

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING
ELECTRIC POWER SYSTEMS GROUP

Self-Organising Smart
Grid Architectures for

Cyber-Security
A Thesis Presented for the Degree of Doctor of Philosophy

Calum Duncan Cameron

4/1/2017

i
Abstract

Abstract

Current conventional power systems consist of large-scale centralised generation and

unidirectional power flow from generation to demand. This vision for power system design is

being challenged by the need to satisfy the energy trilemma, as the system is required to be

sustainable, available and secure. Emerging technologies are restructuring the power system;

the addition of distributed generation, energy storage and active participation of customers are

changing the roles and requirements of the distribution network. Increased controllability and

monitoring requirements combined with an increase in controllable technologies has played a

pivotal role in the transition towards smart grids. The smart grid concept features a large

amount of sensing and monitoring equipment sharing large volumes of information. This

increased reliance on the ICT infrastructure, raises the importance of cyber-security due to the

number of vulnerabilities which can be exploited by an adversary.

The aim of this research was to address the issue of cyber-security within a smart grid context

through the application of self-organising communication architectures. The work examined

the relevance and potential for self-organisation when performing voltage control in the

presence of a denial of service attack event. The devised self-organising architecture used

techniques adapted from a range of research domains including underwater sensor networks,

wireless communications and smart-vehicle tracking applications. These components were

redesigned for a smart grid application and supported by the development of a fuzzy based

decision making engine. A multi-agent system was selected as the source platform for

delivering the self-organising architecture

The application of self-organisation for cyber-security within a smart grid context is a novel

research area and one which presents a wide range of potential benefits for a future power

system. The results indicated that the developed self-organising architecture was able to avoid

control deterioration during an attack event involving up to 24% of the customer population.

Furthermore, the system also reduces the communication load on the agents involved in the

architecture and demonstrated wider reaching benefits beyond performing voltage control.

ii
Declaration

Declaration

I hereby declare that this thesis is the a record of work undertaken by myself, that is has not

been the subject of any previous application for a degree, and that all sources of information

have been duly acknowledged

Copyright 2017, Calum Duncan Cameron

iii
Acknowledgements

Acknowledgements

Throughout the course of this work several people have been instrumental in offering support,

knowledge and wisdom.

Firstly I would like to thank my supervisory team of Professor Phil Taylor and Dr Haris Patsios

for their tireless efforts in converting me, a graduate of computer forensics and software

engineering into a power-systems researcher. Their faith in my abilities at points when I had

almost completely lost it proved instrumental in completing this work. Their support combined

with their dedication, expertise and knowledge of Viennese schnitzel restaurants have been

instrumental in making a seemingly impossible dream possible.

Additionally I would like to thank the numerous colleagues at Newcastle University who have

made this journey possible and ensured I got to the end more or less unscathed these people

include: Ivan Castro-Leon, Barbara Alimisis, James King, Jialiang Yi and David Greenwood.

Further thanks also to Charles Morisset and Zoya Pourmirza for the assistance in devising an

appropriate cyber-attack strategy for the project. Further thanks to the Durham University CDT

in Energy.

I would also like to express my thanks to my mother and siblings for surviving my company

throughout this process which has not gone unnoticed, and for providing food, and a good

internet connection.

Also major thanks to Rachel Miller, who despite going through a lot in the past year has

remained unwavering, dedicated and very supportive even when everything seemed so bleak.

This was even truer as I missed notable events and social gatherings in the pursuit of completing

this work.

Finally I would like to recognise the cast and crew of both the Shoestring and Matchbox theatre

companies, for accepting that the completion of this thesis and the work associated with it have

meant that I haven’t learned my lines as quick as I would normally do. Special mentions also

go to Bill Wilkinson, Tom Casling and Ken Martin who have remained patient with me as I

missed and arrived late to rehearsals to get more work done.

iv
Publication List

Publication List

Conference Papers

Calum D. Cameron, Phil Taylor, Charalampos Patsios, “Scalability in Smart Grid

Architectures” 2014 49th International Universities Power Engineering Conference (UPEC),

2014, DOI: 10.1109/UPEC.2014.6934655

Calum D. Cameron; Charalampos Patsios; Phil Taylor, “On the benefits of using self-

organising Multi-Agent architectures in network management”, 2015 International Symposium

on Smart Electric Distribution Systems and Technologies (EDST), 2015, DOI:

10.1109/SEDST.2015.7315231

Journal Paper

Calum D. Cameron, Phil Taylor, Charalampos Patsios, Zoya Pourmirza, “Using Self-

Organising Architectures to Mitigate the Impacts of Denial-of-Service Attacks on Voltage

Control Schemes”, IEEE Transactions on Smart Grid (Submitted)

v
Contents

Contents

Chapter 1: Introduction __ 1

 Overview ___ 2

 The Autonomic Power System __ 3

 Multi-Agent systems __ 5

 Cyber-security issues ___ 7

 Self-organisation __ 10

 Research objectives __ 12

 Thesis outline ___ 13

Chapter 2: The Cyber-Physical power system __________________________________ 15

 Introduction __ 16

 MAS For Power Systems ___ 17

 MAS Platforms ___ 18

 Control and Communication Architectures __________________________________ 19

 Smart Grid Projects ___ 26

 Vulnerability to Cyber Threats __ 40

 Conclusions __ 43

Chapter 3: Multi-Agent Architectures for Voltage Control _______________________ 46

 Introduction __ 47

 Test Network ___ 47

 Architecture Designs ___ 51

 Agent Specification __ 57

 Performance Criteria __ 59

 Results __ 63

 Conclusion ___ 69

 Summary __ 70

Chapter 4: Self-Organising Systems ___ 71

 Introduction __ 72

 Self-organising Concepts ___ 73

 Applications __ 76

 Research Gaps and Opportunities __ 94

 Discussion and Conclusion __ 96

vi
Contents

 Summary ___ 101

Chapter 5: Developing a Self-Organising architecture _________________________ 102

 System Outline __ 103

 Initialisation Stage ___ 103

 Performance Monitoring __ 106

 Architecture Transisions __ 112

 Simulating Attack Events __ 137

 Summary ___ 139

Chapter 6: Decision Making Engine __ 141

 Introduction ___ 142

 Error Filtration __ 142

 Decision Tree __ 144

 Decision Tree Performance __ 148

 Limitations and Conclusions ___ 154

 A Fuzzy Based Decision Making Engine ____________________________________ 155

 Java Implementation ___ 162

 Triggering a Transition ___ 164

 Summary ___ 165

Chapter 7: Performance Evaluation Framework ______________________________ 167

 Introduction ___ 168

 Test network Configuration __ 169

 Agent Architecture Configuration __ 170

 Control Scenario ___ 171

 Attack Conditions __ 172

 Test Environment Description __ 174

 Implimenting Control ___ 182

 Performance Criteria ___ 183

 Summary ___ 186

Chapter 8: Results___ 187

 Introduction ___ 188

 Baseline Performance ___ 188

 Performance Under Attack __ 194

 Conclusions ___ 210

Chapter 9: Discussion__ 213

vii
Contents

 Introduction ___ 214

 Discussion___ 214

 Research Applications __ 223

 Implementing a Self-Organising Architecture _______________________________ 225

 Development Potential __ 229

 Further Research __ 233

 Summary ___ 236

Chapter 10: Conclusions __ 237

 Overview ___ 238

 Key Findings __ 238

 Fullfillment of Research Objectives _______________________________________ 240

 Summary ___ 243

viii
Figure List

Figure List

Fig. 1.1 – Autonomic Power System Outline Concept ... 4

Fig. 2.1 – Multi-Agent Architectures ... 19

Fig. 2.2 – Traditional and Alternative Advanced Metering Infrastructures .. 21

Fig. 2.3 – Advanced metering infrastructure with additional local controllers... 22

Fig. 2.4 – Centralised and Decentralised Communication Architectures .. 23

Fig. 2.5 – Autonomic System Architecture .. 25

Fig. 2.6 – Electrical Diagram and Controller Locations ... 29

Fig. 2.7 – Communication Links in LVNS ... 31

Fig. 2.8 – SoLa Bristol Communication Architecture ... 33

Fig. 2.9 – Grid4EU German Demonstrator Agent Hierarchy ... 35

Fig. 2.10 – Communication Architecture of the UPGrid Spanish Demonstrator Project 37

Fig. 2.11 – Perth Solar City Communication Architecture ... 39

Fig. 2.12 - Increase in ICS Vulnerabilities .. 41

Fig. 3.1 – Network Diagram .. 48

Fig. 3.2 – Communication flow between agents during control ... 51

Fig. 3.3 – Base Architecture Diagram ... 52

Fig. 3.4 – Clustered Architecture Diagram .. 53

Fig. 3.5 – Tiered Architecture Diagram ... 54

Fig. 3.6 – Disaggregated Architecture .. 55

Fig. 3.7 – Performance Summary Table .. 64

Fig. 3.8 – Voltage Profiles Without Infected agents ... 65

Fig. 3.9 – Voltage Profiles with 45 Infected Customers per Feeder .. 66

Fig. 3.10 – Average Minimum Voltage Ranking Table .. 67

Fig. 3.11 – Average Total Under-Voltage Time per Affected Customer .. 68

Fig. 3.12 – Number of Affected Customers Ranking Chart ... 68

Fig. 4.1 – Observer/Controller Architecture .. 74

Fig. 4.2 – Management Reference Model ... 78

Fig. 4.3 – Example KPI Targets within a Mobile Communication Network ... 79

Fig. 4.4 – Neighbour Discover Packet Format ... 80

Fig. 4.5 – Adaptive Traffic Control Results, with and without Incident ... 86

Fig. 4.6 – Role Swapping in a Self-Organising Multi-Agent System .. 88

Fig. 4.7 – Communication Performance metrics ... 89

Fig. 4.8 – MAS Topology for Power Quality Monitoring ... 92

Fig. 4.9 – IDA Promotion - Post Agent Failure ... 92

Fig. 5.1 – Initialisation Handshaking ... 105

Fig. 5.2 – Receiving Error Messages ... 111

Fig. 5.3 – Pseudocode Regarding Connection Rebalancing .. 114

Fig. 5.4 – Pseudocode for Activating a Substitute .. 116

Fig. 5.5 – Pseudocode for Checking and Adding Connection Objects ... 117

Fig. 5.6 – Data Transfer during Substitution ... 119

Fig. 5.7 – Pseudocode for Activating All Dormant Agents .. 121

Fig. 5.8 – Dormant Agent Receiving the Call to Awaken .. 122

Fig. 5.9 – Active Aggregate Becoming Aware of an Awoken Dormant... 123

Fig. 5.10 – Receiving a Transfer Notification .. 123

Fig. 5.11 – Changes in Number of Connections per Aggregate .. 126

Fig. 5.12 – Triggering Aggregate Promotion .. 129

ix
Figure List

Fig. 5.13 – Informing the Lower Tier ... 130

Fig. 5.14 – Promotion into the Lower Tier .. 131

Fig. 5.15 – Receiving a "PROMOTE_CUSTOMER" Message .. 131

Fig. 5.16 – Response to Receiving a “PROMOTE_SELF” Message ... 132

Fig. 5.17 – Transferring Connections .. 132

Fig. 5.18 – Data flow during a Promotion Event ... 136

Fig. 5.19 - Number of Connections per Agent during a Promotion .. 137

Fig. 5.20 – Launching an Attack .. 138

Fig. 6.1 – Decision Branch for Control Events ... 144

Fig. 6.2 – Decision Branch for Data Events ... 145

Fig. 6.3 – Decision Branch for Congestion Errors .. 146

Fig. 6.4 – Decision Branch for Reactivity Errors .. 146

Fig. 6.5 – Decision Branch for Unresponsive Errors .. 147

Fig. 6.6 – Decision Branch for Under Used Errors ... 148

Fig. 6.7 – Decision Branch for Isolated Errors ... 148

Fig. 6.8 – Error Severities Graph ... 150

Fig. 6.9 – Severities Graph .. 152

Fig. 6.10 – Data Flow at the Aggregation Layer ... 153

Fig. 6.11 – Input Membership Functions... 159

Fig. 6.12 – Decision Output Membership Function ... 160

Fig. 6.13 – Fuzzy Rule Surface ... 162

Fig. 6.14 – Defining Fuzzy Variables ... 162

Fig. 6.15 – Defining Membership Functions within the FCL File ... 163

Fig. 6.16 – Defining the Rule Set within the FCL File ... 163

Fig. 7.1 – Network and Agent Topology Diagram ... 169

Fig. 7.2 – Typical Smart Grid Communication Architecture .. 170

Fig. 7.3 – Gateway Agent Knowledge Base .. 179

Fig. 7.4 – Batch File ... 181

Fig. 7.5 – Matlab Script ... 181

Fig. 7.6 – Communication Structure during Control ... 183

Fig. 7.7 - Controlled and Uncontrolled Voltage Profiles .. 184

Fig. 7.8 – Computational Burden Composition Example .. 185

Fig. 8.1 – Voltage Profiles without Control ... 189

Fig. 8.2 – Aggregation Congestion without Control ... 190

Fig. 8.3 – Voltage Profiles - No Attack .. 190

Fig. 8.4 – Computational Burden Composition and Comparison .. 191

Fig. 8.5 – Response Times between Feeder-End Customer and Controller ... 192

Fig. 8.6 – Incoming Data Flow at the Aggregate Layer .. 193

Fig. 8.7 – Congestion at the Aggregate Layer ... 193

Fig. 8.8 – Voltage Profiles under Static Attack .. 194

Fig. 8.9 – Voltage Profiles under an Adaptive Attack ... 195

Fig. 8.10 – Computational Burden Distribution and Comparison – Static Attack ... 196

Fig. 8.11 – Data Flow at the Aggregate Layer - Adaptive Attack.. 197

Fig. 8.12 – Voltage Comparison - Static Attack .. 198

Fig. 8.13 – Voltage Profile Comparison - Adaptive Attack .. 198

Fig. 8.14 – Voltage Profile Comparison - Static Attack ... 199

Fig. 8.15 – Voltage Profile Comparison – Adaptive Attack ... 200

Fig. 8.16 – Computational Burden Composition and Comparison - Static Attack... 201

Fig. 8.17 – Aggregate Congestion - Static Attack ... 202

x
Figure List

Fig. 8.18 – Aggregate Level Congestion - Adaptive Attack ... 203

Fig. 8.19 – Voltage Profile Comparison - Static Attack ... 204

Fig. 8.20 – Computational Burden Composition and Comparison .. 204

Fig. 8.21 – Response Times between Customer and Controller .. 205

Fig. 8.22 – Voltage Comparison Profile - Static Attack ... 206

Fig. 8.23 – Voltage Profile Comparison - Adaptive Attack .. 207

Fig. 8.24 – Computational Burden Composition and Comparison .. 207

Fig. 8.25 – Voltage Profile Comparison ... 208

Fig. 8.26 – Data Flow at the Aggregate Layer .. 209

Fig. 8.27 – Computational Burden Composition and Comparison .. 209

Fig. 9.1 – Current Smart-meter Communication Structure ... 228

Fig. 9.2 – Structure of a System Automation Process ... 231

xi
Table List

Table List

Table 2.1 – Survey of MAS Platforms ___ 18

Table 2.2 – Network Division per Architecture Design __ 24

Table 2.3 – Smart Grid Funding Summary ___ 27

Table 3.1 – Network Parameters __ 48

Table 3.2 – Voltage Sag Classification Table ___ 50

Table 5.1 – Threshold Settings Table __ 107

Table 5.2 – Composition of an Example Error Alert Message _______________________________________ 111

Table 5.3 – Communication Summary during Rebalancing. __ 115

Table 5.4 – Communication Summary for Agent Substitution _______________________________________ 118

Table 5.5 – Communication Summary ___ 124

Table 5.6 – Promoting Aggregates. ___ 133

Table 5.7 – Promoting Customers ___ 135

Table 6.1 – Performance Monitoring Thresholds ___ 143

Table 6.2 – Consumption Calculations Notation Table __ 150

Table 6.3 – Performance Results__ 151

Table 6.4 – Comparative Performance Metrics __ 154

Table 6.5 – Fuzzy Decision Making Rule Base ___ 161

1

Chapter 1: Introduction

2 Introduction

 OVERVIEW

The current power system has been reliant on centralised generation and fossil fuel

resources, but an increasing demand for sustainable energy production is driving significant

changes. This challenge forms part of the energy trilemma which outlines that the power

system needs to achieve sustainability, availability and security. One of the proposed

solutions to this challenge is the concept of a smart grid. This is often used as an umbrella

term for a collection of methods, tools and technologies designed to operate the electrical

network more intelligently and with a longer term view of electrifying additional sectors

such as heat and transportation. As a result the power system is moving towards an energy

landscape which is significantly supported by an increasing amount of ICT components.

Smart grid research covers a wide spectrum of topics including data management,

embedded intelligence and control algorithms.

The rise in electric vehicle usage and distributed generation through renewables has created

a divergence from the traditional unidirectional power flow process, originating from large

scale central generation and flowing to the distribution network. As a result the challenges

faced by network management processes have become more complex, challenges which

have encouraged the development of new techniques and technologies. Smart grids have

also been cited as a method of deferring expensive network reinforcement programs

through the use of intelligent systems designed to actively manage the current assets such

that they are capable of handling the challenges of increasing customer demand and

stochastic generation. Many of these intelligent systems are supported by new technologies

in the form of energy storage systems, soft open points and demand side response

approaches.

Plans for increased observability and controllability will result in the installation of a vast

array of sensors, monitoring equipment and emerging controllable technologies. As a result

these systems will produce and consume increasing quantities of data. This increase in data

quantities produced by the number of devices present in the smart grid domain will need a

suitable ICT infrastructure. In addition to the physical aspects of a communication

infrastructure, the interaction between entries also requires appropriate design. This design

considers the architecture involved with passing messages and control signals between

controllable entities, sensors and controllers. When the communication architecture is

hosting critical commands responsible for triggering protection devices or requesting

frequency response the timing of the messages is crucial. An architecture which is unable

3 Introduction

to manage data retrieved from sensors will likely be subject to delays in message

transmission and therefore fail to deliver signals triggering protection measures in time.

However the inclusion of emerging technologies in the network management and data

collection roles within the smart grid also creates more potential vulnerabilities. Cyber-

security has played a pivotal role in a wide variety of industries adopting a more digitally

oriented service, however industrial control systems have not followed the same path. In

many cases this oversight has been the result of these systems being isolated from a wide

reaching communication network and therefore access was limited. The increasingly

ubiquitous nature of information and communication technologies within the power system

and the movement towards an increasingly cyber-physical grid has created new

opportunities for attackers.

The core message behind the developments in the smart grid domain is the requirement for

flexibility. Customers are encouraged to be more flexible in terms of their consumption;

control approaches require flexibility in terms of processing an increasingly dynamic set of

variables. Therefore it is reasonable to expect that the supporting ICT infrastructure would

also benefit from building flexibility into designs and implementations. This would take

both the form of the communication infrastructure of routers, switches and wireless links,

but also the population of sensors and controllers managing the physical network. Even in

the presence of advanced forecasting techniques and predictive methods the amount of

uncertainty within elements of the smart grid is estimated to increase and therefore it

becomes more applicable to investigate and devise systems which can function under that

uncertainty. Systems which have the capability to react and modify themselves in response

unpredictable events such as a cyber-attack will become more relevant.

 THE AUTONOMIC POWER SYSTEM

An advanced concept within the smart grid domain aims to encapsulate a range of research

topics in creating an autonomic power system (APS); this concept as defined by the authors

[1] refers to a long term vison of network automation. The APS is presented through the

development of tools, techniques and technologies which aim to serve the needs of a future

network, one which contains very different control demands and components in

comparison to the networks presently in use. The following figure taken from [1] presented

in Fig. 1.1 demonstrates the components and concepts defined within the APS project. The

4 Introduction

figure illustrates that the system operates under the assumption of a decentralised control

environment, formed by a series of connected control zones. One of the core properties of

the APS is its ability to provide flexibility in the face of a highly changeable and uncertain

environment and operates under a self* control paradigm.

Fig. 1.1 – Autonomic Power System Outline Concept

The self* approach considers elements of the system to be self-optimising, self-healing,

self-configuring and self-protecting, therefore being able to provide the desired level of

flexibility a changing power system landscape will require. Within the zones of control

themselves, a suite of control approaches can be deployed based on the requirements of the

zone and the state of the network, demonstrating that flexibility and adaptability remain

one of the core objectives throughout the whole concept. As the APS is a forward looking

architecture it also considers greater controllability and observability than the present

network with observability present deeper in the network. Consequently this will increase

the amount of data and control signals which will need to be supported by the

communication architecture, and ultimately increase the pressure on the ICT infrastructure.

The timescale of the project would imply that the absolute performance of the

communication channels would be capable of transmitting the volume of data and the

processing power of the recipient controllers would not be overwhelmed. But, as previously

5 Introduction

indicated a system with this degree of ICT integration would also include more potential

weaknesses of points of entry for an adversary.

One of the potential mechanisms which can be applied within the control zones is that of

multi-agent systems, which in turn can fulfil the objective of providing a decentralised

control and communication architecture. The work presented in this thesis is in association

with the APS project and therefore aims to deliver the flexibility and contribute to the

overall self* process through the investigation into the potential for self-organising

architectures.

 MULTI-AGENT SYSTEMS

One of the goals of the APS project is to implement decentralised control approaches within

individual zones, wherein each zone will be supplied with increased monitoring capabilities

and more controllable components. This mechanism creates a need for a distributed

problem solving approach which recognises each of the components in the system as

individual entities which can contribute to completing control objectives. One method

which allows the creation and management of interactive populations is multi-agent

systems (MAS). The MAS approach involves communities of agents communicating and

cooperating with one another being used to represent system components.

The concept of a multi-agent system is one where a collection of agents are in operation

within a defined environment [2], and can be applied to a variety of differing problem

domains depending on the classification of the entity representing the agent. Some MAS

may consider a human user as an agent, others considering autonomous robots,

alternatively an agent can be defined in software. A specific definition of software agents

is contested within the research community, whereby individual cases have been defined

based on the context of the scenario [3]. Individual authors define their software agents in

terms of the problem they are designed to solve and therefore by the behaviours and goals

installed within them. Agents can be physically located within sensors or embedded

software in controllable devices, and therefore can be applied within the smart grid domain

to achieve the desired level of observability and controllability.

In software based multi-agent systems the intelligence of the individual agents is based on

their ability to complete tasks autonomously, negotiating internally within the agent

community rather than resorting to relying on user intervention. The specific definition of

6 Introduction

agent intelligence requirements depends on the problem domain, and the nature of the tasks

and control objectives required. Some systems will require a degree of shared automation

where a human user issues a command, but the agent population can calculate the optimum

implementation of the command, this format may be applicable to fly-by-wire systems or

robotics. Others will be supplied with a set of input parameters and conditions to satisfy

and work towards achieving those goals without further input from a user. Although the

applications and design approaches vary, a core set of characteristics is defined by the

authors of [4]. These characteristics outline the requirements for a set of agents operating

within the same overarching domain, and serve as a foundation for system development.

Autonomous – Demonstrating the ability to operate without human intervention and

supervision, where the agents can come to conclusions and make decisions within the agent

community.

Responsiveness – The ability of the agents to be able to respond to the changes within the

environment, demonstrating that the agents exist in more than simply a monitoring capacity

waiting for a user to affect the changes. In this instance the agents should be able to detect

values exceeding thresholds and take action to resolve further problems.

Socially Active – This pertains to the necessity for communication between agents, each

individual will not have all the information to make all decisions, and therefore will need

to ask others in the domain. In addition to information gathering, agent communication is

used to issue commands from one agent to another.

Proactive – A higher level of agent intelligence where, in addition to reacting to the

conditions present in the environment, the MAS prevents threshold situations from

developing, by making decisions ahead of a potential problem.

Other characteristics include an ability to learn from previous decisions, such that future

decisions can be made with better knowledge [5]. In other cases some agents possess a

degree of mobility, where they are able to move from platform to platform in support of

standard communication [6]. This range of capabilities and applications indicates the

flexibility of MAS and indicates that they can be applied to a range of scenarios;

demonstrating that the core characteristics can be built upon when developing systems with

increasing complexity.

7 Introduction

One of the primary challenges facing MAS performance is related to scalability, according

to [7] it can be considered to be one of the key limiting factors in the deployment of a multi-

agent implementation. Within the context of power system monitoring and control – the

interactions governing a single protection operation can consume 1.5GB of data an hour

[8], which only accounts for one data source corresponding to a single control problem. If

additional control problems are considered and further data sources are included, the data

management issue within the MAS can escalate quickly. In the case of the APS vision, the

objective of increasing observability and controllability will naturally contribute

significantly to the volumes of data production and therefore have an impact on the agents

involved. These impacts take the form of being able to process the information, make

control decisions and disseminate the commands to other agents with the community. In

addition to an increasing quantity of raw data, a growing agent population can produce

scalability problems in terms of communication [9]. The net outcome is the increased risk

of delays within data transfer between elements within the agent community.

 CYBER-SECURITY ISSUES

The use of self-organisation provides flexibility to a system operating in a dynamic control

environment, where the integration of distributed generation, electric vehicles and energy

storage present emerging monitoring and control challenges. But in addition to the

challenges posed by the properties of the APS network, the technologies involved create

vulnerabilities which can be exploited by cyber-attacks and therefore creates a reliance on

cyber-security.

Cyber security refers to a set of tools, techniques and procedures which are employed for

the purposes of protecting any element or elements of a computerised system from damage

or intrusion. These systems have become a fundamental part of the digital era, and products

and services relating to protecting data or personal devices have become almost as

ubiquitous as the technologies they are designed to protect. However as stated by the

authors of [10] any network security mechanism exists under threat from a potential attack

event where an adversary or adversaries intends to damage the network, extract confidential

data or manipulate information transmitted between components.

As modern power systems grow and evolve towards the target of becoming smart grids,

the additional monitoring, control and communication technologies required to achieve that

8 Introduction

goal also increases the number of potential points of vulnerability [11]. The threat of cyber-

attacks is not limited to the realm of future network solutions and technologies, design

choices made during procurement and development of current SCADA systems installed

during the mid-1990s and early 2000s lead to a concept of openness where few

considerations were made for system security [12]. One of the reasons that new and

emerging smart grid concepts may become increasingly vulnerable is the transition from a

small number of controlled devices to a widespread interconnected network [13].

Furthermore the authors of [11] indicate that several smart grid access points are low cost

devices with limited security provisions and are at risk from malicious tampering.

Several different cyber-threats have been investigated with respect to the smart grid

research domain, and several different targets have been identified. For example several

papers have been published on the topic of false data attacks - [14] [15] [16], this attack

format involves manipulating messages produced by monitoring devices to misrepresent

measurements. Therefore control processes begin performing state estimation and control

decisions based on an incorrect representation of the systems’ properties. Other research

conducted by the authors of [13] considers a denial of service attack whereby elements of

the smart grid network become inundated with a stream of noise messages. While

researchers have suggested the creation of techniques to detect the presence of false data,

the authors of [13] explain that other than purchasing more bandwidth there are limited

solutions to the problem of denial-of-service attacks. The authors of [17] consider the

aspect of cyber security from the perspective of preventing unauthorised access to

substations which can host networked devices and servers. Most substations are unmanned

and have limited physical security mechanisms and therefore present further vulnerability

whereby an attacker can gain physical access to control hardware and software. A further

attack approach can be implemented through the use of malware,

In addition to the smart grid being vulnerable to a range of different attack methodologies

it also plays host to several potential targets which may be of interest to an adversary. For

example threats against SCADA systems are considered by the authors of [18] and [19].

As the SCADA system contains data reflecting a wide area of the network, an attack has

potential for influencing or triggering blackouts akin to those described by the authors of

[20]. Other functions at risk from a cyber threat include state estimation functions [21];

state estimation is responsible for the provision estimating voltage magnitudes and angles

at key buses. However it is also used in power markets, forecasting and contingency

9 Introduction

analysis among other functions, an attacker can prevent the state estimator from building

an accurate model of the network through the injection of false data. As a result incorrect

control signals can be issued as a result of the estimator indicating the presence of faults or

anomalies in the system which bypassed bad-data filtering processes. A method for

influencing the state estimation involves compromising Phasor Measurement Units (PMUs)

such that they begin to transmit false measurements as described by the authors of [22] and

is also considered from the perspective of a network of sensors involved with the

transmission of false data by the authors of [23]. The attack mechanisms discussed have

also been suggested with the impact of damaging voltage control procedures

In addition to focussing on the attack strategies research is also drawn to the detection and

analysis of cyber threats. For example the authors of [24] present a method for detecting

attacks against voltage control processes though the analysis of the sources of bad data. The

source of the attack against voltage control is centred on the falsification of measurements

and therefore triggering unnecessary tap changes which can shorten the lifespan of the

transformer. A similar consideration is applied when taking into account overall system

reliability [19] which surrounds applying defences and security protocols at the SCADA

level.

Further work considers threat analysis as presented by the authors of: [25] [26] [27]. The

authors of [25] explain that the supporting ICT infrastructures involved with operating a

smart grid solution do not go through the same rigorous simulation and analysis that the

electrical elements do. Therefore understanding impacts of outages and attack induced

failures is weaker than it is in comparison electrical outages. The consequence of this is

that vulnerabilities may not be detected and the impact of those vulnerabilities is not fully

considered and as a result the correct actions required to close the vulnerability are not

taken. Furthermore the authors of [26] indicate that the processes involved in modelling an

attack event from the perspective of its impact on the physical system is limited. These

limitations are a result of modelling techniques having limited hardware integration and

end-to-end system modelling. As a result the ability to ultimately assess how an attack

event would influence a given network is restricted. The authors indicate that simulation is

restricted by the degree of variance involved in the cyber-security domain

The impacts of such an attack on the power system can have significant consequences for

performing control and potentially lead to physical component damage, financial losses

10 Introduction

and outages all triggered by loss of control signals. This underlines the significance of being

able to devise solutions and methods for mitigating and limiting the effects of this format

of attack strategy. Cyber-attacks have been specifically targeting power systems, for

example Stuxnet [28], Israel [29] and Ukrainian [30] events. The latter containing a denial

of service component to the attack strategy. Therefore cyber-security issues are a prominent

driver for developing control and communication architectures which can offer robustness,

as the authors of [25] documented electrical networks are heavily analysed, but the

supporting architectures are not.

 SELF-ORGANISATION

The challenge created by the threat of cyber-attacks is one that is the responsibility of the

supporting ICT infrastructure. That infrastructure may contain a multi-agent system

operating under the jurisdiction of the APS and therefore tools and techniques involved in

forming a defence against a cyber threat will need to be integrated such a system. One

approach is the use of self-organising systems. A self-organising system can be defined as

one that can satisfy the requirements of: scalability, robustness, flexibility and adaptability

[31] and one that in distributed systems where the set of components and their interactions

change and evolve in response to the problem domain [32]. The concept of self-organising

architectures is not a new idea within the field of computer science, with specific reference

to computer networks and P2P configurations as noted in [31]. A concept for self-

organising software architectures was initially proposed in 1996 [32], [33]. As this is a

research topic that originated within computer science with respect to network interactions

such as [34], a volume of research considers self-organisation from a network perspective.

However these concepts are being increasingly applied to wider subject areas – solving

business energy consumption levels [35], and transportation networks featuring intelligent

vehicles [36]. In alternative applications the process of self-organisation is focused on

modifying the internal behaviours and how they approach their goals and objectives as

documented by the authors of [35]. According to [37], the concept of a self-organising

architecture or network has several key properties.

The first property is scalability, whereby both natural and engineered systems achieve

scalability through two main requirements. Firstly a lack of complexity – using a set of

simple behaviours aims to prevent the number computational demand increasing as the

number of system components increases. The second driver in achieving scalability is a

11 Introduction

focus on local decision making instead of a centralised approach. Using local, simple rules

prevents a significant growth in operations for an increasing population as local controllers

are only exposed to local population changes not global increases.

The second property centres on stability – wherein the network or agent community must

remain stable when transitioning from one configuration to another. The stability property

also encompasses the idea of robustness to the extent that in the process of making a

transition from one configuration to another the functionality is not lost. The third property

is agility, which describes the ability of the system to transition from one configuration to

another within a reasonable timeframe. Furthermore the transition must not be an over-

reaction which would result in an oscillation in network states.

These principles are taken from a paper discussing cellular communication networks – but

the general property requirements can be applied to self-organising architectures in smart

grid control and monitoring. The three properties of Scalability, Stability and Agility are

all relevant performance factors when transitioning between configurations. A system with

strong scalability will likely offer strong agility as slower transitions could be influenced

by issues pertaining to the provision of scalability. Furthermore the less time the

architecture spends in an intermediary inter-transitional state reduces the likelihood that

communications will be transmitted before all the connections have been formed resulting

in greater stability. Additional research completed by the authors of [38] introduced further

properties which include the ability to form initial structures and connections automatically,

and the ability to perform self-monitoring.

The Authors of [37] also compares various classifications of self-organisation,

classifications which define the level of adherence to the self-organisation concept.

Adaptive Networks – Configuration changes are made in direct response to changes in

system state, no consideration for scalability or agility. Triggered based on fixed threshold

values

Autonomous Networks – Similar concept to adaptive networks, but implemented

autonomously – without human or external intervention. One of the core components of a

self-organised system but on its own doesn’t fulfil the three primary principles.

12 Introduction

Cognitive Networks – Autonomous networks with learning capabilities, such that trigger

points are learned based on interaction with the environment. Cognitive networks maintain

a level of interaction across layers in the system to facilitate the learning process.

Self-Organised Networks – Take traits from adaptive and autonomous networks and add

continuous monitoring to decide the appropriate network transition, with the potential to

lean from the decision for future reference. An advanced self-organised system would also

be capable of self-optimisation and self-healing.

The work presented in this thesis includes the development of a self-organising architecture

which takes advantage of continuous monitoring techniques, a self-initialisation stage and

a decision making engine. Therefore the final solution can be classified as a self-organising

architecture.

 RESEARCH OBJECTIVES

The objective of the research presented in this thesis is to investigate the potential for self-

organising architectures within a cyber-physical power systems domain and their role in

providing robustness through cyber-security. At the conclusion of this investigation a self-

organising architecture was developed to address security concerns in the smart grid

domain and deliver resilience in the presence of a cyber threat which could not be provided

by a static architecture design. The core objectives in achieving this target are outlined

below.

1. Evaluate comparative performances across differing control and communication

architectures in the context of distribution network management with a view to

determining the potential role for implementing self-organisation. This

investigation aimed to determine what the benefits would be of providing self-

organisation within the control and communication architecture and why self-

organisation is an appropriate approach for cyber-security.

2. Develop and implement an agent population with functioning self-organisational

properties including architecture formation, contemporaneous monitoring and

decision making.

3. Examine the performance of the developed self-organised system in the presence

of external network threats in the form of cyber-attack events with respect to control

13 Introduction

and communication performance. These performances are also examined with

respect to a static architecture undergoing the same cyber-attack conditions with the

objective of learning which variables are affected by an ongoing attack. A further

learning outcome is to identify whether a communication variables have an impact

on the electrical performance of a network while under attack. To determine

whether the self-organising architecture can improve electrical performance by

improving communication layer performance.

 THESIS OUTLINE

The remaining chapters of this document will be as follows:

Chapter 2 will examine the concept of the power system as a cyber-physical system,

investigating the role of ICT in the modern and future system operation. Further to this the

chapter will continue to discuss the role of multi-agent systems as one of the techniques

considered for deployment in smart grids heavily influenced by the integration of ICT

solutions. The section will also cover examples of control and communication architectures

implemented smart grid environments and the trends that can be extracted when looking at

the development of such a system. Finally the section will then discuss the potential

vulnerabilities that a power system with a high dependence on ICT can face, with a focus

on cyber-security issues.

Chapter 3 presents the work completed as a series of control and communication

architecture designs were investigated in a static state. The goal of the investigation was to

determine the performance advantages and disadvantages associated with the architecture

designs and explore the potential for implementing a self-organising architecture. The

chapter documents the results of those experiments in terms of responding to a voltage

deviation across increasing agent populations and under the influence of a cyber threat.

Chapter 4 presents a review of literature, investigated with respect to the design and usage

of existing self-organising system applications across a range of research domains. The

purpose of the review was to examine a series of techniques which could be adapted and

for the implementing within the smart grid domain.

14 Introduction

Chapter 5 presents the development of the implemented self-organising architecture. The

chapter documents the three stages of operation and the components involved in the

developed self-organising architecture. The architecture transition processes are also

described along the method with which the cyber-attack events were triggered.

Chapter 6 documents the development of the decision making engine which was

responsible for the interpreting performance monitoring data and converting that

information into a transition action. The chapter indicates the initial creation of a decision

tree approach which was then replaced by a fuzzy based decision making engine which was

more appropriate when processing ambiguous input data in an environment with multiple

sources of uncertainty.

Chapter 7 illustrates the evaluation framework used to demonstrate the effectiveness of the

self-organised approach, including the design of the underlying electrical network, agent

settings and attack conditions. The chapter also includes introduction of the integrated test

environment used for connecting the MAS in JADE with a power system load flow engine

in Matpower.

Chapter 8 contains the results from the sequence of test performed on the self-organising

architecture where electrical and communication performances were compared with

respect to a static architecture.

Chapter 9 is a discussion chapter where in the tool, techniques and approaches taken

throughout the path of conducting the research are analysed. The chapter considers the

wider applications of the research contributions and makes suggestions for future work

within the research area.

Chapter 10 presents overall conclusions from the completed research, documenting the key

findings, and evaluating the outcomes in comparison to the initial research objectives.

15 The Cyber-Physical Power System

Chapter 2: The Cyber-Physical Power

System

16 The Cyber-Physical Power System

 INTRODUCTION

As reliance on renewable energy sources and distributed generation increases, new

challenges arise in monitoring and managing the network. Observability is notoriously

limited at the lower voltage levels [39] consequently this leaves gaps in the ICT

infrastructure governing monitoring and control of distribution level assets [40]. Due to the

emergence of smart grid solutions featuring a cyber-physical infrastructure the volume of

data present within the network is set to increase. Incorporating emerging smart

technologies, energy storage, and electric vehicles produces an interesting problem for data

collection and management.

As the role of ICT within power system control becomes increasingly important, especially

with the growing interest in smart grid technologies, new solutions are needed. This

promotes ICT concepts such as cyber-security and cloud computing further into the

traditional power system domain. Approaches including Multi-Agent Systems (MAS) and

self-organising architectures are a potential solution to aiding a developing energy network

as it becomes more distributed and decentralised. Control algorithms within smart and

micro grid contexts have been evaluated in terms of control speed and accuracy [41] and

economic gain [42]. Additionally the ICT challenges facing future power systems are

known [43]. However the authors in [43] and in [44] suggest that as potential MAS

implementation offers suitable scalability for a microgrid control scenario.

The control architecture responsible for hosting a potential agent based solution and the

volume of data associated with it will be subject to several design criteria. For example a

multi-agent architecture can be heavily influenced by scalability as suggested by the

authors of [7]. In MAS design scalability is considered to be a product of two factors –

complexity and load [45]. The problem of complexity is the more dominant driving force

in existing research rather than data processing capacity and delays. Scalability assessments

have been made of MAS platforms outside of the power systems domain [46], [47]

indicating that MAS are capable of handling large volumes of data. However these

investigations were conducted within the context of a fixed number of messages, instead

of supporting continuous data input in a real-time control environment.

It is envisaged that future grids will be more reliant on decentralized control architectures,

mainly due to increased penetration of distributed generation and the customer’s active role

in the energy market. Decentralised cells or zones of control as discussed in [48] and [49]

17 The Cyber-Physical Power System

are used to account for the growth in complexity and in uncertainty of power system control

problems. A decentralised network featuring smart technologies and distributed generation

presents new control requirements and challenges. Multi-Agent Systems (MAS) are often

suggested as a potential distributed control solution for the projected decentralised power

network. These systems are not only governed by the communication infrastructure linking

network nodes to one another but the configuration of the communication hierarchy. MAS

have been suggested for use in power systems control for various solutions - for example

[50] and [51] examine multi-agent solutions for microgrid control – where agents equate to

components within the microgrid.

 MAS FOR POWER SYSTEMS

The Power System industry has adopted MAS for the purposes of research in emerging

smart grid approaches; the predominant driver for this research in these investigations is

the application of multi-agent systems for control. An overview paper illustrates the

relevance of MAS within Power Systems and a series of requirements for a fully

operational multi-agent control approach Part 1 [52] and 2 [53]. These papers document

the importance of MAS within the power system domain and that research interest has been

growing since 2001. The primary focus of that research lies in control procedures, using

agent based solutions to derive solutions to control issues within the power system domain

– or in the simulation of complex scenarios. Subsequent research has been drawn to specific

case studies or individual control challenges. For example the authors of [54] examine the

potential for MAS in microgrid control; the paper introduces a control approach

implemented through MAS where each agent in the system equates to a component within

the microgrid. While the solution demonstrates the applicability of MAS to power system

problems, the issue of scale isn’t actually considered beyond the abstract of the paper. This

suggests that there is an interest in making MAS based control solutions scalable, but

specific contextual research is limited. It has been determined that MAS have the potential

to operate on a larger scale, but the consequence on performance of a real-time system lacks

coverage. Another example is [9] where the impact of scale is mentioned through the

problem of communication demand yet the number of agents at which this problem is

encountered is not mentioned; nor is the impact on controllability as the system approaches

this population. In this instance the communicative approach is different to some of the

other methods in the domain, as messages are sent to a server from the points of

18 The Cyber-Physical Power System

measurement instead of via the FIPA-ACL protocol. Some of the scalability problems may

have been associated to this approach, as the ACL had already been analysed for its

efficiency within the same agent platform (JADE) [55]. However interactions between

agents in a power system environment across different hardware will need some

communication – likely internet based – to disseminate information and commands. Note

that both the previous examples are aimed at the power system in an islanded state which

is a representation of MAS as a closed environment to which interactions are encapsulated

within the specified control domain. This example suggests that the MAS assumes control

in the event that the target network becomes islanded as part of the restoration process [56].

Here MAS devises an island microgrid after a fault event has occurred, it is a solution which

relies on the presence of storage within the islanded section of the network in order to meet

the demand requirements of those customers in the island. It is not clear whether the MAS

remain an intrinsic part of maintaining control in the case study while a fault condition has

not arisen or after the fault has been cleared and the island reintegrated into the grid.

 MAS PLATFORMS

In a survey of “Multi-Agent Systems” within IEEE journal publications (Smart Grid, Power

Systems and Sustainable Energy) of those in which an agent based implementation was

featured – the primary development tool was JADE (7 out of 16 papers 2010-2014) as

presented in Table 2.1. The nearest alternative featured mathematical abstractions of an

agent population (3 MATLAB models and 3 algorithmic representations) for the

demonstrative purpose of control algorithms, agent discovery and research into power

system markets. These alternatives represented the agent community as a series of

networked nodes through graph theory, and do not necessarily represent an agent

community which operates in accordance with the FIPA standards.

Table 2.1 – Survey of MAS Platforms

The two divisions of analysis are often governed by the difficulty in unifying MAS

development software with power system simulation engines – each one requiring an

abstracted form of the other to generate results. Several instances have connected JADE

year JADE
Mathematical

Model

Matlab

Model
EPOCHS

KQML

Agents
JACK

2014 1 0 3 0 0 0

2013 5 0 0 1 0 0

2012 0 1 0 0 1 1

2011 0 2 0 0 0 0

2010 1 0 0 0 0 0

Totals 7 3 3 1 1 1

Agent approach

19 The Cyber-Physical Power System

with alternate software packages such as MATLAB/Simulink - [57] [58] [59] InterPSS [60],

and PSCAD to introduce deeper modelling into the process. However the larger problem

lies in the differentiation in the two opposing forces, a JADE development is effectively a

multi-threaded software package which obeys and adheres to the communication and

operational principles of the accepted FIPA standards. Therefore it runs in real-time,

allowing data flow and communicative response times to be effectively measured. However

an associated power-flow/modelling engine operates on the principles of time-steps and

incremental assessments of the system state, achieved by passing sets of variables between

the MAS and the power system model. This can test the ability of the agent community to

solve complex problems in a co-ordinated manner when provided with valid information,

but often omits the communication load and data management issues present within the

communication architecture.

Some implementations where agent co-ordination is the primary goal utilise JADE as a

stand-alone solution without developing an interface with a second application for further

modelling [61]. Yet contrasting work considers MAS involvement from a theoretical

perspective, using the agent principles of inter-connectivity as base material [62].But the

general consensus is that for the agent development phase of a research activity, JADE

appears to be the most prevalent platform of choice within power-system research topics.

 CONTROL AND COMMUNICATION ARCHITECTURES

Literature in MAS architectures as presented by the authors of [63] illustrates the intrinsic

connection between the context of a MAS implementation and the control/communication

structure. Certain designs such as the hierarchy and the federated architecture illustrated in

Fig. 2. are more applicable to a problem domain with an inherent embedded structure such

as a smart microgrid.

Fig. 2.1 – Multi-Agent Architectures

20 The Cyber-Physical Power System

A hierarchical structure as illustrated in Fig. 2.a, can support a variety of control approaches

but as the literature has indicated is prone to hosting several tiers of control at once to cover

different aspects of the problem. The overall hierarchical concept is one that does conform

to the conventional structure of the electrical network, whereby smaller components are

positioned at the bottom of the architecture, transformers occupy the intermediary layers

and the primary substation is the head of the structure. If the architecture was governing a

higher voltage level the steps within the hierarchy would change and contain differing

components. Communication in this environment does not pass between nodes on the same

hierarchical tier and is only transmitted vertically to other tiers.

On the other hand the federation structure in Fig. 2.b is aimed more towards local sub-

domain controllers – where the head agent serves as an intermediary between a cluster of

agents and the rest of the community. In this format the head agent contains greater

responsibilities than many of the nodes in the hierarchical format; this represents a more

complex structure whereby individual head agents can communicate with each other unlike

in the hierarchical structure where communication was only vertical. As a result local

controllers will be able to work with one another to solve network problems and may be

more appropriate when dealing with global network challenges rather than local incidents

such as performing frequency control. A final example considers the holonic architecture

presented in Fig. 2.c, the holonic architecture consists of a series of nested sub-domains

which exist as independent cells of the overall architecture with their own goals and

intentions but also fit together to operate a larger system. Within power systems holonic

multi-agent systems have been suggested to offer a number of benefits in smart grid

operations, including autonomy, dynamic reconfiguration and security considerations as

indicated by the authors of [64].

In addition to the core architecture information from a MAS perspective it is also important

to consider the architecture implementations from a power systems perspective, so that

common traits can be identified. Furthermore the investigation intends to discover to extent

to which self-organisation is considered in existing implementations. With the growing

trend and interest in decentralisation and distributed energy multiple examples are present

within the power system domain, especially as emerging research focuses on developing

and investigating the grid as a cyber-physical system. The first example stems from a paper

entitled: “Scalable Distributed Communication Architectures to Support Advanced

Metering Infrastructure in Smart Grid” [65]. The paper describes potential communication

21 The Cyber-Physical Power System

architecture within the context of the smart grid, where smart-meters are considered to be

the lowest hierarchical entity and therefore make up the bulk of the population. The authors

examine the issue of architecture design in two phases in the event of the deployment of an

advanced metering infrastructure – which drives the necessity for communication

architecture design.

The initial diagrams taken from [65] and presented in Fig. 2.2 illustrate communication

architectures associated with data collection from a smart-metered customer population. In

the diagrams Concentrators receive several input signals from the customer population and

relay a single signal to the operation centre. While the paper is aimed at communication

architectures, the initial diagram in Fig. 2.2a, implies a centralised control methodology

oriented around a central database structure. The authors focus the attention of the paper

on the processes involved with data management and collection rather than the

implementation of control algorithms, in the initial structure all data processing is

conducted centrally

Fig. 2.2 – Traditional and Alternative Advanced Metering Infrastructures

The paper goes on to suggest improvements using the objective of scalability performance.

In Fig. 2.2Error! Reference source not found.b, additional Concentrators are suggested

per quadrant. In effect this becomes a closer partner to the Tiered or Clustered Architectures

where the Distributed MDMS placements act as upper-tier aggregates. The addition of

more Concentrators acts in the same way as the clustering process used in both the Tiered

and Clustered communication architectures. The purpose is to relieve the load pressure on

the aggregation points by dividing up the set of connected agents or entities. The central

operation centre remains a focal point for any decision making processes, the Distributed

MDMS entities conduct local level information processing but the information is ultimately

22 The Cyber-Physical Power System

still passed to the operation centre to be interpreted by the various management systems.

Because communication load is reduced at the concentrator and at the D-MDMS, the

bandwidth requirements and costs are reduced.

A third approach is suggested, where a second tier of data collection points contained within

a series of Distributed Operation Centres as presented in Fig. 2.3 .The Distributed

Operation Centres process localised control decision making in addition to data collection.

The central operation centre retains some control responsibilities and the paper references

the consistency of the interface between the Operation centre and the distributed operation

centres. As scale increases, through the inclusion of additional smart-metered customers,

the operation centre retains the same number of interactions, as the Concentrators and the

Distributed Operation Centres absorb the additional load.

Fig. 2.3 – Advanced metering infrastructure with additional local controllers

However although three solutions are presented within the paper the authors do not indicate

a mechanism which would consider switching between the different configurations. Each

of the architectures illustrated is intended as a static architecture without the abilities and

knowledge required to perform a transition event.

A second paper [66], examines the collection of data from PMUs across a wider

geographical area than the first example, using substations rather than smart-meters as the

smallest entity. It indicates that due to the various latency requirements of different system

events, the placement of control within the system architecture would depend on the nature

of the control problem. For example applications for responding to transient stability issues

would need to be placed close to the source as the response times need to be within 100ms.

Alternatively applications focussed on voltage stability or post-event system analysis can

be positioned more centrally. Fig. 2.4 illustrates the two contrasting approaches for data

collection and dissemination of control signals. The first case represents a centralised

23 The Cyber-Physical Power System

structure, wherein all substations communicate with a single controller overseeing the

entire monitored population. The authors indicate that such a configuration could be useful

in terms of injecting control commands directly into the substation without navigating

through a series of intermediaries. The connection between the two is not anticipated to be

a direct link given the potential geographical distance between source and controller but

routed through a communications network involving several routers but those

communication hops perform no processing. The authors indicate that the centralised

approach may be more suitable to less time-dependant applications such as voltage stability

and state estimation – wide area management tasks. But the architecture may prove

unsuitable for fast response applications such as protection wherein responses are required

in the time frame of a few cycles. The issue surrounding the response times is due to

scalability and the number of connections with the central control centre producing a

greater workload and ultimately influencing response times.

Fig. 2.4 – Centralised and Decentralised Communication Architectures

Fig. 2.4b illustrates an alternative approach which features intermediary Hubs which

retrieve data per network division. As documented in the paper, these hubs do not contain

any controlling functionality – local control algorithms are in place at the substation level

and wider area management tasks are completed by the central controller. The purpose of

the Hubs is primarily data management and routing, such that the control centre is not

overloaded with incoming communications. Hub connections are physically located agents

and are affiliated with specific buses within the electrical network – indicating that non-

component agents remain part of the physical architecture. As the network sections at the

hub layer are electrically connected, there is a case for communication between agents in

the same tier and stepping away from a hierarchical system with a purely vertical

communication structure. The authors also imply that the control centre can change the

a) b)

24 The Cyber-Physical Power System

configuration of this architecture depending on the power system conditions – while the

concept of self-organisation is briefly hinted at, supplementary details on how the

architecture would change and what the alternative configurations would be are not

documented in the paper. Each of the network divisions then communicate with the central

controller. Table 2.2 provides an insight into the scale and composition of the architectures

involved – not all of which constitute a communicative entity within the architectures. It

indicates that the network divisions are roughly even with Area-2 being the largest network

division.

Table 2.2 – Network Division per Architecture Design

This indicates that in the case of the second topology the distribution of connections intends

to remain fixed; in the eventuality that one of the hubs becomes congested there is no

immediate mechanism for transferring substations from one hub to another. As a result the

hinted self-organising concepts will only apply to control functionality and agent

responsibility rather than communication architecture changes. Furthermore there is no

redundancy in the system in the case of hub failure when using the second topology. This

is more severe in the case of the first topology as there is a single point of failure, therefore

in the event of a cyber-attack on the central controller – all of the connected substations

and by extension a large number of customers will be affected.

A third example of architecture design within the power system and smart grid research

domain aims at implementing autonomic computing principles as part of the system design

[67]. The structure presented in Fig. 2.5 encompasses 2316 LV customers (red rectangles

on the diagram) spread across several intermediaries. The customer population is divided

between two towns connected at the exchange point below the grid controller – the leftmost

branch includes 1679 customers and the right branch the remaining 637. The customers are

grouped into local clusters of 58 customers each under the supervision of a Transformation

Connector (TC), and the TCs in turn are then grouped into subsets of 5 TCs per one Demand

25 The Cyber-Physical Power System

Manager (DM). The TC forwards information from the customer to the DM, and the DM

enacts balancing policies and responds with control signals to be passed via the TC to the

customer. Additional architectural structures in the form of sector connectors separate

different groups of customers from one another, so that policies can be applied to a specific

classification of customer. This configuration is considerably more deconstructed than the

other examples investigated thus far. Like the first example, the ALR-SCM network

considers the customer to be the minimum entity for monitoring – while the network

presented in Fig. 2.4 considers substations as the smallest entity.

Fig. 2.5 – Autonomic System Architecture

In practice, microgrid control scenarios would require multiple layers of control, because

an active network has multiple variables to manage simultaneously – as noted in [66], the

location of the control can be dependent on the timescale the control operates within.

Control objectives with a longer time horizon can be processed by an agent further away

from the agent under control, whereas more critical objectives requiring faster responses

would be hosted close to the controllable entity. The purpose is to limit the influence of

latency and interference on critical control signals.

In that respect the set of requirements desired by a particular network and control condition

may differ from one another. For example a power restoration problem as presented in [68],

is centred on the agents at the lowest part of the network being the first responders. Post-

fault the customer agents act to isolate themselves from the network through

communicating with their immediate neighbours. This involves closing switches in the

network within a timeframe in the order of milliseconds – thus reinforcing the idea that

events with the smallest operating window are best placed as close to the source as possible.

26 The Cyber-Physical Power System

This example demonstrates that self-organisation within a MAS can be used to trigger

active reconfiguration of the electrical network instead of the communication network.

However the agents themselves do not exhibit any self-organising capabilities and do not

restructure themselves.

Overall the architectures presented in literature maintain a hierarchical trait, some offering

centralised control and data collection while others implementing a distributed control and

communication architecture. The specifics governing some of the control architecture

design choices involve the visibility and availability of data and measurements, in many

cases a controller will require information from several sources and therefore cannot within

the same tier as the controllable entity. Certain control requirements favour a more

centralised viewpoint and are less sensitive to architectural design. Therefore it would be

reasonable to assume that a control and communication architecture would benefit from

being able to transition from one configuration to another for the purposes of fulfilling

different control requirements.

 SMART GRID PROJECTS

At present, the electrical network largely operates with limited degrees of observability and

controllability especially at the distribution level, which is a consequence of the historically

unidirectional nature of power delivery. As emerging technologies became more prominent

within the energy system in the form of energy storage, electric vehicles and distributed

generation, the unidirectional model is becoming increasingly less applicable. The

development and integration of these technologies in conjunction with the supporting

cyber-physical infrastructure moves the power system closer to the concept of a ‘smart

grid’. In many respects the term ‘smart-grid’ is often applied as an umbrella description of

a wide spectrum of concepts and solutions involving new grid hardware such as energy

storage, power electronics and smart meters. Smart grid concepts also extend to the

inclusion of distributed control and intelligence, active customer participation schemes and

forecasting techniques.

Internationally investment in smart grid research and projects has been significant as

illustrated in the following table in Table 2.3 as published by the authors of [69].

27 The Cyber-Physical Power System

Table 2.3 – Smart Grid Funding Summary

Country /

 Region

Forecasted Smart

Grid Investments

Funding for Smart

Grid Development

Smart Meter deployment

European

Union

€56 billion by 2020 €384 million 45 million installed as of

2011, 240 million by 2020

United States €238-€334 billon

by 2030

€4.9 billion in 2009 8 million as of 2011, 60

million by 2020

China €71 billion €7.3 billion in 2009 360 million by 2020

South Korea 16.8 billion 580 million in 2009 500,000 by 2010

750,000 by 2011

24 million by 2020

Australia n/a 253 million in 2009 2.4 million by 2013, state

of Victoria

India n/a n/a 130 million by 2020

Brazil n/a 143.6 million in 2009 63 million by 2020

Japan n/a 621.3 million in 2010 n/a

The report also documents a list of 219 smart grid related projects which were in effect at

the time of publication spanning both the UK and the wider EU community. These projects

covered a wide range of components of the smart grid domain including grid automation,

smart metering, customer behaviour and overall integrated system approaches. Within the

context of the research presented in this thesis it was relevant to consider projects with a

focus on investigating and deploying a control and communication architecture. This

architecture could include the collection of data from smart-metered customers and the

placement of either local and/or centralised controllers.

2.5.1 Smart Grid Projects in the UK

The first set of examples documenting smart grid demonstrations and deployments

considers projects within the UK.

Northern Isles New Energy Solutions (NINES)

The NINES [70] project aims to develop smart grid solutions for the electrically islanded

network of the Shetland Islands. Prior to the instigation of the project the islands were

supplied solely by two aging convention generation plants and a single wind generation

site. Potential for further wind generation capabilities was limited by network integration

issues surrounding voltage levels and power flow. Adding storage capabilities, demand side

response solutions and an active network management system, additional wind capacity

can be added to the existing network and overall network operation can be improved.

28 The Cyber-Physical Power System

The NINES network is a predominantly LV network serving the Shetland Islands, the

network is electrically islanded from the mainland grid and prior to the project taking place

was supplied by aging fossil fuel plants. The highest voltage level is 33kV, delivered via

overhead cables and subsea lines when connecting between islands. It is composed of 1000

domestic customers, two conventional generation plants, one wind farm, a 1MW Battery

Storage device and one 150MWh Thermal store with a 4MW boiler. The network

encompasses 1,000 customers. Total customer demand peaks at 48MW and drops to a

minimum of 11MW in summer – yearly average consumption of 215GWh. As per the hub

network diagram the system covers 11, 11kV network branches serving the population

centres. The diagram doesn’t disclose where the 1,000 customers involved in the trial are

located. Across the Shetland Islands there are an estimated 10,144 households1, therefore

the NINEs network encompasses approximately 10% of the total population.

Control of the network is conducted via a network management system [71], which

retrieves sensor measurements from points in the network and in conjunction with internal

models of different aspects of the network including demand forecasting. The active

network management (ANM) control system has three core priorities: Balancing and

scheduling, transient stability, and power flow and voltage management. In each instance

the ANM appears to be a single centralised control unit receiving updates from various

components within the system. Separate algorithms handle each of the control objectives;

it is not clear whether separate control stations are used to distribute the different processes.

While there are different algorithms managing the three core management conditions, they

can cooperate and interact with one another and do not work completely independently.

Therefore it can be suggested that the AMN system could be represented as three central

agents operating in parallel and containing their own control jurisdictions, with negotiation

capabilities. The remaining agents would sit within the points of generation and the smart

loads within customer premises. The overall structure of the network and its control system

are presented in Fig. 2.6

1National Records of Scotland: http://www.gro-scotland.gov.uk/files2/stats/council-area-data-
sheets/shetland-islands-factsheet.pdf

29 The Cyber-Physical Power System

Fig. 2.6 – Electrical Diagram and Controller Locations

In terms of controllable elements within the network, the idea is that a proportion of the

control will delivered through demand side response, 234 homes within the network are

equipped with smart heaters which can be controlled remotely. Users can enter a series of

parameters, but control signals themselves are communicated from the AMN. These signals

are delivered per 15 minute intervals to the set of controllable loads to set their charging

and discharging patterns for each quarter hour period. Control over storage and water

heating operates in a more decentralised manner – local hubs are situated throughout the

network as noted in Fig 2. The majority of the control hubs independently oversee certain

physical locations, whereas the control domain of other hubs overlaps with each other. It

appears that these hubs do not cover the same customer populations, for example the

southernmost hub corresponds with the 11kv network branch serving Sumburgh – a

population centre containing around 100 residents, whereas other hubs can contain

populations closer to 1,000 residents. However given it is not stated how many participating

customers exist per hub controller.

Voltage control processes operate on the basis that only pre-defined points on the network

are monitored, these points represent areas which are specifically at risk of a voltage

excursion. If the constraints are met at these locations, the remainder of the network will

be operating within limits. Points of vulnerability are determined through prior analysis on

the basis of whether adjustments to controllable devices could cause either power flow or

voltage to violate the operating limits. This reduces the number of inputs requiring

processing by the AMN’s power flow and voltage management module. The update

resolution for incoming data for this monitoring process is not stated.

30 The Cyber-Physical Power System

As noted, the evidence tends to suggest that control is centralised with information retrieved

from components. The different aspects of the control system operate under differing data

transmission requirement, for example the customer demand forecasting for space and

water heating processes information in groups of 100-150 customers, instead of the entire

1,000 customer population. A trial house contained 19 smart devices, each communicating

12-14 data channels at a resolution of 1-5 minutes [72]. Charging instructions are delivered

in 15 minute intervals from central control, as forecasting covers 15 minute intervals.

Electricity North West – LV Network Solutions Project

The LVNS project [73] is aimed at improving monitoring across LV networks with the

vision of better preparedness for future developments in domestic generation, storage and

EV ownership. The project is focussed on investigating measurement approaches within

the LV network to gain a greater insight into the performance of these networks. Data

extracted from the monitoring approaches is then used academically as an input to network

model design to investigate capabilities for projected increases in low carbon technologies.

The scope of the project contains 200 distribution substations – ground-mounted

transformers and areas with PV installations were the core focus of the selection. This

coverage represents a small proportion of the total ENW network containing 33,000

distribution substations. Across the 200 selected substations the scope of the project

included over 1000 feeders. Some feeders connect less than 25 customers, while over 50%

of the total number of feeders within the trial population connects over 50 customers.

The control and communication configuration is presented in Fig. 2.7, overall the ENW

LVNS project isn’t specifically concerned with performing control actions, instead

primarily focussing on monitoring and data collection. The monitoring devices do not

receive any form of control input from the central server, but a degree of interaction is

involved in enacting the communication protocol. Therefore the monitoring devices do

have command reception capabilities in addition to transmission. Modelling and analysis

procedures are often conducted offline via the data files siphoned off to Manchester

University, the iHost server itself does not perform any analysis or control duties – purely

data collection, organising and archiving. Data collection and processing was handled by a

central server, information from monitoring units transmitted using GPRS/3G mobile

phone communication channels. Each monitoring device logs data in 1-10 minute intervals

and transmits the information using an installed SIM card.

31 The Cyber-Physical Power System

The central server also exported data to Manchester University for processing and further

investigation. Data transmission from monitoring devices to the central collection server

was conducted at 10 minute intervals – initially a sampling rate of 1 minute was

implemented, but issues involving high data flow rates and volumes affecting data retrieval

and storage drove a change in sampling rate. Sampling rates with a longer time interval

than 10 minutes would lead to underestimating voltage impacts.

The following variables are included in the LV monitoring approach:

 RMS line to neutral voltage per phase

 Bi-directional currents per phase, and neutral currents

 Power factor per phase

 Phase angle per phase

Fig. 2.7 – Communication Links in LVNS

From this information real and reactive power was calculated, along with total harmonic

distortion. Each measurement packet is communicated with a sequence of header data

including date, time, feature number, serial number and phase. The majority of monitoring

devices were installed at the substation level, and on the LV bus at the head of a feeder. A

small subset of the trialled network was monitored at the mid and end points of selected

feeders – 25 feeders (50 sensors) included in the initial deployment. Plans for expansion

into monitoring for 100 feeders with 200 sensors are in place. Individual customer

monitoring is not in place in this scenario, customer profiles are replicated using the CREST

tool, and simulated profiles were validated against a 51 customer test cell [74]. Therefore

interpreting the monitoring devices in place from an agent based perspective – each feeder

would be represented by three agents: one at the feeder head, plus mid and end point

monitoring. Additional agents would monitor substations and transformers. In the overall

32 The Cyber-Physical Power System

trial network this would total 3,200 agents, not taking into account duplicate points of

measurement where a feeder head monitoring and substation monitoring would be under

the control of a single agent.

Present measuring timescales and focusses are planned to be replaced by smart-meter data

as and when widespread installation occurs.

SoLa Bristol Project

The solar Bristol project [75] [76],is of a much smaller scale than the other two examples

provided thus far, with a focus on integration of PV generation and DC microgrids instead

of widespread data management as noted in the LVNS example. The project fits within the

Smart grid approach through integration of a cyber-physical system and demand side

response approaches.

The SoLa Bristol project consists of 30 domestic customers, 5 schools and an industrial

customer – therefore containing far fewer customers than the other example projects which

spanned a much larger section of the host network. All customers in the trial are fitted with

PV generation, battery storage and a DC connection. Multiple levels of control are applied

within the project, instead of a purely centralised control solution. The lowest level of

control exists within the domestic properties themselves. A combined charger inverter

device is a micro-computer controlled unit aimed at managing the energy derived from the

PV generation and current battery storage levels. The local controller determines the

charging pattern of the connected batteries and handles exporting excess power to the grid.

These controllers can be receive update commands and remotely monitored. Unlike the

local smart-devices in the NINES network a degree of local automation is present with less

remote intervention, this is because of the objectives of the system the SoLa approach is

more customer centric whereas the NINES network is more network centric. Execution of

demand side response requests is also handled locally at the customer layer via a Siemens

LV connection manager device which instigates automated demand management.

Monitoring and analysis is performed at the substation level acting as a middle-agent

between the customer and the central data store. The substation receives periodic

measurements from the connected customers which are then processed by the LV Network

Manager. The LV Network manager is another Siemens control device which determines

if a demand side action is required and which customer/customers are eligible to provide

33 The Cyber-Physical Power System

the appropriate response. The substation control level is aimed at monitoring network

conditions and initiating control actions in the event that constraints are reached. Whereas

the customer connection manager aims to enact the control action in the based on customer

needs, battery levels and PV output.

The communication network in the project is primarily focussed around GPRS data

transmission, ultimately conveying the information to a central data repository. Monitoring

and analysis of received data is conducted at the substation level where each substation is

in contact with a subset of the overall customer population as noted in Fig. 2.8. These

substations would act in the same role as aggregation agents in the existing MAS

implementation. Updates from each substation are then passed on to the central data

repository - to an extent forming a similar communication structure to the clustered MAS

architecture.

Fig. 2.8 – SoLa Bristol Communication Architecture

To avoid interference from the customer’s existing internet connection and subsequent

usage of the available bandwidth, each premises involved in the trial is fitted with a

dedicated router to facilitate secure export of customer information. The process of data

collection takes place in three stages depending on the nature of the date currently being

transferred. Stage 1 is a local data store, readings are taking at one minute intervals and

stored on-site, this data can be retrieved remotely if necessary and can be accessed from

inside the customer home. Stage 2 is a set of periodic updates that are communicated

outside of the house through the GPRS network to the data repository – these status updates

34 The Cyber-Physical Power System

are transmitted at 15 minute intervals. The final stage relates to immediate signals which

are transmitted spontaneously, in the event of a fault – information is transmitted to the

substation and is passed onto the DNO.

The requirements presented in the project proposal [77] indicate that a LV network manager

device – substation level controller – should allow communication with up to 32 LV

connection managers. This effectively indicating that the aggregate level controller

operates covers clusters of 32 customers, a clustering size that matches the customer

population used per aggregate in the clustered communication architecture – presently over

feeders containing 90 customers. The proposal also recommends communication

thresholds between the network and connection managers.

2.5.2 Smart Grid Projects in Europe

Outside the UK, smart grid deployments remain a core component of developing and

researching technologies and concepts for future grids. Due to the interconnected nature

and scale of Europe the challenges facing smart-grid research can involve co-ordinating

between several countries and several different organisations. As with the UK approach to

smart-grid research some projects are local to one country or city with the focus on

improving specific technologies. With respect to the research conducted in this thesis is

was more relevant to consider cased whereby a physical deployment was discussed for the

purposes of assessing the communication and control architectures involved. The first

example is the Grid4EU project as discussed below.

Grid4EU

The Grid4EU project covered multiple aspects of smart grid research in the pursuit of

investigating an integrated smart system with involvement from 6 different distribution

system operators in as many countries (Germany, Spain, Italy, Czech Republic, France and

Sweden). The core objectives of the project are outlined in the report as presented in [78]

– the report also documents that an outcome of the project was the deployment of six

demonstrators one in each of the six contributing countries. Across the six demonstrators a

total of 275,000 customers, however due to the level at which the control and

communications are applied to the network the same number of components are not

involved in the communication architecture. Substations were often used as the smallest

component in the architecture and therefore a small number of substations accounted for a

much larger number customers for example in the German demonstration project.

35 The Cyber-Physical Power System

In the German demonstrator project the control and communication is facilitated by a three-

tier hierarchical multi-agent system, each tier of the hierarchy contains a different agent

classification as illustrated by Fig. 2.9

Fig. 2.9 – Grid4EU German Demonstrator Agent Hierarchy

The lower tier is populated by M-Agents, which represent non-switchable substations and

therefore have not control influence on the network, in comparison to several UK projects

the scope of the project is aimed at the MV level and does not consider agents at the

customer level. Each of the M-Agents represents a large customer population therefore

allowing a relatively small amount of agents to cover a wide geographic are. The purpose

of the M-Agents is to perform measurements from the substation and other relevant

information, and each of the M-Agents is associated with a single agent in the next tier. In

the second tier are a series of S-Agents, these also represent substations and exist on the

same electrical tier as the M-Agents but account for substations with switchable capabilities.

The S-Agents are responsible for responding for collecting data from M-Agents and

responding to control events, unlike the M-Agents, S-Agents can communicate with one

another to co-ordinate control and share information. The top tier is occupied by the CC-

Agent which acts as a gateway agent to the SCADA system, therefore it is responsible for

global data collection and overall agent management. In some circumstances depending on

the potential configuration of the agent architecture, an S-Agent can assume the

responsibilities of the CC-Agent, therefore all of the agents involved in the architecture will

be associated with substation components in the electrical network as the digital and

electrical architectures take on differing structures.

36 The Cyber-Physical Power System

Web2Energy

A second example of a European project is Web2Energy as outlined in [80], the

Web2Energy project is another multinational example spanning five countries. The project

focuses on three elements of smart-grid research in the form of Distribution Automation,

Smart Aggregation and Smart Metering. In each of the three research criteria the over-

arching theme is the analysis of the data requirements and parameters for communication.

For example in the work package focussing on Smart Aggregation is concerned with

retrieving data from loads, generation units and storage devices with the goal of

representing the components as a virtual power plant. The data resolution for each of the

elements of the virtual power plant is set at 15 minutes. As in the previous example the

project contains a number of demonstrator sites to evaluate research objectives, a

demonstration site in Germany is configured for the purpose of processing smart-meter data.

In terms of scale, the test network consisted of 200 smart metered customers and relied on

the existing communication infrastructure to transmit smart-meter data. The

communication between smart-meter and the metering infrastructure varies based on the

type of customer and their connectivity methods. Some of the customers will be using their

own broadband connection, this approach transmits instantaneous power data with a

transition resolution of 1-2 seconds. The customers will also have access to the real-time

data through the use of an in-home display station. Alternatively if the customer does not

connect though a broadband connection the connectivity is provided via the 2G mobile

network, customers providing data in this manner produce updates at 24hr intervals, while

pricing information is passed back to the meter. The smart meter also displays information

based on local measurements at 15 second intervals in addition to billing information

transmitted from the supplier, the in-home displays are less sophisticated in the absence of

a broadband connection. In both circumstances the communication between smart meter

and the metering infrastructure is bidirectional and therefore the hardware is required to

process incoming data in addition publishing updates. A third and final set of customers

serves a different purpose and therefore are assigned a different communication approach,

these customers are capable of performing demand side response and as a result are

connected via PLC to a data concentrator. This concentrator acts as a controller and delivers

the signals triggering demand side response from selected controllers.

37 The Cyber-Physical Power System

UPGrid

A final example of a European smart-grid project featuring a deployment exercise is the

UPGrid project, which is another multi-national project which indicates the challenges

faced by electrical networks within Europe and their interdependence on neighbouring

countries. In this case demonstration activates were completed in Sweden, Portugal, Poland

and Spain as described in [81], each of which features variations in the control and

communication architectures. An example architecture is represented within the Spanish

demonstration project as illustrated in Fig. 2.10. As the figure demonstrates, a flat

communication architecture has been implemented where data is transmitted through a

secure medium to a central system. The central system is then responsible for control,

power system analysis and visualisation, what is not discussed is the intermediary

communication infrastructure between the layer of intelligent devices and the centralised

control system. It may be the case that a series of data concentrators are implemented but

if so, these components will play no role in the control and decision making process.

In a similar approach to the German demonstration component of the Grid4EU project, the

smallest components within the intelligent devices layer are substations, which results in a

large effective customer population while integrating a comparatively small number of

agents. The demonstration project covers 190,000 customers in the city of Bilbao, as

illustrated by the communication structure in Fig. 2.10 the information flow is indicated to

be unidirectional and therefore the objective of the Spanish demonstrator is primarily

focussed network monitoring and data collection than overall control performance.

Fig. 2.10 – Communication Architecture of the UPGrid Spanish Demonstrator Project

The other demonstrator sites within the overall UPGrid project are designed to evaluate

differing requirements and therefore present with alternate communication methodologies.

For example the Portuguese demonstration project is more involved with the collection and

38 The Cyber-Physical Power System

dissemination of market pricing information as documented in [82]. The inclusion of the

energy pricing data results in a communication format which involves cyclical messaging

as market data is returned the customer as customer consumption information is passed to

the suppliers.

2.5.3 Smart Grid Projects in the Rest of the World

Looking further afield other countries in the rest of the world are subject do differing

constraints. For example Australia and the United States host grids which can cover vast

geographic areas within the same county and where multi-national cooperation is less of a

dominant factor. Coordination and collaboration may still be required between

states/territories and operators however.

Perth Solar City

The first example is part of a national solar cities initiative in Australia in which seven

urban locations across the country selected as demonstration sites for solar city concepts as

documented in [84] the solar cities program aims to improve renewable energy integration,

smart meter implementations and energy conservation. The programme also takes into

account the social and behavioural elements of a smart grid solution for the purposes of

developing demand side response objectives.

Many of the demonstration projects follow a similar format and involve the installation of

PV units both domestically and on community buildings, installation of smart meters and

the distribution of solar water heaters. One of the these projects was cited in Perth as

documented in [83], and involved the deployment of 9,000 smart meters, the

communication infrastructure for the metering scheme is presented in Fig. 2.11 and

indicates a holonic architecture. Smart meters represent a Home Area Network (HAN)

which is then composed of a series of smart devices responsible for heating, load control

and metering. Smart meters themselves connect to the network management system in one

of two manners, standard meters use the conventional 3G network via a meshed radio

frequency service in the immediate vicinity of the customer area. The meshed system would

offer greater reliability as each connection isn’t specifically reliant on one relay or access

point to the 3G network allowing data and commands to follow multiple paths to the

network management system. A second variant of smart meter deployed as part of the

demonstration project is a point-to-point connection, meters using this method are in direct

39 The Cyber-Physical Power System

connection with the network management system and bypass the conventional

communication infrastructure.

Fig. 2.11 – Perth Solar City Communication Architecture

In the Perth solar city demonstration project control is handled centrally by the network

management system and additional software packages responsible for assessing business

and operational conditions. In many respects this format bears similarity to the UPGrid

European project whereby an advanced metering infrastructure doesn’t host any of the

control responsibility and all decision making processes are handled at a central location.

However the Perth solar city project does cater more for applying control rather than

focussing on network monitoring as the customer HAN is designed to facilitate the

integration of smart loads and heating systems which can be accessed as a form of demand

side response.

AEP Ohio GridSMART Demonstration Project

A further example is taken from a project implemented in the United States in the State of

Ohio as documented in [85], which focuses on the delivery of four core smart grid

objectives. The first of which considers the implementation of an advanced metering

infrastructure and the installation of 100,000 smart meters within the scope of the project.

Each of the meters are designed to accept bi-directional communication which is in line

with the specifications of the meters installed in the Solar Perth Project, customer updates

are transmitted to the operator and control signals are received by the set of smart meters.

The motivation behind the inclusion of bi-directional communication is to achieve the

second of the project objectives in the form of the provision of customer engagement for

the purposes of demand side management. Demand side management schemes are a

recurring concept in the series of smart grid project examples in conjunction with a smart

40 The Cyber-Physical Power System

metering infrastructure. The third of the core objectives is to increase network automation

through increasing the embedded intelligence within the network to automate assets and

provide network reconfiguration capabilities. A final objective of the project is to optimise

voltage control procedures through the integration of new control algorithms and

approaches.

While the core objectives previously outlined are consistent with properties of the other

smart grid research projects, the AEP Ohio project specifically outlines procedures for

dealing with security incidents. Initially a central monitoring system contains software

which can detect meter tampering for the purposes of electricity theft. However in addition

to the prevention of meter tampering the project also includes scope for the development

of a suite of cyber-security processes – this was introduced through more thorough testing

and evaluations of technologies involved in the demonstration project. The technologies

were subject to a threat analysis and penetration testing procedures – such an approach had

not been explicitly highlighted any of the preceding examples on smart grid deployment.

In addition to the pre-emptive security analysis performed on the components,

collaboration between project contributors and additional agencies added scope for further

analysis of an active system. American Electrical Power (AEP) as one of the lead

contributors was involved in the development of a cyber-security operations centre (CSOC)

as documented in [86]. The core objective of the centre is to recognise the threat posed by

cyber-attacks to the smart grid and facilitate collaboration between energy companies in

the US to exchange information relating to attacks and mitigation strategies.

 VULNERABILITY TO CYBER THREATS

In a system which is increasingly reliant on ICT infrastructure, there are additional points

of vulnerability and therefore potential weaknesses which a malicious user may wish to

exploit. Given that several industrial control systems presently offer very little in the way

of security adding increased connectivity between controllers and other nodes in a unified

cyber-physical system does increase the accessibility of these unprotected systems.

Therefore the role of threat resistance and attack response become increasingly important

in the role of managing the power system. The following figure in Fig. 2.12 taken from the

Internet Security Threat Report [87] illustrates the rise in detected vulnerabilities within

industrial control systems across an increasing range of vendors.

41 The Cyber-Physical Power System

Fig. 2.12 - Increase in ICS Vulnerabilities

There are no defined models or definitive attack processes because an adversary will not

adhere to a set of particular guidelines and instead will develop the attack based on the

desired goals of the adversary and the resources available. It is often considered that a

potential attacker with an unlimited amount time, skill and resources will be able to break

through any potential security measure circumventing all defensive measures. Therefore it

is not feasible to develop and build a completely impenetrable system. The following sub-

sections outline a series of potential attack methodologies and the potential impacts; this is

not an exhaustive list of strategies and consequences but demonstrates the range of

vulnerabilities and consequences of an attack event.

2.6.1 False Data Attacks

One attack approach is in the form of false data, whereby an attacker injects information

into the system, adding false data into a network can take place in a number of formats,

from misrepresenting sensor data to trick state estimation systems [88] or falsify network

topologies [89]. False data based attacks can trigger controllers to make incorrect decisions

resulting in economic losses and operational issues [90].

False data based attacks have been demonstrated to pose a threat to a range of elements of

network operation. For example research has examined the case for the vulnerability of

state estimation tools to this attack format: [90], [88], [91], whereby false information is

accepted by the estimator bypassing bad data filtration processes. These processes are also

able to identify and remove malicious measurements which injected into the system, a false

data attack aims present data which passes through error detection solutions and is then

42 The Cyber-Physical Power System

used in the process of performing state estimation. An inaccurate state estimation

compromised though data injection could lead to incorrect decision making or reduced

awareness of component failure. Another attack strategy involving the use of a false data

injection approach involves misleading the control centre via falsifying network topology

information [89]. In this attack approach the attacker exploits the lack of authentication

between terminals and a control centre; as a result the attacker can convince the control

system that the network is operating under an alternate topology. Therefore making it easier

to conceal network stresses and prevent control actions being initiated to relieve those

stresses. The authors of [89] indicate that the lack of authentication is a result of the volume

of legacy devices and communication equipment active in the power system – it is these

devices which indicate the scope of the problem of defending a large scale cyber-physical

infrastructure against attackers.

2.6.2 Malware Attacks

A second approach is to infect devices within the system with malicious software designed

to either compromise a device such that it can be used as a launch platform for an attack on

another part of the network or modify/disrupt the functionality of the host device. Malware

based attacks such as Havex [92], and BlackEnergy [93] have been traced and monitored

by the Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) in the

US. This illustrates the validity of the threats posed by malware [30] to the power system,

the use of malware may be one component in a multi-faceted attack on the network - for

example an attack on the Ukrainian power system as described in [30] included several

attack vectors one of which was the delivery of malware – using a variant of the

BlackEnergy malware previously noted. The same attack also included the distribution of

manipulated Microsoft office documents with embedded malware to allow the help the

attackers gain control of the system.

2.6.3 Denial of Service (DoS) Attacks

DoS attacks involve transmitting a large volume of traffic at a target or targets with the

view of interrupting or disabling the service delivered by the target. Like malware based

attacks, DoS of Distributed DoS events can be conducted using bespoke software or tools

available online. As per the information provided in [87] such an attack can be purchased

for as little as $10 per day indicating that in many respects a DoS based attack method may

be the most universally accessible to a wider range of potential attackers as the required

43 The Cyber-Physical Power System

technical knowledge is lower. The scale and scope of a DDoS attack can vary considerably

depending on the connectivity of the target and the resources of the attacker – for example

recent DDoS event targeting the BBC as reported in [94] reached a peak attack traffic

transmission rate of 602Gbps. In the context of a smart grid network scenario this level of

attack traffic can be considered unlikely given the capabilities of the control and monitoring

equipment involved. While the authors of [13] indicate that the present cyber-physical

network has little in the way of defensive approaches in the face of a denial of service attack

other than purchasing additional bandwidth.

While large scale denial of service events can prove to be destructive and have the potential

to grind digital systems to a halt operating over several days or weeks – they are easier to

detect than some other of the more latent attack formats. However a form of the denial of

service approach relies on targeted bursts of low-rate data over a period of time aiming to

interfere with the operation of a system when it is most vulnerable. This as referenced in

[95] and [96] is called a shrew attack and aims to be more efficient and require greater

awareness of the target system.

2.6.4 Social Engineering

One of the most difficult weaknesses to counteract from a technical standpoint is the use of

social engineering methodologies which rather than launching an attack against the

hardware or software of the infrastructure targets the human controllers. Social engineering

aims to breech security protocols through convincing operators that access is needed or

through manipulating the user to unknowingly divulge access credentials or rights to a

potential attacker. In itself social engineering is unlikely make up the destructive element

of an attack and serves more as an intermediary step on the path to perpetrating the attack.

Using the example of the attack on the Ukrainian power network as referenced in [30] a

social engineering mechanism called spear-phishing was employed to steal access

credentials to the system which in turn would have made the installation of remote access

tools easier and hand control of the system over to the adversary.

 CONCLUSIONS

The examination of the literature and network deployments there general consensus is that

a hierarchical approach to the design of the control and communication architecture

structures is the most effective method. However the research is not unified on the structure

44 The Cyber-Physical Power System

beyond the hierarchical concept, citing differing levels numbers of data aggregation levels,

and distribution of controllers within the architecture. The concept of self-organisation was

barely recognised within the source literature and indicating that the architecture considered

within the research are intended to remain static, likely with additional reinforcement to

ensure they can withstand a wider range of communication traffic. Therefore there is

definite scope to explore a range of architecture designs using the information extracted

from existing literature and determine whether there are performance gains to be exploited

from the design of the communication architecture. Furthermore there is additional scope

to consider if the absence of a thorough discussion of self-organisation within the presented

examples is an oversight or whether a well-designed static configuration is capable of

producing all of the relevant performance characteristics.

Additionally the communication structures present in the deployment examples are not

necessarily aiming to solely deliver control signals to components within the network, the

ENW-LVNS example mainly oriented around the provision of data collection and

information management. Both these factors will have to be integrated into the agent

architecture in order to evaluate their effectiveness. The structure of the networks examined

will serve as a basis for the underlying model in terms of feeder length, customer population

distribution and architecture configurations. Although the SoLa Bristol project presents a

situation whereby only 32 customers can be effectively connected to a local controller,

predicted advances in communication technology and computational power would suggest

that this upper boundary could be exceeded in the future. Therefore these limits will be

removed when considering the architectures presented in the following chapter, certain

configurations will consist of smaller customer clusters than others but there will be a

higher threshold. If the investigation determines that self-organisation is a viable method

of defining the control and communication architecture, these limits will be useful in

determining how many connection requests a controller or aggregator will accept.

Additionally the deployment scenarios present cases with a relatively low sampling rate or

degree of observability. For example the ENW-LVNS case includes three points of voltage

sampling per feeder, at the top, tail and centre of the line, with data transmitted from sensors

at up to 10 minute intervals. The planned investigation intends to increase the

communication rate and coverage within the agent population, partly to be in line with

potential future technologies but also to test the architectures more thoroughly with a more

intense communication demand.

45 The Cyber-Physical Power System

From a development stand point multi-agent systems are commonplace within power

system and specifically microgrid research and therefore demonstrating that such an

approach is an appropriate base for the investigation into architecture designs. The

investigation into the differing agent platforms has concluded that using JADE the

development tool is an appropriate technique for exploring the different architectures and

for implementing a series of agents which can represent the technologies involved in a

sample network model.

Finally research considering the impact and potential vulnerabilities arising from cyber-

threats indicates that these network events should be considered when developing smart

grid architecture. This is because a cyber-attack may be directed at the control and

communication technologies with a goal of disrupting and interfering with the delivery of

control signals.

Overall the research has indicated that there is a case for developing multi-agent

architectures while individual scenarios and configurations prefer variations on a

hierarchical theme. Therefore the following investigation will consider a series of

architecture configurations in isolation to evaluate their relative performance, this will

determine the potential plausibility of introducing self-organisation as a method of

accessing ensuring continued system operation in the event that the network requirements

change, or an attack event is present.

46 Multi-Agent Architectures for Voltage Control

Chapter 3: Multi-Agent Architectures

for Voltage Control

47 Multi-Agent Architectures for Voltage Control

 INTRODUCTION

Chapter two outlined the structural concepts used within the smart grid research domain

featuring levels of decentralised control and hierarchical communication structures. From

this information a series of architecture configurations were subsequently developed

drawing inspiration from existing research. A total of 16 control and communication

architectures were constructed within the JADE agent platform, each of which was then

examined in the presence of a voltage deviation event present on each feeder, such that as

additional agents were added to the scenario, the scale of the control requirements also

increased. Therefore raising not only the amount of data recovered through customer

demand, DG generation and voltage monitoring data streams but also through the number

of requests for control and the resulting control signals.

This investigation considered the performance of the individual architectures in isolation,

to establish whether there was a notable difference between the capabilities of the selected

configurations. Each of the architectures was assessed for its performance in respect to

conventional operation in the form of performing the voltage control objective and

maintaining data flow between the tiers of the architecture, and under the influence of an

attack event. In addition to performing the control objective the architectures were also

assessed under the presence of cyber-threat which was designed to be a result of

compromised smart-meters failing to respond to control signals.

This chapter outlines the selected electrical network upon which will be under the

jurisdiction of the agent population and documents the control process embedded within

the set of agents with respect to calculating voltage magnitude and providing voltage

control. The chapter also contains the structures of the four core communication

architectures developed, and the nature of the agents involved within those architecture

detailing the roles and responsibilities of each component. Finally a series of test criteria

are considered for evaluating the performance of the differing architectures and the series

of results generated in response to those criteria.

 TEST NETWORK

The selected network model used for the testing process was based on a series of radial LV

feeders; a section of LV network was selected due to the distribution network being subject

to the introduction of smart-metering. Furthermore it is a part of the electrical system which

is presently under-observed and therefore was an appropriate tier in the power systems

48 Multi-Agent Architectures for Voltage Control

hierarchy to install agents. Additionally the literature surrounding control and

communication architectures mostly involved the distribution network and smart-metering

infrastructures. This network model is outlined in the following diagram in Fig. 3..

Fig. 3.1 – Network Diagram

The network existed as a series of embedded variables stored as agent knowledge within

the agent population. Each agent was supplied with information describing impedances to

its neighbours, using data extracted from [97] and presented in Table 3.. The variables and

calculation processes were then verified against a Simulink model of the same network

configuration to ensure that the agent community modelled an electrical network. The

network was composed of several radial feeders, each serving 90 customers, the number of

customers, length of cable and customer density parameters were in line with feeder

represented within the LV Network Solutions Project as documented by the authors of [73].

Population increases were achieved through appending additional branches to the network

spine up to a total of 18 feeders serving 1620 domestic customers.

Table 3.1 – Network Parameters

Parameter Value 11kV Conductor

Generation 63kW per DG Resistance 0.164Ω/km

Customer Demand External demand profile Reactance 0.08Ω/km

Branch Separation 500m 400V Conductor

Customer Separation 10m Resistance 0.32Ω/km

Feeder Population 90 Customers Reactance 0.075Ω/km

Number of Feeders 6-18 (on branch pairings)

Customer Population 540-1620

49 Multi-Agent Architectures for Voltage Control

Each of the customers was supplied with a demand profile which was extracted from

Customer-Led Network Revolution (CLNR) data files available online [98]. The number

of customers per feeder and the selected load profiles were configured such that a voltage

deviation would be present on each feeder, affecting customers towards the end of the

feeder.

3.2.1 Voltage Calculation

The voltage calculation process was triggered by the observer agent at three second

intervals – the calculation propagates through the network. Each active agent in the

hierarchy was informed of the voltage at the preceding bus a value for transmitted power;

the agent knows the impedance of the connecting conductor. Using this information the

agent was then able to calculate the voltage drop between itself and the preceding agent as

a means of calculating the voltage at the bus the agent represented. The voltage drop

calculation is presented in the following equation (1).

(1) (𝑉𝑟 − 𝑉𝑠) = 𝑅𝑃
𝑉𝑟

⁄ +
𝑋𝑄

𝑉𝑟
⁄

Where Vs and Vr are sending and receiving voltages respectively. All values were converted

into per-unit under the following base values (2-4).

(2) 𝑆𝑏𝑎𝑠𝑒 = 100𝑀𝑉𝐴

(3)
𝑍𝑏𝑎𝑠𝑒11𝑘𝑉 =

(1.1𝑥104)2

1𝑥108
= 1.21Ω

(4)
𝑍𝑏𝑎𝑠𝑒400𝑉 =

4002

1𝑥108
= 0.0016Ω

The voltage calculation is then completed iteratively for each pair of electrically connected

nodes throughout the overall agent network. This allows each of the customer agents to be

aware of the voltage at their corresponding bus and thus determine if any control actions

need to be taken.

3.2.2 Recognising and Tracking a Developing Excursion Event

In order to prevent the controller from intervening too quickly, events were tracked before

being responded to. When responding to a voltage violation a controller would instruct

customers to shed load, reducing demand in order to raise the voltage level. It was important

to ensure that the voltage deviation event was a persistent event rather than a transient one

before shedding customer load.

50 Multi-Agent Architectures for Voltage Control

Therefore a stand-off period of time was introduced, initiated at the when the excursion

event is first detected. If the event persists to the point that it lasts longer than the stand-off

period – then intervention action is taken. The stand-off time was set to five minutes, such

that transient voltage excursions do not trigger a control response. The length of this period

is shorter than the voltage regulations as per the UK grid code – continuous operation up

to 15 minutes [99] - but it exceeds length of the longest voltage sag definition (events

between 0.5 cycles and 60s) as defined in IEEE standard 1159 [100] outlined in the

following table - Table 3.2.

Table 3.2 – Voltage Sag Classification Table

Voltage Sag/Dip Classification Timeframe

Instantaneous 1
2⁄ cycle – 30 cycles (10-600ms at 50Hz)

Momentary 30 cycles – 3seconds (600ms -3s at 50Hz)

Temporary 3 – 60s

Each customer was responsible for the monitoring the length of any voltage deviation it

observed, this responsibility was not passed onto the control layer for two reasons. Firstly

this reduced the communication overhead as each deviation did not have to be reported to

a controller, and only those events which exceeded the stand-off time were communicated

to a controller. Secondly it removed the necessity of the controller to maintain a series of

timers devoted to each incident, as each customer contained its own event timer which is

triggered as soon as the calculated voltage drops below 0.94 per unit.

3.2.3 Performing Control Actions

Once a voltage issue had been detected and determined to be a persistent problem the

customer detecting the event then began an interaction with the controller. This interaction

involved sending a control request to the controller and waiting for the controller to issue

commands to customers on the same feeder as the deviation. If the architecture was

operating with the highest level of decentralisation – i.e. customer led control – the first

stage would be bypassed by the fact that the control functions and the source of the

deviation were the same agent. Control was achieved through demand side response –

modifying customer demand rather than modifying generation output. In the network

model, 50% of the customer population were deemed to be controllable and would accept

control commands to reduce demand by 700W. Once a controller received a request it

would then select an initial set of customers and send query messages to those customers

51 Multi-Agent Architectures for Voltage Control

to check if they were controllable. If any of the selected targets indicates that they were a

controllable customer, the controller would send the instruction to shed load in order to

reduce the under-voltage situation. This interaction is presented in the following diagram.

Fig. 3.2 – Communication flow between agents during control

The load shedding restrictions were left in place until the voltage recovers past a safe value

whereby the controller would then issue a set of commands to lift all restrictions. This safe

value was set at 0.96 P.U. and would only be accepted when received from the agent at the

end of the feeder, using data from customers closer to the 11kV-400V transformer at the

head of the feeder would result in the restrictions being lifted too soon and thus reducing

the effectiveness of the process on reducing the voltage deviation.

 ARCHITECTURE DESIGNS

Four initial organisational structures were implemented for testing purposes based on the

core concept of a hierarchical design which was prominent in literature. Within these

architectures the location of the control functions could be varied for differing levels of

decentralisation. For example a fully centralised control mechanism would involve

customer agents transmitting control requests to the central observer agent. Whereas a

Controllability Check (“IS_CONTROLLABLE”)

Log event occurrence

Observer Customer

Voltage Deviation detected (“UNDER_VOLTAGE”)

Asks for controllability check (“IS_CONTROLLABLE”)

Confirms Controllability status (“NON_CONTROLLABLE”)

Send Control Command (“DOWN”)

Increase restriction

Confirm control taken place (“CONTROL_CONFIRM”)

If limit reached,
disable controllability

Reset log variable

Store Agent Name

Determine if customer
is at either feeder end

Select Alternative
Agents Selected Agent(s)

Repeat until suitable
target found

Confirms Controllability status (“NON_CONTROLLABLE”)

52 Multi-Agent Architectures for Voltage Control

highly decentralised control approach involved customer agents transmitting control

signals to neighbouring customers without involving any other tier in the hierarchy. As

previously indicated the issue of increasing network scale and agent population numbers

was performed through adding further feeders to the end of the main network spine. The

four architecture designs implemented are presented as follows.

3.3.1 Base Architecture

The first of the architectures which was developed was a base architecture, in this

configuration a single aggregate agent is allocated per feeder. This aggregate agent was

responsible for the collection of demand and generation information from its feeder and

triggering the sequence of voltage calculations which would then iterate down the length

of the feeder. If the aggregate was not responsible for customers on feeders connected to

the furthest end of the central network spine – the aggregate would also trigger voltage

connections to the corresponding aggregate in the subsequent network branch.

The control mechanisms involved are dependent on the level of decentralisation –

customers would contact the controller directly without following the communication route

involved with transmitting customer data. For example if centralised control was in place,

a customer would send a control request to the observer agent instead of that message being

routed to the observer via the aggregation tier. This architecture is presented in the

following figure Fig. 3.3.

Fig. 3.3 – Base Architecture Diagram

Observer

G1 G2

G3 G4

AG1 AG2

AG3 AG4

Customer Agents Customer Agents

Customer Agents Customer Agents

Electrical Network

Data Collection Communications

Voltage Calculation Communications

53 Multi-Agent Architectures for Voltage Control

3.3.2 Clustered Architecture

The clustered architecture increased the number of aggregation agents per feeder, and

therefore reduced the communicative load at each of the aggregation agents. To perform

the voltage calculation sequence one of the aggregates on each of the feeders was selected

to act as a cluster-head agent, which meant it was responsible for starting the set of

sequential equations which were then passed between customers along the length of the

feeder. The cluster head agent was supplied with the demand information collected from

the rest of the aggregates on the feeder such that it could perform an initial calculation.

Each cluster head agent would then supply demand and voltage information any cluster

head agents electrically downstream.

The cluster head agent was on the same hierarchical tier as the other aggregates, but was

the only aggregate associated with a feeder which would report to the observer agent. The

overall objective of the architecture was to reduce the congestion at the aggregation layer

as this was a key bottleneck area within the structure. The topology and communication

structure is presented in the following figure: Fig. 3.4.

Fig. 3.4 – Clustered Architecture Diagram

3.3.3 Tiered Architecture

The third of the core architectures was built to accommodate the role of a cluster head agent

as a separate tier within the hierarchy. Its secondary function was to place a buffer stage

C1 G1

AG1

C5 C4 C3 C2

AG2 AG3 AG4 AG5

C1 G1

AG1

C5 C4 C3 C2

AG2 AG3 AG4 AG5

C1 G1

AG1

C5 C4C3 C2

AG2 AG3 AG4 AG5

C1 G1

AG1

C5 C4C3 C2

AG2 AG3 AG4 AG5

Observer

54 Multi-Agent Architectures for Voltage Control

between the main aggregation layer and the central observer agent, such that any congestion

issues were shielded from the central agent by an addition aggregation layer.

With the exception of handling upstream power values for individual customers the upper

tier aggregate performs the same core duties as it did in the other configurations. It received

demand information from the set of aggregates on the feeder and relays that onto the

observer to gain a total picture of the network. The generation agent on the feeder also

reports directly to the upper tier agent, as in the clustered architecture it would communicate

with the cluster-head agent. The following figure in Fig. 3.5 presents the structure of the

architecure.

Fig. 3.5 – Tiered Architecture Diagram

3.3.4 Disaggregated Architecture

The final developed conversion was the disaggregated architecture, which involves

removing all of the dedicated aggregation agents from the architecture. Instead the

generation agent assumed the responsibility of the sole aggregation point for each of the

feeders. This means that fewer total agents are active on the platform in comparison to the

other designs, but increases the potential for congestion. There were no dedicated aggregate

agents present within the architecture and therefore fewer potential layers at which the

control process could be installed. The topology for this architecture is presented in the

following figure in Fig. 3.6.

Observer Cluster Head

C1

AG1

G1 C5 C4 C3 C2

AG2 AG3 AG4 AG5

Cluster Head

C1

AG1

G1 C5 C4 C3 C2

AG2 AG3 AG4 AG5

Cluster Head

C1

AG1

G1 C5 C4C3 C2

AG2 AG3 AG4 AG5

Cluster Head

C1

AG1

G1 C5 C4C3 C2

AG2 AG3 AG4 AG5

55 Multi-Agent Architectures for Voltage Control

Fig. 3.6 – Disaggregated Architecture

3.3.5 Control Levels

Within each of the previously mentioned architectures, multiple levels of control

decentralisation, whereby each of the agent classifications present has the capability of

receiving control requests and disseminating commands. A completely centralised

approach uses the Observer agent as a controller and therefore all customer agents report

any detected voltage deviations to the central point. At the opposite end of the scale the

customer agents themselves request control actions from their neighbours in response to a

deviation event.

Taking the four architectures and the control levels in account a total of 16 permutations of

control and communication architecture combination were investigated and these

architectures were then examined under three escalating population scales. Each scale

extended the electrical network through adding additional feeders to the central network

spine, the agent architecture would be applied to the extra feeders as per the structure of

each of the architectures previously introduced. The additional feeders are identical to the

previous ones such that the distribution of loads remained balanced between scales and

such that the absolute volume of agents and messaging became the dominant variable.

Observer

G1 G2

G3 G4

Customer Agents Customer Agents

Customer Agents Customer Agents

Electrical Network

Data Collection Communications

Voltage Calculation Communications

56 Multi-Agent Architectures for Voltage Control

3.3.6 Security Considerations

The four presented architectures are subject to a series differing performances advantages

and disadvantages with respect to being resilient to a cyber-attack event, additionally the

alternate control approaches would also create a differing set of properties. The nature of

the impact of an attack event is related to the objective of the attacker and the attack

methodology employed. One objective may be to disrupt the control ability of the

controller, and therefore control requests from the customer layer are either ignored or

responded to incorrectly. Alternatively the target of the attack could be to gain access to

information stored within an agent, such as demand profiles and customer details.

Any architecture which was running under a centralised control mechanism contained a

central point of failure at the observer, which if compromised by an adversary would have

significant consequences for the controllability of all of the controllable customers.

However it is also reasonable to assume that a central control room would have the most

sophisticated defences in order to reduce the chances of an intrusion. However if the

architecture was under the control of a set of aggregation agents, the impact of the attack

would be influenced more by the topology of the agent architecture. The Base Architecture

contained one aggregate per feeder and therefore a compromised aggregate would only

impact the feeder with which the aggregate was associated. Whereas a clustered

architecture required more aggregate controllers to be compromised before the entire feeder

would lose controllability, therefore in addition to enabling a reduction in communicative

load the clustered architecture also offered greater robustness.

If the control was located at the customer tier, it would take several customers to be

compromised before a degree of control loss could be achieved. This is because multiple

customers are required to perform a control action and therefore if a small number of

customers had their controllability disabled or manipulated overall controllability will not

be affected. However in the presence of smart-meters as customer agents, it is these agents

would be considered the most accessible to a potential adversary, unlike the majority of the

agent types within the architecture it is the smart-meters which provide the easiest physical

access and therefore could be tampered with by an attacker.

57 Multi-Agent Architectures for Voltage Control

 AGENT SPECIFICATION

In the development of the architectures presented in the previous section test configuration

a core agent population needed to be established representing a generic distribution network

composed of several different agent types. These agent types are presented below.

3.4.1 Customer Agents

The customer agents formed the core population of any of the implemented Multi-Agent

architectures and were designed to represent customer smart-meters. The function of the

customer agents was to maintain local load profiles and relay periodic updates to the

aggregation layer such that a global picture of demand could be drawn. In addition, the

customer agent was also responsible for handling information pertinent to voltage

calculations and passing that information onto neighbouring agents. The final function of

the customer agent was to perform local voltage monitoring, once the customer has

performed a voltage calculation as discussed in section 0, the agent assessed the result. If

this result was outside of the recommended +10%/-6% voltage limits, the customer agent

would start the event timer. In the event that the deviation event proved to be persistent –

the customer would then be responsible for contacting a controller to alert it to the

developing problem. If the architecture was operating with the highest level of control

decentralisation, the issue would be processed internally; otherwise the customer would

receive control signals from other tiers within the hierarchy. A percentage of the customer

population was configured to perform demand side response as a control mechanism; the

customer agent was responsible for receiving those control signals and applying the

relevant action to the local load profile.

3.4.2 Generation Agents

The generator agent class operated in much the same way that customer agents did, it had

an internal profile which defined the output of the generator. This information was then

passed up the agent hierarchy to the aggregation layer, in the event that a configuration

without a dedicated aggregate population is in place, the generation agents assumed the

responsibility of becoming the aggregation points. All updates were passed directly to the

observer agent, after the generator agent would receive information from the customer layer.

Another potential role for the generator agent was as a controller. If a persistent deviation

was detected, control requests would be received by the generation agent on the same feeder

as the deviation event. The concept of generation control within the context of the

58 Multi-Agent Architectures for Voltage Control

presented research referred to the fact that the generation agents would transmit control

signals to controllable customers, rather than being able to influence the generator output.

3.4.3 Aggregation Agents

The Aggregation agents are placed in a tier above the customer layer, this tier was

predominantly used for the purposes of data collection from customer and generation

agents. Depending on the architecture in use the aggregates would either forward

aggregated data onto the observer if no other aggregates were present on a feeder.

Otherwise, the aggregate agent would forward updates from the generation and customer

population to the cluster-head aggregate instead of the observer. The aggregation agent

could also be used as a local controller, only responding to the control requests of the

customer population within its catchment area. This catchment area was dependant on the

number of aggregates in operation per feeder; this may span the length of one feeder or a

subset of agents on that feeder.

3.4.4 Cluster Head Agents

A cluster head agent acted as an enhanced aggregation agent, whereby it contained all the

core functionality of the other aggregation agents within architecture it also performed

further duties. Cluster-heads were used when multiple aggregates were assigned to a single

feeder, all demand and generation information collected by the other aggregates on the

feeder were passed to the cluster head. This was because the cluster-head agent needed to

know the overall demand of the feeder such that it could perform the first voltage

calculation, before reiterating the information to the first customer. In addition to triggering

voltage calculations along a feeder the cluster head would also pass voltage information to

the next cluster head agent downstream. All demand and generation information collated

by the cluster head agent was passed up to the observer agent.

3.4.5 Observer Agent

The observer agent was the central entirety in each of the architecture designs; it

represented a central control room or server which is supplied with the global data from the

network. All demand and generation updates were transmitted to the observer which built

an overall picture of the network. The observer agent could also act as a central controller,

if used as a controller all control requests from the customer population would be received

by the observer and it would be responsible for disseminating the control signals. This

approach creates the potential for the observer to make decisions on a global level – and

59 Multi-Agent Architectures for Voltage Control

may have wider control applications but it also created the risk of a control request

bottleneck at the top of the architecture. Furthermore it also represented a single point of

failure; therefore if the observer was no longer able to perform the control responsibility as

a result of an attack event or failure, controllability would be completely lost throughout

the architecture.

3.4.6 Error Generator Agent

The final agent that was included within the population was the error generation agent; this

agent was not part of the core architectures from a communication and configuration

perspective. The role of the agent was to deliver the signals required to simulate failure or

attack events within the architecture when instructed to do so. The error generator would

transmit an instruction to a controller to begin performing anomalously in the form of

rejecting control requests or responding with incorrect commands. When there were not

attack or failure events taking place, the error generation agent served no function and did

not interfere with the general running of any architecture design.

 PERFORMANCE CRITERIA

To assess the performance of the different configurations presented in the previous section

of this chapter a series of comparative metrics were introduced to extract information from

the agent population. These metrics illustrated the impact of architectural design choices

on the core control objective of solving a voltage deviation in addition to the impact on the

levels of computational load the system experienced. A further purpose of using multiple

metrics was to determine if the competing architectures favoured certain properties or had

side effects from increasing control performance. These metrics are as follows:

3.5.1 Congestion

The congestion metric focused on the number of messages which were trapped in the

message queues maintained by each of the agents. When an agent within the Jade platform

received a message from another agent it was temporarily stored in the message queue,

once it had been read by behaviour within that agent it was then removed from the queue.

If the agent was subject to a large number of incoming messages, for example in the case

of the aggregation layer receiving periodic updates from an agent population, it reached the

point where more messages were being received than being read. As a result the message

queue began to build and this caused data congestion, by measuring the amount of messages

60 Multi-Agent Architectures for Voltage Control

waiting in this queue it was possible to gauge the level of congestion that particular agent

was facing. As previously noted the issue of congestion was largely a problem of the

aggregation layer due to the nature of the responsibilities it faced.

3.5.2 Reactivity

Reactivity referred to the ability of the architecture to respond to events taking place within

the architecture, it acted as a measure of the speed of detection and response to certain

messages transmitted by the customer layer of the architecture. To evaluate the reactivity,

each of the customers was instructed to transmit a message to its controller which contained

information about a fault condition. Two stages of reactivity were then considered, the first

was the time difference between the initial fault message being transmitted, and it being

detected by the control layer. In the eventuality that the architecture was operated with

customer level control then detection times were not recorded, this was because the source

of the message and the detector were the same agent. The second reactivity consideration

focussed on the controller responding to the fault message and transmitting a command

signal back to the customer agent. This test evaluated the distance between controller and

customer and its impact on reactivity, but also the degree with which message congestion

compromised the ability to detect and reply to key messages.

3.5.3 Message Efficiency

Message Efficiency dealt with the matching the number of messages transmitted in total

with the number of messages received - to determine the percentage of messages that

reached the ideal destination. Messages are only counted if they are processed by the

recipient agent rather than being captured by the message queue – therefore messages

which were trapped in a queue were not counted as they were not processed. As congestion

and data flow increased the likelihood that a message would not be processed increased

and therefore lowered the message efficiency of the overall system. For many messages

such as demand and generation updates, the issue of message efficiency was not necessarily

a significant problem – it played a far greater role in the transmission of critical messages.

Control requests reporting voltage deviations required action from the recipient and

therefore in a system with lower message efficiency it became less likely that those

messages would be acted upon and therefore reduced the controllability of the system.

61 Multi-Agent Architectures for Voltage Control

3.5.4 Control Performance

Control performance related to the ability of the controllers to solve the voltage deviation

– each simulation was provided with a set of profiles which contained an under-voltage

incident which required solving. A customer would report an under-voltage incident once

it lasted for more than 5 minutes, confirming it as a persistent issue. This report was made

to the controller for the corresponding section of the network who in turn will issue control

commands to resolve the issue. An architecture configuration performing strongly would

be able to complete this interaction faster than one under the strain of communication

problems and therefore solve the voltage deviation in a shorter period of time. As the

voltage performance is a key indicator of the electrical performance of the system it was

important document the impact the cyber layer had on the physical network properties.

3.5.5 Robustness

Further research considered examining the set of architectures from the perspective of

robustness and the ability to perform the control actions under the pressure of component

failure or cyber-attack.

During the investigation the selected method of failure focussed on the control action,

enacting a potential avenue for a cyber-attack. Those customers who were designated as

‘infected’ would still perform monitoring, and detection of voltage deviations –they would

also still also accept control signals from a controller. The influence of the infection was

that it changed how the customer agent responded to an incoming control signal – instead

of performing the load shedding action requested, the agent increased the demand. This

could be through activating a heat-pump, electric vehicle charging station or other smart-

loads within the premises – an infected agent increases demand by 1500W – which risks

intensifying the voltage deviation and nullifying any control attempts. The infection only

targeted controllable customers, which amounted to a maximum 50% of the total customer

population. To examine the survivability of this form of attack, different quantities of

infected agents were activated per feeder.

Even through the selection of a single attack strategy there is an immense quantity of

potential permutations of attack location, strength, spread pattern, duration, and scope. An

attack could be limited to a single feeder, or be network wide – each feeder population

could be affected differently depending on the differing vulnerabilities of the installed

smart-meters or monitoring devices. This list of attack vectors is then further expanded

62 Multi-Agent Architectures for Voltage Control

through variations in the customer population – a network with 1620 customers has

considerably more avenues of attack than one with 540 customers for example. Therefore

it was important to narrow the scope of the investigation an effective worst case attack

scenario was selected – wherein the infection affected each feeder symmetrically and one

agent population size was selected of 540 customer agents. Adding further feeders to the

investigation would not change the nature of the problem as each feeder would respond to

the attack in an identical manner. The only difference would be in the magnitude of the

voltage deviations further from the grid connection, as more customers experienced the

load increase, the voltage drop in the network spine would be greater and therefore feeders

at the far end of the network would experience lower voltages at the start of the feeder.

Each of the sixteen control and communication architecture combinations was supplied

with the same customer profile calibrated to create a single voltage deviation event, and the

first 1000 seconds of the voltage profile was analysed. This section of runtime would

comfortably cover a period of pre-deviation operation plus the event and recovery time,

under normal circumstances. As the number of infected agents per feeder was increased up

to the maximum 45 (50% of a feeder’s population) the length of time taken to correct a

voltage deviation should increase. The upper limit of 1000 seconds was used to compare

levels of infection in which the deviation cannot be corrected to prevent the length of the

deviation being defined by the simulation runtime. The voltage profile for each customer

was processed to extract the duration and magnitude of any deviation event experienced.

The total number of deviation events and excursions was also recorded; where an event

refers to any period of time the voltage drops below 0.94pu whereas excursions only

consider events lasting more than 300 seconds. Eight levels of infection were tested per

configuration – starting with control tests of 0 infected agents, and no control and increasing

the number of infected agents to 5, 10, 20, 30, 40, and full infection of 45 customer agents

per feeder.

Several metrics were recorded for each of the customers within the overall architecture, as

each customer agent regularly updates a CSV output file containing data documenting time-

stamped voltages to reconstruct an individual profile per user. These profiles were then

dissected via a Matlab script to isolate the periods of under-voltage, counting the number

of occurrences in addition to retrieving the duration and magnitude of each event. From

each profile the following information was recorded:

63 Multi-Agent Architectures for Voltage Control

 Max Voltage

 Min Voltage

 Mean Voltage

 Number of Deviation Events

 Number of Events Exceeding the 300s waiting period

 Max Deviation Event Length – Timed from the first instance of voltage dropping

below 0.94, until recovering above limits

 Total Under-Voltage Time – Total time spent below 0.94pu

 Average Deviation Length – Taken using all deviation events, not just those

exceeding the 300s stand off period.

 RESULTS

Two series of investigations were conducted into the performance of the range of control

and communication architectures. The first of which considered the operational variables

of the network considering control performance, alongside communication metrics. The

second investigation was focussed on operating the set of architectures in the presence of

an external attack which compromised agents at the customer layer.

3.6.1 Operational Performance Results

Each of the 16 configurations was examined against four criteria as published in by the

author of this thesis in [101]. The results demonstrated that the 16 different architecture

combinations displayed variances in performances that indicated that no single

configuration out-performed the others across the range of agent population scales and

differing performance metrics as presented in the following figure in Fig. 3.7 from the paper.

64 Multi-Agent Architectures for Voltage Control

Fig. 3.7 – Performance Summary Table

The figure presents the relative rankings for each of the different architectures for four of

the performance indicators previously introduced. Illustrating that some common design

trends delivered preferential performance but did not deliver the strongest performance

across all categories – for example configurations with increased aggregation capacity are

able to respond faster to changes in the network and operated with lower message

congestion. However the same configurations scored worse in the context of message

efficiency as a result of a larger number of aggregation points in the communication

architecture increasing the chances that messages were not be received. Based on the results

it was determined that the architecture would benefit from not being fixed to a single

configuration; this is due to the fact that differing architecture designs exhibited differing

properties. Therefore the data indicated that the presence of a self-organising architecture

with the capability to transition between states would be beneficial in terms of accessing

specific performance advantages.

3.6.2 Robustness results

The second result set documents the series of robustness tests which demonstrated the

network performance under the pressure of an attack event within which customer agents

were compromised. The attack targeted the smart-meters represented by the customer layer

of the architecture an affected how those customers responded to control commands. The

profiles presented in Fig. 3.8 illustrate the control process in the absence of an attack event.

Performance Metric
Control

Performance
Congestion Reactivity

Message

Efficiency
Shading

Legend
Customer Population 540 1080 1620 540 1080 1620 540 1080 1620 540 1080 1620

C
o

n
tr

o
l
a
n

d
 C

o
m

m
u

n
ic

a
ti

o
n

A
rc

h
it

e
c
tu

re
 C

o
m

b
in

a
ti

o
n

Base + Central 6 5 5 9 8 14 9 7 6 6 8 7 1st

Base + Aggregation 10 14 14 8 6 13 16 16 13 4 3 2 2nd

Base + Generation 7 11 11 15 15 12 8 11 10 15 14 15 3rd

Base + Customer 5 10 9 13 16 2 11 9 12 13 13 16 4th

Clustered + Central 15 6 7 16 2 10 7 14 15 1 5 4 5th

Clustered + Aggregation 2 4 4 5 5 7 5 4 3 8 9 5 6th

Clustered + Generation 1 2 1 4 9 9 3 5 9 10 10 9 7th

Clustered + Customer 3 1 3 12 13 3 2 2 4 16 11 12 8th

Tiered + Central 8 9 8 14 10 8 4 3 2 2 12 11 9th

Tiered + Upper Aggregation 14 7 10 2 4 6 15 12 11 9 15 8 10th

Tiered + Lower Aggregation 4 3 2 1 1 5 1 1 1 12 2 10 11th

Tiered + Generation 12 8 13 7 12 11 6 6 5 11 16 13 12th

Tiered + Customer 9 13 12 10 11 4 10 8 8 14 7 1 13th

Disaggregated + Central 16 12 6 11 3 16 14 15 16 3 1 3 14th

Disaggregated + Generation 11 15 15 3 7 15 13 13 14 5 4 6 15th

Disaggregated + Customer 13 16 16 6 14 1 12 10 7 7 6 14 16th

65 Multi-Agent Architectures for Voltage Control

Fig. 3.8 – Voltage Profiles Without Infected agents

 The profiles presented in the figure were taken from the customer at the farthest point of

the network from the grid connection point at the tail of the 6th feeder – customer number

540. As the infection was distributed symmetrically and the demand/generation data was

identical for each customer the selection of the final customer for the purposes of

constructing the figures does not impact on the validity of the results and presents the feeder

at the greater risk of a voltage deviation.

The figure illustrates that in each case the control solution was able to respond to the voltage

problem and raise the voltage levels above the minimum threshold. The performance

difference in the control processes between architectures does confirm the information

posted in the previous table as the configurations based on the disaggregated

communication architecture struggle in terms of control performance than the other formats.

The following figure in Fig. 3.9 presents the same voltage profiles where 45 customer

agents per feeder were infected with the malware and all control commands were reversed.

66 Multi-Agent Architectures for Voltage Control

Fig. 3.9 – Voltage Profiles with 45 Infected Customers per Feeder

The figure illustrates that the different architectures responded to the presence of an

infection differently, those architectures featuring a larger aggregation population were

able to weather the attack event better than those with at most one aggregate per feeder.

Furthermore the centralised control approaches also performed favourably against the more

decentralised options due to the increased distance between the point of decision making

and the component under control. In the context of achieving control without the presence

of an infection this distance can be considered detrimental as the increase in the number of

communication hops increases the risk of a delay. However while the attack or infection is

in place, that control distance acts as insulation and defers some of the impacts of the attack.

To evaluate the comparative performances between the architectures in the presence of

increasing attack intensity each configuration was ranked – as in the research conducted on

an attack free scenario in the published paper [101]. The following figures illustrate how

those rankings fluctuated with respect to different performance metrics extracted from the

voltage profiles.

67 Multi-Agent Architectures for Voltage Control

Fig. 3.10 – Average Minimum Voltage Ranking Table

The first figure presented in Fig. 3.10 demonstrates the variance in relative performance

across the different architecture combinations and the different levels of infection with

respect to the average minimum voltage per feeder. The results indicated that different

levels of attack intensity are better served by alternate architectures – for example a

clustered communication structure operating with generation agents providing control

signals is the lowest ranked architecture when no customer agents are infected. However

the same configuration is ranked 5th when faced with the most severe level of infection as

50% of the customer population are ineffectively responding to control signals.

The second of the assessment metrics considered the average duration of all under-voltage

events recorded across the entire customer population, the rankings for this metric are

presented in the following figure in Fig. 3.11. In contrast to the data on minimum voltage

the manner in which specific architectures either climbed up or descended down the

rankings was more progressive and exhibited fewer sharp changes in relative performance.

This indicated a state which presented with a degree of graceful degradation, not all

configurations followed this pattern – the disaggregated architectures in particular observed

significant performance loss when processing the more severe attack formats. These results

also indicated that a single configuration was not advantageous when under pressure from

the different attack severities. Disaggregated architectures performed strongly when the

attack severity was low, but the clustered architecture became more prominent when the

attack was stronger.

NC 0 5 10 20 30 40 45

Base + Centralised 2 6 7 1 15 15 7 11

Base + Aggregation 5 5 1 9 3 3 6 12

Base + Generation 3 9 10 15 10 1 16 16

Base + Customer 4 10 5 7 16 16 11 15

Clustered + Centralised 8 3 8 3 7 7 2 1

Clustered + Aggregation 1 11 6 2 8 12 9 8

Clustered + Generation 6 16 11 8 11 6 15 5

Clustered + Customer 7 14 15 16 9 2 13 14

Tiered + Centralised 9 2 2 5 12 13 3 2

Tiered + Upper Aggregation 11 7 13 12 13 9 5 9

Tiered + Lower Aggregation 15 15 14 11 1 8 10 13

Tiered + Generation 10 13 12 14 5 4 8 4

Tiered + Customer 14 12 16 13 14 14 12 6

Disaggregated + Centralised 12 1 4 6 2 11 1 3

Disaggregated + Generation 13 4 3 4 4 5 4 7

Disaggregated + Customer 16 8 9 10 6 10 14 10

68 Multi-Agent Architectures for Voltage Control

Fig. 3.11 – Average Total Under-Voltage Time per Affected Customer

Finally the data illustrated in Fig. 3.12 presents the comparative rankings for the number

of affected customers – a customer was considered to be affected if it encounters a voltage

deviation which lasts for more than five minutes during the simulation. Higher ranked

performers contained the smallest number of affected customers, in the smaller attack

configurations several configurations had the same number of affected customers and were

therefore ranked equally.

Fig. 3.12 – Number of Affected Customers Ranking Chart

The results echo the information presented in the earlier voltage profiles as configurations

with a more decentralised control approach were ranked highly when faced with a low

volume of infected customers. Whereas when exposed to a larger infected population the

NC 0 5 10 20 30 40 45

Base + Centralised 14 9 11 10 11 8 13 13

Base + Aggregation 10 2 1 5 8 14 16 16

Base + Generation 9 15 16 16 16 13 5 2

Base + Customer 8 11 12 11 10 6 8 10

Clustered + Centralised 6 12 10 13 12 12 10 6

Clustered + Aggregation 2 13 13 9 14 15 9 5

Clustered + Generation 16 16 14 15 13 16 3 4

Clustered + Customer 7 10 15 14 15 5 2 1

Tiered + Centralised 15 5 7 7 2 4 12 14

Tiered + Upper Aggregation 1 8 6 3 5 7 15 8

Tiered + Lower Aggregation 5 14 9 12 4 3 6 3

Tiered + Generation 11 7 4 8 9 10 7 7

Tiered + Customer 3 6 5 4 6 1 1 9

Disaggregated + Centralised 12 3 8 6 1 9 11 11

Disaggregated + Generation 13 1 2 1 3 11 14 15

Disaggregated + Customer 4 4 3 2 7 2 4 12

NC 0 5 10 20 30 40 45

Base + Centralised 6 4 4 4 6 9 13 9

Base + Aggregation 2 2 2 2 3 13 15 14

Base + Generation 6 15 4 4 2 16 10 12

Base + Customer 6 4 4 4 6 11 9 14

Clustered + Centralised 6 4 4 4 6 1 6 1

Clustered + Aggregation 1 1 1 1 1 6 12 6

Clustered + Generation 6 16 4 4 6 12 11 3

Clustered + Customer 6 4 4 4 6 8 5 9

Tiered + Centralised 6 4 4 4 6 1 8 1

Tiered + Upper Aggregation 6 4 4 4 6 15 15 13

Tiered + Lower Aggregation 4 4 4 4 6 5 4 7

Tiered + Generation 4 3 3 3 5 14 7 5

Tiered + Customer 6 4 4 4 6 7 1 9

Disaggregated + Centralised 6 4 4 4 6 1 2 4

Disaggregated + Generation 6 4 4 4 3 4 14 8

Disaggregated + Customer 2 4 4 4 6 9 3 16

69 Multi-Agent Architectures for Voltage Control

centralised control architectures were ranked higher – demonstrating that the control

distance between component and controller reduced the impact of the attack. It should be

noted that under the larger scale attack formats, all feeders experienced a voltage deviation

which could not be corrected as the number of infected agents outnumbered those providing

correct control and therefore counteracted any valid control decisions.

 CONCLUSION

Across the set of results in both the case of conventional operation and the presence of a

cyber threat there is no dominant architecture configuration than can be universally

described as being the strongest performer and the most resilient. This is more relevant in

terms of dealing with an attack event where the impact of the same attack varies across the

set of architectures and as that attack intensifies those architectures which initially ranked

higher start to record a lower placing. The amount of factors influencing performance

within the agent structure itself indicates that a static structure is not completely fit for

purpose as the vision for future networks aims to incorporate greater flexibility and

controllability. As a result it would be valuable to devise a system whereby the architecture

in use would be able to change and adapt itself in response to the state of system health –

either in the form of communication issues or in the form of an attack. These changes would

allow the architecture restructure to deliver more effective performance or becomes more

resilient to an ongoing attack event. A self-organising architecture would be able to deliver

the greater resistance to an ongoing threat as it will have the capacity to isolate members

of the agent population or replace agents under attack and increase the number of available

controllers or data collection points to improve the performance if necessary.

Therefore on the basis of this result set the following course of action was to investigate

the usage and approaches of self-organising architectures in a variety of applications where

a large number of individual components are required to interact. The investigation aimed

to examine tools and techniques involved with developing self-organising systems such

that the implemented architecture could be informed by proven examples.

In addition to the development of the self-organising architecture it was also relevant to

introduce a flexible test environment within which the voltage calculations can be

conducted outside of the agent population. This was considered to avoid architectural

transitions from disturbing the voltage calculation process within the agent population, the

70 Multi-Agent Architectures for Voltage Control

connections within the architecture were restructured as a result of a transition event –

access to the required variables to perform voltage calculations would be compromised.

For example if a transition involved removing an aggregate – one which was performing a

cluster head role – an additional overhead would have been required to reconnect the

iterative voltage calculations with its replacement. Therefore separating the load flow

mechanism from the self-organising architecture prevented similar situations from

developing. This requires the addition of an external load flow engine operating over a

network model of the test system and supplied with the most recent demand and generation

data from the agent population.

Furthermore the data attained through the investigation demonstrated that suitable focus

for the self-organising architecture was the presence of a cyber threat. This focus was based

on the impacts of the attack event being more severe than those experienced in those

architectures which were ranked poorly for the other performance metrics. Failing to

intervene in the event of a cyber threat would be more costly than improving individual

metrics when the architecture is not under attack. It was still important to consider

monitoring these performance metrics in the eventuality that a severe disturbance took

place which would compromise the control objective, but in terms of trigger events an

attack based scenario was more relevant.

 SUMMARY

This chapter documented a series of investigations on static architectures which considered

differing performance metrics and the stability of the control system under an attack event.

Initially the core architecture designs were described and the components of the test system

were discussed including the method for voltage magnitude calculation. The results

illustrated that there was a clear need for the introduction of a self-organising architecture

with the ability to perform suitable transition events which aimed to improve performance.

This was deduced by the variance in performance of the individual static architectures with

and without the presence of an attack event taking place. In conclusion it was determined

that the threat of a cyber-attack was a more relevant trigger factor for the implementation

of self-organisation.

71 Self-Organising Systems

Chapter 4: Self-Organising Systems

72 Self-Organising Systems

 INTRODUCTION

After conducting preliminary investigations concerning the comparative performances of

different static architecture designs both in terms of withstanding a cyber-attack event and

performing voltage control, the results indicated that there was scope for the development

of a self-organising architecture. The self-organising architecture needed to fulfil the

control and monitoring requirements contained within the static configurations but also the

ability to recognise that a transitional event was needed. Therefore performance monitoring

techniques were also an important consideration when examining mechanisms for

implementing the system. Both communication level and electrical information was needed

in terms of building the self-monitoring aspect of the self-organising architecture,

information which then informed a decision making element before a transition would be

made.

To develop the relevant functions and abilities additional literature needed to be

interrogated for the purposes of examining tools, techniques and applications of existing

research in the field of self-organisation. The investigation aimed to discover methods

which could be adapted for an implementation in the smart grid domain, and to establish

the requirements for a self-organising architecture. A range of different research areas were

explored including wireless communications, sensor and vehicle networks because self-

organisation architectures within power systems is not a field which had been documented

extensively in the literature. Therefore it was relevant to consider alternative domains

wherein communication and monitoring are conducted over wider geographical areas or

involving multiple agents.

This chapter considers the core concepts involved within self-organisation and the desirable

deliverables for implementing such a system. Following this the chapter continues on to

consider differing applications of self-organisation across different research domains with

a view of exploring the different approaches and considerations made for providing self-

organisation. Furthermore the chapter introduces examples whereby self-organisation has

been investigated for certain functions within the power system research domain. Finally

conclusions are drawn on the basis of the material examined, and gaps in the research are

identified where the implementation of a self-organising architecture may be of value,

supporting the research presented in this thesis.

.

73 Self-Organising Systems

 SELF-ORGANISING CONCEPTS

Over-arching research in self-organisation defines it as “the mechanism or the process

enabling a system to change its organization without explicit external command during its

execution time” [38]. Therefore all processes involved with data collection, performance

monitoring and ultimately decision making are to take place within the agents involved in

the system. Therefore no external influences or commands are involved in changing the

organisational structure. Secondly the definition states that the system must remain in

operation during a transition and cannot be offline until such time that the re-organisation

process has been completed. As a result self-organising systems also need to be agile, as

documented by the authors of [37]. The authors of [38] go on to outline differentiations

between strong and weak self-organisation which is based around the location and method

of decision making with respect to performing an architecture transition. A strong self-

organised system is defined as one that is composed purely of decentralised decision

making and architecture transitions – at no point is a central entity or agent involved in

dictating to the network which structure to transition into. A weak system on the other hand,

conducts self-organisation through a central entity which is present within the host

architecture; hybrid systems perform different self-organising tasks at differing locations

in the structure of the system.

Several properties and characteristics are described within the paper, included in the list are

the following notable properties:

Endogenous global order – This states that the system requires the capability to organise

itself into a stable state from start-up without external assistance. Therefore agents within

the system form their own connections and interactions with other agents in the population

depending on their roles and responsibilities.

Simple Local Rules – This involves simplifying the rule base on the local scale and the

decisions involved with determining whether or not a transition is required. Therefore

introducing local decision making in the case of assessing performance metrics – those

which are within limits are not pursued further while those which exceed thresholds are

subject to further analysis. This characteristic maps directly with the requirement for

simplicity discussed in [37], wherein reducing the complexity of the individual components

within the self-organised system increases the potential for that system to withstand the

impacts of scale and improve agility.

74 Self-Organising Systems

Dissipation – A requirement for dissipation refers to the ability for the system to achieve

a state of equilibrium, therefore following a transition event or an initial start-up stage the

system does not form an unstable state, or one which is unable to perform the functions of

the system. This prevents a necessity for continual re-organisation and restructuring as a

result of developing unstable system states. This is also reflected in the requirement for

stability as presented in [37] – whereby following initial configuration or a transition event

the structure of the network settles and remains stable.

Self-Maintenance – A final property refers to a need for self-healing and the ability to

remain functional in the event of failure – from a purely software perspective this would

include repairing agents and agent mobility. But in a system where hardware failures could

also be the cause of faults in the network, self-maintenance could be implemented through

redundancy in both hardware and software.

An alternative focus on self-organisation is presented by the authors of [102], who present

a scenario based around a fully centralised approach, which sits outside of the system under

control. This approach does not contain a decentralised method of performing self-

organisation and therefore would be considered to be a weak configuration by the authors

of [38]. It is indicated that the system under control (SuOC) exhibits decentralised

properties for the purposes of its own operation, but the processes involved in self-

organisation would be handled by a pair of components as illustrated in Fig. 4.Error!

Reference source not found..

Fig. 4.1 – Observer/Controller Architecture

75 Self-Organising Systems

The idea that both the observer and the controller sit outside of the SuOC is in contradiction

to the principle that the SuOC is to conduct self-organisation without external influences

or control. The observer component of the self-organising mechanism is tasked with

aggregation of data retrieved from the SuOC; this data includes performance indicators

from individual components and global indicators. This data is then processed and

aggregated before being passed to the controller. After receiving an aggregated set of data

detailing the system state, the controller has the ability to make a series of potential

decisions based on three potential objectives:

1. to influence the system such that a desired emergent behaviour appears,

2. to disrupt an undesired emergent behaviour as quickly and efficiently as possible

3. Construct the system in a way such that no undesired emergent behaviour can

develop.

To achieve one or more of these objectives, the controller can apply one or more of the

following control processes.

Influencing Local Rules: This is a command to a particular agent within the SuOC, where

the controller instructs it to modify its internal behaviour. This could entail a variety of

different commands such as modifying thresholds on monitored performance metrics or

changing how the targeted agent interacts with other members of the community.

Influencing Structure: This is a more widespread action, changing the global behaviour

of the network, which may involve introducing behaviour changes to all of the individuals

within the global system or the topology of the network through modifying the number of

individuals within the population. Alternatively this could entail restructuring the

connections between entities within the SuOC.

Influencing the Environment: Influencing the environment requires the agents to have

the ability to modify the physical nature of the system those agents are responsible for. For

example, a smart grid self-organising architecture could restructure the topology of the

electrical network in response to a fault condition. Not all applications have the potential

to influence the host environment to a significant degree, but control decisions and actions

taken by the agents involved can have impact on elements of the host system. Therefore

influencing the environment may be a consequence of actions taken in fulfilment of the

other control process or a standalone decision.

76 Self-Organising Systems

Selecting one of these approaches is based on a set of monitored parameters within the

system under control – if these parameters exceed their defined threshold values, or the

observer detects anomalous behaviour a decision is triggered. Each set of parameter states

is mapped to a desired action such that the controller is aware which decision to make given

the overall state of the system. However this mapping is not an exhaustive set of potential

system states and behaviours and therefore, the controller needs to be able to perform

decision making in the absence of a pre-selected control process. If the outcome of the

control process is beneficial, the decision would then be recorded and used for future

reference.

 APPLICATIONS

Current research regarding the application of self-organising architectures within the power

systems and smart grid domain is not extensive, and therefore to build a wider picture of

the tools and techniques used it was relevant to examine literature from a range of research

domains. Multiple domains have considered the concept of self-organisation and the

specific use of self-organising architectures; these include communication networks, sensor

networks and vehicle network management systems. Some applications consider the use of

self-organising processes for the purposes of solving a particular control problem, others

are focussed on the structure of the communication architecture and restructure for data

handling. A range of research domains was examined for the purposes of interrogating the

tools and techniques implemented, the aim was to explore a collection of methods which

could be adapted and combined to develop the novel self-organising architecture.

4.3.1 Communication Networks

One of the areas of investigation examined was communication networks, where signal

strength and failures can force the network to reconfigure in order to maintain connectivity

between nodes. Communication networks were considered a suitable source of self-

organising literature due to the parallels between the requirements and properties of a

communication network and the static architectures examined in the previous chapter. A

node in the context of a communication network exhibited similar properties to an agent

within the smart grid architecture because they shared common roles and responsibilities.

Both concepts consisted of a network of connected entities which were involved in the

sharing of information and communicating between one another. While a communication

network operated in the presence of differing challenges, including node mobility and

77 Self-Organising Systems

dynamic communication loads the overall structures and self-organising mechanisms were

transferrable. Several communication networks employ self-organising principles as a

method for handling node mobility, particularly in wireless networks [103] and mobile

phone networks [104].

One example of a communication network exhibiting self-organising properties considers

the data collection issues surrounding the deployment of smart-meters as described by the

authors of [105]. In this example the work considers the smart-meter nodes as data

producers alone and doesn’t consider the implications surrounding control decisions, and

the transmission of control signals, because the research is focussed on the communications

element. From a self-organising architecture perspective the work examines an initial

configuration stage whereby smart-meters form connections with data collection points or

concentrators on a higher tier within the communication hierarchy. The use of concentrators

can be considered to be analogous to aggregation agents, although the data collection points

do not contain the capacity for performing control actions and are solely used to retrieve

information transmitted by the smart-meters.

To form the connection between the smart-meter and the collection point, a two stage

process is required. The first stage involves each smart-meter ranking the connectivity

between itself and each of the available concentrators; the ranking is a comparison of the

communicative distance between the two entities, and the available connection capacity of

the concentrator. This process allows each smart-meter to build a list of concentrators

ordered by connection preference, and to form a connection between to the most favourable

concentrator. The second stage takes the form of monitoring the newly formed connection,

in this stage the smart-meter listens for elongated silences from the concentrator. A long

silence suggests the concentrator is no longer available and the smart-meter reverts back to

stage one to select a new connection. This process indicated that two key properties needed

to be integrated into the self-organising architecture, firstly the necessity to be able to

analyse the potential connection options between the customer and aggregation layer before

forming a connection, and secondly the ability to monitor the stability of that connection.

A second example examines the differing perspectives for a hierarchically structured radio

communication network [106] based upon the 3GPP management reference model [107].

The authors base the research on the SEMAFOUR project vision as presented in [108]. The

core 3GPP model is a hierarchical model featuring management nodes or agents at each

78 Self-Organising Systems

level of the structure as illustrated in Fig. 4.2 taken from [107]. The network reference

model contains three categories of node/agent – the Network Managers, Domain Managers,

Element Managers and Network Elements forming the base layer of the structure. Each of

which describe in general terms different stages in a communication network.

Fig. 4.2 – Management Reference Model

The authors of [106] use this structure to define four levels of Self-organisation

management with respect to the placement of decision making. The approaches are as

follows:

NM-Centralised Self-Organising Network (SON) – Performance data is supplied from

the network elements (NE) to the Network Manager entity (NM), the NM then processes

this information before determining is an architectural change is warranted.

DM-Centralised SON – Similar to the NM-Centralised approach with the exception that

the sphere of influence of the SO controller is limited to the NE’s under the jurisdiction of

the relevant DM. Several DM entities may make restructuring decisions independently of

neighbouring DM entities – as each one is responding to a set of local conditions.

Distributed SON – The network elements themselves make self-organising decisions

based on reports from user equipment (UE). Updates from the UE devices are quicker and

network elements can communicate with one another, however this approach is more

localised and each decision does not have access to global information.

Hybrid SON – A combination of distributed and centralised approaches operating within

the same scenario, combining the faster update times of the distributed version with the

79 Self-Organising Systems

wider scope of the centralised approach. Some elements of local reconfiguration are

handled by distributed approaches while global decisions are handled centrally.

Each of the different levels of self-organisation relies on data retrieved from the

communication network itself as a method of determining its current performance through

continuous monitoring. A further implementation of the SEMAFOUR approach [109] to

self-organisation and applying the 3GPP [110] standard involves the monitoring of Key

Performance Indicators (KPIs). The KPIs monitor certain parameters such as network

capacity, network coverage, call drop rate, handover success rate, or cell load. The KPIs

are then used to define a set of targets which may result in a potential architectural change

an example of such targets are presented in Fig. 4.3

Fig. 4.3 – Example KPI Targets within a Mobile Communication Network

The use of KPIs reinforced the need for integrating continuous performance monitoring

within a self-organising architecture, and the performance monitoring data is then

transmitted to a location within the architecture responsible for performing the decision

making. The KPIs formed the trigger factors for initiating an architectural transition event,

when one or more of the performance metrics exceeded a designated threshold the KPI was

considered to be violated and therefore indicating that a transition may be required. This

research also indicated that there is scope for a hybrid self-organising architecture in terms

of the smart grid implementation. Threshold comparisons and performance monitoring

would be handled by the individual agents themselves whereas transition events would be

initiated by an entity further up the hierarchy.

4.3.2 Sensor Networks

A second source of literature on self-organising architectures was found in sensor networks,

due to the natural similarities between the field and the objective of developing self-

organising smart grid architecture. Customer level agents and sensor entities within a sensor

network exhibited similar properties because some of the core functions were shared

 Dropped call rate < 2.5% (indicates the percentage of dropped voice calls due to, e.g., failed

handovers or bad radio conditions)

 Cell load < 90% (indicates the used radio resources per cell or sector)

 Handover success rate> 99.5% (indicates the percentage of successful handovers between

cells or sectors)

 Energy consumption < 80% (indicates the average consumed energy by the base station

compared to the maximum energy consumption)

80 Self-Organising Systems

between the two research domains. Both architectures involved low level entities

responsible for taking measurements, which were then passed to data collection nodes and

eventually to a central data store. As with the research presented on communication

networks, the entities involved in a sensor network were subject to different challenges as

result of their environment, challenges which were not necessarily present in a smart grid

environment. These included agent mobility, nodes with limited battery life and therefore

greater agent turnover.

The first example is presented by the authors of [111], which focuses research on

communication pathfinding between members of an underwater sensor network. The

sensors aim to transmit information to a data collection point in the form of a sink node on

the surface by passing data to neighbouring sensors. The authors describe a process wherein

the sensor nodes send discovery – “REQ” – messages to nodes in its vicinity. The objective

of neighbour discovery is to build a path from the sensor to the sink node on the surface,

so only nodes closer to the surface respond to the “REQ” messages with a “RPLY” message.

The source sensor node then assesses the time delay between the “REQ” and “RPLY”

messages to determine which node is the best node to connect to. A stand-off period is

imposed before selecting the desired neighbour to ensure that “RPLY” messages have been

received. This communication sequence is documented in Fig. 4.4. Each sensor aims to

connect to the neighbour with the shortest response time, and one which will remain in

communication range for the longest time before being swept out of range by underwater

currents.

Fig. 4.4 – Neighbour Discover Packet Format

The process is similar to the connection finding method as applied in [105] as each sensor

ranks the connections before selecting which node to form a link with. An alternative

approach to sensor organisation is by clustering sensor nodes into partitions centred on an

effective aggregation node. The authors of [112] suggest a method for structuring the sensor

81 Self-Organising Systems

network in response to placement of mobile cluster-nodes for the purposes of data

collection. In contrast to the research presented in [111] this process is primarily centrally

driven. An initial phase determines the number of clusters within the area covered by the

sensor network; these clusters are then sub-divided such that the delay between the nodes

within the cluster and the mobile actor data collection node is below a certain threshold.

These examples indicated that the need for an initial configuration stage is important for

the development of a self-organising architecture, to allow the customer agents to form

their own connections with the aggregation layer. Several implementations employed a

ranking system to evaluate which data collection nodes would be the most applicable

depending on properties endemic to the environment the nodes are active in.

A configuration stage would be supported by the ability to put nodes partially to sleep if

certain functions are not needed by the authors of [113] regarding a set of mobile sensors

in a wide area network. The sensors have two sets of internal behaviours each operated by

an independent power supply. The first behaviour handles navigation and GPS

communication whereas the secondary behaviour deals with inter-sensor communication.

When the GPS elements are not required, that aspect of the system enters a dormant state

while the listening behaviour remains active. Therefore if an aggregate did not receive any

connection requests it would enter a dormant state, but any communication and listening

behaviours would remain active in the event that it was to receive a signal to become an

active participant in the architecture.

A repeated Self-organising solution within general sensor networks is Energy-efficient

aDaptive hiErarchical and robusT Architecture (EDETA) which is the subject of several

papers discussing self-organisation in the context of sensor networks, is initially proposed

in [114] and applied in [115] and [116]. The EDETA approach describes a two part

initialisation stage before the sensor network enters an operational stage. As per the original

definition in [114], part one of the initialisation stage involves the election of a data

collection node which acts as a cluster head node for a group of connected sensors. This

process assumes a population of identical components, and within that population certain

nodes are promoted to form a higher tier of sensors in the hierarchy whilst still performing

core sensing responsibilities. Part two of the initialisation stage is to connect sensor nodes

to the elected cluster-head nodes, a cluster-head has a limited capacity for incoming

connections – therefore will reject requests once that capacity is reached. There are two

82 Self-Organising Systems

limits on the number of connections, a soft limit defines the number of sensors the cluster-

head node will allow connection requests from, but the node will still accept connections if

the request is for a ‘last resort’ connection. However the hard limit represents the absolute

capacity of the cluster-head and no requests will be accepted if this limit has been reached.

Once the initialisation process has been completed, another function of the EDETA

approach is the provision of substitute agents, which would replace a cluster-head node in

the event of failure. The substitute continually monitors the connectivity of the cluster-head

node so that it can detect if the node has failed, and if a failure is detected it assumes the

role of the cluster head and informs the other sensors of the role change. This action aims

to ensure that data is not lost and communication is not interrupted in the event of node

failure.

The processes outlined in EDETA are very similar to those used in HARP [117], which

promotes self-organisation through two phases – a set-up phase and a steady state phase.

In HARP’s initialisation phase, base sensor nodes transmit “JOINRQ” messages to the

previously selected cluster head nodes. A JOINRQ message contains information about the

sensor node including remaining energy and transmission power. After the “JOINREQ

messages have been sent, the cluster head nodes broadcast “ASSOCCH” messages which

contain a list nodes which have been approved connection. If a sensor node receives

multiple ASSOCCH messages – it communicates to the cluster head with the lowest

communication delay. The HARP approach also includes provision for a substitute node,

to allow a cluster head to be immediately replaced in the event of failure. As in EDETA,

the substitute node is pre-selected during the initialisation phase of the process – once

selected the ID of the substitute node is transmitted to the sensor population. To take

advantage of this process the self-organising architecture would require an initialisation

phase, combining the communication structure of the EDETA approach supported by the

connection ranking processes outlined earlier under mobile communication approaches.

One of the proposed applications of the EDETA solution is in fire detection as presented in

[115], whereby 30 smoke detectors were placed over an ever increasing target area – to test

coverage capabilities. However the authors of [115] don’t pay too much attention of how

the protocol interacts with the set of sensors – outlining the structure of the protocol as

copied from the overview publication of [114] followed by a discussion on available sensor

technologies. A later paper featuring an underwater sensor network proved to be more

83 Self-Organising Systems

illustrative of the practical applications of the EDETA method [116]. The underwater

sensor network operated with two population scales of 100 and 200 sensor nodes and three

coverage area scales, with a single centrals sink node, performing the role of the observer

agent. The communication interval between updates from the sensor nodes to the cluster-

head is every 250s – which is notably longer than the interval presently used in the current

MAS simulation and several smart-meter projects.

From this investigation it was clear that an initialisation stage and that such a stage would

be driven by the ability of the customer layer to rank potential connections to members of

the aggregation tier. Furthermore aggregation agents were to play a more involved role in

the process than initially outlined in the examples derived from communication network

literature; these agents would have the ability to reject incoming connection requests based

on connection capacity. Additionally the aggregation agents would have the responsibility

of selecting a substitute agent which was a customer agent promoted to take on aggregation

duties in the event of failure.

4.3.3 Vehicle Networks

A further research domain where self-organising properties and techniques are present was

within smart-vehicle and transportation networks. Like wireless communication structures,

one of the core driving factors is agent mobility. A road network would be under the

supervision of a coordinating controller or management system and occupy a static

geographic area but the number of entries operating within that network is subject to

continuous change. Therefore research in this area was considered

The first example examined traffic management from a higher-level perspective as an

implied multi-agent system detects and analyses congestion across the road network as

discussed by the authors of [118]. The research outlines a method for allowing smart-

vehicles alternative routes based on traffic congestion data, in contrast to the previous

examples the network management is primarily delivered through simulation rather than

interaction between physical entities. A control centre maintains a model of the road

network and the vehicles using it, the network itself is dissected into road segments –

referring to unbroken stretches of road between junctions. Smart-vehicles communicate

their position to the control centre and receive a representation of the model so each vehicle

is aware of the decomposition of road segments.

84 Self-Organising Systems

The objective of the system is to calculate how long a vehicle spends travelling along each

road segment – much in the same way that message transmission times are calculated. The

vehicle announces to the nearest server when it has entered a segment, and when it has

exited it - along with a unique vehicle identifier to distinguish between vehicles entering

and exiting the area. These times are logged and compared to a pre-calculated time

representing clear passage through the area. The pre-calculated time is a function of the

length of the road segment, its speed limit and number of traffic signals along its length. If

none of the recorded transit times exceed the pre-calculated estimate, then the road is

declared clear. Otherwise if transit times are recorded above the threshold, it becomes

indicative of potential congestion within the road segment. In the paper the local-server in

charge of the road segment extracts the two/three longest transit times as a measure of

network congestion rather than an overall average.

Upon calculation of the level of congestion on a given road segment, incoming vehicles

need to be informed such that they can make organisational decisions about which road

segment to take to complete the journey. The authors recognise that decisions can be

influenced by human behaviour depending on mood, journey purpose, visual information

or local knowledge – each of which would influence their decision in response of

recommendations delivered by the monitoring system. Two potential choices are given to

the vehicles subscribing to the management system:

 Stay on track Strategy - Under this strategy, vehicles will continue to travel along the

congested route up until the delay caused by the congestion issue exceeds the length of the

offered alternative route. This operates under the logic that changing route to avoid

congestion may not be the best solution for the vehicle. Therefore until such time that the

alternative route actually offers a quicker journey time – avoid using it.

Immediate Evasion Strategy – this approach involves the vehicle opting for the non-

congested route without considering the time-delays involved in the detour.

In some respects the first option could be considered customer centric –where the needs of

the customer are put first, while the other is network centric as further congestion on the

initial route is limited through re-routing traffic before it becomes a more significant

problem.

85 Self-Organising Systems

This research centred on the use of performance monitoring data used to inform

reconfiguration actions, but also demonstrated that a reconfiguration action had the

potential to be over-ridden by expert knowledge. Furthermore it also discussed that the act

of taking no action in response to performance metrics exceeding thresholds is a valid

course of action in the event that the transition event itself would prove to be more

disruptive than the current congestion issue. Therefore it was important to consider if it was

ultimate necessary to perform a transition in the event that even if thresholds have been

exceeded, the effective impact on the network is relatively small. An immediate evasion

strategy would involve the self-organising architecture performing a transition event for

each metric threshold violation.

An alternative traffic management and congestion avoidance mechanism is outlined in

[119], the solution uses an approach similar to the ‘stay on track strategy’ implemented in

the previous example. The difference being that the vehicles themselves are not necessarily

involved in the process, potential expansions suggest the introduction of car-to-

infrastructure communication. Instead the junctions within the road network form the base

layer of agents, and the vehicles are more analogous to data packets within the network.

Therefore the scenario becomes a load balancing problem – minimising the amount of cars

trapped at each of the junctions by routing the vehicles more efficiently. Each junction has

an observer/controller agent which assesses the average waiting time for vehicles due to

red light conditions – which can be compared to a message queue assessment. The junction

then informs drivers of the least congested route via display boards if it knows that the

suggested route would offer a time saving. To make these assessments there is no central

server as proposed in [118], instead junction controllers communicate with each other, in

what is effectively a flat architecture such that the junctions can update their internal routing

tables with an estimated journey time between nodes – an estimation which is composed

of road speed limits and waiting times as collected by the observer/controller agents.

Therefore in this case the provision of self-organisation is performed through redirecting

traffic between nodes in the road network based on performance monitoring information.

The results of this implementation indicated that under normal conditions the improvement

in traffic flow was limited, as illustrated in Fig. 4.5(a). However under a scenario when

connections within the network were blocked, the system delivered more effective results

as presented in Fig. 4.5(b).

86 Self-Organising Systems

Fig. 4.5 – Adaptive Traffic Control Results, with and without Incident

It was not able to eliminate congestion building due blocked roads, but it was able to

prevent vehicles from attempting to use the severed connections. This enforces the use of

self-organisation for the purposes of resilience – detecting a fault within the communication

architecture and modifying the recipient addresses of the transmitting agents to prevent

messages being transmitted to a failed node. The increase in overall congestion is expected

in these circumstances, as the volume of vehicles (of communication messages) then has

to be passed onto the remaining active nodes and ultimately increasing the communication

load.

Further examples don’t necessarily implement self-organisation from the perspective of

congestion and traffic management – instead considering the vehicle network in the context

of a mobile sensor network and improving data collection as presented in: [36], [120],

[121]. However these solutions are predominantly aimed to counter the condition of node

mobility, which depending on the road network under surveillance can involve nodes

travelling at significant speeds, which is not a situation encountered in the smart grid

monitoring system.

This research indicates that beyond an initialisation stage, the use of self-organisation was

more effective when the system under observation encounters a condition outside of normal

operating parameters. A failure of an aggregation agent would correspond with a blocked

road and represent an event whereby triggering a reconfiguration event would deliver a

performance improvement. A sudden rise in congestion would also be created if a cyber-

87 Self-Organising Systems

attack event created a stream of attack traffic aimed at interrupting the flow of legitimate

data.

4.3.4 Multi-Agent Systems

Multi-agent systems was another key research domain in which self-organising properties

are exhibited and therefore could be investigated for the purposes for integrating techniques

into a self-organising architecture. Unlike a sensor or communication network a multi-

agent system often required a greater degree of interaction between entities in terms of

retrieving monitoring data, processing that information and responding with control actions.

Therefore the control objectives of the system also had to be factored into the self-

organisation process.

The first example considers reconfiguration on the basis of partial agent failure as

documented by the authors of [122] whereby an agent community consisting of robots on

an industrial production line is examined. The case study presents a scenario where one of

the robots loses partial functionality, and thus the agent population is restructured in order

to prevent the failure halting the production line. The authors suggest the idea of

behavioural redundancy such that in the event of failures, the defective robot switches roles

with another functional agent such that the defective agent operates in a position where the

defects will not influence performance. For this process to work the agents need to be

equipped with multiple behaviours for multiple roles within the network – allowing

adapting to a new position within the community. To perform this role swap, the

robot/agent needs to be aware of its own performance metrics and capabilities to decide

whether or not it is able to continue performing the role it is currently allocated to. Once a

defect has been detected, the affected agent contacts its neighbours to ask for a position

change – explaining which failure has taken place, and what functionality has been affected.

After making the help request, and agent which possesses the ability the defective agent

has lost responds to the defective agent and the others in the system as an acknowledgement

of being willing to help. Once the transition has taken place the defective agent concludes

that it doesn’t possess the complete behaviour set required for its new position in the system.

Therefore triggering a second transitional phase – the sequence of events is represented in

Fig. 4.6

88 Self-Organising Systems

Fig. 4.6 – Role Swapping in a Self-Organising Multi-Agent System

This research demonstrated that building behaviours into agents associated with other roles

within the architecture improves the flexibility of the system. Such that agents can be

transplanted into alternative roles within the system in the event that either the original

agent had failed or additional support is required. Therefore agents could be designed to

accept differing responsibilities if they are promoted or demoted. For example under the

system described in the EDETA strategy the substitute agents were identical to the cluster-

head agents they were designed to replace, however it became evident that it would be more

applicable to source substitutes from the a different agent group. This was because the

customer layer had a larger accessible population, and therefore in the event of aggregate

failure it was more appropriate to source a replacement from a tier with sufficient resources.

Additional work in self-organising multi-agent systems considered applications within the

smart grid domain where the focus is directed towards self-healing as documented in the

following papers: [123], [124], [125]. Those papers separate the self-healing concept from

the self-organising whole and apply is specifically to the control problem while the MAS

remains static throughout.

A further paper details a process for forming the core components of a self-healing process

as described by the authors of [126]. These core components form a three layer approach

which governs a self-healing process; these three layers are as follows.

4. Fault Detection Layer

5. Fault Diagnosis Layer

6. Corrective Action Layer

The corrective actions discussed by the authors are focussed towards changes made to the

electrical network rather than the communication layer, but the core principals can be

adapted to the management of agent interactions. The initial layer – fault identification –

89 Self-Organising Systems

takes place at the sensor level, which would equate to the customer agent level – assuming

that these sensors which have some degree of awareness to notice that a particular variable

is no longer within limits. Phase two is the diagnosis layer, which determines what has

failed and if so propose a temporary solution if possible, while the final layer instigates the

architectural change to prevent further damage to the system and restore service. This

reinforces the idea that in the aim of developing a self-organising system it is important to

monitor agent performance and variables which are not involved in the actual provision of

control and general operation of the network.

Aside from the smart grid domain the concept of self-healing through changes in

architecture has been considered for web services [127], [128], [129] whereby multi-agent

systems are applied. In [127], a two stage process is employed in the event of a failure

within the agent community. Before an action is conducted a diagnosis agent analyses faults,

a fault is defined as an instance where a performance metric exceeds specified thresholds

usually in the form of various timers. If a number of faults are detected over a period of

time – this is deemed to be a failure and as such is referred to the repair agent. This repair

agent has the choice of two courses or action – attempt to re-establish the connection

between customer and supplier or find a replacement agent which can carry out the tasks

the customer is requesting. The replacement concept is a reflection of the substitute node

concept presented in [114]. Except that in the case of the web-service scenario not all agents

will be involved at any given time, so an inactive but functional agent can be used to

substitute for the agent who has triggered the fault condition. The performance monitoring

element of the process introduces a series of performance metrics measuring

communication and agent effectiveness through a series of timers. These metrics are

presented in greater depth in [129], illustrated in Fig. 4.7.

Fig. 4.7 – Communication Performance metrics

The figure presents several differing time intervals which provide five sets of performance

measurement these times are described as follows:

90 Self-Organising Systems

 The Response Time: defined as the time elapsed between sending a request and

receiving its response; Tresp = t4 − t1

 The Execution Time: defined as the time elapsed for processing a request; Texec

= t3 − t2,

 The Communication Time: defined as the round trip time of a request and its

response; Tcomm = Tresp − Texec

 The Throughput: defined as the amount of requests that can be processed in a

specified period of time; Throughput = Number of requests/period of time,

 The Accuracy: defined as the success rate produced by the service; Accuracy =

Number of successful responses/Total number of requests.

Each of the parameters would be associated with a threshold governing the anticipated

communication performance between agent pairs. If these measurements increased

significantly this could be an indication of other events taking place within the architecture,

either in the form of poor local node performance or the influence of a cyber-attack.

4.3.5 Smart Grids

While other research domains have alluded to applications related to smart grids, such as

the smart-meter communication networks presented in [105] and self-healing multi-agent

systems. It was also important to consider research conducted within the power systems

domain because while the exploration of self-organisation in power systems is not presently

extensive the development of advanced and increasingly intelligent monitoring and control

methodologies increases its applicability. This is driven by the need for decentralised

control and increasing quantities of sensors and monitoring technologies applied at the LV

end of the network. Due to the high number of potential control scenarios involved with

smart grid management the idea of self-organisation can be applied to a considerable

variety of contexts.

On example is concerned with organising charging priorities for electric vehicles with the

aim of reducing the impact on the network through staggering charging patterns [130].

Because of the introduction of a control element the requirements of a self-organising

system become notably more diverse, moving beyond topological changes to the

architecture. The authors of [130] integrate the concept of self-organisation through

91 Self-Organising Systems

interactions on the lowest layer of the smart grid architecture, whereby the needs of the

connected EVs dictate the control priorities. It could be argued that the self-organised EV

charging concept is more of a decentralised control approach as no network configuration

or control changes are made to the network – only the order and duration of which an EV

is charged.

A second example examines the smart grid as a cluster of interacting sensors within the

context of voltage quality monitoring, in [131], the authors present a system wherein the

sensors behave both like network nodes in a communication network or sensor grid and

like agents in multi-agent system. The core component of the self-organisation is delivered

through the communication network and routing paths between measurement and data

storage. The roles and number of data aggregation points is not varied within the proposed

solution, instead variations in the monitoring process are predominantly aimed at

calculating a voltage quality index within the cluster of sensors observing a section of the

electrical network. An architecture is proposed for the purposes of voltage monitoring

which is based around node coupling is composed from the connection matrix of the

underlying electrical network topology, again with the primary objective of determining

voltage quality. Specific consideration with respect to drivers for variations in the

architecture or decisions that may influence a topological change is not present within the

research.

A third example of self-organisation within smart grids illustrates the benefits of

implementing the hierarchical structure using agents rather than a conventional client-

server architecture [132]. A specific focus is placed on reliability and robustness as a

predominant driver for implementing self-organised monitoring systems. The authors

introduce agent based technologies and an alternative to the strictly centralised traditional

monitoring approach in system monitoring, two agent classifications are involved

Intelligent Distribution Agent (IDA) and Power Quality Agent (PQA). These to agents form

a hierarchical structure where the PQAs form the base layer, performing the monitoring

responsibilities and processing the collected data. Processed results are then communicated

to the IDA, acting as a local controller for the area served by the collection of PQAs. It

analyses the incoming updates from the PQA population and compares the results with a

series of thresholds. Each PQA can only communicate with its immediate neighbours and

the IDA – thus lowering the bandwidth requirements to accommodate the system. Unlike

a mobile communication network or an un-tethered underwater sensor network – the nodes

92 Self-Organising Systems

forming the majority of the population are static, positioned according to measurement

availability or network points containing sensitive equipment. But self-organisational

concepts are applied through modifying the virtual topology rather than the physical one –

through changing agent responsibilities and communication routes. In this instance the

driver for re-configuration is agent failure, with a view of improving robustness. As the

architecture diagram in Fig. 4.8 illustrates, each monitoring cluster contains a single, central

IDA – which is a single point of failure thus making the agent community just as fragile as

the centralised client-server paradigm is it intended to replace.

Fig. 4.8 – MAS Topology for Power Quality Monitoring

Therefore in the event of failure the authors suggest that it would be replaced by a PQA,

promoted to assume the responsibilities of an IDA as illustrated in Fig. 4.8. The process for

selecting promoting one of the existent PQAs involves ranking the set of potential PQAs

available for promotion with respect to a series of criteria – based upon expert assessments.

Fig. 4.9 – IDA Promotion - Post Agent Failure

The key criteria involved are: Computational ability, Computational burden, Adjacency to

other PQAs and Adjacency to other IDAs; therefore assessing the nearby PQAs for their

ability to host the IDA behaviours and their location within the network.

93 Self-Organising Systems

This research furthers the concept of using substitution as a method of replacing failed

agents within a system, and that those substitutes do not necessarily have to be of the same

agent type as the agent that has failed. As a result additional behaviours need to be

embedded within the agent population such that they can assume new responsibilities. The

research also indicates a system of determining which agent should be selected as a

substitute in the event of failure, the EDETA approach pre-selects substitutes but a selection

process could still be applied such that the pre-selected agent is the most accessible

replacement when it is needed.

Another driver for self-organisation within the smart grid domain is the influence of

potential cyber-attacks compromising certain sectors of the network. The authors of [133]

present the concept of controller switching in the event of a communication jamming attack

affecting the connectivity between smart-meters and the local controller node. In a similar

concept to the previous example the non-mobility of the smart-meter nodes means that the

re-configuration is conducted by re-routing communications away from the affected area.

The process involves using channel hopping to counteract the influence of the jamming

signal; at this point a self-organised approach isn’t in play as the communication remains

between the same pair of nodes, the customer and the local controller. However if the

solution cannot avert the issues created by the jamming signal then the smart-meter needs

to look elsewhere –and therefore becomes the architect of the self-organisation process.

The system then retains the channel hopping approach, but widens the range by including

the open channels on nearby controllers. To do this the smart-meter node contacts the

neighbouring controllers and requests it’s channels hopping sequence – which defines

which channels are in use for a given timeslot. From this information the smart-meter builds

a controller switching matrix which defines which controller will be contacted on each

timeslot, based on channel availability from the sequence data. While channel hopping

processes are not simulated in the present model, as it focusses on the beginning and end

points involved in a communication pairing rather than the communication technology

itself, this example is another application of self-organisation for the purposes of self-

healing and robustness.

Self-configuration can also take place at the transmission level where the voltage levels are

much higher. In this case the smallest nodes are the sensor nodes instead of customers

which communicate with regional aggregators. The authors of [134] propose a self-

configuring architecture focussed on connecting transmission line sensors with gateway

94 Self-Organising Systems

nodes which connect the sensor network with the remainder of the communication

infrastructure. However this approach is presented as a solution to automated gateway

detection for new sensor installations, while it is important to develop approaches for new

nodes to integrate with the system the paper contains no indication of repeated architectural

transitions and triggers for more wide spread action.

 RESEARCH GAPS AND OPPORTUNITIES

The majority of the papers presented self-organisation based solutions to specific problems

within the target domain and these solutions were primarily centred on either load balancing

or recovery from failure. For example, the authors of [132] presented a self-organising

network for the purposes of recovering from a fault at one of the nodes – responding

through re-allocating the responsibilities of the failed node to an active alternative. In this

example the concept of self-organisation is solely applied to resolving the issue of agent

failure, whereas [105] documents an approach for allocating new nodes a connection to an

aggregation point in a system with a dynamic population.

In [114] an initialisation phase was described and in [109] a method for deciding how to

modify the network is presented. In a smart grid environment under the control of a self-

organised MAS, a more complete approach was required, one that exhibited several of the

aforementioned qualities and techniques, plus others from across the self-organising

community. This variety of solutions is a product of the widespread applicability of self-

organisation and the multitude of potential interpretations and implementations, but even

after narrowing the subject domain to networks and architectures – different research

streams have their own specificities.

One limitation of the present set of research examined is that there appears to be little

consideration for the time-scales involved in any of the phases of a self-organised system.

In terms of determining how long it takes to perform customer-aggregate allocations for

various customer populations. Whether differing techniques would achieve convergence

faster, or achieve a more even distribution of the number of connections per aggregate. The

consideration for differing time scales could also be applied to responding to node failure,

replacing a failed node is not an instant process and therefore there will be consequences

for an elongated transition time. Furthermore the documented literature does consider the

95 Self-Organising Systems

implications for control actions during the node replacement stage and whether some

control objectives would be more severely affected than others.

Different solutions also focus on different performance metrics for ranking the potential

connection options to the data collection points. The authors of [111] use a combination of

communication delay, and predicted availability. Because nodes in the smart grid context

are of a fixed position the issue of agent mobility affecting availability is removed, thus

leaving decision making to be based on communication delay. On the other hand [132] uses

physical proximity as one of the comparison criteria alongside computational burden and

available resources to determine the most applicable agent. The latter may incur a larger

communication overhead to transmit the additional metrics but prove more accurate in

terms of fairly distributing connections.

One notable omission from the set of sources referenced is an investigation into the

overhead produced by the additional monitoring and diagnostic messages required in the

context of a self-organised system on top of the base-level communication for a given

scenario. For example, hard-coded MAS will have all of the connections pre-loaded and

therefore wouldn’t need to undergo an initialisation phase which involves the transmission

of various discovery messages. In order to make rational decisions about performing

architectural changes, knowledge of the current system state needs to be collected and then

transmitted to an agent with the powers to act upon it if necessary. This will ultimately

increase the volume of data that the agents will have to process, and it raises the question:

would this additional communication load and processing demand interfere with control

processes.

In terms of opportunities, there is certainly a case for implementing self-organisation within

the context of smart grid management. To achieve self-organised status the agents need to

be able to perform network discovery themselves, make their own connections – a concept

which is noted in communication architectures and referenced with respect to smart-meters

[105] and sensor networks [114]. The case for self-organisation due to agent mobility isn’t

necessarily applicable to the smart grid domain, as the agents in this case are of a fixed

location – domestic properties, generators etc. which accounts for the limited research

output on self-organising communication/control architectures for smart grids. Yet the

emergence of electric vehicle ownership would present a differing self-organisational

challenge.

96 Self-Organising Systems

However a strong case is present for self-organisation in response to failure – whereby the

agent network has to replace a failed agent in order to maintain a chain of communication

or replace a lost controller. Failures could also reduce the maximum incoming or outgoing

data capacity from a particular agent, therefore forcing the network to modify the

distribution of communication load by either using up capacity on neighbouring agents, or

introducing formerly dormant agents into the equation to take on the additional load. This

scenario invokes the second rationale for a self-organising approach, which involves load

balancing specifically of the communication load – identifying aggregates with higher than

average congestion or reactivity times and instructing them to lay off connections to

neighbours if possible. Self-organisation is relevant to the current research and in terms of

managing the control and communication architectures in a smart grid concept, but the

discrete transitions from the Disaggregated to Base to Cluster to Tiered communication

structures may not be as applicable as greater flexibility would be beneficial.

A further trigger for self-organisation is the presence of a cyber-attack event, whereby

members of the agent population are compromised and therefore experience a reduction in

functionality. The presence of cyber threats is an emerging topic within the smart grid and

power systems domain and therefore requires as much attention and consideration as

hardware or software failure related triggers. Failures within the network could easily be

the result of an attack event aiming to damage control functions or compromise security

measures.

Also it could be considered an opportunity to amalgamate several different approaches to

individual objectives into the same system – from an initialisation phase, conventional

operation, performance monitoring, response to failure, load balancing, and architectural

change decision making – all with respect to ensuring that control performance goals are

maintained. Several techniques and approaches can be adapted and integrated to form a

more complete self-organising architecture.

 DISCUSSION AND CONCLUSION

Given that the current set of research examined in this chapter was spread across several

subject areas, tackling several problems there was no single standout implementation which

could then be translated into the smart grid domain. Furthermore it was important that in

the objective of developing a self-organised MAS system the properties of the system

97 Self-Organising Systems

adhered to the properties as outlined in definitions provided by conceptual papers [37] [38]

[102]. The system benefited from adapting multiple approaches from across the literature

to solve the differing problems involved. Overall there was a reasonable degree of

applicability for the principles and concepts of self-organisation within smart grid solutions.

The most applicable of these was the response to failure either due to a technical

malfunction or under the influence of a cyber-threat. A failure of a controller or data

collection agent would interrupt the observability or controllability of the smart grid

network, and therefore placing a great deal of importance in fault recovery with view

towards continuous operation. The following papers [130], [131] and [132], illustrated that

existing research considers the importance and relevance of self-organisation within the

smart grid domain, and the examples cite differing aspects of smart grid applications which

would benefit from these techniques. In [132], the authors use self-organisation for the

purpose of recovering from agent failure through installing redundant behaviours and agent

promotion. The other examples focus on a version of the load-balancing problem whereby

EV charging patterns are organised to reduce impact on the grid and ensure that vehicles

are still charged. These don’t take into consideration the architecture of a given system, or

make topological changes to the structure of the network – but support the idea of the agents

in the lowest layer of the hierarchy taking a leading role in determining which agents/nodes

to connect with.

As per the processes outlined in, [114] [115] [116] regarding the EDETA method – a self-

organised structure needed to go through an initialisation phase at start-up. This phase

involved customers selecting their own aggregation agent to make a connection to; these

connections were selected on the basis of agent availability and capacity. The rationale for

including this phase is with respect to the characteristics presented in [38], whereby the

authors indicate a property entitled “Endogenous global order” which essentially suggests

that the set of agents involved within a self-organised system are required settle into a stable

operating state. This entailed customers finding a connection and thus establishing a link

along which demand data and control alerts can be transmitted. In the context of the

EDETA sensor network concept, the connections are formed based on proximity to the

node requesting a connection and whether or not the target node has enough capacity to

accept another connection. When establishing data and control connections between

customers it was important that the customer was able to build a set of information such

that it could make an informed decision as to which aggregate/controller to communicate

98 Self-Organising Systems

with. This required a series of messages similar to the REQ/RPLY messages used as part

of the neighbour discovery process described in [111], where the difference between a

transmitted REQ message and a received RPLY message is used to measure the

communication time between sender and target. Channels with quicker response times then

represent a more applicable connection.

Outside the initial connection phase, examples in the literature both application specific

and general principle pointed to a necessity for continual measurement which in turn

reflects the objective of future power systems to maintain an increased level of

observability. The authors of [102] introduce an observer element of which the sole

responsibility is to retrieve performance metrics from the set of agents operating in the

system. This is a centralised approach, where a single element is in charge of providing a

controller with information on the system state, the controller then decides what actions

need to be taken. An alternative approach to performance monitoring, with respect to agent

failure detection is presented in [127], which follows a similar approach to that introduced

in [102] – instead an observer, a diagnosis agent examines the performance data to look for

instances where measured parameters exceed the designated limits. As the goal of the

system is detect failure or sub-optimal performance the parameters are centred on message

response times. The diagnosis agent flags each instance of an overly long response time as

evidence of a potential failure; multiple instances are then flagged up to the next agent as a

call for repair or replacement. A third example of performance monitoring is taken from

[118], where updates are again published to a central server to be processed. However in

the interests of improving scalability, it may be more appropriate to disseminate the

monitoring process at a more local level.

Each agent being able to assess its own communication times, congestion and control

performance where applicable avoided the necessity for large numbers of messages in a

highly populated system being transmitted to a central agent. There was still a case for the

existence of a specific agent responsible for handling architectural changes – as in [127] –

an architect agent would not receive all performance data, but would need to establish a

view of key agents and their connections. As individual agents detect an anomaly in the

performance metrics – alerts were sent to the architect agent, to limit the amount of traffic

that the architect needed to process. Instead of creating a separate controller entity as in

[102], the architect analysed the set of alert messages to determine a common link. For

example this could mean that several customers noted slower response times to the same

99 Self-Organising Systems

aggregate, therefore corrective action is then applied to the aggregate in question. There is

the concern that the overhead presented by diagnostic messages – especially in relation to

failure detection will contribute a number of messages to the total data traffic. Some of the

metrics were embedded within agent messages, through adding fields to the message

content: time sent, time received, processing time, congestion data etc. As managing data

collection is recognised as a source of self-organising interest as noted in [36], [120], [121],

[112]

As previously noted two objectives are common within self-organising literature – response

to failure and load balancing. Because a smart grid system is highly dependent on the IT

infrastructure and the communication links between components in that system, the load

balancing issue would influence the handling of agent messages and control signals. A

system with concentrations of message congestion is likely then to experience issues in

terms of disseminating control signals and receiving the appropriate acknowledgement.

Therefore it was important to include a process for monitoring communication load across

the key bottleneck areas within the MAS. Some of this was handled during the initialisation

phase through distributing connections, but as the system operates – agents may experience

changes in communication intensity and therefore may request some of the load be re-

allocated elsewhere.

The second objective is responding to failure, in [132] agents effectively bid to replace a

failed agent – while in [114] key agents are assigned a substitute which is invoked at the

point of failure. For the prospective MAS, a fusion of these techniques was more applicable

to avoid delays when performing a bidding process post-failure. From the perspective of

an aggregation agent it needed to select the most appropriate substitute – data extracted

from the sequence of messages involved in making a customer connection was used as bid

information. The customer agent with the lowest bid – in the form of round-trip message

delay – was then selected as the substitute. This process is conducted during the

initialisation phase, at such point that the aggregate had either reached maximum

connection capacity or hadn’t received a connection request within a timeout period. This

pre-selected the replacement in the event of failure, the ID of which is passed to the

architect agent for the purposes of knowing where to re-route communications post-failure.

The architect also needed to know which agents had made connections with the failed

aggregate, such that they could be contacted and informed of the identity of the substitute.

100 Self-Organising Systems

Finally the decision making process for selecting which architecture to transition into is a

key aspect of a self-organising system, and in the context of the smart grid domain, this

decision would need result in a stable configuration. It is not feasible to introduce several

trial and error based stages before settling on a the next architecture structure as enduring

multiple transition phases in a short period of time may lead to incomplete transitions and

interfere with underlying control processes. A series of rules is suggested in [109] and [135],

based on performance indicators. Combinations of performance indicators are mapped to

actions or reconfiguration options – translating the concept into current project in

conjunction with the performance monitoring flags can be used to form a table of actions

based on events.

For example, if several customers contacted the architect with an alert message stating that

they have received no contact from an aggregate agent – a rule will map that condition to

the action of invoking the substitute to replace the failed agent. A second example might

entail multiple messages from aggregation agents indicating that they are receiving

connection requests after reaching maximum capacity. This would be mapped to an

instruction to increase the aggregation capacity, to accommodate the additional customers.

While some of the self-organising functions are completed in a decentralised manner

through distribution across the overall agent population – the rule mappings would be

hosted by the architect agent. This is reflective of the network management approach

presented in [135] – where a network objective manager hosts the responsibility comparing

performance indicators and their respective actions.

Overall there is no single approach that could be immediately translated into the context of

the self-organising architecture documented in this thesis. In accordance with the

conceptual research presented in [37], [38], [102] the system needed to adopt more

functionality in addition to transitioning from one configuration to the next. Therefore an

initialisation phase composed of elements from [111], [114] was introduced to establish

connections between customers and aggregates/controllers based on communication delays

and aggregator/controller capacity. During this phase agent substitutes are pre-selected.

After the completion of an initialisation stage performance monitoring techniques were

used to maintain observability. These techniques were based on the concepts presented in

[105], [118], [127] and [129] with the exception that only instances of performance

indicators exceeding threshold values are communicated to the architect agent. Finally in

response to the alerts a hybrid approach to self-organised management will be introduced

101 Self-Organising Systems

as per [107] where different actions are completed by different tiers within the overall MAS

architecture. Some load balancing actions can be handled in a decentralised manner through

connection handovers from one aggregate to the next. Wider architectural changes,

including transitioning from one core design to another through activating dormant

aggregates or promoting/demoting agents will be handled by the architect agent. This agent

should maintain a list of conditions and actions similar to those implemented in [109] and

[135]. These actions could involve controlling whether an agent is dormant or not for the

purposes of balancing communication load [106] or replacing a failed agent [132], [114].

For some changes, a ‘stay on track’ strategy [118] can be employed – mostly in the case of

connection transfers – to check if transferring the connection would result in a performance

improvement, to avoid unnecessary modifications to the system.

Overall considering the set of existing literature and the self-organising architecture

required for the set of agents performing voltage control and data collection duties a three

stage process shall be introduced. Stage one of the process consists of an initialisation phase

where the agents can locate a set of potential aggregates and request a connection.

Connections will be prioritised on the response time of the aggregate, and whether the

aggregate has reached capacity. Once the architecture is fully connected the second stage

begins, this stage consists of a conventional operation state and is focussed around

performance monitoring, and the communication metrics retained by the individual agents

will be given appropriate thresholds. Violation of those thresholds would constitute an error

report.

 SUMMARY

This chapter presented a range of different research topics in which concepts pertaining to

self-organised systems were presented, in addition to exploring application specific

techniques and approaches, underlying requirements were also examined. In addition to

interrogating relevant literature in domain of self-organising systems the chapter also

explored the gaps in the documented research. From these gaps suggestions for strategies

which would then implemented in the development of a self-organising agent architecture

were inferred. Finally conclusions were drawn with regards to elements of the reviewed

literature which could be adapted and integrated into the developed architecture.

102 Developing a Self-Organising Architecture

Chapter 5: Developing a Self-

Organising Architecture

103 Developing a Self-Organising Architecture

 SYSTEM OUTLINE

Research into the concepts and mechanisms involved with self-organisation conducted in

the previous chapter outlined that thee core stages were required to develop a system which

could be considered self-organising. The processes involved needed to be adapted for

implementation within the context of a smart grid architecture solution.

The first stage of operation was focussed on the connection of customer layer agents to the

aggregation tier for the purposes of data transmission; this stage also included connecting

customers to controllers. The second stage accounted for the majority of the runtime, where

the agent population conducted performance monitoring, comparing individual variables

against a set of thresholds. This performance monitoring stage was triggered once

initialisation was completed, after each transition event the architecture reverted to the

performance monitoring stage. Finally the third stage was responsible for the process of

performing architecture transitions on the back of a decision making engine, and

determined which of the available transition mechanisms needed to be invoked based on

the data recovered during performance monitoring.

This chapter will discuss the development of each of the different stages involved within

the self-organising architecture covering the communication requirements and the

processes necessary for the stages. The chapter will examine the architecture transition

functions and method for triggering and simulating attack mechanisms within the

architecture.

 INITIALISATION STAGE

The initialisation stage defined the initial start-up procedure in terms of how the agents

form a communication and control architecture through contacting controllers and data

collection points in the form of aggregation agents. The initialisation stage was adapted

from mechanisms employed by the EDETA [114], HARP [117] approaches for sensor

networks in addition to the ‘Tic tac toe’ [111] architecture also used for sensor

communications.

The EDETA solution assumed a set of homogenous nodes and aimed to build a hierarchical

structure for data transmission. Of this population a proportion were elected as ‘cluster head’

nodes and therefore formed the upper tier of the hierarchy. The EDETA and HARP

approaches presented an initialisation stage whereby the nodes which were not selected to

104 Developing a Self-Organising Architecture

be elected into cluster-head positions seek out cluster-head nodes for the purposes of

forming a connection. The Tic-tac-toe-arch also presents an initialisation stage and

introduces a communication protocol for selecting the relevant data collection point and for

sending connection requests. Rather than using proximity, the approach uses the interaction

between a sensor node and a cluster head node as a metric for selecting the most appropriate

option. This interaction involves the base tier sensor nodes, sending REQ messages and

receiving RPLY messages from the sink nodes. A similar approach has been applied in the

current implementation through ‘DISCOVER’ and ‘HELLO’ message pairs.

An additional component of the initialisation stage is the selection of substitution agents

for the aggregation layer agents. Substitutes are proposed as part of the EDETA approach.

The cluster heads are allocated a substitute node in the event of failure, which may be a

result of power loss in the context of the sensor networks involved. Therefore a substitute

is selected to replace the missing cluster head and maintain the data link from the sensors

to the surface node. This adds a degree of fault tolerance to the network.

Overall the present initialisation stage has been put into place on the influence of the

EDETA/HARP approaches which present a multi-stage method of applying a self-

organising architecture to sensor networks. Secondly the internal methodology for pairing

customer/generation agents with an aggregator was informed by the Tic-Tac-Toe-Arch

method. The time delay between the transmission of a ‘DISCOVER’ message and the

reception of a ‘HELLO’ was used as a metric for selecting aggregate agents to connect to,

this metric bears a similarity to the process applied by [105] when addressing the issue of

smart-meter networks.

5.2.1 Establishing a control and communication connection

The first part of the initialisation phase was to establish a connection to a data collection

point within the architecture, and to select a controller. A communication connection

focussed on building a route from the customer to the observer so that demand information

could be extracted and filtered to the top of the hierarchy. Generation agents are seen as

customers from the perspective of searching for a communication connection, as

transmitting generation output data was considered to be identical from a messaging

viewpoint as transmitting demand. Whereas a control connection determined which tier of

the hierarchy a customer will transmit control requests in the event of a voltage deviation.

105 Developing a Self-Organising Architecture

The following diagram in Fig. 5. illustrates the initial negotiation process between a

customer agent and an aggregate, each communication interaction was stored as a series of

variables recorded as a ConnectionObject. A ConnectionObjeect was a java class written

to manage the initialisation process from the perspective of the customer/generator agent –

determining whether or not the relevant discovery messages had been sent and responded

to. The class also calculated the response time, it is this response time that was used by the

agent to decide which of the aggregates active on the network it wished to connect to as its

first priority.

Fig. 5.1 – Initialisation Handshaking

If the first connection request was denied due to the aggregate having already accepted the

maximum number of connections, the customer moved onto the aggregate with the second

shortest response time until a connection is made. If no aggregates accepted the connection,

the customer was then deemed to be isolated and communicates that to the Architect so that

a place can be found, or additional aggregation resource is created. The same process was

used to apply for a connection to a controller, if the aggregate layer was also performing

the control processes, one connection request will apply to both data sharing and control.

Furthermore if the level of control decentralisation is set to the customer layer, no control

connection requests will be made as control will be handled locally.

Architect Customer Aggregate

Request for Aggregate list and control
information

Returned Information

DISCOVER Message

HELLO Message

For each Aggregate in the list returned
by the Architect

CONNECTION_REQ Message

Response Time

Selecting shortest
response time

CONNECTION_ACCEPT Message

CONNECTED Message

Update internal
database

If the aggregate
has available
capacity

106 Developing a Self-Organising Architecture

5.2.1 Defining Substitute Agents

After both the data and control connections have been made – the final phase of the

initialisation stage was the nomination of substitute agents. These agents are members of

the customer/generation layer and were pre-selected to replace an aggregate in the event

that the aggregate becomes unresponsive. Substitution was also one of the architecture

transitions that could be selected by the Architect in the event of dealing with an error state

which was having a large impact on a single aggregate within the network. An aggregate

only selects a substitute once it had reached the maximum number of connections or, if no

more connection requests were received indicating that agent population had been fully

initialised.

To select a substitute the aggregate a data collection message was sent to each of the

customers which had established communication connections, those customers then replied

with a set of performance data including current input and output data flow rates, message

congestion, and response times. From this information the aggregate could select the most

appropriate agent to use at its substitute, in the event that the aggregate needs to be replaced

for any reason the replacement had been preselected through the substitution process.

Once all customers and generation agents have secured their connections to the aggregate

layer and a relevant controller and once substitution process had been completed for each

of the aggregates the network can then be described as fully initialised.

 PERFORMANCE MONITORING

The second stage of the process was the performance monitoring phase as the system

needed to be monitored to ensure that it operated within a given set of parameters; the

performance monitoring process was informed and adapted from work presented in [127]

and [136]. In addition to recording data regarding differing communication and processing

times, additional monitoring was performed through a range of key performance indicators

(KPIs) documented in the following subsection.

In [127], the authors use the performance monitoring information to determine whether or

not a fault has occurred, by applying threshold values to the performance monitoring

metrics. If a metric exceeds a threshold a fault event is recorded, several fault events

requires the intervention of a corrective mechanism. This approach was adopted into the

107 Developing a Self-Organising Architecture

monitoring phase of the developed self-organising architecture, whereby a single metric

exceeding a threshold is would not trigger an architecture transition.

A performance monitoring mechanism is considered to be one of the core functions of a

self-organised system as presented by [37]. Furthermore the authors of [102] present a

configuration whereby a specific agent or component is allocated for the purposes of

collecting and processing of performance monitoring. Within the developed self-organising

architecture individual agents perform local performance monitoring through comparing

recorded data with a set of threshold values, however the overall processing of any

performance data that did exceed one or more thresholds would be completed by a central

agent. This was one of the responsibilities of the Architect agent which maintained a record

of all performance exceptions and determined the overall system health.

Another contributor to the performance monitoring process was adapted from [118], where

error reports have a limited lifespan – and once expire therefore the re-organisation

mechanism would not be triggered by historic data. Furthermore the authors of [118] also

presented a scenario whereby monitoring would be conducted locally and reported back to

a central entity for processing. The use of the Architect has previously been stated but time

limits on performance exceptions were also implemented such that the Architect did not

attempt to respond to error conditions which had expired.

5.3.1 Threshold Decisions

One of the core methods behind the performance monitoring process was determining when

each of the performance metrics was considered to outside of a recommended set of limits.

Each agent was responsible for monitoring a series of performance metrics and reporting

instances when those metrics exceeded performance limits. Therefore a set of thresholds

needed to be instantiated to make the required comparisons; some thresholds were informed

by practical limitations while others were informed through performing communication

load tests to gauge effective difference between normal and abnormal data production and

consumption. The following table presents the metrics examined and the thresholds applied

Table 5.1 – Threshold Settings Table

Metric Threshold Comment

Control

Performance

400

Seconds

A 200 second waiting period was imposed before

processing an excursion – if the event was not cleared

108 Developing a Self-Organising Architecture

with a 200 seconds of control being initiated a control

error is triggered. The threshold of 200 seconds (plus

the 200s standoff stage) is based on the voltage

recovery times presented in [137] of 40-70s

additional time is allowed for a non-optimal control

approach.

Data Flow Maximum

Rate:

120kbps

(15kB/s)

As per the Smart-meter Specification – smart-meters

will use ZigBee standard transmitters and adhering to

the ZigBee Smart Energy Profile (SEP) v1.2 [138].

The ZigBee devices have maximum potential

transmission rate of 250kbps (31.25KB/s). Actual

transmission speeds will be slower due overheads

and delays. The selected threshold of 120kbps was in

line with research conducted by the authors of [139]

and [140]. The former identifying an effective

maximum data rate of between 110kbps and

120kbps, while the latter observed performance loss

after 118kbps. Therefore transmission would be

possible after 118kbps, but with a performance loss.

Additionally each ACL message within the MAS had

its calculated size in bytes increased by 48 bytes to

emulate the presence of a security certificate

presented by the standard in [138].

Reactivity

Response Time

500ms The reactivity metric was set at 500ms as on the basis

of testing the architecture without the presence of

additional load to determine a baseline value. Lower

thresholds were more likely to trigger false positives.

Congestion 50

messages

The congestion threshold was a measurement of the

amount of messages that are waiting to be processed

by the agent in question. Like the data flow threshold

this primarily concerns the aggregation tier as these

agents filter the bulk of the data and therefore form

109 Developing a Self-Organising Architecture

the effective data bottlenecks. Congestion was

measured as a moving average over the course of a

minute and therefore the threshold was taken from

the average rather than congestion spikes. As with

reactivity a set of base tests were performed to

determine the nominal performance level given the

agent population size, values that notably exceed that

nominal level of congestion were the considered to

be erroneous.

Unresponsiveness No reply in

10 seconds.

10 missed

messages

The unresponsiveness threshold was a limit by which

transmitting agent assumes that the receiving agent is

no longer responding to messages. If an agent did not

receive a reply within 10 seconds sending the initial

message, that message was declared missing. After

10 messages are declared missing the agent assumes

that the desired recipient is offline or unresponsive

Under-usage 3kB/s Research presented by the authors of [106] suggests

that as part of Capacity and Coverage Optimisation

in mobile communication networks, nodes which are

under-utilised can be placed into a dormant state.

This value is set at 20% of the maximum throughput

rate – at 24kbps (3kB/s)

This minimum utilisation of an agent, only applies to

agents performing aggregation functions as they can

be demoted or made dormant in response.

Additionally customer or generation agents

performing aggregation duties will monitor

utilisation in the event that they need to relinquish

aggregation responsibilities

Control

Unresponsiveness

3 seconds The control responsiveness metric was not used for

performance monitoring purposes but the same

techniques were applied. If a customer agent queried

110 Developing a Self-Organising Architecture

the controller to ask whether or not DSR restrictions

are still required and receives no response within 3

seconds, the customer would terminate all control

actions under the assumption that they are no longer

needed.

Each of the performance metrics listed was stored as a performance monitor object, where

samples were periodically taken so that a moving average could be computed. The

performance monitor object also calculated the rate of change of a given metric so that if a

threshold is exceeded, the object estimated the length of time the performance metric will

remain outside the recommended limits and if it showed any sign of declining. Any metric

that exceeds its threshold is considered to have entered an error state and thus the agent

observing the error state would generate an error report and transmit that report to the

Architect agent. The role of the Architect agent was to store the error with any other

received reports and process the list with a view of determining the need for a transition

event.

5.3.1 Error Collection and Processing

Processing and then acting upon an error state within the agent population was a three stage

process. The first step involved handling the incoming error reports and storing them

effectively – and thus required a suitable data structure to record all of the relevant error

report fields. Step two required scanning through the error list and converting the data into

a series of comparable metrics, error severities, totals, and scope. The final stage used the

results of the error processing stage to determine if a self-organised action is warranted and

if so which action to take.

The Architect agent would perform an analysis function whenever a new error was received

from the agent population. At the point the message was received, the Architect determines

whether or not an instance of the same error has been previously recorded. If it was the first

instance of a given error then the agent will create a new error object and store the object

in the list of active errors for that particular error type, however if the error has been

received previously, the Architect would scan through the list of errors and update the

relevant object with the new timestamp and magnitude of the most recent occurrence of the

error. The list of active errors for each type is contained within a wrapper object; the

wrapper object contains functions for processing the list of errors and returning information

111 Developing a Self-Organising Architecture

necessary for performing decision making – I.E. prominent error locations or causes. For

example if a customer observed a slow reaction time between itself its associated aggregate

then it would send an error report. Each error report contains the following fields as

illustrated in the following table in Table 5.2.

Table 5.2 – Composition of an example error alert message

Header Error Type Cause Magnitude Timestamp Threshold

ERROR_ALERT reactivity AG1 750 1452790402508 500

Complete Message ERROR_ALERT,reactivity,AG1,2000, 1452790402508,1500

The Architect would receive this error and locate the wrapper object for the ‘reactivity’

error type, and extract the list of errors currently recorded for the error type. If it has been

found that the same customer had previously reported a reactivity problem and cited agent

“AG1” as the cause of the problem – the error report will be updated with the new

magnitude and timestamp. If this was the first instance as previously indicated the Architect

will create a new error report object. The following diagram outlines this process of

handling incoming messages for any given error type.

Fig. 5.2 – Receiving Error Messages

As part of the error management and performance monitoring stage it was also important

for the list of errors retained by each of the wrapper objects to be processed – one of the

most important parts of this process was to calculate error severities and rates of change.

Error severity was determined as being the percentage by which the magnitude of each

error exceeded the threshold value. The rate of change component would be extracted from

error types with multiple error reports, as multiple data points were required to determine

Message
Received

Decompose
message

Scan Error
List

First
Occurrence

Create new
error object

Add object
to list

Wait for new
message

Scan Error
List

Find existing
record

Update with
new data

YesNo

112 Developing a Self-Organising Architecture

if an error was decreasing or increasing in severity. Comparing the error magnitudes across

several error reports were useful in determining how that error was developing – whether

it was becoming more severe or whether it was declining. This information was then used

as an input into the decision making process such that it could decide which errors were the

most severe and which course of action was required.

Other factors are involved in the error processing stage, as it was important to filter out

error reports which hadn’t been updated in a significant period of time, if no further reports

were made for an error condition it was then assumed that the error condition is no longer

present. Therefore these errors were eliminated from the list of active errors as they were

no longer active, errors are deemed to be inactive after 30 seconds of inactivity, and this

prevented any expired errors from contributing to the average severity of the error type.

This was also done to prevent error states carrying over from one transition event to another

if they were solved in the first instance and avoid unnecessary transitions based around

false positives.

At the end of the processing stage the Architect would then be aware if it needed to enact

a transitional event through triggering the decision making element of the self-organising

system. The elements of the decision making system will be documented in the following

chapter, but the result of any decision was in the form of one of the following architectural

transition options.

 ARCHITECTURE TRANSISIONS

Four stages of architectural transition were available to the Architect agent in terms of

adjusting the communication network in response to data retrieved from the performance

monitoring stage. This data may indicate that the initialisation phase had created an uneven

connection distribution across the aggregation tier, poor agent performance as a result of

failure or the presence of an attack event within the architecture. Each stage represented an

escalation in the severity of the response by the Architect agent and the severity of the

performance issues across the agent population.

5.4.1 Stage 1 - System Rebalancing

A rebalancing operation was the smallest and least intrusive of the transition events and

was based on systems used in mobile communication networks when redistributing

connections between nodes. Rebalancing was most effective when redressing the actions

113 Developing a Self-Organising Architecture

of the initialisation phase, where one aggregate may have been configured with a larger

number of connected customer agents than any of other agents in the aggregation

population. Therefore it was immediately at greater risk of congestion or reaction time

errors, and as a result a rebalancing operation would transfer some of the connections from

the heavily loaded aggregate to a less heavily loaded equivalent. A second format of the

rebalancing stage took place when a small number of agents are affected by connectivity

issues between themselves and the aggregation layer in this case those agents were

transferred to a new location.

Process

If the Architect agent determined that a rebalancing process was required it would trigger

the transferConnections function – the pseudocode to which is presented in Fig. 5.3. The

function was supplied with an error type this error type represented the dominant issue

detected during performance monitoring, if the dominant error referred to connectivity

problem, either in the form of slow response times or unresponsiveness – a targeted

rebalancing is triggered. Other error formats such as congestion or execution timing errors

are responded to with a general rebalancing.

114 Developing a Self-Organising Architecture

Fig. 5.3 – Pseudocode Regarding Connection Rebalancing

The pseudocode also demonstrates that the Architect has the power to over-ride the

suggestion of a rebalancing action if the location of the problem determined that such an

action would prove to be ineffective. If the error was located at an agent which had the

FUNCTION CALL with dominant error type

INITIALIASE list of connections to transfer

IF error type = “reactivity” or error type = “unresponsive”

 RETRIEVE list of agents reporting the error

 FOR agent list

 RETREIVE the aggregate the agent currently reports to

 FOR each of the potential aggregates

 IF aggregate has a remaining connection space

 BUILD transfer message

 SET content = “NEW_TARGET”

 SET recipient as agent to be relocated

 SEND transfer message

 BUILD transfer out message

 SET content = “TRANSFER_OUT”

SET recipient as former aggregate

 SEND transfer out message

 RECORD all message sizes in bytes

 END FOR

 ELSE

 MOVE to next aggregate

 END IF

 END FOR

 END FOR

ELSE

 IF aggregate reporting the error has the fewest connections

 PRINT “Rebalancing would be ineffective, replacing agent

 FUNCTION CALL to substitution function

 ELSE IF multiple aggregates reporting errors

 FUNCTION CALL activate a single dormant agent

 ELSE

CALCUATE difference in connections between error reporting aggregate and least

heavily loaded aggregate

TRANSFER half the difference in connections to the least heavily loaded

aggregate

 END IF

END IF

115 Developing a Self-Organising Architecture

fewest connections, it indicated another issue with the agent itself rather than one derived

from communication volume and therefore would trigger a stage 2 substitution action

instead. Alternatively the Architect may discover that the issue was widespread across a

number of locations and therefore rather than redistributing the connections via a

rebalancing action – it would be more advantageous to increase the aggregation capacity

by activating a dormant agent.

Communication Summary

During a rebalancing operation the following messages would be transmitted between the

Architect, aggregation and customer layers of the architecture. Each of the rebalancing

formats utilised the following three messages presented in Table 5.3 to orchestrate

transferring a connection from one aggregate to another.

Table 5.3 – Communication Summary during Rebalancing.

Header Sender Receiver Payload Comments

NEW_TARGET Architect
Agent

Customer
or
Generator
Agent

Agent name of
the new
aggregate to
connect to

Message informing the
customer or generator it is
being transferred and to
modify its communication
targets.

TRANSFER_IN Customer
or
Generator
Agent

New
destination
aggregate

Header only Message to introduce the
customer/generator to the
new aggregate agent

TRANSFER_OUT Architect
Agent

Former
data
aggregate

Header only Message to the aggregate
formerly connected to the
customer agent to
removed it from its
connection list

5.4.1 Stage 2 - Agent Substitution

Aggregation level substitutes were pre-selected during the initialisation stage, as adapted

from the fault tolerant aspects of the EDETA [114] method. The role of a substitution event

was to replace an existing aggregate with an immediate substitute agent. Substitution was

also presented in [132] whereby local controllers which fail are replaced by an agent from

a lower tier in the hierarchy. This process would not add to the total aggregation capacity

available in the agent population, it replaces a poorly performing or failed agent with

another functioning one. Because the replacement agent was from a lower tier, it

maintained its existing responsibilities (monitoring local voltage, publishing demand

profiles, enacting any control commands etc.) while also adopting those of the failed agent.

116 Developing a Self-Organising Architecture

The substitution process used some of the same functions as used by the promotion process,

but without adding aggregation capacity or modifying network tiers

Process

When a substitution was called for as part of an agent failure the process will remain the

same, only the trigger condition changes. So the first stage was to identify which of the

connected customer/generator agents was the designated substitute for the aggregate in

question. This designated substitute was then sent an “ACTIVATE_SUB” command, and

supplied with a list of agent names which the substitute would assume the responsibility of

interacting with. As the substitute agent received the message, it began informing the agents

who were formerly connected to the failed aggregate who to redirect their messages to. As

outlined in the pseudocode listed below in Fig. 5.4 :

Fig. 5.4 – Pseudocode for Activating a Substitute

The substitute would then break down the list of affected customers from the message into

an array structure so that it can iterate through the list and transmit the command to each

agent to inform it of the change in source of aggregation services. The substitute performed

this through transmitting a “SUB_ACTIVE” message to each member of the agent list. On

reception of this message, other agents previously associated with the failed aggregate reset

their data_target which defined the outgoing location of agent updates. The substitute itself

would modify its own data_target to point to the Observer agent if anything other than the

tiered architecture is in use. If a tiered architecture was in place, the substitute would

connect with an upper tier aggregate instead. Once all the agents involved in the process

have reset their communication targets the broken link will have been repaired as the failed

or inaccessible aggregate is phased out of the communication loop as the substitute assumed

responsibility.

RECEIVE “ACTIVATE_SUB” Message and customer list

SET aggregate status = true;

BUILD agent message declaring aggregate status

FOR each customer in customer list

 ADD customer id to list of message recipients

END FOR

SEND message

RECORD size of outgoing message in bytes

117 Developing a Self-Organising Architecture

Because the substitute did not participate in the original initialisation phase as a substitute

agent it will not have built internal knowledge base containing information about those

connections. Therefore to accumulate that information, the agent identifiers extracted from

incoming demand and generation updates were used to build the relevant internal

knowledge of connected agents. When a new the first update from a connected customer is

received, sender information was retrieved from the message, such that it could be added

to the list of customers which relied on the aggregation services provided by the

replacement aggregate. The following pseudocode in Fig. 5.5 outlines the function which

handled adding connection objects and determining the object type based on the first letter

of the agent name – where “C” refers to a customer agent and “G” refers to a generator

agent.

Fig. 5.5 – Pseudocode for Checking and Adding Connection Objects

Both agent types were represented by the same java object as they both contain the

following variables: agent name, type, real power (load or output) and reactive power (load

or output). The role of the agent type distinction was to determine how the information was

aggregated – to separate P and Q for load and generation entities.

Communication Summary

The following table presented in Table 5.4 documents the series of messages involved in

delivering a substitution process as the architect activated the substitute and ensured that

FUNCTION CALLED with new connection name

FOR each customer in connection list

 RETREIVE customer name

 IF new customer name matches current customer name

 RETRIEVE customer object

 END IF

END FOR

IF no matches

EXTRACT name prefix (“C” or “G”) from new connection name

BUILD new customer object

IF prefix = “C”

 SET object type to “CUSTOMER”

ELSE IF

 SET object type to “GENERATOR”

END IF

ADD customer object to connection list

RETURN customer object

118 Developing a Self-Organising Architecture

data from the outgoing aggregates isn’t used in overall calculations to avoid data

duplication.

Table 5.4 – Communication summary for Agent Substitution

Header Sender Receiver Payload Comments

ACTIATE_

SUB

Architect

Agent

Substitute

Agent

Substitution

type,

Communication

architecture

type,

List of agents

to transfer

Message from the

architect to a

substitute agent

instructing it to

activate and which

customers to connect

to

DROP_

AGGREGATE

Architect

Agent

Observer

Agent

Name of

aggregate being

replaced

Message to the

observers agent to

inform it that one of

the aggregates

previously connected

was being replaced

SLEEP Architect

Agent

Aggregate

being

replaced

Reason for

being made

dormant

“SUBBED”

Message to the

aggregate being

replaced by the

substitution

instructing it to enter

a dormant state

SUB_ACTIVE Substitute

Agent

Customers

being

reconnected

Reason for

transfer

“SUBBED

CUSTOMER”

Message to each

customer formerly

connected to the

replaced aggregate

informing them that

the substitute is the

new aggregate

SUB_

COMPLETE

Customers

being

reconnected

Substitute

Agent

Header only Response from the

customers being

transferred that they

119 Developing a Self-Organising Architecture

have accepted the

substitution and

changed internal

parameters

accordingly.

IS_

AGGREGATE

Substitute

Agent

Observer

Agent

Header only Message to inform

the observer that the

substitute agent will

now be acting as an

aggregate

Results

To illustrate the system in effect Fig. 5.6 presents the change in incoming and outgoing

data before and after a substitution event. The solid lines represent the data flow of the

original aggregate before it is taken out of the loop, while the dashed lines represent the

data flow of the substitute agent. In the pictured example the substitution event was hard

coded into the architect agent and triggered using a timer rather than a response to network

conditions. This process was applied to examine the effectiveness of the transition event

and demonstrate that the processes and communication structure previously presented

would have the desired impact. These hard coded triggers were then replaced when

installing the decision making engine into the architect agent, once the individual

transitions were validated in isolation of the error recording processes.

Fig. 5.6 – Data Transfer during Substitution

Twelve minutes into the simulation the changeover procedure was triggered and at 13

minutes the dataflow recorded by the substitute matches that of the former aggregate. The

120 Developing a Self-Organising Architecture

minute delay between the two samples was due to the performance monitoring process

collecting data flow information which is sampled over a minute period. So a full minute

after the transfer the array containing performance monitoring data was updated with the

results of taking over the aggregation role.

5.4.2 Stage 3 - Activating Dormant Agents

The second mechanism involved the activation of dormant agents, a set dormant

aggregation layer agents existed to provide additional aggregation capacity in the event that

performance monitoring detected a wider issue. This would indicate that the aggregation

layer had become over-loaded and further aggregation resources are needed to be

dispatched to distribute the connections. In contrast to the substitution process, all existing

agents retain their original responsibilities and the architecture remains largely consistent,

no further tiers would be added and no roles modified. The dormant agents are activated

and assigned to the lower or only aggregation tier and communicated with the existing

aggregates. Likewise if the congestion/data flow information indicates that the agents are

being under-utilised then they can be placed into a dormant state and the connections re-

allocated to the remainder of the aggregation population.

The use of dormant agents in self-organisation was documented by the authors [106] –

whereby nodes with little or no connection usage are placed into a dormant state and are

called upon when needed. Additionally several sensor network solutions place agents into

a dormant state through for the purposes of conserving energy, however as it is not

anticipated that the agents will have a limited power supply – a dormant agent remains

partially active in the sense that it can listen and respond to messages. Such that if it

received errant communications while being registered as dormant, an appropriate message

can be send in response, also to allow the agent to listen for signals to awaken. Nodes which

were not used as data collection points were also made dormant in the case of the Tic-Tac-

Toe-Arch [111], as part of the initialisation phase. In addition to a series of aggregation

agents which were instantiated as dormant agents, any active aggregates which did not

receive any connections during initialisation would themselves enter a dormant state.

Process

If the Architect agent determined that the appropriate course of action was to activate

members of the dormant agent population the first step was to trigger the activateDormants()

function within the Architect agent. This function checks the number of dormant agents,

121 Developing a Self-Organising Architecture

and then checks the number of active aggregates. Fig. 5.7 presents the pseudocode for the

function responsible for activating the dormant agents an integrating them with the rest of

the network.

The first act of the function is to determine how many connections will the newly awakened

aggregate be responsible for, and which member of the active aggregate population those

connections would be transferred from. To calculate the number of customer connections

to relocate, the architect needs to be aware of the ratio between active aggregates and

dormant agents scheduled to be awakened. For example if a structure with 4 active

aggregates is to be joined by 2 dormant agents – the first dormant agent would receive 33%

of the connections from both the first two active aggregate. The second dormant agent

would also receive the same proportion of customers but from the second pair of aggregates

– therefore all of the active dormant agents would adopt a similar number of connections

and communication load at all aggregates was reduced.

Fig. 5.7 – Pseudocode for Activating All Dormant Agents

Once the new distribution of customer connections was calculated the

“ACTIVATE_DORMANTS_ALL” message would be transmitted to each of the dormant

FUNCTION CALL

RETRIEVE list of active aggregates

RETRIEVE list of dormant aggregates

SET limit = ratio of active to dormant aggregates

SET counter = 0

IF dormant aggregates are available

FOR each dormant aggregate

 IF (number of active aggregates – counter) < limit

 SET remaining active aggregates = number of active aggregates – counter

 END IF

 FOR each of the remaining set of active aggregates

 ADD aggregate name to transfer list

 Increment counter

 END FOR

 BUILD activation message

 SET recipient as current dormant aggregate

SET content as: List of agents to take connections from, number of connections

to take

 END FOR

END IF

122 Developing a Self-Organising Architecture

agents. This message included a list of original aggregates to request connection transfers

from, and the proportion of agents to request. The pseudocode presented in Fig. 5.8 presents

the reaction by a dormant aggregate to the command to activate and participate in the

network. The receiving agent would initially check that is it in a dormant state, to ensure

that the selected dormant agent had not previously been activated by a different transition

event. Once passing this check the dormant agent compiled two messages – the first of

which was sent one back to the Architect as a confirmation that the agent is now active,

this allowed the Architect to amend the number of dormant and active agents it is aware of

for future reference. The second message was sent to the set of aggregates whose names

were supplied as part of the activation call, this message informed the selected aggregates

that the dormant agent is now active and will accept connection transfers.

Fig. 5.8 – Dormant Agent Receiving the Call to Awaken

The message also indicated what proportion of current connections should be transferred

to the new aggregate. Fig. 5.9 describes how an active aggregate agent responds to the

announcement of an awoken dormant agent.

RECEIVE activation message, and list of targets to transfer customer connections from

BUILD reply message

IF aggregate is dormant

 SET dormant = false

 SET reply content = “NOW_ACTIVE”

BUILD transfer message

SET transfer message content = “DORMANT_ACTIVE”

 FOR each transfer target

 ADD transfer target name to transfer message

 END FOR

 SEND transfer message

 RECORD message size in bytes

ELSE IF aggregate is not dormant

 SET reply content = “ALREADY_ACTIVE”

END IF

SEND reply message

RECORD message size in bytes

123 Developing a Self-Organising Architecture

Fig. 5.9 – Active Aggregate Becoming Aware of an Awoken Dormant

Upon receiving a “DORMANT_ACTIVE” message the aggregate agent the extracts the

parameter containing the proportion of agents to transfer. It would iterate through the

connection list and send a “NEW_TARGET” message to a correct proportion of the

connected customers/generators. This “NEW_TARGET” message contained an identifier

for the newly activated dormant agent which was accepting transferred connections. Fig.

5.10 outlines the process that a customer or generator agent goes through when in reception

of a transfer notification.

Fig. 5.10 – Receiving a Transfer Notification

Before a customer/generator can transfer to another aggregate agent would have to conduct

two checks which determine how it relates to the aggregate agent it was being transferred

RECEIVE dormant activation message, number of connections to transfer

BUILD transfer message

SORT connection list

FOR number of connections to transfer

 RETRIEVE connection from list

 SET connection name to transfer message recipients

 REMOVE connection from list

 REDUCE connection total by one

END FOR

SET transfer message content to “NEW_TARGET”

SEND transfer message

RECORD message size in bytes

RECEIVE new target message and id of new aggregate agent

IF aggregation control in place

 SET controller id to data target id

END IF

IF is designated substitute agent

 BUILD replace substitute message as reply

 SET content “NEW_SUB”

 SEND reply message

 RECORD message size in bytes

END IF

SET data target = new aggregate id

BUILD transfer complete message

SET receiver as new aggregate id

SET content as “TRANSFER_IN”

SEND transfer complete message

RECORD message size in bytes

124 Developing a Self-Organising Architecture

from. The first check was to determine which control format the architecture was operating

under – if the aggregation tier was performing control then the data target and the control

target point to the same agent. If a customer was being relocated to another aggregate, it

also needed modify its control target such that control alerts are also redirected to the former

dormant agent which assumed control responsibilities.

The second check was to determine if the customer agent was selected to be a substitute for

the aggregate it is being disconnected from, if that is the case the aggregate needed to be

informed such that it can select a new substitute to replace it. This is done through sending

a “NEW_SUB” message back to the original aggregate which triggers a new substitute

selection process. Finally the customer/generator sends a “TRANSFER_IN” message to

the new aggregate so that it can be added to its connection list.

Communication Summary

The following is a list of the messages involved in the process of activating a dormant agent

and transferring a set of connections from existing aggregates to the newly awakened

dormant aggregate. Each message used the ACL message protocol – and was composed of

two sections. The first section was the header which was used by the listening behaviour,

which acted as a function switchboard for the agent. The second was the payload and

contained any variables and information that the receiving function needed to perform the

required action.

Table 5.5 – Communication Summary

Header Sender Receiver Payload Comments

NET_INFO Gateway

agent

(DMA)

Architect Number of

customers

Number of

Generators

List of Generator

names

Number of

Dormant

aggregates

List of Dormant

Aggregates

Informs Architect

about the contents of

the components

CSV file including

aggregate agents

125 Developing a Self-Organising Architecture

Number of Active

Aggregates

List of Active

Aggregates

ACTIVATE_

DORMANTS_

ALL

Architect Dormant

Aggregate

List of active

aggregates to

contact

Proportion of

connections to

transfer

The command is

sent to all dormant

agents in this case

rather than

activating a single

agent in one part of

the network

NOW_ACTIVE Dormant

Aggregate

Architect Header only Confirmation

message that the

activation has taken

place

ALREADY_

ACTIVE

Dormant

Aggregate

Architect Header only Message to inform

the Architect that

this agent has

already been

activated

DORMANT_

ACTIVE

Dormant

Aggregate

Active

Aggregate

Proportion of

connections to

transfer

This initiates the

connection transfer

process

NEW_TARGET Active

Aggregate

Customer

or

Generator

Agent

Agent name of the

new aggregate to

connect to

Message informing

the customer or

generator it is being

transferred and to

modify its

communication

targets.

126 Developing a Self-Organising Architecture

NEW_SUB Customer

or

Generator

Agent

Active

Aggregate

Header only Message to inform

the aggregate that its

substitute is being

transferred and to

search for a

replacement

TRANSFER_IN Customer

or

Generator

Agent

Former

Dormant

Aggregate

Header only Message to

introduce the

customer/generator

to the new aggregate

agent

Results

The dormant activation process was tested with 340 customers 4 generators initially

connecting to four aggregation agents these agents did not make symmetrical connections

in the sense that each aggregate did not receive an equal number of connections. During a

test simulation two additional aggregates which previously existed in a dormant state only,

were activated and instructed to initiate the transfer of customer data connections from the

original set of aggregation agents. The following graph in Fig. 5.11 traces the number of

connections per aggregate throughout the simulation runtime.

Fig. 5.11 – Changes in Number of Connections per Aggregate

The graph shows that aggregates 2-4 reached their soft connection limit reasonably quickly

and therefore the remaining customers discovered and connected to AG1 explains the delay

127 Developing a Self-Organising Architecture

in accumulating connections. When the dormant agents (AG5 and AG6) were activated,

they took connections away from the original set of aggregates. Those aggregates which

were up against the soft limit shed more connections than AG1 which was initially

configured with fewer connections. It can also be seen that the two newer aggregates did

not accumulate the same number of transferred connections because of the respective

population sizes of the aggregates they are transferring connections from. For example AG5

received 1/3 of the connections of AG1 and 1/3 of the connections from AG2 – as AG1 had

fewer connections AG5 gains fewer connections. Whereas AG6 retrieved connections from

two of the highly populated aggregates and therefore is handed a larger population itself.

5.4.3 Stage 4 - Promoting and Demoting Agents

The promotion mechanism operated in a similar manner to the substitution process, with

the exception that customer/generation agents were promoted for the purposes of increasing

the aggregation capacity rather than to replace an existing agent. Also aggregates could be

promoted to create an additional aggregation tier to reduce the load on the observer agent.

When creating an additional tier, each of the promoted aggregates is replaced by a promoted

customer or generator agent. Selecting agents to replace the promoted aggregates take

advantage of the substitution process.

The concept of promoting agents was connected to the EDETA approach in the sense that

cluster-head agents are promoted from the overall agent population, as all sensors are

considered to be homogenous and it was their physical location which forms the network.

A select number of standard sensor nodes are elected to take up the role of cluster-heads,

and in the event that the population of cluster head nodes doesn’t provided sufficient

coverage, additional sensors are promoted to assume the role. Another example of

promotion and demotion of agents from a lower tier into a higher one is presented in [141].

In this example matchmaking nodes pair producer and consumer nodes together, if the

matchmaking process becomes too heavily loaded additional resource is created through

promoting producers or consumers to become matchmaking nodes. This process was

similar to the current promotion process adopted by the self-organising architecture –

customers/generators are promoted to assist in the aggregation layer if required.

Two forms of agent promotion have been developed as latter stage architecture transition

option, the first of which was to promote an aggregate agent up to a higher tier to move

from a base or clustered architecture to a tiered alternative. The second was to create

128 Developing a Self-Organising Architecture

additional aggregation resource in the lower aggregation tier – in the event that no dormant

agents are available or if previous activation of dormant agents has not been enough. The

second approach was not necessarily considered to be a stage four transition, but one that

was introduced as an alternative mechanism when the selected transition stage could not be

executed.

Promotion for a tiered architecture

To trigger a promotion event for the purposes of creating an upper tier, a function within

the Architect agent would be called – as in the same manner which other transitional

procedures will be triggered. When applying the tiered architecture across the network/zone

under control the Architect had to initially select which of the current aggregate population

was going to be promoted into an upper tier. This decision was based on the data collection

process that the Architect agent periodically carries out of the aggregate population –

therefore recent information on congestion was collected, data flow and reactivity to the

observer. Such a transition would be triggered in the event that the observer noted an

increased quantity of information being passed to it by the aggregation layer or that reaction

times between the top two tiers of the architecture are starting to rise.

The first stage was for the Architect to query the aggregate population and retrieve a list of

those aggregates identified as being in the lower aggregation tier as per the extended

getList() function. The Architect agent would choose one or more aggregates to promote

into the upper tier. From the total aggregation population, those agents with the highest

congestion figure were selected, a higher congestion value were used because this reflects

the aggregates which are experiencing the highest load in their current role and therefore

would benefit from promotion into a less highly loaded tier. The selected aggregates are

then contacted with a “PROMOTE_SELF” message. This function is presented in the

following pseudocode in Fig. 5.12, which also includes the Architect informing the

substitutes for the promoted aggregates to activate and replace the aggregate within the

lower aggregation tier.

129 Developing a Self-Organising Architecture

Fig. 5.12 – Triggering Aggregate Promotion

Upon receiving a “PROMOTE_SELF” message from the Architect, each of the promoted

aggregates sets their data target to communicate with the observer, in the event that a

previous promotion phase had changed the data target variable. Additionally it sets the

current communication architecture to “tiered” and responds with a

“PROMOTE_CONFIRM” message to inform the Architect that it received and acted upon

the command. Once the Architect had received confirmation messages from each of the

promoted aggregates, it then informs the lower level aggregates that a tiered architecture

has been created and that they are now members of a lower tier. As illustrated in Fig. 5.13

FUNCTION call with number of agents to promote (n)

RETREIVE list of lower tier aggregates

FOR each lower tier aggregate

 IF promotion list size < number of agents to promote

RETREIVE current aggregate queue size

COMPARE value to maximum queue size

IF found largest queue size

 ADD aggregate to promotion list

END IF

 END IF

END FOR

IF promotion list not empty

 BUILD promotion message

 SET content = “PROMOTE_SELF”

 FOR each promotion candidate in list

 ADD candidate to recipient list

 END FOR

 SEND promotion message

 RECORD message size in bytes

ELSE IF

 PRINT no promotion candidates found

 RETURN transition incomplete

END IF

130 Developing a Self-Organising Architecture

Fig. 5.13 – Informing the Lower Tier

Because the lower tier aggregates do not have direct access to the observer as they

previously did, these aggregates then need to select a connection from the upper tier. This

process mirrored the initialisation phase for customer/generation agents – whereby the

aggregate is given the names of all upper tier connections and contacts them all to retrieve

round trip time information. The lower level aggregate is also required to contact the

observer to inform it that it will no longer be directly publishing updates, so that it can be

removed from the observer’s data collection structure to prevent information duplication.

Once the lower level aggregates were connected to the upper tier – all agents will once

more be connected and the process is complete. The promoted aggregate was then replaced

by its own substitute and, the remainder of the set of aggregates seek out upper tier

connections.

Promotion for additional aggregation resource

The second avenue of agent promotion related to increasing the amount of aggregates

within the single lower aggregation tier. This was similar to the process involved with

activating dormant agents, to back-up the current set of aggregates. However if no dormant

agent population was present or those dormant agents had already previously been

contacted and activated, an alternative solution is to use members of the

customer/generation layer as aggregation agents.

Initially this process was triggered by the Architect agent, whereby

“PROMOTE_CUSTOMER” message was transmitted to each of the currently active

aggregation agents. This effectively doubled the aggregation resource by assigning each of

RECEIVE Promotion confirmation message

INCREMENT promotion count tally

SET sender’s aggregation tier status

IF promotion tally = number of intended promotions

 SET communication Architecture = tiered

 RETRIEVE list of lower tier aggregates

 BUILD lower tier message

 SET message content = “LOWER_TIER”

 FOR each lower tier aggregate

 ADD aggregate id to recipient list

 END FOR

 SEND lower tier message

 RECORD message size in bytes

END IF

131 Developing a Self-Organising Architecture

the current aggregates a promoted back-up to share the connection load with. This function

is presented in Fig. 5.14 – and was received within the listening behaviour of the target

aggregate, as presented in Fig. 5.15. Once the aggregate agent received the command to

promote one of its customer agents up to aggregate status – it uses the same process that

the Architect uses to select aggregates for promotion up to an upper tier. It uses the data

collected for each of the agents and selects the agent with the longest round-trip time, as

this agent could be seen as the least well connected and would be reasonable to be selected

as a new aggregate.

Fig. 5.14 – Promotion into the Lower Tier

Fig. 5.15 – Receiving a "PROMOTE_CUSTOMER" Message

The least well connected aggregate was selected as it represented an agent which may be

more geographically distant from the current aggregate. Therefore the process involved

promoting a customer agent into an aggregation potion where little aggregation was present.

The selected customer receives the “PROMTOTE_SELF” message from the Architect, and

checks whether or not it is a substitute agent – if that is the case it won’t accept the

promotion request. Otherwise the agent will transmit the promotion confirm message to the

aggregate, as well as contacting the Architect and observer agent to inform them of the role

change so that their data structures can be modified to recognise the change. The response

from the perspective of the promoted customer is presented in the pseudocode extract in

Fig. 5.16

FUNCTION CALL

RETRIVE list of active aggregates

BUILD promotion message

SET content = “PROMOTE_CUSTOMER”

FOR each active aggregate

 ADD aggregate id to recipient list

END FOR

SEND promotion message

RECORD message size in bytes

RECEIVE promotion message

RETRIEVE connection information for customer with longest communication round trip time

BUILD promotion message

SET content = “PROMOTE_SELF”

ADD customer id to recipient field

SEND promotion message

RECORD message size in bytes

132 Developing a Self-Organising Architecture

Fig. 5.16 – Response to Receiving a “PROMOTE_SELF” Message

Once the promotion was complete and each aggregate has been informed of the successful

promotion event, it was then responsible for transferring a series of connections from its

own connection list to the promoted customer. Each aggregate agent transfers 50% of its

connections to the promoted customer. This is illustrated in Fig. 5.17, whereby a series of

“NEW_TARGET” messages to agents which were to be transferred.

Fig. 5.17 – Transferring Connections

RECEIVE promotion message

IF is not a designated substitute

 SET aggregate status = true

 BULD reply message

 SET content = “PROMOTE_CONFIRM”

 SEND message

 RECORD message size in bytes

 BUILD aggregate status message

 SET content = “IS_AGGREGATE”

 ADD Architect and observer agents to recipient list

 SEND message

 RECORD message size in bytes

 IF communication architecture is not tiered

 SET data target to observer agent

END IF

ELSE IF designated substitute agent

 BUILD reply message

 SET content = “PROMOTE_DENY”

 SEND message

 RECORD message size in bytes

END IF

RECEIVE promotion confirm message

SORT connection list

BUILD connection transfer message

SET content = “NEW_TARGET”

FOR half of the connection list

 ADD connection id to recipient list

 REMOVE connection from connections list

 DECREMENT connection total

END FOR

SEND transfer message

RECORD message size in bytes

133 Developing a Self-Organising Architecture

Once all the agents have been transferred, the process of adding a customer in the place of

an additional aggregate is complete. The promoted customer will then aggregate incoming

updates and pass the totals onto the observer agent in the presence of a single tier of

aggregation agents. In a tiered architecture those updates are transmitted to the upper

aggregation layer.

Communication Summary

The following series of messages presented in Table 5.6 were used in the process of

promoting agents, both in terms of increasing the number of aggregates in the lower tier,

but also in terms of adding a second aggregation tier to the network.

Table 5.6 – Promoting Aggregates.

Header Sender Receiver Payload Comments

PROMOTE_

SELF

Architect Selected

Aggregates

Header only Command for an

aggregate agent

to move to an

upper tier

PROMOTE_

CONFIRM

Selected

Aggregate

Architect Header only Confirmation

that the

aggregate has

been promoted

ACTIVATE_ SUB Architect Designated

Substitute

Current time

Substitution type

(PROMOTE)

Communication

architecture

Set of agents to

transfer

Instruction to the

substitute of the

promoted

aggregate to take

over the role

SUB_ACTIVE Designated

Substitute

Architect Header only Confirmation

that the

substitution

occurred

SUB_ACTIVE Designated

Substitute

Customer

Agents

Header only Instructing the

other customers

134 Developing a Self-Organising Architecture

that the substitute

is the new

aggregate

SUB_COMPLETE Customer

Agents

Designated

Substitute

Header only Confirmation

that the customer

has changed its

data target

IS_AGGREGATE Designated

Substitute

Promoted

Aggregate

Header only Informing the

upper tier that the

agent is

performing as an

aggregate

LOWER_TIER Architect Lower tier

Aggregates

List of upper tier

aggregates

Information

message to the

lower aggregates

informing them

of a tiered

structure

LOWER_TIER Lower tier

Aggregates

Observer Header only Informing the

observer that the

lower aggregates

will not be

contacting it

DISCOVER Lower Tier

Aggregates

Upper Tier

Aggregates

Time message

sent

Initial discovery

message sent to

upper tier

aggregates

HELLO Upper Tier

Aggregates

Lower Tier

Aggregates

Time original

message sent

Time message

received

Response to

discovery

messages

135 Developing a Self-Organising Architecture

Time reply sent

JOIN_REQUEST Lower Tier

Aggregates

Upper Tier

Aggregates

Time message

sent

“AGGREGATE”

flag

Request for

connection

JOIN_CONFIRM Upper Tier

Aggregates

Lower Tier

Aggregates

Time original

message sent

Time message

received

Time reply sent

Connection

request approved

Table 5.7 – Promoting Customers

Header Sender Receiver Payload Comments

PROMOTE_

CUSTOMER

Architect Lower Tier

Aggregates

Header only Instruction to start a

promotion process

PROMOTE_SELF Lower Tier

Aggregates

Selected

Customers

Header only Instruction from the

aggregate to

promote one of its

connected

customers

IS_AGGREGATE Selected

Customers

Observer,

Architect

Header only Inform both the

Architect and the

observer that the

customer is

behaving as an

aggregate

PROMOTE_

CONFIRM

Selected

Customers

Lower Tier

Aggregate

Header only Confirms to the

aggregate that

promotion is

complete

136 Developing a Self-Organising Architecture

NEW_TARGET Lower Tier

Aggregates

50% of

connections

Id of the

promoted

customer

agent

Instructs some of

the connected

customers to

connect to the

promoted agent

NEW_SUB Transferred

customers

Lower Tier

Aggregates

Header only Informs the

aggregate that it’s

substitute has been

transferred and to

select a replacement

TRANSFER_IN Transferred

customers

Promoted

customer

Agent type

flag

Transfers

connection from the

old aggregate to the

promoted customer

Results

To demonstrate the impact of a promotion event the following figure presented in Fig. 5.18,

where two agents are promoted in support of a pair of aggregates. The two promotion events

were aimed at agents with differing communicative loads to illustrate the impact on both a

high and low functioning aggregate.

Fig. 5.18 – Data flow during a Promotion Event

At the point where the first agent was promoted, the original aggregate observed a reduction

in data flow; this was picked up by the promoted customer agent as it assumed a proportion

137 Developing a Self-Organising Architecture

of the connections previously held by the aggregate. The same pattern was present with

respect to the second of the promotion events as the losses experienced by the Architect

agent were collected by the promoted customer, such that no connections are dropped

during the process. This was further documented in the following figure, illustrating the

number of customer connections managed by the agents involved in the process

Fig. 5.19 - Number of Connections per Agent during a Promotion

Both figures represented a promotion scenario where the additional aggregation resource

in the form of customer agents was added to a single aggregation tier focussing on the

process of converting conventional customer agents into aggregation roles.

 SIMULATING ATTACK EVENTS

The process of implementing the attacks was embedded in the development of the self-

organising architecture through the addition of the Error Generating Agent (EGA) the EGA

contains a series of timers that issued commands to agents within the customer layer to

trigger behaviours representing attack events. The EGA controlled when an attack event

would begin and when it would conclude if the attack is not intended to endure for the

length of the simulation.

5.5.1 Selecting Targets

Due to the nature of the initialisation phase, the EGA has no immediate knowledge of the

communication structure of the agent population and therefore must be supplied with

information from the Architect Agent. Once the initialisation stage is complete, the EGA

would be supplied with lists of customer agents in contact with each of the aggregates – so

that if the examined scenario required multiple customers to direct the attack towards a

138 Developing a Self-Organising Architecture

particular target the EGA was able to determine which customers to select to initiate the

attack.

Those names of the selected agents are then stored in an internal data structure such that

the EGA is able to communicate with the attack population to terminate the attack when

necessary. This also prevents subsequent attack events with the same simulation attempting

to use the same attack population, removing the chance for duplication.

5.5.2 Performing Attacks

To perform the attack the customer agents were constructed with embedded behaviours

which were either activated or deactivated by Boolean flags, these flags dictate whether or

not the customer was launching an attack against its target. While the inclusion of these

attack behaviours in each agent resulted in a large amount of unused agent code throughout

the agent population it provided more control in the form of orchestrating an attack and

shaping the nature of the attack. If each customer was only supplied with the behaviour

required for each attack scenario, there would be small differences in how the agent

population behaves at runtime due to the amount of virtual machine memory occupied by

running the agents. Taking out unused code for one simulation, and then inserting it for

another effectively changes the dynamic of the agent population between scenarios and

ultimately makes the results less comparable. The overhead of running the agent platform

with the increased code content and therefore the increased computational footprint did

have an impact on the scalability of the simulation. The following diagram in Fig. 5.20

illustrates the interaction involved in launching an attack against a controller.

Fig. 5.20 – Launching an Attack

Error Generator Attacker Target

Start Spamming Event

End Spamming Event

Attack Traffic

Attack Traffic

Attack Traffic

Control Request

Control Response

Pre-Attack Timer

Attack Duration
Timer

139 Developing a Self-Organising Architecture

To activate attack behaviour, messages are transmitted from the EGA to the targeted

population; the number of attackers is determined by the intent of the scenario. The

distribution of attackers can be defined within the EGA without interfering with any

configurations for the other agents in the population.

5.5.3 Timing Attacks

Part of the role of the EGA is to schedule the attack events in relation to the actions taking

place within the core simulation, as the previous figure illustrates the attacks would be more

effective if designed to coincide with key operations. In the simulation there are two stages

where critical commands are sent from the controller to the customer population, these

commands oversee the initial control commands and the removal of any controls imposed

on the customer layer. The specifics of the attack methodology will be described in chapter

7, but the EGA is responsible for ensuring that the attack event is triggered during one of

these key stages thus posing the risk of creating the largest disturbance. Multiple timers are

employed by the EGA, the first of which determines the start of the first attack signal, other

timers determine the length of the attack event and if necessary the start and end times of

subsequent attack conditions.

 SUMMARY

This chapter outlined each of the components involved in the development of the self-

organising architecture. The system contained three stages of operation each informed by

literature and described in the chapter in terms of the functions, communication

requirements and their impact on the agent population. The initialisation stage is the first

of those three stages, and involved forming connections between members of the customer

layer – which included smart-meter based agents and small scale DG entities – and the

aggregation layer. The second stage considered the use of performance monitoring

techniques and examined the individual thresholds applied to the metrics embedded within

the self-organising architecture. The performance monitoring stage involved the collection

of error reports from members of the agent population along with the appropriate storage

and processing approaches. A final stage considered the different architectural transition

events the Architect agent had the ability to invoke in the event of a performance violation,

each transition is described in terms of the functions required to perform the transition and

the sequence of messages between entities.

140 Developing a Self-Organising Architecture

In addition to the set of transitional mechanics, the processes for emulating attack events

and the role of the Error Generation agent in the architecture. Attack behaviours were

instantiated within each of the main agents involved with the self-organising architecture,

and were activated by the error generation agent. The following chapter is focussed on the

decision making engine which was responsible for converting the set of error information

retrieved in during the performance monitoring stage into a transition event. This chapter

discusses the different approaches to decision making and the mechanisms for evaluating

the set of errors received by the architect agent.

141 Decision Making Engine

Chapter 6: Decision Making Engine

142 Decision Making Engine

 INTRODUCTION

The decision making engine at the heart of the self-organising architecture was responsible

for converting performance monitoring data retrieved from the agent population into

transition events. Instead of a predetermined set of system reconfigurations the role of the

decision making engine was to assess the conditions of the agent architecture through the

provision of error reports such that an appropriate restructuring process could be applied.

Two implementations of the decision making engine were introduced initially centring on

a decision tree mechanism breaking down the set of error responses into their individual

sources. Each source equated a branch in the decision tree, where specific error context and

location information resulted in a final decision on which of the architecture transition

events to pursue. The second and favoured implementation replaced the decision making

engine with a more sophisticated fuzzy based system – this alternate system involved

computing a single variable for computational burden which accumulated data from each

of the error formats involved with the communication aspect of the overall system. This

decision making engine would then produce a recommendation as to the scale of the

transition event, a recommendation which could either be accepted and implanted by the

architect or over-ruled in the event of contradictory information.

The remainder of the chapter discusses the formulation of the fuzzy decision making system

including the integration of the fuzzy membership functions into the java platform. Finally

the chapter considers the processes involved in triggering a transition from the result of the

decision making engine.

 ERROR FILTRATION

Before a call to the decision making engine was triggered, a series of checks were

performed on the list of error reports received from the agent population. These checks

were a preventative measure to avoid transitional events being initiated on the basis of

reports which may be out of date or that represented transient occurrences of a given error

type and therefore prevented the overall decision process from being too sensitive.

As indicated in the previous chapter, all error reports for each of the performance metrics

are transmitted to the architect agent, and are then stored in an overall error list data

structure. The architect agent was responsible for processing this list of errors and sculpting

the call to the decision making engine. In the presence of the initial decision tree approach,

143 Decision Making Engine

this call took the form of determining the dominant error type in terms of its severity value.

The list processing stage involved error filtration where each of the reports received by the

architect agent was examined against a series of criteria before it was considered for use in

calculating the overall error state of the architecture. In each case the error reports only

existed for a finite length of time, and as discussed by the authors of [118] will expire and

thus be no longer valid for consideration in terms of error analysis. A list of the set of

filtration limits is presented in the following table

Table 6.1 – Performance Monitoring Thresholds

Metric Threshold Comment

Lifespan 30 seconds The lifespan of an error determined the time after which

the error is deemed to have expired. This was not the

overall duration of the error state, but the time since the

last occurrence of the error was reported. Therefore if no

new reports of an error were received by the Architect, the

record of the error was removed once the lifespan period

had elapsed.

Severity

Buffer

10% A severity buffer prevented the decision making process

from acting upon each event – so that excessive changes

were not made.

Waiting

Period

20s Under the decision tree approach, a waiting period was

instantiated to prevent the architect performing a transition

on a transient event.

This waiting period was then applied to the estimated

duration of an event under the second decision iteration of

the decision making engine after error rate of change was

calculated

Standoff

Period

Small –

120s

Medium –

180s

Three standoff sizes were used for different magnitudes of

self-organised response. A small change such as

transferring customer connections had a smaller impact on

the overall network and therefore brought with it a smaller

waiting time. Larger reconfiguration events, such as

144 Decision Making Engine

Large –

300s

activating dormant agents or promoting an aggregation

tier required a larger waiting period

 DECISION TREE

The process of defining which course of action to take as a result of performance

monitoring data was initially the jurisdiction of a decision tree approach. An analysis stage,

processing the error report list determined which of the errors present was the most severe.

Each of the potential error formats was represented by a branch in the decision tree, and

these decision branches are documented as follows:

6.3.1 Control Errors:

A control error was a consequence of a voltage excursion lasting longer than the prescribed

threshold. Rather than waiting for the completion of the control action, any customer agent

affected transmitted an error report as soon as the voltage had remained outside limits for

a period of time longer than the threshold value. Depending on the current level of control

in place the architect would take steps to replace or relocate the control responsibilities. If

the control was placed at observer – i.e. centralised control architecture was in use, the

Architect can only move the control functions further down the network. Likewise if the

control was placed at the lowest tier – with the customer agents, the Architect could only

move to less decentralised control architecture. The only control architecture with

replaceable controllers, in the event that a single agent with the control functions failed to

achieve the desired performance was the aggregation control architecture. This was because

the other agents in the MAS represent physical components and therefore could not be

disconnected without losing data and potential controllability. Raising control level in one

agent without mirroring that action in another would result in hybrid control architecture

where a proportion of the customer population may send control requests to the generation

agents, while others communicate with the aggregate layer. A hybrid structure would create

complications when performing further transitions within the architecture. The decision

tree branch for processing this error format is presented in Fig. 6.

Fig. 6.1 – Decision Branch for Control Events

Central Control Lower Control Level

Customer Control Raise Control Level

Generation Control Lower Control Level

Single Aggregate Replace Controller

Multiple Aggregates Raise Control Level
Aggregation Control

Control Event

145 Decision Making Engine

6.3.2 Data Flow Errors

In the same manner that control errors are declared, data flow errors were triggered when

either incoming or outgoing data flow exceeded threshold values. Data flow errors were

likely to be sourced from agents within the hierarchy responsible for handling larger

volumes of information in the form of the aggregation layer agents and to a lesser extent

the central observer. If the Observer was triggering data flow issues then it could be due to

the number of aggregates transmitting customer data to it or if a member or members of the

aggregation tier were launching an attack event. Therefore the solution was to add an

aggregation tier to create a buffer between itself and the large quantities of information

handled by the lower aggregation layer and potentially shielding itself from further attacks.

As a secondary check the Architect also determines how many of the lower aggregates are

producing data flow errors themselves, in order to decide which agents to promote to a new

upper tier. Moving the aggregates with error reports places them in a less heavily loaded

position within the hierarchy and therefore combats the data flow issues they are facing.

Those with high outgoing data rates however were less likely to be considered for

promotion, the decision tree branch processing data flow errors is presented in the

following figure Fig. 6.2.

Fig. 6.2 – Decision Branch for Data Events

6.3.3 Congestion Errors

The congestion error metric was concerned with the number of messages that an agent was

storing in its message queue, a larger message queue indicated a greater congestion problem.

As was the case with the data flow error type, the congestion issue was primarily restricted

to those agents responsible for interacting with a larger population and handling larger

volumes of data. Furthermore because the two metrics are often closely related the decision

branch for the congestion error was very similar to that of the data flow branch as illustrated

in the following figure in Fig. 6.3.

1 or no aggregates reporting errors
Promote one upper tier

aggregate

Multiple aggregates reporting

errors

Promote mulitple upper

aggregates

Also congested/ slow response

time
Transferring Connections

Only showing Data Errors Replace Agent

Dormants Available Activate Dormants

No Dormants Available Promote Customer Agents

Observer Affected

Data Event

Single Aggregate

Multiple Aggected

146 Decision Making Engine

Fig. 6.3 – Decision Branch for Congestion Errors

6.3.4 Reactivity Errors

Reactivity errors were processed differently primarily because they are not observed and

reported by the agent causing them Instead they were observed by agents that interact with

the agent causing the problem. This allowed the architect to build a picture of the scope of

the error by determining the percentage of customer agents reporting reactivity issues.

Additionally the aggregation layer could report reactivity problems when communicating

with the observer, and thus request a tiered architecture to alleviate some of the pressure on

the observer agent. Therefore in terms of the decision branch as presented in Fig. 6.4, a

check for impacts on the observer was preformed first before then assuming that the

reactivity problem is occurring between the customer layer and the aggregation layer.

Fig. 6.4 – Decision Branch for Reactivity Errors

If only a small proportion of the customer population is affected then those customers could

be relocated to alternative aggregates. If a larger population was experiencing difficulties

then it became more relevant to examine the number of agents causing the reactivity

problem. As an additional check, in the event of single aggregate causing problems, the

magnitude of the severity is considered. If the severity was smaller than 150%, then it may

be possible to solve the problem through rebalancing the communication load and

transferring connections. If the severity was larger, then the aggregate agent could be

moved to an upper tier where it would be exposed to less communication load. This would

1 or no aggregates reporting errors
Promote one upper tier

aggregate

Multiple aggregates reporting

errors

Promote mulitple upper

aggregates

Also Data or Reactivity Errors Transferring Connections

Only Congestion Issues Replace Agent

Dormants Available Activate Dormants

No Dormants Available Promote Customer Agents

Observer Affected

Congestion Event

Multiple Affected

Single Aggregate

1 or no aggregates reporting errors
Promote one upper tier

aggregate

Multiple aggregates reporting

errors

Promote mulitple upper

aggregates

Less than 10% of customers

affected
Transfer Customers

Only Reactivity Errors

Dormants Available

No Dormants Available

More dormants available than

active aggregates
Activate Dormant Agents

Fewer dormants available Promote Customers

Severity < 150% Transferring Connections

Severity > 150% Promote Agent

Replace Agent

Activate Dormants

Promote Customer Agents

Observer Affected

Reactivity Event

Over 50% customers Affected

Also Data or Congestion

ErrorsSingle Aggregate Responsible

Multiple Aggregates

Between 10 and 50% affected

147 Decision Making Engine

be applied if the aggregate in question was experiencing muliple error types in addition to

reactivity, as the performance metrics are often linked. However if the aggregate was only

experiencing a reactivity problem it may be assumed that the agent is not functioning

correctly and therefore can be replaced by subsitution.

6.3.5 Unresponsive Errors

The unresponsive error type was an extension of the reactivity error type in the sense that

it refers to the interaction between agent pairs and the requirement of a recipient agent to

reply with a confirmation message that it received the updated information. In the event

that the recipient did not transmit this confirmation message the customer logs the message

as missed, if ten messages are missed then the agent sends an unresponsive error alert. This

was similar to the reactivity error type as the architect could determine the scope of the

impact through the number of customers reporting the problem. A smaller error scope can

be processed through relocating some of the connections to an aggregate with a smaller

number of active connections. Whereas a larger error event would be processed through

substituting or promoting low performing aggregates. If several aggregates were involved,

a more widespread reorganising strategy was required on the basis of the number of

customers affected. At an intermediate level either dormant agents would be promoted or

the aggregation tier would be widened through promotion. At the most severe level the

architect will select the solution which creates the largest aggregate population. The

decision tree branch is presented in the following figure Fig. 6.5

Fig. 6.5 – Decision Branch for Unresponsive Errors

6.3.6 Underused Errors

The notion of monitoring agents for under usage was based on the ability to move specific

agents into a dormant state if they running a small data flow measurement – as suggested

by the authors of [106]. In the decision branch presented in Fig. 6.6, the response to each

case of under-usage was dependent on the role of the agent submitting the error report. So

each case for each of the agent types was handled in turn.

Less than 10% customers Affected Transfer Connections

Multiple errors present Promote Agent

Unresponsive Only Replace Agent

Less than 10% customers Affected Transfer Connections

Dormants Available Activate Dormants

No Dormants Available
Promote Customer

Agents

More dormants available

than active aggregates

Activate Dormant

Agents

Fewer dormants available Promote Customers

More than 10% affected
Single Aggregate Responsible

Between 10 and 50% customers

Affected

Over 50% affected

Multiple Aggregates Responsible

Unresponsive Event

148 Decision Making Engine

Fig. 6.6 – Decision Branch for Under Used Errors

An upper tier aggregate with low usage indicated that it would be better suited to being

demoted to the lower aggregation layer as there wasn’t the need for an upper tier, or a less

populated upper tier. Also a customer agent which has been promoted into an aggregation

role or substituted to take over aggregation responsibilities would monitor usage to

determine if those additional responsibilities were still required. Finally an aggregate in

the core aggregation tier reporting under usage may be made dormant and its connections

distributed between the remainder of the aggregation tier.

6.3.7 Isolated Errors

The final error type is an isolated error, which is declared if a customer or generation agent

cannot pair itself with an appropriate aggregation agent. This would occur during the

initialisation phase if the customer had submitted requests to all available aggregates and

been refused a connection slot. Isolated errors are also likely to occur if the network

population changes over time, for example if an additional feeder was connected to the

network and the customer population from the new feeder needed to interact with the MAS

architecture the aggregate population may not have enough capacity to host the new

connections. Therefore the architect may need to activate additional capacity to handle the

connection demand. After first detecting the need for addition aggregates the architect can

then forward subsequent messages to the new aggregate as it was unlikely that the new

customers will have discovered the newly created aggregate and would still claim to be

isolated. The decision branch responsible for processing isolated errors is presented in the

following figure in Fig. 6.7

Fig. 6.7 – Decision Branch for Isolated Errors

 DECISION TREE PERFORMANCE

The decision tree process needed to be evaluated once it had been installed within the

architect agent to determine its effectiveness. A test configuration was devised consisting

of 340 customer agents representing domestic smart-meters, 50% of the customer

Upper Tier Aggregate Demote to lower tier

Lower Tier Aggregate Make dormant

Promoted Customer Remove Aggregate duties

Multiple Aggregates Responsible Process each case in turn

Single Aggregate Responsible
Under used Event

Dormants Available Single Dormant

No Dormants Available Promote Customer Agent

Aggregate Capacity Available
Point Agent at available

aggregate

Dormants Available Single Dormant

No Dormants Available
Promote Customer

Agent

First Event

Maximum Capacity Reached

Subsequent Events

Isolated Event

149 Decision Making Engine

population were declared controllable with a maximum reduction of 700W. Four active

aggregates and two dormant aggregates formed the data collection tier; this tier was also

responsible for performing control actions. The initialisation stage of the self-organising

architecture defined that customers could select their own connection points, and therefore

neighbouring customers could be connected to differing aggregation agents, this was true

both in terms of controller and data collection connections. This process was developed to

improve resilience within the architecture through control redundancy – agents tackling the

same voltage problem could request assistance from alternate controllers. However those

controllers could only request control responses from those agents affiliated with them

during the initialisation stage. Each customer agent and generation agent was supplied with

profile data which was compressed to cover the length of the simulation whilst presenting

a voltage deviation which required a control response. Load flow calculations are

completed on request from the gateway agent at the boundary of the JADE/Matlab interface

(to be documented in chapter 7).

These initial results considered both a static and self-organising version of the architecture,

and did not contain any attack vectors, only the voltage deviation was present

6.4.1 Static Architecture

To demonstrate the effectiveness of the self-organising architecture with the decision tree

based decision making engine a base test was needed using a static version of the

architecture. In the case of the static architecture, the initialisation phase locks connections

between customers and the closest aggregate, performance monitoring components

remained active but the decision making element of the process was disabled. Therefore

the structure of the architecture remained the same throughout the simulation period, and

any error conditions would not be mitigated by the actions of the architect agent. The

following graph in Fig. 6.8 illustrates the errors received by the architect agent during

conventional operation including a voltage excursion.

150 Decision Making Engine

Fig. 6.8 – Error Severities Graph

The most dominant error type was a reactivity error event with a maximum severity of

138% - meaning that the largest reactibity event was 38% greater than the reactivity

threshold. A second error event recorded was a data-flow error, however this error event

did not exceed the 110% severity threshold value. In addition to recording the magnitudes

of error severity, additional performance metrics were recorded during the course of a

simulation, these performnce metrics included the length of the voltage devation, the

amount of time customers were placed under demand restrictions the details of the voltage

profiles taken from the end of the feeder. A further data point recorded was the demand

losses as a result of customers being placed under restriction. To determine the amount of

consumption lost through the control method, each customer recorded its raw demand as

per its load profile in addition to the actual demand including control restrictions. These

figures were compared for each sample in the output file to determine the consumption

difference in kWh for each step as illustrated by the following equations (1-4) supported

by the notation described in Table 6.2.

(1) 𝑡𝑑𝑖𝑠𝑡 = (𝑡(𝑛+1) − 𝑡𝑛) × 2.77778 × 10−7

(2) 𝑃𝑘𝑊ℎ =
(𝑃𝑊𝑎𝑡𝑡𝑠 × 𝑡𝑑𝑖𝑠𝑡)

1000

(3) 𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑘𝑊ℎ

𝑆1

𝑆𝑛

(4) 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

Table 6.2 – Consumption calculations notation table

Notation Description

151 Decision Making Engine

𝒕 Timestamp of a given sample

𝒕𝒅𝒊𝒔𝒕 The time between two samples in hours

𝑷𝑾 The real power recorded for a given sample

𝑷𝒌𝑾𝒉 Real power consumption for the lifetime of a given sample

𝑺𝒏 Sample number within the output file

𝑷𝒕𝒐𝒕𝒂𝒍 Total consumption without restriction during a simulation

𝑷𝒓𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅 Total consumption with restriction during a simulation

𝑷𝒍𝒐𝒔𝒔𝒆𝒔 Total consumption losses due to customer restrictions

In the first equation the length of time each sample was valid for was calculated and the

time between the current sample and the next one was converted from milliseconds to hours

to complete the kWh conversion. The conversion presented in equation (2) was applied to

each sample in the output file for the output field referring to raw unrestricted customer

demand. Therefore a total consumption figure could be attained representing consumption

if no restrictions were applied as documented in equation (3). This process was repeated

for the output field referring to actual demand including control restrictions to give two

consumption totals. From this information the losses could be determined as presented in

equation (4).

The results of the static architrecture test example containing the affoermenttioned metrics

is illustrated in the following table in Table 6.3.

Table 6.3 – Performance Results

Error Performance Congestion Reactivity Control Data Unresponsive Under-Used Isolated

Maximum 0 138.57 0 110.4 0 0 0

Average 0 105.48 0 105.13 0 0 0

Voltage Performance Min Voltage Max Voltage Average

Voltage

Total Time Single Event

Maximum

Feeder 1 0.96073 0.92644 0.94445 371.42 328.69

Feeder 2 0.96069 0.92631 0.94438 383.8 331.93

Feeder 3 0.96033 0.92652 0.94412 384.01 329.69

Feeder 4 0.96004 0.92645 0.94417 405.06 330.04

Control Performance Actual Demand

(kWh)

Without

Restriction

(kWh)

Total

Restricted

(kWh)

Average

Restricted

(kWh)

Total

Restricted

(%)

Max Total

Restriction

Time (s)

Max Single

Restriction

Event (s)

Feeder 1 31.459 35.69 4.232 0.101 11.86 706.79 706.79

Feeder 2 31.451 35.595 4.145 0.096 11.64 703.3 703.3

Feeder 3 31.303 35.601 4.297 0.102 12.07 704.13 704.13

Feeder 4 31.333 35.715 4.381 0.102 12.27 704.39 704.39

Overall 125.546 142.601 17.055 0.10025 11.96 704.6525 704.6525

152 Decision Making Engine

In the results derived from the example of operating under a static architecture customer

agents were restricted for 704 seconds on average as a result of controls applied to correct

the voltage deviation. This restriction period caused a total consumption loss of 17kWh,

averaging at 0.1kWh per customer accounting for 12% of total demand during the 704

second window. This information served as a further point of comparison between the static

and self-organising architectures in determining where the performance gains could be

achieved.

6.4.2 Self-Organised Architecture

In the second test case, the self-organised functions were activated, allowing the architect

agent to respond to the error reports delivered by the agent population. Because there were

no scheduled attack or failure events the level of restructuring required was reasonably

small, and therefore only a single decision was made during the simulation window. The

following graph in Fig. 6.9 presents the error severities received by the architect. The figure

also illustrates that only a reactivity error exceeded the 110% buffer window and therefore

triggered a transition event.

Fig. 6.9 – Severities Graph

The transition event was a rebalancing event, where a number of customer connections

were transferred from one aggregate to another. In the example, customers from aggregates

three and four are moved across to aggregate one – customers reporting the reactivity issue

were targeted and relocated to an aggregate with available connection capacity. This helped

distribute the connections more evenly in the event that the initialisation stage created an

uneven distribution of communicative load between the different aggregation points. The

following figure presented in Fig. 6.10 illustrates the changes in data flow in at members

153 Decision Making Engine

of the aggregation layer during the simulation and illustrates the impact of the rebalancing

transition.

Fig. 6.10 – Data Flow at the Aggregation Layer

Aggregates three and four observed a rise in communicative load nine minutes into the

simulation; this corresponded with the series of requests for control in correcting the

voltage deviation, which suggested that they were not balanced correctly during

initialisation. Therefore the architect elected to perform a rebalancing action and move a

set of connections to the first aggregate; this is presented in the figure through a reduction

in both incoming and outgoing data flow at aggregates three and four. Aggregate one

however observed an increase in data flow, this did not translate into a reactivity issue in

terms of overall error severity, furthermore the data flow increase remained within the 110%

error severity threshold.

The additional performance metrics retrieved from the simulation are presented in the

following table in Table 6.4. The values in the table represent the difference in percentage

terms between the tests performed on the static and self-organising architectures. A

negative value determines that the self-organising architecture delivered improved

performance, while a positive number presents a performance loss.

154 Decision Making Engine

Table 6.4 – Comparative Performance Metrics

The results demonstrate that there was a notable improvement in several metrics,

considering the test was performed on a standard simulation without an attack or failure

event in place. The maximum magnitude of a reactivity error event was reduced by 24%,

which was corrected by performing a rebalancing action. From an electrical point of view,

the deviation length was reduced by up to 12%, however this did result in longer restriction

times as the controls were applied sooner as a result of the improve system reactivity.

 LIMITATIONS AND CONCLUSIONS

The decision tree method had the capability to process the list of errors and ascertain which

of the error reports was the most severe and therefore make a decision based on this

information. Furthermore when executed the decision making process was able to select a

transition event and execute it, which in turn was able to reduce the severity of the selected

error condition and lead to improvements in the performance of the electrical network.

However other tests and investigations indicated that the decision tree was subject to

several limitations in terms of how it was implemented, its flexibility and the manner in

which inputs were processed.

The first of these limitations concerned the nature of the decision tree approach, each of the

rules needed to be explicitly designed and coded into the architect agent and therefore if

new performance metrics were to be included the entire rule base would need to be

redesigned. This would also lead to large unmaintainable rule-sets if multiple control

objectives and conditions needed to be satisfied. A second weakness was that the decision

Error Performance Congestion Reactivity Control Data Unresponsive Under-Used Isolated

Maximum 0.00 -24.03 0.00 -1.87 0.00 0.00 0.00

Average 0.00 -2.28 0.00 0.90 0.00 0.00 0.00

Voltage Performance Max Voltage

(feeder end)

Min Voltage

(feeder end)

Average

Voltage

Total Time Single Event

Maximum

Feeder 1 0.02 -0.001 0.07 -5.63 -5.19

Feeder 2 0.03 -0.001 0.08 -12.05 -6.23

Feeder 3 0.08 -0.004 0.07 -1.66 1.35

Feeder 4 0.07 0.003 0.07 -8.58 0.71

Control Performance Actual

Demand

(kWh)

Without

Restriction

(kWh)

Total

Restricted

(kWh)

Average

Restricted

(kWh)

Total

Restricted (%)

Max Total

Restriction

Time (s)

Max Single

Restriction

Event (s)

Feeder 1 3.33 2.56 -3.70 -4.12 -6.46 6.96 6.96

Feeder 2 3.19 2.47 -3.32 -3.23 -5.91 7.32 7.32

Feeder 3 3.45 2.61 -4.02 -4.08 -6.81 7.05 7.05

Feeder 4 3.40 2.66 -2.99 -3.03 -5.87 7.05 7.05

Overall 3.34 2.57 -3.50 -3.62 -6.26 7.10 7.10

155 Decision Making Engine

tree mechanism relied on a series of crisp binary decisions, whether each decision statement

was true or false which did not suitable model the nature of the problem. Several sources

of uncertainty were present within the threshold selection stage, error severities and

locations – therefore employing a decision system which made certain decisions without

considering degrees of truth was not necessarily the correct format. Finally the decision

tree approach required the separation of error formats, and didn’t have the same focus on

determining the overall state of health of the architecture. For example if the most severe

error is a reactivity problem traced recorded by several customers, a rebalancing action may

be triggered, however other issues within the architecture may suggest that a larger scale

transition is warranted. The process of fine tuning the decision tree would involve the

resulting of the rule set and further raise the issue of maintaining an extensive set of decision

branches.

Overall the decision tree was able to perform error processing, and select the most

prominent error format present within the architecture. This error format formed the input

to the decision tree allowing the Architect agent to select an appropriate transition event

and execute it. This process was able to reduce the severity of errors in the system and

ultimately create improvements in deviation duration and customer losses. These

improvements were present in the absence of any attack event therefore it was reasonable

to assume that in instances where the net performance of the architecture was reduced the

potential for performance gains were greater during an attack event. Indicating that the

transitions triggered by the decision making engine were effective and achieved the

objectives required of them. However the outlined limitations of the decision making

engine itself indicated that an alternative approach was needed in selecting the appropriate

transitional action. This alternative approach needed to be focussed on flexibility and

performing transition decision making in an environment which was rich in uncertainties.

 A FUZZY BASED DECISION MAKING ENGINE

In recognition of the limitations of the decision tree mechanism a replacement system was

based on a fuzzy decision making method. The alternative solution involved combining a

subset of the performance metrics into a single computational burden value representing

the overall error state of the architecture. The computational burden figure and its rate of

change were used as input membership functions to the decision making engine. In terms

156 Decision Making Engine

of output functions, the decision making engine recommends a transition stage referring to

the following:

 Stage 1: Rebalancing Action

 Stage 2: Substitution

 Stage 3: Activating Dormant Agents

 Stage 4: Tiered Aggregate promotion

A higher burden would be associated with a higher stage transition, which involves a more

drastic reconfiguration event. To adopt principles from the decision tree method, the

architect does not automatically have to accept the recommendation from the fuzzy

decision making engine because it is aware of other criteria which would influence

selecting a transition. The other criteria included the location of the errors detected, the

availability of resources for promotion or dormant agent activation and the distribution of

errors. From this additional data the architect had the power to override the

recommendation through truncated decision tree mechanisms.

6.6.1 Computational Burden Components

The two inputs into the fuzzy model were the computational burden and the rate of change

of that burden. This involved creating a metric which alluded to the severity and scale of a

series of error types referring to the communication and computational processing elements

of the agent community. The computational burden value aimed to produce a figure

describing how much computational stress the architecture was under at any given time,

this figure was an amalgamation of the following performance metrics as recorded by the

agent population. The following metrics are used to build the computational burden figure.

Congestion – The number of messages stored in messages queues at an agent waiting to

be processed

Data Flow – Incoming and outgoing data flows are recorded at each point in the network

and are subject to thresholds describing the maximum amount of throughout that can be

sustained without increasing the risk of data losses when considering a ZigBee

communication platform

Reactivity – Response times between agent pairs – the time taken between a transmitted

update and the corresponding reply from the target. This time includes the amount of time

157 Decision Making Engine

the message has spent in the message queue of the recipient agent and the time it takes for

the recipient the process the message and delivers the response.

Execution Time – An internal form of reactivity which measures the time from the point

a message has been received to the point where the recipient decides which response to

select and perform that selection.

Unresponsiveness – Acts as a more extreme form of reactivity measurement, in the sense

that if an agent does not receive a message within a specified timeout window from the

agent it is communicating with it records that agent as being unresponsive. Multiple

successive missed messages trigger an error alert which is sent to the Architect.

Each of these error types was accompanied a magnitude, a threshold and timing information

– which is then stored in the architect’s ‘Error Base’. The error base was a set of linked

objects which document and store lists of all error reports fitting each of the listed error

types such that each type could be processed separately. The use of the knowledge base

provides greater flexibility in the event that other performance metrics were to be added,

each subsequent metric would be assigned an instance of an error type object which hosts

all reports for that given type.

6.6.2 Computing a Computational Burden Indicator

After filtering the set of error reports, each of the reports pertaining to the error types

outlined in the previous section was combined to create an overall burden value. The

following equation in (5) presents the calculation required to compute the figure for the

computational burden indicator.

(5) 𝑏𝑢𝑟𝑑𝑒𝑛

=

∑ (
∑ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

𝑐1
𝑐𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
 +

∑ 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
𝑎𝑔1
𝑎𝑔𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠)
𝑒𝑡1
𝑒𝑡𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒𝑠

The first step involved calculating the average severity for each of the contributory error

types with respect to the tier in which those errors are being detected. For example a series

of reactivity errors recorded at the customer layer will be averaged with respect to the

number of customers, whereas a series of errors of the same type within the aggregation

tier was averaged against the number of aggregate agents. The averages for each agent tier

are added to form an architecture wide value for each of the error types. The final

158 Decision Making Engine

computational burden figure is derived from the architecture wide value divided by the

number of contributory error types. A second component of the computational burden

assessment was the rate of change of the figure. The overall burden data was monitored

using the same techniques each of the agents within the core architecture population used

to perform the performance monitoring duties. A performance monitor object in the

Architect agent is supplied with the computational burden figure after each calculation. The

performance monitor retains a list of recent calculation results to compute a moving average,

changes in subsequent average calculations determined whether the computational burden

was increasing or declining. Timestamps between average calculations were then used to

calculate the rate of which the increases or decreases were taking place.

Because of the number of metrics involved in the calculation of the burden indicator, each

of which was initially recorded with differing units – congestion took the form of a number

of messages, whereas reactivity was measured in second – the final value for the burden

indicator was declared a dimensionless quantity. A low, medium or high level of

computational burden was defined by the indicator values defined in the following

membership functions. Furthermore the uncertainty involved with an indicator rather than

a crisp burden measurement increased the relevance for defining a fuzzy based decision

making engine.

6.6.3 Membership functions

Following the calculation of a computational burden and the rate of change of burden, the

next stage in determining which transitional event was required was to pass the two values

to the fuzzy decision engine. The decision tree approach didn’t apply a transitional event if

the severity of the largest error was below 110%, thus avoiding the architect reacting to an

event which posed little thread to overall performance. With this decision making engine

the threshold limit with regards to action is set with a computational burden of 5, if the

burden exceeded this base value the fuzzy decision making engine was triggered. Two input

membership functions processed the two input parameters and are presented in the

following figure in Fig. 6.11.

159 Decision Making Engine

Fig. 6.11 – Input Membership Functions

The first input was focused on the magnitude of the computational burden categorising the

burden level, three stages were defined within the membership function for low, medium

and high computational burden states. The low membership function covered the smallest

area because it represents a smaller amount of potential cases and was associated with fewer

architectural transition mechanisms. The high membership function extended beyond the

initial range presented in the figure as a result of there being no effective upper limit to

computational burden. Therefore in order for the recommendation service to be able to

deliver a response in those more extreme cases the upper bound of membership function

needed to take this into account. There was a degree of overlap between the functions

because the computational burden is an amalgamation of a number of performance metrics,

it created uncertainty as to the actual severity of the error state. Furthermore setting the

thresholds for some of the performance metrics relied on a series of tests under the presence

of normal and abnormal communication load. These exercises indicated that depending on

the results of the initialisation phase the relative communication load varied across different

points in the aggregation tier. Therefore uncertainty is also present in the individual

performance metrics based on difference between the normal and abnormal communication

loads generated during an attack event. As a result of the uncertainties present in the system

there was no definitive point whereby the burden transition from a low to medium or high

state and the intermediate areas of the membership functions represented instances where

two burden conditions were partially true.

160 Decision Making Engine

The second function was responsible for processing the rate of change of the computational

burden, as with the first function, the rate of change input was composed of three

membership functions. Anything less than zero indicated that the error state was declining

and therefore was less likely to require a transition event, whereas any value greater than 0

indicated that the situation was escalating. The rate of change was only ever truly flat when

the rate of change was zero, therefore the degree of truth to which the flat membership

function was satisfied decayed each side of the centre using a triangle function rather than

a trapezoidal one.

The output membership function is presented in Fig. 6.12 which converted the fuzzy result

into classifications for the four architecture transition stages; each of the transitional stages

was represented by a symmetrical trapezoidal function with a degree of overlap.

Fig. 6.12 – Decision Output Membership Function

These overlaps indicate the level of uncertainty in each of the potential transition stages

indicating that certain scenarios may not present with a clear recommendation. In those

instances the architect would then consider additional information pertaining to the overall

error state in terms of the location and distribution of the error reports and the number of

available dormant agents which could be used for the purposes of increasing aggregation

capacity. Even in cases where the fuzzy system responds with a definitive transition

recommendation the architect was required to perform a validity check to ensure that

change which was recommended was feasible and could be implemented. If this was not

the case the architect had the authority to over-ride the decision and apply a similar

transition which adhered to the nature of the problem and the available resources.

6.6.4 Defuzzification and Rule Processing

With the input and output functions defined the final stage of configuring the fuzzy decision

making engine was to define a rule set converting the inputs into a recommendation value

which could be interpreted by the architect.

161 Decision Making Engine

The table presented in Table 6.5 presents the rule base which was used to process the input

membership functions and derive a transition recommendation. If the rate of computational

burden was declining to such a degree that is it estimated that the overall error state will

only persist for a short period of time the fuzzy recommendation function was not triggered.

Only if the error state was estimated for a prolonged period of time would a

recommendation be required. Additionally if a low computational burden is detected to be

declining, no action will be taken by the architect as the condition is improving without the

need for intervention. Larger incidents reporting with a declining burden were responded

to as even in a declining state the error state would remain within the architecture longer

than the threshold time.

Table 6.5 – Fuzzy Decision Making Rule Base

The overall ruleset indicated that the rate of change of the computational burden acted as a

modifier with respect to the severity of the architect’s response, an escalating condition was

treated with a more severe action by the architect. In the same manner, a situation which

was easing but still remained an ongoing problem was processed through the application

of a less severe transition event. The final aspect of defuzzification process was the

selection of the defuzzification method, all designs options were examined through the

Matlab fuzzy toolbox and this process indicated that the defuzzification method could

affect a small influence on the shape of the rule surface. This similarity between

defuzzification methods has also been noted by the authors of [142] whereby centre of

gravity, bisector and Mean of Maximum have all produced similar results. Therefore the

Computational Burden Burden Rate of Change Transition Stage

Low Flat Stage 1

Low Rising Stage 2

Medium Declining Stage 1

Medium Flat Stage 2

Medium Rising Stage 3

High Declining Stage 2

High Flat Stage 3

High Rising Stage 4

162 Decision Making Engine

selected defuzzification method was centre of gravity and formed the surface presented in

in Fig. 6.13.

Fig. 6.13 – Fuzzy Rule Surface

 JAVA IMPLEMENTATION

The initial fuzzy system design and evaluation was conducted within the Matlab fuzzy

toolbox and integration with the agents involved in the self-organising architecture was

conducted through a command line script triggering Matlab and the relevant function.

However this process experienced several delays when initiating a new instance of Matlab

to perform the function and to retrieve the result. Therefore an alternative implementation

was introduced to alleviate these problems and increase the rate at which the architect agent

could request a transition recommendation. The solution was to use a java library called

jFuzzyLogic which could be accessed within the agent rather than making external function

calls to Matlab. To utilise the library the membership functions and the rule list needed to

be translated into a format recognisable by the library – which took the shape of a Fuzzy

Control Language (FCL) file. The first element of this control language file was to define

the input and output variables, as presented in Fig. 6.14; each of the components presented

in this chapter was initialised in the source file.

Fig. 6.14 – Defining Fuzzy Variables

VAR_INPUT

 burden: REAL;

 roc: REAL;

END_VAR

VAR_OUTPUT

 decision: REAL;

END_VAR

163 Decision Making Engine

Once the set of variables is declared the next stage defined the shape and scope of the

membership functions for each of the variables. This segment of the FCL source file is

illustrated in Fig. 6.15

Fig. 6.15 – Defining Membership Functions within the FCL File

The final stage of the FCL declaration file considers the rule set which in turn forms the

rule surface, an identical set of configuration parameters were retained from the design of

the system within the Matlab tool box and the eight rules defined in Table 6.5 were then

translated into the FCL format. The translated rule base is presented in the following figure

in Fig. 6.16.

Fig. 6.16 – Defining the Rule Set within the FCL File

The fuzzy library was imported by the architect agent only and was initialised at start-up

by accessing the FCL file. When the architect agent required a transition recommendation

FUZZIFY burden

 TERM low: = trape 0 75 175 250;

 TERM medium: = trape 175 250 500 575;

 TERM high: = trape 500 575 1000 1075;

END_FUZZIFY

FUZZIFY roc

 TERM declining: = trian -5 -2 0;

 TERM flat: = trian -2 0 2;

 TERM rising: = trian 0 2 5;

END_FUZZIFY

DEFUZZIFY decision

 TERM Stage1:= trape 0 0.125 0.25 0.375;

 TERM Stage2:= trape 0.25 0.375 0.5 0.625;

 TERM Stage3:= trape 0.5 0.625 0.75 0.875;

 TERM Stage4:= trape 0.75 0.875 1 1.125;

 METHOD : COG;

 DEFAULT: = 0;

END_DEFUZZIFY

RULE 1 : IF burden IS low AND roc IS flat THEN decision IS Stage1;

RULE 2 : IF burden IS low AND roc IS rising THEN decision IS Stage2;

RULE 3 : IF burden IS medium AND roc IS declining THEN decision IS

Stage1;

RULE 4 : IF burden IS medium AND roc IS flat THEN decision IS Stage2;

RULE 5 : IF burden IS medium AND roc IS rising THEN decision IS Stage3;

RULE 6 : IF burden IS high AND roc IS declining THEN decision IS Stage2;

RULE 7 : IF burden IS high AND roc IS flat THEN decision IS Stage3;

RULE 8 : IF burden IS high AND roc IS rising THEN decision IS Stage4;

164 Decision Making Engine

it supplied the fuzzy function with burden and rate of change data, and requested the

evaluated result.

 TRIGGERING A TRANSITION

With the output value retrieved from the fuzzy recommendation the architect then had to

translate this into a reconfiguration action to apply it to the agent population. The output

membership function defined which stage of transition is recommended for the given error

state. Before accepting a recommendation the architect had to assess the feasibility of the

recommended transition based on the current agent population status. For each of the

transition options the architect had a series of checks to perform before deciding to perform

the action suggested by the decision making engine. This incorporated elements from the

initially formulated decision tree concept, and prevented the architect attempting transitions

which would either not help the architecture or would not be possible based on resource

availability.

6.8.1 Rebalancing

If the fuzzy system recommended performing a rebalancing action the architect checks to

ensure such a change would have a positive influence. If the architect discovers that the

agent which was the source of the computational burden error was not one which is

connected to a large number of customer agents it concludes that rebalancing would be

ineffective and would suggest a substitution instead. Likewise if the architect discovers that

while the overall burden is relatively low, but sourced to a wide number of locations it

would determine that a more reasonable transition would be to offer aggregation support

as the overall agent population was under strain.

6.8.2 Substitution

An alternative recommendation would be to apply a substitution. The architect would look

at location information for the set of error reports stored in the report list to determine of

one aggregate was responsible for the errors. If so then the architect would carry out the

desired transition as recommended, however if the error locations are more disparate then

a substitution would not be as effective. Therefore a localised transition may not be the

most appropriate, and a smaller scale version of a higher transition stage is applied, in the

form of adding a single aggregation agent to the population.

165 Decision Making Engine

6.8.3 Activating Dormant Agents

When a stage three transition was recommended the architect agent had fewer checks to

perform. As this was a higher level transition event there were fewer transition options in

the event that the initial recommendation cannot but fulfilled. The limitation in this case

was the availability of dormant agents – when the agent population was initially launched

only a small quantity of dormant aggregates was present. If these agents were activated, the

architect cannot elect to perform another activation based transition as there were no more

remaining dormant agents. Instead the architect over-rides the recommendation and

proceeds to perform a single tier promotion transition. In this transition customer agents

were promoted into aggregation roles within a single aggregation tier – one customer per

existing active aggregate.

 SUMMARY

This chapter documented the development stages of the decision making engine responsible

for the delivery of architecture transition events after reviewing performance monitoring

information retrieved from the agent population. Initially discussing processes surrounding

error filtration such that only valid reports are considered for analysis, and that the architect

does not respond to short term events or those with a trivial impact on the performance

metrics. A preliminary decision tree method was outlined, discussing the responses to each

of the error formats and demonstrating its effectiveness when presented with an attack

format in a sample exercise. The overall performance and potential limitations of the

decision tree approach resulted in the development of an alternative mechanism for

translating performance data into transitional actions. This alternative mechanism involved

the employment of a fuzzy based recommendation system which required the

amalgamation of the performance metrics into a single variable. Therefore a value for

computational burden was devised in addition to a process for computing the value from

the supporting performance figures. This variable and its rate of change were used as input

parameters to the decision making engine which returned a recommended transition stage

from, the architect could either accept this result or override the decision based on

additional information,

The following chapter considers the processes involved in evaluating the self-organising

architecture presented in the previous chapter and the decision making engine documented

in this one.

166 Decision Making Engine

167 Performance Evaluation Framework

Chapter 7: Performance Evaluation

Framework

168 Performance Evaluation Framework

 INTRODUCTION

To evaluate the effectiveness of the self-organising architecture an evaluation framework

was required, a framework defining an electrical network, an agent population and a

simulation scenario. The goal of the platform was to demonstrate that the transitions and

overall actions of the self-organising architecture were capable of having a positive impact

on the performance of both the electrical layer and the communication layer.

The tests performed in the process of evaluating the self-organising performance differed

from those presented in chapter 3 because of the nature of the evaluation objectives and the

agent architecture involved. The previous set of tests was aimed at determining the potential

for self-organisation through investigating a series of static architectures to extract

performance information. Those results indicated that depending on the performance

metric under evaluation differing architecture designs proved to be advantageous, and no

single design was continually out-performing the others. Consequently that indicated there

was scope for the introduction of a self-organising architecture. The evaluation processes

documented in this chapter were aimed at investigating the effectiveness of a self-

organising architecture which was developed in response to the results previously attained.

The evaluation platform described in this chapter considered two network events which

required intervention from the agents within the architecture. The first of the events was

the voltage deviation, a deviation which required the attention of the aggregate level

controllers and the load shedding responses from the customer layer. Secondly the

architecture was to be attacked by a low-rate denial-of-service attack; this cyber-threat was

aimed at disrupting the actions taken during the control phase and therefore interrupting

the dissemination of control signals.

In this chapter, the configurations for the components involved within the performance

evaluation framework are introduced, including the structure and properties of the electrical

network and the agent architecture. Furthermore the control problem and attack methods

are also documented, concluding with the implementation of the environment within which

the evaluations were performed. Finally the evaluation criteria are illustrated with respect

to the electrical and communication layer performance.

169 Performance Evaluation Framework

 TEST NETWORK CONFIGURATION

The core electrical network used throughout the evaluation process was derived from the

network implemented for the initial series of static architecture tests; a radial configuration

was developed as illustrated in Fig. 7.

Fig. 7.1 – Network and Agent Topology Diagram

As illustrated in the diagram, the electrical network contained 340 customers, distributed

across four radial feeders. Three voltage levels are presented within the network, starting

with a 33kV grid connection, which was connected to an 11kV central network spine. The

four feeders which hosted the customer connections were at the 400V voltage level, 85

customers were connected to each of those feeders. The customer agents were supplied

with a demand profile which was sourced from the same data set as used in the first round

of architecture evaluations. A modification was made to the source profiles in order to

produce a voltage deviation with a significant enough duration to adequately examine the

potential value of the self-organising architecture. This modification involved extending

the period of high demand to create a longer term under-voltage situation.

Additional one PV installation rated at 10kW, and supplied with an appropriate generation

profile was inserted after the 60th customer on each feeder. Also presented within the figure

is the association between the components in the network and their agents, therefore

illustrating the placement of the individual agents in respect of the electrical configuration.

• 340 Customers with profiles
• 4 PV Generators with profiles

• 4 Active Aggregates (4 Dormant)
• 4 Central Core Agents

Observer Architect Gateway Error Generator

170 Performance Evaluation Framework

The aggregation agents were placed at the head of each of the feeders, in addition to the

four active aggregates; four dormant agents were also added to the initial starting

configuration.

Beyond the agents which represented physical components or aggregation points in the

network, further agents were located centrally and therefore were not associated with a

specific component. These agents were the Overserved, Architect, Error Generator and

Gateway agent – the latter agent being a function of the overall test environment discussed

later in the chapter.

 AGENT ARCHITECTURE CONFIGURATION

The previous subsection defined the structure of the physical network and discussed the

location of the agents, where each of the customer smart-meters and generation components

was represented by an agent. Additional agents were also present and were either located

centrally, representing a cloud implementation or a central control room. However this only

described the location of the agents involved not the communication structure and

architecture. The interaction between the agents followed a typical architecture as presented

in Fig. 7.2, this configuration served as the starting architecture for the self-organising

architecture but also the as the static architecture.

Fig. 7.2 – Typical Smart Grid Communication Architecture

Smart Metered
Customer

Generator
Entity

Local Controller/
Data Collection

Central Server

171 Performance Evaluation Framework

The four centrally located agents were considered to be part of the central server entity of

the architecture. The control was also within the aggregation tier of the hierarchy to

represent the common concept of local controllers when operating as a static architecture

the local controllers could only influence customer agents on the same feeder as the

controller. Contrastingly the initialisation stage created a more distributed communication

structure whereby customers were able to select which controller they preferred based on

connectivity. Therefore customers who are connected on the same feeder were not

necessarily under the observation of the same controller. This process was applied as the

initialisation stage was considered to be part of the self-organising sequence of events and

therefore would not be applied to the static architecture.

 CONTROL SCENARIO

Each of the customer and generation agents was supplied with a profile dictating its demand

or generation at any time during the course of the simulation. From the perspective of the

customer population the objective of the profiles was to create a voltage deviation event

which presented with long enough duration to create a control problem which required

continual monitoring by the controllers. On the basis that the simulation period considered

20 minutes of system operation, the load profiles focussed on exacerbating a period of peak

demand. This could be a reflection of a series of electric vehicles being connected for

charging or activation of heat pumps within the customer premises.

Each customer was responsible for the monitoring of its own voltage level, which reflected

the voltage of the network bus which the customer was connected to. A persistent voltage

deviation was reported a customer’s associated controller which triggered the control

process. The actual control process was delivered through demand side response in the form

of load shedding actions. A percentage of the population would reduce their demand by

700W when instructed by a controller. If a customer was placed in a state of load shedding

it would send a series of messages to the controller to ask whether or not it could relax the

controls and return to its nominal profile.

The demand restriction process created a rise in the voltage profile for each of the

customers, once the voltage at the tail of the feeder was raised above a threshold value of

0.96 per unit, the controller would respond to the check messages sent by those customers

under control to inform them that they could release any restrictions put in place.

172 Performance Evaluation Framework

 ATTACK CONDITIONS

The primary attack method used throughout the testing process was based on a denial of

service (DoS) attack created through a large amount of unhelpful messages being

transmitted to target agents. The aim of a denial of service attack was to flood the target

messages which served no purpose such that conventional operation was interrupted or

slowed as a result. In the context of a monitoring and control system present within a smart

grid environment, a denial of service attack has the potential to hold up or even prevent

control signals from being delivered. The attack also has the potential to create a significant

backlog of information which prevents information in the form of control requests and

measurements from reaching their desired destination.

During the evaluation process the DoS attack was hosted at the customer layer as the

volume of smart-meters provided a suitable launch platform for the attack event.

Furthermore the accessibility of the smart-meter hardware presented a system vulnerability

which could be accessed by a wider range of potential attackers. When an attack event was

triggered at least one of the customer agents transmitted a large volume of information at

the aggregate agent it was associated with. The target aggregate was tasked with performing

control actions in addition to data collection tasks; therefore the goal of the attacker was to

interrupt the control interaction between customer and aggregate and prevent control

actions taking place. To ensure the attack event remained within the bounds of a real-world

example the effective data output from a smart-meter performing an attack was curtailed

such that it didn’t exceed the transmission capabilities of a 2.4 GHz ZigBee transmitter.

This transmission technology is planned for the widespread smart-meter rollout within the

UK, and even taking into account that future technologies may have much higher

transmission rates, legacy systems will remain connected and limited by their hardware.

The attacking agent had to share this available transmission capacity with the other core

functions of the customer agent which include communicating demand information and

interacting with the gateway agent.

The following attack formats were applied to the static and self-organising architectures, in

a series of increasing attack populations:

7.5.1 Burst Attack

The burst attack approach involved a short period of time within which the attack traffic

was transmitted, each of the events lasted 250 seconds and was timed to coincide with the

173 Performance Evaluation Framework

initial request for control. The aim of the attack was to interrupt the control requests and

therefore reduce the chance that the controller would be aware of an ongoing voltage

deviation event. Each of the attackers involved in the burst event were triggered

simultaneously by the error generation agent to concentrate the actions of all attackers. An

attack of this nature would represent a probing event by an adversary, testing the

capabilities of the target network.

7.5.2 Sequential Attack

A sequential attack consisted of a series burst attacks across the lifetime of the simulation

each one individual event matching the format of the original burst attack. The sequential

attack strategy had the objective of performing multiple probing stages each to test the

architecture after transitional decisions by the architect had been implemented. Over the

course of a simulation run, three instances of a burst attack were performed with 200

seconds between each of the events.

7.5.3 Continuous Attack

The continuous attack, once it was triggered, lasted for the remainder of the simulation and

therefore the attack traffic was delivered for a substantially longer period of time in

comparison to the burst attack incidents. As with the previous two attack strategies the

start of the attack was designed to coincide with the start of the control process such that

once the congestion created by the attack started to build, the architecture was in the process

of disseminating control signals. However the control mechanism as documented in a later

subsection requires continual interaction between controller and customer. The continuous

attack aimed to be able to sever that interaction and therefore prematurely cause customer

agents to release demand restrictions placed upon them by the controller.

7.5.4 Static Attacks

Each of the attack strategies was implemented in two formats, the first of which being a

static attack – this method ignored the actions of the architect agent and did not respond to

changes within the architecture. The attacker, or attackers, received a message triggering

the start of the attack event, and sent the volume of attack traffic to the aggregate it was

assigned to during the initialisation phase. In the case of the static architecture, the attacker

was assigned to the aggregate associated with the feeder it was connected to. Regardless of

the actions taken by the architect agent, throughout the duration of the attack the messages

were always transmitted to the same target. If the architect agent decided to remove the

174 Performance Evaluation Framework

target from the population by performing a substitution action, the attacker would then be

transmitting the attack traffic to a dormant agent, thus isolating the attack stream. This was

indicative of a low sophistication attack strategy, and one which assumed the attacker

considered a static network of agents.

7.5.5 Adaptive Attacks

The second of the attack implementations was the adaptive attack format; this represented

an escalation in sophistication and one which responded to the decisions made by the self-

organising architecture. In the adaptive format the initiation of the attack remained the same,

as an attacker would transmit the attack stream to the aggregate it was associated with as a

result of the initialisation phase. However if the architect decided to perform a transition

event, and the attacker became associated with a different aggregate – either due to a

relocation or due to a substitution event – the attacker would then redirect the attack traffic

towards the new aggregate. The adaptive attack mechanism monitored the agent to which

legitimate traffic was being transmitted following a transition event and adapted the target

of the attack traffic accordingly.

 TEST ENVIRONMENT DESCRIPTION

To simulate the combination of the agent population and the electrical network a test

environment was developed, this environment was introduced to remove the number of

hard coded variables added to the first series of tests. This was due to a greater degree of

flexibility being required to transition between architectures. The sequential voltage

calculations were replaced with an external load flow engine, which was supplied with a

model matching the test network configuration presented in a previous sub-section.

Due to its accessibility and applicability to the interfacing issue Matpower was selected as

the eternal load flow engine of choice. Using a load-flow engine lead to fewer restrictions

in the communication process between agents in the MAS, because under the former

system several messages had to follow the flow of electricity through the network in order

to ensure that the calculations retained accuracy and continuity. Therefore it provided more

opportunities for network freedom and preventing relocation of agents within the MAS

compromising the flow of information required to perform voltage calculations. If a

customer was to be relocated under the previous system or an aggregate agent replaced by

its substitute, restructuring the flow of messages involved in the sequential voltage

175 Performance Evaluation Framework

calculation would create unnecessary complications and potentially compromise the

accuracy of the information generated by those calculations. Eliminating this concern by

separating the electrical calculations from the roles and responsibilities of the agent

population prevents this issue from occurring.

7.6.1 Setup and Configuration

The process of connecting the two components is discussed below documenting the

additional files, data and steps needed to be able to share information between the two

platforms. The following additional files needed to be included in the process.

Required Files and Agents

To develop the interface between the two components, a series of files were required to

facilitate the process of sharing information between two systems which had no direct

communication route. The additional files bridged the gap between the agents in JADE and

the load flow engine in Matlab.

 Gateway Agent (GA) – The GA was an additional agent which is introduced to

the population for the purposes of handling the interaction between the Matpower

load flow engine and the rest of the MAS. This agent performed several roles

within the architecture, initially the GA processes the components file and passes

parameters out to the agents. Parameters, such as voltage limits, ratings and initial

set points, such that the information held by the agent population matches the

information present within the model file. After this data had been disseminated,

the GA then turned its attention to triggering the load flow engine and waited for

the results to be returned. It had to check for the existence of the results file which

was cleared after each calculation and check for the end of file tag, thus confirming

that the load flow stage was complete. The remaining duty of the GA was to

retrieve network information from the agent population, customer demand,

generation information and use that to re-write the Matpower model such that the

subsequent load flow was representative of the most recent data from the agent side

of the simulation.

 Components File: The components file was a csv document containing all the

network components, connections and busses – along with each a set of parameters

for each of those elements. This file allowed the GA to map the set of agent names

176 Performance Evaluation Framework

used by Jade as a method of distinguishing between members of the population to

the component ID numbers used as part of the Matpower model file format.

Therefore when the GA was presented with a set of bus voltages, these can then be

passed onto the agent representing the component connected to that bus. In addition

to assisting identifying bus ID numbers the component file was also of use to the

architect agent providing overall network information which is then later used in

the process of validating the initialization stage and performing architectural

transitions.

 Matpower Model File – The Matpower file contained the data and parameters for

network described in section 7.2, two versions of the Matpower file are used for

the purposes of the simulation. One version is the original starting configuration

and the template which was used by the GA as a base to re-write the active version

of the model. This active file was the file which was accessed by the Matpower

load flow engine to perform the load flow calculations.

 Batch File – To trigger a load from the GA, the agent needed to call Matlab from

the command line, and therefore performed this via the use of a batch script

containing several commands which navigate to the Matlab root directory

activating a minimal version of the application loading a Matlab script to manage

the load flow calculation process.

 Matlab Script File – Once triggered, Matlab was instructed to run a specific script

which calls the Matpower load flow engine and loads the model file. In addition to

performing the load flow phase of the simulation the script file is also responsible

to handling the results of a load flow operation. The script was also responsible for

retrieving the results from the calculation and populating an output file with the

data, formatted so that it was easily parsed by the GA.

 Results File – The final component of the interface between Jade and Matlab is

the output from the load flow calculation, this file contains a list of bus ID numbers

taken from the model file and their corresponding voltage information. This file is

read by the gateway agent, and agents which have a corresponding network bus

will be sent the most recent updates from the power simulation side of the process.

177 Performance Evaluation Framework

The documented set of files and agents, operated across a series of steps during the course

of a simulation, the java side of the system remained in control over any load flow

calculations. In addition to the set of files other preparations were required before initiating

a simulation event, these addition stages are described as follows.

Building the Network Model

Prior to operating the self-organising architecture and running the simulations the network

model was developed in IPSA2, this software package was utilised at this stage for the

ability to visualise the structure of the network. It was also useful run a series of tests to

ensure that the load and generation profiles delivered a voltage profile which contained a

deviation event for the control system to tackle and that those deviations do not create

insurmountable control issues. Finally the software allowed additional information to be

added to the underlying diagram, information which aided the overall simulation. For

example individual components could be named, so loads were given a name which

corresponded with the agent name present within the agent architecture. The source code

for the model separates different components and lists all their parameters; these parameters

were then extracted such that they could be used to build the components file, allowing the

GA to identify how many loads are present and their associated bus ID number.

Building the Components File

The second preliminary stage was the creation of the components file which acted as a

directory of the components and their associated agents which was used by the gateway

agent to ensure the correct load flow results are disseminated to the corresponding agents.

The components file as previously discussed was a CSV file containing listing of all the

relevant entities present in the network model combined with agent information regarding

the initial starting state of the aggregate population. This file was constructed from IPSA

model source file which documented each of the component types and their list of

parameters – therefore the names applied to the components when drawing out the original

model are associated with their component identifier as well as the identifier for the bus

they are connected to.

Building the Matpower model

A third preparation stage was the conversion process from the initial IPSA model file into

the modelling format used by Matpower – as both file formats can be accessed in a raw text

format the conversion script read the IPSA source file and extracted the pertinent

178 Performance Evaluation Framework

information. This information was then re-written into the format dictated by Matpower –

during the conversion process not all of the information contained with the IPSA file was

retained. For example there was no separate format for load components as the information

was recorded at the bus level rather than the component level. Furthermore all components

are identified by a numerical component index as Matpower does not record any of the

component names used in IPSA. It was this change in the information format which defines

the need for the components file such that the GA had the ability to understand which agent

each of the component identifiers belongs to.

Building the Agent Population

The final stage was to manufacture the agent population, given the large number of

components represented in the network and therefore warranting agents within the self-

organising architecture it was not practical to manually compose each of the agent files.

Additionally because each customer, generator or aggregation agent may have differing

parameters based on the network configuration it was also not necessarily feasible to clone

a series of agents based on a given agent type. As a result a procedure for mass producing

an agent population was also required.

This process used agent template files as documented in the appendix section, which

consisted of the entire agent source code with the variables replaced by placeholder code

words. An agent manufacturing program written in java would then read through the

components file and determine how many copies of each agent file to make and which

parameters to replace the code words with. Other parameters within the manufacturing

program could also be set to dictate the operation of the simulation – such as selecting load

and generation profiles from a collection of potential data sets, and controlling profile

compression rates.

Producing a population of 340 customers, 4 PV generators and 8 aggregation agents using

this process would customarily take around 20 minutes to complete. Additional agents such

as the GA, Observer and Architect agents did not need to be created in this process as they

did not require manufacturing in bulk quantities.

7.6.2 Running the Simulation

With the all of the files and agents created, the remainder the interaction between the

Matpower load flow engine and the agent population took place during the runtime of the

179 Performance Evaluation Framework

simulation and iterates over a series of stages. The following stages document a simulation

running without the intervention of an attack event or control actions – focussing on the

operations required to connect an agent population created in java with an external load

flow mechanism.

Step 1 – Forming the Knowledge Base

The first stage runs acts as an initialisation stage for the interface and is centred on the GA

and its responsibility to perform the association between the numerical bus identification

format used by Matpower and the name based format of the agent platform. To perform

this task the GA processed the components file which contained the network model

information alongside the relevant agent names the information corresponds to. The GA

built a knowledge base as an object-oriented representation of the network model, this

knowledge base is then later used to store up to date parameters received from load flow

calculations. The UML diagram in Fig. 7.3 documents the structure of the knowledge base.

Fig. 7.3 – Gateway Agent Knowledge Base

Step 2 – Retrieve Agent Data

Once the knowledge base was complete the GA began listening for agent updates in the

form of customer demand and generation agent output data. Each customer was supplied

with a load profile, to ensure that the total demand varied over time, setting the conditions

180 Performance Evaluation Framework

for an under-voltage event which triggers a control response. This data collection process

is completed through the agent network, communicated via a series of Agent

Communication Language (ACL) messages. In this stage the knowledge base acted as a

lookup service, as the GA received an update from a member of the agent population it

updates the knowledge base so that it can then be used to write a new iteration of the

Matpower model file and thus receive load flow information for the current system state.

Step 3 – Re-write the Matpower Model

The process of writing the Matpower model file was part of the core loop which controls

the interaction, every three seconds the GA pulls the information from the knowledge base

which is continually updated and writes a new Matpower model. To do this the GA read in

the original version of the Matpower file one line at a time, and lines such as headers,

section start and end tags, and busses without connected load or generation were copied

directly to the new file. Other lines needed to be modified for the purposes of injecting the

most recent data from the knowledge base; these lines were broken into an array of strings

to make the individual fields accessible. The majority of the fields remained unchanged,

but customer demand or generation output figures were replaced before the array was

concatenated into a single line so it could then be transplanted into the new file. Finally an

‘end of file’ tag is added to the end of the new file such that the GA could determine when

the file writing process has been completed.

Step 4 – Executing the Model

With the new model file completed it was then important to execute a load flow calculation

and retrieve the results. This was performed through the provision of a file entitled

“matcall.bat” containing a series of command line instructions to navigate to the root

directory of the Matlab application and execute a Matlab script. The contents of this batch

file are presented in Fig. 7.4, where several runtime arguments are passed to Matlab when

it was executed to ensure that the most minimal version of the engine was triggered. These

arguments prevented Matlab from opening a full version of the application and only

accessed the core engine to run the script triggering a load flow calculation.

181 Performance Evaluation Framework

Fig. 7.4 – Batch File

The Matlab script triggered by the batch file loaded the Matpower model written in step 3

and performs the load flow calculation. This script was also responsible for the creation of

the result file which detailed all the voltage magnitudes for each of the buses in the network.

This information was formatted such that it could later be read by the GA once the load

flow process is complete. At this stage the GA agent itself was placed on hold, scanning

for the result file before it can continue to the next stage, it would however still be receiving

information from the agent population and updating the knowledge base so that the next

model file writing stage contains the most relevant information.

Fig. 7.5 – Matlab Script

At the end of the result file is another file end tag, it is this tag that the GA was looking for

before moving onto the next stage of reading the file. These tags were put in place to avoid

the GA from prematurely reading the result file and attempting to parse incomplete lines

of text which in turn would create problems for the GA itself. Once this tag was discovered

by the GA, it knew that the load flow stage of the loop was complete and it began reading

the results file and disseminating the information.

Step 6 – Reading the results

The final stage of the main loop was the reading of the of the results file, in this instance

the GA processed the file line by line, where each line contains three pieces of information

C:

cd/

cd Program Files

cd Matlab

cd r2012a

cd bin

matlab.exe -nodisplay -nosplash -nodesktop -minimise -r

run('H:\MATLAB\runLoadFlow.m');exit;

exit

output_file =

'C:\Users\A7178941\EclipseProjects\SelfOrganised\results.csv';
mpc =loadcase('ModelFileTMP.m');
myopt = mpoption('verbose', 0, 'out.all', 0);
define_constants;
results = runpf(mpc,myopt);

buses = [results.bus(:,1), results.bus(:,8), results.bus(:,9)];

dlmwrite(output_file,buses,'delimiter',',','newline','pc');
results_file = fopen(output_file, 'a');
fprintf(results_file, '%s', 'File End');
fclose all;

182 Performance Evaluation Framework

Bus ID, voltage magnitude and voltage angle. This information was transferred into the

knowledge base maintained by the GA using the bus ID as the index value, once the end of

the file had been reached the GA would then go through the knowledge base and retrieve

the data for all busses with associated generator or load components connected. Each of

these components was then sent an ACL message containing the results of the load flow

for the purposes of performing voltage monitoring

 IMPLIMENTING CONTROL

To perform this control function the customer agent observing the voltage deviation needs

to contact the controller and indicate that a control decision is required. The controller

however only has a limited number of agents it can request a control response from, based

on those agents which connected to it during the initialisation stage. Therefore the

controller assesses the connected population and determines which of those agents are

electrically nearest to the customer reporting the deviation. This process involves

communicating with the Architect agent to retrieve a list of agents on the same feeder as

the control request; this list is compared with the controller’s list of connections. Those

agents who fall in both lists are both applicable to the deviation and accessible by the

controller, initially four agents from this list of matches are contacted, and asked whether

or not they will accept a control command. If the agent will not accept the command it is

registered as uncontrollable and will not be contacted in the event of future control events.

Otherwise the controller will ask the agent to apply a control restriction, if the controller

continues to receive reports of the ongoing voltage deviation further customers will be

contacted in this manner. During the period of time in which the control restrictions are to

be applied – any customer who has been issued with a restriction will repeatedly ask the

controller if those restrictions are still necessary – as per the following diagram Fig. 7.6.

183 Performance Evaluation Framework

Fig. 7.6 – Communication Structure during Control

The restrictions imposed by the control process are relieved if one of two eventualities takes

place, firstly if the voltage at the end of the feeder exceeds 0.96p.u. In this case the

controller will respond to the ‘Is control required’ message informing the customer that

controls can be lifted. The second eventuality is that there is a significant delay between

the control query poised by the customer and the reply from the controller – the distance

between the query and the response will be influenced by the communication load taking

place at the controller. If the response takes more than 10 seconds – the customer will

automatically lift the restrictions as it has not been instructed to do otherwise. The rationale

behind customers under control continually sending query messages is to build a degree of

dependency between the customer and the controller and insert system whereby the

customers could return to a level of conventional consumption in the event of a controller

failure.

 PERFORMANCE CRITERIA

Two core points of evaluation were considered in terms of evaluating the performance of

the self-organising architecture which was faced with two concurrent network issues. The

first of which was the ongoing voltage deviation and the second was the attack event

targeting the control tier of the architecture. The first point of comparison was focussed on

ControllerCustomer A Customer B

Voltage Alert

Is Agent Controllable?

Agent not Controllable

Is Agent Controllable?

Agent is Controllable

Control Signal

Is Control Required?

Control is Required

Loop every 3
seconds if control is
required

184 Performance Evaluation Framework

the voltage control performance, and the ability to maintain controllability during an attack

event, the objective of all the attack formats was to disrupt the link between the controller

and the customer and therefore reducing controllability. For example the following figure

presented in Fig. 7.7, illustrates difference between a scenario with 100% controllability

and zero controllability. The attacks presented within the research are aimed at creating a

situation where the net controllability of the network is as close to the red line as possible.

Fig. 7.7 - Controlled and Uncontrolled Voltage Profiles

Therefore during each of the simulation runs, the voltage profile from each of the agents

was recorded, with the agent at the end of the feeder being representative of the lowest

voltages. In contrast the self-organising architecture aimed to minimise any control loss

and therefore voltage profiles taken from tests utilising the self-organising were intended

to be as close to the upper threshold illustrated by the green line as possible.

The second performance criterion was concerned with the communication layer

represented by the computational burden figures, these burden profiles represented the

impact of the attack on the number of performance variables monitored by the architecture.

In addition to the overall burden the individual components of the computation burden were

also recorded, these components were as follows and as previously defined in chapter 7:

 Congestion

 Reactivity

 Data Flow (Incoming and Outgoing)

 Unresponsiveness

 Execution times

 Under-utilisation

185 Performance Evaluation Framework

Individual burden figures were calculated through totalling the error severities for a given

error report type and then dividing that figure by the number of agents which could be

responsible for creating the error. The reason why the additional performance figures are

calculated was to illustrate the wider performance gains delivered by the self-organising

architecture. In cases where the voltage profiles indicated a small improvement in terms of

the control performance, when the additional communication data was examined wider

implications of the architecture could be investigated. The ability to reduce the burden from

the perspective of reactivity or congestion would indicate that the self-organising

architecture can demonstrate properties which would be relevant when dealing with control

problems with shorter time resolutions – frequency response or protection systems for

example. Likewise being able to reduce the amount of incoming data present at key

bottleneck areas in the architecture would be beneficial in systems which are energy

sensitive. For example if the aggregate agent was not connected to a permanent power

supply, reducing the communicative load makes the agent more energy efficient and

therefore extends its lifespan on the power available.

To demonstrate the monitoring capabilities within respect to computational burden, the

following figure presented in Fig. 7.8 illustrates an example performance test in the absence

of an attack event.

Fig. 7.8 – Computational Burden Composition Example

Four profiles are presented in the figure to demonstrate the range of profiling performed

during a simulation; the first three consider individual properties of the architecture as the

simulation progressed. The fourth profile represents an overall burden figure, and the value

which was used as the input into the fuzzy decision making engine. A series of profiles was

186 Performance Evaluation Framework

recorded from each of the attack format tests with respect to both the static and self-

organising architectures such that they could be compared.

 SUMMARY

This chapter documented the configuration and processes required in running and operating

the simulation. Initially the chapter discussed the design and properties of the electrical

network considering the location of the associated agents for the components involved.

This was followed by documenting the nature of the agent architecture and the differences

between the static and self-organising architectures from the perspective of performing the

evaluation process. Secondly the chapter considered the requirements for setting up a

simulation event, taking into account the different source files and supporting files needed

to perform the simulation. Additional taking into account the processes involved in linking

the agent architecture based on the JADE agent platform with an external load flow engine

for the purposes of performing voltage calculations.

The chapter also documented the attack approaches which are to be applied to the

architectures to test the effectiveness of the decision making engine and the transitions

triggered in response to the attack event. Finally the chapter considers the points of analysis

with respect to the architecture performance in terms of both the voltage control process

and the communication layer performance.

187 Results

Chapter 8: Results

188 Results

 INTRODUCTION

The static and self-organising architecture were tested against a series of denial of service

attacks launched by the customer layer against the set of controllers. The majority of the

attacks, once triggered lasted for the length of the simulation and were declared to be

continuous. This format was selected for most of the attacks because they represented the

most severe instance of each of the attack scales involving increasing numbers of

customers. Further attacks consider intermittent attacks in the form of burst and sequential

denial of service events. During the course of a simulation each customer was supplied with

a demand profile which created an under-voltage event, this event would persist without

control intervention. Therefore in addition to the presence of a cyber-attack the self-

organising architecture would also have the challenge of performing voltage control

through the use of demand side response. As previously discussed the control process was

performed through the transmission of control request and action signals between the

controller and the customer agent. The role of the attack event was to prevent these signals

from being interpreted and therefore responded to. If a customer fails to receive a response

from the controller informing it that the demand side restrictions are still required, the

customer will cease performing control.

This chapter presents the results from a range of attacks performed against a static and self-

organising architecture. In addition to documenting the attack events, a set of results are

also presented which document the performance of the architectures in the absence of

control and in the absence of an attack event. This chapter is not an exhaustive

documentation of all test formats considered and focusses on the continuous attacks which

are presented in greater depth. All results examinations are discussed at the end of the

chapter and therefore used to evaluate the overall effectiveness of the self-organising

architecture under examination.

 BASELINE PERFORMANCE

As a starting point the simulations were completed without the influence of an attack

situation and without the control procedure disabled. The purpose of these simulations was

to demonstrate that the architectures could perform the core control objective and to

illustrate a level of baseline performance against which later simulations could be compared

against.

189 Results

8.2.1 Without Control

The first of the base line tests considered the architecture operating without any

controllability, therefore illustrating the consequences of total control deterioration. This

state was the ultimate objective of the attack event, as the stream of messages delivered by

attackers within the customer layer intended to sever the connection between controller and

customer. In each instance the voltage profile was extracted from the final customer on

each feeder as it was this location whereby the impacts of an attack would be most

significant. The following graph presented in Fig. 8. illustrates the voltage profiles of all

four feeders when the controllers are deactivated and only function as data collection agents.

Fig. 8.1 – Voltage Profiles without Control

With control disabled the voltage on each of the feeders falls below the lower threshold and

fails to recover, indicating the severity of the voltage deviation triggered by the demand

profiles embedded in the customer layer. The individual profiles exhibited slight

differences on account of the location of the customer from which the data was extracted

within the overall network. As second figure presented in Fig. 8.2 illustrates the message

congestion taking place during the course of the simulation.

The figure illustrates that the congestion was similar across all four of the aggregate agents

which functioned as controllers. The data referred to the sampled queue size measurements

rather than the average data and therefore indicated that congestion in an architecture with

no additional functionality other than data collection peaked at 120 messages with most

events containing fewer than 80 messages.

190 Results

Fig. 8.2 – Aggregation Congestion without Control

Furthermore as the figure represents the congestion as a series of individual events it

illustrates that those congestion events were not persistent and the aggregates were able to

clear their backlog of messages quickly.

8.2.2 With Control

A second baseline comparison was to re-introduce the control functionality but still remove

the cyber threat element of the investigation; the purpose of this examination was to

illustrate the control performance of the architecture in the absence of an external threat.

Delivering an outcome similar to the absence of any attack event was the goal of the self-

organising architecture which intended to mitigate the threat of an attack and maintain

controllability. In this case both the static and self-organising architectures were simulated

as an assessment of the functionality without an attack. The following figure presented in

Fig. 8.3 illustrates the voltage profiles under the differing architectures.

Fig. 8.3 – Voltage Profiles - No Attack

191 Results

The figure illustrates that in across each of the feeders, and for both of the architectures,

the control function was triggered correctly and the deviation was immediately corrected,

raising the voltage above the threshold value. The self-organising architecture experienced

no instances of control loss throughout the simulation whereas one feeder in the case of the

static architecture did experience a degree of control deterioration. To examine the causes

of this control deterioration, a second figure presented in Fig. 8.4, illustrates the

computational burden indicator data recorded over the course of the simulation. The figure

presents the components which contributed towards the overall assessment of

computational burden in addition to the overall calculated indicator.

Fig. 8.4 – Computational Burden Composition and Comparison

The figure indicates that the static architecture several errors pertaining to system reactivity,

however because these errors did not translate into a significantly raised burden indicator,

the reactivity issue was not widespread throughout the architecture. This reactivity issue

increased later in the simulation and corresponded with the control loss experienced by

customers on feeder 2. As the self-organising architecture was able to avoid the occurrence

of these incidents it indicated that the initialisation stage of the process delivers a stronger

communication foundation to operate the architecture from as the overall burden indicator

was considerably lower before any transition event would have taken place. Throughout

the simulation the self-organising architecture did not experience the increases in reactivity

and consequently did not observe any instances of control deterioration. The following

figure presented in Fig. 8.5 examines the response times between the controller and the

customer layer for the final customer on each feeder.

192 Results

The figure confirms that the reactivity issues initially diagnosed within the static

architecture were affiliated with the two feeders which experienced control deterioration,

and therefore the communication issues were the source of the control loss. As two

controllers exhibited similar communication traits is could be assumed that these

controllers were experiencing difficulties in processing the volume of incoming data and

therefore resulted in slow response times.

Fig. 8.5 – Response Times between Feeder-End Customer and Controller

The figure also illustrates that the response times across the aggregates in the self-

organising architectures were far more uniform and all aggregates observed similar

response times. In a practical implementation controllers in differing parts of the network

would be exposed to variations in performance as a result of variations in component

vendors, component age or external factors such as interference or weather conditions. To

diagnose the source of the variation in controller agent performance, the following figure

in Fig. 8.6 illustrate the incoming data flow received by each of the aggregate controllers

in the case of the static and self-organising architectures.

The figure illustrates that the two feeders which observed the increase in controller response

time and therefore experienced control deterioration were under the control of an aggregate

which was experiencing a higher volume of incoming data. This contributed to the

challenges faced by those aggregates and therefore triggered the control loss. However the

figure also indicates that the self-organising architecture could lead to a more uneven

distribution of communication load, as aggregate 1 observed data flow rates peaking at

0.9kB/s greater than the other aggregates.

193 Results

Fig. 8.6 – Incoming Data Flow at the Aggregate Layer

Furthermore the data illustrated that the self-organising architecture was able to operate

with aggregates under increased load without compromising the control objective, or

raising the burden indicator. A final figure presented in Fig. 8.7 illustrates the message

congestion data extracted from the aggregation tier.

Fig. 8.7 – Congestion at the Aggregate Layer

The second figure confirms that the two of the aggregates under the static architecture

collected a larger amount of messages in the message queue – and processing this queue

caused the control deterioration. However an aggregate which was exposed to a larger

volume of incoming data did not experience the congestion issues and therefore did not

experience any control losses when the self-organising architecture was in use. This

indicated that the provision of a self-organising architecture provided a more stable

architecture and one which was less susceptible to variances in data production from the

customer layer. Because any customers which are transmitting updates more frequently

194 Results

than others are distributed across different aggregates during initialisation, their impact on

the congestion and reactivity properties of the aggregation layer are reduced.

 PERFORMANCE UNDER ATTACK

The second section of results discusses the performance of the self-organising architecture

in the presence of the denial of service attack, in comparison with the same attack being

perpetrated against the static architecture. Both static and adaptive versions of the denial of

service attack were delivered using increasing numbers of attackers within the customer

population.

8.3.1 Continuous attack with 6% customer involvement

The first example considers an attack whereby 20 customers are involved with performing

denial of service attack at the control layer of the architecture, this accounts for 6% of the

overall customer population. The attack is distributed symmetrically such that each

aggregate was under attack from 5 customer agents. The voltage profiles for the static

version of the attack event are presented in the following figure in Fig. 8.8

Fig. 8.8 – Voltage Profiles under Static Attack

The figure illustrates that as observed in the absence of an attack event, the static

architecture is vulnerable to control deterioration even in the presence of an attack format

involving a small number of customers. Two of the three feeders experienced control losses

across a series of customers when operating under the static architecture. However as

illustrated in the absence of an attack the self-organising architecture exhibited no such

deterioration. The following figure presented in Fig. 8.9 illustrates the voltage comparisons

195 Results

when responding to an adaptive variant of the denial of service attack involving the same

attack population.

Fig. 8.9 uses the same voltage profiles representing the static architecture as the previous

figure because in a static architecture the adaptive attack behaves identically to the static

attack, and only displays adaptive properties in the presence of self-organisation.

Fig. 8.9 – Voltage Profiles under an Adaptive Attack

The results of the adaptive attack are very similar to those under static attack, and therefore

indicating that with 6% of customer involvement the number of attackers isn’t significant

for the adaptive attack mechanism to cause a greater challenge for the self-organising

architecture.

In addition to the voltage profiles the attack has an impact on the communication layer of

the network; the following figure in Fig. 8.10 presents the decomposition of the components

of the computational burden.

196 Results

Fig. 8.10 – Computational Burden Distribution and Comparison – Static Attack

The figure illustrates that the computational burden indicator is primarily driven by the

reactivity and congestion properties in terms of the static architecture. As the attack

continues the severity of the congestion issues increases, and at 16 minutes they rise rapidly,

this event again corresponds to the deterioration in control observed by two feeders. In

terms of the self-organising architecture the primary influence on the computational burden

indicator was data flow, indicating that the volume of data created by the attack population

exceeded the recommended limits at the aggregation layer. This burden component

remained at a similar magnitude throughout the simulation and therefore in the absence of

other significant components the overall burden indicator for the self-organising

architecture remained stable. Demonstrating that while the denial of service attack

manifests through the production and delivery of attack traffic, which is represented by an

increase in data-flow errors, it is the congestion and reactivity issues created by that data

which is responsible for control deterioration. Because the self-organising architecture

creates a more stable platform during initialisation, and rebalances connections when

necessary, it is able to withstand the influx of attack traffic without forming congestion and

reactivity problems. In both variants of the attack format the architect agent elected to

activate a single dormant agent, because all of the aggregates were under-attack therefore

the recommended substitution action would not be effective. The following figure in Fig.

8.11 illustrates the impact the process of activating a dormant agent had on data flow at the

aggregation layer.

197 Results

Fig. 8.11 – Data Flow at the Aggregate Layer - Adaptive Attack

The figure demonstrates that at the point where the dormant agent was activated the traffic

received by aggregate four dropped by 2.2kB/s, and the dormant aggregate was exposed to

the same degree of traffic aggregate 4 was prior to the instruction to activate. This was due

to the nature of the adaptive attack, when a customer performing the attack was reconnected

to a differing aggregate – it redirected the attack traffic to the new agent. Therefore in the

case of the above figure the attackers were moved to the new aggregate, this process

prevented the build-up of congestion observed by the static architecture and therefore

prevented control deterioration. Another point of interest is the data flow associated with

aggregate 2, which did not experience the same increase in data flow during the attack

period. This was due to a rebalancing action which relocated several customers – and

therefore the attack traffic was directed to other aggregate agents.

8.3.2 Continuous attack with 12% Customer Involvement

An escalation to the previous example increases the number of customers delivering the

attack to 10 customers per aggregate and involving 12% of the customer population. The

voltage profiles recorded during a static variant of the denial of service attack is presented

in the following figure in Fig. 8.12.

198 Results

Fig. 8.12 – Voltage Comparison - Static Attack

In this example the figure illustrates that no control deterioration was experienced by the

customers during the attack event, neither the static nor the self-organising architecture

observed a reduction in control performance. This was also true of the adaptive attack as

illustrated in Fig. 8.13. In both instances the controllability of the customer layer was not

influenced by the attack, and therefore the congestion and reactivity issues which were

present in test with 6% customer involvement could be related more to a configuration

setting rather than the attack itself.

Fig. 8.13 – Voltage Profile Comparison - Adaptive Attack

This also accounts for the control deterioration experienced by the static architecture in the

absence of an attack; in those cases the initialisation stage prevented an unstable starting

configuration as the customer agents were able to select their own connections. Without

the initialisation stage, customers are automatically assigned to the nearest aggregate which

increases the chances of clustering of agents with higher outgoing data-flow rates. The self-

organisation increases the agent diversity and breaks down the clustering effect.

199 Results

8.3.3 Continuous attack with 18% Customer Involvement

A further escalation increased the number of customers involved in the attack to 60, with

15 customers per aggregate performing the denial of service attack. The following figure

in Fig. 8.14 presents the voltage profiles recorded during the static variant of the attack.

Fig. 8.14 – Voltage Profile Comparison - Static Attack

In contrast to the previous examples, the presence of the denial of service attack had a

disruptive impact on the controllability under the static architecture. Two of the feeders

experienced significant control deterioration, while the remaining two experienced the

same deterioration later in the simulation. In contrast to the examples with fewer attackers

the widespread nature of the control loss was more indicative of being triggered by the

attack. The fluctuations in the voltage profiles under the static architecture – specifically in

the case of feeder 2 – indicated that the customer population was attempting achieve control

during the attack but the denial of service prevented a stable control connection between

customer and controller. As a result consistent control over the course of the simulation

could not be achieved. Additionally the self-organising architecture once again was not

affected by the attack and displayed no signs of control deterioration. This example

illustrated the value of the self-organising architecture from the perspective of achieving

the control objective, this value was also present when processing a more sophisticated

variant of the attack as illustrated in Fig. 8.15.

200 Results

Fig. 8.15 – Voltage Profile Comparison – Adaptive Attack

The figure presents an adaptive denial of service attack featuring 18% customer

involvement across the architecture, and illustrates that even under the presence of a more

sophisticated attack the self-organising architecture reduces the control deterioration. As a

feeder end customers under the self-organising architecture experienced a 1.22% increase

in average voltage, and a reduction in the deviation duration by 408.3 seconds.

The following figure in Fig. 8.16, illustrates the computational burden indicator and its

components measured across the duration of the simulation. The data was extracted from

the simulation using the static denial of service attack. The figure illustrates that the self-

organising architecture was able to reduce each of the computational burden components

and therefore by extension the overall indicator – which in turn resulted in the ability to

prevent control deterioration. The congestion and reactivity components were the strongest

contributors to the computational burden in the static architecture, and the self-organising

approach achieved a 97% reduction in reactivity and 99.6% in congestion. These significant

reductions were created through preventing the message queue from building by increasing

aggregation and further distributing customer connections.

201 Results

Fig. 8.16 – Computational Burden Composition and Comparison - Static Attack

In terms of managing the data flow, that distribution of connections reduced the data flow

burden component by 59.5% - overall this created a total computational burden indicator

reduction of 98.4% over the length of the simulation. The figure also presents the timing of

the transition events which were triggered by the architect which were as follows:

1) Rebalancing Action (Stage 1 Transition): Initially the architect performed a

rebalancing action, whereby 10 customer agents were relocated from their current

aggregate to a less heavily loaded alternative. This action was the traditional first

step and was applied as a pre-emptive decision at the first sign of burden rise.

2) Activating a Single Dormant (Stage 2 Transition): The second action was to

perform a stage two transition, the decision making engine recommended

performing a substitution. However the architect determined that the error reports

could not be traced to a single aggregate agent, therefore a substitution would not

be effective. Alternatively the architect elected to activate a single dormant agent

rather than to follow the recommendation.

3) Activating Dormant Population (Stage 3 Transition): The third decision reached

by the architect was to activate all of the remaining dormant agents and add them

to the active population. In this instance the recommendation from the fuzzy engine

is carried as dormant agents were available.

4) Promoting Agents (Stage 3 Transition): A fourth transition recommended

activating the dormant population – but as those agents were activated in the

previous step the recommendation is over-ruled. As no dormant agents are available,

the architect promoted customer agents to perform aggregation duties.

202 Results

5) Tiered Promotion (Stage 4 Transition): The final transition performed by the

architect was the most severe transition available, involving creating a multi-tiered

aggregation layer. An upper tier is formed through promoting existing aggregates

up into the new upper tier, while those promoted aggregates are replaced with

members of the customer population who are also promoted into the lower

aggregate tier.

The following figure presented in Fig. 8.17, examines the performance monitoring data

extracted from the aggregation layer with respect to message congestion.

Fig. 8.17 – Aggregate Congestion - Static Attack

The figure illustrates that the congestion data recovered from aggregates operating in a

static architecture demonstrates that the message queues are considerably more heavily

loaded that those within the static architecture. In the static architecture aggregates 2 and 3

which were responsible for the two feeders with the highest degree of control deterioration

experience a sharp rise in congestion earlier in the simulation. This congestion rise 10

minutes into the simulation corresponds with the control loss, additionally when the second

two aggregates experience a similar congestion rise after 14 minutes, the control on those

feeders also started to falter. This confirmed that the ability to manage the volume of data

created by the denial of service attack has a definite impact on the ability to provide voltage

control. In contrast the self-organising architecture does not contain aggregates with severe

congestion issues and therefore communication between customer and controller was not

compromised, and the control objective was achieved.

A similar congestion profile was produced in response to the adaptive denial of service

attack as presented in the following figure: Fig. 8.18. The figure illustrates that the more

203 Results

sophisticated attack proved to be more challenging from a self-organising perspective.

Aggregate 3 experiences two periods of raised congestion during the simulation, these

periods were due to the nature of the adaptive attack.

Fig. 8.18 – Aggregate Level Congestion - Adaptive Attack

As an attacker was moved from one location to another, so was the volume of attack traffic

it was producing. Therefore an aggregate can find itself under attack from a larger number

of attackers during the course of the simulation. This rise in the number of attackers created

the rise in congestion, and therefore required a further transition to alleviate. However it

illustrated that the decision making engine within the architect agent had the capability to

recognise that a transition had created an issue and corrected the problem.

8.3.4 Continuous attack with 24% Customer Involvement

As a final escalation the number of attackers was raised to 80, which amounted to 24% of

the total customer population, the voltage profiles for the static variant of the attack is

presented in Fig. 8.19.

204 Results

Fig. 8.19 – Voltage Profile Comparison - Static Attack

However in both case of both the adaptive and the static attacks, the self-organising

architecture was able to prevent control loss. The figure does illustrate that the voltage

profiles representing feeders on the self-organising architecture were lower by up to 0.5%.

This indicated that denial of service attack did have an influence on the control performance

of the self-organising architecture but this was minimal in comparison to the damage done

to the static architecture.

The following figure presented in Fig. 8.20 presents the computational burden data from

the static attack.

Fig. 8.20 – Computational Burden Composition and Comparison

The figure illustrates the burden information and illustrates a secondary impact of the more

severe attack event. In addition to preventing the transmission of control signals and

therefore causing control deterioration, performance monitoring messages are also

compromised by the denial of service event. Agents within the architecture are no longer

205 Results

able to transmit data to the architect agent, which created the gaps in the data present for

the reactivity burden component starting at 14 minutes, all performance monitoring data is

lost at 16 minutes for the static architecture. In contrast the self-organising architecture was

able to reduce all of the burden elements – congestion was reduced by 95%, reactivity by

81% and the overall burden index observed a 94.4% reduction. This management of the

communication variables ensured that the control objectives were still achieved, and that

performance monitoring data could be accessed throughout the course of the simulation.

Consequently using self-organisation also prevents a denial of service attack from blinding

the performance monitoring aspects of the system.

While the performance monitoring data was not received by the architect agent, the core

metrics were retained by the individual agents within the agent population, the following

figure presented in Fig. 8.21 illustrates the response times between customer and controller

during the static denial of service attack event.

Fig. 8.21 – Response Times between Customer and Controller

The figure details that under the static architecture the feeders experience a sharp rise in

response times which equated to the reactivity of the connection prior to observing control

deterioration. This further confirmed that the communication performance of the

architecture has a link to the system’s ability to perform the control objective. In contrast

the self-organising architecture does not experience the same rise in response times and

therefore the connectivity between customer and controller is stronger throughout the attack.

As a result the architecture is able to process and successfully respond to control requests

and control queries which prevented the control deterioration observed by the static

architecture.

206 Results

8.3.5 Sequential Attack with 24% Customer Involvement

In addition to the continuous attack formats a further variant of the denial of service attack

was the sequential attack. This format consisted of a series of burst attacks during the

simulation, each one launched by a total of 80 customer agents and targeting each member

of the active aggregate population. Both static and adaptive versions of the attack were

performed using the sequential format; the following figure presented in Fig. 8.22

illustrates the voltage profiles extracted from the static variant of the attack.

Fig. 8.22 – Voltage Comparison Profile - Static Attack

The results that a sequential attack had a less disruptive impact on the control performance

than the continuous attack of the same magnitude, this was due to the intermittent nature

of the attack. Between the individual bursts of attack traffic, the aggregation layer was able

to recover by processing the message queue before the next wave of the attack arrived. In

the static architecture, the final of the three attack events did trigger control deterioration

towards the end of the simulation. In contrast the self-organising architecture did not

observe any control deterioration during the course of the simulation but the control

response delivered by the architecture was initially weaker. Voltage magnitudes after the

control were 1.2% lower than those achieved without an attack present. The following

figure in Fig. 8.23 presents data from the adaptive version of the sequential attack.

207 Results

Fig. 8.23 – Voltage Profile Comparison - Adaptive Attack

The figure demonstrates that under more sophisticated attack format, the self-organising

architecture observed a small degree of control loss towards the end of the simulation under

the final wave of attack traffic. Additionally the initial control response was stronger under

the adaptive attack than it was under the static attack. The following figure in Fig. 8.24

illustrates the computational burden data for the adaptive attack.

Fig. 8.24 – Computational Burden Composition and Comparison

The figure clearly illustrates the three burst events of the sequential attack, and the third of

the three bursts had a stronger impact on the burden indicator from the perspective of the

static architecture. As demonstrated in previous examples the congestion component of the

burden was the dominant feature and the control deterioration took place when the

congestion rose significantly. The self-organising architecture was able to reduce the

message congestion within the agent population by 61%, which was a smaller reduction in

comparison with the continuous attack events. The overall computational burden was

208 Results

reduced by 64% and lowered each of the burden peaks during the individual bursts.

Another observation is that the self-organising architecture stabilised the burden

components across all three stages of the sequential attacks. In contrast the final burst event

of the sequential attack did present with a more severe impact on the communication layer

– the peak overall burden indicator was 3.2 times larger than the previous peak.

8.3.6 Extended Runtime

A final example considers the operations of the self-organising architecture over a longer

time frame to demonstrate that even in the presence of a longer term denial of service event

the self-organising architecture was capable of monitoring the deviation through to

resolution. The following figure presented in Fig. 8.25 presents the voltage profiles

recorded over 50 minutes of runtime with 18% customer involvement.

Fig. 8.25 – Voltage Profile Comparison

The figure compares the voltage profiles from the lengthened simulation for the self-

organising architecture against the profiles from the 20 minutes simulation regarding the

static architecture. The results show that the self-organising architecture did not experience

control deterioration throughout entirety of the deviation and restrictions applied to the

customer layer were released between 28 and 33 minutes into the simulation. The presence

of the attack event did delay the signals to release those restrictions in the case of the second

feeder but the control objective was not affected. This demonstrated that the self-organising

architecture was capable operating under the presence of an attack event for a longer period

of time. An attack population of 24% was not completed for the extended runtime because

the volume of messages accumulated by the aggregation layer created instability in the

simulation environment. This was more significant when operating the static architecture

209 Results

where the ability to manage the attack was reduced. The following figure in Fig. 8.26

illustrates the data flow at the aggregation layer during the length of the simulation

Fig. 8.26 – Data Flow at the Aggregate Layer

The figure illustrates that the attack event was continually delivering attack traffic to the

aggregation layer throughout the extended lifetime of the simulation, which explained the

delays in sending signals informing customers that load shedding was no longer in place.

The potential for the attack to influence control performance elapsed after 32 minutes when

no further deviation events were present. However goal of the architect agent is deliver an

architecture which manages the computational burden indicator as derived from

communication performance monitoring. Therefore in the absence of a control objective

the architect is still responsible for managing other properties such as congestion and

reactivity. The following figure presented in Fig. 8.27 presents the computational burden

components during the lifetime of the simulation.

Fig. 8.27 – Computational Burden Composition and Comparison

210 Results

This figure illustrates that the computational burden recorded by the static architecture does

increase during the later stages of the simulation, more so when the control functions have

elapsed. However the peaks observed by the self-organising architecture were considerably

lower than the congestion and reactivity data from the static architecture observed in the

shorter runtime. As a result the overall burden indicator peaked with a value 4.9 times

smaller under the self-organising architecture than the static equivalent. On the basis of

previous examples, the ability to minimise the burden indicator, with specific reference of

congestion and reactivity is important in reducing the likelihood of control performance

deterioration.

 CONCLUSIONS

An overall assessment of the results indicated that the self-organising architecture does

deliver several improvements over using a static architecture. These improvements are

initially delivered through the initialisation stage of the self-organising architecture.

Because this process involved customer agents ranking the connectivity to each of the

potential aggregates before making a connection, the resulting greater distribution of

connections. Customers on the same feeder may be connected to several different

aggregates, therefore any clustering of agents transmitting larger quantities of data are

broken up increasing diversity. This was represented the results with no attack present and

a denial of service event with 6% customer involvement, where control loss was observed

using the static architecture in addition to corresponding congestion and reactivity issues.

Similar issues were not present in the case of the self-organising architecture and therefore

control was not affected, the fact that no significant reconfiguration actions were triggered

in those instances implied that the initialisation stage was the key factor.

Attacks consisting 12% of the customer population or lower were not significantly

disruptive to the control procedure, but as previously indicated the initialisation stage acted

as a first line of defence and formed a communication structure within which the control

process was more resilient to attack. In addition to distributing customers’ data connections

between aggregates the control connections were also distributed. Therefore disabling one

or two controllers would not have a detrimental impact on the ability to perform voltage

control, because deviations on one feeder could be responded to by multiple controllers.

211 Results

In addition to the influence of the initialisation phase the self-organising architecture also

prevented control deterioration in the event of a more severe denial of service attack. Once

18% of the customer population were transmitting attack traffic the control performance in

terms of the static architecture suffered. The average voltage at the end of the feeder by

1.6% to 0.932 per unit in comparison to a configuration without an attack event, whereas

the self-organising architecture was able sustain an average voltage of 0.945 per unit. When

the attack population was raise to 24%, the denial of service event disabled control across

50% of the network and the remaining feeders lost controllability within six minutes of the

initial control decision. This was not experienced by the self-organising architecture as the

use of appropriate architecture transitions reduced the computational burden indicator value

and therefore ensured that all communications relating to performing control were

completed.

This demonstrated that there was a connection between the performance of the

communication architecture specifically in terms of congestion and reactivity, and the

ability of the architecture to perform the control action. In each of the cases where control

deterioration was observed, the computational burden data indicated a corresponding rise

in reactivity and congestion. The influence of these particular burden components was that

they prevented key messages from being processed at the aggregation tier, and therefore

customers did not receive the instruction to reduce demand in the case of the most severe

of the trialled attack formats. As the denial of service attack was directed at the

communication aspect of the agent architecture, the nature of the control algorithm would

have limited influence over the ability to avoid control deterioration. This is because at the

point where the algorithm computes the set points for the controllable components – a

message is required to apply those settings. A highly congested network would struggle to

deliver the command and as illustrated in the example with 24% customer involvement –

control was effectively disabled. In instances where the control had deteriorated

significantly the congestion at the control layer had surpassed 10,000 messages waiting to

be processed, the majority of these messages were generated by the attackers.

As the self-organising architecture demonstrated an ability to reduce the computational

burden by over 90% in most cases as a result of preventing large quantities of messages

from building at the aggregation layer it indicated that the system would have performance

advantages beyond voltage control. It is envisaged that as the smart grid concept gains more

momentum and an increasing number of smart-devices are added to the network, the

212 Results

demand on the communication network is also set to increase. Therefore leading to a

situation where core communication requirements for monitoring and control could result

in a more congested architecture. This would be further exacerbated through the need to

perform multiple control objectives at the same time. The ability to manage and reduce

congestion through self-organisation would be applicable even in the absence of an attack.

Furthermore the properties of the self-organising architecture indicate that it would be

suitable in the management of wider control objectives, for example problems involving

protection devices or frequency response require resolution in a shorter timeframe than

voltage deviations. Therefore being able to ensure that the communication network is

capable of responding in a timely fashion becomes more important.

Overall it can be concluded that the developed self-organising architecture and decision

making engine is both functional and successful. It was able to improve the ability to

perform the control objective in the presence of denial of service attacks involving up to

24% of the customer population. Additionally it was able to reduce the communicative

load on the controller layer which prevented control deterioration and illustrated further

potential applications for the self-organising architecture.

213 Discussion

Chapter 9: Discussion

214 Discussion

 INTRODUCTION

This thesis describes the work undertaken to investigate the relevance of self-organising

architectures and the subsequent development of a proof concept implementation of such a

system. In this chapter the potential applicability of such a system is presented, within the

current power system landscape and the system requirements involved in translating a proof

of concept development into a real-world roll out scheme. Furthermore this chapter outlines

additional features which could be included in further developments of the architecture and

the decision making approaches at the heart of the architect agent. Finally this discussion

chapter offers avenues of further research using the core self-organising architecture as

developed over the course of the documented research.

 DISCUSSION

Upon review of the final result set and the overall design and development process of the

self-organising architecture, several points for discussion were raised from the performance

of the individual stages of operation to the finer points of detail involved with facilitating

those stages. The following section aims to explore those points of discussion and consider

their influence of the results which have been presented.

9.2.1 Performance Overview

The results suggest that there is value in the self-organising architecture with respect to

reducing the computational burden. Lowering the burden had positive results on

performing the voltage control process, as a result of the controllers being under less

communicative load and can therefore respond to control signals and queries from the

customer layer of the hierarchy. The first observation is that the attack format delivered

through a series of noise messages transmitted from compromised smart-meters to the

control layer experienced consistent control degradation under attacks launched by over 12%

of the customer population. Therefore under denial of service attacks with fewer attackers,

the voltage control remained largely unaffected even through the transitional decisions

performed by the architect in response to the performance monitoring information did

successfully reduce the computational burden indicator by 65.6% and controller congestion

by 93.1%. Therefore indicating that in addition to improving control resilience, the self-

organising architecture has value in handling heavily loaded communication architectures.

As the penetration of monitoring devices and controllable components increases within the

smart-grid environment will be responsible for more challenging control situations

215 Discussion

featuring multiple objectives. Reducing congestion and controller response times in such a

scenario will become more important even in the absence of an attack event and therefore

find value in the application of a self-organising architecture. Furthermore the self-

organising architecture improved control response times with a small scale attack involving

6% of customers by 67.9% equating to an improvement of 3.1s on average. Therefore

indicating that the self-organising architecture could also facilitate alternative control

objectives such as frequency response or protection, where smaller scale attacks would

otherwise prove disruptive. The reduction in computational burden delivered through the

self-organising system may also be applicable to protection systems – which if the system

is under attack from an adversary intending to cause blackouts or overload physical

components, being able to deliver protection signals becomes even more important. This

indicates that while the architect agent was focussed on reducing computational burden as

this formed the input to the decision making engine, the results have a positive impact on

influencing the electrical properties of the power system.

9.2.2 Decision Making Engine

The core component of the self-organising architecture was the decision making engine,

which was responsible for translating performance monitoring data into architecture

transitions. This decision making engine took advantage fuzzy techniques to handle the

level of uncertainty involved in the calculation of the computational burden indicator,

which proved to be an appropriate mechanism for evaluating the error state of the

architecture. The challenge of implementing the fuzzy system involved converting the data

from the different performance metrics, each of which featured differing units and

measurement criteria. Therefore each error event was normalised in reference to its

threshold value, converting it into a severity percentage. Each recorded error report needed

to be combined with respect to the tier of the architecture the error arose from using the

severity percentages. Because each of the severities related to a different threshold in

respect to each of the metrics the burden indicator remained a dimensionless quantity.

Configuration tests were performed to evaluate which levels of computational burden

constituted a low, medium or high event and therefore used to calibrate the fuzzy input

membership functions.

The output of the fuzzy decision making engine took the form of a recommendation for a

transition. However the architect agent in which the decision making engine was hosted

216 Discussion

had the capability for over-riding the recommendation. This would be the case in the event

that the recommendation was not feasible given the available resources, for example

denying the activation of dormant aggregates if all available aggregates were active. This

procedure acted as a functional layer of transition validation before any actions were

triggered, in each of the simulations, the architect was able to avoid performing impossible

transitions. The need for the ability to over-ride decisions indicates that a fuzzy decision

machine engine requires additional support with respect to the location and distribution of

errors, and the available resources.

A combination of these properties were proven to be effective as the results demonstrated

the decision making engine was able to use the burden indicator to deliver effective and

appropriate architecture transitions. Across the range of attack magnitudes and considering

both static and adaptive denial of service strategies the computational burden indicator was

reduced by 89.6%. Furthermore the decision making system was also able to raise the

average voltage by 1.5% when sustaining the most severe attack format triggered by 80

customer agents. Therefore it can be concluded that the selected decision making system

functioned correctly was capable of facilitating suitable architecture reconfigurations.

9.2.3 Fuzzy Recommendations

The decision making engine was centred on set of fuzzy membership functions which were

responsible for recommending a transition event. The computational burden indicator and

its rate of change were supplied as inputs. A fuzzy based system was used as the core

element of the decision making engine due to its ability to handle sources of uncertainty.

Several sources of uncertainty involved in the decision making engine, in terms of the

thresholds for the individual metrics and the computational burden indicator calculation.

Therefore it was deemed appropriate to implement a system which was capable of operating

under these circumstances.

Alternative approaches to decision making could have also been applied, and prior to the

implementation of the fuzzy system, the decision making engine was powered by a decision

tree. This approach was capable of converting performance data into transitions but lacked

flexibility in terms of incorporating new metrics and relied on definitive decisions without

taking into account the sources of uncertainty. In both cases the decision making engine

was playing a reactive role in responding the current state of the architecture and applying

a transition to reduce the computational load. An alternative approach would be to apply

217 Discussion

an optimisation approach which assessed all of the potential transition options and select

the most effective structure for the architecture. This approach was not selected for several

reasons, the first of which being a lack of a modelling method to validate each of the

potential configurations before applying one. In power system optimisation is it possible to

use the physical properties of the network and a series of equations to determine precisely

what impact a particular change will have on the system state, and therefore being able to

exhaustively demonstrate which of the parameter sets is the most effective. When assessing

communication data extracted from a live series of interactions, this validation loop is not

applicable because of the sources of uncertainties involved. It is not always known what is

causing the issues in the communication network and therefore making defining an optimal

configuration less feasible. The level of uncertainty is increased when the architecture is

under attack from a human adversary, an optimisation mechanism will not be able to devise

a solution because it will have no information about what the attacker plans to do next. The

issue faced by the self-organising architecture becomes less about optimality and more

about maintaining service availability. An attack will not necessarily behave in a

deterministic manner and therefore cannot be used as a mathematical input into an

optimisation technique. Therefore for the application presented in this thesis, a fuzzy based

decision making engine was an appropriate approach.

It can be accepted that the current design approach could be enhanced through the

application of a learning and tuning approach to the fuzzy decision making engine whereby

the architect agent builds a library of events, error states and decisions made with a view

of retraining the set of membership functions going forward. Under this scenario it may be

relevant to define and engineer a metric to define effectiveness such that the architect is

able to determine and remember whether the selected transition event had the desired

impact on reducing burden and improving control performance. These enhancements

would add further value to an already proven mechanism and improve the potential for their

use in wider applications

9.2.4 Control Selection

Another design feature employed in the research was the control mechanism. The control

approach takes advantage of emerging techniques involving the active participation of

customers in network management. Therefore a demand side response mechanism was

devised, involving reducing customer demand to resolve an under voltage deviation. The

218 Discussion

selected control approach required customers to periodically ask the controllers if

restrictions were needed. This control format was sufficiently able to correct the voltage

deviation, and in the absence of any attack event, the deviation was resolved within 207

seconds of first falling below 0.94 per unit. Consequently the voltage was not significantly

low enough for several minutes and therefore the control mechanism can be considered to

be effective and successful.

Alternative voltage control mechanisms are available, and may deliver faster resolution

times, but this investigation was not a discussion of the overall performance of voltage

control algorithms. Furthermore the alternative control approaches will also require the

transmission of data from point of measurement to the controller, and in response the

controller will need to send control signals to a relevant controllable device. This may take

the form of signals could be sent to a transformer requesting a tap change or to an energy

storage device to discharge during peak demand. A denial of service attack directed at the

controller delivering these signals would experience the same challenges involving

message congestion and therefore message reactivity. Consequently the control algorithm

would be under the same pressures as those documented in this research, and therefore the

selected control method is valid. An additional consideration is that alternative control

signals may require the interaction of a larger variety of devices and increase the

complexity of the communication traffic. As the self-organising architecture has proven it

was capable of improving communication flow through reducing congestion and response

times, more value would be gained through implementing such a system in the presence of

an alternative control algorithm.

9.2.5 Agent Platform

The self-organising architecture was built upon a set of agents using the JADE agent

platform, this platform was used due to its ease of use and repeated usage within the

research community. The agent platform provided tools for examining the inter-agent

communications which functioned as a troubleshooting tool during the development

process, and ensured that the architecture was functioning correctly. Some limitations were

present with the use of java based platform in terms of ultimate scalability as a result of the

agent platform taking up space within the java virtual machine. As architectures with less

complex agents can accommodate a larger population, the additional overheads involved

with providing self-organisation reduced the effective agent capacity of the platform.

219 Discussion

Other agent based platforms are available such as presage2, and have been applied to the

smart-grid domain. The use of an alternative platform may respond differently to the attack

events and experience different levels of congestion, but the self-organising techniques

discussed and developed in this thesis would remain applicable. The aim of the research

was not focussed on defining and engineering the most effective agent based control and

monitoring system. Instead the core objective was the investigation and subsequent

development of a self-organising architecture for the purposes of providing resilience to

cyber-attacks.

An alternative approach – more applicable potentially for a real world deployment would

build an agent based architecture without the overhead of the over-arching platform. Instead

agent communication would be communicated via socket connections between

components with additional encryption and security requirements and a communication

protocol in line with the existing hardware. Such a format may avoid limitations involved

with scalability on the behalf of the agent management system when running complex

agents when considering much wider agent populations. However as a result of not having

the agent management system, tasks such as name resolution, directory services and

communication processes would have to be developed in replacement of the functions

provided by the agent platform.

9.2.6 Attack Format

Following the development of the operating components of the self-organising architecture

a further consideration was to the design and implementation of the attacks launched

against the system. The selected approach was based on a low-rate denial of service attack,

targeted at the controller layer. Because this was a novel and emerging research area, no

previous research had considered the use of self-organisation for the purposes of defending

against a denial of service attack, no standard model existed. The denial of service attack

was selected due to it targeting the network layer of the supporting ICT infrastructure,

therefore influencing inter-agent communications. The aim of the attack was to disrupt the

flow of information between customer agents and the control layer located at the

aggregation tier, and therefore trigger control deterioration. Furthermore a denial of service

attack was one of the core components involved in the Stuxnet and Ukrainian events, thus

demonstrating its relevance when discussing vulnerabilities in cyber-physical power

systems.

220 Discussion

As set of design choices were made in the development of the attack strategy including the

degree with which the attack was modelled. In the research the attack originated from

compromised smart-meters – because these devices are readily accessible in customer

homes and could be connected to other smart devices over an internet connection. This

therefore made them reasonable targets from an attacker’s perspective. Given the

significant number of potential permutations for number of attackers, distribution of

attackers, attack duration, severity and sophistication, performing an exhaustive

examination of all possible formats was not feasible. Therefore a continuous attack

approach was the core focus of the investigation as this represented the longest duration for

each of the compromised customer populations and was supported by additional

examinations of burst and sequential attacks. A secondary decision choice relating to the

use of smart-meters at the launch platform for the attack was the volume of attack traffic.

The designed volume of data transmitted from each compromised smart-meter was

configured such that it fell in line with the transmission capabilities of the smart-meters

designed for the current UK rollout. Therefore the strength of the denial of service attack

was limited by the properties of the attacking hardware; an adversary delivering attack

traffic from an external source would be able to deliver a more intensive attack volume.

Alternative attack mechanisms such as false data injection or a man-in-the-middle attack

may require additional functions and an alternative approach from the self-organising

architecture. This is because these attack methods do not necessarily impact on the

communication volumes and data evaluated by the performance metrics devised in this

thesis. The onus would be on data verification and restructuring the architecture on the

account of a trust vector applied to those agents delivering false information. Such attack

methods would be the domain of future work which would add further value to the results

illustrated in this thesis.

9.2.7 Scalability

As described earlier in this thesis, scalability is one of the core properties of a self-

organising system allowing them to accommodate large numbers of components. Therefore

part of the initial development and research presented in chapter thee, scalability was one

of the metrics used to differentiate between individual architecture topologies and assess

relative performance. Each of the architecture designs was evaluated with three differing

customer agent populations of 540, 1080 and 1640 agents in addition to generation and

221 Discussion

aggregation agents in supporting roles. The investigations demonstrated that the scalability

of an architecture was related to its design and the manner in which the communication

between agents was managed, increasing aggregation improved scalability. This research

also determined that a configuration without dedicated aggregation agents struggled

considerable in managing data flow when the number of agents was increased. Therefore

such a configuration was not considered for implementation in the final self-organising

architecture as an option which the Architect agent could select as part of a transition

mechanism. Using preliminary research as the input and foundation for the development of

the self-organising architecture allowed for scalability criteria to form part of the design

process and eliminate known sources of scalability issues early on. The disaggregated

architecture was one a known source of scalability issues because generation agents were

required to accept the responsibilities of performing aggregation in addition to their core

objectives, as the number of agents increased so did the congestion at those agents resulting

in longer response times and reduced controllability.

Within the developed self-organising architecture itself the scalability of the system can be

influenced by several factors including the number agents involved and the communication

structure those agent form. But the simulation environment can play an equally influential

role in determining the scalability of the architecture, while the multi-agent approach is

composed of numerous individual elements interacting with one another – the entire

population is overseen by a single agent platform hosted on a local machine. The design

choice to utilise a single machine was motivated by the impracticalities involved in

developing agents on hundreds of individual devices, which would have become even more

impractical when considering populations over 1,600 agents as examined in the preliminary

research in chapter three. In terms of a potential physical deployment of the self-organising

architecture the individual agents could easily be hosted on small devices such as Arduino,

mBed or Raspberry Pi style platforms and therefore locally hosted environments would not

create a scalability issue.

The simulation environment is driven by a java virtual machine which is reliant on its own

allocation of virtual memory in the form of heap space, each agent active within the

simulation environment occupies space in this virtual machine and within the heap space.

A larger agent population therefore requires a larger proportion of the available heap space

and therefore each agent has less headroom in which to operate. Due to the increased

functional requirements of the agents involved in the self-organising architecture the upper

222 Discussion

limit on sustainable agent populations within the virtual machine was reduced, hence

simulations were not conducted to the same magnitude of those in chapter three. A further

aspect of heap space management relates to messaging between agents, each transmitted

message exists within the virtual memory until it has been processed by the recipient at

which time it is handled by the java garbage collection process. If the virtual memory

requirements of the simulation exceed the maximum available heap space, the simulation

is automatically terminated – which in turn limits maximum runtime. As more congested

architectures will consume more virtual memory, their maximum runtime is shortened in

comparison to an architecture with fewer unread messages. Therefore a system which is

capable of minimising the congestion within the architecture would create benefits for

scalability and the self-organising architecture presented in this research improves the

scalability potential in comparison to a static version of the same agent population.

As computational limitations of the host machine were the core source of potential risks to

scalability concerns it can be determined that the set of agents as a whole demonstrate

scalable properties. Each of the stages of the self-organising architecture implement

adapted versions of generic techniques which in their native research domains have been

claimed to be scalable, and the methodologies could be translated into a variety of platforms

beyond the agent based approach. For example in the case of an infrastructure of

independent sensors, the same processes and functions can be applied but without the

limitations of a single local system. The central agents in the system – Observer, Architect,

and Gateway – would be located within a central resource which would have sufficient

computational power to process initialisation states, performance monitoring data and

reconfiguration interactions.

9.2.8 Evaluation Approach

Examining the evaluation method takes into account the platforms and simulation

environment applied to both the development stage and the performance testing format. All

the simulations were completed on a single platform hosting the agent population and the

supporting load flow calculations within Matpower. This process was selected on account

of the available resources and the tools used to develop the self-organising architecture.

With 365 agents involved in the self-organising architecture it was not practical to engineer

a system with each agent running on separate hardware communicating over a network.

Some of the agents could have been implanted on different machinery but a decision choice

223 Discussion

was made to deliver an even playing field for each of the agents and therefore minimising

the number of external influences.

Alternative approaches may involve introducing physical components and additional

simulation tools in a lab based environment to further research. In this initial proof-of-

concept stage it was relevant to remove external influences or points of failure from the

testing regime such that the strongest influences over the performance were down to the

interaction between members of the agent population and their response to triggered attack

events. Introducing physical components would require additional interfacing work and

would be seen as a further step now that the self-organising architecture has been proven

in simulation.

For example introducing a real-time power-systems simulation environment may encounter

difficulties when communicating with the java based agent platform. Several agents would

require being redesigned to match the capabilities and settings of the simulation platform.

In this thesis it was discussed how the agent platform interacted with a static load flow

engine provided through Matpower. However those requirements would change when

operating with a real-time simulation tool, as different elements of the simulation may be

handed over to the power-system tool rather than being modelled within the agent

population itself. For example load and generation profiles would be the concern of the

power system model rather than being rendered by the individual agents. Further work in

co-simulation or real-time simulation would be advantageous and would add value to the

work completed in this thesis but was not the subject of the presented research.

 RESEARCH APPLICATIONS

The end product devised based on the preceding research had been developed on the basis

of inspiration from concepts and methods drawn from a range of domains and tested using

a java based multi-agent platform. Several applications can be drawn from the research

both in terms of the power systems domain but also in the wider research community.

9.3.1 Architecture Selection

An initial contribution focuses on the relevance of the architectural design of the control

and monitoring infrastructure. Structuring and managing the interaction between agents,

data collection points, controllers and administrative agents is beneficial in terms of

communication management. Improving communication management then has benefits for

224 Discussion

the physical element of a cyber-physical system. Control signals delivered by agents to

embedded controllers within the network management environment are ultimately subject

to delays and latencies generated by the communication layer and therefore improving the

performance of the communication layer has a positive impact on controllability. The early

research described in this thesis demonstrated that the design of the monitoring architecture

favoured certain properties either in the form of lowering communication congestion, or

improving robustness to failure. Therefore in the absence of self-organising architectures

in the short term, specific static architectures may be deployed in smart grid projects. In

such a scenario the control and communication architecture should become as important a

design choice as the electrical infrastructure and deployment of emerging technologies such

as energy storage, renewables and power electronics. Both aspects of the cyber-physical

system would need to be designed to complement one another, and be designed with each

other in mind. For example if a prospective smart grid development is anticipated to

incorporate a large amount of volatile distributed generation units – an architecture

specifically designed with reactivity in mind would be more appropriate. On the other hand

a system focussed on residential smart-metering where pricing updates, DSR signals are on

a minute time-scale and are less time sensitive it would be more applicable to structure the

architecture around scalability and congestion management.

9.3.2 Property Extraction

Secondly the individual properties of the self-organising architecture can be applied as

further design choices in support of those previously highlighted. For example the

dissemination of customer and aggregate connections formed by the initialisation stage of

the self-organising architecture created a more stable foundation for operating the

communication network. This is of particular use in respect of building in fault tolerance

into the design of the ICT infrastructure without an excess of redundant hardware. The

initialisation process creates an overlapping communication mesh whereby control signals

for one area of the network are distributed across multiple controllers. As a result the loss

of multiple controllers does not necessarily result in the loss of controllability over the

network population, additional redundancy can be added through a connection between the

controllers and a central server with both physical and ICT network topology information

such that any network knowledge lost through failure can be reclaimed by other nodes in

the architecture.

225 Discussion

The performance monitoring aspect of the self-organising architecture can also have further

reaching applications and illustrates the importance of being able to continually measure

the condition or usage of ICT assets within the network. The communication and

monitoring components of the system may not have the same commercial value of larger

power system assets. As a result the replacement of failed components does not carry the

same economic penalty, but being able to used monitoring techniques for the purposes of

assessing state of health can be beneficial. Components will be communicating

measurements of the hardware under observation and additional parameters could be added

to that data stream to perform self-diagnostics.

Additional performance criteria would be needed in a real world implementation that

document the physical health of the components – temperature and humidity sensing may

indicate potential hardware failure. The architect agent in the developed self-organising

architecture used these reports to detect predominantly software related issues – message

congestion, slow response times. This information could be used in association with a wider

spread of metrics as a potential method for predicting component lifespans and informing

a maintenance schedule. Self-monitoring data delivered by the components may be

interpreted by a human controller, or processed by a decision making engine to add self-

monitoring capabilities to a static architecture.

9.3.3 A Self-Organising Architecture

While each of the components of the developed self-organising architecture has value in

isolation the system as a whole would be applicable for a smart-grid implementation.

Additional work would be required in physical rollout of a self-organising architecture, but

the overall concept has been illustrated as being fit for purpose and with demonstrated

benefits. Therefore the work in this thesis could be considered as a foundation investigation

providing cyber-security benefits through self-organisation. Even in the absence of a cyber-

threat being able to monitor for failures within the IT network or indications of pending

failure or performance loss could be useful when considering network management systems.

 IMPLEMENTING A SELF-ORGANISING ARCHITECTURE

During this research the system was developed and evaluated through simulation, however

in terms of transferring a similar system into a physical rollout there are a number of

considerations which would need to be addressed.

226 Discussion

9.4.1 Control and Monitoring Hardware/Software

At the core of the system is a series of agents – each representing either a physical

component located within the network, or a service provided by a central server or a cloud

based solution. Therefore as part of a rollout process it is important to consider the hardware

required in providing the monitoring and control capabilities envisaged. The first

component is the customer smart-meter, at present smart-meters are in the process of being

increasingly prominent in providing usage information to suppliers as part of the smart-

meter roadmap. However as a result of the manner, in which the energy market in the UK

is configured, the meters are provided by the energy suppliers and therefore neighbouring

customers may receive differing models of meter. Therefore a degree of interoperability is

required between differing versions of smart-meter, furthermore these meters may require

multiple communication channels for separating consumption data transmitted to the

supplier from control actions supplied from the network operator.

A second consideration refers to the devices responsible for performing data collection

points or controller services. The location, communication capabilities and hardware

configurations of these devices is important to consider. The self-organising concept

presented in this thesis considered agents which are not physically mobile and can be

connected to a permanent power supply and thus removing potential concerns for battery

life and energy efficiency. However it is entirely feasible that in a real-world deployment

certain agents may not have readily available access to a power supply and therefore are

battery operated. In this scenario the acts of the architecture to reduce message congestion

and communicative load will in turn have a positive impact on the battery life of those

components. A variety of agents with and without power supplies would change the

dynamic of the self-organising architecture. Certain agents would be prioritised over others

such that those agents running off a consumable power source are recognised as

components to manage more efficiently than others.

A final set of agents to consider in a real world implementation are the observer and

architect agents, these being centralised entities would either be physically located at a

control station on a server or hosted by a cloud computing service. In each case multiple

instances of these agents could be hosted on the same hardware are respond to different

network zones, for example on central control room may operate several domains. With

respect to the gateway agent, its purpose within the simulation was to interact with the

Matpower representation of the network and report voltage information back to the agent

227 Discussion

population. In a physical implementation it is not necessarily the case that such a stage

would be omitted as system modelling may form an important part of the control stage in

the form of state estimation. As previously indicated an optimisation approach may not be

feasible when processing attack information and issuing architecture transitions, but it does

form an important role in power system control. Maintaining access to a system model

updated with information from the agent population could be useful in running validation

assessments of planned control actions, or for the purposes of running optimisation

techniques. The gateway agent could also be co-located with the observer and the architect

and collect information from the agent population. Alternatively multiple network models

could be maintained at local controllers and therefore each controller will adopt

functionality used by the gateway agent.

9.4.2 Communication Infrastructure

Outside of a simulation environment the communication between elements of the

architecture have to be considered. At present deployed smart-meters in the UK

communicate data through infrastructure managed and monitored by the Data

Communications Company [143] and regulated by Ofgem. Therefore the core

communication infrastructure is in place and described in the following figure - Fig. 9. -

sourced from [143], indicating that the data is delivered through the wide area network

through to a set of users. On this basis it could be considered that the ICT infrastructure

would be capable of hosting such a system, as bandwidth availability will naturally increase

in the future and could accommodate a larger scale deployment of the architecture.

228 Discussion

Fig. 9.1 – Current Smart-meter Communication Structure

In the event of the implementation of a self-organising architecture the architect agent

would have to utilise this infrastructure to send the relevant messages to the customer layer

and to data collection points within the communication layer of the above diagram. The

performance monitoring information would likely be received by the network operator as

while the self-organising architecture predominantly impacts on the communication

architecture, those transitions are made for the benefit of the electrical network.

9.4.3 Security Considerations

All parties involved with utilising the infrastructure are obligated to operate under the smart

energy code as defined in [144] with authentication protocols outlined in [145]. One of the

primary concerns presented in the documentation is data access, Fig. 9. indicates that other

than the network operators and suppliers the data can be transmitted to third party users.

Therefore there is an authorisation step which involves user certification and encryption

key access to ensure that the process is not being exploited.

Other security concerns are present at the opposite end of the communication structure in

the link between the customer smart-meter and the wide area network. Controls will be

needed not only to validate that the smart-meter is a registered but also the content being

transmitted from it. While it is not be feasible to create a system which is capable of being

immune to all forms of cyber threat, defence mechanisms can be used to prevent attacks

from adversaries with a limited skill set or with limited resources, therefore reducing the

number of attack events which can bypass security procedures.

Finally the integrity of the smart-meters themselves could be vulnerable to malicious use.

In the presented research, compromised smart-meters acted as the launch platform for a

denial of service attack event. This represented the scenario whereby the firmware of the

device had been modified or malware installed which had the capability of sending a wave

of attack traffic to the controller. This may be more of an issue if the smart-meter supports

the use of open source software [146], while there are numerous benefits to the usage of

open source code, there are inherent risks of that code can be modified and exploited within

the meter itself. Open source software may extend to third party applications as the smart-

meter becomes more central in a home energy management context. The applications

would need to be moderated and verified before being released for public consumption to

prevent the distribution of malware or exploits. Furthermore the third party applications

229 Discussion

would need to be limited to certain levels of access with respect to which information they

can view or modify, and communications generated by the app should be restrained within

the home area network and not released into the wider communication enviroment.

 DEVELOPMENT POTENTIAL

Over the course of the research period a functioning self-organising architecture was

developed which successfully delivered performance improvements across several network

management criteria. However there are some potential improvements which could be

made if the research was carried forwards, these improvements would further enhance

value of the self-organising architecture.

9.5.1 Decision Making

The first development stage would focus on the decision making engine within the architect

agent – the version presented in this thesis contains fuzzy logic based recommendations

informed by performance monitoring data. This service can be enhanced through the

addition greater awareness of the physical properties of the network, for example voltage

data could become a further input into the decision making process. Therefore the architect

would be more likely to make larger scale transformations if it was aware of a deepening

voltage deviation and knew that such a transition would make a positive impact on voltage.

While voltage information was recorded and used for control purposes it did not form an

input to the decision making engine. This was a design choice which was made because the

architect agent could not influence the control algorithm, and was tasked with performing

structural reconfigurations within the agent population. Secondly the denial of service

attack was launched against the network layer of the architecture and therefore the

performance metrics were centred on responding to the cyber-threat. As with the

computational burden data the architect would need to be provided with the voltage

magnitude at the most severely affected bus and the rate of change of that voltage. To

provide such information an updated voltage monitoring mechanism would need to be

installed within the customer layer, such that it maintains a record of previous voltage

readings in the same manner that the communication metrics are monitored. This would

likely be implemented through the provision of an additional voltage control object rather

than internal agent behaviour as it was developed over the course of the presented research.

230 Discussion

In addition to the use of physical properties as method of informing the decision making

processes, it may also be beneficial to provide additional filtering and knowledge to the

transitions made as a result of the decision making. The research demonstrated that there

were instances where the actions of the architect introduced an aggregate agent into the

active population only to create an increase in computational burden rather than reducing

it. To avoid such a scenario the architect would need to perform a selection process on the

available dormant agents to ensure those that are activated would not become problematic.

Locational awareness may also be useful in sculpting transformation events, firstly in terms

of activing dormant agents which are in close proximity to the area of the network requiring

the additional aggregation capacity. Furthermore this location data could prove useful when

selecting substitute agents and structuring the initialisation stage of the process.

Once a decision has been completed a further point of expansion would be to add memory

of transition events to the architect agent – such that it can learn from previous decisions

and the effective impact they had. Therefore using former knowledge to inform future

decisions, or override recommendations from the fuzzy decision making engine –

alternatively the machine learning process could redefine the fuzzy membership functions

on the basis of previous transition events.

9.5.2 Modularity

A secondary development step would be to introduce greater modularity, as this would

improve the ability to evaluate a larger set of scenarios – especially when coupled with an

automated testing system as presented in the previous sub-section. A modular approach to

the development of the self-organising system improves the ability to perform comparison

studies between different networks, control algorithms and decision making methods

without having to rebuild a large percentage of the overall system. Furthermore if larger

elements of the system remain the same comparison between swapped modules become

more valid.

9.5.3 Automation

In addition to improvement the implementation of the functionality of the system, it would

also be beneficial to improve the automation of the testing process. Unlike conventional

power system simulation techniques where the system states are calculated based on the

physical properties and hours of simulation can be completed in seconds, the self-

organising architecture operates in real time. The multi-agent system operates inside a

231 Discussion

virtual machine on the workstation and is runs in a continuous fashion instead of discrete

time steps, and therefore a simulated hour requires an hour of actual runtime. This is

exacerbated by the additional time required to extract the information from the agent output

files and process the data. In order to improve this process a method of automating a test

regime would prove useful, to implement such a system a supervisory program would need

to be developed which could read from a list of test configurations and build the relevant

agent population and models. The program would then insert the correct files into the main

simulation directory to perform the desired test case, as illustrated in the following figure

presented in Fig. 9.2.

The presented automation process requires a supervisory application which has the

capability building files relevant to the set of cases needed and triggering the main

simulation. The first step is to load the series of test configurations which define the number

of tests to be implemented and the properties of each of those tests which may include the

following:

Source Network – This defines which network model is the test to be performed on the

supervisor program will set all references to components and model files within the

gateway agent such that at runtime the correct.

Fig. 9.2 – Structure of a System Automation Process

Test
Configuration

Start Load Test List

More tests
Remaining

End

No

Load Test
Configuration

Agent
Templates

Load Agent
Templates

Agent
Source Files

Build Source Files
Add Source Files to

Simulation

Trigger Main
Simulation

Start Run Simulation

Simulation
Results Files

Start Simulation
Timer

If Timer
Elapsed

End

End Main Simulation

Trigger Matlab Script

Start Process Results Files

Yes

Yes

Supervisory
Application

Self-Organising
Architecture Simulation

Matlab Store Simulation DataEnd
External and
Supporting Files

232 Discussion

 Agent Population – This defines which agents are required for the simulation and

the distribution of customers, aggregates and generator agents as contained within

the components file. The supervisor would read the components file and determine

which agents are needed.

 Attack Conditions – These are the settings applied by the error generator agent,

determining which attack is to be applied and the associated severity of that attack,

defining the number of attackers, targets, duration and quantity of attack events

taking place within the simulation.

 Network Properties - Additional settings determining the number of customer

agents willing to provide control and the level of control offered by those customers.

These properties may also include variations on the control approach, thresholds in

performance monitoring or in the decision making engine.

 Architecture Properties – The architecture properties include settings which

define the starting architecture in the form of control placement, aggregate capacity

and number of tiers. Settings may also involve alternate approaches to the decision

making engine and transition approaches

 Simulation Properties – Finally the simulation settings contains parameters which

sculpt the nature of the simulation, including the desired duration of the simulation,

directories for output files and post-simulation data processing scripts.

Once the configuration for a given test scenario has been processed by the supervisor it will

then need to construct an agent population which represents these settings. It will use the

components file as a guide to the quantities and initial set points for the entities involved in

the simulation. To perform this task the supervisor needs a set of agent templates, which it

then uses to build the agent population by inserting the correct parameters loaded from the

configuration into placeholders in the template. Completed agents are then placed inside

the simulation directory before the supervisor triggers a simulation. Once the required

runtime has elapsed the supervisor will then need to terminate the simulation and extract

the results files generated by each of those agents such that they are not over-written by

subsequent simulations. Finally the supervisor will need to call a Matlab script, to process

the raw data files and produce a set of results.

233 Discussion

 FURTHER RESEARCH

While the self-organising architecture completed in the process of this research

demonstrated the effectiveness of the concept and delivered improved resilience in the

presence of an attack event, there are additional uses and scope for such a system. The

following avenues for additional research building on the findings present cases for

widening the scope of potential applications and lead to further developments.

9.6.1 Attack Diversity

The first research path considerers the possibility for increasing the attack diversity, in the

current research the attack formats are based on low-rate denial of service attacks and

operate through targeting a volume of attack traffic at crucial elements of the agent

hierarchy. This strategy is a definitive attack on the communication network and leaves a

trace in the form of data traffic anomalies in the form of increased congestion,

unresponsiveness and reduced reactivity. Therefore the performance monitor has a

signature to detect. Other attack formats will leave a different impact on the system and

therefore require a different approach or an extension of the current decision making system.

Therefore the self-organising architecture will need to be enhanced to include additional

self-healing properties, these properties could include command validation stages, trust

levels between sensors and data collection points and enhanced communication protocols.

Further attack formats may be launched against the electrical component of the cyber-

physical system in the form or malware installed directly at the control point or the

controller. In this case the network traffic may not exhibit any anomalies and therefore an

additional level of continuous monitoring would need to be implemented on the various

modelled electrical components to detect deviations. This would add physical network data

to the performance monitoring input to the decision making engine and therefore more

informed transitional events can be executed.

9.6.2 Control Diversity

The network under investigation in this research focussed on a voltage control problem and

the control procedure is implemented through widespread demand side response. This

solution was created to demonstrate the impact of attack formats on a command structure

which relied on communication signals to trigger control actions and maintain demand

reduction until such time it could be relieved. Additional control algorithms should be

included in future developments of this work, so that the self-organising architecture can

234 Discussion

be assessed when attempting to maintain multiple network variables. These control

approaches may require the inclusion of additional controllable components within the

network configurations including transformers, energy storage, soft open points and

electric vehicles. A more diverse control base will increase the complexity and importance

of the control signals flowing through the communication network. It will also increase the

baseline level of traffic and lead to a system which is increasingly heavily loaded in the

absence of an attack, therefore increasing the reliance on the self-organising architecture to

reduce the computational burden. Furthermore if communication signals are lost or ignored

as a result of attack traffic the consequences for these components could be more significant

as these components may suffer damage if not controlled correctly.

In addition to introducing further algorithms to the simulation, additional control problems

could be considered with differing consequences should the network under attack fail to

mitigate the impacts of the attack. Scenarios can be evaluated such that the attack would

lead to equipment damage or outages, and therefore presenting the case that a self-

organising architecture could have economic value.

9.6.3 Network Diversity

A further approach would be to widen the range of networks upon which this concept is

applicable – in the presented research the self-organising architecture is applied to the

distribution level whereby smart-meters are determined to be the lowest level component.

This is presented within the context of a radial distribution network composed of 340

customers across four feeders – even within this voltage level there is a large range of

components, configurations and populations that can be considered. These additional

configurations may be used for differing control scenarios or to evaluate differing attack

strategies based on the components involved in the network.

A more rural network may contain fewer customers but would cover a larger geographical

area with greater risk of interference from natural barriers. While these networks may be

less likely to come under threat from a cyber-attack, the exposed nature of the components

may present different challenges through failure and maintenance accessibility. In terms

both of the electrical and communication networks. The performance monitoring aspect of

the self-organising system may be more useful in feeding information into a maintenance

schedule such that locations with limited accessibility which can only be observed remotely.

Furthermore it may be the case that the architecture is applied to a higher voltage level

235 Discussion

whereby instead of smart-meters being the lowest level component within the hierarchy,

that role could be assumed by substations and the scope of the architecture could be

translated to the transmission level. The core principles of the self-organising architecture

presented in this work are applicable to differing levels of the power system. Agent based

control mechanisms have been applied to microgrids and island systems and therefore

adding a level of self-organisation would also be a feasible extension.

9.6.4 Co-Simulation

A final set avenue for further research would be to add to the simulation environment

through the addition of modelling approaches for the communication layer. Interfacing a

communication simulation tool with the agent architecture would enable the ability to

model the latencies between nodes, and the properties of the ICT infrastructure, information

which in turn could be used to inform the decision making aspect of the system through

selecting agents closer to the point of failure in terms of communication distance to be

promoted rather than estimating that distance through response times.

This approach would also allow experimentation through evaluating communication

technologies and the effective range over which the system could be implemented – while

the current test configuration considers a customer population 340 customers, the

individual are less than a kilometre in length. Other environments may span a much wider

area and being able to model the impacts of communicating with sensor and controllable

entities which may have poor connectivity due to be being rural or under strong intermittent

interference would add depth and applicability to the functions of the self-organising

architecture.

9.6.5 Practical Experimentation

Aside from the set of expansions to the simulation element of the configuration, a different

path would be to introduce hardware into the testing environment – which could be applied

across differing aspects of the overall system. First of all considering the agents themselves

and separating them from a single host configuration, multiple agents could be installed on

raspberry pi style platforms. The interaction between physical components and simulated

representations may deliver differing phenomena as a result of the messages being

transmitted over a physical network and introducing additional properties involving actual

bandwidth and communication delays.

236 Discussion

A second avenue for introducing practical elements into the system is to include lab based

testing in the form of physical or emulated controllable load, generation and storage devices.

Therefore the operations completed by the architect agent aiming to perform actions to

minimise commutative load and computational burden can be seen to impact on real world

equipment.

 SUMMARY

This chapter documented an evaluation of the processes involved with developing the self-

organising architecture, discussing the design choices and potential limitations involved

with the both the system itself and the test framework. Furthermore this chapter considered

the potential implications for the research on the wider power systems community.

Additionally the challenges involved with deploying such as system in practice were

discussed from the perspective of the hardware, communication infrastructure and security

concerns. Finally the chapter presented as series of potential development avenues if the

self-organising architecture was to be enhanced for the purposes of improving future

research applications and improving the evaluation and testing framework to facilitate

additional experimentation.

Finally further research directions were suggested; directions which could further

demonstrate and enhance the value of self-organising architectures for use in smart grid

and over-arching power systems domains. Overall results were positive and exhibit

encouraging properties which could be further developed through the means discussed in

the chapter or used to build similar systems for alternate energy vectors or control problems.

237 Conclusions

Chapter 10: Conclusions

238 Conclusions

 OVERVIEW

The research presented in this thesis began with an investigation of differing multi-agent

architectures for the purposes of performing voltage control in a radial distribution network.

The investigation concluded that no single static architecture proved to be the most resilient

against all of the attack formats and therefore and indicated that a self-organising

architecture would be an appropriate solution to improving resilience. A subsequent

literature review supported the experimental evidence that self-organising architectures are

more applicable when being used to improve robustness. Consequently a self-organising

architecture was developed which featured three stages of operation. An initialisation state

satisfied the self-organising requirement of establishing an endogenous global order,

utilising mechanisms adapted from the EDETA and Tic-Tac-Toe Architecture solutions.

Furthermore a performance monitoring stage allowed the architecture to be continuously

aware of its state. Finally a fuzzy based decision making engine was implemented for the

purposes of translating performance data into effective architecture transitions. When

tested against a series of denial of service attacks, the self-organising architecture was able

to reduce the impact of the attack on the communication variables and also prevented

voltage control deterioration even under the most severe of tested attack formats.

This chapter outlines the key findings of the conducted research across the different stages

of the investigation process; it also discusses how the research objectives presented in the

first chapter have been fulfilled.

 KEY FINDINGS

The key findings and the contributions of the investigations conducted throughout the

course of this research are as follows.

1. The structure of a multi-agent architecture can influence its control and

communication performance. Levels of congestion, reactivity, message efficiency

and the ability to deliver control signals were all affected by the number of agents

in the architecture and the distribution of aggregation agents. Across the 16 different

control and communication architectures examined, no single design proved to be

the most effective for all performance metrics. This was also reflected in response

to handling an attack event, demonstrating that the robustness of a system was also

linked to the architecture design. Therefore a self-organising architecture which

239 Conclusions

could switch between configurations would be beneficial, especially with respect to

resistance to attacks.

2. A denial of service attack is able to prevent the dissemination of control signals as

a result of increasing message congestion at the controller layer by up to 16,000

messages. Consequently response times between controller and customer increased

by up to 8.2 seconds, therefore severing a control connection and triggering control

deterioration.

3. A novel self-organising architecture was developed for performing voltage control

in smart grids, adapting techniques from wireless communication, vehicle and

sensor networks. The developed architecture featured three operational stages and

could construct a stable starting configuration.

4. A fuzzy based decision making engine was developed which could analyse several

different performance metrics normalised into a single computational burden

indicator. The decision making engine could translate the indicator and its rate of

change into an architectural transition action.

5. Monitoring and responding to issues within the communication layer of a cyber-

physical smart grid can result in beneficial performance outcomes for control of

physical components.

6. The use of self-organisation is appropriate and beneficial for use within an agent

based network management system with respect to initialising a collection of agents,

forming connections between architectural tiers and preventing control

deterioration in the presence of a denial of service attack containing up to 24% of

the customer population.

7. The developed self-organising architecture was capable of reducing the

computational burden indicator by at least 64% and by over 90% in the majority of

examples. Therefore indicating applicability beyond cyber-security in processing

heavily loaded smart grid communication architectures.

240 Conclusions

 FULLFILLMENT OF RESEARCH OBJECTIVES

Three research objectives were set at the beginning of this thesis where are as follows:

1. Evaluate comparative performances across differing control and communication

architectures in the context of distribution network management with a view to

determining the potential role for implementing self-organisation. This

investigation aimed to determine what the benefits would be of providing self-

organisation within the control and communication architecture and why self-

organisation is an appropriate approach for cyber-security.

The first of the research objectives considered the evaluation of a range of control and

communication architectures involved with performing voltage control. The aim of the

evaluation was to determine the performance differences between the differing

architectures with respect to robustness to an attack event. Additional communication level

performance was also considered in terms of message congestion, reactivity, message

efficiency – and the ability to perform the voltage control objective. This investigation

discovered that, the structure of an architecture has a strong influence on the control,

communication and robustness performance, structures with a greater concentration of data

collection points exhibited stronger performance in terms of message congestion and

reactivity. Architectures with fewer aggregation agents performed stronger in terms of

message efficiency. In addition to the structure of the architecture, increasing the agent

population also created variations in performance in each of the examined criteria, as

scalability improved through increasing the number of aggregates.

Overall the results demonstrated that no single architecture design can deliver the strongest

performance across all scales and all of the recorded metrics. A total of 16 alternate control

and communication configurations were implemented and examined against

communication performance, control performance and robustness performance. Out of the

total set of configurations only the disaggregated architecture demonstrated poor

performance across a wider range of test scenarios and therefore was not considered for use

in the self-organising system development. This illustrates that the presence of data

aggregation points is crucial in developing smart grid agent architectures. The research

discovered that the most prominent driver for implementing self-organisation was in

response to failure or in the event of a cyber-attack, which was supported by self-organising

applications presented in literature as documented in chapter 4.

241 Conclusions

The conclusion for the first research objective was that there is definitive value in the use

of self-organising architectures specifically in response to unexpected events affecting the

agent population. A planning stage could design an architecture to favour specific

properties relevant to the control objective of the agent population or to account for an

estimated volume of communication load. However a cyber-attack event cannot be

adequately planned for and therefore developing an architecture with the capability to

respond to such an event would be an advantage.

2. Develop and implement an agent population with functioning self-organisational

properties including architecture formation, contemporaneous monitoring and

decision making.

The second objective required the development of a self-organising architecture with the

ability to determine its own initial configuration based on a set of input parameters, perform

continuous performance monitoring and effect appropriate reconfiguration actions. The

comparative metrics implemented in the fulfilment of objective 1, were translated into

performance monitoring criteria which acted as inputs to a decision making engine. The

development process was successful as all of the desired functions were implemented and

demonstrated to be functional. Furthermore the fulfilment of the objective illustrated that

developing an agent based self-organising architecture was feasible with current

technologies, and therefore future implementations have the potential for further

performance gains.

Three stages of operation were developed as part of the self-organising architecture, the

first of which was an initialisation stage which served as a functional method of connecting

customer agents with controllers and being able to distribute the connections between

individual controllers. This process was able to assign each customer and generation agent

a valid connection and no agents were left isolated during initialisation. Secondly a

performance monitoring stage extracted relevant information from the agent population

relating to communication performance. Individual agents monitored their own parameters

and any observed anomalies were reported to the architect agent, this system allowed

efficient delivery of error reports and a flexible approach to incorporating future

performance monitoring criteria. A final stage involved a fuzzy based decision making

engine which translated performance data into transitions which could be successfully

242 Conclusions

triggered by the architect agent. Each transition event formed a stable configuration and no

connections were dropped during the process and no communication signals were disrupted.

Overall this objective was fulfilled, as the implemented self-organising architecture was

able to perform the three stages of operation successfully, furthermore the agent population

interfaced with an external load flow engine modelling an electrical network. This therefore

ensured that the self-organising architecture was also capable of performing voltage control

and customer data collection in addition the self-organising properties.

3. Examine the performance of the developed self-organised system in the presence

of external network threats in the form of cyber-attack events with respect to control

and communication performance. These performances are also examined with

respect to a static architecture undergoing the same cyber-attack conditions with the

objective of learning which variables are affected by an ongoing attack. A further

learning outcome is to identify whether a communication variables have an impact

on the electrical performance of a network while under attack. To determine

whether the self-organising architecture can improve electrical performance by

improving communication layer performance.

The final objective evaluated the self-organising architecture when it was exposed to a

series of low rate denial of service attack events. From the series of tests applied to the self-

organising architecture it was concluded that smaller attack events, whereby 6% of the

customer population were perpetrating the denial of service attack the attack was not

significant enough to warrant the use of architecture transitions. As the attack was scaled

up to involve 24% of the customer population, without the assistance of self-organisation

control was lost to 50% of the electrical network under investigation. Whereas with the use

of self-organisation all customers received control signals to correct the voltage deviation,

demonstrating that the self-organising approach was capable of maintaining controllability

during a denial of service attack event. Additionally the results demonstrated that the self-

organising architecture was able to reduce the computational burden by at least 64% and

by 90% in the majority of cases, therefore illustrating that the performance advantages of

the self-organising architecture extend beyond the electrical layer. Finally these figures

indicated the correlation between correcting issues within the communication layer and the

resulting positive impacts on control performance.

243 Conclusions

 SUMMARY

In summary this research has demonstrated that the vision of increasing the amount

observability and controllability within future smart grids and enhancing the cyber-physical

infrastructure brings with it a set of new challenges. These challenges arise from the number

of components communicating data and requiring control signals, this in turn increases

amount of data flowing through the communication infrastructure. With the increased

reliance on ICT components, there is the further challenge created through the risk of cyber-

threats against the power system. The research determined that the application of a self-

organising architecture is an effective mechanism for reducing the consequences of facing

these challenges and one which offers the flexibility associated with future network

concepts. The work illustrated that a static architecture could suffer control deterioration as

a result of a denial of service attack, whereas a self-organising architecture could continue

to achieve the control objective. The self-organising approach has considerable room for

further research, especially with respect to processing additional cyber-threats which

remain an interesting and expanding research topic and where self-organising architectures

could one of the defensive tools in future developments.

244
Table List

References

[1] S. McArthur, P. Taylor, G. Ault, J. King, D. Athanasiadis, V. Alimisis and M. Czaplewski, “The

Autonomic Power System - Network operation and control beyond smart grids,” in 3rd IEEE

PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT

Europe), 2012 , Berlin, 2012.

[2] W. v. d. Hoek and M. Wooldridge, “Multi-Agent Systems,” in Handbook of Knowledge

Representation, Elselvier , 2008, pp. 887-928.

[3] G. Ali, N. A. Shaikh and A. W. Shaikh, “A Research Survey of Software Agents and

Implementation Issues in Vulnerability Assessment and Social Profiling Models,” Australian

Journal of Basic and Applied Sciences, vol. 4, no. 3, pp. 442-449, 2010.

[4] N. R. Jennings and M. Wooldridge, “Applications of Intelligent Agents,”

http://maya.cs.depaul.edu/~classes/cs480/readings/applications-of-intelligent-agents-

jennings-wooldridge.pdf, London, 1998.

[5] Q. H. Mahmoud, “Software Agents: Characteristics and Classification,”

http://www.cis.uoguelph.ca/~qmahmoud/post/agentsoft.pdf.

[6] G. M. Marakas, “Chapter 17: Intelligent Software Agents,” in Decision Support Systems in the

21st Century, Second ed., Prentice-Hall, 2003.

[7] R. Deters, “Scalability & Multi-Agent Systems,” in 2 nd International Workshop Infrastructure

for Agents, MAS and Scalable MAS. 5th Int. conference on Autonomous Agents, 2001.

[8] A.-R. A. Khatib, Internet--based Wide Area Measurement Applications in Deregulated Power

Systems, Blacksburg, Virginia: PhD Thesis: Virginia Polytechnic and State University, 2002.

[9] J. Solanki and N. Schulz, “Multi-Agent System for Islanded Operation of Distribution Systems,”

Power Systems Conference and Exposition, 2006. PSCE '06. 2006 IEEE PES. , 2006.

[10] H. Al-Mohannadi, Q. Mirza and A. Namanya, “Cyber-Attack Modeling Analysis Techniques: An

Overview,” in IEEE International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW), , Vienna, 2016.

[11] G. Cisotto and L. Badia, “Cyber security of smart grids modeled through epidemic models in

cellular automata,” in 2016 IEEE 17th International Symposium on A World of Wireless, Mobile

and Multimedia Networks (WoWMoM), , Coimbra, Portugal, 2016.

[12] G. N. Ericsson, “Cyber Security and Power System Communication—Essential Parts of a Smart

Grid Infrastructure,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1501-1507, 2010.

[13] F. Cohen, “The Smarter Grid,” IEEE Security & Privacy, vol. 8, no. 1, pp. 60-63, 2010.

245
Table List

[14] S. Li, Y. Yılmaz and X. Wang, “Quickest Detection of False Data Injection Attack in Wide-Area

Smart Grids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2725 - 2735, 2015.

[15] L. Jia, J. Kim, R. J. Thomas and L. Tong, “Impact of Data Quality on Real-Time Locational

Marginal Price,” IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 627 - 636, 2014.

[16] X. Liu, Z. Bao, D. Lu and Z. Li, “Modeling of Local False Data Injection Attacks With Reduced

Network Information,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1686 - 1696, 2015.

[17] J. Hong, C.-C. Liu and M. Govindarasu, “Integrated Anomaly Detection for Cyber Security of the

Substations,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1643 - 1653, 2014.

[18] Y. Yang, K. McLaughlin, S. Sezer, T. Littler, E. G. Im, B. Pranggono and H. F. Wang,

“Multiattribute SCADA-Specific Intrusion Detection System for Power Networks,” IEEE

Transactions on Power Delivery, vol. 29, no. 3, pp. 1092-1102, 2014.

[19] Y. Zhang, L. Wang, Y. Xiang and C.-W. Ten, “Power System Reliability Evaluation With SCADA

Cybersecurity Considerations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1707 - 1721,

2015.

[20] J. Bialek, “Recent failures - Recent failures in US/Canada, Scandinavia and Italy,” in How Secure

are Britain's Electricity Supplies?, London, 2004.

[21] Y. Chakhchoukh and H. Ishii, “Coordinated Cyber-Attacks on the Measurement Function in

Hybrid State Estimation,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2487 - 2497,

2015.

[22] S. Mousavian, J. Valenzuela and J. Wang, “A Probabilistic Risk Mitigation Model for Cyber-

Attacks to PMU Networks,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 156 - 165,

2014.

[23] H. M. Khalid and J. C. H. Peng, “A Bayesian Algorithm to Enhance the Resilience of WAMS

Applications Against Cyber Attacks,” IEEE Transactions on Smart Grid, vol. 7, no. 4, pp. 2026-

2037, 2016.

[24] Y. Isozaki, S. Yoshizawa, Y. Fujimoto, H. Ishii, I. Ono, T. Onoda and Y. Hayashi, “Detection of

Cyber Attacks Against Voltage Control in Distribution Power Grids With PVs,” IEEE Transactions

on Smart Grid, vol. 7, no. 4, pp. 1824 - 1835, 2016.

[25] K. R. Davis, C. M. Davis, S. A. Zonouz, R. B. Bobba, R. Berthier, L. Garcia and P. W. Sauer, “A

Cyber-Physical Modeling and Assessment Framework for Power Grid Infrastructures,” IEEE

Transactions on Smart Grid, vol. 6, no. 5, pp. 2464 - 2475, 2015.

[26] R. Liu, C. Vellaithurai, S. S. Biswas, T. T. Gamage and A. K. Srivastava, “Analyzing the Cyber-

Physical Impact of Cyber Events on the Power Grid,” IEEE Transactions on Smart Grid, vol. 6,

no. 5, pp. 2444 - 2453, 2015.

246
Table List

[27] C. Vellaithurai, A. Srivastava, S. Zonouz and R. Berthier, “CPIndex: Cyber-Physical Vulnerability

Assessment for Power-Grid Infrastructures,” IEEE Transactions on Smart Grid, vol. 6, no. 2, pp.

566-575, 2015.

[28] D. Kushner, “The Real Story of Stuxnet,” IEEE Spectrum, pp. Online:

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet, 2013 Feburary 26.

[29] D. Storm, “Computer World,” 27 January 2016. [Online]. Available:

http://www.computerworld.com/article/3026609/security/no-israels-power-grid-wasnt-

hacked-but-ransomware-hit-israels-electric-authority.html. [Accessed 30 July 2016].

[30] Electricity Information Sharing and Analysis Centre, “Analysis of the Cyber Attack on the

Ukranian Power Grid,” E-ISAC. Available online: https://ics.sans.org/media/E-

ISAC_SANS_Ukraine_DUC_5.pdf, 2016.

[31] L. Jun, Z. Shunyi, Z. Zailong and W. Pan, “A Novel Network Management Architecture for Self-

organizing Network,” in International Conference on Networking, Architecture, and Storage,

2007. NAS 2007. , Guilin, 2007.

[32] J. Magee and J. Kramer, “Dynamic structure in software architectures,” in In Proceedings of the

Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering, 1996.

[33] J. Magee and J. Kramer, “Self organising software architectures,” in ISAW '96 Joint proceedings

of the second international software architecture workshop (ISAW-2), 1996.

[34] W. Lu, Y. Gu, R. Prasad, A. Lo and I. Niemegeers, “A Self-organized Personal Network

Architecture,” in Third International Conference on Networking and Services, 2007. ICNS.,

2007.

[35] M. Niazi and S. Laghari, “An Intelligent Self-Organizing Power-Saving Architecture: An Agent-

based Approach,” in 2012 Fourth International Conference on Computational Intelligence,

Modelling and Simulation (CIMSiM), Kuantan, 2012.

[36] M. Cherif, S. Senouci and B. Ducourthial, “Vehicular network self-organizing architectures,” in

2009 5th IEEE GCC Conference & Exhibition , Kuwait City, 2009.

[37] O. Aliu, A. Imran, M. Imran and B. Evans, “A Survey of Self Organisation in Future Cellular

Networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 336 - 361, 2013.

[38] G. D. M. Serugendo, M.-P. Gleizes and A. Karageorgos, “Self-organization in multi-agent

systems,” Knowl. Eng. Rev., vol. 20, no. 2, pp. 165-189, 2005.

[39] A. Abdrabou, “A Wireless Communication Architecture for Smart Grid Distribution Networks,”

IEEE Systems Journal, vol. PP, no. 99, pp. 1 - 11, 2014.

247
Table List

[40] S. Bavarian, L. Lampe, C. Siew, S. Lancashire and K. Adeleye, “Leveraging the smart metering

infrastructure in distribution automation,” in 2012 IEEE Third International Conference on

Smart Grid Communications, Tainan, 2012.

[41] S. Seidi Khorramabadi and A. Bakhshai, “Intelligent Control of Grid-connected Microgrids: An

Adaptive Critic-based Approach,” IEEE Journal of Emerging and Selected Topics in Power

Electronics, vol. 99, no. PP, p. 1, 2014.

[42] A. Godarzi, S. Niaki, F. Ahmadkhanlou and R. Iravani, “Local and global optimization of

exportable vehicle power based smart microgrid,” in 2011 IEEE PES Innovative Smart Grid

Technologies (ISGT), , Anaheim, CA, 2011.

[43] P. Vrba, V. Marik, P. Siano, P. Leitao, G. Zhabelova, V. Vyatkin and T. Strasser, “A Review of

Agent and Service-Oriented Concepts Applied to Intelligent Energy Systems,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 3, pp. 1890 - 1903, 2014.

[44] T. Logenthiran, D. Srinivasan, A. Khambadkone and H. Aung, “Scalable Multi-Agent System

(MAS) for operation of a microgrid in islanded mode,” in 2010 Joint International Conference

on Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India, , New Delhi,

2010.

[45] L. Korba and R. Song, “Modelling and Simulating the Scalability of a Multi-Agent Application

System,” National Reseach Council of Canada, 2002.

[46] K. Chmiel, M. Gawinecki, P. Kaczmarek, M. Szymczak, M. Paprzycki, B. C. Pierce and D. N.

Turner, “Efficiency of the JADE agent platform,” Scientific Programming, vol. 12, no. 2, pp. 159-

172 , 2005.

[47] L. C. Lee, H. S. Nwana, D. T. Ndumu and P. D. Wilde, “The stability, scalability and performance

of multi-agent Systems,” BT Technology J, vol. 16, no. 3, pp. 94-103, 1998.

[48] G. McKinstry, S. Galloway and I. Kockar, “An initial assessment of the potential impact of smart

metering on a decentralised energy network,” in 2010 45th International Universities Power

Engineering Conference, Cardiff, Wales, 2010.

[49] V. Alimisis, C. Piacentini, J. King and P. Taylor, “Operation and Control Zones for Future

Complex Power Systems,” in 2013 IEEE Green Technologies Conference, Denver, CO, 2013.

[50] P. Papadopoulos, N. Jenkins, L. Cipcigan, I. Grau and E. Zabala, “Coordination of the Charging

of Electric Vehicles Using a Multi-Agent System,” IEEE Transactions on Smart Grid, vol. 4, no. 4,

pp. 1802-1809, 2013.

[51] C.-X. Dou and B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE

Transactions on Smart Grid, vol. 4, no. 2, pp. 771-778, 2013.

248
Table List

[52] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci

and T. Funabashi, “Multi-Agent Systems for Power Engineering Applications—Part I: Concepts,

Approaches, and Technical Challenges,” Transactions on Power Systems, vol. 22, no. 4, pp.

1743-1752, 2007.

[53] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou, F. Ponci and T. Funabashi,

“Multi-Agent Systems for Power Engineering Applications—Part II: Technologies, Standards,

and Tools for Building Multi-agent Systems,” IEEE Transactions On Power Systems, vol. 22, no.

4, pp. 1753 - 1759, 2007.

[54] T. Logenthiran, N. U. o. S. T. Dept. of Electr. & Comput. Eng., D. Srinivasan, A. Khambadkone

and H. Aung, “Scalable Multi-Agent System (MAS) for operation of a microgrid in islanded

mode,” in 2010 Joint International Conference on Power Electronics, Drives and Energy

Systems (PEDES) & 2010 Power India, New Delhi, 2010.

[55] E. Cortese, F. Quarta and G. Vitaglione, “Scalability and performance of jade message

transport system,” in Autonomous Agents and Multiagent Systems (AAMAS), Bologna, 2002.

[56] A. Prostejovsky, W. Lepuschitz, T. Strasser and M. Merdan, “Autonomous service-restoration

in smart distribution grids using Multi-Agent Systems,” 2012 25th IEEE Canadian Conference

on Electrical & Computer Engineering (CCECE), 2012.

[57] M. Manbachi, M. Nasri, B. Shahabi, H. Farhangi, A. Palizban, S. Arzanpour, M. Moallem and D.

Lee, “Real-Time Adaptive VVO/CVR Topology Using Multi-Agent System and IEC 61850-Based

Communication Protocol,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 587-597,

2014.

[58] C. Colson and M. Nehrir, “Comprehensive Real-Time Microgrid Power Management and

Control With Distributed Agents,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 617-627,

2013.

[59] P. Nguyen, W. Kling and P. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-

Based Functions in Smart Grids,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 568-576,

2013.

[60] F. Ren, M. Zhang and D. Sutanto, “A Multi-Agent Solution to Distribution System Management

by Considering Distributed Generators,” IEEE Transactions on Power Systems, vol. 28, no. 2,

pp. 1442-1451, 2013.

[61] E. Karfopoulos and N. Hatziargyriou, “A Multi-Agent System for Controlled Charging of a Large

Population of Electric Vehicles,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 1196-

1204, 2013.

[62] Y. Xu, W. Liu and J. Gong, “Stable Multi-Agent-Based Load Shedding Algorithm for Power

Systems,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2006-2014, 2011.

249
Table List

[63] B. Horling and V. Lesser, “A Survey of Multi-Agent Organizational Paradigms,” The Knowledge

Engineering Review, pp. 281-316, 2005.

[64] E. Negeri, N. Baken and M. Popov, “Holonic Architecture of the Smart Grid,” Smart Grid and

Renewable Energy, vol. 4, no. 2, pp. 202-212, 2013.

[65] J. Zhou, R. Hu and Y. Qian, “Scalable Distributed Communication Architectures to Support

Advanced Metering Infrastructure in Smart Grid,” IEEE Transactions on Parallel and Distributed

Systems, vol. 23, no. 9, pp. 1632-1642, 2012.

[66] Y. Wang, P. Yemula and A. Bose, “Decentralized Communication and Control Systems for

Power System Operation,” IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 885-893, 2014.

[67] J. Pérez, J. Díaz, C. Vidal, D. Rodríguez and D. Fernández, “Self-Balancing Distributed Energy in

Power Grids: An Architecture Based on Autonomic Computing,” in 2014 47th Hawaii

International Conference on System Sciences (HICSS) , Waikoloa, HI, 2014.

[68] T. Nagata, Y. Tao, H. Sasaki and H. Fujita, “A multiagent approach to distribution system

restoration,” in IEEE Power Engineering Society General Meeting, 2003,, 2003.

[69] V. Giordano, F. Gangale, G. Fulli and M. S. Jiménez, “Smart Grid projects in Europe: lessons

learned and current developments,” European Commission, Joint Research Centre: Institute

for Energy, Available online:

https://ses.jrc.ec.europa.eu/sites/ses/files/documents/smart_grid_projects_in_europe.pdf,

2011.

[70] Scottish and Southern Energy, NINES: Northern Isles New Energy Solutions - Overview

Presentation, Available Online: http://www.ninessmartgrid.co.uk/wp-

content/uploads/2013/05/NINES-Project-Overview-Presentation.pdf, 2012.

[71] G. Ault, D. Frame, S. Gill, I. Kockar, M. Dolan, O. Anaya-Lara, S. Galloway, B. O'Neill, C. Foote

and A. Svalovs, “Northern Isles New Energy Solutions: Active network management stability

limits,” in 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid

Technologies (ISGT Europe), Berlin, 2012.

[72] K. Svehla, “Home space and water heatiner aspects of the SSE Shetland NINES Project,”

University of Strathclyde Energy Systems Research Unit: Available Online:

http://www.ninessmartgrid.co.uk/wp-content/uploads/2013/06/Home-Space-and-Water-

Heating-Aspects-of-the-SSE-Shetland-NINES-Project.pdf, 2012.

[73] Electricity North West, “Low Votlage Network Solutions: A First Tier Low Carbon Networks

Fund Project. Closedown Report,” Electicity North West. Available Online:

http://www.enwl.co.uk/docs/default-source/future-low-voltage/lv-network-solutions-close-

down-june-14-v4-1-final.pdf?sfvrsn=2, 2014.

250
Table List

[74] T. Gozel and A. Navarro, “Deliverable 3.5 “Creation of aggregated profiles with and without

new loads and DER basedon monitored data”,” University of Manchester: Available Online -

http://www.enwl.co.uk/docs/default-source/future-low-voltage/university-of-manchester-

appendix-h.pdf?sfvrsn=2, 2014.

[75] S. Kaushik, P. Bale, R. Aggarwal, M. Dale, M. Redfern and A. Smyth, “Project SoLa BRISTOL and

the “ecohome”,” in 2013 48th International Universities' Power Engineering Conference

(UPEC), Dublin, 2013.

[76] S. Kaushik, M. Dale, R. Aggarwal, A. Smyth, M. Redfern and K. Waite, “Project SoLa BRISTOL

migration from "ecohome" to "integrated homes",” in 2014 49th International Universities

Power Engineering Conference (UPEC), Cluj-Napoca, 2014.

[77] Low Carbon Networks Fund, “Low Carbon Networks Fund Full Submission Pro Forma,” Low

Carbon Networks Fund - Available Online: https://www.ofgem.gov.uk/ofgem-

publications/91889/appendix7publish.pdf, 2011.

[78] GRID4EU coordination team, “Grid4EU Innovation for Energy Networks,” GRID4EU

coordination team, Available Online: http://grid4eu.blob.core.windows.net/media-

prod/29375/grid4eu-final-report_normal-res.pdf, 2016.

[79] Grid4EU , “dD1.1 Demo 1 - Advanced MV network operations using a multi-agent system,”

Grid4EU, Available Online: http://grid4eu.blob.core.windows.net/media-

prod/6578/Grid4EU_dD1.1_Demo_1_V1.0.pdf, 2012.

[80] Web2Energy, “Managemt summary of the project Web2Energy,” 2012. [Online]. Available:

https://www.web2energy.com/results/management-

summary/?L=%2Fproc%2Fself%2Fenviron%3Fprint%3D1%3Fprint%3D1%3Fprint%3D1%3Fprin

t%3D1. [Accessed 28 Feburary 2017].

[81] UPGrid Project Consortium, “Internet of Energy,” Internet of Energy, Available Online:

http://upgrid.eu/wp-content/uploads/2016/04/UPGRID_Project-Presentation.pdf, 2016.

[82] P. M. Nunes, P. G. Matos, P. Pereira, P. Felício, A. Botelho, J. Guisado, G. Pires, J. Moreira and

Y. Ahmad, “Upgrid Portuguese demo — Market challenges (in) the power grid,” in Cired

Workshop, Helsinki, 2016.

[83] A. Blaver and P. Italiano, “Perth Solar City Annual Report,” Australian Government Smart

Cities, Perth. Available Online:

http://perthsolarcity.com.au/resources/Perth_Solar_City_Annual_Report_2012_low_res.pdf,

2012.

[84] Australian Goverment: Department of Resources Energy and Tourism, “Final Report of the

Lessons and Highlights of the Solar Cities Program,” Australian Goverment: Department of

251
Table List

Resources Energy and Tourism, Available Online:

https://industry.gov.au/Energy/EnergyEfficiency/Documents/solar-cities-journey.pdf, 2013.

[85] AEP Ohio, “Final Technical Report,” AEP Ohio, Available Online:

https://www.smartgrid.gov/files/AEP_Ohio_DE-OE-0000193_Final_Technical_Report_06-23-

2014.pdf, 2014.

[86] K. V. Meter, “Moving from Conventional to Real Time Cyber-Security,” Lockheed Martin,

Available Online:

http://www.aertc.org/conference2010/speakers/AEC%202010%20Session%202/2C%20Smart

%20Networks%20II%20Cybersecurity/Kenneth%20Van%20Meter/van%20meter%20presSECU

RED.pdf, 2010.

[87] Symantec, “2016 Internet Security Threat Report - Volume 21 April 2016,” Symantec, 2016.

[88] Y. Liu, P. Ning and M. K. Reiter, “False data injection attacks against state estimation in electric

power grids,” in Proceedings of the 16th ACM conference on Computer and communications

security, New York, 2009.

[89] J. Kim and L. Tong, “On Topology Attack of a Smart Grid: Undetectable Attacks and

Countermeasures,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 7, pp. 1294

- 1305, 2013.

[90] X. Liu and Z. Li, “False Data Attacks Against AC State Estimation With Incomplete Network

Information,” IEEE Transactions on Smart Grid , vol. PP, no. 99, pp. 1-10, 2016.

[91] O. Kosut, L. Jia and R. J. Thomas, “Limiting false data attacks on power system state

estimation,” in 44th Annual Conference on Information Sciences and Systems (CISS), 2010 44th

Annual Conference on, Princeton University, 2010.

[92] ICS-CERT, “ICS Focused Malware (Update A),” 27 June 2014. [Online]. Available: https://ics-

cert.us-cert.gov/alerts/ICS-ALERT-14-176-02A. [Accessed 3 10 2016].

[93] ICS-CERT, “Ongoing Sophisticated Malware Campaign Compromising ICS (Update E),” 2 March

2016. [Online]. Available: https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-281-01B. [Accessed

3 October 2016].

[94] D. Allan, “Was attack on BBC website the biggest volley of DDoS fire ever seen?,” 11 January

2016. [Online]. Available: http://www.techradar.com/news/internet/attack-against-bbc-

website-was-the-biggest-volley-of-ddos-fire-ever-seen--1312864. [Accessed 3 October 2016].

[95] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of service attacks and

counter strategies,” IEEE/ACM Transactions on Networking , vol. 14, no. 4, pp. 683 - 696, 2006.

252
Table List

[96] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun and K. Long, “On a Mathematical Model for Low-Rate

Shrew DDoS,” IEEE Transactions on Information Forensics and Security, vol. 9, no. 7, pp. 1069 -

1083, 2014.

[97] S. Ingram, S. Probert and K. Jackson, “The Impact of Small Scale Embedded Generation on the

Operating Parameters of Distribution Networks,” PB Power, 2003.

[98] Customer-Led Network Revolution, “Customer-Led Network Revolution,” [Online]. Available:

http://www.networkrevolution.co.uk/resources/project-data/.

[99] National Grid, Grid Code Issue 5 Revision 7, Available from:

http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=32449: National Grid,

2014.

[100] IEEE-SA Standards Board, “IEEE Recommended Practice for Monitoring Electric Power Quality,”

IEEE, 2009.

[101] C. D. Cameron, P. C. Taylor and C. Patsios, “On The Benefits of Using Self-Organising Multi-

Agent Architectures in Network Management,” in 2015 International Symposium on Smart

Electric Distribution Systems and Technologies (EDST), Vienna, 2015.

[102] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer and H. Schmeck, “Towards a generic

observer/controller architecture for Organic Computing,” in Informatik für Menschen - Band 1,

GI-Edition, B. K. Verlag, Ed., 2006, pp. 112-119.

[103] R. Pathak, P. Hu, J. Indulska, M. Portmann and W. L. Tan, “Towards efficient opportunistic

communications: A hybrid approach,” in 2013 IEEE International Conference on Pervasive

Computing and Communications Workshops (PERCOM Workshops), , San Diego, CA, 2013.

[104] T. Harrold and A. Nix, “Capacity enhancement using intelligent relaying for future personal

communication systems,” in 52nd Vehicular Technology Conference, 2000. IEEE-VTS Fall VTC

2000. , Boston, MA, 2000.

[105] P. Kulkarni, S. Gormus, Z. Fan and B. Motz, “A self-organising mesh networking solution based

on enhanced RPL for smart metering communications,” in 2011 IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),, Lucca, 2011.

[106] R. Litjens, F. Gunnarsson, B. Sayrac, K. Spaey, C. Willcock, A. Eisenblatter, B. Gonzalez

Rodriguez and T. Kurner, “Self-Management for Unified Heterogeneous Radio Access

Networks,” in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring),, Dresden, 2013.

[107] ETSI - European Telecommunications Standards Institute, “3GPP TS 32.101:

Telecommunication management; Principles and high level requirements,” ETSI - European

Telecommunications Standards Institute, Available Online:

http://www.etsi.org/deliver/etsi_ts/132100_132199/132101/12.00.00_60/ts_132101v120000

p.pdf, 2014.

253
Table List

[108] A. Eisenblatter, B. Gonzalez Rodriguez, F. Gunnarsson, T. Kurner, R. Litjens, B. Sas, B. Sayrac, L.

Schmelz and C. Willcock, “Integrated self-management for future radio access networks:

Vision and key challenges,” in 2013 Future Network and Mobile Summit

(FutureNetworkSummit), Lisboa, 2013.

[109] C. Frenzel, S. Lohmuller and L. Schmelz, “Dynamic, context-specific SON management driven

by operator objectives,” in 2014 IEEE Network Operations and Management Symposium

(NOMS), , Krakow, 2014.

[110] ETSI - European Telecommunications Standards Institute, “Telecommunication management;

Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference

Point (IRP); Information Service (IS). Version 11.7.0,” ESTI, Available

online:http://www.etsi.org/deliver/etsi_ts/132500_132599/132522/11.07.00_60/, 2013.

[111] T. Ojha, M. Khatua and S. Misra, “Tic-Tac-Toe-Arch: a self-organising virtual architecture for

Underwater Sensor Networks,” Wireless Sensor Systems, IET, vol. 3, no. 4, pp. 307-316, 2013.

[112] J. Wang, D. Li, M. Zhou and D. Ghosal, “Data Collection with Multiple Mobile Actors in

Underwater Sensor Networks,” in ICDCS '08. 28th International Conference on Distributed

Computing Systems Workshops, 2008., Beijing, 2008.

[113] S. Roy, P. Arabshahi, D. Rouseff and W. Fox, “Wide area ocean networks: architecture and

system design considerations,” in WUWNet '06 Proceedings of the 1st ACM international

workshop on Underwater networks, Los Angeles, CA, 2006.

[114] J. Capella, A. Bonastre, R. Ors and S. Climent, “A New Energy-Efficient, Scalable and Robust

Architecture for Wireless Sensor Networks,” in 2009 3rd International Conference on New

Technologies, Mobility and Security (NTMS), , Cairo, 2009.

[115] J. Capella, A. Bonastre, J. Serrano and R. Ors, “A New Robust, Energy-efficient and Scalable

Wireless Sensor Networks Architecture Applied to a Wireless Fire Detection System,” in WNIS

'09. International Conference on Wireless Networks and Information Systems, 2009., Shanghai,

2009.

[116] S. Climent, J. V. Capella, N. Meratnia and J. J. Serrano, “Underwater Sensor Networks: A New

Energy Efficient and Robust Architecture,” Sensors , vol. 12, no. 1, pp. 704-731, 2012.

[117] F. Atero, J. Vinagre, J. Ramiro and M. Wilby, “A low energy and adaptive routing architecture

for efficient field monitoring in heterogeneous wireless sensor networks,” in 2011

International Conference on High Performance Computing and Simulation (HPCS),, Istanbul,

2011.

[118] W. Narzt, U. Wilflingseder, G. Pomberger, D. Kolb and H. Hortner, “Self-organising congestion

evasion strategies using ant-based pheromones,” IET Intelligent Transport Systems, vol. 4, no.

1, pp. 93-102, 2010.

254
Table List

[119] H. Prothmann, H. Schmeck, S. Tomforde, J. Lyda, J. Hahner, C. Muller-Schloer and J. Branke,

“Decentralised Route Guidance in Organic Traffic Control,” in 2011 Fifth IEEE International

Conference on Self-Adaptive and Self-Organizing Systems (SASO),, Ann Arbour, MI, 2011.

[120] M. Cherif, S. Senouci and B. Ducourthial, “A new framework of self-organization of vehicular

networks,” in GIIS '09. Global Information Infrastructure Symposium, 2009. , Hammemet,

2009.

[121] A. Farahani, H. Sadeghian, M. Abbaspour and E. Nazemi, “A model for autonomic vehicular Ad

hoc networks,” Global Journal on Technology, vol. 1, pp. 578-584, 2012.

[122] T. Preisler and W. Renz, “Scalability and robustness analysis of a multi-agent based self-healing

resource-flow system,” in 2012 Federated Conference on Computer Science and Information

Systems (FedCSIS), , Wroclaw, 2012.

[123] A. Sujil, S. Agrwal and R. Kumar, “Centralized multi-agent self-healing power system with super

conducting fault current limiter,” in 2013 IEEE Conference on Information & Communication

Technologies (ICT), , Jeju Island, 2013.

[124] D. Ductegor, “An agent-based wide area protection scheme for self-healing grids,” in 2011 IEEE

PES Conference on Innovative Smart Grid Technologies - Middle East (ISGT Middle East), ,

Jeddah, 2011.

[125] G. Zhabelova and V. Vyatkin, “Multi-agent Smart Grid Automation Architecture based on IEC

61850/61499 Intelligent Logical Nodes,” IEEE Transactions on Industrial Electronics, 2011.

[126] R. Gupta, D. Jha, V. Yadav and S. Kumar, “A multi-agent based self-healing smart grid,” in 2013

IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC),, Kowloon, 2013.

[127] M. Zadeh and M. seyyedi, “A self-healing architecture for web services based on failure

prediction and a multi agent system,” in 2011 Fourth International Conference on the

Applications of Digital Information and Web Technologies (ICADIWT),, Stevens Point, WI, 2011.

[128] R. Pegoraro, H. Filho, M. Sacoman and J. Rosario, “A Self-Healing Architecture for Web Service-

Based Applications,” in 11th IEEE International Conference on Computational Science and

Engineering Workshops, 2008. CSEWORKSHOPS '08. , San Paulo, 2008.

[129] K. G. K. D. M. J. Riadh Ben Halima, “Providing Predictive Self-Healing for Web Services: A QoS

Monitoring and Analysis-based Approach,” oumal of Information Assurance and Security, vol.

3, pp. 175-184, 2008.

[130] U. Reiner, C. Elsinger and T. Leibfried, “Distributed self organising Electric Vehicle charge

controller system: Peak power demand and grid load reduction with adaptive EV charging

stations,” in 2012 IEEE International Electric Vehicle Conference (IEVC), , Greenville, SC, 2012.

255
Table List

[131] M. Di Bisceglie, C. Galdi, A. Vaccaro and D. Villacci, “Cooperative sensor networks for voltage

quality monitoring in smart grids,” in PowerTech, 2009 IEEE Bucharest, Bucharest , 2009.

[132] S. Srivastava, S. Suryanarayanan, P. Ribeiro, D. Cartes and M. Stcurer, “A conceptual power

quality monitoring technique based on multi-agent systems,” in Proceedings of the 37th

Annual North American Power Symposium, 2005. , 2005.

[133] H. Liu, Y. Chen, M. C. Chuah and J. Yang, “Towards self-healing smart grid via intelligent local

controller switching under jamming,” in 2013 IEEE Conference on Communications and

Network Security (CNS), National Harbour, MD, 2013.

[134] P. Casey, N. Jaber and K. Tepe, “Design and implementation of a cross-platform sensor

network for smart grid transmission line monitoring,” in 2011 IEEE International Conference on

Smart Grid Communications (SmartGridComm), , Brussels, 2011.

[135] C. Frenzel, S. Lohmuller and L. Schmelz, “SON management based on weighted objectives and

combined SON Function models,” in 2014 11th International Symposium on Wireless

Communications Systems (ISWCS), Barcelona, 2014.

[136] R. B. Halima, K. Guennoun, K. Drira and M. Jmaiel, “Providing Predictive Self-Healing for Web

Services: A QoS Monitoring and Analysis-based Approach,” oumal of Information Assurance

and Security, vol. 3, pp. 175-184, 2008.

[137] C. Gao, PhD Thesis: Voltage Control in Distribution Networks using On-Load Tap Changer

Transformers, Bath: Department of Electronic and Electrical Engineering University of Bath,

2013.

[138] ZigBee Alliance, “ZigBee Smart Energy Profile Specification,” ZigBee Standards Organization: ,

2008.

[139] T. R. Burchfield, S. Venkatesan and D. Weiner, “Maximizing Throughput in ZigBee Wireless

Networks through Analysis, Simulations and Implementations,” in Proceedings of the

International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks,

Santa Fe, 2007.

[140] M. Farooq and T. Kunz, “On Determining Bandwidth Usage Threshold to Support Real-Time

Multimedia Applications in Wireless Multimedia Sensor Networks,” in 2013 27th International

Conference on Advanced Information Networking and Applications Workshops (WAINA),

Barcelona, 2013.

[141] T. Abdullah, L. Mhamdi, B. Pourebrahimi and K. Bertels, “Resource Discovery with Dynamic

Matchmakers in Ad Hoc Grid,” in ICONS '09. Fourth International Conference on Systems, 2009,

Gosier, Guadeloupe, 2009.

256
Table List

[142] S. Naaz, A. Alam and R. Biswas, “Effect of different defuzzification methods in a fuzzy based

load balancing application,” IJCSI International Journal of Computer Science Issues, vol. 8, no. 5,

pp. 261-267, 2011.

[143] Data Communication Company, “About DCC,” Data Communication Company, [Online].

Available: https://www.smartdcc.co.uk/about-dcc/. [Accessed 19 October 2016].

[144] Smart Energy Code Company, “Smart Energy Code - Update 4.15 (18th August 2016),” Smart

Energy Code Company, 2013.

[145] Data Communications Company, “Infrastructure Key Infrastructure (IKI) Certificate Policy

(CP),” Data Communications Company, 2015.

[146] O. Block, “Assessing open source software usage in the development of grid control and

measurement device software - A suggestion for an easy to use tool promoting

communication between developer and legal professional,” in 2012 International Conference

on Smart Grid Technology, Economics and Policies (SG-TEP), Nuremberg, 2012.

[147] S. Liu, B. Chen, T. Zourntos, D. Kundur and K. Butler-Purry, “A Coordinated Multi-Switch Attack

for Cascading Failures in Smart Grid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1183-

1195, 2014.

[148] K. Samarakoon, J. Ekanayake and N. Jenkins, “Reporting Available Demand Response,” IEEE

Transactions on Smart Grid, vol. 4, no. 4, pp. 1842 - 1851, 2013.

[149] P. Xin, “IEC 61850 Testing and Documentation,” Vaasan ammattikorkeakoulu, University of

Applied Sciences: Available Online -

https://www.theseus.fi/bitstream/handle/10024/17035/Peng_Xin.pdf?sequence=1, Vaasa,

2010.

[150] P. Diefenderfer and P. Jansson, “Power sensor applications in a load management network for

a residential microgrid,” in 2014 IEEE Sensors Applications Symposium (SAS), , Queenstown,

2014.

[151] S. Hahn and T. Kurner, “Managing and altering mobile radio networks by using SON function

performance models,” in 2014 11th International Symposium on Wireless Communications

Systems (ISWCS), , Barcelona, 2014.

[152] H. Yan, Z. Shi and J. Cui, “DBR: depth-based routing for underwater sensor networks,” in Proc.

IFIP-TC6 Networking Conf. on Ad Hoc and Sensor Networks, Wireless Networks, Next

Generation Internet, 2008.

[153] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-efficient communication

protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii

International Conference on System Sciences, 2000, 2000.

257
Table List

[154] G. Smaragdakis, I. Matta and A. Bestavros, “SEP: A Stable Election Protocol for clustered

heterogeneous wireless sensor networks,” in Proceedings of 2nd International Workshop on

Sensor and Actor Network Protocols and Applications, 2004.

[155] J. van der Horst and J. Noble, “Distributed and Centralized Task Allocation: When and Where

to Use Them,” in 2010 Fourth IEEE International Conference on Self-Adaptive and Self-

Organizing Systems Workshop (SASOW), Budapest, 2010.

[156] V. Rigoni, “Deliverable 3.7 “Characterisation of LV Networks",” University of Manchester:

Available Online - http://www.enwl.co.uk/docs/default-source/future-low-voltage/university-

of-manchester-appendix-j.pdf?sfvrsn=2, Manchester, 2014.

258

