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Abstract 

Background 

Severe Combined Immunodeficiencies (SCID) are primary immunodeficiencies 

with defective development and/or/function of T-lymphocyte, B-lymphocyte and 

Natural Killer cells.  Hematopoietic stem cell transplantation (HSCT) corrects 

immunodeficiency but long-term impact of pre-HSCT chemotherapy, and 

immunoreconstitution are poorly documented.   

We explored: clinical outcome, immunoreconstitution, and quality of life (QoL) in 

SCID survivors >2 years post-HSCT (Newcastle cohort), newborn SCID 

(Newcastle cohort) and >20 years post-HSCT (Newcastle and London cohort). 

 

Methods 

A retrospective longitudinal study of long-term outcome of post-HSCT SCID 

patients by genotype (Newcastle), newborn diagnosis of SCID and >20 years 

long-term outcome of UK SCID HSCT patients.  

Clinico-immunological data from London and Newcastle were retrospectively 

collated.  Patients and families attending the Newcastle HSCT follow-up clinic 

were invited to complete PedsQL questionnaires.     

Descriptive analyses were performed for clinical outcome.  Longitudinal analyses 

assessed immunoreconstitution changes post-HSCT.  Health-related questionnaire 

results were compared to UK norms. 

 

Results 

102 patients were identified from Newcastle with 49 patients were diagnosed 

during neonatal period and 74 patients for the UK study of >20 years post-HSCT 

long-term outcome. 

Many patients have on-going medical issues at latest follow-up [IL2RG/JAK3 

(68%), IL7Rα (73%), Artemis (85%), RAG 1/2 (55%) and ADA SCID (87%)].  

Some issues were genotype-specific; papillomata in IL2RG/JAK3/IL7Rα SCID, 

neurocognitive issues and hearing loss in ADA SCID.  Artemis SCID patients 

experienced more sequalae than RAG 1/2 SCID. 

Conditioned recipients with IL2RG/JAK3 SCID, ADA, Artemis and RAG SCID 

had more CD4+ naïve lymphocytes compared to unconditioned recipients.  B-
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lymphocyte chimerism mirrored myeloid chimerism and those with more than 

50% donor chimerism were more likely to be immunoglobulin independent.   

All parents except those of IL7Rα SCID reported lower QoL; further subset group 

analysis showed parents and IL2RG/JAK3 SCID immunoglobulin-independent 

survivors plus Artemis/RAG1/2 survivors without on-going medical issues 

reported normal QoL.  Both parents and ADA SCID survivors reported lower 

QoL.  

 

Conclusions 

Conditioned recipients have superior long-term thymopoiesis, chimerism and 

immunoglobulin-independence.  Quality of life was normal in those who were 

immunoglobulin-independent or normal health.  
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 Introduction 
 

This chapter will focus on an overview of severe combined immunodeficiencies 

(SCID) and hematopoietic stem cell transplantation (HSCT).   

1.1 Severe Combined Immunodeficiencies (SCID)  

1.1.1 Epidemiology 

Severe Combined Immunodeficiencies (SCID) are a group of devastating 

inherited illnesses affecting children worldwide.  The incidence of SCID is 

estimated to be 1 in 30,000 live births [1]. They are a group of T-lymphocyte 

developmental dysfunction or defects, which subsequently causes severe 

lymphopenia and may be accompanied by absent or non-functioning B-

lymphocytes and natural killer cells (NK cells).  It is considered to be pediatric 

emergency, as the outcome of survival is directly dependent on the speed of 

diagnosis and treatment instituted.  Most patients do not survive until their first 

birthday if left untreated [2].   

1.1.2 Clinical features of SCID 

The hallmark feature of SCID is the defect in T-lymphocyte development leading 

to recurrent, eventually fatal infections.  Patients may come to clinical attention 

along a wide spectrum of presentation.  Those with a positive family history 

(either by having an earlier deceased family member or diagnosed siblings) may 

be diagnosed at the time of birth and consequently have a better outcome 

compared to an index case [3].  Population based newborn screening programs in 

many states of the USA also allow early detection of infants [4].  This poses a 

new challenge of re-defining the disease itself, as usually, these infants are healthy 

at birth.      

However, in most countries, patients may present with end organ damage as a 

consequence of recurrent infections and some of the patients died even before 

receiving transplantation [5-8].  Classically, patients with SCID usually present 

during infancy with persistent and recurrent infections (viral respiratory ± chronic 
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diarrhoea ± cutaneous fungal infection) [9].  They may have opportunistic 

infections (e.g. Pneumocystis jiroveci, Candida albicans, varicella, adenovirus, 

respiratory syncytial virus, cytomegalovirus, Epstein-Barr virus) or disseminated 

BCG infection.  Failure to thrive is also a common feature, secondary to viral 

enteritis and malabsorption.   

In recent years, there has been an increasing interest in guidelines for diagnosing 

SCID.  One of the warning signs for SCID is lymphopenia and/or absent thymus 

shadow in babies [10].  As a general rule, patients suspected of having SCID 

should have several laboratory investigations depending on their history and on 

clinical findings [11].  Screening investigations include; full blood count, 

quantification of the T lymphocyte, B lymphocyte and NK cells via flow-

cytometry and serum immunoglobulins.  Severe lymphopenia (adjusted according 

to age-related normal range), reduced or absent major lymphocyte subpopulations 

may direct the need for further advanced investigations such as lymphocyte 

proliferation test against mitogens and antigens and specific antibody response. 

Serum immunoglobulins may be reduced or normal due to trans-placental transfer 

of maternal IgG during the intra-uterine period.  In patients with SCID, there is a 

profoundly decreased or absent response of lymphocyte proliferation towards 

mitogen.  Specific antibody responses are usually absent.  Confirmatory tests are 

by detection of the genetic defect either by targeted DNA analysis or whole 

genome exome sequencing [8].      

 

1.1.3 Historical perspective of SCID  

The first description of a Primary Immunodeficiency goes back 60 years.  In 

1952, Colonel Ogden Bruton  published the first case report of a boy with 

agammaglubulinemia [12].  He presented to Walter Reed Army Hospital in 

Washington D.C. with a history of 18 episodes of pneumonia.  Out of curiosity, 

Colonel Bruton requested for quantification of gammaglobulin using the then 

newly acquired Tiselius electrophoresis apparatus.  He postulated the child would 

have high antibody and gammaglobulin levels because of the exposure to multiple 

episodes of infections.  However, the result came back with no gammaglobulin 

detected at all.  Initially, it was thought that the machine was faulty as flat tracing 
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was noted at the gammaglobulin fraction site.  Significantly, Colonel Bruton 

inferred the concept of ‘no gammaglobulin, no antibody’ [13].   

He also pioneered the intervention of immunoglobulin administration for 

agammaglobulinemia.  After the discovery of the flat tracing gammaglobulin, he 

proceeded with subcutaneous administration of gammaglobulin prophylaxis (in 

the forms of Cohn fraction II) at about 100mg/kg per month.  He demonstrated 

that this measure protected the boy from further infections and there were 

successful attempts of quantification of small peaks of gammaglobulin levels in 

him [14].   

The first descriptions of patients with alymphocytosis were published earlier than 

Bruton’s case, in 1950 by Glanzmann and Riniker [15].  In their seminal paper, 

they had reported cases of two related babies, who had severe Candida albicans 

infection coupled with alymphocytosis and were progressively terminal.  

However, they concluded severe candidiasis as the cause of the profound 

lymphocytopenia, instead of an absence of lymphocytes leading to severe 

opportunistic infections.  No causal relationship was linked to the defective 

immunity system.   

The term ‘Swiss type agammaglobulinemia’ was introduced in the 1960s [16].  

Hitzig and Willi (1961) [16] reported infants who presented with alymphocytosis, 

severe fungal and bacterial infections, leading to death in early life.  They 

identified five characteristics of the main differentiating features that set ‘Swiss 

type agammaglobulinemia’ apart from the agammaglobulinemia described by 

Bruton.  The features are; onset of symptoms during infancy, severe fungal 

infections, profound lymphopenia, extreme atrophy or absence of all lymphatic 

tissue and ‘dystrophic and atopic’ thymus (autopsy finding).  Positive family 

history was also noted, as two patients from these series were cousins of the first 

series described by Glanzmann and Riniker.  They linked the concepts of 

agammaglobulinemia with lymphopenia to a defective humoral-cellular immune 

system; leading to deadly consequences.  However, later on the term ‘Swiss type 

agammaglobulinemia’ was abandoned as it is only applicable to the X-linked 

types of SCID and does not explain the other types of SCID.  It was replaced with 

the term ‘Severe Combined Immunodeficiency Disease’ in 1970 during the first 

World Health Organization meeting on primary immunodeficiency [17].  
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By the late 1980s, new developments in molecular genetic fields had enabled 

further delineation of other types of SCID [18].    Analysis of the genes causing 

SCID was carried out by many researchers.  The first gene identified was the gene 

coding for the enzyme ADA in 1983.  The gene mutation of IL2RG for X-linked 

SCID was found in 1992 [18]. 

One of the most important events of the 1960s was the first successful attempt of 

Hematopoietic stem cell transplant for a patient with SCID.  Gatti et al., (1968) 

reported on immune restoration after a lymphopenic SCID infant received bone 

marrow stem cells from his HLA-matched sibling [19].  There were many 

successful attempts of bone marrow transplantation from 1968-1980s, but these 

were exclusive to HLA-identical sibling donors [20].  A varying severity of graft 

versus host disease (GVHD) was noted with non-matched HLA donors, and were 

mostly fatal.  

 

1.1.4 Pathogenesis of various SCID genotypes 

Lymphopoiesis is the mechanism of lymphocyte development from uncommitted 

progenitor cells and occurs both in bone marrow and thymus. Lymphoid lineage 

stem cells will further differentiate to B-lymphocyte (bone marrow derived cells), 

T-lymphocyte (thymus derived cells) and NK cells.  Interleukin-7 (IL-7) and stem 

cell factor (SCF) are two of the main cytokines involved and are necessary for 

both B- and T-lymphocyte differentiation.  This explains why any gene defect 

affecting IL-7 will cause arrest of T-lymphocyte development and give rise to T-

B+ NK+ SCID phenotype (Figure 1.1). 

T-lymphopoiesis continues in the thymus.  T-lymphocyte pre-cursors in the 

thymus are called thymocytes, and reside at the thymus cortex.  With the 

influence of Interleukin-2, Interleukin-7, SCF and thymic factors; thymocytes 

further differentiate to naïve T-lymphocytes and are released to the peripheral 

circulation.  This involves many steps of differentiation; i.e. from progeny of 

replicating cells to double negative thymocytes (CD4-CD8-), then to double 

positive thymocytes (CD4+CD8+), then to single positive thymocytes (CD4+ or 

CD8+).  Throughout this whole process, the thymocytes also progressively 
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migrate from the outer cortex of the thymus to the inner cortex and finally the 

medulla of thymus. 

  

Figure 1.1 T-lymphocyte, B-lymphocyte and NK cell Ontogeny in SCID [21] 

 

Figure 1.1 HSC = hematopoietic stem cells, CLP = common lymphoid progenitor 

Recent developments in the field of molecular and genetic diagnostics have led to 

identification and further characterisation of various SCID immuno-phenotypes.  

Despite the diversity of molecular defects in SCID, all have similar outcomes, 

which are defective T-lymphocyte repertoires.  Twenty gene defects have been 

identified that cause SCID [22]. The primary importance of getting the molecular 

diagnosis is that it confirms the diagnosis accurately, enabling appropriate genetic 

counselling and projection for future pregnancies, further enabling prediction of 

the outcome based on the genotype-phenotype association and finally allowing 

specifically tailored potential therapy according to the genotype characteristics 

(such as myeloablative conditioning which are best avoided for those with 

Artemis SCID undergoing stem cell transplantation) [23]. 

Common γ chain SCID is caused by IL2RG gene mutations (chromosome position 

Xq13.1) [22, 24].  The mutation leads to a defect in the γ chain of receptors for 

IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, causes absence of IL-7 and IL-21 

signalling which is critical in T-lymphocyte and B-lymphocyte development 

(Figure 1.2) [25, 26].  It is inherited in an X-linked fashion and only found in 

Reticular 
dysgenesis/  
PNP 
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males.  Usually patients have markedly decreased circulating T-lymphocyte, 

normal or increased circulating B-lymphocyte and markedly decreased Natural 

killer cells (T- B+ NK- immunophenotype) [27]. 

 

Figure 1.2 Pathway for cytokine receptors of common gamma chain and 

JAK3 tyrosine kinase in T-lymphocyte differentiation [25]. 

 

Figure 1.2. Defect in the IL2RG gene and JAK3 gene leads to defective cytokine signalling.  X-

SCID = Common gamma chain SCID or IL2RG SCID. 

Patients diagnosed with JAK3 SCID have a mutation in the JAK3 gene 

(chromosome position 19p13.11), which leads to a defect in the Janus activating 

kinase 3 protein [22, 24].  This defect affects some of the downstream signalling 

of the cytokine receptors involved in the common gamma chain pathway, such as 

IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 (Figure 1.2).  This explains why the 

clinical features of JAK3 SCID are similar to IL2RG SCID [28]. However, as the 

mode of inheritance is autosomal recessive, it can occur in both females and 

males.  The immunophenotype features are markedly decreased circulating T-

lymphocytes, normal or increased circulating B-lymphocyte and markedly 
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decreased Natural killer cells (T- B+ NK- phenotype).  B-lymphocytes are present 

but are non-functional in both IL2RG SCID and JAK3 SCID. 

In IL7Rα deficient SCID, patients have a mutation of the IL7Rα gene 

(chromosome position 5p13.2) and defect in the IL-7 receptor α chain protein [22, 

24].  IL-7 receptor α is involved in at least three signalling pathways namely the 

JAK-STAT pathway, PI3K activation and the Ras-MAPK-ERK pathway (Figure 

1.3) [25].  These pathways are important in thymocyte differentiation from double 

negative to double positive T-lymphocyte differentiation via V(D)J recombinase 

and TCR gamma locus regulation and control of T-lymphocyte quantity in the 

peripheral circulation.  Thus, defects in IL-7 receptor α will lead to defects in the 

IL-7 receptor α mediated signalling pathway and subsequently compromising T-

lymphocyte differentiation [29].  It is an autosomal recessive disease and patients 

have a T- B+ NK+ phenotype (markedly decreased circulating T-lymphocytes, 

normal or increased circulating B-lymphocytes and normal Natural killer cells). 

Figure 1.3 Schematic presentation of the IL7Rα mediated signalling pathway 

[25]. 

 
 

Mutations in the RAG1 gene (chromosome position 11p12) causes RAG1 SCID 

and mutations in the RAG2 gene (chromosome position 11p12) causes RAG2 

SCID [22, 24].  Both RAG1 and RAG2 defects result in defective V(D)J 

recombination defects and are inherited in an autosomal recessive fashion.  V(D)J 

recombination is the important step in the production of antigen receptor diversity 
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and early T-lymphocyte and B-lymphocyte development [25].   RAG1 and RAG2 

are involved in the early steps of the V(D)J recombination pathway, specifically 

in cleavage of DNA to initiate V(D)J recombination (Figure 1.4).  Both SCID 

genotypes patients have a T- B- NK+ immunophenotype (markedly decreased 

circulating T-lymphocytes, markedly decreased circulating B-lymphocyte and 

presence of Natural killer cells).  

 

Figure 1.4 Schematic pathway of 3 steps in V(D)J recombination with 

involvement of RAG1, RAG2 and Artemis gene [25]. 

 

Mutations in DCLRE1C (chromosome position 10p13) cause Artemis SCID [22, 

24].  Patients with the Artemis gene defect have defective V(D)J recombination 

[25].  Artemis is essential in the later part of the V(D)J recombination pathway 

which is at the opening of the hairpin coding ends of the DNA (Figure 1.4). It has 

autosomal recessive inheritance and patients have a T- B- NK+ immunophenotype 

(markedly decreased circulating T-lymphocytes, markedly decreased circulating 

B-lymphocyte and normal Natural killer cells).  Patients with Artemis SCID have 

radiation sensitivity, because Artemis operates in all nucleated cells, which 

differentiates this defect from RAG1 and RAG2 SCID patients.   

The ADA gene is located at chromosome position 20q13.12.  Mutations of the 

ADA gene cause autosomal recessive ADA SCID [22, 24].  The main 
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differentiating feature of ADA SCID compared to other genotypes is that it is 

predominantly a systemic metabolic disorder.  Mutations in the ADA gene lead to 

a defect in the expression and function of the purine salvage pathway enzyme 

adenosine deaminase. Usually patients present with absent ADA activity [elevated 

lymphotoxic metabolites (dATP, S-adenosylhomocysteine)] (Figure 1.5).  The 

manifestation severity of the disease depends on types of mutations [30].  Patients 

have a T-B-NK- immunophenotype (absent circulating T-lymphocytes from birth 

(null mutation) or progressively decreased, absent from birth or progressively 

decreasing circulating B-lymphocyte and decreased Natural killer cells).  Patients 

with ADA SCID do manifest other systemic features, such as costochondral 

junction flaring, neurological features, hearing impairment, lung, liver and 

behavioural issues.    

Figure 1.5 Schematic diagram of the ADA SCID metabolic pathway [25]. 
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1.2 Hematopoietic Stem Cell Transplantation (HSCT) 

1.2.1 Definition  

The accreditation subcommittee of the European Society for Blood and Marrow 

Transplantation (EBMT) (2006) has defined hematopoietic stem cell 

transplantation as any procedure where hematopoietic stem cells of any donor 

type and any source are given to a recipient with the intention of repopulating and 

replacing the hematopoietic system in total or in part [31]. 

 

1.2.2 History of HSCT for SCID 

The concept of transferring other cells or tissue to achieve correction of defects or 

replace a missing entity has been proposed since early in the 19th century.  The 

first reported paper on a skin graft was published in 1905 [18].  Important 

concepts noted were; engraftment depends on the type of donor for the skin graft, 

where autologous skin grafts were tolerated well, allogeneic skin grafts (unrelated 

human) were usually rejected and skin xenografts (different species) were always 

rejected and a connection between the presence of the donor’s lymphocytes and 

rejection in the recipient was identified [13, 18, 32]. 

One of the most important events of the 1960s was the first successful 

hematopoietic stem cell transplant for a patient with SCID.  Gatti et al., (1968) 

reported on immune restoration after a lymphopenic SCID infant received bone 

marrow stem cells from his HLA-matched sibling [19].  Another successful 

marrow transplantation was in a patient with Wiskott Aldrich Syndrome.  There 

were many successful attempts of bone marrow transplantations from 1968-1980s, 

but these were exclusively with HLA-identical sibling donors.  A varying severity 

of GVHD was noted with non-matched HLA donors, which were mostly fatal.  

The development of the T-lymphocyte depletion methods has become the 

fundamental basis for HSCT with haploidentical donors.  The first T-lymphocyte 

depleted technique described by Reisner et al., (1976) was the soybean lectin, 

sheep erythrocyte agglutination method [33].  In this method, soybean lectin was 

used to agglutinate mature donor’s marrow cell in the ex vivo environment.  The 

clumped cells were sedimented and removed.  Mature T-lymphocytes in the 
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unagglutinated marrow cells were further removed by sheep erythrocyte rosetting 

and density-gradient centrifugation.  The end product contained immature marrow 

cells.  Infusion of these marrow cells with the absence of post-thymic T-

lymphocytes to lethally irradiated animals have been shown to reconstitute the 

defect without causing GVHD in mouse model [33].  HSCT with this source of 

stem cells allows effective immune-reconstitution with a significantly reduced 

risk of GVHD [34].   

The second technique of T-lymphocyte depletion is monoclonal antibody and 

complement lysis.  Donor marrow cells are incubated with monoclonal antibodies 

(Campath 1M) to human T-lymphocytes and complement.  However, engraftment 

failure remains a major issue as reported by Gennery et al (2001) [35].  Possible 

explanations for engraftment failure seen were immunological rejection of the 

donor’s graft or due to reduced CD34+ cell counts due to the T-lymphocyte 

depletion manipulation of ensuring CD3+ lymphocyte less than 5 x 105/kg.     

The third T-lymphocyte depletion method is CD34+ cell selection by magnetic 

columns.  The cell is selected by use of an antibody attaching to the cell, with a 

magnetic bead on the other end of the antibody which sticks to the magnetic 

column.  It was introduced in the 2000s.  The advantages are a highly purified end 

product and removal of the need for post-transplant GVHD prophylaxis.  

However, the disadvantages are, delayed immune-reconstitution achievement that 

may be compromised with fatal viral infections.  Other methods which have been 

described are, CD3/CD19 depletion and TCR α/β depletion which are evolutions 

of the CD34+ selection method. 

Another important discovery from the T-lymphocyte depleted method is the 

ability to outsource the stem cell source from the peripheral blood and from cord 

blood.  The initiative of cord blood banks and donor marrow cells bank has made 

the option of unrelated donors readily available. EBMT established the Bone 

Marrow Donor Worldwide (BMDW) in 1988.  The current BMDW registries 

have 23,828,686 marrow and cord blood donors in their system [36].   
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1.2.3 Hematopoietic stem cells and stem cell niche 

The stem cell is defined as an undifferentiated cell capable to divide for indefinite 

periods, to self-renew and to generate functional progeny of highly specialized 

cells [37].  Stem cells are further divided into several categories according to their 

developmental potential and physical location.  Totipotent stem cells (zygote) are 

the highest in the hierarchical developmental process, where they have 

unrestricted differentiation potential into all types of cell.  Pluripotent stem cells 

(embryonic stem cells) have ability to differentiate into a variety of specialized 

cell types except a fetus.  Multipotent stem cells give rise to specific tissues such 

as hematopoietic stem cells (HSC), muscle, eye, neural and skin.   

Hematopoiesis is a process of production and differentiation of blood cells in the 

bone marrow.  Hematopoietic stem cells (HSC) further differentiate and produce 

committed oligopotent progeny of the lymphoid and myeloid lineages, which will 

further differentiate into lineage restricted unipotent precursors of mature blood 

cells [38].   

During the intra-uterine period, hematopoietic stem cells (HSC) may be identified 

in the mesoderm of the yolk sac as early as the first week of the embryonic stage.  

By 8 weeks of gestation, they migrate to the fetal liver which becomes the major 

site for hematopoiesis.  HSC start to migrate to the marrow spaces of long bones 

by the third trimester until birth.  This remains the main site for hematopoiesis 

until puberty, where the axial skeleton takes over.      

The stem cell niche is defined as a microenvironment that provides hematopoietic 

stem cells and their descendants with regulatory signals that are essential for their 

quiescence, self-renewal, proliferation and differentiation, in order to produce 

appropriate numbers of mature cells throughout life [38].  HSC remain quiescent 

in the bone marrow [37], but will proliferate and differentiate upon response to 

stress triggered by infections, GCSF or myeloablative treatment. 

The stem cell niche has been divided into 2 niches according to their functions, 

which are the endosteal niche and vascular niche [39].  The endosteal niche is 

made up of trabecular endosteum.  It consists of osteoblastic cells outlining the 

inner surface of the bone and provides a place for quiescent HSC.  Actively 

dividing HSC stay in the vascular niche.  The vascular niche also provides 
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channels of trafficking movements for HSC in and out of bone marrow (Figure 

1.6).   

The concept of emptying the stem cell niche via a conditioning regimen has been 

proposed to achieve maximal donor stem cell engraftment post-transplantation 

[40].  In T-B+NK- SCID phenotypes, the stem cell niche is full with recipient’s 

HSC and mature B-lymphocytes; whereas the thymus is empty of T-lymphocyte 

precursors.  When the patient receives an unconditioned HSCT, engraftment of 

the thymus with donor T-lymphocyte progenitors readily occurs but B-

lymphocyte engraftment is problematic as the recipient marrow is occupied by 

recipient HSC and mature B-lymphocytes.  Patients will develop donor T-

lymphocyte progenitor engraftment in the thymus leading to thymopoiesis and 

long-term production of T-lymphocytes with a diverse receptor repertoire.  

Conditioning prior to HSCT will empty the stem cell niche permitting 

engraftment of donor HSC and B-lymphocyte progenitors.  

In cases of T-B-NK+ SCID phenotypes because of the stage of developmental 

arrest, both stem cell niche environment and thymus are occupied with recipient 

HSC, B-lymphocyte and T-lymphocyte precursors.  Thus unconditioned HSCT 

will only allow engraftment of mature peripheral donor T-lymphocytes which 

produces a finite and unreplenished source of limited T-lymphocyte receptor 

repertoire.  Engraftment of donor T-lymphocyte and B-lymphocyte progenitor 

cells will be difficult as both bone marrow and thymus are occupied by recipient 

HSC and lymphocyte progenitors.  This emphasizes the need for conditioning in 

HSCT for T-B-NK+ SCID phenotype patients.      
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Figure 1.6  Model of bone marrow niche [37] 

 

 

1.2.4 Donor categories 

One of the important components in HSCT is the donor. After the decision for 

HSCT has been made, a donor search begins immediately.  The human leukocyte 

antigen (HLA) system formed the basis for immunogenicity and tolerance of 

donor stem cells in recipients and is the most important donor selection marker 

[41].  The HLA system is responsible for antigen recognition and tolerance 

mechanisms.  Mismatching between donor and recipient HLA is detrimental and 

leads to GVHD in the recipient.  



15 
 

The HLA system is highly polymorphic and diverse.  It is located at chromosome 

6 with over 200 genes identified [42].  The HLA complex is further divided into 3 

regions depending on their locus; HLA Class I (HLA-A, -B and –C genes), HLA 

Class II (HLA-DR, -DQ and –DP) and HLA Class III (which are not related to 

Class I and Class II in structure and function) (Figure 1.7).  HLA class I and Class 

II are specific for the immune response, in which they are involved in presenting 

pathogen derived peptides to T-lymphocytes.       

Figure 1.7 Location and organisation of the HLA Complex on Chromosome 6. Adapted from Klein J. 

& Sato A. [42] 

 

 

The gold standard for donor choice selection is the most exact matching between 

donor and recipients.  This can be easily achieved with a matched sibling donor as 

HLA gene inheritance follows Mendelian principles and gene products are co-

dominantly expressed [41].  Superior survival outcomes were demonstrated with 

MSD as commonly the transplantation can be performed without any prior 

conditioning therapy.  However, the availability of MSD donor is limited, ranging 

from 18-20% [2, 43, 44].   
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In situations where a MSD is not available, another option would be a matched 

unrelated donor, matched family related donor or haploidentical donor.  Similar 

principles apply here where the best HLA matching is considered as the best 

option.  Improved techniques for HLA type identification (DNA high resolution 

sequence typing) and the availability of donor registries relatively contributes to 

better survival post-transplantation with matched unrelated donors across different 

time periods [45].  A worse survival outcome was noted in those with single HLA 

mismatches at HLA-A, HLA-B, HLA-C or HLA-DRB1 [45, 46].  The gold 

standard for matched unrelated donor is a 10/10 donor with HLA-matching at 

HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1 and HLA-DPB1 [47].  Other 

added decision factors are gender (male is preferred), age (younger age of donor is 

preferred), ABO matched, CMV status (to be matched according to recipient’s 

CMV status) and urgency of timing for HSCT in particular diagnoses especially 

with SCID.   

A haploidentical related donor offers an attractive solution in situations where 

MSD and MUD are not available or the urgency for HSCT is imminent.  The pros 

for haploidentical donor are that they are readily available, highly motivated and 

available if the patient needs an added HSCT in the future.  However, the graft 

needs to be T-lymphocyte depleted to reduce the risk of GVHD, which may 

confer a higher risk of mortality from serious infection due to delayed immune 

reconstitution (up till 120 days) [2, 48, 49].          

 

1.2.5 Conditioning regimen 

The major aims of conditioning prior to transplantation are to achieve maximal 

engraftment by creating marrow space for donor cells and prevention of rejection. 

Quests for better conditioning regimens have introduced the use of chemotherapy 

drugs such as busulfan, etoposide, cytosine arabinoside and melphalan.  Busulfan 

is a bifunctional DNA alkylating agent with myeloablative capacity.  

Cyclophosphamide combined with busulfan became the widely used conditioning 

regimen for allogenic HSCT [50].  However, a strong association between 

busulfan and cyclophosphamide regimen and veno-occlusive disease (VOD) has 

been identified, introducing cautions regarding its use [51].  Further adding to the 
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problem is that busulfan was only available as an oral preparation in the 1980s, 

hence causing the unpredictable bio-availability in the systemic circulation.  

Introduction of an intravenous busulfan preparation and methods for busulfan 

plasma level monitoring in the late 2000s has enabled better dose adjustment and 

monitoring, and subsequently reduced the accompanying side effects [52].  In 

view of strong association between busulfan and cyclophosphamide conditioning 

regimen with veno-occlusive disease, the Inborn Error Working Party has 

recommended to stop using it [51].       

Reduced intensity conditioning (RIC) has been introduced as an attempt to 

improve engraftment and at the same time minimise the treatment-related toxicity 

side effects.  A few characteristics have been used to describe RIC regimen, one 

of which is that it has reversible myelosuppression in the absence of stem cell 

support (usually within 28 days).  Secondly, there is noticeably reduced regimen-

related toxicity and finally, there is a higher incidence of mixed donor 

haematopoiesis [53].  Treosulfan and melphalan are parts of the RIC regimen. 

Another subtype of the RIC conditioning regimen is Minimal-Intensity 

Conditioning (MIC). It is exclusively comprised of immunosuppressive agents 

such as fludarabine plus cyclophosphamide, anti CD45 antibody or anti C-Kit and 

does not have any myeloablative effects.       

 

According to the EBMT/ESID’s consensus [51], recommended conditioning 

regimen guidelines for SCID patients  receiving stem cells from matched 

unrelated donors or phenotypically identical family donors are either Protocol A, 

B or D plus serotherapy treatment (Figure 1.8 and Figure 1.9).  For SCID patients 

receiving umbilical cord as a stem cell source Protocol A, B, or D with 

serotherapy treatment are recommended either by using Alemtuzumab or r-ATG.  

Serotherapy may be omitted in cases where a well-matched donor is available 

and/or there is concern of viral infection.  For haploidentical HSCT, the 

recommendation is for Protocol A with a T depleted graft (CD34+ selection).  

Those receiving grafts from HLA matched MSD donors especially in Common γ 

chain SCID or ADA SCID may receive no conditioning + no T-lymphocyte 

depletion method + no GVHD prophylaxis.   
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Other important exceptions are in SCID with radio-sensitivity disorders, where 

full conventional conditioning should be strongly avoided.  This is because they 

are very sensitive and intolerant to the myeloablative conditioning regimens.  

Outcome results from the multi-centre transplantation of 69 patients with Artemis-

deficient SCID demonstrated poorer long-term outcome such as growth 

retardation, late-onset endocrine deficiencies and dental abnormalities in those 

patients treated with myeloablative alkylating agents [54].   
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Figure 1.8  Myeloablative conditioning protocol as in the EBMT/ESID 

Guideline for HSCT in primary immunodeficiency disorder, including SCID 

[51]. 

 

Figure 1.9 Reduced intensity conditioning protocol according to EBMT/ESID 

guideline for HSCT in primary immunodeficiency disorder, including SCID 

[51]. 
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1.2.6 Graft Source 

There are three options available for graft source, which are bone marrow, 

peripheral blood stem cell (PBSC) derived from mobilization with GCSF (Growth 

colony stimulating factor) and umbilical cord blood.  Donor factor is the main 

decisive factor for the selection of graft source.  According to UK Human Tissue 

Act (2004), children aged less than 18 years old need to be assessed by an 

independent assessor before they can donate their bone marrow stem cells [55].  

In situations where donors prefer to avoid, or have a contraindication for general 

anaesthesia, the option of PBSC is available for them.  However, the option of 

PBSC is not available for paediatric donors due to risks associated with GCSF 

usage (such as splenic rupture).   

The UK UCB (Umbilical Cord Blood) working group has proposed an algorithm 

for donor and stem cell source selection (Table 1.1) [56].  A matched family 

donor or MSD or umbilical cord stem cell from MSD remains the 1st choice for 

donor selection.  Matched unrelated donor (10/10, high resolution HLA-matching) 

and/or umbilical cord blood from matched unrelated donor (6/6, low resolution for 

HLA-A, HLA-B and intermediate/high resolution for HLA-DRB1) are the second 

choice.  Third choice are MUD with 9/10 HLA-matching and unrelated umbilical 

cord blood with 5/6 HLA-matching and the total nucleated cell more than 3 x 

107/kg.  The last option would be either haploidentical donor or unrelated 

umbilical cord blood with 5/6 HLA-matching and the total nucleated cell more 

than 3 x 107/kg or unrelated umbilical cord blood with 4/6 HLA-matching. 

Table 1.1 Donor selection algorithm. Adapted from B.E. Shaw et al [56] 

Choice Family donor Volunteer 

unrelated 

donor 

Unrelated cord 

Immunodeficiency/metabolic diseases 

1st Matched family donor 

Matched cord (sibling) 

- - 

2nd - 10/10 6/6 

3rd - 9/10 5/6 (>3 x 107 TNC/kg) 

4th ≤ 4/6 - 5/6 (>3 x 107 TNC/kg) 

4/6 
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1.2.7 Summary  

The availability of hematopoietic stem cell transplantation (HSCT) offers hope of 

a cure for SCID patients.  Major advancements have led to safer HSCT with an 

improved immune re-constitution profile for the survivors.  What is now needed is 

further study to objectively evaluate specific long-term outcome post-

transplantation; focusing on impact of genotype-phenotype diagnosis and 

conditioning regimens on the long-term outcome and quality of life.  Furthermore, 

introduction of newborn screening will improve the rate of detection, but at the 

same time create a major dilemma for choices of conditioning as SCID infants are 

usually healthy and infection free at presentation and are also very young.  

Concerns have been raised about the safety of using a toxic myeloablative 

regimen in these very young SCID infants.  As such, long-term outcome of these 

patients is an extremely important area to be explore. 

 

1.3 Outline of thesis 

Following are the outline of the thesis.  Chapter 2 will review the literature on the 

long-term outcome of HSCT for SCID.  Objectives of the study are listed in 

Chapter 3.  Chapter 4 will outline the methodology in detail.  Results will be 

presented in Chapters 5-10.  A decision has been made to present the results in 

accordance with each specific SCID genotype, one per chapter (Chapter 5-8).  

Chapter 9 will present the result of long-term outcome of newborn SCID of the 

Newcastle cohort and chapter 10 will present the outcome of more than 20 years 

for the Newcastle and London cohort.  Chapter 11 will discuss the results and 

Chapter 12 will conclude the research.  All appendixes were listed in Chapter 13. 
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 Literature Review 
 

This chapter discusses the literature review of the long-term outcome of HSCT for 

SCID focusing on overall long-term outcome depending on disease specific 

outcome, immune reconstitution and conditioning, donor and graft sources and 

quality of life post-transplantation. 

 

2.1 Long-term outcome of HSCT for SCID 

2.1.1 Earlier publications of HSCT for SCID 

The Stem Cell Transplantation for Immunodeficiencies (SCETIDE) registry is an 

electronic database for outcome of HSCT for primary immunodeficiency (PID) 

patients.  SCETIDE have produced many publications on the outcome of 

allogenic HSCT in PID.  Four important publications concerning post-

transplantation outcome in SCID will be discussed in detail.  These are available 

from the SCETIDE database and worldwide. 

The first publication of SCETIDE data was by Fischer et al., (1986) [20].   This 

was a retrospective analysis of 162 patients with PID who underwent HSCT in 14 

centres in Europe over 16 years (from 1969 until 1985).  Eighty-seven patients 

had SCID, with 41 of 87 (47%) receiving HLA-matched HSCT and the remainder 

receiving T-lymphocyte depleted HLA-mismatched HSCT.  Conditioning 

regimens were only instituted for five patients receiving T-lymphocyte depleted 

HLA-mismatched HSCT.  Disease-free survival was better in the HLA-matched 

HSCT group, at 68% compared to the T-lymphocyte depleted HLA-mismatched 

HSCT group, which was 57%.  Overall outcome was better in the HLA-matched 

HSCT recipients in terms of complete engraftment; with no severe acute GVHD 

episodes and absence of late graft failure and late complications.  For T-

lymphocyte depleted HLA-mismatched HSCT recipients, the main problem was 

failure of engraftment.  Even from this first seminal publication, B-lymphocyte 
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chimerism was observed to be poorer in the non-conditioned recipients and ADA 

SCID tended to have poorer outcomes [20]. 

Buckley et al., (1999) reported their experience of SCID HSCT undertaken at 

Duke University Medical Centre, USA from 1982 until 1998 [57].  A total of 89 

SCID infants were transplanted over the 16 year period.  The majority were male 

patients (84%), X-linked SCID (48%) and received T-lymphocyte depleted 

marrow from haploidentical donors.  Only 13% received transplants from an 

HLA-identical related donor.  All were unconditioned except for three patients.  

Seventy-two patients (81%) were still alive at the time of follow-up with a median 

follow-up time of 5.6 years.  The findings of this study are consistent with those 

of Fischer et al., (1986), where B-lymphocyte engraftment and function were 

worse than the T-lymphocyte, especially in unconditioned recipients.  Up to 62% 

of patients still require regular intravenous immunoglobulin replacement therapy; 

as compared to almost 95% of the patients who achieved T lymphocyte 

engraftment post-transplantation.  Another important finding was that T-

lymphocyte function after T-lymphocyte depleted marrow HSCT was noted to be 

delayed up to 3-4 months post-transplant. 

As time has moved on to the next millennium, patients’ survival has improved 

tremendously.  Multiple factors have been identified in contributing to better 

survival outcome such as an improvement in medical/intensive care, better 

quantification of CD34+ hematopoietic stem cells, better donor selection 

(development of high-resolution HLA tissue typing), application of reduced-

intensity conditioning and better treatment of GVHD and infections [58].  

Gennery et al., (2010) reported the outcomes of the SCETIDE database of HSCT 

for SCID and other PID from 1968 until 2005 [2].  A total of 699 SCID patients 

from 37 centres in Europe were studied (including the 87 patients from the first 

report).  Better prognostic factors identified were transplantation after 1995, 

younger age at transplantation, B+ SCID phenotype, genoidentical and 

phenoidentical donors, absence of respiratory impairment and viral infection 

before HSCT.  However, the main limitation of this study was the absence of data 

on immune reconstitution and B-lymphocyte function (immunoglobulin levels and 

antibody response to specific protein and polysaccharide antigens).  Thus, even 
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though survival outcome had generally improved, the long-term immune 

reconstitution remains unknown.    

Pai et al., (2014) described the outcome of 240 SCID infants who underwent 

HSCT in 25 centres in United States of America, between 2000 until 2009 [44].  

The majority of the patients in this cohort were male (72%) and identifiable SCID 

mutations were found in 69% of the patients.  Common γ chain remained the 

commonest SCID mutation identified.   MSD was available for only 32 out of 240 

patients (13%).  Younger age at transplantation (less than 3.5 months old) and 

infection status pre-transplant were the significant positive prognostic factors 

identified, irrespective of donor type.  Conditioned recipients were found to have 

an increased likelihood for higher CD3+ lymphocyte count, freedom from 

immunoglobulin replacement therapy and IgA recovery.     

 

2.1.2 Disease specific outcomes  

It is important to describe the long-term outcome of HSCT according to specific 

SCID genotype as the prognosis may differ and necessitate different strategies for 

HSCT depending on genotype [59].  Furthermore, this provides evidence based 

information useful for family counselling.   

Earlier publications prior to 2010 focused on the comparison of outcome between 

B+ SCID and B- SCID, where findings consistently showed that B- SCID had a 

poorer outcome compared to B+ SCID [2, 57, 60].  SCID genotypes classified as 

B+ SCID were IL2RG, JAK3, IL7Rα,  CD45 SCID genetic mutations and those 

classified as B-SCID were ADA, RAG1, RAG2, DCLRE1C (Artemis) SCID.  A 

few explanations have been proposed to clarify why B-SCID have a worse 

outcome.  Firstly, the presence of double negative thymocytes in the thymus 

predisposed them to competition with the donors’ stem cells.  Secondly, presence 

of recipient NK cells causing rejection has been attributed to the engraftment 

failure [61].  Thirdly, presence of NHEJ complex deficiencies associated with B- 

SCID has been shown to have higher transplantation related complications due to 

a defective DNA repair mechanism especially after exposure to myeloablative 

alkylating agents [62].        
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Common γ chain deficient SCID (IL2RG SCID) has the most favourable T-

lymphocyte engraftment outcome, even without conditioning or GVHD 

prophylaxis.  This could be owing to the thymic niche availability concept.  The 

defect is early in the lymphoid differentiation; hence the thymus is almost 

completely empty of double negative thymocytes.  In relation to the highly 

conducive stromal environment, engraftment may occur readily [62].  B-

lymphocyte engraftment remains an issue as those without conditioning tend to 

achieve lower B-lymphocyte chimerism compared to conditioned recipients [20, 

63, 64].  Nevertheless, a series of publications demonstrated the occurrence of 

viral cutaneous warts in the IL2RG and IL7Rα SCID survivors’ post-

transplantation [43, 65-67].  No definitive causes or explanations have been 

offered as to why warts were found in IL2RG SCID and not in other SCID 

genotypes.  A few theories have been postulated but not confirmed such as; 

association between the low number of NK cells in survivors, the role of 

Langerhan cells, and defective host keratinocytes [65, 67, 68].  It is important to 

look for warts in this cohort of patients as this might pose a future risk for 

malignancy as reported by previous studies [65, 67].    

In terms of specific molecular defects, some of the SCID genotypes have their 

own associated features.  Due to ubiquitous ADA gene expression, a profile of 

non-immunological manifestations have been described and some may not be 

corrected with HSCT [8, 69, 70].  The non-immunological manifestations include 

costochondral and skeletal dysplasia, neurologic deficits, bilateral sensorineural 

deafness, hepatic dysfunction and cognitive/behavioural deficits.  

Dermatofibrosarcoma protuberans have been reported in ADA SCID patients’ 

post-transplantation [71].  A large series of 106 ADA SCID patients outcome 

post-HSCT from Europe, North America and Middle East has been published by 

Hassan et al (2012) [70].  Overall survival was influenced mainly by donor types 

(better in MSD and MRD, worse in haploidentical donor).  Yet, the long-term 

immune reconstitutions were good with freedom from immunoglobulin 

replacement therapy seen; irrespective of donor types and conditioning regimen.  

However, caution is needed for the interpretation as data on immunoglobulin 

replacement were only available for 46 out of 106 patients (43%).  The other 

limitation identified was the absence of a clinical outcome post-HSCT 

description.      
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Both Artemis SCID and RAG1/2 SCID are B- SCID with poorer outcomes 

compared to B+ SCID, in terms of overall survival and immune reconstitution.  A 

multicentre study comparing 145 patients with ARTEMIS SCID and RAG1/2 

deficiencies SCID found no significant differences in survival, early toxicity, or 

occurrence of tumours following HSCT; but ARTEMIS SCID developed more 

late complications post-transplantation associated with exposure to alkylating 

agents during conditioning [54].  A possible explanation is that Artemis SCID 

have a DNA repair defect affecting all cells, not just hematopoietic cells, which 

are sensitive to alkylating myeloablative conditioning.  The study also showed 

that unconditioned recipients of RAG1/2 and Artemis SCID achieved lesser CD4+ 

T-lymphocyte count and were more likely to receive on going immunoglobulin 

replacement therapy, suggesting poorer myeloid engraftment post-HSCT.  

However, those who received conditioning had poorer overall survival and higher 

long-term side effects but better immune reconstitution.  This study highlighted 

the need for safer conditioning to minimise long-term side effects, but at the same 

time ensuring maximal engraftment and better immune reconstitution.   

 

2.1.3 Immune reconstitution and conditioning   

The primary aim of hematopoietic stem cell transplantation for SCID is to cure 

the immune defect and achieve long lasting immune reconstitution of normal and 

functional T-, B- and NK-cells.  Therefore, another important aspect of long-term 

outcome is the T-lymphocyte and B-lymphocyte profiles.  Correlation between 

poor long-term T-lymphocyte function and poor early grafting has been 

suggested.  CD4+ lymphocyte counts at 1-2 years post-HSCT were found to be a 

significant predictive factor for long-term CD4+ naïve lymphocyte numbers.  [43, 

72, 73]. Thymopoiesis, thymic output and T-lymphocyte diversity have been 

shown to continue until the second decade post-HSCT [49, 74].   

Nevertheless, T-lymphocyte reconstitution is considered better compared to the B-

lymphocyte outcome, even after allowing for all the differences of molecular type, 

transplant techniques and conditioning regimens involved [2, 57, 72].   

In a single centre series, reporting outcomes of B-lymphocyte function on 125 

patients with SCID, where all received non-conditioned HSCT and no GVHD 
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prophylaxis post-transplantation; only 29% achieved B-lymphocyte donor 

chimerism with the highest percentage seen in those with Common γ chain SCID 

(36%) and ADA SCID (33%) [63].  The authors concluded that B-lymphocyte 

outcome depends on the molecular phenotype, where in cases of IL-7Receptor α-

Deficient, ADA SCID and CD3-Deficient SCIDs does not requires B-lymphocyte 

chimerism for normal B-lymphocyte function development.  Whereas donor B-

lymphocyte chimerism is essential in cases of Common γ chain SCID, JAK3 

SCID and those with V(D)J recombination defects, possibly due to the defective 

cytokine receptors on the host B-lymphocytes [26].   

Suggestions have been proposed for the role of conditioning in achieving higher 

myeloid and B-lymphocyte engraftment [75, 76].  From the literature analysis by 

Haddad et al., (2014), normal B-lymphocyte function was associated with 

busulfan and cycophosphamide conditioning [76].  The main limitation of this 

study was missing/incomplete data due to the retrospective review of multiple 

published evidence, and not being subjected to meta-analysis.  

Debates continue about the best strategies for the conditioning options in HSCT 

and answers for these questions are to review the available evidence from 

published papers.  However, as mentioned before, most of the published evidence 

is from observational studies, which have reduced strength, and the cohort 

populations are diverse, making direct comparisons impossible.  The best would 

be for prospective observational studies or clinical trials that compare the efficacy 

and safety of many types and regimes of conditioning. 

      

2.1.4 Donors and Graft Sources 

There may be some overlap between the effect of donor and graft sources on 

HSCT outcome.  Hence, both factors will be discussed together.   

Donors remain the most important determinant factors of survival outcome but 

not in immune reconstitution outcome post-HSCT.  Data from multiple cohort 

analysis studies have showed MSD as the best donor for most of the SCID 

genotype with survival outcome in the modern era approaching 90% [2, 44, 72].  

The survival outcome of MUD was consistently better than haploidentical donors 
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across era of transplantation, however focusing only on the haploidentical HSCT 

data, there is an increasing better survival outcome trend [2, 20, 77].  This has 

been attributed to better HLA matching (high resolution DNA typing) and better 

T-lymphocyte depletion methods.   

A relationship between timing of HSCT, patients’ infection status before 

transplantation and survival outcome has been identified by Pai et al., (2014) [44].  

Survival of alternative donor recipients was noted to be comparable to MSD 

recipients if HSCT were performed early and there was no infection prior to 

HSCT.        

As previously mentioned, donor types are important for determination of survival 

outcome but not long-term immune reconstitution.  Dovrak et al (2014) performed 

a direct comparison between unconditioned MUD and MSD HSCT [78].  There 

was no difference in T-lymphocyte engraftment, but unconditioned MUD was 

noted to have higher Grade II-IV acute GVHD, lesser myeloid and B-lymphocyte 

immune reconstitution. Even attempts of transfusing mega dose CD34+ cell grafts 

in unconditioned haploidentical recipients did not improve B-lymphocyte function 

in SCID patients post-HSCT [79].  These emphasize the importance of 

conditioning in ensuring better long-term immune reconstitution outcomes.   

 

Bone marrow is the classical option for graft source in HSCT.  The availability of 

donor registries have expanded the donor option to MUD and umbilical cord 

blood HSCT.  Fernandes et al., (2012) compared the outcomes of patients with 

SCID or Omenn Syndrome undergoing HSCT, receiving mismatched related-

donor transplantation versus unrelated-donor umbilical cord blood transplantation 

[80].  Data were retrospectively collected from the Eurocord & SCETIDE and 

EBMT.  There were no significant differences in T-lymphocyte engraftment, 

CD4+ and CD3+ lymphocyte recoveries between both groups.  However, a 

significantly higher frequency of complete donor chimerism, faster total 

lymphocyte count recovery, increased Grades II-IV acute GVHD, and chronic 

GVHD were noted in the unrelated cord blood recipients.  As a conclusion, there 

were no differences in the engraftment performance in either unrelated cord blood 

transplantation or haploidentical related HSCT.  However, higher occurrence of 

more severe acute GVHD and chronic GVHD were seen in unrelated cord blood 

HSCT.    
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Encouraging data have been published in identifying new efforts to improve 

HSCT techniques.   Improved manipulation of the stem cell graft by TCRαβ and 

CD19 depletion has shown to speed up the T-lymphocyte immune reconstitution 

of the haploidentical recipients due to the TCR γδ in the graft that confers viral 

protection to the recipient [81-83].  This has successfully met the major 

shortcoming of delayed immune reconstitution found in haploidentical HSCT, and 

offers improved viral clearance during immediate post-transplantation.   

Another improvement is the development of adoptive transfer of ex vivo selected 

donor derived T-lymphocytes in combination with the suicide gene, which offers 

the option of controlling the viral infection during the immediate post-HSCT 

period before thymus-derived T-lymphocyte immune recovery occurs [84].  The 

availability of suicide genes enables recognition and apoptosis of the donor T-

lymphocyte if acute GVHD occurs; thus avoiding risk of GVHD and concurrently 

offering viral protection.  Currently, it is still in clinical trial phase I-II and 

preliminary results have been promising [85]. 

 

 

2.1.5 Quality of Life post-HSCT 

One important aspect of long-term outcome for SCID patients is their quality of 

life.  As the immune defect have been corrected, the expectation is that SCID 

survivors would lead an optimal normal life.  There are limited available 

publications on the quality of life (QoL) - most address HSCT survivors of 

haematological and malignancy diagnosis [86-88].   

ADA SCID survivors have been found to have significant behavioural issues and 

cognitive disturbance, which diminish quality of life [69, 89].  Skucek et al (2011) 

have described social functioning difficulties in HSCT survivors for congenital 

immunodeficiency but mainly reported by parents and teachers and not the 

patients themselves [90].   

A serial assessment of neurocognitive function in SCID patients comparing before 

and after HSCT showed that there was a delayed in developmental skills 

acquisitions compared to normal infant and toddlers [91]. 
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A study of the UK’s Chronic Granulomatous Disorder cohort showed better QoL 

in HSCT survivors compared to non-HSCT patients [92].  Even though chronic 

granulomatous disease is a PID, direct comparison is impossible as no SCID 

patients will survive more than 18-24 months if not transplanted.   

Titman et al (2014) have demonstrated lower QoL in those receiving 

immunoglobulin replacement therapy for Primary Antibody Deficiency diseases 

in UK [93].  This is interesting as some SCID HSCT survivors do receive ongoing 

immunoglobulin replacement therapy, even though the clinical diagnosis is not 

similar for direct comparisons.   

The French cohort of adults with PID diagnosed during childhood showed strong 

association between those with high disease burden and lower quality of life [94].  

Thus it is important for this cohort of patients to be follow up lifelong so that early 

recognition and interventions can be offered.   
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 Objectives of the Study 
 

3.1 Rationale for study 

To date so far, numerous publications and reports on long-term outcome post-

HSCT for SCID patients have been published [2, 20, 43, 44, 57, 60, 95].  

Although the studies are multi-centre and involved larger cohorts of patients, the 

results are limited, because most are confined to descriptions of outcome of SCID 

as a single cohort, rather than separate analyses based on genotype.  This is 

limiting, considering that more SCID patients are expected to survive the HSCT 

procedure itself.  It is important for patient benefit, not only to understand what 

percentage will survive, but how that relates to genetic diagnosis. Furthermore the 

quality of life of survivors long after HSCT is important in relation to specific 

SCID genotypes.  This information is important in guiding clinicians towards 

safer HSCT techniques with better long-term outcome.   

 

3.2 Hypotheses 

The main hypotheses for the study were: 

x Survival outcome of conditioned SCID patients are lower than 

unconditioned recipients. 

x  Long-term medical issues in SCID survivors are influenced by their 

specific SCID genotypes. 

x Conditioned recipients experience more long-term medical issues than 

unconditioned recipients. 

x Thymopoiesis is better in conditioned recipients than unconditioned SCID 

patients. 

x There is a correlation between myeloid chimerism and B-lymphocyte 

donor chimerism post-transplantation.  

x Quality of life of SCID patients post-HSCT is equal to the UK’s normal 

population. 

x Newborn SCID have better survival and thymopoeisis compared to those 

who were diagnosed beyond neonatal period. 
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3.3 General Objective 

x To examine the long-term outcome of patients with SCID who have 

undergone hematopoietic stem cell transplant (HSCT) in Newcastle over a 

25 year period from 1987 - 2012. 

 

x To examine the very long-term outcome of patients with SCID who have 

undergone hematopoietic stem cell transplant (HSCT), (more than 20 

years post-transplantation) in Newcastle and London. 

 

3.4 Specific Objectives 

x To study the effect of SCID genotype and conditioning regimens prior to 

HSCT on the long-term immunological reconstitution and physical health 

(including growth, respiratory function, gastrointestinal, cardiac, dental 

and endocrine parameters) 

x To evaluate the psychological development and quality of life in the 

Newcastle cohort. 

x To identify associated factors influencing the outcome for those who had 

been transplanted. 
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 Methodology 

The present study’s methodology will be covered in this chapter.  The study is a 

cohort study of the long-term outcome of SCID patients who underwent HSCT in 

Newcastle from 1987 until 2014, according to specific SCID genotypes 

(IL2RG/JAK3, IL7Rα SCID, Artemis/RAG 1/2 and ADA SCID).  The second 

part of the study is about the more than 20 years outcome for all SCID patients, 

who underwent HSCT in Newcastle and London, UK. 

 

4.1 Inclusion Criteria 

With regards to the long-term outcome of the Newcastle SCID cohort; all patients 

with a SCID diagnosis of Common γ Chain deficiency, JAK3 deficiency, ADA 

SCID, IL7Rα deficiency, ARTEMIS SCID, RAG1 deficiency and RAG2 

deficiency, according to the International Union of Immunological Societies 

Expert Committee for Primary Immunodeficiency 2015, were included in the 

study [22].  

The International Union of Immunological Societies (IUIS) is an established 

expert committee on Primary Immunodeficiency Disorder.  Introduction of the 

IUIS PID Classification has allowed for the standardisation of terminology, thus 

enabling everybody in clinical and research fields to communicate clearly and 

understand the same thing.  This classification is being revised biennially and the 

latest publication was in 2015 [22]. It suggests classification according to the 

clinical and immunological phenotype of the disease. Table 4.1 further describes 

the genetic defects and clinical features associated with different SCID genotypes.  

Patients who were at least 2 years post-transplantation were identified from the 

database available in the BMT unit, Ward 3, of the Great North Children’s 

Hospital, Newcastle upon Tyne.  A total of 120 SCID patients (77 males and 43 

females) who had undergone a total of 146 transplants performed between 1987 

and December 2012, were identified. 

For the analysis of very long-term outcome UK SCID experience (Chapter 8); all 

SCID patients (irrespective of their SCID genotypes); who were more than 20 
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years post-transplantation at the Great North Children’s Hospital , Great Ormond 

Street Hospital, London and the Royal Free Hospital, London were included in 

this study. 

A group of patients who demonstrated immunophenotypic features similar to 

SCID but did not have proven underlying genetic defects were classified as 

“Undefined SCID”.  Additionally, for simplicity, all patients with a known gene 

defect of SCID but where there are less than 5 cases, were classified into “Others” 

[Newcastle cohort: CHARGE syndrome (4 patients), Reticular dysgenesis (2 

patients), Zeta chain deficient SCID (1 patient), Cernunnos deficiency SCID (1 

patient), CD3 Epsilon deficient SCID (1 patient)]. 

 



38 
  T

able 4.1  T
he genetic defects and clinical features of various SC

ID
 genotypes (A

dapted from
 Picard et al., 2015 [22]) 

D
isease 

G
enetic defect/Presum

ed 

pathogenesis G
ene O

M
IM

 

Inheritance 
C

irculating  

T-lym
phocytes 

C
irculating  

B
-lym

phocytes 

Serum
 Ig 

A
ssociated Features 

Phenotype 

O
M

IM
 

N
um

ber 

T
-B

+ Severe C
om

bined Im
m

unodeficiency (SC
ID

) 

γc deficiency 
M

utation of IL2R
G

 

D
efect in γ chain of receptors for 

IL-2, -4, -7, -9, -15, -21 

308380 

X
L 

M
arkedly 

decreased 

N
orm

al or 

increased 

D
ecreased 

M
arkedly decreased 

N
K

 cells 

300400 

JA
K

3 deficiency 
M

utation of JA
K

3 

D
efect in Janus activating kinase 3 

600173 

A
R

 
M

arkedly 

decreased 

N
orm

al or 

increased 

D
ecreased 

M
arkedly decreased 

N
K

 cells 

600802 

IL7Rα deficiency 
M

utation of IL7RΑ
 

D
efect in IL-7 receptor α chain 

146661 

A
R

 
M

arkedly 

decreased 

N
orm

al or 

increased 

D
ecreased 

N
orm

al N
K

 cells 
608971 

C
D

45 deficiency 
M

utation of PTPR
C

 

D
efect in C

D
45 

151460 

A
R

 
M

arkedly 

decreased 

N
orm

al 
D

ecreased 
N

orm
al γ/δ T-

lym
phocytes 

608971 



39 
 C

D
3δ deficiency 

M
utation of C

D
3D

 

D
efect in C

D
3δ, chain of T-

lym
phocyte antigen receptor 

com
plex 

186790 

A
R

 
M

arkedly 

decreased 

N
orm

al 
D

ecreased 
N

orm
al N

K
 cells  

N
o γ/δ T-

lym
phocytes 

615617 

C
D

3ε deficiency 
M

utation of C
D

3E 

D
efect in C

D
3ε chain of T-

lym
phocyte antigen receptor 

com
plex 

186830 

A
R

 
M

arkedly 

decreased 

N
orm

al 
D

ecreased 
N

orm
al N

K
 cells  

N
o γ/δ T-

lym
phocytes 

615615 

C
D

3ζ deficiency 
M

utation of C
D

3Z 

D
efect in C

D
3ζ  chain of T-

lym
phocyte antigen receptor 

com
plex 

186780 

A
R

 
M

arkedly 

decreased 

N
orm

al 
D

ecreased 
N

orm
al N

K
 cells  

N
o γ/δ T-

lym
phocytes 

610163 

C
oronin-1-A

 

deficiency 

M
utation of C

O
R

O
1A

 

D
efective thym

ic egress of T-

lym
phocytes and defective T-

lym
phocyte locom

otion 

605000 

A
R

 
M

arkedly 

decreased 

N
orm

al 
D

ecreased 
D

etectable thym
us 

EB
V

-associated  

B
-lym

phocyte 

lym
phoproliferation 

615401 



40 
 

T
-B

- SC
ID

 

D
N

A
 recom

bination defects 

R
A

G
1 deficiency 

M
utation of R

A
G

1 

D
efective V

D
J recom

bination; 

defect of recom
binase activating 

gene (R
A

G
)1 

179615 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

D
ecreased 

 
601457 

R
A

G
2 deficiency 

M
utation of R

A
G

2 

D
efective V

D
J recom

bination; 

defect of recom
binase activating 

gene (R
A

G
)2 

179616 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

D
ecreased 

 
601457 

D
C

LR
E1C

 

(A
rtem

is) 

deficiency 

M
utation of A

R
TEM

IS 

D
efective V

D
J recom

bination; 

defects in A
rtem

is D
N

A
 

recom
binase-repair protein 

605988 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

D
ecreased 

R
adiation sensitivity 

602450 

D
N

A
 PK

cs 

deficiency 

M
utation of PR

K
D

C 

D
efective V

D
J recom

bination; 

defect in D
N

A
 PK

cs 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

V
ariable 

R
adiation sensitivity, 

m
icrocephaly and 

615966 



41 
 

R
ecom

binase repair protein 

600899 

developm
ental 

defects 

A
utoim

m
unity and 

granulom
a 

C
ernunnos/X

LF 

deficiency 

M
utation of C

ernunnos 

D
efective V

D
J recom

bination; 

defect in C
ernunnos 

611290 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

D
ecreased 

R
adiation sensitivity, 

m
icrocephaly and 

developm
ental 

defects 

611291 

D
N

A
 ligase IV

 

deficiency 

M
utation of LIG

4 

D
efective V

D
J recom

bination; 

defect in D
N

A
 ligase IV

 

601837 

A
R

 
M

arkedly 

decreased 

M
arkedly 

decreased 

D
ecreased 

R
adiation sensitivity, 

m
icrocephaly and 

developm
ental 

defects 

 

606593 

R
eticular 

dysgenesis, A
K

2 

deficiency 

M
utation of A

K
2 

D
efective m

aturation of lym
phoid 

and m
yeloid cells (stem

 cell defect) 

D
efect in m

itochondrial adenylate 

kinase 2 

103020 

A
R

 
M

arkedly 

decreased 

D
ecreased or 

norm
al 

D
ecreased 

G
ranulocytopenia 

and deafness 

267500 



42 
 A

denosine 

deam
inase (A

D
A

) 

deficiency 

M
utation of A

D
A

 

A
bsent A

D
A

 activity, elevated 

lym
photoxic m

etabolites (dA
TP, S-

adenosyl hom
ocysteine) 

608958 

A
R

 
A

bsent from
 

birth (null 

m
utations) or 

progressive 

decrease 

A
bsent from

 

birth or 

progressive 

decrease 

Progressive 

decrease 

D
ecreased N

K
 cells. 

O
ften w

ith 

costochondral 

junction flaring, 

neurological features, 

hearing im
pairm

ent, 

lung and liver 

m
anifestations; 

partial A
D

A
 

deficiency m
ay lead 

to delayed or m
ilder 

presentation 

102700 

X
L=X

-linked, A
R

=A
utosom

al recessive 

 
 



43 
 

4.2 Exclusion Criteria 

 

Omenn’s Syndrome or Leaky SCID patients were excluded from the study 

because they are classified as having a combined immunodeficiency according to 

the International Union of Immunological Societies Expert Committee for 

Primary Immunodeficiency (2015) [22].   

Patients who had undergone another mode of therapy such as gene therapy, or 

thymic transplantation were also excluded from this study as they did not undergo 

hematopoietic stem cell transplantation as part of their treatment. 

  

4.3 Cohort Characteristics 

The Great Ormond Street Hospital, London and the Great North Children’s 

Hospital, Newcastle upon Tyne perform HSCT specifically for primary immuno-

deficiency diseases in the United Kingdom.   

The paediatric Bone Marrow Transplantation (BMT) Unit at the Great North 

Children’s Hospital (GNCH) was established in 1987.  It is a supra-regional 

centre providing immunodiagnostic services and hematopoietic stem cell 

transplantation for primary immunodeficiency patients.  Services are provided to 

patients from Northern England, the Midlands, Wales, Scotland, Northern Ireland 

and Eire. This centre performs approximately 40-60 hematopoietic stem cell 

transplantations per year, mainly for children with primary immunodeficiencies.  

All SCID patients who are more than 2 years post-transplantation attended the 

yearly follow up at the BMT Clinic, GNCH.    

The Bone Marrow Transplant Unit in Great Ormond Street Hospital was 

established in the late 1970s.  It is the largest paediatric BMT centre in the UK 

and performed 100 HSCT in 2013 [96].  The majority of transplanted SCID 

patients in Great Ormond Street Hospital aged more than 18 years old were 

referred to the Royal Free Hospital, London for transitional follow up services and 

further lifelong follow up.  The frequency of clinic visits is yearly and may be 

more frequent depending on circumstances. 
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The transplant procedures, conditioning regimen and donor choices were chosen 

following EBMT Guidelines available at the time of transplant [51].  The gold 

standard for donor types is matched sibling donor (MSD).  However, the MSD 

option was only available in 20% of cases most of the time.  Other options of 

donor types are matched related donor (MRD), matched unrelated donor (MUD), 

mismatched unrelated donor (MMUD) and haploidentical donor.  The decision for 

conditioning regimen options mainly depended on the donor type available and 

SCID genotypes.   

There were 5 types of conditioning regimen available which were; myeloablative 

(MAC), low toxicity myeloablative (low toxicity MAC), (reduced intensity 

conditioning (RIC), non-myeloablative conditioning (NMA) and no conditioning 

received.  Myeloablative conditioning consisted of busulfan (8 or 16mg/kg) and 

cyclophosphamide 200mg/kg. Low toxicity myeloablative conditioning consisted 

of either treosulfan and fludarabine (150mg/m2) or treosulfan and 

cyclophosphamide (200mg/kg).  Reduced intensity conditioning (RIC) consisted 

of fludarabine (150mg/m2) and melphalan (140mg/m2).  Non-myeloablative 

conditioning consisted of non-myeloablative chemotherapy regimens such as 

Fanconi Anemia protocol.  The addition of serotherapy (Alemtuzumab or rATG) 

were performed according to the ESID/EBMT Guideline protocol at the time [51].  

 

4.4 Study Flow  

This study was divided into 2 phases.  The first phase was to study and describe 

the long-term outcome of post-transplantation SCID patients in a Newcastle 

cohort, according to the specific SCID genotypes and newborn SCID.  Newborn 

SCID was defined as those who were diagnosed or referred within neonatal 

period.     

The second phase was to study and describe the more than 20 years  long-term 

outcome of all SCID patients who had undergone HSCT before 1994 in 

Newcastle and Great Ormond Street Hospital, London and are currently being 

follow up at the Great North Children’s Hospital, Newcastle upon Tyne or the 

Royal Free Hospital, London.  
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Patients’ clinical records and clinic letters in all centres were retrospectively 

reviewed and collected into a specified proforma data.  Clinical data and 

immunological investigation results were retrieved.  With regards to the 

Newcastle cohort, patients and families attending the BMT follow up clinic in the 

GNCH were invited to complete the PedsQL questionnaires.  This is performed 

concurrently with a psychological health assessment which was part of the routine 

check-up at the BMT clinic, GNCH.  Figure 4.1 represents the graphic 

explanation of the study’s flow.      
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4.5 Clinical Outcome 

4.5.1 Survival Outcome 

Overall survival was measured from the time of first transplant until the date of 

the last known follow up, or date of death.  Transplant Related Mortality (TRM) 

was defined as all causes of death due to transplant, irrespective of time after 

transplant.  The cause of death was retrieved from the patient’s medical record 

available in the database.   

 

4.5.2 Immediate post-HSCT Outcome  

The time frame of immediate post-transplant outcome was defined as from 1 

month post-transplant up to 2 years post-transplant.  Variables measured as an 

immediate post-transplant outcome were; engraftment (neutrophil and CD3+ 

lymphocyte), the requirement for added interventions (e.g. boost or second 

transplant), acute GVHD and chronic GVHD.  Donor lymphocyte engraftment 

was defined as presence of donor lymphocyte in the recipients system at day 30 

post-transplantation.  In context of this study, all variables for immediate 

transplant outcome were studied in first HSCT only.  Neutrophil engraftment was 

defined as the time interval taken from the day of transplant (day 0) until the 

neutrophil count was more than 0.5 x 109/L for more than 3 consecutive days. The 

time taken for CD3+ lymphocyte recovery of more than 200 cells/µl was 

measured.   

 

Patients who needed additional interventions after the first HSCT were quantified.  

Added intervention was defined as patients who needed further procedures such 

as a boost, second HSCT or donor lymphocyte infusions after their first HSCT.  A 

boost is defined as a subsequent transfusion of allogenic or autologous 

hematopoietic stem cells, where the infusion is not preceded by a conditioning 

regimen [97].  Second HSCT is defined as HSCT after undergoing a previous 

transplantation.  It requires re-qualification of a patient for transplantation and 

commonly involves a conditioning regimen directly followed by stem cell 

infusion [97].  Donor lymphocyte infusion is defined as an infusion of 

lymphocytes or T-lymphocytes from any source typically given after HSCT [97].  
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There is no preparative regimen or conditioning given to recipients prior to donor 

lymphocyte infusion.  

Acute GVHD is a condition where the donor’s immunologically competent T-

lymphocytes mounted an inflammatory and cytotoxic immune response towards 

the target antigens on the recipient T-lymphocytes. Three phases have been 

identified in the pathogenesis of Acute GVHD.  The first phase begins with the 

exposure of conditioning regimen causing tissue damage.  This leads to the 

second phase which is the afferent phase, where both activation of host’s antigen 

presenting ells (APC) and donor’s T-lymphocyte occurs.  Finally is the efferent 

phase, where marked release of inflammatory cytokines (TNF-α, IL-1, IL-6, IL-

10) leads to tissue necrosis [98].      

Acute GVHD occurs from the starting of HSCT until 100 days post-

transplantation.  In certain conditions, it may occur early during the neonatal 

period prior to transplantation due to materno-fetal lymphoid engraftment [99].  

However, debates have been raised as to whether 100 days post-transplantation 

remains significant in differentiating between acute and chronic GVHD [98].  

This is because patients have presented with acute GVHD-like illness beyond 100 

days post-transplantation after the implementation of the RIC regimen. 

Four organs involved in acute GVHD are skin, gastrointestinal system, liver and 

lung.  Interestingly, kidneys are usually spared and the reasons are still unknown.  

Acute GVHD was identified and classified according to the Glucksberg Staging 

of Acute GVHD and Modified Glucksberg Grading Scale [98] (Table 4.2 and 

Table 4.3).  Chronic GVHD was defined according to the NIH Classification of 

graft versus host disease (Table 4.4) [100].       
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Table 4.2  The Glucksberg Staging of Acute GVHD [98]. 

Stage  Skin based on 

maculopapular rash 

Liver based 

on serum 

bilirubin 

(µmol/L) 

Gastrointestinal tract 

based on quantity of 

diarrhea 

+ <25% of body surface 34 - 50 >500 - <1000 ml 

++ 25 – 50% of body surface 51 – 102 >1000 - <1500 ml 

+++ Generalised erythroderma 103 – 255 >1500 ml 

++++ Generalised erythroderma 

with bullae and 

desquamation 

>255 Severe abdominal pain 

with or without ileus 

 

Table 4.3  Modified Glucksberg Grading staging of Acute GVHD [100]. 

Grade  Organ and stage of involvement 

Grade I Skin + to ++ 

Grade II Skin + to +++ 

Gastrointestinal tract and/or liver + 

Mild decrease in clinical performance 

Grade III Skin ++ to +++ 

Gastrointestinal tract and/or liver ++ to +++ 

Marked decrease in clinical performance 

Grade IV Skin ++ to ++++ 

Gastrointestinal tract and/or liver ++ to ++++ 

Extreme decrease in clinical performance 
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Table 4.4  NIH Classification of Acute and Chronic Graft versus Host 

Disease [100] 

Category Time of Symptoms 

after HSCT or DLI 

Features of 

Acute GVHD 

Features of 

Chronic 

GVHD 

Acute GVHD 

Classic <100 days Present Absent 

Persistent, 

recurrent or late 

onset 

>100 days Present Absent 

Chronic GVHD 

Classic No time limit Absent Present 

Overlap 

syndrome 

No time limit Present Present 

 

 

 

4.5.3 Long-term clinical outcome 

A complete physical examination and health assessment was performed by the 

attending consultants during each clinic visit.  The patients’ general well-being 

and any issues or concerns were addressed and explored.  Medical issues were 

defined as any medical/health related problems that needed assessment and 

intervention.  Patients receiving medications such as immunoglobulin replacement 

therapy, hormonal treatment, steroids and antibiotic prophylaxis were included in 

the on-going medication group.   

Puberty status was assessed by the attending consultant during clinic follow up in 

all patients over 12 years old.  Whenever possible, puberty status was recorded 

according to Tanner Staging [101].  However, if the information was not available 

from clinic letters, the puberty status was recorded as present or absent after 

consulting the consultation in charge of that patient.  Documentation in the clinic 

letters was recorded in the proforma.  Menarche status was assessed as present or 
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absent for all female patients aged more than 13 years old.  Primary amenorrhea 

was considered in all female patients who had not achieved menses at the age of 

16 years old [101].  Height (cm) and weight (kg) were measured during each 

clinic visit and were plotted in weight for age and height for age growth charts.  

Short stature was defined as height at or less than 2 standard deviation of the 

normal paediatric population at the specified age and gender [102].   

The pulmonary function was assessed at the Great North Children’s Hospital 

during the BMT follow up clinic, although for a few, the pulmonary function 

assessment was arranged locally in view of logistic issues.  The results were sent 

from the local health facilities and were kept in the patient’s medical record at the 

GNCH.  The measurement of forced expiratory volume (FEV1), full vital capacity 

(FVC) and FEV1/FVC was recorded whenever available.  The interpretation of the 

results was based on comparison between the observed values from patients to 

predicted normal range reference available in the individual centre.  The 

pulmonary function result was further classified into normal, restrictive pattern, 

obstructive pattern or mixed pattern.  According to the American Thoracic Society 

[103], for patients aged 5 to 18 years old;  a normal pattern is defined as 

FEV1/FVC > 85% of predicted value for height.  Restrictive pattern is defined as 

FEV1/FVC >85% of predicted for height and FVC < 80% of predicted value.  An 

obstructive pattern is indicated by FEV1/FVC < 85% of predicted value and FVC 

> 80% of predicted value.  A mixed pattern is seen in those with FEV1/FVC < 

85% of predicted value and FVC < 80% of predicted value for height. 

The accuracy of the all outcome data were verified with the consultants in charge 

taking care of the patients in this study (Dr Andrew Gennery and Dr Mary Slatter 

at the Great North Children’s Hospital, Newcastle upon Tyne and Dr Siobhan 

Burns at the Royal Free Hospital, London). 

 

4.6 Immunologic investigations and chimerisms 

Longitudinal measurement of several immunological markers was performed; 

namely CD3+, CD19+, CD16/56+, CD4+, CD3+CD4+CD45RA+ (CD4+ Naïve 

lymphocyte), IgG, IgA and IgM.  Serial baseline measurements were taken (pre-

HSCT), 6 months after transplant, 1 year after transplant, 2 years after transplant 
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and at 5-yearly interval thereafter.  For 5, 10, 15, 20 and 25 years post-transplant, 

measurements were taken at the nearest clinic follow up to the time for the above 

mentioned period.  

The lymphocyte subset analysis was measured according to the Immunology 

Diagnostic Laboratory’s protocol using 4-colour flow cytometry.  In summary, 

lymphocyte surface marker studies were performed on fresh whole blood 

collected in EDTA by using appropriate markers (CD45 peridinin-chlorophyll-

protein complex [PerCP], CD3 fluorescein isothiocyanate [FITC], CD4 

allophycocyanin [APC], CD8 phyco- erythrin [PE], CD19 APC, CD16/CD56 PE, 

CD3 PerCP/CD4 APC/CD45RA- FITC/CD27 PE, CD19 PerCP/CD27 FITC/IgM 

APC/IgD PE; Becton Dickinson, UK Ltd, Oxford, United Kingdom) and analysed 

on a Becton Dickinson FACSCalibur flow cytometer. The T- and B-lymphocyte 

numbers were defined as normal or low by using age-specific reference ranges.  

The markers CD3+CD4+CD45RA+ were used as surrogates for thymic output. 

There are 2 possible pathways of proliferation of donor T-lymphocytes in the 

recipient [49].  Firstly, is the peripheral expansion of the mature donor T-

lymphocytes which may not last lifelong and has limited T-lymphocyte repertoire 

diversity.  Secondly, is the thymopoiesis process; whereby the donor’s progenitor 

cells seed the recipient’s marrow and undergo intra-thymus differentiation, which 

has been shown to be sustained with high diversity of T-lymphocyte repertoire. 

The presence of CD3+CD4+CD45RA+ indicates the T-lymphocyte most likely 

but not exclusively originated from the graft as it can increase through an antigen 

independent pathway [104].  T-lymphocyte receptors excision circles (TRECSs) 

have been showed to be a more accurate marker of T-lymphocytes that have 

undergone recent intra-thymus differentiation [105, 106].  This is because 

TRECSs are a by-product produced during T-lymphocyte re-arrangements in the 

thymus.  However, only CD3+CD4+CD45RA+ measurements were available for 

SCID survivors in follow up in GNCH from 1987 until 2015.  Furthermore, 

earlier finding by Cavazzana-Calvo et al (2007) proved a strong correlation 

between the absolute counts of naïve CD31+CD45RA+CD4+ T-lymphocyte and 

TRECSs [104].  Thus, the markers CD3+CD4+CD45RA+ were used as 

surrogates for thymic output due to the retrospective nature of this study.     
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Chimerism analysis is a method of measuring the hematopoietic stem cell origin 

responsible for post-transplantation hematopoiesis [107].  This has been done 

routinely during early post-transplant period for the engraftment assessment and 

early detection of graft failure.  In cases of long-term follow up, chimerism 

analysis is useful in delineating the success of transplant according to 

conditioning regimen and donor type.   

Multiple assay techniques for chimerism analysis with varying sensitivity have 

been introduced since the 1960s.  The principle basis of all these assay techniques 

is in differentiation of the genetic polymorphism between recipient and donor.  

The chimerism analysis in GNCH was based on XY-fluorescent in situ 

hybridization (FISH) or polymerase chain reaction amplification of short tandem 

repeats techniques, with sensitivity of 0.1 - 0.001% and 1 – 5%, respectively 

[107].     

Cross-sectional measurement of donor cell chimerism analysis was analysed at the 

latest follow up available.  This was chosen in view of standardisation of the 

techniques for ease of interpretation and to reduce the risk of missing data.  The 

chimerism analysis result was presented as a percentage of donor cells according 

to specific lineage whenever available (T-lymphocyte, B-lymphocyte and myeloid 

cell).  Full donor chimerism is defined as a state where all cells are of donor origin 

following allogenic HSCT, or in other words, 100% of donor cells [108].  Mixed 

donor chimerism was defined as a percentage of donor chimerism ranging from 

20 – 95% and those with less than 20% of donor cell chimerism are categorised as 

recipient in origin.       

4.7 Evaluation of Health Related Quality of Life 

The World Health Organization (WHO) has defined quality of life as an 

individual’s perception of their position in life in the context of culture and value 

systems in which they live, and in relation to their goals, expectations, standards 

and concerns [109]. 

Health related quality of life (HRQoL) is another spectrum of multidimensional 

quality of life measurements in children apart from social indicators and 

subjective well-being [110].  PedsQL 4.0 Generic Core Scale Questionnaires was 

chosen as a tool to measure health related quality of life in this cohort [111].  It 
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was chosen in view of being validated, reliable and having the ability to 

differentiate between healthy children and children with chronic health conditions 

[111].  Furthermore, the availability of published UK normal population findings 

can be used as a comparison [112].  Approval to use the PedsQL questionnaire 

was obtained on 5th February 2014.  The signed agreement and the PedsQL 

questionnaires are attached in Appendix A.   

Patients and parents/caretakers were invited to answer the PedsQL questionnaires 

during their long-term clinic follow up at the GNCH.  It was performed routinely 

as part of the psychological health assessment in the unit.  Postal questionnaires 

were sent to those who failed to attend follow up sessions, with a return addressed 

and stamped envelope provided.  

PedsQL 4.0 Generic Core Scale Questionnaires is a self-reported measure with 23 

items (Appendix B).  It also has a corresponding parent proxy-reported measure 

with similar formats.  The children-report questionnaires were available for 

children between 5 – 18 years old. Similar questionnaires were also available for 

young adults aged from 18 years old onwards.  Parent proxy-reports were 

available for children aged 2-4 years old and above.  Due to age constraints, only 

parents answered for children aged 2 – 4 years old.     

The PedsQL questionnaires comprised of assessment in 4 major domains, which 

were; Physical Functioning domains, Emotional Functioning domains, Social 

Functioning domains and School Functioning domains.  The Total Summary 

Score (23 items) was recorded from the imputation of all 4 domains scores and 

divided by the number of items answered.  The Psychosocial Health Summary 

Score was derived from the addition of 3 domains (Emotional Functioning 

domains, Social Functioning domains and School Functioning domains) and 

divided by number of items answered. Composite scores for each domain, total 

summary score and psychosocial health summary score were calculated as means 

as proposed by the original questionnaires developer [111]. The higher the value, 

the better health related quality of life is indicated.  However, this questionnaires 

does not address the particular issue of employment in the young adults. 
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4.8 Statistical Analysis  

The decision was made to analyse the long-term outcome for the SCID cohort in 

Newcastle according to SCID genotype in view of the complexity of the issues 

and difficulties in determination of causal association/relationship between donor 

type, conditioning regimen, graft source and the timing of HSCT.  Division 

according to SCID genotypes distinctively characterizes each subgroup of patients 

in this SCID cohort.   

The long-term outcome for IL2RG and JAK3 SCID patients post-transplantation 

were analysed together because patients with IL2RG SCID or JAK3-deficient 

SCID present with a similar immunophenotype, and the gene products are in the 

same signalling pathway.  The long-term outcome post-transplantation for 

Artemis and RAG 1/2 SCID in Newcastle were also analysed together.  Both 

SCID genotypes were presented and compared directly with each other; in view of 

both being T- B- SCID immunophenotype and involving defects in the V(D)J 

recombination pathway.  However, the main differentiating feature is that Artemis 

SCID exhibits radiation sensitivity, which is not found in RAG 1/2 SCID.  The 

ADA SCID and IL7Rα SCID cohort was analysed individually, due to the 

distinctive clinical manifestations and immunophenotype.   

With regards to the outcome of newborn SCID, the results were analysed as a 

single cohort and comparisons were performed between newborn SCID and those 

who were diagnosed later.  Whenever possible, detailed descriptions and 

comparison according to specific SCID genotypes were performed. 

However, for the very long-term outcome post-transplantation of the Newcastle 

and London cohort, all patients were analysed as one single cohort irrespective of 

their SCID genotypes due to the small sample size. 

All statistical analyses were undertaken using STATA version 14.1.  Graphic 

figures were prepared using Graphpad Prism 7.  Statistical significance of p < 

0.05 was applied for all statistical analysis tests.  

The normally distributed quantitative data are presented as mean with standard 

deviation. Parametric statistical analysis such as the T-test was performed to look 

for mean differences between groups of patients.  Comparison of mean 
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differences with published data were performed using the one sample T-test.  The 

non-normally distributed data were presented as median with range, and the 

differences between groups were analysed using a median test.  The Fisher exact 

test was performed for measuring associations between group participants for n<5 

and Pearson chi square for n>5.  Spearman’s correlation (rho) was performed to 

analyse correlation between variables (when the data are not normally 

distributed).    

Survival outcome analysis was performed using Kaplan Meier Survival.  Group 

comparisons of survival outcome were made between specific SCID genotypes 

and other SCID genotypes, and between those who were conditioned and those 

not receiving any conditioning regimen with a log rank test.  An event was 

defined as death.  Time until event was defined as the time interval from the date 

of first transplantation until the date of the last follow up or date of death.  

Outcome survival was calculated at 2 years and 10 years post-transplant.  Patients 

who are still alive but lost to follow up by 31st January 2015 were censored from 

the analysis.     

Multiple linear regression analysis (for continuous dependant outcome) and 

multiple logistic regression analysis (for binary dependant outcome) were used to 

assess associations and adjust for potential confounding factors.  Variables were 

included in the analysis in multiple forward steps; considering those where the p 

value equal or less than 0.05.  Several parameters such as likelihood ratio test, F-

test, OR, coefficients and 95% confidence interval were presented in the result 

section.  

Multi-level mixed modelling analyses was used to study the effect of conditioning 

on the longitudinal immune parameters reconstitution post-transplant.  This is a 

hierarchal marginal model involving 2-level modelling analysis.  The first level 

consists of individual SCID patients which were nested according to conditioning 

regimen group received (second level).  The cluster was defined as the 

conditioning regimen group received (conditioned and unconditioned).  

Multi-level mixed modelling analysis was chosen due to several factors.  This 

analysis enabled study of the changes across time in each individual (level 1) and 

also between individuals (level 2) [113-115].  Importantly, it allows inference 
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about the sub-population averages and answers the research questions on the 

effect of conditioning on the longitudinal immune reconstitution post-

transplantation [115].  It also caters for unbalanced data which are very common 

in this nature of study.      

The following are the steps performed for multi-level mixed models to study the 

effect of conditioning on immunological parameters re-constitution across time. 

1. Variables and data entered into STATA in wide format and re-shaped to 

long format.  

2. Marginal models with immune re-constitution parameters (example: CD3+ 

lymphocyte count) as a continuous variable. 

3. Plotting of original data and fitted lines for each sample to visually check 

the model  

4. Generation of margins contrast and plot with original data mean values to 

visually check the model 

5. Group comparisons of contrast mean at each point of time and overall 

time. 

 

Due to the retrospective nature of the study, missing data were commonly found.  

Two types of missing data were identified in this study.  Most of the data are 

missing completely at random especially with the immunological parameters post-

transplantation.  However, there is some possibility of missing data that depends 

on unobserved predictors.  For example, missing data of clinical status and 

immunological parameters in those who defaulted at follow up.  

Multiple steps were taken to minimize the impact of missing data [116].  Firstly, a 

trawl of information from multiple resources for each subject (clinic follow up 

letters, electronic databases of investigations results and individual patient 

hardcopy medical notes) was undertaken.  Secondly, by using available-case 

analysis, analysis was done with the available data, ignoring the missing data.  

Thirdly, by choosing a statistical model such as multi-level mixed effect models, 

which was able to adjust for unbalanced longitudinal data.  Of note, there were no 

missing data in the PedsQL questionnaires of quality of life.  All PedsQL 

questionnaires respondents gave complete answers to all questions.    
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 Result - Long-term outcome of IL2RG/JAK3 SCID post-

HSCT 

This chapter will present the result of the analysis of long-term outcome for 

IL2RG and JAK3 SCID patients post-transplantation in Newcastle cohort.  The 

common γ chain of the interleukin receptors -2, -4, -7, -9, -15 and -21 is critical 

for T lymphocyte development (through signalling via the γ chain receptors).  

Defective signalling through these molecular pathways leads to early arrest of T 

lymphocyte and NK cell development. Signalling through IL-4 is important for 

terminal B-lymphocyte differentiation and isotype switching. JAK3 is 

downstream of the common γ chain signalling pathways and so patients with 

common γ chain or JAK3-deficient SCID present with a similar immune-

phenotype.  Therefore, these two SCID variants were analysed as a single cohort. 

5.1 Cohort Characteristics 

Forty-three patients were identified from the database with a total of 49 

transplants performed, constituting 35% of the Newcastle SCID cohort.  Thirty-

one of the 43 patients were alive in January 2015, with 100% attendance rate at 

the long-term follow up clinic at the GNCH. 

The majority of patients received stem cells from a haploidentical donor (23 

patients, 53%), followed by MRD (8 patients, 18%), MSD (5 patients, 12%), 

MUD (5 patients, 12%) and MMUD (2 patients, 5%).  Table 5.1 shows details of 

donor type against the conditioning regimen used. No MSD recipients received 

conditioning.   
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Table 5.1 Conditioning regimen and donor type for each patient. 

 Table 5.1 showed the distribution of conditioning regimen and donor type for IL2RG/JAK3 SCID 

patients in the Newcastle cohort.  MSD = Matched sibling donor, MRD = matched related donor, 

MUD = matched unrelated donor and MMUD = mismatched unrelated donor.  

The majority of patients (36, 83%) received bone marrow as the graft source.  

Five patients received umbilical cord blood stem cells and two received peripheral 

blood stem cells.  Twenty patients received an un-manipulated graft.  Twenty-

three patients received a T-lymphocyte depleted graft (14 had CD34+ positively 

selected cells, 9 patients received monoclonal antibody and complement-depleted 

and 1 patient received CD3+/CD19+ depleted cells).  Further details of median 

dose for CD34+ cells, CD3+ lymphocytes and CD19+ cells are listed in Table 5.2.  

  

Conditioning 
regimen MSD MRD MUD Haploidentical MMUD 

None 5 1 2 6 0 

Reduced intensity 
conditioning (RIC) 0 0 1 0 1 

Low toxicity MAC 0 5 2 1 1 

Myeloablative 
(MAC) 0 1 0 16 0 

Non-myeloablative 
(NMA) 0 1 0 0 0 

Total 5 8 5 23 2 



61 
 

 

Table 5.2 The median value of recipients’ weight, graft volume and stem cell 

doses. 

Parameters Median (Range) 

Weight of Recipient (kg) 6.3 (3.5 – 8.7) 

Volume Graft (ml) 63.5 (42.0 - 130) 

Mononuclear cells (x10
8
/kg) 2.7 (0.09 – 10.00) 

CD34 cells (x10
6
/kg) 7.8 (0.35 – 14.70) 

CD3 cells (x10
8
/kg) 0.02 (0.0001 - 1) 

CD19 cells (x10
7
/kg) 0.88 (0.11 – 3.8) 

All data were shown as median value due to not normally distributed. 

5.2 Immediate Outcome at less than 2 years post-HSCT  

Thirty-eight patients were engrafted at one month after their first transplant.  

There was no evidence of T-lymphocyte engraftment after the first HSCT in 4 

patients [NMA/MRD recipient (1 patient); unconditioned/haploidentical recipient 

(1 patient) and MAC/haploidentical recipients (2 patients)].  Five patients needed 

a second procedure in the form of a second HSCT.  Further details of the reasons, 

conditioning and donor type for the first and second HSCT for these patients are 

listed in Table 5.3.  
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Table 5.3  Reasons, donor type and conditioning regimen of IL2RG/JAK3 

SCID patients with added intervention. 

Subject 
ID  

Reason for 
added 
intervention 

Conditioning/
Donor type 
for 1st HSCT 

Conditioning/Donor 
type for added 
intervention 

Status 

42 Low T-
lymphocyte 
numbers 

 

RIC/ 

Haploidentical 
(father) 

Unconditioned/ 

Haploidentical (father) 

Died 

48 Myeloid graft 
failure 

 

MAC/ 

Haploidentical 
(father) 

Unconditioned/ 

Haploidentical (father) 

Alive 

58 Falling T-
lymphocyte 
chimerism 

 

MAC/ 

Haploidentical 
(father) 

Unconditioned/ 

Haploidentical (father) 

Died 

70 Graft failure 

 

Unconditioned
/ 

haploidentical 
(mother) 

Unconditioned/ 

haploidentical (mother) 

Alive 

76 Primary graft 
rejection and 
autologus 
reconstitution 

 

NMA/ 

haploidentical 
(mother) 

 

Campath 
1H=1mg/kg, 
Cy=200mg/kg, 
Anti LFA 
2.8mg/kg, Anti 
CD2 2.8mg/kg 

NMA/ 

haploidentical (mother) 

Campath 1G 1mg/kg, 
Cyclophosphamide 
200mg/kg 

Died 
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The median time taken for neutrophil recovery of more than 0.5 x 109/L was 18.5 

days (range, 11-30).  The unconditioned recipients did not experience a neutrophil 

count of less than 0.5 x 109/L, as expected.  The fastest neutrophil recovery was 

seen in the MRD recipients with low toxicity MAC conditioning.  The longest 

neutrophil recovery was seen in the MMUD recipients with low toxicity MAC 

(Figure 5.1).  A two-way ANOVA was performed on a sample of 27 patients to 

examine the potential effect of donor and conditioning regimens (excluding 

unconditioned recipients as the neutrophil count was never below 0.5 x 109/L) on 

days taken for neutrophil recovery of more than 0.5 x 109/L post-transplant.  

There were no differences in neutrophil recovery between donor type (p = 0.52) 

and between conditioning regimens (p = 0.63).  There was no significant 

interaction between donor type and conditioning regimens on neutrophil recovery 

(p = 0.70).   There were no significant differences in neutrophil recovery between 

donor type (p = 0.52) and between conditioning regimens (p = 0.63). 

 

Figure 5.1  Mean duration for neutrophil recovery according to donor type 

and conditioning regimen. 

 

Figure 5.1 Matched related donor (MRD) receiving low toxicity MAC conditioning had the fastest 
neutrophil recovery and the slowest rate of neutrophil recovery was seen in mis-matched unrelated 
donor (MMUD) receiving low toxicity MAC regimen.  Unconditioned recipients were not 
included as they never had neutrophil count less than 0.5 x 109/L.  
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The shortest time taken for CD3+ lymphocyte recovery of more than 200 cells/μl 

was 18 days and this was seen in unconditioned recipients (range, 11 – 83).  The 

mean time taken for the CD3+ lymphocyte counts of more than 200 cells/μl in 

conditioned recipients was significantly longer, compared to unconditioned 

recipients; [113 days (SD, 88) versus 26 days (SD, 22), respectively, p = 0.001] ( 

 

Figure 5.2). 

 

Figure 5.2  Comparison of mean days taken for CD3+ lymphocyte recovery 

of more than 200cells/µl between unconditioned and conditioned recipients.   

Bars indicate standard deviation for each group.

 

Among the conditioned recipients, MRD with MAC conditioning had the fastest 

recovery and MURD with RIC conditioning had the slowest CD3+ lymphocyte 

recovery (Figure 5.3).  A two-way ANOVA was performed on a sample of 23 

patients to examine the effect of donor and conditioning regimens (excluding 

unconditioned recipients as the CD3+ lymphocyte count was never below 200 

cells/µl) on days taken for CD3+ lymphocyte recovery of more than 200 cells/µl 

post-transplant.  There were no significant differences in CD3+ lymphocyte 

recovery between donor type (p = 0.97) and between conditioning regimens (p = 

0.84).   
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Figure 5.3  The mean duration of days taken for CD3+ lymphocyte recovery 

according to donor type and conditioning regimen. 

 

Figure 5.3 Matched related donor (MRD) receiving myeloablative (MAC) conditioning had the 

fastest CD3+ lymphocyte recovery.  The slowest rate of CD3+ lymphcoyte recovery was seen in 

matched unrelated donor (MUD) receiving RIC regimen.   

 

Twenty-four patients (56%) did not develop acute GVHD) after the first 

transplant.  Nine patients developed Grade I acute GVHD.  Eight patients 

developed Grade II acute GVHD.  There were two patients with Grade III-IV 

acute GVHD (1 patient was an unconditioned haploidentical recipient and 1 

patient received a MRD graft with non-myeloablative conditioning) (Figure 5.4).  

Two patients experienced chronic GVHD at 2 years post-HSCT [Unconditioned 

MURD (1 patient), haploidentical with MAC (1 patient)].  Further analysis 

showed that the time for CD3+ lymphocyte recovery was significantly shorter in 

those without acute GVHD compared to those with acute GVHD, mean 56.1 days 

(SD 55.6) vs 111 days (SD 98.2), (p = 0.05). 
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Figure 5.4  Numbers of patients experiencing Acute GVHD (Grade I, II, III, 

IV) after first HSCT according to donor type and conditioning regimen. 

 

Figure 5.4 Seventeen out of 41 patient developed acute GVHD Grade I – II and only 2 patients 

developer severe acute GVHD Grade III-IV.  Majority of acute GVHD Grade I – II patients 

received haploidentical donor and MAC conditioning regimen.   

 

5.3 Survival Outcome 

Thirty-one patients survived to January 2015 and twelve patients (28%) had died 

by this point.  The median age at the last follow up was 10 years (range, 2-25 

years).  The majority of deaths occurred within 1 year after the transplant (10 

patients, 83%).  The causes of death were: infection (4 patients), hemorrhage 

following liver biopsy (2 patients), pneumonitis (3 patients), GVHD (1 patient) 

and Sudden Infant Death Syndrome (1 patient).   

The survival outcome at 2 years post-HSCT was 74.4% and at 10 years was 

71.9% for all IL2RG/JAK3 SCID patients in Newcastle.  Transplant related 

mortality (TRM) was defined as all causes of death related to the transplant 

procedure, irrespective of time of the event. The TRM for this cohort was 23.3%.  

There was no significant difference in survival outcome between IL2RG/JAK3 

SCID as compared to other SCID genotypes (71.8% versus 74.6%, respectively, p 

= 0.71) (Figure 5.5).  There was no significant difference in survival outcome 
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comparing the unconditioned versus conditioned IL2RG/JAK3 SCID recipients; 

(69.8% versus 72.4%, respectively, p = 0.91) (Figure 5.6).  

Figure 5.5  Comparison of survival outcome between IL2RG/JAK3 SCID 

and other SCID genotypes. 

 

 

Figure 5.6  Comparison of survival outcome among the unconditioned and 

conditioned recipients of IL2RG/JAK3 SCID. 

 

 



68 
 

5.4 Long-term clinical outcome 

5.4.1 Clinical outcome 

Twenty-one patients (68%) had on-going medical issues at the last follow up in 

January 2015.  Two patients had bronchiectasis.  Lung function results were 

available for 6 patients including those with bronchiectasis, and all were normal.   

Four patients had short stature (Height centile for age ≤ 2SD).  Two of these 4 

patients received low toxicity MAC and another 2 patients received MAC 

(busulfan 8mg/kg).  However, there was no association between short stature and 

conditioning regimen, Fisher exact test, p = 0.49.  Of the 4 patients with short 

stature, only one was aged more than 15 years (Figure 5.7).   

 

Figure 5.7  A scatter plot of IL2RG/JAK3 SCID patients’ height centile (SD) 

and age at last follow up. 

\  

*The red line indicates the reference range of the height centile = 2SD according 
to the normal population [102]. 

 

Thirteen patients (87%) aged above 13 years had achieved puberty according to 

assessment by the attending consultant paediatrician during post-transplantation 

clinic follow up.  Three patients had pre-existing limb lymphoedema.  One patient 
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developed autoimmune hemolytic anemia and another patient had delayed 

developmental milestones (Table 5.4).   All 31 surviving patients were normal in 

the following clinical systems: endocrine, hearing, cardiovascular, renal and 

gastro-intestinal systems. 

 

Seven patients had warts and there was no significant difference in the number of 

patients with warts between unconditioned and conditioned recipients (p = 0.70).  

There was also no significant difference in NK cells value at the latest follow up 

between those with warts and those without, p = 0.53 (Figure 5.8).   

 

Figure 5.8 NK cells at latest follow up according to those with warts and 

those without. 
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Table 5.4  Summary of long-term clinical outcome of IL2RG/JAK3 SCID 
post-transplant. 

Clinical Outcome  %  (n/N) 

10 years survival 71.9 (31/43) 

On-going Medical Issues 68% (21/31) 

On-going IVIG Replacement Therapy 45% (14/31)) 

Bronchiectasis 7% (2/29) 

Short Stature 14% (4/28) 

Lymphoedema of the limbs 10% (3/29) 

Warts 24% (7/29) 

Auto-immune Haemolytic Anaemia 
(AIHA) 3% (1/29) 

Delayed developmental milestone  3% (1/29) 

Normal Lung Function 100% (6/6) 

Normal Endocrine 100% (31/31) 

Achieved Puberty  87% (13/15) 

  

Normal Hearing 100% (31/31) 

Normal Cardiovascular 100% (31/31) 

Normal Renal System 100% (31/31) 

Normal Gastro-intestinal System 100% (31/31) 
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5.5 B-lymphocyte function at latest follow up 

5.5.1 Immunoglobulin replacement therapy at last follow up 

Seventeen of the surviving patients (55%) were free from immunoglobulin 

replacement therapy at the last follow up.  All survivors of low toxicity MAC 

were free from immunoglobulin replacement therapy and had donor B-

lymphocyte chimerism of more than 50%, irrespective of donor type.  Notably, 3 

patients with poor B-lymphocyte donor chimerism (less than 10% donor) were not 

receiving immunoglobulin replacement (2 of these 3 patients had acute GVHD 

Grade II-III).  However, one patient was not included as the latest B-lymphocyte 

donor chimerism was not available.      

Fourteen patients (45%) were receiving on-going immunoglobulin replacement 

therapy at the last follow up in 2015.  Most had poor B-lymphocyte chimerism at 

the last follow up, except for one patient who received a haploidentical donor with 

MAC conditioning and had mixed B-lymphocyte donor chimerism (50 – 99% 

donor).  There is a significant association between immunoglobulin replacement 

therapy status at last follow up and B-lymphocyte donor chimerism, p = 0.0001 

(Figure 5.9). 

 

Figure 5.9 B-lymphocyte donor chimerism at last follow up according to the 

immunoglobulin replacement therapy status. 
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5.5.2 B- lymphocyte and myeloid Chimerism at last follow up 

Donor cell chimerism analysis was performed as part of the routine post-HSCT 

follow up for IL2RG/JAK3 SCID patients.  Results were available for 29 out of 

31 patients.  Good T-lymphocyte donor chimerism was observed for all patients, 

irrespective of conditioning or donor type. 

The donor B-lymphocyte and myeloid donor chimerism distribution varied 

depending on the donor group and conditioning regimen received.  However, 

donor B-lymphocyte and myeloid donor chimerism tended to mirror each other in 

distribution.  Figure 5.10, clearly demonstrates that patients with low B-

lymphocyte donor chimerism tended to have low myeloid chimerism.  Low 

toxicity MAC recipients tended to have better B-lymphocyte and myeloid donor 

chimerism irrespective of donor type.  Unconditioned MSD transplants and 

haploidentical transplants with MAC conditioning demonstrated poor B-

lymphocyte and myeloid donor chimerism at the last follow up (less than 20% 

donor chimerism). 
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Figure 5.10  B-lymphocyte and myeloid donor chimerism at last follow up 

according to corresponding donor groups and conditioning regimens 

received for each IL2RG/JAK3 SCID patient at last follow up. 

 

Figure 5.10. Low toxicity MAC recipients demonstrated higher B-lymphocyte and myeloid donor 

Chimerism, irrespective of donor types.  Unconditioned MSD mostly had poor donor B-

lymphocyte and myeloid donor chimerism (less than 20%).  Haploidentical MAC recipients 

showed a wide range of donor B-lymphocyte and myeloid chimerism.  
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There was a strong positive correlation between donor B-lymphocyte chimerism 

and myeloid cell donor chimerism which was statistically significant, rho 0.98, p 

< 0.001 (Figure 5.11).   

Figure 5.11 Scatter plot of donor B-lymphocyte chimerism and myeloid 

donor chimerism at last follow up. 

 

 

The multivariable linear regression analysis showed that low toxicity MAC 

recipients had a significantly higher percentage of myeloid donor chimerism 

compared to unconditioned and other types of conditioning recipients (RIC & 

MAC8), after controlling for donor type, graft source and stem cell dose. The 

variables included in the final model explained 97.6% of the variation in myeloid 

donor chimerism (Table 5.5). 
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Table 5.5 Results of the multiple linear regression analysis of different 

variables on the percentage of myeloid donor chimerism at last follow up 

Myeloid donor %  Coefficient 95% CI p value 

CD34 dose -0.4 -1.8 – 1.0 0.56 

CD3 dose 3.1 -23.0 – 29.3 0.79 

CD19 dose -1.0 -7.7 – 5.7 0.75 

Donor types 

MSD 1.0 Reference  

MRD -2.2 -31.8 – 27.4 0.87 

MUD 78.7 -63.2 – 220.6 0.25 

MMUD 75.8 -70.1 – 221.7 0.28 

Haploidentical -1.8 -17.6 -13.8 0.79 

Conditioning regimen 

Unconditioned 1.0 Reference  

RIC -8.5 -50.9 – 33.8 0.66 

Low Toxicity MAC 85.5 52.7 – 118.4 < 0.001 

MAC8 6.1 -10.5 – 22.8 0.43 

Graft source 

BM 1.0 Reference  

PBSC 15.0 -26.5 – 56.6 0.44 

UCBT -71.2 -225.3 – 82.8 0.33 

CI indicates confidence interval 
p value < 0.05 was considered significant 
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5.6 Long-term immune reconstitution post-HSCT 

5.6.1 Longitudinal analysis of CD3+ lymphocyte reconstitution post-HSCT 

T-lymphocyte, B-lymphocyte and NK cell enumeration and CD4+ Naïve 

lymphocyte measurement was performed for all IL2RG/JAK3 SCID during their 

post-HSCT follow up visits to the Great North Children’s Hospital in Newcastle.  

Results were available for 29 out of 31 patients.  A serial measurement for every 

patient was recorded at intervals of 6 months, 1 year, 2 years and subsequent 5 

yearly intervals post-transplant.    

Multi-level mixed modelling analysis was used to study the effect of conditioning 

on the longitudinal immune reconstitution.  The degree of differences in immune 

parameters’ mean values between conditioned and unconditioned groups at each 

time point are presented as contrast (Table 5.6).  Negative values imply the 

inverse relationship, where unconditioned groups have a higher immune 

parameter value compared to the conditioned group.  SE indicates standard error 

and it serves as an indicator for precision of mean values as population parameters 

[117].      

There was no significant difference in the overall trend of circulating CD3+ 

lymphocyte numbers between conditioned versus unconditioned IL2RG/JAK3 

SCID patients, (p = 0.38) and at each time point post-transplant (Figure 5.12 and 

Table 5.6).   
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Figure 5.12  Longitudinal analysis of CD3+ lymphocyte output for 

IL2RG/JAK3 SCID patients post-HSCT according to conditioned and 

unconditioned recipients. 

Figure 5.12. CD3+ lymphocyte trend during post-HSCT period.  There was no significant 

difference in CD3+ lymphocyte trend between conditioned and unconditioned recipients of 

IL2RG/JAK3 SCID patients. 

 
Table 5.6 Multi-level mixed effect model analysis of conditioning on CD3+ 

lymphocyte output with time post-transplant for IL2RG/JAK3 SCID 

patients.   

Time (Years) Contrast SE p value 

0 503.2 365.2 0.16 

0.5 355.2 300.9 0.23 

1 207.1 309.2 0.50 

2 59.1 385.4 0.87 

5 -88.9 499.4 0.85 

10 -236.9 630.9 0.70 

15 -385.0 771.2 0.61 

Overall trend   0.38 
SE indicates standard error. 
P value < 0.05 is considered significant. 
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Sustained CD3+ lymphocyte levels are seen even after 20 years post-HSCT, 

irrespective of donor and conditioning regimen received by IL2RG/JAK3 SCID 

patients (Figure 5.13 and Figure 5.14).   

Figure 5.13  Longitudinal analysis of CD3+ lymphocyte output of 

IL2RG/JAK3 post-HSCT according to the donor type. 

 

Figure 5.13. Mean value of CD3+ lymphocyte count during post-HSCT period according to the 
different donor types. The CD3+ lymphocyte tends to peak during the second year post-HSCT and 
is trending downward from 5 years post-HSCT. 
 

Figure 5.14  Longitudinal analysis of CD3+ lymphocyte output of 

IL2RG/JAK3 SCID patients post-HSCT according to the conditioning 

regimen. 

 

Figure 5.14. Mean value of CD3+ lymphocyte count during post-HSCT period according to the 

different conditioning regimens. The CD3+ lymphocyte tends to peak during the second year post-

HSCT and is trending downward from 5 years post-HSCT. 
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5.6.2 Longitudinal analysis of CD4+ Naïve lymphocyte reconstitution post-

HSCT 

CD4+ naïve lymphocyte (CD3+CD4+45RA+) count was used as an indicator of 

thymopoiesis post-transplantation.  The multi-level mixed effect analysis 

demonstrated that conditioned recipients had an overall trend to higher CD4+ 

naïve lymphocyte output compared to unconditioned recipients, (p = 0.06) (Figure 

5.15 and Table 5.7).   

Conditioned recipients had a better CD4+ naïve lymphocyte output at early time 

points after transplant compared to unconditioned recipients [0.5 years post-

transplant (p = 0.03), 1 year post-transplant (p = 0.02), 2 years post-transplant (p = 

0.01) and 5 years post-transplant (p = 0.04); respectively] (Table 5.7).  However, 

this significant difference is lost in between groups from 10 to 15 years post-

HSCT. 

 

Figure 5.15  Longitudinal analysis of CD4+ Naive lymphocyte output for 

IL2RG/JAK3 SCID patients according to unconditioned versus conditioned 

recipients. 
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Table 5.7  Multi-level mixed effect model analysis of conditioning on CD4+ 

Naive lymphocyte output with time post-transplant for IL2RG/JAK3 SCID 

patients. 

Time (Years) Contrast SE p value 

0.5 611.1 286.1 0.03 

1 513.1 224.8 0.02 

2 415.1 178.0 0.01 

5 317.0 159.0 0.04 

10 219.0 177.1 0.21 

15 121.0 223.4 0.58 

Overall trend   0.06 

SE indicates standard error. 
P value < 0.05 is considered significant. 
Sustained thymic output was seen at 15 years in MURD and haploidentical donor 

recipients.  However, the best thymic output was seen in the MRD recipients, but 

the data were only available up to 10 years post-transplant (Figure 5.16).  All 

except unconditioned recipients showed a mean of CD4+ Naïve lymphocyte of 

more than 500 cells; and low toxicity MAC recipients had the highest mean value 

5 years post-transplantation (Figure 5.17).  
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Figure 5.16  Longitudinal analysis of CD4+ Naive lymphocyte for 

IL2RG/JAK3 SCID according to donor type. 

 

Figure 5.17 Longitudinal analysis of CD4+ naive lymphocyte of IL2RG/JAK3 

SCID patients post-HSCT according to conditioning regimen. 
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5.6.3 Longitudinal analysis of CD19+ lymphocyte reconstitution post-HSCT 

There was a reduction in the mean CD19+ lymphocyte output in both 

unconditioned and conditioned recipients at 0.5 years post-transplantation.  There 

was no significant difference between conditioned and unconditioned recipients in 

the overall trend of CD19+ lymphocyte after transplantation, (p = 0.47).  There 

was no significant difference in CD19+ output at any time point post-

transplantation (Figure 5.18 and Table 5.8). 

Figure 5.18  Longitudinal analysis of CD19+ lymphocyte output for 

IL2RG/JAK3 SCID patients post-transplant according to conditioned and 

unconditioned recipients. 

 

Table 5.8 Multi-level mixed effect model analysis of conditioning on CD19+ 

lymphocyte output with time post-transplant for IL2RG/JAK3 SCID 

patients. 

Time (Years) Contrast SE p value 

0 422.7 356.9 0.23 

0.5 378.4 312.7 0.22 

1 334.0 298.3 0.26 

2 289.6 317.8 0.36 

5 245.3 365.8 0.50 

10 200.7 432.9 0.64 

15 156.6 511.7 0.75 

Overall trend   0.47 
SE indicates standard error.  p value < 0.05 is considered significant. 
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5.6.4 Longitudinal analysis of NK cell reconstitution post-HSCT 

The conditioned recipients had a non-significantly higher overall NK cell number 

compared to unconditioned recipients, (p = 0.15).  However, conditioned 

recipients did have a significantly higher NK cell number compared to 

unconditioned recipients; at baseline (p = 0.05) and 0.5 years post-transplant (p = 

0.05) (Figure 5.19 and Table 5.9).  

Figure 5.19  Longitudinal analysis of NK cell output for IL2RG/JAK3 SCID 

patients post-transplant according to conditioned and unconditioned 

recipients. 

 

Table 5.9 Multi-level mixed effect model analysis of conditioning on NK cell 

output with time post-transplant for IL2RG/JAK3 SCID patients. 

Time (Years) Contrast SE p value 

0 126.5 66.1 0.05 

0.5 112.1 59.3 0.05 

1 97.7 57.2 0.08 

2 83.3 60.0 0.16 

5 68.9 67.3 0.30 

10 54.4 77.8 0.48 

15 40.0 90.4 0.65 

Overall trend   0.15 
SE indicates standard error.  p value < 0.05 is considered significant. 
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5.7 Quality of Life IL2RG/JAK3 SCID post-HSCT 

A total of 20 out of 31 patients (65%) agreed to the request to take part in this 

survey.  All comparisons were made with published UK normal values (Table 

5.10) [112].  Generally, parents of IL2RG/JAK3 SCID patients reported 

significantly lower QoL in three domains (total, psychosocial and school 

domains).  However, there were no significant differences between the child 

reports of IL2RG/JAK3 SCID and UK published norms. 

Further subgroup analysis of parent and child reports revealed that IL2RG/JAK3 

SCID patients who were free from immunoglobulin replacement therapy had no 

significant difference in QoL compared to published UK norms (mean scores: 

total 75.0, p = 0.06; psychosocial 73.8, p = 0.08; school 68.0, p = 0.09).  Both 

children, and parents of children with on-going immunoglobulin replacement 

therapy reported significantly lower QoL in a few domains (total, psychosocial 

and school domains).   Similar findings were noted in parent reports of 

IL2RG/JAK3 SCID with on-going medical issues at the last follow up.  However, 

no significant difference was noted in the child report between UK published 

norms and the IL2RG/JAK3 SCID patients with on-going medical issues (Table 

5.10). 
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Table 5.10 Mean PedsQL Scores for IL2RG/JAK3 SCID patient post-HSCT 

(Parent and Child Report) 

  
UK 
Norm 
[112] 

IL2RG/JAK3 
SCID, 
Mean  
(p value) 

On-
going 
IG, 
Mean  
(p 
value) 

No IG,  
Mean  
(p 
value) 

On-
going 
Medical 
issues  
(p 
value) 

No 
Medical 
Issues  
(p 
value) 

Parent 
Report 

 N = 19 N = 8 N = 11 N = 12 N = 7 

Total  84.6  70.9 (0.009) 63.9 
(0.02) 

75.0 
(0.06) 

70.0 
(0.02) 

72.3 
(0.04) 

Psychosocial 82.2  66.5 (0.007) 56.5 
(0.01) 

73.8 
(0.08) 

64.7 
(0.01) 

69.5 
(0.06) 

Physical 89.1  82.4 (0.19) 77.7 
(0.12) 

85.8 
(0.28) 

79.9 
(0.10) 

86.6 
(0.37) 

Emotional 78.3  72.9 (0.34) 60.0 
(0.06) 

82.3 
(0.81) 

69.6 
(0.15) 

78.6 
(0.52) 

Social 86.8  77.4 (0.13) 70.0 
(0.09) 

82.7 
(0.24) 

77.5 
(0.15) 

77.1 
(0.12) 

School 81.5  63.5 (0.02) 55.3 
(0.01) 

68.0 
(0.09) 

58.8 
(0.01) 

70.2 
(0.19) 

Child 
Report 

 N = 15 N = 5 N = 10 N = 8 N = 7 

Total  83.9  77.8 (0.23) 71.7 
(0.16) 

80.8 
(0.28) 

77.6 
(0.23) 

77.9 
(0.17) 

Psychosocial 81.8  74.1 (0.17) 67.3 
(0.13) 

77.5 
(0.23) 

75.2 
(0.23) 

72.9 
(0.12) 

Physical 88.5  84.6 (0.45) 80.0 
(0.23) 

86.9 
(0.33) 

82.0 
(0.24) 

87.5 
(0.42) 

Emotional 78.5  79.3 (0.89) 67.0 
(0.24) 

85.5 
(0.88) 

75.0 
(0.37) 

84.3 
(0.79) 

Social 87.7  75.7 (0.09) 77.0 
(0.17) 

75.0 
(0.09) 

81.3 
(0.21) 

69.3 
(0.08) 

School 78.9 67.3 (0.08) 58.0 
(0.05) 

72.0 
(0.19) 

69.4 
(0.15) 

65.0 
(0.09) 

Bold indicates p value < 0.05 and is considered significant. 
IG indicates immunoglobulin replacement therapy. 
All comparisons were made to UK published normal value using one sample T-test. 
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5.8 Summary of IL2RG and JAK3 SCID long-term outcome post-

transplantation 

Survival outcome of IL2RG/JAK3 SCID patients was 83%, but a significant 

number of patients experienced on-going medical issues requiring treatment and 

monitoring.  Major clinical issues seen in IL2RG/JAK3 SCID patients post-

transplant were on-going immunoglobulin replacement therapy (45%) and viral 

cutaneous warts (24%).  With regards to long-term immune reconstitution, 

sustained CD3+ lymphocyte, CD4+ Naïve lymphocyte, CD19+ lymphocyte and 

NK cell levels were demonstrated even after 20 years post-HSCT.  Conditioned 

recipients had better long-term thymopoiesis compared to unconditioned 

recipients.  Good T lymphocyte donor chimerism was seen and not influenced by 

conditioning or donor types.  B lymphocyte and myeloid donor chimerism were 

highly correlated.  Low toxicity MAC conditioning appeared to give better B-

lymphocyte and myeloid cell chimerism irrespective of donor type, graft source 

and stem cell doses.  IL2RG/JAK3 SCID survivors who are free from 

immunoglobulin replacement therapy at the last follow up have a normal quality 

of life. 

 

 

 

  

Important findings: 

x Conditioned recipients have better thymopoiesis compared 

to unconditioned recipients in long-term post-HSCT. 

x Low toxicity MAC conditioning appeared to give better B-

lymphocyte and myeloid cell chimerism; irrespective of 

donor type, graft source and stem cell doses. 

x Freedom from immunoglobulin replacement therapy was 

associated with normal quality of life.  
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 Results - Long-term Outcome for IL7Rα SCID Post-HSCT 

This chapter presents the results on the long-term outcome for IL7Rα SCID 

patients post-transplantation. Due to the distinctive immune-phenotype, the IL7Rα 

cohort was analysed on its own. 

6.1 Cohort Characteristics 

A total of 18 patients were diagnosed with IL7Rα SCID, which was 15% of the 

Newcastle SCID cohort.  Fifteen patients out of the 18 (83%) were still alive at 

the last follow up in 2015.  Median age at the last follow up was 14 years (range 4 

– 27).   

Two patients did not receive conditioning chemotherapy pre-transplant [1 MSD 

and 1 MRD].  Donor type and conditioning regimen for all patients are shown in 

Table 6.1.  In relation to busulfan doses, 5 patients received busulfan 16mg/kg and 

6 patients received busulfan 8mg/kg.  Only one haploidentical recipient received a 

NMA regimen (consisting of cyclophosphamide 200mg/kg, anti-LFA1 0.8mg/kg).  

No patients received a RIC regimen.  Thirteen patients did not receive any 

serotherapy pre-transplant.  Two patients received campath 1H and one patient 

received rATG.  The majority of patients (12, 66.7%) received bone marrow as 

the graft source.  Two patients (11.1%) received PBSC and 4 (22.2%) received 

umbilical cord blood.  Table 6.2 summarises the parameters and cell dose for 

grafts received by patients in this cohort. 
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Table 6.1 Conditioning regimen, donor type and serotherapy for IL7Rα 

SCID patients. 

Conditioning MSD MRD MUD MMUD Haploidentical 

Unconditioned 1 1 0 0 0 

Low Toxicity 

MAC 

0 0 1 1 2 

MAC 0 0 1 1 9 

NMA 0 0 0 0 1 

Serotherapy      

No serotherapy 1 1 1 1 9 

Campath 1H 0 0 1 1 0 

rATG 0 0 0 0 1 

 

Table 6.2 Characteristics of graft received during first HSCT for IL7Rα 

SCID patients. 

Parameters Value 

Median (range) 

Patients’ weight 5 kg (range, 3.9 – 9.1) 

Graft volume 70 ml (range, 30 – 125). 

CD34+ cell 2.8 x 106/kg (range, 0.05 – 24.1). 

CD3+ cell 0.002 x 108/kg (range, 0.0002 – 1.1). 

CD19+ cell 1 x 107/kg (range, 0.0009 – 8.9). 
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6.2 Immediate Outcome (less than 2 years post-HSCT) 

A total of 18 patients underwent HSCT and 3 needed added interventions (second 

HSCT) (Table 6.3).  Seventeen out of 18 patients achieved engraftment at 1 

month post-transplantation.   

Table 6.3  Reasons, conditioning regimen and donor type for IL7Rα SCID 

with added intervention post-HSCT. 

Subject 

ID  

Reason for 

added 

intervention 

Conditioning/Donor 

type for 1st HSCT 

Conditioning/

Donor type 

for added 

intervention 

Status 

9 No 

engraftment 

after 120 

days 

 

NMA/ 

Haploidentical 

(father) 

Cyclophosphamide 

200mg/kg, Anti-

LFA1 

MAC/ 

Haploidentical 

(father) 

Died 

91 Loss of 

engraftment 

 

MAC/ 

Haploidentical 

(father) 

Unconditioned/ 

Haploidentical 

(father) 

Alive 

96 Poor immune 

reconstitution 

with 

bronchiectasi

s 

 

MAC/ 

Haploidentical 

(father) 

RIC/ 

Haploidentical 

(father) 

Alive 
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The median days taken for neutrophil recovery to more than 0.5 x 109/L was 21, 

range 13 – 60 days.  The median days taken for CD3+ lymphocyte recovery was 

significantly shorter in the unconditioned recipients compared to conditioned 

recipients, 18 days (range, 11 – 83) vs 102 days (range, 19 – 407); p = 0.001. 

Six out of the 18 patients developed Grade 1-II Acute GVHD.  No patients 

developed Grade III-IV Acute GVHD.  Four patients developed Grade I Acute 

GVHD [haploidentical & MAC recipients (3 patients), haploidentical & Low 

toxicity MAC recipient (1 patient)].  Two patients developed Grade II Acute 

GVHD [haploidentical & MAC recipient (1 patient) and MMUD & MAC 

recipient (1 patient)] (Figure 6.1).   

 

Figure 6.1  Numbers of patients with Acute GVHD (Grade I and II) after 

first HSCT according to donor type and conditioning regimens. 
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6.3 Survival Outcome 

Ten year survival for IL7Rα SCID was 83.3% (95% CI: 56.7 – 94.3%).  There 

was no significant difference in survival outcome when compared to other SCID 

genotypes, 71.6% (95% CI: 61.5 – 79.5%), p = 0.3 (Figure 6.2).  In the subgroup 

analysis, 10 year survival for unconditioned recipients was 100% compared to 

81.2% (95% CI: 52.4 – 93.5%); p = 0.52 of conditioned recipients (Figure 6.3).  

Three deaths occurred (TRM 16.7%), all during the 1st year post-transplantation.  

Causes of death were infections (2 patients, 1 was a busulfan 16mg/kg recipient 

and the other a NMA recipient) and veno-occlusive disease (1 patient, a busulfan 

16mg/kg recipient).  

Figure 6.2  Comparison of survival outcome between IL7Rα SCID and other 

SCID genotypes. 

 

 

  



93 
 

Figure 6.3  Comparison of survival outcome of unconditioned and 

conditioned recipients of IL7Rα SCID. 

 

 

6.4 Long-term Clinical Outcome 

6.4.1 Clinical Outcome 

Fifteen out of eighteen patients were alive at the last follow up.  A summary of 

on-going medical issues is given in Table 6.4.  Eleven patients (73%) had on-

going medical issues.  Fourteen out of 15 patients (93%) were able to stop 

immunoglobulin replacement therapy. Two patients developed bronchiectasis and 

another patient had chronic pulmonary disease with a major restrictive defect 

demonstrated via lung function tests.  Six other patients had normal lung function 

tests, including 3 patients with bronchiectasis.   

Five patients developed cutaneous warts and further analysis showed no 

significant difference of mean NK values at latest follow up, comparing between 

those with warts versus none (p = 0.40).   

Four patients experienced short stature (height ≤ 2 SD).  However, all four 

patients with short stature were aged less than 15 years old.  There was no 

significant relationship between those with short stature and conditioning regimen 

received; Fisher exact test, p = 0.54. 
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Table 6.4 Long-term clinical outcome of IL7Rα SCID post-transplant. 

Clinical Outcome  % (n/N) 

10 years survival  83.3% (15/18) 

On-going Medical Issues 73% (11/15) 

On-going IVIG Replacement Therapy 7% (1/15) 

Bronchiectasis 13% (2/15) 

Short Stature 27% (4/15)  

Chronic Pulmonary Disease  14% (1/15) 

Warts 33% (5/15) 

Normal Lung Function 
85% (6/7)  

1 patient had major restrictive defect 

Normal Endocrine 100% (15/15)  

Normal Hearing 100% (15/15)  

Normal Cardiovascular 100% (15/15)  

Normal Renal System 100% (15/15)  

Normal Gastro-intestinal System 100% (15/15)  

 

6.4.2 Immunoglobulin replacement therapy at last follow up 

IL7Rα SCID survivors post-HSCT have the highest proportion of patients free 

from immunoglobulin replacement therapy; in comparison to other SCID 

genotypes (IL7Rα 93%, IL2RG/JAK3 SCID (55%), RAG 1 and RAG 2 (77%), 

Artemis SCID (57%), ADA SCID (81%).  All low toxicity MAC recipients were 

able to discontinue the immunoglobulin replacement therapy irrespective of donor 

type.  Despite mixed B-lymphocyte donor chimerism, all MAC8 (busulfan 

8mg/kg) recipients had discontinued immunoglobulin replacement therapy after 2 

years post-HSCT. Only one IL7Rα patient required ongoing immunoglobulin 
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replacement therapy (1 out of 15 patients).  She received a MUD transplant with 

MAC and despite good B-lymphocyte function, immunoglobulin replacement 

therapy was restarted after a diagnosis of chronic pulmonary disease had been 

made.     

 
6.5 Chimerism at last follow up 

 

Spearman's correlation analysis was used to assess the degree of correlation 

between B-lymphocyte donor and myeloid donor chimerism.  There was a highly 

positive and significant correlation between both parameters, rho = 0.9452, p < 

0.0001 (Figure 6.5). 

Figure 6.4 Scatter plot of donor B-lymphocyte chimerism and myeloid donor 

chimerism at last follow up. 

 

 

  



96 
 

 

 

Figure 6.5  Myeloid and B-lymphocyte donor chimerism at last follow up 

according to donor type and conditioning regimen. 

 

Figure 6.6 illustrates the distribution of myeloid donor chimerism and B-lymphocyte donor 

chimerism at the last follow up according to the donor type and conditioning regimen received.  

The myeloid chimerism and B-lymphocyte chimerism tend to mirror each other as observed in the 

IL2RG/JAK3 SCID cohort 
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All low toxicity MAC recipients had myeloid and B-lymphocyte donor chimerism 

of more than 80%.  Haploidentical MAC16 (busulfan 16mg/kg) recipients 

demonstrated better donor B-lymphocyte and myeloid donor chimerism compared 

to haploidentical MAC8 (busulfan 8 mg/kg) recipients.  Unconditioned and 

haploidentical MAC8 recipients had B-lymphocyte and myeloid donor cell 

chimerism of less than 20%.   

 

The variables included in the final model explained 68.3% variation of myeloid 

donor chimerism at the last follow up and there was no significant predictive 

association between the myeloid donor chimerism percentage and independent 

factors such as stem cell doses, donor types, conditioning regimens and graft 

sources (Table 6.5).  

 

Table 6.5 Results of multivariable linear regression analysis of the myeloid 

donor chimerism percentage at last follow up. 

Myeloid donor %  Coefficient 95% CI p value 

CD34 cell dose -1.9 -43.8 – 39.9 0.86 

Mononucleated cell 

dose 
11.2 -60.9 – 83.4 0.57 

Donor type 

MSD 1.0 Reference  

MUD 136.1 -440.0 – 712.2 0.41 

MMUD 124.9 -590.0 – 840.0 0.53 

Haploidentical 95.5 -510.8 – 701.9 0.56 

Conditioning regimen 

Unconditioned 1.0 Reference  

Low Toxicity MAC -14.8 -366.4 – 336.8 0.87 

MAC8 -14.2 -365.2 – 336.7 0.87 

Graft Source 

BM 1.0 Reference  

PBSC 33.0 -653.5 – 719.5 0.85 

R2 = 68.3% 
CI indicates confidence interval 
p value < 0.05 was considered significant 
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6.6 Long-term immune reconstitution post-HSCT 

6.6.1 Longitudinal analysis of CD3+ lymphocyte reconstitution post-HSCT 

There was sustained CD3+ lymphocyte output seen post-HSCT for both groups.  

There was no significant difference in the overall trend of circulating CD3+ 

lymphocyte numbers between conditioned versus unconditioned recipients, p = 

0.92 at each time point post-transplant (Figure 6.6 and Table 6.6). 

Figure 6.6  Longitudinal analysis of CD3+ lymphocyte output for IL7Rα 

SCID patients post-HSCT according to conditioned and unconditioned 

recipients. 

 

Table 6.6  Multi-level mixed effect model analysis of conditioning on CD3+ 

lymphocyte output with time post-HSCT for IL7Rα SCID patients. 

Time (Years) Contrast SE p value 

0 60.4 60.5.6 0.92 

0.5 141.4 544.1 0.79 

1 222.5 612.9 0.71 

2 303.5 778.3 0.69 

5 384.5 993.1 0.69 

10 465.5 1231.7 0.70 

15 546.57 1482.6 0.71 

Overall trend   0.92 
SE indicates standard error. 
p value < 0.05 is considered significant. 
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6.6.2 Longitudinal analysis of CD4+ Naïve lymphocyte reconstitution post-

HSCT 

The data for CD4+ Naïve lymphocyte was only available up until 10 years post-

HSCT for comparison between conditioned and unconditioned recipients.  The 

overall trend showed that the mean for CD4+ naïve lymphocyte output was non-

significantly higher in conditioned recipients compared to unconditioned 

recipients, p = 0.45 (Figure 6.7 and Table 6.7).  Comparison at each time point 

post-HSCT revealed a non-significantly higher mean CD4+ Naïve lymphocyte 

output in conditioned compared to unconditioned recipients.  The unconditioned 

recipients’ mean CD4+ Naïve lymphocyte number was below 500 cells/µl from 1 

year post-HSCT till 10 years post-HSCT.   

Figure 6.7  Longitudinal analysis of CD4+ Naive lymphocyte output for 

IL7Rα SCID patients according to unconditioned versus conditioned 

recipients. 

 

Table 6.7  Multi-level mixed effect model analysis of conditioning on CD4+ 

Naive lymphocyte output with time post-HSCT for IL7Rα SCID patients. 

Time (Years) Contrast SE p value 

0.5 -530.5 570.8 0.35 

1 -338.1 437.9 0.44 

2 46.5 327.9 0.65 

5 238.8 270.1 0.86 

10 431.2 296.9 0.42 

Overall trend   0.45 
SE indicates standard error.  p value < 0.05 is considered significant. 
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6.6.3 Longitudinal analysis of CD19+ lymphocyte reconstitution post-HSCT 

There was a sustained CD19+ lymphocyte output with time post-HSCT.  The 

overall trend showed that conditioned recipients had a non-significantly higher 

mean CD19+ lymphocyte output with time compared to unconditioned recipients, 

p = 0.75 (Figure 6.8 and Table 6.8).   

Figure 6.8  Longitudinal analysis of CD19+ lymphocyte output for IL7Rα 

SCID patients according to unconditioned versus conditioned recipients. 

 

 

Table 6.8  Multi-level mixed effect model analysis of conditioning on CD19+ 

lymphocyte output for IL7Rα SCID patients according to unconditioned 

versus conditioned recipients. 

Time (Years) Contrast SE p value 

0 215.3 368.0 0.55 

0.5 214.6 319.7 0.50 

1 213.9 289.7 0.46 

2 213.1 283.9 0.45 

5 212.4 303.7 0.48 

10 211.7 344.7 0.53 

15 210.9 400.4 0.59 

Overall trend   0.75 
SE indicates standard error. 
p value < 0.05 is considered significant 
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6.6.4 Longitudinal analysis of NK cell reconstitution post-HSCT 

The mean NK cell output was significantly higher in the unconditioned recipients 

in the early time points after the transplant; 0.5 years (p = 0.0001), 1 year post-

HSCT (p = 0.0001), 2 years post-HSCT (p = 0.0002) and 5 years post-HSCT (p = 

0.007) (Table 6.9).  The unconditioned recipients demonstrated a significantly 

higher overall number of NK cells with time post-HSCT, p = 0.0004 (Figure 6.9 

and Table 6.9).  

Figure 6.9  Longitudinal analysis of NK cell output for IL7Rα SCID patients 

according to unconditioned versus conditioned recipient

 

Table 6.9  Multi-level mixed effect model analysis of conditioning on NK cell 

output with time post-HSCT for IL7Rα SCID patients. 

Time (Years) Contrast SE p value 

0.5 -2462.0 646.2 0.0001 

1 -1971.1 500.3 0.0001 

2 -1480.3 396.0 0.0002 

5 -989.4 370.2 0.007 

10 -498.6 437.2 0.25 

15 -7.7 564.8 0.98 

Overall trend   0.0004 
SE indicates standard error. 
p value < 0.05 is considered significant. 
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6.7 Quality of Life post-HSCT 

A total of 11 out of 15 patients and families (73%) responded to the PedsQL 

questionnaires.  The median age of responders was 15 years (range, 6 – 27 years).  

All results were compared to published UK normal values using one sample T-test 

[112].   Both parents and patients reported no significant difference in the mean 

scores of all domains, in comparison to UK normal values (Table 6.10).  

Table 6.10  Mean PedsQL Scores for IL7Rα SCID patient post-HSCT 

(Parent and Children's Report) 

 UK Norms[112] 

Mean 

IL7Rα SCID 

Mean 

p value 

Parent Report  N = 6  

Total 84.6 68.3 0.07 

Psychosocial 82.2 65.0 0.07 

Physical 89.1 74.5 0.11 

Emotional  78.3 62.5 0.21 

Social 86.8 78.3 0.52 

School 81.5 67.0 0.19 

Child Report  N = 9  

Total 83.9 76.7 0.33 

Psychosocial 81.8 74.3 0.21 

Physical 88.5 81.3 0.22 

Emotional  78.5 66.7 0.29 

Social 87.7 85.6 0.73 

School 78.9 70.6 0.24 
Bold indicates p value < 0.05 and is considered significant. 
All comparisons were made to UK published normal value using one sample T-test. 
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6.8 Summary of IL7Rα SCID long-term outcome post-transplantation 

IL7Rα SCID patients had good long-term survival, especially the 

unconditioned recipients with a survival rate of 100% at 10 years post-HSCT.  

IL7Rα SCID survivors demonstrated the highest percentage of patients free 

from immunoglobulin replacement therapy compared to other SCID 

genotypes.  Normal quality of life was seen in IL7Rα SCID patients’ post-

HSCT.  Warts did occur in this cohort.  The long-term immune-reconstitution 

of CD4+ Naïve and CD19+ lymphocytes was non-significantly higher in 

conditioned recipients compared to unconditioned recipients, except for 

longitudinal NK cell output. 

 

 

 

 

 

 

 

  

Important findings: 

x Incidence of viral cutaneous wart was present in this 

cohort. 

x IL7Rα SCID survivors had the highest percentage of 

freedom from immunoglobulin replacement therapy. 

x Both parents and children reported normal quality of life. 
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 Long-term Outcome for Artemis and RAG 1/2 SCID Post-

HSCT 

This chapter presents the results of the long-term outcome post-transplantation for 

patients with Artemis and RAG 1/2 SCID in Newcastle.  Both SCID genotypes 

were presented and compared directly with each other as both have a T- B- NK+ 

SCID immune-phenotype.  However, the main differentiating feature is that 

Artemis SCID patients exhibited radiation sensitivity, which was not found in 

RAG 1/2 SCID patients [54].  This may explain why Artemis SCID patients 

exhibit more long-term effects compared to RAG 1/2 SCID. 

 

7.1 Cohort Characteristics 

A total of 21 patients with a diagnosis of Artemis SCID (8 patients) and RAG 1/2 

SCID (13 patients) had undergone 28 HSCT in the Newcastle SCID cohort.  The 

median age at the last follow up in 2015 was 10 years, range 2 – 18.    

The unconditioned recipients with Artemis and RAG 1/2 SCID received the graft 

from various donor types [MSD (2 patients), MRD (1 patient), haploidentical (2 

patients)]; in comparison to other SCID genotypes in which all unconditioned 

recipients received MSD donor type.  Almost all MAC recipients received 

haploidentical donors.  Seven patients received low toxicity MAC conditioning. 

The majority of patients (57%) did not receive any serotherapy before their 

transplant.  Further details on conditioning regimen, donor type and serotherapy 

are listed in Table 7.1.   Of note, all unconditioned recipients, except for 2 MSD 

needed added HSCT due to poor engraftment.  Bone marrow was the main graft 

source in the cohort (16 patients).  Three patients received umbilical cord blood 

and two patients had PBSC.  Further comparison of characteristics of the 

transplant and graft dose between Artemis and RAG1/2 SCID are summarized in 

Table 7.2. 
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Table 7.1 Conditioning regimen, donor type and serotherapy for Artemis and 

RAG 1/2 SCID patients. 

Conditioning MSD MRD MUD MMUD Haploidentical 

Unconditioned 2 1 0 0 2 

RIC 0 2 0 0 0 

Low Toxicity 

MAC 

2 2 1 1 1 

MAC 0 0 0 1 6 

Serotherapy      

No serotherapy 4 1 0 1 6 

Campath 1H 0 4 1 1 0 

Campath 1G 0 0 0 0 2 

rATG 0 0 0 0 1 
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Table 7.2  Comparison of HSCT parameters and graft dose between Artemis 

and RAG1/2 SCID during first HSCT. 

Parameters Artemis RAG1/2 

Value 

Median (range) 

Value 

Median (range) 

Patients’ weight 5.4 kg (2 – 6.9) 5 kg (3.8 – 12) 

Age at first HSCT 14 weeks (4 – 32) 25 weeks (4 – 84) 

Graft volume 55ml (20 – 390) 100ml (30 – 234) 

Mononucleated cell 3.5 x 108/kg  

(0.14 – 33) 

5.8 x 108/kg  

(0.22 – 17.2) 

CD34+ cell 4 x 106/kg  

(0.16 – 15.2) 

5.7 x 106/kg  

(0.17 – 20.0) 

CD3+ cell 0.01 x 108/kg  

(0.0001 – 3.1) 

0.93 x 108/kg 

(0.00002 – 7.6) 

CD19+ cell 0.6 x 107/kg  

(0.28 – 1.4).    

3 x 107/kg  

(0.0006 – 60).    

Data presented as median due to not normally distributed. 
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7.2 Immediate Outcome (within two years post-HSCT) 

The median number of days taken for neutrophil recovery of more than 0.5 x 

109/L was 20 days, (range 10 – 35) for Artemis and RAG 1/2 SCID conditioned 

recipients.  All unconditioned recipients of Artemis and RAG 1/2 SCID never had 

neutrophils below 0.5 x 109/L.  A median test was performed to compare days 

taken for neutrophil recovery to more than 0.5 x 109/L between conditioned 

Artemis and RAG 1/2 SCID recipients as the results were not normally 

distributed.  There was no significant difference in median days for neutrophil 

recovery between conditioned RAG 1/2 SCID recipients and conditioned Artemis 

SCID recipients; 16 days (range, 10 – 24) vs. 23 days (range, 15 – 35), p = 0.21. 

The median number of days taken for CD3+ lymphocyte recovery to more than 

200 cells/µl was 47 days (range, 11 – 168) for all Artemis and RAG 1/2 SCID 

post-HSCT.  However, there was a significant difference in median days for 

CD3+ lymphocyte recovery in unconditioned and conditioned recipients of 

Artemis and RAG 1/2 SCID recipients; 22 days (range, 11 – 39) vs. 61 days 

(range, 25 - 168), p = 0.03. 

Eight out of 21 patients from this cohort developed acute GVHD after their first 

transplantation.  Most had acute GVHD Grade I –II (6 patients, 75%) and only 

two patients had acute GVHD Grade III (an Artemis SCID patient who received  

MUD/low toxicity MAC HSCT and an unconditioned/haploidentical RAG SCID 

patient).    More acute GVHD was seen in RAG 1/2 SCID patients (5 out of 13, 

55%) than Artemis (3 out of 8, 43%).  All Artemis patients with acute GVHD 

were conditioned recipients [low toxicity MAC/MUD (1), MAC/MMUD (1), 

MAC/Haploidentical (1)].  Most of RAG 1/2 SCID patients with acute GVHD 

were conditioned recipients [RIC/MRD (1), low toxicity/MRD (1), low 

toxicity/MMUD (1), MAC/haploidentical (1)] and one 

unconditioned/haploidentical recipient.  Multiple logistic regression analysis did 

not reveal any significant association between the incidence of acute GVHD and 

conditioning regimen, donor type and SCID genotype (Artemis and RAG 1/2) 

(Table 7.3).   
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Table 7.3  Result of multiple logistic regression analysis of different 

independent factors on the incidence of acute GVHD post-HSCT. 

Acute GVHD Odd Ratio 95% Confidence 

Interval 

p-value 

Artemis and RAG 1/2 0.71 0.09 – 5.27 0.74 

Conditioning regimen 0.81 0.32 – 2.05 0.66 

Donor Group 0.80 0.43 – 1.50 0.50 

 

7.3 Survival Outcome 

Five deaths occurred by the time of the last follow-up in January 2015.  Causes of 

early death (less than 2 years post-HSCT) were infection (1 patient), veno-

occlusive disease (1 patient) and severe pneumonitis (1 patient).  There were 2 

deaths after two years post-HSCT both in RAG patients.  The causes of late death 

were Epstein-Barr virus infection of the central nervous system (1 patient), 

occurred 7 years post-HSCT and another patient developed pre-B Acute 

Lymphoblastic Leukemia (ALL) in recipient T-lymphocytes; and died from sepsis 

during chemotherapy 3 years post-HSCT.  

The overall 10 year survival for Artemis and RAG 1/2 SCID patients was 73.3% 

(95% CI: 46.6 – 88.1%) with a TRM of 21.5% (excluding the ALL death).   

However, when the SCID genotype was analysed individually, the 10 year 

survival outcome of Artemis, 87.5% (95% CI: 38.7 – 98.1%) was non-

significantly higher compared to RAG 1/2 SCID, 64.4% (95% CI: 29.7 – 85.2%) 

and other SCID genotypes, 73.4% (95% CI: 63.5 – 81.1%); p = 0.64 (Figure 7.1).   
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Figure 7.1  Comparison of survival outcome between Artemis & RAG 1/2 

SCID and other SCID genotypes. 
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Further subgroup comparisons of survival outcome between unconditioned and 

conditioned recipients of both genotypes were undertaken (Figure 7.2).  The 10 

year survival outcome of unconditioned Artemis & RAG 1/2 SCID was 75.0% 

(95% CI: 12.7 – 96.1%) and for conditioned recipients of Artemis & RAG 1/2 

SCID was 73.1 % (95% CI: 42.6 – 89.1%) and the difference was not statistically 

significant; (log rank test analysis, p = 0.67). 

 

Figure 7.2  Comparison of survival outcome among the unconditioned and 

conditioned recipients of Artemis & RAG 1/2 SCID. 
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7.4 Long-term Clinical Outcome 

7.4.1 Clinical Outcome 

Six out of 7 Artemis patients (85%) had on-going medical issues at the last follow 

up in January 2015, compared to 5 out of 9 RAG 1/2 SCID patients (55%).  With 

regards to preparative regimen, all conditioned Artemis SCID recipients 

experienced on-going medical issues compared to 4 out of 7 conditioned RAG 

SCID patients.  The number of unconditioned Artemis and RAG SCID are too 

small for comparisons; 1 out of 2 unconditioned recipients have on going medical 

issues for both genotypes. All the long-term clinical outcomes for both Artemis 

and RAG 1/2 SCID post-HSCT are detailed in Table 7.4.   

 

Major clinical issues in Artemis patients post-HSCT were dental issues (3 

patients, 43%) [manifested as damaged dental enamel (1), widely spaced teeth (1), 

edentulous (1) and all three patients received busulfan], short stature (3 patients, 

43%), post- transplant autoimmune hemolytic anemia (3 patients, 43%), and 

dermatology issues (3 patients, 43%) [Vitiligo (1), psoriasis (1), eczema (1)].  

Other medical issues were hearing loss (1 patient), autoimmune hypothyroidism 

(1 patient) and chronic renal failure (1 patient who received MMUD, busulfan 

8mg/kg).  

 

Only 55% of RAG 1/2 SCID survivors had on-going medical issues at the last 

follow-up in January 2015.  These were dermatology issues (3 patients, 33%) 

[Vitiligo (2), Rash (1)], immunoglobulin replacement therapy (2 patients, 22%), 

short stature (1 patient, 11%), post- transplant autoimmune hemolytic anemia (1 

patient, 11%) and autoimmune hypothyroidism (1 patient, 11%).  No RAG 1/2 

SCID survivors had dental issues or hearing loss.  Lung function testing was not 

available for this group of patients.    

 

In relation to short stature, four patients had a height centile at or below 2 SD 

[conditioned RAG 1/2 (1 patient), unconditioned Artemis (1 patient)  and 

conditioned Artemis (2 patients)]. 
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Table 7.4 Long-term clinical outcome of Artemis and RAG 1/2 SCID post-

transplant. 

Clinical Outcome Artemis 

% (n/N) 

RAG 1/2 

% (n/N) 

10 years survival 87.5% (1/8) 64.4% (4/13) 

On-going medical issues  85% (6/7)  55% (5/9) 

On-going Immunoglobulin 

replacement therapy 

43% (3/7)  23% (2/9) 

Hearing loss 14% (1/7)  0% (0/9) 

Dental issues 43% (3/7)  0% (0/9) 

Short stature 43% (3/7)  11% (1/9) 

Chronic renal failure  14% (1/7)  0% (0/9) 

Autoimmune hemolytic anemia  43% (3/7)  11% (1/9)  

Autoimmune hypothyroidism 14% (1/7)  11% (1/9)  

Dermatology issues 43% (3/7)  33% (3/9) 

Lung function test Not available Not available 

No Cardiovascular Issues 100% (7/7)  100% (9/9)  

No Neurocognitive Issues  100% (7/7)  100% (9/9)  

No Respiratory Issues 100% (7/7)  100% (9/9)  

 
 

7.4.2 Immunoglobulin replacement therapy at last follow up 

RAG 1/2 SCID survivors had a higher proportion of patients free from 

immunoglobulin replacement therapy compared to Artemis, 77% and 57%, 

respectively, p = 0.36.  Considering both Artemis and RAG 1/2 SCID, almost all 

patients with full donor and mixed donor B-lymphocyte chimerism were able to 

discontinue immunoglobulin replacement, except for 2 patients with 100% donor 

B-lymphocyte chimerism still needed immunoglobulin replacement As expected, 

two unconditioned MSD recipients with poor donor B-lymphocyte chimerism (< 

10%) still receive on-going immunoglobulin therapy.  However, 2 conditioned 

patients with 100% donor B-lymphocyte Chimerism still needed on-going 

immunoglobulin replacement.     
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More conditioned Artemis and RAG 1/2 SCID recipients were able to be free 

from immunoglobulin replacement therapy compared to unconditioned recipients, 

(conditioned: 10 out of 12 patients, unconditioned: 1 out of 4 patients, Fisher 

exact test, p = 0.06).    

7.5 Chimerism at last follow-up 

The myeloid and B-lymphocyte donor chimerism values were available for 15 out 

of 16 Artemis and RAG 1/2 SCID patients post-HSCT.   B-lymphocyte and 

myeloid donor chimerism mirrored each other in all donor types and conditioning 

regimens; except for haploidentical/MAC recipients (Figure 7.3).  Low toxicity 

MAC recipients demonstrated better B/myeloid donor chimerism across all donor 

types.  Poor B/myeloid donor chimerism percentage (<10%) was seen in 

unconditioned MSD recipients.  

Figure 7.3  A scatter plot of myeloid and B-lymphocyte donor chimerism (at 

last follow up) according to donor type and conditioning regimen. 
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Spearman correlation analysis showed a high degree of positive correlation 

between B-lymphocyte and myeloid donor chimerism, rho 0.9070, p < 0.0001 

(Figure 7.4).   

Figure 7.4 Scatter plot of B-lymphocyte donor chimerism and myeloid donor 

chimerism at last follow up for Artemis and RAG 1/2 SCID patients. 
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There was no significant predictive association between myeloid donor chimerism 

(at the last follow up) and independent factors such as; graft doses, donor type, 

conditioning regimen and graft source (Table 7.5).  The variables included in the 

final model explained 84.5% variation of myeloid donor chimerism. 

Table 7.5 Results of multivariable linear regression analysis of the myeloid 

donor chimerism percentage (at last follow up). 

Myeloid donor %  Coefficient 95% CI p-value 

CD34 cell dose 1.1 -13.7 – 15.9 0.82 

Mononucleated cell 

dose 
-2.2 -30.5 – 26.0 0.81 

SCID Genotypes 

Artemis 1.0 Reference  

RAG 1/2 11.8 -149.1 – 172.7 0.83 

Donor Types 

MSD 1.0 Reference  

MRD 75.7 -84.7 – 236.1 0.23 

MUD 120.1 -177.4 – 417.7 0.28 

MMUD 108.2 -178.1 – 394.6 0.31 

Haploidentical 11.8 -174.7 – 198.5 0.85 

Conditioning Regimen 

Unconditioned 1.0 Reference  

Low Toxicity MAC -17.4 -253.2 – 218.3 0.82 

RIC -87.0 -313.6 – 139.6 0.30 

MAC -7.1 -243.0 – 228.6 0.92 

Graft Source 

BM 1.0 Reference  

PBSC 52.3 -169.9 – 274.5 0.95 

R2 = 84.5% 
CI indicates confidence interval 
p value < 0.05 was considered significant 
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7.6 Long-term immune reconstitution post-HSCT 

7.6.1 Longitudinal analysis of CD3+ lymphocyte reconstitution post-HSCT 

Longitudinal analysis of all immune reconstitution parameters was analysed 

collectively for both Artemis and RAG 1/2 SCID patients due to the small sample 

size.  A comparison of trend changes with time was performed between 

conditioned and unconditioned recipients.   

In the initial first years post-transplant, unconditioned recipients had a higher 

CD3+ lymphocyte count compared to conditioned recipients, and it was 

significant at 3 time points (baseline, p = 0.001, 6 months post-transplant, p = 

0.003 and 1 year post-transplant, p = 0.02) (Figure 7.5 and Table 7.6).  However, 

after 5 years post-transplant, there was no significant difference in the CD3+ 

lymphocyte count between both groups ( 5 years post-transplant, p = 0.76 and 10 

years post-transplant, p = 0.71).  Multi-level mixed effect model analysis 

demonstrated a significant difference in overall trend changes between both 

groups, (p = 0.004). 

Figure 7.5 Longitudinal analysis of CD3+ lymphocyte output for Artemis and 

RAG 1/2 SCID patients post-HSCT according to conditioned and 

unconditioned recipients. 
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Table 7.6  Multi-level mixed effect model analysis of conditioning on CD3+ 

lymphocyte output with time post-HSCT for ARTEMIS and RAG 1/2 SCID 

patients. 

Time (Years) Contrast SE p value 

0 -3501.9 1077.8 0.001 

0.5 -2706.6 922.7 0.003 

1 -1911.3 866.0 0.02 

2 -111.6 925.8 0.22 

5 -320.7 1083.1 0.76 

10 474.6 1303.1 0.71 

Overall trend   0.004 
SE indicates standard error. 
p value < 0.05 is considered significant. 
 

 

 

7.6.2 Longitudinal analysis of CD4+ Naïve lymphocyte reconstitution post-

HSCT 

Conditioned recipients had significantly higher CD4+ naïve lymphocyte numbers 

than unconditioned recipients across all time points post-transplant except at 10 

years post-transplant (Figure 7.6 and Table 7.7).  The conditioned recipients had a 

significantly higher overall trend of CD4+ naïve lymphocyte compared to 

unconditioned recipients, p = 0.04.  The CD4+ naïve lymphocyte trend remained 

low throughout time post-transplant for unconditioned recipients at a level of less 

than 200 cells/μl.      
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Figure 7.6  Longitudinal analysis of CD4+ Naive lymphocyte output for 

Artemis & RAG 1/2 SCID patients according to unconditioned versus 

conditioned recipients. 

 

 

 

Table 7.7  Multi-level mixed effect model analysis of conditioning on CD4+ 

Naive lymphocyte output with time post-HSCT for Artemis and RAG 1/2 

SCID patients. 

Time Contrast SE p-value 

0.5 524.7 226.7 0.02 

1 482.4 192.1 0.01 

2 440.1 180.3 0.01 

5 397.8 195.5 0.04 

10 355.5 232.4 0.12 

Overall trend   0.04 
SE indicates standard error. 
p value < 0.05 is considered significant. 
 

  

0 5 10
0

200

400

600

800

Years Post-HSCT

M
ea

n 
C

D
4+

 N
ai

ve
 (c

ell
s/µ

l) Unconditioned
Conditioned

* * * *

Number at risk
Uncondititoned
Conditioned

3 3 3
8 6 5

* indicates p < 0.05



119 
 

7.6.3 Longitudinal analysis of CD19+ lymphocyte reconstitution post-HSCT 

The conditioned recipients had non-significantly higher CD19+ lymphocyte 

counts with time post-transplant compared to unconditioned recipients, p = 0.16 

(Figure 7.7 and Table 7.8).   

Figure 7.7  Longitudinal analysis of CD19+ lymphocyte output for Artemis 

and RAG 1/2 SCID patients according to unconditioned versus conditioned 

recipients. 

 

 
Table 7.8  Multi-level mixed effect model analysis of conditioning on CD19+ 

lymphocyte output for Artemis and RAG 1/2 SCID patients according to 

unconditioned versus conditioned recipients. 

Time Contrast SE p-value 

0 76.6 64.3 0.23 

0.5 110.5 60.9 0.06 

1 144.4 78.0 0.06 

2 178.2 106.0 0.09 

5 212.1 138.5 0.12 

10 246.0 173.0 0.15 

15 210.9 400.4 0.59 

Overall trend   0.16 
SE indicates standard error. 
p value < 0.05 is considered significant. 
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7.6.4 Longitudinal analysis of NK cell reconstitution post-HSCT 

The NK cell level of conditioned recipients remained static with time post-

transplant.  During the first year after transplant, unconditioned recipients had 

significantly higher NK cells compared to conditioned recipients.  The NK cells 

further decreased in value resulting in no significant difference between both 

groups from the second year post-transplant onwards. Regardless, there was a 

significant difference observed in the overall trend of NK cells between groups, p 

= 0.003 (Figure 7.8 and Table 7.9).   

Figure 7.8  Longitudinal analysis of NK cell output for Artemis and RAG 1/2 

SCID patients according to unconditioned versus conditioned recipients. 

 

Table 7.9  Multi-level mixed effect model analysis of conditioning on NK cell 

output with time post-HSCT for Artemis and RAG 1/2 SCID patients. 

Time Contrast SE p-value 

0 -1046.4 312.7 0.0008 

0.5 -762.2 234.6 0.001 

1 -478.0 195.4 0.01 

2 -193.8 217.3 0.37 

5 90.2 286.5 0.75 

10 374.4 378.0 0.32 

Overall trend   0.003 
SE indicates standard error. p value < 0.05 is considered significant. 
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7.7 Quality of Life post-HSCT 

Eleven out of sixteen (68%) Artemis and RAG 1/2 SCID patients and families 

answered the PedsQL questionnaires.  The median duration of post-transplant 

follow-up for responders was 10 years, (range 2 – 18).  A comparison of all mean 

scores was performed against mean scores of published normal values in the UK 

[112]. 

Parents of Artemis and RAG 1/2 SCID patients reported no significant difference 

in mean scores in all 5 domains in comparison to published normal values in the 

UK.  The mean scores for parent reports were as follows: Total domain (72.4, p = 

0.15), psychosocial domain (70.0, p = 0.18), physical domain (76.7, p = 0.17), 

emotional domain (70.7, p = 0.40), social domain (81.4, p = 0.46), school domain 

(67.5, p = 0.08) (Table 7.10).  There was no significant difference in the PedsQL 

mean scores of domains for Artemis and RAG 1/2 SCID patients, except for the 

school domain (62.5, p = 0.03).   

Further subgroup comparison was performed between those with on-going 

medical issues and those without on-going medical issues, against published 

normal values in the UK.  Both parent and child reports of Artemis and RAG 1/2 

SCID patients without on-going medical issues reported no significant difference 

in all domains compared to the UK’s normal values.  Artemis and RAG 1/2 SCID 

patients with on-going medical issues reported significantly lower mean scores in 

2 domains; physical (72.3, p = 0.04) and school (60.8, p = 0.03).  Parents of those 

with on-going medical issues reported no significant difference in mean scores.     
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Table 7.10  Mean PedsQL Scores for Artemis and RAG 1/2 SCID patients 

post-HSCT (Parent and Child Report) 

 UK 

Norms[112] 

Mean 

Artemis & 

RAG 1/2  

SCID 

Mean 

(p-value) 

On-going 

medical 

issues 

Mean 

(p-value) 

No on-

going 

medical 

issues  

Mean  

(p-value) 

Parent Report  N = 7 N = 5 N = 2 

Total 84.6 72.4 (0.15) 70.0 (0.20) 78.2 (0.74) 

Psychosocial 82.2 70.0 (0.18) 68.6 (0.26) 73.3 (0.68) 

Physical 89.1 76.7 (0.17) 72.5 (0.17) 87.5 (0.91) 

Emotional  78.3 70.7 (0.40) 69.0 (0.37) 75.0 (0.91) 

Social 86.8 81.4 (0.46) 82.0 (0.66) 80.0 (0.94) 

School 81.5 67.5 (0.08) 68.7 (0.40) 65.0 (0.22) 

Child Report  N = 9 N = 6 N = 3 

Total 83.9 73.0 (0.13) 71.3 (0.13) 76.3 (0.68) 

Psychosocial 81.8 73.5 (0.20) 71.9 (0.21) 76.6 (0.73) 

Physical 88.5 73.6 (0.07) 72.3 (0.04) 76.0 (0.61) 

Emotional  78.5 78.6 (0.98) 77.5 (0.90) 80.8 (0.87) 

Social 87.7 79.4 (0.31) 77.5 (0.31) 83.3 (0.81) 

School 78.9 62.5 (0.03) 60.8 (0.03) 66.1 (0.18) 

Bold indicates p value < 0.05 and considered significant 
All comparisons were made to UK published noral value using one sample T-test. 
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7.8 Summary of Artemis and RAG 1/2 SCID long-term outcome post-

transplantation 

Following is the summary of long-term outcome for Artemis and RAG 1/2 SCID 

patients post-transplant.  CD3+ lymphocyte post-transplant recoveries were 

significantly shorter in unconditioned recipients compared to conditioned Artemis 

and RAG 1/2 SCID patients.  Acute GVHD was seen more in RAG 1/2 SCID (5, 

55%) than Artemis (3, 43%) and most were mild acute GVHD Grade I – II (75%). 

No significant difference in 10 year survival between Artemis, RAG 1/2 SCID 

and other SCID genotypes was identified.   

Artemis survivors experienced more on-going medical issues than RAG 1/2 

SCID, 85% and 55%, respectively.  The main medical issues seen in Artemis were 

dental issues (3 patients, 43%), short stature (3 patients, 43%), post- transplant 

autoimmune hemolytic anemia (3 patients, 43%), and dermatology issues (3 

patients, 43%).  Chronic renal failure was diagnosed in 1 patient who received 

MMUD and busulfan 8mg/kg.  The main medical issues seen in RAG 1/2 SCID 

were dermatology issues (3 patients, 33%), immunoglobulin replacement therapy 

(2 patients, 22%), short stature (1 patient, 11%), post- transplant autoimmune 

hemolytic anemia (1 patient, 11%) and autoimmune hypothyroidism (1 patient, 

11%).  More conditioned Artemis and RAG 1/2 SCID recipients were able to be 

free from immunoglobulin replacement therapy compared to unconditioned 

recipients, (conditioned: 10 out of 12 patients, unconditioned: 1 out of 4 patients, 

Fisher exact test, p = 0.06).    

Considering long-term immune reconstitution for both Artemis and RAG 1/2 

SCID; B-lymphocyte and myeloid donor chimerism mirrored each other in all 

donor types and conditioning regimens; except for haploidentical/MAC recipients.  

Low toxicity MAC recipients demonstrated better B/myeloid donor chimerism 

across all donor types.  Poor B/myeloid donor chimerism percentage (<10%) was 

seen in Unconditioned MSD recipients.  There was sustained output for CD3+ 

lymphocytes, CD19+ lymphocytes and NK cells irrespective of conditioning 

regimen.  CD4+ Naïve reconstitution was significantly better in conditioned 

Artemis and RAG 1/2 SCID recipients.  CD4+ Naïve lymphocyte output of 
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unconditioned recipients remained < 500 cells/l throughout all time points post-

transplantation. 

Both parent and child reports of patients with Artemis and RAG 1/2 SCID without 

on-going medical issues reported a normal quality of life. 

 

 

  

Important findings: 

x Artemis survivors experienced more on-going medical issues than 

RAG 1/2 SCID, 85% and 55%, respectively.   

 

x Conditioned Artemis and RAG 1/2 SCID recipients had better B-

lymphocyte chimerism, CD4+ naïve/CD19+ lymphocyte 

reconstitution and were able to be free from immunoglobulin 

replacement therapy compared to unconditioned recipients, but 

conditioning causes more on-going medical issues in Artemis 

SCID patients at latest follow up during post-HSCT period. 

 

x Both parent and child reports of patients with Artemis and RAG 

1/2 SCID without on-going medical issues reported a normal 

quality of life. 



125 
 

  



126 
 

 

 Long-term Outcome for ADA SCID Post-HSCT 

This chapter presents the results of the long-term outcome post-transplantation for 

ADA SCID patients in Newcastle.  The ADA SCID cohort was analysed 

individually, due to the distinctive clinical manifestations. 

8.1 Cohort Characteristics 

A total of 19 ADA SCID patients had undergone 20 HSCT in Newcastle between 

1987 and 2012.  ADA SCID accounted for 16% of the overall Newcastle SCID 

cohort.  The median age at the last follow-up in January 2015 was 11.5 years 

(range 3 – 25).  Sixteen out of 19 patients (84%) were alive at the last follow-up.  

The median age at first transplant was 12 weeks, range 1 – 47; and 52% of the 

cohort received their first transplant at, or less than 3 months of age.  Only four 

out of 19 ADA SCID patients received PEG-ADA prior to their first HSCT. 

Eleven out of nineteen patients (58%) did not receive any conditioning prior to 

their transplant [MSD (5 patients), MUD (4 patients) and MMUD (2 patients)].  

For those who were conditioned, 3 patients received low toxicity MAC and 5 

patients received MAC (Table 8.1).  Only one third of the cohort had serotherapy, 

rATG (1 patient) and Campath 1H (4 patients).       

Most patients received bone marrow (11 patients, 58%) as their graft source, 

followed by umbilical cord blood (7 patients, 37%) and peripheral blood stem 

cells (1 patient, 5%).  The median weight of the recipients was 3.8 kg, (range 3 – 

7.2). The median volume of the graft was 77.5ml, (range 35 – 180).  The 

following are the median values for all the specific parameters concerning the 

graft cell doses: mononucleated cell dose 4.3 x 108/kg (range, 0.04 – 25.6), 

CD34+ cell dose 4.8 x 106/kg (range, 0.48 – 42.8), CD3+ lymphocyte dose 0.67 x 

108/kg (range, 0.0001 – 3.1) and CD19+ lymphocyte dose 2.0 x 107/kg (range, 1.6 

– 3).    
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Table 8.1 Conditioning regimen, donor type and serotherapy for ADA SCID 

patients. 

Conditioning MSD MRD MUD MMUD Haploidentical 

Unconditioned 5 0 4 2 0 

Low Toxicity 

MAC 

0 2 1 0 0 

MAC 1 0 0 2 2 

Serotherapy      

No serotherapy 5 0 4 4 1 

Campath 1H 0 2 1 0 1 

rATG 1 0 0 0 0 

  

8.2 Immediate Outcome (within two years post-HSCT) 

All ADA SCID patients achieved T-lymphocyte engraftment at day 30 post-

transplant (1st HSCT).  However, one patient (a haploidentical recipient with 

Busulfan 16mg/kg) needed a second transplant due to secondary graft failure (as 

evidenced by slipping in chimerism from full donor to full recipient by 14 months 

post-transplant). 

The median number of days taken for a neutrophil recovery of more than 0.5 x 

109/L, among the conditioned ADA recipients was 18 days (range 11 – 31).  No 

unconditioned recipients experienced a neutrophil count of less than 0.5 x 109/L 

CD3+ lymphocyte recovery was significantly shorter in the unconditioned 

recipients compared to conditioned, (median 17 days, range 7 – 25 vs. median 78 

days, range 25 – 167; p = 0.03).    

Nine out of nineteen patients (47%) developed acute GVHD during the immediate 

post-transplant period.  Seven patients developed acute GVHD Grade II (2 
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patients = unconditioned/MSD recipients, 1 patient = unconditioned/MUD 

recipient, 1 patient = unconditioned/MMUD recipient, 1 patient = low toxicity 

MAC/MUD recipient and 2 patients = haploidentical/MMUD recipients). Only 

one unconditioned MSD recipient developed acute GVHD Grade I and one 

unconditioned MUD with acute GVHD Grade III.  From the multiple logistic 

regression analysis, no significant association between acute GVHD and donor 

type or conditioning regimen was identified (Table 8.2). 

 

Table 8.2  Result of multiple logistic regression analysis of different 

independent factors on the incidence of acute GVHD post-HSCT. 

Acute GVHD OR 95% CI p-value 

Conditioning regimen 

Unconditioned 1.0 Reference  

Conditioned 0.49 0.03 – 7.18 0.60 

Donor Group 

MSD 1.0 Reference  

MUD 0.67 0.06 – 7.62 0.75 

MMUD 0.40 0.02 – 7.32 0.54 
CI indicates confidence interval 
p value < 0.05 was considered significant 
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8.3 Survival Outcome 

Ten year survival for the ADA SCID cohort was 84.2% (95% CI: 58.6 – 94.6%) 

with a TRM of 10.9%.  There was no significant difference in survival compared 

to other SCID genotypes, 71.5% (95% CI: 61.4 – 79.4%), p = 0.34 (Figure 8.1).  

Three deaths were recorded and all were during the first year post-transplant.  The 

causes of death were multi-organ failure (2 patients) and idiopathic neuro-

degenerative disease associated with central hypoventilation (1 patient).  

Figure 8.1  Comparison of survival outcome between ADA SCID and other 

SCID genotypes. 
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Further sub-group comparison of survival outcome was performed between 

conditioned and unconditioned recipients.  There was no significant difference in 

10 year survival outcome between both groups; conditioned recipients 87.5% 

(95% CI: 38.7 – 98.1%) vs. unconditioned recipients 81.8% (95% CI: 44.7 – 

95.1%), p = 0.79 (Figure 8.2). 

Figure 8.2  Comparison of survival outcome among the unconditioned and 

conditioned recipients in ADA SCID patients. 
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8.4 Long-term Clinical Outcome 

8.4.1 Clinical Outcome 

Fourteen out of sixteen (87%) surviving ADA SCID patients had on-going 

medical issues at the last follow-up in January 2015.  Table 8.3 summarises these 

on-going medical issues.      

Table 8.3 Long-term clinical outcome of ADA SCID post-transplant. 

Clinical Outcome ADA SCID 

% (n/N) 

10 years survival 84.2% (16/19) 

On-going medical issues  87% (14/16)  

On-going Immunoglobulin replacement therapy 19% (3/16)  

Neurocognitive issues  44% (7/16)  

Short stature 47% (7/15)  

Hearing loss 40% (6/15)  

Hyper-pigmented rash 19% (3/16)  

Endocrine issues  18% (3/16)  

Dental issues 6% (1/15) 

Lung function test 100% (1/1)  

No Cardiovascular Issues 100% (16/16)  

No Gastrointestinal Issues  100% (16/16)  

No Respiratory Issues 100% (16/16)  
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Neurocognitive issues were the most common medical on-going problem in the 

ADA SCID cohort, seen in 7 out of 16 patients (44%).  Further characterization of 

the neurocognitive issues showed learning difficulties (3 patients), attention 

deficit hyperactive disorder (2 patients), cerebral palsy (1 patient) and low mood 

(1 patient).  There was a significant association between neurocognitive issues and 

ADA SCID genotype; Pearson chi square test, p < 0.001. 

Short stature (Height ≤ 2SD) was found in 47% of the surviving ADA SCID 

cohort.  However, there was no signifcant association between short stature and 

SCID genotypes; Pearson chi square test, p = 0.08.  Of seven patients with short 

stature, five were conditioned recipients.  There was no significant association 

between short stature and conditioning pre-transplant; Fisher exact test, p = 0.10.   

A high proportion of ADA SCID patients developed hearing loss and wear 

hearing aids as a consequence, (6 out of 15 patients (40%)).  There was a 

significant association between hearing loss and SCID genotype; Pearson chi 

square test, p = 0.001.    

Three patients had hyperpigmented skin rash noted during their routine clinical 

follow up.  They were referred for dermatological assessment to rule out the 

possibility of dermatofibrosarcoma protuberans, which has been reported as 

exclusively found in ADA SCID patients post-transplant [118].  

Two patients had endocrine issues which were central precocious puberty and 

hypogonadism. One patient had dental issues and another patient had autoimmune 

hypothyroidism.  Lung function testing was available for one patient and it was 

normal.  All patients aged more than 13 years old had achieved puberty except for 

2 female patients aged 13 and 14 years old.  No pregnancy was reported in this 

cohort. 

8.4.2 Immunoglobulin replacement therapy at last follow up 

Eighty-one percent of patients were free from immunoglobulin replacement 

therapy at the last review in January 2015.  The main differentiating feature 

observed in this cohort is that most of the patients with mixed or poor B 

lymphocyte donor chimerism were able to discontinue immunoglobulin 

replacement (Figure 8.3).  Three patients with less than 10% B lymphocyte donor 
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chimerism still needed on-going immunoglobulin replacement [unconditioned 

MSD (1) and MMUD (2) recipients].. 

 

Figure 8.3 Number of ADA SCID patients free from immunoglobulin 

replacement therapy at last follow up according to the donor type, 

conditioning regimen and B-lymphocyte donor chimerism. 
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8.5 Chimerism at last follow-up 

The result of myeloid and B lymphocyte donor chimerism was available for 14 

out of 16 patients.  Myeloid and B lymphocyte donor chimerism were found to be 

positively correlated which was statistically significant. (Spearman rho = 0.8493, 

p = 0.0001) (Figure 8.4).  All low toxicity MAC recipients had a B/myeloid donor 

chimerism percentage of more than 80%, except for one haploidentical donor 

(Figure 8.5).  A similar observation to the other SCID types was seen, in which 

unconditioned recipients had poor B/myeloid donor chimerism at the last follow 

up.     

 

Figure 8.4 Scatter plot of B-lymphocyte donor chimerism and myeloid donor 

chimerism at last follow up. 
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Figure 8.5  Myeloid and B lymphocyte donor chimerism (at last follow up) 

according to donor type and conditioning regimen. 

 

All low toxicity MAC recipients had a B/myeloid donor chimerism percentage of more than 80%, 

except for one haploidentical donor.  Most of the unconditioned MSD recipients had poor B and 

myeloid donor chimerism. 
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These variables in final models explains 100% of myeloid donor chimerism at the 

last follow up.  Both low toxicity MAC and MAC conditioning were significantly 

predictive of higher myeloid donor chimerism compared to those who did not 

receive any conditioning, after controlling for stem cell dose, graft source and 

donor type (Table 8.4). 

 

Table 8.4  Results of multivariable linear regression analysis of the myeloid 

donor chimerism percentage (at last follow up). 

Myeloid donor %  Coefficient 95% CI p-value 

CD34 cell dose -1.1 -3.2 – 0.9 0.09 

Mononucleated cell 

dose 
-0.09 -2.0 – 1.8 0.65 

Donor type 

MSD 1.0 Reference  

MRD -70.0 -76.2 – -63.7 0.004 

MUD -93.8 -99.4 – -88.3 0.003 

MMUD -104.2 -111.9 – -96.6 0.004 

Haploidentical -56.3 -76.1 – -36.4 0.01 

Conditioning regimen 

Unconditioned 1.0 Reference  

Low Toxicity MAC 164.3 160.1 – 168.6 0.001 

MAC 99.0 96.0 – 102.0 0.002 

Graft source 

BM 1.0 Reference  

UCBT 93.8 81.6 – 105.9 0.006 

R2 = 100% 
CI indicates confidence interval 
p value < 0.05 was considered significant 
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8.6 Long-term immune reconstitution post-HSCT 

8.6.1 Longitudinal analysis of CD3+ lymphocyte reconstitution post-HSCT 

The conditioned recipients had a non-significantly higher CD3+ lymphocyte 

output over time post-transplant, except from 10 years post-transplant when it 

started to decrease in value.  Longitudinal output of CD3+ lymphocyte remained 

stable after 2 years post-transplant for unconditioned recipients.  There was no 

significant difference in the overall trend of CD3+ lymphocytes changes with time 

post-transplant between conditioned and unconditioned recipients, (p = 0.28) 

(Figure 8.6 and Table 8.5).  

Figure 8.6 Longitudinal analysis of CD3+ lymphocyte output for ADA SCID 

patients post-HSCT according to conditioned and unconditioned recipients. 
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Table 8.5  Multi-level mixed effect model analysis of conditioning on CD3+ 

lymphocyte output with time post-HSCT for ADA SCID patients. 

Time (Years) Contrast SE p value 

0 195.1 264.3 0.46 

0.5 300.9 236.7 0.20 

1 406.8 261.9 0.12 

2 512.6 327.8 0.11 

5 618.4 415.6 0.13 

10 724.3 514.2 0.15 

Overall trend   0.28 
SE indicates standard error. 
p value < 0.05 is considered significant. 
 

 
8.6.2 Longitudinal analysis of CD4+ Naïve lymphocyte reconstitution post-

HSCT 

The conditioned recipients showed a significantly higher overall trend for CD4+ 

naïve lymphocyte count with time post-transplant, compared to unconditioned 

ADA SCID recipients, (p = 0.04) (Figure 8.7 and Table 8.6).  The observed value 

of CD4+ naïve lymphocytes in unconditioned recipients was persistently less than 

500 cells/µl at all time points post-transplant (Figure 8.7).  
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Figure 8.7  Longitudinal analysis of CD4+ naive lymphocyte output for ADA 

SCID patients according to unconditioned versus conditioned recipients. 

 

 

Table 8.6  Multi-level mixed effect model analysis of conditioning on CD4+ 

Naive cells output with time post-HSCT for ADA SCID patients. 

Time (Years) Contrast SE p-value 

0.5 218.6 184.3 0.23 

1 227.9 146.0 0.11 

2 237.1 115.5 0.04 

5 246.3 100.0 0.01 

10 255.5 106.4 0.01 

15 264.7 131.5 0.04 

Overall trend   0.04 
SE indicates standard error. 
p value < 0.05 is considered significant. 
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8.6.3 Longitudinal analysis of CD19+ lymphocyte reconstitution post-HSCT 

The conditioned recipients had a significantly higher CD19+ lymphocyte with 

time post-transplant, compared to unconditioned recipients, (p < 0.0001) (Figure 

8.8 and Table 8.7).  Again, a similar trend was observed in unconditioned 

recipients, where the CD19+ lymphocyte output was stable with time post-

transplant.   

Figure 8.8  Longitudinal analysis of CD19+ lymphocyte output for ADA 

SCID patients according to unconditioned versus conditioned recipients. 

 

Table 8.7  Multi-level mixed effect model analysis of conditioning on CD19+ 

lymphocyte output for ADA SCID patients according to unconditioned 

versus conditioned recipients. 

Time (Years) Contrast SE p-value 

0 231.2 61.9 0.0002 

0.5 278.7 55.1 < 0.0001 

1 326.1 72.1 < 0.0001 

2 373.6 101.8 0.0002 

5 421.1 136.0 0.002 

10 468.5 172.1 0.006 

15 516.0 209.1 0.01 

Overall trend   < 0.0001 
SE indicates standard error.  p value < 0.05 is considered significant. 
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8.6.4 Longitudinal analysis of NK cell reconstitution post-HSCT 

The NK cell count was significantly higher in conditioned compared to 

unconditioned recipients during the first two years post-transplant.  The NK cell 

count changed 5 years post-transplant in that unconditioned recipients had a non-

significantly higher value.  However, from the multi-level mixed effect model 

analysis, there was a significant difference in overall trend of NK cells between 

both groups, p = 0.001 (Figure 8.9 and Table 8.8). 

Figure 8.9  Longitudinal analysis of NK cell output for ADA SCID patients 

according to unconditioned versus conditioned recipients. 

 

Table 8.8  Multi-level mixed effect model analysis of conditioning on NK cell 

output with time post-HSCT for ADA SCID patients. 

Time (Years) Contrast SE p-value 

0 270.7 75.6 0.0003 

0.5 223.8 61.2 0.0003 

1 176.8 53.7 0.001 

2 129.9 55.9 0.02 

5 82.9 66.7 0.21 

10 36.0 83.0 0.66 

15 -10.9 102.1 0.91 

Overall trend   0.001 
SE indicates standard error.  p value < 0.05 is considered significant. 
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8.7 Quality of Life post-HSCT 

A total of 12 out of 16 (75%) patients and families answered the PedsQL 

questionnaires.  The median age of responders was 12.5 years (range 3 – 25).  

Only 6 out of 12 responders answered the child report part of the PedsQL 

questionnaire.  The reasons for not answering the child report were; age less than 

4 years (2 patients), parent/caretaker considered child as incapable of 

understanding (3 patients) and refusal (1 patient).  All comparisons of the mean 

scores were performed against published normal values for the UK [112].      

Both parents and ADA SCID patients reported significantly lower PedsQL mean 

scores in four domains compared to the UK’s normal published values (total, 

psychosocial, physical, social and school, Table 8.9).  The School domain had the 

lowest mean score recorded for both parent and child reports (Parent report 53.8, 

p = 0.007 and Child report 38.3, p = 0.008).  However, there was no significant 

difference in mean score in the emotional domain observed (Parent report 77.1, p 

= 0.88 and Child report 62.5, p = 0.16).  

Further subgroup comparison was not performed due to an imbalance in the 

subgroup members (only one responder was categorized as without on-going 

medical issues as opposed to 11 responders, and all 12 responders were free from 

immunoglobulin replacement therapy).     
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Table 8.9  Mean PedsQL Scores for ADA SCID patients’ post-HSCT (Parent 

and Child Report) 

 UK Norms[112] 

Mean 

ADA  SCID 

Mean 

(p-value) 

Parent Report  N = 12 

Total 84.6 67.9 (0.02) 

Psychosocial 82.2 67.4 (0.02) 

Physical 89.1 71.1 (0.04) 

Emotional  78.3 77.1 (0.88) 

Social 86.8 71.3 (0.04) 

School 81.5 53.8 (0.007) 

Child Report  N = 6 

Total 83.9 55.1 (0.05) 

Psychosocial 81.8 52.5 (0.04) 

Physical 88.5 59.9 (0.07) 

Emotional  78.5 62.5 (0.16) 

Social 87.7 56.7 (0.07) 

School 78.9 38.3 (0.008) 

Bold indicates p value < 0.05 and is considered significant 
All comparisons were made to UK published normal value using one sample T-test. 
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8.8 Summary of ADA SCID long-term outcome post-transplantation 

The following summarizes the long-term outcome post-transplantation for ADA 

SCID.  Unconditioned recipients of ADA SCID had a significantly faster recovery 

of neutrophil and CD3+ lymphocyte than conditioned recipients.  Only one patient 

developed Grade III Acute GVHD (Unconditioned MUD), but 8 patients had 

acute GVHD Grade II.  There was no significant difference in 10 year survival 

outcome between ADA SCID vs. other SCID genotypes and between conditioned 

vs. unconditioned recipients of ADA SCID. 

The majority of patients (87%), had on-going medical issues, which were 

neurocognitive issues (44%), short stature (47%), hearing loss (40%), 

hyperpigmented skin rash (19%), endocrine issues (12%), dental issues and 

autoimmune hypothyroidism (both 6%).  ADA SCID was significantly associated 

with neurocognitive issues and hearing loss.  There was a high proportion of ADA 

SCID patients who were free from immunoglobulin replacement therapy (13 out 

of 16 patients, 81%). 

Myeloid and B-lymphocyte donor chimerism was significantly correlated.  Low 

toxicity MAC and MAC conditioning was significantly predictive for a higher 

percentage of myeloid chimerism at the last follow up compared to no 

conditioning, and after controlling for other independent factors such as stem cell 

doses, graft source and donor type. The long-term thymic output (CD4+ naïve 

lymphocyte) was significantly better in conditioned than unconditioned ADA 

recipients but by 10 to 15 years post-HSCT this significance is lost.  Conditioned 

ADA SCID patients had significantly better long-term CD4+ Naïve lymphocytes, 

CD19+ lymphocytes and NK cells than unconditioned recipients.  

For ADA SCID patients, both parents and children reported a significantly lower 

quality of life compared to UK normal published values.  The lowest reported 

mean score was for the school domain.  However, the mean score for the 

emotional domain was normal in both parent and child reports.   
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Important Findings: 

x ADA SCID is significantly associated with neurocognitive 

issues and hearing loss.   

 

x Conditioned ADA SCID patients had significantly better 

long-term CD4+ Naïve lymphocytes, CD19+ lymphocytes 

and NK cells than unconditioned recipients.  

 

x For ADA SCID patients, both parents and children reported a 

significantly lower quality of life compared to UK normal 

published values.   
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 Long-term Outcome for Newborn SCID Post-HSCT 

The survival of newborn SCID have been shown to be superior compared to those 

who were diagnosed later; but the clinical long term outcome, immune 

reconstitution and the quality of life of the newborn SCID patients were still not 

fully elucidated [3, 44, 119, 120]. Hence, the analysis and results of the 

investigation into the long-term outcome of those diagnosed as newborn SCID 

across all genotypes in Newcastle was performed and presented in this chapter.   

This is a retrospective cohort as all patients were identified either from positive 

family history or by symptoms.  They all had their HSCT and subsequent follow 

up in the BMT clinic in Newcastle.  None of the patients were detected through 

newborn screening as it is not implemented yet in the UK.   

9.1 Cohort Characteristics 

A total of 49 out of 120 patients (40%) in Newcastle from 1987 - 2012 were 

diagnosed during the neonatal period and categorized as newborn SCID.  Forty 

patients were identified early due to positive family history (previous affected 

siblings with SCID).  Other reasons for early detection were investigation of 

dysmorphic features (1 patient), presence of lymphopenia in initial full blood 

count (4 patients) and infection (4 patients).    Forty-three out of 49 patients (87%) 

were alive at the last follow-up.  The median age at the last follow-up in January 

2015 was 12 years (range 2 – 26).  The median age at first transplant was 8 weeks, 

range 1 – 44.  

With regard to SCID genotypes, the majority had IL2RG SCID (9 patients), 

IL7Rα SCID (9 patients) and ADA SCID (8 patients). Other SCID genotypes 

were RAG1/2 SCID (6 patients), Artemis SCID (4 patients), JAK3 SCID (5 

patients), undefined SCID (5 patients), reticular dysgenesis (2 patients) and 

CHARGE syndrome (1 patient).  Table 9.2 summarises those who were alive in 

2015 according to specific SCID genotypes.  

 

Thirteen patients did not receive any conditioning prior to their transplant.  Of 

those who were conditioned, 24 patients received MAC, 11 patients received low 

toxicity MAC and one patient had RIC (Table 8.1).  Serotherapy was administered 



147 
 

in 15 patients, rATG (2 patient) and Campath 1H (13 patients).     Most received 

bone marrow (35 patients) as their graft source, followed by umbilical cord blood 

(13 patients) and peripheral blood stem cells (1 patient).   

 

Table 9.1  Newborn SCID according to the SCID genotypes.  

SCID genotypes Total number Died by end of follow-

up 

IL2RG SCID 9 0 

IL7Rα SCID 9 1 

ADA SCID 8 0 

Artemis  4 0 

RAG 1/2 SCID 6 1 

JAK3 SCID 5 1 

Undefined SCID 5 1 

Reticular Dysgenesis 2 1 

CHARGE Syndrome 1 1 

 

Table 9.2 Conditioning regimen and donor type for all Newborn SCID 

patients in Newcastle cohort. 

Conditioning MSD MRD MUD MMUD Haploidentical 

Unconditioned 5 3 2 2 1 

RIC 0 1 0 0 0 

Low Toxicity MAC 1 5 1 4 0 

MAC 0 1 3 3 17 
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Thirty-one out of 49 patients (63%) developed acute GVHD during the immediate 

post-transplant period.  The majority developed acute GVHD Grade II (11 

patients) and 7 had acute GVHD Grade I (Figure 9.1).  There was no Grade III/IV 

acute GVHD noted in this cohort.  There was an almost significant association 

between severity of acute GVHD and preparative regimen (p = 0.07).   

 

Figure 9.1  Number of newborn SCID patients with acute GVHD (Grade I 

and II) after the first HSCT according to donor type and conditioning 

regimen. 
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9.2 Survival 

Ten year survival for the newborn SCID cohort was 87.4% (95% CI: 74.1 – 

94.1%) with a TRM of 12.6%.  Six deaths were recorded, all but one during the 

first year post-transplant.  The causes of death were veno-occlusive disease (2 

patients, both received busulfan 16mg/kg), pneumonitis with pulmonary 

hypertension (2 patients, one received busulfan 16mg/kg and another received 

treosulfan/cyclophosphamide) and renal failure with CHARGE Syndrome (1 

patient - unconditioned).  

One late death (at 4 years post-HSCT) in this cohort was an Undefined SCID 

patient who received MMUD donor and low toxicity MAC conditioning, cause of 

death = haemophilus influenza infection..   

As a comparison, the newborn SCIDs had significantly better 10 year survival 

than those who were diagnosed later, 87.4% (95% CI: 74.1 – 94.1%) vs. 64.0% 

(95% CI: 51.4 – 74.1%), p = 0.007 (Figure 9.2). 

Figure 9.2  Survival outcome comparison between newborn SCID and those 

who were diagnosed beyond neonatal period. 
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There was no significant difference in 10 year survival between conditioned 

[85.8% (95% CI: 69.1 – 93.8%)] and unconditioned [92.3% (95% CI: 56.6 – 

98.8%), p = 0.58] recipients (Figure 9.3). 

Figure 9.3  Comparison of survival outcome among the unconditioned and 

conditioned recipients of newborn SCID. 
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There was no significant difference in survival of newborn SCID according to 

different donor groups; MSD 83.3% (95% CI 27.3 – 97.4), MRD 100%, MUD 

83.3% (95% CI 27.3 – 97.4), MMUD 74.0% (95% CI 28.9 – 93%) and 

haploidentical 88.8% (95% CI 62.4 – 97.1%), p = 0.66 (Figure 9.4). 

 
 

Figure 9.4 Survival of newborn SCID according to different donor groups. 
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Ten year survival was significantly better for newborn SCID without infection 

prior to HSCT = 93.1% (95% CI 75.1 – 98.2%) compared to newborn SCID with 

infection = 78.9% (95% CI 52.8 – 91.5).  Those who were diagnosed later and had 

infection prior to HSCT had the lowest survival = 64.9% (95% CI 52.3 – 75.1%), 

log rank test p = 0.02 (Figure 9.5). 

Figure 9.5  Survival outcome of newborn SCID according to the infection 

status pre-HSCT. 
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Newborn SCIDs who were detected through positive family history had 

significantly better survival compared to those who presented with symptoms, p = 

0.008 (Figure 9.6).  Ten year survival according to methods of detection were for 

92.5% (95% CI 78.5 – 97.5) family history, 75% (95% CI 12.7 – 96%) 

lymphopenia and 75% (95% CI 12.7 – 96%) infection.  None of those who were 

dysmorphic survived 10 years post-HSCT (CHARGE Syndrome). 

 

Figure 9.6  Survival outcome of newborn SCID according to methods of 

detection/diagnostic triggers. 

 

 

9.3 Long-term Clinical Outcome 

9.3.1 Clinical Outcome 

A total of 43 out of 49 newborn SCID patients were alive at last follow up in 

January 2015, but one patient was lost to follow up.  Thirty-one patients out of 42 

newborn SCID patients had on-going medical issues at the last follow-up in 

January 2015.  Table 9.3 summarises these on-going medical issues.    There was 

no association between on-going medical issues and conditioning regimen, 

(unconditioned recipients=11/12 patients vs conditioned recipients=20/30 

patients, p = 0.09).  Further subgroup comparison showed low toxicity MAC 
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recipients have significantly less on-going medical issues compared to MAC 

recipients (2/9 patients vs 18/20 patients, p < 0.001).  

Short stature (Height ≤ 2SD) was found in 30% of the cohort.  There was a 

significant association between short stature and preparative regimen, p = 0.05.  

All except for one patient with short stature were conditioned recipients.  There 

was no significant association between short stature and SCID genotype; p = 0.47.        

Dermatological issues were the second most common medical on-going problem 

in the newborn SCID cohort, seen in 11 out of 40 patients (27%).  The issues 

include warts (5 patients), dry skin (2 patients), vitiligo (1 patient), skin rash (1 

patient), psoriasis (1 patient) and molluscum contagiosum (1 patient). 

Neurocognitive issues were seen in 5 out of 40 patients (12%).  Further 

characterisation of the neurocognitive issues showed learning difficulties (2 

patients), attention deficit hyperactive disorder (2 patients) and autism spectrum 

disorder (1 patient).    

Four of the newborn SCID cohort developed hearing loss.  It was seen in ADA 

SCID (2 patients), Artemis SCID (1 patient) and unidentified SCID (1 patient).     

Five patients had endocrine issues which were autoimmune hypothyroidism (2 

patient), central precocious puberty (1 patient), diabetes type II (1 patient) and 

hypogonadism (1 patient).   

Lung function testing was available for 7 patients and it was normal, except for 

one patient with a major restrictive lung defect.  All patients aged more than 13 

years old had achieved puberty.  There were two pregnancies reported in this 

cohort (Unidentified SCID – 1 patient received Busulfan 16mg/kg and IL7Rα 

SCID – 1 patient received Busulfan 8mg/kg).   

Generally, there was no significant difference between incidence of specific 

medical issues at last follow up between newborn SCID and those who were 

diagnosed later (Table 9.4).   
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Table 9.3 Long-term clinical outcome of newborn SCID post-transplant. 

Clinical Outcome Newborn SCID 

% (n/N)  

10 years survival 87.4% (43/49) 

On-going medical issues  74% (31/42)  

On-going immunoglobulin replacement therapy 24% (10/42)  

Bronchiectasis 5% (2/40) 

Neurocognitive issues  12% (5/40)  

Short stature 30% (12/40)  

Hearing loss 10% (4/40)  

Dermatological issues 27% (11/40) 

Endocrine issues  12% (5/40) 

Dental issues 15% (6/40) 

Normal lung function test 85% (6/7)  
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Table 9.4  Comparison of clinical outcome between NBS and those diagnosed 

beyond neonatal period. 

Parameter  NBS 

% (n/N) 

Diagnosed later 

% (N/N) 

p value 

10 years survival 87.4% (43/49) 64.0% (46/71) 0.007 

On-going 
medical issues  

73% (31/42)  74% (34/46) 0.99 

Stopped 
immunoglobulin 

76% (32/42)  69% (32/46) 0.48 

Bronchiectasis  4% (2/41)  9% (4/44) 0.44 

Neurocognitive 
issues 

12% (5/40)  11% (5/45)  0.84 

Puberty (aged 
>13 years old) 

90% (19/21) 82% (18/22) 0.41 

Short stature 30% (12/40)  27% (11/41) 0.75 

Hearing loss 10% (4/40) 9% (4/44) 0.61 

Dental issues 15% (6/40) 5% (2/43) 0.11 

Warts  12% (5/40)  16% (7/45) 0.68 

Autoimmune 
hemolytic 
anemia 

4% (2/42) 17% (8/46) 0.06 

Endocrine issues  12% (5/40) 4% (2/44) 0.18 

p value < 0.05 was considered significant 
  



157 
 

 

9.3.2 Immunoglobulin replacement therapy at last follow up 

Thirty-two of the surviving patients were free from immunoglobulin replacement 

therapy at the last review in January 2015.  The main feature observed in this 

cohort is that most of the patients with more than 50% B-lymphocyte donor 

chimerism were able to discontinue immunoglobulin replacement (Figure 9.7).  A 

total of 27 out of 30 conditioned newborn SCIDs were able to stop 

immunoglobulin replacement therapy as compared to 5 out of 12 unconditioned 

newborn SCID.  There was a significant association between preparative regimen 

and freedom from immunoglobulin replacement therapy (p = 0.001). 

  

Figure 9.7 Number of newborn SCID with immunoglobulin replacement 

therapy status at last follow up according to the donor type, conditioning 

regimen and B-lymphocyte donor chimerism. 
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9.4 Long-term Immunological reconstitution 

 

Longitudinal analysis of CD3+ and CD4+ naïve lymphocyte numbers was 

performed to assess the trend of changes with time for both markers and 

comparison was performed between conditioned versus unconditioned newborn 

SCID and newborn SCID versus those who were diagnosed later (not NBS). 

As described before the degree of differences in immune parameters’ mean values 

between comparison groups at each time point are presented as contrast.  SE 

indicates standard error and it serves as an indicator for precision of mean values 

as population parameters [117].      

 

9.4.1 Comparison of CD3+ lymphocyte between conditioned and 

unconditioned newborn SCID  

From the multi-level mixed modelling analysis, CD3+ lymphocytes were 

significantly higher in the conditioned newborn SCID compared to unconditioned 

SCID, p 0.03 (Figure 9.8, Table 9.5). 

 

Figure 9.8 Longitudinal analysis of CD3+ lymphocyte output for newborn 

SCID patients according to unconditioned versus conditioned recipients. 
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Table 9.5 Results of the multi-level mixed effect model analysis of 

conditioning on CD3+ lymphocyte output with time post-HSCT for newborn 

SCID patients. 

Time Contrast SE P value 

0 26.1 412.2 0.95 

0.5 556.9 449.1 0.21 

1 1095.5 451.6 0.01 

2 1191.6 443.7 0.007 

5 1297.1 505.7 0.01 

10 439.1 571.9 0.44 

15 310.9 741.4 0.67 

Overall trend   0.03 
SE indicates standard error. 
p value < 0.05 is considered significant. 
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9.4.2 Comparison of CD4+ naive lymphocyte between conditioned and 

unconditioned newborn SCID 

Conditioned newborn SCID had significantly higher trend of CD4+ naïve 

lymphocytes compared to unconditioned newborn SCID, p = 0.002 over time 

post-HSCT (Figure 9.9, Table 9.6). 

 

Figure 9.9 Longitudinal analysis of CD4+ naive lymphocyte output for 

newborn SCID patients according to unconditioned versus conditioned 

recipients. 

 
 

Table 9.6 Results of the multi-level mixed effect model analysis of 

conditioning on CD4+ naive lymphocyte output with time post-HSCT for 

newborn SCID patients. 

Time Contrast SE p value 

0.5 249.1 161.2 0.12 

1 641.1 157.4 <0.001 

2 418.9 155.4 0.007 

5 413.1 156.7 0.008 

10 242.6 169.1 0.15 

15 48.5 245.9 0.84 

Overall trend   0.002 
SE indicates standard error.  p value < 0.05 is considered significant. 
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9.4.3 Comparison of CD3+ lymphocyte between newborn SCID and those who 

were diagnosed later. 

There was no significant difference in trend of CD3+ lymphocytes across time 

post-HSCT between newborn SCID and those who were diagnosed later, p = 0.45 

(Figure 9.10, Table 9.7). 

 

Figure 9.10 Longitudinal analysis of CD3+ lymphocyte output for SCID 

patients according to newborn SCID versus those who were diagnosed later. 

 

 
 

Table 9.7  Multi-level mixed effect model analysis of conditioning on CD3+ 

lymphocyte output with time post-HSCT for newborn SCID patients. 

Time Contrast SE P value 

0 -331.3 286.2 0.24 

0.5 413.4 311.4 0.18 

1 382.1 327.9 0.24 

2 364.6 328.5 0.26 

5 185.8 357.9 0.60 

10 473.3 410.5 0.24 

15 350.7 579.9 0.54 

20 -64.6 1024.3 0.95 

Overall trend   0.45 
SE indicates standard error. p value < 0.05 is considered significant. 
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9.4.4 Comparison of CD4+ naive lymphocyte between newborn SCID and 

those who were diagnosed later. 

There was a significant difference in trend of CD4+ naive lymphocyte between 

newborn SCID and those who were diagnosed later especially during the first 5 

years post-HSCT, p = 0.002 (Figure 9.11, Table 9.8). 

 

Figure 9.11 Longitudinal analysis of CD4+ naive lymphocyte output for SCID 

patients according to newborn SCID versus those who were diagnosed later. 

 
 

Table 9.8  Results of the multi-level mixed effect model analysis of 

conditioning on CD4+ naive lymphocyte output with time post-HSCT for 

newborn SCID patients. 

Time Contrast SE p value 

0.5 263.2 148.1 0.07 

1 502.3 145.0 0.001 

2 527.5 140.9 <0.001 

5 78.6 145.2 0.58 

10 -15.6 154.7 0.91 

15 130.3 219.4 0.55 

20 50.7 382.4 0.89 

Overall trend   0.002 
SE indicates standard error. p value < 0.05 is considered significant. 
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9.4.5 Cross-sectional analysis of immune reconstitution  

The analysis was performed as a cross-sectional analysis, with comparison of 

latest immune parameters between newborn SCID and those who were diagnosed 

and had their HSCT later according to the specific SCID genotypes whenever 

permissible. 

With regards to latest CD3+ lymphocyte, only newborn IL2RG/JAK3 SCID had 

significantly higher counts when compared to those who were diagnosed and had 

their transplant later, p = 0.0008 (Table 9.9).  There was no significant difference 

in CD3+ lymphocyte values seen for IL7Rα SCID (p = 0.65), Artemis and RAG 

1/2 SCID (p = 0.20) and ADA SCID (p = 0.94) (Table 9.9). 

Similar patterns were seen in for the CD4+ naïve lymphocyte counts at the latest 

follow up. The newborn IL2RG/JAK3 SCIDs had significantly higher CD4+ 

naïve lymphocyte counts compared to those who were diagnosed later, p = 0.01 

(Table 9.10).  No significant difference in CD4+ naïve lymphocyte counts was 

seen for other SCID genotypes, IL7Rα SCID (p = 0.68), Artemis and RAG 1/2 

SCID (p = 0.20) and ADA SCID (p = 0.13) (Table 9.10).  

Table 9.9 Comparison of latest CD3+ lymphocyte between newborn SCID 

and those who were diagnosed later. 

SCID genotypes Diagnosed 

during neonatal 

period 

N 

Mean (SD) 

Diagnosed 

beyond neonatal 

period 

N 

Mean (SD) 

p value 

IL2RG/JAK3 N = 10 

3260.6 (1359.2) 

N = 19 

1874.2 (627.7) 

0.0008 

IL7Rα N = 8 

1749.1 (1040.8) 

N = 7 

1524.0 (838.4) 

0.65 

Artemis & RAG 1/2 N = 9 

2027.5 (1001.8) 

N = 6 

1450.8 (423.4) 

0.20 

ADA N = 8 

1675.0 (709.4) 

N = 8 

1650.5 (589.4) 

0.94 

Data were presented as mean value due to normally distributed and comparison performed using 
T-test..  SD = standard deviation.  p value < 0.05 was considered significant 
 



164 
 

 
Table 9.10  Comparison of latest CD4+ naïve lymphocyte between newborn 

SCID and those diagnosed later. 

SCID genotypes Diagnosed during 

neonatal period 

N 

Mean (SD) 

Diagnosed later 

N 

Mean (SD) 

p value 

IL2RG/JAK3 N = 10 

890.3 (777.4) 

N = 18 

387.5 (281.2) 

0.01 

IL7Rα N = 8 

365.2 (267.3) 

N = 7 

309.5 (245.9) 

0.68 

Artemis & RAG 1/2 N = 9 

357.2 (309.0) 

N = 4 

137.2 (139.9) 

0.20 

ADA N = 7 

84 (79.3) 

N = 8 

188.3 (158.2) 

0.13 

Data were presented as mean value due to normally distributed and comparison performed using 
T-test..  SD = standard deviation.  p value < 0.05 was considered significant 
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There was no significant difference in CD19+ lymphocyte mean values between 

newborn SCID and diagnosed beyond neonatal period, p = 0.53 (Figure 9.12). 

Figure 9.12 Boxplot of CD19+ lymphocyte counts at last follow up according 

to whether a newborn or later SCID diagnosis. 

 

 

There was no significant difference in NK cell mean values between newborn 

SCID and those diagnosed beyond neonatal period, p = 0.32 (Figure 9.13). 

Figure 9.13 Boxplot of NK cell counts at last follow up according to newborn 

SCID and those diagnosed later. 
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9.5 Quality of Life post-HSCT 

A total of 20 out of 43 (47%) patients and families answered the PedsQL 

questionnaires.  The median age of responders was 11 years (range 2 – 26).  Mean 

scores were performed against published normal values for the UK [112].      

Parents reported no significant difference in PedsQL mean scores across all 

domains, except for the school domain.  Newborn SCID patients reported 

significantly lower PedsQL mean scores in four domains compared to the UK’s 

normal published values (total, psychosocial, social and school, Table 9.11).  The 

school domain had the lowest mean score recorded for both parent and child 

reports.  However, there was no significant difference for the emotional domain 

for either parents or patients.  

Parent/carers of those who were diagnosed later reported lower quality of life in 

all domains compared to the UK normal population, which were worse than 

parents of newborn SCID report.  Patients who were diagnosed later reported 

lower quality of life in all domains, except emotional and social. 
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Table 9.11  The result of the mean PedsQL Scores for newborn SCID 

patients’ post-HSCT compared to UK norms (Parent and Child Report) 

 UK Norms 

[112] 

Mean 

Newborn  

SCID 

Mean  

(p value)* 

 

Those 

diagnosed 

later 

Mean  

(p value)* 

 

Parent 

Report 

 N = 21 N = 28  

Total 84.6 76.1 (0.08) 67.2 (0.0002)  

Psychosocial 82.2 73.1 (0.10) 64.5 (0.0002)  

Physical 89.1 85.8 (0.47) 73.6 (0.004)  

Emotional  78.3 80.2 (0.73) 69.0 (0.04)  

Social 86.8 81.1 (0.30) 74.4 (0.009)  

School 81.5 64.5 (0.009) 62.2 (0.001)  

Child 

Report 

 N = 20 N = 25  

Total 83.9 72.8 (0.06) 73.8 (0.02)  

Psychosocial 81.8 70.2 (0.05) 71.4 (0.03)  

Physical 88.5 79.9 (0.13) 77.0 (0.01)  

Emotional  78.5 79.9 (0.80) 69.2 (0.09)  

Social 87.7 735. (0.04) 79.2 (0.08)  

School 78.9 59.5 (0.002) 66 (0.02)  
Bold indicates p value < 0.05 and is considered significant. 
All comparisons were made to UK published normal value using one sample T-test. 
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9.5.1 Quality of Life according to specific SCID genotypes 

 

Further subgroup comparison between newborn SCID and those diagnosed later 

was performed according to specific SCID genotypes (Table 9.12).  There were 

no significant differences in mean PedsQL scores of either parent or child report 

for IL2RG/JAK3 SCID, IL7R SCID and Artemis & RAG1/2 SCID, comparing 

newborn SCID and those who were diagnosed later.   

 

However, parents of newborn ADA SCID reported better mean PedsQL scores 

across all domains except school domains compared to parents of ADA SCID 

who were diagnosed later.  It was difficult to ascertain the validity of child report 

for ADA SCID due to small numbers (newborn ADA SCID = 4 patients and ADA 

diagnosed later = 2 patients). 
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N
o 

M
ean (SD

) 
p value 

Parent Report 
N

 = 8 
N

 = 11 
 

N
 = 3 

N
 = 4 

 
N

 = 3 
N

 = 4 
 

N
 = 6 

N
 = 6 

 
Total 

72.1 (23.5) 
69.9 (17.3) 

0.82 
77.1 (32.0) 

67.9 (18.5) 
0.64 

81.8 (14.7) 
65.2 (22.5) 

0.32 
83.6 (10.0) 

52.4 (26.7) 
0.02 

Psychosocial 
67.9 (28.5) 

65.4 (18.5) 
0.82 

76.7 (34.6) 
64.2 (34.6) 

0.57 
82.2 (8.4) 

60.8 (24.5) 
0.21 

80.8 (15.3) 
53.8 (23.9) 

0.04 
Physical 

83.2 (24.9) 
81.8 (19.5) 

0.89 
78.1 (27.7) 

75.0 (25.5) 
0.88 

81.2 (27.2) 
73.4 (19.1) 

0.67 
93.3 (6.6) 

48.9 (36.2) 
0.01 

Em
otional 

75.0 (30.8) 
71.3 (19.1) 

0.75 
76.6 (40.4) 

61.2 (20.1) 
0.53 

81.6 (16.1) 
62.5 (25.0) 

0.30 
93.3 (7.5) 

60.8 (32.2) 
0.03 

Social 
78.1 (29.1) 

76.8 (24.2) 
0.91 

78.3 (33.2) 
82.5 (28.7) 

0.86 
91.6 (14.4) 

73.7 (18.9) 
0.23 

86.6 (18.6) 
55.8 (18.8) 

0.01 
School 

61.2 (29.7) 
65.2 (30.2) 

0.79 
75.0 (30.4) 

68.3 (15.2) 
0.75 

73.3 (2.8) 
61.6 (22.5) 

0.42 
62.5 (30.7) 

45.0 (11.4) 
0.16 

Child report 
N

 = 5 
N

 = 10 
 

N
 = 4 

N
 = 6 

 
N

 = 5 
N

 = 5 
 

N
 = 4 

N
 = 2 

 
Total 

80.2 (18.3) 
76.5 (20.0) 

0.73 
73.6 (25.2) 

76.8 (18.0) 
0.82 

80.6 (20.1) 
63.5 (15.8) 

0.21 
60.1 (38.3) 

45.1 (42.2) 
0.68 

Psychosocial 
74.9 (21.7) 

73.6 (21.1) 
0.91 

71.6 (26.4) 
73.3 (26.5) 

0.92 
80.3 (17.7) 

65.0 (16.5) 
0.22 

56.2 (36.1) 
45.0 (42.0) 

0.74 
Physical 

90.0 (12.9) 
81.8 (21.9) 

0.46 
77.3 (24.1) 

83.3 (7.3) 
0.57 

83.7 (20.1) 
60.9 (18.1) 

0.86 
67.1 (46.1) 

45.3 (41.9) 
0.60 

Em
otional 

92.0 (13.0) 
73.0 (26.4) 

0.15 
67.5 (29.5) 

62.5 (34.0) 
0.81 

91.5 (8.6) 
62.5 (18.4) 

0.01 
67.5 (42.5) 

52.5 (24.7) 
0.67 

Social 
74.0 (37.1) 

76.5 (19.8) 
0.86 

77.5 (22.2) 
88.3 (13.6) 

0.36 
82.0 (28.4) 

76.2 (17.9) 
0.73 

60.0 (38.2) 
50.0 (70.7) 

0.82 
School 

59.0 (21.9) 
71.5 (24.2) 

0.35 
70.0 (28.5) 

69.2 (36.8) 
0.97 

67.6 (18.5) 
56.2 (19.3) 

0.39 
41.2 (31.1) 

32.5 (31.8) 
0.76 

B
old indicates p value < 0.05 and is considered significant. 

A
ll com

parisons w
ere perform

ed betw
een N

B
S and those w

ho w
ere diagnosed beyond neonatal period using T-test. 
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9.6 Summary of Newborn SCID long-term outcome post-transplantation 

The following summarises the long-term outcome post-transplantation for 

newborn SCID.  Newborn SCID showed better survival compared to those who 

were diagnosed later.  With regard to newborn SCID, those who were detected by 

positive family history and those without infection prior to HSCT had better 

survival.  There was no difference in survival according to preparative regimen, 

donor groups and SCID genotypes. 

The majority of patients (72%), had on-going medical issues, which were mainly 

short stature (30%) dermatological issues (27%), and dental issues (15%).  Low 

toxicity MAC recipients have significantly less on-going medical issues compared 

to MAC recipients.  There were 2 pregnancies recorded in this cohort and both 

were conditioned recipients.  

There was a significant association between preparative regimen and freedom 

from immunoglobulin replacement therapy.     

The longitudinal analysis demonstrated that conditioned newborn SCID patients 

had significantly better CD3+ lymphocytes and CD4+ naïve lymphocyte than 

those who were unconditioned.  There was no significant difference in CD3+ 

lymphocyte between newborn SCID and those who were diagnosed later. 

Newborn IL2RG/JAK3 SCID patients had better CD3+ and CD4+ naïve 

lymphocyte counts at the time of the last follow up compared to those 

IL2RG/JAK3 SCID patients who were diagnosed and had their transplant later. 

For newborn SCID patients, both parents and children reported no significant 

difference in quality of life compared to UK normal published values, except for 

the lower QoL in the school domain.   
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Important Findings: 

 

x Low toxicity MAC recipients have significantly less on-

going medical issues compared to MAC recipients.  

 

x Conditioned newborn SCID patients had significantly 

better thymopoiesis and freedom from immunoglobulin 

replacement therapy compared to unconditioned newborn 

SCID. 

 

x For newborn SCID patients, both parents and children 

reported no significant difference in quality of life 

compared to UK normal published values, except for the 

school domain.   
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 More than 20 years SCID HSCT outcome in UK.  

This chapter presents the results of very long-term outcomes of SCID patients 

post-HSCT in 2 centres in the UK (Newcastle and London).  The very long-term 

outcome was defined as more than 20 years after the first HSCT was performed.  

All SCID genotypes were considered in the analysis, including undefined SCID.  

Undefined SCID is categorised as those with an immune-phenotype of SCID but 

without any specific gene mutation identified.  All patients identified from the 

database had their HSCT performed either in Newcastle or GOSH, London and 

were followed up at the GNCH, Newcastle and Royal Free Hospital, London.  

The end of the follow up time for both centres was the end of January 2015.     

 

10.1 Cohort characteristics 

A total of 74 patients with a SCID diagnosis who had undergone HSCT were 

identified from databases in both centres (London and Newcastle).  Thirty-five 

patients had died (46.6%).  Out of the 39 surviving patients, 6 were unidentified 

(as the research identification from the database was not able to be decoded) and 5 

identifiable patients were lost to follow up, hence, were excluded from the 

analysis of clinical and immune reconstitution outcome post-HSCT (Figure 10.1).   
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Figure 10.1 Flow chart of patients in the cohort of more than 20 years post-

HSCT. 

 

Table 10.1 demonstrates further the distribution of SCID genotypes’ diagnosis in 

this cohort.  The majority of patients did not have any identifiable mutation, 

which accounts for 47% (35 out of 74 patients).  Most of the patients that were 

labelled as Undefined SCID had either died or were lost to follow up, so were 

unable to be included in the advanced analysis for mutational genotypes 

identification.  Of all with SCID genotypes identified, ADA SCID was the highest 

proportion with 12 out of 74 patients (16%), followed by IL2RG SCID (11 

patients, 15%), IL7Rα SCID (5 patients, 7%), RAG 1 and 2 SCID (4 patients, 

5%), JAK3 SCID (3 patients, 4%) and both reticular dysgenesis and Artemis 

SCID (2 patients, 3%) respectively.  Most of the diagnoses were made long after 

the transplant procedure.   

  

Total N = 74 patients
London = 16

Newcastle = 58

Alive = 39 patients

Follow up = 28 
patients Unidentified = 6 Missing to follow up 

= 5 patients

Died = 35 patient

Unidentified = 9 
patients
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Table 10.1  List of patients according to their SCID genotypes diagnosis. 

Diagnosis  Number of patients % 

Undefined SCID 35 47 

ADA SCID 12 16 

IL2RG SCID 11 15 

IL7Rα SCID 5 7 

RAG 1/2 SCID 4 5 

JAK3 SCID 3 4 

Reticular dysgenesis  2 3 

Artemis SCID 2 3 

 

Just over half of the patients (56%) in this cohort had their first HSCT between 

1980 and 1989.  Further details of donor type, graft source and conditioning 

regimen are given in Table 10.2.  The majority received a haploidentical donor 

(60%) with only 24% of patients receiving an MSD donor.  Almost all received 

bone marrow grafts.  However, there were no data available for the graft source in 

24% of patients.  

 

The conditioning regimen available at this time was categorized to 3 groups 

(Unconditioned, MAC and NMA).  A total of 38 patients received MAC 

conditioning as part of their preparative regimen (14 patients received busulfan ≥ 

16mg/kg/cyclophosphamide, 15 patients received busulfan ≤

 8mg/kg/cyclophosphamide and 9 patients with unknown busulfan 

dose/cyclophosphamide).  Only three patients had NMA conditioning and 33 

patients were unconditioned.  
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Table 10.2  Table of donor type, graft source and conditioning regimen 

received during first HSCT for all patients in the cohort. 

Transplantation characteristic/group Number of patients % 

Year of HSCT   

<1980 8 10.7 

1980 – 1984 18 24.3 

1985 – 1989 23 31.1 

1990 – 1994 25 33.7 

Donor type   

MSD 18 24 

MRD 7 9 

MUD 3 4 

MMUD 2 3 

Haploidentical 44 60 

Graft Source   

BM 55 75 

PBSC 1 1 

Missing 18 24 

Conditioning regimen   

Unconditioned 33 45 

MAC 38 51 

NMA 3 4 
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Comparisons of profile characteristics between known and those who were 

unidentified or missing, were performed in order to identify any potential bias in 

reporting the outcome of this cohort (Table 10.3).  Those whom were unidentified 

or missing were significantly older than the known patients (p = 0.01) and none of 

them had definitive SCID genotype mutations identified.   

Table 10.3 Comparison of profile between those who remained in follow up 

versus unidentified or missing to follow up. 

Characteristics Known 

Median 

(range) 

n = 28 

Unidentified/Missing 

Median (range) 

n = 11 

p value* 

Age at first HSCT 

(weeks) 

25  

(2 – 58) 

29 

(7 – 50) 

0.07 

Age at January 

2015 (year) 

25.3 

(20 – 35.5) 

31.5 

(25 – 44) 

0.01 

Interval of follow 

up from first 

HSCT 

25.3  

(20 – 35.2) 

31.2 

(24.3 – 43.7) 

0.02 

*Median test due to data not normally distributed 
p value < 0.05 was considered significant 
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10.2 Survival outcome and factors influencing survival outcome 

Twenty year survival for this cohort was 52.7% (95% CI 40.7 – 63.3%) (Figure 

9.2).  The transplant-related mortality was 42.6%.  Most deaths occurred within 2 

years post-HSCT and only one ‘late’ death occurred at 10.6 years post-HSCT 

(Undefined SCID, unconditioned MSD with cause of death documented as 

infection).  The main cause of death was infection (22 out of 35 patients) followed 

by acute GVHD (7 patients), others (3 patients) and one each for capillary leak, 

toxicity and giant cell hepatitis.    

 

Figure 10.2 Kaplan Meier survival analysis of the cohort. 
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There was no significant difference in survival outcome between unconditioned 

recipients [54.5% (95% CI 36.3 – 69.5%)] and MAC recipients [55.2% (95% CI 

38.2 – 69.3%)], p = 0.11.  None of the NMA recipients survived more than 2 

years post-transplantation (Figure 9.3). 

Figure 10.3 Kaplan Meier survival analysis of the cohort according to 

different conditioning regimen. 
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There was a significant difference in survival between the donor groups, p = 

0.0009 (Figure 9.4).  The best survival was seen for MSD, 72.2% (95% CI 45.6 – 

87.3%). MUD survival was 66.6% (95% CI 5.4 – 94.5%) and MRD was 57.1% 

(95% CI 17.1 – 83.7%).  Haploidentical recipients’ survival outcome was 45.4% 

(95% CI 30.4 – 59.3%) and none of the MMUD recipients survived more than 2 

years post-transplantation. 

Figure 10.4 Kaplan Meier survival analysis of the cohort according to 

different donor types. 
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The influence of SCID genotypes on the survival of patients post-transplantation, 

was approaching significance, p = 0.06.  However, most of the genotype 

diagnoses were made after the transplantation procedure had been completed, 

except for some of the IL2RG SCID and ADA SCID.  All patients with a 

diagnosis of RAG1 and 2 SCID in this cohort survived.  The 20 year survival 

probability according to the SCID genotypes is described in Table 9.4.  

Table 10.4 The 20 year survival according to SCID genotypes. 

SCID genotypes 20 year survival 95% CI 

IL7Rα SCID 80.0%   20.3 – 96.9% 

IL2RG and JAK3 

SCID 

78.5%  47.2 – 92.5% 

ADA SCID 50%  20.8 – 73.6% 

Artemis 50% 6 – 91.0% 

Reticular dysgenesis 50%  6 – 91% 

Undefined SCID 34.2% (95% CI 19.3 – 

49.7%). 

19.3 – 49.7% 
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Survival was noted to be significantly influenced by age at transplantation and 

infection status prior to HSCT, p = 0.03 (Figure 9.6).  The best survival was seen 

in those who had their first HSCT before the age of 3 months old and did not have 

any infection prior to HSCT, 90.9% (95% CI 50.8 – 98.6%).  The worst survival 

was seen in those transplanted after the age of 3 months old with an underlying 

infection prior to HSCT, 41.4% (95% CI 26.4 – 55.8%).  Those who had an 

infection but were transplanted earlier than 3 months old fared better than those 

who were transplanted later than 3 months old but did not have an infection prior 

to HSCT; survival 71.4% (95% CI 25.8 – 91.9%) versus 46.1% (95% CI 19.2 – 

69.6%), respectively.  

Figure 10.5 Kaplan Meier survival analysis according to age at HSCT and 

status of infection prior to HSCT. 
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Another significant risk factor influencing the survival was grading of acute 

GVHD, p = 0.01 (Figure 9.7).  Following are the percentage of patients with acute 

GVHD in the UK SCID cohort: Grade I = 23%, Grade II = 18%, Grade III = 3%, 

Grade IV = 6% and 50% of the cohort did not had acute GVHD.  None of those 

who had acute GVHD Grade IV survived more than 2 years post-HSCT.  Among 

those with acute GVHD, Grade I had the highest survival, 75% (95% CI 46.3 – 

89.8%) followed by Grade II 61.5% (95%CI 30.8 – 81.8%) and Grade III 50% 

(95% CI 6 – 91%).  Interestingly, those without acute GVHD had a survival of 

45.7% (95% CI 28.9 – 61.1%).    

Figure 10.6 Kaplan Meier survival analysis according to grade of acute 

GVHD post-HSCT. 
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10.3 Clinical outcome 

Clinical outcome data were only available for 28 out of 39 patients.  A summary 

of the clinical outcome for this cohort is listed in Table 10.5.  A further detail of 

clinical outcome distribution according to SCID genotypes and conditioning 

regimens are listed in Table 10.6 and Table 10.7, respectively. 

A majority of the cohort (93%) had on-going medical issues at the last follow up.  

However, only one patient needed on-going immunological replacement.  This 

information could be confounded by missing data on a number of patients from 

this cohort.  The most prevalent issue in this cohort is dermatology, which 

affected 13 out of 27 patients (48%), mainly cutaneous warts (12 patients), vitiligo 

(1 patient) and suspected dermatofibrosarcoma protuberans (1 patient).  There was 

a significant association between SCID genotypes and incidence of warts, which 

were only found in those with IL2RG, JAK3 SCID, IL7Rα SCID, Reticular 

dysgenesis and not the other SCID genotypes p = 0.008 (Table 10.6). 

The second highest on-going medical issue was dental problems.  Eleven out of 

28 patients (38%) had dental issues and almost of all of them were MAC 

recipients except for one unconditioned recipient, p = 0.11 (Table 10.7).  Dental 

issues included hypodontia in 7 patients, and multiple absent teeth, widely spaced 

teeth and microdontia (one patient each). 

Two patients had respiratory issues (one with bronchiectasis, one with 

bronchiolitis obliterans) and both were unconditioned recipients.  The explanation 

could be due to unconditioned recipients displaying lower myeloid chimerism 

levels at the last follow up, which in turn increased their susceptibility for 

recurrent respiratory tract infections leading to bronchiectasis.  No significant 

association was noted between incidence of respiratory issues and SCID 

genotypes, p = 0.26. 

From the analysis, a significant association between SCID genotypes and 

presence of neurocognitive issues was noted, p = 0.006 (Table 10.6).  Five 

patients had neurocognitive issues at the last follow up and all of them were ADA 

SCID, except for one with RAG1/2 SCID.  The neurocognitive issues were; 
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autism, behavioural issues, learning difficulties, low mood and short term memory 

loss (one patient for each diagnosis). 

Four patients experienced endocrine issues, which were; absent sperm count, 

primary ovarian failure, diabetes mellitus and one patient was being investigated 

for polycystic ovarian syndrome.  However, there was no significant association 

between SCID genotypes (p = 0.37), conditioning regimen (p = 0.10) and 

incidence of endocrine issues.  This could be related to the small sample size. 

Four patients had height less than 2 SD at the last follow up and all of them were 

MAC recipients.  Hearing loss was documented in 4 patients, with an equal 

proportion between unconditioned (2 patients) and MAC recipients (2 patients).   

There were 4 successful pregnancies documented in this cohort (2 male patients 

and 2 female patients).  Further description of those with successful pregnancy 

were: Undefined SCID received busulfan 16mg/kg (1 patient), IL2RG SCID 

received busulfan 16mg/kg (1 patient), unconditioned IL2RG SCID (1 patient) 

and IL7Rα SCID received busulfan 8mg/kg (1 patient).  No further information 

was available regarding whether the pregnancies were assisted or spontaneous 

conception.  

Only one patient still had on-going immunoglobulin replacement therapy and he 

was an unconditioned IL2RG SCID.  One case of secondary malignancy was 

noted in this cohort.  A patient with IL2RG SCID had squamous cell carcinoma of 

the scalp 8 years after his second HSCT.  He has had busulfan 16mg/kg and 

cyclophosphamide regimen from the first HSCT and haploidentical donor.  

However, details about the second HSCT were not available.  This patient 

experienced chronic GVHD of the scalp and severe cutaneous warts prior to the 

diagnosis of squamous cell carcinoma.  He underwent surgical removal of the 

lesion and there was no secondary metastasis noted during the surveillance.       
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Table 10.5  Clinical outcome for cohort of very long-term post-HSCT SCID 

Newcastle and London. 

Clinical Outcome Number of patients 

% (n/N) 

 

Ongoing medical issues 93% (26/28) 

 

 

Ongoing immunoglobulin 

replacement 

4% (1/28)  

Respiratory issues 7% (2/27)  

Neurocognitive issues 18% (5/28) 

 

 

Endocrine issues 22% (4/18) 

 

 

Height <= 2SD 25% (4/16) 

 

 

Pregnancy/Fertility  14% (4/28) 

 

 

Hearing loss 14% (4/28) 

 

 

Dental issues 36% (10/28) 

 

 

Dermatology issues 48 (13/27) 

 

 

Secondary malignancy 5% (1/19)  
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Table 10.7 Distribution of clinical outcome according to conditioning regimen 

for HSCT. 

Clinical condition Unconditioned 

N = 8 

MAC 

N = 20 

p value 

On-going medical 

issues 

8 18 0.35 

On-going IVIG 1 0 0.10 

Respiratory issues 2 0 0.08 

Neurocognitive 

issues 

2 3 0.44 

Endocrine issues 2 2 0.10 

Short stature 0 4 0.55 

Hearing loss 2 2 0.32 

Dental issues 1 9 0.11 

Warts+ 4 7 0.45 
Pearson chi square 
p value < 0.05 was considered significant 
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10.4 Long-term immune-reconstitution 

Sustained production of CD3+ lymphocytes and CD4+ lymphocytes is 

demonstrated in Figure 9.8 and Figure 9.9.  Missing data remains a major problem 

due to the retrospective nature of the study.  Hence, multi-level mixed modelling 

for the analysis of longitudinal immune reconstitution could not be undertaken. 

Figure 10.7 Individual CD3+ lymphocyte cell counts in SCID patients with 

follow up of 20 years or longer post-transplantation. 

 
Figure 10.8 Individual CD4+ lymphocyte cell counts in SCID patients with 

follow up of 20 years or longer post-transplantation. 
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Median tests were performed to identify any significant differences between 

median values of immunological parameters at the last follow up according to 

preparative regimens (due to non-normally distributed data).  Results of CD3+, 

CD19+, CD4+ lymphocytes and NK cells count at the last follow up was available 

for 21 out of 28 patients (Unconditioned = 4 patients, Conditioned = 17 patients).  

There was no significant difference of CD3+ median values between preparative 

regimen, p = 0.31 (Figure 9.10).   

 

Figure 10.9 Relation between individual CD3+ lymphocyte at last follow up 

and the preparative HSCT regimen received. 
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Median of CD19+ lymphocyte was non-significantly higher in those who received 

conditioning compared to unconditioned recipients, p = 0.31 (Figure 9.11).   

Figure 10.10 Relation between individual CD19+ lymphocyte at last follow up 

and the preparative HSCT regimen received. 

 

There was also no significant difference between different preparative regimens in 

the median values of CD4+ lymphocyte (p = 0.31) at the last follow up (Figure 

9.12).     

Figure 10.11 Relation between individual CD4+ lymphocyte at last follow up 

and the preparative HSCT regimen received. 
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The median of NK cells values were significantly higher in conditioned recipients 

compared to unconditioned recipients, p = 0.03 (Figure 9.13). 

Figure 10.12  Relation between individual NK cells at last follow up and the 

preparative HSCT regimen received. 

 

Data for CD4+ naïve lymphocyte counts at the last follow up were only available 

for 10 out of 28 patients (Figure 9.14).  Subgroup comparison was omitted as all 

measurements were from conditioned recipients. 

Figure 10.13  Individual CD4+ naive cell counts at last follow up for SCID 

survivors 20 years or longer post-transplantation. 
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10.5 Cross-sectional analysis of whole blood donor chimerism 

Results of whole blood donor chimerism were only available for 17 out of 28 

patients (60%).  Donor chimerism data are defined as full donor (more than 95% 

donor chimerism), mixed chimerism (between 20% and 94% donor chimerism) 

and recipient chimerism (less than 20% donor cell chimerism).  

A total of 12 patients had full donor chimerism and 5 patients had mixed 

chimerism at the last follow up (Figure 9.15).  Out of 12 patients with full donor 

chimerism, 6 patients received busulfan 16mg/kg, 5 patients received busulfan 

8mg/kg and only 1 patient was unconditioned.  There was no association between 

latest donor chimerism more than 95% and preparative regimen prior to HSCT, p 

= 0.51 (Fisher exact test).  

 

Figure 10.14  Bar chart showing number of patients with donor chimerism 

according to the preparative regimen received prior to HSCT. 
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10.6 Summary of very long-term outcome for Newcastle and London SCID 

cohort post-HSCT 

A 20 year survival for this cohort was 52.7% (95% CI 40.7 – 63.3%) and TRM 

was 42.6%.  Significant influencing factors of survival outcome in this cohort was 

donor groups (p = 0.0009), early age at HSCT and infection free status pre-HSCT 

(p = 0.03), and grading of acute GVHD (p = 0.01).  A significant number of 

patients was missing or unidentified and this may influenced the result of this 

cohort. 

The majority of those who are more than 20 years post-HSCT have on-going 

medical issues (26 out of 28 patients).  The main clinical issues observed were 

dermatological issues (48%) and dental issues (36%).  Only one patient remained 

on immunoglobulin replacement therapy. Four successful pregnancies have been 

documented in this cohort.  Significant association is noted between types of 

SCID genotypes and the incidence of warts (p = 0.004) and neurocognitive issues 

(p = 0.006). 

Sustained CD3+ and CD4+ lymphocyte production continues until the third 

decade of life.  There was no significant difference noted between all immune 

parameters at the last follow up and preparative regimen; except for NK cells, 

which were significantly higher in conditioned recipients (p = 0.03).  There was 

no association between latest donor chimerism more than 95% and the preparative 

regimen prior to HSCT, p = 0.51. 

  
Important findings: 

x Only one late death was documented in this cohort. 

 

x Significant influencing factors of survival outcome were 

donor groups, early age at HSCT and infection free status pre-

HSCT, and severity of acute GVHD. 

 

x Sustained CD3+ and CD4+ lymphocyte production continues 

until the third decade of life.   
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 Discussion 
 
In this chapter findings of the study will be discussed, specifically focusing on 

four major themes; clinical outcome, longitudinal immune reconstitution, 

chimerism at last follow up, and quality of life in reference to specific SCID 

genotypes.  The result of newborn SCID transplants and outcome of SCID 

patients more than 20 years post-HSCT of Newcastle and London cohorts will 

also be discussed as separate subtopics.   

 

Two new major findings were identified from this study which were the 

determination of impact of conditioning on the long-term immune reconstitution 

and characterization of the quality of life according to specific SCID genotypes.   

 

The principal findings of this study are that many SCID survivors’ post-HSCT 

experience on-going medical issues long after their transplant, and that 

conditioning was associated with better long-term immune reconstitution, donor 

B-lymphocyte chimerism, a greater chance of freedom from immunoglobulin 

replacement therapy and normal quality of life.   

Apart from the descriptions of the clinical long-term outcome of SCID post-

transplantation, detailed outcomes of long-term immune reconstitution, factors 

influencing the outcome of donor chimerism and importantly, objective 

assessment of quality of life for the SCID survivors according to SCID genotypes, 

have also been identified.  This serves as an important landmark as it demonstrate 

that different SCID genotypes have different characteristics, which may influence 

transplantation outcome in the long-term.  

11.1 Discussion on the findings of the Newcastle SCID cohort 

11.1.1 Survival outcome 

The ten-year survival outcome for the described SCID genotypes in the Newcastle 

cohort ranged between 71 – 84%.  This is comparable with the published survival 

rates from multiple established centres around the world [2, 43, 44].  Importantly, 

most of the deaths in this cohort occurred within the first year post-HSCT and 

were mainly due to infections.  Similar results have been found in the published 
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American multi-centre outcome, suggesting that transplant-related mortality 

remains the biggest concern for patients post-HSCT [44].     

Despite the concerns of the preparative regimen prior to HSCT, there were no 

significant differences in survival between unconditioned and conditioned 

recipients in all 8 SCID genotypes from this cohort.  This reflects similar 

observations in European multi-centre reports [2] but differs from the American 

multi-centre report of poorer survival in conditioned recipients [44].  An 

alternative explanation would be that varying centre’s expertise may influence the 

outcome.  Further prospective research is necessary to establish a clearer 

relationship between conditioning and survival, with comparison between specific 

types of conditioning regimens.   

11.1.2 Long-term clinical outcome 

On-going medical concerns remain a significant issue among the SCID survivors 

post-HSCT.  The proportion documented was 55% - 87% depending on the 

specific SCID genotype.  There are several long-term clinical conditions 

identified that occur specifically in some SCID genotypes, but not in others.   

Firstly, ADA SCID survivors had the highest percentage of on-going medical 

issues at the last follow up (87%), with a significant increase of neurocognitive 

problems and hearing loss.  These findings support previous evidence on the 

association of cognitive/behavioural abnormalities and ADA SCID [69, 89, 121, 

122].   A possible explanation for this observation is the ubiquitous nature of the 

ADA gene causing non-immunologic systemic manifestations which may not be 

corrected by HSCT [123].  A study had showed that despite the systemic 

detoxification achieved by HSCT or gene therapy, full correction of metabolic 

alteration in the brain remains a significant issue [124]. Furthermore, a recent 

update by the Italian group has reported persistence of neurological deficits even 

after gene therapy [125].  At the same time, the availability of newborn screening 

enables early detection of SCID during neonatal period [1, 126-128].  It would be 

of interest to see whether treatment at birth (HSCT) would ameliorate the 

neurocognitive defect in ADA SCID.           

Secondly, this study’s findings concur with published reports on the incidence of 

warts in IL2RG/JAK3 SCID survivors [43, 65-68, 121]. The present study 
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identified a 24% incidence of warts in the IL2RG/JAK3 SCID cohort.  However, 

no association was found between the incidence of warts and low NK cell count 

or preparative regimen.  Additionally, warts were reported in 5 patients of the 

IL7Rα SCID cohort, which has been described in few studies [43, 121].  From 

personal observations, warts in the IL7Rα SCID cohort were less severe in terms 

of clinical disease manifestations and resolved completely as opposed to those in 

the IL2RG/JAK3 cohort, which tended to have a chronic and debilitating course.  

This view is supported by a previous report in the Italian cohort, where a similar 

pattern of severe warts was observed in JAK3 patients, but not in IL7Rα SCID 

[121].  A future prospective study with a larger number of patients is needed to 

confirm this observation.    

Thirdly, Artemis SCID survivors experienced more on-going medical issues than 

RAG 1/2 SCID, (85% and 55%, respectively).  Notably, all conditioned Artemis 

SCID patients in this cohort experienced on-going medical issues, which supports 

a single previously published research that conditioning may lead to a higher risk 

of long-term issues (such as poor growth, dental abnormalities and endocrine late 

effect) [54].   

With regards to growth, short stature was identified in all described SCID 

genotypes with ADA SCID and Artemis SCID having the most affected numbers 

of patients post-transplantation.  This finding confirms the previously published 

observation of growth retardation in Artemis SCID recipients conditioned with 

alkylating agents, even though no association was noted between short stature and 

conditioning regimen in either genotype in this study, although this could be due 

to the small number of patients available for analysis [54, 129]. 

From the study, dental issues were identified in conditioned recipients of Artemis 

and ADA SCID.  This observation is supported by earlier work suggesting an 

association between preparative regimen and dental developmental anomalies 

post-HSCT [54, 130].  Possibly the DNA repair defects in Artemis SCID with 

combination of damage from the myeloablative conditioning makes them more 

susceptible to dental damage post-HSCT [54]. 
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11.1.3 Chimerism at last follow up 

 

There was a high correlation between B-lymphocyte donor chimerism and 

myeloid donor chimerism post-transplant in IL2RG/JAK3 SCID, IL7Rα SCID, 

ADA SCID, Artemis and RAG 1/2 SCID.  This provides objective evidence of a 

strong association between B-lymphocyte donor chimerism and myeloid donor 

chimerism post-transplant, irrespective of B+ SCID phenotype or B- SCID 

phenotype.    

Importantly, further analysis demonstrated that conditioning was highly predictive 

for improved myeloid donor chimerism at the last follow up.  This supports the 

hypothesis that conditioning prior to HSCT is vital in achieving better myeloid 

and B-lymphocyte engraftment post-transplantation and is consistent with 

previous published reports [40, 43, 54].  From the multivariate analysis, low 

toxicity MAC regimen (treosulfan/fludarabine) is superior when compared to 

MAC regimen (busulfan) for better myeloid donor chimerism at last follow up.  

This finding has an important clinical implication in which it added the 

advantages of low toxicity MAC regimen in SCID HSCT planning, as low 

toxicity MAC also showed to have lower toxicity profile compared to MAC 

regimen in previous publications [131, 132].     

The translation of B-lymphocyte donor chimerism status and immunoglobulin 

replacement therapy has been further investigated.  Those with immunoglobulin 

independence have more than 50% B-lymphocyte donor chimerism in 

IL2RG/JAK3 SCID patients.  This evidence supports the theory that donor B-

lymphocyte engraftment is essential for functioning B-lymphocyte reconstitution 

in the presence of an intrinsic defect of host’s B-lymphoycte in IL2RG/JAK3 

SCID [75, 133]. 

IL7Rα SCID survivors post-HSCT have the highest proportion of patients free 

from immunoglobulin replacement therapy; in comparison to other SCID 

genotypes [IL7Rα (93%), ADA SCID (81%), RAG 1 and RAG 2 (77%), Artemis 

SCID (57%), IL2RG/JAK3 SCID (55%)].  Almost all IL7Rα SCID patients were 

free from immunoglobulin replacement therapy, except for one patient with 

chronic lung disease.  The normal functioning host B-lymphocytes seen in IL7Rα 
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SCID provides a possible explanation to the high percentage of freedom from 

immunoglobulin replacement therapy [63]. 

My results demonstrated that more conditioned Artemis and RAG 1/2 SCID 

recipients were able to be free from immunoglobulin replacement therapy.  This 

supports the notion that conditioning is vital for better B-lymphocyte 

reconstitution, chimerism and chances of freedom from immunoglobulin 

replacement therapy after HSCT in Artemis and RAG 1/2 SCID [54, 63].  As 

Artemis and RAG 1/2 SCID patients do not have B-lymphocyte, preparative 

regimen prior to HSCT is vital to ensure better donor’ myeloid and B-lymphocyte 

engraftment.  However, medical on-going issues is a major issues for conditioned 

Artemis SCID patients during long term follow up post-HSCT.  This necessitate 

the search for conditioning regimen with high safety profile, low toxicity and 

allowing durable engraftment simultaneously.    

11.1.4 Longitudinal immune reconstitution post-HSCT 

 

As well as confirming findings from other published studies, this study has 

demonstrated several findings that differ from other studies.  Importantly, this 

study showed that conditioned groups had significantly higher CD4+ naïve 

lymphocyte in ADA SCID, Artemis and RAG1/2 SCID patients and a borderline 

significance in IL2RG/JAK3 SCID patients.  The thymopoeisis was non-

significantly higher in conditioned IL7Rα SCID patients compared to 

unconditioned recipients.   

Another important finding from the longitudinal analysis of the immune 

reconstitution parameters is the downward trends of CD3+ and CD4+ naïve 

lymphocytes over time.  This observation conforms to the normal downward trend 

of thymopoiesis seen in normal aging population due to the effect of time on 

thymus involution [49, 134].  All conditioned recipients in individual SCID 

genotypes and newborn SCID in the Newcastle cohort have mean values of CD4+ 

naïve lymphocyte more than 200cells/µl at 10 years post-HSCT which was 

comparable to normal adult population value [43].   
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A possible explanation may be that in conditioned patients, the thymic niche is 

consistently re-seeded from bone marrow-derived donor stem cells leading to on-

going thymopoiesis, whereas for unconditioned recipients, initial seeding of the 

thymic niche at time of infusion is not generally followed by re-seeding, as donor 

stem cell engraftment does not consistently occur in the bone marrow, and thymic 

seeding may have a finite lifetime, leading eventually to thymic exhaustion [73, 

106, 135].  The finding of better thymopoiesis in the conditioned Artemis, 

RAG1/2 SCID and IL7Rα SCID patients also supports the hypothesis of 

association between host natural killer cells and permissive condition in the 

marrow niche and conditioning is a pre-requisite for better engraftment post-

HSCT in NK+ SCID phenotypes [61].    

Furthermore, this study demonstrated sustained production of CD3+, CD4+ and 

CD4+ naïve lymphocytes; even until the third decade post-HSCT in some of the 8 

described SCID genotypes (ADA SCID, IL2RG/JAK3 SCID, IL7Rα, Artemis and 

RAG1/2 SCID).  This confirmed previous findings showing that T-lymphocyte 

production persists until adulthood [73, 74, 104, 106].   

 

However, it was not so straightforward in the longitudinal analysis of CD19+ and 

NK cells.  The findings varied with each SCID genotype.  The longitudinal trend 

of CD 19+ lymphocytes was significantly higher in conditioned ADA SCID 

patients and non-significantly better in conditioned Artemis and RAG 1/2 SCID 

patients.  There were no significant differences in the longitudinal trend of CD19+ 

lymphocytes between conditioned and unconditioned recipients in IL2RG/JAK3 

SCID, IL7Rα SCID.  Importantly, B-lymphocyte counts alone were inadequate 

for the assessment of B-lymphocyte functions.  More detail assessments of B-

lymphocyte function require the quantification of serum immunoglobulin levels 

and donor B-lymphocyte and myeloid chimerism. 

 

With regards to the longitudinal trend of NK cells post-HSCT, higher trends were 

seen in conditioned ADA SCID patients, unconditioned Artemis and RAG 1/2 

SCID patients and unconditioned IL7Rα SCID patients.  No difference was noted 

for IL2RG/JAK3 SCID patients.   
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As mentioned in Chapter 2, conditioning has a role in emptying the marrow niche 

and this facilitates engraftment of the donor’s progenitor stem cells. Theoretically, 

the longitudinal trend of NK cells was expected to be higher in conditioned 

Artemis and RAG1/2 SCID, but my study showed a contradictory result.  

However, there are limited specific publications discussing the long-term 

reconstitution of CD19+ lymphocyte and NK cells for each specific SCID 

genotype, and they were mainly cross-sectional rather than longitudinal making 

direct comparisons between studies difficult [54, 63, 70].  Hence, it is unclear 

whether this observation is accurate, possibly the small sample size coupled with 

missing data may be a possible explanation for the contradictory findings.  A 

prospective study involving a larger number of patients would be the next step 

forward as an attempt to further characterize the long-term immune reconstitution 

post-transplant.    

 
11.1.5 Quality of Life  

 

One of the most important outcome measure in this study was the objective 

measurement of quality of life.   This is the only study that has examined the 

quality of life of survivors post-HSCT according to specific SCID genotypes.  The 

principal findings in this study are that, for IL2RG/JAK3 SCID, RAG1/2 SCID, 

Artemis SCID and ADA SCID parents/carers, reported a lower quality of life in 

their child in comparison to the UK’s normal population.  This is comparable to 

prior published finding where parents/carers of SCID patients post-HSCT 

reported worse emotional and behavioural difficulties compared to a normal 

population [89].  In view of this finding, it is important for SCID patients post-

HSCT to be follow up lifelong so that early identification of any issues can be 

guaranteed. 

However, parents and patients of IL2RG/JAK3 SCID who are free from 

immunoglobulin replacement therapy reported no significant difference in quality 

of life to the normal UK population.  Furthermore, 93% of IL7Rα SCID survivors 

in this cohort were free from immunoglobulin therapy and they reported a normal 

quality of life.  These findings suggest freedom from immunoglobulin 

replacement therapy is associated with normal quality of life.  It also provides 

evidence that immunoglobulin replacement therapy does influence patients’ 
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quality of life, even though the methods of immunoglobulin administration have 

substantially improved from intravenous administration that requires hospital or 

daycare attendance, to subcutaneous immunoglobulin delivery that can be 

provided at home.  This finding was also consistent with the lower quality of life 

reported in the study of the cohort of the UK’s Primary Antibody Deficiency 

patients, who are on lifelong immunoglobulin replacement therapy [93].  For this 

reason, future development in improving methods of immunoglobulin 

administration is important as a way of improving the quality of life of patients.   

Furthermore, ensuring SCID patients become immunoglobulin independent 

should be the aim of our clinical management as this study shows that 

immunoglobulin independence contributes to normal quality of life in SCID 

patients post-HSCT.  Conditioning with low toxicity MAC generally restores B-

lymphocyte function, but is associated with possible long-term effects such as 

infertility.  The use of non-toxic conditioning such as anti-cKit or anti CD45 

antibodies that create marrow niche space may have a better safety profile with 

reduced side effects and improved B-lymphocyte reconstitution [131, 132]. 

Freedom from on-going medical issues was associated with normal quality of life 

as reported by both parents and patients of Artemis and RAG 1/2 SCID.  Thus, 

normal quality of life for SCID survivors post-HSCT can be achieved if they have 

no on-going medical issues and are immunoglobulin independent.  

Another interesting finding was that parents tend to give lower scores than their 

children.  This is similar to a few other published reports [90, 92].  A possible 

explanation could be due to disruption in the family socio-dynamic and daily 

routine activity, especially concerning those with on-going medical issues and/or 

immunoglobulin dependence.  Parents also tend to have a higher expectation of 

their child’s health outcome when the immune defect has been corrected via 

HSCT.  Future studies including qualitative components are needed to explore the 

cause for discrepancy in parent/child QoL reports and to improve understanding 

of what influences the long-term quality of life for SCID survivors. 

As a summary, those with higher disease burden are more likely to report lower 

quality of life compared to those who did not have on-going medical issues and 
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are free from immunoglobulin replacement therapy, who have a normal quality of 

life.   

 

11.2 Discussion of the long-term outcome of newborn SCID in Newcastle 

cohort 

This study highlighted the superior survival noted in those with newborn 

diagnosis of SCID compared to those who were diagnosed later.  Infection status 

prior to HSCT remains the most important factor influencing the survival as 

reported in previous published studies [3, 44, 120].  These findings added strength 

to current body of evidence that earlier detection with infection free status leads to 

better chances of survival post-HSCT and poses strong  support for newborn 

screening for SCID.  The earlier detection of SCID patients enables earlier 

institution of protective isolation, antibiotic prophylaxis, nutritional rehabilitation 

and importantly, avoidance of live vaccinations that could lead to major problems 

during HSCT such as disseminated BCG infections and vaccine-related rotavirus 

gastroenteritis.    

Four very important  findings were established from the newborn cohort study in 

Newcastle.  Firstly, improved thymopoiesis was observed in the conditioned 

newborn SCID patients compared to unconditioned recipients.  Further 

comparison showed better CD4+ naïve lymphocytes counts  trend over time in the 

newborn SCID compared to those who were diagnosed beyond the neonatal 

period, but not in the longitudinal trend of CD3+ lymphocytes.  In a way, these 

findings  support a previous finding of superior thymopoiesis and survival seen in 

those transplanted in neonatal period compared to later but not completely [119].  

Thus, it may suggest a possibility that the preparative regimens have a major 

influence in determination of long-term thymopoiesis compared to timing of 

HSCT.  However, this hypothesis needs to be confirmed with further prospective 

study of long-term thymopoiesis involving newborn SCID detected through a 

newborn screening program.   

Secondly, newborn SCID patients who received low toxicity MAC have 

significantly less on-going medical issues at last follow up compared to MAC 

recipients.  This finding is new and interesting as it suggest a low toxicity MAC 
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has better long term safety profile, especially considering the early timing of 

HSCT for newborn SCID, which poses the highest risk of long term side effects.  

However, it is worth noting that the low toxicity MAC recipients were younger 

than MAC recipients cohort.  This warrants a longer follow up to fully ascertain 

the side effects of different preparative regimens and the effect on the long term 

outcome post-HSCT.  Only one available published report on the long term 

outcome for neonatal SCID HSCT, which showed superior survival and 

thymopoeisis for those who had transplantation during neonatal period [119].  

However, all patients in that cohort were unconditioned recipients and there was 

no description of the on-going medical issues for the survivors at last follow up.    

Thirdly, the likelihood of freedom from immunoglobulin replacement therapy was 

significantly higher in the conditioned newborn SCID patients.  Although 

conditioning is associated with on-going medical issues at last follow up, it 

remains the most significant predictive factor for freedom from immunoglobulin 

replacement therapy.  What is important now is to find a conditioning regimen 

with a low toxicity but at the same time is adequately myeloablative to ensure 

maximal engraftment.        

Finally, both parents of and children with newborn SCID reported normal QoL 

compared to those who were diagnosed later, except for the social and school 

domains.  This finding is new.  Further comparison showed those who were 

diagnosed beyond neonatal period reported worse QoL compared to UK normal 

population.  This is interesting as there were no significant differences in 

incidence of on-going medical issues between newborn SCID and those who were 

diagnosed later in the Newcastle cohort to explain this discrepancy.  A possible 

explanation could be that the experience of undergoing HSCT possibly differs 

between parents of newborn SCID as opposed to parents of older children.  Thus, 

this result supported the idea of screening for newborn SCID with the aim of 

earlier detection and earlier timing of HSCT, which could lead to better survival 

and improved long-term quality of life.    
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11.3 Discussion of the more than 20 years long-term outcome of 

Newcastle and London cohort 

 

This section of the study is very important as it describes the very long-term 

outcome of SCID patients post-HSCT.  Only 24% of the cohort were MSD 

recipients and the majority of the patients received haploidentical HSCT.  Due to 

the historical timeline, only three types of conditioning were practiced, busulfan 

(myeloablative), NMA (non-myeloablative) or no conditioning.  As expected, the 

number of HSCTs done increased throughout the decades, which reflects the 

increased development of HSCT units in the UK over time.  The proportion of 

conditioned and unconditioned recipients was similar, with only a minority 

receiving NMA.   

Twenty year survival for this cohort was 52.7%, which is comparable with 

previous publications from the same timeframe [20, 60].  Importantly, there was 

only one death after 2 years post-HSCT.  This finding suggest that if patients 

survive the immediate post-HSCT period, they may have a normal life 

expectancy.  Almost all causes of early deaths were related to the transplant 

procedures.  Furthermore, none of those with acute GVHD grade IV survived 

more than 2 years post-HSCT. This finding also emphasized the importance of 

careful planning for HSCT with the aim of avoiding immediate post-transplant 

complications such as acute GVHD, capillary leak and pneumonitis.   

There were no significant differences between conditioned and unconditioned 

recipients, but none of the NMA recipients survived more than 2 years post-

HSCT.  Clearly, NMA was not an attractive regimen, hence explaining why it is 

not currently used.  Another possible explanation of worse outcome in NMA 

recipients could be that these patients were already too sick for a more intense 

preparative regimen but were not suitable for infusion of stem cell.  From the 

limited available information, all three NMA recipients were diagnosed after 3 

months old, had on-going infections prior to their HSCT and 2 patients received 

haploidentical donor and one patient received MRD HSCT.    
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The late death was an unconditioned recipient with infection as the cause of death.  

It would be interesting to get further details on this patient immunoglobulin 

replacement status and the immune reconstitution,  as these may support the 

hypothesis that conditioning gives better immune reconstitution in the long run, 

and subsequently offers better protection from infections [43].   

Even though this research demonstrated that MSD recipients had the best survival 

(at 72.2%) among all donor categories; importantly, those who were transplanted 

early with no pre-HSCT infection were shown to have a better survival rate of 

90.9%.  These findings are impressive considering the HSCT timing was before 

1994 and the results are comparable to those from a current modern American 

multicentre cohort report of 2000 until 2009 [44].  This has highlighted the 

importance of the early timing of HSCT and infection free status for SCID 

patients for a better survival outcome post-HSCT [3, 44].  Concurrently, this 

provides strong evidence to support and promote SCID’s newborn screening 

development programme in the UK and globally.     

A few medical issues were seen in specific SCID genotypes as shown in previous 

publications, such as viral cutaneous warts (noted only in IL2RG, JAK3, IL7Rα 

SCID and reticular dysgenesis patients) and neurocognitive issues, mainly 

observed in ADA SCID survivors [43, 67, 70, 77].  Further analysis of other 

medical issues and SCID genotypes was not done due to the limited sample size.  

Ten out of eleven patients with dental issues had received a conditioning regimen 

prior to their HSCT.  Of note, four successful pregnancies were recorded, with 

three patients being conditioned recipients, and all except for one IL2RG SCID 

were free from immunoglobulin replacement therapy. The sustained production of 

CD3+ and CD4+ lymphocytes even up until thirty years post-HSCT has clearly 

been demonstrated.  However, further detailed analysis was not performed due to 

missing data.  

11.4 Strengths of the study 

 

The main strength of this study is in the detailed nature of the data focusing on 

specific SCID genotypes.  This enables us to develop a better evidence base and 

identify prognostic factors useful for counselling of parents and patients for 
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specific genotypes, rather than for the SCID cohort as a whole which may be 

misleading, given the reported genotype differences.  

 

As the long-term outcome for specific SCID genotypes (IL2RG/JAK3, IL7Rα 

SCID, ADA SCID, Artemis and RAG 1/2 SCID) is a single centre study, this 

eliminates the potential bias seen in multicentre studies (from centre effects) as 

the protocols, quality of medical care, quality of the stem cell grafts and the 

managing team remains constant.    

 

All data collection, clinical record retrieval and data analyses were performed 

solely by myself.  This ensures consistency and also minimised the risk of an error 

that could have happened if data retrieval was done by several investigators.  

Measures of checking for data errors and cleaning the data sheet were undertaken 

by the primary researcher.     

 

The longitudinal analysis performed for the long-term immune-reconstitution 

enables the assessment of change over time [114].  This is to answer the research 

questions of how immune parameter changed after transplantation and can we 

predict changes of immune parameter post-HSCT according to the preparative 

therapy prior to HSCT.  Longitudinal analysis is more accurate in addressing that 

research question in comparison to cross-sectional analysis, as it involves analysis 

of a serial data measurements of same patients over a period of time [136].  

Furthermore, analysis using the multi-level mixed modelling handles the random 

missing data efficiently as it is not influenced by the missing data [137]. 

 

11.5 Limitation of the study 

11.5.1 Research methodology 

The main limitation was missing data.  This is unavoidable due to the 

retrospective nature of this study. Measures have been taken to improve data 

collection both for Newcastle and London centres, such as extensive trawling of 

information from various storage formats (hardcopy medical notes, clinic letters, 

electronic databases and digital data storage).  It was beyond the scope of the 

research for data retrieval in the external sources such as general practitioner 

records.  
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.  

11.5.2 Statistical analysis 

Due to the rarity of the disease, the number of patients in the study was small, 

especially with consideration of sub-group analysis and comparisons.  As 

mentioned before, multiple testing giving chance significant findings is another 

possibility to consider.   

11.5.3 Potential Bias 

Potential bias identified from the very long-term UK cohort was that those who 

were unidentified or missing from follow up were significantly older than the 

known patients.  This could cause bias in reporting the clinical outcome as it is not 

clear whether they are still alive and well, or have on-going medical issues, 

therefore it is crucial to acknowledge this potential bias.  Detailed analysis of 

immune reconstitution was deferred in view of missing data.  

Another limitation is the selection bias that could arise from the respondents of 

PedsQL questionnaires.  The respondent rates were not 100%, and the majority of 

the non-respondents were also follow up defaulters.  This may lead to bias in 

reporting QoL as it is not possible to identify whether those who did not turn up to 

follow up neglected to do so because they are healthy and decided not to come for 

medical follow up, or whether it was because they may no longer be alive.  

Measures such as postal questionnaires were undertaken to improve the response 

rate, with a focus on reaching the defaulters.    

 

Ideally, a future study would be best as mixed method, including both qualitative 

and quantitative components, with focus on exploring the risk factors associated 

with quality of life for SCID survivors post-transplant.  However, time was 

limited, and this opens the possibility for future research.  

 

11.6 Future perspectives  

11.6.1 Gene Therapy 

Gene therapy offers promising hope for SCID patients.  This intervention was 

created as a means of finding safer methods for the cure of SCID for those lacking 
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a suitable donor, other than hematopoietic stem cell transplantation.  In principal, 

gene therapy involves a vector as a carrier for gene material which is introduced 

to the patient cells for the correction of the defect of the disease.  Work on gene 

therapy for ADA SCID and Common γ chain SCID has been explored since the 

1990s [138-140].  Five clinical trials on the ex-vivo gene therapy with γ-retroviral 

vectors were published between 1999 and 2009, involving 20 classic Common γ 

chain SCID and 27 ADA SCID patients [139-143].  The results were impressive 

as 85% of Common γ chain SCID patients and 70% of ADA SCID were 

considered cured of their disease with almost complete immune-reconstitution.  

However, this success was hampered by the occurrence of serious side effects, in 

which five of the twenty Common γ chain SCID patients developed T lymphocyte 

leukemic disease within 15 years of the procedure.  One died and the rest received 

chemotherapy plus a booster transplant and survived.  As a result, the clinical 

trials were suspended temporarily.  It has since been found that integration of the 

retroviral vector in the gene region causes deregulated expression of LMO2 T-

lymphocyte oncogenes and multiple hits in addition to other genes leading to 

uncontrolled clonal proliferation of T lymphocytes [144]. 

New lentiviral vectors have been formulated and shown to be effective with better 

safety profiles in trials [145, 146].  Currently, gene therapy is recommended as the 

next therapeutic option for ADA SCID patients without a matched sibling donor 

[128]. What is exciting would be a comparison of the long-term immune 

reconstitution between gene therapy and HSCT recipients.  It would be also 

interesting to see whether gene therapy is able to ameroliate the neurocognitive 

behavioural defects associated with ADA SCID.   

11.6.2 Newborn Screening 

Data from multiple observational studies supports the notion that early diagnosis, 

and early transplantation improves the survival outcome and quality of life of 

SCID patients [3, 44].  The idea began to materialize after the ability to recognize 

and quantify T-lymphocyte receptor excision circles (TRECSs) from dried 

bloodspots became available in 2005 [147].  TRECS is useful as an indicator of 

intra-thymic T lymphopoeisis.  They are produced during the V(D)J re-

arrangement of T lymphocyte in the thymus and cut-out from the naïve T 

lymphocyte upon activation in the peripheral circulation.  The absence or 
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reduction of TRECSs does correlate with poor thymic output of T-lymphocytes, 

thus indicating profound T-lymphocyte deficiency which is a universal feature in 

SCID, irrespective of the genotype and phenotype characteristics [148].    

Several steps have been taken by immunologists in the United States of America 

including pilot projects and systemic reviews in assessing the feasibility of 

population-based newborn screening for SCID [147, 149-151].  Finally, 

population-based newborn screening for SCID via measuring TRECSS in dried 

bloodspots was approved by the Secretary’s Advisory Committee on Heritable 

Disorders of Newborn and Children in 2010 [152].  Up until 2011, it was 

practiced in 6 states and 1 territory in the USA; and out of 961, 925 newborn 

screened, 14 cases of classical SCID and 40 cases of T lymphopenia that were not 

related to SCID have been identified [153].  Latest publication by an American 

institution proposed a systematic guideline for the management of newborn 

identified with SCID during neonatal screening [126].        

Newborn screening has had several major impacts on SCID patients.  The latest 

result from the newborn screening project demonstrated higher prevalence of 

SCID, 1 in 58000 births [1].  This is suggestive that SCID might not be as rare as 

previously thought.  Furthermore, implementation of newborn SCID screening in 

US showed that more autosomal recessive SCID have been detected than X-

linked SCID.  This is suggestive that the actual incidence of SCID according to 

genotypes may  differ between the observational reported cases and those detected 

by unbiased neonatal screening [127].   

From my study and the previous published studies, it is clearly shown that  earlier 

transplant age coupled with infection free status predicts the best survival and 

clinical outcome [2, 44].  The availability of newborn screening enables early 

detection of SCID patients during neonatal period with absence of infectious 

disease burden and earlier potential for treatment, and this give better chance of 

survival after HSCT [154].    

11.6.3 New HSCT techniques 

Encouraging data have been published in identifying new efforts to improve 

HSCT techniques.   Improved manipulation of the stem cell graft by TCRαβ and 

CD19 depletion has shown to speed up the T-lymphocyte immune reconstitution 
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of the haploidentical recipients [81-83].  This has successfully met the major 

shortcoming of delayed immune reconstitution found in haploidentical HSCT, and 

offers improved viral clearance.   

Another improvement is the development of adoptive transfer of ex vivo selected 

donor derived T lymphocytes in combination with the suicide gene, which offers 

the option of controlling the viral infection during the immediate post-HSCT 

period before thymus-derived T-lymphocyte immune recovery occurs [84].  The 

availability of suicide genes and administration of prodrugs enables recognition 

and apoptosis of the donor T-lymphocyte if acute GVHD occurs; thus avoiding 

risk of GVHD and concurrently offering viral protection.  Currently, it is still in 

clinical trial phase I-II and preliminary results have been promising [85]. 

 

Further studies are needed in assessing the quality of immune reconstitution post-

HSCT.  Apart from quantification of thymopoiesis marker, new techniques in 

assessing the repertoire of T lymphocytes have been introduced such as CDR3 

spectratyping.  CDR3 spectratyping enables the assessment of diversity and 

versatility of T lymphocyte repertoires by characterizing length distribution of 

third complementarity determining region (CDR3) in beta variable (TRBV) 

subfamilies [155].   
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 Conclusion 

12.1 General 

Hematopoietic stem cell transplantation offers a curative option for severe 

combined immunodeficiency patients.  Even though HSCT posed a significant 

risk, survival has improved as the options of better HSCT techniques, donor 

options, improved specialised care are available now.  

 

12.2 Clinical Implication 

Early timing of HSCT and infection status pre-HSCT remains vital in ensuring 

better survival outcome of patients.  There was no significant difference of 

survival between conditioned and unconditioned recipients. 

A high awareness of specific medical issues that may occur in specific SCID 

genotypes may aid clinicians during the long-term follow up care so that 

interventions such as psychosocial supports and cognitive behaviour therapy for 

ADA SCID patients may be offered. 

This study demonstrated that conditioning is crucial in HSCT for SCID to achieve 

better engraftment, sustained thymopoiesis, donor chimerism and a higher chance 

of immunoglobulin independence.   

Low toxicity MAC regimen was shown to have better safety profile and promotes 

better myeloid engraftment post-HSCT compared to MAC regimen. 

There is a significant correlation between myeloid donor chimerism and B-

lymphocyte donor chimerism during post-HSCT period. 

Freedom from immunoglobulin replacement therapy and on-going medical issues 

contribute significantly to a normal quality of life for SCID survivors post-HSCT. 

Lifelong follow up should be offered to all SCID survivors so that any medical 

issues can be identified leading to early intervention.  
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12.3 Research Implication 

A prospective study assessing the immune reconstitution profile post-HSCT with 

focus on conditioning regimen, donor types and SCID genotypes is needed. 

The development of a conditioning regimen with a better safety profile, but at the 

same time one which is myeloablative enough to ensure optimal engraftment at 

the risk of minimum side effects, is needed.   

A mixed-methods study assessing the long-term quality of life would facilitates 

our understanding of the factors influencing QoL of SCID patients post-HSCT.   
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 Appendices 
 

13.1 Appendix A: Permission to use PedsQL 
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13.2 Appendix B: PedsQL Quality of Life version 4.0 Questionnaires (Parent 

Report) 

 

13.2.1 PedsQL Quality of Life version 4.0 Questionnaires for Age 2 – 4 years 

old (Parent Report) 
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13.2.2 PedsQL Quality of Life version 4.0 Questionnaires for Age 5 - 7 years 

old (Parent Report) 
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13.2.3 PedsQL Quality of Life version 4.0 Questionnaires for Age 8 - 12 years 

old (Parent Report) 
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13.2.4 PedsQL Quality of Life version 4.0 Questionnaires for Age 13 - 18 years 

old (Parent Report) 
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13.2.5 PedsQL Quality of Life version 4.0 Questionnaires for Age 18 -25 years 

old (Parent Report) 
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13.2.6 PedsQL Quality of Life version 4.0 Questionnaires for Adult (Parent 

Report) 
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13.3 Appendix C: PedsQL Quality of Life version 4.0 Questionnaires (Child 

Report) 

 

13.3.1 PedsQL Quality of Life version 4.0 Questionnaires for Age 5 - 7 years 

old (Child Report) 
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13.3.2 PedsQL Quality of Life version 4.0 Questionnaires for Age 8 - 12 years 

old (Child Report) 
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13.3.3 PedsQL Quality of Life version 4.0 Questionnaires for Age 13 - 18 years 

old (Child Report) 

 
 



239 
 

 
 
 

 

 

 

 



240 
 

 

13.3.4 PedsQL Quality of Life version 4.0 Questionnaires for Age 18 - 25 years 

old (Young Adult Report) 
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13.3.5 PedsQL Quality of Life version 4.0 Questionnaires for Adult (Adult 

Report) 
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13.4 Appendix D: Publication 

13.4.1 Brief Report - Blood  

Abd Hamid, I. J., Slatter, M. A., McKendrick, F., Pearce, M. S., & Gennery, A. R. 

(2017). Long-term outcome of hematopoietic stem cell transplantation for 

IL2RG/JAK3 SCID-: a cohort report. Blood, (), blood-2016-11-748616. Accessed 

April 26, 2017. https://doi.org/10.1182/blood-2016-11-748616 
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13.4.2 IL7Rα SCID paper 

Engelhardt, K.R., Yaobo Xu, Angela Grainger, Mila G. C. Germani Batacchi, 

David J. Swan, Joseph D. P. Willet, Intan J. Abd Hamid, Philipp Agyeman, 

Dawn Barge, Shahnaz Bibi, Lucy Jenkins, Terence J. Flood, Mario Abinun, 

Mary A. Slatter, Andrew R. Gennery, Andrew J. Cant, Mauro Santibanez Koref, 

Kimberly Gilmour, Sophie Hambleton, Identification of Heterozygous Single- and 

Multi-exon Deletions in IL7R by Whole Exome Sequencing. J Clin Immunol, 

2017. 37(1): p. 42-50. 

 

 
 



249 
 

 

 

 

 
 



250 
 

 
 



251 
 

 
 



252 
 

 
 



253 
 

 
 



254 
 

 
 



255 
 

 
 

  



256 
 

13.5 Appendix E: Oral Presentation  

13.5.1 Clinical Immunology Society (CIS) Annual Meeting: Immune 

Deficiency & Dysregulation North American Conference, Boston, USA, 

April 2016  

Title: A Single Centre Cohort Report of Long-term Clinical Outcome of Severe 

Combined Immunodeficiency Following hematopoietic stem cell transplantation. 

Recording available at: 

https://cis.confex.com/cis/2016/webprogram/Session1282.html 

 

13.5.2 European Society for Blood and Bone Marrow Transplantation (EBMT) 

Annual Meeting, Valencia, April 2016 

Title: A Single Centre Cohort Report of Long-term Clinical Outcome of Severe 

Combined Immunodeficiency Following hematopoietic stem cell transplantation. 

 

 
 

13.5.3 Late Effects after Pediatric HSCT: State of the Science, Future 

Directions. Pediatric Blood and Marrow Transplant Consortium. 

Minneapolis, MN, USA May 10 – 11, 2016. 

 

Title: A Single Centre Cohort Report of Long-term Clinical Outcome of Severe 

Combined Immunodeficiency Following hematopoietic stem cell transplantation. 
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13.6 Appendix F: E-Poster Presentation 

13.6.1 Clinical Immunology Society (CIS) Annual Meeting: Immune 

Deficiency & Dysregulation North American Conference, Boston, USA, 

April 2016  

Title: Long-term immune reconstitution post-hematopoietic stem cell 

transplantation in IL2RG/JAK3 SCID, Newcastle experience 
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13.6.2 17th Biennial Meeting of the European Society for Immunodeficiencies, 

Barcelona, September 2016.  
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13.6.3 17th Biennial Meeting of the European Society for Immunodeficiencies, 

Barcelona, September 2016.  
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13.7 Appendix G: Poster presentations 

 
European Bone Marrow Transplantation (EBMT), April 2016, Valencia 
 
 

 
 
 



261 
 

 
 
 
European Bone Marrow Transplantation (EBMT), April 2016, Valencia 
 

 
 
 
 
 
 
 



262 
 

 
 
European Bone Marrow Transplantation (EBMT), April 2016, Valencia 
 
 

  



263 
 

13.8 Appendix H: Prizes 
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