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Abstract   

The  Simplified  Progressive  Collapse  Method  is  a  quick  and  well‐established  method 

recommended by International Association of Classification Societies (IACS) for the evaluation 

of a  ship’s ultimate  strength due  to  longitudinal bending. However,  in  the case which  the 

torsional rigidity of the structure is reduced i.e. containerships, longitudinal bending may not 

be the dominant reason for failure. Torsion and shear forces may influence the global strength 

and therefore the effect of combined loading needs to be investigated.  

The  current  research aims  to understand hull girder  failure modes under  these  combined 

loads both for intact and damage case scenarios and incorporate torsional loading effect into 

the existing method. A hull girder which  is subjected  to  longitudinal bending moment and 

torsional loading generates compressive/tensile and shear stresses on its plates and stiffened 

panels. Therefore, a thorough investigation of plates under these combined loads has been 

carried out. The outcome of this study  is  interaction diagrams of compression/tension and 

shear for steel and aluminium plates. The ultimate strength of the structure is then estimated 

for an applied amount of torsion calculating the shear flow distribution of the plates  in the 

cross section and using the results of the previous study. The same procedure is repeated for 

different  amounts  of  torsion  and  the  interaction  diagram  of  vertical/horizontal  bending 

moment and torsional moment is derived.  

For validation, the proposed method is applied to a number of different intact box girders and 

to a hull girder of a 10000 TEU containership. The effect of damage on the ultimate strength 

is examined only under bending due to the current representation of damage in the simplified 

method. The results are compared with the results of non‐linear finite element models which 

have been generated and analysed for this purpose.  

The results for all studies show very good correlation, however the simplified method provides 

a  sufficient  advantage  of  time  estimation  and  simplicity  in  comparison with  the  existing 

methods. It can be used in both concept and preliminary design to provide accurate estimation 

of hull girder strength. This extension of the Simplified Progressive Collapse Method, which 

accounts for combined load effects, is particularly useful in cases which require quick estimate 

of ultimate strength. 
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Chapter 1  

1. Introduction 

1.1. Research Overview 

The progressive collapse assessment of ship structures under  longitudinal bending moment 

has been thoroughly investigated the last decades. The longitudinal bending moment either 

in sagging or in hogging condition is the principle load which ship structures have to withstand. 

Therefore, several methods have been developed and  introduced  in  the  literature. Among 

these,  the most well‐established methods  are  the  simplified  progressive  collapse method 

(Smith, 1977), known also as the  incremental‐iterative method  in some classification rules, 

and the nonlinear finite element method (NLFEM). The simplified progressive collapse method 

is  recommended  by  the  ISSC  Committee  (Yao,  2000)  and  its main  advantages  over  the 

nonlinear  finite  element  method  are  its  simplicity  in  modelling  (user‐friendly)  and  its 

extremely short computational time for the analysis, providing good accuracy when compared 

to  the NLFEM  (S. Benson et al., 2013),  (Alfred Mohammed et al., 2016) and experimental 

results (Dow, 1991).  

Both  methods  consider  pure  longitudinal  bending  moment  as  the  principle  load  case. 

However, in the case where the torsional rigidity of the hull girder is low due to large openings 

on it, torsional load might have a considerable effect on the strength of the structure. Large 

openings on the structure usually occur due to its design e.g. the design of containerships is 

marked by  lack of primary deck  structure or due  to damage e.g.  collision, grounding,  fire 

(Figure 1.1). Therefore, a quick and reliable strength assessment of the ship structure which 

takes into account the effect of torsion is required, either in the preliminary design or in the 

case of damage for the purpose of recoverability assessment. Furthermore, the frequency and 

the magnitude of these loads, as well as the potential severity of the damaged caused, can be 

influenced by the decisions taken during the structural design.  

In  the  literature,  the  effect  of  torsion  on  ship  structures  has  been  investigated with:  the  

experimental  and  theoretical  results  of  rectangular  box  girders  under  combined  bending, 

shear and torsional loads by Ostapenko (Ostapenko and Chen, 1982); the mathematical model 

of  differential  equations  for  further  development  of  the  beam  theory  to  represent  the 
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torsional and horizontal bending response of ship hulls by Pedersen (Pedersen, 1991);   the 

ultimate  strength  assessment  of  4,300  TEU  containership  under  combined  torsion  and 

bending using a special purpose nonlinear finite element program, ALPS/HULL by Paik (Paik et 

al., 2001b); the prediction of the maximum torsional load of a ship hull by Hu and Chen (Hu 

and Chen, 2001);  the experimental   and  theoretical analysis  (NLFEM) of models with open 

cross‐  section  by  Sun  and  Soares  (Sun  and  Soares,  2003);  and  the  progressive  collapse 

assessment of a 10,000 TEU containership under combined torsion and vertical and horizontal 

bending  moment  with  non‐linear  finite  element  analysis  by  Alfred  Mohammed  (Alfred 

Mohammed, 2014).  

 

 

Figure 1.1: The fire operation of Safmarine Meru after her collision with Northern Jasper, a 
German containership, in the waters of Ningbo, China, on 7th May 2016. 

 

However,  none  of  the  aforementioned  studies  has  introduced  a  quick  and  reliable 

methodology  for  the progressive collapse assessment of ship structures under  torsion and 

bending. Recently, Tanaka (Tanaka et al., 2015) investigated a 5,250 TEU containership under 

torsion  and  bending  loadings,  both  experimentally  and  theoretically  (NLFEM),  and  he 

proposed a methodology in which warping and shear stresses are taking into account using 

the Smith method. Further validation of the proposed methodology is required though, since 
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there  is not a particularly good agreement between  the experimental and  the  theoretical 

results; the  latter are overestimated by 10%.  In a  later study, Tanaka  (Tanaka et al., 2016) 

presents the results of his proposed methodology including also the effect of the transverse 

bulkheads  for  the  same model  i.e.  5,250  TEU  containership.  The  proposed methodology 

predicts a value of ultimate  strength 13.4%  less  than  the F.E.  results under pure bending. 

Finally, only the results of the proposed methodology under combined torsion and bending 

are presented without any comparison with the F.E. results, though. At this point, it should be 

mentioned that the simplified progressive collapse method as defined by Smith (Smith, 1977) 

is limited to the strength assessment of ship structures under bending only in the case which 

the collapse occurs between the transverse frames (interframe). It is not able to predict the 

progressive collapse in case its collapse occurs overall the structure and this effect seems to 

be totally ignored in Tanaka’s study.  

On the contrary, the extended simplified progressive collapse method by Benson and Dow 

(Benson, 2011) which is based on the original simplified progressive collapse method by Smith 

(Smith, 1977), overcomes  this  limitation. A nonlinear orthotropic plate  theory approach  is 

incorporated  into the methodology which  is  implemented  in a computer program (ProColl) 

and  allows  the  estimation  of  the  progressive  collapse  of  structures  subjected  to  bending 

modelling both interframe and overall collapse.  

1.2. Research Aim and Objectives 

The current study incorporates the effect of torsion into the extended simplified progressive 

collapse method and  investigates  the progressive collapse of structures with  low  torsional 

rigidity  either  due  to  the  design  of  the  structure  or  due  to  damage  on  it.  Therefore,  the 

proposed  methodology  allows  the  strength  assessment  of  ship  structures  subjected  to 

combined torsional and bending loads and can model:  

‐ Interframe collapse; 

‐ Overall collapse extending to more than single frame space; 

‐ Stiffener tripping; 

‐ Plate buckling; 
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In  parallel,  the  proposed  methodology  by  the  author  is  implemented  into  the  existing 

computer program, ProColl, for the strength assessment of ship structures according to the 

extended simplified progressive collapse method. The program remains quick and reliable, but 

also takes into account the effect of combined bending and torsion on the analysis.  

In Chapter 2, the relevant  literature review to the current research  is presented. The main 

loads  on  ship  structures  are  categorized  and  the  existing methodologies  for  the  strength 

assessment of  ship  structures  subjected  to bending  are discussed. Previous  studies which 

investigated the behaviour of hull and box girders under torsion are presented and analysed. 

A  thorough  investigation  in  the  literature  for  the behaviour of  steel and aluminium plates 

under compression/tension, pure shear and combined compressive/tensile and shear stresses 

is carried out and presented. 

In Chapter 3,  the approach of  the proposed methodology  is described and analysed giving 

further  insight  into  the  incorporation  of  torsion  into  the  extended  simplified  progressive 

collapse method and  the  reasons which an extensive  investigation of steel and aluminium 

plates under compression/tension, pure shear and combined these loads was carried out. 

In Chapter 4, the nonlinear finite element analysis of steel and aluminium plates is presented. 

In the first part, the progressive collapse behaviour of steel and aluminium plates with aspect 

ratio 1 to 5  is  investigated under pure shear  loading. The outcome of this study, allows the 

investigation of square steel and aluminum plates under axial compression/tension and pure 

shear. The results are compared with theoretical and empirical formulas in the literature. This 

comparison validates  the boundary conditions of  the plates which  remain  the same under 

pure compression, pure shear and combined compression/tension and shear. The analysis of 

the  plates  under  these  combined  loads  takes  part  and  the  interaction  diagram  of 

compressive/tensile  and  shear  stresses  for  typical  ship  steel  and  aluminium  plating  are 

generated.  

In Chapter 5, a series of box girders with four (4) different types of cross‐ sections which alter 

the torsional rigidity is investigated under torsion using the nonlinear finite element method. 

In each case, the torsional capacity is estimated and combined loads of torsional and sagging 

bending  moment  are  applied  for  the  strength  assessment  of  the  structure.  Both 

methodologies, the nonlinear finite element method and the proposed method are applied. 
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The  results  are  compared  and  show  good  agreement.  Two of  the  above models  are  also 

subjected to combined torsional and hogging bending moment and are analysed according to 

both methods. Relevant comparison of the results occurs showing a good correlation. 

In  Chapter  6,  the  progressive  collapse  assessment  of  a  10,000  TEU  containership  under 

combined torsional and vertical sagging and hogging moment is presented according to the 

nonlinear finite element method and the proposed methodology. The finite element results 

which are presented, are taken from an existing study in the literature (Alfred Mohammed, 

2014). The torsional capacity of the structure is already known from the F.E. analysis and in 

this study, the equivalent model is built in ProColl and analysed under combined torsional and 

bending  loads. The  interaction diagrams of torsional and hogging/sagging bending moment 

according to the results of both methodologies are presented and compared showing a very 

good agreement.  

In Chapter 7, the progressive collapse of an intact box girder, Box Girder E, under combined 

torsional and bending loads is analysed according to the nonlinear finite element analysis and 

the proposed methodology.  The  comparison of  these  results  show  good  agreement.  Two 

types of damage cases are applied to Box Girder E whose sizes vary along the width of the 

structure or along its length. The damaged box girders are subjected to pure torsion and then 

to combined torsional and bending moment using the nonlinear finite element method. The 

interaction  diagrams  of  the  damaged  box  girders  are  generated  and  compared with  the 

interaction  diagram  of  the  intact  box  girder.  The  graphs  provide  useful  information  and 

understanding of the behaviour of the damaged box girders under combined torsional and 

bending loads, as well the effect on the residual strength of the structure due to different type 

and  size  of  damage  extent.  The  damaged  box  girders  subjected  only  to  vertical  bending 

moment are analysed with the proposed method due to limitations of the method which are 

related  to  the  representation  of  the  damage  in  the  proposed methodology  and  are  the 

subjected of a separate PhD research project. The results of the damaged box girders under 

pure bending according to both methodologies are compared and they agree very well. 

In Chapter 8, the conclusions of the current study are discussed and recommendations  for 

future research are introduced.  
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1.3. Research Scope and Contributions 

The scope of the current research is to develop further the extended simplified progressive 

collapse method in order to take into account the torsional effect on the hull girder. The final 

outcome is a methodology for the progressive collapse assessment of ship structures under 

combined torsional and bending loads which is fast, reliable, efficient and able to model any 

type  of  collapse mode  of  the  structure  i.e.  interframe,  overall,  stiffener  tripping  or  plate 

buckling.  

The novelty of this research  is that no equivalent method has been  introduced before. The 

application of the proposed methodology may be extremely useful in the preliminary of design 

ship structures with low torsional rigidity or in the residual strength assessment of damaged 

ships, where torsional  load might has a significant effect on the progressive collapse of the 

structure.  
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Chapter 2  

2. Literature Review  

2.1. Introduction 

This chapter presents a review of the literature on ultimate strength and progressive collapse 

of  ship  structures.  Initially,  the  definition  of  limit  state  design  and  ultimate  strength  are 

provided and the different groupings of  limit state design are presented. Then, the existing 

methodologies  for  the progressive  collapse assessment of  ship hull girders under bending 

loads are presented. The research to date concerning the effect of torsion on the progressive 

collapse follows. Finally, an extensive research on the behaviour of steel and aluminium plates 

under axial compression/tension, pure shear and combined compressive/tensile and shear 

loads was carried out and is presented. 

2.2. Limit State Design 

A particular point of interest over the last few decades has been the limit state design of ship 

structure. “In a limit state design, the design is checked for all groups of limit states to ensure 

that the safety margin between the maximum likely loads and the weakest possible resistance 

of the structure is large enough and that fatigue damage is tolerable.” (Dow, 2007a) 

Limit states are divided in the following groups:  

a. Ultimate  limit state due to buckling or plastic collapse of the structural components 

(i.e.  columns,  beam  columns,  plates,  shells,  stiffened  panels  and  shells,  structural 

connections and hull girders) (Dow, 2007a) 

b. Fatigue limit state due the effect of cyclic loads on critical structural details  

c. Accidental limit state due to collision, grounding, fire or freak waves 

d. Serviceability  limit  state  due  to  deterioration  or  loss  of  less  vital  functions  (e.g. 

deformations which may spoil the aesthetic appearance of the structure, vibration or 

noise which are unpleasant to people) (Paik et al., 2002) 

In the ultimate limit state, the strength of the structure has been shifted from point A (Figure 

2.1) which is the elastic buckling strength adjusted by a plasticity correction to point B. Point 
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B represents the ultimate strength of the structure which takes into account the post collapse 

behaviour of all the structural components and their interactions. (Paik et al., 2002) 

 

Figure 2.1: Structural design considerations based on the ultimate limit state (Paik et al., 2002) 

 

2.3. Ultimate Strength Assessment 

The  International  Association  of  Classification  Societies  (IACS)  recommends  the  following 

methods  for  the ultimate  strength assessment of  intact  ship  structures under vertical and 

horizontal bending moment: 

a. The  Incremental‐iterative  Procedure,  known  also  as  the  Simplified  Progressive 

Collapse Method (Smith Method), developed by Smith and Dow in the 1970’s. 

b. The Non‐Linear Finite Element Method (NLFEM). 

c. The Idealized Structural Unit Method (ISUM). 
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2.3.1. The Simplified Progressive Collapse Method (Smith Method) 

The simplified progressive collapse method was introduced by Smith (Smith, 1977)  in 1977. 

Smith  extended  Caldwell’s  study  (Caldwell,  1965)  and  developed  a methodology  for  the 

evaluation of the ultimate strength of ship structure. Since then, this methodology has been 

validated with experimental data (Dow, 1991) and other studies (Paik, 2010) and it is one of 

the most  well‐  established methods  for  ship’s  ultimate  strength  assessment.    The main 

advantages of the Smith Method are that it provides an accurate estimation of the ultimate 

strength of the structure very quickly and it demands only the cross section of the ship for the 

set‐up which is simple and straight forward. 

According  to  the method,  the  ship  cross  section  is  divided  into  elements.  Every  element 

consists  of  a  plate with  its  associated  stiffener.  The  progressive  collapse  behavior  of  the 

element under axial compression/tension is described either by its stress‐strain curve (Figure 

2.2) which is also called Load Shortening Curve (LSC) or by perfectly elastic‐plastic behaviour. 

Then,  the  vertical  curvature  is  applied  incrementally  to  the  ship’s  cross‐section  and  the 

following iterative procedure occurs in each increment: 

‐ The strain of each element is calculated assuming that the cross section remains plane 

and bending occurs around an instantaneous neutral axis of the cross section. 

‐ The incremental stress of each element is calculated using the slope of the LSC for the 

corresponding instantaneous strain. 

‐ The incremental stresses are summed to give element total stresses. 

‐ The total stress values of all elements are integrated over the cross section in order to 

calculate the total bending moment. (Figure 2.3) 

 

The main assumptions of the method are: 

a. The plane‐sections remain plane. 

b. The behaviour of each element is independent from the adjacent element. 

c. The collapse of the section occurs between the frames (interframe).



 
 
Chapter 2: Literature Review 

 

10 
 

 

Figure 2.2: Load Shortening Curve  

 

Figure 2.3 Moment‐Curvature graph of the 
structure 

 

2.3.2. The Non‐Linear Finite Element Method (NLFEM) 

The Non‐Linear Finite Element Method (NLFEM) is also a well‐established method which was 

initially introduced by Courant (Cook et al., 2002) in 1943, calculating the torsional rigidity of 

a hollow shaft. The cross section was divided into triangles and the stress values at the nodes 

were used for the linear interpolation of the stress function over each triangle. Later, in the 

1950s the same approach was applied in aeronautical industry and the method was developed 

further mainly  by  Turner,  Taig  and  Argyris  in  the  United  States,  England  and  Germany, 

respectively. In 1963, the FEA was recognised as a form of Rayleigh‐Ritz method by academia 

but  it was  the development of digital  computers  in  the  late  1970s which  established  the 

method in the actual design (Cook et al., 2002). 

The method provides numerical solution of field problems which are described by differential 

equations or by an integral expression (Cook et al., 2002). According to the Non‐Linear Finite 

Element Method (Dow, 2007b) the following procedure has to be applied: 

‐ The structure is divided into pieces (elements and nodes); 

‐ The behaviour of the physical quantities of each element are described;  

‐ The elements are assembled at the nodes to form an approximate system of equations 

for the whole structure; 

‐ The system of equations which involve unknown quantities (e.g. displacements) at the 

nodes is solved; 
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‐ The desired quantities (e.g. stress, strains, moments) at the selected elements are then 

calculated; 

The main advantage of NLFEM is able to estimate the ultimate strength of the structure under 

any type of load or combinations of loads applied simultaneously or sequentially. There is no 

restriction on the boundary conditions, the geometric representation of the structure and the 

behaviour of the materials. In fact, the model can resemble the actual structure or part of it 

(Cook et al., 2002). However, it’s a very complicated method and time consuming relating to 

the user involvement in modelling and the computational time. It requires a detailed geometry 

of the structure and its accuracy depends on a high level of expertise because there are many 

parameters which have to be checked and evaluated simultaneously.  

 

2.3.3. The Extended Simplified Progressive Collapse Method 

The extended simplified progressive collapse method introduced by Benson and Dow (Benson 

et  al.,  2015)  is  based  on  the  simplified  progressive  collapse method  (section  2.3.1)  and 

calculates  the ultimate  strength of  intact  structures under vertical and horizontal bending 

moment.  

A similar methodology to the simplified progressive collapse method is followed replacing the 

stress‐strain curve of  the element with  the  stress‐strain curve of  the panel. This approach 

overcomes two of the main assumptions of the initial methodology; independent behaviour 

of each element and only interframe collapse. The cross section still has to remain plain, but 

this time at compartment ends. The structure is divided into panels instead of elements (plate‐

stiffener) and an example is shown in Figure 2.4.  

The  stress‐strain  curve  of  each  panel  is  calculated  using  the  orthotropic  plate  theory  as 

described by Benson and Dow (Benson et al., 2015). The main concept of the orthotropic plate 

approach  is  that  estimates  the  strength  of  a  stiffened  panel  assuming  its  stiffeners  are 

‘smeared’ to the plate and only overall collapse mode occurs. Therefore, its strength should 

be compared with  the  interframe strength of  the panel. The minimum value of  these  two 

defines not only  the ultimate  strength of  it but also  the mode of  its  collapse and  its  load 

shortening curve.  
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This approach can model: 

‐ Interframe collapse; 

‐ Overall collapse extending to more than a single frame space; 

‐ Stiffener tripping; 

‐ Plate buckling;  

 

 

Figure 2.4: Example panel sets for a prismatic hull girder (Benson et al., 2015) 

 

This methodology  has  been  implemented  in  the  computer  program  ProColl  (Progressive 

Collapse). The  flow diagram  in Figure 2.5 provides  further explanation  for the sequence of 

calculations which ProColl follows and generates the final stress‐strain curve for the simplified 

method (Smith method). In the first pass, the stress‐strain curves of the plates and stiffeners 

of each panel are recalled from the F.E. database. For each panel, both interframe and overall 

strength are  calculated and  the minimum of  these defines  its buckling mode,  its ultimate 

strength and generates the stress‐strain curve for an equivalent plate. In the second pass, the 

same procedure is repeated but now panels have been replaced by their equivalent plates and 

the deep longitudinal stiffeners are having the role of simple plate stiffeners. The final stress‐

strain curve which derives is used to the progressive simplified method as described in section 

2.3.1.  



 
 
Chapter 2: Literature Review 

 

13 
 

This methodology efficiently calculates the instantaneous stiffness of the stiffened panel at all 

levels and uses this to evaluate the failure mode and load/shortening curve for the panel. 

 

 

Figure 2.5: Irregular panel calculation flow diagram (Benson et al., 2015) 
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2.3.4. The Idealized Structural Unit Method (ISUM) 

The  Idealized Structural Unit Method  (ISUM) was  initially  introduced by Ueda and Rashed 

(Ueda and Rashed, 1974) in 1974 analyzing the progressive collapse behaviour of a transverse 

framed structure of a tanker. The approach of this methodology was to reduce the number of 

degrees of  freedom  in  the elements of  the conventional  finite element analysis modelling 

large‐sized structural members as structural units (ISUM elements). The aim was to reduce 

the computation time in comparison with the N.L.F.E. analysis and keep the accuracy of the 

results at reasonable level (Hughes and Paik, 2010).  

The  formulation  of  ISUM  element  is  critically  important  in  the  methodology,  therefore 

theoretical, experimental and numerical studies have been conducted/carried out in order to 

define its structural behaviour and reduce any limitations. Ueda, Paik and Yao have proposed 

different  types of  ISUM elements  represented  them; as a beam‐column element with  two 

nodal points (Ueda and Rashed, 1974), as a rectangular plate element with four nodal points 

(Ueda  et  al.,  1984)    (Paik,  1995),  as  a  rectangular  plate  element  whose  deflection  is 

represented by eigen‐functions (Ueda and Masaoka, 1995) or as a rectangular plate element 

with  new  lateral  shape  function  (Fujikubo  et  al.,  2000).  These  are  some  of  the  most 

representative studies for the  ISUM element  in the  literature and each representation of  it 

attempts  to  overcome  different  issues  in  the  analysis  (e.g.  large  number  of  different 

formulations,  consideration  of  initial  imperfections,  local  failures  of  individual  structural 

components and overall failure of the system). 

Over the years, the Idealized Structural Unit Method has been applied, with varying number 

of success, to a number of different ship collapse problems e.g. (Hughes and Paik, 2010), (Paik 

et al., 1996), (Paik et al., 2001b), (Paik, 2007), (Kim et al., 2013), (Pei et al., 2015). 

Finally,  the  Idealized  Structural  Unit Method  (ISUM)  is  incorporated  by  the  rules  of  the 

International Association of Classification Societies (IACS) (2008) for the progressive collapse 

assessment of ships under vertical bending moment (Hughes and Paik, 2010) along with the 

Smith Method which is used in this research. 
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2.4. Torsional Effect on Ship Structures  

Although,  the development of  torsional  analysis  started  in  the 1850’s with  Saint‐Venant’s 

classical  torsional  theory  for  pure  torsion,  it  was  only  in  the  1980’s  when  Ostapenko 

(Ostapenko  and  Vaucher,  1980),  (Ostapenko,  1981),  (Ostapenko  and  Moore,  1982), 

(Ostapenko  and  Chen,  1982)  investigated  the  torsional  effect  on  ship  structures  ultimate 

strength. Ostapenko’ s research aimed to develop a methodology which takes  into account 

the effects of bending, shear and torque for the ultimate strength assessment of ship hulls. 

Until  then,  there was extensive  research on  the  collapse behaviour of  individual  ship hull 

components  (i.e.  plates,  stiffeners,  panels,  grillages  etc.)  under  compression/tension  and 

combined bending and shear loads, and it was only Smith’s method (Smith, 1977) which could 

estimate  the  progressive  collapse  of  the  whole  ship  structure  under  bending  loading. 

Therefore, Ostapenko investigated the ultimate strength of box girders under bending, shear 

and torsion both theoretically and experimentally. The theoretical results of his initially study 

(Ostapenko, 1981) show a good agreement with the experimental results only in the case of 

bending and shear loads. Ostapenko’ s later studies (Ostapenko and Chen, 1982) show a better 

correlation  of  experimental  and  theoretical  results  for  box  girders with  rectangular  cross 

section under combined bending, shear and torsional loads. The main conclusions of his study 

were  ‘that warping was  insignificant  for  the cross sections which analysed’;  ‘the effects of 

shear  lag are negligible’; and  ‘the overall  failure mode collapse was not considered  in  the 

proposed method’. Finally, there is no further studies in the literature of Ostapenko’s method 

applied to ship structures whose their size and cross section are very different from the tested 

rectangular box girders of his study.  

In  the  1980’s,  Pedersen  also  investigated  the  torsional  and  horizontal  bending moment 

response  of  ship  hulls    (Pedersen,  1983)  and  containerships  (Pedersen,  1985),  (Pedersen, 

1991).  In his study, a mathematical model of differential equations  is proposed  for  further 

development of the beam theory to represent the torsional and horizontal bending response 

of  ship  hulls.  Warping  stresses,  shear  deflections,  rotatory  inertia,  cross‐sectional 

discontinuities are included to the model and a baseline for the ship loading is defined which 

takes into account the effect of the combined moments (i.e. torsional and horizontal bending 

moment). 
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In  the 2000’s,  the  size of  the containerships and  the demand of container  transport were 

increased leading to further investigation of the torsional effect on ship’s strength. Paik (Paik 

et al., 2001b) develop a special purpose non‐linear finite element program, ALPS/HULL, based 

on the  Idealized Structural Unit Method (ISUM) for the analysis of the ultimate strength of 

ship  hulls  under  torsion,  vertical  shear,  horizontal  shear,  vertical  and  horizontal  bending 

moment and  lateral pressure  loads. The ultimate strength of a 4300TEU containership was 

analysed  investigating  the  effect  of warping  stresses. According  to  his  research,  although 

warping  stresses affect  the  torsional  stiffness of  the  structure,  their effect on  its ultimate 

torsional  strength  is  small. Paik also proposed  interaction  formulations of vertical bending 

moment and torsional moment in hogging and sagging condition based on regression analysis 

of  his  results.  Both  formulations  show  high  insensitivity  of  vertical  bending moment  to 

torsional loads and they are described by Equation 2.1 and Equation 2.2: 
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Equation 2.2

 

Hu  and  Chen  (Hu  and  Chen,  2001)  developed  a methodology  for  the  prediction  of  the 

maximum  torsional  load of a ship hull  in  the  limit state  ignoring  the warping stresses. The 

plastic shear flow distribution of the cross section was defined by the upper‐bound and lower‐

bound theorem. The limit torsional moment was calculated for three containerships of 300, 

1600 and 4000 TEU. These  results were  compared with  the values which derive  from  the 

relevant rule equations of the main classification societies (i.e. DNV, GL, ABS, BV and LR). The 

comparison  showed  that  very  low  safety  factor  is  taken  into account by  the  classification 

societies  for  large  containerships  with  respect  to  the  ultimate  torsional  capacity  of  the 

structure.    
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Furthermore, Sun and Soares (Sun and Soares, 2003)  investigated both experimentally and 

theoretically, the torsional capacity of two models with the same open cross section under 

pure torsion. The effect of different parameters concerning the boundary conditions,  initial 

deformations  and  residual  stresses  was  also  studied.  The  experimental  results  showed 

different collapse modes between the two models but the same value of ultimate torque. The 

theoretical results were analysed using the non‐linear finite element method (ANSYS) and two 

cases of boundary conditions were considered; full and partially restrained unloaded end. The 

partially restrained end was representing the real boundary conditions in the test, therefore 

the results of this analysis show better agreement with the experimental torque value. The 

partially  restrained  F.E.  model  at  its  end  was  also  investigated  under  different  initial 

imperfections, residual stresses and warping stresses. The effect of the initial deformation on 

the ultimate  torque  is  small while  residual  stresses  clearly affect  torsional  capacity of  the 

stucture.  Finally,  the  incorporation  of  the  warping  strain  into  the model  led  to  a  good 

agreement between the experimental and theoretical results. The main outcome of this study 

is that ultimate torque exceeds the initial yielding torque and the boundary conditions have 

very large effect on the results. 

Alfred Mohammed’s study (Alfred Mohammed, 2014) was divided into two parts. In the first 

part, Alfred Mohammed develops a method to define the maximum wave load combinations 

taking  into account the sea state for a certain route and the response amplitude operators 

(RAOs) of a 10,000 TEU OL185 containership.  In  the  second part,  the progressive collapse 

analysis of this containership takes part under combined torsional and bending  loads using 

the non‐linear finite element analysis and the  interaction diagram of torsional and bending 

loads is defined. Finally, the extreme global wave‐induced loads which derived from the first 

part of the study are inserted to the interaction diagram and the strength of the structure is 

checked under these combined  loads. Further details about Alfred Mohammed’s study are 

given in chapter 6, as the same model was analysed with the proposed methodology in the 

current study and it has been used for the validation of the method.  

Finally, Tanaka et al. (Tanaka et al., 2015)  investigated the ultimate strength of a 5250 TEU 

containership under combined vertical bending and torsion, experimentally and theoretically. 

Three 1/13 scaled models were subjected to combined bending and torsion (M/T=0.5), only 
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to torsional loading and only to vertical bending, respectively. In each model, its aft‐end was 

totally fixed and the load was applied to each side at the other end using hydraulic jacks which 

were generating opposite or in the same direction vertical forces. In the finite element model, 

the load was applied though a rigid supporter at the same position at both sides of the model 

with  a  predefined  vertical  velocity.  These  boundary  conditions were  selected  in  order  to 

generate maximum warping stresses in the model although this not a realistic representation 

of  the  combined  torsional  and  bending  loading  in  actual  ship  structures.  An  actual  ship 

structure is partially restrained against warping (Alfred Mohammed, 2014) and the accuracy 

of the actual stress distribution depends on the degree of the torsional restraint at its ends 

(Ostapenko and Moore, 1982). In Tanaka et al. study, the F.E. model and the model of each 

experiment present similar collapse mode, however the experimental results differ with the 

F.E. results which predict higher stresses (i.e. F.E. analysis) and further investigation is needed. 

Additionally,  a methodology  is  proposed  by  Tanaka  et  al.  (Tanaka  et  al.,  2015)  for  the 

estimation of the progressive collapse under combined torsional and bending loads. According 

to  the proposed methodology,  torsional  load which  satisfies  the  torsional elasticity of  the 

structure is applied to it. The hull girder is divided into beam elements and the cross sections 

of each beam element are subdivided into straight‐line elements. The effect of the torsional 

load and warping stresses is taken into account in an iterative procedure according to Smith 

method (Smith, 1977). The results of this methodology present good correlation with the F.E. 

results  and  further  investigation  follows  in  order  to  take  into  account  the  effect  of  the 

bulkheads.  

The  effect  of  the  transverse  bulkheads  is  taken  into  account  using  an  orthotropic  plate 

approach and it is incorporated into the proposed methodology (Tanaka et al., 2016). In the 

second part of  this  study,  the  F.E.  results are  compared with  the  results of  the proposed 

methodology when the model is subjected only to vertical bending and the ultimate strength 

according  to  the  F.E.  analysis  is  13.4%  higher.  Finally,  the  bending  moment‐  curvature 

relationship according to the proposed methodology  is presented for vertical bending  load 

only and two cases of combined torsional and bending load without a comparison with the 

F.E. results though.     
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2.5. Strength of steel and aluminium alloy ship plating under axial compression/tension, 

pure shear and combined loads of compression/tension and shear. 

Torsional loads in ship hull girders induce shear stresses (called St. Venant’s torsional shear 

stresses) on the plating which is one of the main structural components for structural strength. 

In  parallel,  vertical  bending  loads  generate  compressive/  tensile  loads  on  the  plates. 

Therefore, particular interest on the behaviour of plates under these combined loads is given 

due to the approach of the proposed methodology for the progressive collapse assessment of 

ship hull girders under combined torsion and bending (chapter 3). 

The background material of plates under axial compression/tension, pure shear and combined 

loads  of  compression/tension  and  shear  was  investigated  for  both,  steel  and  marine 

aluminium  alloys  (5083‐H116  and  6082‐T6),  materials.  In  the  literature  there  are  many 

extensive  studies  on  steel  and  aluminium  plates  under  axial  compression/tension.  Some 

studies have been carried out for plates under pure shear, mostly for slender plates and very 

little data is available on plates under combined loads of shear and compression/tension  in 

order to establish the design criteria for plates under combined loads. 

Material properties of steel and aluminium show different characteristic behaviour and need 

to be  investigated separately to define their progressive collapse behaviour. Typical stress‐

strain curves for aluminium and steel are depicted in Figure 2.6. The yield point and the plastic 

area of steel are well‐defined and its behaviour could be assumed as simple elastic‐perfectly 

plastic without significantly altering the strength assessment of the structure. On the contrary, 

this is not the case for aluminium alloys in which the yield point lies in a rounded area of the 

stress‐strain curve and the plasticity area smoothly follows. 

However, it is not only the stress‐strain curves which are different for these materials but also 

some particularities which have to be taken into account. During welding, a tensile stress zone 

is introduced in both steel and aluminium plates. The width and tensile stresses in this zone is 

defined by Equation 2.9 ‐ Equation 2.11. A Heat Affected Zone (HAZ) is additionally introduced 

to aluminium alloy plates due to welding. It could be assumed that its width is equal to the 

width of residual stresses zone (Benson, 2011). This heat affected zone has as effect to reduce 

the apparent yield stress (0.2% proof stress) and ultimate stress of the material in the HAZ, 

especially for 6000‐series, hence the stress‐strain curve of aluminium alloy in the HAZ differs 
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significantly  from  the  parent  material  and  has  to  be  considered  during  the  strength 

assessment of the structure (Figure 2.7). 

 

 

Figure 2.6: Comparison between  typical  stress‐strain curves  for aluminium and mild  steels 
(Mazzolani, 1995) 

 

 

 

Figure 2.7: Comparative HAZ material properties for 5083‐H116 and 6082‐T6 aluminium alloys 
(Benson, 2011) 
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2.5.1. Plates under axial compression/tension 

The ultimate  strength of  steel and aluminium plates under axial  compression/tension has 

been  thoroughly  investigated  in  literature  by  different  numerical  approaches  and 

experimental data. The main parameters which affect the ultimate strength of a plate under 

compressive/ tensile loads are its geometric characteristics, slenderness ratio (ߚ) and aspect 

ratio  (ܽ ܾ⁄ ),  its material  properties,  the  boundary  conditions  of  both  the  loaded  and  the 

unloaded edges, the level of the initial imperfections (ݓ ⁄௢ݓ ) and the level of residual stresses 

௥௖ߪ) ⁄௢ߪ ). The above parameters affect the progressive collapse of the plate.  

2.5.1.1.  Steel plates 

The elastic buckling stress formula as described by (Bleich, 1952) and (Timoshenko and Gere, 

1982)  is given by Equation 2.3., even  though  this  formula has  “relatively  little meaning  in 

practical terms” (Faulkner, 1975). The slenderness ratio (ߚ) of ships plating ranges between 1 

and 5. So, very stocky plates (2‐1=ߚ) collapse close to the yield stress (ߪ௒) of the material and 

less stocky plates (5‐2=ߚ) collapse at values higher than the theoretical elastic buckling load 

given by Equation 2.3. and lower than the yield stress of the material.   

ாߪ ൌ
ଶߨ݇

12ሺ1 െ ଶሻݒ
൬
ݐ
ܾ
൰
ଶ

  Equation 2.3

 

k ൌ ሾܽ ሺ݉௢ܾሻ⁄ ൅ ݉௢ܾ ܽ⁄ ሿଶ, ݁ݎ݄݁ݓ	 ݉௢ ൌ 1 ݎ݋݂ 1 ൑ ܽ ܾ ൑ √2⁄ Equation 2.4

 

In the above formula, plasticity correction can be applied using Johnson‐Ostenfeld formula 

and the critical stress (ultimate) is defined as:  

௖௥ߪ ൌ 	 ൜
												,ாߪ 																							 ݎ݋݂ ாߪ ൑ ிߪ0.5
ሾ1	ிߪ െ ,ாሻሿߪி/ሺ4ߪ ݎ݋݂ ாߪ ൐ ிߪ0.5

ൠ , ቄ
ிߪ ൌ ௒ߪ

,ாߪ Equation 2.3ቅ 
Equation 2.5

 

However,  the  ultimate  strength  of  plates  has  also  been  assessed  by  semi‐analytical  and 

empirical approaches, experimental data and non‐linear finite element simulations.  

One of the most established and well‐known empirical formula for predicting the collapse of 

steel plates  in the  literature and  industry  is Faulkner’s formula (Equation 2.6).  In Faulkner’s 

study (Faulkner, 1975), the effect of initial geometric imperfections, lateral pressure, residual 
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stresses due to welding and boundary conditions of unloaded edges was investigated taking 

into account a wide range of experimental data and previous studies. Faulkner evaluated the 

measurements of three hundred plates with an average level of central plate distortion equal 

to 0.12β2 and the proposed formulation was based on simply supported unwelded plates with 

no constraints on the unloaded edges. 

ߪ
௢ߪ

ൌ
2
ߚ
െ
1
ଶߚ

, β ൒ 1 

 
ߪ
௢ߪ

ൌ ߚ																				,1 ൏ 1 

Equation 2.6

                 

where:  

σ = ultimate strength of the plate 

β = plate slenderness ratio defined as: 

ߚ ൌ
ܾ
ݐ
ඥߪ௢ ⁄ܧ   Equation 2.7

 

b = plate width over which uniform compression is applied 

t = plate thickness 

σο or  ߪ௒ = material yield stress; E = Young’s modulus and ν = Poison’s ratio  

Frieze  (Frieze et al., 1977) also examined  the behaviour of steel plates under compression 

using  the  finite  difference  dynamic  relaxation  method  and  compared  his  results  with 

experimental data and Faulkner’s results. In his study, Frieze compares the buckling strength 

of  square  very  stocky  and  less  stocky  plates  (β=0.691  and  2.074  respectively)  with 

unrestrained and constrained unloaded edges for two different levels of initial distortions. The 

boundary conditions of the unloaded edges have a direct impact on the ultimate strength of 

plates under compressive loading. Restrained edges (clamped) may increase the elastic stress 

limit up to 75% (Faulkner, 1975), but not its ultimate strength, as experimental studies have 

shown (Ractliffe, 1966), (Moxham, 1970). However, the longitudinal stiffeners along the sides 

of the plates provide negligible rotational restraint on plating and no further investigation of 

plates with clamped edges is needed. An actual representation of the boundary conditions on 
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the unloaded edges allows free in‐plane translation with unloaded edges remaining straight 

(constrained  edges).  An  additional  case  is  investigated  though  for  comparison,  without 

constraining the edges (unrestrained edges), in which according to Frieze’s study “the slender 

plates with their unloaded edges constrained to remain straight carry significant higher loads 

than corresponding plates with edges unrestrained in‐plane” (Frieze et al., 1977).  

In the 1980s, a thorough investigation of ship platting under compressive and tensile loading 

was  conducted  by  Admiralty  Research  Establishment  (A.R.E.)  at  Dunfermline, which  also 

formulated the progressive collapse method (Smith Method).  

Initially, Dow  (Dow and Smith, 1984) examined  the effect of  fourteen different shapes  for 

various levels of initial deformation on the buckling stress of plates with the aspect ratio (a/b) 

4.0, 1.0, 0.8 and 0.67. The plates were analysed using ASAS‐NL, a non‐linear finite element 

program whose results were validated with Crisfield’s computer program, Frieze’s dynamic 

relaxation procedure results and with experimental values. This study shows that the initial 

distortions  embedded  in  the  plate  due  to  the  manufacturing  process  have  particular 

significance to buckling strength as the plate loses some of its stiffness. For long plates (a/b>1), 

the worst case scenario  is that the plate may be governed by the  lowest buckling mode,  in 

which case the shape of the initial distortions is half‐sine wave and equal to plate’s breadth. 

The buckling behaviour  is similar to this of square plates, which  is assumed to be the most 

severe and conservative estimate  for a plate’s ultimate strength assessment.  In  this study, 

plates with constrained edges were mainly examined without  taking  into account  residual 

stresses.  

However,  in  later studies by the same authors (Smith et al., 1987), (Dow, 1997), the stress‐

strain curves of plates with constrained edges were investigated taking into account the effect 

of geometric  imperfections and  residual  stresses.  In  these  studies, a  series of  stress‐strain 

curves  for plates under  longitudinal compressive/tensile  load are presented applying three 

levels for the maximum amplitude of initial distortions which are described in Equation 2.8 :  

 

଴ݓ
ݐ
ൌ 	ቐ

,ଶߚ0.025 ݐ݄݈݃݅ݏ
,ଶߚ0.1 ݁݃ܽݎ݁ݒܽ
,ଶߚ0.3 ݁ݎ݁ݒ݁ݏ

ቑ	  Equation 2.8 
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The residual stresses are formulated due to high temperature during the welding procedure; 

a zone of tensile stress is introduced by this process to the plate along each side, separating it 

to tensile and compressive blocks (Figure 2.8). The value of tensile stresses is equal to the yield 

stress of the material (σΥ). The width of the tensile zone is given by Equation 2.9 & Equation 

2.10 and three levels of residual stress can be taken into account according to Equation 2.11. 

Smith’s  and Dow’s  studies  (Smith  et  al.,  1987),  (Dow,  1997)  as well  as  other  studies  e.g. 

(Ractliffe, 1966), (Little, 1973), (Faulkner, 1975),   (Frieze et al., 1977) have also  investigated 

the effect of residual stresses on the bucking strength and the stiffness of the plates.  

2ܾ௧ ൌ
௥௖௫ߪ

௥௖௫ߪ െ ௥௧௫ߪ
	b  Equation 2.9

 

2ܽ௧ ൌ
௥௖௬ߪ

௥௖௬ߪ െ ௥௧௬ߪ
ܽ	  Equation 2.10

 

௥௖௫ߪ
௒ߪ

ൌ 	 ൝
െ0.05, ݐ݄݈݃݅ݏ
െ0.15, ݁݃ܽݎ݁ݒܽ
െ0.3, ݁ݎ݁ݒ݁ݏ

ൡ	  Equation 2.11

 

 

Figure 2.8: Idealised residual stress distribution in x and y direction (Paik et al., 2008) 

 

Chalmers used the results by A.R.E. in his book (Chalmers, 1993) which included stress‐strain 

curves of plates under compressive/tensile, transverse, biaxial and  lateral  loadings by Dow 

and Smith. A series of data, which has been validated with experimental results, is presented 

for plates with slenderness ratio (β) 1 to 4, column slenderness ratio (λ) 0.2 to 1.2, As/A=0.2 

and aspect ratio (a/b) equal to 1 under slight, average and severe level of initial imperfections 

and residual stresses as described by Equation 2.8 until Equation 2.11. This database  from 
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A.R.E. which Smith  initially used  in his method has been validated (Dow, 1991) and  is well‐

established, thus it was chosen to help in the validation of the results in the present study. 

Since then, many studies have been conducted in this field e.g. (Paik and Thayamballi, 2003), 

(Zhang et al., 2008a) etc. because finite element software programs became more useable 

and more widely applied. Benson (Benson, 2011) conducted a thorough investigation into the 

effect of geometric  imperfections  for steel and aluminium unstiffened and stiffened plates 

subjected  to  axial  compression.  In  his  study,  the  ultimate  strength  of  plates  and  panels 

subjected to compressive  loads was  investigated under different  levels and modes of  initial 

distortions, different levels of residual stresses and boundary conditions. Then, a database of 

stress‐strain curves was generated and incorporated in the computer code ProColl (see 2.4.3). 

Benson applied residual stresses provided by Equation 2.9 to Equation 2.11. An average level 

of initial imperfections was assumed according to Equation 2.8 and their shape is described 

by a three mode Fourier series equation: 

 

ݓ
௢ݓ

ൌ 	ቆ0.8 sin ቀ
ݔߨ
ܽ
ቁ ൅ 0.2 sin ቀ

ݔߨ݉
ܽ

ቁ ൅ 0.01 sin ቆ
ሺ݉ ൅ 1ሻݔߨ

ܽ
ቇቇ sin ቀ

ݕߨ
ܾ
ቁ ,

݉ ൌ ݐ݊݅ ቀ
ܽ
ܾ
ቁ ൅ 1 

 

Equation 
2.12 

According to Benson’s research a ratio of 80% to 20% single half wave to square half wave 

(square mode  =m)  provides  a  realistic  representation  of  the  shape  of  the  imperfections 

without being particularly optimistic or conservative. This realistic characterisation also gives 

enough of an imperfection in the preferred buckling mode to nucleate the minimum failure 

mode. 

An additional higher mode (m+1) is added in order to ensure that nucleation will occur only in 

one  region and  imperfection distribution will be unsymmetrical. Finally,  imperfections are 

implemented  to  the plate using  trigonometric  functions which are defined with  the direct 

node translation method.   
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2.5.1.2. Aluminium plates 

In the literature, recent studies are more useful to the current research concerning aluminium 

plates because  their material properties are  closer  to  those which are defined  today. The 

properties of the marine aluminium alloys have been improved during the 1980s in order to 

increase their resistance to corrosion from seawater. The main studies which carried out for 

marine aluminium alloys plates are these of Little (Little, 1982), Mofflin and Dwight (Mofflin 

and  Dwight,  1984),  and more  recently  by  Eurocode  9  (Eurocode  9  EN  1997‐1‐1,  2007), 

Hopperstad (Hopperstad et al., 1999),  Kristensen (Kristensen, 2001), Paik and Duran (Paik and 

Duran, 2004) and Benson (Benson, 2011). 

Little  (Little, 1982)  investigated  the  collapse behaviour of  aluminium plates with different 

slenderness ratio (β) under axial compression taking into account their initial distortions, but 

not heat affected zones  (HAZ). Mofflin and Dwight  (Mofflin and Dwight, 1984) produced a 

series  of  experimental  data  for  aluminium  plates  subjected  to  in‐plane  loads  considering 

geometric  imperfections  and  HAZ.  Both  studies  consisted  of  the  main  background  for 

Eurocode 9 (Eurocode 9 EN 1997‐1‐1, 2007) which provides guidelines for the structural design 

of aluminium plates. In Hopperstad’s study (Hopperstad et al., 1999), the ultimate strength of 

aluminium  alloys was  investigated  experimentally  under  compression  taking  into  account 

initial distortions,  residual  stresses and HAZ. These  results were compared with numerical 

simulations showing a very good correlation.  

Kristensen (Kristensen, 2001) also analysed the ultimate strength of 6082‐T6 aluminium alloy 

plates under multiple  loads  (axial  compression,  transverse, biaxial,  shear  loads,  combined 

shear and compressive loadings) using nonlinear finite element analysis (NLFEM) and including 

geometric imperfections, residual stresses and HAZ.  

Paik and Duran (Paik and Duran, 2004) investigated  5083‐H116 aluminium plates with NLFEM 

taking into account all the pre‐mentioned parameters and proposed a formulation (Equation 

2.21).  Finally,  Benson  (Benson,  2011)  compared  Mofflin’s  results  to  empirical  formulas 

suggested by Faulkner, Johnson‐Ostenfeld, Eurocode 9 EN1997‐1‐1 and Paik & Duran. A very 

good correlation of all results was found for low (less than 1) and intermediate (1 to 2.3) values 

of slenderness ratio (β).  
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The formulas which may be used for aluminium plate’s ultimate strength assessment under 

axial compressive loadings are: 

 Faulkner’s  formulation  (Faulkner,  1975)  in which  the  yield  stress  (σο)  in  Equation  2.6 

should be replaced by the proof yield stress at 0.2% offset strain. 

 Johnson‐Ostenfeld formula (Equation 2.5) in which the yield stress (σΥ) should be replaced 

by the proof yield stress at 0.2% offset strain. 

 Eurocode 9 class 4 (Eurocode 9 EN 1997‐1‐1, 2007) for marine alloys suggests the design 

value the compression force (NED) to be equal to: 

ாܰ஽

ோܰௗ
	൑ 1.0  Equation 2.13

 

Where:  

NED = design value of the compression force; NRA= design resistance to normal forces equal to:  

ோܰௗ ൌ
௘௙௙∙ఙ೚ܣ
ெଵߛ

	  Equation 2.14

 

If we assume NED= NRd and safety factor to account for design uncertainties (γΜ1) equal to 1, 

the design resistance NRd derives from: 

ோܰௗ ൌ ௘௙௙ܣ ∙  ௢ߪ Equation 2.15

 

Where: 

σο = proof yield stress at 0.2% offset strain; Aeff = overall effective area equal to: 

௘௙௙ܣ ൌ 2ܾு஺௓ߩ௢ಹಲೋݐ ൅ ሺܾ െ 2ܾு஺௓ሻߩ௖ݐ  Equation 2.16

 

Where: 

bHAZ = width of the Heat Affected Zone; t = plate thickness.  

The reduced factors of the yield stress in the HAZ and of the proof yield stress are: 
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௢ಹಲೋߩ ൌ 	
௢ಹಲೋߪ
௢ߪ

  Equation 2.17

 

ߚ ൌ 	
ଵܥ

൬
ߚ
൰ߝ

െ	
ଶܥ

൬
ߚ
൰ߝ

ଶ  Equation 2.18

 

Where: 

C1 = 29; C2 = 198 

ߚ ൌ 	
ܾ
ݐ
	  Equation 2.19

 

ߝ ൌ 	ඥ250 ⁄௢ߪ   Equation 2.20

 

 

 According to Paik and Duran’s formulations (Paik and Duran, 2004), the ultimate strength 

of aluminium plates derives from: 

ߪ
௢ߪ

ൌ 	 ൜
െ0.13ߚ ൅ 0.921, ߚ ൏ 3
െ0.07ߚ ൅ 0.741, ߚ ൒ 3ൠ  Equation 2.21

 

β = plate slenderness ratio, defined in Equation 2.7   
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2.5.2. Plates under pure shear 

Plates which are subjected to shear  loadings have been  investigated by aeronautical, naval 

and civil engineers in order to provide deeper insight to buckling and post‐buckling behaviour 

of plates under these loads. Due to different applications, the boundary conditions, geometric 

characteristics and the material properties of plates may differ. In aeronautical engineering, 

very slender aluminium plates are usually examined, which are high unlikely to be applied in 

marine structures. Typical ship plates are steel and marine aluminium alloys of the 5000 and 

6000 series  in order to have high resistance  in corrosion; their slenderness ratio (β) usually 

ranges between 1 and 5 and  their edges are  simply  supported but  constrained  to  remain 

straight.  In  civil  engineering  studies,  steel  plates  of  similar  thickness  to  ship  plates  are 

investigated, but  the boundary conditions of  the edges differ examining only  two cases  in 

which plates are simply supported or clamped.   However, all studies have been taken  into 

account as each of them contributes in a different way to the current study. 

2.5.2.1. Steel plates 

The  critical  elastic  shear  stress  formula  for  simply  supported  plate  equivalent  to  elastic 

buckling stress formulation (Equation 2.3) is given by Equation 2.22.  

߬ா ൌ
݇௦ߨଶܧ

12ሺ1 െ ଶሻݒ
൬
ݐ
ܾ
൰
ଶ

, ݇௦ ൌ 5.3 ൅ 4ሺܽ ܾ⁄ ሻଶ & ܽ ܾ⁄ ൒ 1   Equation 2.22

 

However,  the  elastic  shear  buckling  stress with  plasticity  correction  can  be  used  instead 

applying the Jonson‐Ostenfeld formula which is described in Equation 2.23. 

߬௖௥ ൌ 	 ൜
߬ா,													 ݎ݋݂																								 ߬ா ൑ ிߪ0.5
ሾ1	ிߪ െ ,ி/ሺ4߬ாሻሿߪ ݎ݋݂ ߬ா ൐ ிߪ0.5

ൠ , ቊߪி ൌ ߬௒ ൌ ௒ߪ √3⁄
߬ா, Equation 2.22

ቋ  Equation 2.23 

 

Initially, Rutherford (Rutherford, 1983) introduced a semi‐analytical formula for the ultimate 

shear stress  based on design curves from the aircraft industry. In 2008, Zhang and Rutherford 

(Zhang  et  al.,  2008)  proposed  a  simpler  formulation  (Equation  2.24)  for  the  estimate  of 

ultimate shear stress of ship plating without residual stresses.  
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In Zhang’s study, plates with aspect ratio (a/b) equal to 4.45 and slenderness ratio (β) 1.19‐

3.91 are modelled using ABAQUS and  then  they are  compared against Rutherford’s  initial 

equation, Nara’s (Equation 2.25), Eurocode 3 (Equation 2.27), Paik’s (Equation 2.28) and his 

proposed equation (Equation 2.24).  In this case,  it shows particularly good correlation with 

Rutherford’s, Nara’s and Zhang’s N.F.E.M results. However, in the case of slender plates with 

different aspect ratio (a/b) equal to 1, 2, 3 the proposed formula agrees constantly only with 

Rutherford’s equation.  

߬௨
߬௒
ൌ 	ቐ

	1,																									 ఛߚ	ݎ݋݂				 ൏ 1
2

ඥߚఛ
െ
1
ఛߚ
,										 ఛߚ	ݎ݋݂				 ൒ 1ቑ ,

ە
ۖ
۔

ۖ
ఛߚۓ ൌ

ߚ
1 ൅ ሺܾ ܽ⁄ ሻଷ ଶ⁄

߬௒ ൌ ௒ߪ √3⁄
,ߚ Equation 2.7 ۙ

ۖ
ۘ

ۖ
ۗ

  Equation 2.24

 

Nara’s equation (Equation 2.25) is based on N.F.E.M. results, where steel plates of aspect ratio 

(a/b) 1 to 1.5 and thickness (b/t) 50.6 to 196.9 are examined taking into account average initial 

distortions and residual stresses. The proposed formulation derives by regression analysis of 

the F. E. results and it is described as: 

߬௨
߬௒
ൌ ൬

0.486
ߣ

൰
ଵ ଷ⁄

, 0.486	ݎ݋݂ ൑ ߣ ൑ 2  Equation 2.25

 

λ ൌ 	 ൫߬௬ ߬ா⁄ ൯
ଵ
ଶൗ   Equation 2.26

 

Another empirical formulation is suggested by Eurocode 3 (Eurocode 3 ENV 1993‐1‐1, 2005) 

as follows:  

ఛೠ
ఛೊ
ൌ

൝
1,																													 ߣ ൑ 0.8

1 െ 0.625ሺߣ െ 0.8ሻ, 0.8 ൑ ߣ ൑ 1.2
0.9 ⁄,ߣ 																						 ߣ ൒ 1.2	

ൡ , ሼߣ ݏܽ ݂݀݁݅݊݁݀ ݕܾ Equation 2.26ሽ   
Equation 2.27

 

In  addition,  Paik  (Paik  et  al.,  2001a)  investigated  the  ultimate  shear  stress  (τu)  using  F.E. 

analysis for a series of steel plates with aspect ratio (a/b) 1, 3, 5, varying thickness, average 
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initial  distortions  (Equation  2.8)    and  constrained  edges which  allow  the  sides  to  remain 

straight. The proposed empirical formula is: 

߬௨
߬௒
ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ 1.324ቆ
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߬௬
ቇ ,																					 ݎ݋݂ 0 ൏

߬ா
߬௬

൏ 0.5
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߬௬
ቇ
ଷ

െ 0.274ቆ
߬ா
߬௬
ቇ
ଶ

																													

൅0.676 ቆ
߬ா
߬௬
ቇ ൅ 0.5	ݎ݋݂								,0.388 ൏

߬ா
߬௬

൑ 2
	
	

0.956,				 																							 ݎ݋݂
߬ா
߬௬

൐ 2
ۙ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

  Equation 2.28

 

Where, ߬ா is the elastic critical shear stress and it is given by Equation 2.22. 

In Paik’s and Nara’s research, critical shear stress values seem to be  independent from the 

aspect ratio of the plates, which agrees also with Santos Rizzo’s results (Rizzo et al., 2014). 

Santos Rizzo (Rizzo et al., 2014) has modelled steel plates with aspect ratio (a/b) 1 to 4 using 

N.F.E.M.  and  his Von‐Mises  contour  plots  show  that  long  plates  under  shear  behave  like 

multiple square plates. In Paik’s graph (Paik and Thayamballi, 2003) the proposed critical stress 

formulation  follows  the  same  pattern with  Eurocode  3  (Equation  2.27)  and  shows  good 

correlation with  the  elastic  buckling  strength  formula with  plasticity  correction  (Equation 

2.23). In the same graph, Nara’s equation results (Equation 2.25) are also depicted and seem 

to agree with Equation 2.23. 

 In  civil  engineering,  Alinia’s  research  (Alinia  et  al.,  2009)  in which  simply  supported  and 

clamped thin plates subjected to shear, show that the through thickness bending stress and 

yield pattern of  the plates have not been  significantly affected by  the  support conditions. 

However, the plates in this study are perfectly flat which is not the case in the current study. 
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2.5.2.2. Aluminium plates 

Marine aluminium alloy plates (6082‐T6) subjected to shear have been analysed by Kristensen 

(Kristensen, 2001) using NLFEM examining the effect of residual stresses and heat affected 

zone (25mm) along  all edges of the plate. In Figure 2.9, the necessity to include HAZ in the 

ultimate shear strength assessment of aluminium plates  is shown, but not also the residual 

stresses which may have a minor effect. 

 

Figure 2.9: Ultimate capacities of plates made of alloy 6082‐T6 exposed to pure shear  load 
(Kristensen, 2001) 

 

The Jonson‐Ostenfeld formula (Equation 2.23) for steel plates under shear can be used for the 

critical  shear load estimate of aluminium plates replacing the yield stress (σΥ) with the proof 

yield stress at 0.2% offset strain. 

Also, Eurocode 9 EN 1997‐1‐1  (Eurocode 9 EN 1997‐1‐1, 2007, p. 9) provides the  following 

formulations for the estimation of critical shear stress of aluminium plates: 

ாܸ஽ ൑ ோܸௗ   Equation 2.29

Where: 
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VED = design value of the shear force at the cross section; VRd = design shear resistance of the 

cross section.  

If we assume VED = VRd and safety factor to account for design uncertainties (γΜ1) equal to 1, 

the design shear resistance of the cross section (VRd) derives from: 

 For non‐slender plates β ≤ 39ε, where β  is defined by Equation 2.19 and ε by Equation 

2.20, a yielding check is required using the following formula: 

ோܸௗ ൌ ௡௘௧ܣ	 ∙ ௢ߪ ൫ߛெଵ√3൯⁄   Equation 2.30

 

Where: 

Anet = net effective area, equal to: 

௡௘௧ܣ ൌ 2ܾு஺௓
ு஺௓ߪ
௢ߪ

ݐ ൅ ሺܾ െ 2ܾு஺௓ሻ
௢ߪ
௢ߪ
 ݐ Equation 2.31

 

 Slender plates β > 39ε, where β  is defined by Equation 2.19 and  ε by Equation 2.20, a 

yielding  check  is  required  the  Equation  2.30  and  a buckling  check using  the  following 

formula: 

ோܸௗ ൌ ଵݒ	 ∙ ܾ ∙ ݐ ∙ ௢ߪ ൫ߛெଵ√3൯⁄   Equation 2.32

 

Where:  

ଵݒ ൌ ଵݒ	 ∙ ݐ ∙ ߝ ∙ ඥ݇௧ ܾ	 ൏ ݇ఛൗ
430 ∙ ଶݐ ∙ ଶߝ

ܾଶ
൑ 1  Equation 2.33

 

b = plate’s breadth; a = plate’s length;  

݇ఛ ൌ 	5.34 ൅ 4.00 ∙ ሺܾ ܽ⁄ ሻଶ, ݎ݋݂ ܽ ܾ ൒ 1⁄ Equation 2.34
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2.5.3. Plates under combined loads of compression/tension and shear 

In  the  literature,  the  studies which examine plates  subjected  to  compression/tension and 

shear  are  very  limited.  Both  loads  should  occur  simultaneously  in  order  to  be  an  actual 

representation of ship’s loading, therefore an important point of interest during this study is 

the  applied  boundary  conditions.  In  addition,  the  effect  of  initial  distortions  and  residual 

stresses  was  investigated.  It  should  also  be mentioned  that  aluminium  plates  are more 

complicated than steel plates as the defined material properties may differ in each study. 

2.5.3.1. Steel plates 

In aeronautics, Batdorf’s (Batdorf and Stein, 1947) research was focused on simply supported 

flat rectangular plates (a/b = 1, 2 and 4) under combined loads of shear and longitudinal direct 

stress.   The  critical  shear and direct  stress were  computed by an energy method and  the 

following formulation was proposed: 

൬
τ
߬௖௥

൰
ଶ

൅	
ߪ
௖௥ߪ

ൌ 	1  Equation 2.35

 

Bleich (Bleich, 1952) also studied simply supported plates under these combined  loads and 

created a design chart solving an energy method. Ueda (Ueda et al., 1985), much later, derived 

an  empirical formula based on Bleich’s interaction curves for plates subjected to combined 

shear  and  compressive  loads.  The  proposed  formulation  provides  the  elastic  shear  and 

buckling stress values as it follows: 

൬
τ
߬ா
൰
௔భభ

൅	
ߪ
ாߪ

ൌ 	1  Equation 2.36

 

where:  

τ, σ are the elastic values of shear and compressive stress respectively under combined loads; 

߬ா, elastic shear stress under pure shear as described by Equation 2.22 

 ா, elastic direct stress under pure compression as described by Equation 2.3 and Equationߪ

2.4 
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ܽଵଵ ൌ ቊെ0.16ሺܽ ܾ⁄ ሻଶ ൅ 1.080ሺܽ ܾ⁄ ሻ ൅ 1.082, 1 ൑ ܽ ܾ⁄ ൑ 3.2
2.90,									 													 										 ܽ ܾ⁄ ൐ 3.2

ቋ    Equation 2.37 

 

Paik  (Paik  and  Thayamballi,  2003)  also  provides  a  formulation  in  his  book  for  shear  and 

buckling  strength of plates  subjected  to  combined  loads  taking  into account  the plasticity 

correction  by  Johson‐Ostenfeld  formula.  The  general  formula  modified  for  combined 

compressive (‐) /tensile (+) and shear loads becomes: 

൬
ߪ
௖௥ߪ

൰
ଶ

൅ ൬
τ
߬௖௥

൰
ଶ

ൌ 	1, ൜
,௖௥ߪ ݃݊݅ݏݑ Equation 2.5
߬௖௥, ݃݊݅ݏݑ Equation 2.23

ൠ  Equation 2.38

 

However,  the ultimate  strength of  steel plates under  shear and axial compression/tension 

seems  to  investigated  initially by Harding  (Harding et al., 1977) using multi‐layer/DR  finite 

difference analysis.  In his extensive research, the effect of the constraints at the unloaded 

edges (unrestrained and constrained edges), the level of initial imperfections (slight, average, 

severe)  and  residual  stresses  (in  longitudinal  and  transverse  direction)  were  taken  into 

account. Plates with aspect ratio  (a/b) equal to 1 and slenderness ratio  (β) equal to 2.075, 

4.149 and 6.224 were subjected simultaneously to shear and compressive/tensile  loadings. 

Their  strength  assessment  provides  an  informative  data  of  series  of  direct  stress,  shear 

stress/strain curves and interaction curves under these combined loads giving insight into the 

effect of the pre‐mentioned parameters on the behaviour of a plate.  

 

2.5.3.2. Aluminium plates 

Limited research has been carried out  for aluminium marine alloys plates under combined 

loads  of  axial  compression/  tension  and  shear. Dier  (Adrian  F. Dier,  1987)  compared  the 

behaviour of steel and 5083 aluminium alloy square plates with slenderness ratio (β) equal to 

4.149,  average  level  of  initial  geometric  imperfections,  without  residual  stresses  and 

constrained edges.  In his study, dynamic  relaxation method was used  for  the analysis and 

aluminium’s  alloy  properties  were  based  on  the  kinematic  model  with  multilinear 

representations of the material stress/strain curves. 
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Compressive and shear  loads were combined applying a constant ratio of shear to  in‐plane 

displacement (0:1, 1/2:2, 1:1, 1:1/2, and 1:0) for the plates. The results show similar behaviour 

of steel and aluminium alloy 5083 plates under the aforementioned ratios and the interaction 

diagrams of shear and compressive loads for both materials are presented in Figure 2.10. 

 

 

Figure  2.10:  Stress  paths  and  interaction  curve:  shear  and  compression,  a/b=1,  β=4.149 
(Adrian F. Dier, 1987) 

 

Another  study  which  examines  aluminium  plates  under  combined  loads  of  shear  and 

compression is Kristensen’s study (Kristensen, 2001). In his research, 6082‐T6 aluminium alloy 

plates (a/b=3) with a width heat affected zone of 25mm along all their edges are subjected to 

shear and compressive loadings and they are analysed using NLFEM. The interaction curves of 

these plates with slenderness (β) 1 to 5 are shown in Figure 2.11. 



 
 
Chapter 2: Literature Review 

 

37 
 

 

Figure 2.11: Interaction curves for plates exposed to axial compression in combination with 
shear loads. The plates have heat affected zones along all edges. (Kristensen, 2001) 

 

2.6. Summary 

This chapter first categorises the types of loads which a ship might be subjected and the limit 

state  design  of  ship  structures  is  also  defined.  Then,  the  existing methodologies  for  the 

progressive collapse assessment of ship hull girders under the most dominant load which is 

the bending load, are presented. Furthermore, the effect of torsional loads on ship’s strength 

assessment is investigated in the literature, discussed and analysed. In the end, an extensive 

investigation  in  the  behaviour  of  steel  and  aluminium  plates  under  pure  axial 

compressive/tensile  loads, pure  shear  loads  and  combined  compressive/tensile  and  shear 

loads takes part due to the approach which the author follows on the proposed methodology.  
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Chapter 3  

3. Methodology 

3.1. Introduction 

In this chapter, the methodology for the incorporation of torsional effect into the extended 

simplified  progressive  collapse  method  is  described.  Initially,  a  brief  description  of  the 

extended simplified progressive collapse method is given. Then, the main assumptions of the 

proposed  methodology  by  the  author  are  presented.  The  calculation  of  the  shear  flow 

distribution in the cross section is also explained and finally the flow chart of this part of the 

code is presented and analysed.  

3.2. Background 

 As  has  been  mentioned,  the  proposed  methodology  is  incorporated  in  the  extended 

simplified progressive collapse method  in order to take  into account the torsion effect  into 

the progressive collapse assessment. The extended simplified progressive collapse method by 

Benson and Dow (Benson, 2011) estimates the progressive collapse of intact structures under 

vertical and horizontal bending moment.  It  is based on  the  simplified progressive collapse 

method by Smith and Dow (Smith et al., 1987), which is a well‐established methodology and 

recommended  by  the  classification  societies  of  IACS  and  the  ISSC  2000  committee  VI.2 

(Ultimate Hull Strength Girder). 

The extended simplified progressive collapse method has already been discussed  in section 

2.3.3 and the simplified progressive collapse method is described in section 2.3.1. The main 

advantage  of  the  extended  simplified  progressive  collapse  method  over  the  initial 

methodology (Smith method) is its ability to model not only the interframe collapse but also 

the overall collapse of the structure. This is achieved by using the nonlinear orthotropic plate 

theory approach which Benson  (Benson, 2011)  implemented  in ProColl. The  instantaneous 

overall  panel  resistance,  ROVERALL(u),    according  to  Benson  is  the  lesser  value  of  RL(u)  

(interframe calculation) and RPO(u) (overall calculation) at each increment.  
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The calculation of the RL(u) of the panel, at a given panel end displacement, u, derives from 

the  following  equations,  using  the  representative  load  shortening  curve  (LSC)  which  is 

generated by the NLFEM datasets:  

ܴ௅	ሺݑሻ ൌ
ܴ௣௟௔௧௘ሺ௨ሻ ∙ ܾ ∙ ݐ ൅ ܴ௦௧௜௙௙ሺ௨ሻ ∙ ሺ݄௪ ∙ ௪ݐ ൅ ௙ܾ ∙ ௙ሻݐ

ܾ ∙ ݐ ൅ ݄௪ ∙ ௪ݐ ൅ ௙ܾ ∙ ௙ݐ
  Equation 3.1

  

Where:  

ܴ௣௟௔௧௘	ሺݑሻ ൌ ሻݑᇱ௦ሺߪ ∙ ௢ߪ ∙ ܾ ∙  ௣ݐ Equation 3.2

 

u ൌ ᇱߝ ∙ ௢ߝ ∙  ߙ Equation 3.3

 

ܴ௦௧௜௙௙	ሺݑሻ ൌ ሻݑᇱ௦ሺߪ ∙ ௢ߪ ∙ ሺ݄௪ ∙ ௪ݐ ൅ ௙ܾ ∙  ௙ሻݐ Equation 3.4

 

The calculation of the RPO(u) of the panel, at a given panel end displacement, u, derives from 

the  orthotropic  plate  calculations which  are  presented  in  the  flow  chart  in  Figure  124  in 

Benson’s study and they are analysed in detail at the same section (Benson, 2011).  

The  resistance  of  the  panel  according  to  both  interframe  (RL(u))  and  orthotropic  (RPO(u)) 

calculation is calculated in each iteration and the min value of the above (i.e. RL(u), RPO(u)) is 

selected as the resistance of the panel, ROVERALL(u).    

However,  the  components  of  the  plate  and  stiffener  resistance,  Rplate(u)  and  Rstiff(u) 

respectively,    are  taking  into  account  separately  in  the  calculations  for RL and RPO.  Shear 

stresses affect only  the plates, not  the stiffeners of  the structure. Therefore,  the aim  is  to 

develop a methodology which incorporates the effect of shear into the resistance of the plates 

(Rplate(u)) during the calculation. The stiffener spacing provides the plating aspect ratio and 

slenderness. 

3.3. Main assumptions 

The main  assumption of  the  approach  is  that  the  structure  fails due  to bending  and  that 

torsion has a secondary  load effect. The proposed methodology  is based on  the simplified 

progressive collapse method which estimates the strength of a ship structure under vertical 
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and horizontal bending moment. The vertical bending moment  is the dominant  load of the 

structure  in most cases. Torsion may affect  its strength  in some cases where  the  torsional 

rigidity of the structure is low, but it is not the dominant load even in these cases.  

In addition, the cross section has to remain plane at the compartment ends, likewise in the 

extended simplified progressive collapse method. The ends of the structure are free to move 

in transverse direction (x‐axis), so no warping stresses are generating into the structure.  

Since the structure does not develop warping stresses, the applied torsion to the structure 

generates St. Venant’s torsional shear stresses which affect only the plates of the structure, 

not its stiffeners.  

Finally,  the  shear  stresses  due  to  standard  bending  theory  are  currently  ignored  in  this 

approach. Previous studies showed these are small compared to the shear stresses due to 

torsional loads. 

3.4. Approach of the proposed methodology 

The  approach  of  the  proposed methodology  initially  investigates  the  behaviour  of  ship’s 

plating  subjected only  to  compressive/tensile  loads,  to  shear  loads  and  to  simultaneously 

combined shear and compressive/tensile  loads. The outcome of this  investigation provides 

interaction diagrams of compressive/tensile and shear stresses for typical ship plates (β=1‐6). 

These interaction diagrams are then digitised and programmed into ProColl.   

Within ProColl, the shear flow distribution in the cross section is calculated due to an amount 

of applied torque. Since, the amount of shear stress on each plate is known and the interaction 

diagram of shear and compressive/tensile stresses is known too, from the prior investigation, 

a knock down factor, Kn, can be defined for each plate. This factor is applied to the associated 

load  shortening  curve  of  the  plate  in  the  extended  simplified  progressive  collapse 

methodology. In this way, the effect of shear is taken into account into the Rplate(u) value and 

the iterative procedure of the methodology occurs, estimating the progressive collapse in its 

end. The maximum value in the bending moment‐curvature defines its ultimate strength value 

for this amount of applied torsion to the structure.  

Thereinafter, a different amount of torsion is assumed and the above procedure is repeated 

estimating  the  progressive  collapse  of  the  structure  and  its  ultimate  strength  under  this 
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amount of  torsional  load. The  iteration of  the procedure  stops when  the applied value of 

torsion reaches the maximum value of its torsional load.  

In the end of the analysis, the bending moment curvature relationship of the structure under 

each applied amount of torsional  load  is provided, while, an  interaction diagram of torsion 

and bending moment is generated in parallel. This interaction diagram defines a safe limit of 

combined torsional and bending loads in which the strength of the structure is sufficient.  

The  flow  chart  diagram  for  the  incorporation  of  torsion  into  the  extended  simplified 

progressive collapse method is depicted in Figure 3.1. 

 

     

Figure 3.1: Flow chart diagram for the incorporation of torsion into the Extended Simplified 
Progressive Collapse Method 
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3.5. Shear flow distribution  

The  torsional shear  flow distribution of any closed section can be calculated based on  the 

method of successive corrections as described by Bruhn (Bruhn, 1973). This method is usually 

applied  to aero‐structures;  for example,  the cross  sections of  their wings are consisted by 

multiple numbers of cells which are subjected to torsional loads. 

According  to  the method,  initially  it  is  assumed  that  each  cell  of  the  cross  section  acts 

independently and it is subjected to a shear flow q which makes Gθ equal to 1 in Equation 3.5. 

G ∙ ϑ ൌ
ܮݍ
ܣ2

ර
݀௦
ݐ
  Equation 3.5

 

Where: 

ܩ ൌ ா

ଶሺ௩ାଵሻ
,	shear modulus 

ϑ, angular twist 

q, shear flow of the cell 

݀௦,	periphery of the cell 

 thickness of plate	,ݐ

 

For ܩ ∙ ߴ ൌ 1, Equation 3.5 for each cell of the cross section becomes:  

q ൌ
ܣ2

∮
݀௦
ݐ

ݐ݅݊ݑ	ݎ݁݌	  ݄ݐ݈݃݊݁ Equation 3.6

 

Recalculating ܩ ∙  ߴ for each cell using Equation 3.5 and  the  shear  flow  from Equation 3.6, 

results to ܩ ∙ ߴ ൏ 1, but ϑ value should be the same for all cells, otherwise distortion of the 

original shape of the cross section occurs. Therefore, correction of the assumed shear flow (q) 

in each cell is needed due the resultant shear flow in the common plates between the cells. 
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The correction of the resultant shear flow in the common plates takes part adding a shear flow 

to  the cell which cancels  the negative  twist due  to  the  shear  flow of  the other cell  in  the 

common plate.  

For example, we are taking two cells with shear flow q1, q2 and we assumed that there is only 

one common plate between them which has  
ௗೞ
௧
ൌ  .ଵଶߜ

Additionally, for cell 1 and cell 2 we assume 	ௗೞ
௧
ൌ 	 ଵ andߜ

ௗೞ
௧
ൌ  .ଶ, respectivelyߜ

Therefore, for cell 1:  

G ∙ ϑ ൌ
1
ଵܣ2

ሾݍଵ ∙ ሺߜଵ െ ଵଶሻߜ ൅ ሺݍଵ െ ଶሻݍ ∙ ଵଶሿߜ ൏ 1 

 

Equation 3.7

 

And for cell 2:  

G ∙ ϑ ൌ
1
ଶܣ2

ሾݍଶ ∙ ሺߜଶ െ ଵଶሻߜ ൅ ሺݍଶ െ ଵሻݍ ∙ ଵଶሿߜ ൏ 1 

 

Equation 3.8

 

The adding shear flow (q’) in order to cancel the influence of the other cell to the common 

plate can be written as: 

For cell 1: 

ଵᇱݍ ∙ ଵߜ െ ଶݍ ∙ ଵଶߜ ൌ 0  Equation 3.9

 

The carry over factor from cell 2 to cell 1 is:  

ଶଵܨܱܥ ൌ
ଵଶߜ
ଵߜ

 

 

Equation 3.10

 

And Equation 3.9 due to Equation 3.10 becomes: 

ଵᇱݍ ൌ ଶଵܨܱܥ ∙  ଶݍ Equation 3.11
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Respectively for cell 2: 

ଶᇱݍ ∙ ଶߜ െ ଵݍ ∙ ଵଶߜ ൌ 0  Equation 3.12

 

The carry over factor from cell 1 to cell 2 is:  

ଵଶܨܱܥ ൌ
ଵଶߜ
ଶߜ

 

 

Equation 3.13

And Equation 3.12 due to Equation 3.13 becomes: 

ଶᇱݍ ൌ ଵଶܨܱܥ ∙  ଵݍ

 
Equation 3.14

 

Applying ݍଵᇱ and ݍଶᇱ to Equation 3.7 and Equation 3.8, we calculate a ܩ ∙  value which is less ߴ

than 1 but closer to it than before, due to the corrected shear flow: 

For cell 1:  

G ∙ ϑ ൌ
1
ଵܣ2

ሾݍଵᇱ ∙ ሺߜଵ െ ଵଶሻߜ ൅ ሺݍଵᇱ െ ଶᇱሻݍ ∙ ଵଶሿߜ ൏ 1 

 

Equation 3.15

And for cell 2:  

G ∙ ϑ ൌ
1
ଶܣ2

ሾݍଶᇱ ∙ ሺߜଶ െ ଵଶሻߜ ൅ ሺݍଶᇱ െ ଵᇱሻݍ ∙ ଵଶሿߜ ൏ 1 

 

Equation 3.16

 

Therefore, additional correction of the shear  flow  (q’’)  is needed which based on Equation 

3.11 and Equation 3.14 is: 

For cell 1: 

ଵᇱᇱݍ ൌ ଶଵܨܱܥ ∙  ଶᇱݍ

 
Equation 3.17

For cell 2: 

ଶᇱᇱݍ ൌ ଵଶܨܱܥ ∙  ଵᇱݍ Equation 3.18 
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The  corrected  shear  flow ݍଵᇱᇱ  and   ଶᇱᇱݍ for  cell  1  and  2  are  applied  to  Equation  3.15  and 

Equation 3.16 calculating: 

For cell 1:  

G ∙ ϑ ൌ
1
ଵܣ2

ሾݍଵᇱᇱ ∙ ሺߜଵ െ ଵଶሻߜ ൅ ሺݍଵᇱᇱ െ ଶᇱᇱሻݍ ∙  ଵଶሿߜ

 

Equation 3.19

And for cell 2:  

G ∙ ϑ ൌ
1
ଶܣ2

ሾݍଶᇱᇱ ∙ ሺߜଶ െ ଵଶሻߜ ൅ ሺݍଶᇱᇱ െ ଵᇱᇱሻݍ ∙  ଵଶሿߜ

 

Equation 3.20

If the result in Equation 3.19 and Equation 3.20 is not equal to 1, we apply another correction 

updating Equation 3.17 ‐ Equation 3.20, until they result		G ∙ ϑ ൌ 1. 

The final shear flow in each cell is: 

ଵ௖௢௥௥௘௖௧௘ௗݍ ൌ ଵݍ ൅ ଵᇱݍ ൅ ଵᇱᇱݍ ൅  ଵᇱᇱᇱݍ

 
Equation 3.21

And 

ଶ௖௢௥௥௘௖௧௘ௗݍ ൌ ଶݍ ൅ ଶᇱݍ ൅ ଶᇱᇱݍ ൅  ଶᇱᇱᇱݍ

 
Equation 3.22

 

Additionally, it is known that torsion in the elastic area for closed sections is calculated by: 

T ൌ 2 ∙෍ܣ ∙  ݍ Equation 3.23

A= the enclosed area of the mean periphery of the cell 

q= the shear flow of the cell   

In the above example of the two cells, Equation 3.23 becomes:  

T ൌ 2 ∙ ൫ܣଵ ∙ ଵ௖௢௥௥௘௖௧௘ௗݍ ൅ ଶܣ ∙  ଶ௖௢௥௥௘௖௧௘ௗ൯ݍ Equation 3.24
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3.6. Knock down Factor (Kn) 

The calculation described in section 3.5 provides the shear flow distribution on the plates of 

each cell in the cross section for an arbitrary amount of torsion T. In continue the values of 

shear on the plates are normalized with respect to the value of the shear yield stress which is 

equal to: 

߬௒ ൌ
௒ߪ
√3

 

 

Equation 3.25

This shear distribution corresponds to an amount of torsion which is called  ௢ܶ and after this 

point which shear yield occurs, the shear flow in the cells remain constant. The shear flow of 

a cell whose one plate has reached  its critical shear stress value, cannot be  increased even 

though the applied torsional load is increasing. The additional torsional load (i.e. beyond	 ௢ܶ) 

will cause redistribution of the initial shear flow to the other cells. However, this effect is not 

taken into account in the current methodology due to its perceived small effect in the results. 

Therefore, fractions of  ௢ܶ are applied in each iteration calculating corresponding fractions of 

the maximum shear stress  in each plate. If the user defines a torsional  load	 ௠ܶ௔௫ ൐ ௢ܶ, the 

shear stress of each plate for 	 ௔ܶ௣௣௟௜௘ௗ ൐ ௢ܶ	is equal to the shear stress value of the plate in 

the case of	 ௔ܶ௣௣௟௜௘ௗ ൌ ௢ܶ. 

Then, the interaction diagram of shear and compressive/tensile stresses provides a factor for 

each plate for a known amount of shear (e.g.	߬௔௣௣௟௜௘ௗ) which is applied during the iteration. 

This factor is applied to both the values of stress and strain in the initial load shortening curve 

(LSC). The applied factor (݇௡) results in an updated LSC equal to the LSC which derives from 

the F.E. analysis for plates under combined compression/tension and the amount of applied 

shear  load  (	߬௔௣௣௟௜௘ௗ)  (Figure  3.2).  Therefore,  torsion  is  incorporated  into  the  extended 

simplified progressive  collapse method as a  reduction  factor on  the  initial  strength of  the 

plates. This will also have a direct effect on the orthotropic plate theory for computation of 

overall collapse. 

The procedure continues until torsion becomes equal to  ௢ܶ or when it reaches the maximum 

value of torsion		 ௠ܶ௔௫, which the user has defined. 
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Figure 3.2: Knock down factor (kn) is applied to the LSC in order to derive an updated LSC with 
the effect of shear load. 

 

3.7. Summary 

This  chapter describes  the methodology  for  the  incorporation of  torsion  to  the  extended 

simplified  progressive  collapse method.  First,  the method  for  incorporating  the  effect  of 

torsion into the simplified method is described. Then, the main assumptions and a flow chart 

diagram of the proposed methodology are presented. An extensive description of the shear 

flow calculation  in the cross section follows. Finally, the  incorporation of torsional effect to 

the simplified method using reduction factors to the  load shortening curves of the plates  is 

explained.  
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Chapter 4  

4. Strength of steel and aluminium alloy ship plating under combined shear and 

compression/tension 

4.1. Introduction 

This chapter presents the results of an extensive study of the strength of steel and aluminium 

alloy plating under combined  loads of shear and compression/tension  investigated, by  the 

author, using the Non‐Linear Finite Element Method (NLFEM). Initially, the settings for NLFEM 

modelling are described. Therefore, the material properties of steel and aluminium alloy 5083‐

H116  and  6082‐T6,  the mesh  of  the model,  the  initial  geometric  imperfections,  residual 

stresses and the boundary conditions of the plates are discussed in detail.  

Previous work  for  steel and aluminium plates  subjected  to axial  loads has  shown  that  the 

collapse  of  square  plates  will  give  an  excellent  estimate  of  the  strength  of  long  plates 

subjected to axial loads. The results presented are divided to two parts. In part 1, steel and 

aluminium plates with aspect  ratio  (a/b) 1  to 4 and slenderness  ratio  (β) 1  to 5 which are 

subjected to pure shear are presented. The results are shown similar behaviour for the plates 

with different aspect ratio under pure shear. In part 2, only square steel and aluminum plates 

(1000x1000mm) are examined since their behaviour under shear remains independent from 

the aspect ratio. A series of steel, aluminium alloy 5083‐H116 and 6082‐T6 plates with aspect 

ratio  (a/b)  equal  to  1  and  slenderness  ratio  (β)  1  to  6  is  investigated  under  axial 

compression/tension, pure shear and combined compressive/tensile and shear loads. Finally, 

a summary of the prior investigation is discussed, pointing out the main outcome. 

4.2. NLFEM modelling 

4.2.1. Material properties 

The stress‐strain curves of steel, aluminium alloy 5083‐H116 and aluminium alloy 5083‐H116 

in the heat affected zone (HAZ) are depicted in Figure 4.1. An elastic‐perfectly plastic material 

behaviour was  assumed  for  steel with  yield  stress	ߪ௢ ൌ  ,ܽܲܯ245 Young’s Modulus  ܧ ൌ

ݒ	and Poisson’s number ܽܲܩ207 ൌ 0.3. The material behaviour of aluminium was described 

based on Ramberg‐Osgood model approximation for the stress/strain curve, using Equation 
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4.1  and  ‘knee  factor’  (n) equal  to 15  and 30  for  aluminium  alloy 5083‐H116  and 6082‐T6 

respectively.  The  0.2%  proof  stress  is  ଴.ଶߪ ൌ  ܽܲܯ215 (5083‐H116)  and  ଴.ଶߪ ൌ   ܽܲܯ260

(6082‐T6), Young’s Modulus ܧ ൌ ݒ	and Poisson’s number ܽܲܩ70 ൌ 0.33. 

ߝ ൌ 	
ߪ
ܧ
൅ 0.002 ൬

ߪ
଴.ଶߪ

൰
௡

  Equation 4.1

 

The stress/strain curve of both alloys in the Heat Affected Zone (HAZ) is described also by the 

same  equation  (Equation  4.1),  but  using  a  reduced  proof  yield  stress   (଴.ଶሺಹಲೋሻߪ) instead 

(Benson, 2011). Therefore, the reduced proof yield stress was taken equal to: 

5083‐H116: ߪ଴.ଶሺಹಲೋሻ ൌ 0.67 ∙ ଴.ଶߪ ൌ 0.67 ∙ 215 ൌ  ܽܲܯ144.05

6082‐T6:  ߪ଴.ଶሺಹಲೋሻ ൌ 0.53 ∙ ଴.ଶߪ ൌ 0.53 ∙ 260 ൌ  ܽܲܯ130.91

 

 

Figure 4.1: Stress/strain curves of steel, aluminium alloy 5083‐H116, 6082‐T6 and 5083‐H116 
& 6082‐T6 in the HAZ 
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4.2.2. Mesh convergence study 

All plates were modelled  in ABAQUS using quadrilateral shell elements  (S4R) with reduced 

integration which  is  valid  for both  thick  and  thin  shell problems  as previous  studies have 

shown (Alinia et al., 2009), (Kristensen, 2001), (Benson, 2011). A mesh convergence study was 

conducted to select the element size. A square steel plate of slenderness ratio (β) equal to 3 

and mesh size of 50mm, 20mm, 10mm and 5mm was examined under axial compression and 

pure shear. Its ultimate strength and critical shear stress are depicted in Figure 4.2 and Figure 

4.3 respectively and both of them show to converge for mesh size less than 20mm. Therefore, 

an element size of 10mm is suitable to balance for computational time and accuracy. 

 

 

Figure  4.2:  Mesh  convergence  study  for 
steel  constrained  plate  (β=3)  under  axial 
compression 

 

Figure  4.3:  Mesh  convergence  study  for 
steel constrained plates  (β=3) under pure 
shear 
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4.2.3. Initial geometric imperfections 

Previous studies  (Frieze et al., 1977),  (Smith et al., 1987),  (Benson, 2011) have proved  the 

influence of initial geometric imperfections to the ultimate strength of ship plating. Hence, an 

average  level  of  initial  imperfections with maximum  amplitude	ݓ௢ ൌ  ݐଶߚ0.1 and  Fourier 

series  imperfection  shape  described  by  Equation  2.8  and  Equation  2.12 were  taken  into 

account according to Dow’s (Dow and Smith, 1984) and Benson’s research ((Benson, 2011). A 

typical representation combining 80% of a single half sine wave and 20% of a square half sine 

wave has been used along plate’s length and a single half sine wave along its width, in order 

to  incorporate a  realistic distortion of  critical elastic buckling mode. However,  in  the  case 

where aspect ratio of the plate is equal to 1, the shape of the imperfections is single half sine 

wave along in both directions as it is the most conservative case and it’s described by Equation 

2.8 and the following equation:  

ݓ
௢ݓ

ൌ 	 sin ቀ
ݔߨ
ܽ
ቁ sin ቀ

ݕߨ
ܾ
ቁ , 	ݎ݋݂ ܽ ܾ⁄ ൌ 1 

 
 

	

Equation 4.2 

4.2.4. Residual stresses/ Heat Affected Zone (HAZ) 

The ultimate strength of steel plates under compression  is affected by  the  tensile residual 

stress zone which is introduced to the plate due to welding (Frieze et al., 1977), (Smith et al., 

1987), (Paik and Thayamballi, 2003), (Benson, 2011). Therefore, this zone is modelled along 

the unloaded sides of the plate. The width of the tensile zone for steel was calculated in order 

to achieve equilibrium between the tensile area of stress equal to 0.95ߪ௢ and the compressive 

area with average level of longitudinal residual stresses equal to		ߪ௥௖ ௢ߪ ൌ െ0.15⁄  (Smith et 

al., 1987). 

The width of the Heat Affected Zone (HAZ) for aluminium plates was taken 25mm along the 

unloaded sides of the plate according to Benson’s research (Benson, 2011), (Kristensen, 2001). 

The tensile stress was assumed equal to 0.95 ∙  ଴.ଶሺಹಲೋሻ and the compressive stresses wereߪ

calculated as described in (Benson, 2011) in order to achieve equilibrium of the stresses on 

the plate. 
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4.2.5. Boundary conditions 

A complex set of boundary conditions was developed in order to be valid not only for plates 

subjected to shear or axial compression/tension, but also in both loads simultaneously.  

In the first part, the aim is to apply shear load as displacement in x direction on edge 3 (Figure 

4.4). Therefore, all edges are simply supported. All nodes of edge 3 should have  the same 

displacement in x direction, so they are constrained in x‐direction. Additionally, edge 1 is fixed 

in x and z direction in order to fix the plate in the space and the unloaded edges (2 and 4) are 

constrained to remain straight but free to move in‐plane. To clarify the boundary conditions 

of the unloaded edges, ‘straight’ means that all nodes e.g. at edge 2, retain the  linearity of 

their displacement  in x‐direction between the corner nodes  i.e. RP1 and RP4. The  in‐plane 

movement is free; however the nodes of the unloaded edges displace linearly in z direction 

between the corner nodes which depicts a realistic behaviour of the edges. 

Thence, a relaxation step without  load follows  in order to obtain self‐equilibrating residual 

stress distribution on the plate due to the initial distortions. In the first part, where only pure 

shear occurs, the load is applied as displacement in x direction on edge 3 using the Riks arc 

length and defining a particularly small step for each increment. 

 

  

Figure 4.4: Finite element model of plate 

 

In  the  second  part,  where  the  shear  and  axial  compression/tension  are  applied 

simultaneously,  the  boundary  conditions  were  kept  the  same.  However,  the  case  of 
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unrestrained unloaded edges was also investigated in which the edges 2 and 4 (Figure 4.4) are 

not constrained  to  remain straight. A  relaxation step was applied again before  the  load  in 

order to self‐equilibrate the stresses on the plate due to initial distortions. The load is applied 

as displacement on edge 3 in: 

 Z direction for axial compression/tension 

 X direction for shear 

 Z and x direction simultaneously  for combined  loads of axial compression/ tension and 

shear 

 

4.3. Results Part I: Ship plating with aspect ratio (a/b) 1 to 4 under pure shear 

The progressive collapse of steel and aluminium alloy 5083‐H116 plates of slenderness ratio 

(β) 1  to 5 under pure shear  is presented  in Figure 4.5‐Figure 4.14. Plates with constrained 

unloaded edges and slenderness ratio (β) 1 to 5 are examined for a range of aspect ratio (a/b) 

1 to 4. The shear stress‐shear strain curves of steel plates are presented in Figure 4.5‐Figure 

4.9 and aluminium alloy 5083‐H116 plates in Figure 4.10‐Figure 4.14, respectively.  

 

 

 

Figure 4.5: Steel plates with β=1 and a/b=1‐
4 under pure shear.

 

Figure 4.6: Steel plates with β=2 and a/b=1‐
4 under pure shear 
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Figure 4.7: Steel plates with β=3 and a/b=1‐
4 under pure shear

 

Figure 4.8: Steel plates with β=4 and a/b=1‐
4 under pure shear

 

Figure 4.9: Steel plates with β=5 and a/b=1‐
4 under pure shear 

 

 

 

 

 

 

 

 

 

The  progressive  collapse  behaviour  of  constrained  plates  under  shear  seems  to  be 

independent of the aspect ratio (a/b) of plates with slenderness ratio (β) 1 to 4 for both steel 

and aluminum alloys, Figure 4.5 ‐ Figure 4.9 and Figure 4.10 ‐ Figure 4.14, respectively. Figure 

4.15  and  Figure  4.16  show  Von‐Mises  contour  plots  for  steel  and  aluminium  plates  of 

slenderness ratio (β) equal to 3 and aspect ratio (a/b) 1 to 4. 

Figure 4.9 & Figure 4.14 show that only very slender plates with slenderness ratio (β) equal to 

5 seem to be quite affected by aspect ratio. However, these plates (β=5) are very slender and 

they  are  not  particularly  used  as  ship  plating  (Chalmers,  1993).  Their  application  is more 

common in aerospace structures for plates of this aspect ratio and higher.  
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Figure  4.10:  Aluminium  alloy  5083‐H116 
plates with  β=1  and  a/b=1‐4  under  pure 
shear

 

Figure  4.11:  Aluminium  alloy  5083‐H116 
plates with  β=2  and  a/b=1‐4  under  pure 
shear

 

 

Figure  4.12:  Aluminium  alloy  5083‐H116 
plates with  β=3  and  a/b=1‐4  under  pure 
shear

 

 

Figure  4.13:  Aluminium  alloy  5083‐H116 
plates with  β=4  and  a/b=1‐4  under  pure 
shear

Figure  4.14:  Aluminium  alloy  5083‐H116 
plates with  β=5  and  a/b=1‐4  under  pure 
shear 
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The contour plots of Von‐Mises equivalent stresses for steel and aluminium alloy 5083‐H116 

plates with typical slenderness value (β=3) and aspect ratio 1‐4 subjected to pure shear are 

presented in Figure 4.15 and Figure 4.16 respectively. In the case of steel plates (Figure 4.15), 

all plates present approximately the same maximum shear stress value and the pattern of the 

shear stress distribution of the plate with aspect ratio equal to 1 is repeated twice, three and 

four times respectively to plates with aspect ratio 2, 3 and 4. The same pattern follows the 

aluminium plates under pure shear  (Figure 4.16) but with  lower values of maximum shear 

stress than in steel plates. Furthermore, the reduced 0.2% proof strain stress in the HAZ clearly 

depicted in the Von‐Mises contour plots of aluminium plates. 

 

 

Figure 4.15: Von‐Mises  contour plots of  restrained  steel plates  (β=3) under pure  shear at 
collapse and γ/γο ≤2.5, with a/b=1‐4 magnify x10 
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Figure 4.16: Von‐Mises contour plots of restrained aluminium alloy 5083‐H116 (β=3) under 
pure shear at collapse and γ/γο ≤2.5, with a/b=1‐4 magnify x10   
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4.4. Results Part II: Square ship plating under combined loads of axial compression/tension 

and shear 

In  this  study,  the  progressive  collapse  behaviour  of  square  (1000x1000mm)  steel  and 

aluminium alloy plates (5083‐H116 and 6082‐T6) under axial compression/tension, pure shear 

and  combined  loads  of  axial  compression/tension  and  shear  is  investigated  using  finite 

element analysis. Initially, the plates are subjected only to axial compression/tension and to 

pure shear  in order to  investigate the effect of the constrained and unrestrained unloaded 

edges on  the progressive  collapse of  the plate. The  stress‐strain  curves of both  cases are 

presented  and  the  results  are  compared  to  well‐known  theoretical  formulas  which  are 

mentioned in the literature review (section 2.5). These comparisons are shown in section 4.4.3 

for steel, aluminium alloy 5083‐H116 and aluminium alloy 6082‐T6. 

Finally,  the  interaction  diagrams  of  axial  compressive/tensile  and  shear  loads  for  steel, 

aluminium  alloy  5083‐H116  and  6082‐T6  plates  and  for  slenderness  ratio  (β)  1  to  6  are 

presented in section 0. Each point in these diagrams depicts the maximum value of shear and 

compressive/tensile load which a plate may sustain. Therefore, these diagrams are used for 

the incorporation of torsion effect in the Simplified Progressive Collapse Method.  

 

4.4.1. Steel, aluminium alloy 5083‐H116 and 6082‐T6 plates under axial 

compression/tension 

A series of steel, aluminium alloy 5083‐H116 and 6082‐T6 plates with slenderness ratio (β) 1 

to 6 is subjected to in‐plane compression and tension. As it has already mentioned, two cases 

are examined for unloaded edges; one in which are free to move in plane (unrestrained) and 

another one in which are constrained to remain straight (constrained). The stress‐strain curves 

of these plates under pure compression/tension are presented in Figure 4.17 to Figure 4.22 

for a range of slenderness ratio (β) 1 to 6.  

The load shortening curves of steel square plates are depicted in Figure 4.17 and Figure 4.18 

for unrestrained and constrained edges, respectively. It seems that constrained plates become 

stiffer than unrestrained due to the constraints of unloaded edges which is expected and their 

ultimate  strength  increases  too. However,  this  is not  the case  for very  stocky plates  (β=1) 
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which  fail  though  plastic  yielding  and  their  ultimate  strength  is  independent  from  the 

boundary conditions on the unloaded edges. 

Similar pattern to steel plates under direct in‐plane compression and tension seems to follow 

aluminium  alloy  5083‐H116  and  6082‐T6  plates  (Figure  4.19  to  Figure  4.22).  Non‐stocky 

constrained aluminium plates present higher values of compressive and tensile stress which 

may sustain and become stiffer in comparison to unrestrained plates. In addition, there are 

no particular differences in the behaviour between alloy 5083‐H116 and 6082‐T6 plates with 

the same boundary conditions, unrestrained  (Figure 4.19 and Figure 4.21) and constrained 

(Figure 4.20 and Figure 4.22) under compression/ tension. 

 

 

Figure  4.17:  Stress‐strain  curves  of 
unrestrained  steel  plates  under  axial 
compression/tension 

 

Figure  4.18:  Stress‐strain  curves  of 
constrained  steel  plates  under  axial 
compression/tension.
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Figure 4.19: Unrestrained aluminium alloy 
5083‐H116  plates  under  axial 
compression/tension 

 

Figure  4.20:  Constrained  aluminium  alloy 
5083‐H116  plates  under  axial 
compression/tension 

 

 

 

Figure 4.21: Unrestrained aluminium alloy 
6082‐T6  plates  under  axial 
compression/tension 

 

 

 

Figure  4.22:  Constrained  aluminium  alloy 
6082‐T6  plates  under  axial 
compression/tension 
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4.4.2. Steel, aluminium alloy 5083‐H116 and 6082‐T6 plates under pure shear  

The  same  series  of  steel  and  aluminium  plates  which  was  investigated  under 

compression/shear in section 4.4.1 was also subjected to pure shear. The critical shear stress‐

shear strain curves of this series are presented in Figure 4.23 to Figure 4.28. The behaviour of 

stocky (β=1, 2) steel unrestrained plates remains unaffected by the boundary conditions of 

unloaded edges and  failure occurs due  to shear yielding  (Figure 4.23). Critical shear stress 

decreases as plate becomes more slender and shear buckling occurs. The shear stress‐strain 

curves of constrained steel plates (Figure 4.24) follow similar pattern but slender plates (β>2) 

show increased critical shear stress and stiffness in comparison with unrestrained plates. 

The behaviour of aluminium alloy 5083‐H116 (Figure 4.25 & Figure 4.26) and 6082‐T6 (Figure 

4.27 & Figure 4.28) plates does not differ from this of steel plates under pure shear. The shear 

stress‐  strain curves  show  shear  stress  to  increase as plate becomes more  slender,  stocky 

plates not  to be affected by  the boundary conditions of unloaded edges and only  slender 

plates are affected becoming stiffer and increasing their critical shear stress. 

 

 

Figure  4.23:  Shear  stress‐shear  strain 
curves  of  unrestrained plates  under  pure 
shear   

 

Figure  4.24:  Shear  stress‐shear  strain 
curves  of  constrained  plates  under  pure 
shear. 

 



 
Chapter 4: Strength of Steel and Aluminium Alloy Ship Plating under Combined Shear and 
Compression/Tension 

 

63 
 

 

 

Figure 4.25: Unrestrained aluminium alloy 
5083‐H116 plates under pure shear 

 

 

Figure  4.26:  Constrained  aluminium  alloy 
5083‐H116 plates under pure shear 

 

 

 

 

Figure 4.27: Unrestrained aluminium alloy 
6082‐T6 plates under pure shear. 

 

Figure  4.28:  Constrained  aluminium  alloy 
6082‐T6 plates under pure shear. 
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4.4.3. Comparison of ultimate strength and critical shear stress of steel, aluminium alloy 

5083‐H116 and 6082‐T6 plates with theoretical formulas and previous studies 

A comparison of the nonlinear finite element results of ultimate strength of plates under pure 

axial compression and pure shear with relevant theoretical formulas and other studies was 

taken part. The purpose of this comparison is to validate the boundary conditions which are 

applied to plate models under combined loads of compression/ tension and shear, since are 

the same with these of separate load cases of axial compression and pure shear.   

The  direct  stress  of  unrestrained  steel  plates  under  axial  compression  is  compared with 

Chalmers’  results,  Faulkner’s  theoretical  formula  (Equation  2.6)  and  critical  elastic  stress 

formulation with corrected plasticity by Johnson‐Ostenfeld (Equation 2.5) in Figure 4.29. All 

of these formulas/studies are referring or have been applied to unrestrained plates. The graph 

of the F.E. results for unrestrained plates shows a good correlation with Faulkner’s theoretical 

values and Chalmers’s results as it follows the same pattern and does not overestimate plates’ 

ultimate strength. Differences are expected as we compare F.E. results with theoretical values 

(Faulkner)  and  a different  study  (Chalmers’)  in which  all parameters  and  analysis  are not 

exactly the same.  

The critical elastic stress formulation with corrected plasticity by Johnson‐Ostenfeld estimates 

critical elastic direct stress which is much lower than plate’s ultimate strength when buckling 

occurs in the elasto‐plastic area for slender plates (β>2). However, in the case of stocky plates 

(β<2) which yield in plasticity region, Johnson‐Ostenfeld formulation agrees well with the rest 

studies and formulas. 

The nonlinear finite element results of plates with constrained edges are also presented  in 

Figure 4.29. Stocky plates (b<2) which their ultimate strength is not affected by constraints on 

the unloaded edges show good correlation with the compared formulas and studies which are 

referring to unrestrained plates. The direct stress of slender plates (β>2) is higher due to the 

constrained edges which provide additional  strength  to  the plate. However,  the  reason of 

including the F.E. results of these plates in the graph (Figure 4.29.) is not in order to validate 

their boundary conditions but to obtain an estimation of their difference in ultimate strength. 
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In addition, these findings agree with Frieze’s study on the ultimate load behaviour of plates 

in compression  (Frieze et al., 1977). 

 

Figure  4.29:  Comparison  of  N.L.F.E.  results  of  the  current  study  with  other  studies  and 
theoretical values of the ultimate strength of steel plates under axial compression. 

 

The critical shear stress of both unrestrained and constrained steel plates under pure shear is 

compared with  theoretical  formulas proposed by Nara  (Equation 2.25),  Johnson‐Ostenfeld 

(Equation 2.23), Paik and Thayamballi (Equation 2.28), Zhang (Equation 2.24) and Eurocode 3 

(Equation 2.27) in Figure 4.30. All formulations are referred to constrained plates and provide 

the critical shear stress except Johnson‐Ostenfeld’s formulation. This formulation estimates 

the elastic shear stress of plates with correction due to plasticity which is lower than ultimate 

shear stress. The ultimate shear stress of stocky plates (β<2) according to all formulations and 

F.E. results does not particularly differ. Unrestrained slender plates (β>2) are affected by the 

boundary conditions of unloaded edges and its critical shear stress is decreasing much more 

than this of constrained plates. The graph of slender constrained plates follows similar pattern 

to Zhang’s, Nara’s, Paik and Thayamballi’s and Eurocode 3  formulations. The critical  shear 

stress  for plates with slenderness ratio  (β) equal to 3 show very good agreement with the 

developed empirical  formula by Paik  and Thayamballi  (Equation 2.28)  and  for plates with 

slenderness ratio (β) more than 4 with Nara’s formulation (Equation 2.25). 
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Figure  4.30:  Comparison  of  N.L.F.E.  results  of  the  current  study  with  other  studies  and 
theoretical values of the critical shear stress of steel plates under pure shear. 

 

Aluminium alloys 5083‐H116 and 6082‐T6 plates under axial compression are compared with 

theoretical formulations  in Figure 4.31 and Figure 4.32, respectively. Both aluminium alloys 

5083‐H116 and 6082‐T6 present similar behaviour under axial compression, therefore only 

the behaviour of 5083‐H116 is analysed in detail and any difference which occurs with 6082‐

T6 is commented.  

The ultimate strength of unrestrained and constrained aluminium alloy plates  is compared 

with Faulkner’s formula (Equation 2.6), Eurocode 9 (Equation 2.13 ‐ Equation 2.20) and Paik 

and  Duran’s  formulation  (Equation  2.21)  in  Figure  4.31  and  Figure  4.32.  The  graph  of 

unrestrained plates presents similar pattern to Faulkner’s empirical formula for unrestrained 

plates and Eurocode 9 results. The ultimate strength of stocky constrained plates (β<2) is not 

affected by  the boundary  conditions of  the unloaded edges and  it decreases as  the plate 

becomes more slender but much less than in the case of unrestrained edges. Paik and Duran’s 

graph  for  slender  plates  (β>2)  is  close  to  Faulkner’s,  Eurocode  9  and  the  F.E.  graph  for 

unrestrained plates but following different slope.  
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Figure 4.31: Comparison of NFEM results of 
the current study with theoretical values of 
the  ultimate  strength  of  aluminium  alloy 
5083‐H116 plates under axial compression. 

 

Figure 4.32: Comparison of F.E.  results of 
the  current  study  with  other  theoretical 
values  of  the  ultimate  strength  of 
aluminium alloy 6082‐T6 plates under axial 
compression. 

 

The critical shear stress of aluminium alloys 5083‐H116 and 6082‐T6 plates under pure shear 

is  compared with Eurocode 9  formulas  (Equation 2.29  ‐ Equation 2.34)  in Figure 4.33 and 

Figure 4.34 respectively. Stocky plates (β<2) subjected to shear are also independent from the 

boundary  conditions  at  the  edges.  Constrained  slender  plates withstand  higher  levels  of 

critical shear stress than unrestrained plates. However, the graphs in both cases have similar 

curvature.  

Eurocode’s 9  formulations  for non‐slender plates estimate critical shear stress due to yield 

and an additional buckling check  is required for slender plates. The estimated critical shear 

stress for non‐slender plates (β<2) according to Eurocode’s 9 formulations is higher than the 

non‐linear finite element results but both graphs follow the same pattern, a straight horizontal 

line. The buckling shear stress of slender plates (β>2) shows similar tendency with the non‐

linear finite element results.  
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Figure 4.33: Comparison of NFEM results of 
the current with  theoretical values of  the 
critical  shear  stress  of  aluminium  alloy 
5083‐H116 plates under pure shear. 

 

Figure 4.34: Comparison of F.E.  results of 
the  current  study  with  other  theoretical 
values  of  the  critical  shear  stress  of 
aluminium alloy 6082‐T6 plates under pure 
shear. 
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4.4.4. Interaction diagrams of axial compressive/tensile and shear loads for steel, 

aluminium alloy 5083‐H116 and 6082‐T6 plates  

The  interaction diagram of axial compressive and shear  loads for steel and aluminium alloy 

5083‐H116  and 6082‐T6 plates with unrestrained and  constrained edges are presented  in 

Figure 4.37 ‐ Figure 4.42. Each point depicts the peak direct stress and the peak shear stress 

of  plates  under  these  combined  loads.  In  cases  where  either  the  direct  or  shear  stress 

components have failed to reach a peak value, limitations have been set for the interaction 

relationship. In this case, values of either direct or shear stress at strain values of ε/εο=2 or 

γ/γο=2 are used to define the failure stresses for the interaction diagram (Figure 4.35 &  

Figure 4.36). 

 

Figure  4.35:  Strain  limit  of  ε/εο  =  2  and 
examples  of  direct  axial  stress  values  for 
the interaction diagram

 

Figure 4.36: Shear strain  limit of  γ/γο = 2 
and examples of direct shear stress values 
for the interaction diagram 

The interaction diagrams of steel plates with unrestrained and constrained edges are depicted 

in Figure 4.37 and Figure 4.38, respectively. Figure 4.37 shows that very stocky unrestrained 

steel plates (β=1) follows the Mises yield criterion, according to which	ሺߪ ⁄௢ߪ ሻଶ ൅ ሺ߬ ߬௢⁄ ሻଶ ൌ

1 and slender unrestrained plates present high insensitivity of compressive strength to shear 

for proportions up to 0.5τo. In the case of constrained steel plates (Figure 4.38), very stocky 

(β=1) and  less stocky plates (β=2, 3) behave  in a similar manner to the Mises criterion. The 
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insensitivity of the compressive strength to applied shear remains, but for lower proportions 

of shear and  for very slender plates  (β=4, 5, 6). The ultimate and critical shear strength of 

constrained  plates  with  slenderness  ratio  (β)  higher  than  2  under  pure  axial 

compression/tension and pure shear  is  increased  in comparison with these of unrestrained 

plates, as already it has been mentioned in previous sections. 

The  interaction  diagrams  of  aluminium  alloy  5083‐H116  plates  with  unrestrained  and 

constrained edges are depicted  in Figure 4.39 and Figure 4.40, respectively. Similar pattern 

occurs  between  steel  (Figure  4.37)  and  aluminium  alloy  5083‐H116  (Figure  4.39)  with 

unrestrained  edges where  stocky  plates  (β=1)  follows  the Mises  yield  criterion  and  very 

slender plates (β>2) develop high insensitivity to shear. Buckling remains the dominate reason 

of  failure  for  low proportions of shear  to axial compressive  load and shear starts  to affect 

plate’s strength when it reaches approximately the 50% of shear yield stress. The behaviour 

of plates with slenderness ratio β=2 is similar to the behaviour of stocky plates but without 

verifying the Mises yield criterion. The interaction diagram of the constrained aluminium alloy 

5083‐H116 plates  in Figure 4.40 does not present particular differences  from  this of  steel 

constrained plates (Figure 4.38). Very stocky plates (β=1) comply with Mises criterion and less 

stocky plates  (β=2, 3) behave  in a similar manner. The  influence of shear  load  to  the axial 

compressive strength  is greater  in the case of slender plates (β=4, 5, 6) and shear buckling 

occurs  for  low proportions of shear to direct stress. However, the behaviour of aluminium 

constrained plates under combined tensile and shear  loadings seems to differ  from this of 

steel plates, especially for very slender plates (β=6). 

The interaction diagrams of aluminium alloy 6082‐Τ6 plates with unrestrained and constrained 

edges are depicted in Figure 4.41 and Figure 4.42, respectively. There no particular differences 

between the interaction diagrams of aluminium alloys 5083‐H116 and 6082‐T6. Only, in the 

case of very slender (β=5, 6), unrestrained aluminium alloy 6082‐T6 plates, shear insensitivity 

occurs for lower proportions of shear than in the same case for aluminium alloy 5083‐H116. 
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Figure  4.37:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
unrestrained steel plates.

 

Figure  4.38:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
restrained steel plates. 

 

 

Figure  4.39:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
unrestrained  aluminium  alloy  5083‐H116 
plates. 

 

Figure  4.40:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
restrained  aluminium  alloy  5083‐H116 
plates. 

 

 

Figure  4.41:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
unrestrained 6082‐T6 plates.

 

Figure  4.42:  Interaction  diagram  of  axial 
compressive/tensile  and  shear  loads  for 
restrained 6082‐T6 plates. 
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4.5. Summary 

The strength of steel and aluminium ship plating under axial compression/tension, shear and 

combined compressive/tensile and shear loadings was investigated in this chapter. Initially, all 

parameters for setting up the plate model of non‐linear finite element analysis are described 

analytically. Then, the study was divided to two parts. 

In the first part, steel and aluminium plates with constrained edges, aspect ratio (a/b) 1 to 4 

and  slenderness  ratio  (β)  1  to  5  are  subjected  to  pure  shear.  The  results  show  that  the 

progressive collapse behaviour of plates under pure shear is not affected by the aspect ratio 

(a/b) of  the plates. Therefore, only  square plates  (a/b=1) were  investigated  further  in  the 

second part. 

In  the  second part,  square plates with  slenderness  ratio  (β)  1  to  6  are  subjected  to  axial 

compressive/tensile, shear and combined compressive/tensile and shear loads, applying the 

same boundary conditions. The effect of constraining unloaded edges, keeping them straight, 

was  also  investigated.  Initially,  axial  compressive/  tensile  and  shear  loads  are  applied 

separately. Then, the results are compared with theoretical formulas and previous studies in 

order to validate the boundary conditions which are applied to the plate. Finally, the plates 

are subjected to combined loads of axial compression/tension and shear and their interaction 

diagrams are generated. These diagrams show the ultimate strength which a plate may sustain 

under a certain/ defined amount of critical shear stress. The results show that the constraints 

of unloaded edges enhance the ultimate strength of slender plates but not also the strength 

of stocky plates. Slender constrained plates are more susceptible to shear than unrestrained 

plates which  show  high  shear  insensitivity  and  buckle  due  to  axial  compressive  loadings. 

Finally, steel, aluminium alloy 5083‐H116 and 6082‐T6 plates of the same slenderness ratio 

and with the same constraints applied to the unloaded edges follow similar pattern in their 

interaction diagrams without the material causing particular differences.  
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Chapter 5  

5. Progressive Collapse Assessment of Intact Box Girders under Combined 

Bending and Torsional Loads 

5.1. Introduction 

This  chapter presents  the  results of  four  intact box  girders under  combined bending  and 

torsion. The size of the box girder remains the same in each case but its cross section alters in 

order to  investigate the effect of torsional rigidity on the structure.  Initially, the geometric 

characteristics  and  the material  properties  of  these  box  girders  are  presented.  Then,  all 

models are subjected to pure torsion using the nonlinear finite element method and defining 

the torsional capacity of each box girder. Since their torsional ultimate strength is known, each 

box girder is then subjected to combined torsional and bending loads, applying first different 

fractions of its maximum torsional load followed by vertical bending moment (sagging) until 

collapse.  Each  analysis  is  conducted  using  the  nonlinear  finite  element method  and  the 

proposed extended progressive collapse method. An interaction diagram of these combined 

loads is derived for each box girder, defining the limit of the ultimate strength and a safe zone 

in which the structure may sustain these loads. The same procedure is repeated for box girders 

under combined torsional  loads and vertical bending moment (hogging), but only the most 

critical  cases have been examined due  to  time  limitations.  Finally,  a  comparison of  these 

results from both nonlinear FEA and the simplified method follows. 

5.2. Geometric characteristics of intact box girders 

5.2.1. Types of intact box girders 

A relatively large box girder of 12.6m width, 8.4m height and 12.6m length was selected to 

be modelled for the purpose of this study. Its material is steel with yield stress of 245Mpa and 

Young’s modulus 207GPa with linearly elastic‐ perfectly plastic stress‐strain curve. The model 

was chosen based on the results of previous studies (Syrigou, 2012) and (S. D. Benson et al., 

2013) in which two intact box girders of different size, a small one (W=4.8m, H=4.2m, L=9.0m) 

and a large one (W=12.6m, H=8.4m, L=12.6m), with the same plate slenderness ratio (β) and 

column  slenderness  ratio  (λ)  are  initially  subjected  to  vertical  bending  moment.  Then, 
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different  level of damage was applied  to  them and  their behaviour under vertical bending 

moment was investigated. The results of this study showed that in most cases (i.e. intact and 

damage), overall collapse occurs to the large box girder but not also to the small box girder 

which fails between its transverse frames (interframe collapse).  

Therefore, a  large steel size box girder  (12.6m width, 8.4m height and 12.6m  length) was 

assumed  to  be  more  suitable  for  further  investigation  and  closer  to  a  more  realistic 

representation of a ship hull girder. Additionally, four different types of cross sections were 

selected  for  investigation  in order  to understand  the behaviour of  the box girder as  its St. 

Venant torsional constant (k) alters. These cross sections are described as follows in sections 

5.2.1.1 ‐ 5.2.1.4.   
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5.2.1.1. Box Girder A 

The cross section of the Box Girder A  is depicted  in Figure 5.1. Standard tee bar stiffeners 

whose dimensions are shown in Figure 5.2, were used throughout the Box Girder A and they 

are spaced 600mm apart. Each plate has a transverse frame spacing of 1800mm, therefore 

according  to  Equation  2.7  the  slenderness  ratios  (β)  of  top/bottom  (t=8mm)  and  side 

(t=10mm) flanges are 2.58 and 2.064 respectively. The section of 1800mm length consists a 

bay  and  the whole model  consists of 7 bays  (total  length of model 12600mm) which  are 

separated  by  transverse  frames.  The  size  of  the  transverse  frames  is  the  double  of  the 

longitudinal stiffeners size and their dimensions are shown in Figure 5.2.  

Additionally, the torsional constant (k) of this cross section was calculated according to the 

described methodology in chapter 3 and the result was validated against Lloyd’s program (see 

appendix A). Its torsional constant (k) is equal to	ૢ. ૛ૠ ൈ ૚૙૚૛	࢓࢓૝.  

 

Figure 5.1: The cross‐section of Box Girder A  

 

 

 

Figure 5.2: Dimensions of longitudinal 
stiffener and transverse frame 
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5.2.1.2. Box Girder B 

The cross section of Box Girder B was derived from the cross section of Box Girder A adding a 

double bottom (t=10mm) in a distance of 1800mm above the baseline (BL). This cross section 

is shown  in Figure 5.3 and  it was selected  in order to  increase the torsional rigidity of Box 

Girder A creating cells in the cross section. The longitudinal stiffeners are the same with those 

of Box Girder A and the slenderness ratios (β) of the double bottom (t=10mm) and inner side 

(t=8) flanges are 2.064 and 2.58 respectively. The rest of the structure remains the same with 

that of Box Girder A, consisting by 7 bays of 1800mm  length each, which are separated by 

transverse frames as depicted in Figure 5.2.and without any solid floors in the double bottom. 

Finally, the torsional constant (k) of Box Girder B was calculated and validated against Lloyd’s 

program (see appendix A). Its value is slightly increased in comparison to the k value of Box 

Girder A due to the added cells. The torsional constant (k) of Box Girder B is equal to	ૢ. ૢ૞ ൈ

૚૙૚૛࢓࢓૝. 

 

 

Figure 5.3: The cross‐section of Box Girder B 

   



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

77 
 

5.2.1.3. Box Girder C 

A  cross  section which  resembles more  to  a  ship’s  cross  section was  also modelled.  Inner 

doubled sides and an intermediate deck (4800mm above BL) were added in the cross section 

of Box Girder B. This cross section is depicted in Figure 5.4 and the slenderness ratios (β) of 

the  inner  side  shell  (8mm)  and  intermediate  deck  (10mm)  flanges  are  2.58  and  2.064, 

respectively. The longitudinal stiffeners remain the same throughout the cross section and the 

structure is consisted by 7 bays of 1800mm length each, which are separated by transverse 

frames as depicted in Figure 5.2. 

The torsional constant (k) of Box Girder C was also calculated and validated against Lloyd’s 

program (see appendix A). Its torsional rigidity is obviously increased in comparison to the k 

value of Box Girder A and it is equal to	૚૙. ૞૞ ൈ ૚૙૚૛	࢓࢓૝. 

 

 

Figure 5.4: The cross‐section of Box Girder C 
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5.2.1.4. Box Girder D 

Torsion might become critical for the case where the torsional rigidity of the structure is low, 

due to a non‐continuous main deck, as it has already mentioned (section 2.3.4). This occurs in 

case where there are large openings in the structure due to its design or as result of damage. 

Therefore, a model with a large opening, called Box Girder D, was examined which was created 

from Box Girder C removing its upper deck. Its cross section is depicted in Figure 5.5.  

The structure of Box Girder D  is  facsimile of Box Girder C structure, with exception of  the 

removed upper deck. It is consisted by 7 bays of 1800mm length each, separated by transverse 

frames (Figure 5.2). At this point, it should be mentioned that the thickness of the plates in 

the first and last bay of this model were thickened up. Their thickness was doubled in order to 

keep the same boundary conditions in all boxes for the F.E. analysis and apply the torsional 

load between the bulkheads. Further explanation is given in the relevant section (5.3.3). 

The torsional constant (k) of Box Girder D is significantly reduced due to the existence of the 

open deck and it is equal to	૛. ૞ ൈ ૚૙૚૛	࢓࢓૝. 

 

Figure 5.5: The cross‐section of Box Girder D 
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5.2.2. Initial geometric imperfections 

The  geometric  imperfections  which  are  introduced  to  the  stiffened  panels  during  their 

construction  process were  taken  into  account  for  the  analysis  and  their  distribution was 

assumed as multi‐mode Fourier half sine which must be zero at the transverse frames. The 

plate and  stiffener  imperfections of a  stiffened panel are described according  to Benson’s 

study (Benson, 2011) and they are defined in the following sections. 

 

5.2.2.1. Plate imperfections 

The plate imperfections are described by Equation 5.1 re‐arranging Equation 2.12 for the axis 

system which is shown in Figure 5.9 and they are depicted in Figure 5.6. An average level of 

maximum amplitude equal to	ݓ௢ ൌ  ,is assumed according to Equation 2.8. Therefore ݐଶߚ0.1

plate imperfections are defined as: 

 

௣௟ݓ
௢ݓ

ൌ 	ቆ0.8 sin ቀ
ݑߨ
ܽ
ቁ ൅ 0.2 sin ቀ

ݑߨ݉
ܽ

ቁ ൅ 0.01 sin ቆ
ሺ݉ ൅ 1ሻݑߨ

ܽ
ቇቇ sin ቀ

ݒߨ
ܾ
ቁ ,

݉ ൌ ݐ݊݅ ቀ
ܽ
ܾ
ቁ ൅ 1 

Equation 5.1 

 

 

Figure 5.6: Plate imperfection combine 80/20 single mode to square mode (m) (Benson, 2011) 
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The shape of plate imperfections along the width of the plate is a half sine wave equal to the 

width of the plate. The shape of plate imperfections along plate’s length is a combination of 

80% of single half sine wave (Figure 5.7), 20% of a “square” mode half sine wave (m) (Figure 

5.8)  and  1%  of  a  higher  mode  (m+1)  according  to  Equation  5.1.  The  first  two  modes 

incorporate an  initial distortion distribution which provides a realistic buckling mode of the 

plate. The last mode (m+1) ensures the nucleation of collapse only to one part of the plate. 

 

 

 

Figure 5.7: Plate imperfections single 
mode (Benson, 2011)

 

 

Figure  5.8:  Plate  imperfections  square 
mode(m) (Benson, 2011) 
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Figure 5.9: Panel coordinate system (Benson, 2011) 

 

5.2.2.2. Stiffener imperfections 

Three types of stiffener imperfections, as well as the plate imperfections described in section 

5.2.2.1, were considered according to Benson’s research (Benson, 2011)  which are:  

 

 Stiffener side imperfection 

Stiffener’s side imperfection is the eccentricity of the whole stiffener from its vertical position 

as  it  is depicted  in Figure 5.10. The  initial distortions due  to eccentricity are given by  the 

following equation:   

௦ݒ
௢௦ݓ

ൌ 	
ݓ
݄௪

൬0.8 sin ቀ
ݑߨ
ܽ
ቁ ൅ 0.2 sin ൬

ݑߨ݅
ܽ
൰൰ , ݅ ൌ ሺܽݐ݊݅ ݄௪ሻ ൅ 1⁄  

 

Equation 5.2

Where: 

௢௦ݓ ‐ ൌ ݓ , 0.002ܽ ൌ coordinate in z‐axis (Figure 5.11)  

‐ 	ܽ = plate length; ݄௪ = web height 
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Figure 5.10: Stiffener side and column imperfection (Benson, 2011) 

 

 

Figure 5.11: Stiffener column deflection (Benson, 2011) 

 

 Stiffener web imperfection 

The  stiffener web  imperfection was considered as  the out of  flatness of  the web  stiffener 

which is depicted in Figure 5.12 and it is calculated by the following equation: 

௪௘௕ݓ
௢௪ݓ

ൌ 	൬0.8 sin ቀ
ݑߨ
ܽ
ቁ ൅ 0.2 sin ൬

ݑߨ݅
ܽ
൰൰ , ݅ ൌ ሺܽݐ݊݅ ݄௪⁄ ሻ ൅ 1  Equation 5.3
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Where: 

௢௪ݓ ‐ ൌ 0.001ܽ , 	ܽ = plate length; ݄௪ = web height 

 

 

Figure 5.12: Stiffener web imperfection (Benson, 2011) 

 

 Column imperfection 

The column  imperfection  is  the “out of  flatness of  the entire panel”  (Benson, 2011)  in  the 

longitudinal direction of the panel between its transverse frames (Figure 5.10). The shape of 

a single half wave which alters its direction at each transverse frame (Figure 5.11) represents 

the distribution of column distortions and it is described as: 

௖ݓ
௢௖ݓ

ൌ sin ቀ
ݑߨ
ܽ
ቁ		 

 
Equation 5.4

 

The  ratio of  the deflection between  transverse  frames  is  given by  Equation 5.5  and  their 

magnitudes by Equation 5.6:  

௢௖ଶݓ
௢௖ଵݓ

ൌ െ0.25	 

 
Equation 5.5

 

௢௖ݓ ൌ ൝
0.0008ܽ, ߣ															 ൏ 0,2
0.0012ܽ, 0.2 ൏ ߣ ൏ 0.6
0.0015ܽ, ߣ																 ൐ 0.6

ൡ 

 

Equation 5.6
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The total  initial distortions which are applied to each node with the method of direct node 

translation are given by Equation 5.7. The new coordinates of the node (u’, v’, w’) are: 

 

ᇱݑ ൌ ,ݑ ᇱݒ ൌ ݒ ൅ ,௦ݒ ᇱݓ ൌ ݓ ൅ ௣௟ݓ ൅ ௪௘௕ݓ ൅ ௖ݓ
 
 
 

Equation 5.7 

5.2.3. Residual stresses 

Residual stresses which are introduced to the structure due to welding were also taken into 

consideration. A tensile residual zone along each longitudinal side of the plate was considered 

with  tensile  stress  equal  to  95%  of  yield  stress  (245MPa).  The width  of  each  zone was 

calculated according to Equation 2.9 and for average level of residual stresses (Equation 2.11). 
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5.3. Intact box girders under torsion using NLFEM 

5.3.1. Introduction 

In  this  section,  a mesh  convergence  study  and  sensitivity  analysis  of  Box Girder A  under 

torsional  load  is  presented.  Then,  the  boundary  conditions  and  solution methods which 

applied to all box girders are discussed and explained thoroughly. Finally, the F.E. results of 

each box girder under pure torsion are presented separately, showing the torsional moment‐

angle  relationship  and  the  contour  plots  of  Von‐Misses  stresses,  shear  stresses  and 

displacement. 

5.3.2. Mesh convergence and sensitivity analysis 

Initially, a conventional four node shell element (S4R) with reduced integration (5 points) was 

chosen for the Nonlinear Finite Element Analysis. This type of element is commonly used in 

the literature e.g. (Alinia et al., 2009), (Zhang et al., 2008b), (Benson, 2011) as it is capable of  

solving non‐linear problems with  large‐strain  formulations and  it satisfactory handles  thick 

and  slender  plates.  Each  node  has  six  degrees  of  freedom  (three  translational  and  three 

rotational).  

A mesh convergence study for Box Girder A was carried out for elements of 330mm and 50mm 

size as it is shown in Figure 5.13. A previous mesh convergence study of 100mm, 50mm, 35mm 

and 25mm element size has been carried out for a smaller size box girder (4.8m width, 4.2m 

height and 9.0 m  length)  (Syrigou, 2012)  showing  convergence  for  size element  less  than 

50mm. Since the size of the current model is larger than the size of the model in the previous 

study, it was assumed that a mesh element size of 50mm provides reliable results. In addition, 

the prohibitive computational time for the analysis with smaller size element (more than 2 

weeks for a model of 25mm element size subjected only one load) plus the instability of the 

analysis led to this decision.  

Different  types of  solution were  selected due  to  the  fact  that F.E. analysis was extremely 

unstable. Their differences are covered in the relevant sections (section 5.3.3 & 5.3.4). Initially, 

a very coarse mesh size of 330mm (S4R) was chosen using Riks analysis, in order to obtain a 

rough estimate of the torsional capacity of Box Girder A. Then, every attempt to reduce the 

mesh size failed and a 50mm shell element size without reduced integration (S4) was selected. 
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This type provided satisfactory results for the analysis of this model under pure torsional load 

but did not work for all cases.  

In cases where high geometric non‐linearity occurred or high torsional loads were applied to 

the model,  this  element  type  (S4) was  not  suitable  for  the  convergence  of  Riks  analysis. 

Therefore, an element type  (S4R) of 50mm size was  finally selected  for both static  implicit 

analysis using Riks and dynamic explicit analysis. 

 

 

Figure 5.13: Mesh convergence study for Box Girder A 
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5.3.3. Boundary conditions 

The described box girders were modelled in ABAQUS adding two robust transverse bulkheads 

(of 30mm thickness) to each F.E. model. The position of these bulkheads is at the end of the 

1st bay and at the beginning of the 7th (last) bay of the model and their purpose is to ensure 

that the structure collapses between these bulkheads.  

As it has already mentioned in section 5.2.1.4, the thickness of the plates in 1st and 7th bay for 

Box Girder D was doubled. This was carried out because the model of Box Girder D without 

increased plate thickness (in the 1st & 7th bay) under torsion, was failing outside the region of 

these two bulkheads. Therefore, their thickness was  increased preventing shear stresses to 

dominate the plates outside of this region.  

The boundary conditions depend also on the selected computational method. In this study, 

static Riks analysis and explicit dynamic analysis are used and explained thoroughly in section 

5.3.4.  Therefore,  the  boundary  conditions  slightly  differ  due  to  the  requirements of  each 

method and their differences are discussed in the following sub‐sections.  

5.3.3.1. Initial boundary conditions  

The initial settings and constrains which applied to Box Girder B are shown in Figure 5.14 and 

similar settings and constraints were applied to every model. The aim is to apply the same 

rotational displacement in all nodes of End‐1 and retain End‐2 fixed. As stated before each 

node has 6 degrees of freedom (3 translational and 3 rotational). Therefore, all nodes in End‐

2 need to be constrained in all degrees of freedom in order to fix End‐2.  

A controlled rotational displacement in z axis (UR3) should be applied for torsion in all nodes 

at End‐1 and at the same time their rotational displacement in x axis (UR1) should be zero in 

order to keep End‐1 plane. For this purpose, all nodes at End‐1 are tied to RP‐1 which  is a 

reference point in the space, with a rigid body constraint. In this way, any constraint or load 

which  is  applied  to  RP‐1  is  automatically  transmitted  to  all  nodes  of  End‐1.  Thus,  both 

rotational displacements in z axis (UR3) and x axis (UR1) are constrained in the initial step. 
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5.3.3.2. Relaxation step 

A relaxation step takes place before the load step in the case where the latter step is solved 

using static analysis. The relaxation step aims to self‐equilibrate the residual stresses on the 

structure,  therefore  static  analysis  without  any  load  is  applied.  This  will  ensure  the 

equilibrium between applied residual stresses and initial distortions. 

In the case which dynamic explicit analysis is applied, this step (relaxation) is omitted and the 

load during the dynamic explicit analysis is applied extremely slowly, allowing to the model 

to self‐equilibrate its residual stresses. 

 

 

Figure 5.14: Boundary conditions for Box Girder B 
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5.3.3.3. Torsional load 

In  both  solution  methods,  static  and  dynamic  explicit  analysis,  the  load  is  applied  as 

controlled rotational displacement in z axis (UR3) to RP‐1 point. This displacement generates 

an  incremental  torsional moment  at  End‐1 which  leads  the model  to  collapse. How  the 

displacement is applied depends on the selected computational method and it is described 

in detail in the following section (5.3.4). 

5.3.4. Solution methods 

Both geometric and material nonlinearity are modelled in the analysis of the four box girders. 

Geometrically  nonlinear  behaviour  occur  due  to  large  rotation  and  large  displacement 

(buckling)  in  the  structure.  Any  large  deformation  of  the  structure may  change  the  load 

direction,  therefore  the  deformed  structural  geometry  should  be  taken  into  account. 

Furthermore,  material  nonlinearity  is  introduced  due  to  the  nonlinear  stress‐strain 

relationship of the material (e.g. elastic‐plastic behaviour of steel). The recommended solution 

methods for nonlinear problems are: 

5.3.4.1. Riks Analysis 

Riks analysis is an arc length incremental method which performs particularly well for static 

problems susceptible to snap through behaviour during the analysis (e.g. buckling analysis). 

Therefore, rotational moment is applied as controlled rotational displacement (UR3) to RP‐1 

and the maximum arc length increment is defined with a small value in order to ensure the 

reliability of the solution.  

However, static solution (Riks) fails to converge in many cases of this study and convergence 

is achieved only in some cases where the mesh size of the model is very coarse (330mm). In 

these cases, dynamic explicit analysis is used despite the fact that the problem is considered 

to be quasi‐static in nature. 

5.3.4.2. Dynamic Explicit Analysis 

A time independent problem (static problem) may be solved using dynamic analysis if the load 

is applied very slowly to the structure achieving a quasi‐static analysis. The criterion to assume 
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a dynamic analysis as quasi‐static according to ABAQUS manual, is a percentage up to 5% of 

kinetic (ALLKE) to strain (ALLIE) energy in the model.  

An extensive parametric study was carried out in the case of Box Girder A under pure bending 

due  to  the  fact  that  its  static  solution was available  for comparison and  it  is presented  in 

section (5.4.2.1). In this study, load is applied in different time periods using dynamic explicit 

analysis and the results are compared to these of its equivalent static solution. Convergence 

is achieved when the percentage of kinetic to internal energy is less than 0.5%. Therefore, this 

percentage is checked in every dynamic explicit analysis for Box Girder A and it should be less 

than 0.5% in order to assume the analysis as quasi‐static and its results valid.  

In  the  other  cases  i.e.  Box Girder  C  and  Box Girder D which  explicit  dynamic  analysis  is 

required, the percentage of ALLKE/ALLIE  is calculated by running a 200sec and 300sec time 

step for the explicit analysis of each model under pure torsion and pure vertical bending. 

The  load  is applied to the reference point RP‐1 point as controlled rotational displacement 

(UR3) using the smooth step ABAQUS CAE command and subsequently is transferred to all the 

nodes  of  End‐1  generating  rotational moment.  The  smooth  step  ABAQUS  CAE  command 

defines a quadratic relationship between applied  load and time steps and  it eliminates the 

oscillations which dynamic analysis introduces to the model. 
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5.3.5. Torsional capacity of Box Girder A 

The progressive collapse strength assessment of Box Girder A under torsional load is depicted 

in Figure 5.15. Its strength was assessed using Riks analysis with S4R shell element type and a 

coarse mesh size of 330mm. This analysis provides a rough estimation of its torsional strength, 

but a finer mesh is essential for avoiding the overestimation of its strength.  

Therefore, the mesh size was reduced to 50mm, but Riks analysis failed to converge. Hence, 

the same type of shell element but without reduced integration (S4) and mesh size 50mm was 

selected using Riks analysis. This analysis provides satisfying results for Box Girder A, however 

it fails to converge  in other cases (i.e. Box Girder C and Box Girder D). A comparison of the 

torsional capacity of all box girders under the same settings is preferable, therefore the option 

of the dynamic explicit analysis was investigated.  

A parametric study for the settings of dynamic analysis was carried out for Box Girder A under 

pure  bending  and  is  presented  in  the  relevant  section  (5.4.2.1).  The  outcome  of  this 

parametric study suggests a S4R element with mesh size 50mm and its load should be applied 

in a smooth load step of 200sec in order to achieve a quasi‐static analysis. The results of the 

dynamic analysis of Box Girder A under torsion using these settings seems to agree with the 

static Riks analysis results for S4 element of 50mm size (Figure 5.15).  

The torsional capacity of Box Girder A is:  

‐ ૛. ૞	 ൈ	૚૙૚૚࢓࢓ࡺ 

The contour‐plots of Von‐Misses equivalent stresses, shear stresses and displacement for Box 

Girder A under torsion at the collapse are shown in Figure 5.16, Figure 5.17 and Figure 5.18, 

respectively. All graphs which depict the same contour plot are under the same scale in order 

to allow their comparison between the four box girders.  

Figure  5.16  shows  the  Von‐Mises  equivalent  stresses  in  the  structure  and  the  pattern  of 

diagonal stresses on its plates due to shear.    



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

92 
 

 

Figure 5.15: Progressive collapse strength assessment of Box Girder A under torsion 

 

Figure 5.16: Contour plots of Von Misses equivalent stresses for Box Girder A at the collapse 
under torsion (magnify x10) 

 

The direction of shear stresses is shown in Figure 5.17, with positive sign of shear stresses on 

the side plates and negative sign of shear stresses on the deck and bottom plates. The contour 

plot of  the displacement  in Figure 5.18 shows a displacement of 40mm  for  the  transverse 

frames and the side plates of the structure close to the End‐1, in which the torsional load was 

applied. Therefore, the collapse of Box Girder A due to torsion is overall.  
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Figure 5.17: Contour plots of shear stresses  for Box Girder A at  the collapse under  torsion 
(magnify x10) 

 

 

 

Figure 5.18: Contour plots of displacement  for Box Girder A at  the  collapse under  torsion 
(magnify x20)   
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5.3.6. Torsional capacity of Box Girder B 

The progressive collapse strength assessment of Box Girder B under torsional load is depicted 

in Figure 5.19. The same  types of analyses as described  in  the case of Box Girder A under 

torsion  (section  5.3.5)  were  carried  out.  The  Riks  analysis  with  coarse  mesh  (330mm) 

overestimates the torsional strength of the structure. However, the results of the explicit and 

Riks analysis with a fine mesh size of 50mm present good agreement.  

The torsional capacity of Box Girder B is: 

‐ ૛. ૞ ൈ	૚૙૚૚࢓࢓ࡺ 

 

 

Figure 5.19: Progressive collapse strength assessment of Box Girder B under torsion 

 

The contour‐plots of Von‐Misses equivalent stresses, shear stresses and displacement for Box 

Girder B under torsion at the collapse are shown in Figure 5.20, Figure 5.21 and Figure 5.22, 

respectively.  
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Figure 5.20: Contour plots of Von Misses equivalent stresses for Box Girder B at the collapse 
under torsion (magnify x10) 

 

 

 

 

 

Figure 5.21: Contour plots of  shear  stresses of Box Girder B at  the  collapse under  torsion 
(magnify x10) 
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Figure 5.22: Contour plots of displacement  for Box Girder B at  the  collapse under  torsion 
(magnify x10) 

 

The contour plots of Von‐Mises stresses of Box Girder B under torsion in Figure 5.20 show high 

stresses on the deck and side plates of the structure. The collapse occurs in the middle of the 

deck  and  Figure  5.22  shows  overall  deformation  of  the  side,  deck  plates  and  transverse 

frames.  Furthermore,  opposite  direction  of  the  shear  stresses  between  the  side  and  the 

deck/bottom plates is depicted in Figure 5.21.  
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5.3.7. Torsional capacity of Box Girder C 

The progressive collapse strength assessment of Box Girder C under torsional load is depicted 

in Figure 5.23. The same types of analysis as described in the case of Box Girder A under torsion 

(section 5.3.5) were carried out. However, once again, Riks analysis with S4R element type 

and mesh size 50mm fails to converge. Therefore, explicit analyses with 200sec and 300sec 

load application times were carried out, showing very strong correlation in their results.   

The torsional capacity of the box girder is: 

‐ ૜. ૙૛ૡ	 ൈ	૚૙૚૚࢓࢓ࡺ 

 

Figure 5.23: Progressive collapse strength assessment of Box Girder C under torsion 

 

The contour‐plots of Von‐Misses equivalent stresses, shear stresses and displacement for Box 

Girder C under torsion at the collapse are shown in Figure 5.24, Figure 5.25 and Figure 5.26, 

respectively.  
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Figure 5.24: Contour plots of Von Misses equivalent stresses for Box Girder C at the collapse 
under torsion (magnify x10) 

 

 

 

 

 

Figure 5.25: Contour plots of shear stresses  for Box Girder C at  the collapse under  torsion 
(magnify x10) 
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Figure 5.26: Contour plots of displacement  for Box Girder C at  the  collapse under  torsion 
(magnify x10) 

 

The deck, bottom, side and inner side plates of the Box Girder C are dominated by high values 

of Von‐Mises stresses (Figure 5.24). High deformation occurs to the deck plates with overall 

collapse mode, i.e. transverse frames and plates, in Figure 5.26. The maximum values of shear 

stresses occur in the deck, bottom, side and inner side plates with different directions which 

are depicted in Figure 5.25. In the same figure, there are no shear stresses in the transverse 

frames and longitudinal stiffeners of the structure, showing that shear stresses affect only the 

plates.  
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5.3.8. Torsional capacity of Box Girder D 

The progressive collapse strength assessment of Box Girder D under torsional load is depicted 

in Figure 5.27. In this case, no static analysis achieved its convergence, therefore only dynamic 

analysis was carried out. Explicit dynamic analyses were carried out with 200sec and 300sec 

time steps whose results show very good agreement between them. The graph of torsional 

moment‐rotational displacement  (Figure 5.27)  is a smooth curve  in  the elastic‐plastic area 

without a peak and a clearly defined point for the collapse of the structure.  

The torsional capacity of the open box is: 

‐ ૛. ૝ૠ	 ൈ	૚૙૚૚࢓࢓ࡺ 

 

Figure 5.27: Progressive collapse strength assessment of Box Girder D under torsion 

 

The contour‐plots of Von‐Misses equivalent stresses, shear stresses and displacement for Box 

Girder D at the collapse are depicted in Figure 5.28, Figure 5.29 and Figure 5.30, respectively. 

The plates in the 1st and 7th bay of this model have doubled thickness in comparison with the 

plates of the other bays. This occurs  in order to avoid the collapse of Box Girder D due to 

torsion outside of the region of the two bulkheads. This case is shown in Figure 5.31, Figure 

5.32  and  Figure 5.33, but  it  is not preferable  as  the  torsional  capacity of  the  structure  is 
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underestimated and not the same boundary conditions are applied  in comparison with the 

other box girders. 

 

 

Figure 5.28: Contour plots of Von Misses equivalent stresses for Box Girder D at the collapse 
under torsion (magnify x10) 

 

 

 

Figure 5.29: Contour plots of shear stresses  for Box Girder D at the collapse under torsion 
(magnify x10) 
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Figure 5.30: Contour plots of displacement  for Box Girder D at  the collapse under  torsion 
(magnify x10) 

 

The contour plots of Von‐Misses stresses (Figure 5.28) show high stresses on the side plates 

and on the deck/bottom plates close to the bulkheads. Additionally, the deformation is anti‐

symmetrical around the centerline of Box Girder D and overall collapse mode occurs (Figure 

5.30). High values of shear stresses are presented particularly on the side, inner side, bottom 

and deck plates whose sign and direction are shown in Figure 5.29. 
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Figure 5.31: Contour plots of Von Misses equivalent stresses for Box Girder D without doubled 
thickened plates in the end bays at the collapse under torsion (magnify x10) 

 

 

 

 

Figure 5.32: Contour plots of shear stresses for Box Girder D’ without doubled thickened plates 
in the end bays at the collapse under torsion (magnify x10) 
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Figure 5.33: Contour plots of displacement for Box Girder D without doubled thickened plates 
in the end bays at the collapse under torsion (magnify x10) 

 

As it was mentioned before, Figure 5.31, Figure 5.32 and Figure 5.33 show the contour plots 

of Von‐Misses stresses, shear stresses and displacement for Box Girder D without thickened 

plates in the end bays. The collapse of this structure occurs outside of the examined area, i.e. 

the area between the bulkheads, which is not the case and led to the decision to increase the 

thickness  of  the  plates  in  the  end  bays.  The  stresses  and  deformations  in  the model  are 

significantly affected by the boundary conditions, which is not the case when the end bays are 

stiffened up.    
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5.4. Intact box girders under combined vertical sagging bending and torsion using the 

Nonlinear Finite Element Method 

In this section, the four box girders are analysed under combined torsional and bending loads 

using the nonlinear finite element method. The maximum torsional load of each box girder is 

known, so fractions of it are applied first to each model and then vertical bending moment is 

applied until the collapse of the structure. 

5.4.1. Boundary Conditions  

The initial boundary conditions remain the same to these which are applied to the box girders 

under torsional load (section 5.3.3.1). In the following loading steps, for the case which the 

torsional load is zero and the structure is subjected only to bending moment, the boundary 

conditions are as described in section 5.3.3 and 5.3.4, but the rotational displacement at End‐

1 (Figure 5.14) is applied in x axis (UR1) instead of z axis (UR3). It should be mentioned that 

these boundary conditions always allow the End‐1 to move axially (free U3), so no stretching 

of the neutral axis occurs. 

In all other cases which combined torsion and bending loads are applied to the structure, the 

boundary conditions are defined based on the computational method as follows: 

5.4.1.1. Static analysis (Riks) 

A relaxation step (General Static) without any load is applied at End‐1 (Figure 5.14) in order to 

self‐equilibrate the residual stresses and initial distortions in the structure (same as in section 

5.3.3.2). Then, the selected amount of torsion is applied to RP‐1 as torsional moment (CM3) 

using the general static method. Thereinafter, the propagated torsional load remains to the 

structure and positive rotational displacement in axis (UR1) is applied to RP‐1, thus the box 

girder is subjected to sagging bending moment up to its collapse. 

5.4.1.2. Explicit Dynamic analysis 

In the cases which dynamic explicit analysis was carried out, the relaxation step  is omitted. 

The aim is to achieve a quasi‐static analysis applying the load extremely slowly to the model 

in order to reduce the oscillations and the percentage of kinetic to internal energy to be less 
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than a certain value. This value is different for each model and is defined by the results of the 

explicit analysis for 200sec and 300sec time step.  

The  results  of  the dynamic  explicit  analysis under pure  torsional  load  are  completed  and 

provide the amount of torsional moment which is applied in every time interval. Therefore, 

the selected amount of torsional moment  is applied to RP‐1  in specific time which ensures 

quasi‐static analysis. After this step  is completed, positive/negative rotational displacement 

in x axis is applied to End‐1 via RP‐1 (Figure 5.14) in 200sec load application time and the whole 

structure is subjected to sagging/hogging bending moment until the collapse.    
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5.4.2. Box Girder A 

The results of Box Girder A under bending and under combined torsional and bending moment 

are presented  in this section. A parametric study for the time step  in dynamic analysis was 

previously carried out and is presented to define the time interval which the load should be 

applied in order to achieve quasi‐static analysis. 

5.4.2.1. Parametric Study (Pure Bending) 

The  simple  geometry of Box Girder A  allows Riks  and  general  static  analysis  to  complete 

without any convergence issues. Therefore, this model was selected to carry out a parametric 

study  for  dynamic  explicit  analysis  and  validate  its  results.  A  quasi‐static  analysis  is 

characterised by negligible  inertia  forces, very small velocity of  the material and negligible 

kinetic energy. These may be achieved controlling the mass density and/or applying the load 

very slowly (smooth load step) during a long period of time.  

In  this  study,  the  mass  density  is  constant  in  all  cases.  A  smooth  step  of  rotational 

displacement equal to 0.01rad  is applied to End‐1 (Figure 5.14)  in a period of time which  is 

investigated. The aim is to define this period of time of application of the load in which the 

kinetic energy is negligible and minimum oscillations occur to the model.  

ABAQUS notes define kinetic energy as negligible when the percentage of kinetic to internal 

energy (ALLKE/ALLIE) is between 1‐ 5% throughout the whole analysis. However, the results 

of dynamic analyses seem to converge with the results of Riks and general static analysis when 

the percentage of kinetic to internal energy (ALLKE/ALLIE) is equal or less than 0.5% (Figure 

5.34 and Table 5.1). This occurs for a time period equal or more than 200sec (i.e. in the cases 

of 200sec, 300sec).  

Therefore, a smooth step with period time 200sec and ALLKE/ALLIE% equal or less than 0.5% 

was assumed suitable for the set‐up of the quasi‐static analysis for Box Girder A and providing 

results in reasonable time. The results of this parametric study are shown below in Table 5.1 

and Figure 5.34. 
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Table 5.1: Dynamic and static analysis results of Box Girder A under bending load 

 

 

 

Figure 5.34: Moment‐curvature relationship of Box Girder A under bending moment according 
to different parameters of static and dynamic explicit analysis.   



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

109 
 

5.4.2.2. Under combined torsional and sagging bending moment  

The results of Box Girder A under combined torsional (%Tmax) and bending loads are shown 

in Figure 5.35. In each case, different fraction of its torsional capacity (Tmax) is applied to the 

model and then the model  is subjected to bending moment up and  further to  its collapse. 

Figure 5.35  shows  the bending moment‐curvature  relationship  in each case. The structure 

retains  its stiffness while  its ultimate strength decreases with the  increase of the torsional 

load.  

 

 

Figure  5.35:  Bending  moment‐curvature  relationship  of  Box  Girder  A  under  combined 
torsional and bending loads 

 

The contour plots of displacement and equivalent Von Mises stresses for Box Girder A under 

pure bending, combined torsional load 9.3%, 37.1%, 74.1% of Tmax and bending moment at 

the collapse are depicted in Figure 5.36 ‐ Figure 5.39. Overall collapse occurs to the structure 

in all cases since the transverse frames deform.  
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Figure 5.36: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
A at collapse under only bending moment (magnify x10) (Riks) 

 

 

 

Figure 5.37: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
A at collapse under torsional load 2.40E+010Nmm (9.3%Tmax) and bending moment (magnify 
x10) (Riks) 
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Figure 5.38: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
A  at  collapse  under  torsional  load  9.5812E+010Nmm  (37.1%Tmax)  and  bending moment 
(magnify x10) (Riks) 

 

 

 

Figure 5.39: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
A  at  collapse  under  torsional  load  1.92E+011Nmm  (74.1%Tmax)  and  bending  moment 
(magnify x10) (Riks) 
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Figure 5.36 and Figure 5.37 show that high values of displacement and Von‐Misses stresses 

occur in the deck plates of the central bays of Box Girder A in the cases which the model is 

subjected only  to vertical sagging bending moment and/or  low amounts of  torsional  loads 

combined with bending. As the torsional load increases (Figure 5.38) the displacement of the 

deck plates in the centre decreases in comparison with the previous case, Von‐Misses stresses 

appear along the diagonal of each plate on the deck and deformation of the structure occurs 

along its diagonal. This pattern becomes stronger as the torsional load increases (Figure 5.39), 

dominating also to the side plates and the maximum displacement appears close the end bay 

which the torsional load is applied i.e. End‐1. 

The interaction diagram of torsional and bending moment is depicted in Figure 5.40 defining 

an area within any combination of torsional and bending load is safe. The shape of the graph 

is close to this of a circle quadrant form. The ultimate strength of the structure decreases as 

the torsional load increases. 

 

 

Figure 5.40: Interaction diagram of torsional and bending moment for Box Girder A 
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5.4.3. Box Girder B  

The results of Box Girder B under combined torsional (%Tmax) and bending loads are shown 

in Figure 5.41. Different fractions of its torsional capacity (Tmax) are applied to the model in 

each case and then it is subjected to bending sagging moment until the collapse. Figure 5.41 

shows the bending moment‐curvature relationship of the structure in each case. The structure 

retains  its stiffness while  its ultimate strength decreases with the  increase of the torsional 

load.  

 

Figure  5.41:  Bending  moment‐  curvature  relationship  of  Box  Girder  B  under  combined 
torsional and bending loads  

 

The contour plots of displacement and equivalent Von Mises  stresses of  the Box Girder B 

under  pure  bending,  combined  torsional  load  8.8%,  35.3%,  79.4%  of  Tmax  and  bending 

moment at the collapse are depicted in Figure 5.42 ‐ Figure 5.45. Overall collapse occurs to 

the structure in all cases since the transverse frames deform. 
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Figure 5.42: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
B at collapse under only bending moment (magnify x10) (Riks) 

 

 

 

Figure 5.43: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
B at collapse under torsional load 2.23E+010Nmm (8.8%Tmax) and bending moment (magnify 
x10) (Riks) 
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Figure 5.44: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
B  at  collapse  under  torsional  load  8.92E+010Nmm  (35.3%Tmax)  and  bending  moment 
(magnify x10) (Riks) 

 

 

 

Figure 5.45: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
B  at  collapse  under  torsional  load  2.01E+011Nmm  (79.4%Tmax)  and  bending  moment 
(magnify x20) (Riks) 
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The behaviour of Box Girder B under pure bending and combined torsional and bending loads 

in sagging  is similar to this of Box Girder A under equivalent  loads. Therefore, Box Girder B 

presents high values of displacement and Von‐Misses stresses on its deck in the central bays 

under pure bending (Figure 5.42) and low amounts of torsional load combined with vertical 

sagging bending moment  (Figure 5.43). As  the  torsional  load  increases  (Figure 5.44), Von‐

Misses  stresses  form  a  diagonal  shape  on  the  deck  plates,  the  collapse  occurs  along  the 

diagonal  of  the  structure  and  the  displacement  in  the  centre  of  the  structure  decreases. 

Finally, the tendency of the described pattern becomes stronger for higher values of torsional 

load combined with bending (Figure 5.45) and this pattern appears also on the sides of the 

structure.  

The interaction diagram of torsional and bending moment is depicted in Figure 5.46 defining 

an area within any combination of  torsional and bending  load  is permissible. The ultimate 

strength of the structure decreases as the torsional load increases, following a circle quadrant 

form.  

 

Figure 5.46: Interaction diagram of torsional and bending moment for Box Girder B 
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5.4.4. Box Girder C 

The previous  cases,  i.e. Box Girder A  and Box Girder B which  are  subjected  to  combined 

torsional and bending sagging moment, were analysed using static Riks analysis. However, the 

analysis of the Box Girder C under combined torsional and bending moment using Riks analysis 

fails  to  converge  in  some  cases  (e.g. high  amount of  torsional  load)  and dynamic  explicit 

analysis is required. Therefore, a parametric study was carried out first in order to define the 

time for the application of the load in explicit analysis. Dynamic analysis with 200sec provides 

valid results in the case which the model is subjected only to torsional moment (Figure 5.23). 

Box Girder C  subjected only  to bending moment  is analysed with  static Riks and dynamic 

explicit analysis with 200sec time interval. The results of both analyses show convergence in 

Figure 5.47. So, dynamic explicit analysis with 200sec time interval will be used for the cases 

of combined torsion and bending, in which static Riks analysis fails to converge. 

 

 

Figure 5.47: Bending moment‐curvature relationship of Box Girder C subjected only to bending 
moment according to static Riks and explicit dynamic analysis 
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The results of Box Girder C under combined torsional (%Tmax) and bending loads are shown 

in Figure 5.48. Different fractions of its torsional capacity (Tmax) are applied to the model in 

each case and then it is subjected to bending sagging moment until the collapse. Figure 5.48 

shows the bending moment‐curvature relationship of Box Girder C in each case. The strength 

of the structure decreases as the torsional load increases and the same stiffness is presented 

approximately in all cases.  

 

Figure  5.48:  Bending  moment‐curvature  relationships  of  Box  Girder  C  under  combined 
torsional and bending loads 

 

The  contour plots of displacement and equivalent Von Mises stresses for Box Girder C under 

pure bending, combined torsional  loads 26.10%, 39.15%., 58.73% and 85.14% of Tmax and 

bending moment at  the collapse are depicted  in Figure 5.49  ‐ Figure 5.53.  In all cases  the 

transverse frames deform, therefore overall collapse occurs.  

In  the  case  which  Box  Girder  C  is  subjected  only  to  bending  moment,  high  values  of 

compressive stresses appear on the deck of the structure (Figure 5.49) with maximum values 

close to the bulkhead of End‐2. Box girder C presents similar behaviour when is subjected to 
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low amount of  torsion combined with bending  (Figure 5.50), but  the values of Von‐Misses 

stresses and displacement are higher than these under pure bending.  

As the amount of the applied torsion increases (Figure 5.51 and Figure 5.52), high values of 

Von‐Misses stresses appear in the diagonal direction of the deck and the sides of the structure. 

The  contour plot of  the displacement presents high deformation at  the bays  close  to  the 

bulkhead at End‐2.  

In the case which very high amount of torsional load is applied combined with bending (Figure 

5.53), high values of Von‐Misses stresses are presented all over the structure and the collapse 

of the deck plates occurs in the bay close to the bulkhead at End‐1, where the torsional load 

is applied. 

 

 

 

Figure 5.49: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C at collapse subjected only to bending moment (magnify x20) (Riks) 
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Figure 5.50: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C  at  collapse  under  torsional  load  7.90E+010Nmm  (26.10%Tmax)  and  bending  moment 
(magnify x20) (Riks) 

 

 

 

Figure 5.51: Contour plots of displacement and Von Mises equivalent  stresses  for  the Box 
Girder C at collapse under torsional load 1.19E+011Nmm (39.15%Tmax) and bending moment 
(magnify x10) (Riks) 
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Figure 5.52: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C  at  collapse  under  torsional  load  1.78E+011Nmm  (58.73%Tmax)  and  bending  moment 
(magnify x10) (Riks) 

 

 

 

Figure 5.53: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C  at  collapse  under  torsional  load  2.57E+011Nmm  (85.14%Tmax)  and  bending  moment 
(magnify x10) (Dynamic Explicit Analysis) 
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The interaction diagram of torsional and bending moment is depicted in Figure 5.54 defining 

an area within any combination of torsional and bending load is safe. The ultimate bending 

load decreases as the torsional load increases and the graph has circle quadrant shape.   

 

 

Figure 5.54: Interaction diagram of torsional and bending moment for Box Girder C 
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5.4.5. Box Girder D 

Initially, a parametric study  for the explicit dynamic analyses with 200sec and 300sec time 

interval was carried out when Box Girder D is subjected only to bending moment. These results 

are depicted in Figure 5.55 and both analyses show very good correlation. Good correlation 

show also the results of the explicit analysis with 200sec and 300sec for Box Girder D subjected 

only to torsional load in Figure 5.27. Therefore, an explicit analysis with 200sec time interval 

is applied in all cases of Box Girder D due to the fact that Riks analysis fails to converge.  

As it has already mentioned, the plates of both end bays of this model are thicker in order to 

avoid the collapse of the structure in this area. The bending moment‐curvature relationships 

of Box Girder D with combined torsional load are shown in Figure 5.56. The stiffness remains 

approximately the same in all cases and the strength decreases as the torsional load increases. 

 

 

Figure  5.55:  Bending  moment‐curvature  relationship  of  Box  Girder  D  subjected  only  to 
bending moment according to explicit dynamic analyses with 200sec and 300sec time interval 
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Figure  5.56:  Bending moment  –  curvature  relationships  of  Box Girder D  under  combined 
torsional and bending loads 

 

The   contour plots of the displacement and equivalent Von Mises stresses for Box Girder D 

under pure bending, combined torsional load 27.74%, 55.35%, 82.83% of Tmax and bending 

moment at the collapse are depicted in Figure 5.57 ‐ Figure 5.60. In all cases the transverse 

frames deform, therefore overall collapse occurs.  

The  contour  plots  of Von‐Misses  stresses  and  displacement  for  Box Girder D  under  pure 

bending show high values of stresses and displacement at the bays close to both bulkheads 

(Figure 5.57). 

The effect of low amounts of torsional load with combined bending (Figure 5.58 and Figure 

5.59) shifts the previous described pattern of Von‐Misses stresses and displacement to the 

diagonal direction of the structure i.e. anti‐symmetrical along z‐axis. 

In cases which the applied torsional  load  is very high, e.g. 82.83%Tmax,  (Figure 5.60), high 

values of Von‐Misses stresses appear also to the sides of the structure. 
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Figure 5.57: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D at collapse subjected only to bending moment (magnify x1) (Dynamic Explicit) 

 

 

 

 

Figure 5.58: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  6.86E+010Nmm  (27.74%Tmax)  and  bending moment 
(magnify x1) (Dynamic Explicit) 
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Figure 5.59: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  1.369E+011Nmm  (55.35%Tmax)  and  bending moment 
(magnify x1) (Dynamic Explicit) 

 

 

 

Figure 5.60: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  2.049E+011Nmm  (82.83%Tmax)  and  bending moment 
(magnify x1) (Dynamic Explicit) 
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The interaction diagram of torsional and bending moment is depicted in Figure 5.61 defining 

an area within any combination of torsional and bending load is safe. The ultimate bending 

load decreases as the torsional load increases. 

 

 

Figure 5.61: Interaction diagram of torsional and bending moment for Box Girder D 
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5.5. Intact box girders under combined vertical hogging bending and torsion using the 

Nonlinear Finite Element Method 

The  progressive  collapse  of  Box Girder  C  and  Box Girder D were  also  investigated  under 

combined torsional and vertical hogging bending moment. The boundary conditions remain 

the same as these of combined torsional and vertical sagging bending moment case in section 

5.4.1 but instead of applying positive rotation (UR1) in axis x, negative rotation UR1 is applied 

for the hogging condition. At this point, it should be also mentioned that all the analyses were 

solved with explicit dynamic analysis cause Riks analysis failed to converge in all hogging cases. 

The selected time interval in which the load was applied was 200sec for all cases. This is the 

same time interval which provided reliable results in the previous study of combined torsional 

and vertical sagging bending loads. 

5.5.1. Box Girder C 

Initially,  Box Girder  C  is  subjected  only  to  vertical  hogging  bending moment  and  then  to 

combined torsional loads of 32.65%Tmax, 58.67%Tmax and 85.14%Tmax and vertical hogging 

bending moment up to collapse. The results of the bending moment – curvature in hogging 

are shown in Figure 5.62. The elastic stiffness of Box Girder C does not significantly alter due 

to torsional load; however its strength obviously decreases as the torsional load increases.  

The  contour plots of displacement and equivalent Von Mises stresses of Box Girder C under 

pure  bending  in  hogging  is  depicted  in  Figure  5.63,  and  under  combined  torsional  load 

32.65%Tmax and hogging bending moment in Figure 5.64.  

Figure 5.64 shows that the maximum bending load occurs in the end bays of the model and 

the same pattern follow all the rest cases of combined torsional and bending loads in hogging. 

This probably  leads  to underestimate  its  strength  and  the  thickness of plates  in  this  area 

should be increased in order to avoid maximum stresses outside of the area of the bulkheads. 

However,  remodeling  the  finite element model and  rerunning  these analyses  is very  time 

consuming  (minimum  a month),  plus  the  fact  that  these  results  are  not  crucial  for  the 

validation of the code. Therefore, they were included with the purpose to define the pattern 

for the  interaction graph of torsion and bending moment  in the hogging condition which  is 

depicted in Figure 5.65. 
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Figure  5.62:  Bending Moment  –  curvature  relationships  of  Box Girder  C  under  combined 
torsional and bending loads in hogging 

 

 

 

 

Figure 5.63: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C at collapse under bending moment in hogging condition (magnify x10) (Dynamic Explicit) 
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Figure 5.64: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
C  at  collapse  under  torsional  load  9.89E+010Nmm  (32.65%Tmax)  and  hogging  bending 
moment (magnify x10) (Dynamic Explicit) 

 

 

 

 

Figure 5.65: Interaction diagram of torsional and bending moment for Box Girder C in hogging
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5.5.2. Box Girder D 

Box Girder D is subjected only to vertical hogging bending moment and to combined torsional 

loads of 27.74%Tmax, 55.35%Tmax and 82.83%Tmax and vertical hogging bending moment 

up to collapse.  

The bending moment – curvature relationships of Box Girder D are shown in Figure 5.66. The 

graphs show that the strength of Box Girder D decreases as the torsional load increases. Its 

stiffness  does  not  significantly  changes  due  to  torsion  and  the  post  collapse  behaviour 

presents smooth steady reduction of its ultimate strength. 

 

Figure  5.66:  Bending Moment  –  curvature  relationship  of  Box  Girder  D  under  combined 
torsional and bending loads in hogging 

 

The contour plots of displacement and equivalent Von Mises stresses of Box Girder D under 

pure bending  in hogging and under combined torsional  loads of 27.74%Tmax, 55.35%Tmax 

and 82.83%Tmax and vertical hogging bending moment are depicted in Figure 5.67 ‐ Figure 

5.70. Overall collapse occurs in all cases in hogging condition.  
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Figure 5.67: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D at collapse under bending moment in hogging condition (magnify x10) (Dynamic Explicit) 

 

 

 

Figure 5.68: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  6.86E+010Nmm  (27.74%Tmax)  and  hogging  bending 
moment (magnify x10) (Dynamic Explicit) 



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

133 
 

 

Figure 5.69: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  1.37E+011Nmm  (55.35%Tmax)  and  hogging  bending 
moment (magnify x10) (Dynamic Explicit) 

 

 

 

Figure 5.70: Contour plots of displacement and Von Mises equivalent stresses for Box Girder 
D  at  collapse  under  torsional  load  2.049E+011Nmm  (82.83%Tmax)  and  hogging  bending 
moment (magnify x10) (Dynamic Explicit) 
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The contour plots of the displacement and Von‐Misses stresses for Box Girder D subjected 

only to vertical hogging bending moment show high deformation and stresses along the bay 

close to the bulkhead at End‐1, in which the load is applied. For low amount of torsional load, 

e.g. 27.74%Tmax (Figure 5.68), high stresses and displacement occur along the bays close to 

the two bulkheads. As the torsional load increases (Figure 5.69 and Figure 5.70), the bottom 

plates of Box Girder D yield along the diagonal of the structure.  

The interaction diagram of torsional and bending moment of Box Girder D in hogging is shown 

in Figure 5.71. The ultimate strength of the structure decreases as the torsional load increases. 

An area of quadrant shape is formed within the strength of the structure is adequate under 

these combined loads.  

 

 

Figure 5.71:  Interaction diagram of torsional and ultimate vertical bending moment of Box 
Girder D in hogging condition 
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5.6. Intact box girders under combined vertical sagging bending and torsion using the 

Extended Simplified Progressive Collapse Method 

The same box girders are analysed with the proposed methodology described  in chapter 3, 

using ProColl. The  set up  in ProColl and  the  results of  their analyses are presented  in  the 

following sections.   

5.6.1. Box Girder A 

The model of Box Girder A in ProColl was created based on the provided data from section 

5.2.1.1 and  its ProColl file  is presented  in Appendix B. The same  initial  imperfections to the 

NLFE model were  incorporated also  to ProColl model. The cross section of Box Girder A  is 

consisted only by one loop; therefore all plates belong to loop number 1 (Figure 5.72). In this 

case, four (4) load shortening curves were defined, each for each side of the rectangular and 

the corresponding plates are associated with  their  load shortening curve. Additionally,  the 

model  is  consisted  by  five  bays  (i.e.  nsy=5),  which  is  the  number  of  bays  between  the 

bulkheads. The model was analysed under combined torsional and vertical sagging bending 

moment.  

 

Figure 5.72: The cross‐section of Box Girder A with its defined numbered loops/cells in ProColl 
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The moment‐curvature relationships of Box Girder A subjected to combined torsional  load 

(Nmm) and vertical sagging bending moment are shown in Figure 5.73. Different amounts of 

torsional load are applied to the structure up to  ௢ܶand its progressive collapse decreases as 

the torsional load increases. The post collapse pattern of the graph for low amount of torsion 

(i.e. 0Nmm and 2.40E+10Nmm) is different than this for higher amount of applied torsion. This 

occurs due to the way which the extended simplified progressive collapse method generates 

the inclination of the curve in the post collapse area and it extensively explained in Benson’s 

thesis (Benson, 2011). 

 

 

Figure  5.73:  Bending  moment‐curvature  relationships  of  Box  Girder  A  under  combined 
torsional moment (in Nmm) and sagging bending moment 

 

   



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

137 
 

The  interaction  diagram  of  torsion  and  bending  moment  according  to  the  proposed 

methodology is presented in Figure 5.74. The bending moment decreases as the torsional load 

increases  defining  an  area within  the  strength  of  the  structure  is  sufficient  under  these 

combined loads. As maximum torsional load was assumed the value of		 ௢ܶ, which is calculated 

by the program and the graph shows no results under pure torsion which is one of the main 

assumptions of the proposed methodology. 

 

Figure 5.74:  Interaction diagram of vertical bending moment and  torsion  for Box Girder A 
according to the proposed methodology 

   



 
Chapter 5: Progressive Collapse Assessment of Intact Box Girders under Combined Bending 
and Torsional Loads 

 

138 
 

5.6.2. Box Girder B  

The model of Box Girder B  in ProColl was created based on the provided data from section 

5.2.1.2 and its file is presented in Appendix B. The same initial imperfections to the NLFE model 

were incorporated also to ProColl model. The cross section of Box Girder B is consisted only 

by four (4) loops which are shown in Figure 5.75. The defined load shortening curves and their 

associated  plates  are  shown  in  the  ProColl  file  in  Appendix  B.  Additionally,  the model  is 

consisted by five bays (i.e. nsy=5), which is the number of bays between the bulkheads. The 

model was analysed under combined torsional and vertical sagging bending moment.  

 

 

Figure 5.75: The cross‐section of Box Girder B with its defined numbered loops/cells in ProColl 

 

The moment‐curvature relationships of Box Girder B subjected  to combined  torsional  load 

(Nmm) and vertical sagging bending moment are shown in Figure 5.76. Different amounts of 

torsional load are applied to the structure up to  ௢ܶand its progressive collapse decreases as 

the torsional load increases. 
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Figure  5.76:  Bending  moment‐curvature  relationships  of  Box  Girder  B  under  combined 
torsional moment (in Nmm) and sagging bending moment 
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The  interaction  diagram  of  torsion  and  bending  moment  according  to  the  proposed 

methodology  is presented  in Figure 5.77.   The bending moment decreases as the torsional 

load increases defining an area within the strength of the structure is sufficient under these 

combined  loads. The value of		 ௢ܶ which  is  calculated by  the program was assumed as  the 

maximum torsional load and the graph shows no results under pure torsion. 

 

 

Figure 5.77:  Interaction diagram of vertical bending moment and  torsion  for Box Girder B 
according to the proposed methodology 
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5.6.3. Box Girder C 

The model of Box Girder C  in ProColl was created based on the provided data from section 

5.2.1.3 and its file is presented in Appendix B. The same initial imperfections to the NLFE model 

were  incorporated also to ProColl model. The cross section of Box Girder C  is consisted by 

eight (8) loops which are shown in Figure 5.78. The defined load shortening curves and their 

associated plates are shown  in the  file of ProColl  in Appendix B. Additionally, the model  is 

consisted by five bays (i.e. nsy=5), which is the number of bays between the bulkheads. The 

model was analysed under combined torsional and vertical sagging bending moment.  

 

 

Figure 5.78: The cross‐section of Box Girder C with its defined numbered loops/cells in ProColl 
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The moment‐curvature relationships of Box Girder C subjected  to combined  torsional  load 

(Nmm) and vertical sagging bending moment are shown in Figure 5.79. Different amounts of 

torsional load are applied to the structure up to  ௢ܶand its progressive collapse decreases as 

the torsional load increases. 

 

 

Figure  5.79:  Bending  moment‐curvature  relationships  of  Box  Girder  C  under  combined 
torsional moment (in Nmm) and sagging bending moment 
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The  interaction  diagram  of  torsion  and  bending  moment  according  to  the  proposed 

methodology  is presented  in Figure 5.80.   The bending moment decreases as the torsional 

load increases defining an area within the strength of the structure is sufficient under these 

combined  loads. The value of		 ௢ܶ which  is  calculated by  the program was assumed as  the 

maximum torsional load and the graph shows no results under pure torsion. 

 

 

Figure 5.80:  Interaction diagram of vertical bending moment and  torsion  for Box Girder C 
according to the proposed methodology 
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5.6.4. Box Girder D 

The model of Box Girder D in ProColl was created based on the provided data from section 

5.2.1.4 and its file is presented in Appendix B. The same initial imperfections to the NLFE model 

were  incorporated also to ProColl model. The cross section of Box Girder D  is consisted by 

seven (7) loops which are shown in Figure 5.81. The defined load shortening curves and their 

associated plates are shown  in the  file of ProColl  in Appendix B. Additionally, the model  is 

consisted by five bays (i.e. nsy=5), which is the number of bays between the bulkheads. The 

model was analysed under combined torsional and vertical sagging bending moment.  

 

 

Figure 5.81: The cross‐section of Box Girder D with its defined numbered loops/cells in ProColl 

 

The moment‐curvature relationships of Box Girder D subjected to combined torsional  load 

(Nmm) and vertical sagging bending moment are shown in Figure 5.82. Different amounts of 

torsional load are applied to the structure up to  ௢ܶand its progressive collapse decreases as 

the torsional load increases. 
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Figure  5.82:  Bending  moment‐curvature  relationships  of  Box  Girder  D  under  combined 
torsional moment (in Nmm) and sagging bending moment 
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The  interaction  diagram  of  torsion  and  bending  moment  according  to  the  proposed 

methodology  is presented  in Figure 5.83.   The bending moment decreases as the torsional 

load increases defining an area within the strength of the structure is sufficient under these 

combined  loads. The value of		 ௢ܶ which  is  calculated by  the program was assumed as  the 

maximum torsional load and the graph shows no results under pure torsion. 

 

 

Figure 5.83:  Interaction diagram of vertical bending moment and  torsion  for Box Girder D 
according to the proposed methodology 
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5.7. Intact box girders under vertical hogging bending and torsion using the Extended 

Simplified Progressive Collapse Method 

The results of Box Girder C and Box Girder D under combined torsion and vertical hogging 

bending moment according to the proposed methodology are presented in this section. 

5.7.1. Box Girder C 

The set‐up of the model under combined torsional and vertical hogging bending moment in 

ProColl is the same with this which is described in section 5.6.3. The user needs to select the 

option of “torsion with vertical hogging” instead of “torsion with vertical sagging” in the GUI 

of ProColl in order to run the aforementioned model under these combined loads. The vertical 

bending‐curvature relationships of Box Girder C under combined torsion and vertical hogging 

bending moment  are  presented  in  Figure  5.84.  The  progressive  strength  of  the  structure 

decreases evenly at  the peak and post  collapse area, as  the applied  torsion  increases. All 

graphs present  the  same  slope  in  the pre‐collapse area,  showing  that  the  stiffness of  the 

structure is not affected by the applied torsion. 

 

Figure 5.84: Vertical bending moment‐curvature relationships of Box Girder C under combined 
torsional moment (in Nmm) and hogging bending moment 
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The  interaction diagram of  the  torsional  and  vertical bending moment of Box Girder C  in 

hogging according  to  the proposed methodology  for  the  incorporation of  torsion  into  the 

extended simplified progressive collapse method is shown in Figure 5.85. The strength of the 

structure  decreases  as  the  applied  torsion  increases.  The  graph  defines  the  limit  which 

beneath it the strength of the structure is adequate under these combined loads.  

 

Figure 5.85:  Interaction diagram of  vertical hogging bending moment  and  torsion  for Box 
Girder C according to the proposed methodology 
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5.7.2. Box Girder D 

The set‐up of the model under combined torsion and vertical hogging bending moment is the 

same with  this which  is described  in  section 5.6.4. The user needs  to  select  the option of 

“torsion with vertical hogging” in the GUI of ProColl in order to run the file under these loads. 

The vertical bending‐curvature relationships of Box Girder D under combined torsional and 

vertical hogging bending moment are presented  in Figure 5.86. The progressive strength of 

the structure smoothly decreases as the amount of torsion increases. All graphs present the 

same slope in the pre‐collapse area, showing that the stiffness of the structure is not affected 

by the applied torsion. 

 

 

Figure  5.86:  Vertical  bending  moment‐curvature  relationships  of  Box  Girder  D  under 
combined torsional moment (in Nmm) and hogging bending moment 
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The  interaction diagram of  the  torsional and  vertical bending moment of Box Girder D  in 

hogging according to the proposed methodology is shown in Figure 5.87. The strength of the 

structure decreases as the applied torsion increases and the graph defines an area within the 

strength of the structure is adequate under these combined loads. 

 

 

Figure 5.87:  Interaction diagram of  vertical hogging bending moment  and  torsion  for Box 
Girder D according to the proposed methodology 
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5.8. Comparison of the results 

In this section, the results of the nonlinear finite element method and the extended simplified 

progressive collapse method are compared. In the comparison, the results of the theoretical 

interaction of torsion and bending (Equation 5.8) are also included. All graphs are normalised 

by the values of the F.E. results. 

൬
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௠ܶ௔௫
൰
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൅	൬
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ଶ

ൌ 1	 

 

Equation 5.8

 

5.8.1. Box Girder A 

The results of Box Girder A subjected to combined torsion and vertical bending moment are 

presented in Figure 5.88 according to the nonlinear F.E. method, the proposed methodology 

and the theoretical interaction of torsion and bending (Equation 5.8). All values are normalised 

by the values of 	ܯܤ௠௔௫and  ௠ܶ௔௫	of the F.E. results which in this case are: 

࢞ࢇ࢓ࢀ ൌ ૛. ૞ૢ	 ൈ	૚૙૚૚࢓࢓ࡺ and ࢞ࢇ࢓ࡹ࡮ ൌ 	૛. ૜૛ ൈ	૚૙૚૚࢓࢓ࡺ 

 

The theoretical results show extremely good correlation with the F.E. results and their graphs 

follow the shape of quadrant circle. Similar shape follows the interaction graph according to 

the proposed methodology and good agreement  is achieved. The ultimate strength of Box 

Girder A for low amount of applied torsion has less than 0.1BMmax difference between the 

two methodologies. 
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Figure 5.88: Comparison between the results of the NLFEM, the proposed methodology and 
the theoretical relationship of torsion and bending (Equation 5.8) for Box Girder A  

 

5.8.2. Box Girder B 

The results of Box Girder B subjected to combined torsion and vertical bending moment are 

presented in Figure 5.89 according to the nonlinear F.E. method, the proposed methodology 

and the theoretical interaction of torsion and bending (Equation 5.8). All values are normalised 

by the values of 	ܯܤ௠௔௫and  ௠ܶ௔௫	of the F.E. results which in this case are: 

࢞ࢇ࢓ࢀ ൌ ૛. ૞૛	 ൈ	૚૙૚૚࢓࢓ࡺ and ࢞ࢇ࢓ࡹ࡮ ൌ 	૛. ૜૚ ൈ	૚૙૚૚࢓࢓ࡺ 

The theoretical results show extremely good correlation with the F.E. results and their graphs 

follow the shape of quadrant circle. Similar shape follows the interaction graph according to 

the proposed methodology and good agreement  is achieved. The ultimate strength of Box 

Girder B for low amount of applied torsion has approximately 0.05BMmax difference between 

the two methodologies. 
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Figure 5.89: Comparison between the results of the NLFEM, the proposed methodology and 
the theoretical relationship of torsion and bending (Equation 5.8) for Box Girder B 

 

5.8.3. Box Girder C 

The  results  of  Box  Girder  C  subjected  to  combined  torsion  and  vertical  hogging/sagging 

bending moment are presented  in Figure 5.90 according to the nonlinear F.E. method, the 

proposed methodology and the theoretical interaction of torsion and bending (Equation 5.8). 

All values are normalised by the values of   ௠௔௫andܯܤ	 ௠ܶ௔௫	of the F.E. results which  in this 

case are: 

࢞ࢇ࢓ࢀ ൌ ૜. ૙૛ૡ࢞૚૙૚૚ ,࢓࢓ࡺ	ࢍࢇ࢙࢞ࢇ࢓ࡹ࡮ ൌ ૜. ૛૜࢞૚૙૚૚࢓࢓ࡺ, 

ࢍ࢕ࢎ࢞ࢇ࢓ࡹ࡮	 ൌ ૝. ૛૟࢞૚૙૚૚࢓࢓ࡺ 

The theoretical results show extremely good correlation with the F.E. results and their graphs 

follow  the  shape  of  quadrant  circle.  The  interactions  graphs  according  to  the  proposed 

methodology  show  good  agreement  too.  The  structure  present  higher  stress  in  hogging 

condition than in sagging and both graphs have similar pattern. The proposed methodology 

predicts a torsional capacity (To) less than the Tmax of the F.E. method which is expected as 

this value, i.e. To, corresponds to torsion of the structure in the end of its elastic behaviour. 
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Figure 5.90: Comparison between the results of the NLFEM, the proposed methodology and 
the theoretical relationship of torsion and bending (Equation 5.8) for Box Girder C 
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5.8.4. Box Girder D 

The  results  of  Box  Girder  D  subjected  to  combined  torsion  and  vertical  hogging/sagging 

bending moment are presented  in Figure 5.91 according to the nonlinear F.E. method, the 

proposed methodology and the theoretical interaction of torsion and bending (Equation 5.8). 

All values are normalised by the values of   ௠௔௫andܯܤ	 ௠ܶ௔௫	of the F.E. results which  in this 

case are: 

࢞ࢇ࢓ࢀ ൌ ૛. ૝࢞૚૙૚૚࢓࢓ࡺ,  ࢍࢇ࢙࢞ࢇ࢓ࡹ࡮	 ൌ ૛. ૛ૡ࢞૚૙૚૚࢓࢓ࡺ, 

ࢍ࢕ࢎ࢞ࢇ࢓ࡹ࡮ ൌ ૜. ૞૝࢞૚૙૚૚࢓࢓ࡺ 

 

The theoretical results of Box Girder D show good correlation with the F.E. results and their 

graphs follow the shape of quadrant circle. The interactions graphs according to the proposed 

methodology show good agreement with the F.E. results and the theoretical formulation too.  

The torsional capacity (To) according to the proposed methodology is less than the Tmax of 

the F.E. method and it is expected because value To corresponds to the torsional capacity of 

the structure in the end of its elastic behaviour.  

Finally, Box Girder D presents higher strength in hogging condition than in sagging and both 

graphs have similar pattern despite of the existence of the open deck. 
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Figure 5.91: Comparison between the results of the NLFEM, the proposed methodology and 
the theoretical relationship of torsion and bending (Equation 5.8) for Box Girder D 
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5.9. Summary 

This chapter investigates the behaviour of four box girders of the same size but with different 

cross sections and torsional constant values (k) under combined torsional and bending loads. 

Initially, the behaviour of the box girders subjected to pure torsion is investigated using the 

nonlinear F.E. analysis. The results show how the geometry affects the torsional behaviour of 

the structure and how the structure collapses under pure torsional load. 

Then, all boxes are  subjected  to  torsional and vertical  sagging bending moment using  the 

nonlinear F.E. method and the proposed methodology for the  incorporation of torsion  into 

the  extended  simplified  progressive  collapse  method.  The  bending  moment‐curvature 

relationships  under  different  amounts  of  applied  torsional  load  are  generated  for  each 

structure. The  interaction diagrams of torsion and vertical sagging bending moment define 

the area in which the structure has adequate strength under these combined loads. 

Furthermore,  two of  these models, Box Girder C and Box Girder D, are  investigated under 

combined  torsion  and  vertical  hogging  bending moment  using  both methodologies,  the 

nonlinear F.E. analysis and the proposed methodology. Their results show similar pattern of 

progressive collapse to this under combined torsion and vertical sagging bending moment. 

However, the strength of these structures in combined torsion and hogging bending moment 

is higher than this in combined torsion and sagging bending moment. 

In the end, the results according to the nonlinear F.E. method, the proposed methodology and 

the  theoretical  interaction  of  torsion  and  bending  (Equation  5.8)  are  compared  for  each 

model.  In general, the comparison shows very good agreement between the results of the 

two methodologies and the theoretical formulation in all cases.    
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Chapter 6  

6. Progressive collapse assessment of 10,000 TEU container ship under 

combined bending and torsional loads 

6.1. Introduction 

In the previous chapter, the progressive collapse of four box girders was  investigated using 

both  methodologies;  the  finite  element  method  and  the  extended  progressive  collapse 

method.  Their  results  showed  very  good  agreement.  Afterwards,  a  reasonable  question 

should be; what is the value of torsional load which floating structures should sustain in reality 

and how this compares with the torsional  limit of the proposed methodology. Additionally, 

although the investigated box girders have cross sections similar to ship cross sections, their 

size differs significantly from the size of a real ship structure. Therefore, an analysis of a ship 

structure  according  to  the  proposed methodology  and  its  validation  are  essential  for  the 

establishment of the extended simplified progressive collapse method.  

6.2. Containership 10,000 TEU container ship 

A 10,000 TEU container ship was selected in this case study based on the available data in the 

literature. Alfred Mohammed (Alfred Mohammed, 2014) carried out his research for a 10,000 

TEU container  ship OL185 based on data provided by Lloyd’s Register.  In his  study, Alfred 

Mohammed follows and validates a methodology in order to define the maximum wave load 

combinations taking into account the sea state for a certain route and the response amplitude 

operators (RAOs) of the ship. Since the extreme global wave‐induced  loads are known, the 

maximum still water bending moment is selected based on the worst loading condition on the 

ship.  

Then,  a  three‐compartment  finite  element  model  of  the  containership  is  designed  for 

structural  analysis under  combined  loads of  vertical bending moment, horizontal bending 

moment and  torsional moment.  In  the current study,  the model of  this containership was 

designed  in  ProColl.  The  results  of  the  proposed methodology  under  combined  vertical 

hogging/sagging bending moment and torsion are compared with the finite element results 

from Alfred Mohammed’s study (Alfred Mohammed, 2014). Finally, the extreme global wave 
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combined loads for the worst loading case (i.e. maximum bending moment) are depicted in 

the interaction diagram of combined torsional and bending loads.  

6.2.1. Maximum wave load combinations and maximum still vertical bending moment 

The most severe global wave load combinations according to Alfred Mohammed’s study occur 

at  160.742m  from  the A.P.  and  the  values  of  torsional  and  vertical  bending moment  are 

૛. ૢ૙૚࢞૚૙ૡ࢓ࡺ and ૚. ૜૟૟࢞૚૙૚૙࢓ࡺ respectively. These values are depicted in Table 6.1 as 

F4 (torsional moment) and F5 (vertical bending moment) for the long‐term analysis. Therefore, 

the case (P1’) which describes only the combined extreme loads is define as follows: 

‐ Case P1’ (only extreme global combined loads): 

Torsional moment = ૛. ૢ૙૚࢞૚૙ૡ࢓ࡺ 

Vertical Bending Moment = ૚. ૜૟૟࢞૚૙૚૙࢓ࡺ 

 

Table 6.1: Global wave loads combinations at 160.742m from the A.P. for short‐term and long‐
term  analyses  using  the  cross‐spectral  probabilistic method  at  the most  extreme  design 
vertical bending moment (Alfred Mohammed, 2014) 

 

The worst  loading condition according to the  loading manual of the OL185 containership  is 

L12.3 (Table 6.2)  in which the maximum still water bending moment  is equal to 657154ݐ ∙

 .10ଽܰ݉ݔ6.29	ݎ݋	݉

The distribution of still water bending moments according to the hydrostatic analysis is shown 

in Figure 6.1. The maximum still water bending moment does not occur at 160.742m from the 

A.P., where the extreme combined loads occur. However, two cases will be taken into account 

examining also  the more conservative case  in which extreme  loads and maximum vertical 

bending moment  occur  at  the  same  longitudinal  distance  from  the  A.P.  Therefore,  the 
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ultimate  strength  of  the  containership  should  sustain  the  following  torsional  and  vertical 

bending load combinations in hogging condition: 

‐ Case P1 at 160.742m from A.P.: 

Torsional moment = ૛. ૢ૙૚࢞૚૙ૡ࢓ࡺ 

Vertical Bending Moment = ૚. ૜૟૟࢞૚૙૚૙ ൅ ૝. ૝૟࢞૚૙ૢ࢓ࡺ ൌ ૚. ૡ૚૛࢞૚૙૚૙࢓ࡺ 

‐ Case P2 (maximum vertical moments along the length of the container ship):  

Torsional moment =  ૛. ૢ૙૚࢞૚૙ૡ࢓ࡺ 

Vertical Bending Moment = ૚. ૜૟૟࢞૚૙૚૙ ൅ ૞. ૟ૢ࢞૚૙ૢ࢓ࡺ ൌ ૚. ૢ૜૞࢞૚૙૚૙࢓ࡺ 

 

Table  6.2:  Loading  conditions  from  loading  manual  for  OL185  containership  (Alfred 
Mohammed, 2014) 
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Figure 6.1: Distribution of still water bending moment along the length of the container ship 
showing the maximum and minimum moments (Alfred Mohammed, 2014) 

 

6.2.2. Geometric characteristics and material properties 

The midship section of the OL185 container ship is depicted in Figure 6.2 and further details 

about its scantlings are given in Table 6.3, Table 6.4 and Table 6.5. 

 

The material properties of steel are: 

‐ HT36 with ߪ௒ ൌ 355ܰ/݉݉ଶ, for scantlings given as XH; 

‐ HT40 with ߪ௒ ൌ 390ܰ/݉݉ଶ, for scantlings given as XH40; 

Where X represents the letters A, D and E.  
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Figure 6.2: The midship section of the OL185 container ship (Alfred Mohammed, 2014) 
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Table 6.3: Longitudinal bulkheads and side shell longitudinals (Alfred Mohammed, 2014) 
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Table 6.4: Double bottom girders (Alfred Mohammed, 2014) 

 

 

Table 6.5: Other longitudinals (Alfred Mohammed, 2014) 

 

6.2.3. Non‐linear finite element model of OL185 container ship 

A three compartment model with two bulkheads was modelled in ABAQUS CAE and there are 

54 bays between the bulkheads with frame spacing 791mm. Approximately 1 million number 

of linear quadrilateral (S4R) and triangular (S3) elements were used in the model and their size 

was  varied  from 200mm  to 800mm depending on  the area of  the  structure. Therefore, a 

coarse mesh size  (800mm) was applied  to  the  transverse bulkheads and a  finer mesh size 

(200mm) to the plates, stiffeners, decks and longitudinal bulkheads. More detailed description 
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of the mesh and the mesh convergence study is provided in Alfred Mohammed’s study (Alfred 

Mohammed, 2014).  

The initial geometric imperfections of the container ship were modelled exactly as the initial 

geometric imperfections of the box girders which are described in section 5.2.2. In addition, 

the same boundary conditions were applied to the OL185 finite element model and the box 

girder models (section 5.3.3 and section 5.4.1). In Figure 6.3, it is shown how the end nodes 

of the F.E. model of the container ship are tied to a reference point RP‐1. The other end of the 

structure  is  fully  constrained  (Figure  6.4)  and  the  load  is  applied  as  smooth  step  via  this 

reference point. Therefore, angular displacement  is applied to the axes according to Figure 

6.5: 

‐ x axis (UR1), positive or negative, for vertical sagging or hogging bending moment 

‐ z axis (UR3) for torsional moment 

‐ z axis (UR3) up to a certain amount of torsional moment; then, the model is held and 

angular displacement in x axis (UR1) is applied to the model up to its collapse  

 

 

 

Figure 6.3: OL185 showing an end whose nodes are tied to an individually created reference 
point RF‐1 in ABAQUS model (Alfred Mohammed, 2014) 
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Figure  6.4:  F.E. model  of OL185  showing  the  edge modes  fully  constrained  against  all  six 
degrees of freedom with the applied boundary conditions (Alfred Mohammed, 2014) 

 

 

 

 

Figure 6.5: Orientation of displacements and rotations in model space (six degrees of freedom) 
(Alfred Mohammed, 2014) 
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6.2.4. ProColl model of OL185 container ship 

The model of the OL185 container ship  in ProColl was created based on the provided data 

from the midship section (Figure 6.2) and the scantlings (Table 6.3, Table 6.4 and Table 6.5). 

The same  initial  imperfections to the NLME model were  incorporated  in the ProColl model. 

Figure 6.6 shows the graphic representation of the ProColl model and its file is also attached 

in Appendix B. The midship section of the OL1855 containership has 22cells/loops, therefore 

each plate was associated with the number of the cell/loop which belongs. The common plates 

i.e. the plates which belong to two cells/loops were associated to both of them. The length 

F.E. model is consisted by 54 bays (791mm each) between the transverse bulkheads, therefore 

the same number on frames (nsy) was also set in ProColl (nsy=54). The model was analysed 

under combined torsional and vertical sagging/hogging bending loads. 

 

 

Figure 6.6: Graphical  representation of OL185  container  ship  in ProColl and  its numbered 
cells/loops.   
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6.3. Ultimate strength assessment of the OL185 container ship  

The ultimate strength of the OL185 container ship was investigated under combined torsional 

and bending loads in both hogging and sagging condition. The analyses carried out using the 

non‐linear finite element method by Alfred Mohammed (Alfred Mohammed, 2014) and the 

extended simplified progressive collapse method for combined torsional and bending  loads 

which  is proposed  in  the current study. The aim  is  to validate  the  results of  the proposed 

methodology with  the NLFE  results  and  check  if  the  structure may  sustain  the maximum 

combined torsional and bending loads which were defined in section 6.2.1. 

6.3.1. Non‐ linear finite element results (ABAQUS) 

In this subsection, the  finite results of the OL185 container ship  from Alfred Mohammed’s 

study (Alfred Mohammed, 2014) are briefly presented in order to be available for comparison 

with the results of the proposed methodology.  

6.3.1.1. Under torsional load 

The maximum torsional capacity of the OL185 container ship is  ࢞ࢇ࢓ࢀ ൌ ૠ. ૟ૡ૝࢞૚૙ૢ࢓ࡺ 

 

 

Figure 6.7: A moment‐curvature relationship for progressive collapse of OL185 under torsion 
according to ABAQUS results (Alfred Mohammed, 2014) 
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6.3.1.2. Under combined torsional and vertical bending moment 

The moment‐curvature relationships of the OL185 container ship under torsional and vertical 

sagging or hogging bending moment are depicted in Figure 6.8 and Figure 6.9 respectively. 

 

Figure 6.8: Moment‐curvature relationships for sagging moment and torsion for the midship 
section of OL185 container ship according to ABAQUS results (Alfred Mohammed, 2014) 

 

 

 

Figure 6.9: Moment‐curvature relationships for hogging moment and torsion for the midship 
section of OL185 container ship according to ABAQUS results (Alfred Mohammed, 2014) 
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6.3.1.3. Interaction diagram of torsional and bending loads 

A  non‐dimensioned  interaction  diagram  of  the  ultimate  sagging/hogging  vertical  bending 

moment and the torsional load of the OL185 container ship based on the previous presented 

NLFE results is depicted in Figure 6.10. 

 

Figure 6.10: Ultimate strength relationship between vertical bending moment and torsion for 
the midship section of OL185 container ship (Alfred Mohammed, 2014) 
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6.3.2. Extended Simplified Progressive Collapse Method (ProColl) 

6.3.2.1. Under torsional load 

As it was mentioned in chapter 3, the user has the option to define the maximum torsional 

capacity of the structure. In this case, the maximum torsional load (	 ௠ܶ௔௫	) is known from the 

N.L.F.E.  analysis  and  it  is  equal  to	ૠ. ૟ૡ૝࢞૚૙ૢ࢓ࡺ.  Since		 ௠ܶ௔௫ ൐ ௢ܶ,  the  shear  flow 

distribution in the cells for applied torsion greater than	 ௢ܶ is not increased (section 3.6).  

6.3.2.2. Under combined torsional and vertical bending moment 

The  moment‐curvature  relationships  for  torsional  and  vertical  sagging/hogging  bending 

moment are presented in Figure 6.11/Figure 6.12 respectively.  

 

 

Figure 6.11: Moment‐curvature relationships for sagging moment and torsion (Nm) according 
to ProColl 
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Figure 6.12: Moment‐curvature relationships for hogging moment and torsion (Nm) according 
to ProColl 

 

Both figures depict the vertical bending moment‐curvature relationship of the structure under 

different amount of torsional moment. In both conditions, sagging and hogging, the stiffness 

of the structure is not affected by the torsional load. However, its strength decreases as the 

applied torsional  load  increases but only up to a certain value  (8.04E+08 Nm) equal to		 ௢ܶ. 

Above this amount of torsion, no further decrease in the strength of the OL185 container ship 

is presented. As it is explained in section 3.6, once a plate reaches its shear yield stress value, 

the shear distribution in the cells currently remains constant for any increase in the applied 

torsional load (i.e.	 ௢ܶ ൏ ௔ܶ௣௣௟௜௘ௗ ൑ ௠ܶ௔௫ ). 
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6.3.2.3. Interaction diagram of torsional and bending loads 

The interaction diagram of combined torsional and vertical sagging/hogging bending moment 

is shown in Figure 6.13. The graph provides the upper limit of the vertical bending moment 

(ultimate  strength)  in  sagging  and  hogging  condition  for  any  amount  of  torsion  up  to  its 

maximum torsional capacity. The structure collapses before this maximum torsional  load  is 

applied  to  the  structure  due  to  the  fact  that  torsion  is  not  the  dominant  load  in  a  ship 

structure. However,  this will be analysed afterwards  in section 6.3.3  in which  the extreme 

combined torsional and vertical bending loads for the container ship are taken into account. 

The  interaction diagram presents the peaks values of vertical bending moment from Figure 

6.11 and Figure 6.12. The structure displays a constant bending strength above	 ௢ܶ ൌ ܧ8.04 ൅

08ܰ݉ (Figure 6.13), which is the shear yield torsional load and no further shear load is carried 

by  the  plates. As  the  collapse  load  under  pure  torsion  is  reached,  the  theory  behind  the 

approach used here is not applicable and the analysis stops. 
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Figure 6.13: Interaction diagram of torsional and vertical bending load in sagging and hogging 
condition of the OL185 container ship according to ProColl   
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6.3.3. Comparison of NLFEM and Extended Simplified Progressive Collapse Method  

In  this  section,  the  results  of  the  non‐linear  finite  element  and  the  extended  simplified 

progressive collapse method are compared in Figure 6.14, Figure 6.15 taking also into account 

the extreme combined loads of torsion and vertical bending moment which defined in section 

6.2.1.  

 

Figure 6.14: Interaction diagram of combined torsional and bending loads according to NLFEM 
and ProColl and its associated wave‐induced torsional moment with i) the most extreme wave‐
induced vertical bending moment (P1’) ii) the P1’value plus the still water bending moment at 
160.742m from the A.P. (P1)  iii) the P1’ value plus the maximum still water bending moment 
along its length (P2) 
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Figure 6.15: Non‐dimensioned interaction diagram of combined torsional and bending loads 
according to NLFEM and ProColl and its associated wave‐induced torsional moment with i) the 
most extreme wave‐induced vertical bending moment (P1’) ii) the P1’value plus the still water 
bending moment at 160.742m from the A.P. (P1) iii) the P1’ value plus the maximum still water 
bending moment along its length (P2)    
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The interaction diagrams of torsional and vertical sagging/hogging bending moment according 

to NLFEM and the proposed methodology are presented  in Figure 6.14. The results show a 

good agreement and both graphs present similar pattern. The extended simplified progressive 

collapse method seems more conservative  in  its  results  than  the non‐linear  finite element 

method. Furthermore, the estimate strength by both methodologies may sustain the most 

extreme‐wave  induced  vertical  bending  moment  and  the  maximum  still  water  bending 

moment along  the  length of  the  ship with  its associated wave  induced  torsional moment 

(point P2). P2 case is the most severe and conservative case scenario after P1 case which is 

the worst load combination at the frame 160.742m from the A.P. and may occur once in the 

life‐time (25 years) of the OL185 container ship (P2 case). P1 case is the most extreme wave‐

induced vertical bending moment and its associated wave‐induced torsional moment without 

taking into account the still water bending moment.  

Figure 6.15 presents the normalised values of Figure 6.15 based on the maximum bending 

moment in sagging and hogging and maximum torsional moment of the NLFE results which 

are 2.3610ݔଵ଴ܰ݉, 2.3410ݔଵ଴ܰ݉ and 7.68410ݔଽܰ݉  respectively. Figure 6.15 shows  that 

the maximum wave‐induced torsional load for the OL185 container ship is less than the 10% 

(3.7%Tmax) of its maximum torsional capacity. 
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6.4. Summary  

In  chapter  6,  the  case  study  of  a  10000TEU  OL185  container  ship  is  investigated  under 

combined  torsional  and  vertical  bending moment  in  sagging  and  hogging  condition.  The 

ultimate strength of the structure under these combined loads was analysed using the non‐

linear finite element method and the extended simplified progressive collapse method. The 

results and the modelling of the finite element analysis are briefly presented and discussed 

because they have been carried out  in another study (Alfred Mohammed, 2014). The same 

study provides also useful data about the extreme wave‐induced vertical bending moment 

and its associated wave‐induced torsional moment for the OL185 container ship. The OL185 

containership  is also modelled  in ProColl and the results of the proposed methodology are 

presented and compared with the finite element results.  

The  interaction diagrams of torsional and vertical bending moment  in sagging and hogging 

conditions according to both methodologies show good agreement with this of the extended 

simplified progressive  collapse method  to be more  conservative  than  the non‐linear  finite 

element method. Finally, both sets of results show that the structure may sustain the most 

extreme predicted combined loads and that the wave‐induced torsional load of the container 

ship is less than the 10% of its maximum torsional capacity.
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Chapter 7  

7. Progressive collapse of intact and damaged box girder under bending, torsion 

and combined bending and torsional loads 

7.1. Introduction 

This chapter presents a case study for the progressive collapse of damaged box girders when 

subjected  to  combined  bending  and  torsional  loads.  In  the  first  part,  the  geometric 

characteristics of the intact Box Girder E are presented along with the results of its progressive 

collapse assessment under torsional loads (using the NLFEM) and under combined torsional 

and bending loads (using the NLFEM & the extended simplified progressive collapse method).  

In  the  second part, Box Girder E  is  subjected  to different damage  case  scenarios and  the 

damage extent alters either across the width or along the length of the structure.  The strength 

assessment  of  these  damaged  box  girders  follows  under  torsional  loading  and  under 

combined  torsional  and bending  loads  according  to  the nonlinear  finite  element  analysis. 

Furthermore, the damaged box girders under bending load were analysed using the extended 

simplified progressive collapse method. The progressive collapse behaviour of the damaged 

box girders under combined  torsion and bending was also  investigated with  the proposed 

methodology. However, the effect of torsion to local damage is not incorporated yet into the 

proposed methodology. The reasons are explained in section 7.3.4 and ongoing investigation 

occurs on this area. 

 

7.2. Part I: Intact Box Girder E 

7.2.1. Introduction 

In this section, first the geometric characteristics of intact Box Girder E are presented and then 

its progressive collapse is analysed under pure bending, pure torsion and combined bending 

and torsional  loads. Both methods, the nonlinear finite element method and the extended 

progressive collapse method are applied. The modelling procedure of both methodologies is 

described and their results are presented. In the end of this part, a comparison of the above 

results is presented. 
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7.2.2. Geometric characteristics 

A simple box girder of 4.8m width, 4.2m height and 9.0m  length, called Box Girder E, was 

selected to be modelled for the purpose of this study. Box Girder E has also been examined in 

previous study by the author (Syrigou, 2012) under pure bending, investigating its progressive 

collapse and residual strength under different damage case scenarios with both methods; the 

nonlinear finite element analysis and the extended simplified progressive collapse method. 

The results of this study had shown that the residual strength of the damaged structure  is 

highly dependent on the size of transverse damage extent and different sizes of longitudinal 

damage extent have almost the same effect on the strength of the structure.  

In the current study, the strength of the same box girder, Box Girder E, is investigated under 

combined bending and torsional loadings. The size of this model allows a rigorous study to be 

carried out without significant computational penalties and provides a satisfactory amount of 

results for better understanding of its behaviour under these combined loads. 

The geometry of Box Girder E is shown in Figure 7.1 (& in Appendix C) and standard tee bar 

stiffeners were used throughout the box girder which are spaced 600mm apart. Each plate 

has a  length of 1800mm,  therefore according  to Equation 2.7  the  slenderness  ratio  (β) of 

top/bottom and side flanges is 2.58 and 2.064 respectively. Each section is 1800mm long and 

it consists one bay. The whole model is consisted by five (5) bays (i.e. total length of model 

9000mm) which are separated by transverse frames. The size of transverse frames is doubled 

the size of the longitudinal stiffeners. 

The material properties of steel are Young’s modulus 207GPa and yield stress of 245Mpa with 

linearly elastic‐perfectly plastic stress‐strain behaviour (Figure 4.1). 

Average  level of geometric  imperfections were taken  into account for plates and stiffeners 

exactly as they are described in 5.2.2 paragraph. Additionally, tensile stresses equal to 95% of 

yield  stress  (245MPa)  were  considered  in  a  tensile  zone  of  50mm  width  along  each 

longitudinal side of the plates. The value of the residual stresses was calculated according to 

Equation 2.9.  
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Figure 7.1: The cross‐section of Box Girder E 

 

7.2.3. Progressive collapse of intact box girder with the NLFEM.  

In this section, the progressive collapse of Box Girder E subjected to pure bending, pure torsion 

and  combined  bending  and  torsional  loads  is  analysed with  the Nonlinear  Finite  Element 

Method using static (Riks) analysis. At this point, it should be mentioned that the nonlinearity 

of this model did not cause any convergence issues using static analysis, therefore Riks analysis 

was applied to all cases.  

7.2.3.1. NLFEM Modelling 

The set‐up of the F.E. model in ABAQUS is very similar to this of the four box girders solved 

with static analysis and already it has been described in Chapter 5. A conventional four node 

shell element (S4R) with reduced integration (5 points) was used for the modelling and each 

node has six degrees of freedom (i.e. three translational and three rotational). 

A mesh convergence study was carried out for the case which the model is subjected to pure 

bending with element size equal to 100mm, 50mm, 35mm and 25mm, showing a satisfactory 

convergence for an element size of less than 50mm (Figure 7.2). 
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Figure 7.2: Mesh convergence study for Box Girder E subjected to pure bending 

 

The boundary conditions of Box Girder E are shown in Figure 7.3. Initially, all nodes of End2 

are fixed in all degrees of freedom and the nodes of End1 are tied with a rigid body constraint 

to the reference point RF‐1. This point, RF‐1, does not belong to the geometry of the model 

but in the space and any constraint which is applied to it, is automatically transferred to all 

nodes of End1.  

Therefore, rotational constraint in x‐axis (UR1) is applied to RF‐1 in order End1 to remain in 

plane. Then, a relaxation step follows without any  load  in order to self‐equilibrate residual 

stresses in the model. Finally, the load is applied via the reference point RF‐1 and in the case 

of: 

i) Pure bending, is applied as rotational displacement in x‐axis (UR1) using the Riks 

analysis; 

ii) Pure torsion,  is applied as rotational displacement  in z‐axis  (UR3) using the Riks 

analysis; 

iii) Combined torsion and bending loads, is applied initially as rotational moment in z‐

axis (CM3) with known percentage (%) of applied torsion using the general static 

analysis. Then, the model is held and rotational displacement is applied to RF‐1 in 

x‐axis (UR1) using the Riks method. At this point, it should be mentioned that the 
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Riks  solution  can be used only once during  the  analysis  in ABAQUS  and not  in 

multiple steps. Therefore, this the reason why the general static analysis was used 

for the torsional load and the Riks analysis for the bending load.   

 

 

Figure 7.3: Boundary conditions of Box Girder E 
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7.2.3.2. Results: Under Vertical Bending Moment 

The progressive collapse strength assessment of Box Girder E under vertical bending moment 

is  depicted  in  Figure  7.4.  Initially,  the  structure was modelled with  and without  residual 

stresses,  but  including  initial  imperfections,  in  order  to  investigate  their  effect  on  its 

progressive  collapse.  The  stiffness  of  the  structure  is mainly  affected  by  the  presence  of 

residual stresses (Figure 7.4) and the box girder becomes less stiff.  

The values of ultimate strength under pure bending according to the nonlinear finite element 

analysis with and without residual stresses are:  

‐ ૞. ૜૙	 ൈ	૚૙૚૙࢓࢓ࡺ, including residual stresses to the model 

‐ ૞. ૚ૢ	 ൈ	૚૙૚૙࢓࢓ࡺ, without residual stresses to the model 

 

 

Figure 7.4: Vertical bending moment‐curvature of intact Box Girder E under bending (NLFEM) 
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The contour plots of equivalent Von‐Mises stresses at collapse and post‐collapse of the intact 

Box Girder E with residual stresses are presented in Figure 7.5, in the left‐hand side and the 

right‐hand  side  respectively.  The  compressive  stresses  are  generated  on  the  deck  plates, 

because the structure is subjected to sagging. Furthermore, the collapse occurs between the 

transverse frames (i.e. interframe) which it is shown in the contour plots of the displacement 

(Figure 7.6).  

 

 

Figure 7.5: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse of the 
intact Box Girder E with residual stressed under bending moment (magnify x10) 

 

 

 

Figure 7.6: Contour plot of displacement at collapse and post collapse of the intact Box Girder 
E with residual stresses under bending moment (magnify x10)   
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7.2.3.3. Results: Under Torsion 

The progressive collapse of Box Girder E under torsional load is depicted in Figure 7.7. Both 

cases, with  and without  residual  stresses  in  the model  including  initial  distortions, were 

examined  and  the  results  of  their  torsional moment‐rotational  displacement  relationship 

show  slightly different  response  in  the nonlinear  area.  The  stiffness of Box Girder  E with 

residual  stresses  is  increased  in  comparison with  the  stiffness  of  the  box  girder without 

residual stresses.  

The values of the torsional capacity (i.e. maximum torsional moment) of Box Girder E with and 

without residual stresses according to the nonlinear finite element method are: 

‐ ૝. ૠ૞	 ൈ	૚૙૚૙࢓࢓ࡺ, including residual stresses to the model 

‐ ૝. ૡૡ	 ൈ	૚૙૚૙࢓࢓ࡺ, without residual stresses to the model 

 

 

Figure 7.7: Torsional moment‐ angle relationship of intact Box Girder E under torsion 
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The contour plots of equivalent Von‐Mises stresses at collapse and post‐collapse of the intact 

Box Girder E with residual stresses under torsion are presented in Figure 7.8, in the left and 

right hand side respectively.  High stresses are generated in the bays which are close to the 

constrained end (End 2). The collapse of the intact Box Girder E occurs between its transverse 

frames and it is shown in the contour plots of the displacement (Figure 7.9).  

 

 

 

Figure 7.8: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse of 
intact Box Girder E under torsional moment (magnify x20) 

 

 

 

 

Figure 7.9: Contour plot of displacement at collapse and post collapse of intact Box Girder E 
under torsional moment (magnify x20)   
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7.2.3.4. Results: Under combined Torsion and Bending 

In  this  section,  the  results  of  Box Girder  E with  residual  stresses  subjected  to  combined 

torsional and vertical bending loads are presented. The effect of residual stress was taken into 

account representing the actual behaviour of Box Girder E. 

The  torsional capacity of Box Girder E has already been estimated  in  the previous section. 

Therefore, fractions of the maximum torsional moment may be applied to the model in each 

case study during the first step of the analysis. When this analysis step is completed, rotational 

displacement  (UR1)  is  applied  to  all  nodes  of  End1  via  the  reference  point  RF‐1.  This 

displacement causes controlled bending moment to the model until its collapse and further 

steps of it (i.e. post‐collapse).  

 

Figure 7.10: Moment‐curvature curves of intact Box Girder E including residual stresses under 
combined torsional and bending loads 

 

The progressive collapse assessment of the  intact Box Girder E with residual stresses under 

combined  torsional  and  bending  loads  is  presented  in  Figure  7.10.  The  stiffness  of  the 

structure before the collapse (pre‐collapse) is not particularly affected by the applied amount 

of  torsional moment  to  the structure. However,  the ultimate strength  (peak point of each 

curve) is constantly decreases as the amount of torsional load increases. This decrease is quite 
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insignificant for low percentages of torsional moment (i.e. 10%, 20%), but it becomes higher 

as the amount of torsional load increases. 

The progressive collapse behaviour of the structure is similar in each of the following ranges 

of  applied  torsional  load;  10%‐20%  30%‐50%  and  60%‐90%Tmax  and  bending  moment. 

Therefore, only one representative case from each range is presented. The contour plots of 

Von‐Mises stresses and displacement for Box Girder E under 10%Tmax and bending are shown 

in Figure 7.11 and Figure 7.12. The  collapse occurs between  the  transverse  frames of  the 

middle bay (interframe collapse). 

 

Figure 7.11: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
the intact Box Girder E under 10% of torsional capacity applied and bending (magnify x1) 

 

 

 

 

Figure 7.12: Contour plot of the displacement at collapse and post‐collapse for the intact Box 
Girder E under 10% of torsional capacity applied and bending (magnify x1) 
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The contour plots of  the equivalent Von‐Misses stresses and displacement at collapse and 

post‐collapse  for Box Girder E under 30%Tmax and bending are  shown  in Figure 7.13 and 

Figure 7.14, respectively. In this case, the collapse occurs between the transverse frames not 

in the middle bay of the structure but in the bay close to the restrained end of it. 

 

Figure 7.13: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
the intact Box Girder E under 30% of torsional capacity applied and bending (magnify x1) 

 

 

 

Figure 7.14: Contour plot of the displacement at collapse and post‐collapse for the intact Box 
Girder E under 30% of torsional capacity applied and bending (magnify x1) 

 

The contour plots of  the equivalent Von‐Misses stresses and displacement at collapse and 

post‐collapse  for Box Girder E under 60%Tmax and bending are  shown  in Figure 7.15 and 

Figure  7.16,  respectively.  In  this  case,  the  structure  fails  in  the middle  bay  between  the 

transverse frames.  
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Figure 7.15: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
the intact Box Girder E under 60% of torsional capacity applied and bending (magnify =x1) 

 

 

 

Figure 7.16: Contour plot of the displacement at collapse and post‐collapse for the intact Box 
Girder E under 60% of torsional capacity applied and bending (magnify x1) 

 

The interaction diagram of torsional moment and maximum bending moment which the intact 

Box Girder E may sustain is presented in Figure 7.17. The graph defines a safe limit in the area 

below it in which any combination of these loads is permissible. A non‐dimensional interaction 

graph of these combined torsional and bending  loads  is presented  in Figure 7.18. This plot 

includes also the theoretical graph which derives applying Equation 5.8 for the same values of 

torsional moment. Both graphs show very good correlation, especially  for  low amounts of 

torsion, and follow the theoretical formulation for torsion and bending.  



 
Chapter 7: Progressive Collapse Assessment of Intact and Damaged Box Girders under 
Bending, Torsion and Combined Bending and Torsional Loads  

 

194 
 

 

Figure 7.17: Interaction diagram of torsional and bending moment for the intact Box Girder E 
(ABAQUS) 

 

 

Figure 7.18: Non‐dimensional  interaction diagram of combined torsional and bending  loads 
for the intact Box Girder E   
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7.2.4. Progressive Collapse of intact box girder with the Extended Progressive Collapse 

Method (ProColl) 

In  this  section,  the  progressive  collapse  of  the  intact  Box Girder  E  including  the  residual 

stresses effect is investigated under pure bending and combined bending and torsional loads, 

using the proposed extended simplified progressive collapse method. Initially, the modelling 

of the intact Box Girder E in ProColl is described and then the results of the analyses under the 

aforementioned loads are presented. 

7.2.4.1.  Extended Progressive Collapse Method modelling 

The set‐up of the model in the extended progressive collapse method requires the description 

of the cross‐section of the structure. The geometry of the cross‐section is described by plates 

and stiffeners placed in the right coordinates. Each plate with its associated stiffener consists 

an element and every element belongs to a load shortening curve (LSC) and a numbered loop.  

In this case, the shape of the cross section of Box Girder E  is a simple rectangular which  is 

depicted in Figure 7.1. and Appendix C. It is consisted only by one (1) loop, therefore all plates 

are assigned to the same numbered loop e.g. number 1. Furthermore, four (4) LSC are defined 

in the model, one for each side. Finally, the length of the structure is defined as the length of 

each bay, 1800mm, multiply be  the  total number of  transverse  frames, 5  (i.e.  total  length 

9000mm).   

The material properties of steel with Young’s modulus 207GPa and yield stress 245Mpa are 

assumed. The width of the residual stresses zone was taken equal to 50mm only along the 

length of the plate and the stresses were calculated according to Equation 2.8. An average 

level  of  initial  imperfections  was  assumed  according  to  Equation  2.8,  with  their  shape 

described by Equation 2.12. The ProColl data file is presented in Appendix B.  

In  the  case where only  vertical bending moment occurs,  incremental  curvature  is  applied 

directly  to  the model  and  the  extended  progressive  collapse method  is  implemented  as 

described in section 2.3.3. In the case where torsional load is applied with combined vertical 

bending moment, the numbered loop of each plate is taken into account into the analysis in 

order to calculate shear flow distribution on the plates and torsional load and the proposed 

methodology is implemented according to the flow chart diagram in Chapter 3. 
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7.2.4.2. Results: Under Vertical Bending Moment 

The progressive collapse of the intact Box Girder E under vertical bending moment in sagging 

is  depicted  in  Figure  7.19.  The  value  of  its  ultimate  strength  according  to  the  extended 

progressive collapse method is: 

 

‐ ૞. ૚ૠ	 ൈ	૚૙૚૙࢓࢓ࡺ, including residual stress and initial deformations to the model 

 

 

Figure 7.19: Vertical bending moment‐curvature relationship of the intact Box Girder E under 
vertical bending moment (ProColl) 
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7.2.4.3. Results: Under combined Bending and Torsion 

The bending moment‐curvature relationships of the intact Box Girder E with applied torsion 

according to the proposed methodology (Chapter 3) are presented in Figure 7.20. The strength 

of Box Girder E decreases as the amount of the applied torsional moment increases, without 

particularly  affecting  its  stiffness  though.  Finally,  similar  pattern  of  bending  moment‐

curvature  relationship  is presented up  to high  amounts of  applied  torsional moment  (i.e. 

3.65E+10Nmm). 

 

  

Figure 7.20: Bending moment‐curvature relationship of the intact Box Girder E subjected to 
different  amount  of  torsional moment  (Nmm)  and  vertical  bending moment  (in  sagging 
condition) 
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The interaction diagram of torsional moment and vertical bending moment according to the 

proposed extended  simplified progressive  collapse method  is depicted  in Figure 7.21. The 

graph defines a safe limit for the strength of intact Box Girder E when is subjected to combined 

torsional and bending loads. 

  

 

Figure  7.21:  Interaction  of  torsional  and  vertical  bending moment  of  intact  Box Girder  E 
according to the proposed extended simplified progressive collapse method (ProColl) 
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7.2.5. Comparison of the results for intact box girder under combined torsion and bending 

The normalised interaction diagram of torsional and bending moment with respect to the F.E. 

values, ࢞ࢇ࢓ࢀ ൌ 	૝. ૠ૞	 ൈ	૚૙૚૙࢓࢓ࡺ and	࢞ࢇ࢓ࡹ࡮ ൌ ૞. ૜૙	 ൈ	૚૙૚૙࢓࢓ࡺ, is presented in 

Figure 7.22.  

The results of the intact Box Girder E according to both methodologies, the NLFEM and the 

proposed methodology, are compared in the same graph and show very good correlation.  

 

 

Figure 7.22: Normalised interaction diagram of torsion and bending of the intact Box Girder E 
according to the NLFEM (ABAQUS) and the proposed extended simplified progressive collapse 
method (ProColl). 
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7.3. Part II: Trans. & Long. Damage Cases of Box Girder E 

7.3.1. Introduction 

In this section, the residual strength of Box Girder E is investigated for different damage case 

scenarios under pure bending, torsion and combined torsional and bending loads. Damage is 

represented as a cut‐out of  the damaged structure without  taking  into account any effect 

which the released energy from the collision may cause. Both methodologies, the nonlinear 

finite element method and the proposed extended progressive collapse method are applied. 

The residual strength of damaged structures is presented and a comparison of these results 

follows aiming to show the differences between the two methodologies. 

This  analysis  has  been  carried  out  to  investigate  the  effects  of  damage when  combined 

bending and torsional loads are present. This will also be used to validate the future damage 

model to be incorporated in ProColl for the effect of combined loads. 

7.3.2. Damage Cases 

The criterion according to which the damage case scenarios were selected, was to examine 

the  effect  of  the  longitudinal  and  transverse  damaged  extent.  Therefore,  initially  the 

longitudinal damage extent is constant and the size of the transverse damaged extent varies. 

In each case, the structure is subjected to pure bending, torsion and combined torsional loads 

and bending. 

Then,  the  longitudinal  size of  the damaged extent varies keeping  the  transverse damaged 

extent constant and the structure is subjected to the same pattern of loads (i.e. bending, pure 

torsion, combined torsion and bending).  

7.3.2.1. Different size of transverse damage extent 

Three  cases  of  different  size  of  transverse  damage  extent were  examined  (Figure  7.23 & 

Appendix C). Initially, a very narrow elliptical damage extent of 64mm width (Trans. Damage 

Case  I)  in  which  the  central  stiffener  is  actually  removed.  Then,  a  circular  cut‐out  of 

c=0.3B=1440mm (Trans. Damage Case II) and an elliptical cut‐out with the length of its major 

axis equal  to 2c=2880mm  (Trans. Damage Case  III) were examined. The damage  is always 
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applied to the center of the central bay of Box Girder E, therefore it is symmetrical. Finally, 

the length of the damage extent is constant and equal to 1440mm in all cases.  

7.3.2.2. Different size of longitudinal damage extent 

Two cases of different size of  longitudinal damage extent were  investigated (Figure 7.24 & 

Appendix  C).  Initially,  a  circular  cut‐out  of  0.3B=c=1440mm  (Long.  Damage  Case  I)  was 

examined and afterwards an elliptical cut‐out 2c=2880mm long (Long. Damage Case II) which 

causes  the  loss of  two  transverse  frames.  The damage  is  also  symmetrical  as  it  is  always 

applied to the center of the central bay of the box girder. Finally, the width of the damage 

extent is constant and equal to 1440mm in both damage cases.  

 

 

Figure 7.23: Sketch of different transverse 
cut‐outs damage extents 

 

Figure 7.24: Sketch of different longitudinal 
cut‐outs damage extents

 

These damage  scenarios are not able  to be modelled accurately  in  the  current version of 

ProColl since  this requires  the removal of  the damaged elements  for  the  full  length of  the 

compartment. However, in the future with the implementation of the new damaged element 

into ProColl this should be able to be modelled more accurately. 
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7.3.3. Damaged box girders with different transverse damage extent (NLFEM) 

The NLFE modelling of the damaged box girders is very similar to this of the intact Box Girder 

E, as described in section 7.2.3.1. The only difference is in the geometry of the models in which 

the damage extents are  represented as  cut‐outs. Their  size  is depicted  in Figure 7.23 and 

further details about the set‐up of the model are referred in section 7.3.2.1.  

Initially, all damaged box girders were subjected to vertical bending moment, then they were 

examined under pure torsion and finally under combined torsional and bending loads using 

the nonlinear finite element method. 

7.3.3.1. Under vertical bending moment 

The contour plots of the equivalent Von‐Misses stresses and the displacement at collapse and 

post‐collapse  for Trans. Damage Case  I,  II and  III of Box Girder E subjected only  to vertical 

bending moment are shown in Figure 7.25 ‐ Figure 7.30.  

In Figure 7.25, the compressive stresses on the deck plates are shown for Trans. Damage Case 

I of Box Girder E under pure bending. The contour plots of the displacement  in Figure 7.26 

show the collapse of the structure between its transverse frames (interframe) in the middle 

bay of it. 

 

 

Figure 7.25: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case I of Box Girder E under bending moment (magnify x10) 
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Figure 7.26: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case I of Box Girder E under bending moment (magnify x10) 

 

 

Figure 7.27: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case II of Box Girder E under bending moment (magnify x10) 

 

 

Figure 7.28: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case II of Box Girder E under bending moment (magnify x10) 
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The contour plots of the Von‐Mises stresses and the displacement for Trans. Damage Case II 

of  Box  Girder  E  subjected  only  to  bending  are  shown  in  Figure  7.27  and  Figure  7.28, 

respectively. In this case,  interframe collapse mode occurs due to the bending  load. Similar 

behaviour  presents  also  Box Girder  E  in  Trans. Damage  Case  III,  in which  the  size  of  the 

transverse damage extent is larger and its contour plots of Von‐Mises and displacement are 

shown in Figure 7.29 and Figure 7.30, respectively. 

 

 

Figure 7.29: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case III of Box Girder E under bending moment (magnify x10) 

 

 

 

Figure 7.30: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case III of Box Girder E under bending moment (magnify x10) 
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The progressive collapse for the Trans. Damage Case I, II and III of Box Girder E subjected to 

vertical bending moment  is presented  in Figure 7.31. The strength and the stiffness of Box 

Girder E decrease as the damage extent increases. The post‐collapse strength of the structure 

in the damage cases presents a smoother drop than this in the intact. 

The ultimate strength in each case is: 

 

‐ ૞. ૜૙	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૝. ૠ૞	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case I of Box Girder E 

‐ ૝. ૙૞	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case II of Box Girder E  

‐ ૜. ૜૝	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case III of Box Girder E  

 

 

 

Figure 7.31: Moment‐Curvature relationships of intact Box Girder E and Trans. Damage Cases 
I, II and III of Box Girder E subjected to vertical bending moment (NLFEM) 
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7.3.3.2. Under pure torsion 

The contour plots of the equivalent Von‐Misses stresses and the displacement at collapse and 

post‐collapse of the Trans. Damage Cases I, II and III of Box Girder E under torsional load are 

shown in Figure 7.32 ‐Figure 7.37.  

The contour plots of the Von‐Mises stresses and the displacement for the Trans. Damage Case 

I of Box Girder E under pure torsion, Figure 7.32 and Figure 7.33, show an interframe collapse 

of the structure in the middle bay of the model.  

 

 

Figure 7.32: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case I of Box Girder E under torsional moment (magnify x10) 

 

 

 

Figure 7.33: Contour plot of displacement at collapse and post‐collapse  for Trans. Damage 
Case I of Box Girder E under torsional moment (magnify x10) 
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In the cases which the transverse damage extent is increased, i.e. Trans. Damage Case II and 

III, the contour plots of the Von‐Mises stresses and the displacement, Figure 7.34 ‐ Figure 7.37, 

show an interframe collapse mode for these damaged structures. 

 

 

 

Figure 7.34: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case II of Box Girder circle E under torsional moment (magnify x10) 

 

 

 

 

Figure 7.35: Contour plot of displacement at collapse and post‐collapse  for Trans. Damage 
Case II of Box Girder E under torsional moment (magnify x10) 
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Figure 7.36: Contour plot of equivalent Von‐Mises stresses at collapse and post‐collapse for 
Trans. Damage Case III of Box Girder E under torsional moment (magnify x10) 

 

 

 

 

Figure 7.37: Contour plot of equivalent Von‐Mises stresses at collapse and post‐collapse for 
Trans. Damage Case III of Box Girder E under torsional moment (magnify x10) 
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The torsional moment‐angle relationships for Trans. Damage Case I, II and III of Box Girder E 

subjected only to torsional load are presented in Figure 7.38. The torsional moment which Box 

Girder E may sustain, decreases as the damage extent increases.  

The ultimate strength in each case is: 

‐ ૝. ૠ૞	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૝. ૚ૡ	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case I of Box Girder E 

‐ ૜. ૟ૡ	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case II of Box Girder E  

‐ ૜. ૙૚	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case III of Box Girder E 

 

 

 

Figure 7.38: Torsional Moment‐ Angle relationships of intact Box Girder E and Trans. Damage 
Case I, II and III of Box Girder E subjected to torsional load (NLFEM) 
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7.3.3.3. Under combined torsional loads and bending 

In this section, the bending moment‐curvature relationships for Trans. Damage Case I, II and 

III of Box Girder E  subjected  to different amounts of  torsional  load and  then bending are 

presented in Figure 7.39, Figure 7.40 and Figure 7.41, respectively. In each case, the strength 

of the damaged box girder gradually decreases as the applied torsion increases. Their stiffness 

though  is  not  particularly  affected  by  low  amounts  of  applied  torsion  and  it  is  obviously 

changing only for high amounts of torsion (more than 70%Tmax). 

The maximum value of each bending moment‐curvature for the applied amount of torsion is 

plotted  in  Figure  7.42,  generating  the  interaction  diagram  of  applied  torsion  and 

ultimate/residual strength which the intact and damaged structure may sustain. Figure 7.42 

show a gradual decrease of the values in the intact case as the size of the transverse damage 

extent increases, Trans. Damage Case I, II and III.  

 

 

Figure 7.39: Moment‐Curvature relationships  for the Trans. Damage Case  I of Box Girder E 
subjected to combined torsional loads and bending (NLFEM) 
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Figure  7.40: Moment‐Curvature  relationships  for  Trans.  Damage  Case  II  of  Box  Girder  E 
subjected to combined torsional loads and bending (NLFEM) 

 

 

 

Figure  7.41: Moment‐Curvature  relationships  for  Trans.  Damage  Case  III  of  Box  Girder  E 
subjected to combined torsional loads and bending (NLFEM) 
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Figure  7.42:  Interaction  Diagram  of  torsional  and  bending  load  for  the  intact  and  Trans. 
Damage Case I, II and III of Box Girder E. 

 

The contour plots of the equivalent Von‐Misses stresses and the displacement at collapse and 

post collapse are shown in Figure 7.43 ‐ Figure 7.46 for Trans. Damage Case I of Box Girder E, 

in Figure 7.47 ‐ Figure 7.50 for Trans. Damage Case II of Box Girder E and in Figure 7.51 ‐ Figure 

7.54 for Trans. Damage Case III of Box Girder E under combined torsional load and bending.  

The purpose  is to show how the  failure mode of the damaged structure  is affected by the 

amount of applied torsion in each damage case. The collapse behaviour of the damaged box 

girders without any torsional load has already been presented in Figure 7.26, Figure 7.28 and 

Figure 7.30 showing that interframe collapse mode occurs in all cases. 

In the case of Trans. Damage Case I of Box Girder E, the structure fails between its transverse 

frames under any amount of applied torsion and bending, e.g. for 50%Tmax and bending load 

(Figure 7.43 & Figure 7.44), for 60%Tmax and bending load (Figure 7.45 & Figure 7.46). 
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Figure 7.43: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case  I of Box Girder E under 50% of torsional capacity applied and bending 
(magnify x10) 

 

 

Figure 7.44: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case I of Box Girder E under 50% of torsional capacity applied and bending (magnify x10) 

 

 

Figure 7.45: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case  I of Box Girder E under 60% of torsional capacity applied and bending 
(magnify x10) 
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Figure 7.46: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case I of Box Girder E under 60% of torsional capacity applied and bending (magnify x10) 

 

Similarly, in Trans. Damage Case II of Box Girder E,  interframe collapse mode occurs to the 

structure under any amount of applied torsion and bending, e.g. for 60%Tmax and bending 

load (Figure 7.47 &Figure 7.48 ), for 90%Tmax and bending load (Figure 7.49 &Figure 7.50). 

 

 

Figure 7.47: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case II of Box Girder E under 60% of torsional capacity applied and bending 
(magnify x10) 
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Figure 7.48: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case II of Box Girder E under 60% of torsional capacity applied and bending (magnify x10) 

 

 

Figure 7.49: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case II of Box Girder E under 90% of torsional capacity applied and bending 
(magnify x10) 

 

 

Figure 7.50: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case II of Box Girder E under 90% of torsional capacity applied and bending (magnify x10) 
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In Trans. Damage Case III of Box Girder E, interframe collapse mode of failure is shown for the 

structure under any amount of applied  torsion and bending, e.g.  for 60% & 90%Tmax and 

bending (Figure 7.51 ‐ Figure 7.54). 

 

 

Figure 7.51: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case III of Box Girder E under 60% of torsional capacity applied and bending 
(magnify x10) 

 

 

 

 

Figure 7.52: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case III of Box Girder E under 60% of torsional capacity applied and bending (magnify x10) 
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Figure 7.53: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Trans. Damage Case III of Box Girder E under 90% of torsional capacity applied and bending 
(magnify x10) 

 

 

 

Figure 7.54: Contour plot of the displacement at collapse and post‐collapse for Trans. Damage 
Case III of Box Girder E under 90% of torsional capacity applied and bending (magnify x10) 
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7.3.4. Damaged box girders with different transverse damage extent (ProColl) 

In this section, Trans. Damage Case I, II and III of Box Girder E are examined using the extended 

simplified progressive collapse method. The initial aim of the current study was to investigate 

the progressive collapse of these damaged box girders under vertical bending and combined 

torsion and bending using the proposed methodology. A part of this aim was achieved, i.e. the 

progressive collapse assessment of the damaged box girders under bending moment. 

However, as  it has already mentioned the strength assessment of the damaged box girders 

under  combined  torsional  and bending  loads using  the proposed methodology  cannot be 

currently  achieved.  The  reason  is  that  the  current  representation  of  damage  in  the 

methodology,  leads  to  the  removal of  the damaged area  from  the model along  its whole 

length.  

This  representation  even  though  provides  valid  results when  the  damaged  box  girder  is 

subjected to bending loads (see next section), it is not valid under combined loads. A simple 

explanation is that the torsional rigidity of the same damaged model according to NFEM and 

the proposed simplified methodology is completely different and this leads eventually to the 

comparison of two different models, which currently invalidates this approach.  

Therefore,  the  research  for  the  representation  of  damage  in  the  proposed methodology 

continues and in this study the progressive collapse of the damaged box girders is examined 

only under bending.    
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7.3.4.1. Under pure bending 

The progressive collapse of the intact and for Trans. Damage Case I, II and III of Box Girder E 

subjected only to vertical bending moment is depicted in Figure 7.55. The bending moment‐

curvature relationships of  these damaged box girders have similar pattern with  this of  the 

intact  Box  Girder  E.  However,  the  strength  of  the  structure  decreases  as  the  transverse 

damage extent increases. 

The ultimate strength according to the simplified extended progressive collapse method is: 

‐ ૞. ૚ૠ	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૞. ૙૟	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case I of Box Girder E 

‐ ૝. ૜૚	 ൈ	૚૙૚૙࢓࢓ࡺ , for Trans. Damage Case II of Box Girder E 

‐ ૜. ૝૟	 ൈ	૚૙૚૙࢓࢓ࡺ for Trans. Damage Case III of Box Girder E 

 

 

Figure 7.55: Moment‐Curvature relationship of the intact and for Trans. Damage Case I, II and 
III of Box Girder E subjected to vertical bending moment (ProColl)   
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7.3.5. Comparison of the results for damaged box girders with varying size of transverse 

damage extent under vertical bending loading 

The  ultimate  strength  of  the  box  girders with  different  size  of  transverse  damage  extent 

subjected only to vertical bending moment (sagging) is presented in Figure 7.56 according to 

the NLFEM and the extended simplified progressive collapse method. Both graphs are plotted 

against to the percentage (%) of the size of damage extent to the width of Box Girder E. Both 

methods show very good correlation in their results and their graphs have the same tendency.   

It should be noticed that for very small size of transverse damage extent (Trans. Damage Case 

I), the drop of the residual strength is not the same in both methods. In this damage case, all 

the stiffeners in the cross‐section are intact and only a part of the central plate is damaged. 

This kind of damage  is predicted differently by ProColl and ABAQUS, probably due  to  the 

different representations of the boundary conditions around the hole in ProColl, and further 

investigation is required for this case. 

 

Figure 7.56: Comparison of the ultimate strength according to the NLFEM and the extended 
progressive collapse method for box girders with varying % of transverse damage extent  
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7.3.6. Damaged box girders with different longitudinal damage extent (NLFEM) 

Almost the same modelling with the intact Box Girder E (section 7.2.3.1) and Trans. Damage 

Case I, II and III of Box Girder E (section 7.3.3) in the N.L.F.E.M. was followed for Long. Damage 

Case I and II of Box Girder E. The damage is represented as a cut‐out in model’s geometry. The 

sizes  of  the  longitudinal  damage  extents  are  varying  in  each  case  and  they were  taken 

according to Figure 7.24 (see also Appendix C). Detailed description of Long. Damage Case I 

and II is given in section 7.3.2.1.  

All damaged box girders are subjected to vertical bending moment, then to torsional loading 

in order to estimate their torsional capacity and  finally to combined torsional and bending 

loads. 

7.3.6.1. Under vertical bending moment 

The contour plots of the equivalent Von‐Misses stresses at collapse and post‐collapse for Long. 

Damage Case I and II of Box Girder E under vertical bending moment are shown in Figure 7.27 

‐  Figure  7.28  and  Figure  7.57  ‐  Figure  7.58,  respectively.  The  collapse  of  the  damaged 

structures with varying size of  longitudinal damage extent occurs between their transverse 

frames in all examined cases of this study. 

 

 

Figure 7.57: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Long. Damage Case II of Box Girder E under bending moment (magnify x10) 
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Figure 7.58: Contour plot of the displacement at collapse and post‐collapse for Long. Damage 
Case II of Box Girder E under bending moment (magnify x10) 

  

Figure  7.57  and  Figure  7.58  show  interframe  collapse mode  in  the middle  bay  for  Long. 

Damage Case II of Box Girder E subjected only to vertical bending moment.    
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The  bending moment‐curvature  relationships  of  the  damaged  box  girders with  different 

longitudinal size of damage extent, subjected to vertical bending moment are presented  in 

Figure 7.59. Their strength is reduced in comparison to the strength of the intact Box Girder 

E. However, the reduction  is approximately the same  in both damage cases, Long. Damage 

Case  I and  II,  independently  from  the  length of  the damage extent. Therefore,  in  the case 

which interframe collapse occurs, it is probably the size of the transverse damage extent which 

defines the residual strength of the damaged structure. 

The ultimate strength in each case according to the nonlinear finite element method is: 

‐ ૞. ૜૙	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૝. ૙૞	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case I of Box Girder E 

‐ ૝. ૙૜	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case II of Box Girder E 

 

 

 

Figure 7.59: Moment‐Curvature relationships of the intact and Long. Damage Case I and II of 
Box Girder E subjected to vertical bending moment (NLFEM)   
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7.3.6.2. Under pure torsion 

The contour plots of the equivalent Von‐Misses stresses and the displacement at collapse and 

post‐collapse for Long. Damage Case I and II of Box Girder E under torsional load are shown in 

Figure  7.34  ‐  Figure  7.35  and  Figure  7.60  ‐  Figure  7.61,  respectively.  Both  structures  fail 

between their transverse frames under pure torsion. 

 

 

Figure 7.60: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Long. Damage Case II of Box Girder E under torsional moment (magnify x10) 

 

 

Figure 7.61: Contour plot of the displacement at collapse and post‐collapse for Long. Damage 
Case II of Box Girder Long. E under torsional moment (magnify x10) 
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The torsional moment‐angle relationships of the intact and Long. Damage Case I and II of Box 

Girder E subjected to torsional load is presented in Figure 7.62. The torsional moment which 

Box  Girder  E may  sustain,  decreases  due  to  damage.  However,  approximately  the  same 

reduction in their torsional capacity is presented in both cases damage cases, Long. Damage 

Case I and II, independently from the size of the longitudinal damage extent.  

The torsional capacity in each case according to the nonlinear finite element method is: 

‐ ૝. ૠ૞	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૜. ૟ૡ	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case I of Box Girder E 

‐ ૜. ૞૝	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case II of Box Girder E 

 

 

Figure 7.62: Torsional Moment‐Angle relationships of the intact and for Long. Damage Case I 
and II of Box Girders E subjected to torsional load (NLFEM)   
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7.3.6.3. Under combined torsional loads and bending moment 

The results of damaged box girders with different size of  longitudinal damage extent under 

torsional and bending loads are shown in this section.  

Figure 7.40 and Figure 7.63 are shown the moment‐curvature relationships for Long. Damage 

Case I and II of Box Girder E under these combined loads, respectively. The strength of both 

damaged box girders decreases as the applied torsion  increases. Their stiffness  in  the pre‐

collapse area  slowly decreases  too, but  it  is obviously  changing  for high values of applied 

torsion (more than 70%Tmax). 

 

Figure 7.63: Moment‐Curvature relationships for Long. Damage Case II of Box Girder E under 
combined torsional loads and bending (NLFEM) 

 

The interaction diagram of torsional and bending load for these cases is presented in Figure 

7.64. The plot shows that these damaged box girders may sustain approximately the same 

amount of combined  torsional and bending  loads even  though  the  length of  the damaged 

extent in Long. Damage Case II is twice the length than this in Long. Damage Case I. All graphs 

present similar pattern. 
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Figure 7.64: Interaction Diagram of torsional and bending loads for the intact Box Girder E and 
Long. Damage Case I and II of Box Girder E  

 

 

The contour plots of the equivalent Von‐Misses stresses and the displacement at collapse and 

post collapse  for Long. Damage case  I of Box Girder E under combined  loads are shown  in 

Figure 7.47 ‐ Figure 7.50 (interframe collapse mode) and for Long. Damage case II of Box Girder 

E under combined loads in Figure 7.65  ‐ Figure 7.68 (interframe collapse mode).  

 

 

Figure 7.65: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Long. Damage Case II of Box Girder E under 10%Tmax and bending (magnify x10) 
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Figure 7.66: Contour plot of the displacement at collapse and post‐collapse for Long. Damage 
Case II of Box Girder E under 10%Tmax and bending (magnify x10) 

 

 

Figure 7.67: Contour plot of equivalent Von‐Misses stresses at collapse and post‐collapse for 
Long. Damage Case II of Box Girder E under 90%Tmax and bending (magnify x10) 

 

 

Figure 7.68: Contour plot of the displacement at collapse and post‐collapse for Long. Damage 
Case II of Box Girder E under 90%Tmax and bending (magnify x10)   
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7.3.7. Damaged box girders with longitudinal damage extent (ProColl) 

In  this  section,  the  progressive  collapse  of  damaged  box  girders  with  different  size  of 

longitudinal damage extent using  the proposed methodology was  investigated only under 

vertical  bending moment  for  the  same  reasons which were mentioned  and  discussed  in 

section 7.3.4.   

7.3.7.1. Under vertical bending 

The progressive collapse of the damaged structures with varying longitudinal damage extent 

subjected only to vertical bending moment are depicted in Figure 7.69. The bending moment‐

curvature relationships of these damaged box girders have similar pattern with the intact Box 

Girder E and present identical reduced progressive collapse. Their ultimate strength according 

to the simplified extended progressive collapse method is: 

‐ ૞. ૚ૠ	 ൈ	૚૙૚૙࢓࢓ࡺ , for intact Box Girder E 

‐ ૝. ૜૚	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case I of Box Girder E 

‐ ૝. ૜૚	 ൈ	૚૙૚૙࢓࢓ࡺ , for Long. Damage Case II of Box Girder E 

 

Figure 7.69: Moment‐Curvature relationships of the intact and Long. Damage Case I and II of 
Box Girder E subjected to vertical bending moment (ProColl) 
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7.3.8. Comparison of the results for damaged box girders with varying size of longitudinal 

damage extent under vertical bending loading 

The ultimate  strength of  the box girders with different  size of  longitudinal damage extent 

subjected only to vertical bending moment (sagging) is presented in Figure 7.70 according to 

the NLFEM and the extended simplified progressive collapse method. Both graphs are plotted 

against to the percentage (%) of the size of the damage extent to the length of Box Girder E 

and their results show very good correlation. Both graphs have the same tendency and predict 

almost no further reduction in the residual strength of the structure for a size of longitudinal 

damage  extent  for more  than  16%  of  structure’s  length.  This  is  interpreted  as  the  same 

progressive collapse behaviour of the box girder with and without its main transverse frame 

but with the same loss of transverse extend, setting the size of the transverse damage extent 

the dominant factor which affects the residual strength of Box Girder E in case of damage. 

 

Figure 7.70: Comparison of the ultimate strength according to the NLFEM and the extended 
progressive collapse method for box girders with varying % of longitudinal damage extent
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7.4. Summary 

This chapter presents a case study for the effect of damage on the progressive collapse of box 

girders  subjected  to  combined  loading  of  bending  and  torsion.  Initially,  the  progressive 

collapse behaviour of the  intact Box Girder E under the aforementioned  loads  is examined 

using the nonlinear finite element analysis and the proposed extended simplified progressive 

collapse method by the author. Both methods show good correlation in their results. 

Then, two kind of damage cases are decided for the investigation. In the first, the size of the 

damage extent varies along the width of the box girder, but its length remains constant in all 

cases. In the second, the size of the damage extent varies along the length of the structure 

and its width remain the same. Both sets of damaged cases are applied to Box Girder E as a 

cut‐out of its model. 

The damaged box girders are subjected to bending, torsion and combinations of these loads 

and they are analysed using the nonlinear finite element method. The results of the damaged 

box girders show continuous decrease of their progressive collapse with the increase of the 

size of their transverse damage extent. However, in the case which the size of the longitudinal 

damage increases, the same reduction in the strength of the structure occurs in all cases. This 

leads  to  the  conclusion,  that  the  residual  strength  of  the  damaged  box  girder  is  highly 

depended on the size of its transverse damage extent in case of damage. In addition, all the 

interactions  diagrams  of  torsion  and  bending  present  similar  pattern  to  the  interaction 

diagram of the  intact Box Girder E which  follows the theoretical  interaction of torsion and 

bending (Equation 5.8). 

In parallel, the same damaged box girders are subjected to vertical bending moment and they 

analysed  with  the  extended  simplified  progressive  collapse  method.  These  results  are 

compared with the nonlinear finite element method’s results and present good agreement.  

Finally, the proposed methodology by the author is not applied to the damaged box girders 

under combined loads of torsion and bending due to the need of different representation of 

the damage in the existing methodology as it was explained and extension of the simplified 

method is currently under development to cover this combined load case for damaged box 

girders.    
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Chapter 8  

8. Conclusions and Recommendations 

8.1. Discussion and conclusions 

This  thesis proposes  a methodology  for  the  strength  assessment of  ship  structures under 

combined torsional and bending loads by incorporating the effect of torsion into the simplified 

progressive collapse method. The  latter methodology  is a well‐established method  for  the 

strength assessment of ship structures under bending and it is simple, quick and reliable. In 

the literature, there are no other methodologies for the strength assessment of ships which 

combine all the above characteristics.  

Although the longitudinal strength of hull girders is critical for the structure, there are cases 

in which  the  torsional  rigidity  of  the  structure  is  low,  e.g.  containerships  and  ships with 

damage,  torsional  loads may affect  the strength of  the structure. Therefore,  the proposed 

methodology aims to incorporate the effect of torsional loads into the simplified progressive 

collapse methodology. 

An  extensive  investigation  of  the  literature  provides  valuable  knowledge  of  the  existing 

methodologies for the strength assessment of ship structures under bending, studies for the 

torsional effect on ship structures and the behaviour of steel and aluminium plates under pure 

shear, pure compression/ tension and combined shear and compressive/tensile loads.  

The  investigation  for  the  behaviour  of  steel  and  aluminium  plates  under  these  loads  is 

essential  in  this  study  due  to  their  contribution  into  the  simplified methodology  and  the 

approach  for  the  incorporation  of  torsion  by  the  proposed methodology.  The  proposed 

methodology applies a knock down factor to the load shortening curves of the plates, due to 

the  effect  of  torsion  which  is  carried  as  shear  in  the  plating,  reducing  their  strength 

characteristics.  The  shear  stresses  on  the  plates  come  from  pure  torsional  load  on  the 

structure  (St. Venant’s  torsional  shear  stresses);  therefore  torsion  is  incorporated  into  the 

progressive  collapse  methodology  as  a  reduction  factor  on  the  bending  strength.  This 

methodology assumes that the dominant load effect is always the longitudinal bending and 

the torsional loading is a secondary loading effect. 
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The investigation of steel and aluminium plates under pure shear provides some very useful 

outcomes such as the aspect ratio of the plate does not affect the critical shear stress of the 

plate. Therefore after establishing this conclusion the study can be continued by investigating 

only  square  steel  and  aluminum  plates  under  pure  shear,  pure  compression/tension  and 

combined shear and compression/tension. The boundary conditions to achieve simultaneous 

shear and compressive/tensile loading are very important. Thus, steel and aluminium plates 

are subjected to pure shear and to pure compression applying the boundary conditions of the 

simultaneous combined loading. The results are compared against theoretical formulas and 

results of other studies and they present good agreement. Then, simultaneous loads of shear 

and  compression/tension  are  applied  to  plates with  slenderness  ratio  (β)  1  to  6  and  the 

interaction diagrams of these combined loads are generated for steel plates and aluminium 

alloys 5083‐H116 and 6082‐T6 plates. In general, stocky plates demonstrate tendency to fail 

due primary yielding, where slender plates are more likely to demonstrate a combination of 

buckling and yielding characteristics. 

In order to validate the proposed methodology the progressive collapse of four (4) box girders 

subjected to combined torsion and bending is investigated using the non‐linear finite element 

method and the proposed methodology. All box girders have the same size but different cross‐

sections which provide different torsional rigidity to each model. Initially, all box girders are 

subjected to pure torsion using the nonlinear F.E. analysis. The results show that the torsional 

capacity of  the structure  is clearly affected by the  torsional rigidity of the structural cross‐

section. During the study, all boxes are subjected to torsional and vertical sagging bending 

moment  using  the  nonlinear  F.E.  method  and  the  proposed  methodology  for  the 

incorporation  of  torsion  into  the  extended  simplified  progressive  collapse  method.  The 

bending moment‐curvature relationships under different amounts of applied torsional  load 

are generated for each structure according to both methodologies. The progressive collapse 

of all structures in bending reduces as the applied amount of torsion increases. In all cases, 

torsion does not affect the stiffness of the structure in the pre‐collapse area. The contour plots 

of the displacement and Von‐Mises stresses show an overall collapse mode of failure in all the 

examined cases.  
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Furthermore, two of these models, Box Girder C and Box Girder D, are subjected to combined 

torsion and vertical hogging bending moment using both methodologies. These results have 

similar  pattern with  these  of  the  corresponding models  subjected  to  torsion  and  vertical 

sagging bending moment, but the strength of the structure in the former case (i.e. torsion and 

hogging) is higher than the strength in the latter (i.e. torsion and sagging). Finally, in this case 

study,  a  comparison  of  all  results  takes  place  for  each  model.  In  the  comparison,  the 

interaction diagrams of torsion and vertical hogging/sagging bending moment according to 

the  nonlinear  F.E. method,  the  proposed methodology  and  the  theoretical  interaction  of 

torsion  and bending  (Equation  5.8)  are  compared  for  each model.  The  results of  the  F.E. 

analysis, the simplified method and the interaction equation show good agreement with each 

other for all models and cases. Finally, the interaction diagrams of torsion and vertical bending 

moment define an envelope for each structure within  its strength  is adequate under these 

combined loads. 

A  case  study  of  a  10000TEU  OL185  container  ship  is  also  investigated  under  combined 

torsional and vertical bending moment in sagging and hogging condition using the nonlinear 

F.E. method and the proposed methodology. The F.E. analysis has been carried out by Alfred 

Mohammed’s  study    (Alfred Mohammed,  2014)  and  his  study  provides  also  data  for  the 

extreme wave‐induced vertical bending moment and  its associated wave‐induced torsional 

moment for the OL185 container ship. Therefore, the proposed methodology is applied to the 

model of a real structure whose size is much bigger than the examined box girders and also 

the  amount of  the maximum wave‐induced  torsional  load of  the  structure  is  known.  The 

comparison of the results between the two methodologies show very good correlation with 

the extended  simplified progressive  collapse method  results which are  shown  to be more 

conservative than the nonlinear F.E. method results. In addition, both sets of results show that 

the structure may sustain the extreme predicted combined loads and that the wave‐induced 

torsional  load of the container ship  is  less than the 10% of  its maximum torsional capacity. 

Finally,  it should be commented that the  interaction diagram of torsion and bending of the 

containership significantly alters from the corresponding diagram of the examined box girders. 

In  the case of  the containership,  the design of  the structure  is such  that  the cross‐section 

maintains  its  bending  strength when  subjected  to  large  torsional  loads.  The  box  girders 

demonstrate a more gradual elastic‐plastic collapse behaviour than the containership, this is 
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shown by presenting more rounded interaction curves. These curves also demonstrate better 

agreement with the simplified interaction curve according to Equation 5.8. 

The effect of damage  in  the progressive collapse assessment of box girders under vertical 

bending moment, torsion and combined torsional and bending load is investigated in chapter 

7.  Initially,  the  intact Box Girder E  is examined under  these  loads using  the non‐linear F.E. 

method and the proposed methodology. Both methods show good correlation in their results. 

Then, two kinds of damage cases are used for further investigation. In the first case, the size 

of the damage extent varies across the width of the box girder, but its length remains constant 

in all cases. In the second case, the size of the damage extent varies along the length of the 

structure and its width remain the same. Both sets of damaged cases are applied to Box Girder 

E by removal of elements of the cross section. 

The results of the damaged box girders under pure bending according to both methodologies 

show continuous decrease of their progressive collapse with the increase of the size of their 

transverse damage extent. However, in the case that the width of the damage extent remains 

constant,  the  increase  of  the  longitudinal  damage  extent  does  not  significantly  alter  the 

progressive collapse response of the damaged structure. This leads to the conclusion, that the 

residual strength of the damaged box girder is highly depended on the extent of the transverse 

damage. 

The damaged box girders under combined torsion and bending were analysed only with the 

non‐linear  F.E. method.  The  results of  the  analyses  show  all  the  interactions diagrams of 

torsion and bending to present similar pattern to this of the intact box girder and they follow 

the theoretical formulation for the interaction of torsion and bending (Equation 5.8). 

Finally, the simplified method is not used to analyse the damaged box girders under combined 

loads of torsion and bending due to the damage element model, which is under development 

in ProColl, not yet being fully implemented.  
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8.2. Recommendations 

Future work  in this area could be performed  in the  incorporation of combined torsion and 

horizontal bending moment into the extended simplified progressive collapse methodology. 

The horizontal bending moment is not critical for the structure but torsional loads are higher 

in oblique seas. Therefore, further investigation of the progressive collapse of ship structures 

is needed under combined torsional and horizontal bending loads. 

Furthermore, the representation of damage  in the extended simplified progressive collapse 

method should be investigated. At the present time, damage is represented as a cut‐out of 

the structure which is not always efficient in the simplified progressive collapse methodology. 

If part of the structure is removed from the cross section, the current methodology assumes 

that it has been removed from the whole length of it which is might not be the case. Therefore, 

the representation of damage in the structure as a reduction factor of its initial strength may 

be a more efficient approach. Then, the combination of torsional and bending loads would be 

feasible  for damaged  structures  according  to  the proposed methodology  in  the extended 

simplified progressive collapse method.  

Finally, improvements in the code, ProColl, may occur in order to reduce the amount of the 

work  which  the  user  needs  for  the  set‐up  of  the  model.  For  example,  an  automatic 

identification of the loops/cells in the cross‐section will reduce time and effort during the set‐

up of the model in ProColl.    



 
 
Chapter 8: Conclusions and Recommendations  

 

238 
 

 



 
 
Chapter 9: References 

 

239 
 

Chapter 9  

9. References 

Adrian F. Dier, 1987. Comparisons of Steel and Aluminium Plate Strengths, in: Proceeding of 
the International Conference on Steel and Aluminium Structures. Cardiff, UK. 

Alfred Mohammed, E., 2014. Reliability based methodolody for the assessment of 
cumulative life‐time hydrodynamic loads and structural capacity. Newctle. Univ. PhD 
Thesis. 

Alfred Mohammed, E., Benson, S.D., Hirdaris, S.E., Dow, R.S., 2016. Design safety margin of a 
10,000 TEU container ship through ultimate hull girder load combination analysis. 
Mar. Struct. 46, 78–101. doi:10.1016/j.marstruc.2015.12.003 

Alinia, M.M., Habashi, H.R., Khorram, A., 2009. Nonlinearity in the postbuckling behaviour of 
thin steel shear panels. Thin‐Walled Struct. 47, 412–420. 

Batdorf, S.B., Stein, M., 1947. Critical Combinations of Shear and Direct Stress for Simply 
Supported Rectangular Flat Plates (No. 1223). National Advisory Committee For 
Aeronautics, Washington. 

Benson, S., 2011. Progressive Collapse Assessment of Lightweight Ship Structures. Newcastle 
University. 

Benson, S., AbuBakar, A., Dow, R.S., 2013. A comparison of computational methods to 
predict the progressive collapse behaviour of a damaged box girder. Eng. Struct. 48, 
266–280. doi:10.1016/j.engstruct.2012.09.031 

Benson, S., Downes, J., Dow, R.S., 2015. Overall buckling of lightweight stiffened panels using 
an adapted orthotropic plate method. Eng. Struct. 85, 107–117.  

Benson, S.D., Syrigou, M.S., Dow, R.S., 2013. Longitudinal strength assessment of damaged 
box girders. Presented at the International Conference on Collision and Grounding of 
Ships and Offshore Structures, Trondheim, pp. 305–314. 

Bleich, F., 1952. Buckling Strength of Metal Structures. McGraw‐Hill, New York. 
Bruhn, 1973. Analysis and design of flight vehicle structures. 
Caldwell, J.B., 1965. Ultimate longitudinal strength, in: Trans. RINA. pp. 411–430. 
Chalmers, D.W., 1993. Design of Ships’ Structures. HMSO, London. 
Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., 2002. Concepts and Applications of Finite 

Element Analysis, 4th ed. Wiley. 
Dow, R.S., 2007a. Lecture Notes: Structural Design Principles, Newcastle University. 
Dow, R.S., 2007b. Lecture Notes: Advanced Structural Analysis, Newcastle University. 
Dow, R.S., 1997. Structural Redundancy and Damage Tolerance in Relation to Ultimate Ship 

Hull Strength. Adv. Mar. Struct. 3. 
Dow, R.S., 1991. Testing and Analysis of a 1/3 Scake Frigate Model, in: Advances in Marine 

Structures. Elsevier, Dunfermline, Scotland, pp. 749–773. 
Dow, R.S., Smith, C.S., 1984. Effects of Localized Imperfections on Compressive Strength of 

Long Rectangular Plates. J. Constr. Steel Res. 4, 51–76. 
Eurocode 3 ENV 1993‐1‐1, 2005. Design of steel structures, part 1.1 General rules and rules 

for buildings. British Standard Institution, London. 
Eurocode 9 EN 1997‐1‐1, 2007. Design of Aluminium Structures, part 1.1 General structural 

rules. British Standard Institution, London. 



 
 
Chapter 9: References 

 

240 
 

Faulkner, D., 1975. A review of effective plating for use in the analysis of stiffened plating in 
bending and compression. J. Ship Res. 19, 1–17. 

Frieze, P.A., Dowling, P.J., Hobbs, R.E., 1977. Ultimate Load Behaviour of Plates in 
Compression, in: Steel Plated Structures. Crosby Lockwood Staples, London, pp. 24–
50. 

Fujikubo, M., Kaeding, P., Yao, T., 2000. ISUM recatngular plate element with new lateral 
function. Longitudinal and transverse thrust. J. Soc. Nav. Archit. Jpn. 209–219. 

Harding, J.E., Hobbs, R.E., Neal, B.G., 1977. Ultimate Load Behaviour of Plates under 
Combined Direct and Shear In‐plane Loading, in: Steel Plated Structures. Crosby 
Lockwood Staples, London, pp. 369–404. 

Hopperstad, O.S., Langseth, M., Tryland, T., 1999. Ultimate strength of aluminium alloy 
outstands in compression: experiments and simplified analysis. Thin‐Walled Struct. 
34, 279–294. 

Hu, Y., Chen, B., 2001. Limit State of Torsion of Ship Hulls with Large Hatch Openings. J. Ship 
Res. 45, 95–102. 

Hughes, O.F., Paik, J.K., 2010. Ship structural analysis and design. Society of Naval Architects 
and Marine Engineers., Jersey City, N.J. 

Kim, D.K., Park, D.H., Kim, H.B., Kim, B.J., Seo, J.K., Paik, J.K., 2013. Lateral pressure effects on 
the progressive hull collapse behaviour of a Suezmax‐class tanker under vertical 
bending moments. Ocean Eng. 63, 112–121. doi:10.1016/j.oceaneng.2012.12.040 

Kristensen, O.H.H., 2001. Ultimate Capacity of Aluminium Plates under Multiple Loads, 
considering HAZ Properties. NTNU, Trondheim. 

Little, G.H., 1982. Collapse behaviour of aluminium plates. Int. J. Mech. Sci. 24, 37–45.  
Little, G.H., 1973. Plate failure in stiffened steel compression panels. CUED, Cambridge. 
Mazzolani, F.M., 1995. Aluminium alloy structures, 2nd ed. London ; New York : E & FN Spon. 
Mofflin, D.S., Dwight, J.B., 1984. BUCKLING OF ALUMINIUM PLATES IN COMPRESSION. pp. 

397–427. 
Moxham, K.E., 1970. Compression in welded web plates. Cambridge University. 
Ostapenko, A., 1981. Effect of torsion on strength of ship hulls. SNAME. 
Ostapenko, A., Chen, Y., 1982. Effect of torsion on strength of ship hulls (No. 468.11). Lehigh 

University. 
Ostapenko, A., Moore, T.., 1982. Maximum strength of ship hulls subjected to moment and 

shear (No. 497.5). Lehigh University. 
Ostapenko, A., Vaucher, A., 1980. Ultimate strength of ship hulls girders under moment, 

torque and shear (No. 453.6). Lehigh University. 
Paik, J., Duran, A., 2004. Ultimate Strength of Aluminium Plates and Stiffened Panels for 

Marine Applications. Mar. Technol. Vol.41, 108–121. 
Paik, J., Thayamballi, A., 2003. Ultimate limit state design of steel‐plated structures. John 

Wiley & Sons Ltd, Chichester, UK. 
Paik, J.K., 2010. Ultimate Strength of Ship Hulls, in: Ship Structural Analysis and Design. 

SNAME, Jersey City, p. 16.1‐16.21. 
Paik, J.K., 2007. Ultimate limit state performance of oil tanker structures designed by IACS 

common structural rules. Thin‐Walled Struct. 45, 1022–1034.  
Paik, J.K., 1995. Advanced idealized structural unit considering excessive tension‐

deformation effects. J. Hydrosp. Technol. 1, 125–145. 



 
 
Chapter 9: References 

 

241 
 

Paik, J.K., Thayamballi, A.K., Che, J.S., 1996. Ultimate strength of ship hulls under combined 
vertical bending, horizontal bending and shearing forces. SNAME 104, 31–59. 

Paik, J.K., Thayamballi, A.K., Kim, B.J., 2001a. Advanced ultimate strength formulations for 
ship plating under combined biaxial compression/tension, edge shear, and lateral 
pressure loads. Mar. Technol. 38, 9–25. 

Paik, J.K., Thayamballi, A.K., Pedersen, P.T., Park, Y.I., 2001b. Ultimate strength of ship hulls 
under torsion. Ocean Eng. 28, 1097–1133.  

Paik, J.K., Wang, G., Kim, B.J., Thayamballi, A.K., 2002. Ultimate Limit State Design of Ship 
Hulls (ABS Technical Papers). ABS. 

Pedersen, P.T., 1991. Beam Theories for torsional‐bending response of ship hulls. J. Ship Res. 
35, 254–265. 

Pedersen, P.T., 1985. Torsional Response of container ships. J. Ship Res. 29, 194–205. 
Pedersen, P.T., 1983. A beam model for the torsional bending response of ship hulls. Trans 

RINA 125, 171–182. 
Pei, Z., Iijima, K., Fujikubo, M., Tanaka, S., Okazawa, S., Yao, T., 2015. Simulation on 

progressive collapse behaviour of whole ship model under extreme waves using 
idealized structural unit method. Mar. Struct. 40, 104–133. 
doi:10.1016/j.marstruc.2014.11.002 

Ractliffe, A.T., 1966. The strength of plates in compression. Cambridge University. 
Rizzo, N.A. dos S., Amante, D. do A., Estefen, S., 2014. Ultimate shear strength of stiffened 

panels for offshore structures, in: ASME 2014 33rd International Conference on 
Ocean, Offshore and Arctic Engineering. Presented at the OMAE 2014, San Francisco, 
California, USA. 

Rutherford, S.E., 1983. Hull strength under bending and shear (Hull Structures Report No. 
No. 83/19). Lloyd’s Register, London. 

Smith, C.S., 1977. Influence of local compressive failure on ultimate longitudinal strength of 
a ship’s hull, in: Practical Design of Ships and Other Floating Structures. Presented at 
the Internatinal Symposium on Practical Design of Ships and Other Floating 
Structures., Tokyo, Japan. 

Smith, C.S., Davidson, P.C., Chapman, J.C., Dowling, P.J., 1987. Strength and stiffness of ships 
plating under in‐plane compression and tension. R. Inst. Nav. Archit. 

Sun, H.‐H., Soares, C.G., 2003. An experimental study of ultimate torsional strength of a ship‐
type hull girder with a large deck opening. Mar. Struct. 16, 51–67.  

Syrigou, M.S., 2012. The Residual Ultimate Strength of Damaged Ships. Newcastle University, 
U.K. 

Tanaka, Y., Hashizume, Y., Ogawa, H., Tatsumi, A., Fujikubo, M., 2016. Analysis method of 
ultimate strength of ship hull girder under combined loads ‐ Application to an existing 
container ship. Presented at the Proceedings of the International Conference on 
Offshore Mechanics and Arctic Engineering ‐ OMAE.  

Tanaka, Y., Ogawa, H., Tatsumi, A., Fujikubo, M., 2015. Analysis method of ultimate hull 
girder strength under combined loads. Ships Offshore Struct. 10, 587–598.  

Timoshenko, S.P., Gere, J.M., 1982. Theory of elastic stability. McGraw‐Hill, New York. 
Ueda, Y., Masaoka, K., 1995. Ultimate strength analysis of thin plated structures using Eigen‐

function. Rectangular plate element with initial imperfection. J. Soc. Nav. Archit. Jpn. 
463–471. 



 
 
Chapter 9: References 

 

242 
 

Ueda, Y., Rashed, S.M.H., 1974. An ultimate transverse strength analysis of ship structure. J. 
Soc. Nav. Archit. Jpn. 309–324. 

Ueda, Y., Rashed, S.M.H., Paik, J.K., 1985. NEW INTERACTION EQUATION FOR PLATE 
BUCKLING. Trans. JWRI Jpn. Weld. Res. Inst. 14, 159–173. 

Ueda, Y., Rashed, S.M.H., Paik, J.K., 1984. Plate and stiffened plate units of the idealized 
structural unit method under in‐plane loading. J. Soc. Nav. Archit. Jpn. 366–376. 

Yao, T., 2000. Ultimate hull girder strength. Proc. 14th Int. Ship Offshore Struct. Congr. 2, 
321–391. 

Zhang, S., Kumar, P., Rutherford, S.E., 2008a. Ultimate shear strength of plates and stiffened 
panels. Ships Offshore Struct. 3, 105–112. 

Zhang, S., Kumar, P., Rutherford, S.E., 2008b. Ultimate shear strength of plates and stiffened 
panels. Ships Offshore Struct. 3, 105–112.  

 



 
 
Appendix A 

 

243 
 

Appendix A 

Calculation of torsional constant (k) according to Lloyd’s Register program 
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The calculations of torsional constant (k) according to Lloyd’s program for: 

a. Box Girder A; 

1 
 
     C O N T R O L   D A T A 
 
 
          NUMBER OF NODAL POINT ...........    4 
 
          NUMBER OF ELEMENT ...............    3 
 
          NUMBER OF MATERIAL ..............    1 
 
          SYMETRY CONDITION ( NSYM ) ......    1 
 
               IF NSYM.EQ.0 NOT SYMETRIC 
               IF NSYM.EQ.1 SYMMETRIC ABOUT Y AXIS 
               IF NSYM.EQ.2 SYMMETRIC ABOUT X AXIS 
               IF NSYM.EQ.4 SYMMETRIC ABOUT X AND Y AXIS 
 
          SECTION TYPE ....................    0 
 
               IF NSEC.EQ.0 CLOSED SECTION 
               IF NESC.NE.0 OPEN   SECTION 
 
 
1 
 
     N O D A L   P O I N T   D A T A 
 
 
      NODE    BOUNDARY COND.               COORDINATE 
    NUMBER      Y-SYM    X-SYM            -X             -Y 
         1        1       0          0.000          0.000 
         2        0       0       6300.000          0.000 
         3        0       0       6300.000       8400.000 
         4        1       0          0.000       8400.000 
1 
 
     M A T E R I A L   D A T A 
 
 
          MATERIAL NO.  1     SHEAR MODULUS =    0.100E+01 
 
 
     E L E M E N T   D A T A 
 
 
  ELEM. NO.   NODE-I    NODE-J   MAT. NO.     THICKNESS 
         1         1         2         1          8.000 
         2         2         3         1         10.000 
         3         3         4         1          8.000 
1 
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 WARPING FN  OR SECTORIAL COOR (CENTROID)  
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     8.05304E+06       3    -8.05304E+06 
    4     0.00000E+00 
 
 
 
 WARPING FN OR SECTORIAL COOR (SHEAR CENTER) 
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     8.05304E+06       3    -8.05304E+06 
    4     0.00000E+00 
 
 
 
 SHEAR STRESS DUE TO PURE TORSION 
 
 ELEM           TAU-S    ELEM           TAU-S    ELEM           TAU-S 
    1     0.54783E+04       2     0.43826E+04       3     0.54783E+04 
 
 
 
 
 SHEAR STRESS BY S.FORCE 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.2911E-05   -0.2329E-04    0.4960E-05    0.3968E-04 
    2            -0.5952E-05   -0.5952E-04    0.0000E+00    0.0000E+00 
    3            -0.2911E-05   -0.2329E-04   -0.4960E-05   -0.3968E-04 
 
 
 
 
 
 SHEAR STRESS BY S.FORCE (Unit Force * UNIT**3) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.2911E-05   -0.1058E+09    0.4960E-05    0.3704E+09 
    2            -0.5952E-05   -0.2705E+09    0.0000E+00    0.0000E+00 
    3            -0.2911E-05   -0.1058E+09   -0.4960E-05   -0.3704E+09 
 
 SHEAR STRESS BY S.FORCE (Unit Force / UNIT**2) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.2911E-05   -0.2911E-05    0.4960E-05    0.4960E-05 
    2            -0.5952E-05   -0.5952E-05    0.0000E+00    0.0000E+00 
    3            -0.2911E-05   -0.2911E-05   -0.4960E-05   -0.4960E-05 
1 
 
 Box Girder A                                                                      
 
     P R O P E R T I E S   O F   B E A M   S E C T I O N 
 



 
 
Appendix A 

 

247 
 

 
        COORDINATE OF CENTROID (      0.000,   4200.000 ) 
 
    COORDINATE OF SHEAR CENTER (      0.000,   4200.000 ) 
 
 
                  SECTIONAL AREA   =  0.3696000E+06 
 
  MOMENT OF INERTIA( ABOUT Y-AXIS )=  0.9335088E+13 
 
  MOMENT OF INERTIA( ABOUT X-AXIS )=  0.4544064E+13 
 
 
 WARPING CONSTANT (SHEAR CENTER) =  0.7989706E+19 
 
 WARPING CONSTANT   ( CENTROID ) =  0.7989706E+19 
 
                             IWX =  0.0000000E+00 
 
                             IWY =  0.0000000E+00 
 
              TORTIONAL CONSTANT =  0.9277106E+13 
 
 
  SHEAR COEFF. OF CROSS SECTION 
 
                   KX( IN X-DIR ) =  0.5454545E+00 
 
                   KY( IN Y-DIR ) =  0.3531552E+00 
 
              WARPING TORSION KZ  =  0.6823457E-01 
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b. Box Girder B; 

1 
 
     C O N T R O L   D A T A 
 
 
          NUMBER OF NODAL POINT ...........    8 
 
          NUMBER OF ELEMENT ...............    8 
 
          NUMBER OF MATERIAL ..............    1 
 
          SYMETRY CONDITION ( NSYM ) ......    1 
 
               IF NSYM.EQ.0 NOT SYMETRIC 
               IF NSYM.EQ.1 SYMMETRIC ABOUT Y AXIS 
               IF NSYM.EQ.2 SYMMETRIC ABOUT X AXIS 
               IF NSYM.EQ.4 SYMMETRIC ABOUT X AND Y AXIS 
 
          SECTION TYPE ....................    0 
 
               IF NSEC.EQ.0 CLOSED SECTION 
               IF NESC.NE.0 OPEN   SECTION 
 
 
1 
 
     N O D A L   P O I N T   D A T A 
 
 
      NODE    BOUNDARY COND.               COORDINATE 
    NUMBER      Y-SYM    X-SYM            -X             -Y 
         1        1       0          0.000          0.000 
         2        0       0       3300.000          0.000 
         3        0       0       6300.000          0.000 
         4        0       0       6300.000       1800.000 
         5        0       0       3300.000       1800.000 
         6        0       0       6300.000       8400.000 
         7        1       0          0.000       1800.000 
         8        1       0          0.000       8400.000 
1 
 
     M A T E R I A L   D A T A 
 
          MATERIAL NO.  1     SHEAR MODULUS =    0.100E+01 
 
     E L E M E N T   D A T A 
 
 
  ELEM. NO.   NODE-I    NODE-J   MAT. NO.     THICKNESS 
         1         1         2         1          8.000 
         2         2         3         1          8.000 
         3         3         4         1         10.000 
         4         4         5         1         10.000 
         5         5         7         1         10.000 
         6         2         5         1          8.000 
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         7         4         6         1         10.000 
         8         6         8         1          8.000 
1 
 
 
 WARPING FN  OR SECTORIAL COOR (CENTROID)  
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     3.84663E+06       3     5.40655E+06 
    4    -2.28062E+05       5    -9.31163E+05       6    -8.50357E+06 
    7     0.00000E+00       8     0.00000E+00 
 
 
 
 
 
 
 
 WARPING FN OR SECTORIAL COOR (SHEAR CENTER) 
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     4.90255E+06       3     7.42240E+06 
    4     1.78779E+06       5     1.24759E+05       6    -6.48772E+06 
    7     0.00000E+00       8     0.00000E+00 
 
 
 
 
 
 SHEAR STRESS DUE TO PURE TORSION 
 
 ELEM           TAU-S    ELEM           TAU-S    ELEM           TAU-S 
    1     0.46077E+04       2     0.39621E+04       3     0.31697E+04 
    4    -0.18765E+04       5    -0.13599E+04       6     0.64567E+03 
    7     0.50461E+04       8     0.63077E+04 
 
 
 
 
 
 SHEAR STRESS BY S.FORCE 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1074E-05   -0.8589E-05    0.3466E-05    0.2773E-04 
    2            -0.2113E-05   -0.1691E-04    0.2190E-05    0.1752E-04 
    3            -0.2955E-05   -0.2955E-04    0.6892E-06    0.6892E-05 
    4             0.2990E-05    0.2990E-04   -0.2530E-05   -0.2530E-04 
    5             0.5122E-06    0.5122E-05   -0.3533E-05   -0.3533E-04 
    6            -0.1494E-05   -0.1195E-04    0.1226E-06    0.9805E-06 
    7            -0.6444E-05   -0.6444E-04    0.1785E-06    0.1785E-05 
    8            -0.2952E-05   -0.2362E-04   -0.3243E-05   -0.2594E-04 
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 SHEAR STRESS BY S.FORCE (Unit Force * UNIT**3) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1074E-05   -0.4544E+08    0.3466E-05    0.3138E+09 
    2            -0.2113E-05   -0.8943E+08    0.2190E-05    0.1983E+09 
    3            -0.2955E-05   -0.1563E+09    0.6892E-06    0.7798E+08 
    4             0.2990E-05    0.1582E+09   -0.2530E-05   -0.2863E+09 
    5             0.5122E-06    0.2709E+08   -0.3533E-05   -0.3998E+09 
    6            -0.1494E-05   -0.6321E+08    0.1226E-06    0.1109E+08 
    7            -0.6444E-05   -0.3409E+09    0.1785E-06    0.2020E+08 
    8            -0.2952E-05   -0.1249E+09   -0.3243E-05   -0.2935E+09 
 
 
 
 
 
 SHEAR STRESS BY S.FORCE (Unit Force / UNIT**2) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1074E-05   -0.1074E-05    0.3466E-05    0.3466E-05 
    2            -0.2113E-05   -0.2113E-05    0.2190E-05    0.2190E-05 
    3            -0.2955E-05   -0.2955E-05    0.6892E-06    0.6892E-06 
    4             0.2990E-05    0.2990E-05   -0.2530E-05   -0.2530E-05 
    5             0.5122E-06    0.5122E-06   -0.3533E-05   -0.3533E-05 
    6            -0.1494E-05   -0.1494E-05    0.1226E-06    0.1226E-06 
    7            -0.6444E-05   -0.6444E-05    0.1785E-06    0.1785E-06 
    8            -0.2952E-05   -0.2952E-05   -0.3243E-05   -0.3243E-05 
1 
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Box Girder B                                                                    
 
     P R O P E R T I E S   O F   B E A M   S E C T I O N 
 
 
        COORDINATE OF CENTROID (      0.000,   3442.105 ) 
 
    COORDINATE OF SHEAR CENTER (      0.000,   3122.129 ) 
 
 
                  SECTIONAL AREA   =  0.5244000E+06 
 
  MOMENT OF INERTIA( ABOUT Y-AXIS )=  0.1131570E+14 
 
  MOMENT OF INERTIA( ABOUT X-AXIS )=  0.5290014E+13 
 
 
 WARPING CONSTANT (SHEAR CENTER) =  0.6332272E+19 
 
 WARPING CONSTANT   ( CENTROID ) =  0.7490828E+19 
 
                             IWX = -0.3620755E+16 
 
                             IWY =  0.0000000E+00 
 
              TORTIONAL CONSTANT =  0.9953219E+13 
 
 
  SHEAR COEFF. OF CROSS SECTION 
 
                   KX( IN X-DIR ) =  0.6045724E+00 
 
                   KY( IN Y-DIR ) =  0.2519949E+00 
 
              WARPING TORSION KZ  =  0.4278060E-01  
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c. Box Girder C; 

1 
 
     C O N T R O L   D A T A 
 
 
          NUMBER OF NODAL POINT ...........   11 
 
          NUMBER OF ELEMENT ...............   13 
 
          NUMBER OF MATERIAL ..............    1 
 
          SYMETRY CONDITION ( NSYM ) ......    1 
 
               IF NSYM.EQ.0 NOT SYMETRIC 
               IF NSYM.EQ.1 SYMMETRIC ABOUT Y AXIS 
               IF NSYM.EQ.2 SYMMETRIC ABOUT X AXIS 
               IF NSYM.EQ.4 SYMMETRIC ABOUT X AND Y AXIS 
 
          SECTION TYPE ....................    0 
 
               IF NSEC.EQ.0 CLOSED SECTION 
               IF NESC.NE.0 OPEN   SECTION 
 
 
1 
 
     N O D A L   P O I N T   D A T A 
 
 
      NODE    BOUNDARY COND.               COORDINATE 
    NUMBER      Y-SYM    X-SYM            -X             -Y 
         1        1       0          0.000          0.000 
         2        0       0       3300.000          0.000 
         3        0       0       6300.000          0.000 
         4        0       0       6300.000       1800.000 
         5        0       0       3300.000       1800.000 
         6        0       0       6300.000       4800.000 
         7        0       0       3300.000       4800.000 
         8        0       0       6300.000       8400.000 
         9        0       0       3300.000       8400.000 
        10        1       0          0.000       8400.000 
        11        1       0          0.000       1800.000 
1 
 
     M A T E R I A L   D A T A 
 
 
          MATERIAL NO.  1     SHEAR MODULUS =    0.100E+01 
 
 
 
     E L E M E N T   D A T A 
 
 
  ELEM. NO.   NODE-I    NODE-J   MAT. NO.     THICKNESS 
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         1         1         2         1          8.000 
         2         2         3         1          8.000 
         3         3         4         1         10.000 
         4         4         5         1         10.000 
         5         2         5         1          8.000 
         6         4         6         1         10.000 
         7         6         7         1         10.000 
         8         7         5         1          8.000 
         9         6         8         1         10.000 
        10         8         9         1          8.000 
        11         9         7         1          8.000 
        12         9        10         1          8.000 
        13         5        11         1         10.000 
1 
 
 
 WARPING FN  OR SECTORIAL COOR (CENTROID)  
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     4.07242E+06       3     4.69815E+06 
    4    -8.49464E+05       5    -2.17013E+04       6    -4.88151E+06 
    7    -5.83519E+06       8    -1.21255E+07       9    -9.80451E+06 
   10     0.00000E+00      11     0.00000E+00 
 
 
 
 
 
 
 
 WARPING FN OR SECTORIAL COOR (SHEAR CENTER) 
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     6.40001E+06       3     9.14174E+06 
    4     3.59413E+06       5     2.30589E+06       6    -4.37921E+05 
    7    -3.50760E+06       8    -7.68187E+06       9    -7.47691E+06 
   10     0.00000E+00      11     0.00000E+00 
 
 
 
 
 
 SHEAR STRESS DUE TO PURE TORSION 
 
 ELEM           TAU-S    ELEM           TAU-S    ELEM           TAU-S 
    1     0.50480E+04       2     0.40225E+04       3     0.32180E+04 
    4    -0.17380E+04       5     0.10255E+04       6     0.49560E+04 
    7     0.66819E+03       8    -0.13622E+04       9     0.42878E+04 
   10     0.53597E+04      11    -0.21974E+04      12     0.75572E+04 
   13    -0.20073E+04 
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 SHEAR STRESS BY S.FORCE 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1053E-05   -0.8420E-05    0.3431E-05    0.2745E-04 
    2            -0.9587E-06   -0.7670E-05    0.1849E-05    0.1479E-04 
    3            -0.2016E-05   -0.2016E-04    0.6134E-06    0.6134E-05 
    4             0.6163E-06    0.6163E-05   -0.1832E-05   -0.1832E-04 
    5            -0.2587E-05   -0.2070E-04    0.6423E-06    0.5138E-05 
    6            -0.3786E-05   -0.3786E-04    0.7848E-06    0.7848E-05 
    7            -0.8363E-07   -0.8363E-06   -0.1015E-05   -0.1015E-04 
    8             0.4486E-05    0.3588E-04   -0.1602E-05   -0.1281E-04 
    9            -0.2800E-05   -0.2800E-04   -0.2691E-06   -0.2691E-05 
   10            -0.1075E-05   -0.8601E-05   -0.1929E-05   -0.1543E-04 
   11             0.3626E-05    0.2901E-04    0.1031E-05    0.8247E-05 
   12            -0.1266E-05   -0.1013E-04   -0.4113E-05   -0.3290E-04 
   13             0.5558E-06    0.5558E-05   -0.3781E-05   -0.3781E-04 
 
 
 
 
 
 SHEAR STRESS BY S.FORCE (Unit Force * UNIT**3) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1053E-05   -0.5034E+08    0.3431E-05    0.3813E+09 
    2            -0.9587E-06   -0.4586E+08    0.1849E-05    0.2055E+09 
    3            -0.2016E-05   -0.1205E+09    0.6134E-06    0.8523E+08 
    4             0.6163E-06    0.3685E+08   -0.1832E-05   -0.2545E+09 
    5            -0.2587E-05   -0.1237E+09    0.6423E-06    0.7139E+08 
    6            -0.3786E-05   -0.2263E+09    0.7848E-06    0.1090E+09 
    7            -0.8363E-07   -0.5000E+07   -0.1015E-05   -0.1410E+09 
    8             0.4486E-05    0.2145E+09   -0.1602E-05   -0.1780E+09 
    9            -0.2800E-05   -0.1674E+09   -0.2691E-06   -0.3738E+08 
   10            -0.1075E-05   -0.5142E+08   -0.1929E-05   -0.2144E+09 
   11             0.3626E-05    0.1734E+09    0.1031E-05    0.1146E+09 
   12            -0.1266E-05   -0.6054E+08   -0.4113E-05   -0.4571E+09 
   13             0.5558E-06    0.3323E+08   -0.3781E-05   -0.5253E+09 
 
 
 
 
 
 SHEAR STRESS BY S.FORCE (Unit Force / UNIT**2) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1053E-05   -0.1053E-05    0.3431E-05    0.3431E-05 
    2            -0.9587E-06   -0.9587E-06    0.1849E-05    0.1849E-05 
    3            -0.2016E-05   -0.2016E-05    0.6134E-06    0.6134E-06 
    4             0.6163E-06    0.6163E-06   -0.1832E-05   -0.1832E-05 
    5            -0.2587E-05   -0.2587E-05    0.6423E-06    0.6423E-06 
    6            -0.3786E-05   -0.3786E-05    0.7848E-06    0.7848E-06 
    7            -0.8363E-07   -0.8363E-07   -0.1015E-05   -0.1015E-05 
    8             0.4486E-05    0.4486E-05   -0.1602E-05   -0.1602E-05 
    9            -0.2800E-05   -0.2800E-05   -0.2691E-06   -0.2691E-06 
   10            -0.1075E-05   -0.1075E-05   -0.1929E-05   -0.1929E-05 
   11             0.3626E-05    0.3626E-05    0.1031E-05    0.1031E-05 
   12            -0.1266E-05   -0.1266E-05   -0.4113E-05   -0.4113E-05 
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   13             0.5558E-06    0.5558E-06   -0.3781E-05   -0.3781E-05 
1 
 
Box Girder C                                                                     
 
     P R O P E R T I E S   O F   B E A M   S E C T I O N 
 
 
        COORDINATE OF CENTROID (      0.000,   3813.913 ) 
 
    COORDINATE OF SHEAR CENTER (      0.000,   3108.581 ) 
 
 
                  SECTIONAL AREA   =  0.6900000E+06 
 
  MOMENT OF INERTIA( ABOUT Y-AXIS )=  0.1389308E+14 
 
  MOMENT OF INERTIA( ABOUT X-AXIS )=  0.5978842E+13 
 
 
 WARPING CONSTANT (SHEAR CENTER) =  0.1415516E+20 
 
 WARPING CONSTANT   ( CENTROID ) =  0.2106687E+20 
 
                             IWX = -0.9799234E+16 
 
                             IWY =  0.0000000E+00 
 
              TORTIONAL CONSTANT =  0.1055812E+14 
 
 
  SHEAR COEFF. OF CROSS SECTION 
 
                   KX( IN X-DIR ) =  0.4370571E+00 
 
                   KY( IN Y-DIR ) =  0.3841334E+00 
 
              WARPING TORSION KZ  =  0.7320152E-01  
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d. Box Girder D; 

1 
 
     C O N T R O L   D A T A 
 
 
          NUMBER OF NODAL POINT ...........   10 
 
          NUMBER OF ELEMENT ...............   12 
 
          NUMBER OF MATERIAL ..............    1 
 
          SYMETRY CONDITION ( NSYM ) ......    1 
 
               IF NSYM.EQ.0 NOT SYMETRIC 
               IF NSYM.EQ.1 SYMMETRIC ABOUT Y AXIS 
               IF NSYM.EQ.2 SYMMETRIC ABOUT X AXIS 
               IF NSYM.EQ.4 SYMMETRIC ABOUT X AND Y AXIS 
 
          SECTION TYPE ....................    0 
 
               IF NSEC.EQ.0 CLOSED SECTION 
               IF NESC.NE.0 OPEN   SECTION 
 
 
1 
 
     N O D A L   P O I N T   D A T A 
 
 
      NODE    BOUNDARY COND.               COORDINATE 
    NUMBER      Y-SYM    X-SYM            -X             -Y 
         1        1       0          0.000          0.000 
         2        0       0       3300.000          0.000 
         3        0       0       6300.000          0.000 
         4        0       0       6300.000       1800.000 
         5        0       0       3300.000       1800.000 
         6        0       0       6300.000       4800.000 
         7        0       0       3300.000       4800.000 
         8        0       0       6300.000       8400.000 
         9        0       0       3300.000       8400.000 
        10        1       0          0.000       1800.000 
1 
 
     M A T E R I A L   D A T A 
 
 
          MATERIAL NO.  1     SHEAR MODULUS =    0.100E+01 
 
 
 
 
     E L E M E N T   D A T A 
 
 
  ELEM. NO.   NODE-I    NODE-J   MAT. NO.     THICKNESS 
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         1         1         2         1          8.000 
         2         2         3         1          8.000 
         3         3         4         1         10.000 
         4         4         5         1         10.000 
         5         2         5         1          8.000 
         6         4         6         1         10.000 
         7         6         7         1         10.000 
         8         7         5         1          8.000 
         9         6         8         1         10.000 
        10         8         9         1          8.000 
        11         9         7         1          8.000 
        12         5        10         1         10.000 
1 
 
 
 WARPING FN  OR SECTORIAL COOR (CENTROID)  
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2    -4.34652E+06       3    -7.14186E+06 
    4    -1.48788E+07       5    -1.09801E+07       6    -2.67707E+07 
    7    -2.96403E+07       8    -4.25154E+07       9    -5.01894E+07 
   10     0.00000E+00 
 
 
 WARPING FN OR SECTORIAL COOR (SHEAR CENTER) 
 
 NODE       WARPING FN    NODE       WARPING FN    NODE       WARPING 
FN 
    1     0.00000E+00       2     1.06999E+07       3     2.15831E+07 
    4     1.38462E+07       5     4.06627E+06       6     1.95428E+06 
    7    -1.45939E+07       8    -1.37904E+07       9    -3.51430E+07 
   10     0.00000E+00 
 
 
 
 SHEAR STRESS DUE TO PURE TORSION 
 
 ELEM           TAU-S    ELEM           TAU-S    ELEM           TAU-S 
    1     0.21168E+04       2     0.25021E+04       3     0.20017E+04 
    4    -0.33434E+03       5    -0.38535E+03       6     0.23360E+04 
    7     0.40957E+03       8     0.29200E+04       9     0.19265E+04 
   10     0.24081E+04      11     0.24081E+04      12     0.16934E+04 
 
  
SHEAR STRESS BY S.FORCE 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1186E-05   -0.9490E-05    0.4994E-05    0.3995E-04 
    2            -0.1087E-05   -0.8697E-05    0.2661E-05    0.2129E-04 
    3            -0.2266E-05   -0.2266E-04    0.1251E-05    0.1251E-04 
    4             0.7084E-06    0.7084E-05   -0.2583E-05   -0.2583E-04 
    5            -0.2898E-05   -0.2318E-04    0.1380E-05    0.1104E-04 
    6            -0.4108E-05   -0.4108E-04    0.2150E-05    0.2150E-04 
    7             0.1315E-06    0.1315E-05   -0.8953E-06   -0.8953E-05 
    8             0.4685E-05    0.3748E-04   -0.3837E-05   -0.3070E-04 
    9            -0.2728E-05   -0.2728E-04    0.9474E-06    0.9474E-05 
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   10            -0.7683E-07   -0.6146E-06   -0.4305E-06   -0.3444E-05 
   11             0.2902E-05    0.2322E-04   -0.1335E-05   -0.1068E-04 
   12             0.5644E-06    0.5644E-05   -0.5746E-05   -0.5746E-04 
 
  
 
SHEAR STRESS BY S.FORCE (Unit Force * UNIT**3) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1186E-05   -0.4533E+08    0.4994E-05    0.5474E+09 
    2            -0.1087E-05   -0.4154E+08    0.2661E-05    0.2916E+09 
    3            -0.2266E-05   -0.1083E+09    0.1251E-05    0.1713E+09 
    4             0.7084E-06    0.3383E+08   -0.2583E-05   -0.3539E+09 
    5            -0.2898E-05   -0.1107E+09    0.1380E-05    0.1513E+09 
    6            -0.4108E-05   -0.1962E+09    0.2150E-05    0.2945E+09 
    7             0.1315E-06    0.6282E+07   -0.8953E-06   -0.1227E+09 
    8             0.4685E-05    0.1790E+09   -0.3837E-05   -0.4206E+09 
    9            -0.2728E-05   -0.1303E+09    0.9474E-06    0.1298E+09 
   10            -0.7683E-07   -0.2936E+07   -0.4305E-06   -0.4719E+08 
   11             0.2902E-05    0.1109E+09   -0.1335E-05   -0.1463E+09 
   12             0.5644E-06    0.2696E+08   -0.5746E-05   -0.7873E+09 
 
 
  
SHEAR STRESS BY S.FORCE (Unit Force / UNIT**2) 
 
 ELEM          TAU(Y-DIR SF)  SFLOW(Y-SF)  TAU(X-DIR SF)  SFLOW(X-SF) 
    1            -0.1186E-05   -0.1186E-05    0.4994E-05    0.4994E-05 
    2            -0.1087E-05   -0.1087E-05    0.2661E-05    0.2661E-05 
    3            -0.2266E-05   -0.2266E-05    0.1251E-05    0.1251E-05 
    4             0.7084E-06    0.7084E-06   -0.2583E-05   -0.2583E-05 
    5            -0.2898E-05   -0.2898E-05    0.1380E-05    0.1380E-05 
    6            -0.4108E-05   -0.4108E-05    0.2150E-05    0.2150E-05 
    7             0.1315E-06    0.1315E-06   -0.8953E-06   -0.8953E-06 
    8             0.4685E-05    0.4685E-05   -0.3837E-05   -0.3837E-05 
    9            -0.2728E-05   -0.2728E-05    0.9474E-06    0.9474E-06 
   10            -0.7683E-07   -0.7683E-07   -0.4305E-06   -0.4305E-06 
   11             0.2902E-05    0.2902E-05   -0.1335E-05   -0.1335E-05 
   12             0.5644E-06    0.5644E-06   -0.5746E-05   -0.5746E-05 
 
 
 
1 
 
  
 
Box Girder D                                                                         
 
     P R O P E R T I E S   O F   B E A M   S E C T I O N 
 
 
        COORDINATE OF CENTROID (      0.000,   3433.898 ) 
 
    COORDINATE OF SHEAR CENTER (      0.000,  -1125.620 ) 
 
 
                  SECTIONAL AREA   =  0.6372000E+06 
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  MOMENT OF INERTIA( ABOUT Y-AXIS )=  0.1370142E+14 
 
  MOMENT OF INERTIA( ABOUT X-AXIS )=  0.4776324E+13 
 
 
 WARPING CONSTANT (SHEAR CENTER) =  0.1169579E+21 
 
 WARPING CONSTANT   ( CENTROID ) =  0.4017995E+21 
 
                             IWX = -0.6247187E+17 
 
                             IWY =  0.0000000E+00 
 
              TORTIONAL CONSTANT =  0.2507933E+13 
 
 
  SHEAR COEFF. OF CROSS SECTION 
 
                   KX( IN X-DIR ) =  0.2824834E+00 
 
                   KY( IN Y-DIR ) =  0.4244598E+00 
 
              WARPING TORSION KZ  =  0.4169768E+00 
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Appendix B 

ProColl Files  
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a. Box Girder A 
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b. Box Girder B 
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c. Box Girder C 
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d. Box Girder D 
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e. OL185 Containership 
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f. Intact Box Girder E (Chapter 7) 
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g. Box Girder E, Trans. Damage Case I  
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h. Box Girder E, Trans. Damage Case II 
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i. Box Girder E, Trans. Damage Case III 
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j. Box Girder E, Long. Damage Case I & II 
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Cross section of Box Girder A 

 

 

Cross Section of Box Girder B 

 

 

Cross Section of Box Girder C 

 

Cross section of Box Girder D 

 

Cross Section of Box Girder E 

 

Trans. & Long. Damage Cases of Box Girder E 


