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Abstract 

Mitochondrial disorders comprise a large group of heterogeneous disorders which are 

characterized by impairments in the cellular energy production. One of the great challenges of 

mitochondrial disease is the variety of clinical features present in patients. Mitochondrial 

disorders affect more than one organ leading to complex multisystem dysfunctions. Tissues, 

in which the metabolic demand is higher, such as skeletal muscle, neurons, liver or heart are 

typically affected.  

Mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) often lead to 

mitochondrial disorders. Although mtDNA encodes key proteins for the normal function of 

the mitochondrial respiratory chain enzymes, the vast majority of the essential components 

and proteins needed for the maintenance and replication of the mitochondrial DNA are 

encoded by the nDNA.  

Exome sequencing in combination with bioinformatics tools has proven really effective in 

determining novel alterations in the genomic sequence. One aim of this thesis was to evaluate 

novel mutations from affected patients with combined respiratory deficiencies. As a result, 

mutations in C12orf65 and in the novel disease gene MiD49, associated with mitochondrial 

disorders, are thoroughly presented.  

Vitamin supplements, pharmacological agents and exercise therapy are common strategies 

used in patients suffering from mitochondrial disorders. It has been shown that in cell lines of 

patients suffering from two rare reversible infantile mitochondrial diseases (reversible 

infantile respiratory chain deficiency and reversible infantile hepatopathy due to TRMU 

deficiency) supplementation of L-cysteine resulted in an improvement in most respiratory 

chain complexes activities. During my PhD I studied and proved that L-cysteine 

supplementation was also beneficial in cells from patients suffering from common forms of 

mitochondrial disorders such as MELAS and MERRF as the supplementation resulted in 

improved mitochondrial respiratory chain function.  

Finally, direct conversion of fibroblasts to neuronal progenitor cells was used to model 

mitochondrial disorders and study the tissue specificity. This project was very challenging 

due to the complex characteristics of mitochondrial biology.  

In summary, this thesis reveals the description of novel genes and mutations associated with 

combined mitochondrial deficiencies. Furthermore, we detected a positive effect of L-cysteine 

on a subset of mitochondrial disorders, which can be the base of further therapy development.  
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 Introduction 

 Mitochondrion  

Mitochondria are essential for maintaining fundamental aspects of physiology such as the 

cellular energy balance, the modulation of calcium signalling, the cellular redox balance and 

the normal function of a number of significant biosynthetic pathways. Maintenance of a 

healthy mitochondrial population demands a complex system of quality control. Mechanisms 

impairing a system of the quality control lead to disordered cell function which manifests as 

disease. Moreover, mitochondria play a vital role in cell life and death as they regulate both 

apoptotic and necrotic cell death. Therefore, any defect in cell death might lead to 

inappropriate tissue growth and development of tumours. The last years, the centrality of 

mitochondrial dysfunction in a wide range of major human diseases is slowly becoming 

recognized emerging for novel therapeutic approaches for a large group of diseases (Duchen 

and Szabadkai, 2010).  

 Origin and Structure  
The mitochondrion is a specialized organelle principally responsible for the production of 

cellular energy through oxidative phosphorylation (OXPHOS). Mitochondria were first 

identified in the 19th century and are present in almost all eukaryotic cells. In addition to 

energy production, mitochondria play vital role in cytosolic calcium-homeostasis (Pozzan and 

Rizzuto, 2000), in haem biosynthesis, in apoptosis (Newmeyer and Ferguson-Miller, 2003) 

and lastly in thermogenesis (Lowell and Spiegelman, 2000).  

The principal theory illustrating the origin of the mitochondria is the endosymbiotic theory 

while the ‘hydrogen hypothesis’ is the most possible scenario of that theory. According to the 

‘hydrogen hypothesis’, the host cell of the mitochondrial endosymbiosis was an anaerobic, 

strictly hydrogen-dependent and autotrophic archaebacterium whereas the symbiotic was a 

eubacterium, able to respire, generating molecular hydrogen as a waste product of anaerobic 

heterotrophic metabolism. The selective force that shaped the common ancestor of eukaryotic 

cells was the dependence of the host upon the hydrogen production by the symbiont (Martin 

and Müller, 1998). This partnership gave rise to the mitochondrion and the complex 

eukaryotic cell. Due to comparative mitochondrial genomics studies, it is believed that the 
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possible symbiotic eubacterium belonged to the class of α-Proteobacteria (subclass: 

Rickettsiales).  

Mitochondria are usually described as inflexible, elongated cylinders with diameter of 0.5-

1µm. However, live cell imaging techniques discovered that mitochondria are exceptionally 

mobile and plastic organelles.  

Each mitochondrion is bordered by two highly specialised membranes termed outer and inner 

mitochondrial membrane (OMM and IMM respectively). Both membranes have different 

functions and separate the mitochondrion in two sections: the internal matrix and the 

intermembrane space (Figure 1.1).  

 

Figure 1.1: Schematic diagram and electron micrograph of the mitochondria showing 
the matrix, cristae, inner membrane, outer membrane and intermembrane space. 
(Source: http://www.sinauer.com/) 
The outer mitochondrial membrane consists of a lipid bilayer characterised by a variety of 

proteins including a large number of copies of a transport protein, called porin. Porin has the 

ability to form large aqueous channels that allow the alley of all the molecules less than 5000 

Daltons, including small proteins. Although the latter are present in the intermembrane space, 

only a few of them are allowed through the IMM. Therefore, the intermembrane space is 
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chemically equivalent to the cytosol in respect to the small molecules but the matrix contains 

only a few of them.  

Similar to the OMM, IMM consists of a lipid bilayer characterised by high proportion of the 

double phospholipid cardiolipin. Cardiolipin, consists of four fatty acids, and makes the inner 

membrane highly selective and permeable only to O2, CO2 and H2O rather than ions and small 

molecules. Only the small molecules required by the mitochondrial enzymes located in the 

matrix are allowed to pass through the inner membrane via a variety of transport proteins 

(Patil and Greenberg, 2013). The IMM is extensively convoluted, forming a series of 

foldings, also called cristae, that project into the matrix. These foldings increase the area of 

the inner membrane and the number of the cristae is proportional to the demands of the ATP 

of the cell. For example, a cardiac muscle contains three times greater number of cristae 

compared to a liver cell due to higher ATP demands in cardiac cells (Bruce et al., 2002). 

 Function  
One of the most prominent functions of mitochondria is the ATP production through 

respiration. Pyruvate molecules produced by glycolysis and fatty acids deriving from fats are 

actively transported to the inner mitochondrial membrane and converted to acetyl-CoA. The 

fatty acids are converted to acetyl-CoA through beta-oxidation while the pyruvate 

dehydrogenase complex is responsible for transforming the pyruvate to acetyl-CoA.  

Following, the acetyl-CoA enters the mitochondrial matrix and is oxidized via the citric acid 

cycle. The citric acid cycle is the main metabolic centre of the cell and takes place in the 

mitochondrial matrix while glycolysis takes place in the cytosol (Bruce et al., 2002). It 

includes a series of reduction-oxidation (redox) reactions that result in the oxidation of an 

acetyl group (CH3CO) to two molecules of CO2. Also, high energy electrons carried by two 

activated carrier molecules called Nicotinamide Adenine Dinucleotide (NADH) and Flavin 

Adenine Dinucleotide (FADH2), are generated through the citric acid cycle. Next, these two 

high energy electron carriers are transferred to the IMM where they enter the electron 

transport chain. The total yield of citric acid cycle per one molecule of glucose (2 pyruvate 

molecules) is 6 NADH, 2 FADH2, and 2 ATP.  

 Electron Transport Chain and Oxidative Phosphorylation (OXPHOS) 
The electron transport chain (ETC) is a series of protein complexes transferring electrons 

from electron donors to electron acceptors via redox reactions while this electron transfer is 

coupled with proton (H+) transfer across a membrane. The electron transfer is called oxidative 
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phosphorylation (OXPHOS) and occurs in almost all aerobic organisms. The OXPHOS 

results in the formation of an additional 25 molecules of ATP per molecule of glucose, 

indicating its significant role in the energy production. The site of the ETC, where the 

OXPHOS takes place, is the inner mitochondrial membrane.  

The ETC consists of four protein complexes (Complex I, II, III and IV) and the H+-ATP 

synthase, the principal enzyme responsible for the ATP synthesis. 

Complex I, also known as NADH dehydrogenase, is composed of NADH dehydrogenase, a 

prosthetic group called Flavin Mononucleotide (FMN) and non-heme-iron proteins having at 

least one iron-sulfur centre. Complex I consists of 44 protein subunits (Vinothkumar et al., 

2014).  Two electrons from NADH are transferred to complex I then to FMN and through an 

iron-sulfur carrier to a lipid-soluble carrier termed ubiquinone (CoQ). Simultaneously, for 

each electron a hydrogen ion is pumped to the intermembrane space through complex I 

(Figure1.2).  

Next, the electrons carried by CoQ are transferred to complex III. Complex III, known as 

CoQ-cytochrome reductase, consists of 11 protein subunits.  The principal components of 

complex III are two heme proteins, cytochromes b and c1 and a non-heme-iron protein, 

known as the Rieske iron sulfur protein. Then, the electrons are transferred from complex III 

to complex IV via cytochrome c protein. As complex IV accepts one electron at a time from 

cytochrome c, one hydrogen ion is pumped through complex III as each electron is 

transferred.  

Complex IV, also known as cytochrome c oxidase, is a large transmembrane protein 

consisting of 13 protein subunits and several metal prosthetic sites in mammals. The major 

role of complex IV is to transfer four electrons from cytochrome c to O2 and produce two 

molecules of H2O. In parallel, eight H+ are translocated from the matrix to complex IV where 

four of them are used for the H2O production and the other four are pumped to the 

intermembrane space contributing to maintain the proton gradient across the membrane.  

The flow of H+ from the matrix to intermembrane space across the membrane results to: 

1.  Generation of a pH gradient across the inner mitochondrial membrane with the pH 

higher in the matrix than in the cytosol 

2. Generation of a voltage gradient, termed membrane potential, across the inner 

mitochondrial membrane. As a result of the outflow of the positive ions, the voltage 
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gradient inside the inner mitochondrial membrane is negative whereas outside is 

positive.  

That electrochemical proton gradient generated across the inner membrane is the driving force 

of the ATP synthesis. The ATP is synthesized at complex V, also known as ATP synthase. It 

consists of two regions; the F0 portion, which is embedded within the inner mitochondrial 

membrane and the F1 portion, which is outside the inner membrane and projects to the matrix. 

The overall reaction contributing towards ATP formation is: 

ADP + Pi+ Energy (in the form of H+) → ATP 

It is worth mentioning that the transmembrane electrochemical gradient is not only used from 

the cell to drive the ATP synthesis but also to drive the active transport of selected 

metabolites across the mitochondrial inner membrane, including the maintenance of the cell’s 

ATP pool highly charged.  

Finally, complex II, also known as succinate dehydrogenase, consists of four protein subunits 

and is involved in both citric acid cycle and oxidative phosphorylation.  Main role of complex 

II is the oxidation of succinate and as a result additional electrons are delivered into the CoQ. 

The main difference of complex II to complex I is that the transferring of electrons, produced 

by complex II, is not coupled to proton pumping from the matrix to the intermembrane space. 

Therefore, the electron transport pathway through complex II produces less ATP compared to 

complex I electron transport pathway.  
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Figure 1.2: OXPHOS system. NADH transfer hydrogen to Complex I where it binds to 
ubiquinone (UQ) and it is transferred to Complex III. Electrons are then passed from 
Complex III to cytochrome c. Cytochrome c is a mobile electron carrier and passes its 
electrons to Complex IV. Complex IV ultimately reduces molecular oxygen to from 
water while using the free energy of this process to translocate protons across the inner 
membrane. Complex V or ATP synthase is responsible for the production of the ATP. 
(Source: http://cnx.org) 

 Reactive Oxygen Species (ROS) 
During the process of oxidative phosphorylation 1-2% of all the electrons pass the respiratory 

chain and give rise to free radicals, the reactive oxygen species (ROS). ROS tend to damage 

biological macromolecules such as DNA, lipids and proteins (Raha and Robinson, 2000).  

The F4S4 iron-sulfur clusters are mostly susceptible to superoxide. Therefore, the oxidation of 

one iron atom causes its release from the iron-sulfur cluster. As a result, complexes I and III 

and possibly complex II are affected due to the presence of important iron-sulfur clusters in 

these complexes.  

Complexes I, II and III are mainly responsible for the generation of superoxide (Nicholls, 

2002). Although inhibition of complexes I and II results in elevated ROS production in 

submitochondrial particles, it is believed that the major site of ROS production is complex I 

due to semiquinone (Raha and Robinson, 2000). The semiquione radical is a natural 
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intermediate and its direct oxidation by oxygen results in superoxide production. However, 

others believe that the electrons escape from one of the Fe-S clusters and results in the 

production of ROS.  

It has been shown that cells are able to get rid of the ROS species (Halliwell, 1999) 

effectively. When the superoxide is generated, the cell can convert it to H2O2 by the enzyme 

superoxide dismutase (MnSO2) which in turn is converted to H2O by catalase or glutathione 

peroxidase. According to previous studies, mice that lack the mitochondrial superoxide 

dismutase presented with dilated cardiomyopathy and neonatal lethality (Li et al., 1995). 

Mice defective in exchanging ADP and ATP across the inner membrane due to lack of the 

heart isoform of the adenine translocator presented with mitochondrial cardiomyopathy with 

increased levels of ROS hydrogen peroxide in affected tissues and an increase of ROS 

detoxification enzymes. Based on these data, it is concluded that ROS production may impair 

the disease phenotype in the mitochondrial diseases resulting from defects in OXPHOS 

(Esposito et al., 1999).  

 Mitochondrial Genetics 

 Mitochondrial Genome 
The mitochondrion is the only organelle containing extra-nuclear source of genetic material in 

eukaryotic cells, named mitochondrial DNA (mtDNA). Human mtDNA is a circular, double-

stranded, 16 569 base pair molecule of DNA, which consists of 37 genes. The overall base 

composition of the mtDNA is 44% (G+C) but the two mtDNA strands have totally different 

composition. Heavy strand (H-strand) is guanine rich while light strand (L-strand) is cytosine-

rich. In contrast to the presence of a single copy of nucleus in each cell, mtDNA is a multi-

copy DNA and the number of copies in each cell depends on the energy requirements of each 

tissue (Taylor and Turnbull, 2005). 

The mtDNA consists of 37 genes from which 13 encode subunits of the OXPHOS complexes, 

2 genes encode ribosomal RNAs (12s and16s) and the remaining 22 genes encode 

mitochondrial tRNAs. Furthermore, 28 genes are encoded by the H-strand whereas the other 9 

by the L-strand. The rest of the proteins needed for the replication, maintenance and 

metabolism of the mitochondria are encoded by the nuclear genome and are imported from 

the cytosol to the specific mitochondrial location (Mokranjac and Neupert, 2005). It is 

estimated that ~1500 proteins, necessary to the mitochondria, are transcribed from nuclear 

genes, translated in the cytosol and then delivered across the mitochondrial membrane.  
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Therefore, the mitochondria are also dependent upon the nuclear genome (Chinnery and 

Hudson, 2013, Stewart and Chinnery, 2015). 

 

Figure 1.3: A map of the human mitochondrial genome. The outer circle represents the 
heavy strand and the inner circle the light strand. The genes that encode the subunits of 
complex I are shown in blue; cytochrome c oxidase is shown in orange; cytochrome b of 
complex III is shown in purple; and the subunits of ATP synthase are shown in yellow. 
The two ribosomal RNAs are shown in red and the 22tRNAs are indicated by black 
lines. The displacement loop (D-loop), including the proposed origin of the H-strand 
replication (OH) and the heavy (HSP) and light (LSP) strand promoters, is represented 
in black. The origin of L-strand replication is shown as OL. (Source: 
http://mitoblog.org/). 
MtDNA is characterized by the absence of intronic regions as between the genes there are 

none or just a few non-coding bases which are tightly packed. It contains a significantly 

variable non-coding region, named displacement loop (D-loop), which contains the initiation 

site of mtDNA replication (Andrews et al., 1999). A few genes might also lack the 

termination codon. In this case, UAA codons are introduced at the post-transcriptional level.  

The mitochondrial genetic code consists of 60 codons, one less than the nuclear genetic code.  

Four out of the 60 codons are stop codons; UAA, AUG, AGA and AGG. The first two codons 

serve as stop codons in the nuclear genetic code as well but the latter (AGA and AGG) 

specify arginine in the nuclear genetic code. Also, in mitochondria the nuclear stop codon 
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UGA encodes tryptophan and AUA encodes methionine rather than isoleucine. As it was 

mentioned before, there are only 22 different types of mitochondrial tRNAs that able to 

interpret 60 codons. The third-base wobble characteristic allows 8 out of the 22 tRNAs to 

recognise families of four codons differing only at the third base. The remaining 14 tRNAs 

recognise pair codons that share the first two base position and carry either a purine or a 

pyrimidine at the third base. Hence, 22 tRNAs are able to interpret 60 codons (Strachan and 

Read, 2010). 

                        ENCODING OF OXPHOS COMPONENTS 

Components of 

OXPHOS 

  

 Mitochondrial 

DNA encoded 

subunits  

Nuclear DNA 

encoded 

subunits 

Assembly proteins  

Complex I 7 ~39 ~11 

Complex II 0 4 ~2 

Complex III 1 10 ~9 

Complex IV 3 10 ~30 

Complex V 2 ~14 ~3 

Table 1.1: Mitochondrial and nuclear encoded subunits of the mitochondrial respiratory 
chain complexes (Source: (Schon et al., 2012) 

 Mitochondrial DNA structure 
Initially, it was believed that the mitochondrial DNA was covered with histones in a similar 

way to nuclear DNA. However, later studies showed that approximately 5-7 molecules are 

compacted into protein structures called nucleoids. The nucleoids are nucleoprotein 

complexes around 70nm in size (Nass, 1969, Iborra et al., 2004). 

These structures are mainly consisted of TFAM protein (mitochondrial transcription factor 

A), mtSSBP (mitochondrial single-stranded DNA-binding protein) and a variety of other 
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mitochondrial metabolic proteins such as: mtDNA polymerase (POLG), mtRNA polymerase, 

suv3-like helicase and DEAD protein box 28 (Wang and Bogenhagen, 2006). 

More recent studies suggested that each nucleoid consists of one molecule of mtDNA and 

TFAM. According to Kukat et al, TFAM plays a vital role in packaging and organising the 

mtDNA in nucleoids (Kukat et al., 2011). 

 Mitochondrial DNA inheritance - Heteroplasmy 
The mitochondrial DNA is strictly maternally inherited (Giles et al., 1980). To our best 

knowledge, only one case of paternal inheritance in humans has been recorded to date 

(Heckerling, 2002). However, paternal mitochondrial inheritance of mtDNA is common in 

other animals.  

According to studies, three different explanations have been suggested for the lack of paternal 

transmission in humans. Firstly, the increased number of mtDNA copies contained in the 

unfertilised egg compared to only 100 copies present in the sperm results in a ‘dilution effect’ 

of the paternal mtDNA. Secondly, the ubiquitination of the sperm mtDNA during the 

formation of the mammalian zygote and lastly the exclusion of the paternal alleles also known 

as ‘mtDNA bottleneck’ theory (Chinnery and Hudson, 2013). Recent studies on extreme 

depth next generation sequencing of mtDNA have not shown any paternal transmission in 

humans (Pyle et al., 2015).  

As it was discussed previously, cells usually contain more than one copy of mtDNA 

molecules and the condition where the sequence of the different copies is identical is called 

homoplasmy. The mutation rate of the mtDNA is 10-20 times higher compared to nuclear 

DNA due to either lack of protective histones or inefficient mtDNA repair or close proximity 

to ROS product of the OXPHOS system (Smits et al., 2010, Chinnery and Hudson, 2013). As 

a result, frequently mutated copies of mtDNA co-exist with normal copies in the same cell. 

This co-existence of normal and mutated copies of mtDNA is termed as heteroplasmy 

(Wallace, 1999) (Figure 1.4). The relative amount of the mutated mtDNA copies compared to 

the normal ones should reach a certain threshold to affect the function of the respiratory chain. 

This critical threshold differs from mutation to mutation and also between tissues and organs. 

Therefore, as it will be discussed later, mitochondrial disorders caused by mtDNA mutation 

are characterised by tissue selectivity and clinical heterogeneity (Macmillan et al., 1993). 

Moreover,  due to mitotic segregation the distribution of normal and mutated mtDNA copies 
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is random;  hence, the mutation loads in patients’ cells and tissues usually vary during their 

life (Smits et al., 2010).  

 

Figure 1.4: mtDNA heteroplasmy and the threshold effect (Source: (Stewart and 
Chinnery, 2015)) 

 Mitochondrial DNA maintenance, replication and transcription  
The mtDNA replication occurs independently to the nuclear DNA cell cycle and replication 

and also occurs in non-dividing cells such as the skeletal muscle fibers and central neurons 

(Bogenhagen and Clayton, 1977). To date, two models of mtDNA replication in mammalian 

cells have been proposed (Smits et al., 2010, Pearce et al., 2013). The first model suggests 

that the two strands of the mtDNA are synthesized simultaneously, as it happens in the 

nuclear DNA. On the contrary, the second model suggests a delay between the synthesis of 

the two strands. The latter model, displays the lagging strand template, which is either coated 

with protein or hybridized to RNA (Pearce et al., 2013).  

The main factors involved in the mtDNA replication are: a DNA polymerase (polymerase γ, 

POLG), a DNA helicase (Twinkle) and the binding protein mtSSBP.  Polymerase γ is a 

heterotrimer enzyme consisting of a catalytic subunit (POLG) and two identical accessory 

subunits (POLG2). POLG has the ability of proof-reading while the subunits bind the DNA 

and increase the processivity of POLG. The DNA helicase Twinkle unwinds the double-

stranded mtDNA from 5’ to 3’. Lastly, the binding protein mtSSBP has been suggested to 

stabilize the integrity of single-stranded regions of DNA at the replication sites and stimulate 

the activity of Twinkle and POLG (Smits et al., 2010). Also, RNase MRP (RNase 

mitochondrial RNA processing endonuclease), endonuclease G, RNAse H1and DNA ligase 

III are crucial for the mtDNA replication. RNase MRP and endonuclease G have been 

suggested to process the precursor RNA primers to H-strand for the initiation of the 

replication while RNase H1 is responsible for removing the RNA primers. Regarding the 

mitochondrial DNA ligase III, is involved in both replication and repair of the mitochondrial 
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genome. To date, the exact mechanism of the mtDNA replication has not been fully 

understood (Smits et al., 2010). 

The mitochondrial genome contains three promoters; two of them are located in the heavy 

strand (HSP1 and HSP2) while the third one is located in the light strand (LSP). LSP and 

HSP1 are embedded in the NCR region whereas HSP2 has been recently mapped on the 

mitochondrial gene located next to the NCR region, encoding the tRNAPhe (Zollo et al., 2012).   

All promoters produce polycistronic transcripts and as it has been shown the products of 

HSP1 and HSP2 partly overlap. In particular, HSP1 transcript is responsible for producing 

rRNAs for mitochondrial ribosomes (mitoribosomes). The mitochondrial termination factor, 

mTERF1 prevents the transcription of HSP1 beyond the rRNA genes. On the other hand, the 

HSP2 transcript produces 10 mRNAs and 14 tRNAs (Bonawitz et al., 2006). Finally, the LSP 

promoter produces a transcript which is equal to the two-thirds of the mitochondrial genome 

in length and encoded the protein ND6 (subunit of complex I), the remaining 8 tRNAs and the 

necessary RNA primers for the mtDNA replication. Only a few nuclear-encoded proteins are 

involved in the mitochondrial transcription and these are: the mitochondrial RNA polymerase 

(POLRMT) and its accessory subunit (TEFM) (Minczuk et al., 2011), TFAM and the 

transcription factor TFB2M.  

As mentioned above, mtDNA is packaged in nucleoids, a process mediated by the nucleoid’s 

protein components. Studies have shown that TFAM apart from being a key regulator factor 

for mitochondrial transcription, is also a crucial factor for mtDNA packaging (Maniura-

Weber et al., 2004). In addition to that, it seems that all the nucleoid’s components function as 

mediators of factors necessary for replication and transcription (Gilkerson et al., 2013).  

In the next step, the ribonucleases RNase P and Z cleave the tRNAs at their 5’ and 3’ termini 

respectively (Shutt and Shadel, 2010). Following, the mRNAs are polyadenylated and 

associated with a range of factors such as LRPPRC (a PPR-containing protein), that directs 

them to the mitochondrial ribosome for translation.  

 Mitochondrial translation  
The four major steps of the mitochondrial translation are: initiation, elongation, termination 

and ribosome recycling. 

The 13 proteins encoded by the mitochondrial genome are translated from 9 monocistronic 

and 2 dicistronic mRNAs. Both dicistronic mRNAs contain overlapping reading frames. The 



                                                                                          13 

 

start codons of the mitochondrial translation, AUG and AUA, are located at the 5’ end of the 

mRNAs (apart from the dicistronic mRNAs) and direct the insertion of the formylmethionine 

(fMet) or methionine at the initiation or during the chain elongation respectively. 

The mitochondrial elongation factors 2 (IF2mt) and 3 (IF3mt) are necessary for assembling an 

initiation complex on 55S ribosomes with fMet-tRNA at the start codon of a mitochondrial 

mRNA.  

The initiation factor IF3mt is suggested to dissociate the 55S ribosomes by loosening the 

interaction of the two subunits (28S and 39S). Therefore, 39S subunit is released and a 28S: 

IF3mt complex is formatted. Also, the initiation factor IF2mt binds a GTP molecule although 

the time point when this takes place is not clearly known. Following, the mRNA enters the 

28S subunit by a protein-rich entrance (Koc and Spremulli, 2002) (Christian and Spremulli, 

2009).  

The movement of the mRNA is paused when 17 nucleotides of the mRNA have entered the 

ribosome. During this phase, the 28S subunit inspects the codon at the 5’ end of the mRNA 

while the IF2mt:GTP promotes the binding of the fMet-tRNA to the ribosome. As long as 

there is a start codon at the P site, a stable initiation complex between the fMet-tRNA and the 

5’ start codon is formatted. In any other case, the mRNA leaves the small subunit and is 

dissociated. Next, the 28S initiation complex is joined by the large subunit while the IF2mt 

hydrolyzes GTP to GDP. As a result, the initiation factors are released and the mitochondrial 

translation is ready to enter the elongation step.   



                                                                                          14 

 

 

Figure 1.5: Schematic diagram of the mitochondrial protein synthesis machinery 
(Source: (Smits et al., 2010) 
The elongation step of the polypeptide chain in mitochondria is similar to the elongation step 

in prokaryotes (Christian and Spremulli, 2009).Initially, the ternary complex EF-

Tumt•GTP•aa-tRNA is formatted by the active form of the elongation factor Tu (EF-Tumt) 

binding an aa-tRNA (Nagao et al., 2007). The complex enters the A-site of the ribosome and 

is selected only if cognate codon-anticodon interactions can take place. When the complex is 

selected, the GTP is hydrolysed and the EF-Tumt•GDP is released. Next, the elongation factor 

Ts formats an intermediate EF-Tumt•EF-Tsmt complex promoting the exchange of GDP for 

GTP. 
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The peptide bond formation is catalysed by the ribosome resulting in a deacylated tRNA in 

the P-site and a peptidyl-tRNA one residue longer in the A-site. The translocation step is 

catalysed by the mitochondrial elongation factor G1(EF-G1mt). The EF-G1mt removes the 

deacylated tRNA from the P-site and moves the peptidyl-tRNA from the A-site to the P-site.  

The next step of the mitochondrial translation is the termination and recycling step. As it was 

discussed previously, the codons UAA and UAG serve as stop codons in the mammalian 

mitochondria. When either of the stop codons appears in the A-site of the ribosome, are 

recognised by the release factor mtRF1a. Then, mtRF1a binds to the ribosome in the presence 

of GTP. The latter, promotes the hydrolysis of the peptidyl-tRNA bond by the peptidyl-

transferase centre on the 39S subunit and the release of the completed polypeptide. Following, 

the factor RRF1mt (ribosome releasing factor) and RRF2mt (also known as EF-G2mt) bind to 

the A-site of the ribosome promoting the dissociation of the ribosomal subunit and the release 

of the deacylated tRNA and mRNA (Chrzanowska-Lightowlers et al., 2011). A new round of 

protein synthesis initiates when these factors are released from the ribosome.  

 Mitochondrial Disorders 

The synchronized co-operation between the nuclear and the mitochondrial DNA is necessary 

for the normal function of the mitochondria. Therefore, mitochondrial dysfunction leads to a 

mitochondrial disease (Chinnery and Hudson, 2013).  

The first description of patients carrying pathogenic mutations in their mtDNA dates back to 

1988 (Holt et al., 1988, Wallace et al., 1988). Holt et al studied 25 patients with mitochondrial 

myopathy 9 of which were found to have two populations of muscle mtDNA. One of the 

mtDNA populations had deletions of up to 7 kilobases in length. Therefore, it was showed for 

the first time that mtDNA heteroplasmy occurs in human and that defects of the mitochondrial 

genome may be associated with human disease (Holt et al., 1988). In the same year, Wallace 

et al identified the first mutation in the NADH dehydrogenase subunit 4 gene correlated with 

the LHON disease (Wallace et al., 1988). In later years, nuclear DNA mutations were 

identified to cause mitochondrial disorders (Koopman et al., 2012, Gorman et al., 2015). 

According to a study published in 2015 by Gorman et al, the prevalence of affected patients 

or at risk of developing mitochondrial disorder is 1:4300 of the population. Regarding the 

north of England, 23% of the affected adults carried mutations in a known or presumed 

nuclear gene while 40% carried mtDNA point mutations causing Leber hereditary optic 

neuropathy (LHON) (Gorman et al., 2015).    



                                                                                          16 

 

One of the great challenges of the mitochondrial disease is the variety of clinical features 

present in patients. Mitochondrial disorders affect more than one organ leading to complex 

multisystem dysfunctions. Tissues, in which the metabolic demand is higher, such as skeletal 

muscle, the central nervous system or heart, are typically affected (Chinnery and Hudson, 

2013).  

Mitochondrial disorders may manifest throughout any decade of life and are characterised by 

tissue specificity associated with certain mitochondrial genotypes. Also, patients carrying 

identical mutations might have different clinical presentations reflecting the genetic 

heterogeneity of the diseases. For example, in patients suffering from Leigh or Alper’s 

syndrome, the main systems affected are the central nervous system and the liver. However, 

involvement of others organs such as cardiac or skeletal muscle has been described in some 

patients (Lightowlers et al., 2015) (Figure 1.6).  

 

Figure 1.6: Schematic diagram of the possible symptoms present in patients affected by 
a mitochondrial disease (Source: www.khondrion.com) 

 Mitochondrial encoded mutations 
A common cause of mitochondrial disorders is the single-large-scale deletion of the mtDNA. 

To date, more than 120 different mtDNA deletions have been recorded associated with 
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mitochondrial diseases (Brandon et al., 2005). The mtDNA deletions are usually sporadic, not 

transmitted to the offspring and often caused by inefficient mtDNA repair mechanisms 

(Krishnan et al., 2008, Chinnery et al., 2004).  Usually the depleted regions of the mtDNA 

contain tandem repeat sequences (Schon et al., 1989). Every mtDNA deletion recorded to date 

is heteroplasmic.  

The three main clinical syndromes caused by mtDNA deletions are Pearson’s syndrome, 

Kearns-Sayre syndrome (KSS) and chronic progressive external ophthalmoplegia (CPEO). 

Pearson’s syndrome is a severe disorder arising in infancy characterized by sideroblastic 

anaemia with pancytopenia and exocrine pancreatic failure. Kearns-Sayre syndrome is 

characterized by a wide clinical spectrum including retinitis pigmentosa, progressive external 

ophthalmoplegia, cardiomyopathy, deafness, short stature and a range of neurological 

symptoms. Finally, CPEO is commonly presented in adults leading to progressive paralysis of 

the eye which results in ptosis and impaired eye movement (Greaves et al., 2012). 

Another cause of mitochondrial disorders is point mutations located within genes encoding 

rRNAs and tRNAs. This group of mutations is usually maternally inherited. Mutations 

located in protein-encoding genes are thought to affect specific respiratory chain complexes 

whereas mutations in RNA genes result in an overall impairment of the mitochondrial 

proteins synthesis machinery. The bulk of the point mutations associated with mitochondrial 

disorders are found within mt-tRNA genes (Chinnery and Hudson, 2013).     

The first mitochondrial disease correlated to a mtDNA point mutation is LHON (Leber 

hereditary optic neuropathy) (Wallace et al., 1988). The three most common mtDNA 

mutations (typically homoplasmic) causing LHON are m.3460G>A, m,11778G>A and 

14484T>C (Carelli et al., 1997), all of them affecting mtDNA genes encoding Complex I 

subunits. LHON is maternally inherited and typically presented with bilateral, painless, sub-

acute visual failure in young adult males. However, the homoplasmic presence of 

aforementioned mtDNA mutations does not always lead to visual impairment, resembling the 

clinical heterogeneity of the disease. Recent studies have suggested that mtDNA variants or 

environmental factors may act as modulating factors of LHON expression (Chinnery and 

Hudson, 2013). It has been shown that there are certain polymorphic changes recurring more 

frequently in LHON than in control populations. These mutations are recognised as 

haplogroup-specific variants and thus weighted for their contribution to LHON pathogenesis. 

Furthermore, LHON disease is tightly linked with gender difference. It is often reported that 

about 50% of males will be affected but only about 10% of females. Finally, other factors 
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factors such as smoking, alcohol abuse, the antibiotic ethambutol and the environmental 

noxes have been correlated to the manifestation of the disease (Maresca et al., 2014) 

Leigh syndrome is a neurodegenerative disorder presented with a variety of symptoms 

including neurological features, such as developmental delay, hypotonia, peripheral 

neuropathy, optic atrophy and extraneurologic manifestations like hypertrophic 

cardiomyopathy, liver failure and renal tubulopathy. The onset of the disease is typically 

between 3-12 months of life but it might manifest anytime from the neonatal period to the 

adulthood (Rahman et al., 1996). The genetic cause of Leigh syndrome can either be a 

mtDNA mutation (i.e. m.8993T>G/C, (Ciafaloni et al., 1993)) or mutations in various nuclear 

genes (i.e. SURF1, (Wedatilake et al., 2013)).  

One of the most frequent maternally inherited mitochondrial disorders caused by mtDNA 

point mutation is the mitochondrial encephalomyopathy, lactic acidosis and stroke-like 

episodes (MELAS) which was first described in 1984 (Pavlakis et al., 1984).  

MELAS syndrome is a multisystemic disease presented with a variety of symptoms such as: 

stroke-like episodes, lactic acidosis, epilepsy, myopathy, recurrent headaches, hearing 

impairment, diabetes and short stature. The onset of the disease in 65-76% of the cases is 

before the age of 20 years. However, 5-8% developed the disease before the age of 2 years 

while 1-6% after the age of 40 years (El-Hattab et al., 2015).  

More than 90% of patients diagnosed with MELAS syndrome present stroke-like episodes, 

dementia, epilepsy, lactic academia, ragged red fibres and exercise intolerance. Other 

common symptoms among MELAS patients are hemiparesis, recurrent headaches, muscle 

weakness, peripheral neuropathy and learning disabilities. Less than 50% of the affected have 

developed diabetes ataxia, depression, anxiety, optic atrophy, pigmentary retinopathy, motor 

development delay and cardiomyopathy (El-Hattab et al., 2015).  

The mutations m.3243A>G and m.3271T>C in the gene MT-TL1 encoding the mt 

tRNALeu(UUR)are the most common mutations associated with MELAS disease. The mutations 

result in the absence of the post transcriptional taurinomethylation of the uridine at the wobble 

position of the tRNALeu(UUR) anticodon leading to reduced translation of the specific tRNA 

(Umeda et al., 2005). The main complexes affected are complexes I and IV (Suzuki and 

Nagao, 2011).  Cybrid studies have shown that these mutations lead to decreased 

mitochondrial translation and respiratory activity (Hayashi et al., 1993).  
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Another frequent maternally inherited mitochondrial disorder is Myoclonic Epilepsy with 

ragged red fibers (MERRF). MERRF syndrome is a multisystem disorder initially presented 

with myoclonus followed by epilepsy, ataxia, weakness and dementia. The onset of the 

disease is usually during childhood, after normal early development.  

The mutations m.8344A>G and m.8356T>C are the most common mutations associated with 

MERRF disease. The mutations are located in the mtDNA gene MT-TK encoding the 

tRNALys. The presence of the mutations results in the absence of the taurnimethylation and 2-

thiolation of the uridine at the wobble position of the anti-codon for the tRNALys, leading to 

decreased translation of the specific tRNA. It has been shown that rho0 cells harboring either 

the m.8344A>G or m.8356T>C pathogenic variants were characterized by reduced protein 

synthesis and oxygen consumption (Masucci et al., 1995).  

Gene product Number of 
mutations 

Main disorder  

rRNAs    

12S rRNA  5 Deafness Isolated RC 
defect 

16S rRNA  1 Atypical MELAS  Isolated RC 
defect 

tRNAs     

tRNAAla 3 Myopathy Combined RC 
defect 

tRNAArg 2 Various Combined RC 
defect 

tRNAAsn 5 Myopathy Combined RC 
defect 

tRNAAsp 2 Various Combined RC 
defect 

tRNACys 3 Various Combined RC 
defect 

tRNAGln 3 Various Combined RC 
defect 

tRNAGlu 7 Reversible respiratory chain 
deficiency 

Combined RC 
defect 

tRNAGly 3 Various Combined RC 
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defect 

tRNAHis 4 Various Combined RC 
defect 

tRNAIle 14 PEO Combined RC 
defect 

tRNALeu(CUN) 8 Myopathy Combined RC 
defect 

tRNALeu(UUR) 23 MELAS Combined RC 
defect 

tRNALys 14 MERRF Combined RC 
defect 

tRNAMet 2 Various Combined RC 
defect 

tRNAPhe 14 Myopathy Combined RC 
defect 

tRNAPro 5 Multisystem Combined RC 
defect 

tRNASer(AGY) 4 Myopathy Combined RC 
defect 

tRNASer(UCN) 12 Myopathy;Deafness Combined RC 
defect 

tRNAThr 2 Various Combined RC 
defect 

tRNATrp 12 Encephalomyopathy Combined RC 
defect 

tRNATyr 4 Myopathy Combined RC 
defect 

tRNAVal 6 Multisystem Combined RC 
defect 

Polypeptides    

ATP synthase 6 13 NARP or MILS Isolated RC 
defect 

ATP synthase 8 2 Various Isolated RC 
defect 

COX I 10 Various Isolated RC 
defect 
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COX II 8 Various Isolated RC 
defect 

COX III  6 Myopathy Isolated RC 
defect 

Cytochrome b 21 Sporadic Myopathy Isolated RC 
defect 

ND1 16 MELAS;LHON Isolated RC 
defect 

ND2 3 Various Isolated RC 
defect 

ND3 5 Leigh’s syndrome Isolated RC 
defect 

ND4 5 LHON Isolated RC 
defect 

ND4L 1 LHON Isolated RC 
defect 

ND5 12 MELAs Isolated RC 
defect 

ND6 11 LHON Isolated RC 
defect 

Table 1.2: mtDNA mutations in human primary respiratory chain disorders (Source: 
(Schon et al., 2012) 

 Nuclear encoded mutations  
As discussed previously, mtDNA encodes 37 genes required for the normal function of the 

mitochondrion and the remaining proteins are encoded by the nuclear DNA. Therefore, 

mitochondria are dependent upon the nuclear DNA which encodes enzymes essential for the 

mtDNA replication, repair, transcription and translation. Mutations in nuclear encoded genes 

have been associated with a variety of mitochondrial disorders (Chinnery and Hudson, 2013). 

The number of disease-causing molecular alterations in nuclear genes is growing 

exponentially and mutations in these genes underlie the vast majority of respiratory chain 

(RC) defects in children.  

Nuclear-mitochondrial diseases can be categorised into four different groups:  
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1. Disorders resulting from mutations in nuclear-encoded subunits or assembly factors of 

the OXPHOS system 

2. Disorders with defective mtDNA stability and maintenance 

3. Disorders resulting from mutations in genes encoding translational elongation factors 

or mitochondrial ribosomal proteins 

4. Disorders resulting from mutations in genes controlling the mitochondrial network 

dynamics (Chinnery and Hudson, 2013, Boczonadi and Horvath, 2014) 

The vast majority of mitochondrial respiratory chain proteins are encoded by nuclear genes. 

Mutations in a variety of nuclear genes encoding respiratory chain subunits have been found 

in patients with mitochondrial cytopathies (DiMauro and Hirano, 2009) and the bulk of these 

mutations occur in nuclear genes encoding complex I subunits (Distelmaier et al., 2009). 

Complex I deficiency caused by mutations in nuclear genes is associated with a wide 

spectrum of clinical phenotypes varying from lethal neonatal diseases to adult onset 

neurodegenerative disorders (Loeffen et al., 2000, Lebre et al., 2011). At least 44subunits of 

complex I are encoded by the nDNA while pathogenic mutations have been identified in 14 of 

the structural subunits (Chinnery and Hudson, 2013). Leigh or Leigh-like syndrome is 

associated with pathogenic mutations in several complex I subunit genes [NDUFS1 (Bénit et 

al., 2001), NDUFS3 (Haack et al., 2012, Bénit et al., 2004), NDUFS4 (van den Heuvel et al., 

1998), NDUFS7 (Smeitink and van den Heuvel, 1999), NDUFS8 (Loeffen et al., 1998), 

NDUFV1 (Bénit et al., 2001, Schuelke et al., 1999), NDUFA10 (Hoefs et al., 2011), NDUFB3 

(Haack et al., 2012) and  NDUFA2 (Hoefs et al., 2008)]. Pathogenic mutations in NDUFS2 

(Loeffen et al., 2001), NDUFS6 (Kirby et al., 2004), NDUFV2 (Bénit et al., 2003), NDUFA1 

(Chinnery and Hudson, 2013), NDUFA11 (Berger et al., 2008) and ACAD9 (Haack et al., 

2010) typically manifest as hypertrophic cardiomyopathy and encephalopathy. Nevertheless, 

mutations identified in assembly factors of complex I may manifest as Leigh syndrome 

(NDUFAF2 (Calvo et al., 2010) and NDUFAF5 (Gerards et al., 2010)), encephalopathy 

(NDUFAF4 (Saada et al., 2008)) and cardioencephalopathy (NDUFAF1 (Dunning et al., 

2007).  

Complex II is entirely encoded by the nDNA and mutations in SDHB, SDHC and SDHD have 

been associated with patients suffering from pheochromocytoma and paraganglioma (Baysal, 

2002). However, in rare cases Leigh syndrome has been associated with mutations in SHDA 

and also other structural complex II subunit genes (Alston et al., 2012, Chinnery and Hudson, 

2013). It has been suggested that mutations in these genes lead to accumulation of succinate 
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and reactive oxygen species that eventually results in overexpression of hypoxia inducible 

factor I with ensuing the formation of these tumors (Kantorovich et al., 2010). Regarding 

assembly factors of complex II, mutations in the SDHAF1 gene have been detected in patients 

presenting isolated complex II deficiency and infantile leukoencephalopathy (Ghezzi et al., 

2009). Additionally, paraganglioma has also been associated with mutations in SDH5, a gene 

necessary for the flavination of the SDH1 subunit (Hao et al., 2009). 

Regarding complex III, only mutations in two nuclear encoded subunits (UQCRB and 

UQCRQ) have been associated with hypoglycaemia and lactic acidosis and severe 

psychomotor retardation combined with various neurological symptoms respectively (Haut et 

al., 2003, Barel et al., 2008) to date. However, a newly identified mutation in TTC19 has been 

associated with progressive neurodegenerative disorder in late infancy (Ghezzi et al., 2011). 

The gene TTC19 encodes a complex III structural subunit. In humans, mutations in the gene 

BCS1L, encoding an assembly factor of complex III, have been associated with different 

phenotypes including neonatal proximal tubulopathy, hepatic involvement, encephalopathy 

and Bjornstad syndrome (de Lonlay et al., 2001, Hinson et al., 2007).    

To date, mutations in three different structural subunits of complex IV (COX6BI, COX7B and 

COX4I2) have been associated with extremely rare mitochondrial disorders presented as 

severe, typically fatal, infantile diseases. Siblings from a consanguineous Saudi Arabian 

family carrying a homozygous mutation in COX6B1 presented with gait instabilities, visual 

disturbances, progressive neurological deterioration and leukodystrophy (Massa et al., 2008). 

A single mutation in the structural subunit gene COX4I2 has been reported in patients with 

exocrine pancreatic insufficiency, dyserythropoietic anaemia and calvarial hyperostasis 

(Shteyer et al., 2009) while mutations in COX7B are atypically associated with facial 

dysmorphisms and congenital abnormalities (Zvulunov et al., 1998). On the other hand, 

mutations in a variety of nuclear genes encoding assembly factors of complex IV are frequent 

causes of human diseases resulting in complex IV deficiency. Mutations in SURF1 ( 

cytochrome c oxidase assembly factor) have been frequently associated with Leigh syndrome 

and COX deficiency (Sue et al., 2000). Mutations in SCO1 and SCO2, which are required for 

the mitochondrial copper transport acting on subunit II of COX, are disease-causing (Valnot 

et al., 2000a, Papadopoulou et al., 1999). Furthermore, mutations in COX10 and COX14 have 

been associated with leukodystrophy and Leigh syndrome respectively (Valnot et al., 2000b, 

Antonicka et al., 2003b, Oquendo et al., 2004). Mutations in the gene called LRPPRC, 

encoding a protein which is involved in the stability of subunits I and III of COX (Xu et al., 

2004) have been reported in patients presenting the French-Canadian type of Leigh syndrome. 
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Additionally, mutations in COA5 (cytochrome c oxidase assembly factor 5) are associated 

with neonatal hypertrophic cardiomyopathy (Huigsloot et al., 2011), mutations in TACO1 

(translational activator of cytochrome c oxidase I) are associated with late-onset Leigh 

syndrome (Seeger et al., 2010) and finally mutations in FASTKD2 (FAST kinase domains 2) 

with cytochrome c oxidase defective encephalomyopathy (Ghezzi et al., 2008).  

Regarding complex V, only mutations in the gene ATP5E encoding a structural subunit if 

complex V have been associated with complex V deficiency (Mayr et al., 2010). However, 

mutations in the assembly factors of complex V encoded by the genes ATPAF2 (Chinnery and 

Hudson, 2013), ATP12 (De Meirleir et al., 2004) and TMEM70 (Cízková et al., 2008, 

Shchelochkov et al., 2010) have been associated with complex V deficiency, myopathy and 

neurological features.  

Defects in proteins involved in the mitochondrial replication or in the dNTP synthesis and as 

a result the mtDNA copy number is affected. These defects lead to either early-onset 

autosomal recessive conditions (Spinazzola and Zeviani, 2005) or to multiple DNA deletions 

inherited as autosomal dominant or recessive phenotypes of progressive external 

ophthalmoplegia and additional neurological symptoms.  

The gene encoding the enzyme polγ, POLG, is frequently mutated and disorders caused by 

mutations in POLG are characterised by a wide spectrum of clinical phenotypes (Rötig and 

Poulton, 2009). For example, a few mutations in POLG have been associated with autosomal 

dominant progressive external ophthalmoplegia (adPEO) with multiple mtDNA deletions 

(Van Goethem et al., 2001). On the other hand, recessive mutations in the same gene have 

been reported in patients with an early-onset mtDNA depletion syndrome, named Alpers-

Huttenlocher syndrome (Naviaux et al., 1999).The gene POLG2 encodes the accessory 

subunit of POLG, which is a 55kDa protein and increases the affinity of the enzyme polγ to 

the DNA. Although mutations in POLG2 gene are rarely described, a few of them have been 

linked to mitochondrial diseases. Two mutations (c.1352G>A and c.1207-1208ins24) have 

been identified in patients characterized by late-onset autosomal dominant progressive 

external ophthalmoplegia with multiple DNA deletions in muscle. Another study revealed 8 

heterozygous mutations in POLG2, 7 of which were novel (G103S, L153V, P205R, R369G, 

D386E, S423Y, and L475DfsX2), in a cohort of 112 patients suspected for POLG mutations 

(Copeland, 2014). Mutations in an C10orf2 gene result in adPEo associated with multiple 

mtDNA deletions. The gene C10orf2 encodes the mitochondrial protein Twinkle, an mtDNA 

replicative helicase bound to mtDNA in mitochondrial nucleoids (Spelbrink et al., 2001). 
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Nevertheless, mutations in ANT1 (adenine nucleotide translocase type 1) impair the 

nucleotide balance and eventually the mtDNA replication resulting in adPEO (Agostino et al., 

2003).  

The first step of the deoxypurine salvage pathway is catalysed by the deoxyguanosinase 

kinase, which is encoded by the gene DGUOK. Mutations in this gene are typically presented 

as neonatal-onset of liver failure associated with neurological dysfunction (Spinazzola and 

Zeviani, 2009). Mutations in MPV17, which encodes a mitochondrial inner membrane protein 

of unknown function, have been associated with mtDNA depletion. Diseases caused by 

mutations in MPV17 present a wide clinical phenotypic spectrum (El-Hattab et al., 2010). 

Others genes that have been associated with impaired mtDNA copy number and 

mitochondrial disorders are TK2 (thymidine kinase 2) (Saada et al., 2001, Mancuso et al., 

2002, Oskoui et al., 2006), RRM2B (ribonucleotide reductase regulatory TP53 inducible 

subunit M2B) (Bourdon et al., 2007, Shaibani et al., 2009), SUCLA2 (succinate-CoA ligase 

ADP-forming beta subunit) (Van Hove et al., 2010, Morava et al., 2009), SUCLG1 

(succinate-CoA ligase alpha subunit) (Van Hove et al., 2010, Randolph et al., 2011) and TP 

(thymidine phosphorylase) (Nishino et al., 1999, Martí et al., 2003, Szigeti et al., 2004). 

Defects in nuclear genes encoding proteins involved in the mitochondrial protein synthesis 

machinery lead to diseases characterized by neurological features associated with combined 

respiratory defects (Nogueira et al., 2011) (Boczonadi and Horvath, 2014).  

One typical example of those nuclear genes is PUS1, which encodes an enzyme that converts 

uridine into pseudouridine, necessary for posttranscriptional modification of the tRNAs. 

Mutations in PUS1 lead to impaired pseudouridylation and are associated with the rare 

MLASA (myopathy, lactic acidosis and sideroblastic anaemia) syndrome (Bykhovskaya et 

al., 2004). Furthermore, mutations in TRMU (tRNA 5-methylaminomethyl-2-thiouridylate 

methyltransferase) also affect the 2-thiolation of the wobble position of the tRNAs for Lys, 

Gln and Glu leading to impaired mitochondrial synthesis. Patients carrying mutations in 

TRMU present combined respiratory chain defects and impaired mitochondrial translation 

resulting in infantile acute liver failure (Zeharia et al., 2009). Nonetheless, molecular defects 

in genes encoding mitochondrial elongation factors have also been associated with 

mitochondrial diseases. For example, patients with mutations in genes TUFM (Tu translation 

elongation factor), TSFM (Ts translation elongation factor) and GFM1(G elongation factor) 

illustrate a severe phenotype, typically with lethal outcome, associated with combines 

respiratory chain deficiency (Valente et al., 2007, Smeitink et al., 2006).  



                                                                                          26 

 

Regarding the mitochondrial ribosomal protein, only mutations in two genes (MRPS16 and 

MRPS22) have been associated with hypertrophic cardiomyopathy and neonatal lactic 

acidosis (Miller et al., 2004, Saada et al., 2007). Mutations in these genes lead to impaired 

assembly of the small mitoribosomal subunit and eventually decreased levels of 12S rRNA 

levels.  

Mutations in the mitochondrial inner membrane transporter SLC25A19 have been associated 

with Amish microcephaly (Siu et al., 2010) while the homozygous mutations p.Gly72Glu in 

SLC25A3 was present in siblings presenting lactic acidosis, hypertrophic cardiomyopathy and 

muscular hypotonia, who died in the first year of life (Mayr et al., 2007). Furthermore, 

mutations in SLC5A4 are linked to AAC1 deficiency and adPEO, mutations in SLC5A20 with 

CAC deficiency, mutations in SLC5A15 with HHH syndrome and mutations in SLC5A22 

linked to neonatal myoclonic epilepsy (Palmieri, 2008).   

Finally, another group of mitochondrial diseases is caused by molecular defects in genes 

encoding mitochondrial aminoacyl-transfer RNA synthetases. Mutations in RARS2 (arginyl-

tRNA synthetase 2) and DARS2 (aspartyl-tRNA synthetase 2) have been associated with 

severe encephalopathy and pontocerebellar hypoplasia and leukoencephalopathy with brain 

stem and spinal cord involvement and lactate elevation respectively (Edvardson et al., 2007, 

Lin et al., 2010), mutations in HARS2 and LARS2 with Perrault syndrome (Pierce et al., 2011, 

Pierce et al., 2013), mutations in EARS2 with leukoencephalopathy with thalamus and 

brainstream involvement and high lactate (LTBL) (Steenweg et al., 2012), mutations in 

YARS2 have been associated with the MLASA syndrome (Riley et al., 2010), mutations in 

AARS2 with hypertrophic cardiomyopathy  (Götz et al., 2011)and mutations in FARS2 with 

Alper’s syndrome, encephalomyopathy, epilepsy and lactic acidosis (Elo et al., 2012). 

Mitochondrial fission and fusion occur constantly and play a vital role in the normal function 

of the mitochondria. Therefore, molecular defects disturbing the mitochondrial dynamics are 

likely to be disease-causing. Mutations in OPA1 lead to autosomal dominant atrophy (Amati-

Bonneau et al., 2009) while mutations in MFN2 have been associated with Charcot-Marie-

Tooth disease (Züchner et al., 2004). Furthermore, only one reported mutation in Drp1 

resulted in defective mitochondrial and peroxisomal fission leading to abnormal brain 

development, optic atrophy, hyperplasia with lactic academia and severe microcephaly 

(Waterham et al., 2007). Moreover, mutations in KIF5A (kinesin family member 5A) have 

been associated with dominant hereditary spastic paraplegia due to impaired mitochondrial 

mobility (Fichera et al., 2004) while patients with mutations in GDAP1 (ganglioside induced 
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differentiation associated protein 1) presented with autosomal recessive, early-onset type of 

either demyelinating or axonal neuropathy (Niemann et al., 2005).   

In conclusion, the advent of new technologies such as next generation sequencing has shed 

light on the genetic and clinical heterogeneity of mitochondrial cytopathies. The increased 

awareness of the large number of nuclear genes associated with mitochondrial cytopathies 

will improve the understanding of the disorders and help us develop sufficient therapeutic 

strategies. 

 Gene Protein (function)  

MtDNA replication POLG 

POLG2 

C10orf2 

Polymerase γ catalytic subunit 

Polymerase γ accessory subunit 

Twinkle (mtDNA disease) 

Combined RC defect 

Combined RC defect 

Combined RC defect 

Nucleotide synthesis and 
transport 

DGUOK 

TK2 

TYMP 

 

SLC25A4 

 

SLC25A3 

 

                SUCLG1 

 

SUCLA2 

RRM2B 

MPV17 

           Deoxyguanosine kinase 

Thymidine kinase 

Endothelia cell growth factor 1 
(thymidine phosphorylase) 

Adenine nucleotide translocator 1 

 

Solute carrier family 25 member 3 
(phosphate transporter) 

 

Succinate-CoA ligase α-subunit 

 

Succinate-CoA ligase β-subunit 

Ribonucleotide reductase M2 B 

Mt inner membrane protein 

 

Combined RC defect 

Combined RC defect 

Combined RC defect 

 

Combined RC defect 

 

Combined RC defect 

 

Combined RC defect 

 

Combined RC defect 

Combined RC defect 

Combined RC defect 

Mt protein import TIMM8A 

 

DNAJC19 

 

Translocase of innet mt membrane 
8 homolog A (small TIM complex 

subunit) 

DnaJ homolog, subfamily C, 
member 19 (TIM23 complex 

subunit) 

Combined RC defect 

 

Combined RC defect 

Mt membrane biogenesis 
and maintance 

TAZ 

OPA1 

Tafazzin (cardiolipin metabolism) 

Optic atrophy 1 (mt fusion) 

Combined RC defect 

Combined RC defect 
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MFN2 

DNM1L 

Mitofusin 2(mt fusion) 

Dynamin 1-like (mt and peroximal 
fission) 

Combined RC defect 

Combined RC defect 

Mt protein processing and 
quality control 

SPG7 Spastic paraplegia 7 or paraplegin 
(m-AAA protease subunit) 

Combined RC defect 

Table 1.3: Nuclear encoded genes implicated in mitochondrial disorders 

 Treatment of mitochondrial disorders 
Developing successful treatments for mitochondrial disorders has proved to be challenging. 

One of the main challenges is the complex genetic and phenotypic heterogeneity. Individuals 

carrying the same mtDNA or nDNA defect might present different clinical manifestation due 

to tissue specificity. Therefore, it is very difficult to collect large groups of patients to conduct 

statistically valid, randomised, double-blinded, placebo-controlled clinical trials. Normally, 

clinical trials are conducted on patients’ groups carrying the same genetic defect, 

characterized by the same clinical features and biochemical findings and lastly the 

participants are at the same disease progression stage. Furthermore, lack of natural history on 

affected individuals makes efficacy assessment and treatment challenging. Finally, it is of 

great importance to choose the correct outcome measures during a clinical trial (Kanabus et 

al., 2014).  

Despite many years of research on mitochondria, there is no established treatment for 

mitochondrial disorders to date. The results from the different pharmacological treatments and 

reports that have been used in individuals with mitochondrial disorders are variable. These 

treatments include antioxidants (coenzyme Q10, idebenone, vitamin C, vitamin E, cysteine, 

N-acetyl cysteine and menadione), agents improving lactic acidosis (dichloroacetate and 

dimethylglycine), agents regulating secondary chemical deficiencies caused by mitochondrial 

disorders (carnitine, creatinine). Respiratory chain co-factors (nicotinamide, thiamine, 

riboflavin, succinate and coenzyme Q10) and lastly hormones (growth hormone and 

corticosteroids) (Chinnery and Turnbull, 2001, Pfeffer et al., 2012).  

According to a Cochrane systematic review published in 2012 only 12 out of 1335 abstracts 

reviewed met the Cochrane inclusion criteria for well-conducted unbiased clinical trials 

(Pfeffer et al., 2012). Five studies investigated the efficacy of dicloroacetate (DCA) and four 

studies the efficacy of creatine either alone or as a cocktail with CoQ10 and lipoic acid. 

Moreover, single studies investigated the effectiveness of CoQ10, dimethylglycine and whey-
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based cysteine supplementation. However, the aforementioned clinical trials were 

characterised by limited number of patients and often by genetic heterogeneity between the 

selected individuals (Kanabus et al., 2014).  

Three studies out of 12 did not show any effect on the patients (Klopstock et al., 2000, 

Kornblum et al., 2005, Liet et al., 2003) while one study regarding the efficacy of DCA was 

terminated due to side effects (Kaufmann et al., 2006). On the contrary, supplementation with 

CoQ10 led to increased serum Q10 levels and decreased serum lactate after 1 min of cycle 

ergometry without any other outcome measures to change significantly (Glover et al., 2010). 

Furthemore, combined supplementation with creatine, CoQ10 and lipoic acid led to 

significant decreased of plasma lactate levels (Rodriguez et al., 2007). Lastly, 

supplementation with whey-based cysteine did not show any significant improvement 

(Mancuso et al., 2010).  

 A few mitochondrial disorders are responsive to specific therapies. For example, early 

supplementation with CoQ10 to patients with defects in CoQ10 biosynthesis is related to 

clinical outcome. However, not all patients responded clinically to the supplementation 

(Kanabus et al., 2014). Moreover, a subset of individuals suffering from Leigh syndrome due 

to biotinidase deficiency and from biotin thiamine responsive nasal ganglia disease responded 

to biotin treatment. Also, riboflavin supplementation was beneficial to patients with riboflavin 

transporter disorders in the Brown Vialetto Van Laere Spectrum and with mutations in 

ACAD9 gene (Scholte et al., 1995, Gerards et al., 2011).  

Oral administration of idebenone (a short-chain of benzoquinone) in combination with 

vitamin supplementation (B12 and C) resulted in accelerated visual recovery and improvement 

of final visual outcome in patients with LHON (Mashima et al., 2000, Carelli et al., 2001). 

However, in two cases the individuals did not show any visual benefit (Barnils et al., 2007). 

Therefore, a Phase II double blind randomized placebo controlled trial was conducted were 85 

affected individuals were enrolled (Klopstock et al., 2013). The follow up study showed 

beneficial effects of 6 months of treatment with idebenone even after the discontinuation of 

the active medication (Klopstock et al., 2013). The European Medicines Agency (EMA) 

approved Raxone (active substance: idebenone) under exceptional circumstances. According 

to EMA, the company that markets Raxone should conduct further studies on the long-term 

effects and safety of the medication (www.ema.europa.eu/).  

Regarding amino-acid supplementations, three different amino-acids (L-arginine, citrulline 

and taurine) have been proposed as potential therapeutic targets in MELAS syndrome. Stroke, 
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which is one of the major symptoms of MELAS syndrome, are thought to result from 

vascular endothelial dysfunction. Therefore, observation of low levels of citrulline in some 

affected patients led to the hypothesis that the disturbed nitric oxide homeostasis might be 

partly responsible for the pathogenesis of MELAS syndrome (Naini et al., 2005). Open-label 

studies examining the effect of the supplementation with arginine of patients presenting with 

MELAS syndrome demonstrated reduced frequency and severity of stroke-like episodes in 

affected patients (Koga et al., 2005, Koga et al., 2006, Koga et al., 2010). Recent studies have 

suggested that citrulline might be even more effective than arginine in MELAS syndrome (El-

Hattab et al., 2012).  

Moreover, an open-label study in which patients suffering from MELAS syndrome followed a 

high-dose oral taurine administration over a 9-year period, demonstrated amelioration of 

epilepsy and prevention of strokes (Rikimaru et al., 2012). 

Constant exercise is linked to mitochondrial proliferation as an adaptive mechanism of the 

cell to the increased energy needs. Similarly, elevated mitochondrial biogenesis is also 

observed in many mitochondrial disorders possible as a compensatory mechanism due to the 

need for higher energy metabolism. Therefore, it has been suggested that exercise might be 

beneficial for individuals suffering from mitochondrial disorders and consequently from 

exercise intolerance. It is still unclear whether exercise promotes proliferation of wild-type of 

both mutant and wild-type mitochondria (Taivassalo et al., 2001, Taivassalo et al., 2006). 

Increased levels of only normal mitochondria would result in increased levels of ATP 

production whereas increased levels of wild-type and mutant mitochondria could possibly 

trigger the ROS production. Preliminary studies have showed that exercise results in 

increased levels of total mtDNA content but the ratio of wild-type/mutant remains steady 

(Murphy et al., 2008). 

Recently novel approaches have been suggested for treatment of mitochondrial disorders.  

The Zinc Finger Nucleases (ZFN) and Transcription Activator Like Effector Nucleases 

(TALEN) successfully target a subset of pathogenic mtDNA mutations and lead to 

degradation of the molecule (Nightingale et al., 2016). However, the lack of the restriction 

sites derived from mutations, the specificity of restriction endonuclease targeting and lastly 

the efficiency of targeting recombinant proteins into cell and mitochondria are still 

challenging and need further investigation. Another way of manipulating the mtDNA is the 

use of peptide nucleic acids which have the ability to selectively bind and induce direct 

mtDNA strand degradation (Mukherjee et al., 2008, Kyriakouli et al., 2008). Manipulation of 
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tRNA synthetases has proved successful for stabilizing the mt-tRNA molecules (Rorbach et 

al., 2008) and recently it was demonstrated that overexpression of human non-cognate 

mitochondrial leucyl tRNA synthetase partially rescued the biochemical dysfunction due to 

mtDNA defects (Perli et al., 2014, Hornig-Do et al., 2014).  Lastly, gene transfer using adeno-

associated viral vectors (AAV) can be used to replenish the impaired expression due to 

pathogenic mutations in nDNA or mtDNA. Typical examples of AAV are the AAV-ETH1 

and AAV-ND4 (Nightingale et al., 2016). The main challenges with the use of AAV are the 

misexpression of the target-gene in the cell, the efficient delivery to the desired cell 

population and the packaging of constructs as adenoviruses are not able to carry constructs 

larger than 5kb.  

Additionally, the protein replacement or the removal of accumulated toxic metabolites via 

systemic protein delivery has been explored as a potential treatment in mitochondrial 

neurogastrointestinal encephalopathy (MNGIE) but there is still no convincing evidence of 

sustained clinical benefit (Hussein, 2013).  Systemic injection of TFAM in LHON cybrids led 

to increased respiratory chain protein levels and enhanced cellular respiration (Iyer et al., 

2009). However, mice with overexpressing TFAM demonstrated increased mtDNA copy 

number accompanied with mtDNA deletions and respiratory chain deficiency (Ylikallio et al., 

2010).  Therefore, it is of great importance to be cautious when interpreting results from 

different cellular and animal models as they might be misleading.  

In recent years, the stimulation of mitochondrial biogenesis has become attractive therapeutic 

target of mitochondrial disorders. The mitochondrial proliferation is coordinated by the 

transcriptional co-activator PPAR-γ 1α (PGC-1α) though a complex signalling cascade.  A 

few studies have shown that the drugs Bezafibrate (Yatsuga and Suomalainen, 2012), 

Resveratrol (Csiszar et al., 2009) and AICAR (Viscomi et al., 2011) have beneficial effects on 

either cell or animal models with mitochondrial diseases. All of them target and try to regulate 

the signalling cascade of the mitochondrial proliferation. However, it is still not clear whether 

proliferation of both mutated and normal mtDNA copies is beneficial to the cell. 

Finally, according to preclinical and increasing clinical evidence stem cell therapies can be 

used in several neurological disorders with mitochondrial dysfunction such as Parkinson’s 

disease. Patients with MNGIE underwent haemo/peritoneal dialysis or platelet transfusions 

and as a result the levels of circulating toxic thymidine (Hussein, 2013).  
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 Mitochondrial Dynamics 

Mitochondria are flexible, plastic organelles that have the ability to move along cytoskeletal 

tracks and fuse and divide. Hence, they can build interconnected networks (Bereiter-Hahn, 

1990). The activities of fusion and fission are simultaneously antagonistic and balanced. Both 

of them assist the cell to adapt to different physiological conditions. Increased activity of 

fusion results in large mitochondrial networks, required by metabolic active cells. On the 

other hand, increased fission is characterised by numerous mitochondrial fragments 

characteristic of a less active cells.  

 Mitochondrial Fusion  
Mitochondrial fusion is a conserved process along all the eukaryotic cells containing 

mitochondria.  

Mitofusin 1(Mfn1) and Mitofusin 2 (Mfn2) are two of the three core proteins actively involved 

in the mitochondrial fusion in mammals, mediating the outer mitochondrial membrane fusion. 

Both of them are large GTPases, located in the outer mitochondrial membrane and 

characterised by two transmembrane regions, a short loop in the intermembrane space while 

major parts of them are projecting to the cytosol (Rojo et al., 2002, Westermann, 2010). Also, 

both proteins contain heptad repeats, which mediate the tethering between neighbouring 

mitochondria (Koshiba et al., 2004, Santel et al., 2003).  Overexpression of either Mfn1 or 

Mfn2 results in abnormal mitochondrial morphology illustrating the significance of those 

proteins (Legros et al., 2002). The expression pattern of those proteins differs between 

different mammalian tissues but this is possibly related to other functions of those proteins. 

For example, Mfn2 is involved in Ca2+ signalling and is highly expressed in cardiac tissue and 

skeletal muscle. Mutations in Mfn2 are correlated to Charcot-Marie-Tooth disease whereas 

mutations in Mfn1 do not lead to the same disease, indicating the diversity of their functions 

(Züchner et al., 2004, Polke et al., 2011).  

The third core component of the mitochondrial fusion machinery is the optic atrophy protein 1 

(OPA1). OPA1 is located in the inner mitochondrial membrane and is responsible for the 

inner mitochondrial membrane fusion. It has 8 isoforms generated by alternative splicing and 

alternative processing at two cleavage sites. The OPA1 cleaving results in a long (l-OPA1) 

and short form of OPA1 (s-OPA1), both necessary for the mitochondrial fusion (Song et al., 

2007). A range of proteases have been suggested to take part in the alternative processing of 

OPA1 such as: the rhomboid-related protease presenilins-associated rhomboid –like (PARL), 
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AAA proteases located in the matrix and the intermembrane space and the inner membrane 

peptidase OMA1 (Westermann, 2010). Mutations in OPA1 have been correlated to autosomal 

dominant optic atrophy (Delettre et al., 2000, Alexander et al., 2000, Burté et al., 2015) 

showing the significance of OPA1 expression in the optic nerve. Apart from its role in 

mitochondrial fusion, OPA1 plays a role in the diameter regulation of cristae junctions during 

apoptosis (Westermann, 2010). 

The first necessary step is the close contact of the mitochondria. Once the two organelles are 

close enough, Mfn1 and Mfn2 form homotypic or heterotypic complex that mediates the outer 

mitochondrial membrane fusion. Next, OPA1 promotes the inner mitochondrial fusion which 

is dependent upon the inner membrane potential (Figure 1.7). Live cell imaging experiments 

have shown that merging of the membranes, intermembrane space and matrix happen almost 

simultaneously (Karbowski et al., 2004). 

According to studies, a fusion event takes place every 5-20 min per mitochondrion and only 

around 20% of the closed-contact mitochondria manage to fuse (Twig et al., 2008). Many 

theories have been proposed regarding the selection of mitochondrial partners and the 

activation switch of the mitochondrial fusion in a cell. Recent studies suggest that the key role 

of the mitochondrial fusion is to marry the state of the cell with the mitochondrial function. 

Hence, the ‘cytosolic milieu can inhibit or activate mitochondrial fusion’ (Pernas and 

Scorrano, 2016).   

Membranes of the endoplasmic reticulum (ER), which are closely opposed to mitochondria, 

are known as mitochondria-associated membranes (MAMs). It has been shown that following 

Ca2+ release from the ER, mitochondria are exposed to higher Ca2+ concentrations that the 

cytosol (Rizzuto et al., 1998). Therefore, it was suggested that there is a physical, 

proteinaceous linkage between these two organelles. According to Rizzuto et al, the total 

surface area of mitochondria juxtaposed to the ER is around 5-20% (Rizzuto et al., 1998). The 

MAMs seem to be a highly flexible and mercurial collection of proteins which are able to 

recruit a variety of signalling components according to the cell’s needs (van Vliet et al., 

2014).One of the best studied MAM-resident proteins is Mfn2. Knockdown of Mfn2 in 

murine fibroblasts caused disruption of the ER-mitochondrial contact sited and led to 

morphological changes in both ER and mitochondria. Furthermore, absence of Mfn2 was 

associated with defective mitochondrial Ca2+uptake outlining the necessity of ER-

mitochondrial contact sites for the calcium homeostasis (de Brito and Scorrano, 2008).    
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Figure 1.7: a) Schematic representation of tethering between two mitochondria by 
homotypic or heterotypic interactions, b) (Left) Independent OMM and IMM fusion, 
(Right) Simultaneous OMM and IMM fusion (Source: (Pernas and Scorrano, 2016)) 

 Mitochondrial Fission  
The opposite procedure of mitochondrial fusion is mitochondrial fission. Mitochondrial 

fission is also involved in apoptosis.  

Mitochondrial fission consists of three key steps. Labelling of the fission site, the aggregation 

of the cytosolic dynamin-related protein 1 (Drp1) dimers and oligomers into a spiral-shape 

around the fission sites and thirdly the GTP hydrolysis and Drp1 helix compression that 

divides the mitochondrion (Figure 1.8) (Chan, 2012, van der Bliek et al., 2013).  

Drp1 is a conserved protein containing an N-terminal GTPase, a dynamin-like middle domain 

and a C-terminal GTPase effector involved in self-assembly. Drp1 protein exists in the 

cytosol as dimers or tetramers and is recruited to the mitochondrial surface by certain 

receptors. In human it has been identified an alternative brain-specific splice variant 

characterised by an insertion between the middle domain and the GTPase effector domain 

(Westermann, 2010). MEFs containing null alleles of Drp1 are characterised by elongated 
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mitochondria and Drp1 knockout mouse presents embryonic lethality (Ishihara et al., 2009, 

Osellame et al., 2016).   

According to studies, the mitochondrial fission sites are co-located with the contact sites of 

mitochondria with the endoplasmic reticulum (ER) (Friedman et al., 2011). Actin 

polymerization at ER-mitochondria contact sites by a protein called formin 2 (INF2) and 

recruitment of myosin II are necessary steps to an efficient fission event (Korobova et al., 

2013, Korobova et al., 2014).  

Second step is the recruitment of Drp1 to the mitochondrial surface by specific receptors. To 

date, four adaptors have been described to recruit Drp1: fission 1(Fis1); mitochondrial fission 

factor (Mff) and the mitochondrial dynamin proteins MiD49 and MiD51 with 49kDa and 

51kDa molecular weight respectively.  Recent studies showed that Fis1 is not in close 

proximity with Drp1 as the other adaptors making the role of Fis1 in mitochondrial fission a 

bit controversial in contrast to Mff that is possibly the main adaptor of Drp1 (Otera et al., 

2010). However, Fis1 and Mff can also recruit Drp1 to the peroxisomes  (Koch et al., 2005). 

On the other hand, the MiD proteins, discovered in 2011, are specific only to Drp1 

recruitment to the mitochondria (Palmer et al., 2011).  Studies have shown that constantly 

increased levels of cytosolic Ca2+ might regulate activation of Drp1and consequently 

mitochondrial fission (Cereghetti et al., 2008).  Since Drp1 is recruited from the cytosol, is 

polymerized into spirals around the constriction sites and the compression starts. Recent 

studies have shown that loss of one of the mitochondrial fission adaptors does not affect the 

levels of the other adaptors, the mitochondrial morphology or the levels of mitochondrial 

Drp1. On the other hand, deletion of multiple adaptors led to increased mitochondrial 

connectivity and reduced Drp1 association with the mitochondrial outer membrane. 

Furthermore, loss of the adaptors in MEFs presented apoptotic resistance as they retained 

cytochrome c possibly due to impaired formation of Drp1 oligomers (Osellame et al., 2016).  

The division of the matrix, outer and inner mitochondrial membrane is not fully understood 

yet. Also, it is not known if the constriction of the mitochondrial membranes occurs 

simultaneously or in distinct steps. The final result is the production of one or more daughter 

mitochondria (Pernas and Scorrano, 2016).  
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Figure 1.8: Mitochondrial fission. a) Recruitment of DRP1, b) Helical structure of 
DRP1, c) GTP hydrolysis and division of OMM and IMM generating two daughter 
mitochondria (Source: (Pernas and Scorrano, 2016) 
 

The tightly balanced mitochondrial fusion and fission determine number, morphology and 

activity of these multifunctional organelles. Fusion and fission modulate multiple 

mitochondrial functions, ranging from energy and reactive oxygen species production to Ca2+ 

homeostasis and cell death. Mitochondrial fusion produces interconnected mitochondrial 

network and is essential for the maintenance and inheritance of mtDNA, the transmission of 

membrane potential and Ca2+ signaling along the mitochondrial network (Westermann, 

2010). The opposing process, mitochondrial fission, leads to smaller, more discrete organelles 

and plays important roles in mitochondrial partitioning during mitosis, cytoskeleton-mediated 

trafficking to energy-demanding intracellular compartments and in selective autophagic 

removal of damaged mitochondria by the process called mitophagy (Archer, 2013). 
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Figure 1.9: Roles of mitochondrial dynamics 
  

In conclusion, mitochondrial play a vital role in the cell and any mutation affecting their 

normal function may lead to mitochondrial disorder. Mitochondrial disorders comprise a large 

group of heterogeneous diseases characterised by clinical heterogeneity and tissue specificity. 

These characteristics complicate the development of an efficient treatment. The improved 

understanding of the exact molecular pathomechanism of each mitochondrial disease and the 

role of tissue specificity will help us to develop effective treatments.    
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 Aims 

 Overview 

Mitochondria are necessary organelles in the eukaryotic cells, whose primary function is the 

ATP production through the oxidative phosphorylation system. Although mtDNA encodes 

key proteins for the proper function of the mitochondria, the vast majority of the essential 

respiratory chain components and proteins needed for the maintenance and replication of the 

mitochondrial are encoded by the nDNA. Mutations in both mtDNA and nDNA often lead to 

mitochondrial disorders. Mitochondrial disorders comprise a large group of heterogeneous 

disorders which are characterized by impairments in the cellular energy production. Patients 

suffering from mitochondrial disorders usually display multi-systems disorders, with high 

demand oxygen tissues being affected the most.  

1. It has previously been shown that supplementation of L-cysteine in cell lines of patients 

suffering from reversible infantile respiratory deficiency (RIRCD) and reversible infantile 

hepatopathy (TRMU deficiency) showed an improvement in most respiratory chain 

complexes activities. As a result, L-cysteine may have broader effect in the extended group of 

mitochondrial disorders. Therefore, I studied the effect of in vitro supplementation with L-

cysteine and N-acetyl-cysteine in patient cell lines, with the aim to explore the potential of 

those substrates as treatment for a certain group of mitochondrial disorders. In these studies, 

the applied fibroblasts cell lines will be isolated from patients suffering from multiple types of 

mitochondrial disorders. 

2. Secondly, to investigate the reason behind the tissue specific presentation of some 

mitochondrial translation deficiencies my research will focus on the effect of mitochondrial 

translational deficiencies in neuronal cell types. Aim of this part of the research is to examine 

the tissue specificity of the mitochondrial translational deficiencies in neurons generated by 

direct conversion of fibroblasts to neuron progenitor cells.  

3. Final aim of my research is to identify novel mutations in the nuclear genome which may 

have an effect in the process of mitochondrial translation. I will evaluate variants resulting 

from exome sequencing which may play potential role in mitochondrial translation 

deficiencies in patients who suffer from mitochondrial disorders. 
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 Materials and Methods 

  Cell Culture 

All cell culture work was performed in a sterile environment ensured by a biological class II 

airflow safety cabinet (HeraSafe; Thermo-Scientific, Hampshire, UK).  All cell culture flasks 

were incubated in a humidified incubator at 37ᴼC with 5% carbon dioxide (CO2) throughout 

the experiment.  

 Fibroblasts and myoblasts maintenance 
Fibroblast and myoblasts cell cultures were obtained from the Medical Research Council 

(MRC) BioBank, Centre for Neuromuscular Diseases, Newcastle. Informed consent was 

obtained from all subjects. Fibroblast cells were grown in high glucose Dulbeccos modified 

Eagle’s medium (DMEM, Gibco, Life-Technologies, Paisley, UK) supplemented with 10% 

fetal bovine serum (FBS, Sigma-Aldrich, Dorset UK). When experiments allowed, cells were 

supplemented with 100U/mL penicillin (Sigma-Aldrich, Dorset UK) and 100mg/mL 

streptomycin (Sigma-Aldrich, Dorset UK). Myoblasts were cultured in Skeletal Muscle cell 

growth medium (ready to use) (Promocell, Germany) supplemented with the 1x Skeletal 

Muscle cell growth supplement mix (Promocell, Germany), 10% fetal bovine serum and 2mM 

L-glutamine (Gibco, Life-Technologies, Paisley, UK). 

Cells were cultured in filter cap cell culture flasks (Greiner Bio-one, Stonehouse, UK) with 

either 25cm 2 or 75 cm 2 growth area.  

Growth media has been changed every two to three days. Briefly, the growth medium was 

aspirated and the cells were washed with 1x Phosphate Buffered Saline (PBS, Oxoid, Thermo-

Scientific, Hampshire, UK). Next, the appropriate volume of fresh growth media was added to 

the flask.  

  Cell sub culturing 
When cell cultures reached 70-80% of confluency, cells were divided in two-three new flasks. 

Growth media was aspirated and cells were washed with 1x PBS. Afterwards, cells were 

treated with 1x Trypsin-EDTA (Life-Technologies, Paisley, UK) and incubated for 5 minutes 

at 37oC. Subsequently, cells were transferred to a 15mL tube and centrifuged for 5 minutes at 

318g (Heraeus™ Megafuge™ 16R, Thermo Scientific, Hampshire, UK). The supernatant was 

aspirated and the obtained cell pellet was resuspended in fresh growth media. The cells were 
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divided equally into new cell culture flasks and then the flasks were replaced in the cell 

culture humidifier.   

  Cell counting 
Cell counting was performed with a haemocytometer (Improved Neubauer; Hawksley, 

Lancing, UK) and Trypan Blue Staining (Sigma-Aldrich, Dorset, UK). Cells within the cell 

pellet were resuspended in 1mL of growth medium. Afterwards, 10uL of the cell suspension 

were mixed gently with 10uL of Trypan Blue Staining and 10uL were transferred on the 

haemocytometer. A glass cover was placed over the counting chamber and cells were viewed 

and counted under the 10x objective of the microscope.  

Subsequently, the number of the cells was counted within each 16 square corner of the grid 

(Fig. 3.1). The haemocytometer is designed so that the number of cells in one set of 16 corner 

squares is equivalent to the number of cells in 104/mL. Therefore, to obtain the count, the total 

number of the cells from the corners was summed, divided with four and then multiplied by 

two, to adjust the dilution in Trypan Blue. 

 

Figure 3.1: Grid pattern of an improved Neubauer cell counting chamber 

 Preservation of the cells 
Cells required for long-term use were stored in cryovials and frozen in liquid nitrogen. After 

splitting cells, the obtained cell pellets were resuspended in 1mL of filter sterilized freezing 

medium (90% FBS, 10% Dimethyl sulfoxide (DMSO, Sigma-Aldrich, Dorset, UK). 

Afterwards, the resuspended cells were transferred to 2mL cryovials (Greiner Bio-one, 

Stonehouse, UK) and stored short term at -80oC, and for longer term in liquid nitrogen.  
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To retrieve cells from liquid nitrogen, they were thawed quickly at 37oC in a temperature 

controlled water bath (Grant Bath JB AQUA 18 PLUS; Thermo-Scientific, Hampshire, UK), 

then transferred to a 15mL tube containing 4mL of growth medium and subsequently 

centrifuged for 5 minutes at 318g. Afterwards, the supernatant was aspirated, the cell pellet 

was resuspended in 5mL of growth medium, and the resuspended cells were transferred to T-

25 cell cultured flask which was then replaced in the cell culture humidifier.  

  Mycoplasma detection 
All cultured cell lines were tested regularly for mycoplasma infection using a luminescent 

detection kit (Lonza, UK) according to manufacturer’s instructions. Initially, 100uL of cell 

supernatant were transferred to a 1.5mL Eppendorf tube and 100uL of re-constituted 

MycoAlert™ reagent added to the sample followed by 5 minutes incubation in RT. At the end 

of the incubation, a luminescent reading was taken (reading A). Afterwards, 100uL of the 

MycoAlert™ substrate were added to the sample and the mix incubated for 10 minutes in 

room temperature (RT). Then, a second reading was taken (reading B) and the ratio of reading 

B to A was calculated. The sample was characterised as ‘mycoplasma negative’ if the ratio 

was below 0.9 and as ‘mycoplasma positive’ if greater than 1.2. If the ratio was calculated 

between 1-1.2 the sample was re-tested.  

All mycoplasma positive samples were destroyed by 2ml of 2% (w/v) Virkon® (Du Point, 

Hertfordshire, UK). 

  L-cysteine and N-acetyl cysteine (NAC) supplementation 
L-cysteine (Sigma-Aldrich, Dorset, UK) and NAC (Sigma-Aldrich, Dorset, UK) solutions 

(50mM stock solutions) were prepared fresh before each use, and the appropriate volume was 

added to each flask. During the supplementation with L-cysteine or NAC, fibroblasts were 

grown in DMEM supplemented with 10% FBS without antibiotics. The growth medium was 

renewed every 48 hours as described previously.  

  Purifications 

  DNA purification from cultured cells 
DNeasy Blood & Tissue Kit (Qiagen, Manchester, UK) was used to isolate DNA from 

cultured cells according to manufacturer’s instructions.  
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Cells were initially treated with trypsin (as described previously), placed in a 1.5mL 

Eppendorf tube and pelleted after 5 minute’s centrifugation at 300g. The supernatant was 

discarded and the obtained cell pellet was resuspended in 1x PBS to a final volume of 200uL. 

Afterwards, 20uL of proteinase K (provided with the kit) were added to the resuspended cells 

followed by 10 minutes incubation at 56oC.  

Secondly, 200uL of ethanol (96-100%) (Sigma-Aldrich, Dorset, UK) were added to the 

sample and the solution pulse-vortexed for 15 seconds. The homogenised mixture was 

transferred to a QIAamp Mini spin column (provided with the kit), placed in a 2mL collection 

tube (provided with the kit), and centrifuged for one minute at 6000g. The filtrate was 

discarded and 500uL of Buffer AW1 (provided with the kit) were added to the column 

followed by one minute centrifugation at 6000g. Subsequently, 500uL of Buffer AW2 

(provided with the kit) were added to the spin column followed by a full speed centrifugation 

for 3 minutes. The filtrate was discarded; the column was placed in a new 2mL collection 

tube (provided with the kit) and centrifuged at full speed for one minute. Finally, the column 

spin was placed in a clean 1.5mL Eppendorf tube and 100uL of Buffer AE were added. The 

column spin was incubated in RT for one minute and then, centrifuged at 6000g for one 

minute. The yield and purity of the purified DNA were determined by NanoDrop 2000 UV-

Vis (Thermo-Scientific, Hampshire, UK). The elute was stored at -20oC until required.  

  DNA purification from whole blood 
Nucleon Blood Non-Chloroform Kit (Gen-Probe Life Sciences Ltd., Manchester, UK) was 

used to isolate DNA from whole blood according to manufacturer’s instructions.  

Five mL of whole blood were transferred to a 15mL tube and 2 mL of Reagent A were added. 

Next, the solution was inverted 4 times at RT and centrifuged at 3500g for 5 minutes. The 

supernatant was discarded and the remaining pellet was resuspended in 5 mL of Reagent A 

(provided with the kit). The solution was vortexed and centrifuged at 3500g for 5 minutes. 

The supernatant was discarded and the remaining cell pellet consisting of blood cells was 

resuspended in 1mL of Reagent B (provided with the kit) and vortexed. Afterwards, 350uL of 

Reagent C (provided with the kit) were added and the solution was mixed by inverting at least 

7 times. Next, 300uL of Nucleon Resin (provided with the kit) were added drop-wise to the 

top of the sample and the solution was centrifuged at 3500g for 4 minutes.  

After the centrifugation, the supernatant was transferred to a clean 15mL tube and one volume 

of 100% isopropanol (Sigma-Aldrich, Dorset UK) was added. The tube was inverted several 
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times until the DNA precipitation was visible. Following, the solution was centrifuged at 

4000g for 5 minutes and the supernatant was discarded. Finally, the remaining cell pellet was 

resuspended in 1mL of 70% ethanol and centrifuged at 4000g for 5 minutes. The supernatant 

was discarded and the pellet was left to air dry. The yield and purity of the purified DNA 

were determined by NanoDrop 2000 UV-Vis (Thermo-Scientific, Hampshire, UK). The elute 

was stored at -20oC until required.  

  RNA purification from cultured cells 
RNeasy Mini Kit (Qiagen, Manchester, UK) was used to isolate RNA from cultured cells 

according to manufacturer’s instructions. 

Cells were pelleted as described before and 350uL of Buffer RLT (provided with the kit) were 

added to the cell pellet. After vortexing thoroughly, the lysate was transferred directly into a 

QIAshredder spin column (provided with the kit) placed into a 2mL collection tube (provided 

with the kit) and centrifuged at full speed for 2 minutes.   

Next, one volume of 70% ethanol was added to the homogenized lysate and mixed well by 

pipetting. Afterwards, 700uL of the sample were transferred into a RNeasy spin column 

(provided with the kit) placed into a 2mL collection tube (provided with the kit) and 

centrifuged at 8000g for 15 seconds and the filtrate was discarded. Then, 700uL of Buffer 

RW1 (provided with the kit) were added to the spin column followed by a 15 seconds 

centrifugation at 8000g. The filtrate was discarded and 500uL of Buffer RPE (provided with 

the kit) were added to the spin column. Subsequently the column was centrifuged again for 15 

seconds at 8000g and 500uL of Buffer RPE were added to the spin column followed by 2 

minutes’ centrifugation at 8000g. 

Finally, the RNeasy spin column was placed in a new 1.5mL collection tube (provided with 

the kit) and 30uL of RNase-free water (provided with the kit) was added directly to the spin 

column. The spin column was centrifuged for one minute at 8000g. 

The RNA yield and purity of the purified RNA were measured with NanoDrop 2000 UV-Vis. 

The elute was stored at -20oC until required. 
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  RNA purification from whole blood 
Whole blood samples were obtained from controls and patients after informed consent was 

obtained, and stored in PAXgene Blood RNA Tube (IVD) (Qiagen, Manchester, UK). For 

long-term storage, blood samples were stored at -80oC. 

Initially, 2mL of whole blood were transferred to a 15mL tube and centrifuged for 10 minutes 

at 3500g. The supernatant was discarded and 5mL of DEPC water were added to the obtained 

pellet. The pellet was resuspended and centrifuged for 10 minutes at 3500g. Afterwards, the 

supernatant was discarded and the remaining cell pellet was homogenously resuspended in 

600uL of Buffer RLT (provided with the kit). One volume of 70% ethanol was added and the 

lysate was mixed by pipetting.  

The following steps followed are described in section 3.2.2.  

  DNA extraction for agarose gel 
QIAquick Gel Extraction Kit was used to purify DNA products from agarose gel according to 

manufacturer’s instructions.  

The required DNA fragment was excised with a scalpel from the agarose gel, placed into a 

1.5mL cleaned Eppendorf tube and weighted on a HR-150AZ fine balance (A&D Company). 

Three volumes of Buffer QG (provided with the kit) were added per one volume of gel.  

The Eppendorf tube was incubated for 10 minutes at 50oC and vortexed every 3 minutes until 

the gel slices were dissolved completely. One volume of isopropanol was added to the 

Eppendorf tube followed by mixing. The sample was placed into a QIAquick spin column 

(provided with the kit), placed into a 2mL collection tube (provided with the kit) and 

centrifuged for one minute at 17.900g. The filtrate was discarded and 500uL of Buffer QG 

were added to the spin column followed by one minute centrifugation at 17.900g. 

To wash bound DNA on the filter, 750uL of Buffer PE were added to the spin column and 

centrifuged for one minute at 17.900g. Next, the QIAquick spin column was placed into a 

clean 1.5mL micro centrifuge tube and 30uL of Buffer EB (provided with kit) were added. 

The spin column was incubated in RT for one minute and afterwards centrifuged for one 

minute at 17.900g. The yield and purity of the eluted DNA were quantified with NanoDrop 

2000 UV-Vis.  
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  Total protein extraction from frozen muscle tissue 
The frozen muscle tissue samples were thawed in a Petri dish filled with dry ice and 

segmented. The segmented pieces were transferred to a 1.5mL Eppendorf tube, placed on wet 

ice, and weighted on a fine balance. Following, they were washed four times with cold PBS to 

remove any remaining blood. Afterwards, the segmented pieces were transferred into a glass 

Elvehjem potter and a proportion of ten volumes to the weight of the tissue of lysis buffer 

(Table 3.1) were added.  The homogenization was performed by a motor-driven Teflon pestle 

with eight up and down strokes at 600rpm (rpm: rounds per minute). Next, the homogenate 

was transferred into a 1.5 mL Eppendorf tube and incubated on wet ice for 15 minutes. Then, 

the lysate was centrifuged for 15 minutes at 4oC at 10000g. The supernatant was transferred to 

a new 1.5mL Eppendorf tube and the protein quantification was measured by Bradford assay 

(3.3.1). The extracted protein was stored at -80oC until required.  

       Lysis Buffer  

50mM Tris-HCl pH 7.5 

130mM NaCl  

2mM MgCl2 

1% Triton X-100 

1 tablet Protease Inhibitor per 

10 mL 

Table 3.1: Composition of lysis buffer used for total protein extraction from muscle 
tissue, fibroblasts and myoblasts 

 Quantifications 

  Protein quantification  
Protein quantification was carried out using a colorimetric method (Bradford, 1976) . To 

quantify the concentration of protein, a standard curve was used.  Hence, serial dilutions of a 

known concentration protein named Bovine serum albumin (BSA, Sigma-Aldrich, Dorset 

UK) were prepared (Table 3.4) and the absorbance measured at 595nm by a MultiScan 

Ascent plate reader (Thermo-Scientific, Hampshire, UK). 
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Column Protein Concentration 

(mg/mL) 

Ratio of 1 mg/mL BSA solution 

(uL) to sterile water (uL) 

A 0.0 0/100 

B 0.05 5/95 

C 0.1 10/90 

D 0.2 20/80 

E 0.3 30/70 

F 0.4 40/60 

G 0.5 50/50 

Table 3.2: Serial dilutions used for the standard curve 
The obtained values were used to generate a calibration curve (Fig. 3.2), from which the 

experimental protein samples were extrapolated. 

 

Figure 3.2: Representative example of standard curve after the measurement of the 
absorbance of the serial dilutions. 
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  Heteroplasmy measurement 
To quantify the levels of heteroplasmy in cells lines carrying the mitochondrial mutations 

m.3243A>G and m.8344A>G a pyrosequencing assay was designed. A specifically designed 

pair of primers (one of them biotinylated to allow for specific isolation of product) generates 

~200bp amplicon and then a third sequencing primer are used to amplify the 8-10 base-paired 

of interest and quantify a mitochondrial heteroplasmic mutation within a sample. The 

following technique was performed using the PyroMark™ Q24 (Qiagen, Manchester, UK) 

using shallow 24 well sequencing plates (Qiagen, Manchester, UK) and 0.2mL sterile 8 strip 

PCR tubes (Greiner Bio-one, Stonehouse, UK). 

The primers used to detect the m.3243A>G and m.8344A>G mutations have been previously 

described by White H.E. et al (White et al., 2005) (Table 3.5). The assay method was 

designed using the PyroMark™ Q24 software (Qiagen, Manchester, UK). 

 

 m.3243A>G (MELAS) m.8344A>G (MERRF) 

Forward Primer CCTCCCTGTACGAAAGGACA CATGCCCATCGTCCTAGAAT 

Reverse Primer Biotin-

TGGCCATGGGTATGTTGTTA 

Biotin-

TTTTATGGGCTTTGGTGAGG 

Sequencing Primer GGTTTGTTAAGATGGCAG TAAGTTAAAGATTAAGAGA 

Sequence to analyse (A/G) GCCCGGTAATC (A/G) CCAACACCT 

Dispensation order CAGCGTAT TAGCACAC 

Table 3.3: Pyrosequencing primers used for determining the heteroplasmy rate of the 
mtDNA mutations m.3243A>G and m.8344A>G. 
Each sample was amplified as described in section 3.5 (Annealing temperature: 60oC) and the 

amplicons electrophoresed and visualised as described in section 3.7. Afterwards, 10uL of 

PCR product were transferred to a new sterile PCR tube (STARLAB, Milton Keynes, UK) 

and 2uL sepharose beads (GE Life science, Amersham Place, UK), 40uL binding buffer 

(Qiagen, Manchester, UK) and 28uL autoclaved PCR-grade deionised water were added to 

each sample. The PCR tubes were transferred to a BioShake thermoshaker (Quantifoil 

Instruments GmbH, Jena, Germany) and agitated for 10 minutes at 2000rpm. Meanwhile, the 
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vacuum workstation was prepared according to manufacturer’s instructions and five separate 

troughs were filled with 50mL of 70% ethanol, 40mL of denaturation solution, 50mL 1x wash 

buffer, 50mL high-purity water and 70mL high-purity water respectively. The filter probes on 

the vacuum tool were washed thoroughly by high-purity water according to the instructions. 

Furthermore, the sequencing primer was diluted to 0.3uM in annealing buffer and 25uL of 

that mixture transferred to a PyroMark Q24 sequencing plate and subsequently the sequencing 

plate was placed on the specific site of the working station.    

Once the samples were agitated, they were transferred to the deep plate support wells located 

in the front on the workstation.  Then, by switching on the vacuum tool, the liquid from the 

PCR tubes was aspirated, and the captured beads on the filter probes of the vacuum tool were 

processed through ethanol for 5 seconds, denaturation buffer for 5 seconds and the wash 

buffer for 10 seconds. Afterwards, the vacuum tool was held vertically for 5 seconds to allow 

the filter probes to be drained before being switched off. Next, the filter probes were placed 

into the annealing buffer mixture containing 0.3um of sequencing primer, and the vacuum 

tool was gently shaken to release the beads into the mixture. Finally, the vacuum tool was 

switched on and processed through high-purity water for 10 seconds, before a final cleanse 

through 70mL of high purity water, switched off, and placed in the parking position.  

The sequencing plate was then heated for 2 minutes at 80oC on a digital dry water bath heat 

block (Benchmark Scientific, New Jersey, U.S.A), allowed to cool to room temperature over 

5 minutes, and then placed into the pyrosequencing machine. The sequencing cartridge was 

then loaded with the pre-calculated volumes (according to the number of reactions) of enzyme 

mixture, substrate mixture and dNTPs, and placed in the dispensing unit in the machine.  

Once the assay was finished, the data were analysed using the PyroMark™ Q24 software. The 

sequencing cartridge was cleaned using deionised water and the sequencing reaction plate was 

disposed of.  

  Copy number quantification 
 Quantitative PCR is a reliable and reproducible method to measure the mitochondrial DNA 

amplified in real time during the PCR process. The template of genes (Table 3.6) used for 

standard curves were amplified using the standard PCR procedure explained in section 3.5. 

The products were then separated by agarose gel and extracted from the agarose gel as 

described in section 3.2.4. The number of template copies per uL for each template was 

calculated using the following equation: 
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"#$%&'	$&)	*+ = 	 Concentration	molecular	weight 	∗ = 

where concentration = DNA in ng/µL (expressed as 109); molecular weight = template length 

(bp) x 2 x 330; and K = Avogadro’s constant (6.022x1023 mol-1).  

Serial dilutions of the template DNA in the range of 108-102copies/uL enabled the generation 

of standard curves. The standard curves were used to ensure a linear curve in each reaction 

(R2 between 98%-102%) with amplification efficiency within the optimal range (90-110%). 

The reactions were performed in a 96-well plate (Bio-Rad, Hertfordshire, UK) with a final 

volume 20uL and sealed by microplate plate sealers. 1x iTaq™ Universal Probes Supermix 

(Bio-Rad), 0.3uM forward and reverse primers, 0.2uM ND1-HEX and β2Μ-FAM probes and 

PCR-grade autoclaved sterile deionised water (to make up to 20uL reaction). The starting 

concentration of DNA samples was 10ng/uL.  Negative controls and melting curve analysis of 

the amplified DNA product were used to confirm the absence of DNA contamination. The 

cycling conditions consisted of initial denaturation at 95oC for 3 minutes, followed by 40 

cycles of denaturation at 95oC for 10 seconds, with annealing an extension at 62.5oC for 1 

minute. The relative mtDNA copy number per cell was calculated using the ΔCt data by the 

following equation:  

ΔCt = Ct MT-ND1 – Ct β2M 

Relative mtDNA copy number per cell = 2(2-ΔCt)
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  Gene Forward Primer Reverse primer Tm (oC) Product size 

(bp) 

Template 

β2M CGCAATCTCCAGTGACAGAA GCAGAATAGGCTGCTGTTCC 60 1092 

MT-ND1 CAGCCGCTATTAAAGGTTCG AGAGTGCGTCATATGTTGTTC 60 1040 

qPCR 

β2M CACTGAAAAAGATGAGTATGCC AACATTCCCTGACAATCCC 62.5 231 

MT-ND1 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG 62.5 111 

Table 3.4: Primers sequence of template genes used for generating the standard curves 
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  Levels of protein expression 

  Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-
PAGE) 

Cells were pelleted as described in section 3.1.2. The obtained cell pellets were 

subsequently resuspended in 50uL of lysis buffer (Table 3.1), vortexed for 30 seconds 

every 5 minutes (3 times) and subsequently centrifuged at 16.000g for 5 minutes. 

Protein quantity within the remaining supernatant containing the cellular extracts was 

measured by Bradford assay.  

NuPAGE™ Novex™ 4-12% Bis-Tris Protein Gels and NuPAGE® MES SDS Running 

Buffer (Thermo Fisher Scientific, UK) were utilised for the pre-cast gel and running 

buffer.  The sample preparation was performed according to manufacturer’s 

instructions. 

Reagent Reduced Sample 

Sample XuL 

NuPAGE® LDS Sample Buffer 2.5uL 

NuPAGE® Sample Reducing Agent (10x) 1uL 

Deionized Water up to 6.5uL 

Total Volume 10uL 

Table 3.5: Composition of protein samples 

 Protein samples with a final concentration of 20ug/ml were loaded to each well after 

being heated at 70oC for 10 minutes. SeeBlue Plus2 Pre-Stained (Thermo Fisher 

Scientific, UK) and biotinylated ladder (CST) allowed the correct estimation of the 

molecular weight of each protein. 

Electrophoresis was performed using the XCell SureLock™ Mini-Cell Electrophoresis 

System. The Upper and Lower buffer chambers were filled with 1x NuPAGE® MES 

SDS Running Buffer (Thermo Fisher Scientific, UK) and 500uL of NuPAGE® 

Antioxidant (Thermo Fisher Scientific, UK) in the upper buffer chamber.  
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Following electrophoresis, the separated proteins were transferred onto PVDF 

membrane using iBlot® 2 Dry Blotting System (Thermo Fisher Scientific, UK) 

according to manufacturer’s instructions.  

The PVDF membrane was incubated for 1 hour at RT in 5% blocking buffer (5% non-

fat milk in Tween Tris-buffered Saline (TTBS)) before adding the primary antibody. 

The dilution factor of the primary antibody and the incubation time differed for each 

antibody used.  Next, the membrane was washed 3 times for 10 minutes with TTBS and 

incubated for 1 hour at RT with horseradish peroxidase-conjugated secondary antibody. 

After washing with TTBS, the membrane was incubated for 5 minutes with Pierce™ 

ECL Western Blotting Substrate (ThermoFisher Scientific). The visualization of the 

proteins was performed with Amersham Imager 600 (General Electric). Details of 

primary and secondary antibodies can be found in Table 3.9. 

ImageJ software was used to analyse the relative densities of different protein bands. 

The relative expression of protein in each sample was then compared to GAPDH, a 

ubiquitously expressed protein, which was used as a loading control.  

  Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE)  
Blue native Polyacrylamide Gel allows us to separate intact mitochondrial complexes 

by electrophoresis based upon how much Coomassie dye was bound to the 

holoenzymes, which is proportional to their size. The steps followed have previously 

been described by Leary and Sasarman et al. (Leary and Sasarman, 2009).  

Fibroblasts from a T75 cell culture flask were trypsinised as described previously, 

washed once with 1x PBS and cell pelleted for 5 minutes at 319g in a 1.5mL Eppendorf 

tube. The obtained cell pellet was resuspended in cold PBS with protease inhibitors (1 

tablet per 10mL, cOmplete™ Mini EDTA-free Protease Inhibitor Cocktail). Next, 10uL 

of the resuspended cells were diluted in 90uL of dH2O and sonicated for 4 seconds 

(Misonix Sonicator S3000 Liquid Processor). Next, the protein quantity of the diluted 

samples was measured by the Bradford assay. 

Cells were lysed by adding digitonin (Sigma-Aldrich, Dorset UK, 4mg/mL in cold PBS 

mixed with the protease inhibitor) with a final concentration of digitonin 2mg/mL and 

final concentration of cells at 2.5mg/mL. The ratio between digitonin and protein was 

equal to 0.8. The fibroblasts were incubated for 10 minutes on wet ice and afterwards 1x 
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PBS was added (up to 1.5mL) to dilute digitonin, and the samples were centrifuged at 

10000g at 4oC for 10 minutes.  

Once the supernatant was removed, the obtained cell pellet was resuspended in Blue 

native sample buffer [0.5 mL 3x gel buffer (1.5 M aminocaproic acid (Sigma-Aldrich, 

Dorset, UK), 150 mM Bis-tris (Sigma-Aldrich, Dorset, UK), pH 7.0), 0.5 mL 2M 

aminocaproic acid (Sigma-Aldrich, Dorset UK), and 4 mL 500 mM EDTA] and lauryl 

malthoside was added to a final concentration 1%. The samples were vortexed, 

incubated on ice for 15 minutes, and centrifuged at 20000g at 4oC for 20 minutes at the 

end. The supernatant was kept and the protein quantified by the Bradford assay. The 

samples were stored at -80oC until required.  

NativePAGE™ Novex™ 3-12% Bis-Tris Protein Gels, NativePAGE™ Running Buffer 

and NativePAGE™ Cathode Buffer Additive (Thermo Fisher Scientific, UK) were 

utilised for the pre-cast gel and running buffer. SBG loading buffer (with volume equal 

to half of the volume of the lauryl malthoside added before), was added to the samples. 

NativeMark™ Unstained Protein Standard allowed us to estimate correctly each of the 

mitochondrial complex.  

The upper buffer chamber was filled with 1x NativePAGE™ Running Buffer mixed 

with NativePAGE™ Cathode Buffer Additive (5% v/v) whereas the lower buffer 

chamber was filled with 1x NativePAGE™ Running Buffer. After 30 minutes of 

electrophoresis at 120V, the running buffer in the upper buffer chamber was replaced 

with 2.5% v/v NativePAGE™ Cathode Buffer Additive and the electrophoresis was set 

at 180V for the remainder of the duration.  

Following the electrophoresis, the separated proteins were transferred onto a PVDF 

membrane as described previously, and the membrane destained by destaining solution 

(Table 3.8). The following steps are described in section 3.4.1.  

The antibodies used for detecting the mitochondrial complexes are listed in Table 3.9.  

ImageJ software was used to analyse the relative densities of different protein bands. 

The relative expression of protein in each sample was then compared to expression 

levels of SDHA, a ubiquitously expressed protein in mitochondria used as a loading 

control. 
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Tween Tris-buffered Saline (TTBS) De-staining solution 

20mM Tris-HCl pH 7.0 30% methanol 

29.2g NaCl 10% acetic acid 

0.1% Tween 20 up to 1L 

up to 1L  

Table 3.6: Composition of TTBS and De-staining solution 
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Antibody Company Dilution Molecular Weight (kDa) Recommendations 

Anti-NDUFA9 (ab14713) Abcam 1:500 36 4oC O/N 

Anti-SDHA antibody Abcam 1:5000 70 2hrs RT 

Anti-Ubiquinol-

Cytochrome C Reductase 

Core Protein I antibody 

(ab110252) 

Abcam 1:1000 53 2hrs RT 

Anti-COX4 + COX4L2 

antibody (ab110261) 
Abcam 1:1000 20 4oC O/N 

Anti-ATP5A antibody 

(ab14748) 
Abcam 1:4000 53 2hrs RT 

Total OXPHOS Rodent 

WB Antibody Cocktail 

(ab110413) 

Abcam 1:500 Multiple 4oC O/N 

Total OXPHOS Blue 

Native WB Antibody 

Abcam 

 
1:250 Multiple 4oC O/N 
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Cocktail (ab110412) 

Anti-VDAC1 (ab14734) Abcam 1:1000 37 4oC O/N 

Anti-Cytochrome C 

antibody (ab13575) 
Abcam 1:500 12 4oC O/N 

Anti-OPA1(ab119685) Abcam 1:1000 112 4oC O/N 

Anti-Mitofusin 2 

(ab56889) 
Abcam 1:500 86 4oC O/N 

Anti-DRP1 (ab56788) Abcam 1:1000 82 4oC O/N 

Anti-SMCR7L (MiD51) 

(ab89944) 
Abcam 1:1000 51 4oC O/N 

Anti-SMCR7 (MiD49) 

(16413-1-AP) 
Proteintech 1:500 49 4oC O/N 

Anti-SMCR7 antibody - 

N-terminal (MiD49) 

(ab182535) 

Abcam 1:500 49 4oC O/N 

Anti-SMCR7 antibody 

(MiD49) 
Novus Biologicals 1:250 49 4oC O/N 
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Anti-PGC1 (ab54481) Abcam 1:250 105 4oC O/N 

Anti-GAPDH (sc-25778) Santa Cruz 1:4000 37 4oC O/N 

Anti-Rabbit HRP (P0399) DAKO 1:2500 - 1hr RT 

Anti-Mouse HRP (P0260) DAKO 1:2500 - 1hr RT 

Table 3.7: List of used antibodies
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  Polymerase Chain Reaction (PCR)  

All PCR reactions were performed using a hot start taq DNA polymerase and amplified using 

a Veriti® thermocycler (Applied Biosystems, Life-Technologies, Paisley, UK). Table 3.10 

and 3.11 describe the reaction and cycling conditions for the two different enzymes used 

respectively. The primers (Integrated DNA Technologies, United States) were designed with 

Primer3 (http://primer3.ut.ee/).  

IMMOLASE™ MyTaq™ HS DNA Polymerase 

Reagents 

Final 

Concentration (per 

25uL reaction) 

Reagents 

Final 

Concentration 

(per 25uL 

reaction) 

10x Immobuffer 1x Immobuffer 
5x MyTaq 

Reaction Buffer 

1x MyTaq Reaction 

Buffer 

dNTP mix 2mM 
Primers (Rev and 

Fw) 
0.4uM 

Primers (Rev and 

Fw) 
0.25uM 

Autoclaved PCR-

grade deionised 

water 

up to 25uL 

MgCl2 4mM Enzyme 1U/25uL reaction 

Enzyme 1U/25uL reaction DNA 50ng/uL 

Autoclaved PCR-

grade deionised 

water 

up to 25uL 

DNA 50ng/uL 
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Table 3.8: Composition of a single PCR reaction with Immolase and MyTaq 
polymerases 
 

 

IMMOLASE™ MyTaq™ HS DNA 

Polymerase 

Activation  95oC for 10 

minutes 

Initial 

Denaturation 

95oC for 1 

minute 

Denaturation  95oC for 1 

minute 

Denaturation  95oC for 15 

seconds 

Annealing 1 minute Annealing 15 seconds 

Extension 30 

seconds/Kb 

Extension 72oC for 10 

seconds 

Final 

Extension 

72oC for 10 

minutes 

Final 

Extension 

72oC for 10 

minutes 

Table 3.9: Cycling conditions for PCR reactions with Immolase and MyTaq polymerase. 
 

  Reverse Transcription PCR 

High Capacity cDNA reverse transcription (Applied Biosystems, Life-Technologies, Paisley, 

UK) and OneStep RT-PCR kits (Qiagen, Manchester, UK) were used to produce single 

stranded cDNA from RNA according to manufacturer’s instructions. OneStep RT-PCR kit 

allows both reverse transcription and specific amplification whereas High Capacity cDNA 

reverse transcription allows only reverse transcription of the total RNA using random primers. 

The starting concentration of RNA used for reverse transcription was 2mg/mL.   

The preparation of the RT master mixes was held on ice and the reactions performed on a 

Veriti® thermocycler according to manufacturer’s instructions.  

The cDNA samples were stored at -20oC until required.  

30-40 cycles  
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  Agarose Gel Electrophoresis 

The PCR amplicons were separated with agarose gel electrophoresis. The visualisation of the 

DNA fragments was utilised by ethidium bromide. A 2% (w/v) agarose gel was used to 

resolve the products: In 100mL of 1x TAE buffer (Applichem) 2g of agarose (Bioline) were 

dissolved in a flask and heated for 2 minutes in an 800W microwave oven (Sony, Tokyo, 

Japan). Afterwards, 40uL of ethidium bromide added. The solution was then poured in a flat, 

horizontal gel casting tray with a comb, and allowed to solidify at room temperature. In each 

well, 5uL of PCR product mixed with 5uL of Orange G solution (50% dH2O, 50% glycerol 

[v/v], and a few grains of orange G to colour the solution) were loaded and electrophoresed for 

45 minutes at 65V. The gel was imaged using a GelDocIt transilluminator gel imaging system 

(UVP, California, U.S.A) 

  Sanger Sequencing 

The first step of sample preparation before sequencing involves cleaning the PCR amplicons 

with ExoFAP treatment. Exonuclease I (Exo I, Thermo-Scientific, Hampshire, UK) is 

responsible for the digestion of the single stranded PCR primers into dNTPs and FastAP 

(Thermo-Scientific, Hampshire, UK);a thermosensitive alkaline phosphatase,catalyses the 

release of 5’ and 3’-phospate groups from DNA, RNA and nucleotides. 

Therefore, 10U of Exo I and 1U of FastAP were added to 3/5 uL of the PCR reaction on a 

MicroAmp® Optical 96-Well Reaction Plate (Applied Biosystems, Life-Technologies, 

Paisley, UK) and the mixture was incubated initially for 15 minutes at 37oC before 15 minutes 

at 85oC.  

Next, the BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo-Scientific, Hampshire, 

UK) was used according to the manufacturer’s instruction (Table 3.12) and the samples were 

amplified on a Veriti® thermocycler (Applied Biosystems, Life-Technologies, Paisley, UK).   
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Reagent Concentration   Cycling Conditions  

BigDye® 

Terminator  

Reaction Mix  

2.5x 

0.125x  Initial 

Denaturation 

96oC for 1 

minute 

  

BigDye 

Sequencing 

Buffer 5x 

0.5x  Denaturation  96oC for 10 

seconds 

  

Primer (10uM) 0.5uM  Annealing  50oC for 5 

seconds 

  

Template 1-20ng  Extension 60oC for 4 

minutes 

  

Deionized 

water 

Up to 20uL  Final 

Extension 

4oC for ∞   

Table 3.10: Composition and cycling condition of Big Dye reaction 
 

The final step was Ethanol/EDTA precipitation to remove any unincorporated dye terminators 

from the sequencing reaction. Hence, after the completion of the Big Dye Termination 

reaction the 96 well plate was removed from the thermal cycler and in each well 2uL of 

EDTA (125mM, Sigma-Aldrich, Dorset UK) , 2uL of Sodium acetate solution (3M, Sigma-

Aldrich, Dorset UK) and 70uL of 100% ethanol were added. Afterwards, the plate was sealed 

with a plate sealer, mixed by inverting several times and incubated at RT for 15 minutes. 

Next, the plate was centrifuged at 2000g for 30 minutes and subsequently the plate was 

inverted and span up to 100g. Then, 70uL of 70% ethanol were added to the each well and the 

plate was centrifuged at 1650g for 15 minutes. Subsequently, the plate after the centrifugation 

was inverted and span up to 100g. Finally, the plate was allowed to air dry in the dark for 10 

minutes.  

25 cycles  
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The plate containing the cell pellets was either stored at -20oC or the pellet in each well was 

resuspended in 10uL of highly deionized formamide (Hi-Di™ Formamide, Thermo-

Scientific, Hampshire, UK) 

Before processing the plate on the Applied Biosystems 3130xl Genetic Analyzer (Applied 

Biosystems, Life-Technologies, Paisley, UK) it was incubated for 2 minutes at 95oC.  

The sequencing results were analysed by SeqScape (Thermo-Scientific, Hampshire, UK).  

  Oxygen Consumption  

Oxygen consumption was measured in adherent fibroblasts and myoblasts with a XF96 

Extracellular Flux Analyzer (Seahorse Bioscience Billerica, MA, USA) as described before 

(Invernizzi et al., 2012).  

Each cell line was seeded in 12 wells of a XF96-well cell culture mircoplate (Seahorse 

Bioscience) at a density 30x103 cells/well (20x103 cells/well for iNPCs) in 80uL of DMEM 

and incubated for 24hrs at 37oC in 5% CO2 atmosphere. After replacing the growth medium 

with 180uL of bicarbonate-free DMEM (prewarmed at 37oC), cells were preincubated for 30 

minutes before starting the assay procedure. Oxygen consumption rate (OCR), leaking 

respiration  (LR), maximal capacity respiration  (MCR) and not electron transport chain 

respiration (NMR) were determined by adding 1 µM oligomycin (Sigma-Aldrich, Dorset UK) 

(LR),  carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (Sigma-Aldrich, Dorset 

UK) (MCR: 2 injections of 0.5 µM and 1 µM respectively) and 1µM Rotenone/antimycin 

(Sigma-Aldrich, Dorset UK) (NMR), respectively.   

The data were corrected by the NMR and expressed as pmol of oxygen/min/mg of protein. 

The quantity of protein was measured by Bradford assay(Bradford, 1976).  
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Figure 3.3: Representative graph of oxygen consumption measurement with a XF96 
Extracellular Flux Analyzer 

 Direct conversion of human skin fibroblasts to tripotent iNPCs 

Direct reprogramming of adult human fibroblasts to induced neuronal progenitor cells (iNPC) 

was conducted as described previously (Meyer et al., 2014). The day before transduction 

100.000-150.000 cells were seeded on a 6-well cell culture plate. The growth medium used 

for the fibroblasts was DMEM (DMEM, Gibco, Life-Technologies, Paisley, UK) enriched 

with high concentrations of glucose (4.5g/L D-Glucose), GlutaMAX supplement and sodium 

pyruvate (110mg/L). The growth medium was supplemented with 10% of FBS, 100U/mL 

penicillin and 100mg/mL streptomycin.  

The next day the cells were transduced with four retroviral vectors carrying the four 

reprogramming factors (Oct3/4, Klf4, Sox2 and c-Myc). From each virus, the appropriate 

amount of MOI (Multiplicity Of Infection) was used in a total volume of 800uL in each well 

before overnight incubattion at 37ᴼC.  

The next day cells were washed three times with PBS and fresh fibroblast growth medium 

added to the well followed by an overnight rest.  

Next, after 24 hours, the fibroblast growth medium was replaced by conversion medium 

(Table 3.13). Approximately a week after the transduction, morphological changes could be 

detected. The cells from the flat fibroblastic shape became smaller with distinct extensions. 

Additionally, cells started to form sphere-like structures that could be picked and cultured 

further as monolayers.  
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At this point, or when cells became dense they were split, seeded on fibronectin coated well, 

and the conversion medium was replaced by neuronal progenitor cell medium (NPC growth 

medium) (Table 3.13).  

Conversion Growth Medium NPC Growth Medium 

DMEM/F-12 plus 10% FBS DMEM/F-12 plus 10% FBS 

1% N2 (Life-Technologies, Paisley, UK) 1% N2 (Life-Technologies, Paisley, UK) 

1% B27 (Life-Technologies, Paisley, UK) 1% B27 (Life-Technologies, Paisley, UK) 

20ug/mL FGF2 (PeproTech, US) 40ug/mL FGF2 (PeproTech, US) 

20ug/mL EGF(PeproTech, US)  

5ug/mL Heparin (Sigma-Aldrich, Dorset 

UK) 

 

Table 3.11: Composition of growth mediums used during the direct conversion 
 

  iNPC Subculturing 
When the cell culture reached 70-80% of confluency in the 6-well cell culture plate, cells 

were split. The growth medium was aspirated and cells were washed with PBS. Afterwards, 

the cells were treated with 1x Accutase (Thermo-Scientific, Hampshire, UK) and incubated 

for 3 minutes at 37oC. Next, the cells were transferred to a 15mL tube and centrifuged for 4 

minutes at 200g. The supernatant was aspirated and the obtained cell pellet resuspended in 

fresh NPC growth medium. Cells were divided equally into new wells coated with fibronectin 

(EMD Millipore, UK) and the cell culture plate replaced in the cell culture humidifier.   

The cells were frozen in freezing medium containing 10% of DMSO per 1mL of iNPCs 

growth medium.  

  Statistical Analysis  

Data are presented as � standard deviation using two-way ANOVA test on Sigma plot 

(version 11.0) and paired t-test.  A p-value of �0.05 was considered significant. 
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 Studying the effect of L-cysteine and N-acetylcysteine in 
mitochondrial translation diseases 

 Overview  

 Post-transcriptional modifications of mt-tRNAs 
The human mtDNA encodes 37 genes: 13 for the essential subunits of the complexes I, III, IV 

and V, 22 for tRNAs and two for mt-rRNAs. These 13 proteins are translated by the 

mitochondrial protein synthesis machinery, which consists of mitochondrial ribosomes, mt-

tRNAs and several transcription factors. Many essential components of the mitochondrial 

protein synthesis machinery such as ribosomal proteins, translational factors, aminoacyl-

tRNA synthetases and various factors required for the mitochondrial protein synthesis are 

encoded in the nucleus and transported into the mitochondria.  

The mammalian mt-tRNAs have three types of unusual secondary structures (Figure 4.1). The 

bulk of the tRNAs are characterised by a highly conserved cloverleaf structure (Type 0). The 

secondary structure of the tRNA resembles a D loop, a T loop, an anticodon loop, an extra 

loop and acceptor stem (Figure 4.1). In 1980, a unique tRNA, in humans and bovine 

mitochondria, the tRNASer(AGY), was revealed through mtDNA sequencing (Anderson et al., 

1981, Anderson et al., 1982). The mammalian mt- tRNASer(AGY) lacks the entire D-loop (Type 

III). Later studies revealed that the tRNASer(UCN) also has a non-canonical cloverleaf structure 

(Type I). Finally, a few mt-tRNAs such as tRNAPhe and tRNAAsp have been classified as Type 

II tRNAs as they lack the canonical D-loop/T-loop interaction. The various structural motifs 

of mt-tRNAs have been suggested to be a compensatory mechanism for the deleterious effects 

caused by the evolutionary pressure due to size reduction of the mtDNA sequence occurred in 

mammals (Suzuki and Nagao, 2011).  

All the tRNAs are characterised by modified nucleosides which are introduced post-

transcriptionally (Cantara et al., 2011). These modifications offer stability to the tRNAs and 

are required for their proper function. After the update of the RNA modification pathways 

database in 2008 (Czerwoniec et al., 2009), 119 different post-transcriptional modifications in 

RNA were revealed. The bulk of these modifications were present in mt-tRNAs. 
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Figure 4.1:Schematic secondary structures of human mitochondrial tRNAs. Canonical 
tRNA is represented as Type 0. Three types of mt-tRNAs are shown: types I, II and III. 
Circled numbers represent the nucleotide positions according to the tRNAdb numbering 
system (Jühling et al., 2009). Tertiary interactions between nucleobases are indicated by 
dotted lines. (Suzuki and Nagao, 2011) 
The mammalian mitochondrial decoding system consists of 60-sense codons that are 

classified to eight different family boxes and are deciphered by 22 species of mitochondrial 

tRNAs. Each of eight family codon boxes in mitochondria is decoded by a single tRNA. This 

unique characteristic qualifies the mammalian mitochondrial decoding system to be the 

smallest set of tRNAs necessary to translate all sense codons among different species (Suzuki, 

2014). Therefore, post-transcriptional modifications at the wobble position of the mt-tRNAs 

play a critical role in the correct recognition between mt-tRNAs and codons.   

Each tRNA responsible for a family box, is frequently characterized by unmodified uridine 

(U34) at the wobble position (first position) of the anticodon expanding the codon recognition 

capabilities of each tRNA. According to Crick’s wobble rule, U34 can recognise only A and 

G at the third position of a codon. However, in a few decoding systems, including the 
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mitochondrial decoding system, U34 is able to recognise any of the four base pairs, a 

phenomenon called ‘four-way wobble rule’ (Suzuki and Nagao, 2011, Powell et al., 2015). 

In mitochondria, the unmodified U34 is only identified in tRNAs responsible for family box 

codons in which at least one G or C is present at the first or second letter of codons (Suzuki, 

2014). Also, the tRNAs responsible for two-codon sets ending in purines (NNR; N=any four 

nucleotides, R=A or G) are characterized by modified uridines (xm5s2U-type) at their wobble 

position. It has been suggested that the xm5s2U-type modification strengthens the recognition 

of NNR codons and prevents the misrecognition of codon ending in pyrimidines (NNY; Y= U 

and C) by restricting the conformational stability of the U34 (Suzuki, 2014).  

 For example, in the tRNAs of Lys, Glu and Gln U34 is modified at carbons 2 and 5. Carbon 

2 is modified exclusively through thiolation (s2), whereas carbon 5 can be methyl modified in 

various ways along different species. In the mammalian mitochondrial tRNAs taurinomethyl 

(τm5) is identified. In this case, the xm5s2U-type modification offers rigidity to the U34 

wobble base of tRNAs Lys, Glu and Gln (Sasarman et al., 2011).   

 

Figure 4.2: Chemical structures of 5-taurinomethyluridine (τm5) and 5-Taurinomehyl 2- 
thiouridine (τm5s2) 

 
 

Absence of post-transcriptional modifications at the wobble positions of mammalian 

mitochondrial tRNAs for Leu and Lys has been linked to mitochondrial MERRF and MELAS 

respectively (Kirino and Suzuki, 2005).  In MELAS, the pathogenic mutations m.3243A>G 
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and m.3271T>C of  tRNALeu result in the absence of τm5U modification, leading to reduced 

translation of UUG codons and consequently lower expression of the UUG-rich protein ND6 

(Kirino et al., 2004). Similarly, the mutation m.8344A>G  in the mt-tRNALys  leads to  

absence of τm5s2U modification and is characterized by severe translation deficiency of both 

types of AAR codon (Yasukawa et al., 2001). It is hypothesized that the presence of each 

mutation possibly disturbs the recognition sites of the enzyme responsible for the 

modifications (Kirino and Suzuki, 2005, Kirino et al., 2006). As mentioned earlier, the 

unmodified U34 can recognize any of the four bases as long as the codon-anticodon 

interaction is stabilized by one or two GC pairing at the first two base pairings. However, the 

cognate codons of the tRNALeu(UUR) and tRNALys do not contain any G or C at the first or 

second position and the mutant tRNA with the unmodified uridine is not able to decipher the 

cognate codon effectively (Suzuki, 2014).  

 

Figure 4.3: Cloverleaf structures of human mt-tRNALeu(UUR) and mt-tRNALys with the 
following modifies nucleosides: 5-taurinomethyluridine and 5-taurinomethyl 2-
thiouridine. The pathogenic mutations of MELAS and MERRF are indicated. 
 

The identification of the enzymatic activity responsible for the τm5s2U modification in 

humans is still not fully understood. In E. coli, MnmE and GidA catalyse the incorporation of 

a carboxymethylaminomethyl at position 5 of the wobble uridine and the yeast homologs are 

MSS1 and MTO1. The human proteins GTPBP3 (MSS1) and MTO1, both localized in 
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mitochondria, were able to reverse the mitochondrial phenotype in corresponding yeast 

deletion strains (Li and Guan, 2002, Li et al., 2002) indicating that they are responsible for the 

taurinomethyl modification at carbon 5 of U34. It is hypothesized that GTPBP3 and MTO1 

use taurine for the mt-tRNA modification in a similar way to which E. coli use glycine. 

However, to date there is no evidence to support this theory (Suzuki, 2014). Mutations in 

these genes are associated with combined respiratory chain deficiency resulting in 

hypertrophic cardiomyopathy and lactic acidosis (Ghezzi et al., 2012, Baruffini et al., 2013, 

Kopajtich et al., 2014).  

The responsible enzyme for thiolation (s2) of the carbon 2 of U34 is a mitochondrial specific 

thiouridylase called MTU1, also known as TRMU. It has been suggested that the initial step of 

2-thiolation might rely on the cysteine desulfurase NFS1, a component of the iron sulfur 

cluster assembly machinery for supplying the sulfur atom (Nakai et al., 2004). Afterwards, the 

sulfur from the cysteine is transferred to still unknown sulfur mediators. The final step of the 

2-thiolation is conducted by MTU1 by using the activated sulfur from the mediators (Umeda 

et al., 2005). According to studies, deletion mutants of MTU1 in yeast led to impaired 2-thio 

modification of the mitochondrial tRNAs for Lys, Glu and Gln (Umeda et al., 2005).  

 

Figure 4.4: Schematic diagram of the biosynthetic pathway that introduces the τm5 and 
τm5s2 modifications of mitochondrial tRNAs. The structures in the brackets represent 
the E. coli homologs (Umeda et al., 2005). 
 

Although mutations in MTO1 and TRMU are associated with hypertrophic cardiomyopathy 

and acute infantile liver failure respectively, mitochondrial protein synthesis is not affected 

consistently in patients’ cell lines (Zeharia et al., 2009, Ghezzi et al., 2012, Sasarman et al., 



70 
 

2011).  This suggests that mitochondrial dysfunction might not only be caused by the 

impaired mt-tRNA modification but by an unknown mechanism, also contributing to the 

phenotype (Armengod et al., 2014).  

In addition to that, it has been shown that the mutation m.3243A>G which causes MELAS 

syndrome, activates retrograde signalling involving ROS, kinase JNK, retinoid X receptor α 

and transcriptional coactivator PGC1α (Chae et al., 2013), which results in reduced mRNA 

levels of nuclear-encoded OXPHOS enzymes via transcriptional regulation.  Therefore, the 

mitochondrial dysfunction is further impaired. It has also been shown that ROS production 

triggers the expression of microRNA 9/9*. As a result, the protein levels of TRMU, GTPBP3 

and MTO1 decrease due to mRNA destabilization given that TRMU, GTPBP3 and MTO1 

mRNAs are direct targets for the microRNA (Meseguer et al., 2015). Considering all the data 

together, it is hypothesised that the ROS-dependent induction of microRNA9/9* in MELAS 

cells may significantly contribute to the observed mitochondrial dysfunction. 

Although the primary function of mitochondria is to generate ATP, a small fraction of 

electrons from electron transport chain are transferred directly to O2, resulting in the 

generation of the superoxide anion, which can give rise to other reactive oxygen species 

(ROS) as well as reactive nitrogen species (RNS). Therefore, mitochondria are the major 

source of ROS in the cell. The ROS production is not harmful under physiological conditions 

as they play a signalling role in the cell. However, under pathological conditions where there 

is an impairment of the mitochondrial function, the ROS production can be increased. The 

main mechanism of antioxidant defence against ROS and electrophiles is glutathione (GSH). 

The de novo synthesis of GSH consists of two sequential enzymatic ATP-dependent 

reactions. In the first step, cysteine and glutamate are linked to form γ-glutamylcysteine; a 

reaction catalysed by the γ-glutamylcysteine synthase (γ-GCS). This step is rate-limiting in 

the synthesis of GSH and highly dependent upon cysteine availability. In the second step, the 

γ-glutamyl-cysteine is linked to glycine by glutathione synthetase (GS) and the final product 

is GSH. The synthesis of GSH occurs strictly in the cytosol and is distributed to other 

organelles (Marí et al., 2009). The mitochondrial GSH (mGSH) arises from the cytosol by the 

activity of specific carriers named 2-oxyglutarate carrier (OGC) and dicarboxylate carrier 

(DIC). The mGSH is a critical component of the antioxidant defensive system preventing and 

repairing oxidative damage generated during normal aerobic metabolism (Marí et al., 2013).  

In conclusion, although the mechanism underlying MELAS and MERRF syndromes is the 

absence of the post-transcriptional modification, it has been shown that other mechanisms, 



71 
 

like increased ROS production, also impair mitochondrial translation. However, cysteine 

seems to be a key between these underlying processes as it plays a pivotal role in the 

taurinomethylation and 2-thiolation U34 since cysteine is the precursor of taurine and is also 

essential for the GSH synthesis.   

 L-cysteine and N-acetylcysteine 
L-cysteine (Cys) is a semi-essential amino acid encoded by the codons UGU and UGC, and 

the cysteine’s thiol group is of vital importance for a variety of critical enzymatic reactions 

within the cell. L-cysteine, along with glutamate (Gln) and glycine (Gly), comprise the main 

building block of glutathione (GSH), the most important antioxidant in the cells. Moreover, 

L-cysteine plays a pivotal role in a number of cellular processes, such as protein synthesis, 

iron-sulfur (Fe-S) biogenesis, taurine biosynthesis and regulatory and structural changes in 

proteins. The transport of cysteine is regulating cellular biosynthesis as well as modulating the 

availability of sulfur for mitochondrial metabolism. Experimental evidence suggests that 

cysteine is transported mainly by the alanine-serine-cysteine (ACS) system. The ACS system 

is a ubiquitous system of Na+-dependent neutral amino acid transport in a variety of cells 

(Bavarsad Shahripour et al., 2014).  

In the neonatal period, the availability of cysteine is limited due to reduced endogenous 

synthesis of cysteine from methionine by the transsulfuration pathway. The activity of the 

rate-limiting enzyme in the pathway, cystathionase, is very low at birth and increased slowly 

during the first few months of life. Therefore, cysteine is an essential amino acid in preterm 

infants (Zeharia et al., 2009).  

N-acetyl cysteine (NAC) is a derivative of cysteine wherein an acetyl group is attached to a 

nitrogen atom. It is a membrane-permeable cysteine precursor that does not require active 

transport so it can enter the cell passively.  When free NAC enters a cell it is rapidly 

hydrolysed to release cysteine. Initially, NAC was used as an antidote of acetaminophen 

(Paracetamol) overdose (Green et al., 2013). However, in recent times it has become a widely 

utilised nutritional supplement due to its reported antioxidant nature. 

 Moreover, NAC has been trialled as a treatment for a variety of medical conditions such as 

chronic obstructive pulmonary disease, contrast induced nephropathy, atrial fibrillation and 

HIV and influenza A infection, and is considered a relatively well-tolerated and safe 

medication (Deepmala et al., 2015).  
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In recent years, NAC has also been suggested as a putative therapeutic target for psychiatric 

and neurological disorders. According to preclinical studies, NAC may modulate a number of 

pathophysiological processes such as oxidative stress (Smaga et al., 2012), neurogenesis, 

apoptosis, mitochondrial dysfunction and inflammation within the brain, and all of which 

have been shown to be involved to differing degrees in a number of neurological disorders 

(Deepmala et al., 2015) such as Alzheimer’s disease (AD) (Sandhir et al., 2012). 

Regarding the regulation of the mitochondrial dysfunction, supplementation with NAC has 

been shown to regenerate the mitochondrial membrane potential in animal models of 

inflammatory bowel disease. As a result, the membrane permeability and apoptosis were 

decreased (Amrouche-Mekkioui and Djerdjouri, 2012). Similar effects on the membrane 

potential were detected in lung epithelial cells, animal model of myocardial infraction (Basha 

and Priscilla, 2013) and Huntington’s disease (Sandhir et al., 2012).  

Also, supplementation with L-cysteine has been shown to improve the thiolation and reverse 

the mitochondrial defect in patients’ cells suffering from Reversible Infantile Respiratory 

Chain Deficiency (RIRCD) and from reversible infantile hepatopathy due to TRMU 

deficiency (Boczonadi et al., 2013).  

 Aims  

 As discussed previously, studies by our group have shown that supplementation with L-

cysteine could be used as potential treatment for patients that suffer from Reversible Infantile 

Respiratory Chain Deficiency (RIRCD) and from reversible infantile hepatopathy due to 

TRMU deficiency. The genetic cause of the RIRCD is a homoplasmic tRNAGlu mutation 

(Boczonadi et al., 2013).  

It has been suggested that since the availability of cysteine (which is crucial for normal 

TRMU activity) in the neonatal period is limited by the low activity of the cystathionase 

enzyme, dietary cysteine intake may be very important at this age. RIRCD myoblasts showed 

low in-gel activities of the respiratory chain enzymes, however adding L-cysteine to the 

culture medium fully reversed this defect. Furthermore, L-cysteine prevented the decrease of 

mitochondrial translation in TRMU deficient cells, TRMU down-regulated RIRCD cells and 

controls, further supporting the hypothesis that low cysteine concentrations may play a role in 

triggering reversible in vitro mitochondrial translation defects (Boczonadi et al., 2013).  
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As discussed earlier, the mutations m.3243A>G and m.8344A>G are associated with MELAS 

and MERRF syndromes respectively. Both mutations lead to absence of τm5U and τm5s2U 

modification respectively. Taken together, it was hypothesized that supplementation of cells 

of patients with MELAS and MERFF syndrome with L-cysteine/N-acetylcysteine could 

reverse the mitochondrial defect through cysteine acting as a sulfur donor to improve the 

taurinomethylation and 2-thiolation of U34 and possibly increase the production of GSH 

leading to an improvement of the impaired mitochondrial translation and function 

simultaneously.  

In the study, four cell lines carrying autosomal recessive mutations in MTO1 and TRMU 

genes and two further cell lines with nuclear mitochondrial disease of different 

pathomechanism (ELAC2 and COX10) were also included. ELAC2 encodes an endonuclease, 

responsible for the removal of the 3-prime extensions from tRNA precursors, which is an 

essential step in tRNA biogenesis and mutations of this gene were associated with early onset 

cardioencephalomyopathy (Haack et al., 2013). COX10 encodes a cytochrome c oxidase 

(COX) assembly protein involved in the mitochondrial heme biosynthetic pathway, by 

catalyzing the farnesylation of a vinyl group, resulting in the conversion of protoheme (heme 

B) to heme O. The COX10 protein is required for the expression of functional COX 

(Antonicka et al., 2003a) and mutations in this gene result in multisystem mitochondrial 

disorders (Antonicka et al., 2003a, Pitceathly et al., 2013). 

The aims of the project were firstly to determine safe tolerable levels of L-cysteine and NAC 

for in vitro studies with fibroblasts; secondly to determine whether L-cysteine and NAC have 

an effect on translation and eventually mitochondrial function and thirdly to determine 

whether this effect is specific upon the causative genotype of the different mitochondrial 

deficiencies studied.  

 Materials and methods 

The patients used for this study carried pathogenic mutations in mitochondrial tRNA genes 

(m.3243A>G MELAS, m.8344A>G MERRF), in nuclear genes affecting the mitochondrial 

protein synthesis (MTO1, TRMU and ELAC2) or the respiratory chain complex assembly 

(COX10). All cell lines were primary fibroblasts apart from the cell lines carrying the 

mutations in MTO1 and TRMU genes. The patients carrying the mutations in TRMU, MTO1 

and ELAC2 have been previously reported (Schara et al., 2011, Taylor et al., 2014, Boczonadi 
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et al., 2013). The precise position of the mutations and the phenotype of the patients used for 

this study can be found in Table 4.1.  

 

CELL LINES 

 

 

GENETIC DEFECT 

 

CLINICAL PRESENTATION 

MELAS 1 m.3243A>G (Heteroplasmy: 55%) diabetes, deafness, pigmentary 
retinopathy 

MELAS 2 m.3243A>G (Heteroplasmy: 90%) diabetes, deafness, epilepsy, 
ataxia, peripheral neuropathy 

MERRF 1 m.8344A>G (Heteroplasmy: 83%) 

 

myoclonic epilepsy 

MERRF 2 m.8344A>G (Heteroplasmy: 95%) myoclonic epilepsy, ataxia, 
neuropathy, myopathy 

MERRF 3 m.8344A>G (Heteroplasmy: Unknown) - 

TRMU c.711_712insG: p.Gln238Alafs*14 / 
c.1081_1082insAGGCTGTGC 

reversible infantile liver failure 

MTO1 c.631_631delG: p.Gly211Aspfs*3 / 
c.1282G>A: p.Ala428Thr 

infantile lethal cardio-
encephalomyopathy 

ELAC2 c.1478C>T: p.Pro493Leu / 

c.1621G>A: p.Ala541Thr 

infantile lethal cardio-
encephalomyopathy 

COX10 c.2T>C, p.Met1Thr homozygous 

 

infantile lethal Leigh syndrome 

Table 4.1: Summary of the clinical presentations and pathogenic mutations of the 
patients, whose fibroblasts were used in this study. 
 

By the end of supplementation, the cells were collected and measurement of oxygen 

consumption, BN-PAGE gels, heteroplasmy levels and mtDNA copy number was conducted. 

All the experiments were done in triplicates.  
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Figure 4.5: Schematic diagram of the steps followed during the supplementation with L-
cysteine and NAC. 
 

 Results 

 Effect of L-cysteine supplementation in MELAS and MERRF cell lines 
Initially, two different patient cell lines (MELAS1 and MERRF3) together with two control 

cell lines were supplemented with 1mM of l-cysteine for 9 days. By the end of the 

supplementation in both treated and untreated cell lines, the levels of oxygen consumption 

and protein expression levels of the respiratory enzymes were measured.  

 

Figure 4.6: Oxygen consumption in MELAS1 and MERRF3 primary fibroblasts. Black 
and grey bars represent the mean values of control and patients’ cell lines before and 
after the supplementation with 1mM of L-cysteine respectively. The corrected oxygen 
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consumption by the non-mitochondrial respiration (NMR) and mg of protein is 
represented as basal respiration, proton leak and maximal respiration. Only MERRF3 
presented a slight improvement in terms of oxygen consumption while MELAS1 cell line 
demonstrated impaired mitochondrial dysfunction after the supplementation. 
As shown in Figure 4.6, the levels of basal respiration of MELAS1 decrease after the 

supplementation whereas in MERRF3 there is a slight, but none significant increase 

(p=0.1848). Moreover, the levels of maximal respiration in the MERRF3 cell line are elevated 

after supplementation with L-cysteine (p=0.4). In theory, a decrease in maximum respiratory 

capacity is a strong indicator of potential mitochondrial dysfunction (Brand and Nicholls, 

2011).  

It is worth noting that the levels of basal respiration in both cell lines (MELAS1: p=0.87), 

MERRF3: p=0.6) are slightly higher compared to the control cell line showing that the 

heteroplasmy levels are possibly low. Indeed, measurement of mtDNA heteroplasmy levels 

revealed 54% heteroplasmy of the m.3243A>G mutation within the cell line. Different tissues 

have different bioenergetics thresholds and as patient’s bioenergetics capacity declines it 

eventually fall below the minimum threshold for that tissue and symptoms follow (Wallace 

and Chalkia, 2013). Typically, the threshold value for MERRF is in the range of 70-98% 

mutant to wild-type mtDNA (Tuppen et al., 2010) whereas for MELAS in the range of 20-

95% characterised by variability in different tissues. Although the heteroplasmy levels of 

MERRF3 were not measured, it is illustrated from the Figure 4.6 measurement that due to a 

compensatory mechanism the levels of oxygen consumption rate were, not significantly but, 

higher compared to the control.  

Respiratory chain enzyme complexes were detected by BN-PAGE and are illustrated in 

Figure 4.7. The expression of complex I increased in the MELAS1 cell line, but it was not 

significant. On the contrary, the expression levels of the other RC complexes do not present 

any increase. In the control cell line the relative expression of complex I was slightly 

increased. Lastly, in MERRF3 there is a small increase in the relative expression of all the 

complexes but none of the alterations are considered significant.  
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Figure 4.7: BN-PAGE gel representing the relative expression levels of the OXPHOS 
complexes before and after the supplementation with 1mM of L-cysteine in MELAS1 
and MERRF3 cell line. 
In conclusion, supplementation of MELAS1 and MERRF3 with 1mM of L-cysteine did not 

significantly improve the function of the mitochondrial respiratory chain in patients’ 

fibroblast cell lines. Therefore, the dose of L-cysteine was increased. Several concentrations 

of L-cysteine (2mM-10mM) were studied in a control cell line for 9 days. It was observed, 

that concentrations higher than 5mM inhibited the cell growth and resulted in precipitation of 

the L-cysteine in the growth medium. Hence, the supplementation of MELAS and MERRF 

cell lines was repeated using 4mM of L-cysteine, as this was the maximum dose which did 

not appear to cause any adverse effect on the control cell line. Furthermore, three new cell 

lines (MELAS2, MERRFF1 and MERRF2) carrying the mutations m.3243A>G and 

m.8344A>G respectively were included.   

Two new cell lines (MERRF1, MERRF2) carrying the mutation m.8344A>G were therefore 

supplemented with 4mM of L-cysteine for 9 days. Both of the cell lines showed increased 

levels of basal respiration after the supplementation. In addition to that, the maximal 

respiration levels were also increased (Figure 4.8A). Interestingly, it appeared that the 

MERRF2 cells showed a slightly greater increase (p=0.06) in basal respiration compared to 

MERRF1 (p=0.1), although these differences were not statistically significant (paired t-test). 

The degree of mtDNA heteroplasmy for the m.8344A>G mutation, measured before and after 

the supplementation to exclude that the changes in oxygen consumption caused by a shift in 

the level of heteroplasmy, revealed no significant change (83% (±5%) and 95% (±5%) for 



78 
 

MERRF1 and MERRF2 respectively after supplementation). It was noted that the greatest 

increase of oxygen consumption was detected in the cell line with the higher mutation rate 

(MERRF2).  

 

Figure 4.8: Oxygen consumption in MERRF (A) and MELAS (B) primary fibroblasts. 
Black and grey bars represent the mean values of control and patients’ cell before and 
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after the supplementation with 4mM of L-cysteine respectively. The corrected oxygen 
consumption by the non-mitochondrial respiration (NMR) and mg of protein is 
represented as basal respiration, proton leak and maximal respiration. Both MERRF1 
and MERRF2 cell lines represented a slight improvement in terms of oxygen 
consumption. On the contrary, from the MELAS cell lines only MELAS2 illustrated 
increased levels of oxygen consumption.  
Subsequently, two cell lines (MELAS1, MELAS2) carrying the mutation m.3243A>G were 

supplemented for 9 days with 4mM of L-cysteine. One of the two primary cell lines 

(MELAS2) demonstrated increased levels of basal and maximal respiration after the L-

cysteine supplementation, while no change was observed in the basal respiration of MELAS1, 

which also exhibited a decrease in maximal respiration (Figure 4.8B). As mentioned 

previously, heteroplasmy levels of MELAS1 were 54% pre-supplementation, while the levels 

of mutated mtDNA in MELAS2 cell line was 88% pre-supplementation. Interestingly, similar 

to MERRF cell lines, the effect of L-cysteine was more pronounced in the cell line with a 

higher heteroplasmy level and eventually more severe mitochondrial defect (Basal respiration: 

MELAS1: p=0.47, MELAS2: p=0.19, paired t-test)  

Next, it was studied whether 4mM L-cysteine supplementation affects the steady state of 

mitochondrial respiratory chain complexes using BN-PAGE (Figure 4.9). Originally, all 

complexes except for complex II were low in both MERRF and MELAS cell lines confirming 

a severe defect of mitochondrial protein synthesis. The relative expression of all 

mitochondrial protein complexes showed a tendency to improve after supplementation 

(Figure 4.9). However, the very weak or non-detectable bands for complexes I and IV before 

supplementation in the MERRF cell lines did not allow to reach a conclusion on whether L-

cysteine supplementation was beneficial for these complexes. On the other hand, both 

MERRF cell lines presented increased relative expression of complexes III and V after 

supplementation with L-cysteine (Figure 4.9A).  

In the cell lines carrying the m.3243A>G mutation, the MELAS2 cell line showed increased 

relative expression in all four complexes containing mtDNA-encoded subunits after L-

cysteine supplementation, especially complexes III and V, which both showed a prominent 

increase. In the cell line harbouring lower m.3243A>G heteroplasmy levels (MELAS1 cell 

line), the relative expression of complexes I, III and V increased, though complex IV was not 

significantly compromised prior to supplementation. Interestingly, the relative expression of 

CIV decreased markedly after the supplementation. It is suggested that this decrease is due to 

formation of super-complexes that were not visible on the BN blots. It could be claimed that 

CIV is depleted but a possible depletion of that complex would impair radically the 

mitochondrial function but the measurements of the oxygen consumption do not indicate so.   
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Figure 4.9: BN-PAGE gels representing the relative expression levels of the OPXHOS 
complexes before and after the supplementation with 4mM of L-cysteine in MERRF (A) 
and MELAS (B) primary fibroblasts. Both MERRF cell lines illustrated increased 
expression levels of CIII and CV. Furthermore, expression levels of all complexes in 
both MELAS cell lines (apart from CIV) were elevated. CI and CIV could not be 
detected in MERRF cell lines due to high mutations rate affecting mostly these 
complexes. 
In summary, although none of the changes in single complex expression levels were 

statistically significant, the relative expression of all complexes/mitochondrial proteins 

showed an increasing trend after the supplementation with L-cysteine suggesting that L-

cysteine improves the translation of mtDNA encoded proteins. Taken together, the data 

support that L-cysteine improves the mitochondrial function in cells carrying the m.8344A>G 

and m.3243A>G mutations, and furthermore, that the L-cysteine supplementation shows a 

greater predilection to improvement mitochondrial function in cells with higher levels of 

mtDNA heteroplasmy. Some non-specific bands representing subcomplexes of complex V 

became slightly weaker after the supplementation with L-cysteine, but this was not 

quantifiable due to variable involvement of multiple bands.  



81 
 

 Effect of L-cysteine supplementation in cell lines with nuclear mutations 
To study whether the positive effect of L-cysteine is specific only for the mitochondrial 

disorders MELAS and MERFF, three fibroblast cell lines from patients carrying various 

nuclear defects of mitochondrial protein synthesis (MTO1, ELAC2 and TRMU) and one cell 

line carrying a homozygous mutation in COX10, a nuclear-encoded COX assembly gene 

(Table 4.1) were also supplemented.  
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Figure 4.10: Oxygen consumption before and after the supplementation with 4mM of L-
cysteine in primary and immortalised fibroblasts carrying mutation in MTO1 (A), 
TRMU (A), COX10 (B) and ELAC2 (B). Black and grey bars represent the mean value of 
control and each different cell line before and after the supplementation. The corrected 
oxygen consumption by the non-mitochondrial respiration (NMR) and mg of protein is 
represented as basal respiration, proton lean and maximal respiration. L-cysteine 
supplementation resulted in slight or moderate decreased of oxygen consumption rate in 
all cell lines with the higher decrease in TRMU cell line. (Dr Juliane Muller) 
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As shown in Figure 4.10A-4.10B, the basal respiration rate prior to supplementation was not 

statistically significantly different in any of the four patient cell lines compared to the controls 

in the resting state, and the cell line carrying the TRMU mutation presented higher oxygen 

consumption rate compared to the control. This observation implies that the fibroblasts 

carrying pathogenic nuclear DNA mutations do not cause severe mitochondrial dysfunction, 

presumably mediated by compensatory mechanisms. Supplementation with L-cysteine caused 

a slight to moderate decrease of basal respiration in all cell lines. Remarkably, the levels of 

basal and maximal respiration in TRMU cells fell back to similar levels compared to the 

control cell line after the supplementation, which may suggest that less active compensatory 

upregulation was needed after the supplementation.   

Interestingly, the level of maximal respiration in the MTO1 mutant cell line is significantly 

increased (p<0.05, paired t-test) after the L-cysteine supplementation. The increase in 

maximal respiration was statistically significant in cells carrying the recessive mutations in 

COX10 (p<0.01, paired t-test) and ELAC2 (p<0.05, paired t-test). 

Prior to supplementation, a significant reduction of the expression of complex I was observed 

in MTO1 deficient fibroblasts (Figure 4.11A) together with a reduction in complex IV 

expression levels in cells carrying the homozygous COX10 mutation (Figure 4.11B). Relative 

expression of the remaining complexes was not significantly different compared to the 

control. Supplementation with L-cysteine resulted in a slight but none significant increase in 

the relative expression of complexes I, III and V in cells with MTO1 mutations and an even 

milder increase of the same three complexes in the ELAC2 line (Figure 4.11). A uniform 

decrease of complex IV, as observed in MELAS patients, was present in all patient cells and 

controls after the supplementation. Overall, the decrease in the relative expression of the 

respiratory chain enzymes is consistent with the observed decrease in oxygen consumption in 

all the cell lines.  
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Figure 4.11: BN-PAGE gels representing the relative expression levels of each different 
complex of the respiratory chain enzyme before and after the supplementation with 
4mM of L-cysteine in primary (COX10, ELAC2) and immortalised fibroblasts (MTO1, 
TRMU). Expression levels of CIV are decreased in all the cell lines after the 
supplementation whereas relative expression of CIII and CIV are elevated. 

 Effect of NAC supplementation  
Supplementation with 4mM of NAC was performed in the same MELAS and MERRF cell 

lines used for L-cysteine supplementation.  

Surprisingly, as shown in Figure 4.12A-4.12B NAC supplementation with NAC did not have 

the same positive effect on the overall mitochondrial function as observed previously with L-

cysteine. Similarly, the degree of heteroplasmy was not altered by supplementation of NAC in 

both cell lines. Although, the chemical structure of NAC differs only by an acetyl group 

compared to the chemical structure of L-cysteine, supplementation with NAC in MERRF and 

MELAS cell lines not illustrated any positive effect. 
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Figure 4.12: Oxygen consumption in MERRF (A) and MELAS (B) primary fibroblasts. 
Black and grey bars represent the mean values of control, MERRF and MELAS cell 
lines before and after the supplementation with 4mM of NAC. The corrected oxygen 
consumption by the non-mitochondrial respiration (NMR) and mg of protein is 
represented as basal respiration, proton leak and maximal respiration. Both MERRF 
and MELAS cell lines presented slightly decreased levels of oxygen consumption 
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On the other hand, supplementation with NAC resulted in improved mitochondrial function in 

both MTO1 and TRMU deficient cells (Figure 4.13A-4.13B) as implied by the higher levels of 

basal and maximal respiration compared to the control. The increase of basal respiration rate 

in both MTO1 and TRMU deficient cells was statistically significant (p<0.01, paired t-test). 

Regarding the maximal respiration rate, the increase was only statistically significant in the 

MTO1 cell line (p<0.01, paired t-test) but not in the TRMU cell line. The levels of basal and 

maximal respiration were decreased in both ELAC2 and COX10 deficient cell lines after the 

supplementation with NAC but not significantly.  
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Figure 4.13: Oxygen consumption before and after supplementation with 4mM of NAC 
in primary and immortalised fibroblasts carrying mutations in MTO1 (A), TRMU (A), 
COX10 (B) and ELAC2 (B). Black and grey bars represent the mean values of control 
and each different cell line before and after the supplementation. The corrected oxygen 
consumption by the non-mitochondrial respiration (NMR) and mg of protein is 
represented as basal respiration, proton leak and maximal respiration. Immortalised 
fibroblasts carrying mutations in MTO1 and TRMU illustrated elevated levels of oxygen 
consumption rate after the NAC supplementation whereas both cell lines carrying 
mutations in COX10 and ELAC2 were characterised by slightly decreased levels of 
oxygen consumption. 
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 Mitochondrial DNA copy number showed no major alteration after 
supplementation with L-cysteine or NAC 

The quantification of mtDNA copy number before and after the supplementation with L-

cysteine revealed a slight increase in copy number in MERRF1 (36%, p>0.05), MERRF2 

(27%, p>0.05), COX10 (51%, p<0.05) and MTO1 (113%, p>0.05) cell lines, a decrease in 

TRMU cells (150%, p>0.05), and no change in ELAC2 cells (Figure 4.14).  

On the other hand, mtDNA copy number tended to decrease after NAC supplementation in 

almost all the cell lines except for COX10 and ELAC2 cell lines (Figure 4.14).   

 

Figure 4.14: Quantification of relative mtDNA copy number before and after 
supplementation with 4mM of NAC (A) and L-cysteine (B). MtDNA copy number in cell 
lines carrying mitochondrial mutations and mutations in MTO1 and TRMU was 
decreased after supplementation with NAC whereas cell lines carrying mutations in 
COX10 and ELAC2 were characterised by a relative mtDNA copy number after the 
NAC supplementation. L-cysteine supplementation led to increased mtDNA copy 
number in MERRF cell lines and cell lines carrying mutations in MTO1 and COX10. 
The relative mtDNA copy number was significantly decreased in TRMU cells and 
remained stable in ELAC2 cell after the L-cysteine supplementation. 
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 Discussion 

Both primary and secondary mitochondrial disorders are a large, heterogeneous group of 

progressive diseases for which there are no effective established treatments to date. Only a 

few effective therapies are available for only a few mitochondrial disorders.  

Two of the most common mitochondrial diseases caused by mutations in the mtDNA, are 

MELAS and MERRF. The MELAS syndrome is caused by the pathogenic mutations 

m.3243A>G and m.3271T>C  which result in lack of taurine modification at the wobble 

position of tRNALeu, leading to reduced translation of UUG codons but not UUA (Kirino et 

al., 2004) and consequently reduced expression of the respiratory chain complexes I and IV 

(Umeda et al., 2005). Regarding the pathogenic mutation m.8344A>G, which is associated 

with the MERRF disorder, the lack of both τm5 and s2 modification in the in tRNALys means 

that none of the codons for Lysine are able to be decoded (Yasukawa et al., 2001). The 

precise mechanism of 2-thiolation of uridine at the wobble position of mt-tRNAs for Gln, Glu 

and Lys and the insertion of the taurinomethylation at carbon 5 post –transcriptionally in 

humans is not fully understood yet. However, it has been shown that TRMU is the responsible 

enzyme for the 2-thiolation of carbon 5 of U34 (Guan et al., 2006) and MTO1 with GTPBP3 

for the taurinomethylation of carbon 5. Mutations in these genes have been associated with 

secondary mitochondrial disorders (Zeharia et al., 2009, Ghezzi et al., 2012, Baruffini et al., 

2013) 

L-cysteine is an amino acid that is required for several key elements of cellular function 

including the biosynthesis of taurine and glutathione, and it has previously been shown that 

supplementation with L-cysteine is able to augment mitochondrial translation in myoblasts 

with reversible infantile mitochondrial diseases in vitro (Boczonadi et al., 2013). Previous 

studies have shown that a whey-based cysteine donor resulted in significantly reduced 

oxidative stress in mitochondrial myopathies (Mancuso et al., 2010) and lower levels of 

reduced cysteine and thiols were detected in plasma of children with mitochondrial diseases 

(Salmi et al., 2012) further supporting the key role of cysteine in the mitochondrial disorders.  

As explained above, NAC has been tested as a potential treatment in several neurological and 

psychiatric conditions and may be an excellent compound with an acceptable safety profile 

(Deepmala et al., 2015). Both in vivo and in vitro studies support the utility of NAC as 

potentially viable treatment method of mitochondrial disorders. In in vivo models it has been 

shown to have a beneficial effect in ethylmalonic encephalopathy (Viscomi et al., 2010) and 



90 
 

in fibroblasts carrying pathogenic mutations in the TRMU and TSFM mutations  in vitro 

(Soiferman et al., 2014).  

Based on previous data showing that L-cysteine could reverse the mitochondrial defect in two 

reversible mitochondrial diseases (Boczonadi et al., 2013) and due to the nature of the 

mitochondrial translational defect in MELAS and MERRF, it was hypothesized that L-

cysteine could act as a sulfur donor  and precursor of taurine and consequently improve 

mitochondrial translation.  

The presented results show an improvement in mitochondrial function in primary fibroblasts 

cells carrying the mutations m.3243A>G and m.8344A>G after 9 days of supplementation 

with 4mM of L-cysteine. Furthermore, in the cell lines where the oxygen consumption rate 

was elevated after the supplementation (MERRF1, MERRF2, MELAS2), increased relative 

expression of all the complexes of the respiratory enzymes was observed. However, due to 

high heteroplasmy levels in MERRF cell lines, it was not possible to study the effect of L-

cysteine on the expression levels of complexes I and IV. Surprisingly, it was not detected a 

similar positive effect in MELAS and MERRF cell lines after the supplementation with 4mM 

of NAC. It has been shown that in patient cell lines carrying an mtDNA mutation usually the 

mtDNA population drift towards the wild type and it has been shown that cell lines with 

higher passage number are likely to contain less mutant mtDNA (van de Corput et al., 1997). 

In this study the mutation rate in MELAS and MERRF cell lines was approximately the same 

before and after the supplementation.   

Furthermore, it was also studied the effect of L-cysteine and NAC supplementation in four 

fibroblasts cell lines carrying mutations in the MTO1, TRMU, ELAC2 and COX10 genes. 

According to the presented data, supplementation with L-cysteine was slightly beneficial to 

the cell lines carrying mutations in MTO1, COX10 and ELAC2 genes causing an increase in 

maximal respiration rate. The immortalised fibroblasts carrying the mutations in TRMU 

illustrated significantly increased oxygen consumption rate prior to supplementation implying 

the presence of a compensatory mechanism and after the supplementation the levels of basal 

respiration, proton leak and maximal respiration dropped back to normal compared to the 

control cell line. Interestingly, NAC supplementation had a positive effect in both MTO1 and 

TRMU mutated cell lines whereas COX10 and ELAC2 illustrated impaired mitochondrial 

function after the supplementation.  
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Figure 4.15: Schematic summary of the results presented 
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In summary, it is demonstrated that supplementation with 4mM of either L-cysteine or NAC 

of both primary and immortalised fibroblasts did not have any toxic effect. However, higher 

concentrations resulted in inhibition of the cell growth and precipitation of the supplement in 

vitro. 

Moreover, supplementation of primary mitochondrial disorders with L-cysteine resulted in 

improved overall mitochondrial function, preferentially in cell lines with higher heteroplasmy 

levels but in the secondary mitochondrial disorders it was not observed the same impact on 

the mitochondrial function. On the contrary, supplementation with NAC was more beneficial 

to the patients’ cell lines carrying mutation in the nuclear genes rather than MELAS and 

MERRF cell lines (Figure 4.15). According to the presented data, the relative expression of 

the respiratory chain complexes and demonstrated changes revealing the effect of the 

supplementation on the mitochondrial translation.  

However, the differential effect of L-cysteine and NAC supplementation raises some 

interesting questions and needs further exploration. It is known that cysteine can follow 

different metabolic pathways, depending on the needs of the cell each time. Consequently, in 

different cell types different metabolic pathways are more active. Based on that and on our 

presented data, it is hypothesised that the differential effect of L-cysteine and NAC 

supplementation might be due to the different causative genotypes leading to the 

mitochondrial disorders. The presence of different mutations (primary or secondary) leading 

to mitochondrial disorders might activate different metabolic pathways of L-cysteine and 

NAC in each cell. Therefore, the products might be slightly different and hence the total 

effect on the cell metabolism.  

It is accepted that the cell model used for this study comprises a limitation in interpreting the 

effect of the supplementation. The bulk of mitochondrial diseases are tissue specific and the 

defect might therefore not be detectable in all cell types. For example, as discussed below, the 

fibroblasts carrying the TRMU mutation illustrated significantly increased mitochondrial 

function compared to the control and the oxygen consumption rate of all the cell lines 

carrying nuclear mutations were relatively high given the phenotype of the patients. 

Furthermore, either healthy or disease fibroblasts rely on glycolysis as their main source of 

energy.  Therefore, the expression levels and activity of the respiratory chain enzymes are 

relatively low and possibly difficult to detect or measure them (Robinson, 1996, Cameron et 

al., 2004). Myoblasts would possibly comprise a more appropriate cell model, as muscle is 
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one of the mostly affected tissues in mitochondrial diseases, but are difficult to obtain from 

patients in comparison to fibroblasts derived from a skin biopsy.  

However, NAC and L-cysteine may be still useful not only in protecting the cell from high 

levels of ROS production due to mitochondrial dysfunction, but also enhance the 

mitochondrial translation when is needed. Further work should aim to determine the degree of 

correlation in mitochondrial functional studies between fibroblasts and myoblasts from the 

same individuals, together with determining whether there is a tissue specific effect of L-

cysteine and NAC in patients with primary and secondary mitochondrial disorders 

respectively. Finally, similar studies can be recapitulated in mice and only after clinical trials 

can be considered.  
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 Tissue specificity  

 

 Overview 

 Tissue specificity  
In the bulk of mitochondrial diseases, the relationship between the percentage of a pathogenic 

mtDNA mutation and the development of a specific phenotype is still puzzling (Rossignol et 

al., 2003). It has been shown that the same mtDNA mutation can result in different clinical 

manifestations and conversely, the same clinical feature can be occurred by different mtDNA 

mutations. Furthermore, different biochemical defects of the same respiratory chain enzyme 

may lead to different clinical phenotypes. The same variability in the expression of a mtDNA 

mutation or biochemical defect can be observed between different patients and also between 

different tissues in a given individual (tissue specificity) (Rossignol et al., 2003, Boczonadi 

and Horvath, 2014).   

This variability between the cells and tissues of an individual can be partly explained by the 

complex characteristics of mitochondrial genetics. As has been discussed previously, every 

mammalian cell consists of a mobile network of mitochondria containing thousands of copies 

of mtDNA. Hence, mutated and wild-type copies of mtDNA can coexist (heteroplasmy) 

within one cell. The heteroplasmy levels may also vary between different individuals or even 

between cell or tissues within the same patient (Chinnery et al., 1999) and that can explain the 

observed clinical variability between individuals carrying the same mtDNA mutation.  

Theoretically, according to the maternal inheritance pattern of human mtDNA, the mutations 

accumulate slowly through the generations until a mutant threshold level is reached, followed 

by the manifestation of a disease (Poulton et al., 2010).  The responsible mechanism for the 

prevention of the transmission of defective mtDNA to offspring (Ylikallio and Suomalainen, 

2012) is the genetic bottle-neck of the mtDNA in the developing primordial germ  cells 

(Poulton et al., 2010). Due to the presence of the mtDNA genetic bottleneck, only a small 

subset of the mtDNA copies, originally located in the oocyte, populate the germ cells that will 

become the next generation. The bottleneck might be responsible for a strong reduction in 

mtDNA copy number in primordial germ cells which is followed by amplification and 

random segregation of mtDNA species during the germ cell division (Cree et al., 2008). Other 

studies claim that the bottle-neck results from the replication of only a subset of mtDNAs in 
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primary oocytes that undergo folliculogenesis (Wai et al., 2008). Both ways, heteroplasmy 

levels can be shifted rapidly during generations and for this reason members from the same 

family carrying the same pathogenic mtDNA mutation might be characterised by conspicuous 

clinical variability. Studies conducted in a mouse model of mtDNA disease have shown that 

during germ cell or oocyte development the severely defective mtDNA molecules (Fan et al., 

2008, Stewart et al., 2008). Therefore, this purifying selection might be the reason why 

moderately pathogenic mtDNA mutations, which do not cause complete inhibition of the 

OXPHOS system, can lead to late-onset diseases, while there is a selection against highly 

deleterious mtDNA mutations (Fan et al., 2008).  

Finally, studies have shown that mtDNA mutations may also occur sporadically in somatic 

tissues (Greaves and Turnbull, 2009). In that case, the mitochondria undergo clonal 

expansion, reaching a threshold (Greaves and Turnbull, 2009) level and eventually leading to 

a mitochondrial disorder at a later age (Fan et al., 2008).  

 Tissue specificity in MELAS syndrome  
One of the most frequent maternally inherited mitochondrial disorders is MELAS 

(mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. As 

discussed previously (1.3.1), the most common mutation associated with MELAS syndrome 

is m.3243A>G in the MT-TL1 gene encoding the tRNALeu(UUR), as it is detected in 80% of the 

affected individuals (El-Hattab et al., 2015). The mutation results in the absence of the τm5U 

modification of the uridine at the wobble position of tRNA for Leu and consequently leads to 

reduced translation of UUG codons and lower expression of the UUG-rich protein ND6 

(Kirino et al., 2004).  

The clinical manifestation of the MELAS syndrome is characterised by multi-organ 

involvement and a wide spectrum of clinical features. One of the primary features of MELAS 

is stroke-like episodes however these do not occur in the majority of the affected individuals. 

A study where different tissues from individuals with mitochondrial disorders were compared 

in terms of OXPHOS deficiency, showed that the frontal cortex of individuals carrying the 

heteroplasmic mutation m.3243A>G (heteroplasmy levels >89%) was characterised by 

deficient OXPHOS (decreased expression levels of complex I and IV) and significantly 

decreased ATP synthase expression levels (Fornuskova et al., 2008). Therefore, the 

investigation of the mitochondrial function of neurons from MELAS patients might enlighten 

the neurological manifestation of the disease and enable us to deeply understand the effect of 

the mutation on neuronal cell type function.  
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 Leukoencephalopathy with vanishing white matter disease 
One of the more prevalent genetically determined leukodystrophies in children is 

leukoencephalopathy with vanishing white matter (VWM) (van der Knaap et al., 2006). 

Vanishing white matter disease is a fatal disorder, clinically characterized by progressive 

motor dysfunction, mainly cerebellar ataxia and less prominent cognitive decline. Brain 

magnetic resonance imaging (MRI) from affected patients have shown a diffuse 

leukoencephalopathy with progressive white matter lesion and cystic degeneration.  

Mutations in the genes EIF2B1-EIF2B5, encoding the five (α-ε) subunits of the eukaryotic 

translation initiation factor 2B (eIF2B), have been associated with the disease (Leegwater et 

al., 2001, van der Knaap et al., 2002). Although the genes consisting of the eIF2B factor are 

ubiquitously expressed, mutations in those genes cause only a defect in the cerebral and 

cerebellar white matter.  

Although vanishing white matter may manifest during any decade of life, the early onset of 

the disease is usually between 2 and 6 years of age and leading to death often in childhood. 

On the other hand, the late-onset cases are characterised by slowly progressive 

encephalopathy in adults, and onset can be even as late as the 6th decade of life (Labauge et 

al., 2009). 

The eukaryotic translation initiation factor 2B is necessary for the initiation and regulation of 

the cytosolic translation in various conditions (Scheper et al., 2006). It is referred as guanine 

nucleotide exchange factor (GEF) as it catalyses the guanine nucleotide exchange on eIF2 

which results in conversion of inactive eIF2·GDP into active eIF2·GTP. The bulk of the 

eIF2B mutations lead to impaired GEF activity in vitro (Li et al., 2004, Richardson et al., 

2004).   

The neuropathology and progress of the disease has been reported earlier in human brain 

autopsies, and recently by MRI. In young pre-symptomatic patients, the MRI is characterised 

by mild abnormalities in the subcortical white matter indicating impaired myelination and 

extended abnormalities in the periventricular white matter with myelin vacuolization (van der 

Knaap et al., 1998, van der Lei et al., 2010). Progressively the MRIs are characterised by 

extension of white matter abnormalities and cystic degeneration. At the end stage of the 

disease, the white matter is cavitated, with areas of loss of all structures while the intact areas 

of white matter are characterised by vacuolization , a lack of myelin and increased number of 

OPCs (Oligodendrocyte Progenitor Cells) which do not develop into mature myelin-forming 

cells (Dooves et al., 2016). Finally, a limited number of oligodendrocytes have an abnormal 
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and foamy appearance (Hata et al., 2014).  Studies have shown that similar clinical phenotype 

was detected in mice carrying homozygous point mutations in Eif2b4 (p. Arg484Trp) and 

Eif2b5 (p.Arg191His) associated with VWM (Dooves et al., 2016).  

Although the cause of the myelin vacuolization is still not known, it is believed that the 

astrocytes play a major role in the pathomechanism of the disease (Dooves et al., 2016). It has 

been shown that human VWM astrocytes have an abnormal and immature morphology 

(Bugiani et al., 2011). According to another study, the number of immature astrocytes 

increases long before the clinical onset of the disease or before other histologic abnormalities 

manifest implying a strong correlation of the astrocytes with the disease progression (Dooves 

et al., 2016). In addition, it has been shown that human VWM astrocytes are characterised by 

GFAP expression which possibly affects the cytoskeletal architecture of astrocytes and their 

interaction with other cells including oligodendrocytes (Middeldorp and Hol, 2011).  

 Cellular disease models 
The study of these very tissue specific human mitochondrial disorders has been delayed by 

the inaccessibility of the relevant affected tissues and cell types. One of the affected tissues in 

a subset of mitochondrial diseases is the central nervous system but obtaining neuronal cells 

from humans is only possible post mortem. However, the recent developments of the 

technology enable us to generate different type of cells from the affected individuals.   

In 2006, Takashi et al were the first to generate pluripotent stem cells directly from fibroblasts 

cultures with only four reprogramming factors (Oct3/4, Klf4, Sox2, c-Myc). These induced 

pluripotent stem cells (iPSCs) carry the same characteristics as the embryonic stem cells 

(ESCs). Therefore, iPSCs have the ability to grow indefinitely while maintaining pluripotency 

and the ability to differentiate into the desired cell type (Takahashi and Yamanaka, 2006). A 

few groups have managed to generate patient-derived iPCSs carrying various heteroplasmic 

mtDNA mutations for in vitro cellular disease modelling.   

Fujikura et al generated patient-derived iPSCs carrying the m.3243A>G mutations from two 

patients with isolated diabetes mellitus, as the clinical phenotype. The generated iPSCs cell 

lines could be categorised to mutation rich (80%-90% heteroplasmy levels) and mutation free 

(undetectable levels of m.3243A>G mutation). The authors managed to differentiate the 

mutation rich patient-derived iPCSc cell line into endodermal lineage in which no changes in 

the heteroplasmy levels were detected (Fujikura et al., 2012).    
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Later, Cherry et al generated and characterized iPSCs from a patient carrying a heteroplasmic 

2.5kb mtDNA deletion leading to Pearson syndrome. In this study it was reported that a few 

of the generated iPSC lines were characterised by gradually decreasing heteroplasmy levels 

over the culture period and eventually low mutation iPSC lines were obtained. However, 

examination of the mitochondrial function in the mutation-rich iPSC cell line (~65% 

heteroplasmy levels) showed decreased basal respiration levels compared mutation-poor iPSC 

lines (Cherry et al., 2013).  

Folmes et al generated and characterised patient-derived iPSCs carrying the heteroplasmic 

m.13513G>A mutation from a patient with MELAS phenotype. The patient fibroblasts 

presented impaired mitochondrial function and from the three iPSC lines generated, two were 

characterised by high heteroplasmy levels (50%-60%) while the mutation was undetectable in 

the third cell line. Interestingly, similar to previous studies (Cherry et al., 2013), one of the 

mutation-rich iPSC line exhibited a gradual decrease of the heteroplasmy levels over the 

culture period and therefore a subpopulation of low level mutation iPSC line was obtained 

(Folmes et al., 2013).  

Hamalainen et al generated and characterised three isogenic iPSC lines (heteroplasmy levels 

>80%) and three isogenic mutation free iPSC lines derived from the same MELAS patient 

(m.3243A>G). The variable and instable heteroplasmy rate of the m3243A>G mutation 

enable generation of isogenic lines with different mutation rate. Afterwards, the iPSC lines 

underwent neuronal differentiation and the neurons derived from the mutation-rich iPSC lines 

were characterised by down-regulation of mitochondrial respiratory chain complex I and 

accelerated mitophagy via the PARKIN-PINK1 pathway. In addition, iPSC lines with high 

heteroplasmy levels also presented two-fold increase of the mtDNA copy number compared 

to the parental fibroblasts and a twofold increased in the number of visible nucleoids 

compared to the mutation-low or control iPSC lines (Hämäläinen et al., 2013).  

Finally, another study reported the generation and characterisation of patient-derived iPSCs 

from myoblasts obtained from a patient with a novel heteroplasmic mutation (m. 5541C>T) 

associated with MELAS syndrome. The derived iPSC lines were differentiated into neurons 

(CNS and PNS lineages) and a significant loss of terminally differentiated neurons was 

observed compared to their progenitors. According to the authors, the progenitors of both 

CNS and PNS lineages do not exhibit increased mitochondrial respiration state and as a result 

they are not affected by the mutation whereas the terminally differentiated cells present severe 

mitochondrial dysfunction (Kodaira et al., 2015, Hatakeyama et al., 2015).  
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The generation of patient-derived iPSC lines enable us to study different cell types affected by 

mitochondrial diseases, to explore new drug candidates that are applicable to mitochondrial 

diseases and even the implementation of regenerative therapeutics may be possible in the 

future. However, there are still a few difficulties to overcome. The iPSCs (similar to ESCs) 

contain rounded mitochondria with poor cristae structure and are characterised by low 

respiration capacity and reduced mtDNA copies as a result of their adaptation to glycolysis 

(Prigione et al., 2010, Suhr et al., 2010). It has been also reported that human iPSCs are 

characterised by new mtDNA variants at a single base level which do not exist at the parental 

somatic cells and are acquired during the cellular reprogramming or differentiation (Prigione 

et al., 2011) and finally the generation, characterization and differentiation of an iPSCs to 

neural cells requires lot of time (at least 4-6 months).  Therefore, the development of the 

direct conversion of mouse and human somatic cells (fibroblasts) to induced neural progenitor 

cells (iNPCs) facilitated the generation of specific cell types (Yang et al., 2011). The method 

of direct conversion utilizes the overexpression of cell type-specific transcription factors to 

cause lineage changes bypassing pluripotent cellular stage and eventually resulting in the 

desired cell type. The use of direct conversion enables us to reduce the required time for 

acquiring neural cells, skip the developmental stage of iPSCs and therefore help to focus on 

disease studies rather than stem cell studies (Kim, 2015).  One of the major advantages of this 

method is the fact that certain diseases, affecting the CNS mostly, can be modelled and 

examined in a short time. To date, in most cases the availability of isolated post-mortem 

tissue is limited. Moreover, it is not known how inflammatory and necrotic environment can 

affect the tissues (Meyer et al., 2014).  

 Aims 

1. Due to the tissue specificity and the severe neurological manifestation of MELAS 

syndrome in combination with the inaccessibility of human brain tissue fibroblasts 

from a heteroplasmic (m.3243A>G) MELAS patient were converted directly to 

neuronal cell types. The aim was firstly to generate induced neuronal progenitor cells 

(iNPCs) carrying the m.3243A>G mutation via the direct conversion, secondly 

characterise and investigate the mitochondrial function of those cells to explore how 

the m.3243A>G mutation affects neurons.  

2. Based on the similarities in clinical presentation of a patient carrying the p.Arg113His 

mutation in EIF2B5 to the clinical presentation of MELAS and on the identified 

isolated complex I defect in his muscle biopsy (see 5.3.2) it was hypothesized that the 

mitochondrial translation machinery may be affected in VWM. Therefore, fibroblasts, 
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myoblasts and patient derived-iNPCs were examined for mitochondrial translation 

defect.   

Although many different protocols regarding the direct conversion of fibroblasts to iNPCs 

have been published, we have followed the protocol published by Meyer et al (Meyer et al., 

2014). Briefly, the fibroblasts isolated from the affected individual were transduced with 

retroviral vectors containing four reprogramming factors (Oct3/4, Sox2, Klf4 and c-Myc). 

Following, the next 6-10 days the transduced cells underwent morphological changes and 

eventually generated tripotent iNPCs cells. The protocol and reagents used for the direct 

conversion are described in Chapter 3.  

 Results 

 Direct conversion of fibroblasts of a patient with MELAS (m.3243A>G) 
The fibroblasts carrying the heteroplasmic mutation m.3243A>G were isolated from the 

patient referred as MELAS 1 in Chapter 4. The clinical presentation of the patient is described 

in Table 4.1.  Measurement of heteroplasmy levels revealed 54% presence of m.3243A>G 

mutation in the MELAS 1 fibroblast cell line.  

The cells were transduced Day 0 with retroviral vectors containing four reprogramming 

factors (Oct3/4, Sox2, Klf4 and c-Myc) kindly provided by Dr. Kathrin Meyer (The Research 

Institute, Nationwide Children’s Hospital, Columbus). The cells were incubated overnight and 

the next day fresh DMEM/Glutamax growth medium was added for one day. On day 3 the 

cells were grown with conversion medium which consists of DMEM/F12 enriched with N2 

supplement, B27 supplement, EGF (epidermal growth factor) and FGF2 (fibroblast growth 

factor 2) growth factors and heparin. Approximately a week after the transduction, 

morphological changes should be detected as the cells from the flat fibroblastic shape usually 

become smaller with distinct extensions. Additionally, they should start to form sphere-like 

structures that can be picked up and cultured further as monolayers (Meyer et al., 2014).  
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Figure 5.1: Consecutive microscope images of the transduced fibroblasts carrying the 
heteroplasmic mutation m.3243A>G from day 3 after the transduction till day 21. 
As shown in Figure 5.1, from day 3 till day 5 the transduced cells started progressively to 

change morphology and accumulated to form sphere-like structures. However, on day 7 

although the cells kept their rounded-shape, they started losing their distinct extensions. 

Therefore, the cells were lifted and seeded on six-well culture plate coated by fibronectin. 

Fibronectin is used as a substrate to enhance the adherence and proliferation of many cell 

types. Moreover, on that day the growth medium was switched from conversion to NPC 

medium. As discussed in 3.10, the NPC medium consists of DMEM/F12 enriched with N2 

and B27 supplement and FGF2 growth factor. On day 9 the cells were observed under the 

microscope but their morphology was more similar to fibroblasts rather than iNPCs and no 

neurospheres could be found. The cells were kept in culture for 10 days onwards, however 

unfortunately their morphology remained stable (fibroblast-like) and after day 20 the cells 

started to die.  

The inefficient direct conversion of heteroplasmic m.3243A>G fibroblasts to iNPCs can be 

due to different reasons. It has been previously shown that above a certain threshold level 

(depending on the mtDNA mutation) of heteroplasmy the cellular reprogramming might be 

blocked although the cells might keep their pluripotent state (Yokota et al., 2015). As 

mentioned above, the heteroplasmy levels are not so high but the ATP levels and the non-

canonical function of the respiratory chain due to the mutation might have been an inhibitory 

factor for the direct conversion.   

Secondly, the appearance of the cells on day 7 might indicate that the cells were over stressed 

due to transduction and therefore only the non-transduced cells managed to survive and 
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proliferate. It is known that the cells carrying pathogenic mitochondrial mutations are 

characterised by oxidative stress due to ROS production. Therefore, the additional stress due 

to the cellular reprogramming might have resulted in accumulative stress that acted as 

obstacle for the direct conversion.  

Finally, the efficiency of the retrovirus vector transfection might have been poor and this may 

have underlain the failure of conversion to iNPCs  

 Mitochondrial dysfunction in fibroblasts and myoblasts carrying the 
homozygous mutation p.Arg113His in EIF2B5 

The patient is a 62-year-old man, only child of non-consanguineous English parents with no 

family history of neurological disease. At the age of 50 he developed balance problems and 

unsteadiness and from the age of 58 he is mostly wheelchair bound. His clinical examination 

revealed bilateral dysdiadochekinesis more on the left side with intention tremor. His vision, 

deep tendon reflexes and muscle tone were normal. He presented memory problems and had 

fluctuating cognitive decline. His MRI at the age of 54 showed prominent white matter T2 

hyperintesities with periventricular perivascular space dilatation. The corpus callosum and 

spinal cord were markedly atrophic. Based on the fluctuation and the MRI, the possibility of 

MELAS was suggested. Genetic screening for the m.3243A>G, ABCD1 

(adrenoleykodystrophy) and NOTCH3 (CASADIL, Cerebral Autosomal-Dominant 

Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) were negative.  

Next, his muscle biopsy showed an isolated complex I deficiency with increased complex II 

expression suggesting a mitochondrial proliferation while the levels of the rest respiratory 

chain enzymes were normal.  At the age of 58 years his MRI was compatible with vanishing 

white matter disease and the genetic analysis confirmed the homozygous p.Arg113His 

mutation in the EIF2B5 gene.  

Initially we measured the oxygen consumption of the fibroblasts carrying the homozygous 

mutation p.Arg113His in EIF2B5. As it shown in Figure 5.2 the oxygen consumption 

measurement did not illustrate any significant impairment of mitochondrial function. 

However, both basal and maximal respiration levels are slightly decreased in the patient’s cell 

line compared to the controls though the alteration are not statistically significant (p=0.1, 

p=0.26 respectively, unpaired t-test).  
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Figure 5.2: Oxygen consumption in fibroblasts carrying the homozygous mutation 
p.Arg113His om EIF2B5. Black and white bars represent the mean values of control and 
patient’s primary fibroblast cells respectively. The corrected oxygen consumption by the 
non-mitochondrial respiration (NMR) is represented as basal respiration, proton leak 
and maximal respiration. 
Following, the protein expression levels of the respiratory level chain enzymes measured by 

BN-PAGE are illustrated in Figure 5.3. As shown the BN-PAGE measurement did not show 

any alteration in the relative expression of the respiratory chain enzymes. The expression 

levels of all the complexes were normal, apart from complex V where the relative expression 

was slightly higher in the patient. The protein expression levels are normalised to porin 

expression levels.  
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Figure 5.3: BN-PAGE representing the relative expression of OXPHOS complexes in the 
control and patient primary fibroblasts. The quantification of the expression levels of 
the respiratory chain enzymes were normalized to porin expression levels.   
Based on the data obtained from the fibroblasts carrying the homozygous mutation, it is hard 

to reach any conclusion regarding the effect of the mutation on the mitochondrial function of 

fibroblasts. In addition, as it was discussed previously, the biochemical measurement revealed 

complex I deficiency in the patient’s muscle biopsy. Therefore, we measured the oxygen 

consumption and expression levels of the respiratory chain enzymes in myoblasts isolated 

from the patient.   

As shown in Figure 5.4 the oxygen consumption measurement in the myoblasts illustrated 

also no significant impairment of mitochondrial function. Although the basal respiration 

levels were slightly increased compared to the control, the maximal respiration levels were 

decreased implying slight impairment of the mitochondrial function (p=0.22, upaired t-test).  
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Figure 5.4: Oxygen consumption in primary myoblasts carrying the homozygous 
mutation p.Arg113His in EIF2B5. Black and grey bars represent the mean values of 
control and patient’s primary myoblast cells respectively. The corrected oxygen 
consumption by the non-mitochondrial respiration (NMR) is represented as basal 
respiration, proton leak and maximal respiration. 

 
Interestingly, the levels of proton leak are increased (p=0.09, unpaired t-test) compared to the 

control possibly demonstrating a defective ATP synthesis machinery.  

Finally, we extracted the whole protein from fibroblasts and myoblasts carrying the 

homozygous mutation and measured the expression levels of all the respiratory chain 

enzymes.  
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Figure 5.5: Quantification of the protein levels of the complexes of the respiratory chain 
enzymes by SDS-PAGE in both primary myoblasts (A) and fibroblasts (B). The relative 
expression of the complexes is normalised to porin  expression levels. 

 
As shown in Figure 5.5, in myoblasts the relative expression of all respiratory chain enzymes 

is significantly decreased except from complex III. On the other hand, in fibroblasts the 

expression levels of the respiratory chain enzymes are increased, especially of complexes I 

and IV. Furthermore, as shown in the figure, the expression levels of porin in the myoblasts 

are elevated compared to the controls. This may imply increased mitochondrial biogenesis 

rate and a compensatory mechanism of the mutated cells towards the mitochondrial defect. 

The striking abnormalities in the myoblasts compared to fibroblasts may indicate a defect of 

the mitochondrial translation in muscle and suggest a tissue specific manifestation.   

 Direct conversion  
The most affected cells in VWM are the oligodendrocytes and astrocytes. It has been shown 

that the quantity of astrocytes is increased long before the manifestation of the disease 

(Dooves et al., 2016). In order to examine the hypothesis whether the homozygous 

p.Arg113His mutation in the EIF2B5 gene cause a mitochondrial translation defect in more 
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affected cell types, it was attempted to directly convert the mutated fibroblasts to iNPCs. The 

protocol followed was the same to the one used for converting MELAS fibroblasts.    

 

Figure 5.6: Consecutive microscope images of the transduced fibroblasts carrying the 
homozygous mutation p.Arg113His from day 3 after the transduction till day 21. 
As shown in Figure 5.6, the cells showed morphological changes from day 3 after the 

transduction and started accumulating next to each other, to structure the neurospheres. On 

day 7 the cells were split, seeded on fibronectin coated wells and supplemented with NPC 

growth medium. On day 9 a mixture of round-shape cells and fibroblasts were observed under 

the microscope.  The cells were kept in culture and although they were accumulating 

progressively, they did not form neurospheres as expected. After day 21, the cells discarded.  

 The tendency of accumulation indicates a pluripotent state of the cells however the direct 

conversion is considered inefficient as no neurospheres were formed. This could be possibly 

explained by the poor quality of the retroviral vectors used for the direct conversion. On the 

other hand, the impaired cytosolic translation machinery might have also affected the 

efficiency of the direct conversion as the cells might have not been able to adapt to the 

increased needs required for the reprogramming.    

 Discussion  

The multi-organ involvement and tissue specificity of mitochondrial disorders due to 

mitochondrial translational deficiencies complicates the clinical diagnosis of the disease and 

the development of a potential treatment. Regularly, the affected post-mortem human tissue is 

of limited availability for further investigation and the necrotic environment might affect the 

quality of the tissue (Meyer et al., 2014). One of the main types of clinical manifestations of 
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mitochondrial disorders are the involvement of neuronal cell types. Therefore, the rapid 

development of cell reprogramming technology enabled scientists to generate cells of the 

desired type from somatic cells like fibroblasts. Although the generation and differentiation of 

iPSCs is already an established way to model neurons from an individual carrying the desired 

mutation, direct conversion of fibroblasts to iNPCs enables us to model and investigate how 

pathogenic mutations affect the CNS. Furthermore, the generation of iNPCs via direct 

conversion is less time-consuming compared to the generation of iPSCs and differentiation 

into neurons is possible. 

In this chapter, it was illustrated my attempt of direct conversion of fibroblasts carrying the 

heteroplasmic mutation m.3243A>G and the homozygous mutation p.Arg113His in EIF2B5 

to induced neuronal progenitor cells. Regarding the MELAS 1 cell line, although the cells 

initially presented morphological changes implying that the transduction was effective, on day 

9 their morphology was more similar to fibroblasts and they did not manage to form 

neurospheres. Regarding the VWM cell line, the cells seemed to have come to a pluripotent 

state but did not manage to form neurospheres. The outcome of the direct conversion both of 

MELAS 1 and VWM fibroblasts might due to a variety of reasons. It has been shown in 

previous studies, that heteroplasmic mitochondrial DNA mutation that lead to mitochondrial 

respiratory dysfunctions could block cellular reprogramming (Yokota et al., 2015). According 

to Yokota et al, the generation of iPSCs was drastically depressed by high proportions of 

mutant DNA. Therefore, the heteroplasmy levels of MELAS 1 cell lines might have acted in 

an inhibitory way towards the direct conversion. On the other hand, the differentiation of 

myoblasts to CNS and PNS lineages showed severe mitochondrial dysfunction in the 

terminally differentiated cell (Kodaira et al., 2015, Hatakeyama et al., 2015). Based on these 

studies in combination with the presented data. it is hypothesised that the impaired decreased 

ATP levels of cells characterised by mitochondrial respiratory dysfunction, might be another 

crucial inhibitory parameter of the direct conversion in both cell lines I tried to convert. Due 

to the mitochondrial dysfunction the produced ATP levels in MELAS 1 (and possibly VWM 

cells) might have not been high enough to support the direct conversion of fibroblasts to 

iNPCs. Another reason of the insufficient conversion might have been the additional stress 

caused by the transduction on these neuronal cell types.  Regarding the VWM cell line, the 

impaired cytosolic translation machinery might have also acted in a prohibitive way towards 

the efficient generation of iNPCs. Finally, it cannot be excluded the possibility that the poor 

quality of the retrovirus used might have influenced the insufficient direct conversion in both 

cell lines.  
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Based on our results it could be claimed that the protocol followed might not be the 

appropriate for these disease models. However, as shown in figure 5.7 a random control 

primary fibroblast cell line has been successfully converted in-house to iNPCs confirming the 

validity and accuracy of the protocol. It is worth mentioning that the retrovirus used for 

control cell line conversion belonged to a different batch of retroviruses used for the MELAS 

and VWM conversion.  

 

Figure 5.7: Consecutive microscope images of a transduced control primary fibroblasts 
cell line showing the direct conversion to iNPCs and the formation of neuroshperes (Dr. 
Veronika Boczonadi). 
Finally, in this chapter I investigated the hypothesis of impaired mitochondrial translational 

machinery in patients affected by VWM. According to the oxygen consumption measurement 

and respiratory chain enzyme expression levels, it is concluded that the fibroblasts carrying 

the homozygous mutation p.Arg113His do not present any significant mitochondrial 

dysfunction. On the contrary, the myoblasts showed significantly reduced expression levels of 

the majority of the respiratory chain enzymes possibly implying a mitochondrial translational 

defect. Although further investigation needs to be done to verify whether the impairment of 

the mitochondrial translational machinery and the isolated complex I deficiency in the 

patient’s muscle biopsy are due to a significant defect of mitochondrial protein synthesis in 

the VWM phenotype. As mitochondrial dysfunction has not been studied previously in 

patients with VWM, the observation is of importance. However, it needs further investigation 

as it is still not clear if the mitochondrial dysfunction is partly responsible for the 
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manifestation of the disease or it is a secondary phenomenon due to malfunction of the 

cytosolic translation machinery.  
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 Novel mutation in MiD49 is associated with 
mitochondrial myopathy 

  Overview 

In humans, mitochondria undergo constant fission and fusion to maintain their function 

(Westermann, 2010). These coordinated activities regulate the mitochondrial morphology and 

intracellular distribution and impose their cell-type specific appearance. The mitochondrial 

fission requires the recruitment of a large GTPase from the cytosol onto the outer 

mitochondrial membrane, called dynamin related protein 1 (Drp1). It has been suggested that 

Drp1oligomerizes around the circumference of the mitochondrion and it’s GTP hydrolysis 

activity directs the constriction and scission (Ingerman et al., 2005, Mears et al., 2011). 

However, it is still not fully understood how Drp1 is recruited to the mitochondrion and 

which factors promote the recruitment.  

To date, four different adaptors (Fis1, Mff, MiD49 and MiD51) have been suggested to act as 

recruiters of Drp1 to the outer mitochondrial membrane. Although early studies suggested 

that Fis1 is necessary for mitochondrial fission (Yoon et al., 2003), later studies showed that 

the number of the mitochondrial Drp1 puncta in Fis1-null cells  significantly decreased 

(Losón et al., 2013) compared to wild type cells. Moreover, the levels of Drp1 in purified 

mitochondrial fractions from Fis1-null cells were not significantly decreased implying that F 

is1 has little or no role in recruiting Drp1 and consequently in mitochondrial fission (Losón et 

al., 2013). On the contrary, the recruitment of Dpr1 to the outer mitochondrial membrane is 

significantly reduced in Mff-null cells and the expression levels of Drp1 in the mitochondrial 

fraction of Mff-null cells are profoundly reduced compared both to wild type and Fis1-null 

cells (Losón et al., 2013) indicating that Mff is essential to the mitochondrial fission. Further 

studies investigating the proteins located in close proximity to Dpr1 have verified that Fis1 is 

localised in mitochondria but not in close proximity with Drp1 (Osellame et al., 2016). Taken 

these findings together it is believed that both Fis1 and Mff recruit Drp1 to the mitochondria 

but Mff plays the predominant role (Losón et al., 2013). Studies have shown that Fis1 and 

Mff also regulate the mitochondrial fission in peroxisomes (Koch and Brocard, 2012). To our 

best knowledge no mutations in Fis1 and Mff have been associated with disease in humans to 

date.  

Recent studies have suggested that MiD49 and MiD51 which are encoded by the genes 

SMCR7(MiD49) and SMCR7L(MiD51) respectively, might act as receptors of Drp1. In 2000, 
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during a random cellular localisation of uncharacterised human proteins it was found that 

overexpression of MiD51 led to unique changes in mitochondrial distribution and to an 

elongated mitochondrial network (Palmer et al., 2011). 

It has been shown that the two genes are paralogues to each other and share 45% of their 

sequence identity (Palmer et al., 2011). The gene encoding MiD49 consists of three exons 

whereas MiD51 consists of six exons. Moreover, they are differentially expressed in different 

tissues and during different developmental stages (Liu et al., 2013). Both of them are 

anchored in the outer mitochondrial membrane (Palmer et al., 2011) but their crystal 

structures show both similarities and differences. Although both of them contain a nucleotidyl 

transferase domain, only MiD51 is able to bind nucleotide diphosphates (ADP and GDP) 

whereas MiD49 is believed to bind an unknown ligand. MiD51 is dimeric in contrast to 

MiD49 which is monomeric but both of them share motifs interacting with Drp1. Their 

structural differences might suggest a differential regulation of MiD51 versus MiD49 

mediated fission (Losón et al., 2014, Losón et al., 2015, Richter et al., 2014). It has been 

suggested that the MiD proteins have the ability to recruit Drp1 independently to Mff and 

Fis1(Palmer et al., 2013). 

Initially, the function of both MiD proteins in mitochondrial fission was elusive. Palmer et al 

showed that knockdown of both genes led to decreased Drp1association with the 

mitochondrial surface and increased fusion events due to Drp1 sequestration in the cytosol 

(Palmer et al., 2011). Moreover, overexpression of both genes led to increased levels of Drp1 

association to the mitochondrial surface as expected, but interestingly the cells overexpressing 

MiD proteins were characterised by increased fusion events and an elongated mitochondrial 

network (Palmer et al., 2011). Due to this fact, Liu et al claimed that MiD49 and MiD51 

possibly promote mitochondrial fusion rather than fission. According to their study, cells 

overexpressing MiD51 presented a mitochondrial fused phenotype, which was not reserved 

when Mfn2 was blocked (Liu et al., 2013). However, in 2013 Palmer et al showed that 

overexpression of both MiD proteins followed by blocking both Mfn1 and Mfn2did not lead 

to fusion events, illustrating the direct correlation of MiD proteins with mitochondrial fission 

events (Palmer et al., 2013). According to Losόn et al, increased fusion events followed by 

Mid49/51 overexpression, are due to the recruitment of an inactive phosphorylated form of 

Drp1 at Ser-637 (Palmer et al., 2013, Losón et al., 2013).  

As it was discussed previously, MiD49 and MiD51 are specific mitochondrial adaptors of 

Drp1 in contrast to Mff and Fis1 which are also present in peroxisomes. However, increased 
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expression of the MiD proteins induced the peroxisome elongation due to loss of Drp1 from 

the mitochondria (Palmer et al., 2013).  

The loss of either MiD49 or MiD51 adaptors have been reported to have contradictory effects 

on the mitochondrial fission. According to Palmer et al loss of either gene does not affect 

profoundly the amount of Drp1 at the mitochondrial surface or the mitochondrial morphology 

whereas loss of both genes leads to enhanced mitochondrial longevity (Palmer et al., 2011, 

Palmer et al., 2013). Osellame et al showed that individual deletion of MiD49 or MiD51 did 

not affect the levels of MiD51 and MiD49 respectively but simultaneous loss of MiD49/51 on 

MEFs led to increased mitochondrial fusion and decreased levels of Dpr1 association with the 

mitochondrial outer membrane. They also showed that loss of both of the adaptors did not 

affect the ER-mitochondrial contact sites or the F-actin morphology (Osellame et al., 2016). 

On the other hand both knockdown of either gene and simultaneous knockdown resulted in 

similar enhancement of mitochondrial length and connectivity indicating that both MiD49 and 

MiD51 are equally valuable to the cell (Losón et al., 2013).  

Interestingly, MEFs lacking MiD49/51 presented apoptotic resistance as they retained more 

cytochrome c within the mitochondria and it seems that both proteins are important to the 

apoptotic recruitment of Drp1 to the mitochondrial surface. Also, loss of MiD49/51 impairs 

OPA1-depedent cristae remodelling during apoptosis. These data taken together indicate that 

both genes possibly have a vital role in the intrinsic apoptotic pathway of the cell(Osellame et 

al., 2016).  

Despite many years of research, it is still unknown how the adaptors engage with Drp1, and 

how they regulate the mitochondrial fission or role in the apoptosis. 

 Materials 

A 15-year old boy from a consanguineous Jewish family with a healthy sister, developed 

progressive muscle weakness and exercise intolerance and high CK (1200U/L) at the age of 6 

years His muscle biopsy revealed mitochondrial myopathy with numerous ragged red fibres 

and COX negative fibres (Figure 6.1). Quantification of the mtDNA copy number of the 

muscle biopsy showed increased mtDNA copy numbers compared to the control and no 

mtDNA deletions were detected in the patient’s sample. The biochemical measurement 

detected deficiencies of multiple respiratory chain enzymes and the clinical investigation 

revealed pure muscular phenotype with no peroxosimal dysfunction and other organ 

involvement. Whole exome sequencing identified a homozygous nonsense mutation 
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(c.247C>T, p.Q81*) in exon 3 of MiD49. Although the exome sequencing revealed more than 

one candidate mutations in different genes, none of these mutations were segregated in the 

family.  

Skin and skeletal muscle biopsy were obtained from the patient to investigate the effect of the 

mutation on the mitochondrial function.  

 

Figure 6.1: A. Simultaneous staining of muscle fibres for cytochrome oxidase (COX) and 
succinic dehydrogenase (SHD), B. Nicotinamide adenine dinucleotide (NADH) staining 
of muscle fibres. Dark blue muscle fibres represent increased mitochondrial 
proliferation and pale muscle fibres illustrate deficient muscle fibres. 
 

 Results 

Based on previous studies showing that MiD49 knockdown resulted in increased fusion 

events and consequently in an elongated mitochondrial network (Palmer et al., 2011, Palmer 

et al., 2013, Liu et al., 2013), Dr Verónica Eisner Sagüés (Mitochondrial Communication and 

Function Laboratory, School of Biological Sciences, Department of Cellular and Molecular 

Biology, Catholic University of Chile) kindly evaluated the fusion events in control and 

patient’s fibroblasts by photoactivation under confocal microscopy. As shown in Figure 6.2 

the fibroblasts carrying the homozygous nonsense mutation presented increased fusion events 

resulting in imbalanced mitochondrial dynamics.  
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Figure 6.2: Mitochondrial continuity and fusion events evaluation in human fibroblasts 
from control and MiD49 p.Q81* fibroblasts. A. Cells were transfected with mtDsRed 
and mtPA-GFP codifying plasmids and images by confocal microscopy. Representative 
cells before and after photoactivation of 5x5 regions interest (ROIs: white squares). The 
images display the continuity among mitochondrial evidenced by the diffusion of 
photoconverted PA-GFP towards neighbouring mitochondrial out of ROIs. B. mtPA-
GFP fluorescence decay evaluated inside the photoactivation area.Gray curves, 
individual regions; black curves represent the mean. C. Frequency of fusion events. 
Data from at least 4 independent experiments. n= # cells (Source Dr Verónica Eisner 
Sagüés) 
Next, in order to examine how the disturbed mitochondrial dynamics in the fibroblasts affects 

the mitochondrial function, oxygen consumption of fibroblasts carrying the homozygous 

nonsense mutation was measured. As shown in Figure 6.3, the levels of basal respiration are 

slightly increased (22% increase) compared to the control (wild type) fibroblasts while the 

levels of maximal respiration are slightly decreased (3% decrease) compared to the control 

fibroblasts.  



116 
 

 

Figure 6.3: Oxygen consumption in fibroblasts carrying the homozygous nonsense 
mutation c.247C>T inMiD49. Black and grey bars represent the mean values of control 
and patient’s primary fibroblast cells respectively. The corrected oxygen consumption 
by the non-mitochondrial respiration (NMR) is represented as basal respiration, leaking 
respiration and maximal respiration.   
Since these alterations are not statistically significant it is concluded that the fibroblasts 

carrying the homozygous nonsense mutation do not exhibit any mitochondrial dysfunction. In 

support of the result of oxygen consumption, the expression levels of the respiratory chain 

enzymes of the patient’s fibroblasts measured by BN-PAGE, were not significantly increased 

compared to the control (Figure 6.4).  



117 
 

 

Figure 6.4: BN-PAGE representing the relative expression of OXPHOS complexes in the 
control and patient primary fibroblasts. 
 

Next, the expression levels of proteins involved in the mitochondrial fission and fusion such 

as MiD49, Mfn2, OPA1, Drp1 and MiD51 and of the protein complexes of the respiratory 

chain in the whole protein lysate isolated from the patient’s fibroblasts were measured.  

As shown in Figure 6.5, the relative expression of MiD49 is significantly decreased in the 

patient’s fibroblasts compared to the control (p=0.01, unpaired t-test). 

 

Figure 6.5: Immunoblotting detected significantly decreased protein expression levels of 
MiD49 in the patient’s fibroblasts. 
Due to the increased fusion events in the fibroblasts carrying the homozygous nonsense 

mutation, it was expected that the relative expression of Mfn2 and OPA1 would be also 
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increased (Figure 6.6). Furthermore, the decreased expression of MiD49 resulted in slightly 

decreased expression of Drp1 and MiD51. However, none of these alterations in the protein 

expression levels were statistically significant. The data are consistent with previous 

publications where knockdown of MiD49 in either HEK of MEF cells resulted in increased 

expression of Mfn2 and decreased levels of Drp1 (Palmer et al., 2011, Palmer et al., 2013, 

Osellame et al., 2016).  

 

Figure 6.6: Quantification of mitochondrial fusion (Mfn2 and OPA1) and fission (Drp1 
and MiD51) protein expression levels by immunoblotting illustrated increased but not 
significant levels of Mfn2 and OPA1, Also, relative expression of Dpr1 and MiD51 was 
decreased. 
The elevated protein expression levels detected in all the OXPHOS complexes (Figure 6.7) 

and specifically the significant increase in the relative expression of CII and CIV (p=0.02, 

p=0.016 respectively, unpaired t-test) agreed with the increased relative expression of the 

respiratory chain enzymes measured by BN-PAGE in mitochondria isolated from fibroblasts.  
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Figure 6.7: Quantification of expression levels of the OXPHOS components in total 
protein lysates extracted from cultured primary fibroblasts. 
Following, the quantification of the relative mtDNA copy number in the fibroblasts illustrated 

significantly increased mtDNA copy number (p=0.01, unpaired t-test) in the patient’s 

fibroblasts compared to the control, similar  what was observed in the patient`s skeletal 

muscle (Figure 6.8).  

 

Figure 6.8: Quantification of the mtDNA copy number showing the significant increase 
of the mtDNA copies in the patient’s primary fibroblasts. 
Based on these data, the increased mtDNA copy number in fibroblasts accompanied with 

increased relative expression of the protein complexes of the respiratory chain and no 

indication of significant mitochondrial dysfunction might indicate a possible compensatory 

mechanism in fibroblasts.  
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Since the clinical examination of the patient revealed pure mitochondrial myopathy, the total 

protein from the patient’s muscle biopsy was extracted and the relative expression of the 

complexes of the respiratory chain and of MiD49, Mfn2, OPA1, MiD51 and Drp1 were 

measured.  

 

Figure 6.9: Quantification of Mfn2, OPA1, Drp1 and MiD51 protein expression levels 
from total protein lysates extracted from the muscle biopsy. 
As shown in Figure 6.9, the relative expression of Mfn2 (p=0.002, unpaired t-test) and OPA1 

(p=0.02, unpaired t-test,) in the patient’s sample is significantly elevated compared to the 

control sample illustrating overexpression of proteins responsible for mitochondrial fusion at 

the outer mitochondrial membrane. On the contrary, Drp1 expression levels are significantly 

decreased (p=0.0005, unpaired t-test) in the patient’s skeletal muscle showing the limited 

activity of mitochondrial fission. Although previous studies have shown that knockdown of 

MiD49 in MEF cells does not affect the levels of MiD51 (Osellame et al., 2016), here it has 

been shown significantly increased expression of MiD51 in the patient’s skeletal muscle.  

Interestingly, the MiD49 protein was still detected on SDS-PAGE in the patient’s muscle 

sample (Figure 6.10) but it was significantly decreased compared to the control skeletal 

muscle samples.  It is commonly accepted that a gene may encode different variants of the 

same protein called protein isoforms.  On the website of the National Centre for 

Biotechnology Information (NCBI), it has been reported that MiD49 protein can be identified 
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in three different isoforms and all the reported isoforms contain exon 3, where the mutation is 

located. Therefore, theoretically the stop mutation detected in the patient should result in non-

functional isoforms of MiD49 and the protein should not be detectable on SDS-PAGE. Based 

on that, different antibodies were used to detect the protein levels of MiD49. However, the 

result from the different antibodies showed that MID49 is still detectable but significantly 

decreased. It is hypothesized that It the different antibodies used for detection of MiD49 

might not have been specific for the protein and the band detected might be MiD51 protein 

due to their sequence similarity.  

 

Figure 6.10: Immunoblotting detected significantly decreased relative expression of 
MiD49 in the muscle 
Although the expression of MiD49 is not fully depleted in the patient’s muscle biopsy, the 

relative expression of the OXPHOS complexes is significantly decreased compared to the 

control (Figure 6.11) indicating that the imbalanced mitochondrial dynamics may affect the 

respiratory chain activity. As shown in Figure 6.11 the relative expression of CI, CII, CIII and 

CIV is significantly decreased while the relative expression of CV is decreased but not 

significantly.  
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Figure 6.11: SDS-PAGE gel showing the expression of the OXPHOS components in total 
protein lysates extracted from muscle 

 Discussion  

One of the unique characteristics of mitochondria is their ability to build large interconnected 

and intracellular networks (Westermann, 2010) via fusion and fission. These two balanced 

activities rule the mitochondrial morphology and distribution and eventually the cell type-

specific appearance. Drp1plays a major role in mitochondrial fission which oligomerizes 

around the mitochondrion and directs the fission. However, it is still unclear how Drp1 is 

recruited to the mitochondrion. To date, four different adaptors have been suggested to act as 

mediators of Dpr1 recruitment; initially Fis and Mff and recently MiD49 and MiD51. To date 

there has not been any human disease linked with mutations in any of these genes.  

In this chapter it has been shown that fibroblasts carrying the novel homozygous mutation 

p.Q81* in MiD49 carried elongated mitochondrial with increased mtDNA copy number and 

presented significantly increased fusion events compared to the control fibroblasts indicating 

that MiD49 plays a vital role in mitochondrial dynamics. The oxygen consumption levels in 

the patient’s fibroblasts accompanied with increased expression levels of the OXPHOS 

complexes might suggest a compensatory mechanism in the fibroblasts. The significantly 

increased levels of protein involved in mitochondrial fusion (Mfn2 and OPA1) and 

significantly decreased levels of Drp1 expression levels in the muscle biopsy, suggest that 

reduced levels of MiD49 result in imbalanced mitochondrial dynamics.  
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In conclusion, p.Q81* (c.247C>T) in MiD49 is the first reported mutation in any of the four 

adaptors of Drp1 linked to human disease. Moreover, mutations in that gene have not been 

reported in any other cohort of patients to my knowledge. These findings illustrate the vital 

role of MiD49 in mitochondrial fission and further studies are needed to enlighten the specific 

role of MiD49 in mitochondrial fission and apoptosis.  
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 Mutations in C12orf65 are associated with disturbed 
mitochondrial translation and Behr syndrome 

  Overview 

 Potential role of C12orf65 
The protein group class I release factor family (RFs), consisting of RF1Lmt/mtRF1a, RF1mt, 

C12orf65 and ICT1 proteins, is necessary for efficient protein translation. The main functions 

of these proteins are the recognition of the stop codons at the A-site of the ribosome and the 

hydrolysis of the ester-bond between the last tRNA and the newly synthesized polypeptide 

chain. Subsequently, the newly synthesized protein is released. To date, the specific function 

of each different protein belonging to that protein family is still unknown (Richter et al., 

2010).  

The presence of specific domains and/or sequence motifs is an essential criterion for proteins 

to be assigned to a release factor family. These domains are: the Codon Recognition (CR) 

domain, consisting of the helix alpha-5 and the ‘anticodon tripeptide motif’, and the Peptidyl 

tRNA hydrolase (PTH) domain. The PTH domain is characterized by a GGQ (Gly-Gly-Gln) 

motif at the active site of the protein, responsible for the ester-bond hydrolysis (Richter et al., 

2010).  

C12orf65 is a nuclear encoded protein that belongs to the class I peptide release factors 

family. It is located at 12q24.31 and consists of 3 exons. The protein is characterized by the 

loss of the two stop codon recognition functional elements (CR domain and ‘anticodon 

tripeptide motif’) while retains the PTH domain.  Immunoprecipitation studies have shown 

that C12orf65 is a soluble protein that does not exhibit ribosomal-specific PTH activity and is 

localised in the mitochondrial matrix (Antonicka et al., 2010, Richter et al., 2010).  It has been 

suggested to be involved in the process of peptidyl-tRNAs that have been prematurely 

released during the polypeptide elongation (Antonicka et al., 2010).  

To date, it is the only gene from the class I release factors family which has been associated 

with a human disease. Down-regulation of C12orf65 resulted in significant changes in the 

mitochondrial membrane potential and mitochondrial mass, indicating that it is essential for 

cell vitality and mitochondrial function (Kogure et al., 2012). 

Studies have shown that overexpression of ICT1 in C12orf65 mutated cells partially rescued 

the phenotype in the cells, indicating that ICT1 and C12orf65 might have overlapping 
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functions (Antonicka et al., 2010).  Furthermore, C12orf65 protein is predicted to contain a 

homologous C-terminal alpha-helix to a recently described ICT1 C-terminal helix (Duarte et 

al., 2012). The existence of C12orf65 homolog in only five out of 28 bacterial groups 

suggests that the eukaryotic protein derived from a duplication of a canonical RF. Moreover, 

the wider phylogenetic distribution of ICT1 in combination with the common structural 

features between ICT1 and C12orf65, is a strong argument that the latter derived from a 

duplication of ICT1 (Duarte et al., 2012).   

In 2010, Antonicka et al described two patients from two unrelated families with mutations in 

C12orf65.  They were characterized by combined OXPHOS deficiencies associated with a 

decrease in the synthesis of all mitochondrially encoded polypeptides. Furthermore, both 

patients presented optic atrophy from 5-7 years and in the following years developed complex 

neurological symptoms. Although their clinical presentation was reminiscent to Leigh 

syndrome the progression of the disease was much slower compared to the typical Leigh 

syndrome. Sequence analysis in patient 1 revealed a homozygous 1bp deletion (248delT) in 

C12orf65 resulting in premature stop codon at position 84 of the protein. Similarly, in patient 

2 was found a homozygous 1bp deletion (210delA) in C12orf65 resulting in premature stop 

codon at position 84 (Antonicka et al., 2010).   

The second report on mutations in the C12orf65 gene described two male siblings from a 

consanguineous Japanese family. Measurement of enzymatic activities of the respiratory 

chain complexes in one of the patients showed decrease activity of complexes I and IV. The 

clinical investigation revealed optic atrophy and neuropathy in both patients. Exome 

sequencing identified a homozygous nonsense mutation (c.394C>T, p.Arg132*) in C12orf65 

resulting in premature stop codon at position 132 (Shimazaki et al., 2012).  

In 2013, Buchert et al reported a homozygous nonsense mutation p.Gln139* in two siblings 

from a consanguineous family resulting in a truncated protein (Buchert et al., 2013). 

Moreover, a homozygous p.Val116* truncating mutation has been reported in 3 members of a 

large consanguineous Indian family. The mitochondrial potential, respiration rate and the 

enzymatic activity of the mitochondrial chain complexes in the affected members were 

reduced. The clinical phenotype was characterized by neuropathy and optic atrophy (Tucci et 

al., 2014). The same mutation was identified also in a pair of female monozygotic twins 

(Imagawa et al., 2016). Next, two compound heterozygous (p.Pro34llefs*25 and p.Gly72*) 

frameshift mutations were identified in two siblings (Heidary et al., 2014). Two further 
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homozygous mutations p.Lys138Argfs*16 and c.282+2T>A have been reported in 

consanguineous families with childhood-onset optic atrophy (Spiegel et al., 2014).  
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Clinical presentation of patients in this study  

 Onset/alive or 
died† 

Optic 
atrophy 

Neuropathy Pyramidal 
signs 

Opthalmo-
paresis 

Ataxia Cognitive 
dysfunction 

Biochemical Markers Mutation  

Patient 1 5y/13y +(5y) +++ ++ ++ + + CI,CII/III,CIV defect in 
muscle 

Hom. p.Pro34Ilefs*25 

Patient 2 6y/7y +(6y) + + + + - n.d. 

Patient 3 5y/16y +(5y) +++ ++ - + + n.d. Hom. C.282G>A 

Clinical presentation of previously reported patients   

Antonicka et al., P1 1y/8y† ++(5y) ? ? ++ ++ + CI, CIV, CV defect in 
fibroblasts 

Hom. p.Val83Glyfs*1 

Antonicka et al., P2 15m/20y + ++ - ++ ? ? n.d. Hom. p.Gly72Alafs*12 

Antonicka et al., P3 3y/22y† +(3y) ++ ? ++ - ? n.d. 

Shimazaki et al., P1 7y/32y +(7y) + + - - - CI, CIV defect in fibroblasts Hom. p.Arg132* 

Shimazaki et al., P2 7y/42y +(7y) ++ ++ - - - n.d. 

Buchert et al., P1 ?/27y - + deformed hands/ 
feet 

? + ? + n.d. Hom. p.Gln139* 

Buchert et al., P2 ?/24y - ? ? + ? + n.d. 

Tucci et al., P1 8y/34y + + + + ? + n.d. Hom. p.Val116* 

Tucci et al., P2 c./53y + + + ? ? + n.d. 

Tucci et al., P3 c./51y + + + ? ? + CV defect in lymphoblasts 

Heidary et al., P1 c./8y + ? + + + + CIV defect in muscle Com. Het. 
p.Pro34Ilefs*25 

p.Gly72Alafs*12   Heidary et al., P2 c./5y† + ? + + + + CIV defect in muscle 

Spiegel et al., P1 c./? + + + - - - n.d. Hom.  
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p.Lys138Argfs*16 

Spiegel et al., P2 c./? + + + - - + CI and CIV defect in muscle Hom. c.282+2T>A 

Table 7.1: Clinical presentation of Patients 1-3 in this study and the previously reported patients carrying pathogenic mutations in 
C12orf65 
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 Behr Syndrome 
Behr syndrome was first described by Carl Behr in 1909 (Behr, 1909). The clinical 

manifestation of the disease is characterized by infantile optic atrophy and various 

neurological disorders such as ophthalmoparesis, nystagmus, ataxia, peripheral 

neuropathy and developmental delay. 

Most of the reported cases are sporadic or show autosomal recessive inheritance. 

However, a few reported cases presented autosomal dominant inheritance pattern 

(Felicio et al., 2008). Mutations in OPA3, OPA1 and C19orf12 have been correlated to 

Behr syndrome (Sheffer et al., 1992, Anikster et al., 2001, Marelli et al., 2011, Bonneau 

et al., 2014, Kleffner et al., 2015).   

 Materials and Methods 

Patient 1, a 13 year old boy and patient 2 his 7 years old sister, were born to non-

consanguineous Irish parents. Patient 1 had normal early development and the first 

symptom was optic atrophy at 5years. In the following years he developed weakness 

and atrophy of the right arm and leg, mild ataxia and learning difficulties. Detailed 

metabolic work-up was normal. The clinical examination revealed optic atrophy, 

ophthalmoparesis and bilateral nystagmus. The muscle biopsy revealed mitochondrial 

myopathy and deficiencies in complexes I, II/III and IV of the respiratory chain. No 

mtDNA deletions were detected in muscle DNA. Direct sequencing of the OPA1, TK2, 

RRM2B and PEO1 genes revealed no candidate pathogenic mutations.    

Patient 2 has optic atrophy since the age of 6 years, followed by mild foot weakness and 

balance problems. The neurological examination revealed broad nasal bridge, bilateral 

optic atrophy and ophthalmoparesis.  

Patient 3, a 16 years-old boy, was born to non-consanguineous healthy parents of 

Hungarian Roma ethnic origin. His other three siblings were healthy. At 5 years he 

developed visual impairment, and increasing clumsiness. The clinical examination 

showed bilateral optic atrophy and slight nystagmus. A diagnostic muscle biopsy was 

not performed in this case.  

Whole exome sequencing was performed in genomic DNA of patients 1 and 2 and 

direct sequencing of C12orf65 in patient 3 based on the clinical phenotype. DNA was 
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fragmented and enriched by Illumina TruSeq 62Mb exome capture and sequenced 

(Illumina HiSeq 2000, 100 bp paired-end reads). The in-house bioinformatics pipeline 

included alignment to the human reference genome (UCSC hg19), reformatting, and 

variant detection (Varscan v.2.2, Dindel v1.01), as described previously (Horvath et al., 

2012).  On-target variant filtering excluded those with minor allele frequency greater 

>0.01 in several databases: dbSNP135, 1000 genomes (February 2012 data release), the 

National Heart, Lung and Blood Institute (NHLBI, NIH, Bethesda, MD) Exome 

Sequencing Project (ESP) 6500 exomes, and 343 unrelated in-house controls. Rare 

homozygous and compound heterozygous variants were defined, and protein altering 

and/or putative ‘disease causing’, along with their functional annotation, were identified 

using ANNOVAR (Wang et al., 2010). Candidate genes were prioritized if previously 

associated with a disease phenotype (Lieber et al., 2013).  Putative pathogenic variants 

were confirmed by Sanger sequencing.  

Fibroblasts cell cultures from patients 1, 2 and controls were obtained from the Biobank 

of the Medical Research Council, Centre for Neuromuscular Disease, Newcastle. 

Informed consent was obtained from all subjects. Measurement of the oxygen 

consumption was conducted.  

Whole blood was obtained from patient 3 and his unaffected family members. Informed 

consent was obtained from all subjects.  DNA and RNA extraction from whole blood, 

PCR and Sanger sequencing were conducted.  

The following primers were used for genomic DNA and cDNA analysis of C12orf65: 
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Genomic DNA Forward Primer (5’-3’) Reverse Primer (5’-3’) Annealing 

Temperature (oC) 

Product Size 

(bp) 

Exon 2 GCATAATCTTGAGGGCAGATG GGCCCAAGCCAGAAAAATA 60 486 

Exon 3 GCGAACAGGTTGAATTTAATGA CACTATAATAATGCTGGTGATGGA 60 397 

cDNA   

Exon2/3 GCAACCAACAAAACCAGCAA CAGGACTGTTTTCACCATTGTAG 63 160/478 

Table 7.2: Sequence of primers used from amplification of the genomic DNA and cDNA 
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 Results 

Whole exome sequencing revealed a homozygous nonsense mutation (p. Pro34Ilefs*25) in 

patients 1 and 2. The mutation was segregated with the disease in the family and was not 

detected in 190 ethnically-matched control alleles. According to bioinformatics tools, it is 

predicted to cause a complete loss of the C12orf65 protein. 

Patient	ID Variant	Type 
On	

Target	 
(a) 

Rare/Novel	
Protein	
Altering	
Variants	

(b) 

Rare	
Compound	

Heterozygous	
Protein	
Altering 

Rare	
Compound	

Heterozygous	
Protein	

Altering	&	
Mitochondrial 

Rare	
Compound	

Heterozygous	
Mitochondrial	

Genes 

Rare	
Homozygous	

Protein	
Altering 

Rare	
Homozygous	

Protein	
Altering	&	

Mitochondrial 

Rare	
Homozygous	
Mitochondrial	

Genes 

Patient	1 SNV 79,650 255 
13 1 ENOSF1 8 1 C12orf65 Indel 8,901 

Patient	2 SNV 81,683 244 Indel 9,169 

Table 7.3: Rare/novel variants (homozygous MAF<0.01, compound heterozygous MAF 
product <0.0001 and single heterozygous MAF<0.001) with exclusion of common 
variants found to be shared in an in-house panel of 394 individuals, 1000 Genomes and 
NHLBI-ESP 6500 databases 
Measurement of oxygen consumption in fibroblasts from patients 1 and 2 showed decreased 

levels of both oxygen consumption rate and maximal capacity respiration levels (Figure 7.1). 

As it is illustrated in Figure 7.1 patient 1 presents lower levels of both oxygen consumption 

and maximal respiration levels (p=0.008 and p<0.001 respectively) compared to patient 2. 

Nonetheless, the levels of maximal respiration are also significantly decreased in patient 2 

(p<0.001).  Hence, the capacity of the electron transport chain in both affected is significantly 

limited compared to the control verifying the mitochondrial dysfunction caused by the 

nonsense mutation identified.  

Although an increase of mitochondrial mass is often observed in mitochondrial myopathies, 

the quantification of the mtDNA copy number detected lower levels in patient 1 compared to 

controls. However, no mtDNA deletion was detected in the skeletal muscle of patient. This 

may reflect downregulation of the mitochondrial mass. Interestingly, it has been suggested 

that down-regulation of C12orf65 results in ROS production, apoptotic cell death and reduced 

levels of mitochondrial mass (Kogure et al., 2012). The mtDNA copy number in patient 2 was 

not measured.  
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In patient 3 direct Sanger sequencing revealed a homozygous splice site mutation 

(c.282G>A). This mutation affects the last codon of exon 2 and results in loss of a splice site 

with retention on intron 2.  Unaffected members were heterozygous for the c.282C>A variant 

which was not detected in 200 Hungarian Roma alleles.  

As is illustrated in Figure 7.2 showing the amplification of cDNA in patient 3 and his mother, 

the mutation is causing retention in intron 2 giving a larger band at 478bp compared to his 

mother that gives a normal splicing product at 160 bp.  
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Figure 7.1: Oxygen consumption in fibroblasts, white and stripped bars represent 
the mean values from control (C1 and C2) and patients (P1 and P2), respectively. 
Corrected oxygen consumption by the non-mitochondrial respiration and mg of 
protein is represented as oxygen consumption (OCR), leaking respiration (LR) and 
maximal capacity respiration (MCR) respectively 
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Figure 7.2: A. Schematic structure of C12orf65 cDNA showing the splice defect (ii) 
caused by the c.282 G>A mutation in patient 3. B. Agarose gel showing the amplification 
of cDNA in patient 4 and his mother, i) normal splicing producing a 160bp product, ii) 
mutation causing intron 2 to be retained giving a larger band of 478 bp. 
The retention of intron 2 results in a non-functional structural form of C12orf65 protein that is 

degraded from the cell and consequently the mitochondrial function is impaired.  

 Discussion 

Mutations in C12orf65 have been correlated with distinct phenotypes such as classical Leigh 

syndrome, hereditary spastic paraplegia (SPG55) or complicated Charcot-Marie Tooth disease 

(CMT6) resulting in a phenotypic heterogeneity. However, optic atrophy and neuropathy are 

two shared clinical symptoms among the different phenotypes described. Furthermore, it has 

been suggested that there is a correlation of the mutation site in C12orf65 gene with the 

disease severity (Buchert et al., 2013, Tucci et al., 2014) and consequently with the 

phenotype.   
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Figure 7.3: Schematic structure of C12orf65, showing the localisation of the RF-1 
domain, position of identified mutations and the exon structure. Exome sequencing 
identified pathogenic C12orf65 mutations in 4 patients 
The two different homozygous nonsense mutations, presented in the described patients, match 

the original historical description of Behr’s syndrome (Behr, 1909). The first symptom in all 

patients was childhood-onset optic atrophy, followed by spastic paraparesis, distal weakness 

and motor neuropathy.  Furthermore, all of them presented combined respiratory deficiency 

(Pyle et al., 2014). 

Although the precise role of C12orf65 in the mitochondrial translation process is not fully 

known, it is pronounced that absence of the protein causes severe mitochondrial dysfunction. 

Despite the fact that Behr syndrome is characterised by genetic heterogeneity, the 

mitochondrial dysfunction is the common pathway leading to characteristic symptoms of the 

syndrome (Yu-Wai-Man and Chinnery, 2014). 

In summary, Behr’s syndrome due to C12orf65 mutations is a clinically recognizable disease 

presentation and should be considered in multiple mitochondrial respiratory chain deficiencies 

(Pyle et al., 2014).  
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 General Discussion 

Mitochondrial disorders comprise a large, heterogeneous group of disorders that affect both 

children and adults. Mitochondrial diseases are amongst the most common inherited 

neuromuscular disorders with a minimum prevalence of around 1:5000 live births (Schaefer et 

al., 2008). They usually affect more than one organ, leading to complex multisystemic 

dysfunctions. However, there are cases where the manifestation of the disease is tissue 

specific (Chinnery and Hudson, 2013). Although, tissues in which the metabolic demand is 

higher, such as skeletal muscle, the central nervous system or heart are typically affected 

(Chinnery and Hudson, 2013), the phenotype is variable and heterogeneous due to dual 

genetic control (mtDNA and nDNA), level of heteroplasmy, tissue energy demand, maternal 

inheritance and mitotic segregation. In the past, it was believed that mitochondrial disorders 

were strictly caused by a biochemical defect of the respiratory chain (Filosto and Mancuso, 

2007). However, nowadays it is widely accepted that mitochondrial disorders can be caused 

by either mitochondrial or nuclear genes that regulate mitochondrial homeostasis and 

functioning such as mitochondrial translation and mitochondrial fusion and fission (Filosto 

and Mancuso, 2007). 

One of the greatest challenges of mitochondrial disorders is the development of successful 

treatments. Although clinicians and scientists have been working for decades on developing 

treatments for mitochondrial disorders, there is no established treatment to date, due to the 

complex genetic and phenotypic heterogeneity of the diseases. In certain cases, the use of 

pharmacological treatments, which are analyzed thoroughly in Chapter 1, have an effect on 

certain mitochondrial disorders. Amongst the pharmacological treatments tested on different 

mitochondrial disorders, L-cysteine has been shown to improve the thiolation and therefore 

the OXPHOS activity in mitochondrial translation disorders caused by mitochondrial tRNA 

mutations that affect the thiolation of specific mitochondrial tRNAs (Boczonadi et al., 2013). 

Therefore, during my PhD, I studied the effect of L-cysteine and N-acetyl-cysteine 

supplementation in a variety of mitochondrial disorders. Based on my data, it seems that L-

cysteine was beneficial to cell lines carrying mtDNA mutations (m.3243A>G and 8344A>G) 

and NAC on the other hand, was beneficial to cell lines carrying nDNA (TRMU, MTO1, 

ELAC2 and COX10) mutations. The differential effect observed between the two supplements 

it was hypothesized it was due to the nature of the mutation leading to the mitochondrial 

disease. The supplementation with antioxidants and especially L-cysteine and NAC have been 
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proposed before (Deepmala et al., 2015) to be effective on a variety of mitochondrial and 

neurodegenerative diseases. The results presented in my study underline the beneficial effect 

of those supplements on a subset of mitochondrial disorders. In the future, further exploration 

needs to be done to clarify the exact molecular mechanism of L-cysteine and NAC; their 

impact on U34 thiolation, on mitochondrial translation and on the levels of GSH. Moreover, 

considering the beneficial effect on cell models, the results should be tested on animals. 

Although supplementation with L-cysteine and NAC is not a panacea for all the 

mitochondrial disorders, it is a small step towards the treatment of a certain subset of 

mitochondrial disorders.  

A second major challenge clinicians and scientists need to fight is the accurate and immediate 

diagnosis of a mitochondrial disorder. The development of new technologies such as Next 

Generation Sequencing has shed light on the genetic and clinical heterogeneity of 

mitochondrial diseases by identifying novel genes. It is already known that the same mutation 

might lead to different clinical features and vice versa different mutations might lead to the 

same clinical phenotype. Therefore, it is challenging for the clinicians to diagnose betime and 

accurately a mitochondrial disorder.  

Mutations in C12orf65 have been associated with different distinct phenotype such as 

classical Leigh syndrome or complicated Charcot-Marie Tooth disease. However, it has been 

noted that optic atrophy and neuropathy are two clinical characteristics shared by all the 

patients carrying mutations in that gene (Pyle et al., 2014). Based on published studies 

describing the clinical phenotype of patients carrying mutations in C12orf65 gene in 

combination with the patients described and analyzed in my PhD (Chapter 7) I reached the 

conclusion that mutations in that gene lead to Behr syndrome as all the different 

characteristics described fit the original historical description of that syndrome.  

In addition to that, during my PhD, with the use of NGS, it was found that a novel mutation in 

the nuclear gene MiD49 is associated with mitochondrial myopathy. MiD49 gene encodes a 

protein which functions as an adaptor of Drp1, which is responsible for the mitochondrial 

fission. According to my data, the novel homozygous nonsense mutation p.Q81* is associated 

with significantly increased fusion events in fibroblasts illustrating the vital role of the protein 

in mitochondrial dynamics. Moreover, the significantly decreased levels of the protein in the 

muscle led to significantly decreased expression of the OPXHOS complexes. The clinical 

investigation of the patient carrying the homozygous nonsense mutation revealed pure 
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mitochondrial myopathy with no other organ involvement and his muscle biopsy revealed 

also mitochondrial myopathy with numerous ragged red fibers.  

In summary, the above examples underline the necessity of NGS for the correct diagnosis of a 

mitochondrial disorder and identification of novel genes leading to mitochondrial 

dysfunction. By unravelling new genes associated with mitochondrial diseases and classifying 

mitochondrial disorders it will help the better understanding of the pathways involved and the 

identification of novel and specific therapies.  

Finally, tissue specificity is one of the most characteristic clinical features of mitochondrial 

disorders. The same variability in the expression of a mtDNA mutation or biochemical defect 

can be observed between different patients and also between different tissues in a given 

individual, a state called tissue specificity. Despite many years of research on mitochondria, 

the tissue specificity has not been fully explained yet. However, it can be partially explained 

by the different heteroplasmy levels found in different tissues in each individual. For example, 

MELAS syndrome is a multisytemic disorder characterized by tissue specificity and the CNS 

is highly affected in the majority of m.3243A>G carriers. During my PhD, I tried to 

implement the new method of direct conversion of fibroblasts carrying either mitochondrial or 

nuclear mutations to iNPCs. Therefore, I used fibroblasts from patients carrying the 

m.3243A>G mutation and fibroblasts from a patient diagnosed with VWM. Although VMW 

is not directly related to mitochondrial dysfunction, according to my results myoblasts 

carrying the mutation p.Arg113His in EIF2B5 showed significantly decreased relative 

expression levels of OXPHOS enzymes indicating possible mitochondrial dysfunction. One 

of the major clinical features in patients diagnosed with VWM is the foamy appearance of 

oligodendrocytes and the abnormal morphology of astrocytes.   

In both MELAS and VWM fibroblast cells, the direct conversion to iNPCs proved insufficient 

and the possible reasons are comprehensively evaluated in Chapter 6. However, the 

innovative method used for generation of iNPCs needs less time compared to the traditional 

method of cell differentiation through the iPSCs state and it was attempted for the first time 

on fibroblasts with mitochondrial mutations. To sum up, methods like these enables the 

scientists to study and delve into the mechanism of tissue specificity. 

Despite many years of research, the rapid diagnosis and efficient treatment of mitochondrial 

disorders remains challenging. During my PhD, I have broadened our knowledge on specific 

aspects of mitochondrial disease, which I hope, will contribute to future advances in the field.  
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Appendix B: Abstracts for scientific meetings 

Abstract for poster presentation at UK Neuromuscular Translational Research Conference 

(London, March 2014) 

Title:  

Behr’s syndrome is a mitochondrial disease due to autosomal recessive mutation in the 

C12orf65 gene 

Authors: 

Angela Pyle,1† Ramesh Venkateswaran,2† Marina Bartsakoulia, 1 Veronika Boczonadi,1 Agnes 

Herczegfalvi,3 Emma L. Blakely,4 Tania Smertenko, 1 Jennifer Duff, 1 David Moore,1 Patrick 

Yu Wai Man,1 Veronika Karcagi,5 Hanns Lochmüller,1 Mauro Santibanez-Koref,1 Helen 

Griffin,1 Robert W. Taylor,4 Patrick F. Chinnery,1and Rita Horvath1 

Affiliations:  

1Wellcome Trust Mitochondrial Research Centre, Institute of Genetic Medicine, Newcastle 

University  

2Department of Pediatric Neurology, Royal Victoria Infirmary 

3Department of Pediatrics, Semmelweis University, Budapest 

4Wellcome Trust Mitochondrial Research Centre, Institute for Ageing and Health, Newcastle 

University 

5Department of Molecular Genetics and Diagnostics, NIEH, Budapest, Hungary 

Abstract:  

Behr's syndrome is a classical phenotypic description of childhood-onset optic atrophy 

combined with various neurological symptoms, including ophthalmoparesis, nystagmus, 

spastic paraparesis, ataxia, peripheral neuropathy and learning difficulties. Here we describe 4 

patients with the classical Behr's syndrome phenotype who carry homozygous nonsense 

mutations in the C12orf65 gene encoding a mitochondrial protein. C12orf65 mutations have 

been previously reported with various clinical presentations, such as Leigh syndrome, SPG55, 

CMT6, syndromic intellectual disability, but a thorough review of these previous reports 
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indicates that the phenotype of all patients with C12orf65 mutations is compatible with Behr's 

syndrome. We think that C12orf65 mutations are more frequent than previously suggested 

and C12orf65 screening should be considered not only in mitochondrial respiratory chain 

deficiencies, but also in the inherited peripheral neuropathies, spastic paraplegias and ataxias, 

especially with pre-existing optic atrophy. 
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Abstract for poster presentation at EUROMIT International Meeting on Mitochondrial 

Pathology (Tampere, Finland, June 2014) 

Title: 

Studying the effect of L-cysteine in MELAS and MERRF 

Authors:  

Marina Bartsakoulia1, Veronika Boczonadi1, Aurora Gomez-Duran1, Patrick Yu Wai Man1, 

Patrick F.Chinnery1, Rita Horvath1 

Affiliations:  

1Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine,    

Newcastle University, Newcastle upon Tyne, UK 

Abstract:  

Mitochondrial disorders comprise a large group of heterogeneous disorders characterized by 

impaired cellular energy production. Mutations located within the mt-tRNA genes are a 

common cause of mitochondrial disorders.   

We have previously reported that the symptoms in reversible infantile respiratory chain 

deficiency (RIRCD), and reversible infantile hepatopathy, could be explained by low thio-

modification of the mt-tRNAGlu by TRMU. Since the availability of cysteine (which is 

crucial for normal TRMU activity) in the neonatal period is limited by the low activity of the 

cystathionase enzyme, dietary cysteine intake may be very important at this age. RIRCD 

myoblasts showed low activities, however adding L-cysteine to the culture medium fully 

reversed this defect. Furthermore, L-cysteine prevented the decrease of mitochondrial 

translation in TRMU deficient cells, TRMU down-regulated RIRCD cells and controls, 

further supporting the hypothesis that low cysteine concentrations may play a role in 

triggering a reversible in vitro mitochondrial translation defect.  

Two other mutations m.3243A>G and m.8344A>G also lead to impaired posttranscriptional 

modifications, such as thiolation and taurino-methylation, of mitochondrial tRNAs for Leu 

and Lys and lead to MELAS and MERRF respectively. The pathogenic mutation m.3243A>G 

in tRNALeu, results in lack of taurine modification at the wobble position of the tRNA, 

leading to reduced UUG (Leu) translation and complex I deficiency. The pathogenic mutation 
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of m.8344A>G, results in reduced thiolation and taurine wobble modification- of tRNALys 

which leads to mitochondrial dysfunction. We hypothesized that L-cysteine might have 

beneficial effect in these patient cells carrying the mutations. 

In this study, we supplemented MERRF and MELAS cells from patients with L-cysteine and 

consequently we investigated mitochondrial complex assembly by BN-PAGE, oxygen 

consuption and “in gel” activities. Our data indicated increased levels of mitochondrial 

complexes after L-cysteine supplementation both in the control and in the patients’ cells.   
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Abstract for poster presentation at the 8th Annual Neuromuscular Translational Research 

Conference, (Newcastle Upon Tyne, UK, 2015) 

Title:  

Studying the effect of L-cysteine in mitochondrial diseases 

Authors: 

Marina Bartsakoulia1, Juliane S. Müller1, Veronika Boczonadi1, Aurora Gomez-Duran1, 

Patrick Yu Wai Man1, Patrick F.Chinnery1, Rita Horvath1 

Affiliations:  

1Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine,   

Newcastle University, Newcastle upon Tyne, UK 

Background: Mitochondrial disorders comprise a large group of heterogeneous disorders 

characterized by impaired cellular energy production. Mutations located within the mt-tRNA 

genes are a common cause of mitochondrial disorders.   

We have previously reported that L-cysteine prevented the decrease of mitochondrial 

translation in cells of patients with reversible infantile respiratory chain deficiency and 

TRMU deficiency, supporting the hypothesis that low cysteine concentrations may play a role 

in triggering a reversible in vitro mitochondrial translation defect.  

 Aim and Methods: Based on these observations we expanded the supplementation with L-

cysteine to other mitochondrial conditions affecting posttranscriptional modifications of mt-

tRNAs on the molecular level. Absence of post-transcriptional modifications at the wobble 

positions of mitochondrial tRNAs for Leu and Lys has been correlated to Mitochondrial 

Encephalomyopathy and Lactic Acidosis with Stroke-like episodes (MELAS) and Myoclonic 

Epilepsy with Red Ragged Fibres (MERRF) syndromes, respectively. We tested whether 

supplementation of growth media with L-cysteine can reverse the defect in cells from patients 

with MELAS and MERRF, as well as in patients with other types of mitochondrial translation 

defects (COX10, MTO1 and ELAC2 mutations). Mitochondrial complex assembly was 

assessed by BN-PAGE, in-gel activity assay, and oxygen consumption (Seahorse analysis).  

Results and conclusions: Our data indicate increased levels of mitochondrial complexes after 

L-cysteine supplementation in some, but not all of the studied patient cell lines. We are testing 
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whether our approach of supplementation with L-cysteine could be used in the future to treat 

some mitochondrial conditions. 
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Abstract for poster presentation at Mitochondrial Medicine: Developing new treatment for 

Mitochondrial Disease (Hinxton, Cambridge, UK, May 2016) 

Title:  

MIEF2 mutations impair mitochondrial fission in skeletal muscle 

Authors: 

Marina Bartsakoulia1, Janbernd Kirschner2, Angela Pyle1, Sarah Grünert3, Stephanie Kleinle6, 

Angela Abicht6, Jennifer Duff1, Helen Griffin1, Patrick Chinnery1,4, Veronica Eisner5, Rita 

Horvath1 

Affiliations:  

1Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK  

2 Department of Neuropediatrics and Muscle Disorders 

3Department of General Pediatrics, Adolescent Medicine and Neonatology, University 

Medical Center, Freiburg, Germany 

4Department of Clinical Neurosciences, University of Cambridge, UK  

5Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia 

Universidad Católica de Chile, Santiago, Chile  

6Medical Genetic Center, Munich, Germany 

Abstract:  

Mitochondria undergo constant fission and fusion to maintain their function and biogenesis. 

Impairment of mitochondrial dynamics can result in altered mitochondrial DNA maintenance, 

reduced oxidative phosphorylation and has been correlated to a variety of mitochondrial 

disorders. DRP1 (DNM1L) has an important role in the division of mitochondria and 

peroxisomes. It is located in the cytoplasm, but in order to promote fission, DRP1 is recruited 

to the mitochondrial outer membrane. An autosomal dominant DRP1 mutation has been 

previously reported in a child with lethal infantile encephalopathy and defective 

mitochondrial peroxisomal fission. Recently, two new proteins MIEF1 and MIEF2 were 

discovered in the mitochondrial fission machinery and their role is to directly recruit DRP1 to 
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the mitochondrial surface. Both proteins are anchored in the mitochondrial outer membrane. 

Knock-down of MIEF1/MIEF2 results in asymmetrical distribution of the network and in 

fused mitochondria.  

Whole exome sequencing identified a homozygous nonsense mutation (p.Q81*) in MIEF2 in 

a 15 year old boy from a consanguineous Jewish family. He developed progressive muscle 

weakness and exercise intolerance. His muscle biopsy revealed mitochondrial myopathy with 

numerous ragged red and COX negative fibers. Biochemical measurement of the respiratory 

chain enzymes in skeletal muscle detected combined deficiency of complex I and IV. Protein 

levels of some mtDNA encoded proteins were decreased. MtDNA copy number was normal 

and no deletions of the mtDNA were detected in muscle DNA. Immunoblotting revealed 

increased levels of proteins promoting mitochondrial fusion (MFN2) and decreased levels of 

the fission protein DRP1. Fibroblasts carrying the homozygous nonsense mutation in MIEF2 

had elongated mitochondria, and showed significantly higher frequency of fusion events than 

controls after transfection with mtDsRed and mtPA-GFP codifying plasmids.  

Our data suggest that mutations in MIEF2 cause increased fusion events, which result in 

imbalanced mitochondrial dynamics and lead to mitochondrial myopathy.   
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Abstract for poster presentation in UMDF Mitochondrial Medicine (Seattle, USA, June 2016) 
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Abstract:  

Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there 

are very few effective therapies available to date. We have previously suggested that in two 

rare forms of reversible mitochondrial disease (reversible infantile respiratory chain 

deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve 

mitochondrial protein synthesis. This beneficial effect is most likely due to improved tRNA 

modification, since cysteine is required for the 2-thiouridylation of mitochondrial tRNAs. 

Although reversible mitochondrial diseases are rare, an altered 2-thiouridylation has been 

shown to contribute to common mitochondrial tRNA mutations, such as m.3243A>G in mt-

tRNALeu (MELAS) and m.8344A>G in mt-tRNALys (MERRF). Here we show that 

supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the 

mitochondrial translation defect in vitro in fibroblasts of patients with MELAS 



152 
 

and MERRF. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial 

translation in TRMU and MTO1 deficient fibroblasts. In summary, our results suggest that 

Lcysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected 

subgroups of patients with mitochondrial translation deficiencies. Further studies are needed 

to explore the full potential of cysteine supplementation as a treatment for patients with 

mitochondrial disease. 
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