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Abstract  

The concentration of intracellular free Ca2+ ([Ca2+]i) plays an essential role in cell cycle 

progression. Understanding the Ca2+ signalling mechanisms that drive and maintain cell cycle 

arrest in the quiescent state, or stimulate quiescent cells to re-enter the cell cycle and proliferate, 

will be crucial for developing therapeutic potentials for highly detrimental diseases such as 

cancer and aging disorders. The work in this thesis investigates remodelling of the Store-

Operated Ca2+ Entry (SOCE) signalling pathway that is associated with cell cycle arrest in the 

quiescent G0/G1 phase. 

Serum starvation was used to induce cell cycle arrest in quiescent G0/G1 phase to allow 

investigation of remodelling of SOCE when cells exit the cell cycle. Cancer HeLa, precancerous 

NIH 3T3 and immortal non-cancerous hTERT RPE-1 cell lines were used in this comparative 

study. Serum starvation induced cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 cells 

that was accompanied by a marked down regulation in SOCE. In hTERT RPE-1 cells, serum 

starvation induced a modest down regulation in SOCE that was not accompanied by cell cycle 

arrest. Further experiments revealed that SOCE downregulation was attributed to changes in 

expression and localisation of the Ca2+ sensing protein STIM1 and the Ca2+ release-activated 

channel (CRAC) protein Orai1. 

Serum was added-back in order to induce arrested cells to re-enter the cell cycle. Cell cycle re-

entry was associated with restoration of SOCE, STIM1 and Orai1 expression in NIH 3T3 cells, 

and the restoration of only Orai1 expression in HeLa cells. By comparing these changes to that 

of hTERT RPE-1 cells, which were not arrested in G0/G1 cells, it appears that there may be a 

significant role for cell cycle arrest in quiescent G0/G1 phase in SOCE remodelling. In addition, 

these results suggest an additional role for Orai1 as a positive regulator of cell cycle progression 

in HeLa cells. In NIH 3T3 cells, SOCE and its proteins, STIM1 and Orai1, were remodelled 

with cell cycle arrest in quiescent G0/G1 phase and restored with cell cycle re-entry, indicating 

that each of STIM1 and Orai1 appears to have a role in SOCE and cell cycle progression. SOCE 

seems to be coupled to cell proliferation in NIH 3T3 cells but not in HeLa cells. 

This study provides evidence that there are significant differences in SOCE remodelling with 

cell cycle arrest in quiescent G0/G1 phase in cancerous and pre-cancerous cells, and identifies 

potential targets for drug therapy aimed at regulating the cell cycle. 
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Chapter 1 Introduction   

Dysfunctional cell cycle progression is associated with many diseases and disorders which 

affect human lifespan and health, for example cancer, age-related disorders and pre-natal 

developmental disorders (Zhivotovsky and Orrenius, 2010). Of central importance in 

developing therapeutic treatment for diseases such as cancer (Chen et al., 2013) and aging 

disorders (Peacock, 2010), will be understanding how Ca2+ signals drive or maintain cell cycle 

arrest in the quiescent state, or stimulate quiescent cells to re-enter the cell cycle and 

proliferate. The work in this thesis aims to address this ‘knowledge gap’ by mapping the 

remodelling of Ca2+ signals that is associated with cell cycle progression.  

1.1 Cell proliferation and the cell cycle 

Uncontrolled proliferation is a hallmark of cancer. Cancer cells have the ability to escape 

normal regulatory mechanisms that control how many times a cell can divide. Cell 

proliferation is directly linked to cell cycle progression. 

The cell cycle consists of two main phases. The two major phases of cell cycle are interphase; 

the phase between mitotic events during which growth and regeneration take place and mitosis 

(Figure1.1). The interphase is further subdivided into three phases: G1-phase (Gap 1) during 

which the cells synthesize RNA and proteins to induce growth and prepare for DNA synthesis 

and chromosome duplication that occur in the S-phase (Synthesis).  The S-phase is then 

followed by the G2-phase (Gap 2). During G2-phase which is the last phase of interphase the 

cell is preparing for mitosis in which the nuclear division (mitosis) and cytoplasmic division 

(cytokinesis) occur (Mitchison, 1971; Prescott, 1976; Prescott, 1987).  

A further phase is known as G0 phase or quiescence. Cellular quiescence is a reversible non-

proliferating state where the cells exit the cell cycle and no longer divide. Some cells become 

quiescent when they reach maturity and enter a state of terminal differentiation but continue to 

do their main functions (e.g. neurones). Other cells that can re-enter the cell cycle are known 

to be in G0 phase in response to a lack of growth factors or nutrients (e.g. stem cells).  



 

2 

 

1.1.1 Cell cycle checkpoints 

Cell cycle events occur in a unidirectional way which is vital to ensure precise chromosomal 

duplication and segregation into daughter cells (Murray and Hunt, 1993).  

Regulation of the cell cycle is critical to the survival of mammalian species. Therefore, the 

cell cycle is controlled by an independent system which consists of numerous mechanisms 

ensuring correct cell division in the right order. These independent mechanisms are known as 

checkpoints which operate at crucial transitions in the cell cycle to verify whether the 

processes at each phase of the cell cycle have been accurately completed before progression 

into the next phase (Hartwell and Weinert, 1989). The main check points are defined as: 1) 

Restriction point (R) (Pardee, 1992) which occurs at the end of G1 phase just before entry into 

S phase. 2) G2/M checkpoint which controls entry to mitosis. 3) Spindle Checkpoint that 

prevents separation of the sister chromatids until the completion of spindle assembly and 

attachment of chromosomes kinetochore to spindle fibres occur (Hoyt et al., 1991; Li and 

Murray, 1991). 

The cell cycle is also controlled by both endogenous and exogenous signals. One of the main 

exogenous signals are the growth factors that stimulate cells to move from G0 to G1 phase. 

Early in G1 phase, before reaching R point, removal of growth factor results in a return to G0, 

while later on, after passing the R point, removal of growth factor has no effect and the cell 

will continue to enter the S phase (Rossow et al., 1979). At R point, the key decision of 

whether the cell should divide, delay division, or enter a resting stage is made.  

Ca2+ signalling is one of the main endogenous signals that operate at checkpoints and has been 

known to control some of these crucial transitions of the cell cycle. For example, Ca2+ 

/calmodulin-dependent protein kinase and calcineurin have been shown to be essential for 

quiescent cells to re-enter the proliferative pathway (G0 re-entry), G1/S, G2/M and metaphase 

of mitosis (Lu and Means, 1993; Means, 1994). In addition, a transient increase in 

intracellular free Ca2+ has been shown to control cell cycle progression by translational and 

post-translational regulation of the cell cycle control proteins pp34 and cyclin (Whitaker and 

Patel, 1990) and to control chromosome disjunction in early sea urchin embryos (Groigno and 

Whitaker, 1998). 
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1.1.2  Quiescent G0/G1 arrest 

Quiescent G0/G1 arrest occurs before the cell reaches the R point where some cells enter the 

G0 phase and others remain in early G1 phase. The quiescent G0/G1 arrest is reversible; 

although the arrested cell stops dividing, it can be reactivated into proliferation by external 

signals e.g. growth factors (Figure1.1).  

 Cancer cells are able to ignore signals that can arrest cells in G0/G1 phase and can therefore 

continue to proliferate. This is usually a result of alterations to genes known as tumor 

suppressor genes, which normally control cells’ response to external and internal cues to exit 

the cell cycle. In addition, some cancer cells remain dormant for prolonged periods where they 

persist in G0/G1 phase (Udagava, 2008; Almog, 2013). This stage makes the dormant cells 

below the threshold of diagnostic detection for months to decades. Elucidation of how 

remodelling of signalling mechanisms involved in the regulation of cell cycle arrest in G0/G1 

phase might contribute to development of novel strategies in treatment and prevention of 

cancer. 

In vitro, serum starvation has been extensively used in cell cycle research since Pardee 

established the restriction point concept (Zetterberg and Larsson, 1985; Pardee, 1992; 

Kerkhoff and Rapp, 1997; Pardee, 1974) and has continued as a principal and a valuable 

experimental technique to induce cell cycle arrest in a quiescent G0/G1 phase (Lemos et al., 

2007; Kothapalli et al., 2008; Van Rechem et al., 2010; Xiong et al., 2012).  

In this study, serum starvation has been used to induce cells to enter quiescent G0/G1 phase.   
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Figure 1.1 The Cell Cycle  

The cell cycle consists of Interphase (G1, S and G2 phases) and Mitotic phase (M). 

Cells exit the cell cycle and stay in G0 phase (quiescence) upon either reaching 

maturity or due to lack of nutrients. Upon stimulation with an agonist (A) e.g. growth 

factor, cells in G0 phase re-enter the cell cycle. R (restriction point). 

  

R 
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1.2 Ca2+ signalling  

Mammalian cells use Ca2+ ions as a universal second messenger to control a diverse range of 

cellular processes, including cell proliferation, development, migration and apoptosis 

(Berridge et al., 1998; Berridge et al., 2000; Bootman et al., 2001; Berridge et al., 2003). 

These processes are triggered by different stimuli such as hormones, growth factors, 

cytokines, and neurotransmitters that cause a rise in intracellular Ca2+ concentration. The 

increase in cytosolic Ca2+ concentration generates transients that vary in temporal and spatial 

nature, thus enabling cells to adjust their response to a certain stimulus (Berridge et al., 2003; 

Berridge, 2009; Laude and Simpson, 2009). This increase in cytosolic Ca2+ occurred either 

from entry of Ca2+ through the plasma membrane or release from internal stores.  

The resting level of cytosolic Ca2+  is maintained at 50–200 nM by the concurrent interaction 

of several processes, which can be divided into Ca2+ ‘on’ and ‘off’ mechanisms depending on 

whether they serve to increase or decrease cytosolic Ca2+ respectively. When cells are 

activated the Ca2+ levels rise to create various signals that are characterised by being highly 

versatile in that they vary in space, time and amplitude (Berridge et al., 1998; Berridge et al., 

1999; Berridge et al., 2000; Bootman et al., 2001). These signals can be in the form of micro 

domains with very high level of Ca2+ concentration (50–100 μM) in the vicinity of the Ca2+ 

channels that propagate over ~ 20 nm (Berridge et al., 2000; McCarron et al., 2006; Parekh, 

2008) and stimulate highly localised processes. These cellular processes vary depending on 

the type of Ca2+ channel opened and its location (Berridge et al., 1998).  

These signals are called elementary events (Berridge et al., 1998) and form the ‘basic building 

blocks of Ca2+ signalling’ that generate global Ca2+ signal that can spread over large distances 

(10–100 μm) in the range of nM by activating nearby channels to open and release Ca2+ 

through the process of Ca2+-induced Ca2+ release (CICR) (Berridge et al., 1998; Berridge et 

al., 1999). These elementary events are rapidly removed by the process of simple diffusion 

(Berridge et al., 1998). As the internal Ca2+ stores are limited, the sustained bouts of signalling 

depend on the influx of external Ca2+ through (SOCs) (Berridge et al., 1998). 
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1.2.1 The Ca2+ ‘on’ mechanisms   

Ca2+ ‘on’ mechanisms are Ca2+ channels that cause increase in the cytosolic Ca2+ level and 

consequently trigger Ca2+ signals that regulate many cellular processes including cell 

proliferation, migration and invasion by cancer cells (Berridge et al., 2000; Berridge et al., 

2003). These channels are either located at the internal stores using the internal Ca2+  to 

generate Ca2+ signals or channels located at the plasma membrane (PM) which utilise Ca2+ 

from the extracellular space.   

The internal stores are held within the membrane systems of the endoplasmic reticulum (ER) 

or, the sarcoplasmic reticulum (SR) of muscle cells which release the Ca2+ from finite 

intracellular Ca2+ stores. These channels include ryanodine receptors (RYRs) and Inositol 

1,4,5-trisphosphate receptors (InsP3Rs) (Berridge et al., 2000). One principal activator of 

these channels is Ca2+ itself and this process of Ca2+-induced Ca2+ release (CICR) is 

fundamental to the mechanism of Ca 2+ signalling (Berridge et al., 1998; Berridge et al., 

1999). 

Channels located at the plasma membrane (PM) are channels classified by the way in which 

they are activated. They are the Voltage-Operated- Channels (VOCs), Receptor-Operated Ca2+ 

-Channels (ROCs), ligand-gated channels, stretch-activated, second-messenger gated channels 

and Store-Operated -Channels (SOCs) (Berridge et al., 2000; Bootman et al., 2001; Clapham, 

2007) . VOCs are activated by depolarisation to selectively permit Ca2+ entry from the 

extracellular space (Bootman et al., 2001) and they typically exist in excitable cells such as 

neuronal and muscle cells (Berridge et al., 2000). ROCs open in response to receptor 

activation by external stimuli such as ATP or acetylcholine (Berridge et al., 2000; Bootman et 

al., 2001). Store-Operated -Channels (SOCs) are one of the channels that allow Ca2+ entry 

from extracellular space in response to internal store depletion (Berridge et al., 2000; 

Bootman et al., 2001). Another source of Ca2+ influx is the two G-protein coupled receptors 

sensing extracellular Ca2+, Ca2+-sensing receptor (CaSR) and GPRC6a. These receptors are 

present in many cell types (Riccardi and Gamba, 1999). They are G-protein coupled receptors 

(GPCR) and when activated by increasing external Ca2+ concentrations they trigger 

intracellular Ca2+ transients (Breitwieser and Gama, 2001; Rey et al., 2010).  At rest Ca2+ ‘on’ 

mechanisms work in balance with the Ca2+ ‘off’ mechanisms (Bootman et al., 2001).  
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1.2.2 The Ca2+ ‘off’ mechanisms   

A more diverse set of ‘off’ mechanisms is recruited by cells to remove Ca2+ from the cytosol. 

These include the plasma membrane Ca2+ ATPase (PMCA) and Na+/Ca2+ exchanger which 

removes Ca2+ from the cytosol into the extracellular environment (Berridge et al., 2000). The 

sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) is another Ca2+ ‘off’ mechanism located 

on the ER/SR membrane which pumps Ca2+ from the cytoplasm back into the ER/SR 

(Berridge et al., 2000). Mitochondria have been shown to be an ‘off’ mechanism as they 

control the amplitude of cytosolic Ca2+ increase by rapidly sequestering Ca2+ and then slowly 

returning it to the cytosol once resting levels have been restored. Also, Ca2+ binding proteins 

are known as ‘off’ mechanisms and include Ca2+ sensors and Ca2+ buffers. Sensors such as 

calmodulin bind Ca2+ and in response activate various cellular responses (Berridge et al., 

2000) and also buffers such as peroxisomes in the cytosol bind Ca2+ as it enters the cell 

(Raychaudhury et al., 2006; Lasorsa et al., 2008). 

Ca2+ plays a vital role in processes that are affected in cancerous cells including cell 

proliferation, differentiation and invasion. It is therefore important that these processes are 

central aspects of current cancer research (Bergner and Huber, 2008). This project therefore 

concentrates on elucidating the remodelling of Ca2+ signals, specifically SOCE and its 

proteins, when cells enter a quiescent state. 
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1.3 Store-operated Ca2+ entry   

The active interplay between Ca2+ release from internal stores and influx from the 

extracellular space outlines Ca2+-signalling dynamics and subsequently the cellular response. 

These two pathways, internal release and influx, are coupled through the store-operated Ca2+ 

entry (SOCE) that occurs in response to depletion in Ca2+ stores. This control of Ca2+ influx at 

the cell membrane by Ca2+-store depletion was first defined by Putney in 1986 in the context 

of the capacitative Ca2+-entry model (Putney, 1986; Parekh and Putney, 2005). 

This depletion is a result of CICR, whereby Ca2+ self-promotes its own release by activating 

RYRs and InsP3Rs (Berridge et al., 2000). InsP3, a second messenger generated in the 

phosphoinositide signalling pathway, binds to InsP3R makes it ready to be activated by Ca2+.  

In contrast RYRs can be either directly activated by Ca2+ or through binding of a second 

messenger cyclic ADP ribose (cADPr) (Berridge et al., 2000; Bootman et al., 2001). 

InsP3 and diacylglycerol (DAG) are produced by activation of Phospholipase C and 

phospholipase A2 following stimulation of plasma membrane G-protein coupled receptors     

(Miyazaki et al., 1993). InsP3 diffuses through the cytosol, binds to and activates InsP3Rs 

located on the ER/SR membrane. Opening of these channels result in store depletion as Ca2+ 

moves down its concentration gradient from the ER (~500µM) into the cytosol (~100nM) 

(Bootman et al., 2001). Depletion of the store then stimulates SOCE via opening of SOCs 

channels located in the plasma membrane in response to store depletion (Putney et al., 2001) 

generating what is known as the Ca2+-release activated Ca2+ current (ICRAC ).   

Recently, the molecular mechanisms underlying SOCE were identified. Three proteins have 

been implicated in the integration of this signalling pathway; STIM, Orai and TRPC1. 
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Figure 1.2  SOCE  

Binding of an agonist (A) to a G-protein-coupled receptor (R) activates phospholipase C 

(PLC) which hydrolyses PIP2 to generate the second messenger IP3. IP3 diffuses through the 

cell cytosol and binds to IP3 receptors (IP3Rs) located in the ER membrane. Opening of 

IP3Rs results in ER store depletion. Depletion of ER Ca2+ stores is signalled, most likely by 

STIM1, to SOCs located in the PM. SERCA is a Ca2+ ATPase that pumps Ca2+ from the 

cytosol into the ER to replenish depleted stores. 
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1.3.1 STIM proteins 

RNAi screens had a key role identifying STIM 1 and STIM2 (Stromal interaction molecule 1 

and 2) genes in mammals (Liou et al., 2005; Roos et al., 2005). STIM1 and STIM2 are type I 

ER transmembrane proteins which were identified as the sensors of luminal ER Ca2+. 

STIM1 is a 77kDa type 1 single-pass TM proteins (Lewis, 2007). Up to 25% of these proteins 

are localized to the PM (Manji et al., 2000; Zhang et al., 2005), while the vast majority is 

localized to the ER membrane (Lewis, 2007) where the function of these regulatory molecules 

is best recognised (Williams et al., 2001; Williams et al., 2002; Zhang et al., 2005). 

STIM1 consists of an N-terminal region (STIM1-N) located in the ER lumen and a C-terminal 

region (STIM1-C) in the cytosol (Zeng et al., 2008; Hogan et al., 2010), and both possess an 

EF-hand domain that is able to bind Ca2+ in the ER lumen (Williams et al., 2001; Liou et al., 

2005; Zhang et al., 2005; Wu et al., 2006; Brandman et al., 2007; Zeng et al., 2008) with 

binding affinity in the normal 0.5–1 mM range for ER [Ca2+]i (Stathopulos et al., 2006; Zeng 

et al., 2008). 

The C terminus has the ability to open all channels gated by STIM1 (Huang et al., 2006) as it 

plays a key role in the translocation of STIM1 oligomers to ER-PM junctions (Baba et al., 

2006; Huang et al., 2006; Liou et al., 2007).  

STIM1 phosphorylation at multiple serine residues has been recognised and shown to have a 

role in STIM1 activation during ER Ca2+ store depletion (Manji et al., 2000; Pozo-Guisado et 

al., 2013). On the other hand, STIM1 phosphorylation has also been shown to inhibit SOCE 

(Smyth et al., 2009; Sundivakkam et al., 2012; Sundivakkam et al., 2013). STIM1 can also be 

glycosylated (Manji et al., 2000; Dziadek and Johnstone, 2007) which can affect PM 

localisation (Williams et al., 2002). Interference with STIM glycosylation prevents clustering 

of STIM1 (Korzeniowski et al., 2010).  

The extent of SOCE is closely related to level of STIM1 expression. STIM1 overexpression 

increases SOCE while knockdown causes a reduction in SOCE in many cell types such as 

endothelial progenitor cells (Kuang et al., 2010; Shin et al., 2010) endothelial cells (Abdullaev 

et al., 2008), vascular smooth muscle cells (Takahashi et al., 2007b; Aubart et al., 2009; 

Potier et al., 2009), SH-SY5Y neuroblastoma cells  (Bell et al., 2013) Jurkat T cells (Roos et 



 

11 

 

al., 2005; Huang et al., 2006), HEK293 cells (Mercer et al., 2006; Abdullaev et al., 2008) and 

HeLa cells (Liou et al., 2005). 

 Recently, STIM1 has been shown to exist in two isoforms; STIM1S and STIM1L (Darbellay 

et al., 2011; Sauc et al., 2015). The shorter STIM1S isoform has been identified as the 

predominant STIM1 isoform whereas the longer STIML isoform has only recently been 

recognised to activate SOCE in cells lacking STIM1S (Darbellay et al., 2011; Sauc et al., 

2015).  

STIM2 structurally, shares 66% sequence homology with STIM1 (Williams et al., 2001; 

Zheng et al., 2008) and is only expressed in the ER membrane, unlike STIM1 which is also 

expressed in the PM (Zheng et al., 2008). STIM2 has been found to induce store independent 

Ca2+ entry (Parvez et al., 2008). However it has been also found to activate SOCE and respond to 

smaller decreases in ER [Ca2+] than STIM1 (Brandman et al., 2007). 

STIM2 knockdown reduces basal [Ca2+]i and overexpression increases basal [Ca2+]i (Brandman et 

al., 2007) and also inhibits SOCE (Soboloff et al., 2006b). In addition knockdown of STIM2 in 

HeLa cells caused a reduction in SOCE (Liou et al., 2005) but has also been shown to have no 

effect in Jurkat T cells (Roos et al., 2005), therefore role of STIM2 in SOCE still not clear. 

As STIM1 activates SOCE, expression of STIM1 is investigated in this study (Chapter 5, 6 

and 9).   
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1.3.2 Orai proteins 

The Orai proteins were found to mediate the highly Ca2+ selective Ca2+ release activated 

current (ICRAC) (Feske et al., 2006; Vig et al., 2006; Zhang et al., 2006). Each subunit of the 

Orai channels has four transmembrane spans with cytoplasmic N and C termini. There are 

three human homologues of the Orai protein; Orai1, Orai2 and Orai3. 

Orai1 is a 33kDa tetra-pass PM spanning protein that forms the SOC pore. Orai1 was first 

identified in 2006 as an essential component of SOCE (Feske et al., 2006; Vig et al., 2006; 

Zhang et al., 2006). T cells from patients with severe combined immunodeficiency (SCID) 

syndrome failed to activate SOCE following store depletion (Feske et al., 2006) which later on 

was attributed to depletion of Orai1 and transfection with wild-type Orai1 in cells from SCID 

patients restored SOCE (Feske et al., 2006)   

Like STIM1, many studies showed that Orai1 has a key role in SOCE in many cell types. 

Knockdown of Orai1 cause a reduction of SOCE in neural progenitor cells  (Hao et al., 2014),  

HEK293 cells (Gwack et al., 2007; Kawasaki et al., 2010), neuroblastoma cells (Bell et al., 

2013), osteoclasts (Zhou et al., 2011), endothelial cells (Abdullaev et al., 2008), Jurkat T cells 

(Gwack et al., 2007) and acinar cells (Hong et al., 2011). Moreover, Orai1 overexpression 

was shown to restore SOCE in SCID T cells and fibroblasts (Gwack et al., 2007), causes an 

increase in SOCE in HEK293 cells (Fukushima et al., 2012) and in differentiated 

neuroblastoma cells (Bell et al., 2013).   

Indeed, Orai1has been shown to form the pore forming subunit of SOCs. This was confirmed 

by mutant studies in which substitution of acidic residues in transmembrane domains 1 and 3 

and in the extracellular loop region between transmembrane domains 1 and 2 altered Ca2+ 

permeability and selectivity of ICRAC  (Prakriya et al., 2006; Vig et al., 2006; Yeromin et al., 

2006). In addition, the R91W point mutation in SCID patients with dysfunctional ICRAC is 

located in transmembrane domain 1 (Feske et al., 2006).  

Orai2 and Orai3 show high sequence similarity to Orai1, particularly in their transmembrane 

segments (Takahashi et al., 2007a; Shuttleworth, 2012), yet they are different at the cytosolic 

N- and C termini, at which SOCs channels are known to be activated (Takahashi et al., 2007a; 

Shuttleworth, 2012).  
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Co-expression of Orai2 with STIM1 results in an increase in ICRAC, though to a lesser extent 

than Orai1 (Mercer et al., 2006). Similarly, co-expression of STIM1 with Orai1 that had the 

Orai2 N-terminal tail only slightly increased SOCE while co-expression of STIM1 with Orai2 

containing the Orai1 N-terminus cause robust increase in SOCE to levels observed with 

Orai1-STIM1 co-expression (Takahashi et al., 2007a). 

Orai3 does not generally appear to be involved in SOCE as, unlike Orai1 and Orai2, co-

expression of Orai3 with STIM1 does not produce detectable Ca2+ selective currents (Mercer 

et al., 2006; DeHaven et al., 2007) and expression of a dominant-negative mutant Orai3 in 

HEK293 cells had no effect on SOCE (Mignen et al., 2008).     

Given that Orai1 co-expression with STIM1 has consistently been shown to increase SOCE  

to a greater extent than that observed with Orai2 or Orai3 expression (Mercer et al., 2006; 

Peinelt et al., 2006; Soboloff et al., 2006a; Takahashi et al., 2007a) this implies that the Orai1 

isoform has a more prominent role in SOCE. Therefore, expression of Orai1 is investigated in 

this study (chapter 5, 6 and 9).   

1.3.3 STIM1/Orai1 interaction 

Interaction between STIM1 and Orai1underlies SOCE (Figure1.2). Ca2+ release from the 

endoplasmic reticulum causes a conformational change of STIM1 which is converted from 

monomers into oligodimers (Stathopulos et al., 2006; Stathopulos et al., 2008). STIM1 

oligodimers induce formation of distinct puncta at ER-PM junctions that mediated by its 

sterile alpha motif (SAM) domain (Liou et al., 2005; Zhang et al., 2005; Park et al., 2009; 

Yuan et al., 2012) where they directly interact with the C-terminus of Orai1. This STIM1 

interaction traps Orai1 at the PM and sequesters Orai1 into cortical STIM1 clusters (Hodeify 

et al., 2015) inducing a conformational change in Orai1 (Luik et al., 2006; Kawasaki et al., 

2009; Yuan et al., 2012) which result in opening of Orai1 channels and triggering SOCE to 

refill depleted stores. Interestingly, the Orai1 channels open only in the immediate vicinity 

opposite STIM1 puncta which exists in close proximity (~20 nm) to the PM (Luik et al., 2006; 

Wu et al., 2006; Hodeify et al., 2015). After refilling of ER Ca2+ stores STIM oligomers 

dissociate and its uniform distribution throughout the ER membrane is restored (Luik et al., 

2006; Liou et al., 2007). Hence direct physical coupling between STIM1 (the ER Ca2+ sensor) 
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and Orai1 (the Ca2+ channel at the cell membrane) derives functional coupling between Ca2+ 

levels in the ER lumen and extracellular Ca2+ entry. 

Therefore, STIM1 is essential for the function of Orai1 as a SOC (Mercer et al., 2006; Peinelt 

et al., 2006; Zhang et al., 2006; Frischauf et al., 2016) and it has been shown that knockdown 

of STIM1 significantly reduced SOCE (Roos et al., 2005; Mercer et al., 2006; Abdullaev et 

al., 2008; Bell et al., 2013).  

STIM1 co-localisation with Orai1 at PM has been observed upon Ca2+ store depletion in 

sinoatrial node cells (Liou et al., 2005), Xenopus oocytes (Courjaret and Machaca, 2014) and 

HEK293 cells (Fukushima et al., 2012).  

STIM1 not only interacts with Orai1 but also interacts with and gates members of the TRPC 

channel family (Huang et al., 2006; Yuan et al., 2007; Zeng et al., 2008) which may play a 

role in cellular proliferation. 

Recently, SOCE remodelling has been associated with cancer cell proliferation, migration and 

invasion (Targos 2005; Chen 2013; Prevarskaya et al., 2011). SOCE mediated by Orai and 

STIM proteins has recently been implicated in various cellular processes associated with 

carcinogenesis (Bergmeier et al., 2013).  

1.3.4  TRPC 

Transient Receptor Potential-Canonical (TRPC) channels are non-selective Ca2+-permeable 

channel involved in cation transport in a variety of biological processes (Yuan et al., 2003). 

TRPC1 is a 90kDa PM protein that has been implicated in SOCE (Parekh and Putney, 2005) 

and was initially thought to be the primary SOC involved in SOCE before the discovery of 

Orai1 (Parekh and Putney, 2005). For example, knockdown of TRPC1 in submaxillary mouse 

acinar cells causes a reduction in SOCE (Liou et al., 2007). TRPC1 has been found to function 

as a SOC via interactions with STIM1 (Berna-Erro et al., 2012; Lee et al., 2014; Yuan et al., 

2007; Alicia et al., 2008; Jardin et al., 2008). The role of TRPC1 as a SOC is controversial, as 

several studies have shown that TRPC1 is not involved in SOCE. Most of the controversy 

surrounding the role of TRPC1 as a SOC is due to its well established role as a ROC. 

However, recent studies suggest that TRPC1 may also function as a SOC without the 
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requirement of STIM1 interactions (DeHaven et al., 2009) and can be activated by other non-

SOCE pathways (Putney, 2005). 

This inconsistent evidence showed that TRPC1 role in SOCE is not clear and for this reason it 

was not included in this study. 
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1.4 Ca2+ signalling and the cell cycle  

Ca2+ is a cell messenger that plays a central part in cell cycle control. Much of the evidence 

that points to Ca2+ as a signal that triggers cell cycle has been detected in almost every type of 

normal and transformed cell lines. 

The notion that Ca2+ signalling may have a role in cell cycle progression originated in 1970s, 

when microinjection of Ca2+ chelators and antagonists into sea urchin egg blocked nuclear 

envelope breakdown (NEB), inhibited mitosis exit and consequently blocked the cell cycle 

(Zucker and Steinhardt, 1978), injection of Ca2+ chelators in somatic cells also delays mitosis 

exit (Izant, 1983) and the reverse result showing that artificially increasing [Ca2+]i induced 

premature mitosis entry was also observed (Zucker et al., 1978; Whitaker and Steinhardt, 

1982). 

By the early 1980s, with the development of fluorescent Ca2+ indicators (e.g. fura, fluo, indo 

and others), a further understanding of intracellular Ca2+ homeostasis was attained. Ca2+ 

transients have been recorded in mammalian at exit from mitosis (Poenie et al., 1985; Poenie 

et al., 1986) and Ca2+ gradients centred on the mitotic pole have been also seen (Ratan and 

Shelanski, 1986). 

Furthermore, it has been known that a critical external Ca2+ concentration is necessary for 

mammalian cells to pass R checkpoint and enter the cell cycle (Whitfield et al., 1976; 

Hazelton et al., 1979; Tupper et al., 1980). 

Understanding of Ca2+ regulation of cell growth and division is further reinforced by genetic 

and biochemical studies demonstrating that calmodulin (CaM); a Ca2+ target and Ca2+-

calmodulin-dependent protein kinase II (CaMKII) play an essential role at several transition 

points during cell cycle progression. Calmodulin (CaM) was shown to regulate mitosis (Lu 

and Means, 1993; Takuwa et al., 1995; Whitaker, 1995; Whitaker and Larman, 2001), G1 

phase (Rasmussen and Means, 1989) and to be essential for movement of quiescent cells into 

the cell cycle as well as for proliferating cells to move from G1 to S, G2 to M and through 

mitosis (Rasmussen and Means, 1989; Means, 1994; Kahl and Means, 2003). Ca2+ has been 

also shown to be required for centrosome duplication which is necessary for spindle formation 
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and chromosome segregation (Matsumoto and Maller, 2002). Furthermore, the Ca2+-

dependent phosphatase calcineurin has been involved in G1-S progression (Kahl and Means, 

2003). 

Great progress has been made in the last few decades in understanding key Ca2+-

dependent pathways that regulate cell cycle progression. SOCE is a ubiquitous Ca2+influx 

pathway that functions in all non-excitable cells in response to agonist stimulation (Parekh and 

Putney, 2005) and is known to play a key role in cell proliferation. One of the strong lines of 

evidence of a role of for Ca2+ influx in cell proliferation comes from the use of Ca2+ channel 

blockers. For example, 2-APB (Bootman et al., 2002), BTP2 (Ohga et al., 2008) and 

carboxyamidotriazole (CAI) (Perabo et al., 2004) have been shown to inhibit cell 

proliferation. 

SOCE has been known to be vital for lymphocyte proliferation (Feske et al., 2006). In 

addition, blocking of SOCE resulted in an alteration of intracellular signalling pathways 

linked to cell proliferation (Berna-Erro et al., 2012) and SOCE inhibition using (BTP-2) 

reduced cell proliferation in human metastatic melanoma cell lines (Umemura et al., 2014). 

Furthermore, it has been shown that inhibition of Ca2+
 influx through  SOCs can slow down 

the growth of certain aggressive cancer cells (Kohn et al., 1996). 

The relation between SOCE and cell cycle is bidirectional, remodelling of SOCE has been 

well defined at mitosis (Arredouani et al., 2010). The first suggestion that Ca2+ influx is 

inhibited during cell division was reported in 1988 in a study of HeLa cells (Volpi and Berlin, 

1988). Recently, it has been confirmed that SOCE is inactivated during mitosis in HeLa and 

HEK293 cells (Smyth et al., 2009), Cos-7 cells (Russa et al., 2008) Smyth et al., 2009; RBL-

2H3 cells (Tani et al., 2007). Investigating SOCE levels throughout the cell cycle showed that 

there is a slight enhancement of SOCE during the G1-S transitions and dramatic down-

regulation during M phase (Tani et al., 2007). 
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1.5 Knowledge gap 

Ca2+ signalling at mitosis has been studied most extensively. However, Ca2+ signalling, 

especially SOCE when cells enter and /or exit from a quiescent G0/G1 phase has been poorly 

investigated. Cancer cells have been shown to escape quiescence and go into uncontrolled 

proliferation (Sherr, 1996; Hanahan and Weinberg, 2000). Furthermore, tumour dormancy has 

been attributed to cell cycle arrest in a quiescent G0/G1 stage the time before which cells 

switch and enter the rapid growth phase (Udagava, 2008; Almog, 2013). Elucidating the 

remodelling of SOCE when cells enter/exit this phase may provide insight into the 

mechanisms that control cancer cell proliferation or keep cells dormant before they switch to 

proliferation and cause cancer metastases.  
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1.6 Cell lines 

1.6.1 HeLa cell line 

The HeLa cell line is a well-known aggressive cancerous cell line that has been widely used in 

studying the cell cycle. Cancer cells are known to have capability to overcome signals that can 

arrest cells in G0/G1 phase and consequently continue to proliferate. Investigating Ca2+ 

signalling during quiescent G0/G1 phase in an aggressive cell line like HeLa would be 

interesting and the findings possibly contribute to designing new drug therapies to drive 

cancer cells into quiescence and hence stop proliferating.   

1.6.2 NIH 3T3 cell line 

NIH 3T3 mouse embryonic fibroblast cells come from a cell line isolated and initiated in 1962 

at the New York University. NIH 3T3 cells have been shown to be a pre-neoplastic cell line 

that exhibits subpopulations of cells that express malignant properties which can grow and 

transform into invasive colonies (Greig et al., 1985; Rubin and Xu, 1989) and have been 

extensively used in studying cell cycle quiescence (Donohue et al., 1996; Kerkhoff and Rapp, 

1997; Litovchick et al., 2011; Spencer et al., 2013; Yao, 2014). It has been shown that some 

cancer cells remain dormant for prolonged periods where they persist in a stage of cell cycle 

arrest in G0/G1 phase (Udagava, 2008; Almog, 2013). Dormant cancer cells present a huge 

challenge for oncologists as they are the major source of metastasis, which is the main cause 

of cancer-related deaths. Understanding the Ca2+ signalling during quiescent G0/G1 phase in 

pre-neoplastic cells might provide new approaches to prevent metastasis and to target this 

crucial step in cancer progression.  

1.6.3 hTERT RPE-1 cell line 

Normal human somatic cells go through a limited number of divisions in culture after which 

they enter a non-replicative state called cellular senescence (Hayflick and Moorhead, 1961). 

Cell senescence is a growth-arrest program which can be triggered by alterations of telomeres. 

It is believed to provide a protection against the infinite proliferation and occurrence of cancer 

(Campisi, 2000). Human RPE-1 cells express telomerase reverse transcriptase which extends 
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their replicative lifespan beyond senescence without inducing aneuploidy or neoplastic 

transformation (Jiang et al., 1999). In addition, previous studies have shown that hTERT RPE-

1 cells are not arrested in G0/G1 phase after 3 days of serum starvation (Jiang et al., 1999; 

Liang et al., 2012). Hence these cells have been used in this study as a control for other cell 

types. 
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1.7 Aim 

The aim of this study is to investigate the remodelling of SOCE during cell cycle arrest in 

quiescent G0/G1 phase in a comparison between cancerous HeLa cells, precancerous NIH 

3T3 cells and an immortalised but noncancerous hTERT RPE-1 cells, using the following 

strategy; 

 Induce  cell cycle arrest in G0/G1 phase by serum starvation in HeLa, NIH 3T3 and 

hTERT RPE-1 cells and characterise them morphologically and by flow cytometry before 

and after serum starvation (Chapter 3) to measure the percentage of each entering G0/G1 

 Characterise the degree of SOCE and SOCE protein remodelling with cell cycle arrest 

in G0/G1 phase in the three cell lines (chapter 4 and 5). 

 Study the sequences of these changes over the serum starvation time-course (Chapter 

6) to investigate whether they occur as a consequence of G0/G1 arrest or are involved 

in triggering it. 

 Stimulate quiescent G0/G1 cells to re-enter the cell cycle by adding the serum back 

and define the response both morphologically and by flow cytometry (Chapter 7). 

 Investigate the remodelling of SOCE and its proteins when cells re-enter the cell cycle 

(chapter 8 and 9). 
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Chapter 2 Materials and Methods 

2.1  Materials 

Three cell lines have been used in this study; cancerous HeLa cells, precancerous NIH 3T3 

cells and an immortalised noncancerous; hTERT RPE-1 cells. All chemicals were from 

Sigma-Aldrich (Dorset, UK) unless stated otherwise.  

2.2 Cell culture    

HeLa and NIH 3T3 cells were cultured in complete medium comprising Dulbecco’s Modified 

Eagle’s Medium (DMEM) with foetal calf serum (10%), glutamine (2 mM), penicillin (100 IU 

ml-1) and streptomycin (100 IU ml-1). hTERT RPE-1 cells were cultured in complete 

medium comprising DMEM: F-12 Medium plus 2.5 mM L-glutamine, 15 mM HEPES, 0.5 

mM sodium pyruvate, and 1200 mg/L sodium bicarbonate with foetal calf serum (10%), 

penicillin (100 IU ml-1) and streptomycin (100 IU ml-1). Cells were kept at 37 °C in a 

humidified atmosphere (95% air, 5% CO2 for HeLa and NIH 3T3 cells and 10% CO2 for 

hTERT RPE-1 cells).  Cells were grown in 75cm2 flasks (Corning, Flintshire, UK) and split 

once a week when ~ 90% confluent and were discarded beyond passage 28.  

In order to split the cells into fresh culture medium, phosphate buffered saline (PBS) and 

Trypsin 0.02% (v/v) ethylene-diamine-tetra-acetic acid (EDTA) were pre-warmed to 37°C. 

Cells were washed three times with PBS (10ml) and detached from the flask by incubation 

with Trypsin EDTA (3ml) for 5 minutes at 37°C. DMEM (7ml) was added to the flask and the 

cell suspension was pipetted across the surface of the flask three times to fully remove 

adherent cells. The cell suspension (10ml) was centrifuged at 1000rpm for 5 minutes, the 

supernatant was discarded and the cell pellet re-suspended in DMEM (5ml). The resultant cell 

suspension was used for seeding of cells into flasks and onto dishes as required. 
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2.3  Serum starvation 

Cells were split and left to grow to 60% confluence prior to starvation. In order to induce 

quiescence, the medium was removed and the cells were washed 3 times with PBS. Control 

cells were cultured again in DMEM containing 10% FCS, the experimental cells were 

cultured in low serum DMEM (DMEM with 0.1% FCS) for 5 days. 0.1% FCS medium was 

replaced every day and cells were used at required time points of starvation.  

2.4 Cell counts 

A Cellometer automated cell counter (Nexcelom Biosciences Ltd. Massachusetts, USA), a 

PC-based instrument for one-step bright field image capture and analysis, was used with a 

cellometer counting slide to count cells in suspension. Each chamber has two chambers. Prior 

to counting, cells were split and 20µl of cell suspension was loaded into one slide. The 

chamber was then inserted into the Cellometer instrument. Cells were imaged directly from 

the centre of the counting chamber using the Auto T4 which utilizes bright field imaging and 

pattern-recognition software. After inserting the chamber, the images were adjusted to best 

focus and the cell type was chosen from the dropdown menu. The count button was clicked to 

give the number of cells / ml. The counting was done twice and the average was calculated. 

The required volume of cells was then seeded onto flasks or dishes.  

2.4.1 Trypan blue staining 

Trypan blue (TB) stain is a vital stain used to selectively colour dead cells blue whilst live 

cells with intact cell membranes are not coloured. This test is based upon the concept that 

viable cells do not take up impermeable dyes (like Trypan Blue), but dead cells are permeable 

and take up the dye. Trypan blue staining was done while doing the cell count. After splitting 

the cells, the cell sample was diluted in TB dye by preparing a 1:1 dilution of the cell 

suspension using a 0.4% TB solution (10µl of cell suspension to 10 µl of TB). Trypan Blue is 

sterile filtered before using it in order to get rid of particles in the solution that would disturb 

the counting process. The number of whole and viable cells was determined as described 

above (Method 2.4).    
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2.5 Flow cytometry 

Flow cytometry is an analytical technique which simultaneously measures and then analyses 

physical and/or chemical characteristics of single particles, typically cells, while they pass 

through a beam of light in a heterogeneous fluid mixture. It has been extensively used for cell 

analysis both in research and clinical laboratories.   

A flow cytometer is made up of three main systems: fluidics, optics, and electronics. The 

fluidics system transports particles in a stream to the laser beam for interrogation, while the 

optics system consists of lasers that illuminate the particles in the stream and optical filters 

that direct the resulting light signals to the appropriate detectors. Lastly, the electronics system 

consists of detectors that detect the light signals and a digital convertor that converts light 

signals into electronic signals that can be processed by the computer. These electronic signals 

are proportional to the optical signals striking the electronic detectors. 

For optimal illumination, only one cell or particle should move through the centre of the laser 

beam at a given moment. To accomplish this, the sample is injected into a stream of sheath 

fluid within the flow chamber. The design of the flow chamber causes the sample core to be 

focused in the centre of the sheath fluid where the laser beam will then interact with the 

particles. 

  



 

25 

 

 

 

Figure 2.1 Flow cytometer 

A schematic diagram of a flow cytometer. Flow cytometer is made up of three main systems: 

fluidics; flow sheath, optics; laser and filters and electronics; detectors (photomultiplier tubes 

(PMT)) and analogue- digital convertor (ADC). The flow sheath transports particles in a 

stream to the laser beam for interrogation. The design of the flow sheath causes one cell to 

pass through the centre of the laser beam at a given moment to get optimal illumination. The 

optics system consists of lasers that illuminate the particles in the stream and optical filters 

that direct the resulting light signals to the appropriate detectors (PMT). Detectors (PMT) 

detect the light signals and transfer it to ADC that converts light signals into electronic signals 

that can be processed by the computer. Different PMT types: SCC (side scatter), FSC 

(forward scatter), Fl -1, Fl- 2 and Fl-3 (Fluorescence channels 1, 2 and 3 respectively). 

(Adapted from O’Neill et al., 2013) 
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2.5.1 G0/G1 Separation 

In this study flow cytometry was used to analyse cell cycle stage by taking cell viability, DNA 

and RNA contents into account by what is called Multiparametric analysis which was 

performed by using viability dye, Zombie NIR (BioLegened, UK Ltd), DNA dye; Hoechst 

(Thermo Fisher Scientific, USA) and RNA dye; Pyronin Y (Sigma-Aldrich Company Ltd. 

Dorset, England). 

For the last two dyes the emitted fluorescence is proportional to DNA and RNA contents present 

in cells respectively (Andreeff et al., 1980; Shapiro, 1981; Kerker et al., 1982).  

Staining cells with Hoechst and Pyronin Y is a method for the separation of G0 and G1 cell 

cycle phases. Hoechst is an exclusive DNA dye while Pyronin Y reacts with both DNA and 

RNA.  When cells are stained first with Hoechst33342 and then with Pyronin Y, Pyronin Y 

reaction with DNA is blocked and Pyronin Y stains RNA only. Therefore, it is possible to 

distinguish DNA from RNA. Cells in S/G2/M phases were identified as the population with 

double DNA content and high RNA content (Darzynkiewicz et al., 2011). Cells in G1 phase 

are identified as the population with single DNA content and high RNA content. Finally, cells 

in G0 phase were identified as the population with single DNA content and an RNA content 

lower than that in cells in S and G2/M phases as it is known that RNA content of cells is 

higher during proliferation than during quiescence (Crissman et al., 1985; Lemons et al., 

2010; Darzynkiewicz et al., 2011). 

The cell viability was detected according to strength of the signals from the cells where dead 

cells exhibit significant fluorescence signal while live cells do not.   

To prepare cells for flow cytometry, cells grown in 75cm2 flasks were split as in method 2.2 to 

the resuspension step where 1×106 cells were resuspended in 1ml cell culture medium 

containing 10μg/ml Hoechst33342, and then incubated at 37oC for 45 minutes. Cells then 

were washed three times in PBS and resuspended in 1ml PBS, and then 5μl of 100μg/ml 

Pyronin Y was added and cells were incubated at 37oC for 15 minutes. 1μl of Zombie NIR 

was then added to the cells and incubated for a further 15 minutes at RT.  Samples were then 

transferred into 12x75mm Polystyrene Test Tube, FACS, non-sterile and analysed by flow 

cytometry.  
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2.5.2 Flow cytometry data analysis 

FACS Canto II cell analyser and FACs DIVA software were used to do cell cycle analysis. On 

the initial run all of the available channels and lasers on a Canto II flow cytometer (BD 

Biosciences, Oxford) were utilised to determine which lasers and detectors to use, FACs 

DIVA software was used to produce dot plots, histograms and to analyse data. Each dot 

appearing on the dot plots represent an ‘event’ recorded on the flow cytometer. Gating was 

designed based on the signals recorded from the samples so cells inside the gate move to the 

next checkpoint, while cells outside the gate are excluded. The gating tree was set as follows. 

A: Live gate (Zombie NIR/FSC; dead cells within the sample analysed exhibit significant 

fluorescence signal which is excluded from the gate). B: Hoechst Height/Area intensity this 

excludes events that could represent more than 1 cell; as shown in Figure 2.2, cell clumps, 

when they pass through the laser intercept, will take longer than single cells. This in turn, 

affects the area of the signal.  Using a pulse geometry gate (such as Hoechst Height/ Hoechst 

Area), doublets can be easily eliminated. C: Cell number/ Hoechst intensity to detect normal 

cell cycle shape histogram based on DNA content. D: Pyronin Y intensity / Hoechst intensity 

to classify cells in different cell cycle phases; G0, G1, S/G2/M as described above.   
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Figure 2.2 Example of FACS Diva data analysis sheet  

HeLa cells were grown in 10% FCS medium (proliferating). Cells were stained with viability 

stain; Zombie NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. FACS Diva software was 

used to produce dot plot, histogram and to analyse data. Each dot appearing on the dot plots 

represent an ‘event’ recorded on the flow cytometer. Gating was designed based on the signals 

recorded from the sample so cells inside the gate moved to the next checkpoint, while cells 

outside the gate were excluded. A) Live gate (Zombie NIR/FSC; dead cells (black dots) within 

the sample analysed exhibit significant fluorescence signal which is excluded from the gate). 

B) Singlets gate (Hoechst Area/ Height intensity gate; a pulse geometry gate) this excludes 

D 

A B 

C 

E 
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events (doublets; green dots) that could represent more than 1 cell. C) Cell cycle analysis gate 

(cell number/ Hoechst intensity) to detect normal cell cycle shape histogram based on DNA 

content and to calculate G0/G1 and S/G2/M cells. D) G0/G1 separation gate (Pyronin Y 

intensity / Hoechst intensity) Cells were classed G1 if they exhibited single DNA content and 

were RNA positive (blue dots), cells were classed S/G2/M if they exhibited double DNA 

content and were RNA positive (red dots) and cells were classed G0 if they exhibited single 

DNA content and were RNA negative (yellow dots). E) Table of data shows number of events 

in each gate, events of each gate as a percentage of parent gates and as a percentage of total 

events. 
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2.6 Western blotting  

Western blotting is an analytical technique used to detect specific proteins whereby proteins 

are separated based on their molecular weight by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) 2.6.4, transferred onto a membrane  2.6.5, detected with the use 

of antibodies and x-ray film 2.6.7 and 2.6.8 and analysed using densitometry 2.6.9. 

2.6.1 Protein extraction  

Cells in 75cm flasks were washed in PBS (4°C) three times and then lysed by the addition of 

1ml lysis buffer (4°C) for ~20 minutes on ice; 1mM EDTA (pH 8), 1mM EGTA (pH 8), 

1.28mM sucrose, 2mM Tris (pH 7.6), 10% (v/v) Triton X-100, dH20 and 1 protease inhibitor 

tablet (Roche Products Ltd, Hertfordshire, UK) per 10mls. Cells were scraped off flasks and 

then broken up by being passed through a 20-gauge needle ~10 times. They were then were 

spun at 12,000g for 10 minutes at 4°C to remove cellular debris. The supernatant was 

aliquoted and stored at -20°C.  

2.6.2 Protein concentration 

 Protein concentration was determined using bicinchoninic acid (BCA) protein assay (Pierce, 

BCA Protein Assay Kit, Cat. number: 23225). The BCA assay is used for detection and 

quantitation of total protein. A stock BSA solution (1mg/ml in lysis buffer) was used to 

provide a range of protein standards (0µg, 0.05µg, 1µg, 2µg, 5µg, 10µg, 20µg and 40µg). 

BSA standards and protein samples (3µl) were made up to 50µl with dH20.  5ml of BCA 

Reagent A, containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium 

tartrate in 0.1M sodium hydroxide and 100 µl of BCA Reagent B, containing 4% cupric 

sulphate were mixed together and then 200 µl of this mixture was added to the standards and 

samples in a 96 well plate. The plate was mixed thoroughly on a plate shaker for 30 seconds 

and covered and left to stand for 30 minutes at 37°C. This method combines the well-known 

reduction of Cu2+ to Cu1+ by protein in an alkaline medium (the biuret reaction) with the 

highly sensitive and selective colorimetric detection of the cuprous cation (Cu1+) using a 

unique reagent containing bicinchoninic acid (Smith et al., 1985). The purple-coloured 
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reaction product of this assay is formed by the chelation of two molecules of BCA with one 

cuprous ion. This water-soluble complex exhibits a strong absorbance at 562nm that is nearly 

linear with increasing protein concentrations over a broad working range (20-2000μg/mL). 

The absorbance measurements from BSA standards at 562 nm were plotted to form a standard 

curve to which a line of best fit was added (Figure 2.3). The absorbance measured from the 

0µg BSA standard was subtracted from each reading. The value of the slope (Y), calculated 

from the line of best fit, was used to calculate the concentration of protein samples which were 

measured in triplicate. The average absorbance from the protein samples (divided by 3 as 3µl 

of protein samples) was divided by the slope (Y) of the standard curve. This provided an 

estimate of protein concentration in µg/µl which was used to calculate the volume required to 

load 5µg samples onto gels.   
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Figure 2.3 BSA standard curve  

An example of a standard curve generated from BSA standards of 0.05µg, 1µg, 2µg, 5µg, 

10µg, 20µg and 40µg. The absorption of each standard was measured at 562nm. A best fit 

linear regression line forced through the origin was added using GraphPad Prism software. 

The value for the slope of the line (Y) was used to calculate the concentration of protein 

samples.  
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If protein concentrations were too low for SDS-PAGE, Vivaspin (GE Health Care Life 

Science) sample concentrators were used to concentrate the protein solution. It is a fast, 

nondenaturing concentration of protein samples by membrane ultrafiltration. The entire 

process is performed in a single tube for each sample with an upper compartment containing 

sample and a lower compartment separated by a semipermeable membrane with a molecular 

weight cut-off (MWCO) 10,000.  The samples were   spun at 6500 rpm for 12 minutes. The 

concentrated sample in the upper chamber was collected and protein concentration was 

detected again by BCA protein assay. 1 x sample buffer 2.6.3 was added to the protein 

samples containing 5µg protein/15µl. Samples could then be loaded directly onto gels or 

stored at -20°C until required. 

2.6.3 Sample buffer  

Sample buffer (1x) was consists of 2% w/v sodium dodecyl sulfate (SDS), 5% v/v 

Mercaptoethanol, 10% w/v glycerol and 0.1% w/v bromophenol blue in 60mM Tris (pH 

6.8). SDS is an anionic detergent that disrupts noncovalent bonds causing denaturation of 

proteins. SDS coats proteins with a negative charge relative to molecular weight.  

Mercaptoethanol reduces disulfide bonds. Heating of protein with sample buffer for 5 minutes 

at 95°C helps denature the proteins and aids binding of SDS. Glycerol increases the viscosity 

of the protein sample causes samples to sink into wells before the current is turned on. 

Bromophenol blue is a dye used to monitor progression of protein separation in SDS-PAGE as 

it is a small molecule which migrates through the gel quickly.   

2.6.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis SDS-PAGE 

Proteins were separated using an electric field where the negatively charged proteins move 

toward the positive electrode located at the bottom of the gel. A discontinuous polyacrylamide 

gel was used as a support medium and sodium dodecyl sulphate (SDS) to denature the 

proteins. Proteins are separated based on their molecular weight where small proteins move 

through the porous polyacrylamide gel quickly and large proteins move through the gel more 

slowly.  
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5µg protein samples were made up to 15µl with dH20 so that the same volume of sample was 

loaded into each well. 1x sample buffer was added to each protein sample. Samples were heated 

for 5 minutes at 95°C and centrifuged for 10 seconds at 12,000g to remove condensation on the 

underside of the lid.    

NuPAGE gels (10% Bis-Tris) were clamped into a gel tank (Invitrogen, Life Technologies 

Ltd, Paisley, UK). The inner chamber was filled with NuPAGE 1x MOPS SDS buffer (200ml) 

with antioxidant (500µl). The addition of antioxidant to the inner chamber maintains proteins 

in a reduced state during electrophoresis. The outer chamber was filled with NuPAGE 1x 

MOPS SDS buffer (600ml). The comb was removed and the molecular weight marker (10µl) 

(Precision Plus Dual Colour Protein Standards were from Bio-Rad Laboratories Ltd, 

Hertfordshire, UK) were loaded into the first well and then protein samples were loaded into 

following wells using 20 µl pipette and fine tips. Electrophoresis was carried out at a constant 

voltage of 200V for ~1 hour or until Bromophenol Blue dye reached the bottom of the gel.   

2.6.5 Transfer  

Separated proteins were transferred to a nitrocellulose membrane (Bio-Rad, UK) at constant 

voltage of 60 V for ~2 hour using a wet transfer system at 4°C in a cold room to prevent 

overheating during transfer. The transfer cassette (BioRad), foam sponges, blotting paper and 

nitrocellulose membranes were pre-equilibrated in transfer buffer (25mM Tris, 192mM 

glycine, 20% v/v methanol) and set up to transfer the proteins from the membrane in an 

orientation so that the nitrocellulose membrane was closest to the positive electrode  and the 

gel was closest to the negative electrode (Figure 2.4). Therefore, when the electric field was 

applied, the negatively charged proteins moved towards the positive electrode and were bound 

to the nitrocellulose membrane.  
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Figure 2.4 Transfer Cassette  

Proteins were transferred from gels onto nitrocellulose membranes (represented by blue 

arrow) using a wet transfer system. The transfer cassette was set up in a ‘sandwich’ formation; 

sponge, blotting paper, gel, nitrocellulose membrane, blotting paper, sponge. Transfer 

cassettes were placed in the transfer tank in an orientation so that the gel was closest to the 

negative electrode (-) and the nitrocellulose membrane was closest to the positive electrode 

(+). Application of an electric field causes the negatively charged proteins to move toward the 

positive electrode and bind to the nitrocellulose membrane. Transfers were performed at a 

constant voltage of 60V for 2 hours.  
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2.6.6 Blocking  

Following the transfer of proteins onto nitrocellulose membranes the cassette was 

disassembled and the gel was discarded. The membrane was washed in PBS and blocked in a 

mix of Blotting-Grade Blocker non-fat dry milk powder (Bio-Rad Laboratories Ltd, 

Hertfordshire, UK) (5% w/v) with Triton X-100 (0.1 % v/v) in PBS for 1 hour at RT with 

gentle agitation to block unoccupied sites on membranes and prevent non-specific binding of 

antibodies.    

2.6.7 Immunodetection of protein expression 

Nitrocellulose membranes were placed in 50ml falcon tubes (with the side that was in contact 

with the gel facing inwards) with 3mls of incubation buffer (PBS, 0.1 % v/v Triton X-100, 5% 

w/v non-fat dried milk) containing primary antibody (Table 2.1). Membranes were incubated 

overnight at 4°C on rollers. Following incubation with primary antibody membranes were 

washed (3 x 10 minutes) in wash buffer (PBS, 0.1 % v/v Triton X-100) to remove any 

unbound primary antibody.   

Membranes were then incubated with horseradish peroxidise (HRP) conjugated secondary 

antibody in 10mls of incubation buffer (Table 2.1) for 1 hours at RT on rollers. Following 

secondary antibody incubation membranes were washed (3 x 10 minutes) in wash buffer to 

remove any unbound secondary antibody.   
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 Antibody  Dilution used  

 

Supplier 

Anti-β-Actin  1/5000  
 

Sigma-Aldrich, USA 

Anti-Orai1  1/200  

 

BD Biosciences, San Jose, NJ, 

USA 

Anti-STIM1  1/200  Abcam, Cambridge, UK 

*Anti-Mouse-HRP  1/20000 Abcam, Cambridge, UK 

*Anti-Rabbit -HRP 1/40000 Abcam, Cambridge, UK 

Table 2.1 Antibodies used for western blotting   

Primary antibodies used for western blotting. All primary antibodies were incubated with blots 

overnight at 4°C. * denotes secondary antibodies used for western blotting. The appropriate 

corresponding secondary antibody was used following primary antibody incubation. 

Secondary antibodies were incubated with blots for 1hour at room temperature. All antibody 

dilutions were made up in incubation buffer.   
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2.6.8 Chemiluminescent Western blotting detection  

Enhanced chemiluminescent (ECL) detection was used to develop immunoreactive bands on 

membrane by processing in a mix of 2ml of Solution A; luminol solution and 2ml of Solution 

B; peroxide solution (ECL select kit, GE Healthcare, Life Sciences, Amersham, Bucks, UK) 

for 3 minutes at RT. ECL is based on antibodies conjugated to horseradish peroxidase (HRP). 

HRP catalyses the oxidation of luminol in the presence of peroxide, generating emission of 

low intensity light at 428 nm. The signal intensity is dependent of the number of HRP 

molecules and is proportional to the amount of antibody bound to the target molecule. 

Membranes then were wrapped in saran wrap, placed in a film cassette and exposed to x-ray 

film (HyperfilmTM, GE Healthcare, Life Sciences, Amersham, Bucks, UK) for various times 

(2 seconds - 5 minutes) depending on the primary antibody used. Regions of film exposed to 

light (i.e. from HRP) darken. Exposed film was placed in an x-ray film processing machine. 

2.6.9  Densitometry analysis  

X-ray films were scanned onto a computer so the bands could be analysed by densitometry 

using ImageJ software (Rasband, 1997-2014). The integrated pixel density (sum of pixel 

values in selected area) of each band was measured. The selection area remained constant for 

each set of bands analysed. A background value was also subtracted from each band (Figure 

5.2.A). For Orai1 protein, the protein showed a multiple band. The multiple band was measured 

as a whole and individually (Figure 5.2.B). Values were then expressed as a ratio of β-actin as a 

loading control in order to determine the expression levels of proteins.  
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Figure 2.5 Densitometry analysis of western blots  

Blots were analysed using ImageJ software. A) The same area was measured for each band 

using the same box (red). A background value (green box) was subtracted from each band.  B) 

Orai1 protein multiple band was measured as a whole (large red box) and individually (small 

red box).  
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2.7 Immunofluorescence   

Cells on 22mm glass coverslips were washed with PBS (2 x 5 minutes) and then fixed by 

incubation with paraformaldehyde (PFA) (4% w/v) in 1x PBS for 10 minutes at RT. Fixed cells 

were washed with PBS (2 x 5 minutes) then permeabilised using Triton X-100 (0.1% v/v) for 

10 minutes at RT and then washed with PBS (2 x 5 minutes) and blocked with blocking solution;  

bovine serum albumin (BSA, 5% w/v) in PBS for 30 minutes at 4°C. Primary antibodies were 

diluted in 5% BSA (Table 2.2) and then incubated with cells for 1 hour at 37°C in humidified 

incubator in the dark. Following incubation with unconjugated antibodies, coverslips were 

washed with PBS (2 x 5 minutes) and incubated with secondary antibodies diluted in 5%BSA 

for 30 minutes at 37°C in humidified incubator in the dark (Table 2.2). Cells were again washed 

in PBS (2 x 5 minutes) before incubation with the nucleic acid dye, ethidium homodimer-1 

(EthD-1), at a 1/500 dilution, for 10 minutes at RT. Cells were washed in PBS (2 x 5 minutes) 

and then in dH20 (1 x 5 minutes) before being mounted on microscope slides with FluorSave 

Reagent and left to dry overnight at RT in the dark and then stored at 4°C until use.  

Images were taken using a laser scanning confocal microscope (LSM 510, Carl Zeiss Ltd). The 

excitation and emission wavelengths of the fluorophores used in experiments are shown in 

(Figure 2.6). The emission wavelengths of Alexa Fluor 647 and EthD-1 overlap and were 

therefore collected separately using multi-track configuration to prevent cross-talk. When a 

multi-track configuration was used one track is active and the other track is switched off thereby 

preventing cross-talk.  

Track one was set up to detect the Orai1 signal (Figure 2.7) and track two was set up to detect 

the STIM 1 and EthD-1 signals (Figure 2.8). Images were acquired with 12-bit data depth, a 

frame size of 512 x 512 and a scan speed of 9.   
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 Antibody  Dilution used  
 

Supplier 

Anti-Orai1 - Rabbit 1/ 100 

 

BD Biosciences, San Jose, NJ, 

USA 

Anti-STIM1 - Mouse 1/50  
 

Abcam, Cambridge, UK 

*Anti-Mouse Alexa 647 1/2000 Abcam, Cambridge, UK 

*Anti-Rabbit Alexa 488 1/2000 Abcam, Cambridge, UK 

Table 2.2 Antibodies used for immunofluorescence     

All primary antibodies were incubated with cells for 1 hour at 37°C. * denotes secondary 

antibodies used for immunofluorescence. The appropriate corresponding secondary antibody 

was used following primary antibody incubation. Secondary antibodies were incubated with 

blots for 30 minutes at 37°C. All antibody dilutions were made up in BSA.   
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Figure 2.6 Excitation and emission spectra of fluorophores  

Excitation (dashed line) and emission (solid line) spectra of ■ Alexa Fluor 647, ■ Alexa Fluor 

488 and ■ EthD-1 (from Invitrogen; Fluorescence Spectra Viewer). The emission of Alexa 

Fluor 647 and EthD-1 overlap and were therefore collected separately.  
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Figure 2.7 Track one set up – Orai 1 detection  

This track was set up to collect the emission wavelengths of alexa-fluor 647 (peak emission 

~670nm). It also takes a bright field image of the cells in channel D (ChD). The HeNe laser 

sends an excitation wavelength of 633nm to the main dichroic mirror (HFT 488/543/633) which 

is reflected 90° to the cells. Light emitted from the cells then passes through the main dichroic 

mirror to a secondary dichroic mirror (NFT 635) which only allows light above 635nm to pass 

through. The light is then directed to a long pass (LP) filter of 650nm. Only wavelengths above 

650nm can pass through to be detected by the photomultiplier tube in channel 1 (Ch1) ( Adapted 

from Bell, 2011). 
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Figure 2.8 Track two set up – STIM 1 and EthD-1 detection  

This track was set up to collect the emission wavelengths of Alexa Fluor 488 (peak emission 

~519) and EthD-1 (peak emission ~615nm). The argon (Ar) laser sends an excitation 

wavelength of 488nm to the main dichroic mirror (HFT 488/543/633) which is reflected 90° to 

the cells. Light emitted from the cells then passes through the main dichroic mirror to a 

secondary dichroic mirror (NFT 635) which reflects light below 635nm 90° to another 

secondary dichroic mirror (NFT 545). Light below 545nm (Alexa Fluor 488) is reflected 90° to 

a band pass (BP) filter of 505-550nm which only allows light of 505-550nm to pass through to 

be detected by the photomultiplier tube in channel 2 (Ch2). Light above 545nm (EthD-1) passes 

through the mirror and is directed to a band pass (BP) filter of 560-615nm which only allows 

light of 560-615nm to pass through to be detected by the photomultiplier tube in channel 3 

(Ch3)(Adapted from Bell, 2011). 
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2.8  Single cell Ca2+-add-back experiments  

Ca2+ add-back experiments were performed in order to measure both store depletion and 

resultant Ca2+ entry (i.e. SOCE). Fura-2/AM (Calbiochem, Germany), a fluorescent Ca2+  

indicator was used in the measurement of intracellular Ca2+ concentration [Ca2+]i 

(Grynkiewicz et al., 1985) in single live cells. The cells were seeded onto 22mm glass cover-

slips and used when ~50% confluent. Ca2+ measurements were made on individual coverslips 

at RT. 

Cells were washed in Krebs buffer (4.2 mM NaHCO₃, 1.2 mM MgSO₄, 1.2 mM KH₂PO₄, 4.7 

mM KCl, 118 mM NaCl, 10 mM glucose, 2 mM CaCl₂, 800 μM sulfinpyrazone, 10mM 

HEPES, pH 7.4) and loaded with the Ca²⁺- sensitive fluorescent dye, fura-2/AM (3 µM, for 45 

minutes in the dark at RT).   

Fura-2/AM is insensitive to Ca2+ due to acetoxymethyl (AM) esters disguising carboxylate 

groups. As it is membrane permeable, fura-2/AM diffuses across the PM upon loading and 

once inside the cell cytosol is activated by cleavage of AM esters to fura-2. Fura-2 is sensitive 

to Ca2+ (due to exposure of carboxylate groups) and cannot diffuse across the PM as it 

becomes polar (Tsien, 1981). However, fura-2 can be pumped out of cells or taken up into 

organelles by organic anion transporters (Divirgilio et al., 1988b). Consequently, poor loading 

and/or inaccurate fluorescent readings may occur. Sulfinpyrazone (an organic anion transport 

inhibitor) is therefore added to Krebs buffer to prevent this from occurring (Divirgilio et al., 

1988a; Divirgilio et al., 1990).  

After loading, cells were washed in Krebs buffer and incubated for another 30 minutes to 

allow complete fura-2/AM de-esterification. Individual coverslips were washed in Ca²⁺-free 

Krebs buffer (prepared as Krebs buffer but 2 mM CaCl2 replaced with an equal volume of 

distilled water) and fixed into a coverslip holder (custom made), producing a chamber in 

which Ca²⁺-free Krebs buffer was added.  

Relative changes in [Ca2+]i were monitored continuously using ratiometric imaging (Bird et 

al., 2008) via detection of fura-2 fluorescence at an excitation wavelength of 340nm and 

380nm and an emission wavelength of 510nm using an Olympus IX70 fluorescent 
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microscope. Images were acquired with a charge-coupled device (CCD) camera (MicroMax, 

Sony Interline Chip, Princeton Instruments, Trenton, NJ) and using a 20x objective lens. 

Collected data was analysed using Metafluor Software (Universal Imaging, Marlow, UK).  

Ratiometric measurements take advantage of the dual excitability of fura-2, which shifts its 

absorbance maximum to lower wavelengths in its Ca2+ bound form. Alternating excitation at 

340 nm and 380 nm ensures a maximal difference between the fluorescence emission of fura-

2 in its unbound and Ca2+ bound state. This normalises for changes in fluorescence intensity 

that are unrelated to changes in [Ca²⁺]i, such as uneven cell thickness, unequal fura-2 

distribution, or noise introduced by the detection equipment (e.g. changes in illumination 

intensity). 

Images of bright field, wavelength 1 (340nM), wavelength 2 (380nM) and ratio between 

340nm and 380nm were recorded. Regions of interest (ROI) were applied to ~ 20 individual 

cells per field of view and the ratio between 340nm and 380nm fluorescence intensity as a 

representation of [Ca²⁺]i were shown in a graph (Figure 2.9). Following establishment of a 

steady baseline, 200 nm Thapsigargin (TG; Calbiochem, Germany) or equivalent volume of 

DMSO as a vehicle control was added (Figure 2.10). TG is a selective SERCA inhibitor that 

prevents reuptake of Ca2+ into the ER thus causing Ca2+ release from intracellular stores and 

subsequent Ca²⁺ rise in cell cytosol. The resultant increase in [Ca2+]i is observed as an increase 

in fura-2 fluorescence ( first peak in fluorescence ratio). Following store depletion (TG 

response) and after the trace returned to baseline, 2 mM CaCl₂ was added, which leads to 

increase in [Ca2+]i concentration as extracellular Ca²⁺ enters the cell to replenish intracellular 

Ca²⁺ stores. The increase in [Ca2+]i, observed as an increase in fura-2 fluorescence (second 

peak in fluorescence ratio). TG is dissolved in DMSO and therefore control Ca2+ add-back 

traces were performed by adding the equivalent volume of vehicle control DMSO in place of 

TG. The mean areas obtained from calibrated control DMSO traces were subtracted from the 

mean areas obtained from calibrated TG traces. All histograms presented are basal-subtracted 

(i.e. DMSO response) and are hence response to stimulus only.   

To calculate the percentage decrease in [Ca2+]i following starvation, the mean Ca2+ response 

was divided by the control Ca2+ response and multiplied by 100 to obtain the starved mean as 
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a percentage of the control mean. This value was then subtracted from 100 to provide the 

percentage decrease.   

                      

 

 Figure 2.9 Single cell analysis of [Ca2+]i 

 Single cell [Ca2+]i changes were determined using ratiometric imaging through detection of 

fura-2 fluorescence at an excitation wavelength of 340 nm and 380 nm and an emission 

wavelength of 510 nm using an Olympus IX70 fluorescent microscope. Charge-coupled 

device (CCD) camera (MicroMax, Sony Interline Chip, Princeton Instruments, Trenton, NJ) 

with a 20x objective lens were used to take images. (A) Fluorescence images and (B) bright 

field were used to identify cells in interphase (A) Regions of interest were created over cells in 



 

48 

 

interphase. (C and D) The experiment was run and fluorescence ratio data values were 

exported to an Excel sheet (C) and produce a trace for each region of interest (D).  

 

Figure 2.10 Typical Ca2+ add- back traces using the single cell Fura ratiometric technique   

(A) Ca2+ release from internal store in response to addition of 200nM TG leading to an 

increase in [Ca2+]i  and therefore an increase in fura-2 fluorescence and the ratio between the 

two excitation wavelengths. This activates SOCE pathway following addition Ca2+ (2mM 

CaCl2) causes increase in [Ca2+]i  and fura-2 fluorescence. (B) Addition of DMSO as a control 

for TG doesn’t cause any increase in [Ca2+]i and therefore subsequent SOCE  is reduced, this 

represents basal Ca2+ entry. 
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Fluorescence ratio data were recorded as mentioned before (Method 2.8, Figure 2.9). The 

experiments were then re-run to produce a trace for every cell in the field of view. The 

fluorescence ratio data was recorded on the computer in Microsoft Excel for each region of 

interest that could be related to cells in interphase (Figure 2.9). The height of peak (HOP), rate 

of rise (ROR), rate of decline (ROD) and area under the curve (AUC) for TG and Ca²⁺ 

responses were calculated using Excel functions in a template spread sheet (custom built by 

Dr Claire Whitworth and Dr Graham Scholefield) so that only three cell values needed to be 

altered manually for each data set (Figure 2.11).  

The height of peak (HP) of each response was calculated by calculating the minimum and 

maximum ratio values in the TG and Ca²⁺ range.  

To calculate the rate of rise (RR), the row number of the dataset at the minimum and 

maximum values in the TG or Ca²⁺ range is determined and then the minimum row number is 

subtracted from the maximum row number. This value is multiplied by 20 to give the time 

value of the TG or Ca²⁺ response range, since the time lapse between measurements is 20 

seconds. The peak height is then divided by the time range to provide the RR (Figure 2.11). 

The rate of decline (ROD) function determines the row number of the dataset at the maximum 

value and the minimum value following the peak in the TG or Ca²⁺ range and minuses the 

maximum row number from the minimum row number (Figure 2.11). This value is multiplied 

by 20 to give the time value of the TG or Ca²⁺ response range, since the time lapse between 

measurements is 20 seconds. The peak height is then divided by the time range to provide the 

total ROD (Figure 2.11).  

The AUC is calculated by finding the area bound by the graph and within a specified time 

region above the specified minimum value. This function multiplies the minimum value by 

the time range and minuses this from the maximum to account for changes in baseline.  

The cells in interphase were defined morphologically with the angular shaped cell bodies 

(cells in interphase stage) and not the spherical dividing cells (cells in mitotic phase). 

Average DMSO control trace values were subtracted from the average responses following 

TG and CaCl2 addition. 
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Figure 2.11  Example of template spread sheet   

Example of template spread sheet showing calculated values of Ca²⁺ response attributed to each 

ROI. Colours correspond to those on the (B) example of single cell trace with spread sheet 

A 

B  
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function calculations for SOCE peak. The time of addition of CaCl2 works as the start point of 

the SOCE response (green). For each region of interest (ROI) data set, the area under the peak 

(AUP) (area is bound by solid red line and trace) is calculated by finding the area that is bound 

by the graph within a specified time region (dashed red lines) and above the specified minimum 

value (solid red line). Then the result is multiplied by the minimum value (orange) by the time 

range (dashed red lines) and subtract this (dotted red area) from the maximum (total are under 

peak). To find height of peak (HP) (blue), the minimum value is subtracted from the maximum 

value (orange). The rate of rise (RR) function finds the row number of the dataset at the 

minimum and maximum values (orange) and minuses the minimum row number from the 

maximum row number. Since the time lapse between measurements is 20 seconds, this value is 

multiplied by 20 to give the time value of the response range (dotted red lines). The height of 

peak (blue) is then divided by the time range to provide the RR (green). The rate of decline 

(ROD) function determines the row number of the dataset at the maximum value and the 

minimum value (orange) following the peak and minuses the maximum row number from the 

minimum row number. since the time lapse between measurements is 20 seconds, this value is 

multiplied by 20 to give the time value of the response range (red green lines), The height of 

peak is then divided by the time range to provide the total ROD (yellow dashed line). The 

analysis of the TG – induced Ca²⁺ release was also performed using the same template spread 

sheet (Adapted from Whitworth, 2015). 
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2.9 Statistics 

Data are generally presented as mean ± SEM of n determinations (Cumming et al., 2007). 

Statistical comparisons of mean values were performed using Excel and GraphPad Prism 

software. For unpaired groups a two-tailed Student’s t-test was used. For groups of three or 

more, one-way analysis of variance (ANOVA) was used. Statistical significance was accepted 

at P<0.05. The level of significance was also indicated on graphs (P<0.05*, P<0.01**, 

P<0.001***, P<0.0001****). N= number of repeated experiments. n= number of cells 
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Part I - Results - G0/G1 Cell Cycle Arrest 
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Chapter 3 Morphology and Flow cytometry 

3.1  Introduction  

Serum starvation-induced cell cycle arrest has been extensively used in cell cycle research 

since (Pardee, 1974) established the restriction point concept (Zetterberg and Larsson, 1985; 

Pardee, 1992; Kerkhoff and Rapp, 1997) and has continued as a principal and a valuable 

experimental technique to induce cell cycle arrest in G0/G1 phase (Lemos et al., 2007; 

Kothapalli et al., 2008; Van Rechem et al., 2010; Xiong et al., 2012).  

The aim of this chapter was to induce cell cycle arrest in G0/G1 phase by serum starvation in 

cancer HeLa cells, pre-cancerous NIH 3T3 cells and immortalised noncancerous hTERT RPE-

1 cells and to define the cell cycle arrest both morphologically and by Flow cytometry as a 

preface to the study of Ca2+ signalling when cells exit cell cycle which is presented in 

subsequent chapters. 

In this chapter, HeLa, NIH 3T3 and hTERT RPE-1 cells were grown in 0.1% FCS medium for 

5 days in order to induce cell cycle arrest in quiescent G0/G1 phase. Cells grown in 0.1 % 

FCS will henceforth be referred to by the corresponding day of the serum starvation time 

course. Cells grown in 10 % FCS (control cells) will henceforth be referred to as proliferating 

cells.  

3.2 Results – Morphological changes    

Cells were grown in 10% FCS ( proliferating) or in 0.1% FCS  for 1-5 days in order to track 

the time point at which cells arrested in quiescent G0/G1 phase. To investigate the effect of 

serum starvation on cell proliferation and to define cell cycle arrest, cell viability, total and 

mitotic cell number and cell diameter were determined before and over the 5-day serum 

starvation time course. 
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3.2.1   HeLa cells 

Proliferating (control) cells (10% FCS) display a patchy monolayer growth pattern with 

angular shaped flattened cell bodies representing cells in interphase, and spherical dividing 

cells representing cells in mitosis. With serum starvation, cells grew in clusters and showed a 

decrease in total cell number, mitotic cell number and cell diameter with an obvious increase 

in debris (Figure 3.1).  

Mitotic cells were counted and expressed as a percentage of total cell population in both 

proliferating (10% FCS) and serum starved cells (0.1% FCS). Mitotic cells were significantly 

decreased at day two by 60% (4.16± 0.09%, P = 0.0026), day three by 63% (3.69 ± 0.11%, P = 

0.0032), day four by 90% (0.96 ± 0.04%, P < 0.001) and day five by 90% (0.92 ± 0.06%, P < 

0.001) compared to proliferating (10.19%±0.92) (Figure 3..A and Table 3.1). 

Consistent with the above data, cell counts showed that serum starvation inhibited cell 

proliferation in HeLa cells. This can be observed by comparing the cell counts for 

proliferating (3542×103 cells) and starved cells (522×103 cells) where cells were seeded at the 

same density prior to the 5 day serum starvation time-course (Figure 3.3.B). This can also be 

seen when serum starved cell populations (Figure 3.3.A.iii) were far less confluent compared 

to proliferating cell populations (Figure 3.3.A.ii), demonstrating that serum starvation inhibits 

proliferation. The effect of inhibition of proliferation can be seen when seeding cells for 

experiments; for starved cells to have an equal confluency to proliferating cells after 5 days of 

serum starvation, 6 times as many cells need to be seeded.  

Cell diameter was significantly decreased at day two by 16.5% (14.16± 0. 06μm, P = 0.0013), 

day three by 18% (13.92 ± 0.13μm, P = 0.0016), day four by 15% (14.42 ± 0.10μm, P < 0.002), 

and day five by 15.5% (14.29 ± 0.1μm, P < 0.002) compared to proliferating (16.5±0.108μm) 

(Figure 3.2.B and Table 3.1). 

Cell viability was determined using trypan blue stain which is a vital stain used to selectively 

colour dead cells blue whilst live cells with intact cell membranes are not coloured. Cells were 

stained with trypan blue then cell viability were calculated using a Cellometer (Method 2.4.1). 

Cell viability was significantly decreased at day five by 30% (67.5± 1.7%, P = 0.0335) 

compared to proliferating (96.18 ± 0.72%) (Figure 3.2.C and Table 3.1).  
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Figure 3.1 Serum starvation of HeLa cells induces morphological changes 

Cells were starved by decreasing the FCS from 10% to 0.1% in culture medium for five (1-5) 

days. Bright field images of cells were taken before and after starvation. D1, D2, D3, D4 and 
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D5 represent day one, two, three, four and five of serum starvation. Proliferating cells display 

a patchy monolayer growth pattern with angular shaped cell bodies; cells in interphase (white 

arrows) and spherical dividing cells; cells in mitosis (solid black arrows). At D1 cells 

resemble proliferating cells. In D2 and D3, cells grew in clusters showing a decrease in the 

number of mitotic cells and a reduction of cell size of interphase cells and debris appear 

(dashed black arrows). From D4, mitotic cell are not seen and debris markedly increased. 

Images are representative of >20 images. Scale bars represent 50µm.  
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Figure 3.2 Growth characteristics changes with 5-day serum starvation time course in 

HeLa cells 

HeLa cells were starved by decreasing the FCS from 10% to 0.1% in culture medium for 5 

days. Mitotic cells were counted and expressed as a percentage of the total cell population. A) 

Mitotic cells were significantly decreased by ~ 60% (P = 0.0026**), ~ 63% (P = 0.0032**), ~ 

A 

B 

C 
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90% (P < 0.001***) and ~ 90% (P < 0.001***) in two, three, four and five days of serum 

starvation respectively. B) Cell diameter was significantly decreased by ~ 16.5% (P = 0.0013**), 

~ 18% (P = 0.0016**), ~ 15 % (P = 0.002**) and ~ 15.5 % (P < 0.002**) in two, three, four and 

five days respectively compared to proliferating. C) Cell viability was detected by trypan blue 

stain (Method 2.4.1) cell viability was significantly decreased in day five by ~ 30 % (P = 

0.0335) compared to proliferating. Error bars represent S.E.M.N=4.     
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Figure 3.3 Serum starvation inhibited cell proliferation in HeLa cells  

A 

B 
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HeLa cells were grown in 10% FCS (proliferating) or 0.1%FCS (starved) for 5 days. The 

same numbers of cells were seeded onto coverslips prior to starvation. A) Bright field images 

were taken of cells before and after 5 days of serum starvation. B) Quantification of cells/ml 

culture medium was done by Cellometer (Method 2.4). Day 0; proliferating cells, n=7 

(120×103 cells), starved cells n=7 (120 ×103 cells). Day 1; proliferating cells, n=6 (238 ×103 

cells), starved cells n=7 (220 ×103 cells), P=0.8037. Day 2; proliferating cells, n=6 (479 ×103 

cells), starved cells, n=6 (308×103 cells), P<0.0031**. Day 3; proliferating cells, n=6 (958×103 

cells), starved cells n=4 (431×103 cells), P=0.0017**. Day 4; proliferating cells, n=6 (1914 

×103 cells), starved cells n=6 (474 ×103 cells), P<0.001***. Day 5; proliferating cells, n=6 

(3542×103 cells), starved cells n=6 (522×103 cells), P<0.001***.  
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 Mitotic cells (%) Cell diameter (μm) Cell viability (%) 

Proliferating 

(control) 
10.19±0.92 16. 5±0.10 96.18±0.72 

D1 8.52±1.7 

(P= 0.3521) 

16.21±0.07 

(P=0.0783) 

94.53±1.5 

(P= 0.9959) 

D2 4.16± 0.09 

(P = 0.0026) 

14.16±0.06 

(P=0.0013) 

92.03± 3.31 

(P= 0.8188) 

D3 3.69 ± 0.11 

(P = 0.0032) 

13.92±0.13 

(P=0.0016) 

86.6± 4.88 

(P = 0.1578) 

D4 0.96 ± 0.04 

(P < 0.001) 

14.42 ± 0.1 

(P < 0.002) 

74.07 ± 1.04 

(P = 0.0579) 

D5 0.92 ± 0.06 

(P < 0.001) 

14.29 ± 0.1 

(P <0.001) 

67.5 ± 1.7 

(P = 0.0335) 

 Table 3.1 Growth characteristics changes of HeLa cells over the 5-day serum starvation time course (means ± SEM) 
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3.2.2 NIH 3T3 cells 

Morphologically, proliferating NIH 3T3 cells (10% FCS) display a patchy monolayer growth 

pattern with angular shaped cell bodies (cells in interphase) and spherical dividing cells (cells 

in mitosis). Starved cells (0.1 %FCS) showed a gradual decrease in mitotic cell number and a 

marked increase in debris. At day four and five, images clearly exhibit that almost cells are 

non-viable (Figure 3.4). 

As seen in HeLa cells, mitotic NIH 3T3 cells were significantly decreased over the 5-day 

serum starvation (Figure 3.4 and Figure 3.5.A). At day one mitotic cells were decreased by 

63% (4.14± 0.24%, P < 0.001), at day two by 66% (3.84 ± 0.55%) (P < 0.001), at day three by 

93.5% (0.71 ± 0.35%, P < 0.0001) and at day four and day five by ~ 100% (0.0) (P < 0.0001) 

compared to proliferating (11.22±0.85%) (Table 3.2). 

In addition, cell count showed that serum starvation inhibited cell proliferation in NIH 3T3 

cells, this can be detected by comparing the cell counts for proliferating (5991×103cells) and 

starved cells (23×103 cells) where cells were seeded at the same density prior to the 5-day 

serum starvation time-course (Figure 3.6). This was confirmed by the observation that serum 

starved cell populations (Figure 3.6.A.iii) were far less confluent compared to proliferating 

cell populations (Figure 3.6.A.ii), indicating that serum starvation inhibits cell proliferation.  

Unlike HeLa cells, cell diameter of NIH 3T3 cells was not significantly altered over the 3-day 

serum starvation (Figure 3.5.B). At day one (9.70 ± 0.49μm), day two (11.9 ± 0.19μm), and 

day three (10.91 ± 0.1μm) compared to proliferating (9.28±0.46μm), (All P > 0.999) 

suggesting that cell diameter could not be an indicative for cell cycle arrest in NIH 3T3 cells. 

In day four and day five of serum starvation nearly almost cells were non-viable (Figure 3.4) 

and thus cell diameter could not be measured (Table 3.2). 

Cell viability was measured by trypan blue stain which showed that the viability was 

significantly decreased at day four by ~ 50.5% (40.3± 4.1%, P < 0.01) and day five by ~ 

71.5% (23.3 ± 5.2 %, P < 0.001) compared to proliferating (81.6 ± 13.3%) (Figure 3.5.C and 

Table 3.2). 
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Figure 3.4 Serum starvation of NIH 3T3 cells induces morphological changes 

Cells were starved by decreasing the FCS from 10% to 0.1% in culture medium for 5 (1-5) 

days. Bright field images of cells were taken before and after starvation. D1, D2, D3, D4 and 

D5 represent day one, two, three, four and five of serum starvation. Proliferating cells display 

a patchy monolayer growth pattern with angular shaped cell bodies; cells in interphase (white 
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arrows) and spherical dividing cells; cells in mitosis (solid black arrows). From D1, cells show 

a decrease in the number of mitotic cells. Debris increases with increase time of serum 

starvation (dashed black arrows). From D4, nearly almost cells are non-viable and debris 

markedly increased. Images are representative of >15 images. Scale bars represent 50µm.  
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Figure 3.5 Growth characteristics changes of NIH 3T3 cells over 5-day serum starvation 

NIH 3T3 cells were starved by decreasing the FCS from 10% to 0.1% in culture medium for 5 

days. A) Mitotic cells were counted and expressed as a percentage of the total cell population, 

mitotic cells were significantly decreased by ~ 63% (P<0.001***), ~ 66% (P<0.001***) , ~ 

A 

B 

C 
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93.5% ( P < 0.0001****), ~100 % ( P < 0.0001****) and ~ 100% ( P < 0.0001****) in day 

one, day two, day three, day four and day five of serum starvation respectively. B) Cell 

diameter was not significantly different in starved cells compared to proliferating (P > 0.999). 

In day four and five days nearly almost cells were non-viable (Figure ) and thus cell diameter 

could not be measured. Cell viability was detected by trypan blue stain (method 2.4.1), cell 

viability was significantly decreased in day four and day five by ~ 50.5% (P < 0.01**) and ~ 

71.5% (P < 0.001***) compared to proliferating Data represent the mean ± S.E.M. For 

proliferating cells n =836, for D1 n = 932, D2 n = 816, D3 n = 729, D4 n= 215, D5 n= 431. 

N=4. 
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Figure 3.6 Serum starvation inhibited cell proliferation in NIH 3T3 cells 

A 

B
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NIH 3T3 cells were grown in 10% FCS (proliferating) or 0.1%FCS (starved) for 5 days. The 

same numbers of cells were seeded onto coverslips prior to starvation. A) Bright field images 

were taken of cells before and after serum starvation. B) Quantification of cells/ml culture 

medium was done by Cellometer (Method 2.4). Day 0; proliferating cells, n=7 (120×103 

cells), starved cells n=7 (120 ×103 cells). Day 1; proliferating cells, n=5 (257×103 cells), 

starved cells n=7 (165 ×103 cells), P=0.022*. Day 2; proliferating cells, n=3 (605 ×103 cells), 

starved cells, n=6 (226×103 cells), P<0.003**. Day 3; proliferating cells, n=6 (1224×103 

cells), starved cells n=4 (250×103 cells), P=0.0001****. Day 4; proliferating cells, n=5 (2854 

×103 cells), starved cells n=3 (54 ×103 cells), P<0.0001****. Day 5; proliferating cells, n=5 

(5991×103 cells), starved cells n=6 (23×103 cells), P<0.0001****.   
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 Mitotic cells (%) Cell diameter (μm) Cell viability (%) 

Proliferating 

(control) 
11.22±0.85 9.2±0.46 81.63±13.31 

D1 4.14±0.24 

(P<0.001) 

9.7± 0.49 

(P > 0.05) 

84.93±6.4 

P = 0.8821 

D2 3.84± 0.55 

(P < 0.001) 

11.91±0.19 

(P > 0.05) 

72.16± 2.2 

P = 0.4236 

D3 0.7 ± 0.35 

(P < 0.0001) 

10.92±0.46 

(P > 0.05) 

63.46± 3.52 

P = 0.0912 

D4 0 ± 0 

(P < 0.0001) 
N/A 

40.3 ± 4.1 

(P< 0.01) 

D5 0 ± 0 

(P < 0.0001) 
N/A 

23.3 ± 5.23 

(P< 0.001) 

Table 3.2 Growth characteristics of NIH 3T3 cells with 5-day serum starvation (means ± 

SEM)   

N/A, not applicable to measure cell diameter at D4 and D5 as almost all cells were non-viable.  
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3.2.3  hTERT RPE-1 cells 

In contrast to HeLa and NIH 3T3 cells, there was no alterations in the growth pattern over the 

five-day serum starvation time course in hTERT RPE-1 cells. Proliferating (control) cells 

(10% FCS) and starved cells (0.1% FCS) exhibit the normal patchy monolayer growth pattern 

with angular shaped cell bodies (cells in interphase) and spherical dividing cells (cells in 

mitosis) (Figure 3.7).   

Furthermore, mitotic cell number was not significantly changed over the 5-day serum 

starvation (Figure 3.7 and Figure 3.8.A).  At day one the percentage of mitotic cells was (3.1± 

0.72%), day two (2.6± 0.56%), day three (2.76 ± 0.71%), day four (2.86 ± 0.56%) and day 

five (2.89 ± 0.61%) compared to proliferating (2.48±0.81), (All P >0.999) (Figure 3.8.A and 

Table 3.3).  

Similarly, cell counts showed that serum starvation did not inhibit cell proliferation in hTERT 

RPE-1 cells, this can be observed by comparing the cell counts for proliferating (40×104 cells) 

and starved cells (35×104 cells) where cells were seeded at the same density prior to the 5 day 

serum starvation time-course (Figure 3.9.B). In addition to the observation that serum starved 

cell populations (Figure 3.9.A.iii) were similarly confluent compared to proliferating cell 

populations (Figure 3.9.AFigure .ii) demonstrating that serum starvation does not affect cell 

proliferation. This lack of inhibition of proliferation can also be seen when seeding cells for 

experiments; for starved cells to have an equal confluency to proliferating cells after 5 days of 

serum starvation, the same number of cells need to be seeded. 

Cell diameter was also not significantly changed over the 5-day serum starvation. At day one 

(12.48± 1.1µm), day two (12.71± 0.91 µm), day three (12.86 ± 1.2 µm), day four (13.45 ± 

1.01 µm) and day five (14.02 ± 0.89 µm) (All P >0.999) compared to proliferating 

(13.29±1.02 µm) (Figure 3.8.B and Table 3.3).  

Consistent with these observations, cell viability was not significantly altered over the 5-day 

serum starvation. At day one (83.73± 13.09), day two (87.23± 5.61), day three (94.13 ± 0.37), 

day four (94.86 ± 1.8) and day five (96.63 ± 0.96) (All P >0.999) compared to proliferating 

(97.43±1.32) (Figure 3.8.C and Table 3.3).  
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The results so far revealed that serum starvation inhibited cell proliferation with no significant 

effect on cell viability till day four in HeLa cells and till day three in NIH 3T3 cells, while in 

hTERT RPE-1 cells, serum starvation did not induce any changes on cell proliferation 

suggesting that serum starvation induced cell cycle arrest in HeLa and NIH 3T3 cells but not 

hTERT RPE-1 cells. These results were further confirmed by investigating cell cycle analysis 

using flow cytometry. 
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Figure 3.7 Serum starvation does not induce morphological changes in hTERT RPE-1 

cells 

Cells were starved by decreasing the FCS from 10% to 0.1% in culture medium for 5 (1-5) days. 

D1, D2, D3, D4 and D5 represent one day, two days, three days, four and five days of serum 

starvation. Bright field images of cells were taken before and after starvation. Proliferating cells 
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display patchy monolayer growth pattern with angular shaped cell bodies (cells in interphase 

stage; white arrows) and spherical dividing cells (cells in mitotic phase, black arrows).In D1, 

D2, D3, D4 and D5 there is no changes in the pattern of cell growing with no apparent debris 

or died cells. The same numbers of cells were seeded onto coverslips prior to starvation. Images 

are representative of >20 images. Scale bars represent 50µm.  
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Figure 3.8 Growth characteristics changes of hTERT RPE-1 cells over 5-day serum 

starvation 

hTERT RPE-1 cells were starved by decreasing the FCS from 10% to 0.1% in culture medium 

for 5 days. A) Mitotic cells were counted and expressed as a percentage of the total cell 

A 

B 

C 
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population, mitotic cells were not significantly altered over the 5-day serum starvation time 

course (P > 0.999). B) Cell diameter was not significantly different in starved cells compared 

to proliferating (P > 0.999). C) Cell viability was detected by trypan blue stain (Method 

2.4.1), cell viability was not significantly changed in starved cells compared to proliferating (P 

> 0.999). Data represent the mean ± S.E.M. For proliferating cells n =935, for D1 n = 982, D2 

n = 954, D3 n = 1203, D4 n= 1034, D5 n=984. N=4. 
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Figure 3.9 Serum starvation of hTERT RPE-1 cells does not alter cell proliferation in 

hTERT RPE-1 cells 

A 

B 
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hTERT RPE-1 cells were grown in 10% FCS (proliferating) or 0.1%FCS (starved) for 5 days. 

The same numbers of cells were seeded onto coverslips prior to starvation. A) Bright field 

images were taken of cells before and after serum starvation. B) Quantification of cells/ml 

culture medium was done by Cellometer (Method 2.4). Day 0; proliferating cells, n=7 

(120×103 cells), starved cells n=7 (120 ×103 cells). Day 1; proliferating cells, n=6 (154 ×103 

cells), starved cells n=7 (140×103 cells). Day 2; proliferating cells, n=6 (196 ×103 cells), 

starved cells, n=6 (171×103 cells). Day 3; proliferating cells, n=6 (200×103 cells), starved cells 

n=4 (242×103 cells). Day 4; proliferating cells, n=6 (316 ×103 cells), starved cells n=6 (306 

×103 cells). Day 5; proliferating cells, n=6 (398×103 cells), starved cells n=6 (359×103 cells) 

(All P > 0.999). Data represent means ± SEM. 
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 Mitotic cells (%) 

(All P > 0.999) 

Cell diameter (μm) 

(All P > 0.999) 

Cell viability (%) 

(All P > 0.999) 

Proliferating 2.48±0.81 13.29±1.02 97.43±1.32 

D1 3.1± 0.72 12.48± 1.1 83.73± 13.09 

D2 2.6± 0.56 12.71±0.91 87.23± 5.61 

D3 2.76 ± 0.71 12.86 ± 1.2 94.13 ± 0.37 

D4 2.86 ± 0.56 13.45±1.01 94.86 ± 1.8 

D5 2.89 ± 0.61 14.02±0.98 96.63 ± 0.96 

 Table 3.3 Growth characteristics of hTERT RP-1 cells with five-day serum starvation 

(means ± SEM) 
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3.3 Results – Flow cytometry    

Flow cytometry is an analytical technique, in this study, it is used to analyse cell cycle phases 

by taking cell viability, DNA and RNA contents into account in order to determine the time 

point of 5-day serum starvation time course at which the cells enter G0/G1 phase and also to 

detect the percentage of G0 cells contributing to this phase. 

This was done by analysing the DNA content of isolated cells in order to define cells 

according to cell cycle status (G0/G1 and S/G2/M) and by separating G1 and G0 phase cells 

based on their RNA content by using the Hoechst/pyronin Y method (Shapiro, 1981). 

Proliferating (control) cells (10% FCS) and starved cells (0.1% FCS) were stained first with 

Hoechst33342 to stain DNA and then with Pyronin Y. As Pyronin Y reaction with DNA was 

blocked by Hoechst33342, Pyronin Y stains RNA only (Method 2.5.1). Cells in S/G2/M phases 

were identified as the population with double DNA content and high RNA content 

(Darzynkiewicz et al., 2011). Cells in G1 phase are identified as the population with single 

DNA content and high RNA content. Finally, cells in G0 phase were identified as the population 

with single DNA content and an RNA content lower than that in cells in S and G2/M phases as 

it is known that RNA content of cells is higher during proliferation than during quiescence 

(Crissman et al., 1985; Lemons et al., 2010; Darzynkiewicz et al., 2011). 

Cells were also stained with Zombie NIR in order to detect cell viability. Zombie NIR is an 

amine reactive fluorescent dye that is excluded by live cells, while dead cells allowing the entry 

of the dye into the cytoplasm increasing the amount of total protein labelling thus enables to 

detect cell viability. Data were measured and analysed using a FACS Diva cell sorter. 

Figure 3.10 shows how cell gating was done. The gating tree was set as follows. First, dead 

cells were excluded from the whole cell populations (Live gate). Then the doublet were 

excluded in order to analyse cells in singlets only (Singlets gate). Cell number were calculated 

in each cell phase according to DNA content (cell cycle analysis gate). The last gate where G0 

and G1 phase separation was done according to DNA and RNA contents (Method 2.5.2).  
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Figure 3.10 FACS Diva data analysis sheet of proliferating HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating). Cells were stained with viability 

stain; Zombie NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. FACS Diva software was 

used to produce dot plots, histograms and to analyse data. Each dot appearing on the dot plots 

represent an ‘event’ recorded on the flow cytometer. Gating was designed based on the signals 

recorded from the sample so cells inside the gate moved to the next checkpoint, while cells 

A B 

C 

E 

D 

G0/G1 

S/G2/M 
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outside the gate were excluded. A) Live gate (Zombie NIR/FSC; dead cells (black dots) within 

the sample analysed exhibit significant fluorescence signal which is excluded from the gate), 

coloured cells   in the gate are the live cells which will be further subdivided in the following 

analysis (D).  B) Singlets gate (Hoechst Area/ Height intensity gate; a pulse geometry gate) 

this excludes events (doublets; green dots) that could represent more than 1 cell, again 

coloured cells in the singlet gate will be subdivided in the following analysis (D). C) Cell 

cycle analysis gate (cell number/ Hoechst intensity) to detect normal cell cycle shape 

histogram based on DNA content and to calculate G0/G1 and S/G2/M cells. D) G0/G1 

separation gate (Pyronin Y intensity / Hoechst intensity) Cells were classed S/G2/M if they 

exhibited double DNA content and were RNA positive (red dots), cells were classed G1 if 

they exhibited single DNA content and were RNA positive (blue dots), and cells were classed 

G0 if they exhibited single DNA content and were RNA negative (yellow dots). E) Table of 

data shows number of events in each gate, events of each gate as a percentage of parent gates 

and as a percentage of total events. 
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3.3.1 Four day-serum starvation time course induced cell cycle arrest of HeLa cells in 

G0/G1 phase  

Flow cytometry analysis using viability Zombie NIR florescence dye showed that the 

percentage of viable cells was significantly decreased in D5 (35.85 ± 2.05%) compared to 

proliferating (82.63 ± 3.82) by ~ 56.5%, (P= 0.0078) (Figure 3.11). This result is consistent 

with the previous data obtained from trypan blue viability staining where the cell viability was 

significantly decreased at day five of serum starvation (Section 3.2.1). 

Cell cycle analysis by flow cytometry showed that the percentage of G0 cells was 

significantly increased in D4 (26.43 ± 9.160%) by ~ 4934 %, (P = 0.0236) and D5 (25 ± 

6.34%), by 4661%, (P = 0.0364) compared to proliferating (0.525 ± 0.33%) (Figure 3.12, 

Figure 3.13 and Table 3.4).  

Corresponding to this increase in G0 cells, the percentage of S/G2/M cells was significantly 

decreased in D2 by ~ 40 % (13.82 ± 0.55%, P = 0.0084), D3 by ~ 46% (12.3 ± 0.89%, P = 

0.0037), D4 by ~70% (6.86 ± 0.77%, P = 0.0003) and D5 by 81 % (4.3 ± 1.38%, P = 0.0004) 

compared to proliferating (23.1± 2.4%) (Figure 3.12, Figure 3.13 and Table 3.4).  

The percentage of G1 cells decreased over the serum starvation time course with maximum 

decrease at day four by ~ 12% (66.7± 8.1%) compared to proliferating (76.3± 1.52%), 

however, these changes were not significant (P > 0.999) (Table 3.4).   

These results revealed that four-day serum starvation induced cell cycle arrest in G0/G1 phase 

where more than 93% of cells were in G0/G1 phase (~26% in G0 and 67% in G1 phase). 
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Figure 3.11 Cell viability over five-day serum starvation time-course in HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 5 days. A) Dot plots of flow cytometric analysis performed on HeLa cells stained with 

viability stain; Zombie NIR. D1, D2, D3, D4 and D5 represent one day, two days, three days, 

A 
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four and five days of serum starvation. FSC-A represents forwards scatter area. Each dot 

appearing on the dot plot represents a single cell. The proportion of viable cells were detected 

by Flow cytometry based on strength of fluorescence signal. The dot plots showing 

distribution of two cell populations represents the dead cells (black dots outside live gate; red 

box) that exhibit significant high Zombie NIR fluorescence signal, and live cells which do not 

(coloured dots within the live gate, colour code is shown in the next figure; Figure 3.12 ). The 

number of viable cells appeared to be decreased over the 5-day serum starvation time course. 

B) Graph shows quantitative measurements of the proportion of live cells as a percentage of 

total HeLa cells population. The percentage of viable cells was significantly decreased by ~ 

56.5% (P= 0.0078**) at D5 compared to proliferating. n= 10,000. N= 4. 
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Figure 3.12 Five-day serum starvation time-course altered the proportion of S/G2/M, G1 

and G0 subpopulations in HeLa cells   
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HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 5 days; D1, D2, D3, D4 and D5 represent one day, two days, three days, four and five days 

of serum starvation. A) Flow cytometry plots of HeLa cells stained with viability stain; 

Zombie NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. Dead cells were excluded from 

the whole cell population (Figure 1). The proportions of cells in S phase, G2 phase and M 

phase (S/G2/M), cells in G1 phase and cells in G0 phase were detected by Flow cytometry 

based on DNA and RNA contents using FACsDIVA software. Cells were classed G1 if they 

exhibited single DNA content and were RNA positive (purple dots), cells were classed 

S/G2/M if they exhibited double DNA content and were RNA positive (blue dots) and cells 

were classed G0 if they exhibited single DNA content and were RNA negative (green). Each 

dot represents a single cell. A difference in distribution of dots in S/G2/M (blue) and G0 

(green) gates is obvious over the 5-day serum starvation time-course. The extent of S/G2/M 

cells appear to be decreased over the 5-day serum starvation time-course while the extent of 

G0 cells appear to be increased. However, a difference in the extent of G1 cells is not obvious 

over the 5-day serum starvation time-course compared to proliferating. B) Histogram of HeLa 

cells stained with Hoechst stain show cell cycle analysis according to DNA content. There is 

an increase in cell number of G0/G1 and a decrease in cell number of S/G2/M over the 5-day 

serum starvation time-course compared to proliferating. n= 10,000. N=4. 
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Figure 3.13 Quantitative measurement of the proportion of S/G2/M and G0 or G1 

subpopulations over five-day serum starvation in HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 5 days. The proportion of S/G2/M, G1 and G0 cell subpopulations was determined as a 

percentage of the total HeLa viable cell population over the five-day serum starvation time-

course. Cells were stained with viability stain; Zombie NIR, DNA stain; Hoechst and RNA 

stain; Pyronin Y.  Dead cells were excluded from the whole cell population. The proportion of 

S/G2/M, G1 and G0 cell subpopulations were calculated by Flow cytometry depending on 

DNA and RNA contents using FACsDIVA software. Cells were classed G1 if they exhibited 

single DNA content and were RNA positive, cells were classed S/G2/M if they exhibited 

double DNA content and were RNA positive while cells were classed G0 if they exhibited 

single DNA content and were RNA negative. Quantitative measurements of the proportions of 

G0 and S/G2/M cells were significantly changed with serum starvation. The percentage of G0 
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cells was significantly increased by ~ 4934 %, (P = 0.0236*) and 4661%, (P = 0.0364*) in day 

four and day five of serum starvation time course respectively compared to proliferating. The 

percentage of S/G2/M cells was significantly decreased by ~ 40 % (P = 0.0084**), ~46% (P = 

0.0037**) , 70% (P = 0.0003***) and 81% ( P = 0.0004***) in day two, day three, day four 

and day five of serum starvation time course respectively compared to proliferating. There 

were no significant changes in the percentage of G1 cells over the five-day serum starvation 

time-course (P > 0.999) n= 10,000. N=4. 
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 Viability (%) G0 cells (%) G1 cells (%) S/G2/M cells (%) 

Proliferating 82.63±3.82 0.52± 0.33 76.37±1.52 23.1±2.4 

D1 73±7.042 

P =0.2588 

3.9 ± 0.55  P = 

0.9999 

74.02±4.43 

( P > 0.999) 

22.07±1.02  P= 

0.1208 

D2 71.46±7.85 

P = 0.4921 

13.3±7.86 

P =0 .3675 

72.87± 6.42 

( P > 0.999) 

13.82±0.55 

P = 0.0084 

D3 68.1±2.152 

P = 0.1930 

4.72±3.11 

P =0.9802 

82.97±0.83 

( P > 0.999) 

12.3± 0.89 

P = 0.0037 

D4 51.26±7.85 

P= 0.0662 

26.43±9.16 P = 

0.0236 

66.7±8.13 

( P > 0.999) 

6.86±0.77 

P = 0.0003 

D5 35.85±2.05 

P = 0.0078 

25 ± 6.345 

P = 0.0264 

70. 7± 2.22 

( P > 0.999) 

4.3± 1.385 

P = 0.0004 

 Table 3.4 Flow cytometry data of HeLa cells viability and subpopulations over the five-day serum starvation time course 

(Means ± SEM) 
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3.3.2 Two day-serum starvation time course was sufficient to arrest NIH 3T3cells in G0/G1 

phase 

In NIH 3T3 cells, serum starvation markedly affected the cell viability at day five as seen 

previously (Figure 3.4 and Figure 3.5.C) and to do staining for flow cytometry analysis, cells 

pass through many steps of washing and staining. Therefore, it was not possible to do flow 

cytometry analysis to D5 cells as viable cells was too few to be detected.   

Flow cytometry viability analysis over the four-day serum starvation time course showed that 

the percentage of viable cells was significantly decreased in D4 (33.46 ± 1.56 %) compared to 

proliferating (59.2 ± 0.617%) by ~ 43.5%, (P= 0.001) (Figure 3.14 and Table 3.5). This result 

is in consistent with the previously observed decrease in cell viability at D4 in NIH 3T3 cells 

detected by trypan blue viability staining (Section 3.2.2) where cell viability was significantly 

decreased at D4. 

In consistence to inhibition of proliferation observed previously, the percentage of G0 cells 

was significantly increased in D1 by ~ 1092 % (39.36±17.84%, P = 0.0262), D2 by ~ 1529% 

(53.7±14.3%, P = 0.0002), D3 by ~1622% (56.8±20.9%, P = 0.0002) and D4 by ~ 1437% 

(50.7±21.07%, P = 0.0003) compared to proliferating (3.23 ± 0.5131%) (Figure 3.15, Figure 

3.16 and Table 3.5).  

Parallel to this increase in G0 cells, the percentage of G1cells was significantly decreased in 

D1 by ~ 34.5 % (50.8±16%, P = 0.059), D2 by ~ 51.5%, (37.6 ± 8.6%, P = 0.0035), D3 by 

~57% (33.5 ± 9.1%, P = 0.0024) and D4 by ~ 48% (40.9 ± 9 %, P = 0.0038) compared to 

proliferating (77.7 ± 3.4%) (Figure 3.15, Figure 3.16 and Table 3.5).  

Similarly, the percentage of cells in S, G2, M phases (S/G2/M (+ve) cells was significantly 

decreased in D1 by ~ 48 % (9.8±2%, P= 0.041), D2 by ~ 52% (8.9±1.2%, P = 0.037), D3 by 

~47% (9.9±2.8%, P = 0.0412) and D4 by ~52% (9.1 ± 1.6%, P = 0.0321) compared to 

proliferating (19 ± 4.1 %) (Figure 3.15, Figure 3.16 and Table 3.5).  

A new class of cells, S/G2/M (-ve) cells, appeared with serum starvation, these cells have 

double DNA content and very low RNA content. Though these S/G2/M (-ve) cells appeared 

with serum starvation but it did not show any significant changes. At D1 (1.3 ± 0.3 %), D2 
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(2.6 ± 1.4%), D3 (1.3 ± 0.9%) and D4 (1.43 ± 0.43 %), proliferating (0.05 ± 0.001%) (All 

P>0.05) (Figure 3.15, Figure 3.16 and Table 3.5).  

These results showed that two-day serum starvation was sufficient to induce cell cycle arrest 

in G0/G1 phase where ~ 92 % of viable cells were in G0/G1 phase (~54% in G0 and 38% in 

G1 phase). 
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Figure 3.14  Cell viability over four-day serum starvation time-course in NIH 3T3 cells 

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for 4 days. A) Dot plots of flow cytometric analysis performed on NIH 3T3 cells 

stained with viability stain; Zombie NIR. D1, D2, D3and D4 represent one day, two days, 

three days and four days of serum starvation. FSC-A represents forwards scatter area. Each 

A 
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dot appearing on the dot plot represents a single cell. The proportion of viable cells were 

detected by Flow cytometry based on strength of fluorescence signal. The dot plots showing 

distribution of two cell populations represents the dead cells (black dots outside live gate; red 

box) that exhibit significant Zombie NIR fluorescence signal, and live cells (coloured dots 

within the live gate; colour code is shown in the next figure; Figure 3.15) which do not. The 

number of viable cells appeared to be decreased over the 4-day serum starvation time course. 

B) Graph shows quantitative measurements of the proportion of live cells as a percentage of 

total NIH 3T3 cells population. The percentage of viable cells was significantly decreased by 

43.5% in D4 compared to proliferating (P = 0.001**). n= 10,000. N= 3.  
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Figure 3.15 Four-day serum starvation time-course changes the proportion of S/G2/M, 

G1 and G0 subpopulations in NIH 3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 4 days; D1, D2, D3 and D4 represent one day, two days, three days and four days of serum 

starvation. A) Flow cytometry plots of NIH 3T3 cells stained with viability stain; Zombie NIR, 

DNA stain; Hoechst and RNA stain; Pyronin Y. Dead cells were excluded from the whole cell 

population (Figure 3.). The proportions of cells in S phase, G2 phase and M phase (S/G2/M), 

cells in G1 phase and cells in G0 phase were detected by Flow cytometry based on DNA and 

RNA contents using FACsDIVA software. Cells were classed G1 if they exhibited single DNA 
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content and were RNA positive (blue dots), cells were classed S/G2/M (+ve) if they exhibited 

double DNA content and were RNA positive (red dots) and cells were classed G0 if they 

exhibited single DNA content and were RNA negative (yellow). Another group of cells appear 

with serum starvation exhibit double DNA content and were RNA negative S/G2/M (-ve) (green 

dots). Each dot represents a single cell. A difference in distribution of dots in S/G2/M (+ve) 

(red), G1 (blue), G0 (yellow) and S/G2/M (-ve) (green) gates is obvious over the 4-day serum 

starvation time-course compared to control. The extent of G1 cells and S/G2/M (+ve) cells 

appear to be decreased while the extent of G0 cells and S/G2/M (-ve) appear to be increased 

over the 4-day serum starvation time-course compared to proliferating. B) Histogram of NIH 

3T3 cells stained with Hoechst stain shows cell cycle analysis according to DNA content. There 

is an increase in cell number of G0/G1 and a decrease in cell number of S/G2/M over the 4-day 

serum starvation time-course compared to proliferating. n= 10,000. N=3. 
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Figure 3.16 Quantitative measurement of the proportion of S/G2/M and G0 or G1 

subpopulations over four-day serum starvation in time course in NIH 3T3 cells 

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for 4 days. The proportion of S/G2/M, G1 and G0 cell subpopulations was 

determined as a percentage of the total NIH 3T3 viable cell population over the four-day 

serum starvation time-course. The proportion of S/G2/M, G1 and G0 cell subpopulations was 

determined as a percentage of the total NIH 3T3 viable cell population. Cells were stained 

with viability stain; Zombie NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. Dead cells 

were excluded from the whole cell population. The proportion of S/G2/M, G1 and G0 cell 

subpopulations were calculated by Flow cytometry based on DNA and RNA contents using 

FACs DIVA software. Cells were classed G1 if they exhibited single DNA content and were 

RNA positive, cells were classed S/G2/M (+ve) if they exhibited double DNA content and 

were RNA positive, cells were classed S/G2/M (-ve) if they exhibited double DNA content 

and were RNA negative and cells were classed G0 if they exhibited single DNA content and 

were RNA negative. Quantitative measurements of the proportions of G0 and G1 cells were 

significantly changed with serum starvation. The percentage of G0 cells was significantly 

increased by 1092.92% (P = 0.0262*), 1529% (P <0.001***), 1622% (P < 0.001***) and 

1437% (P < 0.001***) in day one, day two, day three and day four of serum starvation 
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respectively compared to proliferating cells. The percentage of G1 cells was significantly 

decreased by 51.5 %, 57%, and 48% in day two, day three and day four of serum starvation 

respectively compared to proliferating ( All P <0.01**). The percentage of S/G2/M (+ve) cells 

was decreased by 44.73%, 52.80%, 26.49 % and 25.78 % in day one, day two, day three and 

day four of serum starvation respectively compared to proliferating however the decrease was 

not significant. The percentage of S/G2/M (-ve) cells was not significantly different compared 

to proliferating (P > 0.05) n= 10,000. N=4.
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 Viability (%) G0 Cells (%) G1 Cells (%) S/G2/M (+ve) 

Cells (%) 

S/G2/M (-ve) 

Cells (%) 

Proliferating 59.2± 0.61 3.2 ± 0.5131 77.7 ± 3.431 19 ± 4.139 0 

D1 66.8±0.731 

P = 0.2588 

39.36±17.84 

P = 0.0262 

50.83±16.09   

P = 0.059 

9.8±2.05  

 P= 0.041 

1.3 ± 0.305 

  P = 0.7108 

D2 59.06 ± 3.98 

  P = 0.9921 

53.76±14.37  P 

= 0.0002 

37.66 ± 8.68  

 P = 0.0035 

8.96±1.234  

 P = 0.037 

2.6 ± 1.47  

 P = 0.166 

D3 54.3 ± 4.79 

  P = 0.9930 

56.83±20.99 

P = 0.0002 

33.53 ± 9.11 

 P = 0.0024 

9.96±2.88  

P = 0.0412 

0.6 ± 0.929   

P = 0.7108 

D4 35.4 ± 1.56   

P = 0.001 

50.73±21.07 P 

= 0.0003 

40.9 ± 9.06  

 P = 0.0038 

9.1 ± 1.60  

 P = 0.0321 

0.26±0.437   

P = 0.6368 

Table 3.5  Flow cytometry data of NIH 3T3 cells viability and subpopulations over four-day serum starvation time course 

(means ± SEM)
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3.3.3  Five day-serum starvation time course did not arrest hTERT RPE-1 cells in G0/G1 

phase 

Flow cytometry cell cycle analysis of hTERT RPE-1 cells was also done before and over 5-

day serum starvation time course. 

The percentage of viable cells was not significantly decreased in serum starved cells. At day 

one (74.2 ± 6.7%), day two (66.03 ± 4.7 %), day three (72.7 ± 9.4 %), day four (76.33 ± 7.26 

%) and day five (66.8 ± 4.4 %) compared to proliferating (82.63 ± 9.4 %) (P > 0.999) (Figure 

3.17 and Table 3.6). This result is in consistent with the previously observed results in cell 

viability detected by trypan blue. 

Similarly, cell subpopulations did not show any significant changes over the 5-day serum 

starvation time course. For G0 cells, day one (1.06±4%), day two (1.6±1.7%), day three (3.7 ± 

2.7%) and day four (2.9 ± 2.8%) and day five (3 ± 1.6%) compared to proliferating (1.1± 

0.54%) (P > 0.05) (Figure 3.18, Figure 3.19 and Table 3.6).  

For G1 cells, day one (80.7 ± 3.8%), day two (87.9 ± 2.6%), day three (82 ± 2.2%), day four 

(85.2±1.3%) and day five (83±0.9%) compared to proliferating (80 ± 3.8%) (P > 0.05). For 

S/G2/M cells, day one (17.1 ± 1.6%), day two (11 ± 4.8%), day three (14± 0.9%), day four 

(10.9±1.9%) and day five (14.7±0.12%) compared to proliferating (17 ± 0.5%) (P > 0.05) 

(Figure 3.18, Figure 3.19 and Table 3.6)  

These result indicating that serum starvation did not induce cell cycle arrest in G0/G1 phase in 

hTERT RPE-1 even following five or more days of starvation. 
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Figure 3.17 5-day serum starvation time-course does not affect the viability of RPE-1 

cells 

RPE-1 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 5 days. A) Dot plots of flow cytometric analysis performed on RPE-1 cells stained with 

viability stain; Zombie NIR. D1, D2, D3, D4 and D5 represent one day, two days, three days, 

four and five days of serum starvation. FSC-A represents forwards scatter area. Each dot 

A 

B 
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appearing on the dot plot represents a single cell. The proportion of viable cells were detected 

by Flow cytometry based on strength of fluorescence signal. The dot plots showing 

distribution of two cell populations represents the dead cells (black dots outside live gate; red 

box) that exhibit significant Zombie NIR fluorescence signal, and live cells (coloured dots 

within the live gate; colour code is shown in the next figure; Figure 3.18) which do not. The 

number of viable cells appeared to be unaltered over the 5-day serum starvation time course. 

B) Graph shows quantitative measurements of the proportion of live cells as a percentage of 

total RPE-1 cells population. The percentage of viable cells was not significantly changed 

over the 5-day serum starvation time-course compared to proliferating (All P>0.999) n= 

10,000. N= 3.  
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Figure 3.18 Five day serum starvation time-course does not affect the proportion of 

S/G2/M, G1 and G0 subpopulations in RPE-1 cells 
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RPE-1 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (starved) 

for 5 days; D1, D2, D3, D4 and D5 represent one day, two days, three days, four and five days 

of serum starvation. A) Flow cytometry plots of RPE-1 cells stained with viability stain; Zombie 

NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. Dead cells were excluded from the whole 

cell population (Figure.1). The proportions of cells in S phase, G2 phase and M phase (S/G2/M), 

cells in G1 phase and cells in G0 phase were detected by Flow cytometry based on DNA and 

RNA contents using FACs DIVA software. Each dot represents a single cell. Cells were classed 

G1 if they exhibited single DNA content and were RNA positive (blue dots), cells were classed 

S/G2/M if they exhibited double DNA content and were RNA positive (red dots) and cells were 

classed G0 if they exhibited single DNA content and were RNA negative (yellow dots). The 

plots show that no cells enter G0 phase over the 5-day serum starvation time course. A 

difference in distribution of dots in G1 (blue) and S/G2/M (red) gates is not obvious over the 5-

day serum starvation time-course compared to control. B) Histogram of RPE-1 cells stained 

with Hoechst stain showing DNA content distribution. There is no obvious change in the 

number of cells in different cell cycle phases over the 5-day serum starvation time-course 

compared to proliferating. n= 10,000. N=3. 
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Figure 3.19 Quantitative measurement of the proportion of S/G2/M and G0 or G1 

subpopulations over five-day serum starvation time course RPE-1 cells 

The proportion of S/G2/M, G1 and G0 cell subpopulations was determined as a percentage of 

the total RPE-1viable cell population over the five-day serum starvation time-course. Cells were 

stained with viability stain; Zombie NIR, DNA stain; Hoechst and RNA stain; Pyronin Y. First, 

dead cells were excluded from the whole cell population to avoid false positive results then the 

proportion of S/G2/M, G1 and G0 cell subpopulations were calculated by Flow cytometry 

depending on DNA and RNA contents using FACsDIVA software. Cells were classed G1 if 

they exhibited single DNA content and were RNA positive, cells were classed S/G2/M if they 

exhibited double DNA content and were RNA positive while cells were classed G0 if they 

exhibited single DNA content and were RNA negative. Quantitative measurements show no 

significant changes occurred in the percentage of the G0 (P = 0.9065), G1 (P = 0.6539) or 
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S/G2/M (P = 0.7439) subpopulation over the five-day serum starvation time-course compared 

to proliferating. All n= 10,000. N= 3.       
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 Viability (%) 

(All P > 0.999)  

G0 cells (%)  

(All P > 0.05) 

G1 cells (%) 

(All P > 0.05) 

S/G2/M cells (%) 

(All P > 0.05) 

Proliferating 59.2 ± 0.617 1.167± 0.54 82.03 ± 0.84 17 ± 0.53 

D1 74.26 ± 6.70 1.06 ± 4.03 80.77 ± 3.83 17.16±1.64 

D2 66.03±4.712 1.63 ± 1.73 87.9 ± 2.62 11 ± 4.84 

D3 72.7 ± 9.454 3.7 ± 2.75 82.06± 2.26 14.24±0.91 

D4 76.33±7.263 2.93 ± 2.83 85.21±1.33 10.93±1.91 

D5 66.80 ± 4.4 3 ± 1.6 83.67±0.97 14.73±0.12 

Table 3.6 Flow cytometry data of hTERT RPE-1 cells viability and subpopulations over five day serum starvation time 

course (means ± SEM)   
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 HeLa cells NIH 3T3 cells 

 

hTERT RPE-1 cells 

(All P > 0.999) 

Trypan blue Zombie NIR Trypan blue Zombie NIR Trypan blue Zombie NIR 

Proliferating 96.18±0.72  82.63±3.82  81.63±13.31  59.2 ± 0.617 

 

97.43±1.32 82.03 ± 0.84 

D1 94.53±1.5  

(P= 0.9959) 

73±7.042 

P =0.2588 

84.93±6.4  

P = 0.8821 

66.8±0.731 

P = 0.2588 

83.73± 13.09 80.77 ± 3.83 

D2 92.03± 3.31  

(P= 0.8188) 

71.46±7.85 

P = 0.4921 

72.16± 2.2 

P = 0.4236  

59.06 ± 3.98  

P = 0.9921 

87.23± 5.61 87.9 ± 2.623 

D3 86.6± 4.88  

(P = 0.1578) 

68.1±2.152 

P = 0.1930 

63.46± 3.52  

P = 0.0912 

54.3 ± 4.79  

P = 0.9930 

94.13 ± 0.37 82.06± 2.26 

 

D4 74.07 ± 1.04  

(P = 0.0579) 

51.26±7.85 

 P= 0.0662 

40.3 ± 4.1  

(P< 0.01) 

35.4 ± 1.56  

P = 0.001 

94.86 ± 1.8 85.21±1.33 P = 

0.781 

D5 67.5 ± 1.7 

(P = 0.0335)   

35.85±2.05 

P = 0.0078 

23.3 ± 5.23 

(P< 0.001)  

 96.63 ± 0.96 83.67±0.977 

 

 Table 3.7 A comparison between cell viability data obtained from Trypan blue dye and Zombie NIR dye 
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3.4 Discussion 

Serum starvation is a well-known experimental method to induce cell cycle arrest in the 

quiescent G0/G1 phase in mammalian cells (Langan and Chou, 2011; Xiong et al., 2012). 

However, the duration of serum starvation to induce cell cycle arrest in G0/G1 phase was 

variable in various cell types and even within the same cell type. Previous studies have 

shown that duration of serum starvation to induce cell cycle arrest in G0/G1 phase was one 

day in RBL cells (Bodding, 2001; Tani et al., 2007), two days in HeLa cells (Xiong et al., 

2012), in mouse embryonic fibroblast cells (Cooper, 2003) and porcine fibroblasts (Kues 

et al., 2000) and three days in foreskin fibroblasts (Kim et al., 2008) and HeLa S3 cells 

(Matsumura et al., 1990). Furthermore, in NIH 3T3 cells, there was a controversy in the 

duration of serum starvation required to induce cell cycle arrest in G0/G1; it has been 

reported as 24hours (Cooper, 2003), 30hours (Nishikura and Murray, 1987) and 48 hours 

(Kerkhoff and Rapp, 1997).  

Therefore, in the present study, serum starvation was carried out in order to induce HeLa, 

NIH 3T3 and hTERT RPE-1 cells to arrest in G0/G1 phase. The morphological and 

flowcytometry data were collected each day of starvation in order to determine the 

minimum time of serum starvation required to induce cell cycle arrest in the three cell 

types.  

Total and mitotic cell count and cell viability have been shown to be indicatives of 

quiescent G0/G1 cell cycle arrest under serum starvation conditions, as cessation of growth 

and division are the fundamental features of quiescence (Kerkhoff and Rapp, 1997; Kues 

et al., 2000). Hence, in the present study, total and mitotic cell count and cell viability 

were detected in HeLa, NIH 3T3 and hTERT RPE-1 cells with serum starvation. 

Following 2 days of serum starvation, in HeLa cells, there was a significant decrease in the 

total cell number as well as mitotic cell number in starved cells compared to proliferating 

controls (Figure 3.2.AFigure ). By day 4 of serum starvation ~1% of cells were in mitosis 

and the proportion of mitotic cells did not change following 5 or more days of serum 

starvation (Table 3.1 and Figure 3.2.A) Figure 3.. In NIH 3T3 cells, following one day of 

serum starvation there was a significant decrease in the total cell number as well as mitotic 

cell number in starved cells compared to proliferating controls. By 3 days of serum 

starvation less than ~ 0.5% of cells were in mitosis and the proportion of mitotic cells did 
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not change following 4 or more days of serum starvation (Table 3.2 and Figure  Figure 

3.5.A). In contrast, hTERT RPE-1 cells showed no changes in total and mitotic cell 

number with 5-day serum starvation (Table 3.3 and Figure 3.8.A).  

Cell viability was also analysed to investigate whether the significant decrease in total and 

mitotic cell number with serum starvation in HeLa and NIH 3T3 cells is attributed to cell 

cycle arrest in G0/G1 or cell death. Cell viability when evaluated with a well-known 

viability stain trypan blue was decreased by ~ 21% in HeLa cells at day five of serum 

starvation (Figure 3.2.C) and markedly decreased by ~70% in NIH 3T3 cells at day four 

and five of serum starvation (Figure 3.5.C) while in hTERT RPE-1 cells, there was no 

change in cell viability over the five-day serum starvation time course (Figure 3.8.C).  

These results indicated that serum starvation induced cell cycle arrest in HeLa and NIH 

3T3 cells, as the cell proliferation was significantly inhibited without any significant effect 

on cell viability till day four in HeLa cells and day three in NIH 3T3 cells.   

Results also showed that serum starvation did not alter cell proliferation or viability of 

hTERT RPE-1 cells and this observation was also reported by others (Jiang et al., 1999; 

Liang et al., 2012).  

To further define the cell cycle arrest in G0/G1 phase of HeLa, NIH 3T3 and hTERT RPE-

1 cells under serum starvation conditions and to detect the extent of G0 cells contributing 

to this phase, flow cytometry experiments measuring the cellular DNA and RNA content 

were performed. Measuring DNA and RNA content has been used for separation of G0 

and G1 cells (Shapiro, 1981; Darzynkiewicz et al., 2011) as G0 cells were identified as the 

population with single DNA content and an RNA content lower than that in cells in S and 

G2/M phases (Crissman et al., 1985; Lemons et al., 2010).  

Before gating cells according to their DNA and RNA content, dead cells were excluded 

using a   fluorescent viability dye; Zombie NIR (Figure 3.10). Both trypan blue dye and 

fluorescent Zombie NIR dye showed that cell viability was significantly decreased at day 

five in HeLa, at day four in NIH3T3 cells and was not altered in RPE-1 cells (Table 3.7). 

However, data obtained using trypan blue dye showed overestimation of cell viability 

compared to that obtained from flow cytometry analysis. On the basis of cell counts 

obtained using the flow cytometry analysis, in HeLa cells, ~ 45 % of the cells were viable 

at day five whereas cell viability was estimated at ~75% on the basis of cell counts 

obtained using the trypan blue dye. Similarly, in NIH 3T3 cells, data obtained from flow 
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cytometry analysis showed that ~ 33% the cells were viable at day four while with trypan 

blue staining viable cells were ~ 41% (Table 3.7). This observation has been reported by 

others (Altman et al., 1993). The over estimation of cell viability by trypan blue may be 

due, possibly, to its insensitivity to nonviable cells, to the nature of the test and/or to the 

condition that cell counts be made rapidly following addition of the dye.  

Flow cytometry cell cycle analysis revealed that, in HeLa cells, G0 cells increased in a 

multi-step manner which peaked and became significant at day four of serum starvation 

(~26%). A corresponding gradual significant decrease in S/G2/M cells was observed from 

day two (~ 13%) peaked at day four (~ 6.5%) of serum starvation while no significant 

changes detected in G1 cells (Figure 3.13 and Table 3.4). 

In NIH 3T3 cells, the alteration in the profile of distribution of cell populations with serum 

starvation was somewhat different, G0 cells increased significantly in a gradual manner 

which peaked at day two of serum starvation (~ 52%). A parallel decrease in G1 was 

observed from first day of starvation (~34.5%) and peaked at day two (~ 40%) and a 

significant decrease in S/G2/M cells was detected from day one (~9%) (Figure 3.16 and 

Table 3.5) 

It noteworthy that a new class of cells appeared with serum starvation in NIH 3T3 cells, 

these cells exhibit double DNA content and were very low RNA content (Figure 3.15). 

This observation suggests, at least in part, that cells exhibit different quiescent states 

and/or quiescence could not only be a prolonged pause in G0 or early G1 but also a state of 

distinct gene expression changes that may occurred in cells in all phases in response to 

serum deprivation.  

These results so far clearly showed that the minimum period of serum starvation required 

to induce cell cycle arrest in G0/G1 phase was 4 days in HeLa cells and 2 days in NIH 3T3 

cells.  

In contrast to HeLa and NIH 3T3 cells, the cell subpopulations and cell viability in hTERT 

RPE-1 cells did not change in response to serum starvation suggesting that serum 

starvation did not induce cell cycle arrest in hTERT RPE-1cells. This result has also been 

observed by others (Jiang et al., 1999; Liang et al., 2012).  

In hTERT RPE-1cells, the percentage of G0, G1 and S/G2/M cells were not significantly 

different compared to proliferating after 5 days of serum starvation. Furthermore, by using 
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the fluorescent Zombie NIR dye, cell viability was not altered over the 5-day serum 

starvation time course which confirming that results showed by using trypan blue dye. As 

previously observed in HeLa and NIH 3T3 cells, the trypan blue dye showed 

overestimation of cell viability compared to the results obtained from using fluorescent 

Zombie NIR dye (Table 3.7). 

Jiang et al., 1999 showed that 3-day serum starvation did not affect cell viability and that 

hTERT RPE-1 cells exhibited normal growth rate under serum deprivation conditions. In 

addition, Liang et al, 2012 observed, by using flow cytometry cell cycle analysis, that 2-

day serum starvation did not induce cell cycle arrest in hTERT NP cells and that 

overexpression of hTERT protect against serum starvation-induced apoptosis. Here this 

starvation was extended to 5 days and this was still insufficient to cause any arrest. These 

previous observations along with the results obtained in the present study might be 

explained by the fact that overexpression of telomerase reverse transcriptase in hTERT 

RPE-1 cells protects against apoptosis as hTERT helps to restore the DNA base pairs lost 

from the telomeres during cell division therefore extends their replicative lifespan beyond 

senescence.  

In summary, these results revealed that the sufficient duration of serum starvation to 

induce cell cycle arrest in G0/G1 phase was four days in HeLa cells and two days in NIH 

3T3 cells, whilst five days of serum starvation did not induce any cell cycle changes in 

hTERT RPE-1 cells. Hence, hTERT RPE-1cells was used as a control for HeLa and NIH 

3T3 cells in order to investigate Ca2+ signalling responses that were specific to cell cycle 

arrest in G0/G1 phase. 

On the basis of these findings, it was determined that when preparing G0/G1 arrested 

HeLa cells four-day serum starvation time course would be used throughout the remainder 

of this thesis. Similarly, for NIH 3T3 cells, two-day serum starvation time course would be 

used in order to prepare cells in G0/G1phase. For hTERT RPE-1 cells, however, four-day 

and two-day serum starvation time course were used for the remainder of this thesis to 

correspond with the duration of serum starvation selected for HeLa and NIH 3T3 cells 

respectively.  

  



 

116 

 

 

3.5 Conclusions  

 In HeLa cells, four days of serum starvation induced G0/G1 cell cycle arrest shown 

by inhibition of proliferation and increase in the percentage of G0 cells which 

occurred in a multistep manner.  

 In NIH 3T3 cells, two days of serum starvation induced G0/G1 cell cycle arrest 

shown by inhibition of proliferation and increase in the percentage of G0 cells 

which occurred in a gradual manner. 

 In hTERT RPE-1 cells, serum starvation did not induce G0/G1 cell cycle arrest as 

neither inhibition of cell proliferation nor increase in the percentage of G0 cells 

were detected till five days of starvation. 
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Chapter 4 Store-Operated Ca2+ Entry (SOCE) 

4.1 Introduction  

SOCE is a major Ca2+ entry pathway involved in cell cycle progression in non-excitable cells 

whereby external Ca2+ enters cells via SOCs located on the PM in response to depletion of 

ER Ca2+ stores (Introduction 1.6).  In this study, serum starvation induced cell cycle arrest 

in G0/G1 phase (increase in percentage of cells in G0/G1 phase) in HeLa cells (93%) and in 

NIH 3T3 cells (92%) but not in hTERT RPE-1 cell (Chapter 4). The aim of this chapter is 

to investigate SOCE responses in HeLa and NIH 3T3 when the cell cycle is arrested in 

quiescent G0/G1 phase by serum starvation and to make a comparison to hTERT RPE-

1cells.  

Cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS medium (G0/G1). To 

measure SOCE, cells were loaded with the Ca2+ sensitive fluorescent indicator dye fura-

2/AM, which enabled continuous measurement of cytosolic Ca2+. Loaded cells, maintained 

in Ca2+-free buffer, were then treated with TG in order to deplete ER Ca2+ stores. TG binds 

to and inhibits the SERCA pump located on the ER membrane causing a leak of Ca2+ from 

the ER into the cytosol. Depletion of ER Ca2+ stores activate SOCE whereby external Ca2+ 

enters the cytosol in order to replenish depleted stores. The addition of Ca2+ to the Ca2+ -free 

buffer, in what is termed an ‘add-back’ experiment, enabled the measurement of Ca2+ influx 

and therefore the activity of the SOCE pathway.   

 

4.2  Results- SOCE  

4.2.1  SOCE was markedly down-regulated in G0/G1 HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS medium 

(G0/G1) for 4 days, the time point at which the cells were arrested in G0/G1 phase (chapter 

4). Then Ca2+ ‘add-back’ experiments were done to measure SOCE in proliferating and 

G0/G1 cells.  

Typical Ca2+-addback traces from 6 individual cells within one experiment were chosen 

randomly to show various profiles of single cell Ca2+ signals (Figure 4.1.A). As expected, 
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HeLa Ca2+-addback traces from proliferating cells showed differences in the level of SOCE 

responses which are not observed in traces of G0/G1 HeLa cells (Figure 4.1.A). This might 

be explained by the fact that the proliferating cells were not synchronised; cells exist in 

different cell cycle phases and therefore giving a mixed pattern of Ca2+ responses while 

G0/G1 cells were synchronised; > 90% of cells in G0/G1 phase (Section 3.3.1). 

Mean Ca2+-addback traces from proliferating and G0/G1 HeLa cells indicated that both Ca2+ 

store release in response to TG addition (200nM) and SOCE following the addition of CaCl2 

(2mM) appeared to be reduced in G0/G1 cells compared to proliferating cells (Figure 4.1.B). 

In order to quantify Ca2+
 entry into the cell cytosol the area from under TG and CaCl2 responses 

was calculated from calibrated fluorescence traces (Method 2.8).  Area under peak (AUP) was 

presented in graphs as mean ± SEM of n determinations (Figure 4.2.A). 

Total Ca2+ store release (TG response) was significantly down-regulated in G0/G1 HeLa 

cells  by ~ 35% (48.8 ± 1.596 FRUs) compared to proliferating cells (75.38 ± 2.082 FRUs), 

P<0.0001 (Figure 4.2.A). SOCE (CaCl2 response) following store depletion was also 

significantly down-regulated in G0/G1 HeLa cells by ~ 60% (184.8 ± 5.512 FRUs) compared 

to proliferating cells (451 ± 12.9 FRUs), P<0.0001. Therefore, cell cycle arrest of HeLa cells 

in G0/G1 phase is accompanied by down-regulation of Ca2+ store release suggesting a 

potential decrease in the size of the ER Ca2+ store and/or a decreased sensitivity to TG. 

The extent of down regulation of SOCE (~ 60%) accompanied by cell cycle arrested was far 

more than that of Ca2+ store release (~ 35%) indicating an uncoupling of SOCE from Ca2+ 

store release.  

These data were further confirmed by analysing maximal (as opposed to total) Ca2+ store 

release and maximal SOCE, using measurements of height of peak (HOP) of TG and CaCl2  

responses from calibrated fluorescence traces (Method 2.8), HOP was presented in graphs 

as mean ± SEM of n determinations (Figure 4.2.B). Consistent with the decrease in total 

Ca2+ store release and SOCE, maximal Ca2+ store release was significantly down-regulated 

in G0/G1 HeLa cells by ~ 40% (0.196 ± 0.006 FRUs) compared to proliferating cells (0.329 

± 0.008 FRUs), P<0.0001. Maximal SOCE was significantly down-regulated in G0/G1 HeLa 

cells by ~ 37% (0.403 ± 0.008 FRUs) compared to proliferating cells (0.64 ± 0.015 FRUs), 

P<0.0001 (Figure 4.2.B). 
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Rate of rise (reflecting the speed of Ca2+ store release and activation of SOCE) and rate of 

decline (reflecting the speed of Ca2+ store emptying and deactivation of SOCE) of TG and 

CaCl2 responses respectively from calibrated fluorescence traces (Method 2.8) were also 

analysed. Rate of Ca2+ store release was significantly decreased in G0/G1 HeLa cells by ~ 

48% (1.68± 0.5 ×10-3 FRUs) compared to proliferating cells (3.25± 0.1×10-3 FRUs), P<0.0001. 

Rate of  SOCE was significantly decreased in G0/G1 HeLa cells by ~ 80 % (5.5× 10-3 ± 

0.0001 FRUs) compared to proliferating cells (5.897 ± 11.64 × 10-5 FRUs), P = 0.0229 

(Table 4.1). 

Decline rate of Ca2+ store release was significantly increased in G0/G1 HeLa cells by ~ 48% 

(29.46 ± 12.47 × 10-5 FRUs) compared to proliferating cells (3.25×10-3 ± 0.0001 FRUs), 

P<0.0001. Decline rate of SOCE was increased in G0/G1 HeLa cells by ~ 54 % (10.41 ± 

8.093 × 10-5 FRUs) compared to proliferating cells (4.82 ± 5.02 × 10-5 FRUs ), however this 

increase was not significant, P = 0.7484 (Table 4.1). 

These findings suggest that cell cycle arrest in G0/G1 is associated with marked reduction 

of total Ca2+ store release and SOCE. Also, rate of Ca2+ store release and the SOCE 

activation were shortened thus both Ca2+ store release and SOCE responses are smaller and 

shorter in G0/G1cellls compared to proliferating.  
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Figure 4.1 Single cell Ca2+ signal traces changes in G0/G1 HeLa cells   

HeLa cells were grown for 5 days in 10% FCS medium (proliferating) or in 0.1% FCS 

medium (G0/G1). TG represents the addition of the SERCA inhibitor thapsigargin to induce 

Ca2+ store release and CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. 

A) Typical Ca2+-addback traces from 6 individual cells within one experiment in 

proliferating and G0/G1 cells show variability in Ca2+ responses in proliferating compared 

to G0/G1 cells.  B) Mean Ca2+ addback traces from proliferating (blue) and G0/G1 cells 

(red). Traces represent an average from 60 cells ± S.E.M from one experiment. Fura-2 

fluorescence was measured at excitation wavelengths of 340 nm and 380 nm and an emission 

wavelength of 510 nm, with changes in fluorescence ratio (FR) reflect changes in [Ca2+]
i. 

Addition of thapsigargin (TG, first peak) caused increase in FR in proliferating and G0/G1 

cells indicating increase in [Ca2+]
i as Ca2+ is depleted from ER stores. Following Ca2+-

addback (CaCl2, second peak) an increase in FR occurred, as Ca2+ enters the cytosol via 

SOCE to replenish depleted stores. Both Ca2+ store release and SOCE responses appear to 

be reduced in G0/G1 cells compared to proliferating cells.
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 Total Maximal ROR ROD 

Values (FRUs) % change Values (FRUs) % change Values 

(FRUs×10-3) 

% change Values (×10-5 

FRUs) 

% change 

Ca2+ store 

release 

Proliferating 
75.38± 0.08 ------ 0.32±0.008 ------ 

3.25± 0.1 

 

------ 
5.897 ±1.64 

 

------ 

G0/G1 48.8 ± 1.59 

(P<0.0001) 
- 35% 

0.196±0.006 

(P<0.0001) 
- 40% 

1.68± 0.5 

(P<0.0001) 
- 48% 

29.46±2.47 

(P<0.0001) 
400% 

SOCE Proliferating 451 ± 12.9 ------ 0.64 ±0.015 ------ 7.9± 0.4 ------ 4.82 ±5.02 ------ 

G0/G1 184.8±5.51 

(P<0.0001) 
- 60% 

0.403±0.008 

(P<0.0001) 
- 37% 

5.5± 0.1 

(P =0.0229) 
- 30% 

12.81±9.37 

(P=0.7484) 
165% 

Table 4.1 Summary of quantifications of Ca2+ store release and SOCE responses in HeLa cells 

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for TG 

and CaCl2 responses from calibrated fluorescence traces were calculated using Excel functions in a template spread sheet (Methodology chapter 

2.8, figure 2.10) in proliferating and G0/G1 HeLa cells. Data represented as means ± SEM.  FRUs (fluorescence ratio unit). For proliferating cells n 

=228 and for G0/G1cells n= 206. N=7.
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Figure 4.2 Ca2+ signals responses in HeLa cells   

HeLa cells were grown in either 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 4 days. A) Graph shows means of total Ca2+ entry into the cytosol following 

Ca2+ store release in response to stimulation with 200nM thapsigargin (TG) and subsequent 

SOCE following the addition of 2mM CaCl2. Changes in fluorescence ratio units (FRUs) 

reflect changes in [Ca2+]i.  Both total Ca2+ store release and SOCE were significantly reduced 

in G0/G1 cells compared to proliferating, P<0.0001****. B)  Graph shows means of maximal 

A 

B 
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Ca2+ store release and maximal SOCE. Both maximal Ca2+ store release and SOCE were 

significantly reduced in G0/G1 cells compared to proliferating, P<0.0001****. Error bars 

represent S.E.M. For proliferating cells n =228 and for G0/G1cells n= 206. N=7. 
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4.2.2 SOCE was markedly down-regulated in G0/G1 NIH 3T3 cells 

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS medium 

(G0/G1) for two days, the time point at which the cells were arrested in G0/G1 phase 

(chapter 4). Then Ca2+ ‘add-back’ experiments were done to measure Ca2+ store release and 

SOCE in proliferating and G0/G1 cells.  

Typical Ca2+-addback traces from 6 individual cells within one experiment were chosen 

randomly to show various profiles of single cell Ca2+ signals (Figure 4.3.A). As in HeLa 

cells, NIH 3T3 cells Ca2+- addback traces from proliferating cells showed variations in level 

of Ca2+ responses which is not observed in traces of G0/G1 NIH 3T3 cells (Figure 4.3.A), 

this again might indicate that the proliferating cells exist in different cell cycle phases 

therefore generating varying Ca2+ responses while G0/G1 cells were synchronised; > 90% 

of cells in G0/G1 phase thus giving similar Ca2+ responses (Section 3.4.1). 

Mean Ca2+-addback traces from proliferating and G0/G1 NIH 3T3 cells indicated that both 

Ca2+ store release in response to TG addition (200nM) and SOCE following the addition of 

CaCl2 (2mM) appeared to be reduced in G0/G1 cells compared to proliferating cells (Figure 

4.3.B). 

In order to quantify Ca2+ entry into the cell cytosol the area from under TG and CaCl2  

responses was calculated from calibrated fluorescence traces (see methodology section 2.8 

for more details). Area under peak (AUP) was presented in graphs as mean ± SEM of n 

determinations (Figure 4.5.A). 

Total Ca2+ store release (TG response) was significantly down-regulated in G0/G1 NIH 3T3 

cells (10.55 ± 0.989 FRUs) compared to proliferating cells (46.4 ± 2.201 FRUs) by ~ 77%, 

P<0.0001 (Figure 4.5.A and Table 4.2). SOCE (CaCl2 response) following store depletion 

was also significantly down-regulated in G0/G1 NIH 3T3 cells (32.49 ± 2.508) compared to 

proliferating cells (84.28 ± 3.826 FRUs) by ~ 61%, P<0.0001 (Figure 4.5.A and Table 4.2).  

HOP (presenting maximal store release and SOCE) was shown in graphs as mean ± SEM of 

n determinations (Figure 3.5.B). Consistent with the decrease in total Ca2+ store release and 

SOCE, maximal Ca2+ store release was significantly down-regulated in G0/G1 NIH 3T3 

cells (0.0428 ± 0.003 FRUs) compared to proliferating cells 0.12 ± 0.004 FRUs) by ~ 65%, 

P<0.0001. Maximal SOCE was significantly down-regulated in G0/G1 NIH 3T3 cells (0.15 
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± 0.011) compared to proliferating cells (0.24 ± 0.009 FRUs) by ~ 36%, P<0.0001 (Figure 

4.5.B and Table 4.2).  

Rate of Ca2+ store release was significantly decreased in G0/G1 NIH 3T3 cells (0.342 ± 

0.024 ×10-3 FRUs) compared to proliferating cells (0.968 ± 0.047 ×10-3 FRUs) by ~ 65%, P 

= 0.0173. Rate of  SOCE was not significantly different  in G0/G1 NIH 3T3 cells (4.02 ± 

0.511 × 10-3 FRUs) compared to proliferating cells (3.57 ± 0.28 × 10-3 FRUs), P = 0.813 

(Table 4.2). 

Decline rate of Ca2+ store release not significantly different in G0/G1 NIH 3T3 cells (5.22 ± 

3.22 ×10-5 FRUs) compared to proliferating cells (13.35 ± 3.464 × 10-5 FRUs), P = 0.393. 

Decline rate of SOCE was increased in G0/G1 NIH 3T3 cells (5.76 ± 6.489×10-5 FRUs) 

compared to proliferating cells (1.7 ± 9.172 × 10-5 FRUs) by ~ 70 %, however this increase 

was not significant, P = 0.5232 (Table 4.2). 

These results revealed the cell cycle arrest of NIH 3T3 cells in G0/G1 phase is associated 

with down-regulation of both Ca2+ store release and SOCE suggesting a potential decrease 

in the size of the ER Ca2+ store and/or a decreased sensitivity to TG.  
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 Figure 4.3 Single cell Ca2+ signal traces changes in G0/G1 NIH 3T3 cells   

 NIH 3T3 cells were grown for 3days in 10% FCS medium (proliferating) or in 0.1% FCS 

medium (G0/G1). TG represents the addition of the SERCA inhibitor thapsigargin to induce 

Ca2+ store release and CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. 

A) Typical Ca2+-addback traces from 6 individual cells within one experiment in 

proliferating and G0/G1 cells show variability in Ca2+ responses in proliferating compared 

to G0/G1 cells. B) Mean Ca2+ addback traces from proliferating (blue) and G0/G1 cells (red). 

Traces represent an average from 60 cells ± S.E.M from one experiment. Fura-2 

fluorescence was measured at excitation wavelengths of 340 nm and 380 nm and an emission 

wavelength of 510 nm, with changes in fluorescence ratio (FR) reflect of changes in [Ca2+]
i. 

Addition of thapsigargin (TG, first peak) caused increase in FR in proliferating and G0/G1 

cells indicating increase in [Ca2+]
i as Ca2+ is depleted from ER stores. Following Ca2+-

addback (CaCl2, second peak) an increase in FR occurred, as Ca2+ enter the cytosol via 

SOCE to replenish depleted stores. Both store depletion and SOCE response appear to be 

reduced in G0/G1 cells compared to proliferating cells.   
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 Total Maximal ROR ROD  

Values 

(FRUs) 

% change  Values 

(FRUs) 

% change  Values (×10-

3FRUs) 

% change  Values (× 

10-5 FRUs) 

% change  

Ca2+ store 

release 

Proliferating 46.4 ± 2.20 ------ 
0.12 ± 

0.004 
------ 0.968±0.04 ------ 13.35±3.46 ------ 

G0/G1 
10.55± 0.98 

(P< 0.0001) 

-  77% 

 

0.0428 ± 

0.003 

(P< 0.0001) 

- 65% 

0.342±0.02 

(P = 

0.0173) 

- 65% 
5.22 ± 3.22 

(P = 0.393) 
-60% 

SOCE 

Proliferating 84.28±3.82 ------ 0.24 ± 

0.009 
------ 3.57 ± 0.28 ------ 

4.82 ± 

9.172 
------ 

G0/G1 
32.49±2.50 

(P< 0.0001) 

- 61% 

 

0.15± 0.011 

(P< 0.0001) 
- 36% 

4.02± 0.511 

(P = 0.813) 
- 13% 

5.76± 6.489 

(P= 0.5232) 
 25% 

Table 4.2 Summary of quantifications of Ca2+ store release and SOCE responses in NIH 3T3 cells 

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for TG 

and CaCl2 responses from calibrated fluorescence traces (Figure 4.3) were calculated using Excel functions in a template spread sheet 

(Methodology chapter 2.8, figure 2.10) in proliferating and G0/G1 NIH 3T3 cells. Data represented as means ± SEM. FRUs (fluorescence ratio 

unit). For proliferating cells n =249 and for G0/G1cells n= 128. N=5. 
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Figure 4.4 Ca2+ signals responses in NIH 3T3 cells   

NIH 3T3 cells were grown in either 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 2 days. A) Graph shows means of total Ca2+ entry into the cytosol following 

Ca2+ store release in response to stimulation with 200nM thapsigargin (TG) and subsequent 

SOCE following the addition of 2mM CaCl2. Changes in fluorescence ratio units (FRUs) 

reflect changes in [Ca2+]i.  Both total Ca2+ store release and SOCE were significantly reduced 

in G0/G1 cells compared to proliferating, P<0.0001****. B)  Graph shows means of maximal 

Ca2+ store release and maximal SOCE. Both maximal Ca2+ store release and SOCE were 

significantly reduced in G0/G1 cells compared to proliferating, P<0.0001****. Error bars 

represent S.E.M. For proliferating cells n =249 and for G0/G1cells n= 128. N=5. 

A 

B 
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4.2.3 SOCE was slightly down-regulated in serum-starved hTERT RPE-1 cells 

Serum starvation of hTERT RPE-1 cells did not affect cell cycle progression, consequently, 

did not induce cell cycle arrest in G0/G1 phase (Chapter 4). Therefore, Ca2+ signalling 

responses to serum starvation were investigated in hTERT RPE-1 cells in order to make a 

comparison with HeLa and NIH 3T3 cells to determine the level of contribution of cell cycle 

arrest in G0/G1 phase to the SOCE remodelling.  

hTERT RPE-1 cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS 

medium (serum-starved) for two time points,  2 days (D2 serum- starved) the time point at 

which  NIH 3T3 cells were arrested in G0/G1 phase (Chapter 4) and 4 days (D4 serum- 

starved) the time point at which HeLa cells were arrested in G0/G1 phase (Chapter 4) in 

order to correspond with duration of serum starvation of each cell type to make a reliable 

comparison. Then Ca2+ ‘add-back’ experiments were done to measure SOCE in proliferating 

and serum- starved cells.  

Typical Ca2+-addback traces from 6 individual cells within one experiment were chosen 

randomly to show various profiles of single cell Ca2+ signals (Figure 1.5.A). As expected, 

hTERT RPE-1 cells Ca2+-addback traces from D2 and D4 serum-starved cells showed 

differences in Ca2+ responses which is similar to that observed in traces of proliferating cells 

(Figure 4.5.A). This could be explained by the fact that serum starved cells were not 

synchronised; cells are in different cell cycle phases (Chapter 4) giving various levels of 

Ca2+ responses as that in proliferating.   

Mean Ca2+-addback traces from proliferating and D2 and D4 serum-starved cells indicated 

that both Ca2+ store release in response to TG addition (200nM) and SOCE following the 

addition of CaCl2 (2mM) appeared to be slightly reduced in D2 and D4 serum-starved cells 

compared to proliferating cells (Figure 4.5.B). 

In order to quantify Ca2+
 entry into the cell cytosol the area from under TG and CaCl2  responses 

was calculated from calibrated fluorescence traces (see methodology section 2.8 for more 

details). Area under peak (AUP) was presented in graphs as mean ± SEM of n determinations 

(Figure 4.6.A). 

Total Ca2+ store release (TG response) was significantly down-regulated in D2 and D4 

serum-starved cells (21.21 ± 1.043 FRUs) and (23.25± 0.933 FRUs) respectively compared 

to proliferating cells ( 38.89 ± 1.05 FRUs) by ~ 45% and ~ 40% respectively, P<0.001 (Figure 
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4.6). SOCE (CaCl2 response) following store depletion was also significantly down-regulated in 

D2 and D4 serum-starved cells (52.88 ± 1.643 FRUs) and (46.58± 2.088 FRUs) compared 

to proliferating cells (61.21 ± 1.29 FRUs) by ~  13.5 % and 23.5 %, P = 0.02638 and P = 

0.01451 respectively (Figure 4.6.A and Table 4.3).  

These results showed that an uncoupling of SOCE from Ca2+ store release with marked down-

regulation of Ca2+ store release indicting a possible  decrease in the size of the ER Ca2+ store 

and/or a decreased sensitivity to TG. 

These data were further confirmed by analysing maximal (as opposed to total) Ca2+ store 

release and maximal SOCE, using measurements of height of peak (HOP) of TG and CaCl2  

responses from calibrated fluorescence traces (see methodology section 2.8 for more 

details), HOP was presented in graphs as mean ± SEM of n determinations (Figure 4.6.B). 

In consistent with the decrease in total Ca2+ store release and SOCE, maximal Ca2+ store 

release was significantly down-regulated in  in D2 and D4 serum-starved cells (0.105 ± 0.007 

FRUs) and (0.110 ± 0.004 FRUs) compared to proliferating cells (0.175 ± 0.003 FRUs) by ~ 

39.5% and ~ 37.5%, all P<0.001. Maximal SOCE was significantly down-regulated in in D2 

and D4 serum-starved cells (0.253 ± 0.005 FRUs) and (0.230± 0.009 FRUs) compared to 

proliferating cells (0.403± 0.008 FRUs) by ~ 37% and ~ 43% respectively, all P<0.01 (Figure 

4.6.B and Table 4.3). 

Rate of rise (reflecting the speed of Ca2+ store release and activation of SOCE) and rate of 

decline (reflecting the speed of Ca2+ store emptying and deactivation of SOCE) of TG and 

CaCl2  responses respectively from calibrated fluorescence traces (see methodology section 

2.8 for more details) were also analysed. Rate of Ca2+ store release was increased in D2 and 

D4 serum-starved cells (2.114 ± 0.258 ×10-3 FRUs) and (2.013± 0.262 ×10-3 FRUs) compared 

to proliferating cells (1.849 ± 0.08×10-3 FRUs) by ~ 14% and ~ 9% respectively,  however this 

increase was not significant, P = 0.471 and P = 0.562 respectively. Rate of  SOCE was 

significantly decreased in D2 and D4 serum-starved cells (4.39 ± 0.327×10-3 FRUs) and 

(4.601± 0.156 ×10-3 FRUs) compared to proliferating cells (6.479 ± 0.146×10-3 FRUs) by ~ 

32% and ~ 28 %, all P<0.0001 (Table 4.3). 

Decline rate of Ca2+ store release was decreased in D2 and D4 serum-starved cells (14.15± 

6.07×10-5 FRUs) and (17.51± 5.08 ×10-5 FRUs) compared to proliferating cells (20.95 ± 

7.5×10-5 FRUs) by ~ 32% and ~ 16 %, P = 0.4317 and P = 0.8231 respectively. Decline rate 

of SOCE was increased in serum-starved cells (86.27±9.07×10-5 FRUs) and (90.42 ± 
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10.06×10-5 FRUs) compared to proliferating cells (133.7 ± 11.9×10-5 FRUs) by ~ 32% and 

~ 16 %, P = 0.203 and P = 0.1953 respectively (Table 4.3).   

The results so far showed that serum starvation induces marked down-regulation of SOCE in 

HeLa and NIH 3T3 cells and to a much lesser extent in hTERT RPE-1 suggesting a 

contribution of cell cycle arrest to the SOCE down-regulation.  
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Figure 4.5 Single cell Ca2+ signal traces from hTERT RPE-1 cells   

hTERT RPE-1 cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS 

medium (serum- starved) for two time points,  2 days (D2 serum- starved)  4 days (D4 serum- 

starved). TG represents the addition of the SERCA inhibitor thapsigargin to induce Ca2+ 

store release and CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. A) 

Typical Ca2+-addback traces from 6 individual cells within one experiment in proliferating, 

D2 serum- starved and D4 serum- starved exhibit variability in Ca2+ responses. B) Mean 

Ca2+ addback traces from proliferating (blue), D2 serum- starved (green) and D4 serum- 

starved (red). Traces represent an average from 60 cells ± S.E.M from one experiment. Fura-

2 fluorescence was measured at excitation wavelengths of 340 nm and 380 nm and an 

emission wavelength of 510 nm, with changes in fluorescence ratio (FR) reflective of 

changes in [Ca2+]i. Addition of thapsigargin (TG, first peak) caused increase in FR indicating 

increase in [Ca2+]i as Ca2+ is depleted from ER stores. Following Ca2+-addback (CaCl2, 

second peak) an increase in FR occurred, as Ca2+ enter the cytosol via SOCE to replenish 

depleted stores. Both store depletion and SOCE responses appear to be reduced in   D2 

serum-starved (green) and D4 serum-starved (red) cells compared to proliferating cells. 

However, the difference in SOCE response is minor.  
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 Total Maximal ROR ROD  

Values 

(FRUs) 

% change Values 

(FRUs) 

% change Values(×10-3 

FRUs) 

% change Values(×10-5 

FRUs) 

% change 

Ca2+ store 

release 

Proliferating 38.89 ± 1.05 ------ 
0.175 ± 

0.003 
------ 1.849± 0.08 ------ 20.95 ± 7.5 

------ 

D2 serum- 

starved 
21.21 ± 1.04 

P < 0.001 

- 45% 

 

0.105± 0.007 

P < 0.001 
-39.5% 

2.114±0.25 

P = 0.471 

14% 

14.15± 6.07 

P = 0.4317 

-32% 

D4 serum- 

starved 
23.25±0.93 

P < 0.001 

- 40% 

 

0.11 ± 0.004 

P<0.001 

-37.5% 

2.013±0.262 

P = 0.562 

9% 

17.51± 5.08 

P = 0.8231 

-16% 

SOCE 

Proliferating 
61.21 ± 1.29 ------ 0.403± 0.008 ------ 

6.479 ± 

0.146 
------ 133.7 ± 11.9 ------ 

D2 serum- 

starved 
52.88 ± 1.64 

P = 0.02638 

-13.5% 

 

0.25 ± 0.005 

P<0.01 
-37% 

4.39 ± 0.327 

P < 0.01 

-32% 

86.27±9.07 

P = 0.203 

-35% 

D4serum- 

starved 
46.58± 2.088 

P = 0.01451 

- 23.5% 

 

0.230± 0.009 

P<0.01 
-43% 

4.601±0.156 

P < 0.001 

- 28% 

90.42±10.06 

P = 0.1953 

-32% 

Table 4.2 Summary of quantifications of Ca2+ store release and SOCE responses in hTERT RPE-1 cells 

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for TG 

and CaCl2 responses from calibrated fluorescence traces (Figure 4.5) were calculated using Excel functions in a template spread sheet (Methodology 
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chapter 2.8, figure 2.10) in proliferating, D2 serum-starved and D4 serum-starved cells. Data represented as means ± SEM. FRUs (fluorescence ratio 

unit). For proliferating cells n = 211, D2 serum-starved n = 195 and D4 serum-starved n = 196, N=4.  
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Figure 4.6 Ca2+ signals responses in hTERT RPE-1 cells 

hTERT RPE-1 cells were grown in 10% FCS medium (proliferating) or in 0.1% FCS 

medium (serum- starved) for two time points,  2 days (D2 serum- starved)  4 days (D4 serum- 

starved). A) Graph shows means of total Ca2+ entry into the cytosol following Ca2+ store 

release in response to stimulation with 200nM thapsigargin (TG) and subsequent SOCE 

following the addition of 2mM CaCl2. Changes in fluorescence ratio units (FRUs) reflect 

changes in [Ca2+]i. Total Ca2+ store release was significantly reduced in D2 serum- starved 

and D4 serum- starved cells compared to proliferating, all P < 0.001***. SOCE were 

A 

B 
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significantly reduced in D2 serum- starved and D4 serum- starved cells compared to 

proliferating, P = 0.02638* and P = 0.01451* respectively. B)  Graph shows means of 

maximal Ca2+ store release and maximal SOCE. Both maximal Ca2+ store release and SOCE 

were significantly reduced in   D2 serum- starved and D4 serum- starved cells compared to 

proliferating, P<0.001*** and P<0.01** respectively. Error bars represent S.E.M. For 

proliferating cells = 211, D2 serum-starved n = 195 and D4 serum-starved n = 196, N=4.   
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4.3 Discussion 

SOCE is a ubiquitous Ca2+influx pathway that functions in all non-excitable cells in 

response to agonist stimulation (Parekh and Putney, 2005) and has been known to be 

involved in cell cycle progression. The aim of the work presented in this chapter was to 

investigate SOCE remodelling in HeLa and NIH 3T3 when cell cycle is arrested in G0/G1 

phase by serum starvation and to make a comparison to hTERT RPE-1 in order to 

determine the contribution of cell cycle arrest in G0/G1 phase to this remodelling. 

The results show that serum starvation induced down-regulation of SOCE in the three cell 

types (HeLa, NIH 3T3 and hTERT RPE-1 cells) (Figure 4.2, 4.4 and 4.6). Previous studies 

(Bodding, 2001; Tani et al., 2007; El Boustany et al., 2010) reported that cell cycle arrest 

in G0/G1 by serum starvation was accompanied by a down-regulation in SOCE. However, 

(Bodding, 2001; El Boustany et al., 2010) attributed this down-regulation to cell cycle 

arrest as the SOCE down-regulation was also observed in RBL cells where cell cycle was 

arrested by retinoic acid (Bodding, 2001), while (Tani et al., 2007) attributed the SOCE 

down-regulation to serum starvation and not cell cycle arrest as it was observed that SOCE 

down-regulation did not occur when RBL cells were arrested in G0/G1 phase by Ca2+ 

deprivation.  

In this chapter, the results show a clear difference in the extent of SOCE down-regulation 

with serum starvation only and with both serum starvation and cell cycle arrest in G0/G1 

phase. The extent of SOCE down regulation was 60% in HeLa and 61% in NIH 3T3 cells 

(Table 4.1 and 4.2) where cell cycle was arrested and percentage of G0 cells was increased 

from ~ 0.5% to ~ 26% in HeLa cells and from ~ 3% to ~ 54% in NIH 3T3 cells (Table 3.4 

and 3.5), while in hTERT RPE-1 cells, SOCE down-regulation was ~ 18% (Table 4.3) 

where no cell cycle arrest occurred and the percentage of G0 cells was not changed (Table 

3.6). These results therefore imply that SOCE down-regulation occurred with cell cycle 

arrest in G0/G1 by serum starvation and can be attributed to a lesser extent to serum 

starvation and to greater extent to cell cycle arrest implying the level contribution of G0 

cells to SOCE damping. Furthermore, in HeLa cells, the percentage of G1 cells did not 

significantly change before and after serum starvation confirming the contribution of the 

significant increase in G0 cells in SOCE down-regulation. Consistent with this, SOCE 

down-regulation has previously been observed in neuronal differentiation where cells exit 

cell cycle and arrested in G0 like phase. SOCE was observed to be down-regulated in 
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neuroblastoma cells upon differentiation (Brown et al., 2005; Bell et al., 2013; Whitworth, 

2015). These finding so far indicate that down-regulation of SOCE is likely to be 

important for driving cells to exit the cell cycle. 

SOCE has been previously shown to be remodelled during cell cycle progression. It is 

inactivated and uncoupled from store depletion in mitosis (Arredouani et al., 2010) and  in 

meiosis of frog oocytes (Machaca and Haun, 2000; Machaca and Haun, 2002) and to be 

upregulated in G1/S transition (Chen et al., 2016). 

The alteration in Ca2+ signalling responses with G0/G1 cell cycle arrest was different 

between cancerous HeLa cells and precancerous NIH 3T3 cells. In HeLa cells, an 

uncoupling of SOCE from Ca2+ store release with marked down-regulation of SOCE was 

observed. While in NIH 3T3 cells there was a marked down-regulation of SOCE which 

was still coupled to Ca2+ store release. This observation suggests that the mechanisms 

underlying the down-regulation of SOCE might be different between cancerous and 

precancerous cells or it might be cell type specific. 

It is noteworthy that there was a marked decrease in Ca2+ store release in HeLa (~ 35%), 

NIH 3T3 (~77%) and hTERT RPE-1(~ 40%) cells with serum starvation. These changes 

suggest that the capacity of the Ca2+ store may be altered or there might be a change in 

sensitivity to TG with serum starvation and cell cycle arrest in G0 phase. Comparing Ca2+ 

store release changes in HeLa and NIH 3T3 cells to that in hTERT RPE-1cells, these 

findings, potentially, indicate that the down-regulation of Ca2+ store release in HeLa, NIH 

3T3 and hTERT RPE-1cells may be attributed to serum starvation and not to cell cycle 

arrest in G0/G1 phase, this will be further investigated in a subsequent chapter by 

correlating Ca2+ signalling changes day by day with percentage of G0 subpopulations of all 

three cell types (Chapter 6: serum starvation time-course). 

It was reported Ca2+ store release was unchanged when RBL cells were arrested in G0/G1 

phase with 24 hours serum starvation (Bodding, 2001). The reason for this contrast with 

previous findings might be due to the length of serum starvation and this will be investigated 

in a subsequent chapter (Chapter 6: Serum starvation time-course). It has been reported that 

Ca2+ store release was slightly decreased in N-type cells within an N-type populations of 

neuroblastoma cells upon differentiation (Whitworth, 2015). In S-type population, however, 

the Ca2+ store release was increased with differentiation (Whitworth, 2015). The 
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observations in this chapter along with previous studies suggest that, possibly, the 

mechanisms underlying the Ca2+ store release alterations is a cell-type specific. 

SOCE measurements in cells arrested in G0/G1 phase were done by identifying cells in 

interphase (cells with angular bodies). It remains unclear therefore whether G0/G1 cells have 

a fully down-regulated SOCE pathway (with the measured SOCE being a property of the 

contaminating cells in S or G2 phases) or whether a SOCE pathway may still be present and 

functioning in G0/G1 cells, albeit at a decreased level. Nevertheless, the data obtained is 

clearly informative as the serum starvation arrested ∼90% of the cells in G0/G1 phase.   

Given that SOCE pathway in cells arrested in G0/G1 phase are markedly down-regulated, a 

more likely possibility is a change in expression or function of one or more proteins involved 

in the pathway. These possibilities were examined in which the expression and localisation 

of the SOCE-associated proteins STIM1 and Orai1 were investigated further in this study 

(Chapter 5: SOCE proteins).  
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4.4  Conclusions 

 An uncoupling of SOCE from Ca2+ store release with robust down-regulation of 

SOCE was observed in HeLa cells with the cell cycle arrest in G0/G1 phase. 

 A marked down-regulation of SOCE and Ca2+ store release was detected with the 

cell cycle arrest in G0/G1 phase in NIH 3T3 cells. 

 An uncoupling of SOCE from Ca2+ store release with slight down-regulation of 

SOCE occurred in hTERT RPE-1 cells with serum starvation. 

 Compared to hTERT RPE-1, the SOCE down-regulation in HeLa and NIH 3T3 cells 

appeared to be attributed to cell cycle arrest in G0/G1 phase. 
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Chapter 5 Store-Operated Ca2+ Entry Proteins   

5.1 Introduction 

The STIM1and Orai1 proteins have been demonstrated to be involved in SOCE. Direct 

physical coupling between STIM1-the ER Ca2+ sensor- and Orai1 -the Ca2+ channel at the 

cell membrane, ensues functional coupling between Ca2+ levels in the ER lumen and 

extracellular Ca2+ entry (Hoover and Lewis, 2011). Cell cycle arrest in G0/G1 phase was 

associated with a significant down-regulation of SOCE in HeLa and NIH 3T3 cells. In 

addition, serum starvation induced slight SOCE down-regulation in hTERT RPE-1 cells 

(Chapter 4). A change in STIM1and Orai1 activity or expression may underlie these 

alterations in SOCE response. Therefore the aim of this chapter was to investigate the 

expression and localisation of SOCE proteins in HeLa and NIH 3T3 before and after cell 

cycle arrest in G0/G1 phase and in hTERT RPE-1 cells before and after serum starvation. 

5.2 Result - STIM1 and Orai1 expression  

Western blots were performed on protein extracted from HeLa, NIH 3T3, hTERT RPE-1 

cells in order to determine STIM1 and Orai1 expression (Methods 2.6).  

5.2.1   STIM1 and Orai1 expression in G0/G1 HeLa cells 

STIM1 was expressed in proliferating (4 days 10% FCS) and G0/G1 (4 days 0.1% FCS) 

HeLa cells as determined by a band detected at 84kDa by an anti-STIM1 antibody (Figure 

5.1.A). Blots were re-probed with β-actin, used as a loading control, and STIM1 was 

expressed as a ratio of β-actin in order to quantify changes in band intensity (Figure.5.1.B).   

STIM1 protein expression was significantly decreased in G0/G1 cells by ~ 47.5 % 

compared to proliferating (P = 0.0075). The extent of down-regulation of SOCE was ~60% 

(Figure 4.2). The changes observed in SOCE are consistent with those seen in STIM1 

expression and suggest that STIM1 is involved in the process of SOCE in HeLa cells. 

As Orai1 is a PM protein that forms the SOC channel pore that STIM1 activates for SOCE 

regulation (Mignen et al., 2008; Demuro et al., 2011; Hoover and Lewis, 2011), the 
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relationship between Orai1 expression and SOCE was investigated in proliferating and 

G0/G1 HeLa cells.  

Orai1 was expressed in both proliferating and G0/G1 cells as determined by a triple band 

detected between 37 and 50 kDa by an anti- Orai1 antibody (Figure 5.2.A). Blots were re-

probed with β-actin, used as a loading control, and Orai1 was expressed as a ratio of β-

actin in order to quantify changes in band intensity (Figure 5.2.B).   

Orai1 protein expression was significantly decreased in G0/G1 cells by ~ 68 % compared 

to proliferating (P = 0.0072). This down-regulation would possible contribute to the 

dampened SOCE observed in G0/G1 HeLa cells of (Chapter 4). 

When looking at Orai1 expression, this showed a triple band in proliferating and G0/G1 

HeLa cells. The upper, middle and lower (Figure 5.2.C) Orai1 bands were analysed 

individually. The upper, middle and lower bands showed significant decrease in Orai1 

expression in G0/G1 cells by ~ 62.5%, ~ 81% and ~ 80% compared to proliferating (P > 

0.01) consistent with the analysis of the band as a whole. The existence of Orai1 

expression in a pattern with several distinct molecular masses would suggest that 

Orai1may be subjected to post-translational modification(s). 
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Figure 5.1 STIM1 expression in HeLa cells  

Western blots were performed on protein extracted from HeLa cells following growth for 4 

days in 10% FCS (proliferating = P) or 0.1% FCS (G0/G1). Blots were probed with anti-

STIM1 antibody which detected a band at 84 kDa or β- actin antibody which was used as a 

loading control and detected a band at 42 kDa. A) STIM1 was expressed in both 

proliferating (P) and G0/G1 cells. B) Quantitative measurements of bands were performed 

using densitometry (ImageJ software, Methods 2.6.9) where STIM1 was expressed as a 

ratio of β-actin. There was a significant decrease in STIM1 expression in G0/G1 by 

~47.5% compared to proliferating (P = 0.0075**).  N=5. 
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Figure 5.2 Orai1 expression in HeLa cells  

Western blots were performed on protein extracted from HeLa cells following growth for 4 

days in 10% FCS (proliferating = P) or 0.1% FCS (G0/G1). Blots were probed with anti-

Orai1 antibody which detected a band between 37 and 50 kDa or β- actin antibody which 

was used as a loading control and detected a band at 42kDa A) Orai1 was expressed in 

both proliferating (P) and G0/G1 cells. B) Quantitative measurements of bands were 

performed using densitometry (ImageJ software, Methods 2.6.9) where Orai1 was 

A 

B 

C 

Upper band Middle band Lower band 
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expressed as a ratio of β-actin. There was a significant decrease in Orai1 expression by 

~68 % compared to proliferating (P= 0.0072*). C) Quantitative analysis of upper, middle 

and lower Orai1 bands. Orai1 expression was significantly decreased in G0/G1 cells by 

62.5%, 81% and 80% respectively compared to proliferating cells (P=0.01**). N=4.  
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5.2.2 STIM1 and Orai1 expression in G0/G1 NIH 3T3 cells 

STIM1 was expressed in proliferating (two days 10% FCS) and G0/G1 (two days 0.1% 

FCS) NIH 3T3 cells as determined by a band detected at 84kDa by an anti-STIM1 

antibody (Figure 5.3.A). Blots were re-probed with β-actin, used as a loading control, and 

STIM1 was expressed as a ratio of β-actin in order to quantify changes in band intensity 

(Figure 5.3.B).   

Similar to HeLa cells, STIM1 protein expression was significantly decreased in G0/G1 

NIH 3T3 cells by ~49 % compared to proliferating cells (P = 0.0431). The extent of down-

regulation of SOCE was ~60% (Figure 4.2). The changes observed in SOCE are consistent 

with those seen in STIM1 expression and indicate that STIM1 has a role in SOCE in NIH 

3T3 cells. 

The relationship between Orai1 expression and SOCE was also investigated in NIH 3T3 

cells.  

Orai1 was expressed in both proliferating and G0/G1 cells as determined by a double band 

detected between 37 and 50 kDa by an anti- Orai1 antibody (Figure 5.4.A). Blots were re-

probed with β-actin, used as a loading control, and Orai1 was expressed as a ratio of β-

actin in order to quantify changes in band intensity (Figure 5.4.B).   

Orai1 protein expression was significantly decreased in G0/G1 cells by ~ 53 % compared 

to proliferating (P = 0.0197). This down-regulation could possible contribute to the 

observed down-regulation in SOCE in G0/G1 NIH 3T3 cells (Chapter 4). 

As observed in HeLa cells, Orai1 expression appeared in distinct molecular weights. It 

showed a double band in both proliferating and G0/G1 NIH 3T3 cells. The upper (Figure 

5.4.C) and lower (Figure 5.4.D) Orai1 band were analysed individually. The upper band 

showed significant down-regulation of Orai1expression in G0/G1 cells by ~ 67.5% 

compared to proliferating (P = 0.0052) whereas the lower band showed no significant 

difference in Orai1 expression in G0/G1 compared to proliferating (P=0.0662). This 

implies that Orai1 exists in two different states possibly due to post-translational 

modification.    
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Figure 5.3 STIM1 expression in NIH 3T3 cells  

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 2 days. Blots were probed with anti-STIM1 antibody which detected a band at 

84 kDa or β- actin antibody which was used as a loading control and detected a band at 42 

kDa.  A) STIM1 was expressed in both proliferating (P) and G0/G1 cell populations. B) 

Quantitative measurements of bands were performed using densitometry (ImageJ software, 

Methods 2.6.9) where STIM1 was expressed as a ratio of β-actin. There was a significant 

decrease in STIM1 expression by ~ 49%   compared to proliferating (P = 0.0431*).  N=5.  
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Figure 5.4 Orai1 expression in NIH 3T3 cells  

Western blots were performed on protein extracted from NIH 3T3 cells following growing 

for 2 days in 10% FCS (proliferating = P) or 0.1% FCS (G0/G1). Blots were probed with 

anti-Orai1 antibody which detected a band between 37 and 50 kDa or β- actin antibody 

which was used as a loading control and detected a band at 42 kDa.  A) Orai1 was 

expressed in both proliferating (P) and G0/G1 cell populations. B) Quantitative 

B 
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measurements of bands were performed using densitometry (ImageJ software, Methods 

2.6.9) where Orai1 was expressed as a ratio of β-actin. There was significantly decreased 

in Orai1 expression in G0/G1 cells by ~ 53% compared to proliferating (P = 0.0197*). C) 

Quantitative analysis of upper Orai1 band. Orai1 expression was significantly down-

regulated in G0/G1 cells by ~ 67.5%compared to proliferating (P=0.0052**) cells. D) 

Quantitative analysis of lower Orai1 band. Orai1 expression was not significantly different 

in G0/G1cells compared to proliferating (P=0.0662) cells. N=4.  
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5.2.3 STIM1 and Orai1 expression in serum starved hTERT RPE-1 cells 

SOCE becomes down-regulated with serum starvation in hTERT RPE-1 cells (Chapter 4). 

In order to determine any changes in STIM1and Orai1 protein expression associated with 

the observed changes in SOCE, western blots were performed on protein extracted from 

proliferating (10% FCS)  and D2 and D4 serum starved  (2 days and 4 days 0.1% FCS). 

STIM1 was not expressed in proliferating cells. However, two patterns of STIM1 

expression were observed in D2 and D4 serum starved cell extracts. In most cases (N=4), 

there was no STIM1 expression (Figure 5.5.A) and in others (N=2), STIM1 was slightly 

expressed at a higher molecular weight, as determined by a slight upward band shift 

(Figure 5.5.B) detected just above 84kDa by an anti-STIM1 antibody. Blots were re-

probed with β-actin, used as a loading control.   

These results showed that hTERT RPE-1 may lack or have undetectable levels of STIM1 

protein, which will also be tested by immunofluorescent study in this chapter. The 

occasionally detected upshifted band could indicate phosphorylation of STIM1 or the 

presence of a different isoform or some other post-translational modifications which alter 

electrophoretic mobility and that could alter STIM1 function.  

The relationship between Orai1 expression and SOCE following serum starvation was also 

investigated in hTERT RPE-1 cells. Orai1 was expressed in proliferating, D2 and D4 

hTERT RPE-1 cells as determined by a double band detected between 37 and 50 kDa by 

an anti- Orai1 antibody (Figure 5.6.A). Blots were re-probed with β-actin as a loading 

control. 

Orai1 protein expression as a ratio of β-actin was decreased in D2 and D4 by ~14% and 

~18.5 % compared to proliferating however these changes were not significant (P= 0.0602 

and P=0.0571 respectively) (Figure 5.6.B).   

Orai1 expression showed a double band in proliferating and in D2 and D4. The upper and 

lower Orai1 bands (Figure 5.6.C) were analysed individually. This showed the same 

pattern as that of whole band analysis where there was a slight non-significant decrease in 

Orai1 expression in D2 and D4 compared to proliferating. 

The extent of down-regulation of SOCE was ~ 13.5 % and 23.5 % (Section 4.2.3) in D2 

and D4 respectively which are consistent with those seen in Orai1expression and suggest 

that Orai1 is involved in the process of SOCE in hTERT RPE-1cells.   
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Figure 5.5 STIM1 expression in hTERT RPE-1 cells 

Western blots were performed on protein extracted from hTERT RPE-1 cells following 

growing in 10% FCS (proliferating = P) or 0.1% FCS for two days (D2) and for four days 

(D4). Blots were probed with anti-STIM1 antibody which detected a band at 84 kDa or β- 

actin antibody which was used as a loading control and detected a band at 42 kDa.  A) 

STIM1 expression was not detected in both proliferating (P), D2 and D4 cells. B) STIM1 

expression was not detected in proliferating (P) while there was STIM1 expression in D2 

and D4. N=6. 
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Figure 5.6 Orai1 expression in hTERT RPE-1 cells  

Western blots were performed on protein extracted from hTERT RPE-1 cells following 

growing in 10% FCS (proliferating = P) or 0.1% FCS for 2 days (D2) and for 4 days (D4). 

Blots were probed with anti-Orai1 antibody which detected a band between 37 and 50 kDa 

or β- actin antibody which was used as a loading control and detected a band at 42 kDa. A) 

Orai1 was slightly expressed in both proliferating (P) and starved cell populations (D2 and 

D4). B) Quantitative measurements of bands were performed using densitometry (ImageJ 
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software, Methods 2.6.9) where Orai1 was expressed as a ratio of β-actin. There was no 

significant changes in Orai1 expression in starved cell populations (D2 and D4) compared 

to proliferating (P > 0.05). C) Quantitative analysis of upper and lower Orai1 bands. Orai1 

expression showed the same pattern as that of whole band analysis (B). There was no 

significant differences in Orai1 expression in D2 and D4 compared to proliferating (P > 

0.05).  N=4.   
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5.3 Results - STIM1 and Orai1 localisation  

The expression of STIM1 and Orai1 were altered in G0/G1 HeLa and NIH 3T3 cells and 

in serum starved hTERT RPE-1 cells compared to proliferating. STIM1 has been shown to 

redistribute to the PM and bind to Orai1 upon Ca2+ store depletion in sinoatrial node cells 

(Liu et al., 2015), Xenopus oocytes (Courjaret and Machaca, 2014) and HEK293 cells 

(Fukushima et al., 2012). Therefore, localisation of these SOCE proteins were 

investigated. Immunofluorescent studies were performed on HeLa, NIH 3T3 and hTERT 

RPE-1 cells; fixed cells were stained with either anti-STIM1 primary antibody or anti-

Orai1 primary antibody followed by Alexa Fluor 647 secondary antibody or Alexa Fluor 

488 secondary antibody respectively. Cells then were examined and images were taken by 

laser scanning confocal microscopy using an x63 objective (Method 2.7). 

5.3.1 STIM1 and Orai1 localisation with cell cycle arrest in G0/G1 phase in HeLa cells 

There was widespread expression of STIM1 throughout the cytoplasm in proliferating 

HeLa cells with higher levels of STIM1 in the cell nuclei and there was a clear evidence of 

localisation into foci near cell membrane (Figure 5.7.A). There was a similar expression 

pattern in G0/G1 cells (Figure 5.7.A) however, there was no apparent areas of clustering 

into foci (Figure 5.7A and B). 

Obviously, these changes in localisation of STIM1 with cell cycle arrest in G0/G1 cells 

may affect STIM1 function and its ability to contribute to the observed uncoupling and 

down-regulation of SOCE response in G0/G1 HeLa cells (Section 4.2.1). 

There was widespread expression of Orai1 throughout the cytoplasm and nuclei of 

proliferating cells and there were clear examples of clustering in the nucleus (Figure 5.8.A 

and B). There was a similar expression pattern in G0/G1 cells though nuclear Orai1 

clustering was much less (Figure 5.8.A and B). These changes in Orai1 localisation with 

cell cycle arrest in G0/G1 cells possibly contribute to the extent of SOCE activity.  
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Figure 5.7 STIM1 expression and localisation in HeLa cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (G0/G1) 

for 4days. Cells were stained with anti-STIM1 primary antibody followed by Alexa Fluor 

647   secondary antibody. A) Images were captured using laser scanning confocal 
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microscopy. In proliferating cells, STIM1 was present throughout the cell with slight 

higher expression in the nuclei (dashed arrows) and there was high occurrence STIM1 

localisation into foci at the cell membrane (solid arrows). In G0/G1 cells, STIM1 shows 

similar expression profile however, there was no apparent areas of clustering. B) A line 

scan analysis of proliferating and G0/G1 cells. The path was done in a single cell through 

an axis (yellow arrow) to track the STIM1 expression profile. The line scan of proliferating 

cell (blue line) shows focus localisation of STIM1 (*) at cell membrane and STIM 1 

expression throughout the cell with more expression in the cell nucleus, while the line scan 

of G0/G1 cell (red line) shows no focus localisation of STIM1 with a slightly lower 

STIM1 expression compared to proliferating. Line scan also shows that cell size decreased 

in G0/G1 cells compared to proliferating. Scale bars represent 10 μm. Images are 

representative of >10 images and were taken using an x63 objective. N=4.   
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Figure 5.8 Orai1 expression and localisation in HeLa cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium (G0/G1) 

for 4days. Cells were stained with anti-Orai1 primary antibody followed by Alexa Fluor 
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488 secondary antibody. A) Images were captured using laser scanning confocal 

microscopy. In proliferating cells, Orai1 was present throughout the cell and there were 

some examples of Orai1 clustering in the nuclei (solid arrows). In G0/G1 cells, Orai1 was 

present throughout the cell however, there were examples of cells that expressed higher 

levels of Orai1 in the cell nuclei (dashed arrows) which was diffuse with no apparent areas 

of clustering. B) A line scan analysis of proliferating and G0/G1 cells. The path was done 

in a single cell through an axis (yellow arrow) to track the Orai1 expression profile. The 

line scan of proliferating cell (blue line) shows Orai1 expression throughout the cell which 

is higher in the cell nucleus with occurrence of clustering (*), while the line scan of G0/G1 

cell (red line) shows similar distribution of Orai1 expression as that of proliferating with 

no apparent clustering in the nucleus. Line scan also shows that cell size decreased in 

G0/G1 cells compared to proliferating. Scale bars represent 10 μm. Images are 

representative of >10 images and were taken using an x63 objective. N=4.   

 

  



 

159 

 

5.3.2 STIM1 and Orai1 localisation with cell cycle arrest in G0/G1 phase in NIH 3T3 

cells 

Immunofluorescence analysis of NIH 3T3 cells showed that STIM1 was clearly expressed 

in proliferating NIH 3T3 cells which was much higher in nuclei. There was high 

occurrence of localisation into foci near cell membrane (Figure 5.9.A). There was a similar 

expression pattern in G0/G1 cells (Figure 5.9), however, areas of foci were not observed.  

For Orai1, as in HeLa cells, there was widespread expression of Orai1 throughout the 

cytoplasm and nuclei of proliferating NIH 3T3 cells and there was evidence of clustering 

in the nucleus (Figure 5.10.A). There was a similar expression pattern in G0/G1 cells 

though there was no occurrence of Orai1 clustering (Figure 5.10). The overall intensity of 

fluorescence of Orai1 was lower in G0/G1 cells compared to proliferating. 

These changes in localisation of STIM1 and Orai1with cell cycle arrest in G0/G1 cells 

may alter their function and subsequently contribute to the observed reduction in SOCE 

response in G0/G1 NIH 3T3 cells (Section 4.2.2).  
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Figure 5.9 STIM1 expression and localisation in NIH 3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 2 days. Cells were stained with anti-STIM1 primary antibody followed by 
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Alexa Fluor 647   secondary antibody. A) Images were captured using laser scanning 

confocal microscopy.  Proliferating cells shows high occurrence STIM1 localisation into 

foci at the cell membrane (solid arrows) and high diffuse STIM1 expression in the cell 

nucleus. In G0/G1 cells, STIM1 was present throughout the cell however, there were clear 

examples of cells that expressed higher levels of STIM1 in the cell nuclei (dashed arrows) 

with no apparent areas of clustering. B) A line scan analysis of proliferating and G0/G1 

cells. The path was done in a single cell through an axis (yellow arrow) to track the STIM1 

expression profile. The line scan of proliferating cell (blue line) shows focus localisation 

of STIM1 (*) at cell membrane and high STIM 1 expression in the cell nucleus. While the 

line scan of G0/G1 cell (red line) shows no focus localisation of STIM1 with high STIM1 

expression in the cell nucleus compared to its cytoplasm. The overall STIM1 expression 

was somewhat lower in G0/G1 cells compared to proliferating. Scale bars represent 10 μm. 

Images are representative of >15 images and were taken using an x63 objective. N=3.   
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Figure 5.10 Orai1 expression and localisation in NIH 3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 4days. Cells were stained with anti-Orai primary antibody followed by Alexa 

Fluor 488 secondary antibody. A) Images were captured using laser scanning confocal 
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microscopy. In proliferating cells, Orai1 was present throughout the cell and there were 

some examples of Orai1 clustering in the nuclei (arrows). In G0/G1 cells, Orai1 was 

present throughout the cell with less apparent areas of clustering in the nucleus (arrows). 

B) A line scan analysis of proliferating and G0/G1 cells. The path was done in a single cell 

through an axis (yellow arrow) to track the Orai1 expression profile. The line scan of 

proliferating cell (blue line) shows low Orai1 expression in the cytoplasm throughout the 

cell with much more expression in the cell nucleus with areas of clustering (*). While the 

line scan of G0/G1 cell (red line) shows that Orai1 expression was decreased compared to 

proliferating and Orai1 clustering is much less. Line scan also shows that the cell size did 

not change in G0/G1 compared to proliferating. Scale bars represent 10 μm. Images are 

representative of >10 images and were taken using an x63 objective. N=3.   
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5.3.3 STIM1 and Orai1 localisation with serum starvation in hTERT RPE-1 cells 

In hTERT RPE-1 cells, STIM1 and Orai1 expression was not detected in proliferating, D2 

serum-starved or D4 serum-starved by immunofluorescence study (Figure 5.11 B and C).  

For STIM1, this is unsurprising given that STIM1 expression was not detected in 

proliferating and most cases of D2 and D4 hTERT RPE-1 cells by western blots (Figure 

5.5).  However for Orai1, the anti- Orai1antibody used in the present study might be not 

suitable or not sensitive enough for the detection of Orai1in hTERT RPE-1 cells by 

immunofluorescence. 
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Figure 5.11 STIM1 and Orai1 immunofluorescent expression in hTERT RPE-1 cells   

Proliferating (10% FCS) cells, D2 and D4 (0.1% FCS for 2 and 4 days respectively) cells 

were stained with anti-STIM1/anti-Orai primary antibodies followed by Alexa Fluor 647 / 

Alexa Fluor 488 secondary antibodies respectively. Images were captured using laser 

scanning confocal microscopy. A) BF (bright field) images show healthy cells. B and C) 

STIM1 and Orai1 were not detected by immunofluorescent staining. Scale bars represent 

10 μm. Images are representative of >12 images and were taken using an x63 objective. 

N=4.   

   

A) B) C) 
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5.4 Discussion 

Alterations of SOCE activity were observed with cell cycle arrest in G0/G1 phase in HeLa 

and NIH 3T3cells and with serum starvation in hTERT RPE-1 cells (Chapter 4).  

The aim of the work presented in this chapter was to investigate the molecular basis 

underlying the observed alterations in SOCE by determining the level of expression and 

localisation SOCE proteins; STIM1 and Orai1.  

The results show that STIM1 expression was significantly decreased in HeLa and NIH 3T3 

cells with cell cycle arrest in G0/G1 phase consistent with a role for STIM1in arresting cell 

cycle in G0/G1 phase observed in other cell types. For example, knockdown of STIM1 

significantly inhibited cell proliferation and arrested the cell cycle at the G0/G1 phase in 

hepatocellular carcinoma cell (Wu et al., 2015), in hypopharyngeal carcinoma cells (Sun et 

al., 2015) and in human glioblastoma cells (Li et al., 2013) and results in cell cycle arrest 

in G1/S transition in cervical cancer SiHa cells (Chen et al., 2016). Similarly, previous 

studies in this laboratory showed that STIM1 expression decreased when cells arrest in G0 

like phase in differentiated N-type and S-type neuroblastoma cells, and this decrease was 

associated with SOCE down-regulation (Bell et al., 2013; Whitworth, 2015).    

Furthermore, in both HeLa and NIH 3T3 cells, the decrease in STIM1 expression (47.5% 

and 49.5 % respectively) is consistent with the previously observed down-regulation of 

SOCE (60% and 61% respectively) (Chapter 4) as STIM1 has been shown to play a role in 

SOCE (Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005) and the level of STIM1 

expression has been extensively associated with extent of SOCE activity in many cell 

types. For example, SOCE down-regulation has been shown to be induced by STIM1 

knockdown in HeLa cells (Liou et al., 2005) endothelial cells (Abdullaev et al., 2008), in 

N-type SH-SY5Y cells (Bell et al., 2013), endothelial progenitor cells (Kuang et al., 

2010), SH-SY5Y cells, HEK293 cells, Jurkat T cells and Drosophila S2 cells (Roos et al., 

2005), as well as  vascular smooth muscle cells (Takahashi et al., 2007b; Aubart et al., 

2009; Potier et al., 2009) and adipocytes (Graham et al., 2009).  

Taken together, these results indicate that a decrease in STIM1 expression underlies the 

SOCE down-regulation associated with cell cycle arrest in G0/G1 phase and suggesting a 

role for STIM1 in cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 cells. This will 

be further investigated later in serum starvation time course chapter.    
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Consistent with the changes in STIM1 expression, STIM1 localisation was altered when 

cells exit cell cycle and arrested in G0/G1 phase in HeLa and NIH 3T3 cells. There was 

clear evidence of STIM1 clustering in proliferating cells at the PM which disappeared in 

G0/G1 cells in both HeLa and NIH 3T3 cells. Consistent with this, it has been shown that 

STIM1 localisation was altered when cells arrest in G0 like phase during differentiation of 

N-type and S-type SH-SY5Y cells (Whitworth, 2015). STIM1 has been shown to 

redistribute to the PM and bind to Orai1 upon Ca2+ store depletion in sinoatrial node cells 

(Liu et al., 2015), Xenopus oocytes (Courjaret and Machaca, 2014) and HEK293 cells 

(Fukushima et al., 2012). These findings showed that STIM1 localisation has been 

intimately associated with Ca2+ store depletion and subsequent SOCE, indicating that the 

disappearance of STIM1 localisation may underlie the observed uncoupling of Ca2+ store 

depletion and SOCE associated with cell cycle arrest in G0/G1 phase in HeLa and NIH 

3T3 cells. 

Along with the role for STIM1 in SOCE, the level of Orai1 expression has been associated 

with SOCE. In this study, a decrease in Orai1 expression was associated with cell cycle 

arrest in G0/G1 phase in HeLa and NIH 3T3 and a down-regulation in SOCE.  

A similar observation has been reported previously where Orai1 expression was observed 

to be down-regulated and associated with reduction in SOCE in N-type, S-type 

differentiating SH-SY5Y cells (arresting in G0 like phase) (Bell, 2011; Whitworth, 2015). 

Orai1 protein is known to play role in cell cycle progression. Previous studies have 

demonstrated that Orai1 knockdown result in cell cycle arrest in G1/S transition cervical 

cancer SiHa cells (Chen et al., 2016), in G0/G1 phase in ARPE-19 cells (Yang et al., 

2013), induced differentiation and cell cycle arrest in G0 like phase of N-type 

neuroblastoma cells and that cell cycle block in HEK293 cells induced by SOCE inhibition 

was associated with Orai1protein (Borowiec et al., 2014).  

Similarly, Orai1 protein is shown to play an important role in cell proliferation. 

Overexpression of Orai1induced a significant increase in cell proliferation rate in HEK293 

and HeLa cells (Borowiec et al., 2014) and Orai1 knockdown caused a dramatic decrease 

in proliferation rate of in HEK293 cells (El Boustany et al., 2010), vascular smooth muscle 

cells (Potier et al., 2009) and endothelial cells (Abdullaev et al., 2008).  

Similar to STIM1 protein, the observed decrease in Orai1 expression is consistent with the 

previously observed down-regulation of SOCE in this study, as Orai1 expression level has 
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been shown to be closely associated with SOCE activity. Orai1 knockdown causes 

reduction in SOCE in neural progenitor cells (Hao et al., 2014), in differentiated N-type 

SH-SY5Y cells (Bell, 2011), acinar cells (Hong et al., 2011), osteoclasts (Zhou et al., 

2011), HEK293 cells (Gwack et al., 2007; Kawasaki et al., 2010; Borowiec et al., 2014), 

endothelial cells (Abdullaev et al., 2008) and Jurkat T cells (Gwack et al., 2007). 

Furthermore, Orai1 overexpression results in an increase in SOCE in HEK293 cells 

(Fukushima et al., 2012), restores SOCE in differentiated N-type SH-SY5Y (Bell, 2011), 

in SCID T cells and fibroblasts (Gwack et al., 2007). 

Consistent with changes observed in Orai1 expression, Orai1 localisation was altered in 

HeLa and NIH 3T3 cells when cells arrested in G0/G1 phase. There was a dispersion of 

Orai1 clusters in the nuclei in proliferating cells which was mostly absent in G0/G1 cells. 

This observation was also observed in a previous study where Orai1 localisation was 

altered in neuroblastoma cells with differentiation (Whitworth, 2015).  

Taken together this evidence suggests that the decrease in Orai1 expression underlies the 

SOCE down-regulation associated with cell cycle arrest in G0/G1 phase in HeLa and NIH 

3T3 cells. Also, these observations indicate that Orai1 may play a role in cell cycle 

progression and cell proliferation in these cells. 

In hTERT RPE-1 cells, however, STIM1expression was not detected in proliferating and 

most of serum starved cases by western blot and by immunofluorescence studies. It is 

possible the number of cells and/or the level of expression is presumably too low to be 

detected by the anti- STIM1 antibody used in this study.  

By western blot, a band at a molecular weight just above the STIM1 molecular weight was 

occasionally observed using the anti-STIM1 antibody in serum starved hTERT RPE-1 

cells. This increase in molecular weight suggested that there may be some sort of 

modification, such as phosphorylation or glycosylation which might affect STIM1 function 

and be responsible for the observed down-regulation of SOCE. Consistent with this 

observation, an increase in molecular weight has been previously observed to be associated 

with down-regulation in SOCE activity in neuroblastoma cells (Whitworth, 2015), STIM1 

phosphorylation at multiple serine residues has been shown to inhibit SOCE by preventing 

puncta formation in endothelial cells (Sundivakkam et al., 2013) and in HEK 293 cells 

(Smyth et al., 2009).  
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Conversely, in other cell types, STIM1 phosphorylation plays a role in STIM1 activation 

during ER Ca2+
 store depletion. For example, STIM1 phosphorylation plays a key role in 

conducting SOCE activation in human platelets (Lopez et al., 2012) and in HEK293 cells 

(Pozo-Guisado et al., 2010). It has been shown that STIM1 phosphorylation both activates 

and inactivates STIM1-dependent SOCE depending on the cell type, cell cycle phase, and 

the specific modified residue (Pozo-Guisado et al., 2013). 

Similarly, STIM1 has been shown to be glycosylated (Manji et al., 2000; Dziadek and 

Johnstone, 2007), which can affect localisation of STIM1 to the PM (Williams et al., 

2002) and subsequently alter SOCE activity.   

It is noteworthy that STIM1 has alternative isoforms; STIM1L and STIM1S that serve 

different functions. STIM1L has recently been recognised (Darbellay et al., 2011) and has 

been shown to activate SOCE in cells lacking STIM1 (Sauc et al., 2015). STIM1L has 

been shown to induce SOCE quicker than STIM1S, attributable to its association with 

Orai1 at rest rather than needing to migrate to bind Orai1 following store depletion like 

that of STIM1S (Darbellay et al., 2011; Horinouchi et al., 2012). Therefore, it is possible 

that SOCE in hTERT RPE-1 cells is mediated by STIM1L.  

In summary, the results showed that hTERT RPE-1 cells may lack/or express a very low 

level of STIM1 and/or other isoforms of STIM1 or may have another STIM homologues; 

STIM2 that may responsible for the observed changes in SOCE with serum starvation. 

Orai1 expression was slightly down-regulated in hTERT RPE-1 cells by ~14% and ~18.5 

% in D2 and D4 of serum starvation compared to proliferating. Though these changes were 

not significant, it was consistent with the extent of down-regulation of SOCE which was ~ 

13.5 % and 23.5 % (Section 4.2.3) confirming a role of Orai1in the process of SOCE in 

hTERT RPE-1cells. 

While Orai1 expression was detected by western blot using anti- Orai1 antibody, the 

sensitivity of this antibody seems to be insufficient for the detection of Orai1in hTERT 

RPE-1 cells by immunofluorescence study (Figure 5.11). 

The extent of the down-regulation of  Orai1 expression (~ 68% and ~ 53%) in HeLa and 

NIH3T3 cells respectively could not be a direct effect of serum starvation as these 

decreases were far less and not significant in hTERT RPE-1 cells ~14% and ~18.5 % in 

D2 and D4 of serum starvation respectively. In addition, the extent of the down-regulation 
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of STIM1 was 47.5% and 53% in HeLa and NIH3T3 cells respectively. A previous study 

showed that no significant changes in either STIM1 or Orai1 expression levels were 

observed in SHSY-5Y and HSG cells under serum-free conditions (Sukumaran et al., 

2015). From that previous study (Sukumaran et al., 2015) and since hTERT RPE-1 cells 

did not enter quiescent G0/G1 phase, these data imply that the down-regulation of SOCE 

proteins is associated with the cell cycle arrest in G0/G1 phase. 
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5.5 Conclusion 

 A down regulation of STIM1 and Orai1 was observed in HeLa cells with cell cycle 

arrest in G0/G1 phase which possibly could explain the previously observed down-

regulation of SOCE (Chapter 4). 

 A down regulation of STIM1 and Orai1 was observed in NIH 3T3 cells with cell 

cycle arrest in G0/G1 phase indicating a role for these proteins in the previously 

observed down-regulation of SOCE (Chapter 4). 

  Loss of STIM1 localisation at PM with cell cycle arrest in G0/G1 phase in both 

HeLa and NIH 3T3 cells might be responsible for the previously observed 

alterations in SOCE activity. 

 In hTERT RPE-1 cells, Orai1 showed a slight decrease that was consistent to the 

slight down-regulation of SOCE previously observed (Chapter 4). 

 Compared to hTERT RPE-1 cells, the alterations of Orai1 in HeLa and NIH 3T3 

cells appeared to be attributed to cell cycle arrest and not serum starvation. 
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Chapter 6 Serum Starvation Time Course 

6.1 Introduction 

As previously shown in this study, serum starvation induced cell cycle arrest in G0/G1 

phase in HeLa and NIH 3T3. Associated with the cell cycle arrest in G0/G1 phase, there 

was an uncoupling and a down-regulation of Ca2+ store release and SOCE and a decrease 

of the SOCE proteins STIM1 and Orai1.  

For hTERT RPE-1 cells, serum starvation gave no increase in G0 cells, however, a down-

regulation of Ca2+ store release and SOCE and changes of the SOCE proteins STIM1 and 

Orai1 were observed at day two and day four of the serum starvation time course.  

The sequence of events occurring in the down regulation of SOCE and its proteins during 

serum starvation is not clear and therefore this chapter aims to investigate SOCE and 

SOCE proteins over a serum starvation time-course in the two cell lines; HeLa and NIH 

3T3 where cells enter G0/G1 phase, and to compare these results with RPE-1 cells which 

don’t enter G0/G1 upon starvation. 

Throughout this chapter, the cells were grown in 10% FCS medium will be referred to as  

proliferating, whilst serum starved cells (0.01% FCS) will be referred to by the 

corresponding  day of serum starvation time course.  

6.2   Results - Changes in SOCE occurred in the first day of serum starvation time 

course 

6.2.1 In HeLa cells  

From D1 of  the serum starvation time course, total Ca2+ store release (50.22± 2.16 FRUs) 

was significantly down-regulated compared to proliferating by ~33%   (75.38 ± 2.08 

FRUs) and total SOCE was also down-regulated  by ~ 54% (207 ± 7.92  FRUs) compared 

to proliferating (451 ± 12.9 FRUs) (All P < 0.0001) (Figure 6.1.A). At D2, there was some 

recovery, where there was a significant down-regulation in total Ca2+ store release by ~ 

23%  (57.91 ± 2.824 FRUs) and in total SOCE by ~ 38 %  (279.4 ± 11.35 FRUs) (All P < 

0.0001) (Figure 6.1.A). 
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Total Ca2+ store release was further down-regulated in D3 by  ~ 37% (47.42 ± 1.7FRUs), 

D4 by ~ 35%  (48.8 ± 1.59 FRUs) and D5 by ~ 31%  (51.76± 1.691FRUs) compared to 

proliferating (75.38 ± 2.08 FRUs)  (All P < 0.0001). SOCE was also further down-

regulated in D3 by 59.5%, (181.5 ± 5.61 FRUs), D4 by ~ 59 % (184.8 ± 5.51FRUs) and 

D5 by ~ 60% (180.7 ± 6.53 FRUs) compared to proliferating (451 ± 12.9 FRUs) (All P < 

0.0001).  

These results showed that serum starvation of HeLa cells induced changes in Ca2+ store 

release and SOCE in a multi-step manner, causing a down-regulation from D1 of serum 

starvation, some recovery at D2 then a further down-regulation at D3 after which the Ca2+ 

store release and SOCE were not further altered. This multi-step pattern correlates with the 

multi-step changes in the increase in percentage of G0 cells (Section 3.3.1, Figure 3.13).   

These data were further confirmed by analysing maximal (as opposed to total) Ca2+ store 

release and maximal SOCE, using measurements of height of peak (HP) of Ca2+-addback 

traces (method 2.8) (Figure 6.1.B). Maximal Ca2+ store release was significantly down-

regulated at D1 by ~ 44% (0.18 ± 0.0058 FRUs), D2 by ~ 46% (0.17 ± 0.005FRUs), D3 by 

~ 36% (0.21 ± 0.005FRUs), D4 by ~ 40% (0.19 ± 0.006FRUs) and D5 by ~ 38%  (0.2 ± 

0.006 FRUs) compared to proliferating (0.32 ± 0.008FRUs) (All P < 0.0001).  

Consistent with the pattern of changes of total SOCE decrease, maximal SOCE was 

decreased in a multistep manner. Maximal SOCE was significantly down-regulated at D1 

by ~33% (0.43 ± 0.013FRUs) compared to proliferating (0.64 ± 0.015 FRUs). At D2 there 

was some recovery where maximal SOCE was down regulated by ~17% (0.54 ± 0.017 

FRUs) compared to proliferating (0.64 ± 0.015 FRUs). A D3 maximal SOCE was further 

down-regulated by ~34% (0.42 ± 0.009 FRUs) compared to proliferating and showed no 

further significant changes in D4 (0.403 ± 0.008 FRUs) and D5 (0.349 ± 0.009 FRUs) (All 

P < 0.0001) (Figure 6.1.B). Therefore both maximal Ca2+ store release and maximal SOCE 

were significantly reduced from the first day of serum starvation and remained down-

regulated throughout the remainder of the five-day serum starvation time course. 

Rate of rise (reflecting the speed of Ca2+ store release and activation of SOCE) and rate of 

decline (reflecting the speed of Ca2+ store emptying and deactivation of SOCE) of Ca2+-

addback traces were also analysed.  

Rate of Ca2+ store release was significantly down-regulated from D1 by ~64 % (1.15 ± 0.5 

×10-3FRUs), D2 by ~ 65 % ( 1.14 ± 0.3 ×10-3FRUs), D3 by ~ 44.5 % (1.8 ± 0.4×10-3 
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FRUs) , D4 by ~ 48%  (1.68 ± 0.5×10-3FRUs) and D5 by ~ 41%  (0.92 ± 0.4 ×10-3 FRUs) 

compared to proliferating (3.25 ± 0.1 ×10-3FRUs) (All P < 0.0001). This observation 

suggesting a decrease in of Ca2+ store capacity or decrease in TG sensitivity. 

Rate of SOCE was also significantly down-regulated from D1 by ~27 % (5.75 ± 0.4×10-3 

FRUs), D2 by ~ 35.5 % (5.08 ± 0.2×10-3 FRUs), D3 by ~ 37 % (4.99 ± 0.1 ×10-3 FRUs) , 

D4 by ~ 30% (5.5 ± 0.1×10-3FRUs) and D5 by ~ 37.5 % (4.93  ± 0.2×10-3 FRUs) 

compared to proliferating (7.9± 0.4×10-3FRUs) (All P < 0.0001) (Table 6.1).  

Decline rate of Ca2+ store release was significantly increased at day four D4 by ~ 48 %  

(9.3 ± 1.24 × 10-5 FRUs) and at day five D5 by 91 % (11.26 ± 1.67 ×10-5 FRUs) compared 

to proliferating (5.897 ± 1.64×10-5 FRUs) (All P<0.05). 

 Decline rate of SOCE increased by 40%, 8%, 43 %, 39% in D1, D2, D3 and D4 

respectively compared to proliferating, however the increase was not significant (P = 

0.682). At D5 the decline rate of SOCE was significantly increased by ~54% (7.54 ± 2.06) 

compared to proliferating (4.82 ± 5.02) (P < 0.0001) (Table 6.1). 

These findings suggest that serum starvation slows Ca2+ store release and increases the rate 

of emptying from the day one suggesting a decrease in Ca2+ store size or sensitivity to TG.  

Likewise, serum starvation slows the rate at which SOCE is activated from day one and 

increases rate of SOCE deactivation. Thus both Ca2+ store release and SOCE responses are 

smaller and shorter with serum starvation.  
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 Total 

All P <0.0001 

Maximal 

All P <0.0001 

ROR 

All P <0.0001 

ROD 

All P <0.05 

Values 

(FRUs) 
% change 

Values 

(FRUs) 
% change 

Values         

(×10-3 FRUs) 
% change 

Values       

(×10-5 FRUs) 
% change 

Ca2+ 

release 

Proliferating 75.38±2.08 ------ 0.32 ± 0.008 ------ 3.25 ± 0.1 ------ 5.89 ± 1.16 ------ 

D1 50.22± 2.16 -33% 0.18± 0.005 -44 % 1.15 ± 0.5 -65 % 9.29 ± 1.84 58% 

D2 57.91± 2.82 -23% 0.17 ±0.005 -47% 1.14 ± 0.3 -65 % 8.53± 2.67 45% 

D3 47.42 ± 1.7 -37% 0.21 ± 0.005 -34% 1.8  ± 0.4 -44.5% 8.03 ± 1.65 36% 

D4 48.8 ± 1.59 -35% 0.19 ± 0.006 -40.5% 1.68 ± 0.5 -48 % 9.3 ± 1.24* 58% 

D5 51.76± 1.69 -31% 0.20± 0.006 -38% 0.92 ± 0.4 -72% 7.52 ± 2.06 28% 

SOCE Proliferating 451 ± 12.9 ------ 0.64 ± 0.015 ------ 7.9  ± 0.0004 ------ 4.82 ± 5.02 ------ 

D1 207 ± 7.929 -54% 0.43 ± 0.013 -32.5% 5.75  ± 0.0004 -27 % 6.83 ± 1.84 42% 

D2 279.4± 11.3 -38% 0.54 ± 0.017 -15.5 % 5.08  ± 0.0002 -35.5% 5.29 ± 2.67 10% 

D3 181.5± 5.61 -60%, 0.42± 0.009 -34 %, 4.99 ± 0.0001 -37% 7.03 ± 1.65 46% 

D4 184.8± 5.51 -59.2% 0.40 ± 0.008 -38%, 5.5   ± 0.0001 -29.5% 6.81 ± 1.24* 41% 

D5 180.7± 6.53 -60% 0.34± 0.009 -47 % 4.93  ± 0.0002 -37.5% 7.54 ± 2.06 56% 

Table 6.1 Changes of Ca2+ signalling responses over five-day serum starvation in HeLa cells 
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The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for 

TG and CaCl2  

responses from calibrated fluorescence traces were calculated using Excel functions in a template spread sheet (Methodology chapter 2.8, 

figure 2.10) over five days of serum starvation. Data represented as means ± SEM.  FRUs (fluorescence ratio unit). For proliferating cells n 

=228, for D1 n = 200, D2 n = 232, D3 n = 231, D4 n= 206 and D5 n= 167. N=5. 
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Figure 6.1 Serum starvation induces SOCE changes in a multi-step manner in HeLa 

cells 

HeLa cells were grown in either 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for five days. D1, D2, D3, D4 and D5 represent one day, two days, three days, 

four and five days of serum starvation. Graph shows mean of total Ca2+ entry into the 

cytosol following Ca2+ store release in response to stimulation with 200nM thapsigargin 

(TG) and subsequent SOCE following the addition of 2mM CaCl2. Changes in 

A 

B 
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fluorescence ratio units (FRUs) reflect changes in [Ca2+]i. At D1, total Ca2+ store release 

was significantly down-regulated by 33.37% and total SOCE was down-regulated by 

54.09% compared to proliferating (P <0.0001****). At D2, there was some recovery with 

total Ca2+ store release down-regulated by 23% and a significant down-regulation in SOCE 

by 38% compared to proliferating (P< 0.0001****). Comparing D2 to D1, there was a 

significant increase in total Ca2+ store release, P = 0.0356* and in total SOCE, 

P<0.0001****. Total Ca2+ store release was further down-regulated by 37%, 35% and 31% 

at D3, D4 and D5 respectively compared to proliferating (P < 0.0001****). SOCE was 

further down-regulated by 59%, 59% and 59 % at D3, D4 and D5 respectively compared 

to proliferating (P < 0.0001****). B)  Maximal Ca2+ store release was significantly down-

regulated by 44%, 45%, 36%, 40%, 38% in D1, D2, D3, D4 and D5 respectively compared 

to proliferating (P < 0.0001****). Maximal SOCE was down-regulated by 32%, 16%, 

34%, 37%, 46 % in D1, D2, D3, D4 and D5 respectively compared to proliferating (P < 

0.0001****). Error bars represent S.E.M. For proliferating cells n =228, for D1 n = 200, 

D2 n = 232, D3 n = 231, D4 n= 206 and D5 n= 167. N=5. 
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6.2.2  In NIH 3T3 cells  

Ca2+ signalling changes were measured in NIH 3T3 cells over three day serum starvation 

time course as at day four of serum starvation cell viability was significantly decreased 

(Section 3.2.2 and 3.3.2). 

At day one of serum starvation, an uncoupling of total Ca2+ store release and SOCE was 

observed. Total Ca2+ store release (40.2 ± 2.5) was not significantly different compared to 

proliferating (46.4 ± 2.20), (P= 0.1859) whilst total SOCE (60.43 ± 3.6 FRUs) was 

significantly down-regulated compared to proliferating (84.28 ± 3.82) by 28 % (P < 0.0001) 

(Figure 6.2.A). 

At D2, total Ca2+ store release (10.55 ± 0.98) was significantly down-regulated by 77 % 

and at D3 (10.22 ± 1.15) by 78% compared to proliferating (46.4 ± 2.20) (All P < 0.0001). 

SOCE was further significantly down-regulated in D2 (32.49 ± 2.5) and D3 (32.94 ± 4.39) 

by 61.5 % and 61% compared to proliferating (84.28 ± 3.82) (All P < 0.0001) (Figure 

6.2.A). 

Thus an uncoupling of Ca2+ store release and SOCE occurs in the first day of serum 

starvation. From day two of serum starvation there is reduced Ca2+ store release and SOCE 

and these were coupled suggesting that either SOCE uncoupling is an early effect of serum 

starvation or that SOCE uncoupling is involved only in the initiation of entering the NIH 

3T3 cells into quiescence but not in maintaining the quiescence state.   

Similarly, at D1, maximal Ca2+ store release (0.15 ± 0.007 FRUs) was significantly up-

regulated by ~ 26 % compared to proliferating (0.12 ± 0.004 FRUs) (P < 0.0001) and 

SOCE (0.17 ± 0.007 FRUs) was down-regulated by ~ 30 % compared to proliferating 

(0.24 ± 0.009 FRUs) (P < 0.0001). At D2 maximal Ca2+ store release (0.0428 ± 0.003 

FRUs) was significantly down-regulated by 65 % and at D3 (0.045 ± 0.003 FRUs) by 

62.5% compared to proliferating (0.12 ± 0.004 FRUs) (All P < 0.0001). Maximal SOCE 

was also down-regulated in D2 (0.15 ± 0.011 FRUs) and D3 (0.14 ± 0.011 FRUs) by 36.5 

% and 40% compared to proliferating (0.24 ± 0.009 FRUs) (All P < 0.0001) (Figure 

6.2.B). 

At D1, rate of Ca2+ store release (0.81 ± 0.31×10-3 FRUs) was down-regulated by ~ 15.5%, 

at D2 (0.54±0.02×10-3 FRUs) by ~ 43.5% and at D3 (0.64 ± 0.04 ×10-3 FRUs ) by ~ 33% 
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compared to proliferating (0.968 ± 0.047 ×10-3 FRUs), however this down- regulation was 

not significant (P > 0.05) (Table 6.2). 

Rate of SOCE was not significantly different at D1 (4.69 ± 0.32 × 10-3 FRUs), D2 (4.02 ± 

0.511 × 10-3 FRUs) and D3 (3.57 ± 0.28 × 10-3 FRUs) compared to proliferating (4.85 ± 

0.39 × 10-3 FRUs) (P < 0.999) (Table 6.2). 

The increase in maximal Ca2+ release and rate of Ca2+ store release at D1 of the three-day 

serum starvation time course in conjunction with the previous observation of no change in 

store size suggests an increase in the sensitivity to TG as an initial response to serum 

starvation. 

Decline rate of Ca2+ store release was slightly increased by ~ 12.5 % at D1, decreased by ~ 

60% at D2 and increased again by ~ 22% at D3 compared to proliferating however this 

changes were not significant (P = 0.976) compared to proliferating. Decline rate of SOCE 

increased gradually over the 3-day serum starvation time course by ~ 32.59%, ~ 70.51% 

and ~ 93.9% in D1, D2 and D3 respectively compared to proliferating. The increase 

became significant at D3 (P = 0.0139) (Table 6.2). This observation indicates that serum 

starvation causes an increase in the speed of SOCE deactivation with subsequent smaller 

and shortened SOCE response. 

These results show that SOCE was down- regulated from the first day in a gradual manner 

and reached its peak of down-regulation at day 2 which correlates with the changes in the 

G0 cells (Section 4.2.2, Figure 3.16).
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 Total  

All P <0.0001 

Maximal 

All P <0.0001 

ROR  

All P > 0.05 

ROD 

All P > 0.05 

Values 

(FRUs) 

% 

changes 

Values 

(FRUs) 

% 

changes 

Values           

( ×10-3 FRUs) 

% 

changes 

Values         

(×10-5 FRUs) 

% 

changes 

Ca2+ 

release 

Proliferating 46.4 ± 2.20 ------ 0.12 ± 0.004 ------ 0.96± 0.047 ------ 13.35 ± 3.46 ------ 

D1 40.2 ± 2.5 -13% 0.15 ± 0.007 25% 0.81 ± 0.31 -15.5% 11.69 ± 4.85 12.5% 

D2 10.55±0.98 -77%    0.042 ± 0.003 -65% 0.54±0.02 -43.5% 5.22 ± 3.22 -61% 

D3 10.22±1.15 -78% 0.045 ± 0.003 -62.5% 0.64± 0.04 -33% 16.29 ± 5.39 22% 

SOCE Proliferating 84.28±3.82 ------ 0.24 ± 0.009 ------ 4.85 ± 0.39 ------ 1.7 ± 9.172 ------ 

D1 60.43 ± 3.6 -28% 0.17 ± 0.007 -30% 4.69 ± 0.32 -3% 2.52 ± 9.934 48% 

D2 32.49 ± 2.5 -61.5% 0.15 ± 0.011 -37.5% 4.02 ± 0.51 -17% 5.76 ± 6.489 239% 

D3 32.94±4.39 -61% 0.14 ± 0.011 -42% 3.57 ± 0.28 -26% 2.78 ± 8.35 64% 

Table 6.2 Changes of Ca2+ signalling responses over 3-day serum starvation time course in NIH 3T3 cells 

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for 

TG and CaCl2 responses from calibrated fluorescence traces were calculated using Excel functions in a template spread sheet (Methodology 

chapter 2.8, figure 2.10) over three days of serum starvation. Data represented as means ± SEM.  FRUs (fluorescence ratio unit). For 

proliferating cells n =249, for D1 n = 198, D2 n = 128 and D3 n = 109, N=3. 
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Figure 6.2  Serum starvation induces SOCE changes in a gradual manner in NIH 3T3 

cells 

NIH 3T3 cells were grown in either 10% FCS medium (proliferating) or 0.1% FCS 

medium (starved) for 3 days. D1, D2 and D3 represent one day, two days and three days of 

serum starvation. Graph shows mean of total Ca2+ entry into the cytosol following Ca2+ 

A 
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store release in response to stimulation with 200nM thapsigargin (TG) and subsequent 

SOCE following the addition of 2mM CaCl2 in proliferating and starved cells. Changes in 

fluorescence ratio units (FRUs) reflect changes in [Ca2+]i. Total Ca2+ store release was 

significantly down-regulated by 77% and  77% in D2 and D3 respectively compared to 

proliferating (P < 0.0001****). However, store release was not significantly different 

between proliferating and D1 cells, P= 0.1859. SOCE was significantly down-regulated by 

28%, 61% and 60% in D1, D2 and D3 respectively compared to proliferating (P < 

0.0001****). B) At D1, maximal Ca2+ store release was significantly up-regulated by ~ 26 

% compared to proliferating, P< 0.0001****. At D2 and D3, maximal Ca2+ store release 

was significantly down-regulated by ~ 65% and ~ 62.5% respectively compared to 

proliferating (All P < 0.0001****). Maximal SOCE was down-regulated by ~ 30%, ~ 36% 

and ~ 39% in D1, D2 and D3 respectively compared to proliferating (All P < 0.0001****). 

Error bars represent S.E.M. For proliferating cells n =249, for D1 n = 198, D2 n = 128 and 

D3 n = 109, N=3. 
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6.2.3 In hTERT RPE-1 cells 

Serum starvation induced significant down-regulation of total Ca2+ store release on D1 by 

~ 28% (28.05 ± 1.76 FRUs), D2 by ~ 45%, (21.22 ± 0.9604 FRUs), D3 by ~ 45 % (21.26 

± 0.659 FRUs), D4 by ~ 40% (23.25±0.933FRUs) and D5 by ~37.5% (24.32±0.85FRUs), 

compared to proliferating (38.89 ± 1.05 FRUs) (All P < 0.001) (Figure 6.3.A). SOCE was 

also significantly down-regulated at D1 by ~ 21.5%, (47.98 ± 2.17 FRUs), D2 by ~ 13.5% 

(52.89 ± 1.643 FRUs), D3 by ~ 20.5 % (48.59 ± 2.57 FRUs), D4 by ~ 23.5% (46.58± 2.08) 

and D5 by ~ 21% (48.58± 4.08), compared to proliferating (61.21± 1.298 FRUs) (All P < 

0.05) (Figure 6.3.A). 

This data suggests either a reduction of store size or sensitivity to TG with subsequent 

reduction in SOCE occurring from day one of the five-day serum starvation time course.  

These results also showed that there is an uncoupling of SOCE from Ca2+ store release 

from day two of serum starvation that was maintained over the starvation time course.  

Consistent with the above results, maximal Ca2+ store release was significantly down-

regulated in D1 by ~ 20% (0.14 ± 0.004 FRUs), D2 by ~ 40% (0.105 ± 0.007 FRUs), D3 

by ~ 35.5 % (0.11 ± 0.003 FRUs), D4 by ~37.5% (0.11 ± 0.004 FRUs) and D5by  ~ 42 %  

(0.101 ± 0.003 FRUs) compared to proliferating (0.175 ± 0.004 FRUs) (All P < 0.001) 

(Figure 6.3.B). Maximal SOCE was also significantly down-regulated at D1 by ~ 30% 

(0.28 ± 0.006 FRUs), D2 by ~ 37% (0.25± 0.005 FRUs), D3 by ~ 35.5 % (0.26 ± 0.008 

FRUs), D4 by ~ 43% (0.23± 0.009 FRUs) and D5 by ~ 35% (0.26± 0.01FRUs)    

compared to proliferating (0.40 ± 0.008 FRUs) (All P < 0.01) (Figure 6.3.B). 

Rate of Ca2+ store release was not significantly different over the five day serum starvation 

time course compared to proliferating (P > 0.05). D1 (1.79 ± 0.09 ×10-5 FRUs), D2 (2.11 ± 

0.25 ×10-5 FRUs), D3 (1.84 ± 0.077 ×10-5), D4 (2.01±0.26 ×10-5 FRUs) and D5 (1.91±0.35 

×10-5 FRUs). Rate of SOCE was significantly decreased in D2 by ~ 36%  (4.39 ± 0.32×10-

3FRUs), D3 by ~ 32% (4.25 ± 0.21×10-3 FRUs), D4 by ~ 28%  (4.601±0.15 × 10-3 FRUs) 

and D5 by ~ 37% (4.32±0.13 × 10-3 FRUs)  compared to proliferating (6.86 ± 0.14× 10-3 

FRUs) (P < 0.01) (Table 6.3). 

Decline rate of Ca2+ store release and SOCE was not significantly changed over the five 

day serum starvation time course (All P > 0.05) (Table 6.3).
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 Total  Maximal  ROR  ROD  

Values (FRUs) % 

change 

Values (FRUs) % 

change 

Values               

( ×10-3 FRUs) 

% 

change 

Values         

(×10-5  FRUs) 

% 

change 

Ca2+release Proliferating 38.89±1.05 ------ 0.175±0.004  ------ 1.84 ± 0.08 ------ 20.95 ± 7.5 ------ 

D1 28.05±1.76*** -28% 0.14±0.004*** -20% 1.79 ± 0.09 -2.5% 23.2 ± 4.27   10.5% 

D2 21.2± 0.96*** -45% 0.10±0.007*** -43% 2.11 ± 0.25 14.5% 14.15 ± 10.08 -32% 

D3 21.26±0.65*** -45% 0.11±0.003*** -37% 1.84 ± 0.077 0 13.23 ± 9.07 -36% 

D4 23.25±0.93*** -40% 0.11±0.004*** -37.5% 2.01±0.26 9% 17.51± 5.08 -16.5% 

D5 24.32±0.85*** -37.5% 0.10±0.003*** -42% 1.91±0.35 4% 20.43± 4.1 -2% 

SOCE Proliferating 61.21±1.29 ------ 0.40 ± 0.008 ------ 6.86 ± 0.14 ------ 133.7 ± 11.94 ------ 

D1 47.98±2.17* -21.5% 0.28 ± 0.006** -30% 6.12 ± 0.37 -10% 108.9 ± 15.46 -18% 

D2 52.89±1.64* -13.5% 0.25± 0.005** -38% 4.39 ± 0.32** -36% 86.27 ± 9.07 -35% 

D3 48.59 ± 2.57* -20.5 % 0.26 ± 0.008** -35% 4.25 ± 0.21** -38% 91.6 ± 15.31 -31% 

D4 46.58±2.08* -23.5% 0.23± 0.009** -43% 4.6±0.15** -33% 90.42±10.06 -32% 

D5 48.58±4.08* - 21% 0.26± 0.01** -35% 4.32±0.13** -37% 97.22±11.21 -27% 

Table 6.3 Changes of Ca2+ signalling responses over five-day serum starvation time course in hTERT RPE-1 cells 
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The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for 

TG and CaCl2 responses from calibrated fluorescence traces were calculated using Excel functions in a template spread sheet (Methodology 

chapter 2.8, figure 2.10) over three days of serum starvation. Data represented as means ± SEM.  FRUs (fluorescence ratio unit) P< 0.05 *, P 

< 0.01**, P < 0.001***.  For proliferating cells n =338, for D1 n = 211, D2 n = 195 and D3 n = 196, N=3. For D4 and D5 N=2. 
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Figure 6.3 Serum starvation induces SOCE changes from first day in hTERT RPE-1 

cells 

hTERT RPE-1 cells were grown in either 10% FCS medium (proliferating) or 0.1% FCS 

medium (starved) for 3 days. D1, D2 and D3 represent one day, two days and three days of 

serum starvation. Graph shows mean of total Ca2+ entry into the cytosol following Ca2+ 

store release in response to stimulation with 200nM thapsigargin (TG) and subsequent 

SOCE following the addition of 2mM CaCl2 in proliferating and starved cells. 

Fluorescence ratio units (FRUs) represent a change in [Ca2+]i. Total Ca2+ store release was 
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significantly down-regulated by ~ 28%, ~ 458% ~ 45%, ~40% and ~ 37.5% in D1, D2, 

D3, D4 and D5 respectively compared to proliferating (All P < 0.001***). SOCE was also 

significantly down-regulated by ~ 21.5%, ~13.5%, ~ 20.5 %, 23.5% and 21% in D1, D2, 

D3, D4 and D5 respectively compared to proliferating (All P < 0.05*). B) Maximal Ca2+ 

store release was significantly down-regulated by ~ 20%, ~40% and ~ 35.5%, 37.5 and 

42% in D1, D2, D3,D4 and D5 respectively compared to proliferating (All P < 0.001***). 

Maximal SOCE was down-regulated by ~ 30%, ~37% 35.5%, 43% and35% in D1, D2, 

D3, D4 and D5 respectively compared to proliferating (All P < 0.01**). Error bars 

represent S.E.M. For proliferating cells n =338, for D1 n = 211, D2 n = 195 and D3 n = 

196, N=3. For D4 and D5 N=2. 
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6.3   Results - Changes in SOCE proteins expression occurred from the first day of 

serum starvation time course 

As seen above, SOCE became down-regulated from the first day of serum starvation. In 

order to determine any changes in STIM1and Orai1 protein expression associated with the 

observed changes in SOCE, cells were grown in 10% FCS medium or 0.1% FCS medium 

(starved) for four days for HeLa and RPE-1 cells and three days for NIH 3T3 cells and 

then western blots were performed on protein extracted from proliferating and starved cells 

(Methods 2.6). 

6.3.1 In HeLa cells 

STIM1 was expressed before and over the 5-day serum starvation time course in HeLa 

cells as determined by a band detected at 84kDa by an anti-STIM1 antibody (Figure 

6.4.A). Blots were re-probed with β-actin, used as a loading control, and STIM1 levels 

were expressed as a ratio of β-actin in order to quantify changes in band intensity (Figure 

6.4.B).   

STIM1 protein expression was significantly decreased by~ 53%, ~ 34.5%, ~39%, ~49% 

and ~60.5% on D1, D2,D3,D4 and D5 respectively compared to proliferating (P < 0.01**).  

Similarly, Orai1 was expressed in both proliferating and starved cells as determined by a 

band detected between 37 and 50 kDa by an anti- Orai1 antibody (Figure 6.5.A). Blots 

were re-probed with β-actin, used as a loading control, and Orai1 was expressed as a ratio 

of β-actin in order to quantify changes in band intensity (Figure 6.5.B).   

Orai1 protein expression was significantly decreased in D1, D2 and D3 by ~ 36%, ~ 42%, 

~ 29% respectively compared to proliferating (P <0.05), at D4 and D5 Orai1 was further 

decrease by ~ 68.5% and ~ 66% respectively compared to proliferating (P < 0.01). This 

down-regulation would possible contribute to the dampened SOCE observed in day three 

and day four of serum starvation time course in HeLa cells (Chapter 3).  

Orai1 expression showed a triple band in proliferating and over the serum starvation time 

course. The upper, middle and lower (Figure 6.5.C) Orai1 band were analysed 

individually. Orai1 expression showed the same pattern as that of whole band analysis 

where it was significantly decreased from the first day of serum starvation, show some 
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recovery at D2 and D3 however it is still significantly decreased compared to proliferating 

cells (P < 0.05). In D4 and D5, there was a further decrease in Orai1 expression compared 

to proliferating (P < 0.01).  

These results showed that there was a parallel relation between SOCE and STIM1 changes 

(Figure 6.6.A) whereas Orai1 expression was inversely correlated to the changes in G0 

cells (Figure 6.6.B).  
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Figure 6.4  STIM1 expression was decreased from first day of serum starvation in 

HeLa cells  

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for 5 days. Blots were probed with anti-STIM1 antibody which detected a band at 

84 kDa or β- actin antibody which was used as a loading control and detected a band at 42 

kDa. A) STIM1 was expressed in proliferating (P) and starved cell populations D1, D2, 

D3, D4 and D5. Blots were re-probed with anti-β-actin antibody (42kDa), used as a 

loading control. B) Quantitative measurements of bands were performed using 

densitometry (ImageJ software, Methods 2.6.9) where STIM1 was expressed as a ratio of 

β-actin. There was a significant decrease in STIM1 expression from day one of the serum 

starvation time-course by ~ 53% (P < 0.01**). STIM1 expression was also decreased by ~ 

34.5%, ~39%, ~49% and ~60.5% in D2,D3,D4 and D5 respectively compared to 

proliferating (P < 0.01**). N = 5.   

B 
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Figure 6.5 Orai1 expression was decreased from first day of serum starvation in 

HeLa cells  

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for 5 days. Blots were probed with anti-Orai1 antibody which detected a band 

between 37 and 50 kDa or β- actin antibody which was used as a loading control and 

A 

B 

C 
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detected a band at 42 kDa. A) Orai1 was expressed in proliferating (P) and starved cell 

populations D1, D2, D3, D4 and D5. B) Quantitative measurements of bands were 

performed using densitometry (ImageJ software, Methods 2.6.9) where Orai1 was 

expressed as a ratio of β-actin. There was a significant decrease in Orai1 expression in D1, 

D2 and D3 by ~ 36%, ~ 42%, ~ 29% respectively compared to proliferating (P <0.05*), at 

D4 and D5 Orai1 was further decrease by ~ 68.5% and ~ 66% respectively compared to 

proliferating (P < 0.01**). C) Quantitative analysis of upper, middle and lower Orai1 

bands. Orai1 expression showed the same pattern as that of whole band analysis (B). Orai1 

expression was significantly decreased from the first day of serum starvation, show some 

recovery at D2 and D3 however it is still significantly decreased compared to proliferating 

cells (P < 0.05*). In D4 and D5, there was a further decrease in Orai1 expression compared 

to proliferating (P < 0.01**). N=4.   
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Figure 6.6 A comparison between changes in STIM1 and Orai1 in relation to SOCE 

and percentage of G0 cell respectively in HeLa cells 
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6.3.2 In NIH 3T3 cells 

As seen in HeLa cells, STIM1 was also expressed before and over the three day serum 

starvation time course in NIH 3T3 cells as determined by a band detected at 84kDa by an 

anti-STIM1 antibody (Figure 6.7.A). Blots were re-probed with β-actin and STIM1 was 

expressed as a ratio of β-actin which showed that STIM1 protein expression was decreased 

from the first day by 29% compared to proliferating. This decrease was consistent with the 

down-regulation of SOCE which was 28% at day one (Section 6.2.2). At D2 and D3, 

STIM1 expression was significantly decreased by ~49.5% and ~54.5% respectively 

compared to proliferating (P = 0.0243) (Figure 6.7.B).  The extent of down-regulation of 

SOCE was ~60% and ~61% in day two and day three of serum starvation time course 

respectively (Figure 6.2.A). The changes observed in SOCE are consistent with those seen 

in STIM1 expression and again confirm that STIM1 is involved in the process of SOCE in 

NIH 3T3 cells.    

The relationship between Orai1 expression and SOCE following serum starvation was also 

investigated in NIH 3T3 cells.  

Orai1 was expressed before and over the three day serum starvation time course in NIH 

3T3 cells as determined by a band detected between 37 and 50 kDa by an anti- Orai1 

antibody (Figure 6.8.A). Blots were re-probed with β-actin, used as a loading control, and 

Orai1 was expressed as a ratio of β-actin in order to quantify changes in band intensity 

(Figure 6.8.B).   

Orai1 protein expression was significantly decreased by ~68.5%, ~53% and ~47% in day 

one, day two and day three of serum starvation time course compared to proliferating (P < 

0.05 ). Thus the observed increase in percentage of G0 cells at D1and D2 with serum 

starvation in NIH 3T3 cells (Section 3.3.2) suggests that Orai1 down-regulation as being 

more influential in this than expression levels of STIM1, which were only slightly altered 

at D1.  

As observed previously, Orai1 expression appeared in two distinct molecular masses in 

proliferating and over the 3-day serum starvation time course. The upper and lower Orai1 

band were analysed individually (Figure 6.8.C). Consistent with the previous data showed 

in chapter 5, the upper band showed significant down-regulation of Orai1expression in D1, 

D2 and D3 cells compared to proliferating (P < 0.01**), while the lower band showed no 
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significant changes compared to proliferating (P > 0.05). This again may suggest that the 

activity Orai1 may exist in two different states in NIH 3T3 cells.  
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Figure 6.7 STIM1 expression was significantly decreased from day two of serum 

starvation in NIH 3T3 cells  

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for three days. Blots were probed with anti-STIM1 antibody which detected a 

band at 84 kDa or β- actin antibody which was used as a loading control and detected a 

band at 42 kDa.  A) STIM1 was expressed in both proliferating (P) and starved cell 

populations; D1, D2 and D3. B) Quantitative measurements of bands were performed 

using densitometry (ImageJ software, Methods 2.6.9) where STIM1 was expressed as a 

ratio of β-actin. There was a significant decrease in STIM1 expression by ~ 49.5% and ~ 

54.5% in D2 and D3 respectively compared to proliferating.    
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Figure 6.8 Orai1 expression was decreased from the first day of serum starvation 

time course in NIH 3T3 cells 

A 

B 
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NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(starved) for 3days. Blots were probed with anti-Orai1 antibody which detected a band 

between 37 and 50 kDa or β- actin antibody which was used as a loading control and 

detected a band at 42 kDa. A) Orai1 was expressed in proliferating (P) and starved cell 

populations D1, D2 and D3. B) Quantitative measurements of bands were performed using 

densitometry (ImageJ software, Methods 2.6.9) where Orai1 was expressed as a ratio of β-

actin. There was a significant decrease in Orai1 expression in D1 (P < 0.01), D2 and D3 (P 

< 0.05) by ~ 70%, ~ 53%, ~ 46.5% respectively compared to proliferating. C) Quantitative 

analysis of upper and lower Orai1 bands. Orai1 expression was significantly decreased in 

D1, D2 and D3 cells compared to proliferating (P < 0.01**). Whilst lower Orai1 bands 

showed no significant changes compared to proliferating (P > 0.05) cells. N=3.  
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6.3.3 In hTERT RPE-1 cells 

As previously observed in hTERT RPE-1 cells, STIM1 was not expressed in proliferating 

cells and at D1 of serum starvation time course. From D2 of the serum starvation time 

course, two patterns of STIM1 expression were observed. Generally, there was no STIM1 

expression (Figure 6.9.A) and in others, STIM1 was slightly expressed at a higher 

molecular weight, as determined by a slight upward band shift (Figure 6.9.B) detected just 

above 84kDa by an anti-STIM1 antibody. Blots were re-probed with β-actin, used as a 

loading control.   

These results confirmed the previously observed expression of STIM1 in hTERT RPE-1 

which suggested that these cells might lack or have level of STIM1 protein too low to be 

detected. In addition, the occasionally noticed upshifted band which may indicate 

phosphorylation of STIM1 or the presence of a different cross-reacting isoform or some 

other posttranslational modifications that could alter STIM1 function.  

Orai1 was expressed before and over the 5-day serum starvation time course in hTERT 

RPE-1 cells as determined by a band detected between 37 and 50 kDa by an anti- Orai1 

antibody (Figure 6.10.A). Blots were re-probed with β-actin, used as a loading control, and 

Orai1 was expressed as a ratio of β-actin which showed a decrease in Orai1 expression by 

12%, 19%, 17%, 17% and 14% in D1,D2,D3,D4 and D5 of serum starvation time course 

compared to proliferating (P > 0.05 ) (Figure 6.10.B). These slight decreases of Orai1 

expression correlate with the observed slight down-regulation of SOCE consistent with the 

role of Orai1 in SOCE. 

Orai1 expression showed a double band in proliferating and over the serum starvation time 

course. The upper and lower (Figure 6.10.C) Orai1 band were analysed individually. This 

showed the same pattern as that of whole band analysis where there was a slight non-

significant decrease in Orai1 expression over serum starvation time course compared to 

proliferating. 
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Figure 6.9 STIM1 expression with five-day serum starvation time course in hTERT 

RPE-1 cells  

Western blots were performed on protein extracted from hTERT RPE-1 cells following 

growing in 10% FCS (proliferating = P) or 0.1% FCS for 5 days. Blots were probed with 

anti-STIM1 antibody which detected a band at 84 kDa or β- actin antibody which was used 

as a loading control and detected a band at 42 kDa. A) STIM1 expression was not detected 

in proliferating (P) and D1 cells while there was a very low STIM1 expression in D2, D3, 

D4 and D5. B) STIM1 expression was not detected in proliferating (P) cells D1, D2, D3, 

D4 and D5. N=6. 
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Figure 6.10 Orai1 expression was decreased from the first day of serum starvation 

time course in hTERT RPE-1 cells  
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hTERT RPE-1 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS 

medium (starved) for 5 days. Blots were probed with anti-Orai1 antibody which detected a 

band between 37 and 50 kDa or β- actin antibody which was used as a loading control and 

detected a band at 42 kDa. A) Orai1 was expressed in proliferating (P) and starved cell 

populations D1, D2, D3, D4 and D5. B) Quantitative measurements of bands were 

performed using densitometry (ImageJ software, Methods 2.6.9) where Orai1 was 

expressed as a ratio of β-actin. There was no significant changes in Orai1 expression over 

the 5-day serum starvation time course compared to proliferating (P > 0.05). C) 

Quantitative analysis of upper and lower Orai1 bands. Orai1 expression showed the same 

pattern as that of whole band analysis (B). There was no significant differences in Orai1 

expression over the 5-day serum starvation time course compared to proliferating (P > 

0.05).  N=4.  
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6.4 Discussion 

In the present study, serum starvation induced cell cycle arrest in G0/G1 phase in HeLa 

and NIH 3T3 but not in hTERT RPE-1 cells. Associated with the cell cycle arrest in 

G0/G1 phase, there was an uncoupling and a down-regulation of Ca2+ store release and 

SOCE and a decrease of the SOCE proteins STIM1 and Orai1. hTERT RPE-1 cells 

showed no changes in cell cycle progression, however, a down-regulation of Ca2+ store 

release and SOCE and slight alterations of the SOCE proteins; STIM1 and Orai1 were 

detected at day 2 and day 4 of the serum starvation time course.  

The sequence of the down regulation of SOCE and its proteins over serum starvation time 

course has not been previously determined and therefore this chapter aimed to investigate 

SOCE and SOCE proteins over a serum starvation time-course in HeLa, NIH 3T3 and 

RPE-1 cells to determine whether down regulation of SOCE and its proteins occur as a 

consequence of G0/G1 arrest or are involved in triggering it. 

Interestingly, the sequence of changes in SOCE and its protein over the serum starvation 

time course was informative in that they occur before cell cycle arrest rather than after and 

therefore imply roles for STIM1 and Orai1 in SOCE and cell cycle arrest in G0/G1 phase. 

An uncoupling of Ca2+ store release and SOCE was observed from the first day of serum 

starvation in HeLa cells. Both Ca2+ store release and SOCE was down-regulated, however, 

the down-regulation of Ca2+ store release was ~ 34% whilst that of SOCE was ~ 55%. This 

uncoupling was observed throughout the 5-day serum starvation time course with no 

alterations in its extent. An uncoupling of SOCE from Ca2+ store release with down-

regulation of SOCE  has been previously observed in N-type neuroblastoma cells from the 

first day when the cells were induced to be differentiated (arrested in G0 like phase) by 7-

days 9cRA treatment (Whitworth, 2015) which was also maintained throughout the 

treatment. These observations suggest that the uncoupling might be needed to induce and 

maintain the cell cycle arrest in G0/G1 phase in HeLa cells. 

The sequences of SOCE down-regulation was somewhat different in NIH 3T3 cells, an 

uncoupling of Ca2+ store release and SOCE was observed from first day of serum 

starvation however, the extent of Ca2+ store release was not significantly altered and SOCE 

was down-regulated by ~ 28%. A similar observation has been previously shown in RBL 

cells, where 24 hours serum starvation induced uncoupling of SOCE from Ca2+ store 
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release with a down-regulation only of SOCE (Bodding, 2001). At day two, both Ca2+ 

store release and SOCE were markedly down regulated by ~ 77% and ~ 62% respectively 

and the extent of uncoupling was obviously decreased.  

Taken together, these results suggest that uncoupling with the marked down-regulation of 

SOCE might be required for induction of cell cycle arrest in G0/G1 phase. 

Interestingly, hTERT RPE-1 cells also showed an uncoupling of SOCE from Ca2+ store 

release though it was different from that observed in HeLa and NIH 3T3 cells. The 

uncoupling here occurred at day two of serum starvation and the extent of down-regulation 

in Ca2+ store release (~ 45%)  was more than that of SOCE (~ 20%). The extent of this 

uncoupling was not altered over the five-day serum starvation time course. 

These results showed that serum starvation induced uncoupling of Ca2+ store release and 

SOCE in a cell-type specific way and suggest that uncoupling of SOCE from Ca2+ store 

release plays different roles in various cell types. 

STIM1 and Orai1 were down-regulated in HeLa cells from the first day of serum 

starvation. The manner of down-regulation was a multistep manner with an interesting 

correlation of STIM1 changes to SOCE changes (Figure 6.6.A) where STIM1 was down-

regulated from day one of serum starvation, then showed some recovery at day two then a 

further decrease at day three. Orai1 expression appeared to correlate with the changes in 

G0 cells (Figure 6.6.B). There was a decrease in Orai1 expression from the first day that 

correlates with the increase in G0 cells, then some recovery at day 3 that correlate with 

some decrease in G0 cells, and finally at day four, a decrease in Orai1 expression 

correlating with the increase in G0 cells. 

In NIH 3T3 cells, STIM1 and Orai1 were down-regulated in a gradual manner. As in HeLa 

cells, down-regulation of STIM1 expression was consistent with the down-regulation of 

SOCE. At day one STIM1 was down-regulated by 29% consistent with the down-

regulation of SOCE which was 28%. At D2 and D3, the decrease in STIM1 expression 

was ~ 49.5% and ~54.5% respectively consistent with extent of down-regulation of SOCE 

(~ 60% and ~61 respectively) (Figure 6.2.A). Similar to the observed relation between 

Orai1 and the percentage of G0 cells in HeLa, Orai1 expression in NIH 3T3 cells showed a 

robust decrease at day one with no further significant changes at day two and day three. 

This robust decrease coincided to the robust increase in G0 cells (from ~3% to ~ 39%) 

observed at day one (Section 3.3.2). 
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These findings correspond with the previously discussed changes in percentage of G0 cells 

and SOCE and provide further evidence to support a multistep cell cycle arrest response in 

HeLa cells and a gradual response in NIH 3T3 cells. In addition, these results reveal that 

both STIM1 and Orai1 form an element of SOCE in proliferating HeLa and NIH 3T3 cells 

and that the decrease in Orai1 expression observed with serum starvation is a key enabling 

step in arresting cells in G0/G1 phase. Orai1 therefore appeared to play a direct role in cell 

cycle arrest in G0/G1 phase. This is in contrast to STIM1, which does not seem to have a 

direct role in the cell cycle progression in HeLa and NIH 3T3 cells. 

The role of STIM1 and Orai1 in SOCE has been discussed in chapter 5, where STIM1 has 

been shown to form the molecular basis of SOCE (Liou et al., 2005; Roos et al., 2005; 

Zhang et al., 2005) and the level of STIM1 expression has been extensively associated 

with extent of SOCE activity in many cell types. For example, in HeLa cells (Liou et al., 

2005), endothelial cells (Abdullaev et al., 2008), in N-type SH-SY5Y cells (Bell et al., 

2013), endothelial progenitor cells (Kuang et al., 2010), SH-SY5Y cells, HEK293 cells, 

Jurkat T cells and Drosophila S2 cells (Roos et al., 2005), as well as  vascular smooth 

muscle cells (Takahashi et al., 2007b; Aubart et al., 2009; Potier et al., 2009) and 

adipocytes (Graham et al., 2009).  

Similarly, Orai1 knockdown causes reduction in SOCE in neural progenitor cells (Hao et 

al., 2014), in differentiated N-type SH-SY5Y cells (Bell, 2011), acinar cells (Hong et al., 

2011), osteoclasts (Zhou et al., 2011), HEK293 cells (Gwack et al., 2007; Kawasaki et al., 

2010; Borowiec et al., 2014), endothelial cells (Abdullaev et al., 2008) and Jurkat T cells 

(Gwack et al., 2007). Furthermore, Orai1 overexpression results in an increase in SOCE in 

HEK293 cells (Fukushima et al., 2012), restores SOCE in differentiated N-type SH-SY5Y 

(Bell, 2011), in SCID T cells and fibroblasts (Gwack et al., 2007). 

In hTERT RPE-1 cells, STIM1 protein was not expressed at day one of serum starvation 

which is similar to proliferating cells. However, from day two, an upshifted band at a 

molecular weight just above the STIM1 molecular weight was occasionally observed using 

the anti-STIM1 antibody. This increase in molecular weight suggesting that there may be 

some sort of modification, such as phosphorylation or glycosylation which might affect 

STIM1 function and be responsible for the observed down-regulation of SOCE. Consistent 

with this observation, as discussed in chapter 5, an increase in molecular weight has been 

previously observed to be associated with down-regulation in SOCE activity in 
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neuroblastoma cells (Whitworth, 2015), while STIM1 phosphorylation has been observed 

to inhibit SOCE in endothelial cells (Sundivakkam et al., 2013) and in HEK 293 cells 

(Smyth et al., 2009). Likewise, STIM1 might be glycosylated (Manji et al., 2000; Dziadek 

and Johnstone, 2007), that may affect localisation of STIM1 to the PM (Williams et al., 

2002) and subsequently alter SOCE activity.   

In addition, STIM1 has alternative isoforms; STIM1L and STIM1S that serves different 

function. STIM1L has recently been recognised (Darbellay et al., 2011) and has been 

shown to activate SOCE in cells lacking STIM1 (Horinouchi et al., 2012; Sauc et al., 

2015). 

Furthermore, STIM2; the other STIM homologues has been found to induce store 

independent Ca2+ entry (Parvez et al., 2008) and activate SOCE as it responds to a smaller 

decreases in ER [Ca2+]i than STIM1 (Brandman et al., 2007). STIM2 knockdown reduces 

basal [Ca2+]i and overexpression increases basal [Ca2+]i (Brandman et al., 2007) and also 

inhibits SOCE (Soboloff et al., 2006b). In addition knockdown of STIM2 in HeLa cells 

caused a reduction in SOCE (Liou et al., 2005) but has also been shown to have no effect 

in Jurkat T cells (Roos et al., 2005).   

In summary, the results showed that hTERT RPE-1 cells may lack/or express a very low 

level of STIM1 and/or other isoforms of STIM1 or may have another STIM homologues; 

STIM2 that may responsible for the observed uncoupling and down-regulation SOCE 

activity with five-day serum starvation time course. 

In hTERT RPE-1 cells, Orai1 showed a slight down-regulation from the first day of serum 

starvation that corresponded to the observed slight down-regulation of SOCE consistent 

with a possible role for Ora1 in the regulation of SOCE. 
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6.5 Conclusions 

 An uncoupling of SOCE from Ca2+ store release with the marked down-regulation 

of SOCE occurred from first day of serum starvation in both HeLa and NIH 3T3 

cells suggesting that inhibition of SOCE might be involved in triggering cell cycle 

arrest in G0/G1 phase. 

 Serum starvation induced a down-regulation of SOCE and its protein, STIM1 and 

Orai1 in a multistep manner in HeLa cells that correlated to the multistep manner 

increase of G0 cells previously observed. 

 Serum starvation induced a down-regulation of SOCE and its protein, STIM1 and 

Orai1 in a gradual manner in NIH 3T3 cells that correlated to the gradual increase 

of G0 cells previously observed. 

 STIM1 and Orai1 proteins appeared to play a key role in SOCE in both HeLa and 

NIH 3T3 cells.  

 Unlike STIM1, Orai1 seemed to be a positive regulator of cell cycle progression in 

HeLa cells.  

 In hTERT RPE-1 cells, serum starvation induced a slight corresponding down-

regulation of SOCE and Orai1 that may indicate a role for Orai1 in alterations of 

SOCE in these cells. 
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Chapter 7 Morphology and Flow cytometry 

7.1 Introduction 

As previously discussed, serum starvation induced cell cycle arrest in quiescent G0/G1 

phase in HeLa and NIH 3H3 and this arrest was determined morphologically and by flow 

cytometry. Cells arrested in G0/G1 phase at day four of serum starvation for HeLa cells 

and at day two for NIH 3T3 cells. This arrest was determined by a significant decrease in 

total and mitotic cell number with normal viability, an increase in G0 cells and a decrease 

in S/G2/M cells. However, in hTERT RPE-1 cells, serum starvation did not induce cell 

cycle arrest as no changes were observed either morphologically or by flow cytometry 

analysis. 

It has been demonstrated that cell cycle arrest in quiescent G0/G1 phase is defined as a 

reversible growth/proliferation arrest (Coller et al., 2006; Daignan-Fornier and Sagot, 

2011; Cheung and Rando, 2013).  

Therefore, the aim of this chapter was to determine the reversibility of the induced cell 

cycle arrest by adding the serum back to the G0/G1 HeLa and NIH 3T3 cells and define 

this both morphologically and by flow cytometry. 

As hTERT RPE-1 cells showed no morphological differences or cell cycle arrest with 

serum starvation (Section 3.2.3 and 3.3.3), there was no need to perform serum add-back 

with these cells. 

Throughout this part of thesis (Part II cell cycle re-entry), HeLa, NIH 3T3 and hTERT 

RPE-1 cells (10% FCS) will be referred to as proliferating whilst G0/G1 cells in HeLa and 

NIH 3T3 cells and serum starved hTERT RPE-1 (0.1% FCS) will be referred to as D4D0, 

D2D0 and D2D0 respectively. The cells induced by serum add-back will be referred to as 

D4D1, D4D2, and D4D3 for HeLa and as D2D1 and D2D2 for NIH 3T3 and hTERT RPE-

1 cells as the first letter (D) referred to days of starvation and the last letter (D) referred to 

days of serum add-back. 
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7.2  Results – Morphological changes  

As described previously, cell viability, total and mitotic cell number and cell diameter 

were determined to investigate cell proliferation status and cell cycle progression. 

7.2.1 Serum add-back induced cell proliferation in HeLa cells 

Serum starvation induced cell cycle arrest in G0/G1 phase in HeLa cells was characterised 

by a decrease in total and mitotic cell number and cell diameter (Section 3.2.1). 

Morphological changes were observed over the three day time-course of serum add-back 

to determine the reversibility of the previously observed changes. Proliferating (10% FCS) 

cells or G0/G1 (0.1% FCS) cells were grown for four days. After four days, serum was 

added back to G0/G1 cells; both proliferating and G0/G1 cells were grown in 10% FCS 

medium for further three days. 

D4D0 (control) cells (0.1% FCS) were grown in clusters and characterised by elongated 

angular cell bodies; cells in interphase. Mitotic cells (spherical cells) can hardly be seen 

(Figure 7.1). From the first day of serum add-back (D4D1), mitotic cells could be seen and 

an increase in their number was observed over the serum add-back time course (Figure 

7.1). There was a significant increase in percentage of mitotic cell number from day two; 

D4D2 (10.4±0.92%) and D4D3 (11.2±0.81%) compared to G0/G1 cells (D4D0) (1.7 ± 

0.55%)  (All P < 0.01) that was not significantly different compared to proliferating (10.51 

± 0.41%) (P > 0.05) (Figure 7.2.A and Table 7.1).  

Similarly, total cell count showed that serum add-back induced cell proliferation in G0/G1 

HeLa cells. This is clearly shown in figure 7.1 where confluency increased gradually from 

the first day of serum add-back (D4D1) and became much higher in D4D3 cells compared 

to D4D0 cells. This was also demonstrated by comparing the cell counts for D4D0 (0.1% 

FCS for 3days); 12.8×103 cells/ml and D4D3 cells (10 % FCS for 3days); 41.6×103 

cells/ml where cells were seeded at the same density prior to the 3-day treatment (Figure 

7.3). These findings showed that serum add-back induced cell proliferation which indicates 

that G0/G1 cells re-entered the cell cycle and restored normal proliferation status.    

Cell diameter has been shown to be decreased with cell cycle arrest in G0/G1 cells 

(Section 3.2.1). Here, with serum add- back, cell diameter was significantly increased at 
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D4D2 by 17.5% (15.9± 1. 06μm) and D4D3 by 22% (16.52 ± 1.03μm) (All P < 0.001) 

compared to D4D0 (control) (13.5± 1.1μm). By day two of serum add-back the cell 

diameter was not significantly different compared to proliferating (17.21±1.1 μm) 

(P>0.05) (Figure 7.2.B and Table 7.1). 

Cell viability was also determined using trypan blue stain. Cell viability showed significant 

increase at D4D2 by 42% (94.24±5.29 %) (P = 0.0435) and D4D3 by 36% (89.9 ± 8.35%) 

(P = 0.0469) compared to D4D0 (control) (66.18 ± 4.51) (Figure 7.2.C and Table 7.1).  

These results indicate that 2-day serum add-back was enough to induce quiescent G0/G1 

HeLa cells to re-enter the cell cycle and proliferate.  
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Figure 7.1 Serum add-back to G0/G1 HeLa cells induced cell cycle re-entry and cell 

proliferation   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for four 

days to induce cell cycle arrest in G0/G1 phase (D4D0). After four days, serum was added 
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back to G0/G1 cells; both proliferating and G0/G1 cells were grown in 10% FCS medium 

for a further 3 days. D4D0, D4D1, D4D2, D4D3 represent four days of serum starvation 

followed by zero day, one day, two days and three days of serum add-back. In D4D0 cells, 

most cells are in interphase i.e. flattened cells with angular shaped bodies (white arrows) 

that grew in clusters with no appearance of any mitotic (spherical) cells. From day one of 

serum add-back (D4D1), the mitotic cells (solid black arrows) appear and gradually 

increases in number with an obvious increase in cell confluency. In D4D2 and D4D3, 

mitotic cells markedly increase in number and cells in interphase show increase in 

diameter, and cells show no differences compared to proliferating. Cell confluency became 

far higher in D4D3 cells compared to D4D0 cells. Dashed black arrows represent debris. 

Images are representative of >15 images. Scale bars represent 50µm. 
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Figure 7.2 Serum add-back to G0/G1 HeLa cells restored proliferating growth 

characteristics   

G0/G1 HeLa cells were stimulated by increasing the FCS from 0.1 % to 10% in culture 

medium for three days. A) Mitotic cells were counted and expressed as a percentage of the 

total cell population. Mitotic cells were significantly increased by ~ 511% and ~ 559% 

A 

B 

C 
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(All P <0.01) in day two and day three of serum add-back respectively compared to day 

zero (control cells). B) Cell diameter was significantly increased by ~ 17.5% and ~ 22% 

(All P <0.01) in day two and day three of serum add-back respectively compared to day 

zero (control cells). C) Cell viability was detected by trypan blue stain (Method 2.4) cell 

viability show slight significant increase at day two and day three of serum add-back 

compared to day zero (P < 0.05). Error bars represent S.E.M. N=4. 
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 Mitotic cells (%) Cell diameter (μm) Cell viability (%) 

D4D0 

( control) 

1.7±0.55 13.5±1.10 66.18±4.51 

D4D1 4.3±0.342 

(P= 0.6032) 

14.21±0.97 

(P=0.1329) 

74.53±6.75 

(P= 0.7264) 

D4D2 10.4± 0.923 

(P < 0.01) 

15.9±1.06 

(P < 0.01) 

94.24± 5.29 

(P=0.04351) 

D4D3 11.2 ± 0.81 

(P < 0.01) 

16.52±1.03 

(P < 0.01) 

89.9± 8.35 

(P = 0.0469) 

Proliferating 10.51± 0.41 

(P < 0.01) 

17.21 ± 1.1 

(P < 0.01) 

93.06± 7.22 

(P = 0.0462) 

 Table 7.1 Growth characteristics changes of HeLa cells over the three-day serum 

add-back time course 
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Figure 7.3 Serum add-back induced cell proliferation in G0/G1 HeLa cells 

G0/G1 HeLa cells were stimulated by increasing the FCS from 0.1 % to 10% in culture 

medium for three days. Quantification of cells/ml culture medium was done by Cellometer 

(Method 2.4). Day 0; D4D0 cells, n=4 (11.2×103 cells/ml), D4D0 cells n=4 (11.2×103 

cells/ml). Day 1; D4D0 cells, n=6 (107×103 cells/ml), D4D1 cells n=6 (13.1×103 cells/ml), 

P=0.392. Day 2; D4D0 cells, n=4 (10.4 ×103cells/ml), D4D2 cells, n=3 (22.8 

×103cells/ml), P<0.01**. Day 3; D4D0 cells, n=6 (12.8×103 cells/ml), D4D3 cells n=4 

(41.6 ×103cells/ml), P < 0.001***.   
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7.2.2 Serum add-back induced cell proliferation in NIH 3T3 cells 

Serum starvation induced cell cycle arrest in G0/G1 phase in NIH 3T3 cells was associated 

with a decrease in total and mitotic cell number (Section 3.2.2). 

Similar to HeLa cells, morphological changes were observed with serum add-back to 

determine the reversibility of the previously observed changes as an indicator of re-entry 

into the cell cycle. Proliferating (10% FCS) cells or D2D0 (G0/G1) cells (0.1% FCS) were 

grown for two days. After two days, serum was added back to D2D0 cells; both 

proliferating and D2D0cells were grown in 10% FCS medium for further two days. 

D2D0 (control) cells (0.1% FCS) were characterised by cells in interphase with elongated 

angular cell bodies. Mitotic (spherical) cells can hardly be seen (Figure 7.4). From the first 

day of serum add-back (D2D1), the mitotic cells could clearly be detected (Figure 7.4). 

There was a significant increase in percentage of mitotic cell number in D2D1   

(9.4±0.82%) and D2D2 (12.4±0.76%) compared to D2D0 (0.5 ± 0.15%) (All P < 0.001) 

that was not significantly different compared to proliferating (10.9 ± 0.38%) (P > 0.05) 

(Figure 7.5.A and Table 7.2).  Consistent with the previous observation, total cell count 

showed that serum add-back induced cell proliferation in G0/G1 NIH 3T3 cells. This is 

shown clearly in figure 7.4 where confluency increased gradually from the first day of 

serum add-back (D2D1) compared to D2D0 cells. In addition, this was observed by 

comparing cell counts for D2D0; 0.1% FCS for 2days (2.7 ×103) and D2D2 cells; 10 % 

FCS for 2 days (51×103) where cells were seeded at the same density prior to the two-day 

treatment (Figure 7.6). The increase in mitotic and total cell number indicates that serum 

add-back induced G0/G1 NIH 3T3 cells to enter the cell cycle and resume proliferation. 

In contrast to HeLa cells, there was no significant changes detected in cell diameter over 

the 2 day serum add-back ( P > 0.05) which was not also significantly different compared 

to proliferating ( P > 0.05) suggesting that cell diameter cannot be an indicative for cell 

cycle arrest in NIH 3T3 cells (Figure 7.5.B and Table 7.2). 

With serum add-back, cell viability showed no significant changes over the two-day serum 

add-back (P > 0.05) (Table 7.2). 

The results showed that quiescent G0/G1 NIH 3T3 cells were induced to re-enter the cell 

cycle after one day of serum add-back.  
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Figure 7.4 Serum add-back to G0/G1 NIH 3T3 cells induced cell cycle re-entry and 

cell proliferation   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days to induce cell cycle arrest in G0/G1 phase. After 2 days, serum was added back to 

G0/G1 cells; both proliferating and G0/G1 cells were further grown in 10% FCS medium 

for 2 days. D2D0, D2D1, D2D2 represent two days of serum starvation followed by zero 

day, one day and two days of serum add-back. In D2D0 cells, almost cells are in 

interphase; flattened cells with angular shaped bodies (white arrows) with no appearance 

of any mitotic cells (spherical cells). From day one of serum add-back (D2D1), the mitotic 

cells (solid black arrows) appears and gradually increases in number. In D2D2 mitotic 

cells markedly increase in number and cells show no differences compared to proliferating. 
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Cell confluency increases in D2D1 and D2D2 compared to proliferating. Dashed black 

arrows represent debris. Images are representative of >15 images. Scale bars represent 

50µm.  



  

222 

 

 

 

 

Figure 7.5  Serum add-back to G0/G1 NIH 3T3 cells restored proliferating growth 

characteristics   

A 

B 

C 
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G0/G1 NIH 3T3 cells were stimulated by increasing the FCS from 0.1 % to 10% in culture 

medium for 2 days. A) Mitotic cells were counted and expressed as a percentage of the total 

cell population. Mitotic cells were significantly increased in day one and day two of serum 

add-back compared to day zero (control cells) (all P < 0.001). There was no significant 

differences in mitotic cell number from day one of serum add-back compared to 

proliferating (P > 0.05). B) Cell diameter was not significantly different over the 2-day serum 

add-back compared to day zero (P > 0.05). C) Cell viability was detected by trypan blue 

stain (Method 2.4) cell viability was not significantly different over the 2-day serum add-

back compared to day zero (P > 0.05). Both cell diameter and viability were not 

significantly different over the 2-day serum add-back compared to proliferating. Error bars 

represent S.E.M. N=3. 
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 Mitotic cells (%) 

(All P< 0.001) 

Cell diameter (μm) 

(All P > 0.05) 

Cell viability (%) 

(All P > 0.05) 

D2D0 

( control) 
2.5±0.45 10.21±0.72 66.03± 2.48 

D2D1 9.4±0.82 8.94±0.95 85.98± 5.34 

D2D2 12.4± 0.76 12.01±0.57 87.14± 3.84 

Proliferating 10.9± 0.38 11.63±0.62 89.01± 3.84 

Table 7.2 Growth characteristics changes of NIH 3T3 cells over two-day serum add-

back time course 

 

  

Figure 7.6 Serum add-back induced cell proliferation in G0/G1 NIH 3T3 cells 

G0/G1 NIH 3T3 cells were induced by increasing the FCS from 0.1 % to 10% in culture 

medium for two days. Quantification of cells/ml culture medium was done by Cellometer 

(Method 2.4). Day 0; D4D0 cells, n=4 (13.2×103 cells/ml), D4D0 cells n=4 (13.2×103 

cells/ml). Day 1; D4D0 cells, n=4 (3.7×103 cells/ml), D4D1 cells n=4 (25.2×103 cells/ml), 
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P<0.01**. Day 2; D4D0 cells, n=4 (2.7 ×103cells/ml), D4D2 cells, n=5 (51×103cells/ml), P 

< 0.0001****. 
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7.3 Results- Flow cytometry 

7.3.1 The proportion of G0, G1 and S/G2/M subpopulations was restored after two days 

of serum add-back in HeLa cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for four 

days (D4D0) the point at which the percentage of G0 cells was significantly increased. 

After four days, serum was added back to D4 cells for three days (D4D3). 

The percentage of viable cells increased throughout the serum add-back time course. At 

D4D1 by ~50% (61.2±3.01%, P = 0.1588), D4D2 by ~ 87.5% (75.16±10.22, P = 0.0461) 

and D4D3 by ~117.5% (87.3±9.79, P = 0.0382) compared to D4D0 (control) (40.1±4.44 

%) (Figure 7.3 and Figure 7.2). From day two of serum add-back the viability status was 

not significantly different compared to proliferating cells (82.3±13.25, P = 0.3684) (Figure 

7.7 and Table 7.3).  

Cell cycle analysis by flow cytometry showed that serum add-back to the G0/G1 cells 

significantly decreases the percentage of G0 cells and brings it back to the proliferating 

levels. The percentage of G0 cells decreased at D4D2 by ~68.5% (7.86 ± 3.97 %, P = 

0.031) and D4D3 by ~90% (2.9±0.91%, P = 0.0282) compared to D4D0 (25.0 3± 9.6 %). 

The percentage of G0 was not significantly different at D4D2 compared to proliferating 

(1.5±0.51, P = 0.3564) (Figure 7.8 and Figure 7.9) highlighting the reversibility of the 

quiescent G0/G1 state induced by serum starvation.    

Similarly, serum add-back restored the proliferating level of the S/G2/M percentage from 

the first day. The percentage of S/G2/M cells was significantly increased in D4D1 by 

~171% (25.1 ± 6.53%, P = 0.0016), D4D2 by ~146% (22.8 ± 3.42, P = 0.0031) and 

D4D3by~122% (20.63 ± 3.21, P = 0.0085) compared to D4D0 (control) (9.26 ± 0.913) 

(Figure 7.8 and Figure 7.9). Compared to proliferating (23.7±0.775), the percentage of 

S/G2/M cells was not significantly different in D4D1 (P = 0.9842) (Table 7.3).  

The percentage of G1 cells showed a slight increase in over the 3-day serum add-back 

time-course peaked at D4D3 (76.83±12.34) compared to D4D0 (control) by~15% 

(65.96±12.69) however the increase was not significant (P > 0.05) (Table 7.3).   



  

227 

 

These results revealed that serum add-back restored the proliferating level of the 

percentage of G0, G1 and S/G2/M subpopulations of HeLa cells indicating that the serum 

starvation induced cell cycle arrest in G0/G1 phase was reversible.    
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Figure 7.7 Serum add-back restored viability of G0/G1 HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days (D4). After 4 days, serum was added back to starved cells (D4); both proliferating 

and D4 cells were grown in 10% FCS medium for further 3 days A) Dot plots of flow 

cytometric analysis performed on HeLa cells stained with viability stain; Zombie NIR. 

A 

B 
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D4D0, D4D1, D4D2, D4D3 represent four days of serum starvation followed by zero day, 

one day, two days and three days of serum add-back. FSC-A represents forwards scatter 

area. Each dot appearing on the dot plot represents a single cell. The proportion of viable 

cells were detected by Flow cytometry based on strength of fluorescence signal. The dot 

plots showing distribution of two cell populations represents the —dead cells (black dots 

outside live gate; red box) that exhibit significant Zombie NIR fluorescence signal, and 

live cells (coloured dots within the live gate, colour code is shown in the next figure; 

Figure 7.8) which do not. The distribution of viable cells appeared to be increased in 

D4D1, D4D2 and D4D3 compared to D4D0 (control). Compared to proliferating, the 3-

day serum add-back appear to restore the distribution of viable cell. B) Graph shows 

quantitative measurements of the proportion of live cells as a percentage of total HeLa 

cells population. The percentage of viable cells was increased by ~ 50% (P = 0.1588), ~ 

87.5% (P= 0.0461) and ~ 117.5% (P = 0.0382) in D4D1, D4D2 and D4D3 compared to 

D4D0 (control). There was no significant difference in the percentage of viable cells in 

D4D2; P = 0.3684 and D4D3; P = 0.9789 compared to proliferating. n= 10,000. N= 3.   

  



  

230 

 

 

 

 



  

231 

 

 

 

Figure 7.8 Serum add-back time-course restored the proportion of S/G2/M, G1 and 

G0 subpopulations in HeLa cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for four 

days (D4). After four days, serum was added back to starved cells (D4); both proliferating 

and D4 cells were grown in 10% FCS medium for further 3 days A) Flow cytometry plots 

of HeLa cells stained with viability stain; Zombie NIR, DNA stain; Hoechst and RNA 

stain; Pyronin Y. Dead cells were excluded from the whole cell population (Figure 7.7). 

The proportions of cells in S phase, G2 phase and M phase (S/G2/M), cells in G1 phase 

and cells in G0 phase were detected by Flow cytometry based on DNA and RNA contents 
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using FACsDIVA software. Cells were classed G1 if they exhibited single DNA content 

and were RNA positive (blue dots), cells were classed S/G2/M if they exhibited double 

DNA content and were RNA positive (red dots) and cells were classed G0 if they exhibited 

single DNA content and were RNA negative (yellow). Each dot represents a single cell. A 

difference in distribution of dots in S/G2/M (red), G1 (blue) and G0 (yellow) gates is 

obvious over the 3-day serum add-back time-course. The extent of S/G2/M cells and G1 

cells appear to be increased in D4D1, D4D2 and D4D3 while the extent of G0 cells appear 

to be decreased compared to D4D0 (control). Compared to proliferating, the 3-day serum 

add-back appear to restore the proportion of S/G2/M , G1 and G0 subpopulations in 

starved HeLa cells. B) Histogram of HeLa cells stained with Hoechst stain showing DNA 

content distribution. There is an increase in cell number of both G0/G1 and S/G2/M in 

D4D1, D4D2 and D4D3 compared to D4D0 (control). Compared to proliferating, the three 

day serum add-back appear to restore cell number of both G0/G1 and S/G2/M. n= 10,000. 

N=3. 
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Figure 7.9  Quantitative measurements of the proportion of S/G2/M and G0 or G1 

subpopulations with three-day serum add-back course in HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days. After 4 days, serum was added back to starved cells; both proliferating and starved 

cells were grown in 10% FCS medium for further 3 days The proportion of S/G2/M, G1 

and G0 cell subpopulations was determined as a percentage of the total HeLa viable cell 

population. Cells were stained with viability stain; Zombie NIR, DNA stain; Hoechst and 

RNA stain; Pyronin Y.  Dead cells were excluded from the whole cell population. The 

proportion of S/G2/M, G1 and G0 cell subpopulations were calculated by Flow cytometry 

depending on DNA and RNA contents using FACsDIVA software. Cells were classed G1 

if they exhibited single DNA content and were RNA positive, cells were classed S/G2/M if 

they exhibited double DNA content and were RNA positive while cells were classed G0 if 

they exhibited single DNA content and were RNA negative. Quantitative measurements of 
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the proportions of G0 and S/G2/M cells were significantly changed with the 3-day serum 

add-back course. The percentage of G0 cells was decreased by ~ 43%, ~ 68% and ~ 90% 

in day one, day two and day three of serum add-back time course respectively compared to 

day zero (control) however the decrease was significant from day two ( P = 0.031*). There 

was no significant difference in the percentage of G0 cells in day three (P = 0.3564) 

compared to proliferating (1.533 ± 0.516 %). The percentage of S/G2/M cells was 

increased by ~ 171 %, ~ 146 % and ~ 122 % in day one, day two and day three of serum 

add-back time course respectively compared to day zero (control) (All P < 0.01**). There 

was no significant difference in the percentage of S/G2/M cells from day one of serum 

add-back compared to proliferating (P > 0.05). There were no significant changes in the 

percentage of G1 cells over the 3-day serum add-back time-course compared to day zero 

(P > 0.05). n= 10,000. N=4. 
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 Viability cells (%) G0 cells (%) G1 cells (%) 

(All  P > 0.0.5 

S/G2/M cells (%) 

D4D0 

(control) 

40.1±4.44 25.03± 9.6 65.96±12.69 9.26 ± 0.913 

D4D1 61.2±3.01 

P =0.1588 

18.39±8.25 

P = 0.532 

56.5±0.834 25.1 ± 6.53 

P = 0.0016 

D4D2 75.16±10.22 

P = 0.0461 

7.86±2.57 

P =0.03102 

68.33±12.39 22.8 ± 3.42 

P = 0.0031 

D4D3 87.3±9.79 

P = 0.0382 

2.9±0.91 

P=0.0282 

76.83±12.34 20.63 ± 3.21 

P = 0.0085 

Proliferating 82.3±13.25 

P= 0.0421 

1.5±0.51 

P = 0.0236 

74.7±8.13 23.7±0.77 

P = 0.003 

 Table 7.3 Summary of flow cytometry data of HeLa cells viability and subpopulations over the three-day serum add-back time 

course (means ± SEM) 
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7.3.2  The proportion of G0, G1 and S/G2/M subpopulations was restored after two days of 

serum add-back in NIH 3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for two 

days (D2D0) the point at which the percentage of G0 cells was significantly increased. After 

two days, serum was added-back to D2 cells for two days (D2D2). 

Flow cytometry analysis showed that the percentage of viable cells was increased gradually 

with serum add-back.  At D2D1 by ~30% (63.93 ± 7.68%) and at D2D2 by ~ 41 % (69.07 ± 

3.66) in D2D1, D2D2 compared to D2D0 (49.03 ± 4.20%) however the increase was not 

significant, (P > 0.05) (Figure 7.10).  

Consistent with restoration of cell proliferation status observed morphologically, the 

percentage of G0 cells was significantly decreased in D2D1 by 56% (20.13±5.895, P = 

0.0245) and D2D2 by 77% (10.6 ± 5.288, P = 0.0098) compared to control D2D0 (45.73 ± 

4.09) (Table 7.4). The percentage of G0 cells in D2D2 was not significantly different 

compared to proliferating (8.1±3.31) (P > 0.999) (Figure 7.11 and Figure 7.12).    

Corresponding to the restoration of the percentage of G0 cells, the percentage of G1cells was 

significantly increased in D2D1 by ~ 60% (60.7 ± 3.81 %, P = 0.0074) and D2D2 by~93% 

(73.73±5.45, P = 0.0094) compared to control D2D0 (38.13 ± 1.65%) (Table 7.4). Also, the 

percentage of G1 cells in D2D2 showed no significant difference compared to proliferating 

(75.83± 1.72) (P > 0.999) (Figure 7.11 and Figure 7.12).   

Likewise, the percentage of S/G2/M (+ve) cells was increased in D2D1 by~38% (16.9± 0.80) 

D2D2 (14.8± 0.89) compared to control D2D0 (12.3± 0.60) however, this increase was not 

significant (P >0.05). The S/G2/M (-ve) cells nearly disappeared with serum add-back. At 

D2D1 (2.2 ± 2.1%), and D2D2 (0.86 ± 0.62%) compared to D2D0 (3.83 ± 1.36) (P > 0.05) 

(Figure 7.11 and Figure 7.12 and Table 7.4). 

The changes in the percentage of both S/G2/M subgroups were not significant, however, the 

percentage of S/G2/M (+ve) cells increased gradually back to the proliferating level and the 

percentage of S/G2/M (-ve) cells decreased gradually and nearly disappears by D2D2.  
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These results showed that serum add-back induced cell proliferation and cell cycle re-entry in 

G0/G1 cells from the first day and restored the full proliferating level of the percentage of G0, 

G1 and S/G2/M subpopulations from day two. This clearly denotes that the serum starvation 

induced cell cycle arrest in G0/G1 phase was reversible.    
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 Figure 7.10   Serum add-back restored viability of G0/G1 NIH 3T3 cells 

A 

B 
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NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (D4). After 2 days, serum was added back to starved cells (D2); both proliferating and 

D2 cells were grown in 10% FCS medium for further 2 days A) Dot plots of flow cytometric 

analysis performed on NIH 3T3 cells stained with viability stain; Zombie NIR. D2D0, D2day 

one, D2D2 represent Two days of serum starvation followed by zero day, one day and two 

days of serum add-back. FSC-A represents forwards scatter area. Each dot appearing on the 

dot plot represents a single cell. The proportion of viable cells were detected by Flow 

cytometry based on strength of fluorescence signal. The dot plots showing distribution of two 

cell populations represents the —dead cells (black dots outside live gate; red box) that exhibit 

significant Zombie NIR fluorescence signal, and live cells (coloured dots within the live gate, 

colour code is shown in the next figure; Figure 7.11) which do not. The distribution of viable 

cells appeared to be increased in D2D1 and D2D2 compared to D2D0 (control). B) Graph 

shows quantitative measurements of the proportion of live cells as a percentage of total NIH 

3T3 cells population. The percentage of viable cells was increased by 30 % and 41 in D2D1, 

D2D2 compared to D2D0 (control) however the increase was not significant (P > 0. 05). n= 

10,000. N= 3.     
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Figure 7.11 Serum add-back time-course restored the proportion of S/G2/M, G1 and G0 

subpopulations in NIH 3T3 cells 

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for two 

days (D2). After two days, serum was added back to starved cells (D2); both proliferating and 

D2 cells were grown in 10% FCS medium for further two days A) Flow cytometry plots of 
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NIH 3T3 cells stained with viability stain; Zombie NIR, DNA stain; Hoechst and RNA stain; 

Pyronin Y. Dead cells were excluded from the whole cell population (see fig.1). The 

proportions of cells in S phase, G2 phase and M phase (S/G2/M), cells in G1 phase and cells 

in G0 phase were detected by Flow cytometry based on DNA and RNA contents using 

FACsDIVA software. Cells were classed G1 if they exhibited single DNA content and were 

RNA positive (blue dots), cells were classed S/G2/M (+ve) if they exhibited double DNA 

content and were RNA positive (red dots), cells were classed S/G2/M (-ve) if they exhibited 

double DNA content and were RNA negative (pink dots) and cells were classed G0 if they 

exhibited single DNA content and were RNA negative (yellow dots). Each dot represents a 

single cell. A difference in distribution of dots in S/G2/M (+ve) (red), S/G2/M (-ve) (pink), 

G1 (blue) and G0 (yellow) gates is obvious over the 2-day serum add-back time-course. The 

extent of S/G2/M (+ve) cells and G1 cells appear to be increased in D2day one and D2D2 

while the extent of G0 cells and S/G2/M (-ve) appear to be decreased compared to D2D0 

(control). Comparing to proliferating, the 2-day serum add-back appear to restore the 

proportion of S/G2/M (+ve), S/G2/M (-ve), G1 and G0 subpopulations in starved NIH 3T3 

cells.  B) Histogram of NIH 3T3 cells stained with Hoechst stain showing DNA content 

distribution. There is an increase in cell number of both G0/G1 and S/G2/M in D2day one, 

and D2D2 compared to D2D0 (control). Comparing to proliferating, the 2-day serum add-

back appear to restore cell number of both G0/G1 and S/G2/M. n= 10,000. N=3. 
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Figure 7.12 Quantitative measurements of the proportion of S/G2/M and G0 or G1 

subpopulations with two-day serum add-back course in NIH 3T3 cells 

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (starved). After 2 days, serum was added back to starved cells; both proliferating and 

starved cells were grown in 10% FCS medium for further 2 days. The proportion of S/G2/M, 

G1 and G0 cell subpopulations was determined as a percentage of the total NIH 3T3 viable 

cell population. Cells were stained with viability stain; Zombie NIR, DNA stain; Hoechst and 

RNA stain; Pyronin Y.  Dead cells were excluded from the whole cell population. The 

proportion of S/G2/M, G1 and G0 cell subpopulations were calculated by Flow cytometry 

depending on DNA and RNA contents using FACsDIVA software. Cells were classed G1 if 

they exhibited single DNA content and were RNA positive, cells were classed S/G2/M (+ve) 

if they exhibited double DNA content and were RNA positive, cells were classed S/G2/M (-
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ve) if they exhibited double DNA content and were RNA negative while cells were classed G0 

if they exhibited single DNA content and were RNA negative. Quantitative measurements of 

the proportions of G0 and G1 cells were significantly changed with 2-day serum add-back. 

The percentage of G0 cells was significantly decreased by ~ 55 % and ~ 76.82% in day one 

and day two of serum add-back respectively compared to day zero (control) ( P >0.05.  There 

was no significant difference in the percentage of G0 cells in day one (P = 0.7371) and day 

two (P = 0.9848) compared to proliferating. The percentage of G1 cells was significantly 

increased by ~ 59  % and ~93% in day one and day two of serum add-back respectively 

compared to day zero (control)( All P <0.01). There was no significant difference in the 

percentage of G1 cells in day two of serum add-back (P = 0.9716) compared to proliferating. 

The percentage of S/G2/M (+ve) cells was increased by ~ 37 % and ~ 20 % in day one and 

day two of serum add-back respectively compared to day zero (control) however the increase 

was not significant (P > 0.05). The percentage of S/G2/M (-ve) cells was not significantly 

decreased by 42.60 % and 77.38 % in day one and day two of serum add-back respectively 

compared to day zero (control) ( P > 0.05). There was no significant difference in the 

percentages of both S/G2/M (+ve) and S/G2/M (-ve) in day one and day two of serum add-

back compared to proliferating (P > 0.999). n= 10,000. N=4.
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 Viability (%) G0 cells (%) G1 cells (%) S/G2/M (+ve) cells 

(%) 

S/G2/M (-ve) cells 

(%) 

D2D0 49.03 ± 4.205 45.73 ± 4.099. 38.13 ± 1.65 12.3± 0.60 3.83 ± 1.36 

D2D1 63.93 ± 7.684 

P > 0.05 

20.13±5.895 

P = 0.0245 

60.7 ± 3.811 

P = 0.0074 

16.9± 0.80 

P > 0.05 

2.2 ± 2.1 

P > 0.05 

D2D2 69.07 ± 3.663 

P > 0.05 

10.6 ± 5.288 P = 

0.0098 

73.73±5.45 P = 

0.0094 

14.8±0.89 

P > 0.05 

0.86 ± 0.62 

P > 0.05 

Proliferating 66.21±2.6 

P > 0.05 

8.1±3.31 

P = 0.0085 

75.83 ± 1.72 

P = 0.0024 

15.93±2.85 

P > 0.05 

 

0 

P > 0.05 

 Table 7.4  Summary of flow cytometry data of NIH 3T3 cells viability and subpopulations over the two-day serum add-back time 

course
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7.4 Discussion 

The quiescent G0/G1 state has been defined as a temporary and reversible absence of 

proliferation (Coller et al., 2006; Daignan-Fornier and Sagot, 2011; Cheung and Rando, 

2013). In this study (Chapter 3), serum starvation induced cell cycle arrest in G0/G1 phase in 

HeLa and NIH 3T3 cells was determined morphologically and by flow cytometry analysis.  

For HeLa cells, four-day serum starvation caused a significant decrease in total and mitotic 

cell number with normal viability, a decrease in cell diameter, an increase in G0/G1cells to 

93%   (~26% in G0 and 67% in G1 phase). For NIH 3T3 cells, two-day serum starvation 

caused a significant decrease in total and mitotic cell number with reserved viability, a 

significant increase in G0/G1 cells to ~ 92 % (~54% in G0 and 38% in G1 phase).  

The aim of this chapter was to determine the reversibility of the induced cell cycle arrest by 

adding the serum back to the G0/G1 HeLa and NIH 3T3 cells and define this both 

morphologically and by flow cytometry. 

 For hTERT RPE-1 cells, serum starvation did not affect cell cycle progression as there were 

no changes observed either morphologically or by flow cytometry. Therefore, there was no 

need to measure morphological or cell cycle changes with serum add-back.  

Serum add-back induced an increase in total cell number as well as mitotic cell number from 

day one of treatment in HeLa and NIH 3T3 cells (Figure 7.1 and Figure 7.4). In HeLa cells, 

total cell number was increased from 11.2 ×103cells/ml in D4D0 to 22.8 ×103cells/ml in D4D2 

and 41.6 ×103cells/ml in D4D3 (Figure 7.3). In NIH 3T3 cells, total cell number increased 

from 13.2×103 cells/ml in D2D0 to 25×103cells/ml in D2D1 and 51×103cells/ml in D2D2 

(Figure 7.6). This data clearly indicate that serum add-back induced cell proliferation and cell 

cycle resumption in G0/G1 cells in both HeLa and NIH 3T3 cells. 

To investigate cell viability, trypan blue stain was used. Data showed that cell viability was 

increased by ~ 42% in D4D2 HeLa cells compared to D4D0 cells (P < 0.05) (Figure 7.2) and 

by ~ 32% in D2D2 compared to D4D0 cells in NIH 3T3 cells (P >0.05).  
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The increase in cell viability further confirms the resumption of cell proliferation in HeLa and 

NIH 3T3 cells. 

Cell diameter showed a significant increase and was restored to the proliferating level in HeLa 

cells from day two of serum add-back, however, in NIH 3T3 cells, there was no significant 

changes in cell diameter with cell cycle arrest or with cell cycle re-entry suggesting that cell 

diameter could be an indicator for cell cycle arrest in G0/G1 phase in HeLa cells but not in 

NIH 3T3 cells.  

Flow cytometry experiments measuring the cellular DNA and RNA content were also 

performed to further analyse cell cycle and to separate G0 and G1 cells (Shapiro, 1981; 

Darzynkiewicz et al., 2011) as G0 cells were identified as the population with single DNA 

content and an RNA content lower than that in cells in S and G2/M phases (Crissman et al., 

1985; Lemons et al., 2010).  

Dead cells were excluded first by flow cytometry using a fluorescent viability dye; Zombie 

NIR (Figure 7.7 and Figure 7.10) which confirmed the data previously obtained using trypan 

blue stain. Serum add-back increased cell viability from day two in HeLa cells by ~ 87.5%, 

and from day one in NIH3T3 cells by ~ 30%. This again indicates that serum add-back 

induced cell proliferation that causes increase in number of viable cells (Tableand Table ). 

Flow cytometry cell cycle analysis revealed that, in HeLa cells, the percentage G0 cells 

decreased from the first day of serum add-back (~18.5%) and became significantly lower at  

D4D2  (~ 4%) compared to D4D0 (~25%) cells and not significant compared to proliferating 

level ( 1.5%). Consistently, a marked significant increase in S/G2/M cells was observed at 

D4D1 (~ 25%) compared to D4D0 (~ 5%) with no significant difference compared to 

proliferating level (~ 24%).  

Similarly, in NIH 3T3 cells, G0 cells decreased significantly with serum add-back from the 

first day. Percentage of G0 cells decreased from ~ 54% in D2D0 to ~ 20% in D2D1 and 

further decreased to ~ 10% in D2D2 (not significantly different to proliferating cells at ~ 8%).  

A corresponding increase in G1 and S/G2/M cells was also observed where G1 and S/G2/M 

cells increased from ~ 38% and ~ 12% in D2D0 to ~ 60 % and ~ 15% in D2D1 respectively 

that was not significant compared to proliferating cells (~ 75% and ~16%) respectively.   
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Serum starvation-induced cell cycle arrest followed by serum add-back has been extensively 

used in cell cycle research (Zetterberg and Larsson, 1985; Pardee, 1992; Kerkhoff and Rapp, 

1997; Xiong et al., 2012; Lemos et al., 2007; Kothapalli et al., 2008; Van Rechem et al., 2010; 

Xiong et al., 2012). In this chapter, data clearly revealed that the obtained serum starvation 

induced cell cycle arrest in G0/G1 phase was reversible by serum add-back. On the basis of 

these results, serum add-back experiments will be used in order to study Ca2+ signalling when 

cells re- enter the cell cycle and this data is presented in subsequent chapters. 
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7.5 Conclusions  

Serum add-back to G0/G1 cells induced cell proliferation and cell cycle re-entry in both HeLa 

and NIH 3T3 cells indicating that the previously induced G0/G1 cell cycle arrest was 

reversible.   
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Chapter 8 Store-Operated Ca2+ Entry (SOCE) 

8.1 Introduction 

As previously discussed, serum starvation of HeLa and NIH 3T3 cells induces cell cycle arrest 

in G0/G1 phase associated with an uncoupling and a down regulation of Ca2+ store release and 

SOCE. Serum add-back induced cells arrested in G0/G1 phase to re-enter the cell cycle and 

restored the proliferating percentage of G0 cells in both HeLa and NIH 3T3 cells. The aim of 

this chapter was to identify Ca2+ signalling changes with adding the serum back to G0/G1 

cells in order to investigate Ca2+ signalling associated with cell cycle re-entry. 

As there was alterations in Ca2+ signalling with serum starvation in hTERT RPE-1 cells, Ca2+ 

signalling changes with adding the serum back to the serum starved cells were also 

investigated. This determination of Ca2+ signalling with serum add-back in hTERT RPE-1 

cells, which don’t enter G0/G1 upon starvation  gives the opportunity to assess the 

contribution of cell cycle re-entry in Ca2+ signalling changes in other cell types which do go 

into G0/G1 upon starvation; HeLa and NIH 3T3 cells. 

8.2 Results - SOCE 

8.2.1 SOCE was not restored with cell cycle re-entry in HeLa cells 

Proliferating (10% FCS) cells or G0/G1 (0.1% FCS) cells were grown for four days; the point 

at which the percentage of G0 cells was significantly increased (Section 3.3.1). After four 

days, serum was added back to G0/G1 cells; both proliferating and G0/G1 cells were grown in 

10% FCS medium for further three days. 

Ca2+-addback traces of changes in fura-2 fluorescence ratio showed differences in the level of 

SOCE responses in D4D3 cells compared to D4D0 cells (Figure 8.1.A). These differences 

may reflect the serum add-back induced restoration of the proliferating profile of proportion of 

S/G2/M, G1 and G0 subpopulations; cells exist in different cell cycle phases and therefore 

give a mixed pattern of Ca2+ responses compared to D4D0 cells that are synchronised; ~ 93% 

of cells were in G0/G1 phase (Section 3.3.1) and thus giving similar SOCE responses. 
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The traces also showed that both store depletion in response to TG addition (200nM) and 

subsequent Ca2+ entry following the addition of Ca2+ (2mM) were not restored in D4D3 cells 

compared to proliferating cells (Figure 8.1.B). 

At day two of the serum add-back time course (D4D2), total Ca2+ store release (46.61 ± 1.10 

FRUs) was not different compared to D4D0 cells (47.42 ± 1.703 FRUs), whilst total SOCE 

was significantly down-regulated by ~ 25% (135.42 ± 9.85 FRUs) compared to D4D0 cells 

(181.5± 5.61 FRUs) (P < 0.05). In D4D3 cells total Ca2+ store release was increased  by 18%  

(55.78 ± 2.73 FRUs) compared to D4D0 level (P > 0.05) similarly, SOCE at D4D3 (201.79 ± 

8.31 FRUs) was slightly increased by 11% above the D4D0 level (P = 0.444).  These results 

showed that both total Ca2+ store release and SOCE were not restored after 3-day serum add-

back to proliferating levels (All P<0.0001), however there was a slight increase in both  Ca2+ 

store release and SOCE which might be explained by serum add-back causing partial recovery 

of the Ca2+ signalling responses (Figure 8.2.A and Table 8.1). 

Consistent with this, maximal Ca2+ store release was not significantly different in D4D1 

(0.205 ± 0.004), D4D2 (0.22 ± 0.003 FRUs) and D4D3 cells (0.19± 0.006) compared to D4D0 

(0.32 ± 0.0055 FRUs) (P > 0.05%). Compared to proliferating (0.61 ± 0.008), maximal Ca2+ 

store release was not restored over the 3-day serum add-back time course (All P < 0.0001) 

(Figure 8.2.B and Table 8.2).  

Maximal SOCE was significantly down-regulated in D4D2 by ~ 25 % (0.3199 ± 0.0146 

FRUs) compared to D4D0 (0.4264 ± 0.0098 FRUs) (P < 0.05). There was no significant 

difference in maximal SOCE of D4D1 (0.39 ± 0.01) and D4D3 cells (0.43± 0.014) compared 

to D4D0. Compared to proliferating (0.64 ± 0.01), maximal SOCE was not restored over the 

3-day serum add-back time course (All P < 0.0001) (Figure 8.2.B and Table 8.2).  

The effect of serum add-back and cell cycle re-entry on rate of rise and rate decline of TG and 

CaCl2 responses were also determined (Method 2.8). Rate of Ca2+ store release was 

significantly down-regulated by ~ 44% in D4D2 (1.066 ± 0.034 × 10-3 FRUs) compared to 

D4D0 (1.806 ± 0.044 × 10-3 FRUs) P = 0.0232. There were no significant changes in rate of 

Ca2+ store release D4D1 (0.61± 0.054) and D4D3 cells (0.32 ± 0.031) compared to D4D0 (P = 

0.4666). Compared to proliferating (3.25± 0.105), rate of Ca2+ store release was not restored 

over the 3-day serum add-back time course, (All P < 0.0001). There was no significant change 
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in rate of SOCE over the three-day serum add-back time course compared to D4D0 (P > 0.05). 

In D4D1 (5.32 ± 0.15 × 10-3 FRUs), D4D2 (5.72 ± 0.52 × 10-3 FRUs) and D4D3 (5.70 ± 0.18 

× 10-3 FRUs) compared to D4D0 (4.99 ± 0.14× 10-3 FRUs) (All P > 0.05) (Table 8.2). 

Subsequently, compared to proliferating (7.9± 0.4× 10-3 FRUs), rate of SOCE was not 

restored over the three-day serum add-back time course (All P < 0.0001). 

Decline rate of Ca2+ store release decreased in D4D2 by 51% (5.54±5.38×10-5 FRUs) and 

D4D3 by 41% (5.75±1.96×10-5 FRUs) compared to D4D0 (11.4±12.4× 10-5 FRUs) however 

this decrease was not significant (P >0.05) (Table 8.1). There was no significant difference in 

decline rate of Ca2+ store release over the 3-day serum add-back time course compared to 

proliferating. (All P > 0.999). Decline rate of SOCE was decreased in D4D3 by 22% 

(3.32±1.01× 10-5 FRUs) compared to D4D0 (10.41±1.24× 10-5 FRUs) (P < 0.05). Decline rate 

of SOCE was restored in D4D3 compared to proliferating (All P > 0.999) (Table 8.2). 

The present results reveal that down-regulation of Ca2+ store release and SOCE associated 

with cell cycle arrest in G0/G1 phase were not restored with cell cycle re-entry by three days 

of serum add-back.  
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Figure 8.1 Ca2+ signalling traces of HeLa cells with serum add-back 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 days 

(D4D0). After 4 days, serum was added back to G0/G1 cells for three days (D4D3).TG 

represents the addition of the SERCA inhibitor thapsigargin to induce Ca2+ store release and 

CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. (A) Typical Ca2+-

addback traces from 6 individual cells within one experiment in proliferating (blue), D4 cells 

(red) and D4D3 (green) show differences in level of Ca2+ responses in proliferating and D4D3 

compared to D4 cells. (B) Typical Ca2+ addback traces from proliferating (blue), D4 cells (red) 

and D4D3 (green). Traces represent an average from 80 cells ± S.E.M from one experiment. 

Fura-2 fluorescence was measured at excitation wavelengths of 340 nm and 380 nm and an 

emission wavelength of 510 nm, with changes in fluorescence ratio (FR) reflect changes in 

[Ca2+]i. Addition of thapsigargin (TG, first peak) caused increase in FR in proliferating and 

starved cells indicating increase in [Ca2+]i as Ca2+ is depleted from ER stores. Following Ca2+ 

addback (CaCl2, second peak) an increase in FR occurred, as Ca2+ enters the cytosol via 

SOCE to replenish depleted stores. Both Ca2+ store release and SOCE responses appear to be 

not restored over the three-day serum add-back time course compared to proliferating cells.   

B

 

A   A 
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 Total Maximal 

Values (FRUs) % change Values (FRUs) % change 

Ca2+store 

release 

D4D0 

(control) 

47.42±1.703 ----- 0.32±0.005 ----- 

D4D1 42.1±1.9 

P > 0.999 

-11% 0.20±0.004 

P > 0.05 

-37% 

D4D2 46.61±1.10 

P > 0.999 

-1.5% 0.22±0.003 

P > 0.05 

-31% 

D4D3 55.78 ± 2.73 

P > 0.999 

18% 0.19± 0.006 

P > 0.05 

-40% 

Proliferating 70±3.1 ----- 0.61±0.001 ----- 

SOCE 

D4D0 

(control) 

181.5± 5.61 ----- 0.426 ± 0.0098 ----- 

D4D1 198.1±5.6 

P > 0.05 

9% 0.39 ± 0.01 

P > 0.05 

-7% 

D4D2 135.4± 9.85 

P < 0.05 

-25% 0.3199±0.014 

P < 0.05 

-26% 

D4D3 201.7 ± 8.31 

P > 0.05 

11% 0.43± 0.014 

P > 0.05 

2% 

Proliferating 457±12.5 ----- 0.64±0.008 ----- 

Table 8.1Summary of quantifications of total and maximum Ca2+ store release and 

SOCE responses with cell cycle re-entry in HeLa cells 

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), 

for TG and CaCl2 responses from calibrated fluorescence traces were calculated using Excel 
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functions in a template spread sheet (Methodology chapter 2.8, figure 2.10) over three days of 

serum add-back . Data represented as means ± SEM.  FRUs (fluorescence ratio unit). For 

proliferating cells n =228, for D4D0 n = 231, D4D1 n = 299, D4D2 n = 214 and D4D3 n= 

270, N=4.  
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 ROR (FRUs 

( All P > 0.05) 

ROD (FRUs× 10-5) 

(All P > 0.999) 

Values (×10-3 

FRUs) 

% change Values (×10-5 

FRUs) 

% change 

Ca2+store 

release 

  

  

 

D4D0 

(Control) 

1.80±0.044 ------- 11.4±12.4 ------- 

D4D1 

 

2.31± 0.054 

 

28% 11.59±12.4 -1.5% 

D4D2 1.06± 0.034 

P = 0.0232 

-44% 5.54±5.38 -51% 

D4D3 1.76± 0.031 

P= 0.4666 

-5% 5.75±1.96 -49% 

Proliferating 2.25±0.1 ------- 5.89±0.11 ------- 

SOCE 

 

 

 

 

 

 

 

D4D0 

(control) 

4.99 ± 0.14 

P = 0.9331 

------- 10.41±1.24 ------- 

D4D1 5.32± 0.150 

P = 0.5047  

6% 13.58±0.72 30% 

D4D2 5.72± 0.52 14% 10.03±0.53 -3% 

D4D3 5.70± 0.18  14% 3.32±1.52 -68% 

Proliferating 7.9 ± 0.4 ------- 8.89±1.01 ------- 

Table 8.2 Summary of quantifications ROR and ROD of Ca2+ store release and SOCE 

responses with cell cycle re-entry in HeLa cells 
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The rate of rise (ROR) and rate of decline (ROD) for TG and CaCl2 responses from calibrated 

fluorescence traces were calculated using Excel functions in a template spread sheet 

(Methodology chapter 2.8, figure 2.10) over three days of serum add-back . Data represented 

as means ± SEM.  FRUs (fluorescence ratio unit). For proliferating cells n =228, for D4D0 n = 

231, D4D1 n = 299, D4D2 n = 214 and D4D3 n= 270, N=4.  
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Figure 8.2 Ca2+ responses were not restored with cell cycle re-entry in HeLa cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for four 

days (D4). After four days, serum was added back to starved cells (D4); both proliferating and 

D4 cells were growing in 10% FCS medium for further three days. A) Graph shows mean of 

total Ca2+ entry into the cytosol following Ca2+ store release in response to stimulation with 

A 

B 
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200nM thapsigargin (TG) and subsequent SOCE following the addition of 2mM CaCl2. 

Changes in fluorescence ratio units (FRUs) reflect changes in [Ca2+]i. Total Ca2+ store release 

was not significantly altered over 3-day serum add-back time course (P = 0.998). However, 

SOCE was significantly down-regulated by 25.38 % at day two of the serum add-back time 

course (D4D2) compared to D4D0 (P < 0.0001****). By day three of the serum add-back 

time course (D4D3) SOCE was increased back to the G0/G1 level (D4D0) (P = 0.444).  Both 

total Ca2+ store release and SOCE were not restored after 3-day serum add-back course to 

proliferating levels (All P<0.0001****). B) Graph shows mean of maximal store release in 

response to TG addition and maximal SOCE after adding Ca2+. Maximal Ca2+ store release 

was not significantly altered over 3-day serum add-back time course (P > 0.999). Compared to 

proliferating, maximal Ca2+ store release was not restored over the 3-day serum add-back time 

course (All P < 0.0001****). Maximal SOCE was significantly down-regulated by ~ 24.9 % 

in D4D2 compared to D4D0 (P = 0.0001****). Compared to proliferating, maximal SOCE 

was not restored over the 3-day serum add-back time course, all P < 0.0001****. Error bars 

represent S.E.M. For proliferating cells n =228, for D4D0 n = 231, D4D1 n = 299, D4D2 n = 

214 and D4D3 n= 270, N=4. 
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8.2.2  SOCE was restored with cell cycle re-entry in NIH 3T3 cells 

 Proliferating (10% FCS) cells or G0/G1 (0.1% FCS) cells were grown for two days; the point 

at which the percentage of G0 cells was significantly increased (Section 3.3.2). After two 

days, serum was added back to G0/G1 cells and both proliferating and G0/G1 cells were 

grown in 10% FCS medium for further two days. 

As observed in HeLa cells, Ca2+-addback traces from D2D0, D2D2 and proliferating NIH 3T3 

cells indicated that the dissimilarities in levels of  Ca2+ responses in proliferating cells were 

restored in D2D2 cells compared to D2D0 cells (Figure 8.3.A). This may reflect the 

previously observed resuming of cell cycle with serum add-back, therefore cells in different 

cell cycle phases generating varying Ca2+ responses. The traces also showed that both store 

depletion in response to TG addition (200nM) and subsequent Ca2+ entry following the 

addition of Ca2+ (2mM) were restored in D2D2 cells compared to proliferating cells (Figure 

8.3.B).   

Total Ca2+ store release was significantly upregulated in D2D1 by ~73% (98.13 ± 4.03 FRUs) 

and in D2D2 by ~70% (96.29 ± 6.93 FRUs) compared to D2D0 (56.71 ± 3.48 FRUs) (P < 

0.0001). Compared to proliferating (102.62 ± 3.66 FRUs) total Ca2+ store release was restored 

after one-day serum add-back D2D1 (P > 0.05) (Figure 8.4.A). Total SOCE was significantly 

upregulated by ~ 50 % in D2D1 (213.71 ± 7.05 FRUs) and ~ 61% in D2D2 (229.9 ± 22.1 

FRUs) compared to D2D0 (142.17 ± 7.98 FRUs) (All P < 0.0001). Compared to proliferating 

(236.82 ± 9.15 FRUs) total SOCE was restored after one-day serum add-back D2D1 (P > 

0.05) (Figure 8.4.A and Tabl3 8.3). 

Consistent with this, maximal Ca2+ store release was significantly upregulated in D2D1 

by~41% (0.26± 0.007FRUs) and in D2D2 by ~36.5% (0.25 ± 0.003 FRUs) compared to 

D2D0 (0.18 ± 0.009 FRUs) (P < 0.0001). Compared to proliferating (0.26 ± 0.008 FRUs) 

maximal Ca2+ store release was restored after one-day serum add-back D2D1 (P > 0.999) 

(Figure 8.4.B). Maximal SOCE was also significantly upregulated by ~ 19 % in D2D1 (0.55 ± 

0.01 FRUs) and ~ 30% in D2D2 (0.60± 0.02 FRUs) compared to D2D0 (0.46± 0.01 FRUs) 

(All P < 0.0001). Compared to proliferating (0.60 ± 0.01 FRUs) maximal SOCE was restored 

after one-day serum add-back D2D1 (P > 0.999) (Figure 8.4.B and Table 8.3). 
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Rate of Ca2+ store release was significantly increased in D2D1 by ~65% (1.03 ± 0.03 × 10-3 

FRUs) and in D2D2  by ~42% (1.12 ± 0.04 FRUs) compared to D2D0 (0.63 ± 0.02 FRUs) (P 

< 0.05). Compared to proliferating (0.97 ± 0.05 FRUs) rate Ca2+ store release was restored 

after one-day serum add-back D2D1 (P > 0.999). Rate of SOCE was not significantly different 

in D2D1 (2.8 ± 0.6 FRUs) and in D2D2 (3.1± 0.13 FRUs) compared to D2D0 (3.2± 0.09 

FRUs) (All P > 0.999) (Table 8.3).  This observation indicates that cell cycle re-entry restored 

the efficiency of Ca2+ store release. 

Both decline rate of Ca2+ store release and SOCE were not significantly altered over the 2-day 

serum add-back time course (All P > 0.0999) (Table 8.3).   

The present results revealed, in contrast to HeLa cells, that overall Ca2+ store release and 

SOCE were restored with cell cycle re-entry in NIH 3T3 cells. 
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Figure 8.3  SOCE traces with cell cycle re-entry in NIH 3T3 cells  

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (D2D0). After 2 days, both proliferating and D2D0 cells were grown in 10% FCS for 

further 2 days. TG represents the addition of the SERCA inhibitor thapsigargin to induce Ca2+ 

store release and CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. (A) 

Typical Ca2+-addback traces from 6 individual cells within one experiment in proliferating 

(blue), D2 cells (red) and D2D2 (green) show variability in Ca2+ responses in proliferating and 

D2D2 compared to D2 cells. (B) Mean Ca2+ addback traces from proliferating (blue), D2D0 

cells (red) and D2D2 (green). Traces represent an average from 60 cells ± S.E.M from one 

experiment. Fura-2 fluorescence was measured at excitation wavelengths of 340 nm and 380 

nm and an emission wavelength of 510 nm, with changes in fluorescence ratio (FR) reflect 

changes in [Ca2+]i. Addition of thapsigargin (TG, first peak) caused increase in FR in 

proliferating and starved cells indicating increase in [Ca2+]i as Ca2+ is depleted from ER stores. 

Following Ca2+ addback (CaCl2, second peak) an increase in FR occurred, as Ca2+ enters the 

A 

B 
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cytosol via SOCE to replenish depleted stores. Both Ca2+ store release and SOCE responses 

appear to be restored over the two-day serum add-back time course compared to proliferating 

cells. For proliferating cells n = 130, for D2D0 n = 101, D2D1 n = 179, D2D2 n = 188, N=4.
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 Total 

( P < 0.0001) 

Maximal 

(P < 0.0001) 

ROR ROD 

(P > 0.05) 

Values(FRUs) % 

change 

Values(FRUs) % change Values(×10-3 

FRUs) 

% 

change 

Values  (× 10-5 

FRUs) 

% 

change 

Ca2+store 

release 

D2D0 56.71±3.48 ----- 0.18±0.009 ----- 0.63 ± 0.02 ----- 6.71  ± 1.27 ----- 

D2D1 98.13±4.03 73% 0.26±0.007 44% 1.03 ± 0.03 

P < 0.05 

63% 8.91± 0.91 33% 

D2D2 96.29±6.93 70% 0.25±0.003 39%  1.12± 0.04 

P < 0.05 

78% 12.01±1.4 

 

79% 

Proliferating 102.6±3.66 81% 0.26±0.008 44% 0.97 ± 0.05  54% 12.5±2.6 86% 

SOCE D2D0 142.1±7.98 ----- 0.46± 0.01 ----- 3.2± 0.09 ----- 4.72±1.01 ----- 

D2D1 213.7±7.05 50% 0.55 ± 0.01 20% 2.8 ± 0.6 

P > 0.999 

-12.5%  2.65±0.93 

 

-44% 

D2D2 229.9±22.1 62% 0.60± 0.02 30%  3.1± 0.13 

P > 0.999 

-3% 2.24±0.85 -53% 

Proliferating 236.8±9.15 66% 0.60 ± 0.01 30%  3.57± 0.11 -12% 2.23±1.02 -53% 

Table 8.3 Summary of quantifications of Ca2+ store release and SOCE responses in NIH 3T3 cells with cell cycle re-entry  

The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline 

(ROD) for TG and CaCl2 responses from calibrated fluorescence traces were calculated using Excel functions in a template spread 
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sheet (Methodology chapter 2.8, figure 2.10) over two days of serum add-back . Data represented as means ± SEM.  FRUs 

(fluorescence ratio unit).  
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Figure 8.4 Ca2+ responses were restored with cell cycle re-entry in NIH 3T3 cells   

A 

B 
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NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (D2D0). After 2 days, serum was added back to D2D0 cells; both proliferating and D2D0 

cells were growing in 10% FCS medium for further 2 days. Changes in fluorescence ratio 

units (FRUs) reflect changes in [Ca2+]i following Ca2+ store release in response to stimulation 

with 200nM thapsigargin (TG) and subsequent SOCE following the addition of 2mM CaCl2. 

A) Graph shows mean of total store release in response to TG addition and maximal SOCE 

after adding Ca2+.  D2D0, D2D1, D2D2 represent two days of serum starvation followed by 

zero day, one day and two days of serum add-back. Total Ca2+ store release was significantly 

upregulated by ~ 73% and ~ 70% in D2D1 and D2D2 respectively compared to D2D0. Total 

SOCE was significantly upregulated by ~ 50 % and ~ 61% in D2D1 and D2D2 compared to 

D2D0 (All P < 0.0001****). Compared to proliferating, both total Ca2+ store release and 

SOCE were restored after one-day serum add-back time course D2D1; P > 0.999. B) Maximal 

Ca2+ store release was significantly upregulated by ~ 41% and ~ 58% in D2D1 and D2D2 

compared respectively to D2D0 (P < 0.0001****). Compared to proliferating, maximal Ca2+ 

store release restored after one day serum add-back time course, all P > 0.999. Maximal 

SOCE was significantly upregulated by ~ 19% and 30% in D2D1 and D2D2 compared to 

D2D0 (P < 0.0001****).  Compared to proliferating, maximal SOCE was restored over the 2-

day serum add-back time course, P = 0.7351.  Error bars represent S.E.M. For proliferating 

cells n = 130, for D2D0 n = 101, D2D1 n = 179, D2D2 n = 188, N=4. 
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8.2.3  SOCE was restored with serum add-back in hTERT RPE-1 cells 

In this study, serum starvation of hTERT RPE-1 cells did not affect cell cycle progression,  

and so consequently did not induce cell cycle arrest in G0/G1 phase (Section 3.3.3), however, 

Ca2+ signalling responses were altered in response to serum starvation (Section 4.2.3). 

Therefore, Ca2+ signalling changes were further investigated with adding the serum back to 

serum-starved RPE-1 cells in order to detect the reversibility of serum starvation induced Ca2+ 

signalling changes. 

Typical Ca2+-addback traces from 6 individual cells within one experiment were chosen 

randomly to show various profiles of single cell Ca2+ signals (Figure 8.5. A). Ca2+-addback 

traces from D2D0, D2D2 and proliferating hTERT RPE-1 cells were similar and showed 

variances in Ca2+ responses. This is not surprising giving that the hTERT RPE-1 cells were 

not synchronised either with serum starvation or with serum add-back.  

Mean Ca2+-addback traces from D2D0, D2D2 and proliferating cells indicated that both Ca2+ 

store release in response to TG addition (200nM) and SOCE following the addition of CaCl2 

(2mM) appeared to be upregulated in D2D2 cells compared to D2D0 cells and restored 

compared to proliferating cells (Figure 8.3.B).   

In order to quantify Ca2+ entry into the cell cytosol the area from under TG and CaCl2 

responses were calculated from calibrated fluorescence traces (Method 2.8). Area under peak 

(AUP) was presented in graphs as mean ± SEM of n determinations. 

Total Ca2+ store release was significantly up regulated in D2D1 cells by ~ 43% (37.76 ± 2.765 

FRUs) and D2D2 by ~ 45% (38.27 ± 7.367 FRUs) respectively compared to D2D0 (26.35 ± 

4.18 FRUs) (P<0.001). Compared to proliferating cells (39.12 ± 2.13 FRUs), Ca2+ store 

release was restored after 1 day of serum add-back (P > 0.05) (Figure 8.6.A). Total SOCE was 

also significantly up-regulated up regulated in D2D1 by 18.5% (57.5 ± 10.2 FRUs) and D2D2 

by 21% (58.7 ± 8.61 FRUs) compared to D2D0 (48.4 ± 6.351 FRUs), (P <0.05). Compared to 

proliferating cells (66.43 ± 2.19 FRUs), there was significant difference at D2D1 and D2D2 (P 

> 0.05) (Figure 8.6.A and Table 8.4). 

Consistent with the upregulation and restoration of total Ca2+ store release and SOCE, 

maximal Ca2+ store release was significantly up-regulated in D2D1 cells by 32% (0.175 ± 
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0.012FRUs) and D2D2 by 58% (0.209 ± 0.007 FRUs) respectively compared to D2D0 (0.132 ± 

0.008 FRUs) (P<0.001).Compared to proliferating cells (0.20 ± 0.008 FRUs), maximal Ca2+ 

store release was restored after the first day of the serum add-back time course (P > 0.05). 

(Figure 8.6.B and Table 8.4). 

Maximal SOCE was significantly upregulated in D2D1 cells by ~8% (0.25 ± 0.022FRUs) and 

D2D2 by ~51% (0.349 ± 0.013 FRUs) respectively compared to D2D0 (0.230 ± 0.016 FRUs), 

however, it was only significant in D2D2 (P<0.001). Compared to proliferating cells (0.20 ± 

0.008 FRUs), maximal SOCE was restored after day 2 of the serum add-back time course (P > 

0.05) (Figure 8.6.B and Table 8.4).  

Rate of Ca2+ store release showed no significant differences over the 2-day serum add-back 

time course. In D2D1 cells (1.83±0.054×10-3 FRUs) and D2D2 (1.62±0.062 × 10-3 FRUs) 

compared to D2D0 (1.975± 0.048 ×10-3 FRUs) (P >0.05) (Table 8.4). Rate of SOCE was 

upregulated D2D1 cells by ~16% (5.51± 0.056 ×10-3 FRUs) and D2D2 by ~13%(5.38 ± 

0.11×10-3FRUs) respectively compared to D2D0 (4.75 ± 0.175 × 10-3 FRUs) however this 

upregulation was not significant. (P > 0.05). Compared to proliferating cells (6.079 ± 0.146×10-3 

FRUs), rate of SOCE was not significantly different over the 2-day serum add-back time 

course (P > 0.05) (Table 8.4).  

Decline rate of Ca2+ store release was not significantly changed over the 2-day serum add-

back time course. In D2D1 cells (12.005± 4.43 ×10-5 FRUs) and D2D2 (17.91±7.26 ×10-5 

FRUs) compared to D2D0 (26.16 ± 4.24 ×10-5 FRUs) (P >0.05) (Table 8.4). Decline rate SOCE 

was significantly increased in D2D1 cells by ~53% (143.70 ± 8.17×10-5 FRUs) and D2D2 by 

~60% (150.12 ± 10.81×10-5FRUs) compared to D2D0 (93.50± 7.26 ×10-5 FRUs) (P < 0.05). 

Compared to proliferating cells (170.1 ± 0.9.1×10-5 FRUs), decline rate of SOCE was not 

significantly different over the two-day serum add-back time course (P > 0.05) (Table 8.4).  

In summary, the results showed that total Ca2+ store release and SOCE were restored from the 

first day of serum add-back in hTERT RPE-1 cells. 
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Figure 8.5 SOCE serum add-back traces of hTERT RPE-1 cells  

RPE-1 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 days 

(D2D0). After 2 days both proliferating and D2D0 cells were grown in 10% FCS for further 2 

days.TG represents the addition of the SERCA inhibitor thapsigargin to induce Ca2+ store 

release and CaCl2 represents Ca2+ addition to the Ca2+ free buffer to induce SOCE. (A) 

Typical Ca2+-addback traces from 6 individual cells within one experiment in proliferating 

(blue), D2D0 cells (red) and D2D2 (green) show variability in Ca2+ responses in proliferating 

and D2D2 compared to D2 cells. (B) Mean Ca2+ addback traces from proliferating (blue), 

D2D0 cells (red) and D2D2 (green). Traces represent an average from 100 cells ± S.E.M from 

one experiment. Fura-2 fluorescence was measured at excitation wavelengths of 340 nm and 

380 nm and an emission wavelength of 510 nm, with changes in fluorescence ratio (FR) 

reflect changes in [Ca2+]i. Addition of thapsigargin (TG, first peak) caused increase in FR in 

proliferating and starved cells indicating increase in [Ca2+]i as Ca2+ is depleted from ER stores. 

Following Ca2+ addback (CaCl2, second peak) an increase in FR occurred, as Ca2+ enters the 

cytosol via SOCE to replenish depleted stores. Both Ca2+ store release and SOCE responses 
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appear to be restored over the two-day serum add-back time course compared to proliferating 

cells.   
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Total Maximal ROR ( All P > 0.05) ROD 

 

Values 

(FRUs) 

% change Values 

(FRUs) 

% change Values (  

×10-3FRUs) 

 

%  

change 

Values (× 

10-5 FRUs) 

% change 

Store release 

D2D0 

(Control) 

26.35± 4.18 ------ 0.132±0.00

8 

------ 1.975±0.048 ------ 26.16  ± 

4.24 

------ 

D2D1 37.7 ± 2.76 

P < 0.001 

43% 0.17±0.012 

P < 0.001 

29% 1.83±0.054 -7% 12.00± 4.43 

P >0.05 

-54% 

D2D2 38.27±7.36 

P < 0.001 

45% 0.20±0.007 

P < 0.001 

52% 1.62±0.062 -17% 17.91±7.26

P > 0.05 

-31% 

Proliferating 39.12±2.13 48.6% 0.20 ± 0.00 52% 1.8±0.08 -6.5% 26.16±4.24 -20% 

SOCE 

D2D0 

(Control) 

48.4±6.351 ------ 0.23±0.01 ------ 4.75 ± 0.175 ------ 93.50±7.26 ------ 

D2D1 57.5±10.26 

P <0.05 

18.5% 0.25± 0.022 

P = 0.0743 

8% 5.51± 0.056 16% 143.7±8.17 

P  < 0.05 

53% 

D2D2 58.7 ± 8.61 

P <0.05 

21% 0.34±0.013 

P < 0.001 

48% 5.38 ± 0.11 13% 150.1±10.8 

P < 0.05 

60% 

Proliferating 57.43±0.19 18.5 % 0.20± 0.008 13% 6.079±0.146 27% 170.1±0.91 81% 

 Table 8.4  Summary of quantifications of Ca2+ store release and SOCE responses in hTERT RPE-1cells with serum add-back 
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The total response (area under the peak, AUP), maximal response (the height of peak, HOP), rate of rise (ROR) and rate of decline (ROD) for 

TG and CaCl2 responses from calibrated fluorescence traces were calculated using Excel functions in a template spread sheet (Methodology 

chapter 2.8, figure 2.10) over two days of serum add-back . Data represented as means ± SEM.  FRUs (fluorescence ratio unit). For proliferating 

cells n = 281, for D2D0 n = 145, D2D1 n = 122 and D2D2 n = 127, N=4. 
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Figure 8.6 Ca2+ responses were restored with serum add-back in hTERT RPE-1 cells  

hTERT RPE-1 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS 

medium for 2 days (D2). After 2 days, serum was added back to starved cells (D2); both 

proliferating and D2 cells were growing in 10% FCS medium for further 2 days. A) Graph 

shows means of total Ca2+ entry into the cytosol following Ca2+ store release in response to 

stimulation with 200nM thapsigargin (TG) and subsequent SOCE following the addition of 

A 

B 
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2mM CaCl2. Changes in fluorescence ratio units (FRUs) reflect changes in [Ca2+]
i. Total 

Ca2+ store release was significantly increased in D2D1 and D2D2 cells by ~ 45% and ~ 

43%compared to D2D0, all P < 0.001***. SOCE were significantly reduced in D2D2 cells by 

~ 26.5% compared to D2D0, P <0.05*. Both total Ca2+ store release and SOCE were restored 

with serum add-back compared to proliferating. B) Graph shows means of maximal Ca2+ 

store release and maximal SOCE. Maximal Ca2+ store release was significantly increased 

from first day of serum add-back time course compared to D2D0 (control starved cells), 

P<0.001***. Whilst maximal SOCE was significantly increased from second day of serum 

add-back time course, P<0.001***. Error bars represent S.E.M. For proliferating cells n = 

281, for D2D0 n = 145, D2D1 n = 122 and D2D2 n = 127, N=4. 
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8.3 Discussion 

Serum starvation-induced cell cycle arrest in G0/G1 in HeLa and NIH 3T3 cells was 

observed to be associated with an uncoupling and a down regulation of Ca2+ store release 

and SOCE. G0/G1 cells were induced to re-enter the cell cycle by serum add-back and 

restored the proliferating percentage of G0 cells in both HeLa and NIH 3T3 cells. In 

contrast, in hTERT RPE-1 cells, serum starvation did not induce cell cycle arrest in G0/G1 

phase (Section 3.3.3), however, a slight down regulation of Ca2+ store release and SOCE 

were observed (Section 4.2.3). The aim of the work presented in this chapter was to 

identify the Ca2+ signalling changes with cell cycle re-entry in HeLa and NIH 3T3 cells 

and to determine the effect of serum add-back on Ca2+ signalling in serum starved hTERT 

RPE-1 cells, allowing a subsequent comparison to HeLa and NIH 3T3 in order to 

determine the extent of contribution of cell cycle re-entry to the observed Ca2+ signalling 

changes. 

The results show that Ca2+ store release and SOCE in HeLa cells were not restored from 

G0/G1 levels to the proliferating levels with cell cycle re-entry even with the extension of 

serum add-back for one more day after full restoration of proliferating percentage of G0 

cells. (Figure 8.2). This result indicates that HeLa cells might not need Ca2+ or need very 

low level of Ca2+ entry to re-enter cell cycle and resume proliferation. SOCE, possibly, 

was not restored as a result of non-restoration of Ca2+ store release or it might be an 

underlying molecular mechanisms cause non restoration of SOCE, therefore, STIM1 and 

Orai1 proteins will be investigated with cell cycle re-entry in the next chapter. 

Non-restoration of Ca2+ store release suggests that an irreversible change in the capacity of 

the Ca2+  
 store or in sensitivity to TG occurred with cell cycle arrested in G0/G1 phase or 

they might need a longer duration of serum add-back to be restored.  

It is noteworthy that there was a significant uncoupling between Ca2+ store release and 

SOCE with a down-regulation of SOCE at day two (D4D2) of serum add-back compared 

to G0/G1 cells (D4D0) in HeLa cells that might be explained by the observation that there 

was a significant increase in number of cells in S to G2/M transition (Chapter 7) at which 

the SOCE is known to be down-regulated and uncoupled to Ca2+ store release (Chen et al., 

2016).   
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Compared to HeLa cells, Ca2+ signalling responses with cell cycle re-entry were different 

in NIH 3T3 cells, both Ca2+ store release and SOCE were coupled and restored from 

G0/G1 levels to the proliferating levels after one day of serum add-back. This result 

reveals an extensive association between cell cycle progression and SOCE in NIH 3T3 

cells. A similar result was observed in RBL cells, where cell cycle re-entry was associated 

with restoration of the reduction in ICRAC occurred following cell cycle block in G0/G1 

phase by serum-free treatment (Bodding, 2001).  

Ca2+ signals are known to play a major role in cell cycle progression and cell proliferation. 

Previous studies have clearly shown that SOCE controls cell growth and proliferation in 

several cell types. For example, SOCE down-regulation reduced cell proliferation in non-

small cell lung adenocarcinoma cells (Ay et al., 2015), FSH-stimulated ovarian cancer 

cells (Tao et al., 2013) and  human metastatic melanoma cell lines (Umemura et al., 2014). 

However, in other cell types, blocking SOCE by knocking down STIM1 has no effect on 

cell proliferation in human metastatic renal cellular carcinoma  (Dragoni et al., 2014), 

human umbilical vein endothelial cells  (HUVEC) (Antigny et al., 2012), HEK293 cells 

(El Boustany et al., 2010), human myoblasts (Darbellay et al., 2009),  as well as vascular 

smooth muscle cells (Li et al., 2008). 

In addition, it has been previously demonstrated that the degree of cellular transformation 

determines the requirement for extracellular Ca2+
 for cell proliferation (Boynton, 1988; 

Whitfield, 1992; Capiod, 2013).     

Further evidence consistent with the progression of cell cycle without restoration of SOCE 

is that HeLa cells have been shown to be insensitive to external Ca2+ and proliferate 

normally in the absence of external Ca2+ and subsequently with no Ca2+ entry for at least 

three days with no decrease in cell viability (Borowiec et al., 2014) and this also was 

observed in HEK293 cells and human hepatoma cell line Huh-7 (Borowiec et al., 2014) in 

addition to transformed human fibroblasts (Boynton et al., 1977; Takuwa et al., 1993). 

Taken together, these results imply an uncoupling between cell proliferation and Ca2+ 

entry in cancer HeLa cells whilst in precancerous NIH 3T3 cells they are coupled. 

In hTERT RPE-1 cells, there was an up-regulation of Ca2+ store release and SOCE by 43% 

and 18.5% respectively after one day serum add-back which restored the normal levels of 

Ca2+ response indicating that the down- regulation observed with serum starvation was 

reversible.  
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The observed up-regulation and restoration of SOCE in NIH 3T3 cells could not be a 

direct effect of serum add-back : Firstly, SOCE in HeLa cells was not restored with serum 

add-back; Secondly, the extension of the up-regulation of SOCE (50%) with cell cycle re-

entry in NIH 3T3 cells was far higher than that with serum add-back in hTERT RPE-1 

cells (18.5%) showing that there is a greater contribution of cell cycle re-entry in up-

regulation of SOCE in NIH 3T3 cells. 

It is important to remark that, in NIH 3T3 cells, SOCE was fully restored after one day of 

serum add-back before the full restoration of the proliferating percentage of G0 cells which 

was restored after two days of serum add-back (Figure 7.12) suggesting that SOCE might 

be involved in triggering cell cycle re-entry in these cells. 

The difference in Ca2+ responses to cell cycle re-entry between HeLa and NIH3T3 cells 

suggests that there may be underlying differences in the expression of SOCE proteins. 

Therefore expression of the SOCE proteins STIM1 and Orai1 were investigated with cell 

cycle re-entry (Chapter 9) to determine any changes in expression that may underlie the 

observed changes in SOCE.  
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8.4  Conclusions 

 In HeLa cells, SOCE was not restored with cell cycle re-entry suggesting that 

SOCE has no role in HeLa cells proliferation. 

 Compared to hTERT RPE-1 cells, the restoration of SOCE with serum add-back in 

NIH 3T3 cells could strongly be associated to cell cycle re-entry. 

 In NIH 3T3 cells, SOCE was fully restored after one day of serum add-back 

preceding the full restoration cell cycle progression suggesting that SOCE might 

have a role in resuming cell cycle progression and cell proliferation. 
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Chapter 9 Store-Operated Ca2+ Entry Proteins   

9.1 Introduction 

In the present study, cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 cells was 

associated with an uncoupling and down regulation of Ca2+ store release and SOCE and a 

significant down-regulation of SOCE proteins STIM1and Orai1. In the previous chapter, 

results showed that Ca2+ store release and SOCE were restored in NIH 3T3 cells with cell 

cycle re-entry but not in HeLa cells. In hTERT RPE-1 cells, serum starvation induced a 

down regulation of Ca2+ store release and SOCE and a slight down-regulation of SOCE 

protein Orai1, also, serum add-back restored the observed changes in Ca2+ store release 

and SOCE observed with serum-starvation. 

This chapter aimed to investigate the expression of SOCE associated proteins with cell 

cycle re-entry in HeLa and NIH 3T3 cells and with serum add-back in hTERT RPE-1 

cells. 

9.2  Results- STIM1 and Orai1 expression  

Western blots were performed on protein extracted from HeLa, NIH 3T3, hTERT RPE-1 

cells in order to determine expression levels of STIM1 and Orai1. 

9.2.1   STIM1 and Orai1 expression with cell cycle re-entry in HeLa cells 

SOCE was not restored in HeLa cells following three days of serum add-back (Section 

4.2.1). In order to determine any changes in STIM1and Orai1 protein expression 

associated with this observation, HeLa cells were grown in 10% FCS medium 

(proliferating) or 0.1% FCS medium for four days D4D0 (G0/G1). After four days, serum 

was added back to D4D0; both proliferating and D4D0 cells were grown in 10% FCS 

medium for further three days. 

STIM1 was expressed over the three day serum add-back time course in HeLa cells as 

determined by a band detected at 84kDa by an anti-STIM1 antibody (Figure 9.1.A). Blots 

were re-probed with β-actin, used as a loading control, and STIM1 was expressed as a ratio 

of β-actin in order to quantify changes in band intensity (Figure 9.1.B).   
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STIM1 protein expression was not significantly changed (i.e. remained down-regulated) 

over the 3-day serum add-back time course compared to D4D0 (control) cells (P = 0.0953) 

indicating that STIM1 expression is not induced with cell cycle re-entry which is 

consistent with the involvement of STIM1 in the process of SOCE in HeLa cells. 

Orai1 was expressed over the three day serum add-back time course in HeLa cells as 

determined by a band detected between 37 and 50 kDa by an anti- Orai1 antibody (Figure 

9.2.A). Orai1 was expressed as a ratio of β-actin, which revealed that Orai1 protein 

expression was increased from first day of serum add-back by ~211% compared to D4D0 

(Control) and remained upregulated by ~128 % and ~207 % in D4D2 and D4D3 

respectively compared to D4D0 cells (P = 0.0043). In D4D2, there was a drop in Orai1 

expression compared to D4D1 however it was also significantly increased compared to 

D4D0 cells (P < 0.01). Interestingly, this drop in Orai1 expression coincided with the 

observed decrease in SOCE at day 2 of serum add-back further confirming a role of Orai1 

in SOCE in HeLa cells. From the first day of serum add-back, Orai1expression was not 

significantly different compared to proliferating (P > 0.999) (Figure 9.2.B).  

As previously observed in HeLa cells, Orai1 was expressed in three distinct molecular 

masses. Analysis of the three masses individually showed that Orai1 was expressed in a 

same pattern as that of whole band analysis where Orai1 expression was significantly 

increased from the first day of serum-add-back and remain increased in D4D3 compared to 

D4D0 cells (P=0.0067). As previously detected, in D4D2, there was a drop in Orai1 

expression compared to D4D1 however it was also significantly increased compared to 

D4D0 cells (P = 0.0237). Compared to proliferating, Orai1 expression was restored with 

cell cycle re-entry (P > 0.999) (Figure 9.2.C). 

These results suggest that unlike STIM1, Orai1 protein may play a role in cell cycle 

progression and cell proliferation in HeLa cells. 
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Figure 9.1 STIM1 expression was not restored with cell cycle re-entry in HeLa cells 

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days (D4). After 4 days, serum was added back to starved cells (D4D0); both proliferating 

and D4 cells were grown in 10% FCS medium for further 3 days. D4D0, D4D1, D4D2, 

D4D3 represent four days of serum starvation followed by zero day, one day, two days and 

three days of serum add-back. Blots were probed with anti-STIM1 antibody which 

detected a band at 84 kDa or β- actin antibody which was used as a loading control and 

detected a band at between 42 kDa. A) STIM1 was expressed in all cell populations; 

D4D0, D4D1, D4D2, D4D3 and proliferating. B) Quantitative measurements of bands 

were performed using densitometry (ImageJ software, Methods 2.6.9) where STIM1 was 

expressed as a ratio of β-actin. There was no significant changes in STIM1 expression over 

the 3-day serum add-back. Compared to proliferating, the STIM1 expression is still 

significantly lower (P = 0.0031). N=4. 

A 

B 
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Figure 9.2 Orai1 expression was restored with cell cycle re-entry in HeLa cells  

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days (D4). After 4 days, serum was added back to starved cells (D4); both proliferating 

and D4 cells were grown in 10% FCS medium for further 3 days. D4D0, D4D1, D4D2, 

A 

B 

C 
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D4D3 represent four days of serum starvation followed by zero day, one day, two days and 

three days of serum add-back. Blots were probed with anti-Orai1 antibody which detected 

3 bands at between 37 and 50 kDa. A) Orai1 was expressed in all cell populations; D4D0, 

D4D1, D4D2, D4D3 and proliferating. Blots were re-probed with anti-β-actin antibody 

(42kDa), used as a loading control. B) Quantitative measurements of bands were 

performed using densitometry (ImageJ software, Methods 2.6.9) where Orai1 was 

expressed as a ratio of β-actin. From first day, there was a significant increase in Orai1 

expression by ~211% compared to D4D0 (Control).In D4D2 and D4D3 Orai1 expression 

was also increased by ~128 % and ~207 % respectively compared to D4D0 cells (P = 

0.0043) and was not significantly different compared to proliferating( P > 0.999). C) 

Quantitative analysis of upper, middle and lower Orai1 bands. Orai1 expression showed 

the same pattern as that of whole band analysis (B). Orai1 expression was significantly 

increased from the first day of serum-add-back and remain increased in D4D3 compared to 

D4D0 cells (P=0.0067**). In D4D2, there was a drop in Orai1 expression compared to 

D4D1 however it was also significantly increased compared to D4D0 cells (P = 0.0237*). 

Compared to proliferating, Orai1 expression was restored with cell cycle re-entry (P > 

0.999). N=4.  
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9.2.2 STIM1 and Orai1 expression with cell cycle re-entry in NIH 3T3 cells 

 NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 

2 days (D2D0) After 2 days, serum was added back to D2D0 cells for 2 days (D2D2).   

STIM1 was expressed over the two day serum add-back time course in NIH 3T3 cells as 

determined by a band detected at 84kDa by an anti-STIM1 antibody (Figure 9.3.A). In 

contrast to HeLa cells, STIM1 protein expression was significantly increased by ~ 90.5% 

and ~ 95.5% in D2D1 and D2D2 of serum add-back time course respectively compared to 

D2D0 cells (P = 0.0240), and was not significantly different compared to proliferating (P = 

0.0835) (Figure 9.3.B). Thus the STIM1 expression was restored with cell cycle re-entry 

which would likely contribute to the restored SOCE observed in NIH 3T3 cells with cell 

cycle re-entry and suggest again that STIM1 is involved in the process of SOCE in NIH 

3T3 cells.  

Similarly, Orai1 was expressed over the two day serum add-back time course in NIH 3T3 

cells as determined by a double band detected between 37 and 50 kDa by an anti- Orai1 

antibody (Figure 9.4.A). Blots were re-probed with β-actin, used as a loading control, and 

Orai1 was expressed as a ratio of β-actin which showed that Orai1 protein expression was 

significantly increased by ~73.5% and ~83% in D2D1 and D2D2 of serum add-back time 

course respectively compared to D2D0 cells (P = 0.0062), and was not significantly 

different compared to proliferating (P > 0.999) (Figure 9.4.B). These results are consistent 

with a role of Orai1 in SOCE and cell cycle progression. 

As observed previously, Orai1 was expressed in a double band in NIH 3T3 cells. The 

upper and lower Orai1 band (Figure 5.4.C) were analysed individually. The upper band 

showed a significant increase in Orai1expression in D2D1 and D2D2 cells by ~195.5% 

and  ~194% compared to proliferating (P < 0.01) whereas the lower band showed no 

significant difference in Orai1 expression in over the two day serum add-back time course  

compared to D2D0 cells (P=0.0784 ). This would again confirm that Orai1exists in two 

different states in NIH 3T3 cells.  
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Figure 9.3 STIM1 expression was restored with cell cycle re-entry in NIH 3T3 cells  

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium 

(G0/G1) for 2 days. Blots were probed with anti-STIM1 antibody which detected a band at 

84 kDa or β- actin antibody which was used as a loading control and detected a band at 42 

kDa. A) STIM1 was expressed in all cell populations; D2D0, D2D1, D2D2 and 

proliferating. B) Quantitative measurements of bands were performed using densitometry 

(ImageJ software, Methods 2.6.9) where STIM1 was expressed as a ratio of β-actin. From 

first day, there was a significant increase in STIM1 expression by ~90.5% compared to 

D2D0 (Control) (P = 0.0240) and was not significantly different compared to proliferating 

(P = 0.0853). N = 3. 
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Figure 9.4 Orai1 expression was restored with cell cycle re-entry in NIH 3T3 cells  

Western blots were performed on protein extracted from NIH 3T3 cells following growing 

for 2 days in 10% FCS (proliferating = P) or 0.1% FCS (G0/G1). Blots were probed with 

anti-Orai1 antibody which detected a band between 37 and 50 kDa or β- actin antibody 

B 

A 

C 
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which was used as a loading control and detected a band at 42 kDa.  A) Orai1 was 

expressed in all cell populations; D2D0, D2D1, D2D2 and proliferating. B) Quantitative 

measurements of bands were performed using densitometry (ImageJ software, Methods 

2.6.9) where Orai1 was expressed as a ratio of β-actin. There was a significant increase in 

Orai1 expression by ~73.5% compared to D2D0 (Control) (P = 0.0026*) and was not 

significantly different compared to proliferating (P > 0.9999). C) Quantitative analysis of 

upper and lower Orai1 bands. Orai1 expression was significantly up-regulated in D2D1 

and D2D2 cells compared to D2D0 (P < 0.01**). Whilst lower Orai1 bands showed no 

significant difference compared to D2D0 (P=0.0784) cells. N=3.  
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9.2.3 STIM1 and Orai1 expression with serum add-back in hTERT RPE-1 cells 

As previously showed in chapter 5, Orai1 protein expression was slightly down-regulated 

with serum starvation, also, in chapter 7, SOCE changes were restored with serum add-

back in hTERT RPE-1 cells. Therefore, STIM1and Orai1 protein expression was further 

determined with serum add-back by western blotting on protein extracted from 

proliferating (10% FCS), D2D0 (0.1% FCS for 2 days), D2D1 and D2D2 (0.1% FCS for 2 

days and 10% FCS for 1 and 2 days respectively). 

As observed previously, STIM1 protein expression showed two scenarios in D2D0 and 

D2D1 where most blots (N =4) showed no STIM1 expression (Figure 9.5.A) but one case 

showed slight STIM1 expression at a higher molecular weight as determined by a slight 

upward band shift detected just above 84kDa by an anti-STIM1 antibody (Figure 9.5.B). 

However in all blots of D2D2 and proliferating cells STIM1 was not expressed (Figure 

9.5.A and B).  

Orai1 was expressed over the two day serum add-back time course in hTERT RPE-1 cells 

as determined by a double band detected between 37 and 50 kDa by an anti-Orai1 antibody 

(Figure 9.6.A). Orai1 protein expression as a ratio of β-actin was increased by ~8.5% and  

~17 % in D2D1 and D2D2 of serum add-back time course respectively compared to D2D0 

cells, however this increase was not significant (P = 0.0841) (Figure 9.6.B).  

As seen before, Orai1 expression showed a double band in proliferating and over serum add-

back time course. The upper and lower Orai1 bands (Figure 9.6.C) were analysed 

individually. This showed the same pattern as that of whole band analysis where there was 

no significant different in Orai1 expression inD2D1 and D2D2 compared to D2D0. 

Orai1 expression level in D2D2 was similar to that of proliferating cells indicating that 

Orai1 expression reverts to the proliferating level with serum add-back which could 

contribute to observed restoration of SOCE. In addition, the extent of SOCE up-regulation 

was ~21% in D2D2 of a serum add-back time course (Figure 8.6.A). The changes observed 

in SOCE are similar to those seen in Orai1 expression and further suggest that Orai1 is 

involved in the process of SOCE in hTERT RPE-1 cells. 
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Figure 9.5 STIM1 expression with serum add-back in hTERT RPE-1 cells  

Western blots were performed on protein extracted from hTERT RPE-1 cells following 

growing in 10% FCS (proliferating = P) or 0.1% FCS for 2 days (D2) and for 4 days (D4). 

Blots were probed with anti-STIM1 antibody which detected a band at 84 kDa or β- actin 

antibody which was used as a loading control and detected a band at 42 kDa.  A) STIM1 

expression was not detected in D2D0, D2D1, D2D2 and proliferating (P) cells B) STIM1 

expression was not detected in D2D2 and proliferating (P) while there was a very low 

STIM1 expression in D2D0 and D2D1. N=5. 
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Figure 9.6 Orai1 expression with serum add-back in hTERT RPE-1 cells  

Western blots were performed on protein extracted from hTERT RPE-1 cells following 

growing in 10% FCS (proliferating = P) or 0.1% FCS for 2 days (D2) and for 4 days (D4). 

Blots were probed with anti-Orai1 antibody which detected a band between 37 and 50 kDa 

or β- actin antibody which was used as a loading control and detected a band at 42 kDa. A) 

Orai1 was expressed in all cell populations; D2D0, D2D1, D2D2 and proliferating. B) 

B 

A 

C 
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Quantitative measurements of bands were performed using densitometry (ImageJ software, 

Methods 2.6.9) where Orai1 was expressed as a ratio of β-actin. There was an increase in 

Orai1 expression in D2D1 and D2D2 cells compared to D2D0, however this increase was 

not significant. (P > 0.05). C) Quantitative analysis of upper and lower Orai1 bands. Orai1 

expression showed the same pattern as that of whole band analysis (B). There was no 

significant differences in Orai1 expression in D2D1 and D2D2 cells compared to D2D0 (P 

> 0.05). N=4.   
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9.3 Results- STIM1 and Orai1 localisation  

Localisation of SOCE proteins were also investigated with serum-back in the 3 cell types, 

HeLa, NIH 3T3 and hTERT RPE-1 cells by immunofluorescent analysis. Fixed cells were 

stained with either anti-STIM1 primary antibody or anti-Orai1 primary antibody followed 

by Alexa Fluor 647 secondary antibody or Alexa Fluor 488 secondary antibody 

respectively. Cells then were examined and images were taken by laser scanning confocal 

microscopy using an x63 objective (Method 2.7). 

9.3.1 STIM1 and Orai1 localisation with cell cycle re-entry in HeLa cells 

There was widespread expression of STIM1 throughout the cytoplasm in both D4D0 and 

D4D3 cells however, there was a clear evidence of localisation into foci near cell 

membrane (Figure 9.7.A) in D4D3 cells that was not observed in D4D0 cells (Figure 9.7.A 

and B.). 

The overall intensity of fluorescence of STIM1 was not different in D4D3 cells compared 

to D4D0 (Figure 9.7.B) consistent with the extent of expression (Section 9.2.1). Though 

there was restoration of localisation of STIM1 with cell cycle re-entry, the STIM1 

expression was not restored which might explain the observed non restoration of SOCE in 

HeLa cells (Section 8.2.1).i.e. although localisation changed by D4D3, overall levels 

remain too low to restore SOCE 

Orai1 was also expressed throughout the cytoplasm and nuclei of D4D0 and D4D3 cells 

with some examples of clustering in the nucleus in D4D3 cells (Figure 9.8.A and B). 

These clusters were not observed in D4D0 indicating that Orai1 expression was altered 

with cell cycle re-entry. In addition, these clusters were previously observed in 

proliferating cells (Figure 5.8).  
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Figure 9.7 Restoration of STIM1 expression profile with cell cycle re-entry in HeLa 

cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days (D4). After 4 days, serum was added back to starved cells for 3 days (D4D3). Cells 

were stained with anti-STIM1 primary antibody followed by Alexa Fluor 647   secondary 

antibody. A) Images were captured using laser scanning confocal microscopy. In D4D0 

cells, STIM1 was present throughout the cell however, the level of expression is higher in 

the cell nuclei (dashed arrows) with no apparent areas of clustering. In D4D3 cells, STIM1 

 

A 

B 
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was present throughout the cell and there was high occurrence STIM1 localisation into foci 

at the cell membrane (solid arrows). B) A line scan analysis of D4D0 and D4D3 cells. The 

path was done in a single cell through the longest axis (yellow arrow) to track the STIM1 

expression profile. The line scan of D4D0 cell (red line) shows no focus localisation of 

STIM1 with clear high STIM1 expression in the cell nucleus. The line scan of D4D3 cell 

(green line) shows restoration of focus localisation of STIM1 (*) at cell membrane. Scale 

bars represent 10 μm. Images are representative of >10 images and were taken using an 

x63 objective. N=3.   
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Figure 9.8 Restoration of Orai1 expression profile with cell cycle re-entry in HeLa 

cells   

HeLa cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 4 

days (D4). After 4 days, serum was added back to starved cells for 3 days (D4D3). Cells 

were stained with anti-Orai1 primary antibody followed by Alexa Fluor 488 secondary 

antibody. A) Images were captured using laser scanning confocal microscopy. In D4D0 
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cells, Orai1 was present throughout the cell however, the level of expression is almost 

diffuse in the cell nuclei (dashed arrows) with no apparent areas of clustering. In D4D3 

cells, Orai1 was present throughout the cell and there was some examples of Orai1 

clustering in the cell nuclei (solid arrows). B) A line scan analysis of D4D0 and D4D3 

cells. The path was done in a single cell through an axis (yellow arrow) to track the Orai1 

expression profile. The line scan of D4D0 cell (red line) shows no clustering of Orai1 in 

the cell nucleus. The line scan of D4D3 cell (green line) shows some Oria1 clustering in 

the nuclei (*). Scale bars represent 10 μm. Images are representative of >15 images and 

were taken using an x63 objective. N=3.   
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9.3.2 STIM1 and Orai1 localisation with cell cycle re-entry in NIH 3T3 cells 

Similar to HeLa cells, STIM1 was expressed throughout the cytoplasm in both D2D0 and 

D2D2 cells. In D2D2, STIM1 showed obvious examples of localisation into foci near cell 

membrane (Figure 9.7) similar to that of proliferating cells (Figure 9.9.A), these foci were 

not observed in D4D0 cells (Figure 9.9.A and B). 

As seen in STIM1, Orai1 was expressed throughout the cytoplasm and nuclei of D2D0 and 

D2D2 cells. Orai1 expression in D2D2 (Figure 9.10.A.B) was similar to that in 

proliferating cells (Figure 5.10.A) showed some localisation into clusters in cell nucleus 

which was not seen in D4D0 indicating that Orai1 expression was altered with cell cycle 

re-entry.  

These results revealed that both STIM1 and Orai1 localisation were restored with cell 

cycle re-entry consistent with the observed restoration of its expression and with observed 

restoration of SOCE upon cell cycle re-entry. 
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Figure 9.9 Restoration of STIM1 expression profile with cell cycle re-entry in NIH 

3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (D2D0). After 2 days, serum was added back to D2D0 cells for 2 days (D2D2). Cells 

were stained with anti-STIM1 primary antibody followed by Alexa Fluor 647 secondary 
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antibody. A) Images were captured using laser scanning confocal microscopy. In D2D0 

cells, STIM1 was present throughout the cell however, STIM1 expression was higher in 

the cell nuclei (dashed arrows) with no apparent areas of clustering. In D2D2 cells, STIM1 

was present throughout the cell and there was high occurrence STIM1 localisation into foci 

at the cell membrane (solid arrows). B) A line scan analysis of D4D0 and D4D3 cells. The 

path was done in a single cell through an axis (yellow arrow) to track the STIM1 

expression profile. The line scan of D2D0 cell (red line) shows no focus localisation of 

STIM1. The line scan of D2D2 cell (green line) shows restoration of focus localisation of 

STIM1 (*) at cell membrane. Scale bars represent 10 μm. Images are representative of >12 

images and were taken using an x63 objective. N=3.   
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Figure 9.10 Restoration of Orai1 expression profile with cell cycle re-entry in NIH 

3T3 cells   

NIH 3T3 cells were grown in 10% FCS medium (proliferating) or 0.1% FCS medium for 2 

days (D2D0). After 2 days, serum was added back to D2D0 cells for 2 days (D2D2). Cells 

A 

B 
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were stained with anti-Orai1 primary antibody followed by Alexa Fluor 488 secondary 

antibody. A) Images were captured using laser scanning confocal microscopy. In D2D0 

cells, Orai1 was expressed throughout the cell which appear to be lower than that of D2D2 

with less areas of clustering (arrows). In D2D2 cells, Orai1 was present throughout the cell 

and there were clear examples of Orai1 clustering in the cell nuclei (arrows). B) A line 

scan analysis of D2D0 and D2D2 cells. The path was done in a single cell through an axis 

(yellow arrow) to track the Orai1 expression profile. The line scan of D2D0 cell (red line) 

shows low Orai1 expression throughout the cell nucleus. The line scan of D2D2 cell (green 

line) shows high level of Orai1 expression. Scale bars represent 10 μm. Images are 

representative of >15 images and were taken using an x63 objective. N=4.   
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9.3.3 STIM1 and Orai1 localisation with serum starvation in hTERT RPE-1 cells 

In this chapter, western blot results (Section 9.2.3) showed that STIM1 was not expressed 

in proliferating and D2D2 hTERT RPE-1 cells. In addition, STIM1 and Orai1 expression 

was not detected in proliferating and serum starved hTERT RPE-1 cells by 

immunofluorescence studies (Section 5.2.3). 

Here, immunofluorescence staining was done to detect STIM1 and Orai1localisation in  

D2D0 and D2D2 hTERT RPE-1 cells which showed that STIM1 and Orai1 was not 

detected either with serum starvation or with serum add-back (Figure 9.11 B and C).  
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Figure 9.11 STIM1 and Orai1 expression were not detected in hTERT RPE-1 cells by 

immunofluorescent studies 

 D2D0 (0.1% FCS) cells and D2D2 (2 days 0.1% FCS followed by 2 days10% FCS) cells 

were stained with anti-STIM1/anti-Orai primary antibodies followed by Alexa Fluor 647 / 

Alexa Fluor 488 secondary antibodies respectively. Images were captured using laser 

scanning confocal microscopy. A) BF (bright field) images show healthy cells. B and C) 

STIM1 and Orai1 were not detected by immunofluorescent staining. Scale bars represent 

10 μm. Images are representative of >12 images and were taken using an x63 objective. 

N=4.   

  

A) B) C) 
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9.4 Discussion 

As previously showed, cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 cells was 

associated with a an uncoupling and a down regulation of Ca2+ store release and SOCE and 

a significant down-regulation of SOCE proteins; STIM1and Orai1. The reversibility of 

Ca2+ signalling with cell cycle re-entry was investigated in the previous chapter and 

revealed that Ca2+ store release and SOCE were restored in NIH 3T3 cells but not in HeLa 

cells. In hTERT RPE-1 cells, serum starvation did not induce cell cycle arrest however it 

induced a down regulation of Ca2+ store release and SOCE and a slight down-regulation of 

the SOCE protein Orai1.With serum add-back the observed down-regulation of Ca2+ 

signalling was restored. 

Therefore, the aim of the work presented in this chapter was to determine the reversibility 

of expression of SOCE proteins with cell cycle re-entry in HeLa and NIH 3T3 cells and 

with serum add-back in hTERT RPE-1 cells. 

Serum add-back for 3 days to G0/G1 HeLa cells did not restore the proliferating level of 

STIM1 expression which remained down-regulated. This is consistent with the level of 

SOCE in G0/G1 HeLa cells with 3-day serum add-back time course which also was not 

restored following treatment (Section 8.2.1).  As previously discussed (Discussion 5.4),  it 

has been demonstrated that STIM1 has a role in SOCE (Liou et al., 2005; Roos et al., 

2005; Zhang et al., 2005) and that level of STIM1 expression has been tightly associated 

with extent of SOCE activity in many cell types. For example, SOCE down-regulation has 

been shown to be induced by STIM1 knockdown in HeLa cells (Liou et al., 2005), 

endothelial cells (Abdullaev et al., 2008), in N-type SH-SY5Y cells  (Bell et al., 2013), 

endothelial progenitor cells (Kuang et al., 2010), SH-SY5Y cells, HEK293 cells, Jurkat T 

cells and Drosophila S2 cells (Roos et al., 2005), as well as  vascular smooth muscle cells 

(Takahashi et al., 2007b; Aubart et al., 2009; Potier et al., 2009) and adipocytes (Graham 

et al., 2009).  

These results also showed that STIM1 expression was uncoupled from cell cycle 

progression and cell proliferation. Indeed, knocking down of STIM1 caused dramatic 

reduction in SOCE with no alteration in cell proliferation in many cell types, such as 

human myoblasts (Darbellay et al., 2009), HEK293 cells (El Boustany et al., 2010), 

vascular smooth muscle (Li et al., 2008) and human umbilical vein endothelial cells 
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(HUVEC) derived cell line (Antigny et al., 2012). Furthermore, silencing STIM1 did not 

affect cell proliferation rate and cell cycle distribution while SOCE was greatly decreased 

in human metastatic renal cellular carcinoma (Dragoni et al., 2014) and LNCaP  (Dubois 

et al., 2014).  

The mechanism underlying the non-restoration of STIM1 protein expression with serum 

add-back is not clear. One possibility that the protein need a longer duration of serum add-

back to recover or it may be irreversibly down regulated but still functioning as SOCE still 

operates but at much reduced levels. 

Taken together, these results along with previous studies again confirm a role of STIM1 in 

SOCE and suggested strongly that, in several cell models, such as HeLa cells, STIM1 

expression and cell proliferation are uncoupled.   

In contrast to HeLa cells, proliferating level of STIM1 expression was restored in G0/G1 

NIH 3T3 cells from the first day of serum add-back. This is consistent with the restoration of 

SOCE in G0/G1 NIH 3T3 following one day of serum add-back (Section 8.2.2). These results 

confirm the role and the close association of STIM1 expression and SOCE as previously 

discussed.  

Also the restoration of STIM1 expression was coincident with the marked decrease in G0 

cells percentage and cell cycle re-entry, however, the full restoration of proliferating 

STIM1 expression level preceded the full restoration of proliferating G0 cell percentage 

which occurred at day 2 of serum add-back suggesting a role of STIM1 in inducing cell 

cycle progression in NIH 3T3 cells. The role of STIM1 in cell cycle progression and cell 

proliferation has also been discussed (Discussion 5.4) where, knockdown of STIM1 

significantly inhibited cell proliferation and arrested the cell cycle at the G0/G1 phase in 

hepatocellular carcinoma cell (Wu et al., 2015), in hypopharyngeal carcinoma cells (Sun et 

al., 2015) and in human glioblastoma cells (Li et al., 2013) and results in cell cycle arrest 

in G1/S transition in cervical cancer SiHa cells (Chen et al., 2016).  

The results showed that Orai1expression increased and reverted back to its proliferating 

level from the first day of serum-add-back in both G0/G1 HeLa and G0/G1 NIH 3T3 cells. 

This finding is associated with the observed decrease in percentage of G0 cells and cell 

cycle re-entry and preceded the full restoration of proliferating level of G0 cells (Section 

7.2.1) suggesting an increased expression of Orai1 might possibly drive G0/G1 HeLa and 

G0/G1 NIH 3T3 cells toward cell cycle re-entry and proliferation. 
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This result is consistent with a previous study where Orai1 overexpression induced a 

significant increase in cell proliferation rate in HEK293 and HeLa cells (Borowiec et al., 

2014).  

Consistent with the above results, previous studies have demonstrated that Orai1 

knockdown results in cell cycle arrest in G1/S transition in cervical cancer SiHa cells 

(Chen et al., 2016), in G0/G1 phase in ARPE-19 cells (Yang et al., 2013), induced 

differentiation and cell cycle arrest in G0 like phase of N-type neuroblastoma cells (Bell et 

al., 2013) and that cell cycle block in HEK293 cells induced by SOCE inhibition was 

associated with Orai1 protein (Borowiec et al., 2014). Furthermore, Orai1 knockdown 

caused a dramatic decrease in proliferation rate of in HEK293 cells (El Boustany et al., 

2010), vascular smooth muscle cells (Potier et al., 2009) and endothelial cells (Abdullaev 

et al., 2008).   

It is worth mentioning that the observed up-regulation and restoration of Orai1 expression 

in NIH 3T3 cells with cell cycle re-entry was accompanied by a restoration of SOCE 

consistent with the involvement of this protein in the SOCE pathway as previously 

discussed (discussion 5.4). However, in HeLa cells, the observed up-regulation and 

restoration of Orai1 expression with cell cycle re-entry was not accompanied by 

restoration of SOCE which could be explained by the observation that STIM1 expression 

was not restored and remained down-regulated. 

These results suggest that unlike STIM1, the up-regulation in Orai1 may be directly 

involved in the induction of cell cycle progression and cell proliferation that is observed 

following serum add-back.  

In hTERT RPE-1 cells, similar to the previous findings (Section 5.2.3), STIM1expression 

was not detected in D2D2 and proliferating and most of D2D0 and D2D1 cases by western 

blot and in all conditions by immunofluorescence studies. Possibly, the number of cells 

and/or the level of expression is presumably too low to be detected by the anti- STIM1 

antibody used in this study.  

Occasionally, in D2D0 and D2D1, there was an increase in the molecular weight of 

STIM1 suggesting that there may be some sort of modification, such as phosphorylation or 

glycosylation taking place that might affect STIM1 function thereby contributing to 

dampened SOCE (discussion 5.4), this slight upshifted STIM1 band disappeared in most 
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of D2D1 and all D2D2 suggesting that STIM1 expression reverts back to its proliferating 

state.  

The results in this chapter, confirm the previous observations in chapter 5, that hTERT 

RPE-1 cells may lack/or express a very low level of STIM1 and/or other isoforms of 

STIM1 may contribute to the observed changes in SOCE. 

The data also showed that, in hTERT RPE-1 cells, Orai1 expression was slightly 

upregulated by ~8.5% and ~17 % in D2D1 and D2D2 of serum add-back compared to 

proliferating. Though these changes were not significant, it was consistent with the extent 

of up-regulation of SOCE which was ~ 8 % and 21 % (Section 9.2.3). 

Taken together, the data suggest that the restoration of SOCE activity with serum add-back 

could be driven predominantly by Orai1in hTERT RPE-1cells as the expression of STIM1 

is very low and occasionally altered. 

The results revealed that STIM1 and Orai1 localisation reverted back when cells re-enter 

the cell cycle in HeLa and NIH 3T3 cells. The STIM1 clustering at the PM and Orai1 

clustering in cell nucleus that was previously observed in proliferating cells and 

disappeared in G0/G1 cells re-appeared with cell cycle re-entry in D4D3 HeLa cells and 

D2D2 NIH 3T3 cells. 

This observation was in consistent with previous studies which reported that STIM1 and 

Orai1 localize and bind in zebrafish embryos during cell division (Chan et al., 2016), and 

that STIM1 and Orai1 localisation was altered when cells arrested in G0 like phase with 

differentiation of N-type and S-type SH-SY5Y cells (Whitworth, 2015). Furthermore, 

STIM1 has been shown to redistribute to the PM and bind to Orai1 upon Ca2+ store 

depletion in sinoatrial node cells (Liu et al., 2015), Xenopus oocytes (Courjaret and 

Machaca, 2014) and HEK293 cells (Fukushima et al., 2012).  

These findings highlight the importance of STIM1 and Orai1 localisation in cell cycle 

progression and SOCE activity in HeLa and NIH 3T3 cells. 

Again it is important to remark that, though the STIM1 localisation was restored with cell 

cycle re-entry in HeLa cells, STIM1expression was not restored leaving SOCE activity 

dampened.   
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In summary, in HeLa cells, STIM1 does not appear to be required for cell cycle re-entry 

whilst Orai1, in addition to its role in SOCE, may have another role by acting as a positive 

regulator of cell cycle progression and cell proliferation. Additional roles of Orai1 have 

been previously reported. Orai1 has been shown to control cell proliferation in HEK293 

and HeLa cells and that this process is probably independent of ICRAC (Borowiec et al., 

2014) to regulate expression of Na+/Ca2+ exchanger type 1 (NCX1) and plasma membrane 

Ca2+ pump isoform 1 (PMCA1) (Baryshnikov et al., 2009) and have a role in vascular 

remodelling (Beech, 2012). 

In NIH 3T3 cells, both SOCE proteins; STIM1 and Orai1 were remodelled with cell cycle 

arrest in G0/G1 and cell cycle re-entry suggesting a role of these proteins in cell cycle 

progression and cell proliferation. Further investigations of the role of STIM1and Orai1 on 

cell cycle progression in NIH 3T3 cells could be done by knocking down and 

overexpressing these proteins.   
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9.5 Conclusions 

 Restoration of Orai1 only was observed in HeLa cells with cell cycle re-entry 

suggesting that Orai1 might have a positive role in cell cycle progression and cell 

proliferation. 

 In contrast, STIM1 was not restored with cell cycle re-entry in HeLa cells 

indicating that persistently low STIM1 might be responsible for the previously 

observed non-restoration of SOCE with cell cycle re-entry (Chapter 8)  

 Restoration of both STIM1 and Orai1 was observed in NIH 3T3 cells with cell 

cycle re-entry implying a role of these proteins in the previously observed 

restoration of SOCE with cell cycle re-entry (Chapter 8) and suggesting a role of 

these proteins in cell cycle progression and cell proliferation. 

 Compared to hTERT RPE-1 cells, the alterations of Orai1protein in HeLa and NIH 

3T3 cells appeared to be attributed to cell re-entry and not serum add-back. 

 In hTERT RPE-1cells Orai1 appeared to play a role in SOCE. 
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Chapter 10 Final Discussion 

10.1 Summary of findings in relevance to objectives 

The aim of this study was to investigate the remodelling of Ca2+ signalling when cells 

enter and exit a quiescent G0/G1 phase in a comparison between the aggressive cancerous 

HeLa and pre-cancerous NIH 3T3 cell lines and an immortalised but non-cancerous 

hTERT RPE-1 cells. 

Serum starvation is a well-known experimental method to induce cell cycle arrest in the 

quiescent G0/G1 phase in mammalian cells (Langan and Chou, 2011; Xiong et al., 2012). 

Previous studies have shown differences in the duration of serum starvation (1-3 days) 

used to induce cell cycle arrest in G0/G1 phase (Nishikura and Murray, 1987; Matsumura 

et al., 1990; Kerkhoff and Rapp, 1997; Kues et al., 2000; Bodding, 2001; Cooper, 2003; 

Tani et al., 2007; Kim et al., 2008; Xiong et al., 2012) (Chapter 3 discussion). No studies 

extended the period of serum starvation beyond the 2-3 days reported in the literature. 

Furthermore, all reported literature only used the DNA content as a method to identify the 

G0/G1 arrest in the HeLa and NIH 3T3 cells with serum starvation, no previous studies 

used both DNA and RNA content to separate G0 from G1 cells.  

The first objective of this research therefor was to investigate and observe the cellular 

changes associated with serum starvation for five days morphologically and by flow 

cytometry in order to determine the minimum time of serum starvation required to reach 

cell cycle arrest in quiescent G0/G1 phase. As discussed above the flow cytometry analysis 

of DNA and RNA content had not been previously used in this type of investigation. This is 

one novel contribution of this current research. 

Morphologically, the results showed that total and mitotic cell number were significantly 

reduced at day four of serum starvation in HeLa cells and at day two in NIH 3T3 cells 

whilst in RPE-1 cells no changes were observed up to five days of serum starvation 

(Figures 3.2, 3.5 and 3.8).  

By flow cytometry, HeLa cells showed an increase in percentage of G0 cells in a multi-

step manner which peaked and became significant at day four of serum starvation (Figure 

3.13 and table 10.1). For NIH 3T3 cells, percentages of G0 cells increased significantly in 
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a gradual manner which peaked at day two of serum starvation (Figure 3.16 and table 

10.1). In hTERT RPE-1 cell there was no alteration in cell subpopulations in response to 

serum starvation indicating that serum starvation did not induce cell cycle arrest in hTERT 

RPE-1cells (Figure 3.19 and table 10.1). The non-alteration in cell cycle progression in 

hTERT RPE-1 cells was expected since these cells are used as control for other cell types; 

HeLa and NIH 3T3 cells (Chapter 3 discussion) 

On the basis of these findings, the minimum required duration of serum starvation to arrest 

HeLa cells and NIH 3T3 cells in G0/G1 phase is found to be four days and two days 

respectively. In addition, these findings enabled the use of hTERT RPE-1 cells as a control 

for HeLa and NIH 3T3 cells in order to investigate Ca2+ signalling responses that were 

specific to cell cycle arrest in G0/G1 phase.    

Ca2+ is a ubiquitous intracellular second messenger that controls a diverse range of cellular 

processes (Berridge et al., 2000; Bootman et al., 2001). Ca2+ release from the endoplasmic 

reticulum and the subsequent Ca2+ entry; SOCE, is one of the major pathways that plays a 

key role in cell cycle progression, cell proliferation, and cell division (Bootman et al., 

2001; Targos et al., 2005). Recently, remodelling of SOCE has been shown to contribute 

to cancer hallmarks such as uncontrolled cellular proliferation, migration as well as 

resistance to cell death (Bergmeier et al., 2013). The uncontrolled proliferation has been 

linked to the ability of cancer cells to evade cellular mechanisms that induce cell cycle 

arrest (Hainaut and Plymoth, 2013). Nonetheless, SOCE remodelling during cell cycle 

arrest in quiescent G0/G1 phase has been poorly investigated.    

The second objective of this study was to characterise SOCE and SOCE protein 

remodelling with cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 cells and to 

compare these findings to hTERT RPE-1 cells which do not enter G0/G1 during serum 

starvation. 

SOCE was characterised in HeLa, NIH 3T3 and hTERT RPE-1 cells by measuring 

changes in intracellular Ca2+ in fura-2 loaded cells (Chapter 4).  

The down-regulation of SOCE was observed with cell cycle arrest in quiescent G0/G1 in 

HeLa and NIH 3T3 that occurred to a greater extent (~ 60% and ~ 61% respectively) 

compared to that in hTERT RPE-1 cells during serum starvation (~18%) (Table 10.1). This 

provides a clear evidence that SOCE is remodelled (i.e. down-regulated) during quiescent 

G0/G1 phase in HeLa and NIH 3T3 cells.  
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It has been previously observed that serum starvation induced G0/G1 arrest in RBL cells 

was associated with SOCE down-regulation. However, as discussed earlier in Chapter 4, 

Bodding (2001) attributed this down-regulation to cell cycle arrest while Tani (2007) 

attributed the SOCE down-regulation to serum starvation and not cell cycle arrest. From 

the investigation carried out in the current research, it has been shown that this response 

could be attributed to a great extent to cell cycle arrest in G0/G1 phase and to a lesser 

extent to serum starvation. 

In addition, the alteration in Ca2+ signalling responses with G0/G1 cell cycle arrest was 

different between cancerous HeLa cells and precancerous NIH 3T3 cells. In HeLa cells, an 

uncoupling of SOCE from Ca2+ store release with marked down-regulation of SOCE was 

observed. While in NIH 3T3 cells there was a marked down-regulation of SOCE which 

was still coupled to Ca2+ store release. This observation suggests that the mechanisms 

underlying the down-regulation of SOCE might be different between cancerous and 

precancerous cells or it might be cell type specific. 

The impact of arresting cells in quiescent G0/G1 phase on the level of STIM1and Orai1 

expression and localisation has not been investigated previously in HeLa and NIH 3T3 

cells. 

In this study, the level of expression of the two key Ca2+ signalling proteins, STIM1and 

Orai1 was measured by western blot with cell cycle arrested quiescent G0/G1 phase in 

HeLa and NIH 3T3 cells and with serum starved in hTERT RPE-1 cells (Table 10.1). In 

both HeLa and NIH 3T3 cells, STIM1 (Figure 5.1 and 5.3 respectively) and Orai1 (Figure 

5.2 and 5.4 respectively) became down-regulated with cell cycle arrest in quiescent G0/G1 

phase. In hTERT RPE-1 cells, expression of STIM1 was not detected (Figure 5.5) whilst 

Orai1 showed slight down-regulation with serum starvation (Figure 5.6). The extent of 

remodelling (i.e. down-regulation) of Orai1 expression occurred to a greater extent in 

HeLa and NIH3T3 cells (68% and 53%) respectively than that in hTERT RPE-1 cells 

(~16%) revealing a clear contribution of cell cycle arrest in this remodelling (Table 10.1).  

This is consistent with the observation in a previous study (Sukumaran et al., 2015) which 

showed that no significant changes in either STIM1 or Orai1 expression levels were 

observed in SHSY-5Y and HSG cells under serum-free conditions. Hence, the remodelling 

of SOCE proteins is mostly attributed to cell cycle arrest in G0/G1 phase. 
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An investigation of changes of SOCE and its proteins over the serum starvation time 

course was done (chapter 6) which revealed that, in HeLa cells, the changes in SOCE, 

STIM1 and Orai1 occurred in a multistep manner closely correlated to the multistep 

manner increase of G0 cells. Furthermore, there was a parallel relation between SOCE and 

STIM1 changes (Figure 6.6.A) whereas Orai1 expression was inversely correlated to the 

changes in G0 cells (Figure 6.6.B). Similarly, in NIH 3T3 cells, the changes in SOCE, 

STIM1 and Orai1 over the serum starvation time course occurred gradually and peaked at 

day two which was closely related to the gradual increase in G0 cell that also peaked at 

day two.  

These findings show the close relation between the remodelling of SOCE and the increase 

in the percentage of G0 cells and also highlight the essential role of Orai1 in cell cycle 

progression in HeLa and NIH 3T3 cells. Furthermore, these results contribute to the large 

body of evidence of role for STIM1and Orai1 in SOCE in HeLa and NIH 3T3 cells.  

A fundamental part of studying Ca2+ signalling in quiescent G0/G1 cells is to investigate 

the reversibility of this phase. 

Therefore, the third objective was to stimulate quiescent G0/G1 HeLa and NIH 3T3 cells 

by adding the serum back and define the response both morphologically and by flow 

cytometry.  

Morphologically, serum add-back induced an increase in total cell number as well as 

mitotic cell number from day one of treatment and restored cell proliferation status from 

day two in HeLa and NIH 3T3 cells (Figure 7.1and Figure 7.4.C).  

Flow cytometry results revealed that the percentage of G0 cells reverted back to 

proliferating levels when serum was added back for 2 days to the quiescent G0/G1 cells in 

both HeLa and NIH 3T3 cells (Figure 7.9, 7.12 and Table 10.2). These findings indicate 

that serum add-back induced cell proliferation and cell cycle resumption in in both HeLa 

and NIH 3T3 G0/G1 cells. 

Bodding (2001) and Tani (2007) have shown that SOCE down-regulation with serum 

starvation and cell cycle arrest in G0/G1 phase was reversible when the arrested RBL cells 

were induced to enter the cell cycle by serum add-back. No previous investigations of the 

remodelling of the SOCE portions with cell cycle re-entry were reported. 
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The fourth objective was to investigate the remodelling of SOCE and its proteins when 

cells re-enter the cell cycle. 

Ca2+ signals with cell cycle re-entry were different between HeLa and NIH 3T3 cells 

(Table 10.2). Cell cycle re-entry of HeLa cells did not affect Ca2+ store release and SOCE 

which remained dampened (Figure 8.2). While in NIH 3T3 cells, Ca2+ store release and 

SOCE were up-regulated and restored to their proliferating levels (Figure 8.4 and Table 

10.2). These observations indicate that SOCE has a role in cell cycle progression in 

precancerous NIH 3T3 cell but not in cancerous HeLa cells. 

From previous findings STIM1 and Orai1 appear to have similar roles in SOCE down-

regulation with cell cycle arrest. However, in HeLa cells, Orai1 appears to have an 

additional role in cell proliferation and cell cycle progression (Section 6.3.1 and Figure 

9.2). This conclusion was based on the observation that restoration of Orai1 alone was 

associated with cell cycle re-entry and resumption of cell proliferation in HeLa cells 

(Section 9.2.1 and Figure 9.2). In contrast, STIM1 did not revert with cell cycle re-entry 

(Section 9.2.1 and Figure 9.1) arguing against an additional role for STIM1 in regulating 

the cell cycle, however, strongly confirming its role in SOCE which remained dampened 

with resuming cell cycle. This conclusion suggests that Orai1 might be a target for drug 

therapy of aggressive cancer disease like HeLa cells.  

Additional roles of Orai1 has been previously reported. Orai1 has been shown to control 

cell proliferation in HEK293 and HeLa cells and that this process is probably independent 

of ICRAC (Borowiec et al., 2014), regulate expression of Na+ /Ca2+ exchanger type 1 

(NCX1) and plasma membrane Ca2+ pump isoform 1 (PMCA1) (Bergmeier et al., 2013) 

and It has also been reported to have a role in vascular remodelling (Beech, 2012). 

In NIH 3T3 cells, both STIM1 and Orai1 appear to have a role in cell cycle progression 

and cell proliferation. This could be concluded from the observations that the expression of 

both proteins reverted to its proliferating level from the first day of serum-add-back 

(Section 9.2.2, Figures 9.3 and Figure 9.4) prior to the full restoration of proliferating level 

of G0 cells which occurred after two days of serum add-back (Result 7.3.2). This 

conclusion could be further investigated by knocking down the STIM1and Orai1 in NIH 

3T3 cells and analysing the effects of each on cell cycle progression. 
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 G0/G1 HeLa    

cells 

G0/G1 NIH 3T3 

cells 

Starved hTERT 

RPE-1 cells 

Cell diameter - 15% 00 00 

Mitotic cell number - 90% - 95% 00 

G0 cells number 26% 52% 00 

Ca2+ store release -35% -77% - 45% 

SOCE - 60% - 61% -18% 

STIM1 - 47.5% - 49.5% ** 

Orai1 - 68% -53% -16% 

Table 10.1  Summary of percentage changes of findings in G0/G1 HeLa, G0/G1 NIH 

3T3 and serum starved hTERT RPE-1 cells compared to proliferating 

** STIM1 protein was not/barely detected in hTERT RPE-1 cells by western blot and IF 

(Figure 5.5 and 5.11).   

  



  

317 

 

 
  HeLa cells NIH 3T3 cells 

hTERT RPE-1 

cells 

Cell diameter Restored N/C N/C 

Mitotic cell number Restored Restored N/C 

G0 cells number Restored Restored N/C 

Ca2+ store release Not restored Restored Restored  

SOCE Not restored Restored Restored 

STIM1 Not restored Restored ** 

Orai1 Restored Restored Restored 

Table 10.2 Summary of findings with serum add-back to G0/G1 HeLa, G0/G1 NIH 

3T3 and serum starved hTERT RPE-1 cells  

** STIM1 was not/barely detected in hTERT RPE-1 cells by western blot and IF (Figure 

9.5 and 9.11).   
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10.2 Contribution of research 

This study investigated remodelling of SOCE and its proteins when cells enter and exit a 

quiescent G0/G1 phase and contributes novel findings in a number of areas including:   

1. Identification of the percentage of G0 cells in quiescent G0/G1 arrest. All reported 

literature only utilised the DNA content to identify the G0/G1 arrest from S, G2 

and M cells in the HeLa and NIH 3T3 cells, no previous studies use both DNA and 

RNA content in order to separate G0 from G1 cells in HeLa and NIH 3T3 cells 

(Chapter 3). This more rigorous approach might have significant impact on 

determination of contribution of G0 cells in regulation of various mechanisms 

during G0/G1 phase such regulation of expression of different proteins (e.g. p53) 

or gene expression. 

2. This research extended the investigations of the down-regulation of the SOCE 

associated with the cell arrest in G0/G1. From the findings of this research, it has 

been shown that the down-regulation of SOCE associated with cell cycle arrest in 

G0/G1 phase induced by serum starvation can be attributed to a greater extent to 

cell cycle arrest in G0/G1 phase and to a lesser extent to serum starvation (Chapter 

4 discussion). 

3. This research is pioneering in investigating the remodelling of the SOCE proteins; 

STIM1 and Orai1 during cell cycle arrest in G0/G1 phase in HeLa and NIH 3T3 

cells. The results show that these proteins were decreased with cell cycle arrest in 

G0/G1 phase (Chapter 5).   

4.  The present study confirms a recent research finding that serum starvation per se 

does not alter Orai1 expression (Sukumaran et al., 2015) and suggested that the 

remodelling of Orai1 is mostly attributed to cell cycle arrest in G0/G1 phase. 

(Chapter 5).   

5. An inverse correlation between percentage of G0 cells and level of expression of 

Orai1expression has been shown in the both HeLa and NIH 3T3 cells (but more 

clearly) in HeLa cells. This result suggests that Orai1 may be used as a target for 

drug therapy of aggressive cancer disease like HeLa cells (Chapter 6) 

6. Previous research reported the remodelling of SOCE with serum add-back 

(Bodding, 2001; and Tani, 2007). No previous research investigated the 

remodelling of SOCE proteins, STIM1 and ORAi1 with cell cycle re-entry and 
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serum add-back. The present study showed that remodelling of SOCE and its 

proteins, STIM1 and Orai1is different in cancerous HeLa cells and precancerous 

NIH 3T3 cells with cell cycle re-entry (chapter 8 and 9). 
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10.3 Limitations 

The work presented in this research was limited in time and resources in a number of 

ways: 

1. One limitation of the SOCE measurements in cells arrested in G0 phase is they are 

measured using all cells in interphase (it is not possible to determine which cells 

are in G0/G1 prior to recording Ca2+ changes). It remains unclear therefore whether 

G0 cells have a fully down-regulated SOCE pathway (with the measured SOCE 

being a property of the contaminating cells in G1, S or G2 phases) or whether a 

SOCE pathway may still be present and functioning in G0 cells, albeit at a 

decreased level.  

2. In HeLa cells, cell cycle arrest caused a down-regulation of STIM1 which did not 

revert back to its proliferation level with cell cycle re-entry and even with 3 days of 

serum add-back. It would be interesting to determine whether or not this down-

regulation is permanently irreversible by monitoring STIM1 expression for a 

longer duration of serum add-back. This can be included for further research. 

3. In NIH 3T3 cells, both STIM1 and Orai1 reverted back with cell cycle re-entry. 

Due to time limits, the role of STIM1 and Orai1 in cell cycle progression in NIH 

3T3 cells were not investigated, but future studies of knocking down or 

overexpressing each protein and looking at its effects on cell cycle progression 

would be valuable    

4. In hTERT RPE-1 cells, STIM1 and Orai1 were not detected by 

immunofluorescence staining. The cell fixation was only carried out using PFA due 

to time limitations. Future work could be to investigate alternative fixation methods 

(e.g. methanol) Furthermore, other STIM1/Orai1 antibodies could have also been 

tried. This could be a subject for further research. 
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10.4 Further research 

This study is relevant to the ongoing research efforts to understanding the Ca2+ signalling 

remodelling involved in cancerous diseases. Any progress or development in this research 

area could be valuable in enhancing such efforts.  

 The key results from this study have revealed that SOCE and expression of 

STIM1and Orai1 remodelling was different between cancer HeLa cells and 

precancerous NIH 3T3 cells with cell cycle arrest in G0/G1 phase following serum 

starvation and with cell cycle re-entry by serum add-back in HeLa and NIH 3T3 

cells.  

Repeating this research using a more diverse array of cancerous and non-cancerous 

cell types would give a greater understanding of cell-type specific remodelling of 

SOCE and its proteins; STIM1 and Orai1 when cells exit and re-enter the cell cycle 

which could offer new therapeutic possibilities that target regulation of the cell 

cycle; e.g. cancer.   

 An inverse correlation between Orai1 expression and percentage of G0 cells was 

observed in this study in HeLa cells. This correlation could represent a positive role 

of Orai1 for cell cycle progression. It would be interesting to investigate this 

further by manipulating Orai1 protein expression in HeLa cells which might induce 

G0/G1 cell cycle arrest. In addition, this finding could be also investigated in other 

cell types which could elucidate a universal role for Orai l in cell cycle progression. 

 This study showed that SOCE didn’t revert to its normal levels in HeLa cells with 

resumption of proliferation after three days of serum add-back. The rate of 

proliferation as well as the level of Ca2+ could show some changes if the period of 

investigation extended to more than three days. This deserves further investigation. 

 This thesis demonstrated that STIM1 and Orai1 proteins expression was closely 

associated with cell cycle progression in NIH 3T3 cells. Further investigation of the 

role of STIM1and Orai1 in cell cycle progression in NIH 3T3 cells by manipulating 

its expression is needed. 
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10.5 Final remarks 

Uncontrolled proliferation is a hallmark of cancer cells. Ca2+ signalling plays a key role in 

controlling cell proliferation and cell cycle progression (Bootman et al., 2001; Carafoli, 

2002; Berridge et al., 2003). Recently many reports have suggested that intracellular Ca2+ 

remodelling might be critically contributing to various forms of cancer. Therefore, a series 

of studies set out to investigate a number of therapeutic possibilities involving Ca2+ 

signalling against cancer (Roderick and Cook, 2008; Stewart et al., 2015). The main 

considerations in cancer treatment are inhibition of proliferation, induction of 

differentiation and induction of apoptosis (Bergner and Huber, 2008). Understanding 

changes involved in the switch from proliferation to quiescence are therefore essential in 

the treatment of cancer diseases. Furthermore, identification of Ca2+ signalling during 

reverse processes i.e from quiescence to proliferation could contribute to understand the 

mechanisms governing tumour dormancy. Thus might provide promising targets for early 

prevention of cancer by inhibition of growth of malignant dormant tumours and cancer 

stem cells (Almog, 2013). 

The results obtained in this thesis have revealed that SOCE and its proteins; STIM1 and 

Orai1 are remodelled when cells enter quiescent G0/G1 phase and in the reverse process 

where G0/G1 cells are induced to proliferate again.  

The findings contribute to the understanding of the remodelling of SOCE with cell cycle 

progression in cancer and precancerous cells which may provide potential strategies for 

cancer. Further understanding of the remodelling of Orai1 and STIM1 proteins in the 

switch from proliferation to quiescence in various cell types is still required.   
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