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Abstract 

This thesis explores the mechanisms underlying motion vision in the praying 

mantis (Sphodromantis lineola) and how this visual predator perceives camouflaged 

prey.  

By recording the mantis optomotor response to wide-field motion I was able 

to define the mantis Dmax, the point where a pattern is displaced by such a distance 

that coherent motion is no longer perceived. This allowed me to investigate the spatial 

characteristics of the insect wide field motion processing pathway. The insect Dmax 

was found to be very similar to that observed in humans which suggests similar 

underlying motion processing mechanisms; whereby low spatial frequency local 

motion is being pooled over a larger visual area compared to higher spatial frequency 

motion. 

By recording the mantis tracking response to computer generated targets, I 

was able to investigate whether there are any benefits of background matching when 

prey are moving and whether pattern influences the predatory response of the mantis 

towards prey. I found that only prey with large pattern elements benefit from 

background matching during movement; and above all prey which remain un-

patterned but match the mean luminance of the background receive the greatest 

survival advantage.  

Additionally, I examined the effects of background motion on the tracking 

response of the mantis towards moving prey. By using a computer generated target 

as prey, I investigated the benefits associated with matching background motion as a 

protective strategy to reduce the risk of detection by predators. I found the mantis 

was able to successfully track a moving target in the presence of background motion. 
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My results suggests that although there are no overall benefits for prey to match 

background motion, it is costly to move out of phase with the background motion.  

Finally, I examined the contrast sensitivity of the mantis wide-field and small 

target motion detection pathways. Using the mantis tracking response to small targets 

and the optomotor response to wide-field motion; I measured the distinct temporal 

and spatial signatures of each pathway. I found the mantis wide-field and small target 

movement detecting pathways are each tuned to a different set of spatial and 

temporal frequencies. The wide-field motion detecting pathway has a high sensitivity 

to a broad range of spatio-temporal frequencies making it sensitive to a broad range 

of velocities; whereas the small-target motion-detection pathway has a high 

sensitivity to a narrow set of spatio-temporal combinations with optimal sensitivity 

to targets with a low spatial frequency.  
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Chapter 1: General Introduction 

 

1.1 The Praying Mantis 

Praying mantids are a group of predatory insects which are commonly found 

throughout Asia, Africa and South America. They are members of the Order Mantodea 

within the class Insecta. Mantodea is a sister group to the order Blattodea 

(cockroaches and termites), and like the orders Orthoptera (locusts, grasshoppers 

and crickets) and Phlasmatodea (stick insects), belongs to the insect subdivision 

Polyneoptera (new wing) (Eggleton et al., 2007). This thesis focussed on one 

particular species of the praying mantid, Sphodromantis lineola, also known as the 

African lined mantis. The African lined mantis is quite large with females reaching 

8cm in length and males around 6 – 7cm. This species of mantis is commonly found in 

sub-Saharan regions of Africa. Like the majority of mantises, the African lined mantis 

is an ambush predator which remains stationary whilst waiting for prey to approach, 

or uses stealthy movements to stalk prey. It is a generalist predator and has been 

observed in the wild predating on flies, crickets and even larger insects such as locusts 

(Prete, 1999). 

 

1.2 The Compound Eye 

Having a good pair of eyes and a well-developed visual system can give an 

insect a competitive edge and a survival advantage over those with poor sight. 

Evolution has created many different types of eye, from insect ocelli, which consist of 

a single lens and are used to detect rapid changes in horizon position (Land, 2012), to 
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many lensed compound eyes which can form complex images of the insect’s 

environment. 

1.2.1 Structure 

 The compound eye is made up of many units called ommatidia. Within each 

ommatidium, there is a lens which focuses light onto a group of photoreceptors. 

Typically, a group of eight photoreceptor cells make up a structure called the rhabdom 

(Hardie, 1986; Nilsson, 1989; Land and Nilsson, 2012). The rhabdom is a long light 

sensitive structure, which captures light at its tip and guides it down its length. 

Rhabdoms can be closed (as in ancient orders of insects like the mantids), or open (as 

in more recent orders such as Diptera) (Hardie, 1986; Nilsson, 1989; Land and 

Nilsson, 2012).  In mantids with a closed rhabdom, each ommatidium has a small 0.5-

3° field of view, offset from its neighbours view by an amount equivalent to the inter-

ommatidial angle of the eye (Land and Nilsson, 2012). The compound eye works by 

gathering light viewed by neighbouring ommatidia in a retinotopic projection, which 

preserves the spatial relationships between neighbouring units and processes this 

information in the optic lobe and brain. The optic lobe is made up of four different 

layers: the retina, lamina, medulla, and lobula complex. The structure of each of the 

first three layers is columnar, preserving the same retinotopic map, whereas in the 

lobula complex, the retinotopic information is combined in specific ways to generate 

neurons that respond selectively to particular patterns and directions of motion over 

wide areas of the eye (Figure1) (Fischbach and Dittrich, 1989; Cuntz et al., 2007; Borst 

et al., 2010). 
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Figure 1. Schematic diagram of the fly optic lobe. The lobula complex in the fly consists 

of the lobula and the lobula plate. Nine large motion-sensitive neurons sensitive to 

vertically oriented patterns of motion have been drawn (Cuntz et al., 2007). 

1.2.2 Resolution and sensitivity 

Despite structural differences, all visual systems are limited by their resolving 

power and their sensitivity to light. Resolution can be described as the fineness (in 

angular terms) by which the visual environment is sampled, i.e. how sharp an image 

can be made. The sensitivity of a visual system is the number of photons a receptor 

needs to give a criterion response when viewing an image (Land and Nilsson, 2012). 

In the case of the compound eye, resolution is set by the size of the angle between 

each ommatidium (the inter-ommatidial angle) and the size of the receptive field of 

each ommatidium (the acceptance angle). The smaller these two angular parameters 

the greater the ability of the eye to resolve fine spatial detail and contrast (Götz, 1964; 

Retina 

Lamina Medulla Lobula Plate 

Lobula 
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Rossel, 1979). In a state of light adaption the foveal region of the mantis eye has a 

mean acceptance angle of 0.74°. The same region of eye when dark adapted at night 

increases in width to 2°, or dark adapted in dim light 1.1° (Rossel, 1979). This 

widening of the acceptance angle when moving from a light adapted state to a dark 

adapted state facilitates photon capture, enabling the eye to capture more light under 

dark conditions. In contrast the corresponding acceptance angles in the peripheral 

regions of the eye are 2.4° (light adapted), 3.2° (dark adapted at night) and 6° (dark 

adapted in dim light) (Rossel, 1979). This means mantids have a greater resolving 

power under light daytime conditions particularly in foveal region of the eye (Rossel, 

1979).  In general, insects have poor spatial resolution when compared to humans, 

however, they have excellent temporal resolution. This makes them specialise in the 

detection of motion rather than the recognition of fine spatial detail (Franceschini et 

al., 1989). 

 

1.3 Insect Motion Vision 

An animal needs to process many different motion cues in the environment 

and make appropriate behavioural responses to each type of movement. For example, 

a small moving object can represent prey or a conspecific, which can trigger a tracking 

response, whilst a looming object that increases in size and angular speed could 

indicate an approaching predator, triggering an escape reaction (Beverley and Regan, 

1979; Rind and Simmons, 1999; Santer et al., 2006). Motion can also be created by the 

animal’s own movement that causes the whole visual image to move over the retina, 

often referred to as ‘optic flow’ (Gibson, 1950). Animals, such as insects, with 

relatively low spatial resolution have evolved particularly robust neural mechanisms 
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for motion vision, making motion one of the most important visual cues to these 

animals (Srinivasan et al., 1999; Borst et al., 2010). Motion vision has been well 

studied in insects using the optomotor response, which is a turning response 

triggered by movement of a wide-field image over the retina and used to stabilise the 

insect relative to its environment (Fermi and Reichardt, 1963; Reichardt and 

Wenking, 1969; Srinivasan et al., 1999).  

1.3.1 Elementary motion detector 

Elementary motion detectors (EMD’s) sample the brightness of an image at 

two adjacent points. Using two mirror pathways, one of which is delayed by a filter, 

the signal is multiplied and then subtracted giving an output which is positive for 

motion in one direction and negative for motion in the opposite direction. The 

interaction of the spatially separated pathways means the motion of an object and its 

direction can be detected when it passes one pathway then the other (Figure 2) (Borst 

and Egelhaaf, 1989; Douglass and Strausfeld, 1996; Harris et al., 1999; Srinivasan et 

al., 1999).  

 

 

 

 

Figure 2. In each elementary motion detector (EMD), the luminance or contrast signal 

sampled at one input location in the image is correlated with that sampled after a 

delay at an adjacent input location (Harris et al., 1999). 
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1.3.2 Insect motion detecting pathway 

 Following the Hassenstein and Reichardt elementary motion detection model, 

scientists have identified cells located in the lobula complex which respond selectively 

to wide field motion, by either depolarising in response to motion along their 

preferred direction or hyperpolarising in response to motion in the opposite direction 

(Hausen, 1984; Joesch et al., 2008; Schnell et al., 2010). These lobula plate tangential 

cells (LPTCs) are thought to combine information from many local motion detectors, 

however, the neuronal circuitry underlying these motion detectors has remained 

unclear until more recently. It is now well established that the primary input to the 

motion detection system in Drosophila is via lamina monopolar cells (LMCs), L1 and 

L2 (Rister et al., 2007). Like photoreceptors, these cells respond to increases and 

decreases in light and form the light ON (L1) and light OFF (L2) pathways in the 

medulla (Figure 3) (Joesch et al., 2010; Strother et al., 2014). Output from these two 

pathways lead to directionally selective cells T4 (ON pathway) and T5 (OFF pathway), 

which respond to light (T4) and dark (T5) edges. Both the T4 and T5 cells have 4 

subgroups each of which is selective for one of the four cardinal directions (front to 

back, back to front, upwards and downwards) (Figure 3) (Maisak et al., 2013).   
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Figure 3. Circuit diagram of the L1 (On, blue) and L2 (OFF, green) pathway leading to 

directionally selective T4 and T5 cells. Motion information is then spatially integrated 

into lobular plate tangential cells (Haag et al., 2016). 

1.3.3 Direction selectivity 

Although great progress has been made in identifying the underlying circuitry 

involved in directionally selective motion detection, relatively little is known about 

how direction selectivity is computed and where in the pathway these computations 

occur. By characterising four trans-medulla neurons (Tm1, Tm2, Tm4 and Tm9; 

Figure 3) in the OFF pathway, which provide input to the directionally selective T5 

neurons (Takemura et al., 2013b; Shinomiya et al., 2014), recent work has brought us 

closer to identifying the neurons and synapses where the different computational 

stages of the Hassenstein and Reichardt motion detection model may take place 

(Serbe et al., 2016; Tuthill and Borghuis, 2016). 
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From silencing experiments, it was found that all four Tm neuron types 

presynaptic to T5 have a cumulative contribution to motion sensitivity and no single 

Tm neuron type, or pair of Tm neurons, is directly needed for direction selectivity 

(Serbe et al., 2016). Therefore, motion may be computed in an incremental manner: 

directional selectivity originating at the level of the T5 dendrites may be sharpened 

through inhibitory interactions between T5 neurons with opposing preferred 

directions and pooling of wide-field motion signals in Lobula plate tangential cells 

(LPTC’s) (Serbe et al., 2016; Tuthill and Borghuis, 2016). This also suggests that 

instead of two temporally distinct input lines as predicted in the Hassenstein and 

Reichardt motion detection model, the OFF motion pathway in the fly uses at least 

four. This broadens the detector’s performance range and may enhance motion 

detection across luminance conditions (Serbe et al., 2016; Tuthill and Borghuis, 

2016). 

1.3.4 EMD tuning 

The delay in the elementary motion detector model could be explained by the 

diverse temporal kinetics which the Tm neurons display: Tm2 and Tm4 were found 

to be transient (fast adapting), Tm9 is sustained (non-adapting) and Tm1 

intermediate (slow adapting). The diversity in the response speed of these neurons to 

motion stimulus provides a range of temporal filters enabling motion detectors to be 

tuned to a range of image velocities. These temporal filters make motion detectors 

sensitive to an image’s spatial and temporal properties (O'Carroll et al., 1997).  

The neuronal circuitry which has emerged in drosophila provides good 

support for the Hassenstein and Reichardt elementary motion detection model and 
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expands our knowledge on how direction selectivity is computed in the motion 

detection pathway.  

 

1.4 Apparent Motion 

 Studies investigating the mechanisms underlying motion perception 

often use computer-generated stimuli creating apparent motion of a small target or a 

wide field grating (Goodman, 1960; Borst and Bahde, 1988; O'Carroll et al., 1997; 

Prete et al., 2002; Nordström et al., 2006; Nityananda et al., 2016a). Instead of 

continuous movement (Figure 4a), apparent motion (Figure 4b) can be described as 

a series of static images, which are displaced in frequent jump steps stimulating 

motion detectors. Images which are displaced in small, frequent jump steps are 

perceived as having a smooth motion whereas images which are displaced by 

increasing distance are perceived as having a jerky motion.  
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Figure 4 (A) Continuous vs (B) Apparent motion displayed in a x-t plot, where 

luminance information is shown along a spatial (x) and time (t) axis. At a constant 

velocity continuous motion produces a smooth luminance profile along the x axis, 

producing a slanted bar in the x-t plot (A). Apparent motion moving at a the same 

average velocity is stable in one position for a set time then jumps to a subsequent 

position (B) (Haag et al., 2016). 

 Apparent motion has been widely studied in insects to understand how 

they use visual information to navigate (Cheng et al., 1987), judge distance  

(Srinivasan et al., 1991) and stabilise their bodies (Land, 1973). For example, the 

landing response of the house fly is triggered by an expanding image upon the retina 

(Goodman, 1960; Borst and Bahde, 1988) and the onset of landing is triggered when 

a combination of spatial frequency and contrast of the pattern reaches a threshold 

value (Borst and Bahde, 1988). 

A 

B 
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1.4.1 Dmax 

Apparent motion has also been used to understand the visual mechanisms 

behind human motion detection. Human behavioural studies have shown that by 

displacing a random chequerboard pattern in increasingly larger jumps, the 

perception of smooth motion begins to break down, resulting instead in the 

perception of a jerky movement. Ultimately the perception of coherent motion breaks 

down when the distance the image is displaced by becomes too large, leaving the 

participant unable to discriminate which direction the pattern is moving in. The 

displacement beyond which, coherent motion breaks down has been termed Dmax, 

or the Braddick limit (Braddick, 1974; Braddick et al., 1980; Morgan, 1992). Dmax has 

been well studied and characterised in the human visual system however Dmax has 

yet to be used to study how invertebrates perceive apparent motion. 

 

1.5 Small Target Detection  

 Detecting prey amongst a cluttered visual environment is a complicated task. 

Despite possessing a low-resolution compound eye, many insects are able to detect 

and track small moving objects through complicated environments. When tracking an 

object, either during flight or by making saccadic head movements, the background 

image is shifted over the retina creating an optic flow. The insect visual system needs 

to be able to segregate the movement of the small object (figure or target) from the 

background motion (ground) (Egelhaaf, 1985; Nordström et al., 2006; Nordström and 

O’Carroll, 2009; Gonzalez-Bellido et al., 2016). Behavioural studies have shown that 

flies are able to discriminate objects even when the target matches the texture of the 

background, as long as there were relative motion cues (Wehrhahn and Reichardt, 
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1973; Reichardt and Poggio, 1979; Reichardt et al., 1983; Egelhaaf et al., 1988). This 

led to the suggestion that figure ground discrimination is processed by two 

functionally different pathways: a wide-field system associated with the optomotor 

response which responds to optic flow (Hausen, 1982; Reichardt et al., 1983) and a 

small-field system sensitive to smaller objects (Collett, 1971; Olberg, 1981; Egelhaaf, 

1985; Egelhaaf et al., 1988; O'Carroll, 1993; Nordström et al., 2006; Barnett et al., 

2007; Duistermars et al., 2007). Recent work suggests these functionally different 

motion vision pathways may arise in early visual processing, diverging directly down 

stream of photoreceptors in lamina monopolar cells (Rister et al., 2007; Katsov and 

Clandinin, 2008).   

1.5.1 Small target detecting neurons 

Neurons which are selectively sensitive to small features were first described 

in the optic lobes of hawkmoths and hoverflies (Collett, 1971, 1975). These ‘target 

tracking’ neurons responded exclusively to discrete moving features, such as dark and 

light spots, bars or edges, in a direction-selective manner, and ignored wide field 

stimuli (Collett 1971). Later, a type of neuron referred to as the ‘small target motion 

detector’ (STMD) (O’Carroll, 1993) was characterised in the dragonfly. STMDs were 

found to be highly selective for targets which occupied <3° of the visual field and were 

inhibited by wide-field stimuli such as sinusoidal gratings (Nordstrom, 2006; Barnett, 

2007; Geurten, 2007).  

The mechanisms by which cells obtain their sensitivity for small features is not 

yet fully understood. Sensitivity to small features could be mediated by a negative-

feedback loop from the large-field system, whereby tuning to small features is 

mediated by inhibition by wide field sensitive neurons (Reichardt, 1983; Egelhaaf, 
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1985; Warzecha, 1993; Olveczky et al., 2003). This inhibitory feedback means that 

neurons sensitive to small objects, such as the ‘figure detection’ (FD) cell found in the 

blowfly, can only detect the relative motion of objects against a background (Egelhaaf 

et al., 1988; Olveczky, 2003).  

  In contrast, STMDs which are sharply tuned to small targets, continue to 

respond robustly whether the background pattern is moving in the same or the 

opposite direction (Nordstrom, 2006). This suggests that STMDs do not rely solely on 

wide field inhibition and use a different mechanism for target tuning. Alternatively, 

experiments on a type of STMD (CSTMD1) found in the dragonfly, suggest that it is 

possible that these cells receive lateral inhibition from contralateral counterparts, 

which sharpens tuning to small moving targets (Geurten, 2007; Bolzon et al., 2009). 

The CSTMD1 has two dendritic output regions, one of which is localised near input 

dendrites of its contralateral counterpart. By linking the two visual hemifields the 

CSTMD1 could allow for direction-selective inhibition between the two hemispheres. 

This interocular inhibition was found to be much stronger than local inhibition, with 

almost complete suppression of responses when two targets are viewed by each 

hemisphere (Bolzon, 2009). This interocular inhibition could possibly allow the 

dragon-fly to focus on one target in a swarm of prey.  

 

1.6 Camouflage  

Natural selection has provided us with some amazing examples of camouflage, 

which can be seen in a diverse range of animals, from insects which resemble bird 

droppings (Hebert, 1974) to cephalopods and reptiles which can change colour to 

match their surroundings (Hanlon and Messenger, 1988; Nery and de Lauro Castrucci, 
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1997; Barbosa et al., 2008). Crypsis comprises all traits that reduce an animal’s risk 

of being detected when it potentially could be seen by an observer (Stevens and 

Merilaita, 2009a; Stevens and Merilaita, 2011). Some of the more well-studied forms 

of crypsis include background matching and disruptive colouration. Background 

matching is a form of camouflage employed by prey to reduce the risk of being 

detected by predators (Endler, 1978; Endler, 1984; Merilaita and Lind, 2005b; Stuart-

Fox et al., 2008); by resembling the colour, luminance, or pattern of either one 

background (specialist) or several backgrounds (compromise) (Merilaita et al., 1999; 

Merilaita et al., 2001). Disruptive colouration comprises of a set of markings which 

creates false edges making it difficult for predators to detect a prey’s body shape thus 

enabling them to go undetected (Cuthill et al., 2005; Merilaita and Lind, 2005a; 

Schaefer and Stobbe, 2006; Stevens and Merilaita, 2009b). By closely matching 

features found in the background and maintaining a low luminance contrast to the 

surroundings it becomes difficult for an observer to segregate a stationary object 

(figure) from the background (ground). This allows prey to blend into the background 

and remain undetected by visually hunting predators. 

1.6.1 Crypsis and motion 

One important factor that could enable a visual system to distinguish a figure 

from the background is movement (Livingstone and Hubel, 1988; Borst and Egelhaaf, 

1989; Lamme, 1995; Nordström et al., 2006; Nordström and O’Carroll, 2009). It has 

often been observed that cryptic animals remain still (Poulton, 1890; Cott, 1940; 

Heatwole, 1968; Broom and Ruxton, 2005; Eilam, 2005; Zhang and Richardson, 2007), 

and that crypsis and remaining still are in fact inter-dependent on each other 

(Ioannou and Krause, 2009; Hall et al., 2013). However, some background matching 
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prey need to forage and find a mate when visually hunting predators are active (le et 

al., 2000; Honkavaara et al., 2002; Butler, 2005). There have been relatively few 

controlled experiments into the effectiveness of background matching during prey 

movement, making it difficult to know whether prey are afforded any benefits from 

background matching during movement. So far, evidence suggests there are no 

benefits of background matching in moving prey (Ioannou and Krause, 2009; Hall et 

al., 2013); although some protective strategies such as ‘motion dazzle’ can make it 

difficult for predators to capture prey once detected and rely on the motion of the 

prey to create a visual illusion  (Jackson et al., 1976; Brodie, 1989; Allen et al., 2013; 

Hämäläinen et al., 2015). These patterns include bars, stripes and zig-zag patterns; 

which when in motion, are thought to alter the perception of the predator making it 

difficult for it to judge the speed and direction of prey (Stevens et al., 2008; Scott-

Samuel et al., 2011; Stevens et al., 2011; von Helversen et al., 2013; Kelley and Kelley, 

2014; Hämäläinen et al., 2015). 

1.6.2 Factors affecting crypsis 

The effectiveness of background matching can be dependent on many factors, 

such as background complexity (Merilaita, 2003; Merilaita and Lind, 2005b; 

Dimitrova and Merilaita, 2011; Dimitrova and Merilaita, 2014), the degree of 

resemblance to the background (Dimitrova and Merilaita, 2009; Dimitrova and 

Merilaita, 2011; Dimitrova and Merilaita, 2014) and the visual acuity and sensitivity 

of the predator (Stevens, 2007; Stevens and Merilaita, 2011). Evidence supporting 

background matching primary comes from predator–prey experiments measuring 

the survival rates of cryptic prey (Merilaita et al, 2001, 2003, 2005; Cuthill et al, 2005; 

Stevens, 2009). Many of these experiments use birds and humans as model predators 
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(Forsman and Merilaita, 1999; Merilaita et al., 2001; Cuthill et al., 2005; Merilaita and 

Lind, 2006; Stevens et al., 2008; Hall et al., 2013), which are both groups that have 

visual systems with high acuity and a high sensitivity to light. This enables them to 

see objects with a high resolution and the ability to see objects under low lighting 

conditions. In contrast, there have been few studies investigating the optimisation of 

background matching as a concealing strategy when viewed by a compound eye, 

which has relatively low spatial resolution but is finely tuned to detect motion in the 

environment (Srinivasan et al., 1999; Borst et al., 2010). Therefore, we need studies 

which investigate whether background matching can offer prey any survival 

advantages when predated on by an insect predator and whether movement breaks 

crypsis when perceived by a relatively simple visual system. 

 

1.7 The praying mantis as a visual predator 

The praying mantis visual system is thought to be well-developed compared 

to that of other insects. The mantis has two large compound eyes giving a wide field 

of view, with just a small blind spot at the back of the neck (Rossel, 1979; Rossel, 

1983). The forward-facing nature of the mantids eyes means that they have a 

binocular overlap of 35° horizontally (e.g. Tenodera australiae (Rossel, 1979)). This 

binocular overlap gives the mantis the advantage of depth perception through 

binocular vision (Maldonado and Rodriguez, 1972; Rossel, 1983; Nityananda et al., 

2016a). The mantis has a specialised foveal region at the front of the eye where 

interommatidial angles are as small as 0.6°, and an increased ommatidial facet size in 

comparison with other regions of the eye. This gives the fovea a higher spatial 

resolution than peripheral regions of the eye (Rossel, 1979; Rossel, 1980). The 
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periphery of the eye has a reduced spatial resolution but is sensitive to movement. 

The peripheral eye region detects moving prey, which triggers a saccade, centring the 

fovea over the target image (Levin and Maldonado, 1970; Rossel, 1979; Rossel, 1980). 

The image is then held over the fovea by the mantis’s smooth or saccadic tracking 

behaviour. This tracking behaviour precedes the capture of prey and has often been 

used in behavioural studies as a measure of the mantids interest in prey-like objects 

(Levin and Maldonado, 1970; Rossel, 1980; Rossel, 1983; Corrette, 1990; Prete, 1993; 

Prete and Mahaffey, 1993; Prete et al., 2002; Yamawaki, 2003; Yamawaki, 2006).    

 

1.8 Target Identification 

 The term target is used for small objects that move independently from the 

background and are pursued for feeding, defensive or mating purposes (Gonzalez-

Bellido et al., 2016). Target detection and identification is important for the survival 

of many insects and is used in tasks such as prey detection (Combes et al., 2013), 

predator avoidance (Peek and Card, 2016) or finding a mate (Alderman, 2012). To 

identify a moving object as a target of interest, many predatory insects need to 

evaluate the object properties and decide whether it is suitable for consumption 

(Prete and McLean, 1996; Combes et al., 2013; Haselsteiner et al., 2014; Wardill et al., 

2015; Gonzalez-Bellido et al., 2016). This evaluation involves determining whether 

the object is small and near, as opposed to large and far away, since both types of 

target can subtend the same retinal angle (Figure 5). Distance perception can be 

estimated through a range of different methods. The praying mantis can use 

stereopsis to gauge the distance and size of an object (Rossel, 1996; Nityananda et al., 

2016a), whilst insects such as locusts can use motion parallax (Schwind, 1989; Sobel, 
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1990), whereby when the observer moves, an object which is near makes a larger shift 

across the retina compared with an object which is far away (Kral, 2003).  

 

Figure 5. An object that is close and small subtends the same size on the retina (α) as 

one that is far away and big (Wardill et al., 2015). 

 

1.9 Mantis prey preference 

The praying mantis is a generalised opportunistic predator which uses its 

raptorial forelegs to strike and catch a wide range of insect prey (Corrette, 1990; Prete 

and Wolfe, 1992; Prete and Mahaffey, 1993). It primarily uses its visual system to 

detect, identify and track prey before eliciting a predatory strike (Rossel, 1980; 

Rossel, 1983; Corrette, 1990; Yamawaki, 2000). Interestingly, studies using both 

mechanical and computer based stimuli have shown the mantis does not identify prey 

based on a simple template, but uses a computational algorithm to define prey, similar 

to that seen in the toad (Ewert, 1987; Ewert, 1989; Gonka et al., 2000). The mantis 

simultaneously assesses a number of visual parameters to identify an object as ‘prey’ 
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or ‘not prey’, including object size, distance, speed, movement pattern and contrast to 

background (Prete, 1992; Prete, 1993; Prete and Mahaffey, 1993; Prete and McLean, 

1996; Yamawaki, 2000; Prete et al., 2002; Yamawaki, 2003; Prete et al., 2012). The 

mantis is a generalist predator and does not have a sharply tuned prey preference 

type. Sphodromantis lineola has been shown to track black square targets ranging 

from 10° to 48° and preferentially strikes at 12° x 12° black square targets (Prete, 

1993; Prete, 1999; Prete et al., 2002). The distance of a moving target affects the 

likelihood of the mantis to strike at targets, with the number of strike responses 

reducing as distance is increased from around 2.5cm (Prete and Mahaffey, 1993; 

Nityananda et al., 2016a); although distance does not have the same effect upon the 

tracking behaviour (Prete and Mahaffey, 1993). By moving a target over a horizontally 

moving patterned background, Prete and Mahaffey (1993) found that background 

movement reduced the number of strikes the mantis made towards a moving target, 

however, background movement did not affect the tracking behaviour. These results 

suggest that the mantis is flexible in which targets it will track, and will readily track 

targets ranging in size and distance; but shows specificity before attempting to 

capture prey ensuring the target matches the correct combined target parameters 

before releasing the strike behaviour (Prete and Mahaffey, 1993; Nityananda et al., 

2016a).  

  

1.10 Project outline 

 In this thesis, I explore mechanisms underlying motion vision in the preying 

mantid in relation to its predatory behaviour, and how it detects its prey. Firstly, in 

Chapter 3, I investigate the perception of apparent motion in the mantis. By using 



20 

 

computer generated stimuli, I measure and characterise Dmax in an insect and 

compare it to that of the human Dmax.  

 Chapter 4 explores the effects of movement on crypsis through background 

matching. Prey often need to move when visually hunting predators are active. 

Although movement is considered to break camouflage, it is not known if there are 

any benefits associated with background matching when prey are moving.  

 Chapter 5 explores a related question of whether prey are able to reduce the 

probability of being detected by predators by matching the motion pattern in their 

environment. It is thought the swaying behaviour of stick insects is an attempt to 

mimic background motion, allowing them to blend in to their surroundings; however, 

there is little evidence to show this type of behaviour carries any survival benefits.  

 Finally, in Chapter 6, I aim to characterise and compare the distinct temporal 

and spatial signatures of the praying mantis tracking and optomotor systems. Insect 

studies have revealed motion detectors tend to be tuned to spatio-temporal 

combinations which match their behavioural ecology. These studies almost 

exclusively use drifting wide-field stimuli measuring a response from neurons which 

monitor optic flow. Few studies have concentrated on small target tracking systems 

which are interested in detecting and tracking small features such as prey or con-

specifics.  
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Chapter 2: General methods 

 

 2.1 Subjects  

Mantids used in experiments were acquired from a UK breeder. They were 

housed individually in plastic boxes (17 cm length, 17 cm width, 19 cm height) with 

holes in the lid for ventilation. The housing facility was maintained at 25oC with a 12-

hour light/dark cycle and the boxes were regularly misted with water to raise the 

humidity. They were fed one medium-sized field cricket (18 – 25mm) twice per week. 

The number of individuals used in each experiment can be found within each 

experimental chapter. 

 

2.2 Experimental set-up 

 In each experiment mantids were individually positioned in front of a 

CRT monitor upon which visual stimuli were presented (Figure 6). Subjects were 

positioned underneath a Perspex perch (5x5cm), which was clamped in front of the 

CRT screen. We chose to position the mantis upside down hanging from the perch as 

this is how we observed them hunting prey within their housing facility. We left the 

mantids unrestrained so as to allow them to behave as naturally as possible. 
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Figure 6. Experimental set up with the mantis viewing the visual stimulus. The web 

cam is positioned so the observer can record the mantis response blind to the 

stimulus. 

2.2.3 Equipment 

In chapter 3 we used a (Hewlett-Packard 21” colour monitor P1130, refresh 

rate 85Hz) with a resolution of 1600 x 1200 pixels, with a pixel density of 

40pixels/cm. In chapters 4, 5 and 6 we used a (Phillips 107B3 colour CRT monitor 

33cm x 24.8cm, refresh rate 85Hz) with a resolution of 1280 x 960 pixels, with a pixel 

density of 38.75pixels/cm. By using electroretinography the maximum resolvable 

flicker fusion frequency of the mantis (Tenodera aridifolia sinensis) was found to be at 

50Hz in dark adapted conditions (Prete, 2004). However, the maximum flicker fusion 

rate of the acute zone remains unknown and is expected to be higher than that of the 
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rest of the eye. For this reason, we wanted to use a CRT monitor with a high refresh 

rate to ensure the stimulus appears stable to the mantis observer. Both monitors used 

throughout the experiments were gamma corrected using a Minolta LS-100 

photometer. A wooden box (66L x 53W x 60H cm) was placed around the set-up to 

prevent disturbance. 

A Kinobo USB B3 HD Webcam (Point Set Digital Ltd, Edinburgh, Scotland) was 

placed directly beneath the mantis to record behaviour. The output of the camera was 

fed to a DELL Optiplex 9010 computer and to a monitor where an observer could 

record mantid behaviours in real time. The camera was positioned so that the 

observer only had a view of the mantis and not of the computer screen to ensure the 

observer coded the mantis behaviour blind to the stimuli presented. Stimuli were 

presented in a random order determined by the computer program. Details of the 

stimulus presented on each trial were recorded by the computer along with the 

judgments made by the human observer, for later comparison and analysis. 

 

2.2.4 Viewing distance  

 In chapter 3 the viewing distance of the screen for each mantid was 8cm. The 

visual angle of the screen subtended 135° horizontally and 122° vertically on the 

mantids retina with 10 pixels subtending a visual angle of 1.79°. In chapters 4, 5 and 

6 the viewing distance of the screen for each mantid was 6cm.  The visual angle of the 

screen subtended 140o horizontally and 128o vertically with 10 pixels subtending a 

visual angle of 2.4°.  We chose these viewing distance so the monitor was out of 

striking range of the mantis (Rossel, 1983; Nityananda et al., 2016b), preventing them 

from climbing onto the CRT monitor during the experiment. From pilot trials, we also 
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found mantids had good a tracking response rate towards small moving targets at this 

range of distances. 

 

2.3 Experimental procedure 

All visual stimuli were created with a custom written script using Matlab 

(MathWorks) and the Psychophysics Toolbox. Specific details of each visual stimuli 

can be found in each experimental chapter. Each mantis was shown a series of trials 

containing the visual stimuli. In between trials, the mantis viewed a static background 

image of a random chequerboard pattern i.e. a pattern made up of square tiles 

coloured randomly either black or white with equal probability. Before each 

presentation of a test stimulus, the mantids head needed to be aligned with the centre 

of the screen to ensure each test condition passed through the foveal region of the eye. 

This consisted of a dark circle moving across the background image in a spiral motion 

from the edge of the screen to the centre. This was to attract the mantids gaze and 

ensure that its head was finally positioned towards the centre of the screen. Further 

alignment was made manually by moving the entire background image to the left or 

the right via the arrow keys, triggering the optomotor response, until the mantis was 

aligned to the centre of the screen (Nityananda et al., 2015). Once the mantis was 

aligned, I presented the visual stimuli (detailed in each experimental chapter). Once 

the test stimuli was presented I recorded the mantids response accordingly for each 

experiment. Details of behaviours recorded can be found within each experimental 

chapter. Once the mantids response was recorded, there was an interval of 15 seconds 

during which the background image was displayed. Then the alignment stimulus was 

automatically generated to centre the mantids head before the next stimulus was 
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presented. The stimulus type and behavioural observations for each trial were 

recorded for later analysis. 

 

2.4 Behaviour 

2.4.1 Optomotor response 

 The optomotor response has been used as a behavioural measure in many 

studies investigating insect motion vision (Fermi and Reichardt, 1963; Reichardt and 

Wenking, 1969; Reichardt and Guo, 1986; Duistermars et al., 2007; Trischler et al., 

2010; Nityananda et al., 2015). The optomotor response involves a leaning movement 

of the mantids entire body in the same direction as moving wide field stimuli. It is 

distinctly different from the saccadic tracking response which is primarily defined by 

head movements and is seen in response to small moving targets (Prete and Mahaffey, 

1993). An example of the mantis optomotor response can be found on the following 

website (sixth video): http://www.jennyreadresearch.com/2016/mantis-videos/. 

We used the optomotor response in chapters 3 and 6 to determine whether the mantis 

could detect movement of a wide field stimuli. Although the optomotor response can 

be defined by a range of properties, such as the torque response; we only needed to 

record whether the mantis elicited the optomotor response or not to verify the mantis 

detected wide field movement. Therefore, we recorded the optomotor response 

simply as leaned left, leaned right or no response. 

 

2.4.2 Tracking response 

 The mantis tracking response is defined by the saccadic movement of the 

mantids head, unlike the optomotor response the body remains stationary. The 

http://www.jennyreadresearch.com/2016/mantis-videos/
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mantis moves it head in response to small moving targets in an effort to keep the 

target image over the foveal region of the eye (Rossel, 1979; Rossel, 1980). We used 

the tracking response of the mantis in chapters 4, 5 and 6 to measure the mantids 

predatory response to small moving targets. We recorded each head movement left 

or right as a single tracking event. An example of the mantis tracking response can be 

found on the following website (first video):                       

http://www.jennyreadresearch.com/2016/mantis-videos/  

2.4.3 Other behaviours 

 The mantis peering and strike behaviours were also recorded throughout 

chapters 4, 5 and 6 towards small moving targets, however these behaviours rarely 

occurred and therefore were not included in the results sections.  

The mantis peering behaviour can be described as a swaying of the mantis 

prothorax whilst keeping the head looking straight forward and moving linearly. The 

peering behaviour is used by the mantis to aid in distance estimation of a stationary 

object (Kral and Devetak, 1999; Kral, 2012). 

The mantis strike response is released during prey capture and is displayed 

when prey like targets come within the prey ‘capture range’. It is possible we did not 

observe this behaviour frequently due to the size of our viewing distance. The optimal 

prey capture range is approximately 2.5cm, with frequency of strikes reducing as the 

viewing distance increases (Prete and Mahaffey, 1993; Nityananda et al., 2016a; 

Nityananda et al., 2016b). An example of the strike behaviour can be found on the 

following website (second and third video): 

 http://www.jennyreadresearch.com/2016/mantis-videos/ 

  

http://www.jennyreadresearch.com/2016/mantis-videos/
http://www.jennyreadresearch.com/2016/mantis-videos/
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Chapter 3: Apparent-motion perception by the Praying Mantis 

(Sphodromantis lineola) 

 

3.1 Abstract 

 Detecting movement using vision is vital to the survival of many animals 

enabling them to orient, track prey, avoid predators and find a mate. Motion detectors 

operate in a diverse range of animals from insects to humans. The motion detectors 

that underlie the optomotor response, a turning response and caused by wide-field 

motion used to stabilise the insect relative to their environment, respond best to 

specific patterns and directions of movement. To investigate the properties of motion 

detectors in a range of visual systems scientists often use the apparent motion of a 

computer generated wide-field stimulus.  Apparent motion can be described as a 

series of static images which are displaced by a short distance in frequent jump steps; 

this creates the appearance of smooth motion. By displacing the image in increasingly 

larger / less frequent jumps, the perception of smooth motion begins to break down, 

resulting instead in the perception of a jerky movement. Ultimately the perception of 

coherent motion breaks down when the distance the image is displaced by becomes 

too large, leaving the participant unable to discriminate which direction the pattern 

is moving in. The displacement beyond which, coherent motion breaks down has been 

termed Dmax (Chang and Julesz, 1983). Dmax has been frequently used by vision 

scientists to investigate the nature of the computations underlying motion detection 

(Cleary and Braddick, 1990; Glennerster, 1998; Ho and Giaschi, 2009; Wattam-Bell, 

2009; Wexler et al., 2013). Dmax was initially thought to represent the limited spatial 

range of local Reichardt motion detectors. However, it was found by varying the size 

of the pattern elements that Dmax increases as the pattern element size increases, 
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whereby a pattern with large elements could make larger jumps before coherent 

motion breaks down compared to patterns with smaller elements. This, along with 

other evidence, has led to the theory that there are multiple motion detectors within 

the visual system which are tuned to different spatial scales, each with a Dmax value 

dependent on its spatial frequency tuning. I use the praying mantis Sphodromantis 

lineola to measure Dmax in an insect. I wish to determine whether the insect Dmax 

has a defined spatial limit, independent of the pattern chequer size, or whether, like 

the human visual system, Dmax is dependent on the pattern spatial frequency. This 

would allow us to see whether insect motion detectors have a set receptive field or 

whether like humans there are motion detection mechanisms capable of pooling 

motion information over a large area depending on the spatial frequency of the 

pattern. Here we show that as an image is displaced by an increasing distance each 

frame, the probability of the mantis responding with the optomotor response 

decreased. By setting Dmax as 50% probability of correct response; I found that the 

largest jump step a pattern could make before apparent motion began to break down 

(Dmax) increased as pattern chequer size increased. These findings suggest the insect 

motion detection system has similar motion processing mechanisms as humans 

whereby low frequency local motion is being pooled over a larger visual area 

compared to higher spatial frequency images. These findings are the first time Dmax 

has been characterised in this way in an insect and highlights similar characteristics 

to the human Dmax 
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3.2 Introduction 

Motion perception is required to solve many visual tasks such as figure ground 

segregation when tracking prey and optic flow regulation when maintaining body 

orientation during self-motion. To do this, animals have motion detectors, which are 

selective for the direction an object or surround is moving (Hassenstein and 

Reichardt, 1956; Barlow and Levick, 1965; Reichardt and Poggio, 1976; Van Santen 

and Sperling, 1985; Reichardt, 1987). In the insect, motion detectors were first 

studied using the optomotor response, which is a turning response caused by motion 

of the visual environment and is used by an insect to hold a steady position, or a 

heading, relative to its visual surroundings (Srinivasan et al., 1999). In the case of the 

stationary insect, motion of its surroundings to the left causes a turn to the left, with 

the insect appearing to follow the direction of motion. This occurs because the 

imposed motion of the surroundings to the left is interpreted by the insect to be due 

to its own unintended motion to the right, which is then corrected by a corresponding 

turn to the left. Elementary motion detectors (EMDs) underlie this optomotor 

response. EMDs sample the luminance of an image at two adjacent points on the retina 

and correlate the changes at these two points. The signal at the two points is delayed 

and then multiplied with the un-delayed signal in the adjacent location (Figure 2). The 

output of one half-correlator is then subtracted from the other to give a directional 

output which is positive for motion in one direction and negative for motion in the 

opposite direction (Borst and Egelhaaf, 1989; Egelhaaf et al., 1989; Douglass and 

Strausfeld, 1996; Harris et al., 1999; Srinivasan et al., 1999). 

The range of image velocities to which an elementary motion detector 

responds is determined by its spatial and temporal input filters. By increasing the 

spatial separation of the two inputs or decreasing the delay period causes the EMD to 
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be tuned to higher velocities (O'Carroll et al., 1997). This makes motion processing in 

EMD’s dependent upon a surround’s spatial and temporal frequencies (O'Carroll et 

al., 1997; Borst et al., 2010). Sine wave gratings have often been used to test the 

properties of different motion detection systems (Campbell and Robson, 1968; 

Thompson, 1982; O'Carroll et al., 1997). By moving sinusoidal gratings at different 

speeds, we can study the spatial and temporal filtering mechanisms of movement 

detectors (Kulikowski and Tolhurst, 1973; Thompson, 1982; O'Carroll et al., 1997). 

Following the Hassenstein-Reichardt elementary motion detection model 

scientists have set out to identify the underlying circuitry involved in motion 

detection. Although no-one has yet recorded directly from an elementary motion 

detector, it is now well-established in Drosophila that two neurons, L1 and L2, from 

two columns of the fly lamina, are responsible for signalling light increments (ON) and 

light decrements (OFF) at two adjacent points (Joesch et al., 2010; Eichner et al., 2011; 

Joesch et al., 2013). These neurons provide input for systems designed to detect 

moving edges. Output from the L1 (Light ON) and L2 (Light OFF) cells eventually lead 

to the creation of small directionally selective cells in the medulla, T4 and T5 (Figure 

3). These cells are tuned to motion traveling in a specific direction within a specific 

spatiotemporal receptive field (Douglass and Strausfeld, 2003; Takemura et al., 2011; 

Schnell et al., 2012; Takemura et al., 2013a). This motion information sampled by 

many small T4 or T5 motion detectors is then pooled in the Lobula Plate by large 

Tangential Cells (LPTC) (Borst and Egelhaaf, 1989; Franceschini et al., 1989; Borst et 

al., 2010; Maisak et al., 2013; Borst, 2014; Hidayat et al., 2015). These LPTCs have 

large receptive fields and are a major component in the optomotor pathway used in 

body stabilisation (Hausen, 1984; Hausen and Egelhaaf, 1989).  
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Dmax has been frequently used by vision scientists to investigate the nature of 

motion detection systems (Braddick, 1974; Braddick et al., 1980; Morgan, 1992). 

Dmax can be described as the maximal displacement a pattern can make before 

apparent motion breaks down. Dmax was initially thought to represent the limited 

spatial range of local Reichardt motion detectors (Braddick, 1974; Braddick et al., 

1980). However, it has been found that Dmax increases as the pattern element size 

increases, i.e. a pattern with large elements can make larger jumps before coherent 

motion breaks down compared to patterns with smaller elements (Chang and Julesz, 

1983; Cleary, 1987; Cleary and Braddick, 1990; Morgan, 1992; Morgan and Fahle, 

1992). This has led to the theory that there are multiple motion detectors within the 

human visual system which are tuned to different spatial scales, each with a Dmax 

value dependent on its spatial frequency tuning (Cleary and Braddick, 1990; Morgan 

and Fahle, 1992). 

Although Dmax has been widely studied in the human visual system, it has not 

been studied in insect motion detection systems. In this chapter, I use the praying 

mantis, Sphodromantis lineola, to measure Dmax in an insect. I aim to determine 

whether the insect Dmax has a defined spatial limit independent of the pattern 

element size, or as in humans, Dmax is dependent on the pattern spatial frequency. 

This study investigates whether insect motion detectors have a set receptive field or, 

like humans, there are motion detection mechanisms capable of pooling motion 

information over a large area depending on the spatial frequency of the pattern. 
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3.3 Methods 

I used ten adult and four 5th instar female African lined mantids 

(Sphodromantis lineola). In this chapter, the test stimulus consisted of a random black 

and white chequerboard pattern i.e. a pattern made up of square tiles coloured 

randomly either black or white with equal probability, which filled the entire screen. 

During a trial, the test stimulus was redrawn at regular intervals, each time to the left 

(or right) of its previous position, so that it appeared to jump across the screen. When 

the jumps are small enough, this creates the perception of apparent motion and the 

mantid will respond with the bodily stabilising optomotor response. I manipulated 

three variables in the test stimuli: the chequer size (size of each tile in the 

chequerboard, in pixels; Figure 7), the jump step (distance the pattern was displaced 

at each jump, in pixels) and the direction the pattern moved, left or right (Table 1). 

Each chequerboard pattern had the same mean luminance (36cd/m2), and patterned 

backgrounds had equal numbers of white (72cd/m2) and black chequers 

(0.052cd/m2). The time between jumps was kept proportional to the jump size so as 

to keep the pattern speed a constant 60 deg/sec in all trials. The experimental 

procedure used can be found detailed in chapter 2 (section 2.3). After each stimulus 

was displayed I recorded the mantis optomotor response as one of three responses: 

lean left, lean right or no response.  Each combination shown in table 1 were randomly 

displayed in blocks of 20 where 10 trials moved left and 10 trials moved right. These 

blocks were then repeated over several days with each individual mantis. The number 

of mantises which viewed each tested variable combination is shown in table 1, where 

each combination was presented a minimum of 20 times. 
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Figure 7. Visual stimuli were chequerboard patterns of different chequer sizes 

Decreasing chequer size 
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Table 1 Parameters of the visual stimuli: chequer size and size of the pattern 

displacement (jump size) in each frame. All the combinations of the pattern 

chequer size and pattern jump size listed below were presented at random. As the 

chequer size increased, I increased the jump step in order to find Dmax. All 

combinations were presented a minimum of 20 times to each mantid. 

Chequer 

size 

(pixels) Distance pattern jumped in pixels (N mantids) Direction 

1 

6 (13), 7 (6), 8 (3), 9 (6), 12 (13), 15 (9), 20 (9), 24 (13), 

27(12) Right/Left 

2 

6 (13), 7 (3), 10 (13), 12 (6), 14 (6), 16 (3), 18 (13), 20 

(6), 24 (13), 28 (4), 32 (12), 36 (9) Right/Left 

4 

6 (13), 8 (13), 14 (13), 20 (13), 24 (13), 28 (3), 32 (11), 

36 (6), 40 (11) Right/Left 

8 

6 (11), 8 (3), 16 (11), 20 (9), 24 (11), 28 (9), 34 (9), 36 

(9), 40 (13), 44 (9) Right/Left 

16 

8 (13), 16 (3), 32 (11), 35 (9), 40 (13), 50 (9), 56 (3), 60 

(13), 70 (9), 80 (3) Right/Left 

20 

10 (13), 20 (11), 30 (9), 40 (13), 45 (9), 50 (9), 60 (10), 

70 (3), 80 (13), 100 (11) Right/Left 

25 

15 (9), 25 (11), 35 (9), 40 (9), 50 (11), 60 (9), 68 (6), 70 

(9), 80, 74 (2), 80 (13), 100 (9), 125 (3) Right/Left 

40 

20 (13), 40 (13), 50 (9), 58 (6), 60 (9), 80 (13), 100 (3), 

200 (3) Right/Left 
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3.4 Data Analysis 

The mantids were rarely recorded as leaning in the opposite direction to 

the direction of stimulus motion (2.2%; in agreement with Nityananda et al. 

(2015)). This indicates when the mantis leaned in the same direction as the 

stimulus motion, it is attempting to stabilise bodily orientation relative to the 

stimulus. I used this optomotor stabilisation response as an indicator that the 

mantis could see the motion of the stimulus. Accordingly, for this experiment, I 

discarded the small number of trials in which the observer coded the mantis as 

moving in the opposite direction to the stimulus, and counted a “response” as a 

movement in the stimulus direction. I then plotted the mean and standard error 

as the probability of a correct response for each chequer size, as a function of jump 

step. 

In human psychophysics, Dmax is usually measured in a two-alternative 

forced-choice task where observers report whether a stimulus moved left vs right, 

or up vs down. When observers cannot perceive motion, they are correct 50% of 

the time by chance. Dmax is usually defined as the jump step for which observers 

are halfway between chance and perfect performance, i.e. 75%. In our mantis 

psychophysics, responses could not be forced. When the mantises could not 

perceive motion, they did not respond. We therefore define Dmax as the jump step 

for which mantises responded on half of the trials, i.e. at 50%. 

3.4.1 Calculating Dmax 

A psychometric function was fitted to the response rate versus step size 

(per chequer size, figure 8) in order to calculate Dmax, the largest jump step the 

pattern could make before apparent motion breaks down, and the mantis stopped 
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responding. To get accurate estimates of Dmax, it is necessary that the difference 

between the psychometric function values and the data points is minimized. 

However, one complication is that there are different numbers of trials per 

condition and this variability must be taken into consideration during the fitting 

process (i.e. points with more trials have higher certainty and must weigh more in 

the fitting process). Additionally, even when the number of trials is the same, the 

uncertainty depends on the response rate (e.g. the confidence interval is larger on 

an estimated response probability of 0.5, if the mantis responds on 5/10 trials, 

than on the estimated response probability of 1.0 if the mantis responds on 10/10 

trials).  

To account for the different certainties of the individual data points we 

used maximum likelihood estimation to obtain the fits (Figure 8). We assume that 

the probability of the mantis responding (Pm) has a binomial distribution and then 

attempt to maximize the likelihood function: 

likelihood =  ∏ (
𝑁𝑖

𝑀𝑖
) ×𝑃𝑚

𝑀𝑖×(1 − 𝑃𝑚)𝑁𝑖−𝑀𝑖𝑛
𝑖=1   

Where Ni is the number of trials carried out with jump step Ji and Mi is the 

number of responses obtained. We did this using the Matlab function fminsearch 

to find the fit parameters  and Dmax which minimise the negative log likelihood of 

the data over all jump steps Ji at a given chequer size: 

We then took its logarithm: 

log(likelihood) = ∑ log((
𝑁𝑖

𝑀𝑖
)) ×𝑀𝑖× log(𝑃𝑖) + (𝑁𝑖 − 𝑀𝑖)× log(1 − 𝑃𝑖)

𝑛

𝑖=1

 

Then maximizing the latter by finding a fit Pm that maximizes the expression: 
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∑ 𝑀𝑖× log(𝑃𝑖) + (𝑁𝑖 − 𝑀𝑖)× log(1 − 𝑃𝑖)

𝑛

𝑖=1

 

After obtaining the Pm fits for each block size, the stepping distance 

corresponding to 50% probability of motion was calculated and labelled Dmax 

(Figure 8, dotted line on each plot). Each sigmoid fit is uniquely characterized by 

its Dmax and an additional parameter (Sensitivity) which determines the curve 

steepness. 

Finally, we used bootstrap resampling to obtain a measure of the certainty 

of Dmax and Sensitivity values obtained for each block size. We generated 1000 

sets containing binomially distributed values for each data point (assuming that 

probability of motion equals the fitted Pm) and then fed these into the fitting 

procedure described above to obtain 1000 Dmax and Sensitivity values and 

calculate their standard deviation per block size. 

This process generated the psychometric function parameters that were 

statistically most likely to yield the response rates that we observed 

experimentally. Each psychometric function had two parameters: a threshold 

corresponding to the 50% response rate and a spread parameter that determined 

the width of the functions' transition period (i.e. the smoothness of the function).  



38 

 

 

Figure 8: Psychometric function for each pattern block size. We used maximum 

likelihood estimation to fit the probability of the mantis responding (Pmotion) as 

a function of pattern jump step (step DX). The pattern jump step corresponding to 

50% probability of motion was calculated and labelled Dmax. The vertical dotted 

line on each plot represents Dmax for each pattern chequer size (pixels). The scale 

on the x-axis varies according to chequer size plot (Dmax calculation and 

psychometric functions carried out and created by Ghaith Tarawheh). 

 

3.5 Results 

 For each pattern chequer size, the probability of the mantis responding 

with an optomotor response decreased as the jump step of the pattern increased 

(Figure 9). This suggests that when the pattern made a series of small jumps the 
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mantis perceived the pattern as moving. When the jump steps increased, this 

perception of apparent motion breaks down, and the mantis is less likely to 

respond with the optomotor response.  I found the probability of the mantis 

responding with the optomotor response to patterns with small chequers fell 

below chance (50%) at smaller jump steps compared to patterns with larger 

chequers (Figure 10).  

Using the maximum likelihood fitting to estimate Dmax for each pattern 

chequer size, we found that as the pattern chequer size increased Dmax also 

increased (Figure 11). Therefore, patterns with larger elements are able to make 

larger sucessive jumps before apparent motion begins to break down compared 

to patterns with smaller elements. 
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Figure 9. The probability of the mantis making a correct response with increasing pattern jump step. Each graph represents a particular 

pattern chequer size, where 10 pixels subtended a visual angle of 1.79°. The scale on the x-axis varies according to chequer size.  The 

number of mantids for each data point can be found in Table 1.  

0

0.5

1

0 10 20 30

P
ro

b
ab

il
it

y
  o

f 
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 1 pixel

0

0.5

1

0 10 20 30 40

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 2 Pixels

0

0.5

1

0 10 20 30 40

P
ro

b
ab

il
it

y
 o

f 
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 4 Pixels

0

0.5

1

0 10 20 30 40 50

P
ro

b
ab

il
it

y
 o

f 
 

C
o

rr
ec

t 
R

es
p

o
n

se

Step Size (pixels)

Chequer Size 8 Pixels

0

0.5

1

0 10 20 30 40 50 60 70 80

P
ro

b
ab

il
it

y
 o

f 
 

C
o

rr
ec

t 
R

es
p

o
n

se

Step Size (pixels)

Chequer Size 16 Pixels

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

ili
ty

 o
f 

 
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 20 Pixels

0

0.5

1

0 20 40 60 80 100 120

P
ro

b
ab

il
it

y
  o

f 
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 25 Pixels

0

0.5

1

0 40 80 120 160 200

P
ro

b
ab

il
it

y
 o

f 
C

o
rr

ec
t 

R
es

p
o

n
se

Step Size (pixels)

Chequer Size 40 Pixels



41 

 

 

Figure 10. The probability of the mantids making a correct response with 

increasing pattern jump step for each pattern chequer size, where 10 pixels 

subtended a visual angle of 1.79°.  

 

Figure 11. The graph shows Dmax, the largest jumps step the pattern can make 

before apparent motion breaks down, as a function of pattern chequer size. Using 

a maximum likelihood fitting we estimated Dmax for each pattern chequer size 
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3.6 Discussion 

My results show that as an image is displaced by an increasing distance 

each frame, the probability of the mantis responding with the optomotor response 

decreases. I found that the largest jump step a pattern could make before apparent 

motion began to break down (Dmax) increased as pattern chequer size increased. 

This is the first time that Dmax has been characterised in this way in an insect, and 

highlights similar characteristics to the human Dmax (Cleary and Braddick, 1990; 

Morgan, 1992). 

When the pattern jump step became too large the mantids failed to 

perceive the pattern as moving coherently in a particular direction and therefore 

no longer responded with the optomotor response. These results are similar to 

those found in humans where the perception of apparent motion breaks down as 

images are displaced by larger distances each frame (Braddick, 1974; Braddick et 

al., 1980). It was initially thought this Dmax limit represented the spatial limit of 

elementary motion detectors in the visual system (Braddick, 1974; Braddick et al., 

1980). However, like human studies (Chang and Julesz, 1983; Cleary, 1987; Cleary 

and Braddick, 1990; Morgan, 1992; Morgan and Fahle, 1992) my results show 

Dmax in the insect does not have a set spatial limit but is dependent on the size of 

the pattern elements, where Dmax increased with pattern chequer size. If Dmax 

represented the spatial limit of early motion processing systems, such as the insect 

elementary motion detectors, Dmax should be independent of pattern spatial 

frequency. This shows that the mechanisms involved in motion processing may be 

quite similar in both insects and humans. 

Although it is difficult to compare my results directly to those investigating 

human Dmax, as the human Dmax has been measured in terms of the distance 
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between like zero crossings (arcmin) and I measured the mantis Dmax in terms of 

actual pixels; we can clearly see similarities in the characteristics of the human 

and insect Dmax. Both human and mantis Dmax increases as the size of the pattern 

elements increases, however the human Dmax stays nearly constant at small 

pattern chequer sizes and only begins to increase as the pattern chequer size 

reaches approx. 10 arc min (Figure 12). In comparison, our results show that the 

insect Dmax increases steadily and does not seem to have this plateau at small 

pattern element sizes. This may be due to our study not sampling patterns smaller 

than 1 pixel, however we are limited in how fine we can make our pattern due to 

the low spatial resolution in insects in comparison to the human visual system. 

 

Figure 12. Results of an experiment and model to determine the upper limit for 

the human Dmax as a function of the size of the elements in random chequerboard 

patterns. Each set of points represents data from a different observer. Each point 

is the mean of four readings. Dmax is nearly constant over a range 1-10 arcmin, 

but arises thereafter. (Morgan, 1992) 
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 It has been suggested the dependence of Dmax on pattern spatial frequency 

in humans is reflective of multiple motion processing channels which are tuned to 

differing spatial frequencies, each with their own Dmax. Channels which are tuned 

to low spatial frequencies were thought to have larger receptive fields than 

channels which are sensitive to higher spatial frequencies (Cleary and Braddick, 

1990; Morgan, 1992; Morgan and Fahle, 1992). This would allow low frequency 

patterns to be displaced by larger distances before apparent motion breaks down 

compared to channels tuned to high frequency patterns. The optic lobes of the 

insect have a columnar retinotopic structure where by higher order directionally 

selective neurons in the medulla, lobula and lobula plate collect motion 

information from multiple columns (Douglass and Strausfeld, 2003; Borst et al., 

2010; Joesch et al., 2010; Takemura et al., 2013a). If a similar motion processing 

mechanism is at play in the insect visual system, it is likely that low frequency local 

motion is being pooled over a larger visual area compared to higher spatial 

frequency images. This could explain why low frequency patterns are able to be 

displaced by a larger jump step and high frequency patterns can only be displaced 

by a small distance before apparent motion breaks down. 

  

To conclude, I have shown the mantis perceives apparent motion in a 

similar way to humans, where coherent motion breaks down as the distance a 

pattern is displaced increases. I have characterised Dmax in an insect model and 

found like the human Dmax it is dependent on the spatial frequency of the moving 

pattern.  
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Chapter 4: Background matching in moving targets 

 

4.1 Abstract  

Camouflage is a defensive strategy employed by prey to reduce the risk of 

being detected by predators. Nearly all research into camouflage strategies, 

including background matching, have investigated how patterns hide stationary 

prey, and have predominantly used predator models with high visual acuity, 

particularly birds and humans. However, many prey need to move when visually 

hunting predators are active, for example, to forage or find a mate. Although 

movement is considered to break camouflage, it is not known if there could still 

be some benefits for moving prey to match the pattern elements in their 

backgrounds. I investigated this using praying mantids tracking computer-

generated targets as prey. The targets were either homogenous black or grey, or 

were patterned with small, medium and large black and white chequers. The 

targets moved over a homogenous grey or a black and white chequered 

background, which had either small, medium or large chequered elements. I found 

that only prey with large elements in their pattern benefit from matching the 

background pattern when moving. However, prey that matched the mean 

luminance of the background and remained unpatterned had a survival advantage 

over patterned prey, even when the patterned prey benefited from background 

matching. The mantids were less likely to track prey when they were moving on a 

heterogeneous patterned background compared to a homogenous grey 

background. When compared to background matching targets, I found no survival 

advantage for prey with a compromise pattern moving over similarly patterned 

backgrounds. Prey pattern size had a strong influence on the probability that a 
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mantis tracked a target, with mantids being more likely to track a target with large 

pattern elements compared to small. Although prey with large pattern elements 

attract a high predatory response from praying mantids, only this prey type was 

found to benefit from background matching. My results are discussed in relation 

to camouflage strategies for moving prey and prey preference parameters in the 

praying mantis. 

 

4.2 Introduction  

Predation exerts strong selection pressures on prey, and has led to the 

evolution of defensive strategies across a wide range of species. These include 

different forms of camouflage, which allow prey to go undetected either by 

matching their surroundings (background matching) or by breaking up the bodily 

outline (disruptive colouration) (Cuthill et al., 2005; Merilaita and Lind, 2005a; 

Schaefer and Stobbe, 2006; Stevens, 2007). Background matching is a form of 

camouflage employed by prey to reduce the risk of being detected by predators. 

By closely matching the background, prey reduce the contrast between their body 

and the surrounding environment, enabling them to visually ‘blend’ into the 

background (Endler, 1978; Endler, 1984). Essentially, the more visually similar to 

the background the prey colouration and patterning is, the more difficult prey are 

to detect (Cott, 1940; Edmunds, 1974; Endler, 1978).  

The similarity of a prey to its background is often used as a measure of 

camouflage, for example the peppered moth (Biston betularia) against tree bark. 

However, this assumes that crypsis can be maximised by simply matching a 

random sample of the background to a high degree. Background complexity and 
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heterogeneity can have a large impact on the ability of prey to effectively blend 

into their surroundings, making it harder for predators to find prey against 

complex backgrounds (Merilaita, 2003; Merilaita and Lind, 2005b; Dimitrova and 

Merilaita, 2009; Dimitrova and Merilaita, 2011). Habitats are rarely homogenous 

and are usually comprised of visually patchy microhabitats, across which prey 

may need to move in order to search for food, mates and/or shelter. Prey that live 

in different habitats might adapt to match just one of these microhabitats closely, 

perhaps the most common background or the one where they spend the majority 

of their time. However, although this may reduce the risk of being detected in one 

habitat, it will of course increase the chances of being detected in another (Endler, 

1978; Merilaita et al., 1999). Alternatively, prey might be selected to evolve a 

compromise pattern which minimises predation overall across multiple habitats, 

rather than minimising it in just one (Merilaita et al., 2001; Dimitrova and 

Merilaita, 2014). 

Camouflage acts to reduce visual cues that allow predators to distinguish 

an object from its background. One of the basic and fundamental problems that 

the visual systems of both vertebrates and invertebrates have had to overcome is 

to segregate an object from its background. From finding a mate to searching for 

prey, the visual system needs to group the features of an object from other objects 

and the features of the background. It does this through processing various 

sources of information from a visual scene such as luminance contrast, objects 

form, texture, depth and motion information (Livingstone and Hubel, 1988; Borst 

and Egelhaaf, 1989; Lamme, 1995). By reducing a prey’s contrast relative to its 

background, or by breaking up the bodily outline, camouflage makes it difficult for 
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a predator to segregate prey from the background (Merilaita and Lind, 2005b; 

Schaefer and Stobbe, 2006; Stevens, 2007). However, when an object moves, it 

becomes more apparent through ‘figure ground segregation’, where the visual 

system is able to define an object through its motion relative to the background 

motion (Collett, 1971; Egelhaaf, 1985; Nordström et al., 2006; Geurten et al., 

2007).  

There are numerous empirical studies measuring the benefits of 

background matching, which have almost exclusively focused on how patterns 

enhance the survival of stationary prey (Merilaita et al., 1999; Merilaita et al., 

2001; Merilaita, 2003; Cuthill et al., 2006) Some studies have shown bodily 

markings and even prey movement pattern could give moving prey a survival 

advantage by reducing capture (Mizutani et al., 2003; Stevens et al., 2008).  

However, there are few studies that have investigated whether established 

camouflage strategies, such as background matching, benefit prey when moving. 

A recent study investigated the effects of motion on a range of camouflage 

strategies such as background matching and disruptive colouration. Using humans 

as the predator model, Hall et al. (2013) showed that target movement 

significantly reduced search time in all camouflage strategies compared to 

stationary targets, effectively breaking camouflage. Prey will often need to move 

when visually hunting predators are active (Brown, 1992; le et al., 2000; 

Honkavaara et al., 2002; Brown and Kotler, 2004; Stephens et al., 2007): if 

camouflage reduces detection only when prey are stationary this will put 

constraints upon an animal’s ability to forage and successfully find a mate.  
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It is interesting to note that studies of camouflage strategies, whether of 

stationary or moving prey, have been conducted using vertebrate predator 

models, particularly birds and humans. These taxa have complex visual systems 

comprising of a refractive cornea allowing them to focus light upon the retina, an 

opening pupil which acts to bring an optimal balance between light sensitivity and 

resolution and a deformable lens allowing them to focus over a range of distances 

(Land, 2012; Land and Nilsson, 2012). Insect predators, such as praying mantids 

and dragonflies, have compound eyes, which are very different from the 

mammalian and avian simple eye. Whilst the compound eye allows a large field of 

view, the spatial resolution is limited by the width and spatial density of 

ommatidia, which contain the light sensitive receptors. Although insects have 

limited spatial acuity, they boast a superior temporal resolution enabling them to 

see objects moving at high speeds (O'Carroll et al., 1996; Land and Nilsson, 2012; 

Nityananda et al., 2015). Currently, it is not known how insect predators perceive 

camouflaged prey, nor whether background matching is an effective strategy 

against them for moving prey. 

In this Chapter, I used praying mantids to investigate the benefits of 

background matching in moving prey, and test whether background pattern 

element size affects the ability of predators to detect patterned targets. Praying 

mantids are opportunistic ambush predators with a well-developed visual system, 

which they use to locate and capture small prey. They are an ideal model for this 

study: their visual system is well-studied (Rossel, 1979; Rossel, 1980; Rossel, 

1983), they have an array of well-defined predatory behaviours which can be used 

to measure their responses towards prey (Rossel, 1980; Corrette, 1990; Kral et al., 
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2000), and they show these behaviours towards computer generated ‘prey’ 

presented on computer screens (Prete and Mahaffey, 1993; Prete et al., 2012).  

Although praying mantids have been used to explore what characteristics of prey 

(e.g. size, shape, speed) elicit predatory behaviour (Prete and Mahaffey, 1993; 

Prete and McLean, 1996; Prete et al., 2012) there have been no systematic studies 

of how camouflage helps moving targets avoid detection from mantids. Mantids 

rarely respond to stationary prey, which makes it difficult to investigate the 

benefits of background matching when prey is not moving. However, this makes 

mantids an ideal model to examine the effects of movement on the detection of 

background matching prey. This is the first study to use an insect predator to 

explore the benefits of background matching camouflage patterns in reducing 

predatory behaviour towards moving prey 

4.4 Experiment 1: Investigating the effects of background 

matching in moving prey. 

 

4.4.1 Introduction 

In this first experiment, I investigated whether mantids were less likely to 

track computer-generated moving prey that had pattern elements that matched 

the size and contrast of those in their background compared to prey which did not 

match their background pattern. In addition, I tested if there could be benefits to 

prey of having compromise camouflage patterns that did not match a specific 

background pattern but were an intermediate pattern between two backgrounds.  

To explore this, I used four different prey types moving across four 

different backgrounds. I used three high contrast black-and-white ‘chequerboard’ 
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patterned prey types, which varied in their pattern chequer size: 5, 10 or 20 pixels. 

As well as these three different patterned prey types, I also presented black prey 

(see Figure 13).  A variety of praying mantid species have shown strong predatory 

responses towards black targets which create a high contrast to the background 

(Prete, 1992; Prete and McLean, 1996). Therefore, black prey were used to ensure 

that the mantids were responsive even if their predatory behaviour towards 

patterned prey was low due to the effects of camouflage. These four prey types 

(black, 5-pixel, 10-pixel and 20-pixel) were presented on four different 

backgrounds. Three of these matched the black and white chequer patterns of the 

three prey types (pattern element sizes were 5, 10 or 20 pixels), and the fourth 

was a uniform grey background with the same mean luminance. Therefore, I was 

able to compare if background matching was beneficial to each prey type, and also 

see if tracking prey moving on patterned backgrounds was more challenging for 

mantids. Based on previous studies (Prete, 1992; Prete and Mahaffey, 1993; Prete 

and McLean, 1996; Prete et al., 2002), I expected to see a high rate of tracking to 

the black target compared to patterned targets since it has a greater luminance 

contrast to all backgrounds. I expected that patterned prey would be more difficult 

to detect when moving on a heterogeneous complex background compared to a 

homogenous background (Merilaita, 2003; Stevens et al., 2008). 

4.4.2 Methods 

The visual stimuli  used in this set of experiments consisted of a static 

background image and a square target (80 pix × 80 pix) subtending 19.3° × 19.3° 

on the mantis retina. The target appeared randomly at the left or right side of the 

screen, and then travelled across the screen horizontally before returning; this 
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was repeated for 10 seconds. The target moved with a sinusoidal function with 

maximum speed of 1166.7pix/sec at the centre of the screen. The target was not 

visible to the mantis at either edge of the screen when it changed direction.  

 The procedure followed that in the general methods chapter (section 2.3). 

After each trial I recorded the mantids behaviour, including: the amount of times 

the mantis tracked the target (number of head movements the mantis made in 

either direction), whether or not the mantis showed peering behaviour (defined 

as leaning from side-to-side), and the number of strikes made at the screen using 

its forelegs. 

 The background was either a homogenous grey background or a random 

black-and-white chequerboard, where each chequer square was generated at 5, 

10 or 20 pixels width (Figure 13, E-H). All backgrounds had the same mean 

luminance (36cd/m2), and patterned backgrounds had equal numbers of white 

(72cd/m2) and black chequers (0.052cd/m2).  

 The prey stimulus was either a black homogenous target (0.052cd/m2), or 

had a chequerboard pattern which matched the mean luminance of the 

background (36cd/m2).  The chequerboard patterns of the prey matched those of 

the different backgrounds, i.e. they had either a 5, 10 or 20 pixels width (Figure 

13, A-D). We know the mantids are able to resolve each target pattern as they 

responded to patterns as small as 2 pixels in chapter 3 (section 3.5) with the 

optomotor response. 
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Figure 13. Example of target and background patterns (A) Black Target (B) 5 pixel 

patterned target (C) 10 pixel patterned target (D) 20 pixel patterned target (E) 

Homogenous grey background (F) 5 pixel patterned background (G) 10 pixel 

patterned background (H) 20 pixel patterned background. 

 

All four targets appeared on all four backgrounds (i.e. a 4x4 fully factorial 

design; Table 2). Within a block of trials, all 16 target and background 

combinations were presented five times in a random order. Ten mantids 

completed three blocks of trials, each viewing the 16 conditions a total of 15 times.  

 

 

A B C D 

Target 

Background 

E F G H 
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Table 2. Test conditions for Experiment 1. Each target appeared on all four 

backgrounds. The shaded boxes indicate conditions where the prey target 

matched the pattern of its background. 

Background 

Pattern 
Target Pattern (size of chequers) 

Grey Black 5 pixel 10 pixel 20 pixel 

5 pixel chequers Black 5 pixel 10 pixel 20 pixel 

10 pixel 

chequers 
Black 5 pixel 10 pixel 20 pixel 

20 pixel 

chequers 
Black 5 pixel 10 pixel 20 pixel 

 

4.4.3 Data Analysis 

Statistical analysis was carried out using SPSS V. 22. Data were analysed 

with a series of generalized estimating equation models (GEE, binary logistic), 

with target pattern and background pattern as the fixed factors, and mantis as 

the subject factor. The number of trials where tracking occurred out of the total 

number of presentations for each condition was used as the dependent variable. 

I only present analysis of the tracking behaviour as the mantis rarely struck at a 

target or displayed the peering behaviour. 

4.4.4 Results 

 I found that the probability that the mantids tracked the targets was 

affected by the target pattern (black, 5 pixel, 10 pixel and 20 pixel) (GEE, χ
2

3
= 281.7, 

P<0.001; Figure 14) and the background pattern (grey, 5 pixel, 10 pixel and 20 

pixel) (GEE, χ
2

3
= 63.5, P<0.001; Figure 12), and that there was an interaction 

between target pattern and background pattern (GEE, χ
2

9
= 212.8, P<0.001; Figure 
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14). Mantids where less likely to track targets when they were moving over a 

patterned background compared to moving over a grey background (Helmert Post 

hoc, P<0.001; Figure 14). This indicates that prey might be less likely to be 

predated upon when moving through a heterogeneous environment. Mantids 

were more likely to track the black target over patterned targets (Helmert Post 

hoc, P<0.001; Figure 14), presumably because of the greater luminance contrast 

from the background of the black prey compared to the patterned targets.  

Comparing the patterned targets, mantids were more likely to track 20 pixel 

patterned target compared to the 5 pixel and 10 pixel patterned target (GEE, 

pairwise Post hoc, P<0.001, P<0.001; Figure 14). This indicates the mantis 

predatory response is triggered more by prey that have large contrasting pattern 

elements. 
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Figure 14. The mean (+/- s.e.) number of trials the mantids responded with the 

tracking behaviour for each target type moving over each background pattern. 

Each combination of background and target conditions were displayed 15 times 

to each mantis, with a sample size of 10 mantids. 

 

To test whether prey benefit from background matching when moving, I 

compared the number of trials each mantis tracked background matching targets 

compared to non-background matching targets, using patterned target (5 pixels, 

10 pixels and 20 pixels) and patterned background (5 pixels, 10 pixels and 20 

pixels) data in a GEE, binary logistic analysis. I found that there was no overall 

effect of background matching upon the number of trials that the mantids tracked 

the patterned targets (GEE, χ
2

1
= 0.83, P=0.3; Figure 14). There was however an 

effect of target pattern (GEE, χ
2

2
=98.7, P<0.001) and an interaction between 
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background matching and target pattern (GEE, χ
2

2
= 10.52 P=0.005). The data were 

then split to compare background matching targets to non-background matching 

targets within each target chequer size. I found that mantids tracked 20 pixel 

targets less often when they matched their background compared to when moving 

over a non-matching background (GEE, χ
2

1
= 7.63, P=0.006). However, there was no 

significant difference in the number of trials the mantis tracked either the 5 pixel 

and 10 pixel patterned target when matching the background pattern as opposed 

to moving over a non-matching background (5 pixel patterned target: χ
2

1
= 0.14, 

P=0.71; 10 pixel patterned target: χ
2

1
= 1.11, P=0.29; Figure 14). Therefore, only the 

prey with the largest elements appeared to benefit from reduced tracking 

behaviour when matching their backgrounds. 

To test if it could be beneficial for prey to have a compromise pattern in 

two different habitats compared to a pattern which matches one habitat 

completely, I selected the data for the 5 pixel, 10 pixel and 20 pixel targets moving 

over a 5 pixel and 20 pixel background in a GEE, binary logistic model. The number 

of trials the mantids tracked the 10 pixel target (compromise pattern) was then 

compared to the number of trials the mantis tracked the 5 pixel and 20 pixel 

targets pooled across both backgrounds. The 5 and 20 pixel targets matched one 

of the backgrounds and mismatched the other, whereas the 10 pixel target had a 

pattern that was intermediate to both backgrounds. I found that there was a 

significant difference in the number of trials that the mantids tracked the three 

different targets (GEE, χ
2

2
= 78.583, P<0.001; Figure 15) where the mantis tracked 

the 20 pixel target the most and the 5 pixel target the least (Pairwise, post hoc, 
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P<0.001, Figure 15). However, there was no difference in the number of trials the 

mantids tracked the compromise 10 pixel target compared to the background 

matching 5 pixel and 20 pixel targets (Helmerts, post hoc, P=0.208; Figure 15). 

This suggests there are no benefits of having a compromise pattern and that 

pattern size is the main factor determining the likelihood of the mantis to track a 

target.  

 

Figure 15. The mean (+/- s.e.) number of trials the mantis tracked each prey type 

when moving over both the 5 pixel and 20 pixel background (data pooled across 

both backgrounds). Both the 5 pixel and 20 pixel targets matched one of the 

backgrounds whereas the 10 pixel target was similar but compromise on both 

backgrounds. Mantids viewed each target moving over each background 15 times, 

a total of 30 times for each target. 
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4.4.5 Discussion 

In this experiment, I found that there was only a benefit to background 

matching to moving prey with large (20 pixel) chequerboard patterns, and not to 

those prey with smaller elements in their patterns (5 and 10 pixel).  All types of 

prey were less detectable to praying mantids on patterned backgrounds 

compared to a uniform grey background with the same mean luminance.  Mantids 

displayed a high tracking response to black targets compared to chequerboard 

targets that matched the background mean luminance. I found no evidence to 

suggest that an intermediate pattern will benefit prey that inhabit visually 

different habitats, and that pattern element size is more likely to influence the 

mantis predatory response.   

Whilst these data suggest that prey with larger pattern elements do benefit 

from background matching whilst moving, to interpret these data in relation to 

camouflage, it is important to know whether or not these patterns reduce 

predatory tracking behaviour compared to a uniform grey prey with the same 

mean luminance. Therefore, I conducted a second experiment to specifically test 

this, and included a grey target alongside black and patterned prey types. 
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4.5 Experiment 2: Investigating the effects of background 

matching in moving prey compared to uniform prey matching 

the background mean luminance. 

 

4.5.1 Introduction 

It is important to know if patterned prey fare better than uniform grey prey in 

order to better understand the benefits to prey patterning and background 

matching for the 20 pixel prey. To test this I used four different prey types moving 

across two different backgrounds. I used two black-and-white patterned prey 

types, which varied in their pattern element size (5 or 20 pixels), as well as 

presenting uniform black prey and grey prey (see Figure 16). I selected the 5 pixel 

and 20 pixel pattern prey types to reduce the number of conditions in the 

experiment, and explicitly test if chequered prey with low response rates (5 pixel 

prey) or benefits from background matching (20 pixel prey) would survive better 

than non-patterned uniform prey. The uniform grey target matched the mean 

luminance of the background and patterned prey. I also included a black prey to 

ensure that low tracking rates were not due to inactivity on the part of the 

mantids.  

The four prey types (black, grey, 5 pixel and 20 pixel) were presented on two 

different backgrounds, which matched the black-and-white chequer patterns of 

the 5 and 20pixel prey types. Therefore, I was able to compare if background 

matching was beneficial to each prey type as before, but also test if patterned prey 

gained a survival advantage when moving over a patterned background compared 

to un-patterned prey with the same mean luminance.  If the 20 pixel prey pattern 
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affords a camouflage advantage, the grey target moving over a patterned 

background should be more conspicuous and tracked more often than 20 pixel 

background matching prey.  

4.5.2 Methods 

Similar to Experiment 1, the background pattern was a random 

chequerboard pattern where each chequer square was generated at either 5 pixel 

or 20 pixel width (36cd/m2); and the target pattern was either a black 

homogenous target (0.052cd/m2), a grey homogenous target (36cd/m2) or a 

chequerboard pattern where each chequer was generated at 5 pixel width or 20 

pixel width (36cd/m2). All target and background conditions, excluding the black 

target, were generated with the same mean luminance, and therefore patterned 

background and targets had equal numbers of white (72 cd/m2) and black (0.052 

cd/m2) chequers (Figure 16). 
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Figure 16 Example of target and background patterns: (A) black target; (B) grey 

target; (C) 5 pixel target; (D) 20 pixel target; (E) 5 pixel patterned background; (F) 

20 pixel patterned background 

 

All targets appeared on both backgrounds (i.e. a 2x4 fully factorial design; 

Table 3). Each combination of background and target conditions was presented in 

a random order in a block of trials. Within each block of trials every target and 

background combination was presented five times. Ten mantids completed three 

blocks of trials, and viewed each target-background combination a total of 15 

times.  

 

A B C D 

Target 

Background 

E F 
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Table 3. Table of test parameters for experiment 2. Each target appeared on all 

four backgrounds. The shaded target and background combinations represent 

background matching stimuli. 

Background 

Pattern 

Target Pattern (size of chequers) 

5 pixels Black Grey 5 pixel 20 pixel 

20 pixels Black Grey 5 pixel 20 pixel 

 

4.5.3 Data Analysis 

Statistical analysis was carried out using SPSS V. 22. Data were analysed 

with a series of generalized estimating equation models (GEE, binary logistic), 

with target pattern and background pattern as the fixed factors, and mantis as 

the subject factor. The number of trials where tracking occurred out of the total 

number of presentations for each condition was used as the dependent variable. 

I only present analysis of the tracking behaviour as the mantis rarely struck at a 

target or displayed the peering behaviour. 

4.5.4 Results 

 The likelihood of the mantids to track targets was affected by target pattern 

(Black, Grey, 5 pixel and 10 pixel) (GEE, χ
2

3
= 29.081, P<0.001; Figure 17), but was 

not effected by background pattern (5 pixel and 10 pixel) (χ
2

1
= 0.878, P=0.349; 

Figure 17). There was an interaction between target pattern and background 

pattern (χ
2

3
= 17.2, P=0.001; Figure 17). Mantids were more likely to track the black 

target compared to the grey or patterned targets (Helmert post hoc, P<0.001; 

Figure 17). This supports the previous finding that targets that have a large 
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luminance contrast to the background attract more predatory responses 

compared to targets that match the mean luminance of the background.  

 

 

Figure 17. The mean (+/- s.e.) number of trials the mantis responded with the 

tracking behaviour for each target type moving over each background pattern. 

Each combination of background and target conditions were displayed to 

individual mantis 15 times across a total of 10 mantids. 

 

To test whether patterned prey gain a survival advantage over un-

patterned grey prey which match the mean luminance of the background, I 

compared the number of trials that the mantis tracked the grey target to the 

patterned targets (5 pixel and 20 pixel). I found that there was an effect of target 

pattern (GEE, χ
2

2
= 28.631, P<0.001; Figure 17), where the mantids tracked the grey 
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target less than the 5 pixel and 20 pixel patterned targets (GEE, Helmert post hoc, 

P<0.001). Although both the grey and patterned targets both match the mean 

luminance of the background, the patterned targets contain large, highly 

contrasting elements, which may attract the mantids’ predatory responses.  

To test whether prey benefit from matching the background pattern when 

moving, I used data from both patterned targets over the two patterned 

backgrounds in a GEE, binary logistic analysis. I compared the number of trials the 

mantids tracked two patterned targets (5 pixel and 20 pixel) when background 

matching compared to not matching the background. I found no overall difference 

in the number of trials the mantids tracked targets which matched the background 

pattern compared to targets which did not match the background pattern (GEE, 

χ
2

1
= 2.902 P=0.088; Figure 17). I did however find an effect of target pattern (GEE, 

χ
2

1
= 18.7 P<0.001; Figure 17) and a marginal interaction between background 

matching and target pattern (GEE, χ
2

1
= 3.575, P=0.059). The data was then split 

comparing background matching targets to non-background matching targets 

within each target chequer size. As in experiment 1, I found benefits of background 

matching in targets with larger pattern element sizes (20 pixel) compared to small 

(5 pixel). Where the mantis tracked the background matching 20 pixel patterned 

target less than the 20 pixel target which did not match the background (GEE, χ
2

1
= 

6.329 P=0.012; Figure 17). I found no difference in the number of trials the 

mantids tracked the 5 pixel patterned target when it matched the background 

compared to when it did not match the background pattern (GEE, χ
2

1
= 0.026, 

P=0.871). This supports my previous finding that only prey with large pattern 
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elements (20 pixel) benefit from matching the background pattern when moving 

compared to prey with smaller pattern elements (5 pixel). 

To test whether prey which match the background have a survival 

advantage over prey which remain unpatterned, I compared data from the grey 

target and the background matching 5 pixel and 20 pixel targets in a GEE, binary 

logistic analysis, comparing the number of trials the mantids tracked the grey 

target with the background matching 5 pixel and 20 pixel targets pooled using a 

Helmerts post hoc. I found there was an effect of target pattern upon the mantis 

tracking response (GEE, χ
2

2
= 20.669, P<0.001, Figure 17), where the mantis 

tracked the grey target less than the background matching 5 pixel and 20 pixel 

targets (GEE, Helmert Post hoc, P<0.001, Figure 17). This indicates that it is more 

beneficial for prey which match the mean luminance of the background to remain 

unpatterned compared to matching the background pattern.  

4.5.5 Discussion 

Consistent with the results of Experiment 1, mantids displayed a high 

predatory response to black compared to prey that matched the mean luminance 

of the background (uniform grey and patterned targets). Prey with large pattern 

elements (20 pixel) were tracked less often when they matched the background 

pattern whilst prey with smaller elements (5 pixel) were not. However, when 

compared to the uniform grey targets, background matching 20 pixel prey still had 

higher tracking rates, suggesting no overall benefit of background matching 

patterns for moving prey.  
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4.6 General discussion 

This study has shown that only prey with large pattern elements (20 pixel) 

benefit from background matching when moving. Although it seems that 

unpatterned grey targets which match the background luminance gain a survival 

advantage over patterned targets even when the patterned target has a survival 

benefit from matching the background pattern (20 pixel target). I found that 

background pattern affects the tracking behavior of the mantis, making it less 

likely to track targets over heterogeneous background compared to a homogenous 

grey background. Furthermore, I found that there are no benefits of having a 

compromise pattern when moving over visually similar backgrounds, when 

compared to background matching prey. Finally, my study adds to what we know 

about mantis prey preference (Prete, 1992; Prete and Mahaffey, 1993; Prete and 

McLean, 1996; Prete et al., 2002; Prete et al., 2012), where mantids seem to be 

attracted to prey which have a darker contrast than the background (black target) 

or prey that contain large highly contrasting pattern elements (20 pixel).  

 Background matching reduces the ability of a predator’s visual system to 

effectively discriminate prey features from the background, and enables prey to 

blend into the background and go undetected (Cuthill et al., 2005; Merilaita and 

Lind, 2005b; Merilaita and Stevens, 2011). One of the most important features the 

visual system uses to enable it to discriminate an object from the background is 

motion (Collett, 1971; Collett and Land, 1975; Egelhaaf, 1985; Nordström et al., 

2006; Geurten et al., 2007). By using targets which matched a random sample of 

the background, I found that there were no benefits of background matching for 

moving prey with small pattern elements. However, moving prey with large 
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pattern elements did benefit from matching the background pattern. This 

reduction in the mantids tracking response to 20 pixel prey when background 

matching may be clear due to the high rate at which the mantis tracks this prey 

over all backgrounds. In comparison, the mantis has a relatively low tracking 

response to prey with smaller elements (5 pixel target) which may make it difficult 

for us to see any difference in the number of trials the mantis tracks this prey over 

the different background types. Surprisingly, prey which match the background 

luminance and remain unpatterned have a greater survival advantage over 

background matching prey. I would have expected a grey target moving over a 

patterned background to be more conspicuous than a background matching 

target, as it has a clear outline at half luminance between black and white; it may 

be that a target with a low contrast to the background and without any highly 

contrasting features does not trigger the mantis predatory response. The mantis 

shows strong predatory behaviour to moving targets with a high contrast to the 

background at a wide range of sizes (Prete and McLean, 1996; Prete et al., 2002). 

Highly contrasting elements within the target pattern may be triggering the 

mantids’ tracking responses. This suggests that any selection pressures produced 

primarily by mantis predation is likely to select for un-patterned prey which 

matches the background mean luminance and not for background matching 

patterned prey.  

The mantis showed high predation behavior towards prey which had a 

large luminance contrast to the background (black target) compared to prey 

which matched the background mean luminance (grey and patterned targets). 

This was expected due to neurons found in the insect visual system which are 
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specifically tuned to identify small moving targets. These small target motion 

detectors (STMDs) can be size, speed and direction selective and are highly 

sensitive to small contrasting features (Collett, 1971; O'Carroll, 1993; Nordström 

et al., 2006). These neurons could also explain why the mantis showed a high 

predatory response to targets that were patterned with large highly contrasting 

elements (20 pixel target). It is likely the large pattern elements may have 

triggered a response from small target detecting neurons. To avoid predation by 

the mantis prey should ideally evolve to be a low contrast relative to the 

background or have small elements to their pattern. This will allow them to avoid 

triggering neurons which have evolved to pick out large highly contrasting 

features (Collett, 1971; O'Carroll, 1993; Nordström et al., 2006; Geurten et al., 

2007). 

I found that background pattern affected the likelihood of the mantis to 

track targets, where the mantis was less likely to track targets when they moved 

over any of the patterned backgrounds compared to the homogenous grey 

background. This suggests, when predated on by the mantis, prey gain a survival 

advantage when traveling through heterogeneous habitats compared to simple 

homogenous habitats. This agrees with similar findings which suggests complex 

backgrounds increase the amount of visual information which needs to be 

processed, therefore, increasing search time and reducing the detection of 

camouflaged prey (Merilaita, 2003; Merilaita and Lind, 2005a; Dimitrova and 

Merilaita, 2009; Dimitrova and Merilaita, 2011). This means that background 

pattern has implications upon the evolution of camouflage strategies over other 

visually mediated signals such as warning patterns.  
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Natural scenes are rarely homogenous and are usually comprised of 

visually differing microhabitats. Prey which move among these patchy 

environments may be naturally selected to closely match just one of these 

habitats. This may reduce the risk of being detected in one habitat, however, it may 

make them more conspicuous in another (Endler, 1978; Merilaita et al., 1999). 

Alternatively, prey might be selected to evolve a compromise pattern which 

resembles multiple habitats, therefore reducing detection over many background 

rather than minimising it in just one (Merilaita et al., 2001; Dimitrova and 

Merilaita, 2014). I found no benefits to having a compromise pattern when 

compared to background matching targets; and that prey pattern size was the 

influencing factor on the likelihood of the mantis to track the background 

matching and compromise targets. This result may be due to using the 10 pixel 

target as the ‘compromise’ pattern. I found that the mantis did not have a great 

overall preference for this target compared to targets with larger pattern elements 

(20 pixel). This preference for targets with large elements may have affected the 

ability to see any benefits to compromise patterns. Further study should include a 

target with a high mantis preference comparing the survival of the same target 

when moving over similarly patterned backgrounds ‘compromise’ compared to a 

matching background (background matching). 

 My study sheds light on the benefits of background matching in moving 

prey and how an insect predator perceives background matching prey. The 

chequerboard patterns used for the visual stimuli is not a pattern often seen in 

natural scenes, however, I needed to design a target which would trigger a 

tracking response from the mantis. I found that targets which contained a random 



71 

 

pattern containing defined edges elicited a strong response over symmetrical 

patterns and patterns with smoothed edges. This may be due to the high 

sensitivity of insect elementary motion detectors for contrasting moving edges 

(Borst and Egelhaaf, 1989; Douglass and Strausfeld, 1996; Srinivasan et al., 1999; 

Joesch et al., 2010). To trigger a predatory response from the mantis, it was 

essential to move the target, this restricted us in our ability to compare the 

benefits of background matching in moving prey to that of stationary prey. It 

would be interesting to investigate the effects of prey movement pattern on the 

mantis predatory response towards cryptic prey. Praying mantis often predate 

small insects such as crickets, and observations in the lab have revealed that 

crickets often move in a series of quick bouts, remaining stationary between the 

bouts of movement. Insects may benefit from this type of movement pattern 

particularly when predated upon by the mantis, since movement seems to be the 

primary factor in attracting the mantids’ attention. If camouflaged prey adopt this 

type of movement, it will enable them to periodically blend into the background 

whilst also enabling them to travel between locations. 

 

 

 



72 

 

Chapter 5: Background motion and target tracking in a praying 

mantis 

5.1 Abstract 

 Camouflage is an adaptation that reduces the chance of prey being detected 

by visually hunting predators. The most well studied forms of camouflage are 

morphological adaptations such as background matching, masquerading, and 

disruptive colouration. Many prey, however, have also adapted their behaviour to 

maximise the effects of crypsis. It is thought that behaviours such as the swaying 

behaviour of stick insects is an attempt to mimic background motion, allowing 

them to blend in to their surroundings. If this type of behaviour is a form of 

camouflage, then it should reduce the probability of prey being detected, however, 

there is little evidence to show this type of behaviour carries any survival benefits. 

I investigated the benefits associated with matching background motion using 

praying mantids as an insect predator and computer generated black targets as 

prey. The targets moved over a black-and-white chequered background where the 

background was either stationary, moving out of phase with the prey or moving 

in phase with the prey. Using the tracking response of the mantis our study shows 

that prey movement patterns relative to background motion can have an effect 

upon prey detection rates. I found that there was no difference in the number of 

trials that the mantids tracked prey when moving in phase with the background 

compared to moving over a stationary background. The mantids did, however, 

track prey more when they were moving out of phase with background motion 

compared to prey moving in phase with background motion. Our study suggests 

that although there are no overall benefits for prey to match background motion, 

it is costly to move out of phase with background motion. This study can add 
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information to what we know about the benefits of prey matching motion patterns 

found in their environment. 

5.2 Introduction 

Camouflage has evolved in a diverse range of species to reduce the chances 

that prey are detected or recognised by visually hunting predators. The most well-

studied forms include: background matching, where prey match the colouration 

and pattern of their surroundings (Cott, 1940; Endler, 1978; Cuthill et al., 2005); 

masquerade, where prey reduce identification by mimicking inedible objects 

within their surroundings (Skelhorn et al., 2010); and disruptive colouration, 

where a disruptive pattern breaks up the bodily outline (Schaefer and Stobbe, 

2006; Stevens and Merilaita, 2009b). It is not just the morphological adaptation 

that helps prey hide from predators: behaviour can often also play a role. For 

example, various species of cryptic moth become harder to find after they 

reposition themselves on their substrate using visual cues (Webster et al., 2009; 

Kang et al., 2013; Kang et al., 2015). 

A common feature associated with crypsis is the need for prey to remain 

still (Endler, 1978; Merilaita and Lind, 2005b; Ioannou and Krause, 2009; Hall et 

al., 2013) and consequently, studies have focused predominantly on the survival 

of stationary prey against a stationary background. Prey, however, need to move 

when foraging or finding a mate, and environments are rarely static. 

Environmental motion could add noise to a visual scene, making it more difficult 

for a predator to detect relevant motion such as moving prey.  
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Predators need to be able to filter out irrelevant background motion in 

order to better identify movement patterns associated with prey. Predators often 

respond preferentially to a particular pattern of movement that indicates prey, 

and disregard other types of movement as irrelevant background motion 

(Fleishman, 1986; Peters, 2008; Fleishman and Pallus, 2010). The ability of 

predators to identify prey through their movement pattern could exert selection 

pressures on prey to adapt their movements to resemble irrelevant background 

motion, therefore reducing the risk of detection by predators. This behavioural 

adaptation can be found throughout a diverse range of species. For example, 

MacLeay’s spectre (Extatosoma tiaratum), a type of stick insect, reacts to 

environmental cues such as wind with a swaying behavior to match the frequency 

domain of windblown plants (Bian et al., 2015). The vine snake, Oxybelis aeneus, 

matches movement of surrounding vegetation through visual cues. It is thought 

these behaviors are intended to imitate background motion allowing prey to blend 

in with dynamic surroundings (Gans, 1967; Fleishman, 1985; Bian et al., 2015). If 

the swaying behavior of animals is a form of camouflage, then there should be 

survival benefits associated with matching the movement patterns in the 

surrounding environment. There is little evidence to show that the swaying 

behavior in prey carries any survival benefits. 

Many studies investigating the benefits of prey matching background 

movement patterns have used reptile, human and avian predator models 

(Fleishman, 1985; Fleishman, 1986; Bian et al., 2015).  Few studies have 

investigated prey concealment using insect models. Insects are highly sensitive to 

movement and use motion to identify and track prey (Gilbert, 1997; Olberg et al., 



75 

 

2000; Olberg et al., 2007; Wardill et al., 2015). The praying mantis is a good 

example of an insect predator highly specialised to detect motion (Rossel, 1996; 

Yamawaki, 2003; Yamawaki and Toh, 2003). The mantis uses motion as a primary 

characteristic in detecting and identifying prey (Prete and Mahaffey, 1993).  It has 

two largely proportioned eyes relative to the body. A large peripheral area 

specialised to detect motion and a high acuity fovea which it centres over a moving 

object of interest (Rossel, 1979; Rossel, 1980). This tracking behaviour makes the 

mantis an ideal predator model for investigating the effects of motion on prey 

detection as it is an easily identifiable behaviour (Rossel, 1980; Yamawaki, 2006; 

Prete et al., 2011).  

In this chapter, I will test how background motion affects the detection of 

prey targets in the praying mantis (Sphodromantis lineola). Furthermore, using 

the mantis as a predator model, I wish to investigate the survival benefits of prey 

that match the motion of their background. The visual systems of insects are well 

adapted to sort through visual clutter to locate moving objects such as prey or a 

possible mate (O'Carroll, 1993; Srinivasan et al., 1999; Nordström et al., 2006). 

Some mantis species live in dense vegetation where the background is unlikely to 

be completely stationary (Prete, 1999). Therefore, the mantis visual system must 

be able to filter irrelevant background motion and distinguish movements of prey 

like objects. I expect that the mantis will be able to filter out background motion 

and successfully track a moving prey item. If the mantis was to respond to 

background motion, it would be continuously tracking irrelevant objects. 

Furthermore, I expect the mantids to track prey which match the background 

motion less than prey moving out of phase with background motion or prey 
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moving over a stationary background. If the mantis does filter out background 

motion it is likely prey which match the background motion will be ignored as an 

irrelevant object.  

5.4 Experiment 1: The mantis tracking response to visual stimuli 

containing background motion 

 

5.4.1 Introduction  

A variety of praying mantid species have shown strong predatory 

responses towards black targets (Prete and McClean 1996), this has also been 

shown in Chapter 3. Therefore, black prey were used to ensure that the mantids 

would display a high tracking response, and that differences in the tracking 

response which may be caused by the experimental conditions would be 

measurable.  

 In the first experiment, I investigated if: (1) the tracking response of the 

mantis occurred when presented with a moving scene, which did not contain a 

prey target; and, (2) if the praying mantis was able to filter out irrelevant 

background motion and distinguish a moving target over background motion 

‘noise’. This will enable us to verify that the mantis recognises the moving target 

as a prey item and does not track moving background elements when there is no 

target. I did this by measuring the tracking response of the mantis when presented 

with a moving background without a moving target to track. I also measured the 

tracking response of the mantis to a target when it was moving over a static 

background compared to when it moved over a similar background in motion. I 

expected to see a lower level of tracking when mantids were presented with a 
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moving background without a prey like target present compared to conditions 

containing a moving target. If the mantids were able to filter out irrelevant 

background motion, I expected a similar level of tracking response when the 

mantis was presented with a moving target traveling over a moving background 

and a static background. 

5.4.2 Methods  

 I used a black (0.052cd/m2) computer generated target (80 pixel x 80 pixel) 

as the prey, which moved centrally along a grey horizontal strip in the centre of 

the screen (Figure 18). We used a stationary grey strip for the target to move 

across as prey often move on stationary substrates (e.g. a stick or leaf) with 

movement in the distant background. The target appeared randomly at the left or 

right side of the screen, and then travelled back and forth across the screen a total 

of four times. The target moved with a sinusoidal function, when the position of 

the target was 0 (the centre of the screen) velocity was maximum (1166.7 

pixels/sec) and when the target position reached -1 or 1 (either edge of the 

screen) velocity was zero. The target was not visible to the mantis at either edge 

of the screen when it changed direction.  

I used three background pattern types to test whether background pattern 

affected the mantis tracking response to each background movement conditions. 

The background above and below the central grey strip consisted of a black-and-

white chequerboard pattern, where each chequer square had either 5, 10 or 20 

pixels’ width (Figure 18). All background patterns had the same mean luminance 

(36cd/m2), and patterned backgrounds had equal numbers of white (72cd/m2) 

and black chequers (0.052cd/m2). In this experiment, the grey strip (36cd/m2) 
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that the target moved along was 320 pixels in height, where the moving patterned 

background was 120 pixels above and below the moving target (Figure 18). 

  

Figure 18. Example of prey moving along the grey strip with either (A) 5 pixel 

patterned background (B) 10 pixel patterned background (C) 20 pixel patterned 

background. 

 

To generate a moving background that did not trigger an optomotor 

response, the background was broken down into alternating rows, 20 pixels in 

height, which I refer to as ‘odd’ and ‘even’ rows. These patterned rows were able 

to move back and forth horizontally to create background motion. During each 

prey presentation, the target and odd/even background rows were oscillating 

horizontally at the same angular velocity but with different phase relationships. 

Odd and even background rows were always moving with a 180 degree phase 

difference (i.e. their motion was counter phase) so as to produce no net coherent 

motion in any direction (Figure 19, A). 

I had three conditions: (1) Still with target, where only the target moved 

across the screen and the background rows remained still; (2) Moving background 

without target, where background motion was created with odd and even rows 

without a black target moving along the grey bar (Figure 19, A); (3) Moving 

A B C 
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background with target, where a black target was moving across the screen 90° 

out of phase with both the odd and even rows (Figure 19, B). 

To test whether the background pattern element size affected the mantids’ 

tracking behaviour, each condition was presented with three different pattern 

element sizes: 5 pixel, 10 pixel, and 20 pixel (Table 4). By examining the mantids’ 

responses to a moving background pattern when no prey target was present, I 

could investigate whether or not a moving background pattern would elicit head 

movements from the mantids. For example, a large blocky patterned background 

(20 pixel) could trigger tracking movements because it contained large elements 

in its pattern compared to a fine (5 pixel) pattern. All backgrounds had the same 

mean luminance (36cd/m2), and patterned backgrounds had equal numbers of 

white and black chequers. 



80 

 

 

Figure 19 A) Horizontal movement of the patterned odd and even rows which 

create the background motion B) The horizontal movement of the target relative 

to the odd and even rows for the out of phase background motion condition. 

 

Table 4 Table of test parameters for Experiment 1. 

Visual Condition Background Pattern 

Still with target 5 pixel 10 pixel 20 pixel 

Moving background without 

target 

5 pixel 10 pixel 20 pixel 

Moving background with target 5 pixel 10 pixel 20 pixel 

 

A 

B 
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The same experimental procedure was followed as that of the previous 

experiments, detailed in the general methods chapter (see Section 2.3). The test 

conditions shown in Table 4 were randomly displayed in blocks of 45 trials; within 

a block of trials all visual stimuli and background pattern combinations were 

presented five times. Seven mantids completed three blocks of trials, each viewing 

the 9 conditions a total of 15 times.  

5.4.3 Data Analysis  

Statistical analysis was carried out using SPSS v22. Data were analysed 

with a generalized estimating equation (GEE, binary logistic model), with visual 

condition (Still with target, Background moving without target, and Background 

moving with target) and background pattern size (5, 10 and 20 pixel) as the 

independent variables. The number of trials where tracking occurred (out of the 

total presentations of each condition for each mantis) was used as the dependent 

variable. Mantis was the subject factor. 

5.4.4 Results  

The likelihood of a tracking response was affected by the visual condition 

(GEE, χ
2

2
= 53.8, P<0.001), but there was no effect of background pattern (χ

2

2
= 1.6, 

P=0.45), and no interaction (χ
2

4
= 4.0, P=0.41; Figure 20). The mantids were less 

likely to display the tracking response when there was a moving scene without a 

prey like target compared to a target moving over either a still background (GEE, 

pairwise post hoc, P<0.001) or a moving background (GEE, pairwise post hoc, 

P<0.001). Therefore, whilst the mantids showed tracking behavior in all three 

conditions, tracking responses were higher when a target was presented. I also 

found that there was no difference in the number of trials the mantids tracked the 
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black target when moving over a still background compared to the moving 

background (GEE, pairwise post hoc, P=0.37). This suggests that the mantids may 

be able to detect prey equally in the absence or presence of background motion. 

 

 

Figure 20: The mean (+/- s.e.) number of times the mantids displayed a tracking 

response to each condition. Each combination of visual condition and pattern 

element size were displayed 15 times to each individual mantis, with a sample size 

of seven mantids. 

 

5.4.5 Discussion  

In this experiment, I found that when background motion is displayed 

without a target, the mantids did make a low level of tracking responses. This 

could be because the mantis is tracking elements in the moving background. 

However the mantids made significantly more tracking responses when there was 
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a target present with either a still or moving background. When there was a target 

present, mantids tracked on around half of trials, whereas when no target was 

present, they tracked on only ~13% of trials. This suggests that the mantids 

identified moving black targets as possible prey items, and were able to 

successfully track them in the presence of background motion. I found no 

difference in the amount of trials the mantis tracked the target across a moving or 

still background suggesting the mantis is able to filter out background motion 

‘noise’. However it is possible that the mantids may be tracking background 

motion approximately 10% of the time when the target is moving over a moving 

background. If this was the case, there may be a suppressive effect of background 

motion on target tracking, but the noise created by the mantids tracking 

background motion does not allow us to see that effect. 

I found that pattern element size in the background did not affect the 

overall tracking response of the mantis, either in the presence or absence of prey.   

 

5.5 Experiment 2: The mantis tracking response towards prey 

that match background movement patterns 

 

5.5.1 Introduction  

In the second experiment, I wanted to examine whether it is beneficial for 

prey to match the phase of background motion. Therefore, I measured the 

mantids’ tracking responses to a target moving in phase with background motion 

compared to moving out of phase with background motion or moving over a still 

background. If prey can reduce detection by matching background motion, I 
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expect the mantis to track the target moving in phase with the background less 

than the target moving out of phase with the background and the target moving 

over a still background. 

5.5.2 Methods  

  I used a black (0.052cd/m2) computer generated target (80 pixel x 80 

pixel) as the prey, which moved centrally along a grey horizontal strip in the 

centre of the screen described in section 5.4.2. The target moved at the same speed 

and in the same manner as the previous experiments (section5.4.2). In this 

experiment the grey strip which the target moved along was 320 pixels in height, 

where the moving patterned background was 120 pixels above and below the 

moving target (Figure 18). This allowed the target to move along a static area but 

creating motion in the background. I used the same background patterns as in the 

previous experiment and details of how I created background motion can be found 

in section 5.4.2. 

I used three background movement conditions: Still, where only the target 

moved across the screen and the background rows remained still; in phase, where 

the target was moving across the screen in phase with the odd rows and 

subsequently 180° out of phase with the even rows (Figure 21); out of phase, 

where the target was moving across the screen 90° out of phase with both the odd 

and even rows (Figure 21).  



85 

 

 

Figure 21: The horizontal movement of the target relative to the odd and even 

rows for the in phase and out of phase background motion conditions. 

 

To test whether the size of the background pattern elements affected the 

mantids’ abilities to track the target when traveling over a moving background, 

each background movement condition was presented with three different pattern 

element sizes; 5 pixel, 10 pixel, 20 pixel (Table 5). All backgrounds had the same 

mean luminance (36cd/m2), and patterned backgrounds had equal numbers of 

white and black chequers. 
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Table 5: Table of test parameters for Experiment 2. The black target appeared with 

each background movement type combined with each background pattern.  

Background Movement 

Condition 

Background Pattern 

Still 5 pixel 10 pixel 20 pixel 

Moving in Phase with Target 5 pixel 10 pixel 20 pixel 

Moving out of Phase with 

Target 

5 pixel 10 pixel 20 pixel 

 

The same experimental procedure was followed as that of the previous 

experiment (see Section 2.3). All three background movement types were 

combined with all three background patterns (i.e. a 3x3 fully factorial design; 

Table 5). Within a block of trials, all 9 background movement and background 

pattern combinations were presented five times in a random order. Ten mantids 

completed three blocks of trials, each viewing the 9 conditions a total of 15 times. 

5.5.3 Data Analysis  

Statistical analysis was carried out using SPSS v22. Data were analysed 

with a generalized estimating equation (GEE, binary logistic model), with 

background movement type (still, in-phase and out-of-phase) and background 

pattern (5-, 10- and 20-pixel) as the independent variables. The number of trials 

where tracking occurred (out of the total of 15 presentations for each condition) 

was used as the dependent variable. Mantis was the repeated factor. 

5.5.4 Results  

I found that the mantids’ tracking behaviour was influenced by the 

background movement type (GEE, χ
2

2
= 20.1, P<0.001; Figure 22), but there was no 
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main effect of background pattern size (GEE, χ
2

2
= 5.4, P=0.067; Figure 22), and no 

significant interaction between the background pattern size and background 

movement type (GEE, χ
2

4
= 7.9, P=0.092; Figure 22).  

The mantids were more likely to track the target when it was traveling out 

of phase with the moving background compared to in phase (GEE, pairwise, post 

hoc, P=0.003). However, there was no difference in the amount of trials the mantis 

tracked the target when it moved over a still background compared to moving in 

phase (GEE, pairwise, post hoc, P=0.847) and out of phase (GEE, pairwise, post hoc, 

P=0.132) with the background. This suggests that it is costly for prey to move out 

of phase with their background motion compared to matching the phase of their 

background motion, although there were no benefits to moving in phase with 

background motion compared to moving over a still background. 
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Figure 22. The mean (+/- s.e.) number of times the mantis tracked the black target 

when traveling over each background movement type with each background 

pattern type. Each combination of each background movement type and pattern 

were displayed 15 times to each mantis, with a sample size of 10 mantids. 

 

5.5.5 Discussion  

In this experiment, background pattern had no effect on the tracking 

behaviour of the mantis.  I found that there was no difference in the tracking 

responses of the mantids to a black target traveling over a still background 

compared to both moving background conditions. However, when background 

motion was present, I found that the mantids tracked the black target more when 

it was traveling out-of-phase compared to traveling in-phase with the background 

motion.  
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Since it was perhaps surprising that there were no benefits to moving 

against a moving background compared to a static one, I decided to repeat the 

experiment, but this time, use background motion that was directly next to the 

moving prey target. Therefore, this final experiment investigated if motion 

proximity was important, and if the ability of the mantis to track prey is impaired 

when the motion in the background is adjacent to the moving prey.   

5.6 Experiment 3: Effect of background motion proximity upon 

survival of prey which match background motion patterns. 

 

5.6.1 Introduction  

In the third experiment, I wanted to examine whether background motion 

proximity affects whether it is beneficial for prey to match background motion. 

Therefore, I used the same experimental conditions as the previous experiment, 

however, I created background motion directly next to the moving target.  

5.6.2 Methods 

The same visual stimuli and experimental conditions were used as in the 

previous experiment, details of which can be found in section 5.5.2. The only 

difference was that the height of the grey strip that the target moved across was 

80 pixels in height. This meant that the background motion was directly next to 

the moving target (Figure 23). 
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Figure 23. Example of visual stimuli: (A) 5 pixel patterned background; (B) 10 

pixel patterned background; (C) 20 pixel patterned background. 

 

The same experimental procedure was followed as that of the previous 

experiment, details of which can be found in section 2.3. Ten mantids completed 

three blocks of trials, six of which were used in the previous experiment.  

5.6.3 Data Analysis  

Statistical analysis was carried out using SPSS v22. Data were analysed 

with a generalized estimating equation (GEE, binary logistic model), with 

background movement type (still, in-phase and out-of-phase) and background 

pattern (5-, 10- and 20-pixel) as the independent variables. The number of trials 

where tracking occurred (out of the total of 15 presentations for each condition) 

was used as the dependent variable. Mantis was the repeated factor. 

5.6.4 Results  

I found that the likelihood of a tracking response was affected by both 

background movement (GEE, χ
2

2
= 26.6, P<0.001, Figure 24) and background 

pattern (GEE, χ
2

2
= 15.4, P<0.001, Figure 24). However, there was no significant 

A B C 
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interaction between background movement type and background pattern GEE, 

χ
2

4
= 1.6, P=8.05, Figure 24). 

 

 

Figure 24. The mean (+/- s.e.) number of times the mantis tracked the black target 

when traveling alongside each background movement type with each background 

pattern type. Each combination of each background movement type and pattern 

were displayed 15 times to each mantis, with a sample size of 10 mantids 

 

I found that the mantids were more likely to track a target moving out of 

phase with the background compared to in phase (GEE, pairwise, post hoc, 

P=0.001, Figure 24) or moving over a still background (GEE, pairwise, post hoc, 

P=0.001, Figure 24). However, there was no difference in the number of trials the 

mantis tracked the target moving in phase with the background compared to 
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moving over a still background (GEE, pairwise, post hoc, P=602, Figure 24). This 

suggests that when background motion is near to prey it is costly to move out of 

phase with motion in the background compared to matching the background 

motion or moving in a still environment. 

I found that mantids were more likely to track a target moving over a 20 

pixel patterned background compared to moving over a 5 pixel pattern (GEE, 

pairwise, post hoc, P=0.001, Figure 24) or a 10 pixel pattern (GEE, pairwise, post 

hoc, P=0.008, Figure 24). This suggests when the background motion is near to the 

prey, background pattern does have an overall effect, where the mantis is more 

likely to track prey when traveling over a blocky background (20 pixels) compared 

to finer patterns (5 pixels, 10 pixels).  

5.6.5 Discussion  

 In this experiment, when background pattern was in close proximity to the 

target, there was an effect of background pattern upon the mantids’ tracking 

responses, with the mantids more likely to track the black target when traveling 

over a background with large (20 pixel) pattern elements compared to smaller (5 

pixel and 10 pixel) pattern elements. Background motion also had an effect on 

tracking behaviour, with the out of phase background motion producing more 

tracking than either of the other two conditions. This suggests that there is a cost 

to moving out of phase with background motion when the background is adjacent 

to the prey. 

 This finding is similar to the previous experiment, when the mantids 

tracked the black target more when it was traveling out-of-phase with the 
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background compared to traveling in-phase the background. This suggests that if 

prey are moving in a dynamic environment, it is likely to be advantageous to move 

in phase compared to out-of-phase with background motion. 

5.7 General Discussion  

Taken together, these results show mantids rarely make a tracking 

response to background motion in the absence of a prey like target. Although there 

are no overall benefits for prey to match background motion, it seems it is costly 

to move out of phase with background motion. This has implications for what we 

know about mantid vision and concealment for moving prey, which I will discuss 

in turn.  

My study shows mantids rarely respond to background motion with the 

tracking response and can track prey on a moving background. This is in line with 

studies suggesting the insect visual system contains neurons which are 

specifically tuned to pick out a small moving targets (Collett, 1971; Warzecha et 

al., 1993) and are unaffected by wide field background motion (Nordström et al., 

2006). Although a behavioural study shows praying mantids are less likely to 

strike at moving prey when there is background motion (Prete and Mahaffey, 

1993),  the background motion in that study travelled coherently in one direction, 

which may have triggered the optomotor system, which in turn may have affected 

the tracking system (Trischler et al., 2010). Furthermore, background motion did 

not affect the tracking response of the mantis. 

It appears the mantids are able to track targets moving out of phase with 

the background easier than targets moving in-phase. Results from Experiment 1 
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suggest that some tracking events towards prey on moving backgrounds might be 

a response to features in the background. Therefore, I can’t be sure that there are 

no benefits to moving in phase with the background that are masked by tracking 

responses toward moving background elements. However, I am confident that 

there is a benefit to prey which move in-phase compared to out-of-phase, as there 

is no reason why tracking events would differ between the moving background 

conditions. Therefore, differences in the tracking behaviour between the moving 

background types will be an effect of prey movement relative to the background 

motion. 

I found no benefits to prey moving in-phase with background motion over 

moving within a still environment, however prey are more conspicuous when 

moving out-of-phase with the background. Stick insects remain still and do not 

display the swaying behaviour if the nearby plant movement is too strong and they 

can’t match the movement of their background (Bian et al., 2015). Visually 

communicating animals have been known to adapt the speed and frequency of 

their signal in visually ‘noisy’ environments, creating a different movement 

pattern than those found in the background (Fleishman, 1992; Peters, 2008). This 

suggests that it is costly for prey to move with a different phase than background 

motion, causing them to become more conspicuous. Therefore, it is more 

beneficial for prey to remain still if they cannot match background movement 

patterns. 
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Chapter 6. Praying mantis contrast sensitivity to wide-field 

gratings and small moving targets: a contrast frequency 

comparison of the optomotor and tracking behavioural systems 

 
6.1 Abstract 

Contrast sensitivity has long been used as a tool to investigate the spatial 

and temporal filtering mechanisms of motion detecting pathways in visual 

systems. Sensitivity to different combinations of spatio-temporal frequencies 

enables animals to be sensitive to different velocities of motion in their 

environment. Insect studies have revealed motion detectors tend to be tuned to 

spatio-temporal combinations which match their behavioural ecology. However 

these studies almost exclusively use drifting wide-field stimuli and focus on fast 

flying insects such as flies, bees, locusts or beetles, which use information from 

neurons monitoring optic flow for tasks such as body stabilisation. Few studies 

have concentrated on small target tracking systems in predatory insects that sit 

or stalk their prey. Here, I will characterise and compare the contrast sensitivity 

of the praying mantis (Sphodromantis lineola) tracking and optomotor systems. 

Using the mantis tracking response to small targets (Gabor filtered windows of 

sinewave stimuli) and the optomotor response to wide-field motion (drifting sine 

wave gratings); I measured the distinct temporal and spatial signatures of each 

pathway and found the mantis wide-field and small target movement detecting 

pathways are each tuned to a different set of spatial and temporal frequencies. The 

wide-field motion detecting pathway has a high sensitivity to a broad range of 

spatio-temporal frequencies making it sensitive to a broad range of velocities; 

whereas the small-target motion-detection pathway has a high sensitivity to a 
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narrow set of spatio-temporal combinations with optimal sensitivity to targets 

with a low spatial frequency moving at 160 degrees per second. This adaptation 

will enable mantids to track small, fast-moving prey such as flies and crickets. This 

study outlines the differences in spatial and temporal sensitivity between 

different movement detection systems in the same species; and adds information 

to what we know about the contrast sensitivity of visually hunting insects which 

spend most of their time relatively stationary but hunt fast moving prey. 

 

6.2 Introduction 

Visually guided animals need to be able to detect motion to maintain 

stability, track prey, find a mate or avoid predators. To do this animals have 

motion-detectors within their visual systems, which are selective to the direction 

an object is moving. Motion-detectors were first studied in the insect using the 

optomotor response, which is a turning response caused by wide-field motion and 

is used to stabilise the insect relative to its surroundings (Fermi and Reichardt, 

1963; Reichardt and Wenking, 1969; Srinivasan et al., 1999). These elementary 

motion detectors’ sample the brightness of an image at two adjacent points. Using 

two mirror pathways, one of which is delayed by a filter, they give an output which 

is positive for motion in one direction and negative for motion in the opposite 

direction. The interaction of the spatially separated pathways means the motion 

of an object and its direction can be detected when it passes one pathway then the 

other (Borst and Egelhaaf, 1989; Egelhaaf et al., 1989; Douglass and Strausfeld, 

1996; Harris et al., 1999; Srinivasan et al., 1999). The same mechanism has been 
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elaborated and proposed to exist in the human visual system (Van Santen and 

Sperling, 1984). 

One of the most studied characteristics of the motion detection system 

underlying optomotor responses is its sensitivity to image contrast, defined as the 

just detectable modulation of the luminance of the image that gives rise to the 

response, or in the case of a target detector the ability to perceive differences 

between an object and its background. Sinusoidally modulated gratings (Figure 

25) are a good way of studying the sensitivity of a visual system to contrast, as 

luminance changes regularly in time and in space and the underlying 

mathematical operations can be inferred, as long as the only involve linear 

interactions. Human contrast sensitivity can be demonstrated using a stationary 

sinusoidal grating which varies in spatial frequency and in contrast (Figure 25) 

(Campbell and Robson, 1968). In this particular stimulus, the spatial frequency 

gets lower from right to left and the contrast also decreases vertically (with low 

contrast towards the top of the grating). This means that there is, in humans 

anyway, a particular spatial frequency at which the sensitivity is particularly good 

and we can see the pattern down to low pattern contrast, which results in the 

pattern seeming to extend vertically upwards at this point. The apparent upward 

extent of each sinusoidal wave (black and white “stripe”) indicates the contrast 

sensitivity for that particular stripe’s spatial frequency. In humans the greatest 

vertical extent or longest stripes are usually seen in the middle of the pattern and 

at low and high spatial frequencies the pattern contrast sensitivity and hence the 

vertical stripes’ vertical length starts to decline.   
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Figure 25. Stationary sinusoidal grating decreasing in spatial frequency (towards 

the right) and decreasing in contrast towards the top. This shows the human 

contrast sensitivity for different spatial frequencies. 

 

By moving sinusoidal gratings at different speeds we can use contrast 

sensitivity as a tool to study not only the resolving powers of spatial filtering 

mechanisms; but also the temporal filtering mechanisms of movement detectors 

(Kulikowski and Tolhurst, 1973; Thompson, 1982; O'Carroll et al., 1997). Contrast 

sensitivity is limited by the ability of the eye to capture light and is often used to 

measure the trade-off between optical sensitivity and visual acuity (Campbell and 

Robson, 1968; Dvorak et al., 1980). 

There are a wide range of studies investigating the insect contrast 

sensitivity to moving stimuli, however most studies focus on flying insects such as 

flies, beetles and bees (Reichardt and Wenking, 1969; Dvorak et al., 1980; 

O'Carroll et al., 1996; O'Carroll et al., 1997). Most insect studies involve taking 

electrophysiological recordings from wide-field motion detecting neurons in 

response to wide-field moving gratings (Dvorak et al., 1980; O'Carroll et al., 1996; 
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Straw et al., 2006; Straw et al., 2008) however, there have been studies which have 

used behaviour such as the optomotor response (Reichardt and Wenking, 1969; 

Pick and Buchner, 1979; Reichardt and Guo, 1986; Nityananda et al., 2015). Both 

neurophysiological and behaviourioural studies have shown the insect’s contrast 

sensitivity is dependent upon the spatial and temporal frequency of the moving 

grating, suggesting the insect motion detection system is tuned a combination of 

spatial and temporal properties of a visual stimulus rather than a unique velocity 

(Reichardt and Wenking, 1969; Pick and Buchner, 1979; Dvorak et al., 1980; 

Reichardt and Guo, 1986; Hausen and Egelhaaf, 1989; Straw et al., 2008). Although 

some flying insects are able to extract speed information from an image 

independently of spatial structure during navigation (Kirchner and Srinivasan, 

1989; Srinivasan et al., 1991; Srinivasan et al., 1996). 

Sensitivity to different combinations of spatio-temporal frequencies 

enables animals to be sensitive to different velocities in their environment. 

Evidence suggests different species of insect have evolved sensitivity to particular 

spatial and temporal frequencies which match their behavioural ecology 

(O'Carroll et al., 1996). Fast moving insects, such as flies and bumblebees, have 

evolved motion detection systems that are sensitive to spatial and temporal 

frequency combinations which represent high velocities (O'Carroll et al., 1996). In 

contrast, insects such as hoverflies, which are stationary when hovering but also 

make quick flights, have a sensitivity to both high and low velocities (O'Carroll et 

al., 1996; O'Carroll et al., 1997). However, little is known about the contrast 

sensitivity of relatively sedentary insects such as the praying mantis. 
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A recent study using the optomotor response to examine the mantis 

contrast sensitivity has shown that this insect predator is tuned to spatial and 

temporal frequencies which represent a wide range of speeds, from 20 to 500 

degrees per second (Nityananda et al., 2015). This fits with the mantids lifestyle, 

as they are an ambush predator that remain stationary for long periods of time 

but prey on fast moving insects such as flies (Nityananda et al., 2015). From an 

ecological viewpoint, tuning to such high and low speeds could serve the mantis 

well in both tracking fast moving prey and body stabilisation when stationary and 

in flight (Brackenbury, 1990; Yager and May, 1990; Cumming, 1996). It is likely 

this study is recording the sensitivity of early visual mechanisms which serve both 

the prey tracking system and the bodily stabilising optomotor system (Nityananda 

et al., 2015). 

In this chapter, I compared the contrast sensitivity of the tracking system 

and optomotor system in the praying mantis, Sphodromantis lineola. I used the 

contrast frequency of drifting sine wave gratings and small Gabor filtered 

windows of sinewave stimuli at 100% contrast to measure the distinct temporal 

and spatial signatures of each pathway. I expect to find these systems will differ in 

their sensitivity to spatial and temporal frequencies. I expect the tracking system 

will be narrowly tuned to spatial and temporal frequencies which correspond to 

high velocities, which will enable them to track fast moving prey whilst the 

optomotor system will be tuned to a broad range of spatial and temporal 

frequencies, to enable bodily stabilisation when the mantis is both stationary and 

moving. Furthermore, I examined whether or not either of these systems are 
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tuned to a particular velocity (40 degrees per second or 160 degrees per second), 

or if they are tuned separately to the spatial and temporal properties of the stimuli.  

 

6.3 Methods 

In this chapter I used six female adult mantids, five of which had been used 

in experiments in Chapter 4 and one new naive individual. The same experimental 

procedure was used as in previous chapters, details of which can be found in the 

general methods chapter (section 2.3). To investigate the processes shaping 

motion detection in the tracking system of mantids, I used a Gabor patch as the 

small moving target. A Gabor patch is comprised of a sinusoidal grating within a 

Gaussian envelope (Figure 26). The spatial frequency of the sinusoidal grating and 

the temporal frequency at which the target is moved can be varied to allow us to 

investigate which spatio-temporal frequencies the tracking system is tuned to and 

whether this tuning is dependent or independent of speed.  
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Figure 26. Examples of Gabor patch and wide-field sinusoidal gratings (A) Black 

Gabor patch (control) (B) Gabor patch 0.2cpd (C) Grating 0.2cpd (D) Gabor patch 

0.1cpd (E) Grating 0.1cpd (F) Gabor patch 0.05cpd (G) Grating 0.05cpd 

 

To ensure that I was recording tracking responses to the sinusoidal grating 

within the Gaussian envelope and not the target’s leading edge, the edges of the 

targets were smoothed (Figure 26). The size of the targets were measured as full 

A 

B C 

D E 

F G 
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width half maximum (FWHM), which is the distance between 50% transparency 

points within the targets smoothed edge. Targets were 23° (FWHM) in width and 

11.65° (FWHM) in height.  Targets appeared randomly at either the left or right 

side of the screen and travelled across the screen a total of four times. All targets 

were the same mean luminance and moved over a homogenous grey background. 

In previous chapters, I found a moving black target produced the optimum 

tracking response from the mantids. Therefore, in this experiment, I used a black 

target as the control to ensure that the mantids were responsive. I used two black 

control targets, which moved at two different speeds (40 degrees per second and 

160 degrees per second). This was to identify whether the mantis had a preference 

for target speed and allowed me to determine an optimal tracking response to 

targets moving at these particular speeds. 

To test the preferred spatial and temporal frequencies of motion detecting 

processes within the tracking system, I varied the spatial frequency of the sine 

grating within the Gabor patch and the temporal frequencies at which the target 

moved. The spatial and temporal frequencies used were (s/f 0.05 0.1 0.2 

cycles/deg) and (t/f 2, 4, 8, 16, 32 cycles/sec Hz, Table 6). These spatial and 

temporal frequencies were paired to create nine spatio-temporal conditions 

(Table 6). To reduce the number of experimental conditions needed I chose to test 

each spatio-temporal condition at 100% contrast. This allowed me enough time to 

collect a good sample size for the nine chosen experimental conditions. To allow 

me to investigate whether motion detection in the tracking system is tuned to 

velocity (
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
) or is separately tuned to spatial and temporal 

frequencies, three spatio-temporal conditions matched the speed of a black target 
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moving at 40 degrees per second (green, table 6) and three matched the a control 

target moving at a speed of 160 degrees per second (red in table 6).  

 

Table 6. The spatial and temporal frequency combinations of the sinusoidal Gabor 

patch and the wide-field sinusoidal grating. Green highlighted conditions matched 

the speed (
𝑇/𝐹

𝑆/𝐹
) of the black control target traveling at 40 degrees per second and 

red highlighted conditions matched the speed of the black control traveling at 160 

degrees per second. 

Spatial Frequency (cycle per 

degree) 

Temporal Frequency (cycle per 

second) 

0.05 2 8 32  

0.1 4 8 16 32 

0.2 8 32   

 

To test which spatio-temporal frequencies the optomotor system is tuned 

to, I created wide-field motion using a sinusoidal grating which filled the entire 

screen. I used the same spatial and temporal frequency conditions as those used 

to create the Gabor patch (Table 6), to enable me to compare the spatio-temporal 

tuning of the optomotor system to that of the tracking system. Each presentation 

of the sinusoidal grating moved either left or right for a total of 5 seconds. 

Each mantis was given a series of 20 trials containing the Gabor patch and 

wide-field sinusoidal grating randomly interleaved. Each combination of spatial 

and temporal frequency was displayed two times within a block of trials, once 

traveling left and once traveling right. I recorded the mantids behaviour as tracked 

(left or right) or optomotor response (left or right). 
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6.3.5 Data Analysis 

Statistical analysis was carried out using SPSS v22. Data were analysed 

with a generalized estimating equation (GEE, binary logistic model), with velocity 

(40 degrees per second and 160 degrees per second) and spatial frequency (0.05 

cycles per degree, 0.1 cycles per degree and 0.2 cycles per degree) as the 

independent variables. The number of trials where the mantis responded with the 

optomotor response to the drifting grating, or with the tracking response to the 

Gabor patch (out of the total presentations of each condition for each mantis) was 

used as the dependent variable. Mantis was the subject factor. 

 

6.4 Results 

 The tuning for wide-field motion was broad but shows an optimum for low 

spatial frequencies of 0.05 cycles per degree moving at temporal frequencies 

around 2Hz (cycles per second), a contrast speed of 40 (degrees per second) 

(Figure 27, A). But mantises did still respond albeit less often to higher spatial 

frequencies of 0.2 cycles per degree moving at speeds of 32.5 Hz a velocity of 160 

degrees per second (Figure 2, A).  
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Figure 27. The circle size in both graphs is proportional to the mean number of 

correct trials (A) The mean number of trials the mantis responded to a moving 

wide-field sine grating with the optomotor response. Each spatio-temporal 

condition was displayed to 6 mantises, each mantis viewing each condition a total 

of 30 times (B) The mean number of trials the mantis responded to the Gabor 

patch with the tracking response. Each spatio-temporal condition was displayed 

to 6 mantises, each mantis viewing each condition a total of 30 times. Green 

highlighted conditions travelled at a speed of 40 degrees per second and red 

highlighted conditions travelled at a speed of 160 degrees per second. Yellow 

conditions did not match the speed of a black control and travelled at varied 

speeds. 
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The tuning for small target motion detection also shows an optimum for 

low spatial frequencies of 0.05cpd (cycles per degree) but moving at a temporal 

frequency of 8Hz, a velocity of 160 degrees per second (Figure 2, B). The 

sensitivity of the tracking system seems to decline more rapidly away from this 

optimum when compared to the optomotor system. This decline occurred as 

spatial and temporal frequencies increase to 0.1 cycles per degree moving at 16Hz 

and as they decrease to 0.05 cycles per degree moving at 2Hz. This suggests that 

the small target motion detection system is more specific in its sensitivity to 

spatio-temporal combinations; with a high sensitivity to a narrow range of spatio-

temporal frequencies (Figure 2, B) compared to the wide-field system which has 

a high sensitivity to a wider range of spatio-temporal frequencies (Figure 27, A).  

The probability of the mantids to track the small target was affected by 

whether it was made up of a solid black Gabor patch or a sinusoidal Gabor patch 

(GEE, χ
2

3
= 22.006, P< 0.001; Figure 28), where the mantis was more likely to track 

the black control Gabor patch over the sinusoidal Gabor patches (Difference, post 

hoc, P= 0.003). When comparing the number of trials the mantids tracked the 

black control target results show there is an effect of speed (GEE, χ
2

1
= 6.268, P 

=0.012; Figure 28), where the mantids were more likely to track the black target 

traveling at 40 degrees per second compared to 160 degrees per second (pairwise, 

post hoc, P= 0.008).  
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Figure 28. The mean (+/- s.e.) number of trials the mantis tracked the black and 

sinusoidal Gabor patch at 40 degrees per second and 160 degrees per second over 

spatial frequencies 0.05 cpd, 0.1cpd and 0.2 cpd. Each condition was displayed to 

6 mantises, each mantis viewing each condition a total of 30 times. 

 

To investigate whether the mantis tracking system is tuned to the speed of 

a target or separately to spatial and temporal features of the stimuli, I compared 

data from trials containing a sinusoidal Gabor patch only. The probability of the 

mantis to track the Gabor patch was not affected by the target velocity (40 degrees 

per second and 160 degrees per second) (GEE, χ
2

1
= 0.107, P =0.744; Figure 28) but 

was affected by its spatial frequency (0.05cpd, 0.1cpd, 0.2cpd) (GEE, χ
2

2
= 13.587, P 

=0.001; Figure 26). This indicates that the likelihood of the mantis to track a Gabor 

patch was not dependent on its speed but on the spatial frequency of its pattern.  
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To examine whether the effect of spatial frequency was similar within each 

velocity (40 degrees per second or 160 degrees per second), the data was split to 

compare the number of trials the mantis tracked the Gabor patch at each spatial 

frequency (0.05cpd, 0.1cpd, 0.2cpd) within each velocity type (40 degrees per 

second, 160 degrees per second). I found that the probability of the mantis to track 

the Gabor patch was affected by spatial frequency for targets moving at 40 degrees 

per second (GEE, χ
2

2
= 47,679, P <0.001; Figure 28) and 160 degrees per second 

(GEE, χ
2

2
= 17,408, P <0.001; Figure 28). Where the mantids were more likely to 

track a Gabor patch with a low spatial frequency (0.05cpd) compared to a high 

spatial frequencies (0.2cpd) within both velocity types, that is both 40 degrees per 

second (Pairwise, post hoc P= 0.052) and 160 degrees per second (Pairwise, post 

hoc, P< 0.001). This suggests that the mantids tracking system is not tuned to a 

velocity of 40 degrees per second or 160 degrees per second but to targets with 

low spatial frequencies. 

The overall probability of the mantis to respond with the optomotor 

response was affected by both the velocity (GEE, χ
2

1
= 80.473, P< 0.001; Figure 29) 

and spatial frequency (GEE, χ
2

2
= 162.495, P< 0.001; Figure 29) of the drifting 

sinusoidal grating. The mantis was more likely to display the optomotor response 

to gratings moving at 40 degrees per second (Pairwise post hoc, P< 0.001) and to 

gratings with lower spatial frequencies (0.05cpd) compared to high spatial 

frequencies (0.2cpd) (Pairwise, post hoc, P< 0.001). 
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Figure 29. The mean (+/- s.e.)  number of trials the mantis responded with the 

optomotor response to the drifting wide-field grating moving at 40 degrees per 

second and 160 degrees per second over spatial frequencies 0.05 cpd, 0.1cpd and 

0.2 cpd. Each condition was displayed to 6 mantises, each mantis viewing each 

condition a total of 30 times. 

 

 To test whether the mantis optomotor system is tuned to a particular 

velocity (40 degrees per second or 160 degrees per second), the data were then 

split to compare the number of trials the mantis displayed the optomotor response 

to gratings of each spatial frequency (0.05cpd, 0.1cpd, 0.2cpd) within each velocity 

type (40degrees per second, 160 degrees per second). Results show that the 

mantis optomotor response was affected by the spatial frequency of the grating at 

both speeds: 40 degrees per second (GEE, χ
2

2
= 80.885, P< 0.001; Figure 29) and 

160 degrees per second (GEE, χ
2

2
= 742.439, P< 0.001; Figure 29). The mantids 
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were more likely to display the optomotor response when shown a drifting grating 

with a low spatial frequency (0.05cpd) compared to a high spatial frequency 

(0.2cpd) at both velocities, that is both 40 degrees per second (Pairwise, post hoc 

P< 0.001; Figure 29) and 160 degrees per second (Pairwise, post hoc P< 0.001; 

Figure 29). This suggests that the mantis optomotor system is not tuned to a 

specific speed of either 40 degrees per second or 160 degrees per second, but to 

the spatial frequency of the drifting grating. 

To test whether the tracking system is triggered as easily by the Gabor 

patch as the optomotor response is by the wide-field drifting grating, I compared 

the number of trials the mantis responded to the Gabor patch and the wide-field 

gratings. Overall, the mantis was more likely to display the optomotor response to 

wide-field stimuli compared to displaying the tracking response to the Gabor 

patch (GEE, χ
2

1
= 142.977, P< 0.001; Figure 30). This suggests the optomotor 

system is more easily triggered by drifting gratings than the tracking system is by 

the small moving Gabor patches. 
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Figure 30: The mean number of trials the mantis responded to the wide-field 

grating or the Gabor patch with a (A) 0.05cpd (B) 0.1cpd (C) 0.2cpd spatial 

frequency moving at varying temporal frequencies. Each spatio-temporal 

condition was displayed as a wide-field grating or a Gabor patch to six mantids a 

total of 30 times. The mean number of trials the mantis tracked the black control 

target is represented with the green line (40 degrees per second) and the red line 

(160 degrees per second). 

 

6.5 Discussion 

 My results show that the mantis wide-field and small target movement 

detecting pathways are each tuned differently to a set of spatial and temporal 

frequencies. The wide-field motion detecting pathway seems to have a high 
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sensitivity to a broad range of spatio-temporal frequencies whereas the small 

target motion detection pathway has a high sensitivity to a narrow set of spatio-

temporal combinations. Both motion detection pathways seem to be tuned 

separately to spatial and temporal features of a visual stimulus rather than tuned 

to a specific speed. 

Whilst many studies have used drifting sinusoidal gratings to sample 

information from neurons within the wide-field motion pathway, which monitor 

optic flow for tasks such as body stabilisation (Dvorak et al., 1980; Reichardt and 

Guo, 1986; O'Carroll et al., 1996; Straw et al., 2006; Nityananda et al., 2015). 

Relatively few studies have investigated the contrast sensitivity of neurons 

involved in detecting and tracking small moving targets, the so-called small 

moving target detectors (O'Carroll and Wiederman, 2014). These neurons 

exclusively respond to small moving visual features of limited extent and are used 

in tasks such as tracking prey and con-specifics (Collett, 1971; Collett and Land, 

1975; Olberg, 1981; Egelhaaf, 1985; O'Carroll, 1993; Nordström et al., 2006; 

Barnett et al., 2007; Duistermars et al., 2007; O'Carroll and Wiederman, 2014). My 

results show that the optomotor system and tracking system are different in their 

sensitivity to spatial and temporal frequencies. The tracking system seems to be 

most sensitive to a narrow range of spatial -temporal frequency combinations 

with optimum response around (0.05cpd – 8Hz). Mantids often predate upon 

small fast moving prey such as flies and crickets. The narrow tuning of the tracking 

system to targets with spatial frequencies of (0.05cpd) moving at around 160 

degrees per second would enable mantids to be highly sensitive to small fast 

moving objects which may represent prey. This selectivity will enable them to 
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filter out insignificant features which may be too small to represent prey. This is 

consistent with our findings in previous experiments, where the mantis had a high 

optomotor response to smooth moving drifting patterns with a wide range of 

spatial properties (2 pixel to 40 pixel patterns, chapter 3). In comparison, when 

tracking small moving targets the mantis was more selective in which targets it 

tracked, depending on the size of the elements within the targets pattern. This 

selectivity in the tracking system may be due to suppressive lateral interactions 

within neurons sensitive to small moving targets (SMTD’s), similar to those found 

in mammalian hypercomplex cells (Hubel and Wiesel, 1959; Hubel and Wiesel, 

1968; Henry et al., 1974; Nordström and O’Carroll, 2009). In comparison, the 

optomotor system is highly sensitive to a wide range of spatio-temporal 

frequencies with optomotor response dropping only in the very high spatial 

frequencies (0.2cpd) and high temporal frequencies (32Hz). This makes the 

optomotor system sensitive to a broad range of velocities, enabling the mantis to 

monitor optic flow with a range of contrast frequencies.  

 In both systems, the mantis visual system does not seem to be tuned to a 

particular speed but is instead tuned separately to a stimulus spatial and temporal 

features. The mantis responds more to stimuli with low spatial frequencies 

compared to high spatial frequencies, independent of the stimulus speed. If the 

mantis was tuned to velocity we would expect to see a similar response rate to 

stimuli with the same speed, over different spatial frequencies. This is consistent 

with studies that show the insect visual system relies heavily on the spatial and 

temporal properties of an image rather on an image’s velocity (Reichardt and 

Wenking, 1969; Pick and Buchner, 1979; Dvorak et al., 1980; Reichardt and Guo, 
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1986; Hausen and Egelhaaf, 1989; Straw et al., 2008; Yamawaki and Toh, 2009; 

Nityananda et al., 2015). 

 The mantis seems to respond more readily to wide-field stimuli with the 

optomotor response, compared to tracking the Gabor patch. This maybe because 

motion detection of wide-field stimuli uses spatial integration of many EMD’s 

which sample local motion at different parts of the wide-field moving pattern 

(Dvorak et al., 1980), therefore creating a large motion signal.  Visual pathways 

which process small visual features are not able to integrate motion at many 

points in the image and are limited to sharing motion information only with 

adjacent receptors (O'Carroll and Wiederman, 2014) giving a weak motion signal. 

The tracking response is also heavily dependent upon a target meeting specific 

prey-like characteristics and on the internal state of the mantis motivating 

predatory behaviour (Prete and Mahaffey, 1993). The optomotor system need 

only have wide-field motion to trigger the mantis to stabilise its body relative to 

the environment (Liske, 1999; Nityananda et al., 2015). 
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Chapter 7: General Discussion 

 In this thesis, I have characterised the insect Dmax and highlighted the 

similarities between insect and human perception of apparent motion. I have 

shown, when predated on by the praying mantis, background matching in moving 

prey is only beneficial to prey with large pattern elements. However, un-patterned 

grey targets which match the background luminance gain a greater survival 

advantage over patterned targets, even when the patterned target receives 

benefits from matching the background pattern. I have added to what is already 

known about praying mantis prey preference characteristics and the effects 

background pattern can have on the ability of the mantis to track prey. I have 

demonstrated that background motion does not inhibit the ability of the mantis to 

track a moving target and that there are little benefit for prey which match the 

phase of the background motion. Although, it is more costly for prey to move out 

of phase with background motion compared to moving in phase or over a still 

background. Finally, I have shown the mantis wide-field and small target motion 

detecting pathways are not tuned to specific velocities but are separately tuned to 

a set of spatial and temporal frequencies. The mantis wide-field motion detecting 

pathway is tuned to a broad range of spatio-temporal frequencies whereas the 

small target motion detecting pathways is tuned to a narrow range of spatio-

temporal frequencies. 

 

7.1 Apparent-motion perception by the Praying Mantis (Sphodromantis 

lineola) 

In humans, it has been shown that the perception of apparent motion 

breaks down as images are displaced by larger distances each frame (Braddick, 



117 

 

1974, 1980). It was initially thought that this Dmax limit represented the spatial 

limit of elementary motion detectors in the visual system (Braddick, 1974; 

Braddick et al., 1980). However, further work revealed Dmax does not have a set 

spatial limit but is dependent on the size of the pattern elements, where Dmax 

increased with pattern element size (Chang and Julesz, 1983; Cleary, 1987; Cleary 

and Braddick, 1990; Morgan, 1992; Morgan and Fahle, 1992). This lead 

researchers to believe that there are multiple motion detector ‘channels’ within 

the human visual system which are tuned to different spatial scales (Campbell and 

Robson, 1968; Graham and Nachmias, 1971), each with a Dmax value dependent 

on its spatial frequency tuning. 

I have shown that the insect Dmax does not have a set spatial limit but like 

the human Dmax it is dependent upon the spatial frequency of an image. Images 

with low spatial frequencies are able to be displaced by larger distances before 

apparent motion begins to break down compared to high spatial frequencies. This 

suggests that the vertebrate and invertebrate visual systems have similar 

underlying motion processing mechanisms; whereby by low frequency local 

motion is being pooled over a larger visual area compared to higher spatial 

frequency images.  

Currently, the insect model of motion detection involves the linear pooling 

of motion detectors across the eye which represent a single channel system. It is 

well established that the pooling of retinotopic elementary motion detectors takes 

place in the lobula complex of the insect optic lobe. However, it is still unclear 

whether this motion information is processed by one broadly tuned neural 
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‘channel’ or several independent channels more narrowly tuned to different 

spatial frequencies.  

Following the results of this chapter, there has been further work 

investigating whether insects process motion information with multiple 

independent channels, differing in spatial frequency tuning, or whether they use a 

single channel system. Using a psychophysical masking paradigm similar to those 

in human studies (Stromeyer Iii and Julesz, 1972; Anderson and Burr, 1989; 

Solomon, 2000; Serrano-Pedraza et al., 2013) and subsequent modelling of 

experimental data; Tarawneh et al. (2016) (in preparation) found that a single 

channel model could not explain the behavioural data and that it is likely insects 

possess at least two classes of motion detectors which differ in spatial frequency 

tuning. 

The existence of multiple motion detector ‘channels’ with differing spatial 

tuning could go far to explain how some flying insects can estimate image velocity 

even though EMDs are not speed tuned (Kirchner and Srinivasan, 1989; Srinivasan 

et al., 1996; Srinivasan et al., 1999). For example, bees have been shown to 

integrate velocity over time to estimate travelled distances when flying through 

tunnels independent of the spatial features of the tunnel lining (Srinivasan et al., 

1996). It has been suggested that the this speed tuned behaviour in bees is not 

mediated by motion detection mechanisms which underlie the optomotor response 

but a different mechanism (Srinivasan et al., 1993). However, an alternative 

explanation could be that bees have different spatially-tuned detector classes whose 

outputs are pooled to obtain a speed-tuned response (Horridge, 2009). 
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7.2 Background Matching in Moving Targets 

Movement is one visual cue that enables predators to distinguish prey from 

the background (Livingstone and Hubel, 1988; Borst and Egelhaaf, 1989; Lamme, 

1995; Nordström et al., 2006; Nordström and O’Carroll, 2009). Although there are 

a number of studies investigating the survival benefits of background matching in 

stationary prey (Merilaita et al., 1999; Merilaita et al., 2001; Merilaita, 2003; 

Cuthill et al., 2005), there have been relatively few studies investigating whether 

background matching offer prey any benefits whilst moving.  The few studies 

which have investigated the effects of movement on the detection and capture of 

prey have used humans as a predator model (Stevens et al., 2008; Hall et al., 2013). 

In this study, I investigated whether there were any survival benefits associated 

with background matching when prey are moving.  

Interestingly, I found that grey targets which matched the background 

mean luminance had a greater survival advantage over patterned prey, even when 

the patterned prey benefited from background matching. This may be due to the 

mantids’ preference for small moving dark spots (Prete and McLean, 1996; Prete 

et al., 2012).  The dark elements in the 20 pixel patterned prey may be attracting 

the mantids’ attention, triggering the tracking response; whereas a grey target 

with no pattern features may not meet the criteria of ‘prey’ vs ‘non prey’ allowing 

low contrast homogenous prey to avoid attracting the mantids’ interest. This 

could also explain the mantids’ preferences for prey patterned with large dark 

elements, over prey patterned with small dark elements. The low spatial 

resolution of the mantis may allow for large dark elements within a prey’s pattern 

to be easily resolved making them more attractive than prey with small elements 

which may appear blurred to the insect compound eye. This suggests that 



120 

 

selection pressures produced by mantis predation are likely to select for prey 

which maintain a low contrast to the background and have small pattern features 

compared to prey with large highly contrasting features. However, prey that do 

contain large highly contrasting features may gain a survival advantage if they 

limit their movement to habitats which match their pattern. 

Studies using stationary prey have shown background pattern has an effect 

upon the detection of prey. When background matching prey remain stationary 

the predator must actively search for discontinuities in the pattern or changes in 

contrast; therefore by increasing the pattern complexity, the amount of visual 

information the predator must process also increases (Dimitrova and Merilaita, 

2009; Dimitrova and Merilaita, 2011; Dimitrova and Merilaita, 2014). In this study 

prey moved which made them stand out from the background through figure 

ground segregation. It is interesting to observe that even when a target is made 

conspicuous through motion, background pattern still effects the likelihood of 

prey being tracked by a predator. When the mantis moves it’s head to track prey 

it creates optic flow as the background image shifts over the retina. It is possible 

tracking a target over a heterogeneous background will create a large amount of 

motion information which may make it difficult for the mantis to track a target 

over a complex background, therefore the mantis may prefer to track prey over a 

homogenous background which does not create optic flow. It would be interesting 

to observe the natural habitat the African lined mantis selects to ambush prey and 

whether they choose to hunt in relatively simple habitats with little background 

clutter. 
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Studies using stationary targets have shown that prey which move 

between different habitats might benefit from having a compromise pattern 

compared to matching one background completely (Merilaita et al. 2001; Merilaita 

and Dimitrova 2014). My study has shown that any cryptic benefits a compromise 

pattern may afford prey over differing habitats is eliminated when prey move. 

This means although compromise patterns offer prey which travel between 

visually differing habitats a survival advantage; they must ensure they remain 

stationary when predators are active and move between these habitats when they 

are less likely to be observed. 

In this study, I used quite unnatural visual stimuli, which are not commonly 

found in nature. When designing the computer generated prey stimuli I needed to 

design a target that would attract the mantis attention and elicit a high predatory 

response. To do this our stimuli needed to contain lots of hard edges and highly 

contrasting pattern elements (Prete and Mahaffey, 1993; Prete and McLean, 1996; 

Yamawaki, 2003; Prete et al., 2012). I chose to use computer generated images 

because I would have more control over the target movement, size and pattern 

enabling me to reduce any confounding factors and more precisely compare my 

independent variables. In the natural environment, however, prey will not be 

square with chequerboard patterns. 

  I could have conducted these experiments using live insects, such as 

crickets, which are often a similar colour and contrast to their background. For 

example bush crickets of the genus Platycleis are often a dull brown/green colour 

matching plant stems and leaves in their environment. They can also be found in 

the same regions as the African lined mantis, making it possible they are one of its 
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natural prey. Whilst these insects may offer results with a more ecological 

perspective, it would be difficult to control their presentation in the same way. 

 

7.3 Background Motion and Target Tracking in the Praying Mantis 

I found that there were no survival benefits associated with prey which 

match the phase of background motion; however, my results show that it is clearly 

more costly to move out of phase with background motion. This means that it is 

more beneficial for prey to remain still if they are at risk of moving out of phase 

with motion in their environment.  

Studies have shown MacLeay’s spectre (Extatosoma tiaratum) remain still 

when movement from nearby vegetation is too strong (Bian et al., 2015). This 

maybe because they are unable to match the phase and frequency of the motion in 

their environment. It is possible that they remain still to avoid making themselves 

conspicuous by moving against background motion when they are unable to 

match it.   

This study used computer generated stimuli to generate a prey-like target 

and background motion; this meant the stimuli were very 2-dimensional. Moving 

features at different distances from the mantis has been shown to affect mantids’ 

predatory responses (Rossel, 1983; Prete and Mahaffey, 1993; Nityananda et al., 

2016a). In a natural setting, prey will be moving in a 3-dimensional environment, 

with movement at varying depths relative to the observer. Additionally, 

background motion within a natural environment would not only differ in phase 

of motion but also in frequency, with some parts of the background moving at a 

higher rate than others. This will make it very difficult for prey to match 
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background motion. Therefore, as my results suggest it may be beneficial for prey 

to remain still when faced with complex background motion. 

 

7.4 Praying mantis contrast sensitivity to wide-field gratings and small 

moving targets: a contrast frequency comparison of the optomotor and 

tracking behavioural systems 

Contrast sensitivity is often used as a tool to study the resolving powers of 

spatial and temporal filtering mechanisms of movement detectors in the visual 

system (Kulikowski and Tolhurst, 1973; Thompson, 1982; O'Carroll et al., 1997). 

Most studies have focused on measuring the contrast sensitivity of wide field 

motion detection system, which is used by animals to monitor optic flow (Dvorak 

et al., 1980; O'Carroll et al., 1996; Straw et al., 2008; Nityananda et al., 2015). 

Studies investigating the contrast sensitivity of insect wide field motion detectors 

have shown insects with differing behavioural ecology have evolved a sensitivity 

to differing spatial and temporal frequencies. Fast moving insects such as flies and 

bumblebees have evolved a sensitivity to spatio-temporal frequency 

combinations which represent fast velocities; whereas insects such as the hoverfly 

who spend time both stationary when hovering and moving fast during flight have 

evolved a sensitivity to both low and high velocities (O'Carroll et al., 1997; 

Nityananda et al., 2015). Whilst these studies have been important in 

characterising the optical sensitivity and acuity in a range of insects there is 

relatively little known about the contrast sensitivity of movement detection 

systems involved in detecting and tracking small targets (O'Carroll and 

Wiederman, 2014).  
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  My results show that the wide-field (optomotor system) and small target 

(tracking system) motion detection systems are different in their sensitivity to 

spatial and temporal frequencies. The tracking system seems to be highly sensitive 

to a narrow range of spatial -temporal frequency combinations with optimum 

response around (0.05cpd – 8Hz). It is likely the mantis tracking system has 

evolved a narrow tuning to targets with low spatial frequencies (0.05cpd) moving 

at around 160 degrees per second, to enable them to track fast moving prey such 

as flies and crickets and ignore objects outside of this spatio-temporal envelope, 

which may represent non-prey items such as moving vegetation or objects too 

small to represent prey. This narrow tuning could be due to suppressive lateral 

interactions where tuning to small targets is generated by the presence of an 

inhibitory zone surrounding an excitatory centre. This is referred to as end-

stopping and is seen within the mammalian hypercomplex cell (Hubel and Wiesel, 

1959; Hubel and Wiesel, 1962; Henry et al., 1974; Bishop et al., 1980) and in 

ganglion cells in the vertebrate retina. In the vertebrate retina, we see lateral 

inhibition of surrounding photo receptors by horizontal cells (Baylor et al., 1971; 

O'Bryan, 1973; Verweij et al., 2003). This creates a central surround receptive 

field, whereby light falling on the centre excites the ganglion cell and light falling 

on the surrounding regions inhibits the cell (Hartline et al., 1956; Hartline and 

Ratliff, 1957). This negative feedback allows for edge detection and spatial 

discrimination in early visual processing. In the mammalian hypercomplex cell 

end-stopping selects for an object of a particular size and speed, where the outer 

boundaries of an elongated bar triggers inhibitory interactions as the edges move 

over the inhibitory end zones. A target of optimal size will produce little 
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suppression; as the outer edges are too close together to trigger suppression from 

the outer inhibitory zone as it moves over the central excitatory zone of the 

receptive field, figure 31 (Orban et al., 1979; Bishop et al., 1980; Orban, 2008; 

Nordström and O’Carroll, 2009). Although hypercomplex cells are found in the 

mammalian visual cortex, insect small moving target detectors (STMD’s) have 

been found to share similar end stopping properties, such as inhibition from 

elongated moving bars whilst maintaining a baseline response to wide- field 

motion (O'Carroll, 1993; Nordström et al., 2006; Nordström and O’Carroll, 2009).  

 

Figure 31: Example of a hypercomplex cell in the cat visual cortex shows 

selectivity for small moving targets by having an excitatory centre with 

inhibitory zones either side (Bishop et al., 1980; Nordström and O’Carroll, 2009) 

 

In comparison, the optomotor system is highly sensitive to a wide range of 

spatio-temporal frequencies with optomotor response dropping only in the very 

high spatial frequencies (0.2cpd) and high temporal frequencies (32Hz). This 

makes the optomotor system sensitive to a broad range of velocities, enabling the 

mantis to monitor optic flow with a range of speeds.  

In both systems, mantis response is independent of  velocity

but is instead dependent on the stimulus spatial and temporal frequencies. For 
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example the mantis has a higher response to stimuli moving at 160 degrees per 

second with a low spatial frequency of 0.05 cycles per degree compared to targets 

moving at 160 degrees per second with a high spatial frequency of 0.2 cycles per 

degree. This suggests that both the tracking and optomotor system are not tuned 

to a specific speed, but independently to spatial and temporal features of the visual 

stimuli. If the mantis was tuned to speed we would expect to see a similar response 

rate to stimuli with the same contrast frequency (degrees per second), over 

different spatial frequencies (cycles per degree). This is consistent with studies 

that show the insect visual system relies heavily on the spatial and temporal 

properties of an image rather on an image’s velocity (Reichardt and Wenking, 

1969; Pick and Buchner, 1979; Dvorak et al., 1980; Reichardt and Guo, 1986; 

Hausen and Egelhaaf, 1989; Straw et al., 2008; Nityananda et al., 2015).   

 In conclusion, my thesis has uncovered details of mantis motion perception 

and how this influences predatory choices, shedding light on the strategies most 

beneficial to prey.  
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