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ABSTRACT 

The project presents a novel model predictive reference adaptive system (MRAS) speed 

observer for sensorless induction motor drives applications. The proposed observer is based 

on the finite control set-model predictive control principle. The rotor position is calculated 

using a search-based optimization algorithm which ensures a minimum speed tuning error 

signal at each sampling period. This eliminates the need for a proportional integral (PI) 

controller which is conventionally employed in the adaption mechanism of MRAS observers. 

Extensive simulation and experimental tests have been carried out to evaluate the 

performance of the proposed observer. Both the simulation and the experimental results show 

improved performance of the MRAS scheme in both open and closed-loop sensorless modes 

of operation at low speeds and with different loading conditions including regeneration. The 

proposed scheme also improves the system robustness against motor parameter variations and 

increases the maximum bandwidth of the speed loop controller. 

However, some of the experimental results show oscillations in the estimated rotor speed, 

especially at light loading conditions. Furthermore, due to the use of the voltage equation in 

the reference model, the scheme remains sensitive, to a certain extent, to the variations in the 

machine parameters. Therefore, to reduce rotor speed oscillations at light loading conditions, 

an adaptive filter is employed in the speed extraction mechanism, where an adaptation 

mechanism is proposed to adapt the filter time constant depending on the dynamic state of the 

system. Furthermore, a voltage compensating method is employed in the reference model of 

the MP-MRAS observer to address the problems associated with sensitivity to motor 

parameter variation. The performance of the proposed scheme is evaluated both 

experimentally and by simulation. Results confirm the effectiveness of the proposed scheme 

for sensorless speed control of IM drives. 
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CHAPTER 1  

Introduction and Scope of the Thesis 

1.1 Introduction 

Formerly, controlled direct current (DC) machine drives were used for high performance 

applications due to their simple control arrangement.  In  contrast,  alternating  currents  (AC)  

machines  are low-cost, compact, and require less maintenance in comparison with the DC 

machines, but  they  require  more  complex  control  [1, 2].  However,  due to  recent  

developments  in  the power  electronics  and  signal  processing,  induction  motors  (IM)  

and permanent  magnet synchronous  machine (PMSM) drives are replacing the DC  

machines drives in many applications especially those require high dynamic performance. 

Nowadays, AC drives have been widely applied in many industrial applications. This is  

especially the case for IM  drives,  due  to  the  fact  that  they  are  the  most  simple,  reliable,  

efficient  and  low cost compared to other machines [2]. Many drive techniques have been 

used with AC machines that range from low performance to high performance control.   

Constant-volts-per-hertz is a well-known approach that is used to control induction machine 

drives in low performance applications. This technique controls the rotor speed by changing 

the frequency of the stator voltage.  The  amplitude  of  the  applied  voltage  is adjusted  in 

proportion  to  the  stator  frequency  in  order  to  maintain  constant  flux  linkage  in  the  

machine and   hence   constant   electromagnetic   torque   [3].   This   method   offers   an   

acceptable dynamic performance in applications where accurate speed control is not required 

such as for pumps and fans [4]. 

 High  performance  IM  drives  usually  uses  vector  control  (VC)  or  direct  torque  control 

(DTC) [2].   These techniques allow the control of the instantaneous machine magnetic  flux  

and  torque  during  both  the  transient  and  steady  state  operating  conditions. 

Consequently,  these  techniques  allows  the  control of  the  IM  so  that  a  similar dynamic 

performance of the DC machine drive can be achieved. 
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VC has established an increased acceptance in industry especially after the rapid development 

of power electronic converters and digital signal processors (DSP). Fig. 1.1 shows a block 

diagram of an IM drive system.  

Three-Phase 
Inverter

Three-Phase 
Rectifier

DC-link 

AC

Control Unit

Speed 
Measurment

Current  
Measurment

Induction 
Motor

Shaft 
Encoder

 

Fig.  1.1 Block diagram of an IM drive system 

Over the last three decades, a new technology which is referred to as “sensorless control” has 

found acceptance in many IM drive applications. This technology eliminates the need for the  

speed sensor by using the current and voltage measurements at the terminal of the machine 

instead to estimate the rotor speed [2].  

1.2 Speed Sensorless Control of IM Drives 

Sensorless control has found wide acceptance by the engineering community since it reduces 

the  system  cost  and  maintenance  requirements  and  increases  the  drive  reliability [1, 2]. 

In addition, applying a speed sensor can contain some risks when it comes to operate in a 

hostile environment.  

 Sensorless control of electric drives has been successfully applied in high and medium speed 

regions. Conversely, at low speeds when the stator frequency become close to zero most 

sensorless systems fail which make them improper for applications such as traction and cranes 

where the drive is required to maintain the full torque down to zero speed [5]. Many attempts 
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have been made so far to extend the operational region of sensorless systems in the low speed 

region [6, 7]. 

During the last thirty years, many different sensorless control schemes have been investigated 

[1, 2]. These schemes can be categorised into two distinctive classes: spectral analysis and 

model based schemes. Fig 1.2 shows a flowchart of the classification of the different 

sensorless control schemes. 

 

Fig.  1.2 Classification of sensorless control techniques 
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1.2.1 Spectral analysis sensorless schemes 

In spectral analysis strategies, the machine windings are injected by high frequency low 

amplitude signals. These signals aret modified by the rotor orientation and are then processed 

to yield the rotor position. This signal injection allows extraction of the rotor position 

information without affecting the machine fundamental performance [1].  

Using spectral analysis methods, provides an accurate speed and position estimation even at 

very low and zero speed operation as it does not depend on the machine parameters and the 

induced voltage in the rotor circuit [3]. However, these methods tend to be very sophisticated 

and the design is usually specific to a particular machine which makes it difficult to produce a 

general design [8]. Furthermore, these methods may introduce torque ripple, audible noise and 

vibration on the machine shaft [9]. 

1.2.2 . Model-based sensorless strategies 

These strategies use the machine mathematical model along with the stator instantaneous 

currents and voltages to estimate the motor speed, assuming a sinusoidal distribution of the 

flux around the air gap and negligible space harmonics [1].The general structure of the model-

based sensorless control drive system is illustrated in  Fig. 1.3 [1]. 

Controller Inverter Motor

Estimator

*
r

*
r

sv

si

r

r̂

 

Fig.  0.3  Block diagram of general model-based sensorless control drive system [1] 

 Model-based strategies are capable of delivering accurate motor speed and rotor flux 

estimates down to 2% of the rated speed [1]. However, they fail at lower speeds due to many 

different factors. This includes the increased sensitivity to the machine parameters variation, 
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reduced signal to noise ratio in the acquired voltages and currents signals and errors due to 

inverter nonlinearity [1, 6, 8]. In addition, at zero frequency operation the back-EMF signal 

induced in the rotor circuit disappears and therefore the rotor position information is lost [1, 6, 

8]. 

Model-based sensorless strategies are basically classified into open loop and closed loop 

estimators. The close loop estimators (observers) employ a feedback term which is calculated 

as a difference between estimated and measured quantities to correct the observer estimates. 

Model reference adaptive system (MRAS) observers are closed loop estimators which are 

commonly used for sensorless control applications, due to their simple structure and ease of 

application. These observers are explained in detail in the following chapters. 

1.3 Predictive Sensorless Control for IM Drives 

Predictive control (PC) was developed in the early seventies, and  is now used in power 

electronics and electric drive applications as an alternative to the conventional current and 

speed controllers [10]. Although PC techniques for electric drive have shown better 

performance in comparison with the classical direct torque control (DTC) and field oriented 

control (FOC) [11, 12], their application was limited because of their high computational 

requirements [13, 14]. However, recent developments in microcontrollers and digital signal 

processors (DSP) has led to an increased interest in PC [15, 16] as the computational barrier 

of their application has been removed.  

Recently, PC has been employed for sensorless control of electric drives in applications 

including permanent magnet machines [17-20], and induction machines [21-27].  Applying 

predictive control has shown an improved performance of the sensorless drive system by 

reducing the noise effects in the measured signals and improving the system robustness 

against motor parameter variation. 

1.4 Scope and Novelty of the Thesis 

In this thesis, a novel speed estimator for sensorless vector control IM drives is introduced to 

address the problems associated with the MRAS adaption mechanism design. The finite 

control set model predictive control (FCS-MPC) concept is incorporated in the MRAS 

estimator design. In this scheme, the adaptation mechanism is based on solving an 

optimization problem with the objective of minimizing the speed tuning error signal of the 
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MRAS estimator over a finite number of rotor position angles.  A rotor position search 

algorithm is developed to ensure that the optimal position is obtained at each sampling time. 

The computational complexity of the proposed scheme is evaluated and a modified method is 

employed to reduce its execution time to make it suitable for practical implementation. The 

performance of the proposed predictive estimator is experimentally tested using a 2.2-kW IM 

drive which employs FOC as the motor control strategy. A detailed comparison between the 

proposed scheme and the classical rotor flux MRAS estimator has been carried out. Results 

show the superior performance of the proposed scheme at different low-speed operating 

conditions including regeneration and improved robustness against motor parameter 

variations. 

A novel adaptive filter-based speed extraction method has also been introduced to reduce the 

oscillations in the rotor speed at light loading conditions. An adaptation mechanism is 

proposed to adapt the filter time constant depending on the dynamic state of the system. 

Furthermore, a voltage compensating method is employed in the reference model of the 

model predictive MRAS observer to solve problems associated with sensitivity to motor 

parameters variation. The performance of the proposed schemes is experimentally evaluated. 

Results confirm the effectiveness of the proposed scheme for sensorless speed control of IM 

drives. 

1.4.1 Research objectives 

The core objectives of this research can be briefly summarized: 

1. Develop a novel speed estimator for sensorless control of the electric machine. This 

replaces the PI controller in the adaptation mechanism and the adaptive model in the 

classical MRAS observer by a predictive model. 

2.  Reduce the computational complexity of the proposed predictive scheme to reduce its 

execution time and to make it suitable for practical implementation. 

3. Reduce the oscillations in the estimated rotor speed signal at light loading conditions by 

introducing a novel adaptive filter-based speed extraction method. 

4. Solve the problem of sensitivity to motor parameter variation by introducing a voltage 

compensating method to the reference model. 
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5. Examine the effectiveness of the introduced scheme by simulation and experimental 

evaluation under different speeds and loading conditions. 

1.4.2 Contribution to knowledge 

1. A novel speed observer is introduced which is based on the finite control set-model 

predictive control principle. 

2. The rotor position is calculated using a search-based optimization algorithm which 

ensures a minimum speed tuning error signal at each sampling period. 

3. The new speed observer eliminates the need for a proportional-integral (PI) controller in 

the adaptation mechanism. 

4. The proposed scheme improves the system robustness against motor parameter variations 

and increases the maximum bandwidth of the speed loop controller. 

5. The proposed scheme reduces the oscillations in the estimated rotor speed at all different 

loading conditions. 

1.5 Publications 

Publications resulting from this work are listed here: 

 Y. B. Zbede, S. M. Gadoue, and D. J. Atkinson, "Model Predictive MRAS Estimator 

for Sensorless Induction Motor Drives," IEEE Transactions on Industrial Electronics, 

vol. 63, pp. 3511-3521, 2016. 

 Y. Zbede, S. M. Gadoue, D. J. Atkinson, and M. A. Elgendy, "Predictive sensorless 

control of induction motor drives," in Industrial Technology (ICIT), 2015 IEEE 

International Conference on, 2015, pp. 2339-2344. 

1.6 Thesis Layout 

In Chapter 2, a literature review of different sensorless estimation schemes is provided with 

an emphasis given to MRAS observers. Chapter 3 explains the modelling of IMs, the 

principle of vector control and rotor flux-based MRAS mathematical model.  In Chapter 4, a 
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brief introduction to predictive control is given followed by a detailed description of the 

proposed predictive observer. Chapter 5 covers the simulation result. Chapter 6 gives a 

description of the experimental rig used in this project. Chapter 7 covers the experimental 

result. Chapter 8 is the conclusion and the future work. 
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CHAPTER 2  

Model Reference Adaptive Systems Speed 

Observers – A Literature Review 

2.1 Introduction 

Using optical or mechanical speed sensors to measure the speed in an electric drive, increases 

the system size, weight and complexity and reduces the reliability by increasing the system 

maintenance requirements. Therefore, the machine terminal voltages and currents have been 

used to estimate the speed to overcome these weaknesses. These systems are referred to as 

sensorless drive systems, and are gaining increased popularity especially in the applications 

that are required to operate in hostile environments. 

Over the last three decades, a lot of efforts have been applied to the development of sensorless 

control of electric drives and different strategies have been investigated. Among these 

strategies, model reference adaptive systems (MRAS) can be considered the most common, 

because of its simple structure and relatively low computational requirements. However, 

MRAS-based sensorless drives still have many problems especially when it comes to 

operating at and around zero speeds and full loads. Consequently, a great deal of work has 

been done to improve the performance in this operating region. 

In this chapter, a review of the different model-based speed estimators applied to sensorless 

control of electric drives is provided. A focus is given to the MRAS-based observers, the 

problems associated with these estimation strategies and the suggested solutions.  

2.2 Model-Based Speed Observers 

Many speed estimators have been introduced that depend on the machine mathematical model 

to calculate the rotor speed. These estimators are basically classified into two different types; 

open loop and closed loop estimators [8]. The difference between these two types is the 

existence of the feedback term in the closed loop estimator which is used to correct the speed 

estimation [2]. 
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In open loop estimators, the accuracy of the machine mathematical model plays a key role in 

estimating the speed [28]. Therefore, these estimators suffer many problems like the 

sensitivity to the machine parameter variations and the noise in the measured signals 

especially at low speeds[28]. On the other hand, the closed loop estimators (which are also 

called speed observers) use a correcting term. This takes advantage of the error between 

measured and estimated quantities to rectify the error in the speed estimation which leads to a 

better-quality performance and an improved robustness [8].  

In sensorless control of electric drives, several closed loop speed observers have been applied. 

These include MRAS observers [29], extended Kalman filter (EKF) observers [30, 31], 

sliding mode (SM) observers [32, 33] and artificial intelligence (IA) based observers [34].  

EKF observers for sensorless control of IMs have been widely applied [35-37]. These 

observers employ a mathematical model of the IM which considers the noise in the plant and 

the measured signal and also takes into account the inaccuracy in the model. The EKF 

observer has been successfully applied for operation at low speed [2], but it suffers many 

problems like the high computational demand, the instability as a result of linearization and 

the absence of tuning and design criteria [38]. Furthermore, a problem of biasing can take 

place as a result of an improper adjustment of the covariance matrices or because of a 

mismatch between the assumed characteristics of the stochastic noise model and the real noise 

[1, 2, 38]. Recently, many researchers have focused on optimizing the EKF performance to 

solve the problem of the covariance matrix tuning to obtain an improved performance. Shi, 

Chan, et al. [37] proposed a genetic algorithm method to optimize tuning the plant and noise 

covariance matrices, and Buyamin, et al. [39] proposes a simulated algorithm to optimize the 

covariance matrix tuning process. 

SM observers have been applied to estimate the rotor position in [9, 40, 41], and the PI 

adaption mechanism has been replaced by a sliding mode controller (SMC) in [42, 43]. 

Although this scheme is shown to improve the estimator dynamic response, it causes a 

considerable amount of chattering in the estimated speed signal, and a low-pass filter is 

needed to smooth out the estimated rotor speed. In [44], another solution was proposed where 

the PI controller is replaced by a fuzzy logic (FL)-based adaption mechanism. This scheme 

shows improvement in the estimator dynamic response, but the computational complexity of 

the FL controller is the main drawback. 



 MRAS observers-Literature Review                                                                            Chapter 2 

11 

 

Among all other speed observers, MRAS-based observers have gained great popularity 

because of their relative simplicity and ease of application [7, 45-47]. A comparison between 

MRAS and EKF observers was provided in [48]. The results in [48] shows that both observers 

were affected to a similar degree during the steady state by the stator resistance variation. 

They also show that the EKF had a poorer transient performance at low speed, and a higher 

computational demand which is up to 20 times more in comparison with the MRAS observer. 

2.3 Model Reference Adaptive Systems 

The adaptive control system is defined as “a control system that can modify its behaviour in 

response to changes in the dynamics of the process and the character of the disturbances” 

[49]. Among the different adaptive control strategies, the model reference adaptive control 

(MRAC) has been widely applied for control and parameter estimation in electric drive 

applications [49].  Fig. 2.1 shows a block diagram of an MRAC system. 

Reference 
Model

Controller

Adaptation 
Mechanism 

uc u
Plant

ym

yp

 

Fig.  2.1 Block diagram of MRAC system 

In the block diagram, the reference model is designed to provide the desired performance of 

the plant ym for a given command signal uc.  The reference model output  ym is compared with 

the plant real output yp and the error is fed to an adaptation mechanism. This adaptation 

mechanism works by adjusting the controller parameters until the error between the plant and 

the reference model outputs is driven to zero. 
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Fig.  2.2  Block diagram of MRAS observer 

 A similar mechanism has been applied to estimate system parameters and states in the so 

called MRAS estimators. MRAS estimators have been widely used for sensorless control of 

electric drives due to their simplicity and ease of application [50]. The first MRAS observer 

was proposed in [51]. This observer employs two separate sub models which are called the 

reference model and the adaptive model. Similarly to MRAC, the reference model is designed 

to provide the desired value of the state vector X, while the adaptive model uses a completely 

different way to find an estimate of the same state vector X̂ . The reference and the adaptive 

models outputs are compared and the error is fed to an adaptation mechanism, which adjusts 

the adaptive model parameters until the error is driven to zero. Fig. 2.2 shows the block 

diagram of the basic MRAS structure [51]. 

Depending on the states that form the error vectors, different types of MRAS observers have 

been introduced. The most common ones are: rotor flux-based MRAS observers [2, 46, 52, 

53], back EMF-based MRAS observers [7, 54], reactive power-based MRAS observers [54-

57] and more recently, electromagnetic torque- based MRAS observers [58]. 

2.3.1  Rotor flux-based MRAS observers 

The first rotor flux based observer was introduced by Schauder [59] in 1989. The reference 

and the adaptive sub-systems independently calculate the rotor flux components in a 
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stationary reference frame. The difference between the two sub-system estimates is then used 

to find the rotor speed. This observer will be studied in detail in the next chapter. 

Rotor flux MRAS observers have been well investigated over the last two decades, and the 

superior performance of these observers has been proven over a wide range of speeds [2, 46]. 

However, this scheme suffers many problems at low speeds [44, 46], This includes the pure 

integration problem [2], the sensors data acquisition problem, and the inverter nonlinearity [6, 

44] . 

2.3.2 Back EMF-based MRAS observers 

To avoid the problem of the pure integration in the rotor flux-based MRAS observers, Peng 

and Fukao suggested a new MRAS strategy in [54] which is based on calculating the back 

EMF signals. 

In the reference model, the stator voltage equations in the stationary reference frame are used 

to obtain the back EMF components. This leads to: 

sDssDssDrd
r

m
sD piLiRvp

L

L
e    (2.1)

sQssQssQrq
r

m
sQ piLiRvp

L

L
e    (2.1)

Where sDe , sQe are the back EMF components, vsD, vsQ are the stator voltage components, isD, 

isQ are the stator current components, ψrd, ψrq are the rotor flux linkage components, Lm is the 

mutual inductance, Lr is the rotor self-inductance, Ls is the stator self-inductance, Rs is the 

stator resistance and σ is the leakage coefficient. 

From (2.1) and (2.2) it can be noticed that the back EMF components are calculated without 

any integration which solves the pure integration and DC drift problems in the rotor flux-

based MRAS. 

The adaptive model equations are obtained from the rotor circuit voltage equations in the 

stationary reference frame, and these equations are: 
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Fig.  2.3  Block diagram of the back EMF-based MRAS observer 

 The speed tuning signal in the case of the back EMF-based MRAS observer becomes the 

angular difference between the reference and the adaptive back EMF components as in the 

following equation: 

)ˆˆ( sQsDsDsQ eeee   (2.5)

As has been discussed, using the back EMF MRAS instead of the rotor flux solves the 

problem of the pure integration in the reference model. However, it has been reported in [7] 

that the scheme has a stability issue at low speeds. It also has been claimed in [60] that this 

scheme has a poor dynamic performance at low speeds and  low immunity toward the 

measurement noise duo to the stator current differentiation in the reference model. 

2.3.3 Reactive power-based MRAS observers 

This scheme was introduced by Peng and Fukao in [54], and it depends on the reactive power 

equations in estimating the rotor speed.  
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The reactive power can be calculated by using the following equation: 

)ipLiRv(iieq sssssss   (2.6)

Because 0ii ss   , (2.6) becomes: 
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The adaptive model equations are found similarly by using: 
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Fig.  2.4  Block diagram of the reactive power-based MRAS observer 
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From (2.9) it can be noticed that by using the reactive power equation, the integration and the 

stator resistance dependant term in the reference model disappears to solve the problems of 

the pure integration and the sensitivity to Rs variation. However it was mentioned in [7, 61, 

62] that the scheme suffers a problem of instability at certain operation conditions in the 

regeneration region. Also the reactive power almost vanishes at and around the zero speed 

operation as the back EMF approaches zero [63]. 

2.4 The Problems and the Proposed Solution for MRAS-based Observers of IM Drives 

It has been mentioned previously that the MRAS-based observers suffers many problems that 

limit their usage at and around zero speeds. In this section these problems are briefly 

summarised with solutions suggested in the literature. 

2.4.1 The pure integration problem 

This problem is particularly related to the rotor flux- based MRAS observers, and it occurs 

because of the need for pure integration in the voltage model [2, 6, 64]. To solve this problem, 

many solutions have been proposed. In [5, 65, 66], the integrator was replaced by a low pass 

filter (LPF) with a very low cut-off frequency. This solution is very effective for high and 

medium speeds operation, but at low speeds because the filter phase shift and attenuation 

becomes more significant, the system performance starts to deteriorate [2, 43, 67]. In [67] the 

integrator was replaced by a programmable cascaded small time constant LPF that behaves 

like an integrator in terms of gain and phase shift. However, it was found that the high speed 

performance deteriorates as the number of filters is increased. In [68] the pure integrator was 

replaced by a zero-drift feedback integrator which was able to provide a satisfactory 

performance down to 0.2 Hz, but then again, the system becomes unstable at lower operating 

frequencies. In [64, 69] the voltage model was completely replaced by a different flux model 

to remove the need for the pure integration, but this was at the cost of the significantly 

increased complexity. A closed loop flux observer was introduced in [59, 63] in which a 

coupling controller is employed between the reference and adaptive model outputs. The 

method shows a satisfactory performance at low speeds but as the speed approaches zero the 

scheme starts to lose its stability. Although this problem was solved by deploying the machine 

mechanical model, this approach requires an accurate determination of the system mechanical 

parameters which increases the system is complexity. 
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2.4.2 The problem of inverter nonlinearity and voltage acquisition 

In model based sensorless techniques, the knowledge of the voltage signals across the 

machine terminals is essential. In the literature, the voltage has been obtained either by 

applying voltage sensors at the machine terminals or by using the modulation index 

waveforms available within the microcontroller. 

Using the measured voltage directly as an input to the estimator model is not straight forward 

since the voltage signals must be sampled at a very high sampling frequency to avoid aliasing 

[6]. Alternatively, a low pass filter must be used to eliminate the high order harmonics. The 

filter-based scheme only works well at high and medium operating speeds where the effect of 

the filter phase error and gain is negligible. To solve this problem, a synchronous integrator-

nonlinear filter is used to replace the classical filter, where the measured voltage is integrated 

over one PWM sample and then the integrator is reset at the end of the sample. This allows 

measurement of the actual voltage-seconds over one sampling period [70]. Although it has 

been shown that this method can produce satisfactory performance at low speeds, there is still 

a reluctance to use voltage sensors in industrial applications [9].  

Replacing the measured voltages by the modulation signals available within the controller is 

popular since these signals are free of any PWM harmonics.  However, at low speeds these 

signals deviate considerably from the actual voltages because of the inverter nonlinearity and 

the effect of the dead time imposed by the controller. In [65] a nonlinear model of the inverter 

was proposed which considers the power devices internal impedance and threshold voltage. A 

compensation for the dead-time effect was proposed in [71] which depends on the reference 

voltage and current signals to compensate for the effect on the stator voltage measurements 

during the dead time intervals.  

2.4.3 The problem of motor parameter variation 

As with any other model based observer schemes, the MRAS observers are very much 

affected by the machine parameter variations that can occur during operation. This includes 

variation in the rotor and the stator resistances due to changes in operating temperature and 

frequency. Also the mutual inductance can vary significantly with the magnetic saturation.   

The main cause of the temperature variation in the machine is due to copper loss, magnetic 

loss and mechanical loss. These losses can vary with the loading condition, the flux level and 
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the operating speed. Applying a temperature sensor to measure the machine operating 

temperature or using a thermal model to predict the temperature variation is not precise since 

the relationship between the resistance variation and the temperature is complex in most cases 

[72].  

As it has already been mentioned, the stator resistance changes due to temperature variation, 

and this change can reaches up to 50% of the original value [1, 8]. That can cause a very 

serious problem especially at low speeds because the value of the applied voltage becomes 

very small and comparable to the voltage drop across the stator resistance [3, 60]. 

Consequently, it is required to adapt the stator resistance continuously [73] to increase the 

estimation accuracy during steady state operation and to maintain the system stability at low 

speeds [60, 72]. 

Different solutions have been proposed that provide a combined stator resistance and rotor 

speed estimation [7, 62, 73-75]. In [74],  Zhen and Xu proposed a mutual MRAS system that 

can simultaneously identify both the rotor speed and the stator resistance. The reference and 

the adaptive models are interchangeable, which means the two models switch their roles to 

identify the stator resistance. This leads to a problem which is that during the rotor 

identification phase there is no speed information fed to the drive [75]. 

To address the problem in  [74], Vasic et al. [75] proposed a new estimation method which 

deploys two parallel MRAS observers that provide simultaneous estimations of the rotor 

speed and the stator resistance. Unlike [74], this method does not require the reference and the 

adaptive models to interchange their roles and it estimates during the transient operation. This 

scheme succeeded to obtaining accurate estimations at 0.5, 1 and 4Hz operating frequencies 

with ±20% variation in the stator resistance.  

Another method was proposed in [62] for combined stator resistance and rotor speed 

estimation. This method, exploits the fact that the rotor speed is dependent on the q-axis 

component of the rotor flux represented in a synchronous reference frame. Also the stator 

resistance is dependent on the d-axis rotor flux component. The scheme was evaluated at 

different speeds and values of stator and rotor time constants. The results show that the rotor 

time constant variation caused a steady state error in the estimated rotor speed but without 

affecting the system stability. 
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A combined MRAS stator resistance and speed estimator was employed in [7] which is based 

on back-EMF estimation. A Routh–Hurwitz-based criterion was applied to design the 

estimator gains to deliver stable stator resistance and rotor speed estimation even at low 

operating speeds. A frequency injection method was used at zero operation frequency to 

estimate the rotor speed. The results show stable operation at different speeds and loading 

conditions. However the scheme showed poor transient performance and oscillations in the 

speed during the steady state. 

Kubota e al. [76] proposed a method to identify the motor speed and the rotor resistance 

simultaneously using  a full-order adaptive flux estimator. A new technique for rotor 

resistance estimation was proposed which depends on injecting an AC signal into the field 

current demand. The scheme, however, does not discuss the impact of variation of the other 

motor parameters which are part of the flux estimator including the rotor and the stator self-

inductances.    

2.4.4 The problem with the MRAS adaptation mechanism 

Generally, a fixed-gain proportional–integral (PI) controller is employed in the adaptation 

mechanism of MRAS schemes to produce the estimated position or speed. This is because of 

its simple structure and ability to generate a satisfactory performance over a wide range of 

speeds. However, at low speeds, inverter nonlinearities and machine parameter variation 

become more dominant. As a result, the fixed-gain PI may not be able to maintain the system 

stability or at least to provide the required performance. Moreover, tuning of the PI gains is 

not an easy task and little effort has been devoted to address this problem in the literature. 

Various solutions to offer alternative approaches to the design of the adaptation mechanism 

for MRAS estimators have been discussed in the literature. These solutions have focused on 

replacing the conventional fixed-gain PI adaption mechanism with more advanced algorithms. 

Shiref et al. [77] investigated experimentally the influence of the PI controller gains on the 

estimated speed. The results revealed that by applying high PI gains, the estimated speed 

becomes noisy and it starts to contain some harmonics which are synchronised with the 

stator’s electrical frequency. An adaptive-PI based adaptation mechanism was suggested to 

avoid the noise in the estimated speed. The performance of proposed and classical adaptation 

mechanisms was experimentally assessed and showed an improved performance during both 
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the transient and steady state operation conditions. However, the proposed system has a 

stability issue related to the rate of change of the observer gains. In addition, the effect of 

sudden load disturbance on the adaptation mechanism performance was not tested. 

Gadoue et al. [42] proposed a sliding mode adaptation mechanism to replace the PI controller 

in the conventional MRAS observer. Lyapunov theory is used to derive the sliding mode-

based adaptation mechanism to ensure the sytem stability. The performance of the proposed 

and the  conventional methods is compared in open-loop and closed loop (sensorless) modes 

of operation. Although this scheme is shown to improve the estimator dynamic response, it 

causes a considerable amount of chattering in the estimated speed signal, and a low-pass filter 

is needed to smooth out the estimated rotor speed. Another solution was also proposed in  

[42] where the PI controller is replaced by a fuzzy logic (FL)-based adaption mechanism. This 

scheme shows improvement in the estimator dynamic response, but the computational 

complexity of the FL controller is the main drawback of this scheme.  

2.5 Predictive Control for Sensorless Control of Electric Drives 

General model predictive controllers (MPC) can be classified into classical MPC and finite 

control set-model predictive controllers (FCS-MPC) [78]. In classical MPC, the controller 

generates a continuous voltage vector and a modulator is used to apply this voltage to the 

inverter. In FCS-MPC the controller directly produces a switching state of the inverter [79]. 

FCS-MPC has increasingly gained popularity and has been applied in many different 

applications because of its simplicity, compact design and flexibility to include any 

performance specifications [10, 13, 14, 80-84]. For example in [84] , an FSC-MPC was 

applied to drive an IM fed by a matrix converter to increase the system efficiency, and in [83] 

current control of a five-phase IM is applied based on the FCS-MPC control principle. 

Over the last few years, interest has grown in the use of predictive control techniques with 

sensorless applications. In [17-20], predictive control is applied to permanent-magnet 

sensorless motor drives, and in [23] a predictive torque control with sliding mode feedback is 

used with a sensorless IM drive.  

A speed-sensorless control system for an IM with a predictive current controller has been 

proposed in [24], where it has been claimed that this combination can make the system 

simple,  robust and able to operate at very high and extremely low speeds. However, the 
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system performance with the predictive current controller was not compared with the classical 

system which uses PI current controllers.  

 A new generalized predictive controller has been introduced in [25] for the control of 

sensorless IM drives. The controller structure allows controlling of the speed and rotor flux, 

taking into consideration the stator windings voltage and current constraints. The proposed 

controller is applied with the MRAS speed estimator. The result shows faster dynamic 

response in comparison with other speed controllers. However the effect of the proposed 

controller on the accuracy of the speed estimation is not discussed. 

 In [26], a predictive torque controller (PTC) was applied with rotor flux- based MRAS 

observer to develop a sensorless PTC system for IM. A flux compensator was used to 

improve the reference model of the observer. The results show an improved dynamic of the 

whole system. However, the system did not perform well when the speed crossed the zero 

point during the speed reversal experiment. This was due to the low switching frequency of 

the power switches which affects the PTC operation.  

In [31] a sensorless control of IM drive using a finite set PTC (FS-PTC) is applied. The 

prediction accuracy was improved by using an EKF to estimate the rotor speed and stator 

currents. The estimated stator currents were used to avoid the measurement noise. The result 

shows a reduction in the stator current total harmonic distortion (THD) in the stator currents 

and improved flux and speed estimation. 

From all the aforementioned publications, it can be concluded that using predictive controllers 

can improve the drive system performance and increase the system robustness to motor 

parameters variation. However, the prediction principle so far was only applied on the 

controller side of the drive, and none of the examples considered above has introduced the 

prediction principle into the design of the speed estimator itself. In the following chapters a 

predictive sensorless speed observer is introduced to provide robust and accurate speed 

estimation. 

2.6 Summary 

In this chapter a review of the different schemes used for speed estimation in the IM drives 

has been provided. This review has focused on the MRAS-based strategies and provided a 

description of the different problems affecting the performance of these observers at low 
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speed operation. Various methods employed to improve the design of the adaptation 

mechanism have been also carefully discussed. It appears that, despite all the attempts to 

improve the adaptation mechanism design, finding a design that can operates at the same 

efficiency level at different speeds and operating conditions and which is less affected by the 

machine parameters variation is still challenging and needs more investigation. 

The way the proposed predictive MRAS observer operates make it more suitable for the 

applications where accurate and quick position estimation is required. For example this 

estimator is very suitable for conveyor belt applications where accurate positioning is required 

for processes such as assembly, inspection, and feeding into equipment. In such applications, 

the precise product movement is critical. 
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CHAPTER 3  

Model Reference Adaptive Systems for 

Vector Control Induction Motor Drive 

3.1 Introduction 

Induction motors (IM), due to their simplicity, rigid structure and low cost, are used widely in 

many applications. By using advanced control strategies like direct torque control (DTC) and 

field oriented control (FOC), IM drives have become more dominant in many applications 

especially those requiring high performance operation. The fast development of 

microprocessors and power electronics has also played a key role in the IM drives 

development, as it allows the use of control techniques that require high computational effort. 

However the design of such control systems requires an accurate model of the induction 

machine. This chapter introduces the induction machine dynamic modelling using space 

vector theory. The machine model is used then to explain the principle of vector control. 

Finally, the two-axis machine model is used to describe the MRAS speed observer principle 

and to formulate the equations of the observer mathematical model.  

3.2 The Dynamic Model of the Induction Machine 

Generally, the equivalent circuit of the IM is used to analyse the performance of the machine 

and to calculate its different quantities at different loading conditions. However, this 

representation is limited and cannot be used to study the transient operation of the machine or 

even the steady state operation when the machine is fed by a non-sinusoidal source, such as 

when the machine is fed by a power electronic converter.  Based on the two-axis theory of the 

electrical machines and the space vector theory, a dynamic model of the IM can be derived to 

allow the analysis of the machine performance at any operating condition and any type of 

power supply. 

For three phase IMs, the stator current space vector in the stationary reference frame can be 

expressed as [2]: 
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sAi , sBi and sCi  are the stator three-phase currents which are sinusoidal and shifted by 120º in 

the time domain. These currents flow in the stator three phase windings, which are spatially 

displaced by 120º, to produce a rotating magnetic flux. 

 To find the two axis components of the stator current vector si , (3.2) is substituted in (3.1), 

and as a result, the real part of the stator current will represent the D axis current component, 

whereas the imaginary part will be the Q axis current component. This leads to the following 

equations:                                                                                          
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where sDi and sQi are the two-phase equivalent currents that flow in the virtual two phase 

windings Ds  and Qs  which are spatially displaced by 90º [2]. The stator current vector si can 

be accordingly written as:                                                                                            

sQsD
j

ss jiieii s    (3.4)

where αs is the angle between the current vector and the sD axis. 

From (3.1) and (3.4), the transformation from three-phase to two-phase can be written in 

matrix form as:                                                                             
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Fig.  3.1  The stator current space vector 

Similarly, the two to three phase transformations can be written as: 

sDsA ii    

sQsDsB iii
2

3

2

1
  

 

sQsDsC iii
2

3

2

1
  (3.6) 

and in matrix form the transformation can be expressed as: 
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To apply FOC, or as it is also called vector control (VC), another frame transformation is 

required. This transformation is between the stationary frames (D-Q) and the excitation 

(synchronous) frames (d-q) which are shown in Fig. 3.2. The stationary frame is fixed to the 

machine stator, whereas the excitation frame rotates at the synchronous speed.  

sQ 

sD 

isd 

si d-axis

isq  θe

isD  

isQ  

q-axis

 

Fig.  3.2  The transformation from the stationary to the synchronous frame 

The equation that describes the transformation from the stationary frame to the synchronous 

frame can be written as:  

ee j
sQsD

js
ssqsd

e
s ejiieiijii    )(  (3.8)

The transformation can also be expressed in the matrix form as: 


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 (3.9)

The transformation from the excitation frame to the stationary frame can be similarly written 

as: 

ee j
sqsd

je
ssQsD

s
s ejiieiijii  )(   (3.10)

and in matrix form:  
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Similarly, the flux and stator space vector voltage in the stator reference frame can be defined 

as: 

)vaavv(
3

2
v sC

2
sBsAs   (3.12)

sQsDs jvvv   (3.13)

)aa(
3

2
sC

2
sBsAs    

(3.14)

 

The same procedure applied to find the stator current space vector in a stator reference frame, 

can be used to find the rotor current space vector in a reference frame fixed to the machine 

rotor: 

)iaaii(
3

2
i rc

2
rbrar   (3.15)




rr
rj

rr jiieii   (3.16)

where ri and ri are the two phase equivalent currents that flow in the virtual two-phase rotor 

windings rα and rβ which are spatially displaced by 90º, and θr is the rotor position angle [2]. 

sQ 

sD 

αr irα  

ri
rα  

rβ   

irβ   
θr

 

Fig.  3.3 The rotor current space vector 
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The IM mathematical model can be described by a set of equations which are based on 

Kirchhoff’s laws. The detail of the IM modelling is stated in Appendix A. By applying 

Kirchhoff’s laws on the stator and rotor windings the following equations are obtained: 

dt

d
iRv

s
ss

ss
s
s


  (3.17)

dt

d
iRv

r
rr

rr
r
r


  (3.18)

The subscripts r and s stand for the rotor and stator quantities respectively, and the 

superscripts r and s stand for the stator and stator reference frames. 

(3.17) and (3.18) can be also described in terms of the vectors coordinates in the stationary 

reference frame as: 

dt

d
iRv sD
sDssD


   

dt

d
iRv sQ
sQssQ


  (3.19)

rqr
rd

rdrrd dt

d
iRv 


   

rdr
rq

rqrrq dt

d
iRv 


  (3.20)

The stator and rotor flux linkages can be expressed as: 

rdmsDssD iLiL    

rqmsQssQ iLiL   (3.21)

rdrsDmrd iLiL    
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rqrsQmRq iLiL   (3.22)

By solving (3.19) to (3.22), new equations that describe the IM dynamic can be found in 

terms of the stator and the rotor current vectors represented in the stationary reference frame: 

rdmsDsssD piLipLRv  )(   

rqmsQsssQ piLipLRv  )(  (3.23)

)()( rqrsQmrsDmsDrrrd iLiLpiLipLRv     

)()( rdrsDmrsQmsQrrrq iLiLpiLipLRv    (3.24)

where p denotes the differential operator. 

Using space vector notation, equations (3.23) and (3.24) can be written in the matrix form as:  
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i
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pLpLR

v

v


 (3.25)

A convenient way to understand and design the vector control system is to rewrite the rotor 

and stator voltage equations in terms of stator current and rotor flux, therefore these equations 

for a squirrel-cage IM can be written as: 

rd
r

m
sDssDssD p

L

L
piLiRv    

 

rq
r

m
sQssQssQ p

L

L
piLiRv    (3.26)

rqrrdsDmrd
r

piL
T

  )(
1

0   

rdrrqsQmrq
r

piL
T

  )(
1

0  (3.27)

where σ is called the leakage coefficient and it can be found from: 
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rs

2
m

LL

L
1  (3.28)

Tr is the rotor time constant and it is describes as:  

r

r
r R

L
T   (3.29)

From the previous equations, the state space representation of the squirrel cage IM can be 

derived. The states of the state space model are stator currents and the rotor flux linkages.                    
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where: 
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s
1 T

1

L

R
a







  (3.31)

rrs

m
2 TLL

L
a


  (3.32)

rs

m
3 LL

L
a


  (3.33)

In comparison with the standard form of the state space model which is: 

)t()t()t( BUAXX    

)t()t()t( DUCXY   (3.34)

The following can be written: 
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T
rqrdsQsD iit ][)( X  (3.35)

 TsQsD vvt )(U , (3.36)

 TsQsD iit )(Y  (3.37)
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Fig.  3.4 The state space model 

Finally, the electromagnetic Torque can be found from the following equation (A.88): 

)(
2

3
sDrqsQrd

r

m
e ii

L

L
PT    (r3.40)

where P is the number of pole pairs. 
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3.3 Vector Control 

By choosing the d-axis of the synchronous reference frame to be aligned with the rotor flux 

space vector, the rotor flux can be controlled separately by adjusting the d component of the 

stator current and the torque can be controlled by changing the q component of the stator 

current. This makes the control of the IM similar to that of the separately excited DC 

machines. Vector controlled is sometimes referred to as Field Oriented Control (FOC), and 

Fig. 3.5 shows phasor diagram of a vector control system.  
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θsl
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Fig.  3.5 Vector control principle 

To find the equations that explain vector control principle, the model of the squirrel cage IM 

in a synchronous reference frame are considered. The voltage equations for both the stator and 

the rotor are written as: 

sqesdsdssd piRv     

sdesqsqssq piRv    (3.41)

rqslrdrdr piR0     

rdslrqrqr piR0    (3.42)

However, the rotor flux can be expressed in terms of stator and rotor currents as: 
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rdrsdmrd iLiL    

rqrsqmrq iLiL   (3.43)

Because in FOC the d-axis of the frame is aligned with the rotor flux space vector, it can be 

written: 

rdr    , 0rq  and 0p rq           (3.44)

 

By solving (3.41) to (3.44): 

0piR rdrdr    (3.45)

0iR rdslrqr    (3.46)

0iLiL rqrsqm   (3.47)

Rearranging (3.47) gives: 

sq
r

m
rq i

L

L
i   (3.48)

The slip rotating speed can then be found by substituting (3.48) into (3.46): 

sq
rdr

m
sl i

T

L


   (3.49)

At steady state 0p rq  , therefore from (3.45) it can be said that 0ird  at steady state, and 

as a result (3.43) can be written as:  

sdmrd iL  (3.50)

Substituting (3.50) into (3.49) the slip angular frequency sl  can be written as: 
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Practically, the speed angular frequency is found from the reference currents components 

instead of the actual currents [2] which means (3.49) can be rewritten as: 

*
sd

*
sq

r
sl

i

i

T

1
  (3.52)

and hence the rotor flux position can be found from: 

dt
i

i

T

1
*
sd

*
sq

r
re   (3.53)

The electromagnetic torque can be found by substituting (3.44) into (3.41) which gives:                                       
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  (3.54)
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Fig.  3.6 Rotor flux Position (a) Direct orientation (b) Indirect orientation 
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If a constant Kt is defined as: 

r

m
t L

L
P

2

3
K   (3.55)

then, the torque equation can be rewritten as: 

sqrdte iKT   (3.56)
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Fig.  3.7 Indirect vector control of IM 

Obviously from (3.50) and (3.56), applying vector control, makes the dynamic model of the 

IM similar to that of the DC machine, with sdi  and sqi  as analogues to the field and armature 

currents, respectively. Vector control also allows control of the different AC variables of the 

IMs as DC quantities since the control is performed in a synchronisingly rotating reference 

frame, and all the variables appear constant at the steady state. 

As it has been discussed above, in order to implement vector control, the accurate position of 

the rotor flux θe is required. This angle can be found by applying two different methods which 

leads to two types of vector control; direct vector control, and indirect vector control. 
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In the direct vector control, the rotor flux space vector position is measured directly, which 

can be found by either using a Hall-effect magnetic field sensor, or by applying a flux 

observer which use the measured stator currents and voltages to estimate the rotor flux 

position, whereas, the indirect vector control uses the machine model to find the slip speed, 

and the rotor position is then added to get the rotor flux position. Clearly, applying this 

method is simpler because it does not require a flux sensor or observer, but it is sensitive to 

the rotor time constant variation which can cause the system performance to deteriorate.  

3.4 Model Reference Adaptive Systems (MRAS) for Induction Machines 

Any MRAS system for parameter identification consists basically of three different 

components: the reference model which defines the desired states XR, the adaptive model 

which produces the estimated value of the same states  X̂ A and the adaption mechanism 

which, depending on the error between the reference and adaptive model, generates an 

estimation of the parameter to be estimated̂ . Afterward, ̂  is used to adjust the adaptive 

model. The proper design of the adaption mechanism ensures that the error between the two 

models converge to zero after repeating the described process a number of times [2]. 

Reference 
Model

Adaptive 
Model

Adaption 
Mechanism

Input Signals

RX

RX̂

ε 

̂
 

Fig.  3.8 Block diagram of a basic MRAS observer 

The modelling of the rotor flux linkage MRAS speed estimator (observer) will discussed in 

the next section. 
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3.4.1 Rotor flux MRAS speed observer 

In order to design this observer, two models should be found that can calculate the same 

outputs. The first model (the reference model) should be able to perform the calculation 

without the need for information on the estimated parameter, which is the speed in this case, 

and the second model (the adaptive model) does depend on the speed in the calculation. The 

rotor flux components are chosen to be the outputs of both models and therefore this scheme 

is called rotor flux MRAS observer. 

The stator voltage equations in a stationary reference frame in terms of stator currents and 

rotor flux linkage can be written as: 

rd
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m
sDssDssD p

L

L
piLiRv     

rq
r

m
sQssQssQ p

L

L
piLiRv    (3.57)

Likewise, the rotor voltage equations in a stationary reference frame in terms of stator 

currents and rotor flux linkage can be written as: 
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r
pi

T

L
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1
0    (3.58)

Rearranging (3.57) leads to:   

)piLiRv(
L

L
p sDssDssD

m

r
rd     

)piLiRv(
L

L
p sQssQssQ

m

r
rq    (3.59)

and from (3.58) it can be written: 
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From (3.59) and (3.60) it can be noticed that the rotor flux components are the common 

outputs of the two sets of equations, where (3.59) can calculate the rotor flux components 

without the need for the rotor speed information and therefore it can be used as a reference 

model. This model is sometimes referred to as the Voltage Model (VM). Likewise, (3.60) has 

a speed dependant term and consequently it can be considered as an Adaptive Model which 

calculates the flux components based on the speed value, and this model is referred to as the 

Current Model (CM). 

The first rotor flux-based MRAS speed observer was introduced in [46], where (3.59) and 

(3.60) were used as reference and adaptive models respectively. With a proper adaption 

mechanism, the system was able to estimate the rotor speed by minimizing the generated error 

between the two models. The diagram shown in Fig. 3.9 illustrates the general structure of the 

rotor flux-based MRAS scheme. The adaption mechanism design will be described separately 

in the following section.  
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Fig.  3.9 Rotor flux linkage MRAS speed observer 
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From (3.60), it can be noticed that in the adaptive model equations, there is a presence of a 

cross coupling components between the two equations, and these components are speed 

dependant, which means that they can lead to an instability problem, as mentioned in [85]. To 

address this problem, a rotor reference frame representation of the rotor flux can be used 

instead to calculate the rotor flux linkage components [68, 85]. In this representation, the flux 

vector components can be rewritten as: 

r
rr

r
sm

r
r iLiL   (3.61)

The rotor voltage equation of a squirrel cage IM represented in the rotor reference frame is: 

r
rr

r
r iRp   (3.62)

From (3.61) and (3.62), the rotor flux linkage space vector in the rotor reference frame can be 

expressed as: 

r
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Fig.  3.10 The rotor reference frame implementation of the adaptive model 

From (3.63) it can be noticed that, the stator current vector represented in the rotor reference 

frame is needed in order to calculate the rotor flux linkage represented in the same reference 

frames, which can be found by applying: 
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rjs
s

r
s eii   (3.64)

As the rotor flux represented in the stationary reference frame is required at the output of the 

adaptive model, the following transformation can be applied : 

rjr
r

s
r e    (3.65)

 

3.4.2 The adaption mechanism design 

As mentioned previously, in the rotor flux-based MRAS observers, the speed is estimated by 

calculating the difference between the flux components at the output of the reference and the 

adaptive models, which is also referred to as the estimation error. The estimation error is then 

processed within an adaption mechanism to estimate the rotor speed, which is then used to 

adjust the adaptive model and hence to reduce the error between the outputs of the two 

models. This procedure will continue until the error between the two model outputs converge 

to zero.  

Within the literature, the Popov’s hyperstability theory has been mainly used to design the 

adaption mechanism of MRAS observers [2, 46]. The details of hyperstability theory are 

beyond the scope of this thesis. However, a brief description is given here to help 

understanding of the design of the adaptation mechanism applied in this thesis. 

 According to the hyperstability theory, in order for the stability analysis to be carried out, the 

feedback system needs to be presented as linear and nonlinear feed forward and feedback 

subsystems respectively [2], Fig 3.11, the system will be considered to be stable, if the 

feedforward subsystem  transfer function is strictly real and positive and the nonlinear 

feedback subsystem satisfies: 2
0

t

0
T dt   W  where 2

0  is an arbitrary positive constant [46, 

55]. In Fig. 3.11, U is the input of the linear subsystem, ɛ is its output, W is the output of the 

nonlinear subsystem and U=-W. 

First of all, in order to find the equivalent linear and nonlinear subsystems of the rotor flux 

MRAS observer, the error vector ɛ, which is the difference between the reference and 

adaptive fluxes, needs to be defined as: 
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rdrdd ̂    

rqrqq ̂   (3.66)

Which can be written as an error vector as: 

 Tqd ε  (3.67)

Linear Feedforward subsystem

Nonlinear Feedback subsystem

ε U=-W

-W

 

Fig.  3.11 The hyperstability theory equivalent system block diagram 

By differentiating (3.66) and substituting in (3.60): 

rqrrqrd
r

d ˆ)ˆ(
T

1
p    

rdrrdrq
r

q ˆ)ˆ(
T

1
p    (3.68)

And in matrix form: 

)ˆ(
ˆ

ˆ
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T

1
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r
r
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
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
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




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

















 (3.69)

If the following form is considered: 
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1
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rq 
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











W           (3.70)

The system can be presented as: 

WAεε p  (3.71)

WU 

p

1

A

p

1
)(1 

)(2 

W

Nonlinear Subsystem

Linear Subsystem









 rd

rq

ˆ

ˆ




r

r̂



 

Fig.  3.12 The linear and nonlinear system presentation 

Equation (3.71) is similar to the linear and nonlinear equivalent subsystems in Fig. 3.12 and 

the transfer function of the linear system is obviously positive and real.  

If the adaption law is defined as: 

 d)()(ˆ
t

0
12r   (3.72)

By substituting (3.72), (3.70) and (3.67) in 2
0

t

0

T dt   W  the following can be found: 
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2
0

t

0
12r

t

0 rdqrqd dt)d)()(()ˆˆ(     (3.73)

This inequality can be satisfied if the following functions are used [46]: 

)ˆˆ(K)ˆˆ(k)( rqrdrdrqirqdrdq21     

)ˆˆ(K)ˆˆ(k)( rqrdrdrqprqdrdq12    (3.74)

 

If a speed tuning signal is defined as: 

rqrdrdrq
ˆˆ    (3.75)

From (3.74)  can be minimized by applying a PI controller which at the same time can 

generate the estimated speed of the machine rotor. As a conclusion, the IM estimated speed 

can be expressed as: 

 )
p

K
K(ˆ i

pr   (3.76)

Fig. 3.13 shows the adaption mechanism of the rotor flux linkage MRAS observer. 
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Fig.  3.13 The adaption mechanism of the rotor flux linkage MRAS observer 
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3.4.3 The system representation in discrete time 

Until now, all the equations derived are represented in continues time domain. However, 

because of the fact that the practical implementation of the drive system requires these 

equations to be processed digitally, the discrete representation of the system is considered 

within this section. To perform the continues to discrete-time transformation, all the 

differential equations need to be transferred into Laplace domain. The resultant equations can 

then be transferred into z-domain by applying Euler backward transformation.  

3.4.3.1 Discrete-time reference model 

The continues-time equations that represent the reference model are: 

  )piLiRv(
L

L
p sDssDssD

m

r
rd     

)piLiRv(
L

L
p sQssQssQ

m

r
rq    (3.77)

 Applying Laplace transformation on (3.77) yields: 

 )s(siL)s(iR)s(v
L

L
)s(s sDssDssD

m

r
rd     

 )s(siL)s(iR)s(v
L

L
)s(s sQssQssQ

m

r
rq    (3.78)

According to Euler backward transformation, every s can be replaced by 
Ts

z1
s

1
 and 

(3.78) becomes:    
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(3.79) can also be written as: 
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Rearranging (3.80) gives: 
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Equation (3.81) represents the discrete-time reference model of the rotor flux linkage MRAS 

observer. 

3.4.3.2 Discrete-time adaptive model 

The continues-time equations that represent the adaptive model in the rotor reference frame 

are: 
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Applying Laplace transformation on (3.82) yields: 
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According to Euler backward transformation: 
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 , and (3.72) becomes: 
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(3.84) can also be written as: 
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Rearranging (3.85) gives: 
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Equation (3.86) represents the discrete-time adaptive model of the rotor flux linkage MRAS 

observer. 
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3.4.3.3 Discrete-time adaption mechanism 

As it has been discussed previously, the speed tuning signal ɛω  can be minimized by applying 

a PI controller, and, therefore, it can be considered as the adaption mechanism of the 

observer. 

The continues-time PI is written as: 

)t(y)t(ydt)t(K)t(K)t(ˆ 21ipr      (3.87)

where )t(K)t(y p1  and  dt)t(K)t(y i2  . 

Applying Laplace transformation gives: 

)s(Y)s(Y)s(
s

K
)s(K)s(ˆ 21

i
pr     (3.88)

where )s(Y1 , )s(Y2 are the Laplace transformation of )t(y1 and )t(y2 , respectively. 

From Euler backward transformation and by substituting s by
Ts

z1 1
 the following can be 

written: 

   kKky p1    

     1kykTKky 2si2     

     kykykˆ 11r   (3.89)

3.5 Summary 

This chapter has presented the modelling of the IMs using space vector principle and the 

principle of vector control has also been explained. It has also discussed the flux linkage 

MRAS observer modelling in both continues and discrete time domains. 
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CHAPTER 4  

Model Predictive MRAS Speed 

Observers 

4.1 Introduction 

As has been discussed in the previous chapter, in the classical MRAS based speed observers, 

a fixed-gain PI controller is employed in the adaptation mechanism to produce the estimated 

position or speed. This is because of its simple structure and ability to generate a satisfactory 

performance over a wide range of speeds. However, at low speeds, inverter nonlinearities and 

machine parameter variation become more dominant. As a result, the fixed gain PI may not be 

able to maintain the system stability or at least to provide the required performance. 

Moreover, the tuning of these PI gains is not an easy task and little effort has been devoted in 

the literature to address this problem.  

In the first part of this chapter, a novel MP-MRAS speed observer for sensorless vector 

control IM drives is introduced to solve the problems associated with the adaption mechanism 

design. The finite control set model predictive control concept is incorporated in the design of 

the new observer. In the proposed scheme, the adaptation mechanism is based on solving an 

optimization problem with the objective of minimizing the speed tuning error signal of the 

MRAS observer over a finite number of rotor position angles. A rotor position search 

algorithm is developed to ensure that the optimal position is obtained at each sampling time. 

The computational complexity of the proposed scheme is evaluated and a modified method is 

employed to reduce its execution time to make it suitable for practical implementation. The 

performance of the proposed predictive observer is tested both experimentally and by 

simulation using Matlab R2013a and a 2.2kW IM drive which employs FOC as the motor 

control strategy. A detailed comparison between the proposed scheme and the classical rotor 

flux MRAS observer is clarified in the next chapters. Results show the superior performance 

of the proposed scheme at different low speed operating conditions including regeneration 

and improved robustness against motor parameter variations.  
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In the second part of the chapter, a voltage compensating method is introduced to the 

reference model of the MP-MRAS observer to improve the system robustness. The proposed 

compensating method runs in parallel with the speed estimation algorithm, and it takes 

advantage of comparing the fluxes at the output of the adaptive and reference models which 

are calculated based on the current and voltage models of the IM respectively. This 

compensates for any disturbance taking place in the reference model, and hence, results in 

reliable speed estimation. In this part also, a new method to extract motor speed from the rotor 

position signal is introduced. This method employs an adaptive low pass filter (LPF) which 

can adapt its time constant depending on the dynamic state of the system to allow higher 

filtering quality at steady state and faster dynamic response during the transients. The 

simulation and experimental results in the next chapters confirm the effectiveness of the 

proposed scheme for sensorless speed control of IM drives. 

This chapter is divided into three parts; the first part presents the principle of model predictive 

controllers (MPC) and finite control set model predictive controllers (FCS-MPC). The second 

part introduces the principle of the proposed MP-MRAS observers. The final part discusses 

the proposed voltage compensating method and speed extraction mechanism.  

4.2 Model Predictive Controllers (MPC) 

Model Predictive Controllers (MPC) use the system model to predict the future behaviour of 

one or more of the system variables over a prediction horizon, which is an integer multiple of 

the sampling period. A cost function is then used to evaluate these predictions and to choose 

the one that minimize the cost function. This leads to a sequence of future control actions over 

the prediction horizon, where only the first value of this sequence is applied. This algorithm is 

repeated at every sampling period during the operation [86]. 

The main advantage of using MPC is that the system constraints and nonlinearities can be 

easily contained in the cost function and the controller design. Unfortunately, MPCs require a 

large number of calculations to solve the optimization problem which make them unsuitable 

for power converter control and drive applications. This is because in such applications, the 

control problem is required to be solved in real time within one sampling time, which is 

usually too short to process the MPC algorithm [86].  
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Many solutions have been suggested to overcome the computational problem associated with 

MPCs, which has led to different types of MPCs. One solution is to solve the optimization 

problem off-line and then replacing it by a search tree in the real time application [87]. The 

Generalized Predictive Control (GPC) is another solution, where the optimization problem is 

solved analytically to obtain a linear control [88]. The most feasible method that has been 

widely applied in power converter and drive applications is the FCS-MPC [81, 89-93]. These 

controllers use the discrete nature of the power converter (Fig. 4.1) in solving the optimization 

problem, which means that the system behaviour is only predicted at the switching states of 

the power converter and the cost function is evaluated at these predictions.  
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Fig.  4.1 Block diagram of generic three phase VSI inverter 
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4.2.1 Finite control set model predictive controller 

Generally speaking, the control problem of any power converter or drive system can be 

simply defined as choosing the proper control action S(t) (which is usually the gate signals of 

the power switches), that can drive a system variable x(t), as close as possible, to a demanded 

value x*(t) of the same variable [86].  

If a system with a finite number of control actions n is considered, the measured value of the 

variable x(k)  at the time instant k can be evaluated along with the control action Sn to predict 

all possible transients of the variable )1k(x p
i  at the next sampling period, according to a 

prediction function f  which is derived from the discrete model of the controlled system. This 

means the predictions )1k(x p
i   can be calculated as: 

}S),k(x{f)1k(x i
p

i    for i =1, 2, …, n (4.1)

Cost function 
minimization for 

i=1, 2, ….., n

Predictive model
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i 

n
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converter

S(k)

x(k)

FS-MPC

Measurement

 

Fig.  4.2 Block diagram of FCS-MPC 

To choose a proper control action, a cost function fg is defined, which depends on both the 

prediction )1k(x p
i   and the future reference value )1k(x*

i   to calculate the different costs 

gi corresponding to each of the predictions: 

)}1k(x),1k(x{fg *
i

p
igi   for i =1, 2, …, n (4.2)

It can be noticed from (4.2) that, in order to find the different costs, the desired value of the 

variable )1k(x*
i   at the next sample k+1 is required. For systems which have a slow 
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dynamic response relative to the system sampling period Ts, the desired value x* can be 

considered constant over one sampling period Ts which means )k(x)1k(x *
i

*
i  , whereas for 

highly dynamic systems, )1k(x*
i  should be estimated via an appropriate method. The cost 

function in its simplest form can be considered equal to the absolute value of the error 

between the predicted and the demanded values |)1k(x)1k(x|g p
i

*
ii  . As a result, by 

evaluating the cost function at the n different predictions, n different costs are obtained and 

the control action associated with the minimum cost, i.e. )n,...,2,1i,gmin( i  , is chosen as the 

output of the controller to control the system variable x. Fig. 4.2 presents a block diagram of 

the FCS-MPC system. 

As a result, in contrast to the conventional model predictive controllers, FCS considers the 

discrete nature of the inverter in solving the control optimization problem [94]. This method 

therefore has the advantages of both simplicity and design flexibility making it attractive to 

electric drives applications [79]. 

4.3 The Proposed Model Predictive MRAS Observer 

As mentioned previously, the operational principle of the FCS-MPCs is used to design the 

adaptation mechanism in the proposed MP-MRAS speed observers. An optimization problem 

is formulated to find the rotor position in order to minimize a cost function, which is the speed 

tuning signal (3.75) in the case of the MRAS observer. 
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Fig.  4.3 Block diagram of the proposed MP-MRAS observer 
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In contrast to the FCS-MPC, the rotor position, which varies continuously between 0 and 

360º, does not have the same discrete nature as the inverter output. Therefore a search method 

is applied to discretize the rotor position into a finite number of positions to allow evaluating 

the cost function at each of these discrete positions. This search is performed within an 

iteration based process. The block diagram of the proposed MP-MRAS observer is shown in 

Fig. 4.3. The flow chart of the proposed search algorithm is shown in Fig. 4.4. The algorithm 

starts by calculating the reference model outputs ψrD, ψrQ from the stator voltages and 

currents. The discretization of the rotor position begins by starting from an initial base angle 

θbase,0 and then displacing this angle by a displacement (Δθi) which is calculated as follow: 

io
i 245   (4.3)

where i is the order of the current iteration. 

The displacement of the base angle θbase within each iteration is carried out to get eight 

discrete rotor positions as follow: 

)4j.(ibasej,i    (4.4)

where j is the order of the displacement. 

In the initial iteration (i=0), the base angle θbase is chosen to be 0º with Δθ=45º according to 

(4.3). Applying (4.4) will produce eight discrete positions: 0º, 45º, 90º, 135º, 180º, -45º, -90º, 

-135º. Each of these discrete positions (θi,j) is used to calculate the adaptive model outputs 

corresponding to each individual position (
ji ,rd̂ and 

jiq ,r̂ ). Consequently the cost function, ɛi,j  

in (3.75), is calculated for each position as follows: 

rdrqrqrdji jiji


,,
ˆˆ,   (4.5)

This leads to eight different cost functions corresponding to each of these angles. The angle 

corresponding to the minimum cost function of the eight positions is chosen as the base or 

starting point θbase, 1 for the next iteration.  

At the next iteration (i=1), the angle displacement is decreased to 22.5º=45º×2= -1
1 , 

which increases the search accuracy by a factor of 2. The search then starts again from the 
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new base angle θbase,1 to find the angle that generates the minimum cost function in the second 

iteration. Fig. 4.5 shows the initial and first steps of the search algorithm.  

calculate ∆θi, and set j=0

ε i,j<ε initial

Make ε initial=ε i,j and θbase, i+1=θi,k 

j=8
Yes

Yes

No

start

Read stator currents and 
voltages

Evaluate the reference model  and 
initiate both θbase, 0 and ε initial

set i=0

Calculate θi,j and evaluate the adaptive 
model 

calculate the cost function ε i,j

j=j+1

i=i+1

i=8

end

 θrotor = θbase, 8

No

No

Yes

 

Fig.  4.4 Flowchart of the proposed rotor position search algorithm 

After each iteration, the search algorithm gets closer to the optimal solution, and by the end of 

the 8th iteration (i=7 and Δθ7=0.35º), the optimal rotor position can be found with 0.35º 
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accuracy. Therefore, by running this algorithm, it can be assured that the optimal rotor 

position, which produces the minimum cost function throughout the search space, is selected 

as the output of the observer. 

As described previously, the output of the proposed scheme is the rotor position, and to 

extract the speed signal the following procedure is applied: 

The change in rotor position over the last sampling period is calculated from: 

1)-(k -(k) = rotorrotor   (4.6)

where k is the current time sample. 

This change is recorded over 200 samples and the average value is obtained by applying: 





200

1n
nave 200

1   (4.7)

The speed is finally found by dividing the average by the sampling period. The conversion to 

rad/sec is considered here also. 

s

average

T60

2
N


  (4.8)

where N is the rotor speed in rpm. 

A drawback of the proposed method is the high computational effort required to run the 

search algorithm eight times in each sampling period. However, the rotor position, as a 

mechanical variable, changes relatively slowly and hence it does not vary significantly 

between two time samples. Therefore, instead of initiating the search algorithm in each 

sampling period with zero angle (θbase,0=0), it can be initialized by the output of the algorithm 

in the last sampling instant   θbase,0=θrotor(k-1). As a result, the number of the iterations 

required by the search algorithm to find the optimal solution can be significantly reduced as 

the search is performed only around the previous rotor position. This simplified scheme is 

referred to as “modified-predictive”.  
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Fig.  4.5 Schematic representation of the first two steps of the proposed search algorithm. (a) 

Initial iteration. (b) First iteration. 

 Experimentally, it was found that only the last iteration loop (i=7) is required to find the rotor 

position using the modified-predictive scheme without affecting the estimation accuracy. This 

significantly reduces the execution time of the proposed scheme from 103 μs to 39 μs. For 

comparison purpose, Table 4.1 shows the execution times for the two versions of the 

proposed predictive scheme in addition to the PI-based classical MRAS observer. It should be 

mentioned here that these times are specific for the TMS320F28335 floating point 
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microcontroller (150 MHz clock) used in the experiments and it can be further reduced if a 

faster microcontroller is applied.  

From now on the term “MP-MRAS observer” will be used to refer to the modified scheme 

with the reduced execution time. 

The proposed predictive scheme applies an iterative search method to find the rotor position. 

This is fundamentally different from other MRAS observers available in the literature, such as 

those using PI, sliding mode and fuzzy logic adaptation mechanisms. The proposed method 

does not require any gain tuning like the aforementioned schemes which make the design of 

the observer much simpler and ensure the optimum operation of the observer at all operating 

speeds. Application of the proposed scheme always ensures that the speed tuning signal is 

driven to almost zero in each sampling period. The scheme is capable of achieving minimum 

error in one sampling time following any disturbance. This results in the proposed scheme 

having a significant advantage over other approaches.   

Symbol Execution Time 

Control Sampling Time 100 μs 

PI 14 μs 

MP-MRAS 103 μs 

Modified MP-MRAS 39 μs 

Table 4.1 The execution time of the different applied observers 

4.4 Discussion of the search-based optimization algorithm 

As it has been discussed, the proposed observer applies a search-based algorithm to find the 

rotor position corresponding to the minimum estimation error. In this section, the relationship 

between the estimated flux angular position and the speed tuning signal (the estimation error) 

will be investigated in more details. This investigation will be deployed next to explain the 

methodology applied to design the search algorithm applied in the thesis. 

The speed tuning signal (the estimation error) is given by: 
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rqrdrdrq  ˆˆ   (4.9)

The actual  and estimated rotor flux vector coordinates can be expressed as: 

 erd  cos  

(4.10)

 erq  sin  

  erd  ˆcosˆˆ   

(4.11)

 erq  ˆsinˆˆ   

Substituting (4.10) and (4.11) into (4.9) yields: 

       eeee  ˆsinˆcosˆcosˆsin   

 (4.12)

 ee  ˆsinˆ   

From (4.12) it can be noticed that the relationship is sinusoidal between the speed tuning 

signal  and the estimated position e̂  for a given rotor flux angle e . In other words, the 

speed tuning signal will be changing sinusoidaly over the search process as the position 

iteration occurs. This is shown in Fig. 4.6. 
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Fig.  4.6 Speed tuning signal ε versus the estimated rotor position e̂  
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After the estimation error is found as a function of the estimated rotor flux position, the 

design of the proposed search algorithm can be discussed.  

As it has been found, the estimation error   has a sinusoidal relationship with estimated 

rotor flux position e̂ . This implies two different points. The first one is that   does not have 

a local minima, and, therefore, it is not required to apply a complicated estimation method to 

find the point at which this error is equal to zero.  The second point is that the sinusoidal 

relationship means that there are two different points at which the estimation error 

 becomes zero. For example from Fig. 4.6, in the case when 2/ e ,  it can be seen that 

 becomes zero at 2/ˆ  e  and 2/3ˆ  e . This makes it difficult to tell which of the two 

values represent the solution. To solve this problem, instead of searching the point at which 

the estimation error becomes zero, the position  maxê at which the error becomes at the 

maximum can be searched instead. The real solution will be then shifted by 2/  from this 

point. This means: 

  2
ˆˆ

max

  ee
 

(4.13)

The same procedure was followed in this thesis in order to find the estimated rotor position 

corresponding to the minimum speed tuning signal. 

4.5 Improved Model Predictive MRAS Observer 

As will be discussed in the next chapters, the MP-MRAS observer gives a better performance 

at different operating conditions, including regeneration, in comparison with classical MRAS-

based observers. However, the experimental results shows oscillations in the estimated rotor 

speed, especially at light loading conditions. Furthermore, due to the use of the voltage 

equation in the reference model, the scheme remains sensitive to the variations in the machine 

parameters.  

In this section, a new speed extraction method is introduced to the design of the MP-MRAS 

observer to reduce the oscillations in the estimated speed at light loading conditions. 

Furthermore, a voltage compensating method is employed in the reference model of the 

observer to address the problem of sensitivity to motor parameters variation.   
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4.5.1 Speed extraction using an adaptive low pass filter 

As mentioned previously, the MP-MRAS observer presented shows oscillations in the 

estimated rotor speed especially at light loading conditions. In this section, a new method to 

extract motor speed from the rotor position signal is introduced. This method employs an 

adaptive low pass filter (LPF) which can adapt its time constant depending on the dynamic 

state of the system to allow higher filtering quality at steady state and faster dynamic response 

during transient operation.  

θ rotor

ωref

‐

εω Adaptation 
Mechanism

τ 

Adaptive Low 
Pass Filterdt

d n̂ f̂

 

Fig.  4.7 Block diagram of the proposed speed extraction method 

The operation of the proposed method starts by differentiating the rotor position signal θr, 

which results from the predictive observer algorithm (Fig. 4.7). The outcome of this 

differentiation is the rotor angular velocity ωn, which contains high level oscillations as a 

result of the differentiation.  These oscillations are reduced by applying an adaptive LPF. The 

filter adaptation mechanism is shown in Fig. 4.8. 

The filter adaptation mechanism reads the error between the reference and the estimated 

speeds ɛω and depending on its value it determines the system dynamic state. This error is 

close to zero during the steady state and it increases when a disturbance in the system takes 

place. When the error ɛω exceeds a set value,   the filter adaptation mechanism decreases the 

time constant instantaneously to τlow to allow a faster dynamic response. As a result, the motor 

speed moves toward the reference speed faster and the error ɛω starts to decrease. Once the 

error ɛω becomes lower than the same previous set value, the adaption mechanism starts to 

gradually reincrease the filter time constant until it reaches τhigh.  
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It has been found experimentally that if the filter time constant is increased suddenly, the 

system can lose its stability because of the spikes that appear at the output of the filter. 

τ=τlow 

start

Read the speed 

error εω 

end

No Yes
εω < Set Value 

τ=τhigh 
YesNo

τ=τ+set value 
τ=τhigh 

Update the filter 
time constant τ  

 

Fig.  4.8 The flow chart of the LPF adaptation mechanism 

4.5.2 The reference model voltage compensating method 

As mentioned in the beginning of this chapter, due to the use of the voltage equation in the 

reference model, the MP-MRAS observer shows sensitivity to the motor parameter variations. 

In this section a voltage compensating method is introduced to the reference model to 

improve the system robustness.  

The proposed compensating method runs in parallel with the speed estimation algorithm, and 

it takes advantage of comparing the fluxes at output of the adaptive and reference models 

which are calculated based on the current and voltage models of the IM respectively. This can 
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compensate for any disturbance taking place in the reference model, and hence, results in 

reliable speed estimation. The block diagram of the proposed method is shown in Fig. 4.9. 

The fluxes in the adaptive model are calculated in the stationary reference frame based on the 

current model as: 

rqrrd
r

sD
r

m
rd T

i
T

L

dt

d  ˆˆˆ
1

ˆ    

rdrrq
r

sQ
r

m
rq T

i
T

L

dt

d  ˆˆˆ
1

ˆ   
(4.14)
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Fig.  4.9 Block diagram of the compensated system 

Note that the stator resistance Rs does not appear in the equations, and Lm is divided by Tr 

which makes the effect of these parameters negligible in the adaptive model.  

The reference model calculates the same flux components based on the voltage model in the 

stationary reference frame as:  

)( sDssDssD
m

r
rd i

dt

d
LiRv

L

L

dt

d     
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)( sQssQssQ
m

r
rq i

dt

d
LiRv

L

L

dt

d    (4.15)

From (4.14) and (4.15) it can be noticed that both Rs, and Lm variation has greater effect on 

the flux calculation in the reference model compared to the adaptive model. To reduce this 

effect, two PI controllers are used to minimize the difference between the two models outputs, 

and, hence, to compensate for the parameter variation. This results in two voltage 

compensating terms as: 

Dp
i

comD K
s

K 





 ,v   

Qp
i

comQ K
s

K 





 ,v  (4.16)

where Kp and Ki are the gains of the PI controller in the voltage compensating method and ɛD, 

ɛQ are the errors between the reference and the adaptive models fluxes which are calculated 

as: 

ddD rrˆ     

qqQ rrˆ    (4.17)

These compensating terms are added finally to the voltages in the input of the reference model 

which becomes: 

)v( , sDssDscomDsD
m

r
rd i

dt

d
LiRv

L

L

dt

d     

)v( , sQssQscomQsQ
m

r
rq i

dt

d
LiRv

L

L

dt

d    (4.18)

To mathematically prove the stability of the proposed method, two disturbance terms DD and 

DQ are added to the reference model equations to represent the motor parameter variations. As 

a result, the reference model equations become: 
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)( ,rd D
sD

ssDscomDsD
m

r D
dt

di
LiRvv

L

L
    

)( ,r Q
sQ

ssQscomQsQ
m

r
q D

dt

di
LiRvv

L

L
   (4.19)

Substituting (4.19) in (4.17) yields: 

)(ˆ ,r D
sD

ssDscomDsD
m

r
dD D

dt

di
LiRvv

L

L
    

)(ˆ ,rq Q
sQ

ssQscomQsQ
m

r
Q D

dt

di
LiRvv

L

L
    (4.20)

Since this compensator operates in parallel with the speed observer and because the MP-

MRAS observer can drive the speed tuning error to zero within one PWM cycle (as discussed 

in the previous section), the following assumption can be made: 

)(ˆ r  
dt

di
LiRv

L

L sD
ssDssD

m

r
d    

)(ˆ r  
dt

di
LiRv

L

L sQ
ssQssQ

m

r
q   (4.21)

By substituting (4.21) in (4.20) and removing the similar terms the following can be obtained: 

)( , DcomD
m

r
D Dv

L

L
    

)( , QcomQ
m

r
Q Dv

L

L
   (4.22)

Substituting (4.16) in (4.22) results in:  

dtDdtkk
L

L
DDiDp

m

r
D })({       
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dtDdtkk
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L
QQiQp

m

r
Q })({      (4.23)

To get rid of the integration in (4.23) the second derivation is taken: 
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The dynamic response of the distortion terms DD and DQ is far too slow compared to the drive 

system dynamic response since they represent the motor parameter variations.  This results in 

0 QD DD   and the error dynamic equations become: 

Di
m
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m
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L
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Qi
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r
Q k

L

L
k

L

L     (4.25)

From (4.25), if the controller gain Kp is chosen to be positive, the error signals D  and Q  

will converge to zero at steady state and the dynamic response of the error will be determined 

by the values of  Kp and Ki. 

From here on the observer with the voltage compensation and the new speed extraction 

method is referred to as the improved MP-MRAS observer and the original system without 

the compensation is referred to as the MP-MRAS observer. 

4.6 Summary 

In this chapter, a novel MP-MRAS rotor speed observer is proposed for sensorless IM drives. 

The new observer is based on the finite control set-model predictive control principle and 

applies an optimization approach to minimize the speed tuning error signal of the MRAS 

scheme. This eliminates the need for a PI controller in the adaptation mechanism. A search 

algorithm is employed to ensure that optimal rotor position is achieved in each sampling 
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period that minimizes the error signal. A modification has been introduced to the proposed 

algorithm to reduce its computational complexity compared to conventional PI controller.  

Due to the use of the voltage equation in the reference model, the MP-MRAS remains 

sensitive, to a certain extent, to the variations in the machine parameters. Therefore, a voltage 

compensating method is employed in the reference model of the MP-MRAS observer to solve 

problems associated with sensitivity to motor parameters variation. Furthermore, to reduce 

rotor speed oscillations at light loading conditions, an adaptive filter is employed in the speed 

extraction mechanism, where an adaptation mechanism is proposed to adapt the filter time 

constant depending on the dynamic state of the system.  
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CHAPTER 5  

The Simulation Results 

5.1 Introduction 

To investigate the proposed speed estimation scheme, a model of a field oriented 

control-based drive system, was built with Matlab® R2013a Simulink® tools. Fig 5.1 shows 

the block diagram of the drive system model. The speed observer in the diagram can be the 

classical MRAS observer, the MP-MRAS observer or the improved MP-MRAS observer.  

*
sdi PI

*
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sqv
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*
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dq

DQ

DQ

abc
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 sDv
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dq
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sdi

sqi

 Dsi

 Qsi
 Dsi
 Qsi *

 sDv
*
 sQv

rθ

rω

Induction 
Motor

 

Fig.  5.1 The block diagram of the field oriented control drive system 

In the simulation, it was assumed that the inverter is ideal which means that the IM is fed 

directly from the reference voltage. This was necessary to speed up the simulation which can 

significantly slow down by the PWM generating mechanism. However, this means that 

neither the inverter nonlinearity nor the dead time effects were taken into the consideration 

which can affect the estimation accuracy at low speeds. 
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 Another approximation was taken in this simulation which is related to the voltage and 

current sensors. These sensors where considered ideal by neglecting the DC-offset, the noise 

and the wrong calibration effects on the measured signals, and hence on the the speed 

estimation. The effect of this approximation is less significant at high speeds where the signal 

to noise ratio is relatively high. But as the speed is reduced so do the voltage and current 

levels leading to a mismatch between the actual and simulated signals at very low speeds. 

This will be discussed further in chapter 7. 

To create a more realistic simulation, the code was written by using C-language and 

S-function block. This ensures that the digital control code is exactly the same in both the 

simulation and the micro controller. In addition, the limitation of the microcontroller 

computational capability is considered. For example, the memory size allocated for each 

variable, the switching frequency, the way the sine and cosine function calculated, are all 

considered.    

5.2 The Motor Simulation 

The induction machine model in a stationary reference frame (D,Q) is performed. The 4-pole 

squirrel cage machine has the following parameters: 

 

Symbol Quantity Value 

Rs Stator Resistance 2.35 Ω 

Rr Rotor Resistance 1.05 Ω 

Ls Stator Inductance 0.344209 H 

Lr Rotor Inductance 0.348197 H 

Lm Mutual Inductance 0.332090 H 

Table 5.1 The induction motor electrical parameters 

 To obtain the mechanical rotor speed ωr, the following mechanical model is applied, which 

determines the rotor speed, depending on the electromagnetic torque generated by the 



The Simulation Results                                                                                                 Chapter 5 

69 

 

machine Te, the load torque Tl, the machine moment of inertia J and the machine friction 

coefficient B as follows: 

r
r

le B
dt

d
JTT 

  
(5.1)

In (5.1) the machine moment of inertia J is obtained by applying the “run-down” test [95] and 

it was found to be equal to J=0.0139Kg.m-2. The friction coefficient B was found the same 

way and it is equal 0.001128Nm/rad.s-1. 

5.3 The Control System Simulation  

The field oriented control scheme is employed which is a very common control method for 

both induction and synchronous machines. As aforementioned, in this control algorithm the d 

axis of the synchronously rotating reference frame is chosen to be aligned with the rotor flux. 

The importance of this alignment is that it allows independent control of the magnetic flux 

and the electromagnetic torque produced in the machine. This is achieved by controlling d-

axis and q-axis current components respectively in the synchronously rotating reference frame 

[2]. As in any other machine, the electromagnetic torque in the IM is equal to the cross 

product between the rotor flux and the stator current. This leads to the following: The rotor 

flux in the machine is produced by the d component of the stator current (ids) while the torque 

is produced by the q component of the stator current (iqs) [2]. 

As it can be seen in Fig 5.1, the control system involves two interlocked control loops, a 

current loop and a speed loop. The purpose of the speed control loop is to force the measured 

speed (or the estimated speed in the sensorless systems) to follow the reference speed, which 

is achieved by feeding the speed error, the difference between the measured (estimated) and 

the reference speeds, into a PI controller. The speed PI controller will in-turn determine the 

value of the torque producing current component (iqs
*) which will be able to correct the speed 

value. Similarly to the speed control loop, the flux and torque current components (ids and iqs) 

are regulated by two other PI controllers. The outputs of these controllers are the stator 

reference voltages represented in a stationary reference frame (vds
* and vqs

*). 

 Before the resulting three phase voltages can be applied to the machine terminals, two 

different transformations (Park-1 and Clarke-1) are applied to find the three phase reference 

voltages. Likewise, after the three-phase currents are measured at the motor terminals, they 
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are transformed via Clarke and Park transformations to (isD,isQ) and  (isd,isq) to be compared 

with the reference currents (isd
*,isq

*). 

As it can be seen in Fig 5.1, depending on the reference voltages (vsD
*,vsQ

*) and the currents 

(isD,isQ), the speed observer (which can be either the classical or the model predictive MRAS 

observers) can calculate the rotor speed and the rotor flux position. These quantities are 

essential for both of the field orientation and reference frame transformations. 

5.4 The Simulation Results 

5.4.1 Performance comparison of the classical MRAS and the MP-MRAS observers  

This part of the results evaluates the performance of the MP- MRAS observer in comparison 

with the classical rotor flux-based MRAS observer. Many tests are carried out in both 

open-loop and sensorless operation modes. The simulation is performed in Matlab® R2013a 

Simulink® tools. The S-function block is used to build the observer model by using C-coding. 

The solver is set to ode1 (Euler) and the sampling period is set to 100µs. An ideal inverter and 

pulse width modulator are assumed which means the induction machine is fed directly from 

the reference voltages Fig 5.1.  

5.4.1.1 Open loop operation 
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Fig.  5.2 Structure of drive system in open loop operation mode 
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In this operation mode the FOC scheme obtains its speed signal from the shaft encoder. The 

block diagram of the system model is shown in Fig 5.2, where the speed observer in the 

diagram can be either the classical rotor flux MRAS observer or the MP-MRAS observer 

depending on which of the two observer systems is applied.  

In the first test, while the drive system is running at no load and 20 r/min (1.33% of the rated 

speed), 75% of the rated torque is suddenly applied at the time instant 2 Sec. The performance 

of the drive system with the two MRAS observers (the MP-MRAS and the classical MRAS 

observers) is shown in Fig 5.3, and Fig 5.4. The results of this test show the superiority of 

MP-MRAS observer in comparison with the classical algorithm. The oscillations in the case 

of the predictive observer vary between 20 r/min and 21 r/min which is 65.2% less than the 

case of the classical MRAS where the speed oscillates between 21.47 r/min and 18.6 r/min. 

By comparing the speed tuning signal in both cases in Fig 5.4 it can be noticed that the tuning 

signal in the case of the MP-MRAS is kept below 0.01 even during the transient operation. 

Also it reaches 0.061 in the case of the classical MRAS which is six times bigger. 
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(b) 

Fig.  5.3 Open loop estimation, 20 r/min and 75% load, rotor speed. (a) Classical MRAS. (b) 

MP-MRAS. 
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(b) 

Fig.  5.4 Open loop estimation, 20r/min and 75% load, speed tuning signal. (a) Classical 

MRAS. (b) MP-MRAS. 
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(b) 

Fig.  5.5 Open loop estimation, 63% load, low-speed motoring and regenerating operation, 

rotor speed. (a) Classical MRAS. (b) MP-MRAS. 
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(b) 

Fig.  5.6 Open loop estimation, 63% load, low-speed motoring and regenerating operation, 

speed tuning signal. (a) Classical MRAS. (b) MP-MRAS. 



The Simulation Results                                                                                                 Chapter 5 

76 

 

In the second test, the reference speed is changed in eight steps between 100 r/min (6.66%) to 

-100 r/min (-6.66%), including zero speed and regeneration operation, over a 40 second 

period of operating time. During the first half of the experiment, 63% of the rated load is 

applied to oppose the rotation which means that the machine is operating in the motoring 

mode (positive speed and positive torque), whereas the same amount of torque is applied to 

support the rotation over the second half which correspond to the motor operating in the 

regenerating mode (negative speed and positive torque). 

From the results (Fig 5.5) it can be noticed that the MP-MRAS observer provides a better 

performance in comparison with the classical MRAS observer. The amount of the oscillation 

is significantly reduced over all the different operating speeds including the zero speed and 

the regeneration region. The speed undershoots after each speed change are also less in the 

MP-MRAS observer which means a better dynamic response is achieved. In terms of the 

speed tuning signals (Fig 5.6) it can be observed that this signal is kept under 0.01 over the 

whole range of speeds. This includes the transient and zero speed operation where it reaches 

up to 0.042 in the case of the classical MRAS observer. This means that a better tracking can 

be achieved between the reference and the adaptive models at all different speeds and 

operating conditions. 

5.4.1.2 Sensorless operation 

*
sdi PI

*
sdv

PI
*

sqv
PI*

sqi

*
rω

dq

DQ

DQ

abc

*
 sDv

*
 sQv

DQ

abc

dq

DQ

Speed 
Estimator

sdi

sqi

 Dsi

 Qsi
 Dsi
 Qsi *

 sDv
*
 sQv

rθ

Induction 
Motor 
Model

*
 abc,sv

 abc,si

Mechanical 
Model

ωr^

Te Tl

^

ωr

 

Fig.  5.7 Structure of drive system in sensorless operation mode 



The Simulation Results                                                                                                 Chapter 5 

77 

 

Fig 5.7 shows the structure of the drive system when it operates in closed loop (or sensorless) 

operation mode. In this operation mode, the FOC scheme is driven by the estimated speed. 

The performance of both MRAS observers is tested at different speeds and load conditions. 

In the first test, the reference speed is set to 75 r/min, and the drive is run in the sensorless 

operation mode with zero mechanical load. At the time 2 sec, 75% of the rated load is 

suddenly applied and both the speed signal and the speed tuning signal are traced. Figs 5.8 

and 5.9 show the results of the test. 

The results show the superiority of the proposed observer in comparison with the classical 

MRAS observer in terms of the oscillation reduction in the speed signal (Fig 5.8) both before 

and after applying the load and during the transient operation. From Fig 5.9, it can also be 

noticed that the predictive observer can produce better tracking between the adaptive and the 

reference model by keeping the speed tuning signal as small as 0.01 at all the operating 

points, whereas it reaches to 0.1 in the classical observer case when the load is applied, which 

means 90% improvement. 

For the second test, the speed is set initially to 40 r/min (2.66% of the rated speed) and the full 

rated load is applied, and at 2 sec the speed reference is changed to 100 r/min (6.66% of the 

rated speed). Figs 5.8 and 5.9 show the speed and the speed tuning signal corresponding to the 

test, and once more the MP-MRAS observer system shows a better speed estimation with a 

reduced amount of noise in the speed signal and instant recovery of the speed tuning error 

after the speed transient is applied.   

The system robustness against the motor parameter variation is also tested. The reference 

speed is set to 30 r/min (2% of the rated speed), no mechanical load is applied, and the drive 

is run in the sensorless operation mode. 

 Within the first robustness test (Fig 5.12) the drive is run under normal conditions until 1 sec, 

and after that the stator resistance is increased suddenly by 50% in the observer model. From 

the figure it can be noticed that, the system with the classical MRAS observer is more affected 

by the resistance variation compared to the MP-MRAS system, This shows that the speed 

reaches 1000 r/min for the classical MRAS after 4 seconds compared to 100 r/min for the 

MP-MRAS system. 
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In the second test, the same procedure is repeated for the mutual inductance variations, where 

the inductance is increased by 20% after 1 second. Fig 5.13 presents the result of this test, and 

shows that in the classical MRAS case, the speed starts to oscillate with increased amplitude 

after the disturbance is applied, until it reaches 93 r/min after 4 seconds. However, in the case 

of the MP-MRAS observer, the system is less affected by the inductance variation and 

continues to run normally after the disturbance. 

Fig 5.14 shows the result of the third robustness test where the rotor resistance is changed by 

50% after 1 second. The results show that the MP-MRAS observer system is not affected by 

the resistance variation, and it continues to run normally after the disturbance. The case is 

opposite in the classical MRAS system, where the oscillations in the speed increases as a 

result of the rotor resister variation.  



The Simulation Results                                                                                                 Chapter 5 

79 

 

0 1 2 3 4 5
0

20

40

60

80

Time (s)

R
ot

or
 S

pe
ed

 (
r/

m
in

)

 

 

Reference Speed
Estimated Speed
Measured Speed

 
(a) 

0 1 2 3 4 5
0

20

40

60

80

Time (s)

R
ot

or
 S

pe
ed

 (
r/

m
in

)

 

 

Reference Speed
Estimated Speed
Measured Speed

 

(b) 

Fig.  5.8 Sensorless performance, 75 r/min and 75% load, rotor speed. (a) Classical MRAS. 

(b) MP-MRAS. 
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(b) 

Fig.  5.9 Sensorless performance, 75 r/min and 75% load, speed tuning signal. (a) Classical 

MRAS. (b) MP-MRAS. 
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(b) 

Fig.  5.10 Sensorless performance, reference speed change from 40 to 100 r/min at full load, 

rotor speed. (a) Classical MRAS. (b) MP-MRAS. 
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(b) 

Fig.  5.11 Sensorless performance, reference speed change from 40 to 100 r/min at full load, 

speed tuning signal. (a) Classical MRAS. (b) MP-MRAS. 
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Fig.  5.12 Sensorless performance, the effect of stator resistance change (a) Classical MRAS. 

(b) MP-MRAS. 
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Fig.  5.13 Sensorless performance, the effect of mutual inductance change (a) Classical 

MRAS. (b) MP-MRAS. 
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(b) 

Fig.  5.14 Sensorless performance, the effect of rotor resistance change, rotor speed. (a) 

Classical MRAS. (b) MP-MRAS. 
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5.4.2 Performance comparison of the MP-MRAS and the improved MP-MRAS observers  

As explained in the previous chapter, the improved MP-MRAS observer is introduced to 

overcome the problem of the sensitivity to the motor parameter variation in the MP-MRAS 

observers, and the oscillations in the estimated speed at light-loading conditions. Many tests 

are carried out using Matlab® R2013a Simulink® tools, and the c-code S-function block. 

Within the first test, the effect of Rs variation on the both the speed and flux estimation is 

investigated. The drive is set to sensorless operation mode, and the reference speed is set to 30 

r/min.  The value of the stator resistance is increased over the simulation twice, by 50% and 

100% respectively. Fig 5.15 shows the speed response of the normal and improved MP-

MRAS observer systems corresponding to the test. After the first stator resistance jump, the 

speed in the normal MP-MRAS system increases slightly and the system continues to operate 

in a stable manner until the second resistance change is applied where the system loses its 

stability and the estimated speed increases to above 1000 r/min after 2 seconds. Compared to 

the normal MP-MRAS, the improved observer system is barely affected by the stator 

resistance change and the system operates normally over the whole simulation. The same 

observations can also be found from rotor flux waveforms (Fig 5.16), where in the normal 

MP-MRAS the flux waveforms are significantly distorted by the stator resistance variations. 

This is in comparison to the modified MP-MRAS which successfully maintains the sinusoidal 

waveforms of the fluxes despite the massive change in the stator resistance. 

A similar test is carried out to examine the effect of the mutual inductance variation on the 

speed and flux estimation. The drive is set to operate in sensorless operation mode, and the 

reference speed is set to 30 r/min.  The value of the mutual inductance is increased twice over 

the simulation period, by 20% and 50% respectively. Fig 5.17 shows the speed response of 

the normal and improved MP-MRAS observer systems corresponding to the test. After the 

first mutual inductance jump, the speed in the normal MP-MRAS system starts to oscillate 

and the system continues to operate in a stable manner until the second jump is applied where 

the oscillations become very large and the system loses its stability.  Compared to the normal 

MP-MRAS, the improved observer system is barely affected by the inductance change and 

the system operates normally over the whole simulation. Fig 5.18 illustrates the flux response 

to the inductance change and it shows that in the case of the normal MP-MRAS, the flux 

signal is distorted significantly after changing the mutual inductance whereas the sinusoidal 

waveform of the fluxes is retained in the improved MP-MRAS case. 



The Simulation Results                                                                                                 Chapter 5 

87 

 

0 1 2 3 4
-150

-100

-50

0

50

100

150

Time (s)

R
ot

or
 S

pe
ed

 (
r/

m
in

)

 

 

Reference Speed
Estimated Speed
Measured Speed

 

(a) 

0 1 2 3 4
-150

-100

-50

0

50

100

150

Time (s)

R
ot

or
 S

pe
ed

 (
r/

m
in

)

 

 
Reference Speed
Estimated Speed
Measured Speed

 

(b) 

Fig.  5.15 Sensorless performance, the effect of stator resistance change, rotor speed. (a) 

Normal MP-MRAS. (b) Improved MP-MRAS. 
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Fig.  5.16 Sensorless performance, the effect of stator resistance change, d-axis rotor flux 

signal. (a) Normal MP-MRAS. (b) Improved MP-MRAS. 
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Fig.  5.17 Sensorless performance, the effect of mutual inductance change, rotor speed. (a) 

Normal MP-MRAS. (b) Improved MP-MRAS. 
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Fig.  5.18 Sensorless performance, the effect of mutual inductance change, d-axis rotor flux 

signal. (a) Normal MP-MRAS. (b) Improved MP-MRAS. 
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The results corresponding to the new speed extraction method (which was introduced in 

chapter IV) will be demonstrated in chapter VII (the experimental results). This problem only 

exists in the practical system due to the switching events in the power converter devices 

which is not considered in the simulation models. 

5.5 Summary 

In this chapter, detailed simulation tests were carried out to compare the performance of the 

proposed MP-MRAS and the classical rotor flux-based MRAS observer schemes. Results 

show a better estimation quality of the rotor speed with a significant reduction in steady-state 

oscillations without affecting the dynamic response as a minimum speed tuning signal is 

ensured in both transient and steady-state conditions. Improved robustness against motor 

parameter variations was also demonstrated for the proposed scheme. 

In the next chapters, the experimental investigation will demonstrate the effectiveness of the 

proposed observer in reducing the oscillations in the estimated speed signal and improving the 

system robustness against the motor parameters variation, It it will also demonstrates how the 

proposed observer can increase the bandwidth of the speed controller and reduce the 

minimum operating speed of the drive system. In addition, the spectral composition of the 

estimated speed signals will be provided to numerically compare the amount of the oscillation 

in the classical and the proposed MRAS observers. 
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6.1 Introduction 

In order to experimentally evaluate the proposed observer systems, an experimental platform, 

shown in Fig. 6.1, is used. This platform is based on a 2.2 kW squirrel cage induction machine 

and an eZdsp F28335 controller board. The platform setup is designed to allow both the open 

loop and sensorless (close loop) modes of operation.  

The experimental hardware (Fig 6.2) can be separated into three different parts. The first part 

is the motor rig which consists of a squirrel cage IM, a PM motor-based dynamometer unit 

and an incremental encoder. The second part is the motor drive unit, which includes a power 

converter and is responsible for delivering the IM with the required power. Finally the third 

part is the control unit which is based on an eZdsp F28335 development board and which 

employs the TMS320F28335 floating point Texas Instrument microcontroller. 

 

Fig.  6.2 Laboratory photograph of the experimental hardware 

6.2 The Motor Rig Part 

As mentioned above, the motor rig part consists of a squirrel-cage IM, a dynamometer 

loading unit and an incremental encoder. 
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6.2.1 Squirrel-cage induction motor 

A 2.2kW, 380V, 50 Hz, star-connected, 4-pole, three-phase squirrel cage induction motor, 

manufactured by AmTecs is used as the experimental machine. The machine equivalent 

circuit parameters are given in table 6.1. These parameters are obtained by applying three 

different experimental tests: The DC test, the locked rotor test and the no-load. These tests are 

explained in  [96]. 

 

Fig.  6.3 Laboratory photograph of the squirrel-cage IM 

The DC test is applied to find the stator resistance, while the locked rotor test is applied to 

find the rotor resistance, leakage inductance and the stator leakage inductance. Finally, the no-

load test is applied to find the mutual inductance. 

Symbol Quantity Value 

Rs Stator Resistance 2.35 Ω 

Rr Rotor Resistance 1.05 Ω 

Ls Stator Inductance 0.344209 H 
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Lr Rotor Inductance 0.348197 H 

Lm Mutual Inductance 0.332090 H 

J Momentum of inertia 0.0139Kg.m-2 

B Friction coefficient 0.001128Nm/rad.s-1 

Table 6.1 The induction machine equivalent circuit parameters 

The last two rows in the table (the  rotor moment of inertia  and friction coefficient) represent 

the parameters of the mechanical model of the IM and they are obtained by applying the “run-

down” test explained in [95].  

6.2.2 The dynamometer loading unit 

This unit allows an independent control of the load torque at the IM shaft, and consist of two 

components, the Permanent Magnet Synchronous Machine (PMSM), and the PMSM drive. 

 

Fig.  6.4 Laboratory photograph of the PMSM 

The PMSM is manufactured by Control Techniques and has the following specifications: 

4.19kW, 380V, 8-pole, 20Nm and 2000RPM. Fig. 6.4 shows a Laboratory photograph of the 

PMSM. 
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Fig.  6.5 Laboratory photograph of the PMSM. 

The PMSM drive is also manufactured by Control Techniques, and it operates in two different 

operating modes; the normal duty mode and the heavy duty mode. Table 6.2 gives the 

specifications of the PMSM drive for each mode. Fig. 6.5 shows a Laboratory photograph of 

the PMSM drive. 
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Normal Duty Heavy Duty 

Maximum 

output 

current 

Nominal 

Power at 

400v 

Motor 

Power 

at 

460v 

Peak 

Current 

Maximum 

output 

current 

Open 

loop peak 

current 

Closed 

loop 

peak 

current 

Nominal 

Power at 

400v 

Motor 

Power 

at 

460v 

11 A 5.5 kW 
5.5 

kW 
12.1 A 9.5 A 14.2 A 16.6 A 4 kW 

3.7 

kW 

Table 6.2 The PMSM drive specifications 

6.2.3 The incremental encoder 

A Gurley R120 incremental encoder is used to measure the shaft speed and the position of the 

IM. The encoder specifications are summarized in table 6.3 and a photograph of the encoder 

is shown in Fig. 6.6. 

 

Fig.  6.6 Laboratory photograph of incremental encoder 

Manufacturer Gurley Precision Instruments 

Maximum line count on disc 1024 

Maximum cycles /rev (quad sq waves) 16,384 

Max counts/rev (after quad decode) 65,536 



The Experimental System                                                                                             Chapter 6 

98 

 

Internal square wave interpolation 1×, 2×, 5×, 10×, or 16× 
Instrument error, ± arcminutes 4 

Quadrature error, ± electrical degrees 24 

Interpolation error, ± quanta 0.15 

Maximum output frequency, kHz 
1× square waves 

100 

2× square waves 150 

5× square waves 300 

10×, 16× square waves 500 

Table 6.3 The incremental encoder specifications 

6.3 The Motor Drive Part 

This part is responsible for delivering the induction machine with the required power, and it 

consists of a rectifier, a DC link unit and an inverter (Fig. 6.7 ). 

V
D

C

Ua

Ub

Ub

S2S1 S3

S6S4
S5

IM

Voltage source 
inverter

Diode brige 
rectifier

DC-link unit

Fig. 6.7 Circuit diagram of the motor drive part 
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The rectifier is an RS Components, 3phase, 25A, 1000 V, Vishay VS-26MT100 diode bridge 

which is made of six uncontrolled diodes.  The output of the rectifier is connected to the DC 

link unit which consists of two 470 μF series connected capacitors and two 150 kΩ resistors 

connected in parallel with the capacitors.  The aim of the capacitors is to smooth out the 

voltage at the output of the rectifier, and the resistors are to ensure equal voltage sharing 

between the capacitors. Across the DC link capacitors an LV25-P voltage sensor is connected 

to monitor the DC-link voltage. 

            

                                    (a)                                                                 (b) 

 

(c) 

Fig.  6.8 Photograph of the drive unit. (a) The gate drive circuit. (b) The rectifier.  (c) The 

inverter and the DC-link unit. 
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The inverter unit consist of six IGBT switches. The switches have the following 

specifications: VCES=1200V, INOMINAL=20A, TJ(MAX)=150ºC, VCE(ON)=1.9V. The three-phase 

outputs of the inverter are connected to the IM terminals via three CAS-15NP hall-effect 

current sensors to measure the phase currents. To provide the switching signals to the power 

switches, six gate drive circuits are used which are based on AVAGO ACPL-332J 

opto-isolated driver. These drivers not only provide isolation between the power conductors 

and the controller, they also provide protection against short circuit currents and generate a 

programmable dead band between the different output signals. Fig 6.8 shows a photograph of 

the diode rectifier, the inverter and gate drive circuits. 

6.4 The Control Part 

 

Fig.  6.9 Photograph of the general interface board 

This part reads the measurements from the motor drive and establishes the control 

accordingly. The unit is based on an eZdsp TMS320F28335 floating point Texas Instrument 
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microcontroller board. This controller has the advantage of high speed processing, an external 

SRAM memory, built-in PWM generating circuit, RS-232 interface and many other features 

to allow the controller meet the project requirements. 

To interface the microcontroller to the motor drive circuits, an interface board designed at 

Newcastle University is used (Fig. 6.9). This board contains: 

 Gate drive interface circuits to route the microcontroller PWM signals to the external 

IGBT drives. 

 Sensor interface circuits to allow the different current and voltage sensor outputs to be 

fed into the micro controller. 

 Fault detector circuits connected with the sensor interface circuits to provide fast 

hardware protection when the sensor readings go out of range. 

 A 5604 TLV SPI Digital to Analogue converter (DAC) circuit is provided to allow use 

to monitor four of the internal digital signals. 

 Two shaft encoder interfaces to allow the microcontroller to read the position signals 

of a connected encoder. 

6.5 Summary 

In this chapter, the experimental setup used in validating the proposed observer scheme has 

been presented. The hardware has be divided into three different parts, the motor rig which is 

based on a 2.2 kW squirrel cage IM, the motor drive unit which consists of the power 

converter and was responsible for delivering the power to the IM, and finally, the control unit 

which is based on an eZdsp F28335 board. 

In the next chapter, the experimental results will be presented which will validate the 

proposed observer utilizing the experimental hardware built in this chapter. 
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CHAPTER 7  

The Experimental Results 

7.1 Introduction 

To evaluate the comparative performance of the proposed MP-MRAS observers and the 

classical rotor flux-based MRAS scheme, extensive tests, in both open-loop and sensorless 

operation modes, are carried out using FOC scheme as the IM control strategy. The switching 

frequency of the inverter is set to 10 kHz and the controller-observer algorithm is operated at 

the same sampling frequency (10 kHz), synchronised with the PWM carrier signal. 

In the reference model, to minimize drift and initial condition problems associated with pure 

integration, the integrator is replaced by a low pass filter with a cut-off frequency of 2 Hz. 

The cut-off frequency of the filter should be selected to be as small as possible in order to 

remove the DC component from the flux signals. In addition, as the modulation signals 

available in the controller unit are used as voltage inputs to the reference model (3.59), a 

compensation for the inverter nonlinearity [3] and a dead-band compensator [71] are 

implemented. 

Finally, it should be mentioned here that, to minimise the execution time of the proposed 

control system, which makes use of sine and cosine functions in the reference frame 

transformations, a look-up table for one period is set up of sine and cosine to replace the 

standard sine and cosine functions. The look-up table can execute much faster compared to 

the implementation of sine and cosine functions within a high level language. 

7.2  Performance Comparison of the Classical MRAS and the MP-MRAS Observers  

7.2.1 Open loop observer operation 

As mentioned in the previous chapter, during open-loop observer operation, the FOC scheme 

obtains its speed signal from the shaft encoder. The PI controller gains of the classical rotor 

flux-based MRAS are set to Kp = 300 and Ki = 8000 which are tuned using trial-error method 

to obtain the optimal dynamic performance.  
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Figs. 7.1-7.3 show the classical and MP-MRAS observer performance for 75% load rejection 

at 1.33% of the rated speed (20 r/min). The MP-MRAS shows superiority in comparison with 

the classical MRAS. The oscillation in the estimated speed is reduced significantly and the 

speed tuning signal is kept below 0.02 even during the transient operation whereas it reaches 

0.1 in the classical MRAS, which is five times greater. This means that the predictive 

observer provides better tracking between the reference and the adaptive models at all the 

different operation conditions. The frequency spectrum of the estimated rotor speed signal 

shows that the harmonic content has been reduced significantly in the MP-MRAS observer. 

For example, the 17 Hz component has been reduced from 0.028 per unit to 0.009 per unit, 

which is a reduction of 67.8%. 

Figs.7.4- 7.6 show the classical and MP-MRAS performance when 63% of the rated load is 

applied and the speed reference is changed from 6.6% (100rpm) to -6.6% (-100 rpm) of the 

rated speed in 8 steps, including zero speed and regeneration operation. During the first half 

of the experiment, the load is applied to oppose the rotation which means that the machine is 

operating in the motoring mode (positive speed and positive torque), whereas the torque is 

supporting the speed over the second half and the motor is operating in the regenerating mode 

(negative speed and positive torque). From the results it can be seen that the predictive 

observer can produce speed estimation with a better quality in terms of reduced oscillations at 

all the different speeds including zero speed. The speed tuning signal remains less than 0.011 

during all transient and steady state conditions, while it reaches 0.055 in the classical MRAS. 

During the regeneration region the MP-MRAS observer provides a better performance with 

less steady state error and oscillations. 

To test the proposed scheme’s robustness against motor parameter variations, two 

experimental tests are carried out. Within the first test, Fig. 7.6 .a, a 50% step change has been 

applied to the rotor resistance Rr in the observer model while the machine is running at 

300rpm and full load. It can be noticed from the figure that the MP-MRAS observer is less 

affected by the rotor resistance change with 14 r/min initial undershoot and 0.15s recovery 

time compared to 19 r/min initial undershoot and 0.45s recovery time for the classical MRAS. 

In the second test, Fig.12.b, a step change of 20% has been applied to the mutual inductance 

Lm in the observer model. It can be observed that the MP-MRAS scheme shows better 

performance with less oscillation during transients compared to the classical MRAS. In the 
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two tests, the proposed scheme shows better steady-state rotor speed estimation with a lower 

noise level.  
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(b) 

Fig.  7.1 Open loop estimation, 20 r/min and 75% load, rotor speed (a) Classical MRAS (b) 

MP-MRAS 
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(b) 

Fig.  7.2 Open loop estimation 20 r/min and 75% load, speed tuning signal (a) Classical 

MRAS (b) MP-MRAS 
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(b) 

Fig.  7.3 Open loop estimation, 20 r/min and 75% load, estimated speed frequency spectrum 

(a) Classical MRAS (b) MP-MRAS 
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(b) 

Fig.  7.4 Open loop estimation 63% load, low speed motoring and regenerating operation, 

rotor speed (a) Classical MRAS (b) MP-MRAS 
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(b) 

Fig.  7.5 Open loop estimation, 63% load, low speed motoring and regenerating operation, 

speed tuning signal (a) Classical MRAS (b) MP-MRAS 
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(b) 

Fig.  7.6 Open loop estimation, 300 r/min and full load, effect of motor parameters variation. 

(a) 50% Change in Rr. (b) 20% Change in Lm 

50% step 

increase in Rr  

20% step 

increase in Lm  
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7.2.2 Sensorless observer operation 

In this operation mode, the FOC scheme is driven by the estimated speed. The performance of 

both observers is tested at different speeds and load conditions.  

Figs. 7.7-7.9, show the sensorless operation of both schemes when the drive is subjected to 

75% of the rated load at 5% of the rated speed (75 rpm). Once again the MP-MRAS observer 

shows a better performance by reducing the oscillation in the estimated speed before and after 

applying the load, and this improvement appears more clearly in the frequency spectrum of 

Fig. 7.9. From Fig. 7.8 it can be also noticed that the predictive observer can produce better 

tracking between the adaptive and the reference model by keeping the speed tuning signal as 

small as 0.009 at all the operation points whereas it reaches to 0.08 in the classical observer 

when the load is applied. 

In Figs. 7.10-7.11, the speed reference is changed from 2.6% (40rpm) to 6.6% (100rpm) of 

the rated speed, when rated torque is applied. At both speeds the new observer shows a better 

performance when comparing the oscillations in the estimated speeds and speed tuning 

signals. 

In comparison with sliding mode-MRAS observer results presented in [42], this observer 

offers much higher quality speed estimation with a reduced level of noise. Furthermore, a low 

pass filter is not needed to smooth out the estimated rotor speed. The proposed scheme is also 

less computationally demanding when compared to a rule-based fuzzy logic based-scheme 

[42].  

To further validate the robustness of the proposed scheme against motor parameter variations, 

additional experimental tests have been carried when the machine is running at 30 rpm and 

no-load in sensorless mode of operation. In the first test, Fig. 7.12, a 50% step change has 

been applied to the rotor resistance Rr in the observer model. It is evident from Fig. 7.12 that 

the MP-MRAS observer is far less affected by the rotor resistance change, while the drive 

system loses stability in the case of the classical MRAS for the same level of Rr change. In the 

second test, Fig. 7.13, a step change of 50% has been applied to the stator resistance Rs in the 

observer model. It can be observed that the MP-MRAS scheme shows better performance 

with less oscillation in both the estimated and measured speeds. In the third test, Fig. 7.14, a 

step change of 20% has been applied to the mutual inductance Lm in the observer model. Fig. 
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7.14 shows that the classical MRAS scheme has completely lost its stability after applying the 

change while the proposed MP-MRAS has exhibits much better performance. 

To determine the minimum operating speed of the MP-MRAS observer, the reference speed is 

gradually reduced until the motor loses satisfactory operation. It is found that the minimum 

speed that can be achieved in the case of the MP-MRAS is 8 rpm compared to 25 rpm for the 

classical MRAS, a 68% improvement in low speed capability. Fig. 7.15 shows the sensorless 

operation of the proposed scheme at its minimum speed at both no-load and full-load 

conditions.  

The effect of using the predictive observer on the speed controller bandwidth has been also 

tested. As the estimated speed of the proposed scheme is less noisy than the classical MRAS, 

this allows a further increase the PI gains of the speed control loop which will in-turn increase 

the maximum bandwidth that can be achieved. Experimentally, it has been found that the 

maximum bandwidth of the MP-MRAS observer is 156.68 rad/s compared to 85.63 rad/s for 

the classical MRAS. 
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(b) 

Fig.  7.7 Sensorless performance, 75 r/min and 75% Load, rotor speed (a) Classical MRAS 

(b) MP-MRAS 
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(b) 

Fig.  7.8 Sensorless performance, 75 r/min and 75% Load, speed tuning signal. (a) Classical 

MRAS (b) MP-MRAS 
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(b) 

Fig.  7.9 Sensorless performance,75 r/min and 75% Load, estimated speed frequency 

spectrum. (a) Classical MRAS (b) MP-MRAS 
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(b) 

Fig.  7.10 Sensorless performance, reference speed change from 40 to 100 rpm at full load, 

rotor speed. (a) Classical MRAS. (b) MP-MRAS 
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(b) 

Fig.  7.11 Sensorless performance, reference speed change from 40 to 100 rpm at full load, 

speed tuning signal. (a) Classical MRAS. (b) MP-MRAS 
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(b) 

Fig.  7.12 Sensorless performance, the effect of rotor resistance change (a) Classical MRAS 

(b) MP-MRAS 
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Fig.  7.13 Sensorless performance, the effect of stator resistance change (a) Classical MRAS 

(b) MP-MRAS 
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(b) 

Fig.  7.14 Sensorless performance, the effect of mutual inductance change (a) Classical 

MRAS (b) MP-MRAS 
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(b) 

Fig.  7.15 Sensorless performance at minimum stable speed, MP-MRAS observer, (a) No-load 

(b) Full-load 
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7.3 Performance Comparison of the Normal and Improved MP-MRAS observers  

The parameters in the improved MP-MRAS observer are set to: KP=600, Ki=120, τlow=0.01 

s, τhigh=0.058 s and the speed threshold 4 r/min. The tests are carried out in two stages. In the 

first stage, the robustness of the drive system against the motor parameters variation is tested, 

whereas in the second stage, the oscillations in the speed signal at different loading conditions 

are examined. 

7.3.1 The robustness tests 

During the first test, while the drive is running at 30 rpm, 50% and 100% step changes have 

been applied to the stator resistance Rs. Figs. 7.16-7.17, show the speed and flux responses 

during the previous test where the normal MP-MRAS is applied in (a) and the improved MP-

MRAS is applied in (b).  

Fig. 7.16 shows that in the case of the normal MP-MRAS, as the rotor resistance increases the 

oscillation in the rotor speed also increases, and so does the distortion in the flux signals (Fig. 

7.17), while in the case of the improved MP-MRAS, the speed and the fluxes are not affected 

by the resistance change. 

In Figs. 7.18-7.19, the same test is repeated, but this time, to examine the mutual inductance 

variation effect on the speed and flux estimation quality. The mutual inductance is changed by 

20% and 50% and the speed and the fluxes signals are recorded. From Fig. 7.18 it seems that 

the magnitude of the oscillation in the speed increases as the mutual inductance increase in the 

case of the normal MP-MRAS observer, whereas the speed is not affected by the inductance 

changes when the improved observer is used. The same applies to the estimated rotor flux, 

Fig. 7.19, where the fluxes are massively distorted when the inductance is changed in the 

normal MP-MRAS case and they maintain their sinusoidal form when the improved observer 

is applied. 
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(b) 

Fig.  7.16 Sensorless operation, rotor speed, Rs variation, 30 rpm and no-load operation. (a) 

normal MP-MRAS. (b) improved MP-MRAS 
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Fig.  7.17 Sensorless operation, d-axes rotor flux, Rs variations, 30 rpm and no-load operation 

(a) normal MP-MRAS (b) improved MP-MRAS 
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(b) 

Fig.  7.18 Sensorless operation, rotor speed signal, Lm variations, 30 rpm and no-load 

operation (a) MP-MRAS (b) improved MP-MRAS 
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Fig.  7.19 Sensorless operation, d-axes rotor flux, Lm variations, 30 rpm and no-load operation 

(a) normal MP-MRAS (b) improved MP-MRAS 
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Fig.  7.20 Sensorless operation, rotor speed signal, 50 rpm and 75% step change in load (a) 

normal MP-MRAS (b) improved MP-MRAS 
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Fig.  7.21 The adaptive filter time constant, 50 rpm and 75% step increase in load 

7.3.2 Testing the speed oscillations at different loading conditions 

In the first test, while the machine is running at 30 r/min and no-load, 75% of the rated torque 

is suddenly applied. Fig. 7.20 shows the speed response of the drive for both observers, and it 

can be noticed that the MP-MRAS-based system shows a significant level of oscillations in 

the estimated speed especially before the load is applied compared to the improved MP-

MRAS observer. 

 To further examine the quality of the estimated speed, the integral absolute error (IAE) is 

calculated over the 4 second time period of operation for both observers.  The IAE in the case 

of the MP-MRAS observer is equal to 3789.8 r/min, whereas it is 2091.0 in the case of the 

improved MP-MRAS observer, which corresponds to a 44.8% reduction when the improved 

observer is applied. 

The way the adaptive filter responds to the previous load disturbance is shown in Fig. 7.21 

which represents the filter time constant τ versus time. From the figure it can be noticed that 

the filter applies the high time constant τhigh during the steady state operation which 

effectively reduces the oscillation in the estimated speed. After the load is applied the filter 
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reduces its time constant instantaneously to make it equal to  τlow and this results in a faster 

transient response. 

In the next test, the system response to a step change in the speed demand is examined for 

both observers. The speed demand is set initially to 30r/min and at 2s it is suddenly changed 

to 60 r/min. Fig. 7.22 shows the system response for both observers, and once more the 

system with the improved observer shows less oscillation in the estimated speed compared to 

the normal MP-MRAS observer. The IAE of the estimated speed for the normal MP-MRAS 

observer is 2318.0 r/min, compared to 738.4 in the case of the improved observer, which 

means a 68.1% reduction. 

The same test is repeated at full load for different speeds in Fig. 7.23. The speed demand is 

set at first to 40r/min and at 2s it is suddenly changed to 80 r/min. The figure shows that the 

amount of the oscillation in the estimated speed is less in the case of the improved observer 

compared to the normal MP-MRAS observer. The IAE of the estimated speed for the normal 

MP-MRAS is 1705.7 r/min, whereas it is equal to 1335.9 r/min for the improved observer. 

Since there is a link between the controller maximum bandwidth and the amount of the 

oscillation in the estimated speed, as it was reported in [97], the bandwidth of the speed 

control loop is measured for both observers. It was found that the maximum bandwidth of the 

system when the improved MP-MRAS observer is applied is 223.626 rad/s, whereas it is 

equal to 156.68 rad/s for the normal observer. This means a 42.73% further improvement in 

the controller bandwidth can be achieved if the improved MP-MRAS observer is applied. 

7.4 Performance Comparison of the Simulation and practical results 

In general, both the simulation and the practical results show the same outcomes when the 

performance of proposed observer is compared with the classical one. These outcomes can be 

summarized as reduction in the oscillation in the estimated and real speed signals and keeping 

the speed tuning signal at the minimum level even during the transient events.  

 However, comparing Figs 5.5 and 7.4 and Figs 5.3 and 7.1 shows a steady state error in the 

estimated speed that appears only in the practical results at very low speed and not in the 

simulation results. This steady state error is explained by the low pass filter used in the 

reference model which exists only in the practical circuit. This filter is needed to solve the 

problem of the pure integration which does not present in the simulation. 
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It can be also noticed from all the figures that, in the practical results the level of the 

oscillation is higher in both the estimated and real speeds in compare with the simulation 

results. These oscillations can be explained by two different factors. The first one is that the 

current, voltage and speed sensors were considered ideal in the simulation while in the real 

circuits these sensors can pick up large amount of high and medium frequency noise. In 

addition, the wrong calibration of these sensors can cause additional noise especially in the 

frequencies close to the fundamental. The second factor is the inverter which was considered 

ideal in the simulation, while in the real inverter, the switching events cause a considerable 

amount of high frequency noise. Also the real inverter causes additional noise due to the dead 

time and inverter nonlinearity effects. These effects were compensated in the practical circuit 

as mentioned in chapter 6. However, this compensation does not solve this problem 

completely. 
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Fig.  7.22 Sensorless operation, rotor speed signal, step change from 30 r/min to 60r/, no-load 

(a) normal MP-MRAS (b) improved MP-MRAS 
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Fig. 7.23. Sensorless operation, rotor speed signal, step change from 40 r/min to 80r/min, full 

load (a) normal MP-MRAS (b) improved MP-MRAS 
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7.5 Summary 

In this chapter, detailed experimental tests were carried out to compare the performance of 

three MRAS-based observers; the classical rotor flux based MRAS, the MP-MRAS and the 

improved MP-MRAS observers. The experimental results section was divided into two parts 

or subsections. In the first part, a performance comparison was carried out between the 

classical MRAS and the MP-MRAS observers, whereas the performance of the improved 

MP-MRAS was compared with the normal MP-MRAS in the second part. 

The results of the first comparison between the classical and MP-MRAS observers show a 

better estimation quality of the rotor speed with a significant reduction in steady-state 

oscillations without affecting the dynamic response as a minimum speed tuning signal is 

ensured in both transient and steady-state conditions. Hence, a higher maximum bandwidth of 

the speed control loop was achieved when the MP-MRAS observer was employed. Improved 

robustness against motor parameter variations was also noticed for the proposed scheme. This 

improvement is mainly due to the replacement of the PI controller in the adaptation 

mechanism by a search-based optimization algorithm. It is well reported in the literature that 

fixed-gain PI controllers are generally not robust to changes in system parameters [98]. 

However, the MP-MRAS showed oscillations in the estimated speed when it operates at light 

loading condition and it showed sensitivity to the motor parameters variation, to a certain 

extent, due to the use of the voltage equation in the reference model. 

The results of the second part shows that compared to MP-MRAS observer, the improved 

MP-MRAS scheme is robust against motor parameter variation. Employing the proposed 

scheme provides better rotor speed estimation with a significant reduction in the oscillations 

at different loading conditions, especially light loads, without affecting the dynamic response. 

Also a higher maximum bandwidth has been achieved for the speed control loop when the 

improved predictive estimator is applied as a result of noise reduction. Therefore the proposed 

improved MP-MRAS scheme is suitable for the sensorless control of IM drives by providing 

robust and smooth speed estimation. 

From above it can be concluded that, the new scheme improves the steady state performance 

of the drive by both reducing the oscillations in the estimated and real speed signals and 

reducing the effect of the motor parameters variation on speed estimation. In addition, the 

proposed scheme improves the transient response of the drive by increasing the maximum 
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bandwidth of the speed control loop which means the controller will react faster during the 

transient events.  
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CHAPTER 8  

Summary and Future Work 

8.1 Introduction 

In this thesis, research was conducted to investigate the application of a new model predictive 

MRAS (MP-MRAS) speed and position observer for sensorless IM drives. The main purpose 

of proposing the new observer is to improve the adaptation mechanism design by firstly 

eliminating the PI controller in the adaptation mechanism and secondly introducing a 

search-based optimization algorithm which ensures a minimum speed tuning error signal at 

each sampling period. The scheme was tested at different speeds and loading conditions and a 

focus was given to operation at low and zero speed regions. The aim of this chapter is to give 

a summary of the primary results, analysis and findings of the research and to give few 

recommendations for some possible future work. 

8.2 Research Summary and Conclusions 

In chapter one, it was mentioned that sensorless control was introduced to the IM drives to 

increase the system reliability and reduce its cost. Sensorless strategies were classified into 

model-based and spectral analysis based techniques. The focus was given to the model-based 

strategies in which the stator currents and voltages are employed along with the machine 

mathematical model to extract the rotor speed and position information. These strategies, 

however, usually fail at low speeds as the motor rotor model becomes unobservable. 

Predictive control was also presented in this chapter as a powerful control strategy that had 

been successfully employed to improve many of the problems associated with IM control.  

In chapter two, MRAS observers were presented as simple and powerful algorithms that offer 

accurate rotor speed and position estimation without high computational effort. Three 

different types of MRAS observer were reviewed, which are the rotor flux-based MRAS, back 

EMF-based MRAS and reactive power-based MRAS. All of these MRAS observers suffer a 

number of problems at and around zero speed. These include pure integration, parameter 

sensitivity and inverter nonlinearity problems. The various solutions suggested to solve these 
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problems were presented in this chapter. Also a survey of the different sensorless control 

systems that employ predictive controllers to improve the drive performance was provided. 

Chapter three introduced the induction machine dynamic modelling using space vector theory. 

The machine model was then used to explain the principle of vector control. The two-axis 

machine model was also used to describe the rotor flux MRAS speed observer principle and 

to formulate the equations of the observer mathematical model. This observer is the most 

common strategy for sensorless control. Making use of Popov's hyperstability theory, a 

PI-based adaptation mechanism was derived to estimate the rotor speed. In the last part of this 

chapter, a discrete-time representation of the machine and the observer is provided. 

In chapter four, a review of model predictive controllers was presented and a focus was given 

to finite control set model predictive controllers. Next, the proposed MP-MRAS speed and 

position observer was described. This observer is based on finite control set-model predictive 

control principle. The rotor position is calculated using a search-based optimization algorithm 

which ensures a minimum speed tuning error signal at each sampling period. This eliminates 

the PI controller employed in the classical MRAS observers’ adaption mechanism. Also in 

chapter four an adaptive filter was introduced to the design of the speed extraction mechanism 

to reduce rotor speed oscillations at light loading conditions. An adaptation mechanism was 

proposed to change the filter time constant depending on the dynamic state of the system. 

Furthermore, a voltage compensating method was employed in the reference model of 

observer to address the problems associated with sensitivity to motor parameter variation. 

This modified scheme was referred to as improved MP-MRAS observer. 

In chapter five, a simulation using Matlab/Simulink was carried out to examine the 

performance of the proposed schemes compared to the classical rotor flux MRAS scheme. 

This study assumed an ideal inverter and ideal measurements. The scheme was tested in the 

open loop and closed loop conditions. The results showed that the proposed scheme produced 

a more accurate rotor speed estimation. The speed tuning error was very small even during the 

transient operation conditions. A significant reduction in steady-state oscillation was also 

achieved without affecting the dynamic response. Improved robustness to motor parameter 

variations was also demonstrated for the proposed scheme. 

In chapter six, the experimental setup used in validating the proposed observer scheme was 

presented. The hardware was divided into three different parts, the motor rig which is based 
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on a 2.2 kW squirrel cage IM, the motor drive unit which consists of the power converter and 

which is responsible for delivering the electrical power to the IM, and finally the control unit 

which is based on an eZdsp F28335 board. 

In Chapter seven, different experimental tests were carried out to examine the proposed speed 

and position observer in a real-time application. These tests included different speed regions 

and loading conditions with particular interest given to low speed and regeneration operation. 

To avoid the problem of the pure integration associated with the flux calculation, a LPF was 

used with a very low cut-off frequency in the voltage model. In addition, the reference 

voltages from the controller were used in the voltage model to avoid the measurement of the 

real voltages. Compensation for the inverter nonlinearity and the dead-time was also 

considered. The gains of the PI controller in the classical MRAS observer were tuned to 

obtain the fastest possible dynamic performance. The results were obtained over two stages, 

in the first stage the performance of the normal MP-MRAS and the classical rotor flux MRAS 

observers were investigated, while the improved MP-MRAS observers was tested in the 

second stage. The results of the first stage showed better estimation quality of the rotor speed 

when the predictive observer was applied. This demonstrated a significant reduction in 

steady-state oscillations without affecting the dynamic performance. Hence, a higher 

maximum bandwidth of the speed control loop was achieved. The proposed observer also 

showed more robustness to motor parameters variation and more accurate speed estimation 

during regeneration. The second stage results showed that the improved MP-MRAS observer 

is both very robust to motor parameters variation and able to provide better rotor speed 

estimation. There is also a significant reduction in oscillation at different loading conditions, 

especially for light loads. A higher maximum bandwidth was achieved for the speed control 

loop compared to the normal MP-MRAS observer as a result of oscillation reduction. As a 

conclusion the proposed MP-MRAS observer is suitable for the sensorless control of IM 

drives by providing robust and smooth speed estimation. 

8.3  Recommendations for Future Work 

In this thesis a new predictive rotor flux MRAS speed observer was proposed for sensorless 

control of IM drives. This observer is based on finite control set-model predictive control 

principle. The rotor position is calculated using a search-based optimization algorithm which 

ensures a minimum speed tuning error signal at each sampling period. This search algorithm 

replaced the PI-based adaptation mechanism in the classical rotor flux-based MRAS. This 
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work can be extended to include other types of MRAS observers that deploy a PI controller as 

an adaptation mechanism such as back EMF-based and reactive power-based MRAS 

observers. Furthermore, the principle of the proposed observer can be applied with different 

applications which require angle estimation such as in the grid-connected inverters, where the 

knowledge of the phase angle of the utility voltage is critical. The proposed predictive 

observer can provide an accurate and fast tracking of the utility angle information which is 

essential to ensure correct operation of the inverter controller. The work on this predictive 

PLL system has started and some promising results have been obtained. 
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APPENDIX A 

The Mathematical Model of the Induction 

Machine 

A.1 Induction Machines Space Vector Representation 

To find the mathematical model of Induction machines, it is useful to represent the machine 

electrical quantities as space vectors. In the following equations the space vector 

representation of the stator currents, voltages and fluxes are defined in the stationary reference 

frame: 
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The voltage equations of three phase machines are written as: 
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Substituting these equations in the voltage space vector equation (A.2) gives: 
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Substituting (A.1) and (A.3) in (A.10) yields the stator voltage equation in the space vector 

representation: 
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In (A.11), the subscript s and the superscript s denote the stator and the stator reference frame 

respectively. 

The electrical quantities in the rotor can be represented as space vectors in the same way as 

the stator quantities in a rotating reference frame fixed to the rotor as the following: 
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In a three phase machine, the rotor voltage equations can be written as: 
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Substituting (A.15), (A.16) and (A.17) into (A.13) yields: 
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From (A.12) and (A.14) the rotor voltage equation in the space vector form can be written as: 
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In (A.20), the subscript r and the superscript r denote the rotor quantities and the rotor 

reference frame respectively. 

In order to find the mathematical model of the induction machines, all the machine equations 

should be written in the same reference frame. Therefore in the next section, the 

transformation between the different reference frames is discussed.  
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A.2 Reference Frame Transformation 

The first transformation considered is between the stator reference (D-Q) frame and a rotating 

reference frame (d-q) Fig. A.1. 

From the figure the following equations can be found: 
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Fig.  0.1 Transformation from the stationary to the synchronous frames 

In the space vector representation, the transformation can be written as: 
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The superscript e denotes the (d-q) reference frame. 

The transformation can be written also in matrix form as: 
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Similarly, the inverse transformation can be written as: 
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In a similar way, the stator electrical quantities can be written in a reference frame fixed to the 

rotor as: 

rjs
s

r
s eii   (A.27)

rjs
s

r
s evv   (A.28)

rjs
s

r
s e    (A.29)

and the rotor quantities can be written in a stationary reference frame as: 
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A.3 The Induction Machine Mathematical Model 

To find the mathematical model of the induction machine, the rotor voltage equation in the 

stationary reference frame is found by substituting (A.30), (A.31) and (A.32) into (A.20) this 

yields: 
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By defining 
dt

d r
r

   which is the rotor angular speed, (A.33) becomes: 
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By eliminating rje  from both the equation sides, the rotor voltage equation in a stationary 

reference frame can be expressed as: 
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(A.10) and (A.34) represent the induction machine mathematical model represented in a 

stationary reference frame and which can also be written in term of its real and imaginary 

parts as: 
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The linkage fluxes in the stator and rotor can be expressed in terms of stator and rotor currents 

as: 

rmsss iLiL   (A.39)

rrsmr iLiL   (A.40)

where mL is the mutual inductance and sL , rL are the stator and rotor self-inductances 

respectively and they are equal:  

mlss LLL   (A.41)
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mlrr LLL   (A.42)

where lsL and lrL are the stator and rotor leakage inductances respectively. 

(A.39) and (A.40) can be expressed also as: 

rdmsDssD iLiL   (A.43)

rqmsQssQ iLiL   (A.44)

rdrsDmrd iLiL   (A.45)

rqrsQmrq iLiL   (A.46)

Substituting (A.39) into (A.10) gives: 

  s
rm

s
sss

s
s ipLipLRv   (A.47)

and substituting (A.40) into (A.34) gives: 

   s
rr

s
smr

s
sm

s
rrr

s
r iLiLjipLipLRv    (A.48)

where p denotes 
dt

d
the differential operator. 

The induction machine voltage equations can be written in matrix fom as: 


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(A.49)

Equations (A.47) and (A.48) can be also written as: 

  rdmsDsssD piLipLRv   (A.50)

  rqmsQsssQ piLipLRv   (A.51)
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  rqrrrdrrsQmrsDmrd iLipLRiLpiLv    (A.52)

  rqrrrdrrsQmsDmrrq ipLRiLpiLiLv   (A.53)

A.4 The Induction Machine State Space Model 

The state space of the induction machine is developed in this section, where the states are the 

stator currents and the rotor fluxes in a stationary reference frame. The rotor current space 

vector can be written in terms of the stator current and rotor flux vectors as: 

)(
1

smr
r

r iL
L

i    
(A.54)

Substituting (A.54) in (A.47) gives: 

  )( smr
r

m
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L
ipLRv    

(A.55)
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(A.56)
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(A.57)

By defining the leakage coefficient σ as: 

rs

m

LL

L2

1  
(A.58)

The voltage equation becomes: 

r
r

m
sssss p

L

L
ipLiRv    

(A.59)

(A.59) can be written in terms of (D-Q) as:  
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rd
r

m
sDssDssD p

L

L
piLiRv    

(A.60)

rq
r

m
sQssQssQ p

L

L
piLiRv    

(A.61)

Also substituting (A.54) in (A.48) gives: 

  rr
r

smr
r

j
dt

d
iL

T
 

1
0  

(A.62)

where rT  is the rotor time constant and is defined as: 

r

r
r L

R
T   

(A.63)

Rearranging (A.59) gives: 
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1
 

(A.64)

Or in terms of the (D-Q) coordinates: 

rqrrd
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(A.65)
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(A.66)

Substituting (A.65) and (A.66) into (A.60) and (A.61) yields: 
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(A.67)
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(A.68)

Separating the derivative terms in (A.67) and (A.68) gives: 
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(A.65), (A.66), (A.69) and (A.70) can be used to find the state space model representing the 

induction machine in a stationary reference frame as: 
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(A.71)

where: 
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(A.72)
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(A.74)

A.5 Power and Torque Equations 

The input power of the induction machines can be written in terms of the three phase voltages 

and currents as: 

sCsCsBsBsAsAi ivivivP   (A.75)

By substituting the three phase quantities by their equivalent two phase quantities, (A.75) 

becomes: 
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 sQsQsDsDi ivivP 
2

3
 

(A.78)

The mechanical power at the machine shaft can be calculated from: 

 rqrqrdrdmech ieieP 
2

3
 

(A.79)

where re  is the rotor EMF space vector which can be written as: 

rqrdr jeee   (A.80)

 rqrdrrrr jjje    (A.81)

rdrrqrr je    (A.82)

Substituting (A.82) into (A.79) yields: 
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(A.83)

The electromechanical torque can be calculated from the mechanical power equation by 

applying: 
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where P is the number of the pole pairs and rm is the mechanical angular rotor speed which 

can be found from the electrical rotor angular speed by applying: 

P
r

rm

   
(A.85)

By applying the same way, the torque equation in terms of other machine variables can be 

found as: 
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APPENDIX B 

The Algorithm C-code 

//########################################################################### 
// 
// FILE:    F28335_drive_main.c 
// Author:  Yaman Zbede 
// Date: 07-05-14 
// 
// TITLE:  Model Predictive MRAS Estimator 
// 
//    Features: 
//    Configured for "boot to SARAM" operation.   
//   10kHz PWM on 6 channels 
//    Primary control code runs in epwm1_isr 
//    Encoder interfaced via Eqep1 
//    User interface using Labview GUI (RS232 via SCIA) 
//    4-channel DAC (SPIA) 
//    Eqep1 interrupt for encoder watchdog and direction reversal detection 
// 
//    Changed LSPCLK to 75MHz to increase SPI-A clk to 18.75MBaud to effect faster transfers to DAC 
//    This was done in DSP2833x_SysCtrl.c 
//    SCIA (RS232) baud set to 585937. 
 
// 
#define CURRENT_LOOP_INT_CLAMP 3750 // Integrator clamp for antiwnd-up 
#define SPEED_LOOP_INT_CLAMP 8 
#define iqe_demand_CLAMP 8 
#define POS_LOOP_INT_CLAMP  1000 
#define PI 3.141592653589 
#define TABLEN 720      // Set length of sine/cosine look-up tables 
#define DATA_STORE_LEN  0x800  // Set length of data store records to 2k 
#define Rs 2.35 
#define Rr 1.05 
#define Ls 0.344209 
#define Lr 0.348197 
#define Lm 0.33209 
#define sigma 1-(Lm*Lm/Ls/Lr) 
#define Ts 0.0001 
#define aa Lr/Lm*0.57735/3750 
#define bb Lr/Lm*Rs 
#define cc Lr/Lm*sigma*Ls/Ts 
#define Tr Lr/Rr 
#define dd Ts*Lm/Tr 
#define ee 1-Ts/Tr 
 
 
 
 
 
 
 
// Sensor calibration settings 
// The gain from CAS15-NP primary current to ADC reading was measured at 100 per ampere 
// 1/100 = 0.01 
#define SENSOR_GAIN0 0.01   // Sensor gain (CAS15-NP) measured in ampere 
#define SENSOR_GAIN1 0.01   // Sensor gain (CAS15-NP) measured in ampere 
#define SENSOR_GAIN2 0.01   // Sensor gain (CAS15-NP) measured in ampere 
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//#define SENSOR_GAIN0 10         // Sensor gain (CAS15-NP) mA 
//#define SENSOR_GAIN1 10     // Sensor gain (CAS15-NP) mA 
//#define SENSOR_GAIN2 10     // Sensor gain (CAS15-NP) Ma 
#define Speed_Rep       200 
#define speed_div       4.175138628/2   //500 sample 
//#define speed_div       0.4158271737     //500 sample 
//#define speed_div       0.4158271737*0.5    //1000 sample 
 
#define SENSOR_GAIN3 0.0    // Sensor gain 
#define SENSOR_GAIN4 0.0    // Sensor gain 
#define SENSOR_GAIN5 0.0    // Sensor gain 
#define SENSOR_OFFSET0 2039   // Sensor offset (CAS15-NP) 
#define SENSOR_OFFSET1 2042   // Sensor offset (CAS15-NP) 
#define SENSOR_OFFSET2 2026   // Sensor offset (CAS15-NP) 
#define SENSOR_OFFSET3 0    // Sensor offset 
#define SENSOR_OFFSET4 0    // Sensor offset 
#define SENSOR_OFFSET5 0    // Sensor offset 
// The following #defines are related to the way the Eqep calculates encoder velocity 
//#define VELOCITY_SCALE  2197256 // Scale for CCPS = 4, UPPS = 5 
//#define VELOCITY_SCALE  1098628 // Scale for CCPS = 5, UPPS = 5 
//#define VELOCITY_SCALE  274657 // Scale for CCPS = 7, UPPS = 5 
#define VELOCITY_SCALE  137328 // Scale for CCPS = 7, UPPS = 4 
#include "DSP2833x_Device.h"  // DSP2833x Headerfile Include File 
#include "DSP2833x_Examples.h"  // DSP2833x Examples Include File 
#include "F28335_drive_function_prototypes.h"   // F28335 drive header file (DJA) 
#include <stdlib.h>     // needed for calloc() 
#include <math.h> 
#include <string.h> 
#include <stdio.h> 
 
// Function prototypes for functions defined in this file 
// Code located in external RAM 
void set_up_data_stores(void); 
void set_up_look_up_tables(void); 
void panel_controls(void); 
// Code located in internal RAM 
void update_panel(void); 
void transfer_store_data_to_RS232(int frame_count); 
 
// Interrupt service routines defined in this file 
interrupt void epwm1_isr(void); // This ISR contains application control code 
interrupt void eqep1_isr(void);  // This ISR is used for diagnostic only 
 
// Global variables 
float kp_alpha=0,ki_alpha=0,valpha=0,vbeta=0,zd_alpha=0,zd_beta=0,error_alpha=0,error_beta=0; 
long start_time=0; 
int theta_r_1=0; 
float Fai_rr_d_1 = 0, Fai_rr_q_1 = 1;   //Rotor Flux in Reference Model 
float speed_new=0,speed_new_1=0;        //speed with low pass filter 
float error_MRAS0=0,error_MRAS1=0,error_MRAS2=0,error_MRAS3=0; 
int *s1, *s2, *s3, *s4, *s5, *s6, *s7, *s8; // pointers for external RAM data store 
float sin_t[TABLEN], cos_t[TABLEN]; // look-up tables (code quicker when declared in INT RAM) 
int imod = 0, vmod = 0;        // modulus of current 
vector 
int reverse = -1;            // when -1 the motor spin in the opposite direction 
Uint16 flag1 = 0, flag2 = 0, flag3 = 0, flag4 = 0, flag5 = 0; 
Uint16 pb1, pb2, pb3, pb4, pb5, pb6, pb7; 
int B0 = 0, B1 = 0, B2 = 0, B3 = 0, B4 = 0, B5 = 0, B6 = 0, B7 = 0; 
int B8 = 0, B9 = 0, B10 = 0, B11 = 0, B12 = 0, B13 = 0, B14 = 0, B15 = 0; 
int par1 = 0, par2 = 0, par3 = 0, par5 = 0, par6 = 0;// Parameters passed in from control panel 
int par1b = 0;      // used in code for DESAT single pulse test 
Uint16 par4 = 0;     // use unsigned as it houses individual bits 
Uint16 xcount = 0;        // cycle counter 
Uint16 theta_e = 0;        // voltage vector angle 
Uint16 theta_r = 0;        // voltage vector angle 
int i=0; 
float sum=0; 
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float theta_e2 = 0;       // spare angle for testing 
purposes 
float theta_e3 = 4000; 
Uint16 theta_e4 = 0; 
Uint32 Speed_count; 
float chopper = 0; 
float change = 0; 
Uint16 store_enable = 0;       // data store enable flag 
Uint16 store_counter = 0;      // data store index 
unsigned long ISR_count1 = 0; // ISR counter (increments every ISR execution) 
unsigned long LoopCount = 0;   // LabVIEW (RS232) data transfer counter 
long int temp_count = 0;       // event delay counter 
Uint16 ErrorCount;        // used by RS232 code 
Uint16 pos_count = 0;        // Encoder position 
count 
Uint16 QCTMR_count = 0;       // Encoder velocity timer count 
int N_RPM = 0; 
int N_RPM_E = 0; 
int N_RPM1 = 0;       // Shaft velocity in RPM 
float Pos_Yam = 0; 
float Position = 0; 
static float Pos_Yam_1 = 0; 
Uint16 reversal_count = 0;      // Speed reversal counter 
Uint16 release = 0;      // Integrator release (0=hold, 1=run) 
Uint16 enc_wdog = 0;      // EQep1 watchdog timeout counter 
Uint16 QCTMR_overflow = 0; 
float acc1 = 0, acc2 = 0, acc3 = 0; // These variables are used for calculating averages 
int ave1 = 0, ave2 = 0, ave3 = 0; 
Uint16 T0_count = 0;   // Initial Timer0 (used for timing code in us) 
Uint16 TZflag = 0;      // Trip Zone status (0=clear, 1=trip) 
Uint16 trip_count = 0;       // CBC trip counter 
Uint16 countA = 0;        // isr counter 
Uint16 flag = 0;        // pulse on flag 
Uint16 comp2 = 0;         // comp2 
button status 
Uint16 comp2p = 0;        // previous comp2 
button status 
Uint16 maxcount = 0;     // number of PWM cycles in test pulse 
int disp1, disp2; 
 
// The following flags maintain the status of the front panel buttons 
Uint16 Clear_PWM_trip_button_status = 0; 
Uint16 Relay1_button_status = 0; 
Uint16 Relay2_button_status = 0; 
Uint16 Relay3_button_status = 0; 
Uint16 Relay4_button_status = 0; 
Uint16 Force_PWM_trip_button_status = 0; 
Uint16 Data_Store_button_status = 0; 
Uint16 Comp_2_button_status = 0; 
 
// The following flags maintain the status of the relays 
Uint16 Relay1_status = 0; 
Uint16 Relay2_status = 0; 
Uint16 Relay3_status = 0; 
Uint16 Relay4_status = 0; 
 
// These following global variables are used to transfer data stored in ISR local variables to other functions 
int vde_m = 0, vqe_m = 0, ide_m = 0, iqe_m = 0; 
 
int main(void) { 
 Uint16 ReceivedChar = 0; 
 char sbuf[100];   // character buffer for LabVIEW data link (RS232) 
 char letter[100], temp = 0; 
 Uint16 i = 0, nc = 0; 
 
 set_up_data_stores();  // set up and initialise data stores in ext RAM 
 set_up_look_up_tables();   // set up sine and cosine look-up tables 
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// Clear RS232 input string buffer 
 for (i = 0; i < 100; ++i) 
  letter[i] = 0; 
 
// Initialise System Control: 
// PLL, WatchDog, enable Peripheral Clocks 
// This example function is found in the DSP2833x_SysCtrl.c file. 
 InitSysCtrl(); 
// Initialise the pins for the SCI-A port (RS232). 
 InitSciaGpio(); 
 
// Initialise the pins for the SPI-A port (DAC). 
 InitSpiaGpio(); 
 
// Initialise GPIO: 
// This example function is found in the DSP2833x_Gpio.c file and 
// illustrates how to set the GPIO to it's default state. 
// InitGpio();  // Skipped for this application 
 
// Initialise GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6 
// These functions are in the DSP2833x_EPwm.c file 
 InitEPwm1Gpio(); 
 InitEPwm2Gpio(); 
 InitEPwm3Gpio(); 
 InitEPwm4Gpio(); 
 InitEPwm5Gpio(); 
 InitEPwm6Gpio(); 
 
// Initialise GPIO pins or EQEP (code added on 29-03-09) 
// This function is in DSP2833x_EQep.c 
// This function configures both EQEP1 and EQEP2  
 InitEQep1Gpio(); 
 
// Initialise GPIO (gate drive reset, relays, DAC and test points) 
 gpio_init(); 
 
// Clear all interrupts and initialise PIE vector table: 
// Disable CPU interrupts 
 DINT; 
 
// Initialise the PIE control registers to their default state. 
// The default state is all PIE interrupts disabled and flags 
// are cleared. 
// This function is found in the DSP2833x_PieCtrl.c file. 
 InitPieCtrl(); 
 
// Disable CPU interrupts and clear all CPU interrupt flags: 
 IER = 0x0000; 
 IFR = 0x0000; 
 
// Initialise the PIE vector table with pointers to the shell Interrupt 
// Service Routines (ISR). 
// This will populate the entire table, even if the interrupt 
// is not used in this example.  This is useful for debug purposes. 
// The shell ISR routines are found in DSP2833x_DefaultIsr.c. 
// This function is found in DSP2833x_PieVect.c. 
 InitPieVectTable(); 
 
// Interrupts that are used in this example are re-mapped to 
// ISR functions found within this file. 
 
 EALLOW; 
 // This is needed to write to EALLOW protected registers 
 PieVectTable.ADCINT = &epwm1_isr;   // ADC triggered ISR 
 PieVectTable.EQEP1_INT = &eqep1_isr; // EQEP1 triggered ISR 
 EDIS; 
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 // This is needed to disable write to EALLOW protected registers 
 
// Set up ADC (function below is located in DSP2833x_Adc.c) 
// The following function sets ADCCLK to 37.5MHz if CPS = 1 (this is too high as ADCCLK <= 25MHz) 
// Need to adjust ADCTRL3 to set to 25MHz 
 InitAdc(); 
 
// Initialise ADC sequencer 
 adc_seq_init(); 
 
 EALLOW; 
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; // ePWM TBCLK stopped 
 EDIS; 
 
// Initialise PWM modules 
 InitEPwmMods(); 
 
 EALLOW; 
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;// All enabled ePWMs synchronised with rising edge of 
TBCLK 
 EDIS; 
 
// Set up Timer0 for code execution time measurement within epwm1_isr 
 Timer0_init(); 
 
// Set up SPI for DAC 
 spi_fifo_init();   // Initialise the SPI FIFO 
 spi_init();    // initialise SPI 
 
// Set up Eqep1 for encoder position and speed measurement 
 eqep1_init(); 
 
// Enable CPU interrupts 
 IER |= M_INT1;// Enable CPU INT1 which is connected to PIE group 1 (main control ISR) 
 IER |= M_INT5;// Enable CPU INT5 which is connected to PIE group 5 (shaft direction change ISR) 
 
 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;// Enable ADCINT in the PIE: Group 1 interrupt 6 (i.e. INT1.6) 
 PieCtrlRegs.PIEIER5.bit.INTx1 = 1;// Enable EQEP1_INT in the PIE: Group 5 interrupt 1 (i.e. INT5.1) 
 
// Enable global Interrupts and higher priority real-time debug events: 
 EINT; 
 // Enable Global interrupt INTM 
 ERTM; 
 // Enable Global real-time interrupt DBGM 
 
 scia_fifo_init();    // Initialise the SCI FIFO 
 scia_echoback_init();  // Initialise SCI for echoback 
 
 LoopCount = 0;   // Set LabVIEW data transfer counter to zero 
 ErrorCount = 0; 
 i = 0;     // Set RS232 character counter to zero 
 
// IDLE loop. Just sit and loop forever: 
// This loop is concerned only with communications with LabVIEW 
 for (;;) { 
  i = 0; //reset input character counter 
  do { 
   // Wait for incomin g character from RS232 port 
   while (SciaRegs.SCIFFRX.bit.RXFFST != 1) { 
   }  // wait for XRDY =1 for empty state 
   ReceivedChar = SciaRegs.SCIRXBUF.all;  // Get character 
   temp = ReceivedChar & 0xFF;    // strip off the error bits 
   letter[i] = temp; 
   i++; 
  } while (temp != '\n'); 
 
  // Get incoming parameters from LabVIEW GUI 
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  nc = sscanf(letter, "%d %d %d %d %d %d", &par1, &par2, &par3, &par4, 
    &par5, &par6); 
 
  // Test for sensor out-of-range trip (send status to LabVIEW) 
  TZflag = EPwm1Regs.TZFLG.bit.OST; 
 
  // Inspect par1 to determine LabVIEW interface mode 
  // par1=200 means that LabVIEW is in User Control Panel (UCP) mode 
  // par1=100 means that LabVIEW in in Data Transfer Interface (DTI) mode 
 
  // Send data to LabVIEW (UCP mode) 
  if (par1 == 200) 
   update_panel(); 
  // Send data to LabVIEW (DTI mode) 
  if (par1 == 100) 
   transfer_store_data_to_RS232(par2); 
 
  get_control_panel_button_status();// Update LabVIEW panel push button status flags 
 
  panel_controls(); // Implement the pushbutton commands 
 
  LoopCount++;  // Count LabVIEW data transfer cycles 
 } 
 return 0; 
} // end main() 
 
//----------------------------------------------------------------------------------------------------- 
// This primary ISR is used for the converter control and is synchronised to EPWM1 (1st PWM channel) 
// The PWM triggers the ADC sequencer. When the sequencer is finished it triggers this ISR 
// The ADC SEQ1 is triggered on the positive apex of the carrier 
// The CPU INT1.6 is triggered on end of sequence (EOS) 
 
interrupt void epwm1_isr(void) { 
 float vds, vqs, vde = 0, vqe = 0;// stator voltages, 2-axis, stator and e-frame 
 float va, vb, vc;      // stator phase voltage demands 
 float ia = 0, ib = 0, ic = 0;   // measured stator phase currents 
 float i4 = 0, i5 = 0, i6 = 0;    // other currents 
 float ids, iqs;    // measured stator currents (stator ref frame) 
 static float ids_1 = 0, iqs_1 = 0;// measured stator currents (stator ref frame) 
 float Sai_r_d, Sai_r_q;              //Rotor Flux in Reference Model 
 float Fai_r_d, Fai_r_q;              //Rotor Flux in adaptive Model 
 float Fai_rr_d, Fai_rr_q;              //Rotor Flux in adaptive Model (Rotor Reference Frame) 
 static float Sai_r_d_1 = 0, Sai_r_q_1 = 0;   //Rotor Flux in Reference Model 
 static float Sai_r_d_2 = 0, Sai_r_q_2 = 0;   //Rotor Flux in Reference Model 
 static float Sai_r_d_3 = 0, Sai_r_q_3 = 0;   //Rotor Flux in Reference Model 
 static float Sai_r_d_4 = 0, Sai_r_q_4 = 0;   //Rotor Flux in Reference Model 
 static float Sai_r_d_5 = 0, Sai_r_q_5 = 0;   //Rotor Flux in Reference Model 
 float error_MRAS = 0, error_MRAS_1 = 0;  //Rotor Flux MRAS errror 
 float ide, iqe;      // measured stator currents (e-frame) 
 float idr, iqr;      // measured stator currents (r-frame) 
Yaman Zbede 
 float ide_demand, iqe_demand;  // d and q axis current demands 
 float id_error, iq_error;   // d and q axis current errors 
 float kp, ki;      // current loop controller gains 
 float kps, kis;      // speed loop controller gains 
 float kpp, kip;      // position loop controller gains 
 static float zd = 0, zq = 0;  // current loop integrator accumulators 
 static float zs = 0;     // speed loop integrator accumulator 
 static float zp = 1;    // position loop integrator accumulator 
 float vide_demand, viqe_demand;  // voltage loop demands 
 float vide_error, viqe_error;  // voltage loop errors 
 float kp2, ki2;      // voltage loop controller gains 
 static float zd2 = 0, zq2 = 0;  // voltage loop integrator accumulators 
 float speed;      // Measured shaft speed in RPM 
 static float rotor_position_1=0; 
 float rotor_position; 
 static float speed_e=0;      // Measured shaft speed in RPM 
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 static float theta_r_new=0; 
 float speed_e_1=0;      // Measured shaft speed in RPM 
 int angle_loop; 
 int theta_r_t,theta_r_temp; 
 float error_MRAS_temp; 
 float division_factor; 
    //static int i=0; 
 float speed_demand;     // Demanded shaft speed in RPM 
 float speed_error; 
 float Rr_Lr = 0; 
 static float pos_demand = 0; 
 // Motor Parameters Defined by Yaman Zbede 
 
 
 float delta_angle; 
 float Fai_rr_d_final,Fai_rr_q_final,rotor_position_final; 
 static float gg=0; 
 float omega_s; 
 //static float sum=0; 
 ////////////////////////////////////////////// 
 float pos_error; 
 float pos_mech;      // Motor shaft position 
 static int memory[Speed_Rep]=0; 
 Uint16 ma, mb, mc;     // phase modulation index (1st group) 
 Uint16 ma1, mb1, mc1;    // phase modulation index (2nd group) 
 mb1 = 1875; 
 mc1 = 1875; 
 
 Uint16 temp1, temp2, temp3, temp4; // temporary variables - can be useful 
 Uint16 theta_m, theta_t; 
 float v1 = 0, v2 = 0, v3 = 0;    // Isolation amplifier inputs 
 float vid = 0, viq = 0;     // Isolation amp s-frame voltages 
 float vide = 0, viqe = 0;    // Isolation amp e-frame voltages 
 float k = 0; 
 long int C1, C2, C3, C4, C5, C6, C7;// Frequency profile - horizonal parameters 
 float slope;      // Frequency profile - rate of change 
 float md0;       // Frequency profile - mod index 
 int loop_count=0; 
 
 CpuTimer0Regs.TCR.bit.TRB = 1;  // reload timer0 to initiate code timing 
 
 GpioDataRegs.GPACLEAR.bit.GPIO12 = 1; // Pulse LDAC/ low on DAC to latch data into DAC 
 GpioDataRegs.GPASET.bit.GPIO12 = 1; 
 
 ISR_count1++;       // count ISR events since start 
 //temp_count++;       // relative count (can be useful 
for timing things) 
 //flag2 = 1;        // set flag, can be 
useful 
 
#if 1 // Count and display CBC trip events 
 if (EPwm1Regs.TZFLG.bit.CBC) { 
  trip_count++; 
  EALLOW; 
  EPwm1Regs.TZCLR.bit.CBC = 1; 
  EDIS; 
 } 
#endif 
 
#if 1 
 // Get encoder position and encoder pulse width 
 pos_count = (unsigned int) EQep1Regs.QPOSCNT;   // capture encoder position 
 
 ////////////////////Yaman Zbede/////////////////////////////////////////// 
 
 // to represent the encoder position as an electrical angle between 0 and TABLEN 
 Position = pos_count; 
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 Position = Position * 0.17580; //TABLEN_TABLEN 
 Position = (int) Position; 
 if (Position > TABLEN) 
  Position = Position - TABLEN; 
 if (Position < 0) 
  Position = Position + TABLEN; 
 
 ////////////////////////////////////////////////////////////////////////// 
 
 QCTMR_count = (unsigned int) EQep1Regs.QCPRD; // read QCTMR (encoder pulse width) 
 
 // Calculate speed in RPM based on encoder pulse width (exec time = 1.8us) 
 if (QCTMR_count != 0)     // avoid divide by zero condition 
   { 
  if (EQep1Regs.QEPSTS.bit.QDF)   // test direction bit 
   speed = (float) VELOCITY_SCALE / QCTMR_count;  //(exec time = 1.6us) 
  else 
   speed = -(float) VELOCITY_SCALE / QCTMR_count; 
 } 
 if (QCTMR_count == 0) { 
  speed = 0; 
 } 
 N_RPM = speed;    // copy value to N-RPM for transfer to LabVIEW 
#endif 
 
// This Part of the code is written by Yaman Zbede to find the shaft position depending on speed signal. 
////////////////////////Yaman Zbede////////////////////////////////////////////// 
 
 //Speed_Control Shold be activated when Speed Control is Deactivated 
#if 0 
 // Create angle theta_e for testing purposes (useful for producing modulation signals) 
 // Calibration based on 20kHz ISR repetition rate 
 // theta_e ramps between 0 and 720 and returns to 0 
 // theta_e2 = theta_e2 + 72; // 5ms period 
 // theta_e2 = theta_e2 + 45; // 80ms period, 25% rated frequency Change theta_e2 limit to 72000 
 theta_e2 = theta_e2 + 18;// 20ms period (useful for generating 50Hz waveforms) 
 // theta_e2 = theta_e2 + 36; // 10ms period 
 // theta_e2 = theta_e2 + 0.012*par2; // LabVIEW slider controlled par2=3000 => 40ms period 
 // theta_e2 = theta_e2 + 0.006*par2; // LabVIEW slider controlled par2=3000 => 20ms period 
 
// code added by Yaman to check constant voltage frequency operation 
#if 0 
 if(ISR_count1%600000<300000) 
 par2=3000; 
 else 
 par2=1500; 
#endif 
 
#if 0 //should be one for  80 ms case 
 if(theta_e2 >= 72000) 
 theta_e2 = 0; 
 
 theta_e = (int)(0.01*theta_e2); 
#endif 
 
#if 1 //Yaman_should be one for cases diffrent from 80 ms 
 //theta_e2 = theta_e2 + 0.006*3000; // LabVIEW slider controlled par2=3000 => 20ms period 
 if(theta_e2 >= 7200) 
 theta_e2 = 0; 
 theta_e = (int)(0.1*theta_e2); 
#endif 
 
#endif 
 
#if 1 
 // Acquire sensor input data and apply gain and offset adjustments 
 // The first 6 sensor inputs have out-of-range trip circuits 
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 ia = (float) -1 * SENSOR_GAIN0 
   * ((int) (AdcRegs.ADCRESULT0 >> 4) - SENSOR_OFFSET0);//  ADCINA0
 connector J40 
 ib = (float) -1 * SENSOR_GAIN1 
   * ((int) (AdcRegs.ADCRESULT1 >> 4) - SENSOR_OFFSET1);//  ADCINB0
 connector J44 
 ic = (float) -1 * SENSOR_GAIN2 
   * ((int) (AdcRegs.ADCRESULT2 >> 4) - SENSOR_OFFSET2);//  ADCINA1
 connector J48 
 i4 = (float) SENSOR_GAIN3 
   * ((int) (AdcRegs.ADCRESULT3 >> 4) - SENSOR_OFFSET3);//  ADCINB1
 connector J52 
 i5 = (float) SENSOR_GAIN4 
   * ((int) (AdcRegs.ADCRESULT4 >> 4) - SENSOR_OFFSET4);//  ADCINA2
 connector J56 
 i6 = (float) SENSOR_GAIN5 
   * ((int) (AdcRegs.ADCRESULT5 >> 4) - SENSOR_OFFSET5);//  ADCINB2
 connector J60 
#endif 
 
//disp1=1000*ia; 
 
#if 1 
 // Acquire raw sensor data 
 B0 = AdcRegs.ADCRESULT0 >> 4;  //  ADCINA0 connector J40 
 B1 = AdcRegs.ADCRESULT1 >> 4;  //  ADCINB0 connector J44 
 B2 = AdcRegs.ADCRESULT2 >> 4;  //  ADCINA1 connector J48 
 B3 = AdcRegs.ADCRESULT3 >> 4;  //  ADCINB1 connector J52 
 B4 = AdcRegs.ADCRESULT4 >> 4;  //  ADCINA2 connector J56 
 B5 = AdcRegs.ADCRESULT5 >> 4;  //  ADCINB2 connector J60 
#endif 
 
#if 1 
 B6 = AdcRegs.ADCRESULT6 >> 4;  //  ADCINA3 connector J64 
 B7 = AdcRegs.ADCRESULT7 >> 4;  //  ADCINB3 connector J68 
 B8 = AdcRegs.ADCRESULT8 >> 4;  //  ADCINA4 connector J72 
 B9 = AdcRegs.ADCRESULT9 >> 4;  //  ADCINB4 connector J78 
 
 B10 = AdcRegs.ADCRESULT10 >> 4;  //  ADCINA5 connector J9-V1 
 B11 = AdcRegs.ADCRESULT11 >> 4;  //  ADCINB5 connector J9-V2 
 B12 = AdcRegs.ADCRESULT12 >> 4;  //  ADCINA6 connector J9-V3 
 B13 = AdcRegs.ADCRESULT13 >> 4;  //  ADCINB6 connector J9-V4 
 B14 = AdcRegs.ADCRESULT14 >> 4;  //  ADCINA7 connector J9-V5 
 B15 = AdcRegs.ADCRESULT15 >> 4;  //  ADCINB7 connector J9-V6 
#endif 
 float V_DC=(B6 - 2076)*0.356118; 
 
#if 1 
 // 3/2 transform: 
 ids = 0.666666 * ia - 0.333333 * ib - 0.333333 * ic; 
 iqs = 0.577350 * (ib - ic); 
 
 
 
 // 3/2 transform: 
 vid = 0.666666 * v1 - 0.333333 * v2 - 0.333333 * v3; 
 viq = 0.577350 * (v2 - v3); 
 
 // Reference frame transform: 
 ide = ids * cos_t[theta_e] + iqs * sin_t[theta_e]; 
 iqe = -ids * sin_t[theta_e] + iqs * cos_t[theta_e]; 
 
 // Reference frame transform: 
 vide = vid * cos_t[theta_e] + viq * sin_t[theta_e]; 
 viqe = -vid * sin_t[theta_e] + viq * cos_t[theta_e]; 
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 // Calculate magnitude of stator current vector 
 imod = (int) sqrt(ide * ide + iqe * iqe);    //(exec time = 620ns) 
 
#endif 
 
#if 1 
 // Current controller code written by Yaman Zbede 
 
 kp = 1474.56;        //Kcr=32768      Pcr=20msec 
 ki = 4.42368; 
 
 //speed_control Yaman Zbede Speed Controller 
#if 1 
 kps = 0.05; 
 kis = 0.00003; 
 
 speed_demand = par3; 
 
 //This part of the code is written by Yaman Zbede to reverse the speed slowly by using speed reversal 
button 
#if 0 
 change=reverse*par3*0.00005+change; 
 if(par3>0) 
 { 
  if(change>0) 
  change=0; 
  if(change<-2*par3) 
  change=-2*par3; 
 } 
 if(par3<=0) 
 { 
  if(change<=0) 
  change=0; 
  if(change>-2*par3) 
  change=-2*par3; 
 } 
 speed_demand=par3+change; 
 
#endif 
#if 0 //Code Written by Yaman Zbede to Change the speed reference periodically and from positive to nigative 
 Speed_count=ISR_count1%480000; 
 if((Speed_count<60000)) 
 par3=200; 
 else if((Speed_count<120000)) 
 par3=500; 
 else if((Speed_count<180000)) 
 par3=1000; 
 else if((Speed_count<240000)) 
 par3=500; 
 else if((Speed_count<300000)) 
 par3=-500; 
 else if((Speed_count<360000)) 
 par3=-1000; 
 else if((Speed_count<420000)) 
 par3=-500; 
 else 
 par3=-200; 
#endif 
 
 // This Part of the code is written by Yaman Zbede to make speed change slowly when slow change 
button is pressed 
#if 0   //sss change speed from +speed to -speed during 3 seconds 
 if(store_enable) 
 { 
  flag2=1; 
  start_time++; 
  if(start_time>10000)   // 1sec 
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   par3=abs(par3); 
 } 
 else 
 { 
  flag2=0; 
  start_time=0; 
 
 } 
 
 
#endif 
 
#if 0    //rrr change speed from +100 to -100 during 50 seconds 
 if(store_enable) 
 { 
  flag2=1; 
  start_time++; 
  par3=100; 
  if(start_time>45454)   // 1sec 
   par3=75; 
  if(start_time>90909)   // 1sec 
   par3=50; 
  if(start_time>136363)   // 1sec 
   par3=25; 
  if(start_time>181818)   // 1sec 
   par3=0; 
  if(start_time>227272)   // 1sec 
   par3=-25; 
  if(start_time>272727)   // 1sec 
   par3=-50; 
  if(start_time>318181)   // 1sec 
   par3=-75; 
  if(start_time>363636)   // 1sec 
   par3=-100; 
 } 
 else 
 { 
  flag2=0; 
  start_time=0; 
 
 } 
 
 
#endif 
#if 0    //ttt change speed from 25 to 0 to 100 during 50 seconds 
 if(store_enable) 
 { 
  flag2=1; 
  start_time++; 
  par3=25; 
  if(start_time>45454)   // 1sec 
   par3=0; 
  if(start_time>363636)   // 1sec 
   par3=100; 
 } 
 else 
 { 
  flag2=0; 
  start_time=0; 
 
 } 
 
 
#endif 
#if 0    //uuu change speed from 20 to 10 to 0 during 50 seconds 
 if(store_enable) 
 { 
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  flag2=1; 
  start_time++; 
  par3=20; 
  if(start_time>100000)   // 1sec 
   par3=10; 
  if(start_time>200000)   // 1sec 
   par3=0; 
 } 
 else 
 { 
  flag2=0; 
  start_time=0; 
 
 } 
 
 
#endif 
 
#if 0    //vvv change speed from 20 to -20 during 20 seconds 100DTY 
 if(store_enable) 
 { 
  flag2=1; 
  start_time++; 
  par3=20; 
  if(start_time>100000)   // 1sec 
   par3=-20; 
 
 } 
 else 
 { 
  flag2=0; 
  start_time=0; 
 
 } 
 
 
#endif 
 
#if 1 
 if ((reverse == -1) && (par3 >= 0) && (release)) { 
  change = 0.02 + change; 
  if (change > par3) 
   change = change - 0.04; 
  speed_demand = (int) (change + 0.6); 
 } else if ((reverse == -1) && (par3 < 0) && (release)) { 
  change = -0.02 + change; 
  if (change < par3) 
   change = change + 0.04;ipiipi 
  speed_demand = (int) (change - 0.6); 
 } else if ((reverse == 1) && (release)) { 
  change = par3; 
  speed_demand = (int) (change); 
 } else { 
  change = 0; 
  speed_demand = (int) (change); 
 } 
 
#endif 
// Yaman Zbede Sensored vector control 
 if (!Relay4_button_status) 
  speed_error = (speed_demand - speed); 
 
 
// Yaman Zbede Sensorless vector control 
 if (Relay4_button_status) 
  speed_error = (speed_demand - ave1); 
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 iqe_demand = kps * speed_error + zs; 
 if (release) 
  zs = zs + kis * speed_error; 
 
 // d-axis integrator clamp (+/- 95% mod index range) 
 if (zs > SPEED_LOOP_INT_CLAMP) 
  zs = SPEED_LOOP_INT_CLAMP; 
 if (zs < -SPEED_LOOP_INT_CLAMP) 
  zs = -SPEED_LOOP_INT_CLAMP; 
 //iqe_demand=iqe_demand*0.0001; 
 
 if (iqe_demand > iqe_demand_CLAMP) 
  iqe_demand = iqe_demand_CLAMP; 
 if (iqe_demand < -iqe_demand_CLAMP) 
  iqe_demand = -iqe_demand_CLAMP; 
 
 ide_demand = 1 / Lm;      // Ampere 
 
 // Yaman Zbede This code should be executed when sensored vector control is applied 
 if (!Relay4_button_status) 
  { 
   N_RPM1 = 34.6908042* iqe_demand / ide_demand;  //Slip Speed Calculation 
   Pos_Yam = N_RPM1 * 0.0012 + Pos_Yam_1; //converting to electrical angle vary 
between 0 and 720 720/60*50e-6 
   omega_s=2*speed+N_RPM1; 
   omega_s=abs(omega_s); 
 
   if ((Pos_Yam >= 720)) 
    Pos_Yam = Pos_Yam - 720; 
   if ((Pos_Yam <= 0)) 
    Pos_Yam = Pos_Yam + 720; 
   Pos_Yam_1 = Pos_Yam; 
   Pos_Yam = Pos_Yam + Position; // here the rotor position is added to the slip position 
   if ((Pos_Yam >= 720)) 
    Pos_Yam = Pos_Yam - 720; 
   if ((Pos_Yam <= 0)) 
    Pos_Yam = Pos_Yam + 720; 
  } 
 
 
  // Yaman Zbede This code should be executed when sensorless vector control is applied 
  if (Relay4_button_status) 
  { 
   N_RPM1 = 34.6908042 * iqe_demand / ide_demand;  //Slip Speed Calculation 
   Pos_Yam = N_RPM1 * 0.0012 + Pos_Yam_1; //converting to electrical angle vary 
between 0 and 720 720/60*50e-6 
   omega_s=2*ave1+N_RPM1; 
   omega_s=abs(omega_s); 
   if ((Pos_Yam >= 720)) 
    Pos_Yam = Pos_Yam - 720; 
   if ((Pos_Yam <= 0)) 
    Pos_Yam = Pos_Yam + 720; 
   Pos_Yam_1 = Pos_Yam; 
   Pos_Yam = Pos_Yam + theta_r; // here the rotor position is added to the slip position 
   if ((Pos_Yam >= 720)) 
    Pos_Yam = Pos_Yam - 720; 
   if ((Pos_Yam <= 0)) 
    Pos_Yam = Pos_Yam + 720; 
  } 
 
 
 
 theta_e = (int) (Pos_Yam); 
 
#endif 
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#if 0  // Speed_control it should be activated when current control is applied 
 ide_demand=par3*0.004; 
 iqe_demand=ide_demand; 
 
#endif 
 
 id_error = (ide_demand - ide); 
 iq_error = (iqe_demand - iqe); 
 
 // d-axis PI with feedforward 
 vde = kp * id_error + zd; 
 if (release) 
  zd = zd + ki * id_error; 
 
 // d-axis integrator clamp (+/- 95% mod index range) 
 if (zd > CURRENT_LOOP_INT_CLAMP) 
  zd = CURRENT_LOOP_INT_CLAMP; 
 if (zd < -CURRENT_LOOP_INT_CLAMP) 
  zd = -CURRENT_LOOP_INT_CLAMP; 
 
 // q-axis PI with feedforward 
 vqe = kp * iq_error + zq; 
 if (release) 
  zq = zq + ki * iq_error; 
 
 //  q-axis integrator clamp (+/- 95% mod index range) 
 if (zq > CURRENT_LOOP_INT_CLAMP) 
  zq = CURRENT_LOOP_INT_CLAMP; 
 if (zq < -CURRENT_LOOP_INT_CLAMP) 
  zq = -CURRENT_LOOP_INT_CLAMP; 
 
 vde_m = (int) vde; 
 vqe_m = (int) vqe; 
 ide_m = (int) ide; 
 iqe_m = (int) iqe; 
#endif 
 
 //  Reference frame transformation (exec time = 150ns) 
 vds = vde * cos_t[theta_e] - vqe * sin_t[theta_e]; 
 vqs = vde * sin_t[theta_e] + vqe * cos_t[theta_e]; 
 
#if 1 
 va = vds; 
 vb = -0.5 * vds + 0.866025 * vqs; 
 vc = -0.5 * vds - 0.866025 * vqs; 
#endif 
#if 1  //*************************deadband compensation*********************************************** 
 int deadband=69; 
 float on_drop=par6; 
 if (speed_demand<0) 
  on_drop=0.25*par6; 
 if((par3!=speed_demand)||(abs(speed_demand)<5)||!release) 
  on_drop=0; 
 //on_drop=0.1*on_drop; 
 float on_d=on_drop*abs(iqe)/speed_demand; 
 if((speed_demand)!=par3) 
  on_drop=0; 
 //if(speed_demand<0) 
  //on_d=-1*on_d; 
 vde=vde-on_d; 
 //if(iqe_demand<0) 
  //on_d=-1*on_d; 
 vqe=vqe-on_d; 
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 if(ia>0) 
  va+=deadband; 
 else 
  va-=deadband; 
 if(ib>0) 
  vb+=deadband; 
 else 
  vb-=deadband; 
 if(ic>0) 
  vc+=deadband; 
 else 
  vc-=deadband; 
 
 
 //if (par3>0) 
 
 //if (par3<0) 
  //vde=vde+on_d; 
 vds = vde * cos_t[theta_e] - vqe * sin_t[theta_e]; 
 vqs = vde * sin_t[theta_e] + vqe * cos_t[theta_e]; 
 
#endif//********************************************************************************************** 
// Yaman Zbede MRAS 
#if 1 
 float alpha=par2; 
 alpha=alpha*0.01; 
 alpha+=1; 
 Sai_r_d = 0.078145 * vds - 1.8299 * ids*alpha - 1306.945 * (ids - ids_1); 
 Sai_r_q = 0.078145 * vqs - 1.8299 * iqs*alpha - 1306.945 * (iqs - iqs_1); 
 
 //Sai_r_d=Sai_r_d/alpha; 
 //Sai_r_q=Sai_r_q/alpha; 
 
 
 
#if 0 //integration 
 if( Sai_r_d>Sai_r_d_1) 
  Sai_r_d_2=Sai_r_d; 
 if( Sai_r_d<Sai_r_d_1) 
  Sai_r_d_3=Sai_r_d; 
 alpha=(Sai_r_d_2+Sai_r_d_3)*0.5; 
 Sai_r_d+=alpha; 
 if( Sai_r_q>Sai_r_q_1) 
  Sai_r_q_2=Sai_r_q; 
 if( Sai_r_q<Sai_r_q_1) 
  Sai_r_q_3=Sai_r_q; 
 alpha=(Sai_r_q_2+Sai_r_q_3)*0.5; 
 Sai_r_q+=alpha; 
 
 Sai_r_d = Sai_r_d * 0.0001 + Sai_r_d_1; 
 Sai_r_q = Sai_r_q * 0.0001 + Sai_r_d_1; 
 Sai_r_d_1=Sai_r_d; 
 Sai_r_q_1=Sai_r_q; 
 
 
#endif 
 
#if 0  //three stage low pass filtering 
 if (omega_s<6) 
 omega_s=6; 
 float tau_s=1/omega_s; 
 //float tau=9.549296586*tau_s;  //tan(90/2)/w 
 //float tau=5.5132889554*tau_s;  //tan(90/3)/w 
 float tau=3.955448157*tau_s;  //tan(90/4)/w 
 //float tau=3.102754546*tau_s;  //60/2/pi*tan(90/5)/w 
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 float F_a=tau/(0.0001+tau);  //tau/(Ts+tau) 
 float F_b=0.00005/(0.0001+tau);  //Ts/(Ts+tau) 
 Sai_r_d = 10*Sai_r_d * F_b + F_a * Sai_r_d_1; 
 Sai_r_q =10* Sai_r_q * F_b + F_a * Sai_r_q_1; 
 Sai_r_d_1=Sai_r_d; 
 Sai_r_q_1=Sai_r_q; 
 
 Sai_r_d = Sai_r_d * F_b + F_a * Sai_r_d_2; 
 Sai_r_q = Sai_r_q * F_b + F_a * Sai_r_q_2; 
 Sai_r_d_2=Sai_r_d; 
 Sai_r_q_2=Sai_r_q; 
 
 Sai_r_d = Sai_r_d * F_b + F_a * Sai_r_d_3; 
 Sai_r_q = Sai_r_q * F_b + F_a * Sai_r_q_3; 
 Sai_r_d_3=Sai_r_d; 
 Sai_r_q_3=Sai_r_q; 
 
 Sai_r_d = Sai_r_d * F_b + F_a * Sai_r_d_4; 
 Sai_r_q = Sai_r_q * F_b + F_a * Sai_r_q_4; 
 Sai_r_d_4=Sai_r_d; 
 Sai_r_q_4=Sai_r_q; 
/* 
 Sai_r_d = Sai_r_d * F_b + F_a * Sai_r_d_5; 
 Sai_r_q = Sai_r_q * F_b + F_a * Sai_r_q_5; 
 Sai_r_d_5=Sai_r_d; 
 Sai_r_q_5=Sai_r_q; 
 */ 
#endif 
#if 0 
 
 Sai_r_d = Sai_r_d * 0.000061640 + 0.9994 * Sai_r_d_1; 
 Sai_r_q = Sai_r_q * 0.000061640 + 0.9994 * Sai_r_q_1; 
 Sai_r_d_1=Sai_r_d; 
 Sai_r_q_1=Sai_r_q; 
#endif 
#if 1 
 
 Sai_r_d = Sai_r_d * 0.0000627924*0.8726 + 0.999372 * Sai_r_d_1+valpha; 
 Sai_r_q = Sai_r_q * 0.0000627924*0.8726+ 0.999372* Sai_r_q_1+vbeta; 
 Sai_r_d_1=Sai_r_d; 
 Sai_r_q_1=Sai_r_q; 
#endif 
 
//============================================PI replacement with itteration method 
IPI========================================== 
//=====================================================================================
========================================== 
       theta_r_new=0; 
       theta_r_t=0; 
       error_MRAS=0; 
      // if ((release)&((ISR_count1 % 1000 == 0)||(ISR_count1 % 999 == 0)||(ISR_count1 % 998 == 0)||(ISR_count1 
% 997 == 0))) 
       if ((release)&&(ISR_count1 % 1 == 0)) 
       { 
        for (loop_count=0;loop_count<8;loop_count++) 
        { 
         if((error_MRAS1<100)&&(loop_count==1)) 
         { 
          loop_count=7; 
          theta_r_new=error_MRAS2; 
 
         } 
         //theta_r_new=theta_r_t; 
         //division_factor=2^loop_count; 
         //division_factor=2; 
         //delta_angle=180/division_factor; 



The algorithm C Code                                                                                               Appendix B 

166 

 

         switch (loop_count) 
         { 
         case 0: delta_angle=128;break; 
         case 1: delta_angle=64;break; 
         case 2: delta_angle=32;break; 
         case 3: delta_angle=16;break; 
         case 4: delta_angle=8;break; 
         case 5: delta_angle=4;break; 
         case 6: delta_angle=2;break; 
         case 7: delta_angle=1;break; 
 
 
 
 
         } 
 
 
         for(angle_loop=0;angle_loop<8;angle_loop++) 
         { 
          theta_r_temp=(int)(theta_r_new+delta_angle*(angle_loop-4)); 
          if(theta_r_temp<0) 
           theta_r_temp+=TABLEN; 
          if(theta_r_temp>=TABLEN) 
           theta_r_temp=theta_r_temp-TABLEN; 
          // Reference frame transform: rotor speed rotating reference frame Yaman Zbede 
          idr = ids * cos_t[theta_r_temp] + iqs * sin_t[theta_r_temp]; 
          iqr = -ids * sin_t[theta_r_temp] + iqs * cos_t[theta_r_temp]; 
           //Lm*Ls*Lr*Rs*Rr*sigma; 
 
          Fai_rr_d =0.000100143* idr +0.9997 * Fai_rr_d_1;//Ts/Tr*Lm * idr - (Ts/Tr-1) * 
Fai_rr_d_1; 
          Fai_rr_q =0.000100143* iqr +0.9997* Fai_rr_q_1; 
          //  Reference frame transformation (exec time = 150ns) 
          Fai_r_d = Fai_rr_d * cos_t[theta_r_temp] - Fai_rr_q * sin_t[theta_r_temp]; 
          Fai_r_q = Fai_rr_d* sin_t[theta_r_temp] + Fai_rr_q * cos_t[theta_r_temp]; 
          error_MRAS_temp = 100*Fai_r_d*Sai_r_q-100*Fai_r_q*Sai_r_d; 
          //ave1=error_MRAS_temp; 
          /*if((loop_count==0)) 
          { 
           if(angle_loop==1) 
           { 
            error_MRAS1=error_MRAS_temp; 
           } 
           else if(angle_loop==2) 
            error_MRAS2=error_MRAS_temp; 
           else if(angle_loop==0) 
            error_MRAS0=error_MRAS_temp; 
           else if(angle_loop==3) 
           { 
            error_MRAS3=error_MRAS_temp; 
           } 
          }*/ 
          if((error_MRAS_temp>error_MRAS)&&(error_MRAS_temp>0)) 
          { 
           error_MRAS=error_MRAS_temp; 
           theta_r_t=theta_r_temp; 
           // 
           //rotor_position_1=rotor_position; 
           ave1=theta_r_temp; 
          } 
         } 
         theta_r_new=theta_r_t; 
         //ave1=theta_r; 
         //error_MRAS = error_MRAS - error_MRAS_1; 
        } 
       } 
       error_MRAS1=theta_r_t-error_MRAS2; 



The algorithm C Code                                                                                               Appendix B 

167 

 

       error_MRAS2=theta_r_t; 
       if (error_MRAS1>500) 
        error_MRAS1=error_MRAS1-TABLEN; 
       if (error_MRAS1<-500) 
           error_MRAS1=error_MRAS1+TABLEN; 
 
 
       sum-=memory[i]; 
       memory[i]=error_MRAS1; 
    sum+=memory[i]; 
    i++; 
    if(i>=Speed_Rep) 
     i=0; 
    //sum=0.01*sum; 
    ave1=(int)(speed_div*sum); 
    speed_new=speed_div*sum; 
    ave2=(int)(100*373.0194 * 0.1 * iqe_demand / ide_demand); 
    speed_new_1=speed_new; 
 
 
    //ave1=speed_e; 
    //rotor_position_1=rotor_position_final; 
    if (par5==0) 
     theta_r=(int)(Position); 
    else 
    { 
     theta_r=(int)(theta_r_new+180); 
     if (theta_r>=TABLEN) 
      theta_r-=TABLEN; 
     if (theta_r<0) 
      theta_r+=TABLEN; 
    } 
    // Reference frame transform: rotor speed rotating reference frame Yaman Zbede 
    idr = ids * cos_t[theta_r] + iqs * sin_t[theta_r]; 
    iqr = -ids * sin_t[theta_r] + iqs * cos_t[theta_r]; 
    Fai_rr_d =0.000100143* idr +0.9997 * Fai_rr_d_1;//Ts/Tr*Lm * idr - (Ts/Tr-1) * Fai_rr_d_1; 
    Fai_rr_q =0.000100143* iqr +0.9997* Fai_rr_q_1; 
    Fai_r_d = Fai_rr_d * cos_t[theta_r] - Fai_rr_q * sin_t[theta_r]; 
    Fai_r_q = Fai_rr_d* sin_t[theta_r] + Fai_rr_q * cos_t[theta_r]; 
    ids_1 = ids; 
    iqs_1 = iqs; 
    Fai_rr_d_1 = Fai_rr_d; 
    Fai_rr_q_1 = Fai_rr_q; 
    error_MRAS=10000*Sai_r_q*Fai_r_d-10000*Sai_r_d*Fai_r_q; 
    float a=sqrt(Sai_r_d*Sai_r_d+Sai_r_q*Sai_r_q); 
     float b=sqrt(Fai_r_d*Fai_r_d+Fai_r_q*Fai_r_q); 
     kp_alpha=par5; 
     //kp_alpha-=1; 
     kp_alpha=0.001*(kp_alpha); 
     ki_alpha=0; 
      ki_alpha=0.001*ki_alpha; 
 
     error_alpha=Fai_r_d-Sai_r_d; 
     error_beta=Fai_r_q-Sai_r_q; 
     valpha=error_alpha*kp_alpha+zd_alpha; 
     zd_alpha=zd_alpha+ki_alpha*error_alpha; 
    vbeta=error_beta*kp_alpha+zd_beta; 
    zd_beta=zd_beta+ki_alpha*error_beta; 
 
 
#endif 
//svm(-vds,-vqs,&ma,&mb,&mc);    // Space Vector Modulator (exec time = 1.36us 
max) 
 
#if 1 
 // add mod index offset (10kHz PWM) 
 ma=3750 + va; 
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 mb=3750 + vb; 
 mc=3750 + vc; 
#endif 
 
#if 0 
 // add mod index offset (20kHz PWM) 
 ma = 1875 + va; 
 mb = 1875 + vb; 
 mc = 1875 + vc; 
#endif 
 
#if 1   // Update PWM modulation registers (group 1) 
 EPwm1Regs.CMPA.half.CMPA = ma;  // u-phase 
 EPwm2Regs.CMPA.half.CMPA = mb;  // v-phase 
 EPwm3Regs.CMPA.half.CMPA = mc;  // w-phase 
#endif 
 // Acode Written By Yaman Zbede To Activate The Brake Chopper 
#if 1 
 // the voltage sensor output is B6 
 //the sensor offset is 2073 
 //the sensor gain is 0.3796 
 if (B6 >= 2863) //the lower limit                  280              210 
  chopper = (B6 - 2863) * 28.4041; //144.23 is 3750/(upper limit - lower limit)) 
 if (B6 < 2863) //the lower limit 
  chopper = 0; 
 if (chopper > 3750) 
  chopper = 3750; 
 ma1 = (int) chopper; 
#endif 
 
#if 1  // Update PWM modulation registers (group 2) 
 EPwm4Regs.CMPA.half.CMPA = ma1;  // u-phase 
 EPwm5Regs.CMPA.half.CMPA = mb1;  // v-phase 
 EPwm6Regs.CMPA.half.CMPA = mc1;  // w-phase 
#endif 
 
 // Send data via SPI to 10-bit DAC channels (limit data range to 0=>1023) 
 
 temp1 = Sai_r_d * 60 + 500; 
 temp3 = Fai_r_d * 60 + 500; 
 temp2 = Sai_r_q * 60 + 500; 
 temp4 = Fai_r_q * 60 + 500; 
 if ((Relay1_button_status)&&(Relay2_button_status)) 
 { 
  temp1 = Sai_r_d * 60 + 500; 
  temp2 = Fai_r_d * 60 + 500; 
  temp3 = Sai_r_q * 60 + 500; 
  temp4 = Fai_r_q * 60 + 500; 
 } 
 
 disp1 = N_RPM; 
 // Due to unresolved issue with TLV5604 DAC, need to send data twice 
 SpiaRegs.SPITXBUF = 0x1000 | (temp1 << 2); 
 SpiaRegs.SPITXBUF = 0x1000 | (temp1 << 2); 
 SpiaRegs.SPITXBUF = 0x5000 | (temp2 << 2); 
 SpiaRegs.SPITXBUF = 0x5000 | (temp2 << 2); 
 //SpiaRegs.SPITXBUF = 0x9000 | (temp3 << 2); 
 SpiaRegs.SPITXBUF = 0x9000 | (temp3 << 2); 
 SpiaRegs.SPITXBUF = 0xD000 | (temp4 << 2); 
 SpiaRegs.SPITXBUF = 0xD000 | (temp4 << 2); 
 
 // Send selected data to external RAM store 
#if 0 
 if((speed_demand-speed)>10) 
 { 
  flag2 = 1; // extra store enable qualifier (can be useful) 
 } 
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 if(!store_enable) 
  flag2 = 0; 
#endif 
 flag2=1; 
//=====================================================DTY============================
================================== 
 if (store_enable && flag2 && (ISR_count1 % 50 == 0) 
   && (store_counter < DATA_STORE_LEN)) { 
  s1[store_counter] =  (int)(speed_demand); 
    //s2[store_counter] = (int) (100*sin_t[theta_e]); 
    //s1[store_counter] = (int) disp1; 
    //s2[store_counter] = (int) disp2; 
    s2[store_counter] = (int)(speed); 
    s3[store_counter] = (int)  (100*speed_new); 
    s4[store_counter] = (int) (error_MRAS); 
  s5[store_counter] = (int) (Position);  // (1000*Fai_r_q); 
  //s4[store_counter] = (int) vde; 
  //s5[store_counter] = (int) vqe; 
  //s6[store_counter] = (int) 1000*ia; 
  //s7[store_counter] = (int) 1000*ib; 
  s6[store_counter] = (int) (theta_r); 
  s7[store_counter] = (int) (theta_r);  // (vb); 
  s8[store_counter] = (int) (speed_e);  // 1000*iqe; 
  //s6[store_counter] = (int)B0; 
  //s7[store_counter] = (int)B1; 
  //s8[store_counter] = (int)B2; 
  store_counter++;   //increment store counter 
  acc1 += v1;     //sum selected variables 
  acc2 += v2; 
  acc3 += v3; 
 } 
 // The following code can be useful for calculating averages 
#if 0 
 ave1 = (int)(0.000488281*acc1); 
 ave2 = (int)(0.000488281*acc2); 
 ave3 = (int)(0.000488281*acc3); 
#endif 
 
 // Housekeeping at end of ISR 
 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;  // Reset SEQ1 
 AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1;  // Reset SEQ2 
 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;  // Clear INT SEQ1 bit 
 AdcRegs.ADCST.bit.INT_SEQ2_CLR = 1;  // Clear INT SEQ2 bit 
 
 // Acknowledge this interrupt to receive more interrupts from group 1 
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 
 
 T0_count = CpuTimer0Regs.TIM.half.LSW; // Latch lower 16-bits of timer0 
 
} // End of ISR 
 
//----------------------------------------------------------------------------------------------------- 
// EQEP1 interrupt (for testing only) 
// 
 
interrupt void eqep1_isr(void) 
 
{ 
 if (EQep1Regs.QFLG.bit.WTO == 1) 
  enc_wdog++; 
 
 if (EQep1Regs.QFLG.bit.QDC == 1) 
  reversal_count++; 
 
// EQep1Regs.QCLR.all = 0x9;   // Clear QDC and INT flags 
 EQep1Regs.QCLR.all = 0x19;   // Clear WTO, QDC and INT flags 
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 PieCtrlRegs.PIEACK.all = PIEACK_GROUP5; 
} 
//----------------------------------------------------------------------------------------------------- 
// Set up and initialise data stores in external RAM (ZONE7C) 
// Each integer array is 2k long as defined by DATA_STORE_LEN 
// The arrays are global 
#pragma CODE_SECTION(set_up_data_stores, "codeA") 
void set_up_data_stores(void) { 
 Uint16 i; 
 
 s1 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s2 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s3 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s4 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s5 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s6 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s7 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 s8 = (int *) calloc(DATA_STORE_LEN, sizeof(int)); 
 
 // zero out store - note that this is not necessary when arrays are defined with calloc() 
 // can be useful if if initialising with other data is desired 
 for (i = 0; i < DATA_STORE_LEN; ++i) { 
  s1[i] = 0x0; 
  s2[i] = 0x0; 
  s3[i] = 0x0; 
  s4[i] = 0x0; 
  s5[i] = 0x0; 
  s6[i] = 0x0; 
  s7[i] = 0x0; 
  s8[i] = 0x0; 
 } 
} 
//----------------------------------------------------------------------------------------------------- 
// Set up floating point sine and cosine tables in external RAM 
// Use standard C trig functions sin and cos to build lookup tables 
// These are floating point tables with max value of 1.0 
#pragma CODE_SECTION(set_up_look_up_tables, "codeA") 
void set_up_look_up_tables(void) { 
 Uint16 i; 
 float angle; 
 
 for (i = 0; i < TABLEN; ++i) { 
  angle = 2 * PI * i / TABLEN; 
  sin_t[i] = 1.0 * sin(angle); 
  cos_t[i] = 1.0 * cos(angle); 
 } 
} 
//----------------------------------------------------------------------------------------------------- 
// Control panel control 
// Inspect LabVIEW UCP and execute button actions 
#pragma CODE_SECTION(panel_controls, "codeA") 
void panel_controls(void) { 
// Clear PWM trip 
 if (Clear_PWM_trip_button_status) { 
  Clear_PWM_trip(); 
  release = 1; 
 } else 
  pb1 = 0; 
 
 if (Force_PWM_trip_button_status) { 
  Force_PWM_trip(); 
  release = 0; 
 } else 
  pb7 = 0; 
 
// switch relays based on UCP buttons 
 Relay1(Relay1_button_status); 
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 Relay2(Relay2_button_status); 
 Relay3(Relay3_button_status); 
 Relay4(Relay4_button_status); 
 
// Gate data store button status 
 if (Data_Store_button_status) { 
  store_enable = 1; 
//  pb3 = 400; 
 } else { 
  acc1 = 0; 
  acc2 = 0; 
  acc3 = 0; 
  store_enable = 0; 
  store_counter = 0; 
//  pb3 = 401; 
 } 
 
// Comp 2 button 
 if (Comp_2_button_status) { 
  reverse = -1; 
 } else { 
  reverse = 1; 
 } 
 
} 
//--------------------------------------------------------------------------- 
// Send Monitoring Parameter Frame (MPF) to LabVIEW 
// The MPF consists of 15 selected variables to be displayed on LabVIEW UCP 
// The size of the MPF can be increased by modification to sprintf statements 
// Corresponding changes will be needed to the LabVIEW panel application 
// Multiple sprintf() functions are used to limit length of sprintf argument list 
void update_panel(void) { 
 Uint16 nc;     // sprintf error code 
 static char sbuf[100];  // output string for sprintf 
 
 //nc = sprintf(sbuf,"%u %u %u %d \r\0",B0,B1,B2,Ia);   //14-03-2014 phase a current displayed on the 4th 
display 
 nc = sprintf(sbuf, "%u %u %u %d \r\0", B0, B1, B2, disp1); 
 scia_msg(sbuf); 
 nc = sprintf(sbuf, "%lu %lu %u %u \r\0", LoopCount, ISR_count1, pos_count, 
   QCTMR_count); 
 scia_msg(sbuf); 
 nc = sprintf(sbuf, "%d %u %d %d %u %d %d\r\n\0", N_RPM, reversal_count, 
   imod, (B6 - 2076), T0_count, ave1, TZflag); 
 scia_msg(sbuf); 
} 
//--------------------------------------------------------------------------- 
// Send values to LabVIEW Data Transfer Interface (DTI) 
// This function assembles the data from the 8 ext RAM data store contents 
// into frames and transfers the data to the LabVIEW DTI. The LabVIEW DTI 
// sends a frame identifier (frame_count) and this function responds by 
// sending 32 words of 16-bit data back to the LabVIEW DTI via the RS232 link. 
// This process repeats until all the requested frames are sent. 
// More details of the data transfer process and frame structure are 
// given in the Software Design Report. 
// 
void transfer_store_data_to_RS232(int frame_count) { 
 int d01, d02, d03, d04, d05, d06, d07, d08, d09, d10, d11, d12, d13, d14, 
   d15, d16; 
 int d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, 
   d31, d32; 
 Uint16 index1, index2, index3, index4; 
 Uint16 nc; 
 static char sbuf[100];    // output string for sprintf 
 
 index1 = 4 * frame_count; 
 index2 = index1 + 1; 
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 index3 = index2 + 1; 
 index4 = index3 + 1; 
 
 d01 = s1[index1]; 
 d02 = s2[index1]; 
 d03 = s3[index1]; 
 d04 = s4[index1]; 
 d05 = s5[index1]; 
 d06 = s6[index1]; 
 d07 = s7[index1]; 
 d08 = s8[index1]; 
 
 d09 = s1[index2]; 
 d10 = s2[index2]; 
 d11 = s3[index2]; 
 d12 = s4[index2]; 
 d13 = s5[index2]; 
 d14 = s6[index2]; 
 d15 = s7[index2]; 
 d16 = s8[index2]; 
 
 d17 = s1[index3]; 
 d18 = s2[index3]; 
 d19 = s3[index3]; 
 d20 = s4[index3]; 
 d21 = s5[index3]; 
 d22 = s6[index3]; 
 d23 = s7[index3]; 
 d24 = s8[index3]; 
 
 d25 = s1[index4]; 
 d26 = s2[index4]; 
 d27 = s3[index4]; 
 d28 = s4[index4]; 
 d29 = s5[index4]; 
 d30 = s6[index4]; 
 d31 = s7[index4]; 
 d32 = s8[index4]; 
 
 nc = sprintf(sbuf, "%d %d %d %d %d %d %d %d %d \r\0", index1, d01, d02, d03, 
   d04, d05, d06, d07, d08); 
 scia_msg(sbuf); 
 nc = sprintf(sbuf, "%d %d %d %d %d %d %d %d %d \r\0", index2, d09, d10, d11, 
   d12, d13, d14, d15, d16); 
 scia_msg(sbuf); 
 nc = sprintf(sbuf, "%d %d %d %d %d %d %d %d %d \r\0", index3, d17, d18, d19, 
   d20, d21, d22, d23, d24); 
 scia_msg(sbuf); 
 nc = sprintf(sbuf, "%d %d %d %d %d %d %d %d %d \r\n\0", index4, d25, d26, 
   d27, d28, d29, d30, d31, d32); 
 scia_msg(sbuf); 
} 
//=========================================================================== 
// End of code 
//=========================================================================== 
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