. Then for all but finitely many integers deg, G maps on to A, U Adeg-

We note that it follows from Higman’s conjecture that for almost all m and p,

A, is generated by two elements of order p.
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5.1 Future work

In order to verify the conjectures we need to know not just that (by Everitt’s the-
orem) almost all triangle groups map onto almost all Ages, but that there exist
such images with appropriate handles. So a vertification of the conjectures requires
us to look closely at Everitt’s proof to see whether the coset diagrams constructed
have the necessary handles. If they do not, it is possible that we can adapt the

construction so that they do. We see this as future work.
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Appendix A

Algorithm of Composition

We constructed a GAP procedure to compose t < p coset diagrams of a triangle

group G by finding all possible subgroups of a triangle group

upto a finite index say n. We named this function by FindCosetTablesTriangle-
Group having input as parameters of p, ¢, 7 and n, where n is the degree of subgroup

and p, ¢, r are the parameters of the triangle group.

FindCosetTablesTriangleGroup := function(p,q,r,n)
local x,t,y,f,g,hlist,h,permslist,perms;

f := FreeGroup(3);

g = f/[£.17p,£.27q,(f.1%f.2) ],

hlist := Filtered(LowIndexSubgroupsFpGroup(g,n),i->Index(g,i)=n);

permslist := [I;
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for h in hlist do
x := List(CosetTable(g,h){[1]},PermList)[1];
y := List(CosetTable(g,h){[5]},PermList)[1];
perms := [;
Add(perms,x);
Add(perms,y);
Print("perms=",perms,"\n");
Add(permslist,perms);

od;

return permslist;

end;

We construct an algorithm for the composition of p coset diagrams [A, .., A,] that
represent transitive permutation representations of a triangle group A(p, ¢, 7). For
this we use p-composition and k-handles to join the coset diagrams. In an arbitrary
permutation representation of GG, two points a and b which are fixed by x such that
both ¢ and (zy)* map a to b form k-handle and are denoted by [a, b].
FindHandles.g find k-handles of a given arbitrary permutation representation.
FindHandles is a function that takes various input value of permutations of triangle
group and a parameter "k" that is used to identify whether it is 1-handles, 2-handles
and 3-handles of given permutations of triangle group A(p, ¢, r), where k = 1,2,3, ...

(depending on k-handles).

FindHandles := function(perms,k)
local x,t,y,1,j;

x := perms[1];
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t := perms|2];
y := perms[3];

j=10

for i in MovedPoints(t) do
if i <1t and i=i"x and i"t=i"((x*y)~k)
then Add(j,[i,i"t]);
fi,

od;

return j;

end;

ShiftPermutationDomain has a vital role in the composition of coset tables
that changes the label of the permutation representations of [2,...,p| coset tables

to join them together.

ShiftPermutationDomain:=function(perms,nl)
local 1,m:;

Print("perms ,=",perms,"\n");
l:=ListPerm(perms)+nl;
m:=PermList(Concatenation([1..n1],1));
Print("shifts to_",m,"\n");

return m;

end;

CompositionByHandles takes input value of degreelist that illustrates list of
all degrees (could be different from each other) subgroups of an extended triangle

group, permslist shows a permutation list of each of the degree defined in the
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degreelist, pairlist is the list of all handles of permutation list for each of the degree
in degreelist.

Output is the permutation list by the composition of p coset tables by using & type
handles that represents transitive permutation representation of degree n; + ns +
...+ mn, of a group G, here ny,ny,...,n, are the degrees of index subgroups of
a group. Here we use CompositionByHandles that are used to compose p coset

tables by using k-handle in each of the coset table.

CompositionByHandles := function(degreelist,permslist,pairlist)

local perms,x,y,xx,yy,n,a,b,c,d,i,pair,p,genericCyclel,genericCycle2,
aa,bb,cc,dd;
#Print("Entering CompositionBylHandles with degreelist=",degreelist,"\n",

"permslist=",permslist,"\n","pairlist, ,=",pairlist,"\n");

p := Length(degreelist);
x := permslist[1][1];

y := permslist[1][2];

n := degreelist[1];

a :=[I;

cc := pairlist[1][1];
Add(a,cc);

b=,

dd := pairlist[1][2];

Add(b,dd);

#Print("x=",x,"\n");
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#Print("y=",y,"\n");
#Print("n=",n,"\n");
for i in [2..p] do
c := pairlist[i][1] + n;
d := pairlist[i][2] + n;
Add(a,c); # this will find the list of joining handles
# on the left side of the axis of symmetry like [al,a2..,ap]
Add(b,d); # this will find the list of joining handles

# on the right side of the axis of symmetry like [b1,b2..,bp]

xx := ShiftPermutationDomain(permslist[i][1],n);

yy := ShiftPermutationDomain(permslist[i][2],n);

#Print("xx=",xx,"\n");
#Print("yy=",yy,"\n");
X := X*XX;

Yy =YY
#Print("x=",x,"\n");

#Print("y=",y,"\n");

n := n + degreelist[i];
#Print("n=",n,"\n");

od;

a:=Reversed(a); # this will reverse the the list of joining handles

# on left hand side of axis of symmetry because we want
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# to make [ap,..,al]
genericCyclel:=PermList(Concatenation([2..Size(a)],[1]));
aa:=MappingPermListList(Permuted(a,genericCyclel),a);

#this will convert the list of joining handles on the
# left side

# of axis of symmetry into permutations like (ap,..,al)

genericCycle2:=PermList(Concatenation([2..Size(b)],[1]));
bb:=MappingPermListList(Permuted(b,genericCycle2),b);
# this will convert the list of joining handles on the
# right side of axis of symmetry into permutations

# like (bl,..,bp)

X .= x*aaxbb;
#Print("Joining handles permutations =",p,"\n");

perms:=[];

Add(perms,x);

Add(perms,y);

#Print("x:=",perms[1],"\n","\n","y =",perms|[2],"\n");
#Print("x*xy =",x*y,"\n");

#Print("Order of x*xy = ",Order(x*y),"\n");

return perms,

end;
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CompositionByMultHandles := function(degreelist,permslist,handlelist)

local perms,x,y,xx,yy,k,n,m,t,a,b,c,d,i,j,pair,pairlist,p,
genericCyclel,genericCycle2,aa,bb,cc,dd;

# Print("Entering CompositionByMultHandles with degreelist=",degreelist,
"\n","permslist=",permslist,"\n","pairlist, ,=",pairlist,"\n");

t := Length(degreelist);

p:=Length(handlelist);

n:=degreelist[1];
x:=permslist[1][1];

y:=permslist[1][2];

for i in [2..t] do

xx := ShiftPermutationDomain(permslist[i][1],n);

yy := ShiftPermutationDomain(permslist[i][2],n);

X = X*XX;

Y = yHYYS

n := n + degreelistli];

od;

pairlist:=(];

for i in [1..p] do
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k :=handlelist[i][3];

m:=0;
for j in [1..k-1] do
m:=m-+degreelist[jl;

od;

pairlist[i]:=handlelist[i]+m,;
od;

Print("Pairlist, = ,",pairlist,"\n");

for i in [1..p] do
cc:=pairlist[i][1];
Add(a,cc);
dd:=pairlist[i][2];
Add(b,dd);

od;

a:=Reversed(a); # this will reverse the the list of joining
# handles on left hand side of axis of
# symmetry because we want to make [ap,..,all

genericCyclel:=PermList(Concatenation([2..Size(a)],[1]));
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aa:=MappingPermListList(Permuted(a,genericCyclel),a);
# this will convert the list of joining handles
# on the left side of axis of symmetry into

# permutations like (ap,..,al)
genericCycle2:=PermList(Concatenation([2..Size(b)],[1]D);
bb:=MappingPermListList(Permuted(b,genericCycle2),b);

# this will convert the list of joining handles

# on the right side of axis of symmetry into

# permutations like (bl,..,bp)

X := xX*aax*bb;
perms:=[];

Add(perms,x);
Add(perms,y);

return perms;

end;
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Algorithms of Imprimitive

Composition

ImprimitiveComposition:=function(x,y,m,Hand,alpha,beta)

local n,nn,xx,yy,x1,yl,a,aa,b,bb,c,cc,d,dd,Cycle_ alpha,Cycle_ beta,i,j,

g.,h,p,gamma,delta,cycle,cyclel,cycle2;

n:=LargestMovedPoint([x,y]);

p:=Order(x);

a:=[Hand[1][1]];
b:=[Hand[1][2]];
c:=[Hand[2][1]];
d:=[Hand[2][2]];

Cycle__alpha:=Cycles(alpha,[1..m]);
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Appendix B. Algorithms of Imprimitive Composition

Cycle_alpha := Filtered(Cycle_ alpha,i->Length(i)=p);
Cycle_beta:= Cycles(beta,[1..m]);

Cycle_beta := Filtered(Cycle_ beta,i->Length(i)=p);

# Cycle_alpha and Cycle_ beta are lists whose entries

# are the list of vectors in the cycles of alpha and beta

aa:=a;
bb:=b;
cc:=c;

dd:=d;

for i in [2..m] do #This loop find the handles by adding (m-1)n

aa:=aa-n;

bb:=bb-+n;

cc:=cc+n;

dd:=dd+n;

Append(a,aa);

Append(b,bb);

Append(c,cc);

Append(d,dd);

od;

gamma:=();

for cycle in Cycle__alpha do
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cyclel := ( alcycle[1]] , alcycle[2]] );
cycle2 := ( blcycle[1]] , blcycle[2]D;
for j in [3..p] do
cyclel := cyclel * ( alcycle[1]] , alcycleljl] );
cycle2 := ( blcycle[1]] , blcycleljl] ) * cycle2;
od;
gamma:=gammax*cyclel*cycle2;

od;

delta:=Q);

for cycle in Cycle_beta do

cyclel := ( clcycle[1]] , clcycle[2]] );

cycle2 := ( dlcycle[1]] , dlcycle[2]] );

for j in [3..p] do
cyclel := cyclel * ( c[cycle[1]] , clcycleljl] );
cycle2 := ( dlcycle[1]] , dlcycleljl]l ) * cycle2;

od;

delta:=deltaxcyclel*cycle2;

od;

90



Bibliography

[1] P. Cameron. Permutation Groups. Cambridge University Press, 1999.

[2] M. Conder. Generators for alternating and symmetric groups. J. London Math.

Soc, 22:75-86, 1980.

[3] M. Conder. More on generators for alternating and symmetric groups. Quart

J. Math., 32:137-163, 1981.

[4] Nathan M. Dunfield and William P. Thurston. Finite covers of random 3-
manifolds. Invent. Math, 166(3):457-521, 2006.

[5] B. Everitt. Permutation representations of the (2,4,r) triangle groups. Bull.
Austral. Math. Soc, 49:499-511, 1994.

[6] B. Everitt. Alternating quotients of Fuchsian groups. J. Algebra, 223:457-576,
2000.

[7] J. Fawcett. The O’Nan Scott Theorem for finite permutation groups and finite

presentability. Master’s thesis, Waterloo, 2009.
[8] D.F. Holt. Personal communication. September 2016.
[9] G. A. Jones and David Singerman. Complex functions. Cambridge university

press, 1987.

91



Bibliography

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[20]

S. Kousar. Alternating quotients of non-Euclidean crystallograpic groups. PhD

thesis, University of York, 2013.

Martin W. Liebeck and Aner Shalev. Residual properties of the modular group
and other free products. Journal of Algebra, 268:264-285, 2003.

Q. Mushtaq and H. Servatius. Permutation representations of the symmetry

group of regular hyperbolic tesselation. J. London Math. Soc, 48:77-86, 1993.

Gabriele Nebe, Richard Parker, and Sarah Rees. A method for building permu-
tation representations of finitely presented groups. Proceedings of Finite Simple

Groups: Thirty Years of the Atlas and Beyond, Princeton, 2015.

K. Paterson. Imprimitive permutation groups and trapdoors in iterated block

ciphers. Hewlett Packard, 12, 1999.

Derek J.S. Robinson. A Course in the Theory of Groups. Graduate texts in

mathematics. Springer-Verlag New York Inc., 1982.

Joseph J. Rotman. An introduction to the Theory of Groups. Graduate texts

in mathematics. Springer-Verlag New York Inc., 4 edition, 1934.

I. Schur. Uber die Darstellung der Symmetrischen und der Alternierenden

gruppe durch gebrochene lineare substitutionen. Journal fir die reine und

angewandte Mathematik, 139:155-250, 1911.
D.A. Suprunenko. Matriz groups. American Mathematical Society, 1976.

A. Wagner. The faithful linear representations of least degree of S,, and A,
over a field of characteristic 2. Math. Zeit, 151:127-137, 1976.

A. Wagner. The faithful linear representations of least degree of S, and A,
over a field of odd characteristic. Math. Zeit, 154:103-114, 1977.

92



Bibliography

[21] H. Wielandt, H. Booker, D.A. Bromley, and N. DeClaris. Finite Permutation

Groups. Academic paperbacks. Elsevier Science, 2014.

[22] Robert A. Wilson. The Finite Simple Groups. Springer-Verlag London Limited,
2009.

93



	Introduction
	Hyperbolic plane
	Fuchsian groups
	Examples of Fuchsian groups
	Triangle groups
	Modular groups
	Free groups of rank 2

	Outline
	History of Higman's Conjecture

	Background from group theory
	General results
	Combining and decomposing groups
	Direct products
	Subgroups of direct products
	Semidirect products
	Extension of one group by another
	Schur multipliers
	Wreath product

	Permutation representations
	Coset diagrams
	Primitive and imprimitive permutation groups
	Linear representations

	Composition
	Composition of up to p coset diagrams

	Imprimitive composition
	Imprimitive constructions
	Experiments

	Imprimitive composition with alternating groups
	Future work

	Appendix Algorithm of Composition
	Appendix Algorithms of Imprimitive Composition
	Bibliography

