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Abstract 

 

This thesis describes a series of investigations into the reliability of different financial risk 

models for measuring downside risks during financial crises caused by the bursting of asset 

price bubbles. It also provides further insight into modelling asset price series with 

periodically collapsing asset price bubbles.  

 

We start by reviewing the volatility models that are commonly used for quantifying downside 

financial risks in Chapter 2. The characteristics of several important univariate and 

multivariate autoregressive conditional heteroscedasticity family volatility models are 

reviewed. In Chapter 3, we apply the volatility models to identify the direction of volatility 

spillover effects among stock markets. The financial markets considered in this study include 

Japan, China, Hong Kong, Germany, the United Kingdom, Spain, the United States, Canada, 

and Brazil. Findings from both the dynamic conditional correlation (DCC) and asymmetric 

DCC models show that the asymmetric volatility spillover effect is highly significant among 

financial markets, while the asymmetric correlation spillover effect is not. Financial contagion 

will be reflected in price volatility, but not in correlations.  

 

Subsequently we move to testing different Value-at-Risk (VaR) approaches using market data. 

We define 1 June 2008 to 1 June 2009 as the financial crisis period. We study nine 

hypothetical single-stock portfolios and nine hypothetical multiple-asset portfolios in the nine 

countries considered. Both the univariate and multivariate VaR approaches are tested and the 

results show that the long memory RiskMetrics2006 model outperforms all other univariate 

methods, while the Glosten-Jagannathan-Runkle DCC model performs well among the 

multivariate VaR models. Next, in Chapter 5 we use simulations to explore the characteristics 

of financial asset price bubbles. Evans (1991) proposed a model for investigating asset price 
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movements with periodically collapsing explosive bubbles. We modify and extend this model 

to make it more realistic; as a result the modified model better controls the growth and 

collapse of bubbles, while exhibiting volatility clustering. In the simulation tests, the 

RiskMetrics VaR model performs well during financial turmoil. 

 

Finally, we discuss the sup-augmented Dickey-Fuller test (SADF) and the generalized SADF 

test for identifying and date-stamping asset price bubbles in financial time series. Unlike in 

Chapter 4 (where we use personal judgement to define financial bubble periods), pre- and 

post-burst periods are defined here based on the identification results of the asset price 

bubbles’ origination and termination dates from the backward SADF test. Our empirical 

results show that the criticism that VaR models fail in crisis periods is statistically invalid. 
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Chapter 1. Introduction 

 

Financial markets have experienced several crises over the last two decades. The Asian 

financial crisis in 1997, the bursting of the dot-com bubble in 2001, the sub-prime mortgage 

crisis in 2008, and the European sovereign debt crisis in 2009 have all spurred financial 

institutions to use better measures for managing downside risk. The losses caused by these 

financial crises were tremendous. Luttrell et al. (2013) estimated that the 2008 sub-prime 

mortgage crisis cost the U.S. economy up to $14 trillion, which is equivalent to the average 

annual output of the entire U.S. economy. At the same time, the world has become more 

integrated than ever and cross-border financial flows have steadily increased; given that the 

contagion effect means no single market can stand alone, the effects of financial crisis have 

become further complicated.  

 

Financial crisis disrupts the normal functioning of financial market. The dot-com bubble 

occurred in late 1990s, the equity values of internet-based companies consecutively soared a 

recorded high and companies were grossly overvalued at that moment. During that period, 

companies could obtain capital easily from the public by simply using an Internet concept, 

their stock price can be tripled or quadrupled in one day after the initial public offerings. The 

bubble was eventually collapse around 2001 while many companies failed to meet the 

investors expectations. In 2004 to 2007, the U.S. experienced a fast expansion in household 

debt, while most of the debts were financed by mortgage-backed security (MBS) and 

collateralized debt obligations (CDO). In 2008, the real-estate price bubble burst followed by 

a large decline in housing price, which leaded to a massive default from low credit borrowers. 

In Sept 2008, Lehman Brothers collapsed due to its high exposure in CDO and MBS. The 

news shocked the market and triggered a financial turmoil. 
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Most financial crises are caused by the burst of asset price bubbles. Asset price bubbles are 

formed when the asset’s price deviates from its fundamental value. During the bubble 

booming period, the asset price grows at an explosive rate. Blanchard and Watson (1982) 

suggested that no bubble will last forever, as the market will eventually awake and make 

corrections. Such a correction is usually associated with a large selling force that makes the 

stock price plunge and is commonly referred as a bubble burst. Nonetheless, it is difficult to 

identify the presence of bubbles and to date-stamp the bursts.  

 

The losses incurred during financial crises are tremendous, and practitioners and regulators 

are keen to look for risk models that measure downside risks. In the past decade, value at risk 

(VaR) has become one of the most popular techniques for measuring downside risks. The VaR 

method measures a financial investment’s downside risk, defined as a minimum portfolio 

value loss for a particular time period with a certain percentage of probability. After the 2008 

sub-prime mortgage crisis, many financial institutions suffered unexpected losses that far 

exceeded the values described in risk models, and people started to question the reliability of 

the volatility models that were being used to quantify risks (see Oanea and Anghelache, 2015). 

However, empirical study of VaR performance in the crisis period has been limited. In this 

thesis, we studied the VaR performance in nine countries that across three trading zones of 

Asian market, European market, and North and South American market. Based on the market 

capitalization, we selected three equity markets in each zone to perform a series of robustness 

tests, the selected equity markets included: Tokyo Stock Exchange, Shanghai Stock Exchange, 

Hong Kong Stock Exchange, Deutsche Borse, London Stock Exchange and BME Spanish 

Exchange, New York Exchange, Toronto Stock Exchange, and BM&F Boverspa. The market 

capitalizations of each market are USD4.49 trillion, USD3.99 trillion, USD3.32 trillion, 

USD1.76 trillion, USD6.10 trillion, USD 0.94 trillion, USD19.22 trillion, USD1.94 trillion, 

and USD0.82 trillion, respectively. 
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1.1 Motivations and Objectives of the Thesis 

 

This thesis studies the reliability of different financial risk models in periods with and without 

asset price bubbles, particularly in the periods before and after the bubbles burst.  

 

International stock markets have been interacting more than ever before. The international 

financial contagion effect makes risk models fail, as most of the volatility models employed 

do not consider volatility spillover effects among different countries. With the large volume of 

cash flow created by hedge funds and the cross-regional operations of financial institutions, 

traditional macroeconomic theories fail to explain the spillover effect. At the same time, in the 

last two decades China has experienced rapid growth in global financial markets. Such rapid 

growth has attracted many to study the country’s influential power on the rest of the world. 

This motivates us to examine the magnitude and the nature of the change in volatility 

spillover in the United States, China, and seven other developed and emerging markets in 

Chapter 3. 

 

Chapter 4 extensively reviews on different VaR models and compares the reliability of them 

in the 2008-2009 global financial crisis period. The crisis period is defined as the 

sub-mortgage crisis period of 1 June 2008 to 1 June 2009, while the non-crisis period is 

defined as 1 June 2009 to 31 December 2012. The VaR approaches are tested by constructing 

hypothetical single- and multiple-asset portfolios. We studied the markets of Japan, China, 

Hong Kong, Germany, the United Kingdom, Spain, the United States, Canada, and Brazil and 

formed nine single-stock portfolios and nine three-stock portfolios to explore the effectiveness 

of the univariate and multivariate VaR approaches in both the crisis and non-crisis periods.  

 

Chapter 5 studies the performance of different VaR models in the periods with and without 
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asset price bubbles using simulated data. We modified Evans (1991) bubbles model to 

simulate asset prices with periodically collapsing bubbles and accordingly examines the 

reliability of different VaR approaches. As the bubble generation process is controlled within 

our simulations, the bubble boom and burst dates are known in advance for studying the 

reliability of different VaR models in both pre- and post-burst periods.  

 

The crisis and non-crisis periods defined in Chapter 4 are based on subjective judgement but 

researchers prefer to use statistical procedures to identify asset price bubbles. Early studies on 

asset price bubble identification included Shiller (1981) variance bound tests and Diba and 

Grossman (1988b) co-integration based test. As suggested by Evans (1991), both approaches 

fail to detect periodically collapsing bubbles. Phillips et al. (2011) proposed using a forward 

recursive sup-augmented Dickey-Fuller (SADF) test to detect periodically collapsing bubbles 

and demonstrated that the SADF test outperforms other traditional tests. However, Phillips et 

al. (2015) found that the SADF test may fail if multiple bubbles are present during the testing 

period. They proposed a generalized version of the sup-ADF (GSADF) test that allows the 

starting point of the testing window change to address this problem. We use the GSADF test 

to identify asset price bubbles and date-stamp their origination and termination dates in real 

market data. 
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1.2 Thesis Contributions 

 

In this dissertation, we found that the International financial markets have been interacting 

more than ever before. We showed the importance of financial contagion effects on equity 

prices and volatility. As financial shocks propagate across markets, investors should pay 

attentions on asymmetric impacts on volatility from bad news. One interesting finding in 

Chapter 3 is that the asymmetric impacts of financial news will intensify the volatilities in 

different stock markets; however; finance turbulences have no significant effect on intensify 

correlations among the markets. One implication drawn from our results is that the 

international diversification effect still stands during the financial crisis, and they should 

benefit in a mean-variance manner. This idea is supported by Robert (2011) which empirically 

investigated international equity foreign portfolios during the financial crisis that across 42 

countries. The results show that international stock market diversification provides large gains 

during the financial crisis. The reduction of home bias in equity holdings allows investors to 

reap the benefits of international diversification, especially during financial turmoil. 

 

Next, we extensively reviewed the effectiveness of different VaR models during financial 

crises. Our results show that the criticism of VaR models fail to reveal the underlying risk is 

statistically invalid, the Longerstaey and Spencer (1996) RiskMetrics2006 approach performs 

well in both non-crisis and crisis period. Our results suggest financial institutions may 

consider to adopt the long-memory RiskMetrics2006 model as the internal VaR models for 

measuring the downside market risk, rather than using the traditional short-memory 

RiskMetrics model. 

 

The thesis also propose a new method for simulating stock price series with periodically 

collapsing explosive bubbles has been proposed. Seminal work from Evans (1991) provided a 
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model for simulating rational asset price bubbles with periodically collapsing explosive 

bubbles, which provides a more realistic results than the traditional random walk theory by 

geometric Brownian motion that simulates no financial crisis. Evan’s work is particular useful 

in managing downside risk. However, as Evan’s model suggests that the asset price bubble 

will collapse in one single observation, it may be adequate in simulating monthly data series 

but not in daily data series. We extended Evan’s model by allowing the asset price bubble 

multiple collapse and introduced a mechanism to incorporate the asymmetric volatility 

clustering feature in the asset price series. Our model is more realistic and portfolio managers 

can apply it to perform Monte Carlo Simulation (MCS) for quantifying financial risks and to 

have a better financial budgets allocation. 

 

1.3 Thesis Layout 

 

The layout of this thesis is as follows. Chapter 2 reviews the volatility models that are used 

throughout this study. Chapter 3 studies the magnitude and nature of change in volatility 

spillover within international stock markets. Chapter 4 explores the performance of different 

VaR models in the last decade’s sub-prime mortgage crisis, the period of which is specified as 

1 June 2008 to 1 June 2009. Chapter 5 uses simulations to study the characteristics of asset 

price bubbles and proposed a new equity price simulation model. Chapter 6 studies the asset 

price bubbles and different VaR approaches by using the GSADF test using real stock data. 

The origination and termination dates of the bubbles are identified through the GSADF test, 

rather than through personal judgement. 
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Chapter 2. The Challenges of Volatility Modelling and a Review of Time 

Series Models 

 

Modelling volatility is of fundamental importance to asset and derivatives pricing. Good 

volatility models enable financial institutions to price assets and derivatives in a more 

accurate way, reducing the probability of significant losses. The Black-Scholes-Merton (BMS) 

option pricing model is one of the famous option pricing models in the last few decades. 

However, it is unrealistic because it assumes that volatility is constant and known. From the 

collapse of the famous Long-Term Capital Management (LTCM) fund to the most recent 

sub-prime mortgage collapse in the United States, many events have disrupted the traditional 

derivative valuations process and raised interest in finding a better way to incorporate market 

uncertainty into this process. 

 

In addition, better volatility models enable companies to greatly improve their effectiveness in 

controlling financial risks. In the past two decades, the VaR method has been one of the most 

popular methods for measuring the downside risks of financial assets. Nevertheless, after the 

sub-mortgage crisis in 2008 practitioners and regulators started to criticize the VaR model for 

managing risk based on just one number, which may be insufficient. In reality, VaR can be 

calculated in various ways based on different assumptions and volatility models. Financial 

institutions tend to use simple approaches that are susceptible to a large amount of model risk, 

which leads the VaR model to fail. 

 

In this chapter, characteristics of several important time series models are discussed and 

reviewed, including the autoregressive (AR), moving average (MA), and autoregressive 

moving average (ARMA) models. Furthermore, the autoregressive conditional 

heteroskedasticity (ARCH) family volatility models, including the ARCH, generalized ARCH 
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(GARCH), Glosten-Jagannathan-Runkle GARCH (GJR-GARCH), constant conditional 

correlation (CCC), dynamic conditional correlation (DCC), and GJR-CCC models are also 

reviewed. The volatility models described in this chapter are used in the different VaR 

approaches that are discussed in Chapters 3 and 5.  

 

2.1 AR Models 

 

Autoregressive models are linear prediction models that forecast output based on previous 

output. For an output variable tY , AR models take previous output variables 1 2, , ,t t t nY Y Y    

as the independent variables in the linear regression. The simplest way to model the 

dependency between the current variable tY  and the past variable 1tY   is the first-order AR, 

or AR(1), process. 

 

 1t t tY Y       (2.1) 

 

where t  is a random component and considered as a white noise process with a mean of 

zero and constant variance, since 2~ (0, )t N  , t  is homoskedastic and exhibits no 

autocorrelation (i.e. 
{ , }

0
{ }

t t k
k

t

cov

V

 



  ). 

 

In the AR(1) process, the current value tY  equals a constant   plus   times the previous 

value 1tY   plus the random component t .  

  



 

9 

2.1.1 Stationarity of AR models 

 

A time series model is called stationary if its statistical properties do not change over time. 

The probability distribution of 1Y  should be the same as that of any other tY . In many cases, 

only the means, variances, and covariances of the series are of concern, and it is common to 

assume that these moments are independent of time. The second-order or covariance 

stationarity is then tested. 

 

A process { }tY  is covariance stationary if it satisfies the following three conditions for all t : 

 

a) { }tE Y   

b) 0{ }tV Y   

c) { , } , 1,2,3,t t k kcov Y Y k    

 

The expected value of series { }tY  in the AR(1) model is:  

 

 1{ } { }t tE Y E Y     

 2

2 2{ } ( { }) { }t t tE Y E Y E Y              

 2 3

3 3{ } ( ( { })) { }t t tE Y E Y E Y                    

 

in which it is covariance stationary if and only if | | 1  , the expected value   can be 

written as:  

 

 { }
1

tE Y





 


  (2.2) 
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 The variance of { }tY  in the AR(1) model is: 

 

 2 2

1 1{ } { } { } { }t t t tV Y V Y V V Y         

 

where 1{ } { }t tV Y V Y   and | | 1  ,  

 

 
2

2
{ }

1
tV Y







 (2.3) 

  

Defining t ty Y   , equation (2.1) can be written as: 

 

 1t t tY Y          

 
1

1
t t ty Y


 


  


 

 1t t ty y    (2.4) 

  

The covariance of series { }tY  in the AR(1) model is: 

 

 
2

1 1 1 1 1 2
{ , } { } {( ) } { }

1
t t t t t t t tcov Y Y E y y E y y V y


   


        


 

 

for any 1, 2,3,k   

 

 
2

2
{ , }

1

k

t t kcov Y Y





 


 (2.5) 
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For any non-zero  , the correlation of any two observations tY  is non-zero and the 

dependence will be smaller while the observation distance k  is larger. 

 

Since the means, variances, and covariances in equations (2.2), (2.3), and (2.5) are all 

independent of time t  and finite, the AR(1) process is covariance stationary. 

 

2.2 MA models 

 

Moving average models are linear prediction models that forecast output based on previous 

input. For a variable tY , an MA model takes previous input variables 1 2, , ,t t t n      as the 

independent variables in the linear regression. The simplest MA model is the first-order MA, 

or MA(1), process. 

 

 1t t tY         (2.6) 

 

In the MA(1) process, the current value tY  is equal to the mean   plus a weighted average 

of t  and 1t  , which are the current and past random components. 

 

2.2.1 Stationarity of the MA process 

 

To test the stationarity of the MA process, the expected value, variance, and covariance of the 

series { }tY  are examined. 

 

The expected value of series { }tY  in the MA(1) model is:  

 

 { }tE Y   (2.7) 
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The variance of series { }tY  in the MA(1) model is:  

 

 1{ } { } { }t t tV Y V V     

  2 2 2 2 2{ } (1 )tV Y          (2.8) 

  

The covariance of series { }tY  in MA(1) model is:  

 

 2 2

1 1 1 2 1{ , } {( )( )} { }t t t t t t tcov Y Y E E                

 2 1 2 3{ , } {( )( )} 0t t t t t tcov Y Y E            

 

In general, 

 

 

2 for 1
{ , }

0 for 2
t t k

k
cov Y Y

k




 
 


 (2.9) 

 

Since the means, variances, and covariances in equations (2.7), (2.8), and (2.9) are all 

independent of time t  and finite, the MA(1) process is covariance stationary. 

 

2.3 The Lag Operator in Time Series Models 

 

Time series models usually refer to past data. In order to simplify representation of the model, 

the lag (or backshift) operator denoted by L is commonly be used in literatures and which 

defined as follows: 
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1

2

2

t t

t t

n

t t n

LY Y

L Y Y

L Y Y













 (2.10) 

 

The AR(1) process can be written as: 

 

 t t ty Ly    

 

In general, the AR(p) process can be written as: 

 

 ( ) t tL y   (2.11) 

 

where ( )L is the lag polynomial given by: 

 

 
2

1 2( ) 1 p

pL L L L         (2.12) 

 

The lag polynomial ( )L  can be interpreted as a filter, which is considered as equation 

(2.11). After the filter is applied to the AR series{ }ty , the white noise t  in time t will be 

returned as output. The inverse of ( )L  is 1( )L  , and it exists if and only if | | 1  . 

 

With the lag polynomial, the (1)AR  series can be written as the ( )MA   series and (1)MA

series can be written as the ( )AR   series. 
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1 1

0

0

(1) :

(1 )

(1 ) (1 ) (1 )

t t t

t t

t

j j

t t

j

j

t t j

j

AR y Ly

L y

L L y L

y L

y

 

 

   

 

 

 











 

 

   









 

 

1

1

0

(1) :

(1 )

( )

t t t

t t t

t t

j

t t j

j

MA Y

y L

L y

y

  

  

 

 











  

 

 

 

 

 1

0

(1) : ( ) ( )j

t t j t

j

MA y y AR  


 



      

 

For the ( )MA q  process, the lag polynomial is:  

 

 
2

1 2( ) 1 q

qL L L L         (2.13) 

 

2.4 ARMA Models  

 

Autoregressive MA processes are a combination of AR and MA models, which are 

considered as a combination of the AR(p) and MA(q) processes. 

 

 
1 1 2 2

1 1 2 2

( ) :

( ) :

t t t p t p t

t t t t q t q

AR p y y y y

MA q y

   

      

  

  

    

    
 

 

The ARMA(p, q) model is obtained by combining the AR(p) and MA(q) models. 
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1 1 2 2 1 1 2 2( , ) : t t t p t p t t t q t qARMA p q y y y y                       (2.14) 

 

Using lag polynomials (2.12) and (2.13), the ( , )ARMA p q  model can be written as: 

 

 ( ) ( )t tL y L    (2.15) 

 

Given that lag polynomials (2.12) and (2.13) are revertible, the ARMA model can be written 

as either the ( )MA   or the ( )AR   model. 

 

 1( ) ( )t ty L L    

 1( ) ( ) t tL L y     

 

As any invertible ARMA model can be approximated by AR or MA models and the 

estimation of MA and ARMA models is more complex than AR models, the AR model is the 

most commonly used of the three time series models. However, the three models do behave 

differently in different situations, and there are no economic reasons for choosing a particular 

model. 

 

2.5 Univariate ARCH Family Models 

 

2.5.1 The ARCH model 

 

The AR, MA, and ARMA models assume that the condition variance of ty does not change. 

Furthermore, when these models are used to forecast asset returns, it is assumed that asset 

returns are an independently and identically distributed (i.i.d.) random process with a zero 

mean and constant variance. In reality, however, the uncertainty or randomness are observed 
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to vary widely over time and tend to cluster together. The assumptions of normality, 

independence, and homoskedasticity do not always hold with real data. Engle (1982) 

proposed the ARCH model with the volatility clustering effect accounted for in the modelling 

process. 

 

Consider the distribution of ty  is normal with a mean equal to tx   plus a random 

component th . From equation (2.16) to (2.19), the distribution of ty  in the information set 

 is a linear combination of the vector and a coefficient vector  = 1 2( , , , )n    . 

 

 1| ~ ( , )t t t ty N x h   (2.16) 

 
1 2( , , , , )t t t t ph h        (2.17) 

 t t tz h   (2.18) 

 t t ty x     (2.19) 

 

where ~ (0,1)tz N . 

 

The ARCH model states that the variance of the error term th  depends on the squared error 

terms from previous periods. 

 

 
2 2

1{ | } ( )t t t th E L        (2.20) 

 

  

1t 
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 Defining a surprise term 
t  as 2

t t th   , the ( )ARCH p  process can be written as: 

 

 2 2( )t t tL        

 

where ( )L  is the lag polynomial defined in equation (2.13). As t  is a surprise term not 

correlated over time, the t  is conditionally heteroskedastic, not with respect to tx  but with 

respect to t n  . The ARCH model exhibits heteroskedasticity.  

 

In general, to ensure the conditional variance th  is positive,   and the coefficients in the 

lag polynomial ( )L  should be positive. Since the conditional variance th  in the 

( )ARCH p  process depends on coefficients p, any old shock prior to p periods will not affect 

current volatility. 

 

2.5.2 The GARCH model 

 

In many empirical applications of the ( )ARCH p  model, a long lag of the variance (a relative 

large number of p) is used. Bollerslev (1986) proposed the GARCH model to circumvent this 

problem. 

 

In general, the ( , )GARCH p q  model can be written as: 

 

 
2

1 1( ) ( )t t th L L h        (2.21) 
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where ( )L  and ( )L  are the lag polynomials. Similar to the ARMA model, the 

( , )GARCH p q  model can also be written as an ( )ARCH   model with geometrically 

declining coefficients: 

 

 2 2 2

1 2(1 ) ( )t t th               

 1 2

11

j

t t j

j

h


  









 


  (2.22) 

 

The GARCH model states that current volatility depends more heavily on recent than older 

volatility shocks, as the coefficients are geometrically declining. 

 

If a surprise term is defined as t  as 2

t t th   , the (1,1)GARCH  process can be written 

as: 

 

 2 2

1 1( )t t t t             (2.23) 

 

The equation (2.23) follows an ARMA(1,1) process. For stationarity, the value of the AR 

component    is required to be below 1. Under stationarity, 2 2

1 1{ } { }t tE E h h    , the 

unconditional variance of   can be written as: 

 

 
1

h


 


 
 

 

In many applications, the unconditional variance h  is considered as long-term variance, and 

we can rewrite the equation (2.22) to a higher order of ARCH process: 



 

19 

 1 2

1

( )j

t t j

j

h h h  








    

 

Since the GARCH model is a symmetric model, the results of negative and positive impacts 

will be the same. Its ability to model asset price movement is questioned.  

 

2.5.3 The asymmetric GJR-GARCH model 

 

As suggested by Engle and Ng (1993), Glosten et al. (1993) GJR-GARCH(1,1) model is the 

best ARCH family model for capturing the asymmetric impact of bad or good news 

information on return volatility. The conditional variance functions of symmetric and 

asymmetric models are specified in the GARCH(1,1) model by equations (2.24) and (2.25) 

and in the GJR-GARCH(1,1) model by equations (2.24) and (2.26). 

  

  

 t tr    (2.24) 

 
2

0 1 1 2 1t t th h       (2.25) 

 
2 2

0 1 1 2 1 3 1t t t th h s    

       (2.26) 

 1| ~ (0, )t t tI N h  

 

where if 1 0t  , 1s  , else 0s  .  
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2.6 Multivariate ARCH Family Models 

 

The multivariate GARCH models are represented as: 

 

 ,t tr   

 1| ~ (0, ),t t tI N H  (2.27) 

 1 2 1 2( , , , , ),t t t t tH g H H     

 

where tr  is a ( 1)n  vector of asset returns at time t , tH  is the covariance matrix of the 

n  asset returns at time t . The function (.)g  is a function of the lagged conditional 

covariance matrices and the covariance matrices can be modelled in a variety of ways. The 

BEKK model proposed by Engle and Kroner (1995) is one of the most widely used 

multivariate GARCH specifications. This model allows interactions among variances, but as it 

requires 2( ( 1) / 2) ( )n n n q p    parameters to be estimated, the optimization process 

becomes extremely complex and unstable when the dimensions of the model increase.  

 

2.6.1 The CCC model 

 

Bollerslev (1990) suggested that the CCC model restricts the correlation coefficients to being 

constant while letting the conditional variances vary. The CCC model is calculated as:  

 

 1/2 1/2

t t tH C    (2.28) 
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where 
1/2

(1,1), ( , ),( , , )t t n n tdiag h h   is a diagonal matrix with the diagonal element th in 

GARCH(p,q) specifications, and 
,[ ]i jC   is a symmetric positive definite matrix with the 

diagonal element equals to one, 
, 1i i  , for 1, ,i n . 

 

To better illustrate this, the specifications of the CCC(1,1) model in Test 1 are: 

 

 

(1,1), (1,1),
1,2 1,3

(2,2), 1,2 2,3 (2,2),

1,3 2,3
(3,3), (3,3),

0 0 0 01

0 0 1 0 0

10 0 0 0

t t

t t t

t t

h hc c

H h c c h

c ch h

   
    
         
     

   

 

 

where the conditional variance 
( , ),i i th  is obtained from the univariate GARCH(p,q) model. 

 

 2

( , ), ,0 , ( , ), , ( , ),

1 1

q p

i i t i i j i i t j i k i i t k

j k

h h   

 

     

 

and the covariance is obtained by assuming that a constant correlation 
,i j  exists:  

  

 
1/2

( , ), , ( , ), ( , ),( )i j t i j i i t j j th h h  

 

The number of parameters under estimation is relatively small in the CCC model, namely

( ( 1) / 2) ( 1)n n n p q    . 
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2.6.2 The DCC model 

 

Engle (2002) proposed the DCC model to generalize the CCC model, relaxing the constant 

correlation constraint that allows the correlation to vary over time. The DCC model represents 

a two-step estimation model. It first estimates a series of univariate GARCH models, which 

yields GARCH parameters and residuals; it then uses these residuals (rather than the 

covariance, as the CCC model does) to estimate the conditional correlation. Engle’s DCC 

(DCC-E) model is as follows: 

 

 1/2 1/2

t t t tH C    (2.29) 

 
1/2

(1,1), ( , ),( , , )t t n n tdiag h h   

 

where the conditional variance 
( , ),i i th  is obtained from the univariate GARCH(p,q) model, 

and the standardized residuals are represented as 
,

,

( , ),

ˆ

ˆ

i t

i t

i i t

s
h

 . 

 

 2

( , ), ,0 , ( , ), , ( , ),

1 1

q p

i i t i i j i i t j i k i i t k

j k

h h   

 

     (2.30) 

 

The term tC  in equation (2.29) is time varying, which is different from term C in equation 

(2.28); the time-varying correlation matrix is in the form of: 

 

 * 1/2 * 1/2

t t t tC Q Q Q   

 

The correlation matrix tQ  is estimated by smoothing the standardized residuals as suggested 
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by Engle: 

 

 

* * * *

1 1 1 1

(1 ) ( )
q p q p

t m c m t m t m c t c

m c m c

Q a b Q a s s b Q  

   

         (2.31) 

 

where 
1, 2, ,( , , , )t t t n ts s s s  ,

* 1/2 1/2 1/2 1/2

(1,1), (2,2), ( , ),( ), ( ), , ( )t t t n n tQ diag q diag q diag q    , Q is 

unconditional covariance of the standardized residuals [ ]t tE s s   and 
* *

1 1

1
q p

m c

m c

a b
 

   .  

 

To simplify the estimation process, we set * * 1q p   and the number of parameters under 

estimation is ( 1) 2n p q   , excluding the unconditional covariance Q .  

 

2.6.3 The asymmetric generalized DCC model 

 

Variance asymmetry is modelled by adding the GJR terms in equation (2.30) to become the 

GJR-DCC model. The number of parameters under estimation becomes ( 2) 2n p q   . 

 

Cappiello et al. (2006) generalized the DCC model by introducing the asymmetric generalized 

DCC (AGDCC) model that modified the correlation matrix tQ  in equation (2.31) to: 

 

 
1 1 1 1 1( )t t t t t tQ Q A QA B QB G NG A s s A G n n G B Q B    

               (2.32) 

 

where A, B, and G are k k  parameters matrix, tn  is the zero-threshold standardized error 

[ 0]t t tn I s s  , [*]I  is 1k   indicator function, and N is the unconditional covariance 

of the zero-threshold standardized errors [ ]t tE n n  . 
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Correlation asymmetry is modelled by the asymmetric DCC (ADCC) model, which is a 

generalized version of the AGDCC model that sets the matrices G , A , and B  in equation 

(2.32) as scalars: G g , A a , and B b . 
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Chapter 3. Volatility Spillover Effects and Interdependence Among Stock 

Markets 

 

The stock market in China has experienced rapid growth and provided impressive returns in 

the last decade; it has received much attention from the world and started to play an important 

role in the international stock market. Interdependence and spillover effects among the United 

States and emerging markets (including China) attracted great attention from researchers, 

particularly in relation to the extreme market conditions of the 1997 Asian stock market crisis 

and the 2008 financial tsunami. During 2000 to 2015, China accounted for nearly one-third  

of the global growth (see Arslanalp et al. 2016). Chinese market has a gradually increasing 

influence on the global market and becomes more integrated with the rest of the world. As 

suggested by Li et al., 2012; Das, 2014; Arslanalp et al., 2016, the growing influences are 

mainly driven by trade-related and financial activity, and the financial spillovers from China 

to regional markets are on the rise. At the same time, the role of financial linkages in driving 

spillovers is found to be growing in importance. In this chapter, we examine how information 

spillover affects stock markets and the degree to which the influence of China’s stock market 

has changed in the last decade. 

   

In the literature, Eun and Shim (1989) used vector-AR developed by Sims (1980) to capture 

interdependence between the world’s nine largest stock markets in terms of capitalization 

value in the year 1985, which included Australia, Canada, France, Germany, Hong Kong, 

Japan, Switzerland, the United Kingdom, and the United States. Eun and Shim (1989) found 

that a substantial amount of interdependence exists among different national stock markets; 

most importantly, they also found that the U.S. stock market is the most influential market and 

that others are followers. Hamao et al. (1990) and Koutmos and Booth (1995) found similar 

results using Bollerslev (1986) GARCH process. Allen et al. (2013) used a tri-variate 
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GARCH model to study the volatility spillover among the U.S., Australian, and Chinese 

(proxied by the Hang Seng Index) markets and found strong evidence of changing 

correlations among these markets during financial crisis periods.  

 

With the rapid growth of the China’s stock market, international stock markets have been 

experiencing greater interaction than ever before. We study the magnitude and the nature of 

the change in information spillover among the United States and developed and emerging 

markets (including China). Unlike previous studies that identify the directions of dependency 

using Granger causality and a vector-AR model, we model the information spillover direction 

by considering the exchanges’ trading hours and classifying them into three time zones. Our 

model suggests that information spills over different time zones in a cyclical manner, which 

provides more economic meaning when the empirical results are analysed. The empirical 

results from different multivariate GARCH models enable us to identify the spillover effects 

in terms of both volatility and correlation among different markets in different trading time 

zones.  

 

3.1 The Data 

 

The data used in this study consist of daily stock prices that are represented by market indices 

at closing time, in terms of local currency units. To study how the information spills over 

among the United States and developed and emerging markets (including China), nine 

countries (as represented by nine market indices) are used: Japan, China, Hong Kong, 

Germany, the United Kingdom, Spain, the United States, Canada, and Brazil. These nine 

markets were selected based on their market capitalization and trading hours. Since the 

spillover effect is mainly driven by trade-related and financial activity (see Li et al., 2012; Das, 

2014; Arslanalp et al., 2016), indices that represent the largest and the most influential 
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companies to a country were selected. For China, we select Shanghai Stock Exchange (SHSE) 

instead of Shenzhen Stock Exchange (SZSE) as the companies listed in SHSE are large and 

more established companies, which is a better reflection from the trade-related activity among 

different countries. Similarly, instead of S&P500 and Nasdaq, we selected Dow Jone Index 

(DJI) that represents the largest and most influential companies in the U.S. We further divided 

the nine markets into three time zones according to their trading hours, as shown in Table 3.1 

and Figure 3.1. 

  

Zone m Country Exchange Name Index used 

Market 

Capitalization 

(USD millions) 

A 

1 Japan 
Tokyo Stock 

Exchange 

NIKKEI 225 STOCK 

AVERAGE 
4,485,449.8 

2 China 
Shanghai Stock 

Exchange 

SHANGHAI SE 

Composite 
3,986,011.9 

3 Hong Kong 
Hong Kong Stock 

Exchange 
HANG SENG 3,324,641.4 

B 

4 Germany Deutsche Börse 
DAX 30 

PERFORMANCE 
1,761,712.8 

5 
United 

Kingdom 

London Stock 

Exchange  
FTSE100 6,100,083.0 

6 Spain 
BME Spanish 

Exchanges 
IBEX 35 942,036.0 

C 

7 United States 
New York Stock 

Exchange 

DOW JONES 

INDUSTRIALS 
19,222.875.6 

8 Canada 
Toronto Stock 

Exchange 

S&P/TSX COMPOSITE 

INDEX 
1,938,630.3 

9 Brazil BM&F Bovespa IBOVESPA 823,902.7 

*The data of Market Capitalization are obtained from World Federation of Exchange (WFE), Jan 2015. 

#Obtained from London Stock Exchange Main Market Factsheet, Jan 2015. 

 

Table 3.1 – Exchanges and the Respective Indices Used 

 

 

 

Figure 3.1 – Exchange Trading Hours in GMT 
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The data covers the period 1 January 2000 to 31 December 2012, excluding non-trading days 

in each market, a total of 3,391 observations are obtained from DataStream for each price 

series. All of the data are transformed in logarithmic scale and all nine series are 

non-stationary, as shown in Figure 3.2. We further transform the market indices to daily 

returns busing the formula 
, , , 1( / )m t m t m tr ln P P   , where 

,m tr  denotes the return for index m 

at time t and 
,m tP  denotes the index m  value at time t . There are 3,390n   observations 

for the nine indices’ returns, as shown in Figure 3.3. The graph indicates that the returns are 

stationary. 

 

 

 

Figure 3.2 – Indices Transformed in Logarithmic Scale 
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Figure 3.3 – Stock Markets Returns for Countries in Zones A, B, and C 

 

Table 3.2 shows the descriptive statistics for the returns. The mean returns of the nine markets 

show no great difference, with a range from -0.0177% (Japan) to 0.0378% (Brazil), which is 

close to zero. Furthermore, the standard deviations of the returns are also not significantly 

different; the range is from 1.2067% (Canada) to 1.8588% (Brazil). Nevertheless, if we 

consider the variances together with the maximum and minimum returns values, the stock 

markets in Japan, Hong Kong, and Brazil are apparently more volatile than those in the other 

six countries. The minimum returns of these three stock markets are -12.1110% (Japan), 

-13.5820% (Hong Kong), and -12.0961% (Brazil), while their maximum returns are 

13.2346% (Japan), 13.4068% (Hong Kong), and 13.6794% (Brazil). The higher levels of 

volatility can be explained by investor behaviour in the relevant countries, which reflects a 

phenomenon of individuals being highly influenced by the market atmosphere. 

 

Ljung-Box (LB) tests run for the nine returns series reveal that no potential serial correlations 

exist in the first lag level (except for in U.S. and UK markets), but the LB tests for the squared 



 

30 

returns indicate a strong and significant level of serial correlation. As a result, ARCH family 

volatility models are used.  
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1

 

 Zone A Zone B Zone C 

 
Japan China Hong Kong Germany 

United 

Kingdom 
Spain 

United 

States 
Canada Brazil 

Mean -0.0177% 0.0145% 0.0078% 0.0035% -0.0048% -0.0104 0.0042% 0.0115% 0.0378% 

Median 0.0000% 0.0000% 0.0000% 0.0364% 0.0000% 0.0205% 0.0112% 0.0299% 0.0000% 

Maximum 13.2346% 9.3998% 13.4068% 10.7975% 9.3843% 13.4836% 10.5083% 9.3703% 13.6794% 

Minimum -12.1110% -9.2608% -13.5820% -8.8747% -9.2656% -9.5859% -8.2005% -9.7880% -12.0961% 

Std. Dev. 1.5195% 1.5733% 1.5835% 1.6016% 1.2780% 1.5493% 1.2379% 1.2067% 1.8588% 

Skewness -0.4104 -0.0811 -0.0665 0.0047 -0.1434 0.1223 -0.0455 -0.6418 -0.1183 

Kurtosis 7.2870 4.6610 8.0090 4.2481 5.9933 5.0783 7.7121 8.7096 4.1450 

 
        

 
LB(1) 0.3581 0.0050 1.3339 1.2619 7.5175 0.0012 22.4274 1.2316 0.0006 

 
(0.5496) (0.9437) (0.2481) (0.2613) (0.0061) (0.9720) (0.0000) (0.2671) (0.9803) 

LB(5) 8.6349 12.6994 3.2650 18.9197 67.9514 22.3707 35.8997 37.4697 8.3270 

 (0.1245) (0.0264) (0.6592) (0.0020) (0.0000) (0.0004) (0.0000) (0.0000) (0.1391) 

LB(10) 12.0605 19.4925 17.6809 22.8755 83.6961 31.0759 49.3298 51.3487 16.5715 

 (0.2810) (0.0344) (0.0606) (0.0112) (0.0000) (0.0006) (0.0000) (0.0000) (0.0844) 

LB(20) 17.8182 45.3738 42.2095 37.4391 102.9141 50.6066 77.6954 65.7252 60.5450 

 (0.5994) (0.0010) (0.0026) (0.0104) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) 

LB2(1) 99.2789 62.2146 392.9535 97.4088 182.8441 107.9072 102.5691 300.1172 74.4446 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

LB2(5) 1629.8394 228.8236 1382.1450 959.5099 1468.4803 706.0515 1176.5448 1214.7329 972.7194 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
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LB2(10) 2836.1986 414.5513 2062.0492 1751.6265 2376.9488 1172.9548 2305.1072 2683.8647 1912.4325 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

LB2(20) 3779.4337 633.2438 3047.4543 2981.8039 3750.7619 1791.7683 4082.4519 4584.1648 3154.4209 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

*Numbers in parentheses in LB(n) statistics are at a significant level to reject the null hypothesis of no autocorrelation existing in n lag. 

 

Table 3.2 – Summary Statistic for Stock Market Daily Returns 
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3.2 Testing for Structural Breaks 

 

The assumption of stationarity implies that the parameters in the statistics model are constant 

over time, while structural change indicates that at least one of the parameters in the model 

changed at some date (i.e. break date) in the sample period. As any structural break in our 

sample data may lead to incorrect results in the volatility spillover test, we may consider 

dividing the samples into different subsamples if strong evidence of potential structure breaks 

are found. 

 

The model used in the structural break test for the nine stock markets is as follows: 

 

  
2

, , , ,, ~ . . (0, )m t m m t m t m tr i i d    (3.1) 

  

where 
,m tr  is the stocks return for market m  at time t , and m  is the mean return of 

stocks in the market m  in the whole sample period. The idea of the structural break test is 

based on difference between the pre- and post-break date mean stock returns if a break present. 

If equation (3.1) is rewritten to include a dummy variable 
,m tD , it becomes:  

 

 , , ,m t m m m t m tr D      (3.2) 

 
, ,0 for ; 1 for m t break m t breakD t t D t t     

 

where breakt  is the structural break date. Equation (3.2) states the mean return in market m  

is m  before the structural break date, while it is 
m m   after. If the structural break dates 

are known prior to the test, we can split the sample into two sets, estimate the two sets of 

parameters, and test their equality using the classical Chow (1960) test. The problem is that 
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we never know when the market has experienced structural change; the structural break test 

for unknown timing is preferred in this study. Andrews (1993) and Andrews and Ploberger 

(1994) extended Quandt (1960) idea and proposed a solution for unknown break dates that 

entailed aggregating a series of F statistics into test statistics. In doing so they provided tables 

of critical values for asymptotic distributions. Equations (3.3), (3.4), and (3.5) are the test 

statistics suggested by Andrews. Hansen (1995) examined Andrews’ work and provided a 

method to calculate the p-values. As suggested in the Quandt-Andrews test, we based our 

work on the supF statistic and trimmed both the first and last 15% of observations for the 

structural break test. The F statistics iF  for observations between (0.15 )i floor n  and 

(0.85 )i ceil n  are computed. The Andrews 5% critical value is 8.85, as there is only one 

parameter to test in equation (3.1). Results of the structural break tests are shown in Table 3.3 

and Figure 3.4. We failed to reject the null hypothesis of no structural break in the returns of 

the sample period. Together with a desire for simplicity, this led us to not dividing our data 

into different subsamples in the remaining tests.  

 

 sup i
i i i

supF F
 

  (3.3) 

 
1

1

i

i

i i

aveF F
i i 


 

  (3.4) 

  
1

(0.5 )
1

i

i

i i

expF log exp F
i i 

 
  

  
  (3.5) 
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Figure 3.4 – Quandt-Andrews Structural Break Test (supF) for the Nine Stock Markets’ 

Returns  

 

 

Zone m Country supF aveF expF 

A 

1 Japan 3.8737 (0.3943) 0.7457 (0.4702) 0.5098 (0.4332) 

2 China 7.0111 (0.1030) 0.8453 (0.4144) 0.8097 (0.2627) 

3 Hong Kong 3.9004 (0.3901) 0.7821 (0.4488) 0.5356 (0.4138) 

B 

4 Germany 8.2203 (0.0597) 1.1502 (0.2850) 0.9697 (0.2057) 

5 United Kingdom 4.8712 (0.2613) 0.8036 (0.4368) 0.5342 (0.4149) 

6 Spain 3.5867 (0.4421) 0.6118 (0.5587) 0.3680 (0.5629) 

C 

7 United States 3.9491 (0.3825) 0.4543 (0.6854) 0.2776 (0.6736) 

8 Canada 2.7099 (0.6167) 0.3818 (0.7525) 0.2163 (0.7673) 

9 Brazil 4.8642 (0.2621) 0.6984 (0.4996) 0.4810 (0.4561) 

*Numbers in parentheses are the p-values of 5% significant level to reject the null hypothesis of no 

structural break in the sample period. 

 

Table 3.3 – Quandt-Andrews Structural Break Test 
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3.3 Univariate Models  

 

In Table 3.2, stock returns show significant nonlinear serial dependencies in volatility levels, 

which we captured by using both symmetric and asymmetric GARCH models. As suggested 

by Engle and Ng (1993), the Glosten et al. (1993) GJR-GARCH(1,1) model is the best ARCH 

family model for capturing the asymmetric impacts of bad or good news information on 

return volatility. The conditional variance functions of symmetric and asymmetric models are 

specified in the GARCH(1,1) model by equations (3.6) and (3.7) and in the GJR-GARCH(1,1) 

model by equations (3.6) and (3.8). 

 

 
, ,m t m m tr    (3.6) 

 2

, ,0 ,1 , 1 ,1 , 1m t m m m t m m th h       (3.7) 

 2 2

, ,0 ,1 , 1 ,1 , 1 ,1 , 1m t m m m t m m t m m m th h s    

       (3.8) 

 
, , 1 ,| ~ (0, )m t m t m tI N h

 

 

where if 
, 1 0m t  , 1ms  , else 0ms  . Table 3.4 shows the results of the tests that used the 

GARCH(1,1) and GJR-GARCH(1,1) models. The mean returns of all nine markets are not 

significantly different statistically from zero in any of the asymmetric models. Nevertheless, 

even if some of the coefficients   are statistically significant in symmetric model, the 

magnitudes are too small to be considered deviational from zero. 

 

The conditional variances th for the nine markets follow stationary processes with the 

coefficients 1 1 1    in symmetric models and 1
1 1 1

2


     in asymmetric models. 
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In relation to the asymmetric impact of bad news on return volatility, the coefficients 1  are 

all significantly positive, which implies that bad news contributes to a further increase in 

return volatility. Among the nine markets, those in Zones B and C (namely Germany, the 

United Kingdom, Spain, the United States, Canada, and Brazil) strongly indicate that only bad 

news contributes to volatility (with a highly significant coefficient 1 ), while the coefficient 

1 is not statistically different from zero.  

 

To compare whether asymmetric models are better for describing stock market volatility, we 

perform several likelihood-ratio (LR) tests. 

 

3.4 LR Tests 

 

In LR tests, the asymmetric model is considered the unrestricted model while the symmetric 

model is considered the restricted model. The result LR in the equation (3.9) follows the 2

-distribution with k degrees of freedom (DF), where k  is the number of restrictions in the 

restricted model and can be calculated by subtracting the number of DF in the unrestricted 

model from the number of DF in the restricted model. If the null hypothesis is rejected, we 

reject the hypothesis that the restricted model is preferable to the unrestricted model. 

 

  

 0
0 1

1

2* ( ) 2( )
L

LR ln lnL lnL
L

      (3.9) 

 

0L : Value of the likelihood function of the restricted model 

1L : Value of the likelihood function of the unrestricted model 

 

Table 3.5 shows the results of the LR tests. The rejection of the null hypothesis implies that 

the symmetric models are not good simplifications of the asymmetric models. Asymmetric 
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models are thus better to use for explaining volatility movement in different stock markets: 

bad news yesterday will induce intense reactions from investors. 

 



 

 

3
9

 

 

Japan China Hong Kong Germany United Kingdom Spain United States Canada Brazil 

Model S A S A S A S A S A S A S A S A S A 

  0.0364 0.0031 0.0163 0.0020 0.0488 0.0225 0.0703 0.0190 0.0365 -0.0027 0.0587 0.0132 0.0436 0.0055 0.0497 0.0242 0.0771 0.0328 

 

(1.7749) (0.0222) (0.7233) (0.1470) (2.5710)** (0.7235) (3.7764)* (1.2399) (2.4859)** -(0.1839) (3.2114)* (0.1511) (3.1160)* (0.3928) (3.4536)* (1.7710) (2.8822)* (1.4205) 

0
  0.0369 0.0471 0.0262 0.0273 0.0129 0.0199 0.0224 0.0253 0.0124 0.0155 0.0191 0.0184 0.0133 0.0135 0.0093 0.0135 0.0634 0.0743 

 

(4.2608)* (11.8668)* (4.4435)* (4.5584)* (3.4026)* (4.8891)* (4.2884)* (5.8082)* (3.8068)* (5.5089)* (4.3701)* (5.2816)* (5.1144)* (6.0206)* (3.6927)* (5.4519)* (4.1181)* (4.5756)* 

1
  0.0945 0.0266 0.0600 0.0430 0.0630 0.0184 0.0951 0.0000 0.1056 0.0000 0.0996 0.0000 0.0841 0.0000 0.0721 0.0045 0.0678 0.0069 

 

(9.9618) * (4.9771)* (8.8460)* (6.1712)* (9.4528)* (3.0469)* (10.1175)* (0.0000) (9.8096)* (0.0000) (9.8784)* (0.0000) (10.4798)* (0.0000) (9.0142)* (0.5263) (7.9351)* (0.8996) 

1
 

0.8908 0.8918 0.9302 0.9306 0.9315 0.9318 0.8968 0.9103 0.8889 0.9098 0.8955 0.9218 0.9069 0.9175 0.9207 0.9275 0.9124 0.9174 

 

(85.4826) * (95.1606)* (124.6769)* (127.4501)* (133.7461)* (135.9343)* (94.2699)* (96.0056)* (83.7733)* (71.0185)* (90.6319)* (43.8363)* (111.7689)* (98.0821)* (108.0168)* (106.3564)* (81.0248)* (76.1072)* 

1   0.1155  0.0314  0.0766  0.1528  0.1543  0.1362  0.1428  0.1027  0.1010 

 

 (11.5774)*  (3.6016)*  (6.8457)*  (9.5281)*  (9.4772)*  (8.2222)*  (9.7527)*  (7.3416)*  (6.6291)* 

1 1   
0.9853  0.9902  0.9945  0.9919  0.9945  0.9951  0.9909  0.9928  0.9801  

1
1 1

2


  

 

 (0.9762)  (0.9892)  (0.9885)  (0.9867)  (0.9869)  (0.9899)  (0.9888)  (0.9833)  (0.9748) 

Log 

likelihood 
-5784.0024 -5749.9375 -5988.4510 -5981.7557 -5722.3690 -5693.4175 -5761.6230 -5689.5072 -4913.8293 -4846.3870 -5699.7665 -5628.7805 -4797.4739 -4722.0744 -4677.6119 -4645.4326 -6585.3604 -6547.9959 

AIC 3.4148 3.3952 3.5354 3.5320 3.3784 3.3619 3.4015 3.3596 2.9014 2.8622 3.3651 3.3238 2.8327 2.7888 2.7620 2.7436 3.8875 3.8661 

BIC 3.4220 3.4043 3.5426 3.5410 3.3856 3.3709 3.4088 3.3686 2.9086 2.8712 3.3723 3.3328 2.8400 2.7979 2.7692 2.7527 3.8948 3.8751 

SIC 3.4147 3.3952 3.5354 3.5320 3.3784 3.3619 3.4015 3.3596 2.9014 2.8622 3.3651 3.3238 2.8327 2.7888 2.7620 2.7436 3.8875 3.8661 

HQIC 3.4173 3.3985 3.5380 3.5352 3.3810 3.3651 3.4041 3.3628 2.9040 2.8654 3.3676 3.3270 2.8353 2.7921 2.7646 2.7468 3.8901 3.8693 

LB(1) 0.9533 0.7515 9.8470 10.3294 4.1060 5.7063 7.7960 8.2723 12.5940 12.9652 4.1583 3.9597 9.1543 8.1339 9.6381 8.4672 2.3469 3.2669 

 

[0.9662] [0.9800] [0.0797] [0.0664] [0.5343] [0.3359] [0.1678] [0.1419] [0.0275] [0.0237] [0.5269] [0.5552] [0.1031] [0.1490] [0.0862] [0.1323] [0.7994] [0.6589] 

LB(5) 4.9480 5.2785 27.6614 28.5904 11.3767 12.3164 10.2615 11.4942 13.1821 13.9661 9.2959 8.1496 11.7045 10.8035 13.2334 13.0430 10.2601 11.1554 
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[0.8946] [0.8718] [0.0020] [0.0015] [0.3289] [0.2644] [0.4179] [0.3203] [0.2137] [0.1745] [0.5043] [0.6142] [0.3053] [0.3730] [0.2109] [0.2213] [0.4180] [0.3455] 

LB(10) 9.0059 10.7020 47.5215 49.2868 32.1198 31.4548 17.6271 21.1896 28.2254 30.3163 22.0061 21.6968 27.5763 26.4281 17.9838 18.0265 31.4926 32.0595 

 

[0.9828] [0.9536] [0.0005] [0.0003] [0.0420] [0.0495] [0.6120] [0.3860] [0.1042] [0.0649] [0.3402] [0.3572] [0.1198] [0.1521] [0.5885] [0.5857] [0.0490] [0.0427] 

LB(20) 0.0716 5.6130 0.0917 0.0509 4.2815 9.8910 6.0064 20.8006 1.8237 7.9681 2.7055 4.3549 6.9273 10.7592 1.3684 3.9886 1.5076 7.9614 

 

[0.7891] [0.0178] [0.7620] [0.8215] [0.0385] [0.0017] [0.0143] [0.0000] [0.1769] [0.0048] [0.1000] [0.0369] [0.0085] [0.0010] [0.2421] [0.0458] [0.2195] [0.0048] 

LB2(1) 2.4718 6.1498 0.9204 0.6629 10.7384 17.5153 14.7679 20.9425 7.1794 8.3220 35.7877 21.4669 9.0650 12.9528 3.7111 4.3603 13.8931 13.1244 

 

[0.7807] [0.2919] [0.9687] [0.9849] [0.0568] [0.0036] [0.0114] [0.0008] [0.2076] [0.1394] [0.0000] [0.0007] [0.1065] [0.0238] [0.5917] [0.4988] [0.0163] [0.0222] 

LB2(5) 6.5394 10.7231 2.0136 2.1186 15.6641 27.1129 15.4591 22.4371 10.1866 11.8375 37.4361 24.2435 17.3704 19.0893 9.5859 8.8521 20.9713 24.5172 

 

[0.7681] [0.3795] [0.9962] [0.9953] [0.1097] [0.0025] [0.1162] [0.0130] [0.4243] [0.2961] [0.0000] [0.0070] [0.0666] [0.0391] [0.4775] [0.5462] [0.0213] [0.0063] 

LB2(10) 16.0039 19.3773 11.0291 9.1322 24.8382 37.0480 31.0076 36.7496 31.5829 31.9697 54.2906 45.0684 21.0435 25.2022 18.0694 14.9630 27.9450 29.9877 

 

[0.7164] [0.4974] [0.9455] [0.9813] [0.2077] [0.0115] [0.0551] [0.0125] [0.0480] [0.0436] [0.0001] [0.0011] [0.3946] [0.1938] [0.5828] [0.7785] [0.1107] [0.0701] 

LB2(20) 14.6003 18.8467 12.5942 10.6848 25.3504 37.6047 32.0645 37.6463 31.8796 31.3572 51.4003 40.2149 20.9247 23.8836 18.3399 15.2931 24.6212 25.2561 

 

[0.7476] [0.4667] [0.8587] [0.9340] [0.1493] [0.0067] [0.0307] [0.0066] [0.0322] [0.0369] [0.0001] [0.0031] [0.3410] [0.2007] [0.4998] [0.7038] [0.1734] [0.1523] 

 * Significance at 1% level, ** Significance at 5% level 

Numbers in parentheses are t-statistics, numbers in square brackets of LB(n) tests are significant level to reject the null hypothesis of autocorrelation not exists in n lag. 

 

Model S: GARCH(1,1) 

Model A: GJR-GARCH(1,1) 

 

Table 3.4 – GARCH(1,1) and GJR-GARCH(1,1) Model Results
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 Test statistic D  2  p-value 

Japan 68.1298 0.0000% 

China 13.3907 0.0025% 

Hong Kong 57.9031 0.0000% 

Germany 144.2317 0.0000% 

United Kingdom 134.8846 0.0000% 

Spain 141.9720 0.0000% 

United States 150.7990 0.0000% 

Canada 64.3586 0.0000% 

Brazil 74.7291 0.0000% 

 

Table 3.5 – LR Tests Results of the Unrestricted Model (Asymmetric Model) and Restricted 

Model (Symmetric Model) 

 

3.5 Testing the Spillover Effect 

 

Table 3.6 shows the unconditional correlations among the nine stock markets’ returns. These 

results indicate that the unconditional correlations between different markets are relatively 

higher within each zone, especially in European markets (i.e. Zone B). One possible 

explanation is that exchanges within the same zone exhibit some degrees of interdependence 

as the markets trade at the same time. Surprisingly, China’s market, which has drawn much 

attention from the world in the last decade, shows a weak correlation with the countries 

outside its zone. Similar results are also seen in relation to the Japanese market. Intuitively, 

the poor results are due to the negligent trading hour differences, which are shown in Figure 

3.1. Furthermore, the information spillover directions are not being considered. To address 

these issues, we modelled and incorporated the following cyclical spillover directions among 

different time zones (depicted in Figure 3.5): Zone A to Zone B, Zone B to Zone C, and Zone 

C to Zone A. 
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Zone A B C 

 
 

Japan China HK Germany UK Spain US Canada Brazil 

A 

Japan 100.00%         

China 20.53% 100.00%        

HK 58.06% 34.38% 100.00%       

B 

Germany 25.46% 8.67% 33.02% 100.00%      

UK 29.20% 9.42% 36.88% 81.16% 100.00%     

Spain 26.08% 8.12% 33.02% 79.27% 79.19% 100.00%    

C 

US 12.07% 3.98% 18.62% 59.84% 52.25% 50.05% 100.00%   

Canada 21.24% 8.44% 26.79% 53.71% 53.32% 48.42% 65.87% 100.00%  

Brazil 15.87% 11.57% 26.76% 48.87% 47.78% 44.72% 58.52% 58.34% 100.00% 

 

Table 3.6 – Unconditional Correlation Among the Nine Stocks Markets’ Returns 

 

 

 

Figure 3.5 – Information Spillover Among Different Markets by Time Zone 

 

In order to test the potential information spillover effects, we carry out nine volatility and 

correlation spillover tests using different multivariate GARCH models, as shown in Table 3.7. 

  

Zone A

Japan

China

HK

Zone B

UK

Germany

Spain

Zone C

US

Canada

Brazil
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 From To Dimensions of 

the 

Multivariate 

Model 

Test Zone 
Trading 

Day 
Countries Zone 

Trading 

Day 
Country 

AB1 

A 

t Japan, 

China, 

and HK 

B 

t Germany 

n = 4 AB2 t t UK 

AB3 t t Spain 

BC1 

B 

t Germany, 

UK, and 

Spain 

C 

t US 

n = 4 BC2 t t Canada 

BC3 t t Brazil 

CA1 

C 

t US, 

Canada, 

and 

Brazil 

A 

t+1 Japan 

n = 4 
CA2 t t+1 China 

CA3 
t t+1 Hong 

Kong 

 

Table 3.7 – The Nine Tests for Information Spillover Effects Among Different Time Zones 

 

3.6 Multivariate Models 

 

The multivariate GARCH models used in this study are represented as: 

 

 ,t tr   

 1| ~ (0, ),t t tI N H  (3.10) 

 1 2 1 2( , , , , ),t t t t tH g H H     

 

where tr  is a ( 1)n  vector of the returns of the night markets 1, 2, 9,[ , , , ]t t t tr r r r  at time t . 

The function (.)g  is a function of the lagged conditional covariance matrices. Covariance 

matrices can be modelled in a variety of ways. Engle and Kroner (1995) proposed the BEKK 

model, which allows for interactions among the variances in the multivariate model and is 

capable of modelling volatility spillover among different returns series. However, its major 
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weaknesses are that the 
2( ( 1) / 2) ( )n n n q p    parameters must be estimated and that the 

optimization process is extremely complex and unstable when the model’s dimensions 

increase. If the BEKK(1,1) model were to be used in this study (n = 4), 42 parameters would 

need to be estimated. Parsimonious multivariate GARCH models such as Bollerslev (1990) 

CCC model, Engle (2002) DCC model, and Cappiello et al. (2006) ADCC are thus used in 

this study instead.  

 

3.7 Comparison of Different Multivariate Models that Incorporate the Information 

Spillover Effect  

 

The multivariate GARCH models described in the previous section are used to test the 

potential information spillover effect. Evidence of information spillover will be provided if 

we discover (1) volatility spillover in the cyclical direction that we have shown in Figure 3.5 

and (2) significant correlation among the nine stock markets. To ascertain volatility spillover, 

we compare the results from different models.  

 

Table 3.8 shows the estimated results of the multivariate models. The models we test are 

CCC(1,1), GARCH(1,1)-DCC(1,1), GARCH(1,1)-DCC(2,2), GARCH(2,2)-DCC(1,1), 

GARCH(2,2)-DCC(2,2), GJR-GARCH(1,1)-DCC(1,1), GJR-GARCH(1,1)-DCC(2,2), 

GJR-GARCH(2,2)-DCC(1,1), GJR-GARCH(2,2)-DCC(2,2), GARCH(1,1)-ADCC(1,1), 

GARCH(1,1)-ADCC(2,2), GARCH(2,2)-ADCC(1,1), GARCH(2,2)-ADCC(2,2), GJR- 

GARCH(1,1)-ADCC(1,1), GJR-GARCH(1,1)-ADCC(2,2), GJR-GARCH(2,2)-ADCC (1,1), 

and GJR-GARCH(2,2)-ADCC(2,2). Among the models, Table 3.8 shows the CCC model has 

the highest information criterion, which is the least preferred.Table 3.8(a) shows all the AIC 

value of the CCC model in the nine tests are are the highest among all models. In the tests 

AB1, AB2, AB3, BC1, BC2, BC3, CA1, CA2, and CA3, CCC model has the highest AIC 
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values of 13.1616, 12.6458, 13.1394, 9.8578, 9.8198, 11.0480, 11.6603, 11.9994, and 11.6138 

respectively. Similarly, CCC model has the highest BIC, SIC, and HQIC among all the 

models in all the tests, the CCC model is least preferred. In contrast, 

GJR-GARCH(1,1)-DCC(1,1) has the lowest BIC values among all the volatility models in all 

the nine tests, with the value of 13.0967, 12.5833, 13.0698, 9.5993, 9.6238, 10.8496, 11.5146, 

11.8852, and 11.4891 in the test AB1, AB2, AB3, BC1, BC2, BC3, CA1, CA2, and CA3 

respectively. Meanwhile, the SIC and HQIC show preference on GJR-GARCH(1,1)-DCC(1,1) 

and GJR-GARCH(1,1)-DCC(2,2) model, Table 3.8(d) shows GJR-GARCH(1,1)-DCC(2,2) 

model has the lowest SIC in the tests of AB1, BC2, BC3, CA1, CA2, and CA3, while its AIC, 

BIC, and HQIC value are only slightly higher the others. In summary, the AIC, BIC, SIC, and 

HQIC show preference on asymmetric volatility models; the GJR-GARCH(1,1)-DCC(1,1) 

and GJR-GARCH(1,1)-DCC(2,2) models are the most preferred. The results lead us to posit 

the following: (1) Correlations among different stock markets are time-varying, as the CCC 

model (which assumes that the correlations are constant over time) is not preferred; (2) 

volatility spills over different stock markets, and DCC models that allow interaction between 

volatilities are preferred over the CCC model; (3) asymmetric impacts on volatility from bad 

or good news are significant, as the results favour asymmetric volatility models; and (4) 

asymmetric impacts on correlation are not significant in stock markets: a drop in one stock 

market does not increase the correlations among other markets (which may be due to stock 

markets consistently exhibiting positive correlation over time). To confirm these intuitions, 

the LR tests in Table 3.9 are performed to determine whether they are statistically significant. 

 

Test A in Table 3.9 compares the CCC and DCC models. It rejects the CCC model as a 

simplified version of the DCC model in all of the markets that are in different time zones. 

This test suggests that the assumption that stock returns among different markets are 

constantly correlated is not suitable when modelling the interaction among different markets. 



 

46 

Furthermore, it reveals volatility spillovers among different stock markets in the cyclical 

direction that we showed in Figure 3.5. 

 

Evidence that bad and good news delivers asymmetric impacts on volatility can be found in 

the results of tests B and C in Table 3.9. These tests compare the symmetric and asymmetric 

volatility versions of the DCC and ADCC models by adding the GJR term in the volatility 

equations. The hypothesis that symmetric restricted models are better than unrestricted 

asymmetric models was strongly rejected. The volatility asymmetry should be considered 

when modelling the interactions between international stock markets. Both bad and good 

news shock the stock markets to different extents, and the volatility level is higher when the 

market is in a downswing. This is commonly explained by factors related to leveraging and 

the psychological behaviour of investors. 

 

In addition to the characteristic of volatility asymmetry in international stock markets, we also 

study asymmetric correlations concerning how the correlations vary according to the good or 

bad news. Correlations between different markets are expected to be higher when stock 

returns are negative, especially during crisis periods (when the correlations converge to one). 

The heightened interaction between different markets may be induced by the liquidity needs 

and psychological behaviour of investors. Tests D and E in Table 3.9, which are LR tests, 

examine the asymmetric impacts on international markets correlations. The results of test D 

suggest that adding an asymmetric component when modelling the correlation provides no 

benefit. However, when we consider asymmetric correlation together with asymmetric 

volatility in test E, some asymmetric terms in conditional correlation become significant. We 

cannot draw any conclusion about the asymmetric correlation effect in the likelihood tests. 

Strong evidence that a drop in stock markets will intensify correlations among different 

markets does not exist. 
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The LR tests (namely F-I, J-M, N-Q, and R-U) compare multivariate models with lower order 

terms to those with higher order terms. Almost all of the models prefer the lower order terms, 

with the exception of the GJR-GARCH-ADCC model; furthermore, groups 4, 5, 6, and 7 in 

test S reject the lower order terms models at a 5% significance level.  

 

Aggregating the results from the LR tests in Table 3.9, we preliminarily select the 

GJR-GARCH(1,1)-DCC(1,1) model for tests AB1, AB2, and AB3; the GJR- 

GARCH(1,1)-ADCC(2,2) model for tests BC1, BC2, BC3, and CA1; and the 

GJR-GARCH(1,1)-ADCC(1,1) model for tests CA2 and CA3. Table 3.10 shows the estimated 

results of the different models.  

 

The estimated parameters of the different models that are suggested by the LR tests are not 

promising. In Table 3.10, the parameters dcca1, dccb1, and dccb2 and all of the asymmetric 

correlation parameters dccg1 are insignificant. The higher order DCC model (DCC(2,2) model) 

and the ADCC model are both inadequate for describing the interactions among different 

stock markets. Instead of using the higher order DCC model, we thus exanimate the 

parsimony GJR-GARCH(1,1)-DCC(1,1) model. In contrast to the results in Table 3.10, the 

estimated DCC parameters in Table 3.11 are all highly significant. The LB tests reject that 

autocorrelation exists in the standardized residuals, and the GJR-GARCH(1,1)-DCC(1,1) 

model is found to be adequate for describing the interaction between different markets. As a 

result, we adopt the GJR-GARCH(1,1)-DCC(1,1) model. 
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Table 3.8 (a) – Comparison of the CCC(1,1), GARCH(1,1)-DCC(1,1), and GARCH(2,2)-DCC(1,1) Models 

 

 

Test Details 

CCC(1,1) GARCH(1,1)-DCC(1,1) GARCH(2,2)-DCC(1,1) 

 

( )lnL   
Number of 

parameters 

Information Criteria 

( )lnL   
Number of 

parameters 

Information Criteria 

( )lnL   
Number of 

parameters 

Information Criteria 

 AIC BIC SIC HQIC AIC BIC SIC HQIC AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22290.8502 18 13.1616 13.1941 13.1615 13.1732 -22218.8924 20 13.1203 13.1564 13.1202 13.1332 -22199.6600 28 13.1137 13.1643 13.1135 13.1318 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21416.6362 18 12.6458 12.6783 12.6457 12.6574 -21342.7739 20 12.6034 12.6396 12.6033 12.6163 -21333.1146 28 12.6024 12.6530 12.6023 12.6205 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22253.3626 18 13.1394 13.1720 13.1394 13.1511 -22177.6692 20 13.0960 13.1321 13.0959 13.1089 -22166.8135 28 13.0943 13.1449 13.0942 13.1124 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16690.9832 18 9.8578 9.8903 9.8578 9.8694 -16373.0399 20 9.6714 9.7076 9.6713 9.6843 -16403.8985 28 9.6943 9.7450 9.6942 9.7124 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16626.6229 18 9.8198 9.8524 9.8198 9.8315 -16340.4353 20 9.6522 9.6883 9.6521 9.6651 -16372.6170 28 9.6759 9.7265 9.6757 9.6940 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18708.2936 18 11.0480 11.0805 11.0479 11.0596 -18429.0875 20 10.8844 10.9206 10.8843 10.8973 -18459.2537 28 10.9069 10.9576 10.9068 10.9250 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19746.1925 18 11.6603 11.6928 11.6602 11.6719 -19565.9351 20 11.5585 11.5947 11.5585 11.5715 -19570.8172 28 11.5661 11.6168 11.5660 11.5842 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20321.0572 18 11.9994 12.0320 11.9994 12.0111 -20166.5786 20 11.9130 11.9492 11.9129 11.9259 -20166.1125 28 11.9174 11.9681 11.9173 11.9355 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19667.4162 18 11.6138 11.6464 11.6138 11.6254 -19514.7412 20 11.5283 11.5645 11.5283 11.5413 -19514.0849 28 11.5327 11.5833 11.5325 11.5508 
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Test Details 

GARCH(1,1)-DCC(2,2) GARCH(2,2)-DCC(2,2) 

 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22216.4441 22 13.1200 13.1598 13.1199 13.1342 -22197.7184 30 13.1137 13.1679 13.1135 13.1331 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21341.5544 22 12.6039 12.6436 12.6038 12.6181 -21332.2488 30 12.6031 12.6573 12.6029 12.6225 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22177.2803 22 13.0969 13.1367 13.0968 13.1111 -22166.6193 30 13.0954 13.1496 13.0952 13.1147 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16368.6856 22 9.6700 9.7098 9.6699 9.6842 -16403.7065 30 9.6954 9.7496 9.6952 9.7148 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16333.6381 22 9.6493 9.6891 9.6493 9.6636 -16370.6629 30 9.6759 9.7301 9.6758 9.6953 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18422.3533 22 10.8816 10.9214 10.8815 10.8958 -18458.1240 30 10.9074 10.9617 10.9073 10.9268 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19561.5598 22 11.5571 11.5969 11.5570 11.5714 -19569.5366 30 11.5666 11.6208 11.5664 11.5860 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20164.5571 22 11.9130 11.9528 11.9129 11.9272 -20165.5916 30 11.9183 11.9726 11.9182 11.9377 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19512.8895 22 11.5284 11.5682 11.5283 11.5426 -19514.1552 30 11.5339 11.5881 11.5337 11.5533 

 

Table 3.8 (b) – Comparison of the GARCH(1,1)-DCC(2,2) and GARCH(2,2)-DCC(2,2) Models 
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Test Details 

GJR-GARCH(1,1)-DCC(1,1) GJR-GARCH(2,2)-DCC(1,1) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22101.3184 24 13.0533 13.0967 13.0532 13.0688 -22083.9914 36 13.0501 13.1152 13.0499 13.0734 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21231.2138 24 12.5399 12.5833 12.5398 12.5555 -21214.0946 36 12.5369 12.6020 12.5367 12.5602 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22055.8152 24 13.0264 13.0698 13.0263 13.0419 -22039.0726 36 13.0236 13.0887 13.0234 13.0469 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16173.2874 24 9.5559 9.5993 9.5558 9.5714 -16178.7891 36 9.5662 9.6313 9.5660 9.5895 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16214.8553 24 9.5804 9.6238 9.5803 9.5960 -16218.1994 36 9.5895 9.6546 9.5893 9.6128 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18292.5504 24 10.8062 10.8496 10.8061 10.8217 -18292.4476 36 10.8132 10.8783 10.8130 10.8365 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19413.9689 24 11.4712 11.5146 11.4711 11.4867 -19405.8923 36 11.4735 11.5386 11.4733 11.4968 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20041.9452 24 11.8418 11.8852 11.8417 11.8573 -20035.8925 36 11.8453 11.9104 11.8451 11.8686 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19370.7957 24 11.4457 11.4891 11.4456 11.4612 -19363.1773 36 11.4483 11.5134 11.4481 11.4716 

 

Table 3.8 (c) – Comparison of the GJR-GARCH(1,1)-DCC(1,1) and GJR-GARCH(2,2)-DCC(1,1) Models 
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Test Details 

GJR-GARCH(1,1)-DCC(2,2) GJR-GARCH(2,2)-DCC(2,2) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22098.9771 26 13.0531 13.1001 13.0530 13.0699 -22081.6640 38 13.0499 13.1186 13.0497 13.0745 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21230.0467 26 12.5404 12.5874 12.5403 12.5572 -21212.9747 38 12.5374 12.6061 12.5372 12.5620 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22055.3976 26 13.0274 13.0744 13.0273 13.0442 -22038.6542 38 13.0246 13.0933 13.0243 13.0491 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16168.0781 26 9.5540 9.6010 9.5539 9.5708 -16175.7830 38 9.5657 9.6344 9.5654 9.5902 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16207.7608 26 9.5774 9.6244 9.5773 9.5942 -16212.9612 38 9.5876 9.6563 9.5873 9.6121 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18287.2564 26 10.8043 10.8513 10.8042 10.8211 -18289.1975 38 10.8125 10.8812 10.8123 10.8371 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19409.9114 26 11.4700 11.5170 11.4699 11.4868 -19403.3513 38 11.4732 11.5419 11.4730 11.4978 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20039.3536 26 11.8415 11.8885 11.8413 11.8583 -20034.3437 38 11.8456 11.9143 11.8453 11.8701 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19368.5778 26 11.4456 11.4926 11.4455 11.4624 -19362.1633 38 11.4489 11.5176 11.4487 11.4735 

 

Table 3.8 (d) – Comparison of the GJR-GARCH(1,1)-DCC(2,2) and GJR-GARCH(2,2)-DCC(2,2) Models 
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Test Details 

GARCH(1,1)-ADCC(1,1) GARCH(2,2)-ADCC(1,1) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22218.7618 21 13.1208 13.1588 13.1207 13.1344 -22199.5499 29 13.1142 13.1666 13.1140 13.1329 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21342.6044 21 12.6039 12.6419 12.6038 12.6175 -21332.9568 29 12.6029 12.6554 12.6028 12.6217 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22177.6489 21 13.0965 13.1345 13.0965 13.1101 -22166.7930 29 13.0949 13.1473 13.0947 13.1136 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16373.0399 21 9.6720 9.7100 9.6719 9.6856 -16403.8986 29 9.6949 9.7474 9.6948 9.7137 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16340.1737 21 9.6526 9.6906 9.6525 9.6662 -16372.4079 29 9.6763 9.7288 9.6762 9.6951 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18428.8611 21 10.8849 10.9228 10.8848 10.8984 -18459.0430 29 10.9074 10.9598 10.9073 10.9261 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19565.8351 21 11.5591 11.5970 11.5590 11.5726 -19570.7208 29 11.5667 11.6191 11.5665 11.5854 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20165.9695 21 11.9132 11.9512 11.9132 11.9268 -20165.5188 29 11.9177 11.9701 11.9175 11.9364 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19514.7292 21 11.5289 11.5669 11.5288 11.5425 -19514.0618 29 11.5332 11.5857 11.5331 11.5520 

 

Table 3.8 (e) – Comparison of the GARCH(1,1)-ADCC(1,1) and GARCH(2,2)-ADCC(1,1) Models 
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Test Details 

GARCH(1,1)-ADCC(2,2) GARCH(2,2)-ADCC(2,2) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22216.3604 24 13.1212 13.1645 13.1211 13.1367 -22197.6044 32 13.1148 13.1727 13.1146 13.1355 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21341.4052 24 12.6050 12.6483 12.6049 12.6205 -21332.0826 32 12.6042 12.6620 12.6040 12.6249 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22177.2492 24 13.0981 13.1415 13.0980 13.1136 -22166.7747 32 13.0966 13.1545 13.0964 13.1173 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16368.6856 24 9.6712 9.7146 9.6711 9.6867 -16403.7065 32 9.6966 9.7544 9.6964 9.7173 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16332.9365 24 9.6501 9.6935 9.6500 9.6656 -16369.4094 32 9.6763 9.7342 9.6762 9.6970 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18421.9619 24 10.8826 10.9260 10.8825 10.8981 -18457.1492 32 10.9081 10.9659 10.9079 10.9287 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19561.4078 24 11.5582 11.6016 11.5581 11.5737 -19569.4065 32 11.5677 11.6255 11.5675 11.5883 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20164.3393 24 11.9140 11.9574 11.9139 11.9296 -20165.0837 32 11.9192 11.9771 11.9190 11.9399 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19512.8799 24 11.5296 11.5730 11.5295 11.5451 -19513.6008 32 11.5347 11.5926 11.5346 11.5554 

 

Table 3.8 (f) – Comparison of the GARCH(1,1)-ADCC(2,2) and GARCH(2,2)-ADCC(2,2) Models 
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Test Details 

GJR-GARCH(1,1)-ADCC(1,1) GJR-GARCH(2,2)-ADCC(1,1) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22100.9478 25 13.0537 13.0989 13.0535 13.0698 -22083.6574 37 13.0505 13.1174 13.0503 13.0744 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21230.7992 25 12.5403 12.5855 12.5402 12.5565 -21213.7156 37 12.5373 12.6042 12.5371 12.5612 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22055.6580 25 13.0269 13.0721 13.0268 13.0431 -22038.9277 37 13.0241 13.0910 13.0239 13.0481 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16171.3938 25 9.5554 9.6006 9.5553 9.5716 -16176.9292 37 9.5657 9.6326 9.5655 9.5897 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16208.9795 25 9.5776 9.6228 9.5775 9.5937 -16212.6377 37 9.5868 9.6537 9.5866 9.6107 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18285.1097 25 10.8024 10.8476 10.8023 10.8186 -18285.4891 37 10.8097 10.8766 10.8095 10.8336 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19412.2578 25 11.4708 11.5160 11.4707 11.4870 -19404.2305 37 11.4731 11.5400 11.4729 11.4971 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20039.1841 25 11.8408 11.8860 11.8407 11.8569 -20033.2540 37 11.8444 11.9113 11.8441 11.8683 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19369.0257 25 11.4453 11.4905 11.4452 11.4614 -19361.6789 37 11.4480 11.5149 11.4478 11.4719 

 

Table 3.8 (g) – Comparison of the GJR-GARCH(1,1)-ADCC(1,1) and GJR-GARCH(2,2)-ADCC(1,1) Models 
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Test Details 

GJR-GARCH(1,1)-ADCC(2,2) GJR-GARCH(2,2)-ADCC(2,2) 

 

( )lnL   
Number of 

parameters 

Information Criteria ( )lnL   
Number of 

parameters 
Information Criteria 

 AIC BIC SIC HQIC 
 

 AIC BIC SIC HQIC 

Test AB1 

Zone A: Japan, 

China , HK  

Zone B: Germany 

-22098.6956 28 13.0541 13.1047 13.0540 13.0722 -22081.4098 40 13.0510 13.1233 13.0507 13.0768 

Test AB2 

Zone A: Japan, 

China , HK 

Zone B: UK 

-21229.6776 28 12.5414 12.5920 12.5413 12.5595 -21212.6414 40 12.5384 12.6107 12.5382 12.5643 

Test AB3 

Zone A: Japan, 

China , HK 

Zone B: Spain 

-22055.2339 28 13.0285 13.0791 13.0283 13.0466 -22038.5033 40 13.0257 13.0980 13.0254 13.0515 

Test BC1 

Zone B: Germany, 

UK, Spain 

Zone C: US 

-16165.4881 28 9.5537 9.6043 9.5535 9.5718 -16172.3086 40 9.5648 9.6371 9.5645 9.5906 

Test BC2 

Zone B: Germany, 

UK, Spain 

Zone C: Canada 

-16201.6992 28 9.5750 9.6257 9.5749 9.5931 -16206.2479 40 9.5848 9.6571 9.5845 9.6107 

Test BC3 

Zone B: Germany, 

UK, Spain 

Zone C: Brazil 

-18279.6997 28 10.8010 10.8516 10.8009 10.8191 -18281.5210 40 10.8092 10.8815 10.8089 10.8350 

Test CA1 

Zone C: US, Canada, 

Brazil  

Zone A: Japan 

-19407.8130 28 11.4699 11.5206 11.4698 11.4880 -19401.5788 40 11.4733 11.5457 11.4731 11.4992 

Test CA2 

Zone C: US, Canada, 

Brazil 

Zone A: China 

-20036.2219 28 11.8408 11.8914 11.8407 11.8589 -20031.3273 40 11.8450 11.9173 11.8447 11.8708 

Test CA3 

Zone C: US, Canada, 

Brazil 

Zone A: HK 

-19365.8465 28 11.4452 11.4958 11.4450 11.4633 -19359.4374 40 11.4485 11.5208 11.4482 11.4743 

 

Table 3.8 (h) – Comparison of the GJR-GARCH(1,1)-ADCC(2,2) and GJR-GARCH(2,2)-ADCC(2,2) Models 
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    Zone A to Zone B Zone B to Zone C Zone C to Zone A 

    Test AB1 Test AB2 Test AB3 Test BC1 Test BC2 Test BC3 Test CA1 Test CA2 Test CA3 

Likelihood Ratio Test Restricted Unrestricted DF Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value 

A CCC(1,1) GARCH(1,1)-DCC(1,1) 2 143.9156 0.0000 147.7245 0.0000 151.3868 0.0000 635.8865 0.0000 572.3751 0.0000 558.4122 0.0000 360.5148 0.0000 308.9572 0.0000 305.3500 0.0000 

B GARCH(1,1)-DCC(1,1) GJR-GARCH(1,1)-DCC(1,1) 4 235.1479 0.0000 223.1201 0.0000 243.7080 0.0000 399.5050 0.0000 251.1601 0.0000 273.0742 0.0000 303.9324 0.0000 249.2669 0.0000 287.8909 0.0000 

C GARCH(1,1)-ADCC(1,1) GJR-GARCH(1,1)-ADCC(1,1) 4 235.6280 0.0000 223.6104 0.0000 243.9819 0.0000 403.2923 0.0000 262.3883 0.0000 287.5029 0.0000 307.1545 0.0000 253.5706 0.0000 291.4070 0.0000 

D GARCH(1,1)-DCC(1,1) GARCH(1,1)-ADCC(1,1) 1 0.2612 0.6093 0.3389 0.5605 0.0407 0.8401 0.0000 1.0000 0.5233 0.4694 0.4527 0.5010 0.2001 0.6546 1.2183 0.2697 0.0240 0.8770 

E GJR-GARCH(1,1)-DCC(1,1) GJR-GARCH(1,1)-ADCC(1,1) 1 0.7412 0.3893 0.8292 0.3625 0.3145 0.5749 3.7873 0.0516 11.7515 0.0006 14.8814 0.0001 3.4222 0.0643 5.5220 0.0188 3.5401 0.0599 

F GARCH(1,1)-DCC(1,1) GARCH(2,2)-DCC(1,1) 8 38.4649 0.0000 19.3186 0.0132 21.7115 0.0055 -61.7173 1.0000 -64.3633 1.0000 -60.3324 1.0000 -9.7641 1.0000 0.9323 0.9986 1.3126 0.9954 

G GARCH(1,1)-DCC(1,1) GARCH(1,1)-DCC(2,2) 2 4.8966 0.0864 2.4390 0.2954 0.7779 0.6778 8.7087 0.0129 13.5945 0.0011 13.4683 0.0012 8.7507 0.0126 4.0431 0.1325 3.7034 0.1570 

H GARCH(2,2)-DCC(1,1) GARCH(2,2)-DCC(2,2) 2 3.8831 0.1435 1.7316 0.4207 0.3885 0.8235 0.3841 0.8253 3.9082 0.1417 2.2593 0.3232 2.5612 0.2779 1.0418 0.5940 -0.1408 1.0000 

I GARCH(1,1)-DCC(2,2) GARCH(2,2)-DCC(2,2) 8 37.4514 0.0000 18.6112 0.0171 21.3220 0.0063 -70.0419 1.0000 -74.0495 1.0000 -71.5414 1.0000 -15.9536 1.0000 -2.0690 1.0000 -2.5316 1.0000 

J GJR-GARCH(1,1)-DCC(1,1) GJR-GARCH(2,2,)-DCC(1,1) 12 34.6540 0.0005 34.2385 0.0006 33.4852 0.0008 -11.0033 1.0000 -6.6882 1.0000 0.2056 1.0000 16.1532 0.1843 12.1054 0.4373 15.2368 0.2287 

K GJR-GARCH(1,1)-DCC(1,1) GJR-GARCH(1,1)-DCC(2,2) 2 4.6827 0.0962 2.3343 0.3112 0.8352 0.6586 10.4186 0.0055 14.1890 0.0008 10.5880 0.0050 8.1151 0.0173 5.1831 0.0749 4.4359 0.1088 

L GJR-GARCH(2,2)-DCC(1,1) GJR-GARCH(2,2)-DCC(2,2) 2 4.6548 0.0975 2.2398 0.3263 0.8368 0.6581 6.0122 0.0495 10.4765 0.0053 6.5001 0.0388 5.0819 0.0788 3.0976 0.2125 2.0280 0.3628 

M GJR-GARCH(1,1)-DCC(2,2) GJR-GARCH(2,2)-DCC(2,2) 12 34.6261 0.0005 34.1440 0.0006 33.4868 0.0008 -15.4097 1.0000 -10.4007 1.0000 -3.8823 1.0000 13.1201 0.3604 10.0200 0.6142 12.8289 0.3816 

N GARCH(1,1)-ADCC(1,1) GARCH(2,2,)-ADCC(1,1) 8 38.4237 0.0000 19.2953 0.0134 21.7117 0.0055 -61.7173 1.0000 -64.4683 1.0000 -60.3638 1.0000 -9.7715 1.0000 0.9014 0.9988 1.3347 0.9951 

O GARCH(1,1)-ADCC(1,1) GARCH(1,1)-ADCC(2,2) 3 4.8027 0.1868 2.3984 0.4939 0.7993 0.8496 8.7087 0.0334 14.4745 0.0023 13.7984 0.0032 8.8545 0.0313 3.2602 0.3532 3.6985 0.2959 

P GARCH(2,2)-ADCC(1,1) GARCH(2,2)-ADCC(2,2) 3 3.8910 0.2735 1.7483 0.6263 0.0366 0.9982 0.3841 0.9435 5.9970 0.1118 3.7877 0.2853 2.6287 0.4525 0.8702 0.8326 0.9221 0.8201 

Q GARCH(1,1)-ADCC(2,2) GARCH(2,2)-ADCC(2,2) 8 37.5120 0.0000 18.6452 0.0169 20.9491 0.0073 -70.0419 1.0000 -72.9458 1.0000 -70.3745 1.0000 -15.9973 1.0000 -1.4887 1.0000 -1.4417 1.0000 

R GJR-GARCH(1,1)-ADCC(1,1) GJR-GARCH(2,2,)-ADCC(1,1) 12 34.5808 0.0005 34.1672 0.0006 33.4606 0.0008 -11.0708 1.0000 -7.3164 1.0000 -0.7589 1.0000 16.0547 0.1887 11.8604 0.4570 14.6936 0.2586 

S GJR-GARCH(1,1)-ADCC(1,1) GJR-GARCH(1,1)-ADCC(2,2) 3 4.5044 0.2119 2.2432 0.5235 0.8482 0.8379 11.8112 0.0081 14.5607 0.0022 10.8200 0.0127 8.8897 0.0308 5.9245 0.1153 6.3585 0.0954 

T GJR-GARCH(2,2)-ADCC(1,1) GJR-GARCH(2,2)-ADCC(2,2) 3 4.4953 0.2127 2.1484 0.5422 0.8487 0.8378 9.2411 0.0263 12.7797 0.0051 7.9363 0.0473 5.3033 0.1509 3.8533 0.2778 4.4829 0.2138 

U GJR-GARCH(1,1)-ADCC(2,2) GJR-GARCH(2,2)-ADCC(2,2) 12 34.5717 0.0005 34.0724 0.0007 33.4612 0.0008 -13.6409 1.0000 -9.0974 1.0000 -3.6426 1.0000 12.4683 0.4088 9.7891 0.6345 12.8180 0.3824 

Table 3.9 – Comparison of the Multivariate Models by LR Tests 
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Test AB1 AB2 AB3 BC1 BC2 BC3 CA1 CA2 CA3 

From 
Zone A  

(Japan(i=1), China(i=2), HK(i=3)) 

Zone B 

(Germany(i=1), UK(i=2), Spain(i=3)) 

Zone C 

(US(i=1), Canada(i=2), Brazil(i=3)) 

To Germany(i=4) UK(i=4) Spain(i=4) Germany(i=4) UK(i=4) Spain(i=4) Germany(i=4) UK(i=4) Spain(i=4) 

Model^ A A A B B B B C C 

1,0  0.0484 0.0484 0.0484 0.0260 0.0260 0.0260 0.0135 0.0135 0.0135 

 
[4.4287]*** [4.4285]*** [4.4282]*** [4.4367]*** [4.4502]*** [4.4392]*** [3.9765]*** [3.9686]*** [3.9712]*** 

1,1  0.0260 0.0260 0.0260 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
[2.6304]*** [2.6304]*** [2.6303]*** [0.0023] [0.0023] [0.0023] [0.002] [0.002] [0.002] 

1,1  0.8917 0.8917 0.8917 0.9103 0.9103 0.9103 0.9176 0.9176 0.9176 

 
[71.3522]*** [71.3657]*** [71.3533]*** [86.3697]*** [87.4025]*** [87.1937]*** [101.646]*** [101.4546]*** [101.6045]*** 

1,1  0.1180 0.1180 0.1180 0.1545 0.1545 0.1545 0.1427 0.1427 0.1427 

 
[5.3023]*** [5.3035]*** [5.3037]*** [7.5462]*** [7.6777]*** [7.6742]*** [8.2503]*** [8.2067]*** [8.2322]*** 

2,0  0.0271 0.0271 0.0271 0.0156 0.0156 0.0156 0.0139 0.0139 0.0139 

 
[2.4027]** [2.4027]** [2.4025]** [4.3291]*** [4.3324]*** [4.3378]*** [4.0481]*** [4.0501]*** [4.0535]*** 

2,1  0.0432 0.0432 0.0432 0.0000 0.0000 0.0000 0.0041 0.0041 0.0041 

 
[3.9965]*** [3.9967]*** [3.9953]*** [0.011] [0.011] [0.011] [0.4689] [0.4687] [0.4702] 

2,1  0.9307 0.9307 0.9307 0.9097 0.9097 0.9097 0.9274 0.9274 0.9274 

 
[58.9393]*** [58.9436]*** [58.9245]*** [79.0426]*** [79.348]*** [79.6458]*** [74.4747]*** [74.4829]*** [74.4895]*** 

2,1  0.0305 0.0305 0.0305 0.1547 0.1547 0.1547 0.1048 0.1048 0.1048 

 
[2.0808]** [2.0808]** [2.0805]** [7.3184]*** [7.3909]*** [7.4142]*** [5.6354]*** [5.6615]*** [5.6743]*** 

3,0  0.0203 0.0203 0.0203 0.0194 0.0194 0.0194 0.0744 0.0744 0.0744 

 
[3.8419]*** [3.844]*** [3.8412]*** [4.088]*** [4.0983]*** [4.0991]*** [2.9558]*** [2.9506]*** [2.9577]*** 

3,1  0.0181 0.0181 0.0181 0.0000 0.0000 0.0000 0.0069 0.0069 0.0069 

 
[2.9552]*** [2.9539]*** [2.9541]*** [0.007] [0.007] [0.007] [0.9228] [0.9214] [0.9203] 

3,1  0.9319 0.9319 0.9319 0.9218 0.9218 0.9218 0.9173 0.9173 0.9173 

 
[115.1506]*** [115.1869]*** [115.1275]*** [87.3198]*** [88.1437]*** [87.9002]*** [51.1924]*** [51.1035]*** [51.3604]*** 

3,1  0.0778 0.0778 0.0778 0.1386 0.1386 0.1386 0.1007 0.1007 0.1007 

 
[4.9058]*** [4.906]*** [4.9028]*** [6.5916]*** [6.6636]*** [6.6646]*** [4.4042]*** [4.3872]*** [4.4311]*** 

4,0  0.0260 0.0156 0.0194 0.0135 0.0139 0.0741 0.0485 0.0272 0.0202 

 
[4.4403]*** [4.3522]*** [4.1019]*** [3.9714]*** [4.032]*** [2.9621]*** [4.4214]*** [2.4011]** [3.8488]*** 

4,1  0.0000 0.0000 0.0000 0.0000 0.0038 0.0070 0.0261 0.0426 0.0182 

 
[0.0023] [0.0111] [0.004] [0.001] [0.4334] [0.9316] [2.6332]*** [3.8976]*** [2.9758]*** 

4,1  0.9103 0.9097 0.9218 0.9175 0.9276 0.9173 0.8916 0.9309 0.9322 

 
[87.0569]*** [80.6293]*** [88.0876]*** [101.038]*** [73.7571]*** [51.6051]*** [71.1197]*** [58.6389]*** [116.3826]*** 

4,1  0.1545 0.1547 0.1386 0.1430 0.1049 0.1007 0.1181 0.0310 0.0770 

 
[7.6901]*** [7.5096]*** [6.7075]*** [8.1396]*** [5.6698]*** [4.4598]*** [5.2777]*** [2.1263]** [4.9067]*** 
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1adcc  0.0038 0.0040 0.0043 0.0410 0.0380 0.0335 0.0212 0.0138 0.0144 

 
[5.412]*** [5.1334]*** [5.1552]*** [2.023]** [0.9552] [2.1204]** [3.7351]*** [4.1389]*** [4.552]*** 

2adcc     0.0000 0.0000 0.0000 0.0060   

 
   [0.0000] [0.0000] [0.0000] [1.0094]   

1bdcc  0.9955 0.9953 0.9949 0.4029 0.3344 0.3348 0.0992 0.9772 0.9757 

 
[1009.9169]*** [917.9752]*** [840.9948]*** [0.4927] [0.2602] [0.4998] [1.6155] [126.2782]*** [136.7429]*** 

2bdcc     0.5266 0.5959 0.6018 0.8582   

 
   [0.6906] [0.4945] [0.9488] [14.638]***   

1gdcc     0.0000 0.0009 0.0102 0.0069 0.0042 0.0037 

 
   [0.0000] [0.0219] [0.6572] [0.7169] [1.4947] [1.4548] 

 

 

 

*** Significance at 1% level, ** Significance at 5% level, * Significance at 10% level 

Numbers in square brackets are t-statistics.  

 

^Model A: GJR-GARCH(1,1)-DCC(1,1) 

^Model B: GJR-GARCH(1,1)-ADCC(2,2) 

^Model C: GJR-GARCH(1,1)-ADCC(1,1) 

 

#Parameters specification of the multivariate GARCH models are shown in Section 2.6 

 

Table 3.10 – Estimated Parameters Using the Models Suggested by the LR Tests 
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Test AB1 AB2 AB3 BC1 BC2 BC3 CA1 CA2 CA3 

From 
Zone A  

(Japan, China, HK) 

Zone B 

(Germany, UK, Spain) 

Zone C 

(US, Canada, Brazil) 

To Germany UK Spain US Canada Brazil Japan China HK 

1,0  0.0484 0.0484 0.0484 0.0260 0.0260 0.0260 0.0135 0.0135 0.0135 

 
[4.4287]*** [4.4285]*** [4.4282]*** [4.4356]*** [4.4482]*** [4.4421]*** [3.9751]*** [3.9672]*** [3.9708]*** 

1,1  0.0260 0.0260 0.0260 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
[2.6304]*** [2.6304]*** [2.6303]*** [0.0023] [0.0023] [0.0023] [0.0002] [0.0002] [0.0002] 

1,1  0.8917 0.8917 0.8917 0.9103 0.9103 0.9103 0.9176 0.9176 0.9176 

 
[71.3522]*** [71.3657]*** [71.3533]*** [86.5197]*** [87.1636]*** [87.2173]*** [101.4255]*** [101.4035]*** [101.5193]*** 

1,1  0.1180 0.1180 0.1180 0.1545 0.1545 0.1545 0.1427 0.1427 0.1427 

 
[5.3023]*** [5.3035]*** [5.3037]*** [7.6328]*** [7.6895]*** [7.705]*** [8.1915]*** [8.183]*** [8.1944]*** 

2,0  0.0271 0.0271 0.0271 0.0156 0.0156 0.0156 0.0139 0.0139 0.0139 

 
[2.4027]** [2.4027]** [2.4025]** [4.3313]*** [4.3336]*** [4.341]*** [4.0429]*** [4.0441]*** [4.0489]*** 

2,1  0.0432 0.0432 0.0432 0.0000 0.0000 0.0000 0.0041 0.0041 0.0041 

 
[3.9965]*** [3.9967]*** [3.9953]*** [0.011] [0.011] [0.011] [0.4696] [0.4696] [0.4702] 

2,1  0.9307 0.9307 0.9307 0.9097 0.9097 0.9097 0.9274 0.9274 0.9274 

 
[58.9393]*** [58.9436]*** [58.9245]*** [79.5427]*** [79.5342]*** [80.0018]*** [74.3647]*** [74.3459]*** [74.4182]*** 

2,1  0.0305 0.0305 0.0305 0.1547 0.1547 0.1547 0.1048 0.1048 0.1048 

 
[2.0808]** [2.0808]** [2.0805]** [7.4059]*** [7.4252]*** [7.4613]*** [5.6461]*** [5.656]*** [5.6785]*** 

3,0  0.0203 0.0203 0.0203 0.0194 0.0194 0.0194 0.0744 0.0744 0.0744 

 
[3.8419]*** [3.844]*** [3.8412]*** [4.0979]*** [4.0987]*** [4.098]*** [2.9593]*** [2.9556]*** [2.9577]*** 

3,1  0.0181 0.0181 0.0181 0.0000 0.0000 0.0000 0.0069 0.0069 0.0069 

 
[2.9552]*** [2.9539]*** [2.9541]*** [0.0007] [0.0007] [0.0007] [0.9239] [0.9217] [0.9205] 

3,1  0.9319 0.9319 0.9319 0.9218 0.9218 0.9218 0.9173 0.9173 0.9173 

 
[115.1506]*** [115.1869]*** [115.1275]*** [87.923]*** [88.3328]*** [88.2225]*** [51.2264]*** [51.2027]*** [51.3407]*** 

3,1  0.0778 0.0778 0.0778 0.1386 0.1386 0.1386 0.1007 0.1007 0.1007 

 
[4.9058]*** [4.906]*** [4.9028]*** [6.6737]*** [6.7101]*** [6.709]*** [4.4177]*** [4.4185]*** [4.432]*** 

4,0  0.0260 0.0156 0.0194 0.0135 0.0139 0.0741 0.0485 0.0272 0.0202 

 
[4.4403]*** [4.3522]*** [4.1019]*** [3.9727]*** [4.0336]*** [2.9588]*** [4.4258]*** [2.4015]** [3.8483]*** 

4,1  0.0000 0.0000 0.0000 0.0000 0.0038 0.0070 0.0261 0.0426 0.0182 

 
[0.0023] [0.0111] [0.0007] [0.0004] [0.4377] [0.9304] [2.6332]*** [3.8963]*** [2.9759]*** 

4,1  0.9103 0.9097 0.9218 0.9175 0.9276 0.9173 0.8916 0.9309 0.9322 

 
[87.0569]*** [80.6293]*** [88.0876]*** [101.0668]*** [74.0256]*** [51.5335]*** [71.1665]*** [58.6496]*** [116.3643]*** 

4,1  0.1545 0.1547 0.1386 0.1430 0.1049 0.1007 0.1181 0.0310 0.0770 

 
[7.6901]*** [7.5096]*** [6.7075]*** [8.1423]*** [5.6688]*** [4.4538]*** [5.2949]*** [2.1293]** [4.9141]*** 

1adcc  0.0038 0.0040 0.0043 0.0311 0.0285 0.0261 0.0153 0.0148 0.0157 
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[5.412]*** [5.1334]*** [5.1552]*** [7.4181]*** [6.5252]*** [6.545]*** [4.1041]*** [3.7456]*** [4.1445]*** 

1bdcc  0.9955 0.9953 0.9949 0.9520 0.9566 0.9608 0.9786 0.9790 0.9765 

 
[1009.9169]*** [917.9752]*** [840.9948]*** [112.9003]*** [112.5974]*** [125.5924]*** [151.8833]*** [137.1135]*** [134.9192]*** 

 

 

 

*** Significance at 1% level, ** Significance at 5% level, * Significance at 10% level 

Numbers in square brackets are t-statistics.  

 

 

Table 3.11 – Estimated Parameters Using the GJR-GARCH(1,1)-DCC(1,1) Model 
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3.8 The Interaction and Spillover Effects 

 

The GJR-GARCH(1,1)-DCC(1,1) model is found to be the most appropriate model for 

describing stock returns by incorporating the spillover effect into the volatility equations. In 

Table 3.11, the parameters 1adcc  and 1bdcc are highly significant at 1% level in all the tests. 

It indicates that the interdependencies among the different markets are strong. The estimated 

parameter 1bdcc in Tests AB1, AB2, and AB3 for testing the spillover effect from countries in 

Zone A to Zone B are highly significant and closed to one, it shows that high persistence of 

the spillover effect in volatility among the Asian to European countries. Furthermore, the 

coefficients 
,1i  that represent conditionally heteroskedastic in volatility equations for 

countries i  in Zones B and C are insignificant in all the tests, while the coefficients 
,1i  that 

represent asymmetric impact of bad news on return volatility are all significantly positive, 

which implies that only bad news contributes to a further increase in return volatility in 

countries in Zones B and C. 

 

According to stock exchange trading times, the spillover effect is cyclical in the direction 

from Zone A to Zone B, Zone B to Zone C, and Zone C to Zone A, as depicted in Figure 3.5. 

Figure 3.6 shows the conditional correlation in different time zones. Overall, the correlation 

series among the different markets significantly differ from zero with the exception of 

Chinese market. In tests AB1, AB2, and AB3, the conditional correlations between the 

Chinese market and the stock markets in Zone B (Germany, the United Kingdom, and Spain) 

fluctuate around zero from 2000 to 2006. After mid-2006, however, the correlation raises 

sharply and remains constantly above zero; it fluctuates at around 0.15 and has a tendency to 

further increase in the future. This may be due to the capital liberalization in China in recent 

years. Since 2001, China has experimented with policies that promotes overseas direct 
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investment by Chinese companies. In the year of 2003 and 2006, China has introduced the 

Qualified Foreign Institutional Investor Scheme (QFII) and Qualified Domestic Institutional 

Investor Scheme (QDII), QFII regulates portfolios inflow while QDII regulates portfolio 

outflow. As the QFII and QDII scheme evolves, China’s gradually relaxing the capital control 

on the currencies conversions and cross-border funds transfer. In 2007, People’s Bank of 

China (PBC) made an important liberalization step of allowing a $50,000 ceiling on free 

two-way conversion between renminbi and foreign currency by Chinese individuals per 

person per year.  The financial liberalization increased the interactions between the Chinese 

and foreign market participants. As the capitalization of the Chinese market has continued to 

increase in recent years, the market has become more integrated with the rest of the world and 

is now playing a more important role globally than ever before. 

 

Tests AB1, AB2, and AB3 reveal that both Japan and Hong Kong exhibit a stable volatility 

spillover to Zone B’s countries (Germany, the United Kingdom, and Spain), with a correlation 

around 0.3 to 0.4. However, the correlation becomes unstable after 2007, particularly during 

the sub-prime mortgage crisis period and the European debt crisis in late 2009. Tests BC1, 

BC2, and BC3 indicate that the volatility spillover from Zone B to Zone C is significant; the 

correlations between the markets in these zones are sustainability high, with an average above 

0.5 that further increases to above 0.6 after 2008. The European markets do play a more 

important role after both the U.S. sub-prime mortgage crisis and the European debt crisis. 

 

Tests of the correlations from Zone C and Zone A show an interesting phenomenon that the 

influential power of the U.S. market is not as strong as one may expect, particularly on the 

Chinese market. The conditional correlations between these two markets are low, fluctuating 

from around zero before 2006 and rising to around 0.2 after 2009. Similar findings are also 

found in relation to Canada and Brazil.  
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3.9 Conclusion 

  

The empirical analysis has shown the volatility spillover among different stock markets: 

shocks in one market may indeed transmit to another market in the forthcoming trading period. 

In this paper, we selected nine stock markets in different trading time zones and studied how 

information is transmitted among them. The nine stock markets are Japan, China, Hong Kong, 

Germany, the United Kingdom, Spain, the United States, Canada, and Brazil. Our study 

started by using traditional GARCH and GJR-GARCH models, which showed that all of the 

markets experienced significant asymmetric impacts from bad news on stocks volatility; stock 

markets became more volatile if there was a drop in the previous trading day. The volatility 

spillover effect was studied across three different time zones, which were defined based on 

the exchanges’ trading hours in GMT. Multivariate GARCH models (including the CCC, 

GRACH-DCC, GJR-GARCH-DCC, GARCH-ADCC, and GJR-GARCH-ADCC models) 

were applied. As the DCC models are more preferred to the CCC models in all tests; we 

ascertained that volatility will indeed spillover among different markets. Furthermore, the 

asymmetric volatility spillover effect is highly significant while the asymmetric correlation 

spillover effect is not. Although the LR tests prefer asymmetric correlation models in some 

incidents, the estimated results were not at all significant. We concluded that the equity 

market tends to reflect bad news on volatility but not on correlations. 

 

The result of no asymmetric correlation spillover among the stock market is important for 

investors. (Tesar and Werner, 1995) shows investors exhibit home bias in national investment 

portfolios despite of the potential benefits in international diversification. With the common 

belief of financial contagion effect, investors may think that international diversification is not 

necessary as the correlations among the different assets in different markets may largely 

increase. Investors tend to hold domestic portfolio and perform no international 
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diversification that hurts their position much during financial crisis. Robert (2011) empirically 

investigated international equity foreign portfolios that across 42 countries during the 

financial crisis. The results show that international stock market diversification provides large 

gains during the financial crisis and investors should reduce the home bias in forming 

portfolios. Our result of no asymmetric correlation spillover among the stock market supports 

the effectiveness of international diversification on achieving a better risk-adjusted returns. 

Our results conform with Forbes and Rigobon (2002) findings that when markets experience 

increased volatility in the period of financial crisis, the correlation measure is biased upwards 

and leads to an incorrect conclusion of financial market contagion. 

 

Correlation dynamics change significantly, and the GJR-GARCH(1,1)-DCC(1,1) model was 

found to be the best multivariate model for describing market behaviour. This model reflects 

the asymmetric volatility spillover effect among different markets and was adopted to study 

how conditional correlations vary over time. China’s stock market, which has drawn much 

attention in recent decades, was found to have no significant influence on or from other stock 

markets before 2006. After 2006, however, the Chinese market began to have a gradually 

increasing influence on the global market and started to become more integrated with the rest 

of the world. Meanwhile, the European markets have played an important role in the world’s 

financial market, and conditional correlations between the European and North America 

markets have been sustainably high. 
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Figure 3.6 – Conditional Correlations in Different Time Zones from the 

GJR-GARCH(1,1)-DCC(1,1) Model 
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Chapter 4. The Performance of VaR in the Presence of Asset Price Bubbles: 

An Empirical Analysis 

 

4.1 Introduction 

 

In this chapter, we extensively review different VaR approaches and compare their reliability 

during the 2008-2009 global financial crisis using data from several stock markets. This 

financial crisis is thought to have been preceded by price bubbles in several different asset 

markets. It began with the collapse of the U.S. housing price bubble, which was quickly 

followed by the collapse of suspected bubbles in equity and commodity markets. VaR 

measures the downside risk of a financial investment, which defines the minimum loss of a 

portfolio value in a particular time period with a certain percentage of probability. If a 

portfolio has a 5% one-day VaR of $100,000, there is 5% chance that the portfolio will lose 

more than $100,000 in the next day; alternatively, the expected losses of the portfolio will not 

exceed $100,000 in the next day with a probability of 95%. The 5% one-day VaR is 

equivalent to a one-day VaR with 95% confidence level. 

 

In general, VaR can be obtained using parametric and non-parametric approaches. Parametric 

approaches are based on estimating the statistical parameters of different risk factors, whereas 

non-parametric approaches are based on HS and MCS. Linsmeier and Pearson (1996) 

suggested that decisions concerning the type of approach to use should be based on the 

following criteria: (1) ability to capture the risk of options and option-like instruments, (2) 

ease of implementation, (3) ease of communication with senior management, (4) reliability of 

the results, and (5) flexibility in incorporating alternative assumptions. Furthermore, 

Christoffersen (2009) noted that univariate models in parametric VaR approaches are suitable 

for passive risk management, whereas the multivariate approaches in parametric VaR are 

useful for active risk management. There is no absolute advantage in using one method over 
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the other. However, recent studies show that using VaR with GARCH family models to model 

volatility can adequately describe downside risks (see Kuester et al., 2006; Drakos et al., 

2010). The effectiveness of incorporating GARCH volatility models in calculating VaR has 

not yet been explained. 

 

The aim of this chapter is to provide a better understanding of the effectiveness of VaR during 

the crisis period. Szerszen (2014) found that bank VaR models were overly conservative in the 

pre-crisis period, although most banks use HS VaR. The author compared VaR performance 

between HS and GARCH, and the results show that GARCH performs better during the 

financial crisis period. However, Szerszen (2014) examine only the HS and GARCH VaR 

approaches and focused only on the banks of the U.S. Our study is more comprehensive. We 

examine VaR approaches by constructing hypothetical single- and multiple-asset portfolios 

across the markets of Japan, China, Hong Kong, Germany, the United Kingdom, Spain, the 

United States, Canada, and Brazil. We then use these hypothetical single-asset and 

multiple-asset portfolios to explore the effectiveness of the univariate and multivariate VaR 

approaches in both crisis and non-crisis periods.  

 

This chapter proceeds as follows. In Section 4.2, we introduce the hypothetical equity 

portfolios used in the study, which include both single- and multiple-asset portfolios. In 

Sections 4.3 and 4.4, we review parametric and non-parametric VaR approaches. The 

non-parametric approaches include HS and MCS; the univariate parametric approaches 

include MA, exponentially weighted moving average (EWMA or RiskMetrics), long memory 

EWMA (EWMA2006 or RiskMetrics2006), GARCH, GJR-GARCH, and fractionally 

integrated GARCH (FIGARCH); and the multivariate parametric approaches include DCC, 

GJR-DCC, ADCC, and GJR-ADCC. In Section 4.5 we review backtesting methods and in 

Section 4.6 we provide simulation results that show that the RiskMetrics2006 method 
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outperforms other methods in passively managed portfolios, while the GJR-ADCC model can 

effectively estimating VaR multiple-asset portfolios with risk factors that have already been 

identified. Section 4.7 provides some concluding remarks.   

 

4.2 The Portfolios 

 

The empirical analysis uses nine stock markets that represent different characteristics of both 

developed and emerging markets, namely Japan, China, Hong Kong, Germany, the United 

Kingdom, Spain, the United States, Canada, and Brazil. These countries are chosen based on 

their market capitalization and trading hours, as shown in Table 3.1 in Chapter 3. The 

empirical tests encompass VaR estimations for different hypothetical portfolios.  

 

The data covers the period 1 June 2004 to 31 December 2012, with a total of 2,240 

observations for each series that are obtained from DataStream. We test different VaR 

approaches by constructing hypothetical portfolios that contain single and multiple assets. The 

first set of tests contains nine single-stock portfolios, namely, S1 to S9. Table 4.1 shows that 

the constituent of the single-stock portfolios is the domestic market index, which simplified 

the risk factor mapping procedure in the parametric VCV model. The second set of tests 

involves nine three-stock portfolios, namely, M1 to M9. The three-stock portfolios are formed 

by including one asset in each of the three time zones, as show in Table 4.2. Details of the risk 

mapping procedure are discussed in Section 4.3.   

  



 

70 

 

 

Portfolio Portfolio Asset 

(Stock Index) 

S1 Japan 

S2 China 

S3 Hong Kong 

S4 Germany 

S5 United Kingdom 

S6 Spain 

S7 United States 

S8 Canada 

S9 Brazil 

 

Table 4.1 – The Nine Single-asset Portfolios for Test Set 1 

 

 

Portfolio Portfolio Assets 

(Stock Index) 

M1 Japan, Germany, United States 

M2 Japan, United Kingdom, Canada 

M3 Japan, Spain, Brazil 

M4 China, Germany, United States 

M5 China, United Kingdom, Canada 

M6 China, Spain, Brazil 

M7 Hong Kong, Germany, United States 

M8 Hong Kong, United Kingdom, Canada 

M9 Hong Kong, Spain, Brazil 

 

Table 4.2 – The Nine Three-asset Portfolios for Test Set 2 

 

4.3 Parametric and Non-parametric VaR Approaches 

 

The calculation of VaR mainly fall into two categories: non-parametric (including the HS and 

MCS methods) and parametric (i.e., the VCV method). 
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4.3.1 Non-parametric approach: The HS approach 

 

The HS method, which was introduced by Richardson et al. (1997) and Barone-Adesi et al. 

(1999), is the most widely used approach. It assumes that history will repeat itself and 

therefore uses series of historical risk factors to forecast the next period’s VaR. 

 

Using the HS method to calculate VaR is straightforward, and it requires relatively fewer 

assumptions than statistical parametric methods. It entails collecting historical data for a 

portfolio’s return and rearranging the returns in ascending order (i.e., negative then positive 

returns), which enables the VaR value to be located at the appropriate percentile. The number 

of observations used to forecast risk is called the estimation window. An example is as 

follows: if the HS approach is used with 300 observations, the estimation window is 300 and 

the 1% one-day VaR of FTSE100 can be estimated by sorting the 300 returns in ascending 

order, where the third data point (300 1%) is selected as the VaR. Figure 4.1 shows the 

results for the FTSE100 1% one-day VaR with the estimate windows of 250, 500, and 1,000 

days for the period 1 January 2006 to 31 December 2012.  

 

Figure 4.1 – FTSE100 1% One-day VaR by HS Approach (01 Jan 2006 to 31 Dec 2012) 
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Figure 4.2 – FTSE100 1% One-day VaR by HS Approach (01 Jun 2008 to 01 Jun 2009) 

 

 

Figure 4.3 – FTSE100 Daily Loss Exceeded the 1% VaR by HS Approach with Different 

Estimation Window WE (01 Jun 2008 to 01 Jun 2009)  

 

The HS method is clearly easy to both understand and implement. Unlike the parametric 

approaches, it does not require a particular probability distribution of an asset return be 

assumed; instead, it is based on the actual distribution of past asset returns. However, since 

the HS method uses the historical asset returns distribution, the choice of estimation window 

size becomes a critical factor, as the VaR results can be very different even there is a small 

different in the estimation window size. The HS method tends to underestimate risks when the 

estimation window covers a bull period with low volatility and to overestimate risks in 
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inverse situations. Consider the results in Figures 4.2 and 4.3, for the period prior to the 

sub-prime mortgage crisis: the estimation window used for the HS method covers a low 

volatility bull period that caused a serious underestimation of risks when the crisis broke out 

in mid-September 2008. The VaR results from the HS method clearly failed in early October 

2008, where risk was repeatedly underestimated. Nevertheless, the smaller estimation window 

in the HS approach tends to react faster to increasing volatility in potential financial crises, 

while its ex-post forecast simultaneously tends to be overestimated. 

 

The VaR calculated using the HS method is highly sensitive to the chosen estimation window, 

and unfortunately, the choice is made according to subjective justifications, in practice. 

Consequently, the VaR calculated by this method can be intentionally manipulated. Having 

recognized the drawbacks of the HS method, regulators such as Basel II and, more recently, 

Basel III implemented a constraint that the method chosen must use an estimation window 

that is a minimum of one-year long. Nonetheless, the HS method remains seriously flawed 

given that the sampling problem persists. 

 

4.3.2 Parametric approach: The VCV approach 

 

In contrast to the HS approach, the VCV approach is based on parametric probability 

distribution assumptions of the risk factor returns. The most common assumption is that asset 

returns are i.i.d. random variables. The probability density function of the portfolio return x  

with mean   and variance 2  is: 
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The respective cumulative distribution function ( )F x  is: 
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Given that the standard normal cumulative distribution function ( )x  in equation (4.1): 
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To calculate   percent one-day VaR, the mathematic equation we have to solve is: 

 

 %( )F VaR    

 1

% ( )VaR       

 

By the symmetry of the normal distribution function 

 

 
1 1( ) (1 )       

the   percent one-day VaR, expressed as a percentage of the asset return can be calculated 

by: 

 

 1

% (1 )VaR        (4.2) 

 

The portfolio volatility of   in the VCV approach can be estimated by both univariate and 

multivariate analyses. Univariate volatility models are used to estimate volatility at the 
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portfolio level. One significant advantage is that the correlations between the assets in the 

portfolio do not need to be modelled. Meanwhile, the major drawback is that the variance is 

conditional on the portfolio weights: once the portfolio weights change, the risk model should 

be estimated. One major criticism of multivariate approaches is that estimated asset 

covariances will grow exponentially with the number of assets in the portfolio. As a detailed 

example, a portfolio with 100 assets will require one to estimate 5,050 VCV terms. 

Furthermore, if the number of return observations is smaller than the number of assets in the 

portfolio, the sample covariance matrix is singular and that complicated the optimization 

process. In this light, portfolio managers are recommended to perform risk mapping in order 

to compress the assets in the portfolio to a smaller set of base assets or risk factors that serve 

as the main risk drivers in the portfolio. Risk mapping is a procedure to map individual assets 

in a portfolio with a standardized market instrument (such as the prices of a market index, a 

future on the market index, foreign exchange rates, or a series of zero coupon bonds). The 

process of determining which factors to map depends on the assets in the portfolio. A portfolio 

is linear or non-linear depending on whether the price is a linear or a non-linear function of its 

risk factors (for example, a pure equity portfolio is a linear portfolio in which the price is a 

linear function of the risk factor systematic risk, whereas a bond portfolio or a portfolio that 

contains options is a non-linear function of the risk factor interest rate risk.). 

 

The VCV approach assumes that the underlying risk factors have a multivariate normal 

distribution, while the variance of the portfolio can be calculated using the VCV matrix: 

 

 2 T

p     

 

Where   is a column vector that represents the risk factor sensitivities or asset weights and 

  is the VCV matrix of different risk factors or assets. In the univariate approach, both the 
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column vector and the VCV matrix   become a scalar and the value of   will become 

one if   represents the asset volatility.  

 

4.3.3 Parametric approach: The MA approach 

 

The MA method, which is the simplest method for estimating volatility, is based on obtaining 

the average deviation of the sample series of historical return { tr }: 

 

 
1

( )t
t

t

P
r ln

P

  

 

Where tr  denotes the return of the asset at time t  and tP  denotes the asset price at time t . 

 

To simplify the calculation, the series { ty } is defined as the de-meaned series of returns.  

 

 t ty r    

 

With a sample size equal to N , the univariate volatility at time t  can then be estimated by 

equation (4.3): 

 

 2 2

1

1 N

t t i

i

y
N

 



   (4.3) 

 

For modelling the volatility of a portfolio with n  assets, the vector 
1, 2, ,{ , , , }t t t n tY y y y  

represents n  asset returns at time t and the VCV matrix H  can be calculated using 

equation (4.4): 
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1

1 N
T

t t tH Y Y
N

   (4.4) 

 

The MA method is seldom used in practice, as the forecasted volatility is unconditional, while 

the actual patterns of financial series volatility are clustered. The equally weighted calculation 

method fails to capture this clustering characteristic and causes the calculated VaR to be too 

low on average; risks are, therefore, usually understated. Furthermore, results of the MA 

method are highly sensitive to the chosen estimation window; as such this method suffers 

problems similar to those encountered with the HS approach. 

 

Figures 4.4, 4.5, and 4.6 show the results of the FTSE100 1% one-day VaR with the 

estimation windows of 250, 500, and 1,000 days, using the MA method. 

 

Figure 4.4 – FTSE100 1% One-day VaR by MA Method (01 Jan 2006 to 31 Dec 2012) 
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Figure 4.5 – FTSE100 1% One-day VaR by MA Method (01 Jun 2008 to 01 Jun 2009) 

 

 

 

Figure 4.6 – FTSE100 Daily Loss Exceeded the 1% VaR by MA Approach with Different 

Estimation Window WE (01 Jun 2008 to 01 Jun 2009)  

 

4.3.4 Parametric approach: The EWMA (or RiskMetrics) Approach 

 

The EWMA method improves the MA method by assigning all of the previous observations 

an equal weights. It provides flexibility in allocating more weight to the most recent 

observations, which are more indicative of the existence of financial volatility clustering. The 

EWMA model was originally proposed by Longerstaey and Spencer (1996), who define a 
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parameter   as the decay factor of previous shocks. The next period volatility is estimated 

by considering both the previous volatility and return times the decay factor  .  

 

 2 2 2

1 1(1 )t t ty       (4.5) 

 

Equations (4.5) and (4.6) show univariate and multivariate EWMA equations, respectively.  

 

 
1 1 1(1 ) T

t t t tH H Y Y       (4.6) 

 

The RiskMetrics approach suggests that when 0.94  , the forecasts of the daily variance 

rate will come closest to the realized variance rate. 

 

 

Figure 4.7 – FTSE100 1% One-day VaR by EWMA Method (01 Jan 2006 to 31 Dec 2012) 
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Figure 4.8 – FTSE100 1% One-day VaR by EWMA Method (01 Jun 2008 to 01 Jun 2009) 

 

Figure 4.9 – FTSE100 Daily Loss Exceeded the VaR Value by EWMA Approach with 

Different Cut-off Estimation Window T (01 Jun 2008 to 01 Jun 2009)  

 

Figures 4.7, 4.8, and 4.9 show the VaR estimated by the univariate EWMA method on 

FTSE100. Unlike the HS and MA methods, the EWMA method captures changes in volatility 

much more rapidly and captures the heteroskedasticity characteristic in general. Not 

surprisingly, the EWMA method is not sensitive to the chosen estimation window as the 

weights of previous observations decay exponentially to zero very quickly. With this method, 

the exponential decay factor should be adjusted for different risk horizons; if different decay 

factors are selected, the results given by the EWMA method can be quite differently. Figures 
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4.10, 4.11, and 4.12 show the results of using different decay factors under a cut-off 

estimation window equal to 250 days. The decay factors 0.94, 0.97, and 0.99 are arbitrarily 

picked and are for illustration purpose only (RiskMetrics suggests using 0.97   for weekly 

data). The larger the value of   chosen, the longer the previous volatility will persist (as the 

weights of the previous observation i  is 
i ). When 1  , the EWMA method is thus yield 

the same results as the MA method. Since EWMA is not a statistical method, the choice of the 

decay factor cannot be obtained through computation or regression, which makes the model 

highly sensitive to the chosen decay factors. Because the weights of previous observations 

decay exponentially to zero very quickly, the EWMA method is a short memory model and 

has been mis-specified, as researchers such as Pafka and Kondor (2001) asserted. The EWMA 

model also cannot be an internal model to measure market risk in the Basel accords; thus, the 

“effective” observation period must be at least one year for weighting schemes that include 

historical observation periods to calculate VaR.  

 

 

Figure 4.10 – FTSE100 1% One-day VaR by EWMA Method with Different   

(01 Jan 2006 to 31 Dec 2012) 
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Figure 4.11 – FTSE100 1% One-day VaR by EWMA Method with Different    

(01 Jun 2008 to 01 Jun 2009) 

 

 

Figure 4.12 – FTSE100 Daily Loss Exceeded the VaR Value by EWMA Approach with 

Different   (01 Jun 2008 to 01 Jun 2009)  

 

4.3.5 Parametric approach: The long memory EWMA (EWMA2006 or RiskMetrics2006) 

model 

 

Shocks in the equity market are unexpected but apparent in clusters with a long-lasting impact. 

The EWMA model fails to capture the “long memory” feature as the weights of past 

observations decay exponentially. In proposing a modified version of the EWMA method, 
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Zumbach (2006) modified the EWMA’s exponential decay rate to a hyperbolic decay in order 

to allow a long-lasting impact from any previous shock. 

 

Unlike the original EWMA method, the RiskMetrics2006 method defines K  historical 

volatilities at time t  by using a decay factor k  that is based on the geometric time horizon 

k : 

 

 1

1

k

k     

 
1

( )k

k

exp


   

 , , 1 (1 ) T

k t k k t k t tH H Y Y     (4.7) 

 

The RiskMetrics2006 method obtains the next period’s conditional covariance matrix 1tH  as 

a sum of the K  historical volatilities in equation (4.7), with logarithmic decay weights kw : 

 

 
1 ,

1

K
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k

H w H
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  (4.8) 

 

where 
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The purpose of the constant C  is to make sure the sum of the weights is equal to one 
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( 1kw  ). The long memory RiskMetrics2006 model captures different scales of volatilities 

that are controlled by three parameters: 0  is the logarithmic decay factor, 1  is the low 

cut-off, and k  is the upper cut-off. As suggested by Zumbach (2007), the operationalized 

parameter   is set to 2 , the optimal parameters value for 0  is 1,560 days, 1  is 4 days, 

and k  is 512 days; and K  is set to 15.  

 

Figure 4.13 – FTSE100 1% One-day VaR by RiskMetrics2006 Method 

(01 Jan 2006 to 31 Dec 2012) 

 

 

Figure 4.14 – FTSE100 1% One-day VaR by RiskMetrics2006 Method 

(01 Jun 2008 to 01 Jun 2009) 
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Figure 4.15 – FTSE100 Daily Loss Exceeded the VaR Value by RiskMetrics2006 Approach  

(01 Jun 2008 to 01 Jun 2009)  
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4.3.6 Parametric approach: The GARCH model  

 

In traditional time-series analysis, AR, MA, and combined ARMA models are widely used to 

describe a time series that exhibits characteristics of a self-dependent, stationary process. 

However, when volatility is described in the financial market, randomness is observed to vary 

widely over time and tends to cluster together. The process is self-dependent and 

conditionally heteroskedastic. Engle (1982) introduced the ARCH model to capture the 

characteristics, and his student Bollerslev (1986) proposed the GARCH model by 

incorporating a moving average term to solve the high-order problem with the ARCH model. 

 

In general, the conditional volatility of the ( , )GARCH p q  model can be calculated as: 

 

 t ty   (4.9) 

 2 2 2( ) ( )t t th L L h      (4.10) 

 2 2(1 ( )) ( )t tL h L      

 2 1 1 2(1 ( )) (1 ( )) ( )t th L L L         (4.11) 

 ~ . . (0, )t ti i d h  

 

Where L  is the lag operator and ( )L  and ( )L  are the lag polynomials in order p  and 

q  respectively. 

 2

1 2( ) q

qL L L L        

 2

1 2( ) p

pL L L L        
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By defining the surprising term 2 2 2

t t th   , the equation (4.11) can be rewritten as: 

 

 2(1 ( ) ( )) (1 ( ))t tL L L          (4.12) 

 

Many variations of ARCH family models exist. To model an asset return series, the 

auto-correlated property of a stock returns series can be captured by adding AR, integrated (I), 

or MA terms in equation (4.9), and these terms are then generalized as ARIMA(m,d,n) in 

equation (4.13): 

 

 2(1 ( ))(1 ) (1 ( ))d

t tL L y L      (4.13) 

 

Where ( )L  and ( )L  are the lag equations: 

 2

1 2( ) m

mL L L L         

 2

1 2( ) n

nL L L L         

 

4.3.7 Parametric approach: The GJR-GARCH model 

 

Variations also exist among GARCH models regarding modelling volatility. As suggested by 

Engle and Ng (1993), Glosten et al. (1993) asymmetric GARCH models model stock return 

series better, as an asymmetric impact of bad or good news information on stock return 

volatility is reflected (see Christie (1982). According to Engle and Ng (1993), the 

GJR-GARCH model proposed by Glosten et al. (1993) is the best ARCH family model for 

capturing the asymmetric impact. It modifies the GARCH model in equation (4.10) by adding 

a threshold parameter tN , which is a dummy variable that takes the value of 1 when t  is 
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positive and 0 when t  is negative. The equation of GJR-GARCH(p,q) is: 

 

 2 2 2( ) ( ) ( )t t t t th L L N L h         

 

where 

 

 2

1 2( ) q

qL L L L        

 

4.3.8 Parametric approach: The FIGARCH model 

 

One problem with the GARCH models discussed so far is that they all fail to model the 

persistence characteristic of stock volatility and thus face the same problem as the original 

EWMA method. To allow long memory in the GARCH models, Baillie et al. (1996) proposed 

the FIGARCH model, which extends the integrated GARCH (IGARCH) model of  Engle 

and Bollerslev (1986) by allowing the integration coefficient d  to vary in a range from zero 

to one. As the coefficient d  is allowed to be a fractional number in the FIGARCH model, 

unlike in the IGARCH model, a shock in the volatility process will not persist for an infinite 

prediction horizon; it will decay at a hyperbolic rate that represents the long memory 

characteristic of a volatility process. 

 

The volatility process in the FIGARCH model is: 

 

 2(1 ( ) ( ))(1 ) (1 ( ))d

t tL L L L           (4.14) 

 

From equation (4.10), the conditional volatility of the GARCH model can be rewritten as: 
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 2 2 2( ) (1 ( ) ( ) ( ) 1)t t th L h L L L            

 

If ( ) ( ) 1L L   , it is a unit root process by substituting 1 ( ) ( )L L    with ( )(1 )dL L  . 

The FIGARCH model can also be represented as: 

 

 2 2 2( ) (1 ( ) ( )(1 ) )d

t t th L h L L L          (4.15) 

 

Using Taylor expansion, the polynomial (1 )dL  can be written as: 
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The coefficients 
,d i  decay at a rate of 1di  , which is a long memory process. 

The equation for the FIGARCH model can be further written as: 

 

 2 2 2( ) (1 ( ) ( ) ( ))t t d th L h L L L          (4.17) 

 

The FIGARCH(1,d,1) model is thus defined as: 

 

 2 2 2

1 1 1 1(1 (1 ) ( ))t t d th h L L L           
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Figure 4.16 – FTSE100 1% One-day VaR by GARCH(1,1), GJR-GARCH(1,1) and 

FIGARCH(1,d,1) Methods  

(01 Jan 2006 to 31 Mar 2012) 

 

 

Figure 4.17 – FTSE100 1% 1-day VaR by GARCH(1,1), GJR-GARCH(1,1) and 

FIGARCH(1,d,1) Methods 

(01 Jun 2008 to 01 Jun 2009) 
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Figure 4.18 – FTSE100 Daily Loss Exceeded the VaR Value by GARCH(1,1), 

GJR-GARCH(1,1) and FIGARCH(1,d,1) Approaches 

(01 Jun 2008 to 01 Jun 2009)  

 

 

Figure 4.16 shows the VaR results obtained using the GARCH(1,1), GJR-GARCH(1,1), and 

FIGARCH(1,d,1) models with an estimation window of 1,000EW  . The results in Figures 

4.16, 4.17, and 4.18 are intentionally for illustration purposes only; a comparison of the use of 

different GARCH models in VaR calculation is presented in the next section. 

 

Using ARCH family volatility models to calculate single-asset portfolio VaR is 

straightforward but computational. As these models require statistical methods to estimate the 

parameters, the estimation windows that they use cannot be too small. The estimation window 

1,000EW   is used in this study.  

 

4.4 Multivariate Models 

 

The multivariate GARCH models used in this study are represented as: 
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 ,t tr   

 1| ~ (0, ),t t tI N H  (4.18) 

 1 2 1 2( , , , , ),t t t t tH g H H     

 

where tr  is a ( 1)n  vector of the asset returns or risk factors 
1, 2, ,[ , , , ]t t t n tr r r r  at time t . 

The function (.)g  is a function of lagged conditional covariance matrices. There are variety 

ways to model covariance matrices. In this study, we apply Engle (2002) DCC model and 

Cappiello et al. (2006) ADCC model. 

 

 

4.4.1 Volatility spillover in multivariate models 

 

Eun and Shim (1989) applied Sims (1980) vector autoregression model to capture the 

interdependence between the world’s nine largest stock markets, which including Australia, 

Canada, France, Germany, Hong Kong, Japan, Switzerland, the United Kingdom, and the 

United States, in terms of capitalization value in the year 1985. They found that a substantial 

amount of interdependence exists among different national stock markets; most importantly, 

they discovered that the U.S. stock was the most influential stock market and that the others 

were followers. Hamao et al. (1990) and Koutmos and Booth (1995) found similar results 

using the GARCH process of Bollerslev (1986). Bae et al. (2003) found that contagion is 

predictable and depends on regional interest, exchange rate changes, and conditional stock 

return volatility. Allen et al. (2013) used a tri-variate GARCH model to study volatility 

spillover among the U.S., Australian, and Chinese (proxied by the Hang Seng Index) markets 

and found strong evidence of changing correlations among the markets during financial crisis 

periods.  
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As mentioned in Section 4.2, the first set of tests contains nine single-stock portfolios, and the 

equity asset in each portfolio is the stock market index of each of the nine countries. After 

considering volatility spillover among the different stock markets, we incorporate other risk 

factors into the multivariate GARCH models, as shown in Table 4.3.  

 

 

Portfolio Portfolio Asset 

(Stock Index) 

Factors (Stock Indices) in the 

Multivariate Models 

S1 Japan United States, Canada, Brazil 

S2 China United States, Canada, Brazil 

S3 Hong Kong United States, Canada, Brazil 

S4 Germany Japan, China, Hong Kong 

S5 United Kingdom Japan, China, Hong Kong 

S6 Spain Japan, China, Hong Kong 

S7 United States Germany, United Kingdom, Spain 

S8 Canada Germany, United Kingdom, Spain 

S9 Brazil Germany, United Kingdom, Spain 

 

Table 4.3 – The Nine Single-asset Portfolios and Risk Factors in the Multivariate GARCH 

Models 

 

 

4.5 Backtesting VaRs 

 

The aim of backtesting is a statistical procedure to identify the weaknesses of a VaR model. A 

VaR violation is recorded for a particular date on which a portfolio of assets’ losses exceeds 

the calculated VaR value. Backtesting identifies the significance of VaR violations in a given 

testing period. 

 

We define T  as the total number of observations in the data set, EW  as the size of the 

estimation windows, and TW  as the testing window for VaR violations. A VaR violation 
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( 1t  ) is recorded if the loss on a particular trading day t  exceeds the calculated VaR value. 

The total number of VaR violations 1  in the testing period TW  is calculated by equation 

(4.19), while 0  in equation (4.20) is the number of days without violations in the testing 

period. 

 E TW W T   

 
1,  if 

0,  if 

t t

t

t t

y VaR

y VaR


 
 

 
 

 1 t   (4.19) 

 0 1TW    (4.20) 

 

The number of violations and clustering of violations are two major issues of consider when 

evaluating the performance of different VaR models is evaluated. Unconditional coverage 

tests such the POF and TUFF test of Kupiec (1995) are commonly used to evaluate VaR 

models by testing the number of violations at a given confidence level. Conditional coverage 

tests such as the interval forecast test of Christoffersen (1998) and the mixed-Kupiec test 

capture violation clustering. 

 

4.5.1 Unconditional coverage 

 

In general, unconditional coverage tests are based on a binomial probability distribution. For a 

trading day with losses that exceed VaR estimates, a failure event (VaR violation) is recorded 

( 1t  ). With the failure rate p . defined as 1

T

p
W


  and successful rate (1 )p  defined as 

0(1 )
T

p
W


  , the sequence of failure events can be expressed as a Bernoulli trial process. The 
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number of VaR violations 1  follows a binomial probability distribution: 

 

 1 1

1

1

( ) (1 ) TT W
W

f p p 


 
  
 

 (4.21) 

 

The binomial distribution in equation (4.21) can be approximated through a normal 

distribution if the size of the testing window TW  increases.  

 

4.5.2 Unconditional coverage: The POF test 

 

Intuitively, if a number of VaR violations exceeds the selected confidence level, the VaR 

model may be underestimating the risk. In contrast, too few violations may indicate that the 

VaR model is overestimating the risk. Kupiec (1995) suggested a POF hypothesis test to 

determine whether the number of VaR violations is consistent with the selected confidence 

level. 

 

The null hypothesis is: 

 

 1
0

ˆ:
T

H p p
W


   

 

The POF test aims to test whether the observed failure rate (i.e. the number of VaR violations) 

is significantly different from the selected failure rate p .  

 

Under a true null hypothesis, LR is asymptotically 
2  distributed with one degree of 

freedom. The LR test is defined as: 
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p p
LR ln
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 





 
   

 
 (4.22) 

 

The POF test is biased if the size of the testing window is small. In such a case, this test will 

not work well, even if the model does comply with the Basel accords, which require that the 

“effective” observation period must be at least one year (i.e., 250 trading days). Furthermore, 

the POF test does not provide any information about the “timing” of the violations, and it fails 

to reject a VaR model that produces clustered violations. 

 

4.5.3 Unconditional coverage: The TUFF test 

 

In addition to the POF test, Kupiec (1995) also introduced the TUFF test, which measures the 

first violation that occur. It assumes that the first violation occurs in 
1

v
p

  days. For 99% 

VaR calculation, a violation is expected to occurs every 100 days. 

 

The null hypothesis is: 

 

 
0

1
ˆ:H p p

v
   

 

Under a true null hypothesis, the LR is asymptotically 
2 distributed with one degree of 

freedom. The LR test is defined as: 
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 (4.23) 
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The major problem of the TUFF test is that it fails to identify a bad VaR model, with 

unacceptably high type II error ( see Sinha and Chamu 2000). However, the TUFF test 

provides a useful framework for exploring independence using the Hass (2001) mixed-Kupiec 

test , which is discussed in the next section. 

 

4.5.4 Conditional coverage 

 

In theory, VaR violations should spread out over time, and they should not occur as a 

sequence of consecutive exceptions. An effective VaR model should be able to react to 

changing volatility and correlations. Unconditional coverage tests focus only on the number 

of exceptions while ignoring the timing of failure events. They also fail to account for 

volatility clustering. The conditional coverage tests aim to address these problems by testing 

both the frequency and timing of failures.  

 

4.5.5 Conditional coverage: Christoffersen’s interval forecast test 

 

Christoffersen (1998) tested the independence of VaR violation by considering a binary 

first-order Markov chain with the transition probability matrix 1 . Christoffersen (1998) 

defines an indicator variable tI  that returns a value of 0 or 1 when a VaR violation occurs:  

 

 
0 if no VaR violation occurs

1 if VaR violation occurs
tI


 


 

 
01 01

1

11 11

(1 )

(1 )

p p
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   

 
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where 
1( | )ij t tp Pr I j I i   .  

 

The likelihood function for the violation sequence is Bernoulli distributed following the 

first-order Markov chain:  

 

 00 01 10 11

1 1 2 01 01 11 11( ; , , , ) (1 ) (1 )
n n n n

R tL I I I p p p p     

 

where 
ijn  is the total number of observations that indicator variable tI j  follows by 

1tI i  . 

 

The maximum likelihood (ML) estimates for the log-likelihood functions 1( )RL   are simply 

ratios of the count of the respective cells. 
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If VaR violations are independent, today’s violation should be independent from yesterday’s 

violation; the probability of 01p  should be equal to 11p . The transition probability matrix 

under the null hypothesis is: 
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The ML estimates for the log-likelihood function 0( )UL 
 
are: 
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ˆ ˆ(1 )
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p p

 
   
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where  
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ˆ
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The unrestricted likelihood function is: 

 

 00 10 01 11

1 1 2
ˆ ˆ( ; , , , ) (1 )

n n n n

U tL I I I p p
 

    

 

The LR test for the independence: 

 

 
2

0 12( ( ) ( )) ~ (1)ind U RLR logL logL      

 

A joint test of coverage and independence can be undertaken by combining the indLR  and 

POFLR statistics as conditional coverage ccLR statistics: 

 

 2~ (2)cc POF indLR LR LR    
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4.5.6 Conditional coverage: The mixed-Kupiec test 

 

The flaws of Christoffersen’s interval forecast test are that it is based on a first-order Markov 

chain and considers only the dependence between two consecutive trading days. Hass (2001) 

combined the ideas of Christoffersen and Kupiec in proposing a mixed-Kupiec test use the LR 

test to consider both the occurrence of the first violation and the time of different occurrences: 
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where iv  is the time between the VaR violations 1i   and i . With n  exceptions in the 

testing period, the LR test equation is: 
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Based on the idea of Christoffersen, the conditional coverage test is a mixed test for 

independence and coverage. It entails combining the new indLR statistic and the original 

Kupiec POFLR statistic as conditional coverage mixedLR statistics: 

 

 2~ ( 1)mixed POF indLR LR LR n    
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4.6 Backtesting Results 

 

The entire data set contains 2,240 observations for the period from 1 June 2004 to 31 

December 2012. Since the parametric ARCH family models require more data in the 

estimation window for optimization, we use the estimation window size 1,000EW 
 
in our 

tests. The estimation window is subsequently rolled forward on observation. To determine 

how well different VaR models perform during crisis and non-crisis periods, we conduct the 

backtests in batches for two periods: the sub-prime mortgage crisis period from 1 June 2008 

to 1 June 2009 and the non-crisis period from 1 June 2009 to 31 December 2012. The 

backtesting results are shown in Figures 4.20 to 4.37 and Tables 4.5 to 4.22. 

 

4.6.1 Tests for single-asset portfolios 

 

We calculate the 1% one-day VaR of the nine single-stock portfolios that are described in 

Section 4.2; the equity asset in each portfolio is solely the stock market index of each of the 

nine countries. We test the following VaR approaches: HS, MS, EWMA, long memory 

EWMA (RiskMetrics2006), GARCH, GJR-GARCH, FIGARCH, DCC, GJR-DCC, ADCC, 

and GJR-ADCC. The calculated VaR values are then backtested using coverage, 

independence, and joint tests.  

 

Figures 4.20 to 4.29 and Tables 4.5 to 4.13 illustrate the nine portfolio’s VaR violations using 

different VaR approaches. Surprisingly, none of the univariate or multivariate GARCH-type 

approaches work well in the crisis period. Table 4.5 shows the backtest results of single-asset 

portfolio S1, the GARCH, GJR-GARCH, DCC, and ADCC failed in the coverage tests, 

Independent tests and joint test at 5% significant level. GARCH, DCC, and ADCC model has 

a p-value of 2.38%, 0.61%, and 0.16% in the POF coverage tests, Chistoffersen Independence 
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test and the mixed Kupiec joint test respectively. Among the univariate GARCH-type 

approaches, the GJR-GARCH(1,1) model performs the worst while the FIGARCH(1,1) 

model performs the best. The GJR-GARCH(1,1) model is insignificant in all the single-asset 

portfolios, it has a p-value of zero in the POF coverage tests, Chistoffersen independence test, 

Chistoffersen joint tests, and Mixed-Kupiec test. Similar findings are obtained in all other 

portfolios of S2 to S9. Despite the GJR-GARCH(1,1) model’s poor performance, we find that 

many loss violations slightly exceed the calculated VaR; the absolute value of the model’s 

forecasting errors is thus small. Nonetheless, as the estimation results are too close to the true 

value, leading VaR violations to occur frequently. The GJR-GARCH model is good for 

forecasting volatility but it may not suitable for calculating VaR to measure downside risk, as 

the minimum forecasting errors do not provide sufficient cushion in estimating losses. 

However, using multivariate GARCH models to calculate single-stock portfolio’s VaR 

provides no advantage over using univariate GARCH models, as the VaR values obtained 

from the multivariate GARCH approaches do not differ from those obtained from the 

univariate GARCH approaches. The reason is that the multivariate GARCH models uses 

quasi-ML estimation in two steps: the model’s joint log-likelihood is split into two and then 

maximized sequentially. If we do not include exogenous variables in the return series 

estimation process or in the volatility function, using multivariate GARCH models to 

calculate VaR for a single-stock portfolio with single-risk factors offers no benefit. The 

multivariate GARCH models nevertheless offer an advantage in estimating the 

interdependence between the model’s assets or risk factors. A multi-asset portfolio can thus 

benefit from multivariate GARCH models in estimating the VCV matrix of risk factors. If a 

portfolio contains only a single-risk factor, however, multivariate GARCH models should not 

be used. 

 

Among all of the approaches used to calculate VaR in a single-asset portfolio, the long 
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memory RiskMetrics2006 method performed overwhelmingly well in all of the coverage, 

independence, and joint tests. In Table 4.5, RiskMetrics2006 is highly significant in the 

coverage, independence, and joint tests. The p-value of the POF, TUFF, Christoffersen 

independence test, Christoffersen joint test are 81.27%, 80.12%, 70.13%, and 93.88% 

respectively. Similar observations are found in other portfolios of S2 to S9 in Table 4.6 to 4.13. 

The VaR violations in different equity indices were recorded around late September 2008 and 

early October 2008, just a few days after the bankruptcy of Lehman Brothers Holdings Inc. on 

15 September 2008. 

 

4.6.2 Tests for multiple-assets portfolios 

 

To test how well the different VaR approaches perform with multiple-asset portfolios, we 

perform tests on the nine three-asset portfolios shown in Table 4.2. 

 

For these tests, we use passive portfolios that implement a buy-and-hold strategy, are equally 

weighted and were purchased on 31 May 2004 (the portfolio return series starts on 1 June 

2004). We form the portfolio by initially purchasing $100,000 in each asset and holding them 

until the end of 31 December 2012. To simplify the situation, we ignore the exchange rate 

factor and assume that all index value is dominated in dollars. For example, the portfolio 

value of portfolio M1 on 31 May 2004 is $300,000, and the number of units brought in the 

equity indices of Japan, Germany, and the United States are 8.8997, 25.5010, and 9.8150 

respectively. Table 4.4 shows the details of the calculations. 
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 Japan Germany United States 

Stock Index 

Value 

$11,236.37 $3,921.41 $10,188.45 

Number of Units 

Brought 

$100,000/$11,236.37 

= 8.8997 

$100,000/$3,921.41 

= 25.5010 

$100,000/$10,188.45 

= 9.8150 

Market Value $100,000 $100,000 $100,000 

Table 4.4 – Market Value of Portfolio M1 on 1 Jun 2004 

 

The calculation method used for univariate VaR models with multiple-asset portfolios is 

similar to the methods used with single-asset portfolios; we considers the portfolio as a whole, 

single asset. Unlike with univariate VaR models, the calculation of VaR with multivariate 

models requires continual adjustment to risk factor weights. Portfolio variances can be 

obtained using multivariate models to estimate the VCV matrix   of different risk factors, 

and then multiplying the risk factor sensitivities vector as shown in equation (4.24). 

 

 2 T

p     (4.24) 

 

where   is a column vector representing the risk factor sensitivities or asset weights. As the 

market value of individual asset changes over time, so does the asset weights vector  . The 

weights of asset i  in time t  can be calculated as:  

 

 
,

,

,

i t

i t

p t

MV

MV
   

 

where ,i tMV  is the market value of asset i  and ,p tMV  is the portfolio market value at time 

t .  
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Figure 4.19 shows how the market value of the nine three-asset portfolios change over time. 

The VaR violations of the nine portfolios are shown in Figures 4.29 to 4.37. 

 

 

Figure 4.19 – Market Value of the Three-asset Portfolios M1 to M9 

 

For multiple-asset portfolio with previously unknown risk factors, the univariate 

RiskMetrics2006 method would be the best choice among the VaR approaches. Tables 4.14 to 

4.22 indeed show that the RiskMetrics2006 outperforms the other univariate methods in all 

the coverage, independence, and joint tests, in both the crisis and after-crisis periods. 

However, if the risk factors are identified in multiple-asset portfolios, one should calculate 

VaR with multivariate VaR models instead of univariate VaR models.  

 

Unlike the results for the univariate models, the results for the multivariate RiskMetrics2006 

model do not show that the model offers any advantage over the multivariate GARCH models. 

In general, multivariate VaR models work well in the both the crisis and after-crisis periods. 

Moreover, the multivariate GARCH models perform very well in the independence tests but 

not the coverage tests during the crisis period; however, they perform better in the coverage 
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tests than in the independence tests during the after-crisis period. The DCC, GJR-DCC, 

ADCC, and GJR-ADCC models show little differences during the backtesting. Although the 

asymmetric GJR-ADCC model slightly outperforms the others in a few scenarios (Table 

4.15b, 4.20b, and 4.21b), if these results are compared and reconciled with those obtained in 

Chapter 3, it may not be worthwhile to use asymmetric correlation to calculate VaR in 

multivariate models. The GJR-DCC model is adequate for calculating multivariate VaR; as 

suggested in Chapter 3, equity markets tend to reflect bad news on volatility but not on 

correlations. 

  

4.7 Conclusion 

 

This chapter reviewed the major approaches to calculating VaR. In total, 14 VaR approaches 

including non-parametric approaches (HS), univariate parametric approaches (MA, EWMA, 

RiskMetrics2006, GARCH, GJR-GARCH, and FIGARCH), and multivariate parametric 

approaches (MA, EWMA, RiskMetrics2006, DCC, GJR-DCC, ADCC, and GJR-ADCC), 

were examined in both the sub-prime mortgage crisis and after-crisis periods. Two sets of 

portfolios were formed to test the effectiveness of different the VaR approaches. Univariate 

approaches were used to consider a portfolio as a single asset, while multivariate approaches 

were used to map individual assets to the base risk factors. 

 

The HS, MA, and GJR-GARCH approaches performed worse during the crisis period for both 

the single- and multiple-asset portfolios. They seriously understated risks during this period 

while overstating risks in the after-crisis period. The univariate RiskMetrics2006 method 

showed promising results, as it did not over- or understate risks in either period. It also 

performed well in all of the unconditional coverage, independence, and joint tests.  
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The findings in this chapter provides guidelines for portfolio managers to manage downside 

financial risks. For single-asset portfolios or multiple-asset portfolios without any risk factor 

being identified, it is suggested to use univariate RiskMetrics2006 method calculating the VaR. 

In contrast, for portfolios with identified risk factors, the portfolio manager should consider 

using multivariate GARCH models to estimate the conditional covariance matrix for a VCV 

approach. Adding asymmetric terms in modelling volatility will generally provide better 

results; however, there is no benefit from adding asymmetric terms in the modelling 

correlations. We recommend using the GJR-DCC model which incorporates the asymmetric 

volatility effect in the equity market for calculating VaR in multiple-asset portfolio. 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.20 – Backtesting Results for Portfolio S1 - Japan 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.21 – Backtesting Results for Portfolio S2 - China 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.22 – Backtesting Results for Portfolio S3 - Hong Kong 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.23 – Backtesting Results for Portfolio S4 - Germany 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.24 – Backtesting Results for Portfolio S5 - United Kingdom 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.25 – Backtesting Results for Portfolio S6 - Spain 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.26 – Backtesting Results for Portfolio S7 - United States 
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.27 – Backtesting Results for Portfolio S8 - Canada 

 

  



 

 

1
1
6

 

  

(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.28 – Backtesting Results for Portfolio S9 - Brazil  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.29 – Backtesting Results for Multiple-asset Portfolio M1 (Japan, Germany, United States)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.30 – Backtesting Results for Multiple-asset Portfolio M2 (Japan, United Kingdom, Canada)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.31 – Backtesting Results for Multiple-asset Portfolio M3 (Japan, Spain, Brazil)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.32 – Backtesting Results for Multiple-asset Portfolio M4 (China, Germany, United States)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.33 – Backtesting Results for Multiple-asset Portfolio M5 (China, United Kingdom, Canada)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.34 – Backtesting Results for Multiple-asset Portfolio M6 (China, Spain, Brazil)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.35 – Backtesting Results for Multiple-asset Portfolio M7 (Hong Kong, Germany, United States)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.36 – Backtesting Results for Multiple-assets Portfolio M8 (Hong Kong, United Kingdom, Canada)  
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(a) the Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

 

Figure 4.37 – Backtesting Results for Multiple-asset Portfolio M9 (Hong Kong, Spain, Brazil)  

 

 

 



  

126 

(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 14 (0.00%) (80.12%) (77.42%) (0.00%) (0.00%) (0.00%) 

MA 261 19 (0.00%) (80.12%) (19.03%) (0.00%) (0.00%) (0.00%) 

EWMA 261 4 (42.26%) (80.12%) (72.37%) (0.98%) (68.11%) (1.58%) 

RiskMetrics2006 261 3 (81.27%) (80.12%) (79.13%) (3.59%) (93.88%) (7.17%) 

GARCH 261 7 (2.38%) (80.12%) (53.37%) (0.61%) (6.41%) (0.16%) 

GJR-GARCH 261 24 (0.00%) (80.12%) (87.16%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 3 (81.27%) (80.12%) (79.13%) (3.59%) (93.88%) (7.17%) 

DCC 261 7 (2.38%) (80.12%) (53.37%) (0.61%) (6.41%) (0.16%) 

GJR-DCC 261 6 (7.13%) (80.12%) (59.44%) (11.73%) (17.06%) (6.22%) 

ADCC 261 7 (2.38%) (80.12%) (53.37%) (0.61%) (6.41%) (0.16%) 

GJR-ADCC 261 6 (7.13%) (80.12%) (59.44%) (11.73%) (17.06%) (6.22%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 2 (0.34%) (3.88%) (0.15%) (0.12%) (0.01%) (0.01%) 

MA 936 2 (0.34%) (3.88%) (0.15%) (0.12%) (0.01%) (0.01%) 

EWMA 936 17 (2.43%) (59.47%) (3.50%) (0.11%) (0.86%) (0.04%) 

RiskMetrics2006 936 3 (1.48%) (3.88%) (0.45%) (0.37%) (0.09%) (0.07%) 

GARCH 936 11 (60.01%) (59.47%) (11.44%) (14.86%) (25.07%) (18.77%) 

GJR-GARCH 936 2 (0.34%) (3.88%) (0.15%) (0.12%) (0.01%) (0.01%) 

FI-GARCH 936 12 (40.60%) (59.47%) (0.74%) (1.56%) (1.96%) (1.97%) 

DCC 936 11 (60.01%) (59.47%) (11.44%) (14.86%) (25.07%) (18.77%) 

GJR-DCC 936 14 (15.56%) (11.05%) (20.07%) (4.64%) (16.09%) (3.83%) 

ADCC 936 11 (60.01%) (59.47%) (11.44%) (14.86%) (25.07%) (18.77%) 

GJR-ADCC 936 14 (15.56%) (11.05%) (20.07%) (4.64%) (16.09%) (3.83%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.5 – Backtesting Results for Portfolio S1 1% One-day VaR - Japan  
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 4 (42.26%) (5.82%) (72.37%) (5.59%) (68.11%) (7.93%) 

MA 261 11 (0.01%) (5.82%) (47.21%) (0.04%) (0.04%) (0.00%) 

EWMA 261 5 (18.68%) (5.82%) (65.79%) (14.60%) (37.92%) (12.75%) 

RiskMetrics2006 261 1 (25.22%) (5.82%) (93.00%) (5.82%) (51.71%) (8.63%) 

GARCH 261 4 (42.26%) (5.82%) (72.37%) (12.46%) (68.11%) (16.38%) 

GJR-GARCH 261 14 (0.00%) (5.82%) (77.42%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 4 (42.26%) (5.82%) (72.37%) (34.79%) (68.11%) (40.40%) 

DCC 261 4 (42.26%) (5.82%) (72.37%) (12.46%) (68.11%) (16.38%) 

GJR-DCC 261 3 (81.27%) (5.82%) (79.13%) (30.47%) (93.88%) (45.06%) 

ADCC 261 4 (42.26%) (5.82%) (72.37%) (12.46%) (68.11%) (16.38%) 

GJR-ADCC 261 3 (81.27%) (5.82%) (79.13%) (30.47%) (93.88%) (45.06%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 2 (0.34%) (59.47%) (92.62%) (20.47%) (1.35%) (0.82%) 

MA 936 7 (41.71%) (45.60%) (74.52%) (5.50%) (68.25%) (7.08%) 

EWMA 936 25 (0.00%) (45.60%) (24.12%) (0.41%) (0.01%) (0.00%) 

RiskMetrics2006 936 9 (90.53%) (45.60%) (67.58%) (24.14%) (90.98%) (31.71%) 

GARCH 936 17 (2.43%) (45.60%) (42.75%) (7.66%) (5.78%) (2.91%) 

GJR-GARCH 936 7 (41.71%) (45.60%) (74.52%) (5.50%) (68.25%) (7.08%) 

FI-GARCH 936 7 (41.71%) (80.25%) (74.52%) (6.11%) (68.25%) (7.80%) 

DCC 936 17 (2.43%) (45.60%) (42.75%) (7.66%) (5.78%) (2.91%) 

GJR-DCC 936 16 (4.76%) (45.60%) (45.54%) (11.88%) (10.64%) (6.20%) 

ADCC 936 17 (2.43%) (45.60%) (42.75%) (7.66%) (5.78%) (2.91%) 

GJR-ADCC 936 16 (4.76%) (45.60%) (45.54%) (11.88%) (10.64%) (6.20%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.6 – Backtesting Results for Portfolio S2 1% One-day VaR – China  
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 11 (0.01%) (5.82%) (47.21%) (0.00%) (0.04%) (0.00%) 

MA 261 24 (0.00%) (5.82%) (22.48%) (0.00%) (0.00%) (0.00%) 

EWMA 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

RiskMetrics 

2006 
261 2 (69.23%) (94.25%) (86.02%) (30.03%) (91.04%) (46.41%) 

GARCH 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

GJR-GARCH 261 27 (0.00%) (5.82%) (44.74%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 4 (42.26%) (5.82%) (72.37%) (8.68%) (68.11%) (11.82%) 

DCC 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

GJR-DCC 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

ADCC 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

GJR-ADCC 261 5 (18.68%) (5.82%) (65.79%) (8.05%) (37.92%) (7.25%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.44%) (96.31%) (1.44%) (0.21%) (0.01%) 

MA 936 4 (4.69%) (78.28%) (85.29%) (22.14%) (13.64%) (8.53%) 

EWMA 936 16 (4.76%) (78.28%) (45.54%) (11.95%) (10.64%) (6.24%) 

RiskMetrics 

2006 
936 4 (4.69%) (78.28%) (85.29%) (2.31%) (13.64%) (0.92%) 

GARCH 936 15 (8.84%) (78.28%) (48.43%) (14.33%) (18.34%) (9.62%) 

GJR-GARCH 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

FI-GARCH 936 16 (4.76%) (78.28%) (45.54%) (11.95%) (10.64%) (6.24%) 

DCC 936 15 (8.84%) (78.28%) (48.43%) (14.33%) (18.34%) (9.62%) 

GJR-DCC 936 14 (15.56%) (78.28%) (51.41%) (10.28%) (29.49%) (8.48%) 

ADCC 936 15 (8.84%) (78.28%) (48.43%) (14.33%) (18.34%) (9.62%) 

GJR-ADCC 936 14 (15.56%) (78.28%) (51.41%) (10.28%) (29.49%) (8.48%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.7 – Backtesting Results for Portfolio S3 1% One-day VaR - Hong Kong  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 17 (0.00%) (56.33%) (90.85%) (0.00%) (0.00%) (0.00%) 

MA 261 31 (0.00%) (18.75%) (85.90%) (0.00%) (0.00%) (0.00%) 

EWMA 261 7 (2.38%) (18.75%) (53.37%) (0.34%) (6.41%) (0.09%) 

RiskMetrics 

2006 
261 1 (25.22%) (92.56%) (93.00%) (92.56%) (51.71%) (51.68%) 

GARCH 261 10 (0.05%) (3.84%) (37.10%) (2.27%) (0.14%) (0.05%) 

GJR-GARCH 261 25 (0.00%) (72.52%) (2.10%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 7 (2.38%) (56.33%) (53.37%) (13.21%) (6.41%) (3.88%) 

DCC 261 10 (0.05%) (3.84%) (37.10%) (2.27%) (0.14%) (0.05%) 

GJR-DCC 261 10 (0.05%) (56.33%) (37.10%) (6.22%) (0.14%) (0.16%) 

ADCC 261 10 (0.05%) (3.84%) (37.10%) (2.27%) (0.14%) (0.05%) 

GJR-ADCC 261 10 (0.05%) (56.33%) (37.10%) (6.22%) (0.14%) (0.16%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 3 (1.48%) (1.42%) (88.95%) (0.60%) (5.09%) (0.10%) 

MA 936 8 (64.68%) (24.37%) (71.02%) (0.03%) (84.03%) (0.06%) 

EWMA 936 21 (0.10%) (78.93%) (32.59%) (0.01%) (0.28%) (0.00%) 

RiskMetrics 

2006 
936 2 (0.34%) (3.84%) (92.62%) (11.72%) (1.35%) (0.49%) 

GARCH 936 12 (40.60%) (9.98%) (57.64%) (13.53%) (60.57%) (15.43%) 

GJR-GARCH 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

FI-GARCH 936 13 (25.88%) (9.98%) (54.49%) (19.51%) (44.00%) (19.05%) 

DCC 936 12 (40.60%) (9.98%) (57.64%) (13.53%) (60.57%) (15.43%) 

GJR-DCC 936 16 (4.76%) (9.98%) (45.54%) (58.60%) (10.64%) (38.29%) 

ADCC 936 12 (40.60%) (9.98%) (57.64%) (13.53%) (60.57%) (15.43%) 

GJR-ADCC 936 16 (4.76%) (9.98%) (45.54%) (58.60%) (10.64%) (38.29%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.8 – Backtesting Results for Portfolio S4 1% One-day VaR - Germany 
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 14 (0.00%) (79.19%) (19.77%) (0.00%) (0.00%) (0.00%) 

MA 261 26 (0.00%) (18.75%) (13.13%) (0.00%) (0.00%) (0.00%) 

EWMA 261 6 (7.13%) (18.75%) (59.44%) (12.70%) (17.06%) (6.74%) 

RiskMetrics 

2006 

261 2 (69.23%) (92.56%) (86.02%) (9.16%) (91.04%) (17.64%) 

GARCH 261 7 (2.38%) (18.75%) (53.37%) (9.67%) (6.41%) (2.78%) 

GJR-GARCH 261 27 (0.00%) (18.75%) (44.74%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 6 (7.13%) (18.75%) (59.44%) (12.70%) (17.06%) (6.74%) 

DCC 261 7 (2.38%) (18.75%) (53.37%) (9.67%) (6.41%) (2.78%) 

GJR-DCC 261 10 (0.05%) (60.50%) (37.10%) (2.00%) (0.14%) (0.04%) 

ADCC 261 7 (2.38%) (18.75%) (53.37%) (9.67%) (6.41%) (2.78%) 

GJR-ADCC 261 10 (0.05%) (60.50%) (37.10%) (2.00%) (0.14%) (0.04%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 2 (0.34%) (1.35%) (92.62%) (2.47%) (1.35%) (0.11%) 

EWMA 936 18 (1.18%) (93.76%) (35.31%) (0.24%) (2.73%) (0.05%) 

RiskMetrics 

2006 
936 1 (0.04%) (1.48%) (96.31%) (1.48%) (0.21%) (0.01%) 

GARCH 936 12 (40.60%) (9.98%) (14.04%) (2.65%) (23.87%) (3.26%) 

GJR-GARCH 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

FI-GARCH 936 11 (60.01%) (9.98%) (11.44%) (5.32%) (25.07%) (7.21%) 

DCC 936 12 (40.60%) (9.98%) (14.04%) (2.65%) (23.87%) (3.26%) 

GJR-DCC 936 14 (15.56%) (9.98%) (51.41%) (69.32%) (29.49%) (60.81%) 

ADCC 936 12 (40.60%) (9.98%) (14.04%) (2.65%) (23.87%) (3.26%) 

GJR-ADCC 936 14 (15.56%) (9.98%) (51.41%) (69.32%) (29.49%) (60.81%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.9 – Backtesting Results for Portfolio S5 1% One-day VaR - United Kingdom  
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 17 (0.00%) (18.75%) (1.77%) (0.00%) (0.00%) (0.00%) 

MA 261 33 (0.00%) (0.24%) (60.41%) (0.00%) (0.00%) (0.00%) 

EWMA 261 5 (18.68%) (3.84%) (65.79%) (1.74%) (37.92%) (1.68%) 

RiskMetrics 

2006 
261 1 (25.22%) (95.92%) (93.00%) (95.92%) (51.71%) (51.84%) 

GARCH 261 8 (0.71%) (0.24%) (50.54%) (0.15%) (2.13%) (0.02%) 

GJR-GARCH 261 39 (0.00%) (0.24%) (0.68%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 6 (7.13%) (18.75%) (59.44%) (4.85%) (17.06%) (2.58%) 

DCC 261 8 (0.71%) (0.24%) (50.54%) (0.15%) (2.13%) (0.02%) 

GJR-DCC 261 8 (0.71%) (72.52%) (47.60%) (5.60%) (2.06%) (0.76%) 

ADCC 261 8 (0.71%) (0.24%) (50.54%) (0.15%) (2.13%) (0.02%) 

GJR-ADCC 261 8 (0.71%) (72.52%) (47.60%) (5.60%) (2.06%) (0.76%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 6 (23.74%) (51.74%) (78.07%) (26.10%) (47.87%) (24.60%) 

MA 936 12 (40.60%) (51.74%) (57.64%) (0.38%) (60.57%) (0.50%) 

EWMA 936 15 (8.84%) (59.47%) (48.43%) (0.44%) (18.34%) (0.28%) 

RiskMetrics 

2006 
936 5 (11.60%) (51.74%) (81.66%) (13.84%) (28.31%) (9.44%) 

GARCH 936 10 (83.53%) (59.47%) (64.19%) (39.77%) (87.83%) (48.22%) 

GJR-GARCH 936 6 (23.74%) (51.74%) (78.07%) (26.10%) (47.87%) (24.60%) 

FI-GARCH 936 10 (83.53%) (59.47%) (64.19%) (54.58%) (87.83%) (63.11%) 

DCC 936 10 (83.53%) (59.47%) (64.19%) (39.77%) (87.83%) (48.22%) 

GJR-DCC 936 15 (8.84%) (59.47%) (48.43%) (28.75%) (18.34%) (20.09%) 

ADCC 936 10 (83.53%) (59.47%) (64.19%) (39.77%) (87.83%) (48.22%) 

GJR-ADCC 936 15 (8.84%) (59.47%) (48.43%) (28.75%) (18.34%) (20.09%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.10 – Backtesting Results for Portfolio S6 1% One-day VaR - Spain  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 20 (0.00%) (3.84%) (24.86%) (0.00%) (0.00%) (0.00%) 

MA 261 35 (0.00%) (3.84%) (33.76%) (0.00%) (0.00%) (0.00%) 

EWMA 261 8 (0.71%) (3.84%) (47.60%) (0.26%) (2.06%) (0.03%) 

RiskMetrics 

2006 
261 4 (42.26%) (3.84%) (72.37%) (4.56%) (68.11%) (6.58%) 

GARCH 261 9 (0.19%) (3.84%) (42.17%) (0.21%) (0.58%) (0.01%) 

GJR-GARCH 261 33 (0.00%) (3.84%) (48.91%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 8 (0.71%) (3.84%) (47.60%) (0.26%) (2.06%) (0.03%) 

DCC 261 9 (0.19%) (3.84%) (42.17%) (0.21%) (0.58%) (0.01%) 

GJR-DCC 261 8 (0.71%) (3.84%) (47.60%) (6.50%) (2.06%) (0.90%) 

ADCC 261 9 (0.19%) (3.84%) (42.17%) (0.21%) (0.58%) (0.01%) 

GJR-ADCC 261 8 (0.71%) (3.84%) (47.60%) (6.50%) (2.06%) (0.90%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

MA 936 5 (11.60%) (26.84%) (81.66%) (0.12%) (28.31%) (0.10%) 

EWMA 936 24 (0.01%) (90.85%) (64.38%) (0.00%) (0.03%) (0.00%) 

RiskMetrics 

2006 
936 5 (11.60%) (29.33%) (81.66%) (3.81%) (28.31%) (2.71%) 

GARCH 936 20 (0.24%) (90.85%) (34.97%) (0.73%) (0.64%) (0.07%) 

GJR-GARCH 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

FI-GARCH 936 21 (0.10%) (90.85%) (49.11%) (0.40%) (0.36%) (0.02%) 

DCC 936 20 (0.24%) (90.85%) (34.97%) (0.73%) (0.64%) (0.07%) 

GJR-DCC 936 23 (0.02%) (9.98%) (28.14%) (4.29%) (0.04%) (0.14%) 

ADCC 936 20 (0.24%) (90.85%) (34.97%) (0.73%) (0.64%) (0.07%) 

GJR-ADCC 936 23 (0.02%) (9.98%) (28.14%) (4.29%) (0.04%) (0.14%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.11 – Backtesting Results for Portfolio S7 1% One-day VaR - United States  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 22 (0.00%) (23.25%) (12.66%) (0.00%) (0.00%) (0.00%) 

MA 261 37 (0.00%) (13.22%) (89.21%) (0.00%) (0.00%) (0.00%) 

EWMA 261 10 (0.05%) (23.25%) (37.10%) (0.24%) (0.14%) (0.00%) 

RiskMetrics 

2006 
261 3 (81.27%) (23.25%) (79.13%) (29.67%) (93.88%) (44.12%) 

GARCH 261 11 (0.01%) (23.25%) (32.41%) (0.13%) (0.03%) (0.00%) 

GJR-GARCH 261 38 (0.00%) (23.25%) (78.06%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 10 (0.05%) (23.25%) (37.10%) (0.24%) (0.14%) (0.00%) 

DCC 261 11 (0.01%) (23.25%) (32.41%) (0.13%) (0.03%) (0.00%) 

GJR-DCC 261 13 (0.00%) (13.22%) (24.20%) (0.13%) (0.00%) (0.00%) 

ADCC 261 11 (0.01%) (23.25%) (32.41%) (0.13%) (0.03%) (0.00%) 

GJR-ADCC 261 13 (0.00%) (13.22%) (24.20%) (0.13%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 2 (0.34%) (15.42%) (92.62%) (2.09%) (1.35%) (0.10%) 

EWMA 936 19 (0.54%) (15.42%) (37.46%) (11.94%) (1.42%) (2.53%) 

RiskMetrics 

2006 
936 3 (1.48%) (1.48%) (88.95%) (0.40%) (5.09%) (0.07%) 

GARCH 936 14 (15.56%) (15.42%) (51.41%) (24.40%) (29.49%) (20.26%) 

GJR-GARCH 936 1 (0.04%) (15.42%) (96.31%) (15.42%) (0.21%) (0.08%) 

FI-GARCH 936 15 (8.84%) (15.42%) (48.43%) (28.29%) (18.34%) (19.74%) 

DCC 936 14 (15.56%) (15.42%) (51.41%) (24.40%) (29.49%) (20.26%) 

GJR-DCC 936 14 (15.56%) (15.42%) (51.41%) (11.56%) (29.49%) (9.53%) 

ADCC 936 14 (15.56%) (15.42%) (51.41%) (24.40%) (29.49%) (20.26%) 

GJR-ADCC 936 14 (15.56%) (15.42%) (51.41%) (11.56%) (29.49%) (9.53%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.12 – Backtesting Results for Portfolio S8 1% One-day VaR - Canada  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 13 (0.00%) (72.52%) (14.63%) (0.00%) (0.00%) (0.00%) 

MA 261 19 (0.00%) (23.25%) (59.58%) (0.00%) (0.00%) (0.00%) 

EWMA 261 6 (7.13%) (72.52%) (59.44%) (0.26%) (17.06%) (0.15%) 

RiskMetrics 

2006 
261 1 (25.22%) (79.19%) (93.00%) (79.19%) (51.71%) (50.13%) 

GARCH 261 7 (2.38%) (72.52%) (53.37%) (0.16%) (6.41%) (0.04%) 

GJR-GARCH 261 18 (0.00%) (75.41%) (10.16%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 5 (18.68%) (72.52%) (65.79%) (2.14%) (37.92%) (2.05%) 

DCC 261 7 (2.38%) (72.52%) (53.37%) (0.16%) (6.41%) (0.04%) 

GJR-DCC 261 7 (2.38%) (72.52%) (53.37%) (5.75%) (6.41%) (1.61%) 

ADCC 261 7 (2.38%) (72.52%) (53.37%) (0.16%) (6.41%) (0.04%) 

GJR-ADCC 261 7 (2.38%) (72.52%) (53.37%) (5.75%) (6.41%) (1.61%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Observations 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

MA 936 2 (0.34%) (1.48%) (92.62%) (0.20%) (1.35%) (0.01%) 

EWMA 936 18 (1.18%) (98.41%) (4.48%) (0.03%) (0.56%) (0.01%) 

RiskMetrics 

2006 
936 4 (4.69%) (51.74%) (85.29%) (5.21%) (13.64%) (2.04%) 

GARCH 936 11 (60.01%) (93.76%) (60.88%) (24.31%) (76.46%) (29.46%) 

GJR-GARCH 936 4 (4.69%) (51.74%) (85.29%) (2.81%) (13.64%) (1.12%) 

FI-GARCH 936 10 (83.53%) (93.76%) (64.19%) (18.73%) (87.83%) (24.77%) 

DCC 936 11 (60.01%) (93.76%) (60.88%) (24.31%) (76.46%) (29.46%) 

GJR-DCC 936 13 (25.88%) (1.98%) (54.49%) (8.07%) (44.00%) (8.07%) 

ADCC 936 11 (60.01%) (93.76%) (60.88%) (24.31%) (76.46%) (29.46%) 

GJR-ADCC 936 13 (25.88%) (1.98%) (54.49%) (8.07%) (44.00%) (8.07%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.13 – Backtesting Results for Portfolio S9 1% One-day VaR - Brazil 
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 17 (0.00%) (72.52%) (0.22%) (0.00%) (0.00%) (0.00%) 

MA 261 31 (0.00%) (14.31%) (2.17%) (0.00%) (0.00%) (0.00%) 

EWMA 261 9 (0.19%) (14.31%) (42.17%) (0.09%) (0.58%) (0.00%) 

RiskMetrics2006 261 2 (69.23%) (88.24%) (86.02%) (11.60%) (91.04%) (21.54%) 

GARCH 261 8 (0.71%) (14.31%) (47.60%) (0.56%) (2.06%) (0.07%) 

GJR-GARCH 261 29 (0.00%) (72.52%) (3.38%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 8 (0.71%) (14.31%) (47.60%) (0.56%) (2.06%) (0.07%) 

DCC 261 8 (0.71%) (72.52%) (47.60%) (0.13%) (2.06%) (0.01%) 

GJR-DCC 261 10 (0.05%) (56.33%) (37.10%) (3.07%) (0.14%) (0.07%) 

ADCC 261 8 (0.71%) (72.52%) (47.60%) (0.13%) (2.06%) (0.01%) 

GJR-ADCC  261 9 (0.19%) (56.33%) (42.17%) (8.32%) (0.58%) (0.54%) 

Multi-MA 261 32 (0.00%) (14.31%) (0.90%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 9 (0.19%) (14.31%) (42.17%) (0.09%) (0.58%) (0.00%) 

Multi-RiskMetrics 

2006 
261 7 (2.38%) (14.31%) (53.37%) (0.29%) (6.41%) (0.08%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

MA 936 6 (23.74%) (3.84%) (78.07%) (0.90%) (47.87%) (1.00%) 

EWMA 936 23 (0.02%) (24.37%) (12.35%) (0.01%) (0.02%) (0.00%) 

RiskMetrics2006 936 3 (1.48%) (3.88%) (0.45%) (0.37%) (0.09%) (0.06%) 

GARCH 936 18 (1.18%) (9.98%) (4.48%) (0.31%) (0.56%) (0.07%) 

GJR-GARCH 936 22 (0.04%) (9.98%) (1.29%) (0.00%) (0.01%) (0.00%) 

FI-GARCH 936 14 (15.56%) (9.98%) (20.07%) (0.24%) (16.09%) (0.21%) 

DCC 936 14 (15.56%) (9.98%) (20.07%) (2.83%) (16.09%) (2.34%) 

GJR-DCC 936 19 (0.54%) (9.98%) (39.72%) (5.93%) (1.47%) (1.12%) 

ADCC 936 14 (15.56%) (9.98%) (20.07%) (2.83%) (16.09%) (2.34%) 

GJR-ADCC  936 19 (0.54%) (9.98%) (39.72%) (5.93%) (1.47%) (1.12%) 

Multi-MA 936 6 (23.74%) (3.84%) (78.07%) (0.90%) (47.87%) (1.00%) 

Multi-EWMA 936 23 (0.02%) (24.37%) (12.35%) (0.01%) (0.02%) (0.00%) 

Multi-RiskMetrics 

2006 
936 15 (8.84%) (29.33%) (2.02%) (0.03%) (1.58%) (0.02%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.14 – Backtesting Results for Multiple-asset Portfolio M1 

 (Japan, Germany, United States) 1% One-day VaR  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 20 (0.00%) (33.39%) (6.38%) (0.00%) (0.00%) (0.00%) 

MA 261 30 (0.00%) (13.22%) (0.06%) (0.00%) (0.00%) (0.00%) 

EWMA 261 8 (0.71%) (13.22%) (47.60%) (0.73%) (2.06%) (0.09%) 

RiskMetrics2006 261 4 (42.26%) (33.39%) (72.37%) (20.34%) (68.11%) (25.32%) 

GARCH 261 10 (0.05%) (13.22%) (37.10%) (0.48%) (0.14%) (0.01%) 

GJR-GARCH 261 27 (0.00%) (33.39%) (0.01%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 6 (7.13%) (13.22%) (59.44%) (11.35%) (17.06%) (6.02%) 

DCC 261 7 (2.38%) (33.39%) (53.37%) (4.17%) (6.41%) (1.16%) 

GJR-DCC 261 10 (0.05%) (33.39%) (37.10%) (0.98%) (0.14%) (0.02%) 

ADCC 261 7 (2.38%) (33.39%) (53.37%) (4.17%) (6.41%) (1.16%) 

GJR-ADCC  261 10 (0.05%) (33.39%) (37.10%) (0.98%) (0.14%) (0.02%) 

Multi-MA 261 30 (0.00%) (13.22%) (0.06%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 8 (0.71%) (13.22%) (47.60%) (0.73%) (2.06%) (0.09%) 

Multi-RiskMetrics 

2006 
261 7 (2.38%) (33.39%) (53.37%) (4.17%) (6.41%) (1.16%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 4 (4.69%) (3.84%) (85.29%) (6.35%) (13.64%) (2.48%) 

EWMA 936 20 (0.24%) (59.47%) (0.71%) (0.02%) (0.03%) (0.00%) 

RiskMetrics2006 936 4 (4.69%) (15.81%) (85.29%) (55.40%) (13.64%) (22.27%) 

GARCH 936 14 (15.56%) (59.47%) (51.41%) (22.99%) (29.49%) (19.07%) 

GJR-GARCH 936 10 (83.53%) (15.42%) (0.32%) (0.19%) (1.26%) (0.34%) 

FI-GARCH 936 16 (4.76%) (59.47%) (2.69%) (0.69%) (1.21%) (0.32%) 

DCC 936 15 (8.84%) (59.47%) (23.50%) (3.11%) (11.57%) (2.01%) 

GJR-DCC 936 13 (25.88%) (9.98%) (54.49%) (57.94%) (44.00%) (55.42%) 

ADCC 936 15 (8.84%) (59.47%) (23.50%) (3.11%) (11.57%) (2.01%) 

GJR-ADCC  936 12 (40.60%) (59.47%) (57.64%) (74.95%) (60.57%) (76.26%) 

Multi-MA 936 4 (4.69%) (3.84%) (85.29%) (6.35%) (13.64%) (2.48%) 

Multi-EWMA 936 20 (0.24%) (59.47%) (0.71%) (0.02%) (0.03%) (0.00%) 

Multi-RiskMetrics 

2006 
936 13 (25.88%) (59.47%) (0.04%) (0.01%) (0.10%) (0.01%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.15 – Backtesting Results for Multiple-asset Portfolio M2 

 (Japan, United Kingdom, Canada) 1% One-day VaR  
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(a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 16 (0.00%) (47.78%) (1.06%) (0.00%) (0.00%) (0.00%) 

MA 261 25 (0.00%) (14.31%) (9.52%) (0.00%) (0.00%) (0.00%) 

EWMA 261 6 (7.13%) (47.78%) (59.44%) (2.05%) (17.06%) (1.10%) 

RiskMetrics2006 261 2 (69.23%) (72.52%) (86.02%) (15.62%) (91.04%) (27.59%) 

GARCH 261 7 (2.38%) (47.78%) (53.37%) (1.18%) (6.41%) (0.32%) 

GJR-GARCH 261 33 (0.00%) (47.78%) (1.46%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 6 (7.13%) (47.78%) (59.44%) (2.05%) (17.06%) (1.10%) 

DCC 261 8 (0.71%) (47.78%) (47.60%) (2.22%) (2.06%) (0.28%) 

GJR-DCC 261 9 (0.19%) (47.78%) (42.17%) (5.72%) (0.58%) (0.35%) 

ADCC 261 8 (0.71%) (47.78%) (47.60%) (2.22%) (2.06%) (0.28%) 

GJR-ADCC  261 9 (0.19%) (47.78%) (42.17%) (5.72%) (0.58%) (0.35%) 

Multi-MA 261 21 (0.00%) (47.78%) (9.12%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 6 (7.13%) (47.78%) (59.44%) (2.05%) (17.06%) (1.10%) 

Multi-RiskMetrics 

2006 
261 7 (2.38%) (47.78%) (53.37%) (1.81%) (6.41%) (0.49%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

MA 936 4 (4.69%) (51.74%) (85.29%) (2.81%) (13.64%) (1.12%) 

EWMA 936 22 (0.04%) (59.47%) (54.07%) (0.30%) (0.16%) (0.01%) 

RiskMetrics2006 936 5 (11.60%) (51.74%) (81.66%) (6.78%) (28.31%) (4.72%) 

GARCH 936 15 (8.84%) (59.47%) (48.43%) (7.41%) (18.34%) (4.86%) 

GJR-GARCH 936 23 (0.02%) (1.98%) (59.16%) (0.00%) (0.07%) (0.00%) 

FI-GARCH 936 15 (8.84%) (59.47%) (23.50%) (0.67%) (11.57%) (0.43%) 

DCC 936 13 (25.88%) (59.47%) (54.49%) (13.05%) (44.00%) (12.88%) 

GJR-DCC 936 13 (25.88%) (59.47%) (54.49%) (8.91%) (44.00%) (8.89%) 

ADCC 936 13 (25.88%) (59.47%) (54.49%) (13.05%) (44.00%) (12.88%) 

GJR-ADCC  936 13 (25.88%) (59.47%) (54.49%) (8.91%) (44.00%) (8.89%) 

Multi-MA 936 4 (4.69%) (51.74%) (85.29%) (2.81%) (13.64%) (1.12%) 

Multi-EWMA 936 22 (0.04%) (59.47%) (54.07%) (0.30%) (0.16%) (0.01%) 

Multi-RiskMetrics 

2006 
936 11 (60.01%) (93.76%) (60.88%) (15.06%) (76.46%) (19.00%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.16 – Backtesting Results for Multiple-asset Portfolio M3 

 (Japan, Spain, Brazil) 1% One-day VaR  
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 11 (7.17%) (0.00%) (0.01%) (0.00%) (0.01%) (5.82%) 

MA 261 21 (31.69%) (0.00%) (0.00%) (0.00%) (0.00%) (5.82%) 

EWMA 261 4 (72.37%) (30.68%) (68.11%) (36.26%) (42.26%) (5.82%) 

RiskMetrics2006 261 2 (86.02%) (16.38%) (91.04%) (28.68%) (69.23%) (5.82%) 

GARCH 261 3 (79.13%) (30.55%) (93.88%) (45.16%) (81.27%) (5.82%) 

GJR-GARCH 261 15 (25.89%) (0.00%) (0.00%) (0.00%) (0.00%) (5.82%) 

FI-GARCH 261 3 (79.13%) (18.60%) (93.88%) (30.10%) (81.27%) (5.82%) 

DCC 261 3 (79.13%) (30.55%) (93.88%) (45.16%) (81.27%) (5.82%) 

GJR-DCC 261 3 (79.13%) (30.55%) (93.88%) (45.16%) (81.27%) (5.82%) 

ADCC 261 3 (79.13%) (30.55%) (93.88%) (45.16%) (81.27%) (5.82%) 

GJR-ADCC  261 3 (79.13%) (30.55%) (93.88%) (45.16%) (81.27%) (5.82%) 

Multi-MA 261 22 (39.50%) (0.00%) (0.00%) (0.00%) (0.00%) (5.82%) 

Multi-EWMA 261 4 (72.37%) (30.68%) (68.11%) (36.26%) (42.26%) (5.82%) 

Multi-RiskMetrics 

2006 
261 3 (79.13%) (18.60%) (93.88%) (30.10%) (81.27%) (5.82%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 2 (0.34%) (59.47%) (92.62%) (6.93%) (1.35%) (0.30%) 

MA 936 6 (23.74%) (59.47%) (78.07%) (11.46%) (47.87%) (11.29%) 

EWMA 936 26 (0.00%) (59.47%) (75.08%) (0.00%) (0.00%) (0.00%) 

RiskMetrics2006 936 4 (4.69%) (59.47%) (85.29%) (65.07%) (13.64%) (26.78%) 

GARCH 936 16 (4.76%) (59.47%) (45.54%) (8.23%) (10.64%) (4.19%) 

GJR-GARCH 936 7 (41.71%) (59.47%) (74.52%) (15.82%) (68.25%) (18.87%) 

FI-GARCH 936 16 (4.76%) (59.47%) (45.54%) (4.37%) (10.64%) (2.16%) 

DCC 936 18 (1.18%) (59.47%) (40.05%) (7.51%) (2.95%) (2.07%) 

GJR-DCC 936 16 (4.76%) (59.47%) (45.54%) (12.67%) (10.64%) (6.65%) 

ADCC 936 16 (4.76%) (59.47%) (45.54%) (18.96%) (10.64%) (10.30%) 

GJR-ADCC  936 15 (8.84%) (59.47%) (48.43%) (9.45%) (18.34%) (6.25%) 

Multi-MA 936 6 (23.74%) (59.47%) (78.07%) (11.46%) (47.87%) (11.29%) 

Multi-EWMA 936 26 (0.00%) (59.47%) (75.08%) (0.00%) (0.00%) (0.00%) 

Multi-RiskMetrics 

2006 
936 19 (0.54%) (59.47%) (37.46%) (1.93%) (1.42%) (0.32%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.17 – Backtesting Results for Multiple-asset Portfolio M4  

(China, Germany, United States) 1% One-day VaR 
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 14 (0.00%) (5.82%) (20.67%) (0.00%) (0.00%) (0.00%) 

MA 261 21 (0.00%) (5.82%) (9.12%) (0.00%) (0.00%) (0.00%) 

EWMA 261 5 (18.68%) (5.82%) (65.79%) (9.96%) (37.92%) (8.87%) 

RiskMetrics2006 261 2 (69.23%) (5.82%) (86.02%) (16.38%) (91.04%) (28.68%) 

GARCH 261 6 (7.13%) (5.82%) (59.44%) (2.94%) (17.06%) (1.57%) 

GJR-GARCH 261 19 (0.00%) (5.82%) (59.58%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 6 (7.13%) (5.82%) (11.38%) (0.17%) (5.63%) (0.09%) 

DCC 261 6 (7.13%) (5.82%) (11.38%) (0.17%) (5.63%) (0.09%) 

GJR-DCC 261 4 (42.26%) (5.82%) (72.37%) (12.36%) (68.11%) (16.26%) 

ADCC 261 6 (7.13%) (5.82%) (11.38%) (0.17%) (5.63%) (0.09%) 

GJR-ADCC  261 4 (42.26%) (5.82%) (72.37%) (12.36%) (68.11%) (16.26%) 

Multi-MA 261 22 (0.00%) (5.82%) (12.66%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 5 (18.68%) (5.82%) (65.79%) (9.96%) (37.92%) (8.87%) 

Multi-RiskMetrics 

2006 
261 5 (18.68%) (5.82%) (65.79%) (1.55%) (37.92%) (1.51%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 6 (23.74%) (59.47%) (78.07%) (40.86%) (47.87%) (37.61%) 

EWMA 936 26 (0.00%) (45.60%) (3.57%) (0.00%) (0.00%) (0.00%) 

RiskMetrics2006 936 6 (23.74%) (59.47%) (78.07%) (17.13%) (47.87%) (16.52%) 

GARCH 936 19 (0.54%) (45.60%) (5.63%) (0.22%) (0.34%) (0.03%) 

GJR-GARCH 936 8 (64.68%) (45.60%) (71.02%) (12.90%) (84.03%) (17.47%) 

FI-GARCH 936 17 (2.43%) (45.60%) (3.50%) (2.74%) (0.86%) (0.97%) 

DCC 936 19 (0.54%) (45.60%) (37.46%) (2.09%) (1.42%) (0.35%) 

GJR-DCC 936 15 (8.84%) (45.60%) (48.43%) (2.70%) (18.34%) (1.74%) 

ADCC 936 19 (0.54%) (45.60%) (37.46%) (2.09%) (1.42%) (0.35%) 

GJR-ADCC  936 15 (8.84%) (45.60%) (48.43%) (2.70%) (18.34%) (1.74%) 

Multi-MA 936 6 (23.74%) (59.47%) (78.07%) (11.46%) (47.87%) (11.29%) 

Multi-EWMA 936 26 (0.00%) (45.60%) (3.57%) (0.00%) (0.00%) (0.00%) 

Multi-RiskMetrics 

2006 
936 21 (0.10%) (45.60%) (8.55%) (0.06%) (0.10%) (0.00%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.18 – Backtesting Results for Multiple-asset Portfolio M5  

(China, United Kingdom, Canada) 1% One-day VaR
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 13 (0.00%) (5.82%) (66.96%) (0.00%) (0.00%) (0.00%) 

MA 261 23 (0.00%) (5.82%) (48.23%) (0.00%) (0.00%) (0.00%) 

EWMA 261 3 (81.27%) (5.82%) (79.13%) (1.72%) (93.88%) (3.68%) 

RiskMetrics2006 261 1 (25.22%) (79.19%) (93.00%) (79.19%) (51.71%) (50.13%) 

GARCH 261 4 (42.26%) (5.82%) (72.37%) (3.75%) (68.11%) (5.50%) 

GJR-GARCH 261 30 (0.00%) (5.82%) (37.29%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 4 (42.26%) (5.82%) (72.37%) (0.78%) (68.11%) (1.28%) 

DCC 261 6 (7.13%) (5.82%) (59.44%) (1.70%) (17.06%) (0.92%) 

GJR-DCC 261 5 (18.68%) (5.82%) (65.79%) (12.81%) (37.92%) (11.26%) 

ADCC 261 6 (7.13%) (5.82%) (59.44%) (1.70%) (17.06%) (0.92%) 

GJR-ADCC  261 5 (18.68%) (5.82%) (65.79%) (12.81%) (37.92%) (11.26%) 

Multi-MA 261 22 (0.00%) (5.82%) (39.50%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 4 (42.26%) (5.82%) (72.37%) (3.75%) (68.11%) (5.50%) 

Multi-RiskMetrics 

2006 
261 3 (81.27%) (5.82%) (79.13%) (1.72%) (93.88%) (3.68%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 1 (0.04%) (1.45%) (96.31%) (1.45%) (0.21%) (0.01%) 

MA 936 6 (23.74%) (59.47%) (78.07%) (15.62%) (47.87%) (15.14%) 

EWMA 936 22 (0.04%) (59.47%) (10.33%) (0.00%) (0.05%) (0.00%) 

RiskMetrics2006 936 6 (23.74%) (51.74%) (78.07%) (11.77%) (47.87%) (11.58%) 

GARCH 936 15 (8.84%) (59.47%) (48.43%) (12.97%) (18.34%) (8.67%) 

GJR-GARCH 936 17 (2.43%) (59.47%) (42.75%) (0.08%) (5.78%) (0.02%) 

FI-GARCH 936 15 (8.84%) (59.47%) (48.43%) (5.94%) (18.34%) (3.88%) 

DCC 936 15 (8.84%) (59.47%) (48.43%) (12.97%) (18.34%) (8.67%) 

GJR-DCC 936 16 (4.76%) (45.60%) (45.54%) (9.17%) (10.64%) (4.70%) 

ADCC 936 15 (8.84%) (59.47%) (48.43%) (12.97%) (18.34%) (8.67%) 

GJR-ADCC  936 16 (4.76%) (45.60%) (45.54%) (9.17%) (10.64%) (4.70%) 

Multi-MA 936 6 (23.74%) (59.47%) (78.07%) (15.62%) (47.87%) (15.14%) 

Multi-EWMA 936 22 (0.04%) (59.47%) (10.33%) (0.00%) (0.05%) (0.00%) 

Multi-RiskMetrics 

2006 
936 15 (8.84%) (59.47%) (48.43%) (3.02%) (18.34%) (1.94%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.19 – Backtesting Results for Multiple-asset Portfolio M6 

(China, Spain, Brazil) 1% One-day VaR 
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 12 (0.00%) (33.39%) (10.46%) (0.00%) (0.00%) (0.00%) 

MA 261 28 (0.00%) (5.82%) (23.16%) (0.00%) (0.00%) (0.00%) 

EWMA 261 8 (0.71%) (5.82%) (47.60%) (0.50%) (2.06%) (0.06%) 

RiskMetrics2006 261 1 (25.22%) (92.56%) (93.00%) (92.56%) (51.71%) (51.68%) 

GARCH 261 9 (0.19%) (5.82%) (42.17%) (1.65%) (0.58%) (0.09%) 

GJR-GARCH 261 23 (0.00%) (81.04%) (48.23%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 9 (0.19%) (5.82%) (42.17%) (0.29%) (0.58%) (0.01%) 

DCC 261 8 (0.71%) (5.82%) (47.60%) (0.80%) (2.06%) (0.10%) 

GJR-DCC 261 6 (7.13%) (72.52%) (59.44%) (19.58%) (17.06%) (10.46%) 

ADCC 261 8 (0.71%) (5.82%) (47.60%) (0.80%) (2.06%) (0.10%) 

GJR-ADCC  261 5 (18.68%) (72.52%) (65.79%) (19.18%) (37.92%) (16.51%) 

Multi-MA 261 28 (0.00%) (5.82%) (23.16%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 8 (0.71%) (5.82%) (47.60%) (0.50%) (2.06%) (0.06%) 

Multi-RiskMetrics 

2006 
261 5 (18.68%) (33.39%) (65.79%) (1.36%) (37.92%) (1.33%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 3 (1.48%) (1.45%) (88.95%) (1.41%) (5.09%) (0.24%) 

EWMA 936 22 (0.04%) (59.47%) (1.29%) (0.00%) (0.01%) (0.00%) 

RiskMetrics2006 936 3 (1.48%) (3.84%) (88.95%) (15.91%) (5.09%) (2.53%) 

GARCH 936 15 (8.84%) (59.47%) (48.43%) (19.67%) (18.34%) (13.40%) 

GJR-GARCH 936 10 (83.53%) (9.98%) (64.19%) (5.47%) (87.83%) (8.02%) 

FI-GARCH 936 14 (15.56%) (59.47%) (51.41%) (33.33%) (29.49%) (27.90%) 

DCC 936 12 (40.60%) (51.74%) (57.64%) (20.12%) (60.57%) (22.43%) 

GJR-DCC 936 10 (83.53%) (9.98%) (64.19%) (57.55%) (87.83%) (65.96%) 

ADCC 936 11 (60.01%) (51.74%) (60.88%) (26.30%) (76.46%) (31.65%) 

GJR-ADCC 936 10 (83.53%) (9.98%) (64.19%) (57.55%) (87.83%) (65.96%) 

Multi-MA 936 3 (1.48%) (1.45%) (88.95%) (1.41%) (5.09%) (0.24%) 

Multi-EWMA 936 22 (0.04%) (59.47%) (1.29%) (0.00%) (0.01%) (0.00%) 

Multi-RiskMetrics 

2006 
936 13 (25.88%) (51.74%) (54.49%) (20.76%) (44.00%) (20.25%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.20 – Backtesting Results for Multiple-asset Portfolio M7 

(Hong Kong, Germany, United States) 1% One-day VaR 
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 17 (0.00%) (5.82%) (1.77%) (0.00%) (0.00%) (0.00%) 

MA 261 30 (0.00%) (5.82%) (5.03%) (0.00%) (0.00%) (0.00%) 

EWMA 261 7 (2.38%) (5.82%) (53.37%) (1.42%) (6.41%) (0.38%) 

RiskMetrics2006 261 2 (69.23%) (33.39%) (86.02%) (57.13%) (91.04%) (73.47%) 

GARCH 261 6 (7.13%) (5.82%) (59.44%) (4.31%) (17.06%) (2.29%) 

GJR-GARCH 261 28 (0.00%) (33.39%) (2.20%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 7 (2.38%) (5.82%) (53.37%) (1.52%) (6.41%) (0.41%) 

DCC 261 7 (2.38%) (5.82%) (53.37%) (1.52%) (6.41%) (0.41%) 

GJR-DCC 261 9 (0.19%) (5.82%) (42.17%) (1.64%) (0.58%) (0.09%) 

ADCC 261 7 (2.38%) (5.82%) (53.37%) (1.52%) (6.41%) (0.41%) 

GJR-ADCC 261 8 (0.71%) (5.82%) (47.60%) (5.10%) (2.06%) (0.69%) 

Multi-MA 261 32 (0.00%) (5.82%) (3.32%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 7 (2.38%) (5.82%) (53.37%) (1.42%) (6.41%) (0.38%) 

Multi-RiskMetrics 

2006 
261 6 (7.13%) (5.82%) (59.44%) (2.69%) (17.06%) (1.44%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 936 0 (0.00%) (0.04%) (100.00%) NA (0.01%) NA 

MA 936 1 (0.04%) (1.06%) (96.31%) (1.06%) (0.21%) (0.01%) 

EWMA 936 20 (0.24%) (59.47%) (6.98%) (2.85%) (0.19%) (0.33%) 

RiskMetrics2006 936 3 (1.48%) (20.90%) (88.95%) (25.23%) (5.09%) (4.01%) 

GARCH 936 12 (40.60%) (59.47%) (14.04%) (35.09%) (23.87%) (37.78%) 

GJR-GARCH 936 8 (64.68%) (59.47%) (5.35%) (0.21%) (13.95%) (0.37%) 

FI-GARCH 936 14 (15.56%) (59.47%) (1.49%) (3.00%) (1.88%) (2.48%) 

DCC 936 13 (25.88%) (59.47%) (1.06%) (1.41%) (2.03%) (1.48%) 

GJR-DCC 936 13 (25.88%) (59.47%) (16.91%) (7.80%) (20.54%) (7.81%) 

ADCC 936 12 (40.60%) (59.47%) (0.74%) (1.13%) (1.96%) (1.44%) 

GJR-ADCC  936 12 (40.60%) (59.47%) (57.64%) (48.23%) (60.57%) (50.79%) 

Multi-MA 936 1 (0.04%) (1.06%) (96.31%) (1.06%) (0.21%) (0.01%) 

Multi-EWMA 936 20 (0.24%) (59.47%) (6.98%) (2.85%) (0.19%) (0.33%) 

Multi-RiskMetrics 

2006 
936 8 (64.68%) (20.90%) (0.11%) (0.09%) (0.43%) (0.17%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.21 – Backtesting Results for Multiple-asset Portfolio M8 

(Hong Kong, United Kingdom, Canada) 1% One-day VaR 
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 (a) Sub-prime Mortgage Crisis Period of 01 Jun 2008 to 01 Jun 2009 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 261 15 (0.00%) (72.52%) (88.05%) (0.00%) (0.00%) (0.00%) 

MA 261 25 (0.00%) (5.82%) (28.90%) (0.00%) (0.00%) (0.00%) 

EWMA 261 6 (7.13%) (72.52%) (59.44%) (0.26%) (17.06%) (0.15%) 

RiskMetrics2006 261 1 (25.22%) (79.19%) (93.00%) (79.19%) (51.71%) (50.13%) 

GARCH 261 7 (2.38%) (72.52%) (53.37%) (0.16%) (6.41%) (0.04%) 

GJR-GARCH 261 32 (0.00%) (5.82%) (97.18%) (0.00%) (0.00%) (0.00%) 

FI-GARCH 261 5 (18.68%) (72.52%) (65.79%) (1.91%) (37.92%) (1.84%) 

DCC 261 6 (7.13%) (72.52%) (59.44%) (1.09%) (17.06%) (0.59%) 

GJR-DCC 261 10 (0.05%) (72.52%) (37.10%) (0.51%) (0.14%) (0.01%) 

ADCC 261 6 (7.13%) (72.52%) (59.44%) (1.09%) (17.06%) (0.59%) 

GJR-ADCC  261 9 (0.19%) (72.52%) (42.17%) (1.65%) (0.58%) (0.09%) 

Multi-MA 261 23 (0.00%) (5.82%) (17.08%) (0.00%) (0.00%) (0.00%) 

Multi-EWMA 261 6 (7.13%) (72.52%) (59.44%) (0.26%) (17.06%) (0.15%) 

Multi-RiskMetrics 

2006 
261 5 (18.68%) (72.52%) (65.79%) (1.91%) (37.92%) (1.84%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

 

(b) After-crisis Period of 01 Jun 2009 to 31 Dec 2012 

   Coverage Tests Independence Tests Joint Tests 

 
No of 

Obs. 

No of VaR 

Violations 
POF TUFF 

Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 
936 0 (0.00%) (0.04%) 

(100.00%

) 
NA (0.01%) NA 

MA 936 3 (1.48%) (51.74%) (88.95%) (21.77%) (5.09%) (3.45%) 

EWMA 936 19 (0.54%) (59.47%) (39.72%) (0.26%) (1.47%) (0.04%) 

RiskMetrics2006 936 6 (23.74%) (51.74%) (78.07%) (11.77%) (47.87%) (11.58%) 

GARCH 936 14 (15.56%) (59.47%) (51.41%) (17.82%) (29.49%) (14.74%) 

GJR-GARCH 936 20 (0.24%) (9.98%) (44.32%) (0.03%) (0.74%) (0.00%) 

FI-GARCH 936 15 (8.84%) (59.47%) (23.50%) (2.12%) (11.57%) (1.36%) 

DCC 936 15 (8.84%) (59.47%) (23.50%) (2.12%) (11.57%) (1.36%) 

GJR-DCC 936 12 (40.60%) (59.47%) (57.64%) (20.75%) (60.57%) (23.09%) 

ADCC 936 15 (8.84%) (59.47%) (23.50%) (2.12%) (11.57%) (1.36%) 

GJR-ADCC  936 12 (40.60%) (59.47%) (57.64%) (20.75%) (60.57%) (23.09%) 

Multi-MA 936 3 (1.48%) (51.74%) (88.95%) (21.77%) (5.09%) (3.45%) 

Multi-EWMA 936 19 (0.54%) (59.47%) (39.72%) (0.26%) (1.47%) (0.04%) 

Multi-RiskMetrics 

2006 
936 12 (40.60%) (93.76%) (57.64%) (23.03%) (60.57%) (25.47%) 

* The numbers in parentheses are the p-value to reject the null hypothesis 

 

Table 4.22 – Backtesting Results for Multiple-asset Portfolio M9 

(Hong Kong, Spain, Brazil) 1% One-day VaR 
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Chapter 5. The Performance of VaR in the Presence of Asset Price Bubbles: 

A Simulation Analysis 

 

5.1 Introduction 

 

Chapter 4 has analysed the performance of VaR in the financial crisis using a sample of data 

from nine stock markets. In this chapter, the performance of VaR in the presence of bubbles is 

studied using simulated data. Financial markets have experienced several crises in the last two 

decades. Financial turmoils are often caused by an asset price bubble that are difficult to 

observe. If one can perfectly understand the dynamics of stock price movements, one can 

make better investment decisions and manage risks more efficiently. However, it is nontrivial 

as manifold factors influence price movement simultaneously. Practitioners commonly use a 

Monte Carlo simulation (MCS) to quantify financial risks and allocate financial budgets 

within their investments. For example, portfolio managers can perform MCS to predict the 

worst likely loss for their portfolios at a particular confidence level. In order to simulate the 

stock price paths, they have to adopt models that specify the behaviour of the stock prices. 

Geometrical Brownian motion, which is the most common approach used in the simulation, 

generates thousands or millions of stock price paths whose moments of distribution can be 

analysed to quantify the risks. However, as this motion is a Markov process, the purely 

random walk series is inadequate for modelling a financial crisis with an unexpected plunge 

due to the collapse of asset price bubble, which limits the effectiveness of various risk 

management tools.  

 

Asset price bubbles refers to asset prices that exceed its fundamental value. In literature, asset 

price bubbles can be referred as rational bubbles, irrational bubbles, or endogenous bubbles. 

Rational bubbles occur if investors hold the assets even though the prices exceeded the 
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fundamental value (often referred as the present value of subsequent dividends). They believe 

the value might be temporarily sustainable due to the divergence of different investors’ 

expectations. Irrational bubbles are referred as investors extrapolate recent prices into future; 

the asset valuation is not done by following traditional discounted cash flow approach. 

Endogenous bubbles formed as the market lack of common expectations of what 

fundamentals really are. The market participants make investment decisions based on 

different estimates rather than some common priors (e.g. present value of subsequent 

dividends) about fundamental value, the price bubbles form endogenously. Among the 

different types of asset price bubbles suggested in the literature, the majority of the empirical 

studies have focus on rational bubbles due to its conformity with the traditional discounted 

cash flow theory.   

 

Evans (1991) proposed a model for simulating rational asset price bubbles. It simulates stock 

price series with periodically collapsing explosive bubbles. However, Evan’s bubble model 

works poorly for generating long and high frequency time series data; stock prices will exhibit 

constant volatility and the bubble process will have superficial growth and collapse in a single 

observation. Such features make it an unrealistic option for generating high-frequency (daily) 

asset prices.  

 

This chapter responds to this weakness of Evan’s bubble model by extending it to allow the 

asset price bubbles to grow and collapse in a gradual manner. More importantly, we introduce 

a mechanism to incorporate the volatility clustering feature in the asset price series. The 

enhancement is demonstrated with simulations that compare the average percentage loss 

during the simulated bubble burst. Our model delivers a stable and realistic result, in contrast 

to Evan’s original model (which produces a wide range of loss with an unlikely sharp rise 

followed by a sharp fall for daily stock data).  
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Our model is empirically applied to test the reliability of different VaR measures. The VaR 

models studied in this work include the historical simulation (HS) approach of Linsmeier and 

Pearson (1996), the MA approach, Longerstaey and Spencer (1996) RiskMetrics approach, 

and Zumbach (2006) RiskMetrics2006 (RM2006) approach. We date-stamp the collapse of 

the bubbles and backtest the VaR measures in the one-year periods before and after the burst, 

to test their reliability in pre- and post-burst periods. Our results show that the RiskMetrics 

approach works well in all of the periods and outperforms the other three approaches in 

10,000 simulation tests. 

 

The organization of this chapter is as follows. Section 5.2 discusses the relationship between 

asset price and an asset price bubble and reviews Evan’s bubble model. Section 5.3 discusses 

the problems and practical issues of this model in relation to generating high-frequency (daily) 

data. Section 5.4 proposes our model and outlines its implementation procedures. Section 5.5 

compares our model with Evan’s and Section 5.6 shows our model being applied to evaluate 

the reliability of different VaR approaches with the presence of an asset price bubble. Section 

5.7 presents conclusions.    

 

5.2 Asset Prices and Bubbles 

 

Asset price bubbles are often driven by speculative behaviour that bids prices above their 

fundamental value. Whenever bubbles are present, prices will manifest explosive behaviour. 

The fundamental value of an asset is the sum of discounted cash flows of all future cash flows. 

The standard model for stock price at time t  is: 

 

 1 1( )
1

t t
t

P D
P E

R

 



 (5.1) 
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where tP  is the real price at time t , 1tD   is the real dividends received in the period from t 

to t + 1 , and R is the discount rate. By iterating the equation (5.1) forward, stock price tP  

can be rewritten as: 

  

 
1

1 1
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1 1
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t t t i k t t k
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
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 f

t t tP p b   (5.3) 

 

Such that 
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1

( )
1

k

t k t t kb lim E P
r

 

 
  

 
 (5.5) 

 

As the value f

tp  depends on the expected dividends, f

tp is considered the fundamental 

component of the price, while tb , is considered the rational bubble component that is based 

on the expectations of the future stock price. From equation (5.5), we can write: 

 

 1( ) (1 )t tE b r b     

 1 1(1 )t t tb r b u    . (5.6) 

 

where tu  is the random error of the bubble component at time t. Equation (5.6) shows that 

tb  is an explosive process, which indicates that the stock price will behave explosively if the 
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bubble component tb is non-zero in equation (5.3). 

 

Diba and Grossman (1988a) propose that the existence of the explosive bubble component tb  

in equations (5.3) and (5.6) can be statistically detected by using ADF unit root test and 

cointegration test. If bubbles are present, equation (5.3) implies the price series tP  is 

explosive regardless tD  is I(0) or I(1), as the bubble component tb  is an explosive process. 

From equation (5.6), taking the first differences we obtain a non-stationary ARMA process of 

equation (5.7). 

   

 [1 (1 ) ](1 ) (1 )t tr L L b L u      (5.7) 

  

where L  is the lag operator. From equation (5.3), the first differences of tP  contains the 

non-stationary ARMA process of equation (5.7), it implies that the tP  is explosive and 

non-stationary. Diba and Grossman (1988a) applies the ADF test in equation (5.8) on the tP  

series, the null hypothesis of not explosive is unable to reject and therefore it concludes there 

was no bubble in the equity market.  

 

 
1

1

k

t t j t j t

j

y y y   



       (5.8) 

 

where k  is the lag order and t  is the random error. 

 

Diba and Grossman (1988a) further conducts a cointegration test by examining the 

relationship between tP  and tD . If bubbles are present, tP  is explosive and it will not 

co-move with tD . So if both tP  and tD  are I(1) and they co-move each other, it will be an 

evidence that against the presence of price bubbles. The results of cointegration tests 

suggested by Granger and Engle (1987) produced a mixed result and unable to suggest the 
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existence of price bubbles in the market.  

 

Evans (1991) criticized the empirical tests employed by Granger and Engle (1987) is 

unrealistic because it assumed that the asset price perpetually grows at an expositive rate and 

never collapse. The test employed by Diba and Grossman (1988a) has a low power in 

detecting periodically collapsing bubbles and it biased towards the conclusion of no presence 

of bubble. It motivates Evans to propose an alternative approach to model the bubbles 

component by introducing a periodically collapse bubbles series, which timing of collapse is 

controlled by a Bernoulli process. 

 

5.3 Evan’s Bubble Model 

 

The explosive bubbles series can be intuitively modelled in the form of an explosive 

autoregression AR(1) series. However, Blanchard and Watson (1982) suggest as that no 

bubble will last forever and all bubbles eventually burst, a simple AR(1) series is inadequate 

for modelling periodic collapsing behaviour. Evans (1991) suggested the following model to 

describe such a periodically collapsing explosive bubble process tb . 

 

 1 1(1 ) ,   if ,t t t tb r b u b      (5.9) 

 1 1

1 1 1[ (1 ) ( (1 ) )] ,   if ,t t t t tb r b r u b     

         (5.10) 

 

where tu  is an i.i.d. lognormal random variable with unit mean 
2( / 2)t t bu exp y   , and 

t  is an i.i.d. Bernoulli process that takes the values of 1 and 0 with probability   and 

(1 )  respectively. The bubble process tb  will grow at a rate r before it reaches the 

threshold value  ; beyond that point, the bubble will grow even faster at a rate of 1(1 )r   . 
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It will then fall to an initial value of   with a probability of (1 )  in each of the 

following periods before it bursts.  

 

The fundamental component of the equity price depends solely on expected dividends. Evans 

(1991) modelled dividends as being generated by a random walk with a drift process, as 

shown in equation (5.11). The fundamental component in equation (5.4) can be rewritten as 

equation (5.12) by recursively substituting equation (5.11) itself. 

 

 1 1t t tD D     (5.11) 

  2 1(1 )f

t tp r r r D      (5.12) 

 

where   is the drift and 2~ (0, )
Dt N   . The equity price series tP  is a summation of the 

fundamental component f

tp  (dividends series tD ) and the bubble component series tb . The 

bubble series is scaled up   times to ensure that it appropriately affects the equity price. 

 

 f

t t tP p b   (5.13) 

 

5.4. Shortcomings of Evan’s Bubble Model 

 

5.4.1 Domination of the fundamental component in late observations 

 

Evan’s bubble model works well for simulating equity price with periodically collapsing 

bubbles for short but not long periods. In equation (5.10), the bubble will grow and has a 

probability of (1 )  that it will plunge to the initial value of   once it reaches above the 

threshold value of  . Equations (5.11) and (5.12) show that the fundamental component will 
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grow with a positive drift   and eventually dominate the whole equity price as time t  

grows. The bubble component will become insignificant as the bubble component tb  will 

fall back to its initial constant   when it exceeds the threshold constant value of  .  

 

5.4.2 Superficial growth of the bubble component 

 

Evan’s bubble model is suitable for simulating low-frequency (monthly) data, but not for 

high-frequency (daily) data. Equation (5.10) shows that the bubble will grow faster at a rate of 

1(1 )r    once it goes beyond the threshold value of  . While such a growth rate may be 

appropriate for monthly data, it is not for daily data (which is unreasonably high). For 

example, with a real return 0.02r   and 0.8  , the bubble has a 20% probability to burst 

and the daily equity price will grow to a level of around 3.4 times if the bubble does not burst 

in 5 consecutive days. It will further grow to a level of 11 times in consecutively 10 days. As 

the growth rate is superficial and unrealistic in such a short period, Evan’s original equations 

are not suitable for generating daily data. 

 

5.4.3 The bubble completely collapses in a single observation 

 

The final problem with Evan’s model is that it suggests that the bubble will collapse back to 

an initial level of   in a single observation. Similar to the superficial growth problem, this 

may be reasonable for monthly data but not for high-frequency daily data. Whenever equity 

bubbles burst in real cases, equity prices usually consecutively plunge over several days due 

to bad market sentiment. It is common for bubbles to take several days (rather than a single 

day) to completely collapse. 

 

  



  

152 

5.5 Our Model 

 

5.5.1 The bubble component 

 

We modify Evan’s bubble model by introducing controlling parameters in both the bubble 

and the fundamental component. We relax the bubble growth rate by introducing a parameter 

of M  in equation (5.10); the bubble will now grow at a new rate of 
1/ (1 )M r    when it 

exceeds the threshold value of   as shown in equation (5.14). The parameter M  can be 

the total number of trading days in a month if one uses it to generate daily data. The bubble 

will have a probability of 1 t  to burst and t  is a time-varying i.i.d. Bernoulli process 

that takes the values of 1 and 0 with probability t  and 1 t  respectively. Once the bubble 

bursts in time t  ( 0t  ), unlike in Evan’s model, the bubble size will not immediately fall 

back to the initial value but instead reduce to a fraction of its previous level (i.e. 1t tb  ). The 

parameter t is a bubble-collapsing factor with a continuous uniform distribution from a lower 

bond lf  to an upper bond uf , i.e. ~ ( , )t l uU f f . The parameter of t  controls the rate of 

the bubble’s collapse. After the bubble burst, the generation process will shift to using 

equation (5.15) for all Ct T  (The set CT  contains all of the observations from when the 

bubble is starting to collapse until it reaches to the initial value of  ). Under normal 

circumstances, the probability of a bubble further shrinking may differ from the probability of 

the bubble first collapsing; one can specify another probability to collapse t  in the period 

Ct T . Equation (5.15) is similar to equation (5.14), although it ensures that the floor value of 

the bubble series will not fall below its initial level of  .  
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 (5.14) 

 

 1/ 1/ 1

1 1 1 1 1 1 1([ (1 ) ( (1 ) )]  , ),  forM M

t t t t t t t t t t Cb max b r b r b u t T      

             

 (5.15) 

 

We address the problems of the unrealistic superficial growth rate and allow the bubbles to 

collapse in multiple observations rather than in a single observation by introducing the 

following parameters: (1) a bubble collapsing factor t , (2) a time-varying bubble collapsing 

probability t  and t , and (3) a slower growth rate of 1/

1 (1 )M

t r 

  . Our model is hence 

more realistic for simulating high frequency daily assets price. 

 

5.5.2 The fundamental component 

 

The fundamental component of the equity price depends on expected dividends. The dividend 

process is assumed to be a random walk with a drift process, as shown in equation (5.16). 

Unlike in Evan’s work, we introduce a lognormal random noise t  with unit mean and 

time-varying volatility in the dividend series. Evan used the additive model in equation (5.11) 

to simulate the dividend process, which may have occasionally resulted a negative value of 

dividend series due to the random noise 2~ (0, )
Dt N   . The advantage of our multiplicative 

form in equation (5.16) with lognormal random error is to avoid potential negative dividend 

series. The fundamental component of the equity price is obtained by recursively substituting 

the expectation value of equation (5.16) into equation (5.17), which is same as Evan’s in 

equation (5.12). 
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 1( )t t tD D    (5.16) 

 2 1(1 )f

t tp r r r D      (5.17) 

 

where   is the drift, is an i.i.d. lognormal random variable with unit mean

, and 2

tD  is the conditional variance of the daily dividend return 

2~ (0, )
tt Dz N   that shown in equation (5.18). 

 

 
1 1

2 2 2 2

1 1 2( )
t t tD D t D t DS I      

      (5.18) 

 

where if 1, 1t tv I  , else 0tI  . Financial asset returns exhibit volatility clustering is well 

documented in the literature (Mandelbrot (1963), Akigiray (1989), Lux and Marchesi (2000), 

Jacobsen and Dannenburg (2003), and Niu and Wang (2013)). The constant volatility feature 

in Evan’s model is inadequate for describing the movement of assets price. Expected future 

dividends should reflect the current level of market sentiment and investors’ speculative 

behaviour, which will become more volatile when the bubble is nearly burst with a higher 

bubble level or after a burst with a low bubble level. Accordingly, we define the conditional 

variance of the daily dividend return in equation (5.18) as an autoregressive equation with a 

scaled constant volatility D  factor. The parameter tI is to capture the asymmetric impacts 

of bad or good news information on return volatility. The time-varying scaling parameter tS  

represents the market speculative sentiment level. 

 

The volatility of the expected dividend is high when the market’s speculative sentiment is 

strong. Markets usually have strong speculative sentiment when the bubble level is at high (i.e. 

nearly burst) or low (i.e. post-burst) value. In contrast, the speculative sentiment is weak when 

the bubble is building up and its level is around the mean value. We model the speculative 

t

2( / 2)
tt t Dexp z  
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sentiment level using an absolute inverse logistics function that is shown in Figure 5.1 and 

equation (5.19); the respective logistics function is shown in Figure 5.2 and equation (5.20). 

To avoid the speculative level going to infinity, we set a lower bound of   (the bubble 

component initial value) and an upper bound of   (the bubble component threshold value) 

for the input of the inverse logistics function. As shown in Figures 5.1 and 5.2, the speculative 

sentiment level is at its lowest in the middle of the bubble generation process, which implies 

/ (1 ) ( ) / 2a b     ; the parameters of a  and b  in the logistics function are thus set to 

be a     and 1b  . Given a maximum speculative sentiment level of z , the value of 

tS  will reach a maximum (i.e. ˆ
tS z ) when the bubble level is reached at the value of  . 

Substituting a    , 1b   and ˆ
tS z  into equation (5.19), we obtain 1/( / ) zc   . To 

make sure the scaling variable ˆ
tS  that starts at zero is greater than one in equation (5.18), we 

further set the speculative level indicator tS  as ˆ 1t tS S  . 

   

 1

( )
ˆ | ( ) | | |

( )

t

b

t
t t

a B
ln

B
S f B

ln c






   (5.19) 

  ( )
1 x

a
y f x

bc
 


 (5.20) 

 
Figure 5.1 – The Inverse Logistics Function with Bubble Level tB  as Input and Speculative 

Sentiment Level tS  as Output 
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Figure 5.2 – The Logistics Function and Parameter Settings 

 

5.5.3 The equity price series: Combining the fundamental and bubble components 

 

The equity price is generated by adding the fundamental component f

tp  and bubble 

component tb  together. We scale the bubble component up by t  as shown in equation 

(5.21) in order to let it appropriately affect the equity price. Unlike Evan’s model (which uses 

a constant scaling factor), we introduce a time-varying scaling factor t to avoid the 

domination problem of the fundamental component in the late observations as time t  grows. 

The time-varying scaling factor t  will only be reset when the bubble completely collapses, 

and it is calculated using equation (5.22). Since the bubble will collapse after it reaches the 

threshold level of  , equation (5.22) specifies the fundamental component is around 1/   

times the size of the bubble component, as it ensures the ratio between the bubble threshold 

level of   to the fundamental value is  . 

 

 f

t t t tP p b   (5.21) 

  
f

t
t

p



  (5.22) 
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5.6 Simulation Results 

 

We simulate 10,000 daily equity price series with each series having a length of 5,040 trading 

days (i.e. 20 years with 21 trading days per month) by using both Evan’s model and our own. 

We consider 20 years of the monthly real S&P500 equity price index over the period July 

1994 to June 2014 for the parameter settings in the simulations. By assuming that the real 

monthly S&P500 dividend returns distributed normally, we set the mean of the first difference 

of daily dividends as 0.0024  , the sample daily variance as 2

D
 

= 0.0295%, and the real 

daily return as 0.0719%r  . The parameters of  , 1  and 2  for the conditional AR 

volatility equation are set to 0.05, 0.8, and 0.15 respectively. To generate the bubble 

component, the daily variance 2

b  of the bubble series is 0.01%. The threshold parameter   

is set as 2.0, which allows the bubble to grow up to four times its initial level of 0.5  . The 

probability of the bubble bursting is (1 ) 0.05t   (i.e. the bubble will burst within a month 

(1/20) ). The lower bound lf  and upper bound uf  for the bubble collapsing factor t  are 

0.8 and 0.5 only, which limit the bubble to shrinking at least 20% ( 0.8lf  ) and at most 50% 

( 0.5uf  ) of the original size when it bursts. Finally, the bubble component to fundamental 

component ratio   is set to 0.25. 

 

Table 5.1 summarizes the parameter settings. To compare our model with Evan’s, we perform 

10,000 simulations; samples of the generated price series are shown in Figures 5.3, 5.4, 5.5, 

and 5.6. 
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 Parameters Our Model Evan’s Model 

Fundamental 

Component 

M 21 - 

  0.0024 0.0024 

2

D
 0.03% 0.03% 

  0.05 - 

1  0.8 - 

2  0.15 - 

z  2  

Bubble 

Component 

  0.5 0.5 

  2 2 

2

b  0.01% 0.01% 

  0.95 0.8 

lf  0.8 - 

uf  0.5 - 

r 0.07% 0.07% 

Others   0.25  

  - 150 

 

Table 5.1 – Parameters Used in the Simulations 
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Figure 5.3 – A Sample of Simulated Equity Price Series Generated Using Our Model 
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Figure 5.4 – A Closer Look at Figure 5.3 During the Bubble Collapse Period  
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Figure 5.5 – A Sample of Simulated Equity Price Series Generated Using Evan’s Model 
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Figure 5.6 – A Closer Look at Figure 5.5 During the Bubble Collapse Period 

 

Figures 5.3 and 5.4, which show a sample of our model’s simulations, reveal that bubbles 

burst in the 1,377th and 3,365th observations. Figures 5.5 and 5.6, which show simulation 

results using Evan’s model, indicate that bubbles instead burst in the 1,797th and 4,296th 

observations. The third row of Figure 5.5 illustrates the superficial growth property problem 

of Evan’s model. At around the 1,797th observation, the bubble series exhibits a superficial 

growth before bursting. The bubble size increases around six times in a few days once the 

value goes beyond the upper threshold value  of 2.0. Furthermore, the bubble value falls 

from a value of around 12 to its original level of 0.5 in a single day after the bubble burst. The 

spark in the equity price that it causes make Evan’s bubble model unrealistic.  
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In addition, the fundamental component of the equity price will dominate the bubble 

component in late observations in Evan’s model. As shown in the second column of Figure 

5.6, the bubble component in the late observations of the simulation becomes insignificant to 

the equity price series. Another problem of Evan’s model can be found in the second row of 

Figure 5.5, which shows that the equity returns in Evan’s model exhibit constant volatility 

while those in our model exhibit volatility clustering (as shown in the second row of Figure 

5.3). The first column in Figure 5.4 shows that the bubble component in our model has 

progressively collapsed in several observations rather than collapsed in a single observation, 

as suggested by Evan. Contrasting Figures 5.3 and 5.4 to Figures 5.5 and 5.6 reveals that our 

model is more realistic than Evan’s. 

  



  

164 

 
Number of 

Simulations 

Average 

number of 

bubble 

burst 

Average 

daily 

loss in 

bubble 

burst 

Average First Day Percentage Loss in Bubble 

Burst (quantile) 

    10% 25% 50% 75% 90% 

Our 

Model 

10,000 1.89 times -8.62% -13.60% -10.50% -8.07% -5.88% -4.05% 

Evan’s 

Model 

10,000 2.00 times -7.88% -13.29% -11.26% -7.88% -4.50% -2.47% 

 

Table 5.2 – Summary of the Average First-Day Percentage Loss when Bubbles Collapse 

 

 

 

Table 5.3 – Largest Daily Percentage Losses in the Dow Jones Industrial Average Since 01 

Jan 1987 

 

Table 5.2 summarizes the loss statistics during the average first day of bubble burst in Evan’s 

model as well as ours. The bubbles in both models collapse around twice in 5,040 

observations; both instances suggest that the market will experience a financial crisis once 

Date Losses 

19/10/1987 -22.62% 

26/10/1987 -8.04% 

15/10/2008 -7.87% 

01/12/2008 -7.70% 

09/10/2008 -7.33% 

27/10/1997 -7.18% 

17/09/2001 -7.13% 

29/09/2008 -6.98% 

13/10/1989 -6.91% 

08/01/1988 -6.85% 
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every 10 years on average. The average first day loss does not differ significantly between 

Evan’s model and ours, and both models are very similar to real life (as shown in Figure 5.3). 

 

We further compare that descriptive statistics of Evan’s model and our model with the nine 

different stock markets being considered (namely Japan, China, Hong Kong, Germany, the 

United Kingdom, Spain, the United States, Canada, and Brazil). These nine countries are 

chosen based on their market capitalization and trading hours. Table 5.4 shows the market 

capitalization of the nine markets, while Table 5.5 compares the average descriptive statistics 

of the simulated equity return series with the equity return series of the nine stock markets 

from 1 July 1994 to 30 June 2014. Table 5.5 shows that the features of the equity price series 

generated by Evan’s model have a high degree of dispersion compared to the real data. The 

skewness and kurtosis are -7.6562 and 394.2183, with ranges in the nine markets returns from 

-0.0252 to 0.7075 and 7.5275 to 25.0980 respectively; the equity price generated by Evan’s 

model thus behaves differently from reality. In contrast, the equity price series generated by 

our model are more consistent with those of the real world, with a mean value of 0.0321%, 

standard deviation of 1.4122%, skewness of -0.2026, and kurtosis of 8.3430. Similar to the 

nine stock markets, the LB tests in the return and squared return series show no 

autocorrelation of the stock return but exhibit volatility clustering. Our model is thus more 

realistic than Evan’s model. 
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Country Exchange Name Index Used 

Market 

Capitalization 

(USD millions) 

*Japan 
Tokyo Stock 

Exchange 

NIKKEI 225 STOCK 

AVERAGE 
4,485,449.8 

*China 
Shanghai Stock 

Exchange 

SHANGHAI SE 

Composite 
3,986,011.9 

*Hong Kong 
Hong Kong Stock 

Exchange 
HANG SENG 3,324,641.4 

*Germany Deutsche Börse 
DAX 30 

PERFORMANCE 
1,761,712.8 

#United 

Kingdom 

London Stock 

Exchange  
FTSE100 6,100,083.0 

*Spain 
BME Spanish 

Exchanges 
IBEX 35 942,036.0 

*United 

States 

New York Stock 

Exchange 

DOW JONES 

INDUSTRIALS 
19,222.875.6 

*Canada 
Toronto Stock 

Exchange 

S&P/TSX COMPOSITE 

INDEX 
1,938,630.3 

*Brazil BM&F Bovespa IBOVESPA 823,902.7 

 

*The market capitalization data were obtained from the World Federation of Exchange (WFE), Jan 

2015. 

#Obtained from the London Stock Exchange Main Market Factsheet, Jan 2015. 

 

Table 5.4 – Market Capitalization of the Nine Exchanges and the Respective Indices Used
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Japan China Hong Kong Germany 

United 

Kingdom 
Spain 

United 

States 
Canada Brazil 

Our Model 

(Average) 

Evan Model 

(Average) 

Mean -0.0169% 0.0100% 0.0056% 0.0192% 0.0093% -0.0132% 0.0230% 0.0196% 0.0280% 0.0321% 0.0306% 

Median 0.0000% 0.0000% 0.0000% 0.0591% 0.0121% 0.0412% 0.0273% 0.0497% 0.0000% 0.0351% 0.0260% 

Maximum 12.3962% 26.5969% 15.8417% 10.2350% 8.9575 % 12.6141% 9.9751% 8.9447 % 25.0371 % 8.2329% 2.5176% 

Minimum -12.8749% -20.2324 % -15.8756% -9.2804 % -9.7084% -10.0603 % -8.5461% -10.2830 % -18.8026% -11.4968% -9.5168% 

Std. Dev. 1.4867% 1.9490% 1.6346% 1.4804% 1.1597% 1.4504% 1.1294% 1.0786% 2.1634 % 1.4122% 0.3077% 

Skewness -0.4904 0.7075 -0.2106 -0.2738 -0.3048 -0.1641 -0.3361 -0.9248 -0.0252 -0.2026 -7.6562 

Kurtosis 9.3207 25.0980 13.1949 7.5275 9.3202 7.9401 11.2387 13.7945 13.7929 8.3430 394.2183 

 
        

 
  

LB(1) 4.7578 3.7350 0.0053 0.3324 2.2736 3.6805 17.4644 0.3001 3.7350 1.9846 6.3940 

 
(0.0292) (0.0533) (0.9419) (0.5643) (0.1316) (0.0551) (0.0000) (0.5839) (0.0533) (0.1589) (0.0115) 

LB(5) 12.4758 21.0198 12.2743 14.7885 68.9600 28.8390 27.6489 34.1439 21.0198 9.6930 22.8349 

 (0.02882) (0.0008) (0.0312) (0.0113) (0.0000) (0.0000) (0.0000) (0.0000) (0.0008) (0.0844) (0.0004) 

LB(10) 15.6254 53.2327 15.0348 20.1518 85.1596 33.3195 43.1366 48.6212 53.2327 19.2204 34.6294 

 (0.1109) (0.0000) (0.1308) (0.0279) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0376) (0.0001) 

LB(20) 21.2902 74.3272 33.9841 35.0362 105.3256 49.0378 66.1449 63.8850 74.3272 38.0312 51.1824 

 (0.3802) (0.0000) (0.0262) (0.0199) (0.0000) (0.0003) (0.0000) (0.0000) (0.0000) (0.0009) (0.0001) 

LB2(1) 133.1383 296.6266 812.0414 206.0478 294.2776 195.4999 191.1259 400.1140 296.6266 117.9616 46.9630 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

LB2(5) 1958.7815 1225.6235 2172.0516 1571.2044 2389.8137 1210.5841 1739.0591 1669.3076 1225.6235 557.7613 185.9552 



  

 

1
6
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(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

LB2(10) 3506.4569 1681.9321 2639.0255 2805.5106 3888.4935 2127.5497 3363.3591 3695.9362 1681.9321 1132.6540 342.4877 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

LB2(20) 4664.4367 2271.9604 3318.1710 4644.2204 6101.9114 3267.1296 5767.4921 6384.7569 2271.9604 2186.0630 647.7547 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

*Numbers in parentheses in LB(n) statistics are at a significant level to reject the null hypothesis of no autocorrelation existing in n lag. 

 

Table 5.5 – Descriptive Statistics of the Equity Return Series of the Nine Stock Markets and the Simulated Equity Series
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5.7 VaR Models and the Results of Backtesting 

 

We study both of Linsmeier and Pearson (1996) non-parametric HS approach and the 

parametric variance-covariance (VCV) approach to calculate the VaR. Both unconditional and 

conditional variances are applied in the VCV approach, which includes the MA approach, 

Longerstaey and Spencer (1996) RiskMetrics model, 1  and Gilles Zumbach (2006) 

RiskMetrics2006 (RM2006) model.2 

 

We define T  as the total number of observations in the data set, EW  as the size of the 

estimation windows, and TW  as the testing window for VaR violations. A VaR violation 

( 1t  ) is recorded if the loss in a particular trading day t  exceeds the calculated VaR value. 

The total number of VaR violations 1  in the testing period TW  is calculated using equation 

(5.23), while 0  in equation (5.24) is the number of days in the testing period without 

violations. 

 

 E TW W T   

 
1,  if 

0,  if 

t t

t

t t

y VaR

y VaR


 
 

 
 

 1 t   (5.23) 

 0 1TW    (5.24) 

                                                 
1 The parameter setting for the RiskMetrics model is 0.94  ; technical details can be found in Longerstaey 

(1996). 
2 The parameters settings for the RM2006 model are 2   , 

0 1560   days, 
1 4   days , 512k   days, 

and 15K  ; technical details can be found in Zumbach (2006). 
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The number and clustering of violations are the two major issues of interest when evaluating 

the performance of different VaR models. We evaluate the VaR models by testing the number 

of violations in a given confidence level using Kupiec (1995) unconditional coverage tests, 

namely the proportion of failures (POF) and time until first failure (TUFF) tests. The POF test 

is the simplest test for determining whether the observed fail rate (i.e. VaR violations) is 

significantly different from the selected failure rate p . The null hypothesis of the POF test is 

1
0

ˆ:
T

H p p
W


  . Conversely, the TUFF test measures the timing of the first violation to occur. 

It assumes that the first violation occurs in 
1

v
p

  days. For 1% VaR calculations, it is 

expected that a violation occurs every 100 days. The null hypothesis of the TUFF test is: 

0

1
ˆ:H p p

v
  .  

 

Independence (i.e. conditional coverage) tests, which include Christoffersen and Pelletier 

(2004) interval forecast test and Kupiec (1995) mixed-Kupiec test, capture the occurrence of 

violation clustering. The Christoffersen independence test uses a binary first-order Markov 

chain and a transition probability matrix to test the independence of the violations, while the 

Hass (2001) mixed-Kupiec independence test uses the timing of different occurrences to test 

the independence of the violation.  

 

The joint test considers both the coverage and independence of the violation by combining the 

LRs of the coverage and independence tests. The Christoffersen joint test combines the LR of 

the POF test and the Christoffersen independence test, while the mixed-Kupiec joint test 

combines the LR of the TUFF test and the mixed-Kupiec independence test.  

 

The stock price series used in the backtests are generated from our bubble model using the 

settings listed in Table 5.1. We explore the reliability of the different VaR models in the 



  

171 

before-burst period, the after-burst period, and the whole period. The before-burst period is 

defined as one year (or 252 trading days) before the bubble burst, while the after-burst period 

is defined as one year after. The tests are repeated 10,000 times, and the backtesting results 

are presented in Table 5.6 and 5.7. Table 5.6 shows the average number of VaR violations and 

the p-values of the backtests while Table 5.7 shows the total numbers of the backtests 

conducted and the number of backtests that we cannot reject the null hypothesis that the 

model adequately measures the downside risk at the 5% significance level. Table 5.6 and 5.7 

show that the RiskMetrics approach works well for the whole period (20 years with 5,040 

observations). The HS, MA and RM2006 approaches perform poorly in the independence 

tests and join tests. In Table 5.6, the average number of VaR violations of both the HS and 

MA approaches for the whole period are 59.82 and 64.22 respectively, which is more than the 

expected number of 50.39 ( 5,039 1% ). Same results are shown in Table 5.7 that only 7,799 

out of 10,000 backtests are significant in the HS approach, while we have 5,185 out of 10,000 

backtest are significant in the MA approach. The levels of VaR suggested through the HS and 

MA approaches are too low, which leads to too many violations and losses that frequently 

exceed expectations. Further, both the HS and MA approaches had poor results in the 

Mixed-Kupiec independence tests, the p-values are 0.4%, and 0.25% respectively, while there 

are only 186 out of 10,000 backtests are significant in the HS approach, and 113 out of 10,000 

tests are significant in MA approaches. Both the HS and MA approaches failed to react to 

changing volatility and correlations, leading the violations cases clustered together. In contrast, 

the RM2006 approach behaves conservatively in the whole period, the average number of 

VaR violations is 14.38, which is far less than the expected number of 50.39. One might 

preserve too many capitals far more than regulatory compliance if they adopted the RM2006 

approach. Nevertheless, the RM2006 approach yields more promising results with a higher 

confidence level, a larger number of significant tests in both the before-and after-burst periods. 

Table 5.6 shows that RM2006 approach has the highest average confidence level among the 
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four approaches in the before- and after-burst periods. The RM2006 approach shows 

advantages in measuring downside risks around the burst of bubbles when the asset prices are 

volatile. Table 5.7 shows RM2006 has the largest number of significant backtests results, the 

number of significant tests are 18,895 out of 18,943 in the before-burst period, while 

RiskMetrics, HS, and MA are 18,000, 11,196, and 9,911 respectively; similar results are also 

found in other tests of the before- and after-burst periods. 

 

In summary, RM2006 approach outperforms the other three approaches around the bubble 

burst periods (before- and after-burst periods). It captures the rapid asset price volatility 

changes nearby the bubble burst, providing a good measure of the downside risks during 

financial turmoil. Nevertheless, RiskMetrics performs well without specifically considering 

any before- or after-burst periods. This may be one of the reasons why practitioners 

commonly adopt the RiskMetrics. Though the long-memory characteristic of RM2006 

calculates the VaR in a relatively conservative manner, it performs well in measuring 

downside risks in financial turmoil. 
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    Coverage Tests Independence Tests Joint Tests 

 Period 

No of 

Obser- 

vations 

Average No 

of VaR 

Violations 

POF TUFF 
Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 

All 5039 59.82 (0.2911) (0.2008) (0.3456) (0.0040) (0.2595) (0.0004) 

Before-Burst 252 6.58 (0.1659) (0.4399) (0.5441) (0.1808) (0.2487) (0.1572) 

After-Burst 252 2.62 (0.4985) (0.2408) (0.7897) (0.2252) (0.6745) (0.2703) 

MA 

All 5039 64.22 (0.1739) (0.1903) (0.3493) (0.0025) (0.1620) (0.0025) 

Before-Burst 252 7.09 (0.1414) (0.4391) (0.5213) (0.1638) (0.2146) (0.1399) 

After-Burst 252 5.52 (0.2610) (0.2131) (0.5783) (0.1325) (0.3630) (0.1361) 

RiskMetrics 

All 5039 56.80 (0.4056) (0.1352) (0.3902) (0.3539) (0.3850) (0.3467) 

Before-Burst 252 4.14 (0.3914) (0.4753) (0.7222) (0.4487) (0.5615) (0.4482) 

After-Burst 252 4.09 (0.3909) (0.3360) (0.6934) (0.3314) (0.5539) (0.1361) 

RM2006 

All 5039 14.33 (0.0000) (0.0440) (0.7406) (0.0006) (0.0000) (0.0000) 

Before-Burst 252 1.74 (0.4881) (0.4456) (0.9168) (0.4953) (0.7029) (0.5512) 

After-Burst 252 1.94 (0.4879) (0.3536) (0.8579) (0.3918) (0.6819) (0.4369) 

* The numbers in parentheses are the p-value to reject the null hypothesis that the violations are consistent with the 1% one-day VaR 

Table 5.6 – Average Backtesting Results for 1% One-day VaR of the Simulated Equity Series 

by Our Model 
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   Coverage Tests Independence Tests Joint Tests 

 Period 

No. of the 

VaR 

backtests 

POF TUFF 
Christoff-

ersen 

Mixed- 

Kupiec 

Christoff-

ersen 

Mixed- 

Kupiec 

HS 

All 10,000 7,799 9,677 8,402 186 7,592 198 

Before-Burst 18,943 9,536 17,080 18,440 10,593 11,196 7,976 

After-Burst 17,783 16,789 13,002 17,276 12,160 17,283 13,375 

MA 

All 10,000 5,185 9,457 8,248 113 5,347 107 

Before-Burst 18,943 8,283 17,026 18,406 9,560 9,911 7,020 

After-Burst 17,783 12,004 12,461 17,198 8,963 13,506 8,103 

RiskMetrics 

All 10,000 8,782 8,160 9,861 8,730 9,216 8,594 

Before-Burst 18,943 17,225 17,633 18,729 17,366 18,000 16,530 

After-Burst 17,783 16,282 15,299 17,525 15,333 17,176 14,717 

RM2006 

All 10,000 0 2,859 9,647 21 0 0 

Before-Burst 18,943* 17,632 18,639 18,881 17,375 18,895# 17,504 

After-Burst 17,783* 15,832 16,054 17,665 14,511 17,748 15,113 

# The number of 18,895 represents there are 18,895 VaR backtests that we cannot reject the null hypothesis that the model adequately 

measures the downside risk at the 5% significance level. Similar meaning applies in the other cells. 

* Backtests are only be performed when the period contains 252 observations. If the bubble burst at late observations (e.g. bubble burst at 

observation 5,000th of 5,040th), no “after-burst” backtest will be performed.  

 

Table 5.7 – The Number of Significant Backtests in 5% of Significance Level that the Model 

Adequately Measures the Downside Risks. 

 

5.8 Conclusion 

 

This chapter introduced a modified version of Evan’s model to simulate the path of daily asset 

prices with multiple periodic collapsing bubbles. Evan’s original model works poorly in 

generating long and high-frequency (daily) time series data. The equity price in Evan’s model 

exhibits superficial growth and constant volatility, and the bubble will collapse in a single 

observation. All of these characteristics show that Evan’s model is inadequate for generating 

daily asset prices. It also fails in simulating long series data, as the bubble component 

becomes insignificant to the asset price in late observations.  
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We modified Evan’s bubble model by introducing parameters to control the bubble’s size and 

growth rate and to allow bubbles to have a gradual collapse. One distinguishing feature of our 

model is that our generated asset prices exhibit volatility clustering, while Evan’s has a flawed 

constant volatility data series. The descriptive statistics revealed that our model has features 

that are similar to real stock data. The average equity return series of our model has a mean of 

0.0321%, a standard deviation of 1.4122%, a skewness of -0.2026, and a kurtosis of 8.3430; 

in contrast, Evan’s model has a mean of 0.0306%, a standard deviation of 0.3077%, a 

skewness of -7.6562, and a kurtosis of 394.2183. Also, the return series generated from our 

model shows no autocorrelation of the stock return but does exhibit volatility clustering. Our 

model is thus more realistic than Evan’s model. 

 

Our model overcomes the weakness of the previous work that allows researchers and portfolio 

managers to simulate daily asset price series with periodic collapsing asset price bubbles. 

Compare to the widely used Geometrical Brownian motion, our model incorporate rational 

asset price bubbles to model a financial crisis with unexpected plunge. Practitioners can use 

our model with Monte Carlo Simulation to quantify financial risks and allocate financial 

budgets for any unexpected loss. 

 

Furthermore, we applied our model to simulate 10,000 different paths of asset prices to test 

the reliability of different VaR models. The VaR models under examination include the HS, 

MA, RiskMetrics, and long-memory RM2006 approaches. We date-stamped the bubble burst 

and defined the before-burst period as one year (i.e. 252 trading days) before the burst and the 

after-burst period as one year after. The backtesting results show that both the HS and MA 

approaches tend to underestimate downside risks, unable to react to a rapidly changing in 

asset price volatility and correlation during market turmoil. The RiskMetrics approaches 
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performed well when we are without specifically considering any bubble burst period, and the 

RM2006 approach outperforms the other three approaches in the period around the bubble 

burst. The empirical tests showed that criticisms that VaR models are unable to capture large 

financial loss during financial market turmoil are statistically invalid. Practitioners should 

consider to adopt RM2006 as the VaR model to estimate their downside financial risk. 
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Chapter 6. The Performance of VaR in the Presence of Asset Price Bubbles: 

An Empirical Analysis using Bubble Dating Tests 

 

6.1 Introduction 

 

Value at risk has been one of the most popular methods for measuring the downside risk of 

financial investments in the past decade. The downside risk of a financial investment defines 

the minimum loss of a portfolio value in a particular period with a certain probability. After 

the sub-prime mortgage crisis in 2008, practitioners and regulators criticized VaR models for 

failing to reveal the underlying risk, which led many financial institutions to suffer 

unexpected losses that were well above the VaR value and resulted in a credit crunch. 

However, most criticism stems from the lack of statistical support, which may lead to a false 

picture of the ineffectiveness of VaR. 

 

This chapter is an extension of Chapter 4; unlike in Chapter 4 we define the crisis and 

non-crisis periods based on subjective judgement; we study Phillips et al. (2015) (hereafter 

PSY) bubble test, which use a backward SADF (BSADF) test to date-stamp the origination 

and termination dates of bubbles. Diba and Grossman (1988a) and Craine (1993) provide 

early literature in detecting rational asset price bubbles in equity market. Diba and Grossman 

(1988a) suggests to detect bubbles by conducting unit root test on first difference of price 

series and cointegration test on the price and dividend series. Craine (1993) tested the 

presence of bubbles by using a unit root test on price/dividend ratio. However, as suggested 

by Evans (1991) (details can be found in Section 5.2), the unit root and cointegration tests 

assumed rational bubbles will last forever, they have little power to detect bubbles that 

collapse periodically. In light of the weakest of the previous approaches, researchers focus on 

developing robust methods to detect periodical collapsing bubbles in asset price series. Hall et 
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al. (1999) address the issue by making use of dynamic Markov-switching models to 

generalise the ADF unit root test, allowing the regression parameters to switch values between 

regimes in the collapsing bubble process. McMillan (2007) uses exponential smooth transition 

(ESTR) models to explain the boom and bust dynamics in stock price. McMillan (2007) 

analysed the log dividend-price ratio data for thirteen countries by both the ESTR and 

asymmetric-ESTR models. The log dividend-price ratio found stationarity only under the 

asymmetric-ESTR model, it explains the rise of temporary deviations from equilibrium 

(bubbles) is due to the presence of both transactions costs and noise/fundamental trader 

interaction. Both Hall et al. (1999) and McMillan (2007) are able to detect periodical 

collapsing bubbles; however; asymptotic distributions of the relevant test statistics cannot be 

obtained analytically, simulations from the finite sample can be computationally expensive. 

Recently, Phillips et al. (2011) have suggested to use a supremum of a set of recursive 

right-tailed ADF tests (SADF) to detect the presence of stock bubbles; the test is then be 

further generalised as PSY test (Phillips et al. (2015). The PSY test detects periodical 

collapsing bubbles and give estimates on the bubbles’ origination and termination dates. 

Unlike the previous approaches, the asymptotic distribution of the test statistics in PSY test 

can be obtained analytically while estimations of the origination and termination dates of 

bubbles are consistent.  

 

Against the background of the concern that VaR models fail in financial crisis periods, we 

perform a series of backtests. However, as our aim is to backtest but not forecast, we explore 

and slightly modify the date-stamping strategy of the PSY test. Five VaR testing periods are 

defined: the pre-burst period, the bubble period, the post-burst period, the period between 

bubbles, and the full period. The bubble period is bounded by the bubble’s origination and 

termination dates, the pre-burst period is defined as two years (around 500 observations) 

before the bubble’s origination date, and the post-burst period is defined as two years after the 
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bubble’s termination date. Empirical backtesting tests from the RiskMetrics VaR and 

RiskMetrics2006 VaR models are then carried out for these periods for six countries (Hong 

Kong, Germany, the United Kingdom, Spain, the United States, and Canada), proxied by 

seven indices. 

 

The outline of this chapter is as follows. Section 6.2 discusses the rationale for using the log 

price/dividend ratio as an indicator of asset price bubbles. Section 6.3 describes the SADF and 

GSADF tests used to identify asset price bubbles and the date-stamping mechanism. Section 

6.4 describes the RiskMetrics and RiskMetrics2006 VaR models as well as the backtesting 

methods. It also presents the empirical results of the GSADF tests, bubble period 

identification, and the VaR backtests. Section 6.5 concludes the chapter. 

 

6.2 Asset Prices and Bubbles 

 

Asset price bubbles are usually driven by speculative behaviour that bid an asset price beyond 

that asset’s fundamental value (which is the sum of the discounted cash flows of all future 

cash flows). If bubbles are present, prices should thus behave explosively. In accordance with 

Campbell and Shiller (1988), we write the log price of a security as 

 

 f

t t tp p b   (6.1) 

 

where tp  is the log price at time t , f

tp  is the fundamental value, and tb  is the bubble 

component.  
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 ( )k

t k t t kb lim E p   (6.4) 

 

where 
P

P D
 


, ( ) (1 )ln       , d p   , r  is the continuous return, and t  

and t  are assumed to be constant over time. 

 

In equation (6.1), the value of f

tp  is considered the fundamental component of the stock 

price as it depends on the expected dividends. In contrast, the present value of tb  in equation 

(6.4) is considered the speculative component as it is based on the future expectation of stock 

prices (not dividends). We can rewrite equation (6.4) as 

 

 , ,(1 ) (1 )t t b t t b tb e b g b       (6.5) 

 

where g  is the growth rate of the bubble component and ,b t  is the random error of the 

bubble component at time t . Equation (6.5) shows that tb  is an explosive process, which 

means that the stock price will be explosive if the bubble component tb  is non-zero in 

equation (6.1). 

 

From equations (6.1) and (6.3), we see that the differences between the log real dividend and 

log real price are 
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If bubbles are absent (i.e. 0tb  ), the log price/dividend ratio becomes 
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Equation (6.6) implies that the log price/dividend ratio will be stationary if the log dividend 

td is I(1) stationary. If the log dividend is I(1) and the log price-dividend ratio is explosive, 

this explosive behaviour must thus be caused by a non-zero bubble component tb . 

 

Similar arguments also apply to the price-dividend (without logarithm) ratio, which starts by 

analysing financial bubbles using the asset pricing equation: 
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where tP  is the asset price at time t, 
fr  is the risk-free rate, tD  is the asset dividend, tU  

is unobservable fundamentals, and tB  is the bubble component. Similar to equation (6.5), the 

expected value of tB  is: 
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1( ) (1 )t t f tE B r B    (6.8) 

 

6.3 SADF and GSADF Tests 

 

Phillips et al. (2011) have suggested using a supremum of a set of recursive right-tailed 

augmented Dickey-Fuller (ADF) tests (Dickey and Fuller (1979)) to detect the presence of 

stock bubbles. Their so-called SADF test applies the right-tailed ADF test with the null 

hypothesis of a unit root ( 0  ) and the alternative hypothesis of an explosive root ( 0  ). 

 

The regression model used in the SADF test is  

 

 
1

1

k

t t j t j t

j

y y y   



       (6.9) 

 

where k  is the lag order and t  is the random error. 

 

The SADF test starts by testing the first 0r  fraction of the observations; it then performs the 

ADF test repeatedly by incrementing 0r  to 1. The forward sequence of the regression starts 

from the observation 1 to [ wTr ], where [.] is the integer part of the argument, T  is the total 

number of observations, and 0[ ,1]wr r  is the fraction of the observations. The SADF 

statistic is 

 

 
0

0

0

[ ,1]

sup
w

w

r r
r r

SADF ADF


  

 

The asymptotic distribution of the SADF test with the null hypothesis of the true process is a 
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random walk without drift: 
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where W  is a Wiener process. 

 

By comparing the SADF statistics of the data series with the asymptotic distribution of the 

Dickey-Fuller t-statistic in equation (6.10), we can identify the explosive behaviour of the 

data series. To date-stamp the explosion, we perform the backward ADF (BADF) test. This 

test performs the ADF test repeatedly by fixing the starting point of the sample at the first 

observation while rolling the end point from the observation 0[ ]Tr  to T . If, say, the testing 

sequence starts from 1r  ( 1 0r   in the BADF test) and ends at 2r , the corresponding BADF 

test statistic would be 1

2

r

rBADF . Since the BADF test fixes the starting point as the first 

observation, its BADF test statistic is denoted by 2rBADF . 

 

The explosion originates at [ ]eTr  when [ ]eTr  is the first occurrence and the 
er

BADF  

statistic is above the critical value. Furthermore, PSY impose the conditions that the bubble 

duration must be longer than ( )log T  and that the termination date of the explosion [ ]fTr  

must be the first occurrence after the observation [ ] ( )eTr log T  when the 
frBADF  statistic 

is below the critical value. 

 

  
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These authors further suggest that the critical value 
2

T

rcv  should vary with the number of 

observations in the testing window in order to diverge to infinity and eliminate type I errors 

for large T , suggesting that 
2

( ( ))

100
T s

r

log log Tr
cv  . 

 

The shortcoming of the SADF test is that it may fail if multiple bubbles are present in the 

sample. Phillips et al. (2015) proposed the generalized version of SADF (i.e. the GSADF test) 

to address this problem. The GSADF test provides the flexibility to allow the starting point of 

the testing window to change. The GSADF statistic is defined as 
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Equation (6.11) shows the corresponding asymptotic distribution of the GSADF test with the 

null hypothesis that the true process is a random walk without drift. The technical details for 

equation (6.11) can be found in Shi et al. (2011). 
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The date-stamping method used in the GSADF test is an extended version of the BADF 

statistic. The BSADF test performs an SADF test by rolling the starting point of the test 

window 1 2 0[0, ]r r r 
 
from the observation 2 0[ ( )]T r r  to the first observation. For a 
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testing sequence that starts at 1r  and ends at 2r , the corresponding BSADF statistic is 

defined as 

 

 1

2 2

1 2 0[0, ]

sup { }r

r r
r r r

BSADF BADF
 

  

 

Similar to the test of Phillips et al. (2011) test, the origination date of a bubble in the GSADF 

test is [ ]eTr  when [ ]eTr  is the first occurrence and when the 
er

BSADF  statistic is above 

the critical value. The minimum bubble duration in the BSADF statistic is generalized to 

( )log T , where   is a frequency-dependent parameter. The empirical example that PSY use 

for detecting bubbles in the S&P500 imposed a minimal condition that bubble duration must 

exceed one year (i.e. for 1,680 monthly observations,   is 3.73). Moreover, the termination 

date of explosion [ ]fTr  is the first occurrence after the observation [ ] ( )eTr log T  when 

the 
2r

BSADF  statistic is below the critical value. 
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In the GSADF test, the bubble origination date is date-stamped by equation (6.12), which is 

the end point 2r  of the testing window in the BSADF statistics. However, as the purpose of 

this paper is backtesting instead of forecasting, we slightly modify the bubble origination date 

to be the starting point 1r  (instead of 2r ) of the testing window in equation (6.14) and 

removing the minimal bubble duration condition by setting 0  . This modified 
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date-stamping strategy for the bubble origination date is referred to as PSYr1 hereinafter. 
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To illustrate the differences between the original PSY approach and the modified PSYr1 

approach, we use the S&P500 as an example. Figure 6.1 illustrates the identification results, 

with the bubble periods highlighted in grey. Figure 6.1a shows that by using the original PSY 

date-stamping method, bubbles’ estimated origination dates are usually close to their 

termination dates. The original PSY date-stamping is based on picking the end point of the 

testing window when the whole sample is explosive. The modified PSYr1 method sets the 

bubble origination date as the starting point of the testing window (instead of the end point), 

which may better illustrate the bubble formation period without arbitrarily imposing the 

minimal bubble duration parameter  .    

 

Figure 6.1b shows the results of the PSYr1 method, with the bubble period highlighted in grey. 

Although the bubble period problem lasts for more time, the results related to identifying 

bubbles in some countries (namely Germany and Hong Kong) are promising; the original 

PSY method fails to identify any asset price bubbles. 
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(a) Identification results of using the GSADF test with the original PSY date-stamping 

method 

 

(b) Identification results of using the GSADF test with PSYr1 date-stamping method 

 

Figure 6.1 – Bubble Identification Results in S&P500 
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6.4 VaR Models and Backtesting Results 

 

To compare the performance of VaR in the pre-burst, bubble, post-burst, and inter-bubble 

periods, we compute daily VaR using the RiskMetrics model of Longerstaey and Spencer 

(1996) and the RiskMetrics2006 model of Zumbach (2007). We define T  as the total 

number of observations in the data set, EW  as the size of the estimation windows, and TW  as 

the testing window for VaR violations. A VaR violation ( 1t  ) is recorded if the loss on a 

particular trading day t  exceeded the calculated VaR value. The total number of VaR 

violations 1  in the testing period TW  is calculated by equation (6.16), while 0  in equation 

(6.17) is the number of days in the testing period without violations. 

 

 E TW W T   

 
1,  if 

0,  if 

t t

t

t t

y VaR

y VaR


 
 

 
 

 1 t   (6.16) 

 0 1TW    (6.17) 

 

The number and clustering of violations are the two major issues to consider when evaluating 

how VaR models perform. We use two unconditional coverage tests, namely POF and TUFF, 

to evaluate the VaR models by testing the number of violations at a given confidence level. 

The straightforward POF test examines whether the observed fail rate (i.e. number of VaR 

violations) is significantly different from the selected failure rate p . The null hypothesis of 
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the POF test is 1
0

ˆ:
T

H p p
W


  . Conversely, the TUFF test measures the timing of the first 

violation to occur. It assumes that the first violation occurs in 
1

v
p

  days. For the 1% VaR 

calculation, a violation is expected to occur every 100 days. The null hypothesis of the TUFF 

test is 
0

1
ˆ:H p p

v
  . 

 

Independence tests (i.e. conditional coverage tests), including the interval forecast of test of  

Christoffersen and Pelletier (2004) and the mixed-Kupiec test of Kupiec (1995), capture the 

occurrence of violation clustering. Christoffersen’s independence test uses a binary first-order 

Markov chain and a transition probability matrix to test the independence of the violations, 

while the mixed-Kupiec independence test of Hass (2001) considers the timing of different 

occurrences to test the independence of the violation. 

 

The joint test considers both the coverage and the independence of the violation by combining 

the LRs of the coverage and independence tests. The Christoffersen joint test combines the 

LR of the POF and Christoffersen independence tests, while the mixed-Kupiec joint test 

combines the LR of the TUFF and mixed-Kupiec independence tests. 

 

Subject to the dividend data availability in Datastream, we employ six stock markets (rather 

than nine in previous chapter) in our empirical analysis, they are: Hong Kong, Germany, 

Spain, the United Kingdom, the United States, and Canada. The market capitalizations of the 

six countries are shown in Table 6.1. As the original papers of Phillips et al. (2011) PWY test 

and Phillips et al. (2015) PSY test studied both Nasdaq and S&P500, unlike the previous 

chapter we study the Dow Jones Index for the U.S. market, we study both Nasdaq and 

S&P500 in this chapter for comparison purpose. 
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Country Exchange Name Index Used 

Market 

Capitalization 

(USD million) 

*Hong Kong 
Hong Kong Stock 

Exchange 
HANG SENG 3,324,641.4 

*Germany Deutsche Börse 
DAX 30 

PERFORMANCE 
1,761,712.8 

#United 

Kingdom 

London Stock 

Exchange  
FTSE100 6,100,083.0 

*Spain 
BME Spanish 

Exchanges 
IBEX 35 942,036.0 

*United 

States 

New York Stock 

Exchange 
S&P500, and Nasdaq 19,222.875.6 

*Canada 
Toronto Stock 

Exchange 

S&P/TSX COMPOSITE 

INDEX 
1,938,630.3 

* Data on market capitalization obtained from the World Federation of Exchanges, December 2015. 

# Data obtained from the London Stock Exchange Main Market Factsheet, January 2015. 

 

Table 6.1 – Stock Exchanges and Respective Indices Used 

 

 

We define the pre-burst and post-burst periods as two years (or around 500 observations) 

before and after the bubble, respectively: 

 

 pre-bubble period: [[ ] ,[ ]]e eT r T r  (6.18) 

 post-bubble period: [[ ],[ ] ]f fT r T r   (6.19) 

 

where   is the time frequency-dependent parameter (with 24   for the monthly data and 

~ 500  for the daily data.). Using S&P500 as an example, one bubble period identified is 1 

April 1986 to 1 October 1987; the pre-burst period runs from 1 April 1984 to 31 March 1986 

and the post-bubble period is from 2 October 1987 to 1 October 1989. However, if the pre- 

and post-burst periods overlap, the periods are not considered in our backtests. 

 

Market data (namely prices and dividends) are mainly obtained from DataStream, although 
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long series monthly S&P500 data are obtained from Professor Robert Shiller’s website. In 

order to ensure a large sample size for the bubble tests, we obtain the data from the base dates 

that both price and dividend data are available in DataStream, which as shown in Table 6.2. 

 

Country Index Used 
Sample Period of Monthly 

Data in Bubbles Tests 

Sample Period of Daily 

Data in VaR Backtests 

United States 
S&P500 July 1975 – Dec 2015 Jan 1950 – Dec 2015 

Nasdaq Jan 1973 – Dec 2015 

Hong Kong HANG SENG Jun 1973 – Dec 2015 

Germany 
DAX 30 

PERFORMANCE 
Jan 1973 – Dec 2015 

United 

Kingdom 
FTSE100 Jan 1986 – Dec 2015 

Spain IBEX 35 Mar 1987 – Dec 2015 

Canada 

S&P/TSX 

COMPOSITE 

INDEX 

Jul 1973 – Dec 2015 

 

Table 6.2 – Sampling Period for Bubble Tests and VaR Backtests 

 

For each sample series, we perform the PSY and PSYr1 tests on both price-dividend and 

logarithmic price-dividend series to date-stamp the bubble origination and termination dates. 

As an asset price bubble may take time to form and not necessary last long, we also perform 

the PSY test with a frequency parameter of 0   in equation (6.13), relaxing the minimum 

bubble duration to zero. Figure 6.2 (a) – (u) displays the date-stamping bubble periods that 

result from the price-dividend ratio of the seven indices by using: (1) the original PSY test 

with a minimum bubble duration of 12 months, (2) the PSY test with no minimum bubble 

duration ( 0PSY  ), and (3) the modified PSYr1 test with a bubble origination date that starts 

from the BADF test’s sampling window. Results of the tests using the logarithmic 

price-dividend ratio are shown in Figure 6.3. As the date-stamping results from considering 

the price-dividend ratio resemble those from considering the logarithmic price-dividend ratio, 

we follow PSY to date-stamp bubbles in price-dividend ratio series and further study the 

results in different VaR tests. 
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(a) Date-stamping bubble periods in the United States S&P500 price-dividend ratio: PSY test  

 
(b) Date-stamping bubble periods in the United States S&P500 price-dividend ratio: 

0PSY 
 test 

 

(c) Date-stamping bubble periods in the United States S&P500 price-dividend ratio: PSYr1 test 
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(d) Date-stamping bubble periods in the United States Nasdaq price-dividend ratio: PSY test 

 
(e) Date-stamping bubble periods in the United States Nasdaq price-dividend ratio: 

0PSY 
 test 

 

(f) Date-stamping bubble periods in the United States Nasdaq price-dividend ratio: PSYr1 test 

 

  



  

194 

 

(g) Date-stamping bubble periods in the Hong Kong HSI price-dividend ratio: PSY test 

 
(h) Date-stamping bubble periods in the Hong Kong HSI price-dividend ratio: 

0PSY 
 test 

 

(i) Date-stamping bubble periods in the Hong Kong HSI price-dividend ratio: PSYr1 test 
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(j) Date-stamping bubble periods in the Germany DAX30 price-dividend ratio: PSY test 

 
(k) Date-stamping bubble periods in the Germany DAX30 price-dividend ratio: 

0PSY 
 test 

 

(l) Date-stamping bubble periods in the Germany DAX30 price-dividend ratio: PSYr1 test 
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(m) Date-stamping bubble periods in the United Kingdom FTSE100 price-dividend ratio: PSY test 

 
(n) Date-stamping bubble periods in the United Kingdom FTSE100 price-dividend ratio: 

0PSY 
 test 

 

(o) Date-stamping bubble periods in the United Kingdom FTSE100 price-dividend ratio: PSYr1 test 
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(p) Date-stamping bubble periods in the Spain IBEX35 price-dividend ratio: PSY test 

 
(q) Date-stamping bubble periods in the Spain IBEX35 price-dividend ratio: 

0PSY 
 test 

 

(r) Date-stamping bubble periods in the Spain IBEX35 price-dividend ratio: PSYr1 test 
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(s) Date-stamping bubble periods in the Canada S&P/TSX Composite price-dividend ratio: PSY test 

 
(t) Date-stamping bubble periods in the Canada S&P/TSX Composite price-dividend ratio: 

0PSY 
 Test 

 

(u) Date-stamping bubble periods in the Canada S&P/TSX Composite price-dividend ratio: PSYr1 test 

Figure 6.2 – Date-stamping Bubble Period of the Price-dividend Ratio for the Six Countries 
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The six backtest methods used in this study are the POF, TUFF, independent Christoffersen, 

independent mixed-Kupiec, joint Christoffersen, and the joint mixed-Kupiec tests, which are 

performed for the six countries as defined in equations (6.18) and (6.19). We perform the VaR 

backtest for the three date-stamping approaches of the price-dividend ratio for each country. 

Tables 6.3 to 6.6 show the summarized results, while the full results are presented in Tables 

6.7 to 6.13.  
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 Pre-burst Bubble Post-burst Periods Between Bubbles 

 RiskMetrics 
RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 

United States  

S&P500 
12/18 13/18 14/18 18/18 10/18 13/18 1/12 5/12 

United States 

Nasdaq 
8/12 11/12 3/12 5/12 8/12 8/12 2/6 6/6 

Hong Kong 

HSI 
No Bubble Identified 

Germany 

DAX 30 

Performance 

No Bubble Identified 

United 

Kingdom 

FTSE100 

6/6 6/6 9/12 12/12 4/6 6/6 6/6 4/6 

Spain 

IBEX 35 
6/6 6/6 2/6 6/6 4/6 6/6 NA* 

Canada 

S&P/TSX 

Composite 

Index 

6/6 6/6 6/6 6/6 2/6 6/6 NA* 

Total 38/48 42/48 34/54 47/54 28/48 39/48 9/24 15/24# 
 

Table 6.3 – Backtesting Results Using Original PSY Bubble Date-stamping Approach 

 

* Only 1 bubble detected 

# The results 15/24 represents there are 15 out of 24 VaR backtests that we cannot reject the null hypothesis that the model adequately measures the downside risk at the 5% significance level. Similar 

meaning applies in the other cells. Details of the test results and testing period are shown in Table 6.7 – 6.13. 
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 Pre-burst Bubble Post-burst Periods Between Bubbles 

 RiskMetrics 
RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics2

006 

United States  

S&P500 
NA* 51/72 58/72 NA* 32/66 48/66 

United States 

Nasdaq 
NA* 30/54 40/54 NA* 34/48 35/48 

Hong Kong 

HSI 
7/18 18/18 13/18 11/18 9/18 14/18 2/12 8/12 

Germany 

DAX 30 

Performance 

13/18 18/18 15/18 18/18 10/18 18/18 8/12 8/12 

United 

Kingdom 

FTSE100 

NA* 45/60 46/60 NA* 38/54 38/54 

Spain 

IBEX 35 
NA* 26/42 32/42 NA* 28/36 29/36 

Canada 

S&P/TSX 

Composite 

Index 

NA* 27/48 47/48 NA* 25/42 28/42 

Total 20/36 36/36 207/312 252/312 19/36 32/36 167/270 194/270# 

 

Table 6.4 – Backtesting Results Using PSY Bubble Date-stamping Approach Without Minimum Bubble Duration ( 0  ) 

* Bubble Periods are highly fragmented, no Pre-Burst and Post-Burst Period be defined.  

# The results 194/270 represents there are 194 out of 270 VaR backtests that we cannot reject the null hypothesis that the model adequately measures the downside risk at the 5% significance level. 

Similar meaning applies in the other cells. Details of the test results and testing period are shown in Tables 6.7 – 6.13. 
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 Pre-burst Bubble Post-burst Periods Between Bubbles 

 RiskMetrics 
RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 
RiskMetrics 

RiskMetrics

2006 

United States  

S&P500 
NA* 

United States 

Nasdaq 
10/12 5/12 3/12 7/12 7/12 8/12 6/6 3/6 

United 

Kingdom 

FTSE100 

1/6 1/6 6/12 7/12 4/6 6/6 2/6 6/6 

Spain 

IBEX 35 
10/12 8/12 1/12 8/12 10/12 12/12 4/6 2/6 

Canada 

S&P/TSX 

Composite 

Index 

4/6 4/6 0/6 3/6 2/6 6/6 NA@ 

Hong Kong 

HSI 
10/18 11/18 6/18 16/18 9/18 15/18 3/12 7/12 

Germany 

DAX 30 

Performance 

9/12 5/12 4/12 9/12 7/12 12/12 3/6 2/6 

Total 44/66 34/66 20/72 50/72 39/66 59/66 18/36 20/36# 

 

Table 6.5 – Backtesting Results Using PSYr1 Bubble Date-stamping Approach with Bubble Origination Date Defined as the Start of the BADF Tests 

Sampling Window 

* Daily data available in Datastream do not cover the identified bubbles period. 

@ Only 1 bubble detected 

# The results 20/36 represents there are 20 out of 36 VaR backtests that we cannot reject the null hypothesis that the model adequately measures the downside risk at the 5% significance level. Similar 

meaning applies in the other cells. Details of the test results and testing period are shown in Table 6.7 – 6.13. 
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 RiskMetrics RiskMetrics2006 

United States  

S&P500 
0/6 0/6 

United States 

Nasdaq 
0/6 0/6 

Hong Kong 

HSI 
0/6 1/6 

Germany 

DAX 30 Performance 
0/6 0/6 

United Kingdom 

FTSE100 
0/6 1/6 

Spain 

IBEX 35 
0/6 1/6 

Canada 

S&P/TSX Composite 

Index 

0/6 3/6 

Total 0/42 6/42* 

Table 6.6 – Backtesting Results (Full Sample Period) 

 

* The results 6/42 represents there are 6 out of 42 VaR backtests that we cannot reject the null hypothesis that the model adequately measures 

the downside risk at the 5% significance level. Similar meaning applies in the other cells. Details of the test results and testing period are 

shown in Appendix Table 6.7 – 6.13. 

 

Tables 6.3, 6.4, and 6.5 reveal that the RiskMetrics model performs badly in all the pre-burst, 

bubble, and post-burst periods. The entries in the Table 6.3 to 6.5 represent the total number 

of backtests is significant. For example, the entry of the backtest result for RiskMetrics2006 

of S&P500 in the pre-burst period is 13/18, it represents there are 13 out of 18 backtests are 

significant in the period. The corresponding individual backtest results can be obtained in 

Table 6.7(d), it shows that three pre-burst periods are identified (01 Feb 1953 to 31 Jan 1955, 

01 Apr 1984 to 31 Mar 1986, and 01 Dec 1993 to 30 Nov 1995). The total number of backtest 

in the pre-burst periods is 18, while it consists of 6 coverage tests, 6 independence tests, and 6 

joint tests. Among the 18 tests, 13 of them are significant at 5% significance level. Table 6.3 

summarizes the backtesting results for periods that identified by the original PSY method. In 

the period of asset price bubble presence, the RiskMetrics model has a result of 3/12 in the 
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tests of the U.S. Nasdaq market. It represents there are 3 out of 12 VaR backtests that we 

cannot reject the null hypothesis of the model adequately measures the downside risk at the 

5% significance level. Alternatively, the RiskMetrics model provides an adequate measure 

only in 25% (3/12) of the tests. In contrast, the RiskMetrics2006 model outperformed the 

RiskMetrics model, with a result of 5/12 (41.67%). The poor performance of RiskMetrics 

model can also been found in the Spanish market (with a result of 2/6 (33%); the 

RiskMetrics2006 model has a result of 6/6 (100%)) and in the overall figure (with a result of 

34/54 (63%); the RiskMetrics2006 model has a result of 47/54 (87%)). For the post-burst 

periods, the RiskMetrics model underperformed RiskMetrics2006 model in a large extent as 

well. It has an overall result of 28/48 (58%) while RiskMetrics2006 model has an overall 

result of 39/48 (81%). Similar results are found in the tests of other periods. 

 

Comparatively poor results of RiskMetrics model are also been found in Table 6.4, which 

shows the results for the bubble periods that are identified by the 0PSY   method. The 

summarized results are: (1) Pre-burst periods: RiskMetrics model has an overall result of 

20/36 (55%) and RiskMetrics2006 model has an overall result of 36/36 (100%); (2) Bubble 

periods: RiskMetrics model has an overall result of 207/312 (66%) and RiskMetrics2006 

model has an overall result of 252/312 (81%); (3) Post-burst periods: RiskMetrics model has 

an overall result of 19/36 (53%) and RiskMetrics2006 model has an overall result of 32/36 

(89%); (4) Periods between bubbles: RiskMetrics model has an overall result of 167/270 

(62%) and RiskMetrics2006 model has an overall result of 194/270 (72%). The 

RiskMetrics2006 model outperforms the RiskMetrics model in all tests. 

 

Similar findings are observed for the tests of the 1rPSY  method in Table 6.5. The 

summarized results are: (1) Pre-burst periods: RiskMetrics model has an overall result of 

44/66 (67%) and RiskMetrics2006 model has an overall result of 34/66 (52%); (2) Bubble 
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periods: RiskMetrics model has an overall result of 20/72 (28%) and RiskMetrics2006 model 

has an overall result of 50/72 (69%); (3) Post-burst periods: RiskMetrics model has an overall 

result of 39/66 (59%) and RiskMetrics2006 model has an overall result of 59/66 (89%); (4) 

Periods between bubbles: RiskMetrics model has an overall result of 18/36 (50%) and 

RiskMetrics2006 model has an overall result of 20/36 (56%). Except the pre-burst period, the 

superiority of the RiskMetrics2006 model shows clearly. 

 

In sum, the RiskMetrics2006 model outperforms the RiskMetrics model. It works well in all 

pre-burst, bubble, and post-burst periods; its results for the coverage, independence, and joint 

tests are also promising in all six countries (Tables 6.7 to 6.13). However, Table 6.6 shows 

that both the RiskMetrics and RiskMetrics2006 methods perform badly in the full sample. 

This poor performance is due to the conservatism of the two VaR methods: they work well in 

pre-burst, bubble, and post-burst periods but not in the full sample. The VaR model is capable 

of capturing downside risk during the bubble periods and the long memory characteristic of 

the RiskMetrics2006 model enables it to perform well in post-burst period. In contrast, the 

long memory characteristic curse itself is too conservative in normal circumstances, which 

leads a firm to being too conservative and devoting too much capital to managing downside 

risks. Simply put, the criticism that VaR models fail in crisis periods is not true, while the 

RiskMetrics2006 method tends to behave conservatively in normal periods and overstates 

downside risk in some situations.  

 

6.5 Conclusion 

 

In chapter 4, we tested the effectiveness of different VaR models in the 2008 sub-prime 

mortgage crisis period. The crisis and non-crisis periods are identified by subjective 

judgement and only sub-prime mortgage crisis has been studied, the results may be biased. In 
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this chapter we identify the crisis and non-crisis period by using both the original and 

modified PSYr1 test, and we performed empirical tests to respond to criticism concerning the 

failure of VaR models in financial crisis periods when asset price bubbles burst. We conducted 

empirical tests for six selected countries, namely the United Kingdom, Hong Kong, Germany, 

Spain, the United States, and Canada, proxied by seven indices.  

 

The results of the six backtests allowed us to draw two main conclusions. First, we showed 

that the RiskMetrics2006 model outperforms the RiskMetrics model. Specifically, the former 

works well in pre-burst, bubble, and post-burst periods, which may overstate downside risk in 

a normal period. This result conforms our findings in chapter 4 and practitioners should 

consider to adopt RiskMetrics2006 as the VaR model to estimate their downside financial risk 

rather than adopting RiskMetrics.  Second, our empirical test results showed that the 

criticism that VaR models fail in crisis periods is statistically invalid, VaR is still an effective 

tool to quantify the downside risk subject to having a good volatility model. After the 

sub-prime mortgage crisis, the Basel III committee responded to the criticism of the failure of 

VaR and shifted the VaR measure to an Expected Shortfall (ES) (see Acerbi and Tasche, 2002) 

measure of risk under stress. One shortcoming of VaR is it only defines the minimum loss of a 

portfolio value in a particular time period with a certain percentage of probability, but not the 

expected loss ones will suffer. Use ES will help to ensure a more prudent capture of tail risk 

and capital adequacy during periods of significant financial market stress. However, both the 

calculation of VaR and ES requires a volatility model, ES will suffer the same criticisms if a 

flaw volatility model is adopted. Considering this, regulators may consider to stress the 

practitioners to adopt the long-memory Riskmetrics2006 as the internal volatility model, 

rather than simply replace the VaR measure with the ES for internal model-based approach in 

managing the market risk. 
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(a) Date-stamping bubble periods in the S&P500 logarithmic price-dividend ratio: PSY test 

 

(b) Date-stamping bubble periods in the S&P500 logarithmic price-dividend ratio: 
0PSY 
 test 

 

(c) Date-stamping bubble periods in the S&P500 logarithmic price-dividend ratio: PSYr1 test 
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(d) Date-stamping bubble periods in the Nasdaq logarithmic price-dividend ratio: PSY test 

 

(e) Date-stamping bubble periods in the Nasdaq logarithmic price-dividend ratio: 
0PSY 
 Test 

 

(f) Date-stamping bubble periods in the Nasdaq logarithmic price-dividend ratio: PSYr1 test 
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(g) Date-stamping bubble periods in the HSI logarithmic price-dividend ratio: PSY test 

 

(h) Date-stamping bubble periods in the HSI logarithmic price-dividend ratio: 
0PSY 
 test 

 

(i) Date-stamping bubble periods in the HSI logarithmic price-dividend ratio: PSYr1 test 
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(j) Date-stamping bubble periods in the DAX 30 logarithmic price-dividend ratio: PSY test 

 

(k) Date-stamping bubble periods in the DAX 30 logarithmic price-dividend ratio: 
0PSY 
 test 

 

(l) Date-stamping bubble periods in the DAX 30 logarithmic price-dividend ratio: PSYr1 test 
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(m) Date-stamping bubble periods in the FTSE100 logarithmic price-dividend ratio: PSY test 

 

(n) Date-stamping bubble periods in the FTSE100 logarithmic price-dividend ratio: 
0PSY 
 test 

 

(o) Date-stamping bubble periods in the FTSE100 logarithmic price-dividend ratio: PSYr1 test 
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(p) Date-stamping bubble periods in the IBEX 35 logarithmic price-dividend ratio: PSY test 

 

(q) Date-stamping bubble periods in the IBEX 35 logarithmic price-dividend ratio: 
0PSY 
 test 

 

(r) Date-stamping bubble periods in the IBEX 35 logarithmic price-dividend ratio: PSYr1 test 
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(s) Date-stamping bubble periods in the S&P/TSX Composite logarithmic price-dividend ratio: PSY test 

 

(t) Date-stamping bubble periods in the S&P/TSX Composite logarithmic price-dividend ratio: 
0PSY 

 

test 

 

(u) Date-stamping bubble periods in the S&P/TSX Composite logarithmic price-dividend ratio: PSYr1 test 

Figure 6.3 – Date-stamping Bubble Periods of the Logarithmic Price-dividend Ratio for the 

Six Countries 
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Table 6.7 – The United States S&P500 Backtests  

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
04 Jan 1950 – 

31 Dec 2015 
343/16606 (0.00%) (2.39%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.7(a) – The United States S&P500 Backtest Results for RiskMetrics 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
04 Jan 1950 – 

31 Dec 2015 
95/16606 (0.00%) (0.44%) (1.94%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.7(b) – The United States S&P500 Backtest Results for RiskMetrics2006 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Periods 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Feb 1953 – 

31 Jan 1955 
14/503 (0.10%) (2.89%) (37.01%) (0.26%) (0.29%) (0.01%) 

01 Apr 1984 – 

31 Mar 1986 
3/503 (32.53%) (12.95%) (84.94%) (10.20%) (60.55%) (12.70%) 

01 Dec 1993 – 

30 Nov 1995 
10/506 (5.15%) (49.94%) (18.32%) (6.00%) (6.19%) (2.85%) 

Bubble Periods 

01 Feb 1955 – 

01 May 1956 
4/315 (64.41%) (25.50%) (74.80%) (17.96%) (85.36%) (26.16%) 

01 Apr 1986 – 

01 Oct 1987 
8/382 (6.09%) (22.12%) (55.80%) (21.21%) (14.54%) (11.09%) 

01 Dec 1995 – 

01 Sept 2001 
37/1452 (0.00%) (11.05%) (32.83%) (0.00%) (0.00%) (0.00%) 

Post-burst 

Periods 

02 May 1956 – 

01 May 1958 
15/504 (0.03%) (5.82%) (33.69%) (0.33%) (0.09%) (0.01%) 

02 Oct 1987 –  

01 Oct 1989 
10/505 (5.09%) (1.98%) (18.37%) (0.20%) (6.14%) (0.09%) 

02 Sept 2001 –  

01 Sept 2003 
3/498 (33.56%) (4.82%) (84.86%) (23.06%) (61.77%) (26.46%) 

Periods between 

Bubbles 

02 May 1956 – 

31 Mar 1996 
200/10047 (0.00%) (5.82%) (0.00%) (0.00%) (0.00%) (0.00%) 

02 Oct 1987 –  

30 Nov 1995 
40/2065 (0.01%) (1.98%) (0.72%) (0.02%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

* Daily data available in Datastream do not cover the identified bubbles period. 

Table 6.7(c) – The United States S&P500 Backtest Results for RiskMetrics: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Feb 1953 – 

31 Jan 1955 
6/503 (67.31%) (4.82%) (70.32%) (11.11%) (85.08%) (16.12%) 

01 Apr 1984 – 

31 Mar 1986 
1/503 (2.75%) (4.63%) (94.96%) (4.63%) (8.78%) (1.21%) 

01 Dec 1993 – 

30 Nov 1995 
4/506 (62.30%) (49.94%) (80.05%) (81.33%) (85.83%) (87.39%) 

Bubble Periods 

01 Feb 1955 – 

01 May 1956 
2/315 (48.52%) (25.50%) (87.28%) (49.07%) (77.38%) (59.11%) 

01 Apr 1986 – 

01 Oct 1987 
4/382 (92.68%) (52.09%) (77.08%) (55.14%) (95.44%) (69.27%) 

01 Dec 1995 – 

01 Sept 2001 
15/1452 (89.98%) (11.05%) (57.56%) (6.55%) (84.82%) (8.96%) 

Post-burst 

Periods 

02 May 1956 – 

01 May 1958 
3/504 (32.33%) (13.92%) (84.95%) (8.91%) (60.30%) (11.21%) 

02 Oct 1987 –  

01 Oct 1989 
5/505 (98.21%) (1.98%) (3.39%) (0.25%) (10.54%) (0.53%) 

02 Sept 2001 –  

01 Sept 2003 
2/498 (12.70%) (4.82%) (89.88%) (14.15%) (30.96%) (10.05%) 

Periods between 

Bubbles 

02 May 1956 – 

31 Mar 1996 
55/10047 (0.00%) (13.92%) (31.23%) (0.19%) (0.00%) (0.00%) 

02 Oct 1987 –  

30 Nov 1995 
15/2065 (18.90%) (1.98%) (9.67%) (1.97%) (10.62%) (1.78%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

* Daily data available in Datastream do not cover the identified bubbles period. 

Table 6.7(d) – The United States S&P500 Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Feb 1955 –  

01 Mar 1955 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

01 Apr 1955 – 

01 May 1956 
2/273 (64.11%) (82.94%) (86.33%) (92.91%) (88.38%) (94.75%) 

01 Jul 1956 – 

01 Aug 1956 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

01 Dec 1958 – 

01 Sept 1959 
5/191 (6.16%) (51.02%) (60.31%) (9.83%) (15.23%) (4.67%) 

01 Nov 1961 – 

01 Jan 1962 
0/40 (36.99%) (42.31%) (100.00%) NA (66.90%) NA 

01 Apr 1986 – 

01 May 1986 
1/23 (23.25%) (22.12%) (75.76%) (22.12%) (46.74%) (23.20%) 

01 Jun 1986 – 

01 Jul 1986 
1/22 (22.12%) (4.82%) (75.18%) (4.82%) (45.01%) (6.72%) 

01 Jan 1987 – 

01 Oct 1987 
2/190 (94.24%) (64.59%) (83.61%) (89.71%) (97.63%) (97.39%) 

01 Dec 1995 – 

01 Jul 1996 
6/147 (0.48%) (11.05%) (22.00%) (0.59%) (0.88%) (0.05%) 

01 Sept 1996 – 

01 Sept 2001 
28/1262 (0.02%) (68.60%) (65.10%) (0.40%) (0.08%) (0.01%) 

01 Nov 2001 – 

01 Feb 2002 
1/63 (66.60%) (63.57%) (85.63%) (63.57%) (89.63%) (81.44%) 

01 Mar 2002 – 

01 Apr 2002 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

Periods between 

Bubbles 

02 Mar 1955 – 

31 Mar 1955 
2/22 (1.99%) (3.84%) (51.60%) (1.08%) (5.39%) (0.23%) 

02 May 1956 – 

30 Jun 1956 
1/42 (44.51%) (5.82%) (82.31%) (5.82%) (72.86%) (12.42%) 

02 Aug 1956 – 

30 Nov 1958 
19/586 (0.00%) (1.98%) (64.21%) (0.02%) (0.01%) (0.00%) 

02 Sept 1959 – 

31 Oct 1961 
9/545 (16.23%) (12.13%) (58.21%) (74.65%) (32.38%) (63.99%) 

02 Jan 1962 – 

31 Mar 1986 
114/6091 (0.00%) (2.89%) (0.68%) (0.00%) (0.00%) (0.00%) 

02 May 1986 – 

31 May 1986 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

02 Jul 1986 – 

31 Dec 1986 
4/127 (5.19%) (1.98%) (60.85%) (1.87%) (13.26%) (0.81%) 

02 Oct 1987 – 

30 Nov 1995 
40/2065 (0.01%) (1.98%) (0.72%) (0.02%) (0.00%) (0.00%) 

02 Jul 1995 – 

31 Aug 1996 
10/296 (0.12%) (84.69%) (33.34%) (0.17%) (0.34%) (0.01%) 

02 Sept 2001 – 

31 Oct 2001 
1/38 (40.10%) (4.82%) (81.37%) (4.82%) (68.35%) (9.98%) 

02 Feb 2002 – 

28 Feb 2002 
0/18 (54.75%) (17.64%) (100.00%) NA (83.45%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Daily data available in Datastream do not cover the identified bubbles period. 

Table 6.7(e) – The United States S&P500 Backtest Results for RiskMetrics: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Feb 1955 –  

01 Mar 1955 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

01 Apr 1955 – 

01 May 1956 
1/273 (22.65%) (82.94%) (93.15%) (82.94%) (47.95%) (47.03%) 

01 Jul 1956 – 

01 Aug 1956 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

01 Dec 1958 – 

01 Sept 1959 
1/191 (46.65%) (53.55%) (91.81%) (53.55%) (76.31%) (63.31%) 

01 Nov 1961 – 

01 Jan 1962 
0/40 (36.99%) (42.31%) (100.00%) NA (66.90%) NA 

01 Apr 1986 – 

01 May 1986 
0/23 (49.65%) (23.25%) (100.00%) NA (79.36%) NA 

01 Jun 1986 – 

01 Jul 1986 
1/22 (22.12%) (4.82%) (75.18%) (4.82%) (45.01%) (6.72%) 

01 Jan 1987 – 

01 Oct 1987 
0/190 (5.07%) (47.06%) (100.00%) NA (14.81%) NA 

01 Dec 1995 – 

01 Jul 1996 
3/147 (26.62%) (11.05%) (72.27%) (31.61%) (50.61%) (31.15%) 

01 Sept 1996 – 

01 Sept 2001 
10/1262 (44.18%) (69.66%) (68.93%) (10.70%) (68.68%) (12.89%) 

01 Nov 2001 – 

01 Feb 2002 
1/63 (66.60%) (63.57%) (85.63%) (63.57%) (89.63%) (81.44%) 

01 Mar 2002 – 

01 Apr 2002 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

Periods between 

Bubbles 

02 Mar 1955 – 

31 Mar 1955 
1/22 (22.12%) (3.84%) (75.18%) (3.84%) (45.01%) (5.55%) 

02 May 1956 – 

30 Jun 1956 
0/42 (35.82%) (44.51%) (100.00%) NA (65.57%) NA 

02 Aug 1956 – 

30 Nov 1958 
4/586 (41.27%) (24.77%) (81.45%) (12.67%) (69.55%) (16.47%) 

02 Sept 1959 – 

31 Oct 1961 
4/545 (51.23%) (24.55%) (80.77%) (47.32%) (78.33%) (55.52%) 

02 Jan 1962 – 

31 Mar 1986 
25/6091 (0.00%) (97.62%) (64.98%) (0.20%) (0.00%) (0.00%) 

02 May 1986 – 

31 May 1986 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

02 Jul 1986 – 

31 Dec 1986 
3/127 (18.95%) (1.98%) (70.20%) (9.70%) (39.30%) (9.00%) 

02 Oct 1987 – 

30 Nov 1995 
15/2065 (18.90%) (1.98%) (9.67%) (1.97%) (10.62%) (1.78%) 

02 Jul 1995 – 

31 Aug 1996 
5/296 (27.80%) (86.42%) (67.80%) (36.33%) (50.94%) (35.66%) 

02 Sept 2001 – 

31 Oct 2001 
1/38 (40.10%) (4.82%) (81.37%) (4.82%) (68.35%) (9.98%) 

02 Feb 2002 – 

28 Feb 2002 
0/18 (54.75%) (17.64%) (100.00%) NA (83.45%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Daily data available in Datastream do not cover the identified bubbles period. 

Table 6.7(f) – The United States S&P500 Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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Table 6.8 – The United States Nasdaq Backtest Results  

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Jan 1973 – 

31 Dec 2015 
254/11217 (0.00%) (0.55%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.8 (a) – The United States Nasdaq Backtest Results for RiskMetrics 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Jan 1973 – 

31 Dec 2015 
90/11217 (2.93%) (0.00%) (0.01%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.8(b) – The United States Nasdaq Backtest Results for RiskMetrics2006 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 May 1984 – 

30 Apr 1986 
7/522 (45.67%) (17.64%) (68.62%) (18.61%) (69.87%) (22.55%) 

01 Dec 1993 – 

30 Nov 1995 
13/522 (0.40%) (51.02%) (32.35%) (0.45%) (0.98%) (0.05%) 

Bubble Periods 

01 May 1986 – 

01 Dec 1987 
15/414 (0.00%) (28.89%) (0.10%) (0.00%) (0.00%) (0.00%) 

01 Dec 1995 – 

01 Feb 2001 
27/1350 (0.12%) (11.05%) (29.36%) (0.28%) (0.29%) (0.02%) 

Post-burst 

Periods 

02 Dec 1987 – 

01 Dec 1989 
10/523 (6.26%) (97.57%) (53.20%) (9.43%) (14.53%) (5.02%) 

02 Feb 2001 – 

01 Feb 2003 
0/305 (1.33%) (16.99%) (100.00%) NA (4.66%) NA 

Periods between 

Bubbles 

02 Dec 1987 – 

30 Nov 1995 
56/2087 (0.00%) (97.57%) (26.62%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.8(c) – The United States Nasdaq Backtest Results for RiskMetrics: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 May 1984 – 

30 Apr 1986 
2/522 (10.54%) (4.80%) (93.01%) (13.79%) (26.84%) (8.64%) 

01 Dec 1993 – 

30 Nov 1995 
5/522 (92.24%) (51.02%) (75.56%) (78.62%) (94.82%) (87.46%) 

Bubble Periods 

01 May 1986 – 

01 Dec 1987 
10/414 (1.43%) (28.89%) (1.78%) (0.06%) (0.30%) (0.01%) 

01 Dec 1995 – 

01 Feb 2001 
14/1350 (89.19%) (11.05%) (58.79%) (3.03%) (85.55%) (4.39%) 

Post-burst 

Periods 

02 Dec 1987 – 

01 Dec 1989 
2/523 (10.45%) (12.60%) (90.13%) (28.20%) (26.57%) (16.00%) 

02 Feb 2001 – 

01 Feb 2003 
0/305 (1.33%) (16.99%) (100.00%) NA (4.66%) NA 

Periods between 

Bubbles 

02 Dec 1987 – 

30 Nov 1995 
18/2087 (51.79%) (12.60%) (14.57%) (9.37%) (28.16%) (11.21%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.8(d) – The United States Nasdaq Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Jul 1983 – 

01 Dec 1983 
2/110 (43.90%) (19.87%) (78.45%) (38.59%) (71.41%) (47.48%) 

01 Jan 1984 – 

01 Apr 1984 
3/65 (3.27%) (15.42%) (58.69%) (1.41%) (8.81%) (0.44%) 

01 May 1986 – 

01 Dec 1986 
6/153 (0.59%) (28.89%) (21.02%) (0.53%) (1.02%) (0.05%) 

01 Jan 1987 – 

01 Dec 1987 
9/239 (0.10%) (66.60%) (0.19%) (0.00%) (0.00%) (0.00%) 

01 Oct 1995 – 

01 Nov 1995 
1/23 (23.25%) (4.82%) (75.76%) (4.82%) (46.74%) (6.96%) 

01 Dec 1995 – 

01 Jan 1996 
1/22 (22.12%) (11.05%) (75.18%) (11.05%) (45.01%) (13.24%) 

01 Mar 1996 – 

01 Apr 1996 
1/22 (22.12%) (4.82%) (75.18%) (4.82%) (45.01%) (6.72%) 

01 Jun 1996 – 

01 Aug 1996 
3/44 (1.05%) (11.05%) (50.21%) (1.21%) (3.02%) (0.16%) 

01 Dec 1996 – 

01 Feb 2001 
20/1089 (1.30%) (9.98%) (38.68%) (0.60%) (3.14%) (0.15%) 

Periods between 

Bubbles 

02 Dec 1983 – 

31 Dec 1983 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Apr 1984 – 

30 Apr 1986 
7/543 (51.68%) (41.20%) (69.21%) (26.07%) (74.94%) (31.69%) 

02 Dec 1986 – 

31 Dec 1986 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

02 Dec 1987 – 

30 Sept 1995 
55/2043 (0.00%) (97.57%) (25.70%) (0.00%) (0.00%) (0.00%) 

02 Nov 1995 – 

30 Nov 1995 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Jan 1996 – 

28 Feb 1996 
1/42 (44.51%) (4.82%) (82.31%) (4.82%) (72.86%) (10.61%) 

02 Apr 1996 – 

31 May 1996 
1/44 (46.69%) (23.25%) (82.73%) (23.25%) (74.95%) (37.63%) 

02 Aug 1996 – 

30 Nov 1996 
0/86 (18.86%) (88.24%) (100.00%) NA (42.13%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Bubble Periods are too fragment, no Pre-Burst and Post-Burst Period be defined.  

Table 6.8(e) – The United States Nasdaq Backtest Results for RiskMetrics: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Jul 1983 – 

01 Dec 1983 1/110 (92.25%) (81.04%) (89.18%) (81.04%) (98.61%) (96.70%) 

01 Jan 1984 – 

01 Apr 1984 0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

01 May 1986 – 

01 Dec 1986 5/153 (2.56%) (28.89%) (13.35%) (0.30%) (2.69%) (0.08%) 

01 Jan 1987 – 

01 Dec 1987 5/239 (13.89%) (66.60%) (7.98%) (2.13%) (7.21%) (1.72%) 

01 Oct 1995 – 

01 Nov 1995 0/23 (49.65%) (23.25%) (100.00%) NA (79.36%) NA 

01 Dec 1995 – 

01 Jan 1996 1/22 (22.12%) (11.05%) (75.18%) (11.05%) (45.01%) (13.24%) 

01 Mar 1996 – 

01 Apr 1996 1/22 (22.12%) (4.82%) (75.18%) (4.82%) (45.01%) (6.72%) 

01 Jun 1996 – 

01 Aug 1996 2/44 (8.36%) (30.02%) (65.86%) (2.32%) (20.31%) (1.46%) 

01 Dec 1996 – 

01 Feb 2001 9/1089 (55.29%) (31.48%) (69.84%) (18.34%) (77.79%) (22.85%) 

Periods between 

Bubbles 

02 Dec 1983 – 

31 Dec 1983 0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Apr 1984 – 

30 Apr 1986 2/543 (8.93%) (3.95%) (93.14%) (11.70%) (23.53%) (6.64%) 

02 Dec 1986 – 

31 Dec 1986 0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

02 Dec 1987 – 

30 Sept 1995 18/2043 (58.13%) (12.60%) (14.92%) (9.37%) (30.36%) (11.50%) 

02 Nov 1995 – 

30 Nov 1995 0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Jan 1996 – 

28 Feb 1996 1/42 (44.51%) (4.82%) (82.31%) (4.82%) (72.86%) (10.61%) 

02 Apr 1996 – 

31 May 1996 0/44 (34.70%) (46.69%) (100.00%) NA (64.26%) NA 

02 Aug 1996 – 

30 Nov 1996 0/86 (18.86%) (88.24%) (100.00%) NA (42.13%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Bubble Periods are too fragment, no Pre-Burst and Post-Burst Period be defined.  

Table 6.8(f) – The United States Nasdaq Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

03 Jan 1973 – 

31 Aug 1973# 
0/173 (6.22%) (54.47%) (100.00%) NA (17.57%) NA 

01 Oct 2002 – 

30 Sept 2004 
4/523 (57.28%) (28.56%) (80.37%) (40.06%) (82.71%) (49.91%) 

Bubble Periods 

01 Sept 1973 – 

01 Feb 2001 
174/7154 (0.00%) (2.82%) (0.00%) (0.00%) (0.00%) (0.00%) 

01 Oct 2004 – 

01 May 2009 
23/1196 (0.44%) (71.55%) (34.20%) (5.22%) (1.11%) (0.97%) 

Post-burst 

Periods 

02 Feb 2001 – 

01 Feb 2003 
1/521 (2.32%) (59.83%) (95.05%) (59.83%) (7.59%) (6.62%) 

02 May 2009 – 

01 May 2011 
14/520 (0.13%) (93.00%) (37.83%) (0.20%) (0.40%) (0.01%) 

Periods between 

Bubbles 

02 Feb 2001 – 

30 Sept 2004 
5/955 (10.35%) (59.83%) (81.85%) (14.22%) (25.88%) (9.10%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Sept 1971 – 31 Aug 1973 to 03 Jan 1973 – 31 Aug 1973 

 

Table 6.8(g) – The United States Nasdaq Backtest Results for RiskMetrics: Bubbles 

Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as the Start 

of the BADF Tests Sampling Window 
 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

03 Jan 1973 – 

31 Aug 1973# 
0/173 (6.22%) (54.47%) (100.00%) NA (17.57%) NA 

01 Oct 2002 – 

30 Sept 2004 
0/523 (0.12%) (2.28%) (100.00%) NA (0.52%) NA 

Bubble Periods 

01 Sept 1973 – 

01 Feb 2001 
69/7154 (76.14%) (0.02%) (0.05%) (0.00%) (0.23%) (0.00%) 

01 Oct 2004 – 

01 May 2009 
7/1196 (11.82%) (12.26%) (77.39%) (39.15%) (28.31%) (27.86%) 

Post-burst 

Periods 

02 Feb 2001 – 

01 Feb 2003 
1/521 (2.32%) (59.83%) (95.05%) (59.83%) (7.59%) (6.62%) 

02 May 2009 – 

01 May 2011 
2/520 (10.70%) (4.29%) (90.10%) (4.92%) (27.07%) (3.48%) 

Periods between 

Bubbles 

02 Feb 2001 – 

30 Sept 2004 
1/955 (0.04%) (59.83%) (96.35%) (59.83%) (0.18%) (0.15%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Sept 1971 – 31 Aug 1973 to 03 Jan 1973 – 31 Aug 1973 
 

Table 6.8(h) – The United States Nasdaq Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as the Start 

of the BADF Tests Sampling Window 

 

  



  

223 

Table 6.9 – Hong Kong HSI Backtest Results 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jun 1973 – 

31 Dec 2015 
209/11110 (0.00%) (1.55%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(a) – Hong Kong HSI Backtest Results for RiskMetrics 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jun 1973 – 

31 Dec 2015 
78/11110 (0.09%) (0.22%) (12.68%) (0.00%) (0.12%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(b) – Hong Kong HSI Backtest Results for RiskMetrics2006 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Aug 1985 – 

31 Jul 1987 11/522 (2.68%) (14.31%) (49.09%) (18.49%) (6.79%) (7.00%) 

01 Jan 1992 – 

31 Dec 1993 14/523 (0.14%) (74.45%) (0.39%) (0.00%) (0.01%) (0.00%) 

01 Oct 2005 – 

30 Sept 2007 14/520 (0.13%) (2.89%) (37.83%) (0.63%) (0.40%) (0.03%) 

Bubble Periods 

01 Aug 1987 – 

01 Sept 1987 0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

01 Jan 1994 – 

01 Mar 1994 2/42 (7.62%) (2.89%) (65.05%) (4.35%) (18.74%) (2.43%) 

01 Oct 2007 – 

01 Dec 2007 1/45 (47.78%) (26.63%) (82.92%) (26.63%) (75.94%) (41.91%) 

Post-burst 

Periods 

02 Sept 1987 – 

01 Sept 1989 11/523 (2.72%) (35.64%) (22.05%) (0.49%) (4.11%) (0.15%) 

02 Mar 1994 – 

01 Mar 1996 5/391 (59.53%) (61.53%) (4.54%) (1.33%) (11.73%) (2.29%) 

02 Dec 2007 – 

01 Dec 2009 9/522 (13.17%) (34.52%) (13.79%) (0.54%) (10.68%) (0.43%) 

Periods between 

Bubbles 

02 Sept 1987 – 

31 Dec 1993 36/1653 (0.00%) (35.64%) (0.72%) (0.00%) (0.00%) (0.00%) 

02 Mar 1994 – 

30 Sept 2007 66/3543 (0.00%) (47.06%) (4.19%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(c) – Hong Kong HSI Backtest Results for RiskMetrics: Bubbles Date-stamped by 

PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Aug 1985 – 

31 Jul 1987 
2/522 (10.54%) (84.69%) (90.12%) (39.32%) (26.74%) (21.32%) 

01 Jan 1992 – 

31 Dec 1993 
3/523 (28.68%) (30.38%) (85.23%) (5.47%) (55.73%) (6.77%) 

01 Oct 2005 – 

30 Sept 2007 
5/520 (92.93%) (60.34%) (75.51%) (44.23%) (94.88%) (57.03%) 

Bubble Periods 

01 Aug 1987 – 

01 Sept 1987 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

01 Jan 1994 – 

01 Mar 1994 
2/42 (7.62%) (2.89%) (65.05%) (4.35%) (18.74%) (2.43%) 

01 Oct 2007 – 

01 Dec 2007 
0/45 (34.16%) (47.78%) (100.00%) NA (63.62%) NA 

Post-burst 

Periods 

02 Sept 1987 – 

01 Sept 1989 
5/523 (91.89%) (35.64%) (3.26%) (0.10%) (10.14%) (0.21%) 

02 Mar 1994 – 

01 Mar 1996 
2/391 (28.40%) (61.53%) (88.58%) (52.81%) (55.75%) (48.90%) 

02 Dec 2007 – 

01 Dec 2009 
5/522 (92.24%) (34.52%) (75.56%) (7.11%) (94.82%) (11.81%) 

Periods between 

Bubbles 

02 Sept 1987 – 

31 Dec 1993 
12/1653 (23.91%) (35.64%) (7.37%) (0.20%) (10.10%) (0.21%) 

02 Mar 1994 – 

30 Sept 2007 
27/3543 (13.74%) (47.06%) (20.30%) (2.21%) (14.75%) (1.77%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(d) – Hong Kong HSI Backtest Result for RiskMetrics2006: Bubbles Date-stamped 

by PSY Method Without Minimum Bubble Duration Limit 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Jul 1980 – 

30 Jun 1982 
15/522 (0.05%) (11.05%) (34.56%) (0.11%) (0.14%) (0.00%) 

01 Oct 1987 – 

30 Sept 1989 
11/522 (2.68%) (12.13%) (22.10%) (0.28%) (4.07%) (0.09%) 

01 Nov 2001 – 

31 Oct 2003 
6/522 (73.75%) (38.99%) (70.85%) (69.08%) (88.16%) (77.88%) 

Bubble Periods 

01 Jul 1982 – 

01 Sept 1987 
29/1349 (0.02%) (21.00%) (25.88%) (0.47%) (0.06%) (0.02%) 

01 Oct 1989 – 

01 Mar 1994 
27/1152 (0.01%) (9.98%) (2.47%) (0.01%) (0.00%) (0.00%) 

01 Nov 2003 – 

01 Dec 2007 
25/1065 (0.02%) (66.60%) (27.27%) (7.89%) (0.05%) (0.34%) 

Post-burst 

Periods 

02 Sept 1987 – 

01 Sept 1989 
11/523 (2.72%) (35.64%) (22.05%) (0.49%) (4.11%) (0.15%) 

02 Mar 1994 – 

01 Mar 1996 
5/523 (91.89%) (47.06%) (3.26%) (1.19%) (10.14%) (2.30%) 

02 Dec 2007 – 

01 Dec 2009 
9/522 (13.17%) (34.52%) (13.79%) (0.54%) (10.68%) (0.43%) 

Periods between 

Bubbles 

02 Sept 1987 – 

30 Sept 1989 
11/543 (3.49%) (35.64%) (21.15%) (0.49%) (4.95%) (0.18%) 

02 Mar 1994 – 

31 Oct 2003 
42/2523 (0.22%) (47.06%) (0.50%) (0.00%) (0.02%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(e) – Hong Kong HSI Backtest Results for RiskMetrics: Bubbles Date-stamped by 

Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Jul 1980 – 

30 Jun 1982 
3/522 (28.86%) (96.06%) (85.21%) (16.33%) (55.96%) (18.16%) 

01 Oct 1987 – 

30 Sept 1989 
5/522 (92.24%) (12.13%) (3.27%) (0.05%) (10.16%) (0.11%) 

01 Nov 2001 – 

31 Oct 2003 
1/522 (2.30%) (2.43%) (95.05%) (2.43%) (7.53%) (0.60%) 

Bubble Periods 

01 Jul 1982 – 

01 Sept 1987 
13/1349 (89.27%) (21.00%) (61.48%) (2.50%) (87.31%) (3.71%) 

01 Oct 1989 – 

01 Mar 1994 
9/1152 (43.78%) (9.98%) (70.64%) (8.33%) (68.94%) (10.28%) 

01 Nov 2003 – 

01 Dec 2007 
9/1065 (60.16%) (86.42%) (69.52%) (52.94%) (80.81%) (59.76%) 

Post-burst 

Periods 

02 Sept 1987 – 

01 Sept 1989 
5/523 (91.89%) (35.64%) (3.26%) (0.10%) (10.14%) (0.21%) 

02 Mar 1994 – 

01 Mar 1996 
2/523 (10.45%) (47.06%) (90.13%) (46.18%) (26.57%) (24.26%) 

02 Dec 2007 – 

01 Dec 2009 
5/522 (92.24%) (34.52%) (75.56%) (7.11%) (94.82%) (11.81%) 

Periods between 

Bubbles 

02 Sept 1987 – 

30 Sept 1989 
5/543 (85.09%) (35.64%) (3.12%) (0.10%) (9.65%) (0.21%) 

02 Mar 1994 – 

31 Oct 2003 
18/2523 (12.73%) (47.06%) (11.77%) (0.78%) (9.20%) (0.60%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.9(f) – Hong Kong HSI Backtest Results for RiskMetrics2006: Bubbles Date-stamped 

by Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 
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Table 6.10 – Germany DAX 30 Backtest Results  

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jan 1973 – 

31 Dec 2015 
196/11218 (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(a) – Germany DAX 30 Backtest Results for RiskMetrics 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jan 1973 – 

31 Dec 2015 
54/11218 (0.00%) (0.87%) (2.85%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(b) – Germany DAX 30 Backtest Results for RiskMetrics2006 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Mar 1981 – 

28 Feb 1983 
11/521 (2.65%) (49.94%) (49.05%) (24.29%) (6.71%) (9.48%) 

01 Nov 1983 – 

31 Oct 1985 
11/523 (2.72%) (2.89%) (49.13%) (1.79%) (6.87%) (0.58%) 

01 Aug 1995 – 

31 Jul 1997 
10/523 (6.26%) (41.20%) (53.20%) (12.42%) (14.53%) (6.69%) 

Bubble Periods 

01 Mar 1983 – 

01 Mar 1984 
4/263 (43.04%) (0.24%) (76.06%) (0.43%) (69.96%) (0.74%) 

01 Nov 1985 – 

01 Jun 1986 
3/151 (28.27%) (8.92%) (72.64%) (12.15%) (52.82%) (13.81%) 

01 Aug 1997 – 

01 Sept 1997 
1/22 (22.12%) (15.42%) (75.18%) (15.42%) (45.01%) (17.14%) 

Post-burst 

Periods 

02 Mar 1984 – 

01 Mar 1986 
9/521 (13.04%) (49.94%) (57.34%) (16.85%) (27.19%) (12.63%) 

02 Jun 1986 – 

01 Jun 1988 
12/523 (1.09%) (63.49%) (26.94%) (0.00%) (2.13%) (0.00%) 

02 Sept 1997 – 

01 Sept 1999 
12/522 (1.07%) (40.10%) (27.00%) (0.28%) (2.10%) (0.05%) 

Periods between 

Bubbles 

02 Mar 1984 – 

31 Oct 1985 
8/435 (11.54%) (49.94%) (58.36%) (11.66%) (24.91%) (8.19%) 

02 Jun 1986 – 

31 Jul 1997 
45/2914 (0.62%) (63.49%) (19.29%) (0.00%) (1.02%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(c) – Germany DAX 30 Backtest Results for RiskMetrics: Bubbles Date-stamped 

by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Mar 1981 – 

28 Feb 1983 
3/521 (29.04%) (65.67%) (85.20%) (52.72%) (56.20%) (50.24%) 

01 Nov 1983 – 

31 Oct 1985 
3/523 (28.68%) (76.36%) (85.23%) (71.41%) (55.73%) (64.49%) 

01 Aug 1995 – 

31 Jul 1997 
6/523 (74.09%) (41.20%) (70.87%) (89.10%) (88.30%) (93.44%) 

Bubble Periods 

01 Mar 1983 – 

01 Mar 1984 
1/263 (24.77%) (28.31%) (93.02%) (28.31%) (51.07%) (28.81%) 

01 Nov 1985 – 

01 Jun 1986 
1/151 (65.67%) (8.92%) (90.78%) (8.92%) (89.99%) (21.36%) 

01 Aug 1997 – 

01 Sept 1997 
1/22 (22.12%) (15.42%) (75.18%) (15.42%) (45.01%) (17.14%) 

Post-burst 

Periods 

02 Mar 1984 – 

01 Mar 1986 
3/521 (29.04%) (29.85%) (85.20%) (77.73%) (56.20%) (69.60%) 

02 Jun 1986 – 

01 Jun 1988 
4/523 (57.28%) (61.38%) (80.37%) (28.35%) (82.71%) (37.41%) 

02 Sept 1997 – 

01 Sept 1999 
3/522 (28.86%) (40.10%) (85.21%) (7.55%) (55.96%) (9.10%) 

Periods between 

Bubbles 

02 Mar 1984 – 

31 Oct 1985 
2/435 (20.52%) (29.85%) (89.18%) (57.92%) (44.41%) (44.07%) 

02 Jun 1986 – 

31 Jul 1997 
19/2914 (4.38%) (61.38%) (11.34%) (4.24%) (3.74%) (2.08%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(d) – Germany DAX 30 Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Apr 1974 – 

31 Mar 1976 
1/523 (2.28%) (17.62%) (95.06%) (17.62%) (7.47%) (3.00%) 

01 Nov 1991 – 

31 Oct 1993 
5/521 (92.58%) (71.43%) (3.27%) (7.02%) (10.19%) (11.68%) 

Bubble Periods 

01 Apr 1976 – 

01 Jun 1986 
48/2652 (0.02%) (19.87%) (88.89%) (0.22%) (0.08%) (0.01%) 

01 Nov 1993 – 

01 Sept 1997 
19/1001 (1.11%) (3.84%) (39.09%) (7.56%) (2.75%) (2.07%) 

Post-burst 

Periods 

02 Jun 1986 – 

01 Jun 1988 
12/523 (1.09%) (63.49%) (26.94%) (0.00%) (2.13%) (0.00%) 

02 Nov 1993 – 

01 Nov 1995 
10/522 (6.19%) (2.89%) (53.16%) (10.82%) (14.39%) (5.76%) 

Periods between 

Bubbles 

02 Jun 1986 – 

31 Oct 1993 
27/1935 (9.91%) (63.49%) (5.67%) (0.00%) (4.17%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(e) – Germany DAX 30 Backtest Results for RiskMetrics: Bubbles Date-stamped 

by Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

01 Apr 1974 – 

31 Mar 1976 
1/523 (2.28%) (17.62%) (95.06%) (17.62%) (7.47%) (3.00%) 

01 Nov 1991 – 

31 Oct 1993 
3/521 (29.04%) (48.71%) (0.87%) (1.86%) (1.83%) (2.54%) 

Bubble Periods 

01 Apr 1976 – 

01 Jun 1986 
10/2652 (0.02%) (76.36%) (78.32%) (5.99%) (0.11%) (0.10%) 

01 Nov 1993 – 

01 Sept 1997 
9/1001 (74.41%) (57.83%) (68.60%) (97.78%) (87.37%) (98.74%) 

Post-burst 

Periods 

02 Jun 1986 – 

01 Jun 1988 
4/523 (57.28%) (61.38%) (80.37%) (28.35%) (82.71%) (37.41%) 

02 Nov 1993 – 

01 Nov 1995 
4/522 (57.57%) (58.32%) (80.35%) (63.53%) (82.90%) (72.07%) 

Periods between 

Bubbles 

02 Jun 1986 – 

31 Oct 1993 
11/1935 (3.79%) (61.38%) (5.02%) (1.05%) (1.70%) (0.41%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.10(f) – Germany DAX 30 Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as the Start 

of the BADF Tests Sampling Window 
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Table 6.11 – The United Kingdom FTSE100 Backtest Results  

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jan 1986 – 

31 Dec 2015 
151/7826 (0.00%) (1.32%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(a) – The United Kingdom FTSE100 Backtest Results for RiskMetrics 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
01 Jan 1986 – 

31 Dec 2015 
43/7826 (0.00%) (0.03%) (23.92%) (0.02%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(b) – The United Kingdom FTSE100 Backtest Results for RiskMetrics2006 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Aug 1995 – 

31 Jul 1997 
10/523 (6.26%) (41.20%) (53.20%) (63.10%) (14.53%) (40.68%) 

Bubble Periods 

01 Aug 1997 – 

01 Sept 1998 
8/283 (1.15%) (9.98%) (49.43%) (18.55%) (3.26%) (3.91%) 

01 Apr 1999 – 

01 May 2000 
4/283 (51.05%) (13.22%) (73.44%) (35.13%) (76.03%) (43.32%) 

Post-burst 

Period 

02 May 2000 – 

01 May 2002 
10/522 (6.19%) (99.20%) (53.16%) (1.64%) (14.39%) (0.84%) 

Period between 

Bubbles 

02 Sept 1998 – 

31 Mar 1999 
2/151 (70.26%) (68.60%) (81.62%) (56.51%) (90.49%) (73.22%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Exclude the overlapped period 

Table 6.11(c) – The United Kingdom FTSE100 Backtest Results for RiskMetrics: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Aug 1995 – 

31 Jul 1997 
3/523 (28.68%) (34.99%) (85.23%) (56.13%) (55.73%) (52.68%) 

Bubble Periods 

01 Aug 1997 – 

01 Sept 1998 
3/283 (91.99%) (9.98%) (79.95%) (36.08%) (96.34%) (52.22%) 

01 Apr 1999 – 

01 May 2000 
2/283 (60.07%) (13.22%) (86.58%) (25.41%) (85.96%) (38.94%) 

Post-burst 

Period 

02 May 2000 – 

01 May 2002 
3/522 (28.86%) (32.32%) (85.21%) (62.87%) (55.96%) (58.09%) 

Period between 

Bubbles 

02 Sept 1998 – 

31 Mar 1999 
0/151 (8.15%) (65.67%) (100.00%) NA (21.92%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(d) – The United Kingdom FTSE100 Backtest Results for RiskMetrics2006: 

Bubbles Date-stamped by Original PSY method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Aug 1997 – 

01 Sept 1997 
1/22 (22.12%) (9.98%) (75.18%) (9.98%) (45.01%) (12.21%) 

01 Oct 1997 – 

01 Nov 1997 
1/23 (23.25%) (16.52%) (75.76%) (16.52%) (46.74%) (18.72%) 

01 Feb 1998 – 

01 Sept 1998 
5/152 (2.49%) (64.59%) (55.84%) (16.97%) (6.82%) (4.64%) 

01 Mar 1999 – 

01 Jun 1999 
2/67 (18.70%) (38.99%) (72.37%) (27.70%) (39.33%) (23.00%) 

01 Jul 1999 – 

01 Aug 1999 
1/22 (22.12%) (21.00%) (75.18%) (21.00%) (45.01%) (21.56%) 

01 Jan 2000 – 

01 Feb 2000 
1/22 (22.12%) (1.10%) (75.18%) (1.10%) (45.01%) (1.87%) 

01 Apr 2000 – 

01 May 2000 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

01 Oct 2002 – 

01 Nov 2002 
0/24 (48.73%) (24.37%) (100.00%) NA (78.57%) NA 

01 Oct 2008 – 

01 Dec 2008 
2/44 (8.36%) (2.89%) (65.86%) (0.85%) (20.31%) (0.58%) 

01 Mar 2009 – 

01 Apr 2009 
1/23 (23.25%) (0.24%) (100.00%) (0.24%) (49.02%) (0.49%) 

Periods between 

Bubbles 

02 Sept 1997 – 

30 Sept 1997 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Nov 1997 – 

31 Jan 1998 
1/65 (68.60%) (36.76%) (85.86%) (36.76%) (90.70%) (61.40%) 

02 Sept 1998 – 

28 Feb 1999 
2/128 (55.45%) (68.60%) (80.03%) (56.51%) (81.33%) (68.44%) 

02 Jun 1999 – 

30 Jun 1999 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Aug 1999 – 

31 Dec 1999 
0/110 (13.70%) (92.25%) (100.00%) NA (33.10%) NA 

02 Feb 2000 – 

31 Mar 2000 
0/43 (35.25%) (45.60%) (100.00%) NA (64.91%) NA 

02 May 2000 – 

30 Sept 2002 
15/630 (0.31%) (99.20%) (39.19%) (0.13%) (0.87%) (0.01%) 

02 Nov 2002 – 

30 Sept 2008 
35/1542 (0.00%) (64.59%) (24.23%) (0.01%) (0.00%) (0.00%) 

02 Dec 2008 – 

28 Feb 2009 
1/64 (67.60%) (33.39%) (85.75%) (33.39%) (90.17%) (57.46%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(e) – The United Kingdom FTSE100 Backtest Results for RiskMetrics: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Aug 1997 – 

01 Sept 1997 
1/22 (22.12%) (9.98%) (75.18%) (9.98%) (45.01%) (12.21%) 

01 Oct 1997 – 

01 Nov 1997 
1/23 (23.25%) (16.52%) (75.76%) (16.52%) (46.74%) (18.72%) 

01 Feb 1998 – 

01 Sept 1998 
1/152 (65.12%) (64.59%) (90.81%) (64.59%) (89.69%) (81.24%) 

01 Mar 1999 – 

01 Jun 1999 
1/67 (70.57%) (38.99%) (86.08%) (38.99%) (91.70%) (64.34%) 

01 Jul 1999 – 

01 Aug 1999 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

01 Jan 2000 – 

01 Feb 2000 
1/22 (22.12%) (1.10%) (75.18%) (1.10%) (45.01%) (1.87%) 

01 Apr 2000 – 

01 May 2000 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

01 Oct 2002 – 

01 Nov 2002 
0/24 (48.73%) (24.37%) (100.00%) NA (78.57%) NA 

01 Oct 2008 – 

01 Dec 2008 
2/44 (8.36%) (2.89%) (65.86%) (0.85%) (20.31%) (0.58%) 

01 Mar 2009 – 

01 Apr 2009 
0/23 (49.65%) (23.25%) (100.00%) NA (79.36%) NA 

Periods between 

Bubbles 

02 Sept 1997 – 

30 Sept 1997 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Nov 1997 – 

31 Jan 1998 
0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

02 Sept 1998 – 

28 Feb 1999 
0/128 (10.87%) (79.59%) (100.00%) NA (27.63%) NA 

02 Jun 1999 – 

30 Jun 1999 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

02 Aug 1999 – 

31 Dec 1999 
0/110 (13.70%) (92.25%) (100.00%) NA (33.10%) NA 

02 Feb 2000 – 

31 Mar 2000 
0/43 (35.25%) (45.60%) (100.00%) NA (64.91%) NA 

02 May 2000 – 

30 Sept 2002 
4/630 (32.36%) (32.32%) (82.10%) (67.42%) (59.88%) (65.23%) 

02 Nov 2002 – 

30 Sept 2008 
12/1542 (36.24%) (94.25%) (66.43%) (3.41%) (60.12%) (3.99%) 

02 Dec 2008 – 

28 Feb 2009 
0/64 (25.67%) (67.60%) (100.00%) NA (52.56%) NA 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(f) – The United Kingdom FTSE100 Backtest Results for RiskMetrics2006: 

Bubbles Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Feb 1986 – 

31 Jan 1988 
0/520 (0.12%) (2.34%) (100.00%) NA (0.54%) NA 

Bubble Periods 

01 Feb 1988 – 

01 May 2000 
53/3196 (0.06%) (41.20%) (18.12%) (61.21%) (0.12%) (23.47%) 

01 Nov 2003 – 

01 Apr 2009 
37/1413 (0.00%) (67.60%) (34.39%) (0.00%) (0.00%) (0.00%) 

Post-burst 

Period 

02 May 2000 – 

01 May 2002 
10/522 (6.19%) (99.20%) (53.16%) (1.64%) (14.39%) (0.84%) 

Period between 

Bubbles 

02 May 2000 – 

31 Oct 2003 
17/914 (1.96%) (99.20%) (42.19%) (0.25%) (4.75%) (0.07%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(g) – The United Kingdom FTSE100 Backtest Results for RiskMetrics: Bubbles 

Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as the Start 

of the BADF Tests Sampling Window 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Feb 1986 – 

31 Jan 1988 
0/520 (0.12%) (2.34%) (100.00%) NA (0.54%) NA 

Bubble Periods 

01 Feb 1988 – 

01 May 2000 
17/3196 (0.35%) (4.67%) (66.98%) (60.51%) (1.28%) (17.59%) 

01 Nov 2003 – 

01 Apr 2009 
13/1413 (75.94%) (95.09%) (62.30%) (1.57%) (84.56%) (2.34%) 

Post-burst 

Period 

02 May 2000 – 

01 May 2002 
3/522 (28.86%) (32.32%) (85.21%) (62.87%) (55.96%) (58.09%) 

Period between 

Bubbles 

02 May 2000 – 

31 Oct 2003 
5/914 (13.22%) (32.32%) (81.45%) (71.77%) (31.32%) (52.45%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.11(h) – The United Kingdom FTSE100 Backtest Results for RiskMetrics2006: 

Bubbles Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as 

the Start of the BADF Tests Sampling Window 
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Table 6.12 – Spain IBEX 35 Backtest Results  

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Mar 1987 – 

31 Dec 2015 
136/7523 (0.00%) (0.49%) (1.53%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(a) – Spain IBEX 35 Backtest Results for RiskMetrics 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Mar 1987 – 

31 Dec 2015 
48/7523 (0.07%) (0.49%) (31.75%) (0.13%) (0.20%) (0.01%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(b) – Spain IBEX 35 Backtest Results for RiskMetrics2006 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Feb 1995 – 

31 Jan 1997 
10/523 (6.26%) (25.50%) (53.20%) (31.49%) (14.53%) (18.08%) 

Bubble Period 
01 Feb 1997 – 

01 Sept 1998 
10/412 (1.38%) (85.02%) (23.09%) (0.15%) (2.36%) (0.03%) 

Post-burst 

Period 

02 Sept 1998 – 

01 Sept 2000 
8/523 (25.88%) (5.82%) (10.37%) (0.90%) (14.07%) (1.01%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(c) – Spain IBEX 35 Backtest Result for RiskMetrics: Bubbles Date-stamped by 

Original PSY Method 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Feb 1995 – 

31 Jan 1997 4/523 (57.28%) (56.85%) (80.37%) (79.08%) (82.71%) (84.67%) 

Bubble Period 
01 Feb 1997 – 

01 Sept 1998 3/412 (56.00%) (46.65%) (83.36%) (89.21%) (82.54%) (91.60%) 

Post-burst 

Period 

02 Sept 1998 – 

01 Sept 2000 3/523 (28.68%) (5.82%) (85.23%) (18.49%) (55.73%) (20.20%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(d) – Spain IBEX 35 Backtest Result for RiskMetrics2006: Bubbles Date-stamped 

by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Oct 1990 – 

01 Nov 1990 
0/24 (48.73%) (24.37%) (100.00%) NA (78.57%) NA 

01 Feb 1994 – 

01 Mar 1994 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

01 Feb 1997 – 

01 Aug 1997 
1/130 (78.28%) (85.02%) (90.05%) (85.02%) (95.52%) (94.57%) 

01 Oct 1997 – 

01 Nov 1997 
3/23 (0.14%) (5.82%) (33.76%) (0.15%) (0.38%) (0.00%) 

01 Feb 1998 – 

01 Sept 1998 
6/152 (0.57%) (62.55%) (48.10%) (1.09%) (1.70%) (0.10%) 

01 Feb 2000 – 

01 Apr 2000 
0/44 (34.70%) (46.69%) (100.00%) NA (64.26%) NA 

01 Mar 2009 – 

01 Apr 2009 
0/23 (49.65%) (23.25%) (100.00%) NA (79.36%) NA 

Periods between 

Bubbles 

02 Nov 1990 – 

31 Jan 1994 
12/847 (25.13%) (53.16%) (15.71%) (5.86%) (19.03%) (5.87%) 

02 Mar 1994 – 

31 Jan 1997 
12/763 (14.23%) (24.37%) (53.55%) (40.22%) (28.13%) (32.59%) 

02 Aug 1997 – 

30 Sept 1997 
0/42 (35.82%) (44.51%) (100.00%) NA (65.57%) NA 

02 Nov 1997 – 

31 Jan 1998 
0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

02 Sept 1998 – 

01 Jan 2000 
6/348 (21.83%) (5.82%) (64.59%) (9.09%) (42.18%) (8.71%) 

02 Apr 2000 – 

28 Feb 2009 
46/2325 (0.00%) (74.48%) (31.20%) (0.01%) (0.01%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(e) – Spain IBEX35 Backtest Result for RiskMetrics: Bubbles Date-stamped by 

PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Oct 1990 – 

01 Nov 1990 
0/24 (48.73%) (24.37%) (100.00%) NA (78.57%) NA 

01 Feb 1994 – 

01 Mar 1994 
0/21 (51.59%) (21.00%) (100.00%) NA (80.97%) NA 

01 Feb 1997 – 

01 Aug 1997 
0/130 (10.60%) (78.28%) (100.00%) NA (27.08%) NA 

01 Oct 1997 – 

01 Nov 1997 
1/23 (23.25%) (18.75%) (75.76%) (18.75%) (46.74%) (20.57%) 

01 Feb 1998 – 

01 Sept 1998 
2/152 (70.90%) (62.55%) (81.68%) (87.81%) (90.80%) (94.04%) 

01 Feb 2000 – 

01 Apr 2000 
0/44 (34.70%) (46.69%) (100.00%) NA (64.26%) NA 

01 Mar 2009 – 

01 Apr 2009 
0/23 (49.65%) (23.25%) (100.00%) NA (79.36%) NA 

Periods between 

Bubbles 

02 Nov 1990 – 

31 Jan 1994 
3/847 (2.93%) (40.60%) (88.38%) (21.58%) (9.21%) (5.61%) 

02 Mar 1994 – 

31 Jan 1997 
6/763 (53.78%) (24.37%) (75.76%) (70.20%) (78.87%) (75.74%) 

02 Aug 1997 – 

30 Sept 1997 
0/42 (35.82%) (44.51%) (100.00%) NA (65.57%) NA 

02 Nov 1997 – 

31 Jan 1998 
0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

02 Sept 1998 – 

01 Jan 2000 
2/348 (38.62%) (5.82%) (87.90%) (16.51%) (67.91%) (22.58%) 

02 Apr 2000 – 

28 Feb 2009 
17/2325 (17.13%) (15.38%) (61.67%) (1.06%) (34.60%) (0.92%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.12(f) – Spain IBEX35 Backtest Results for RiskMetrics2006: Bubbles Date-stamped 

by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

03 Mar 1987# – 

31 Oct 1987 
0/174 (6.15%) (54.01%) (100.00%) NA (17.40%) NA 

01 Aug 2002 – 

31 Jul 2004 
7/522 (45.67%) (79.59%) (66.24%) (34.16%) (68.92%) (39.05%) 

Bubble Periods 

01 Nov 1987 – 

01 Apr 2000 
52/3240 (0.15%) (2.55%) (1.02%) (0.00%) (0.02%) (0.00%) 

01 Aug 2004 – 

01 Apr 2009 
28/1218 (0.01%) (3.84%) (67.37%) (0.07%) (0.05%) (0.00%) 

Post-burst 

Periods 

02 Apr 2000 – 

01 Apr 2002 
8/521 (25.48%) (74.48%) (10.42%) (0.22%) (13.96%) (0.25%) 

02 Apr 2009 – 

01 Apr 2011 
8/522 (25.68%) (39.55%) (61.74%) (7.82%) (46.40%) (7.99%) 

Period between 

Bubbles 

02 Apr 2000 – 

31 Jul 2004 
18/1130 (6.52%) (74.48%) (28.79%) (0.88%) (10.38%) (0.49%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Nov 1985 – 31 Oct 1987 to 03 Mar 1987 – 31 Aug 1987 

Table 6.12(g) – Spain IBEX35 Backtest Results for RiskMetrics: Bubbles Date-stamped by 

Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst 

Periods 

03 Mar 1987# – 

31 Oct 1987 
0/174 (6.15%) (54.01%) (100.00%) NA (17.40%) NA 

01 Aug 2002 – 

31 Jul 2004 
1/522 (2.30%) (5.78%) (95.05%) (5.78%) (7.53%) (1.25%) 

Bubble Periods 

01 Nov 1987 – 

01 Apr 2000 
20/3240 (1.85%) (2.55%) (11.32%) (7.71%) (1.78%) (2.74%) 

01 Aug 2004 – 

01 Apr 2009 
13/1218 (81.53%) (49.14%) (59.62%) (19.56%) (84.56%) (24.90%) 

Post-burst 

Periods 

02 Apr 2000 – 

01 Apr 2002 
3/521 (29.04%) (15.38%) (85.20%) (5.32%) (56.20%) (6.65%) 

02 Apr 2009 – 

01 Apr 2011 
3/522 (28.86%) (35.92%) (85.21%) (14.60%) (55.96%) (16.44%) 

Period between 

Bubbles 

02 Apr 2000 – 

31 Jul 2004 
4/1130 (1.18%) (15.38%) (86.61%) (0.47%) (4.14%) (0.07%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Nov 1985 – 31 Oct 1987 to 03 Mar 1987 – 31 Aug 1987 

Table 6.12(h) – Spain IBEX35 Backtest Results for RiskMetrics2006: Bubbles Date-stamped 

by Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 
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Table 6.13 – Canada S&P/TSX Composite Backtest Results 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Jul 1973 – 

31 Dec 2015 
248/11088 (0.00%) (1.10%) (0.00%) (0.00%) (0.00%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(a) – Canada S&P/TSX Composite Backtest Results for RiskMetrics 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Full Period 
03 Jul 1973 – 

31 Dec 2015 
92/11088 (6.34%) (0.10%) (79.43%) (0.00%) (17.25%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(b) – Canada S&P/TSX Composite Backtest Results for RiskMetrics2006 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Jan 1995 – 

31 Dec 1996 
10/522 (6.19%) (80.92%) (53.16%) (30.11%) (14.39%) (17.13%) 

Bubble Period 
01 Jan 1997 – 

01 Feb 1998 
5/283 (24.21%) (55.28%) (67.09%) (6.96%) (46.09%) (7.21%) 

Post-burst 

Period 

02 Feb 1998 – 

01 Feb 2000 
15/522 (0.05%) (63.57%) (44.30%) (0.07%) (0.16%) (0.00%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(c) – Canada S&P/TSX Backtest Results for RiskMetrics: Bubbles Date-stamped 

by Original PSY Method 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
01 Jan 1995 – 

31 Dec 1996 
4/522 (57.57%) (39.21%) (80.35%) (94.55%) (82.90%) (95.76%) 

Bubble Period 
01 Jan 1997 – 

01 Feb 1998 
3/283 (91.99%) (65.60%) (79.95%) (86.87%) (96.34%) (94.77%) 

Post-burst 

Period 

02 Feb 1998 – 

01 Feb 2000 
8/522 (25.68%) (84.69%) (61.74%) (15.89%) (46.40%) (15.74%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(d) – Canada S&P/TSX Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Original PSY Method 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Apr 1987 – 

01 May 1987 
2/23 (2.19%) (8.92%) (52.67%) (5.02%) (5.92%) (1.05%) 

01 Aug 1987 – 

01 Oct 1987 
1/44 (46.69%) (27.76%) (82.73%) (27.76%) (74.95%) (42.57%) 

01 Jun 1993 – 

01 May 1994 
7/239 (1.50%) (28.89%) (18.35%) (1.70%) (2.15%) (0.34%) 

01 Dec 1996 – 

01 Apr 1997 
4/87 (1.38%) (2.89%) (53.21%) (1.35%) (3.98%) (0.22%) 

01 Jul 1997 – 

01 Dec 1997 
2/110 (43.90%) (85.58%) (78.45%) (3.90%) (71.41%) (6.91%) 

01 Jan 1998 – 

01 Feb 1998 
1/22 (22.12%) (5.82%) (75.18%) (5.82%) (45.01%) (7.86%) 

01 Mar 1998 – 

01 Aug 1998 
6/110 (0.10%) (42.31%) (30.65%) (0.15%) (0.27%) (0.00%) 

01 Jan 2000 – 

01 Dec 2000 
8/240 (0.42%) (1.10%) (45.66%) (0.91%) (1.26%) (0.08%) 

Periods between 

Bubbles 

02 May 1987 – 

31 Jul 1987 
0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

02 Oct 1987 – 

31 May 1993 
32/1477 (0.01%) (1.98%) (0.43%) (0.01%) (0.00%) (0.00%) 

02 May 1994 – 

30 Nov 1996 
12/675 (6.72%) (37.87%) (50.95%) (18.76%) (15.07%) (11.04%) 

02 Apr 1997 – 

30 Jun 1997 
0/64 (25.67%) (67.60%) (100.00%) NA (52.56%) NA 

02 Dec 1997 – 

31 Dec 1997 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

02 Feb 1998 – 

28 Feb 1998 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

02 Aug 1998 – 

31 Dec 1999 
7/370 (12.48%) (1.10%) (60.28%) (1.30%) (26.89%) (0.98%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(e) – Canada S&P/TSX Backtest Results for RiskMetrics: Bubbles Date-stamped 

by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Bubble Periods 

01 Apr 1987 – 

01 May 1987 
1/23 (23.25%) (18.75%) (75.76%) (18.75%) (46.74%) (20.57%) 

01 Aug 1987 – 

01 Oct 1987 
1/44 (46.69%) (27.76%) (82.73%) (27.76%) (74.95%) (42.57%) 

01 Jun 1993 – 

01 May 1994 
4/239 (33.99%) (28.89%) (71.15%) (65.79%) (59.22%) (64.82%) 

01 Dec 1996 – 

01 Apr 1997 
2/87 (29.77%) (6.83%) (75.76%) (18.34%) (55.44%) (21.44%) 

01 Jul 1997 – 

01 Dec 1997 
1/110 (92.25%) (87.36%) (89.18%) (87.36%) (98.61%) (98.28%) 

01 Jan 1998 – 

01 Feb 1998 
1/22 (22.12%) (5.82%) (75.18%) (5.82%) (45.01%) (7.86%) 

01 Mar 1998 – 

01 Aug 1998 
2/110 (43.90%) (65.60%) (78.45%) (29.15%) (71.41%) (38.19%) 

01 Jan 2000 – 

01 Dec 2000 
3/240 (70.79%) (1.10%) (78.24%) (8.34%) (89.73%) (14.65%) 

Periods between 

Bubbles 

02 May 1987 – 

31 Jul 1987 
0/65 (25.30%) (68.60%) (100.00%) NA (52.03%) NA 

02 Oct 1987 – 

31 May 1993 
11/1477 (30.18%) (1.98%) (6.82%) (0.25%) (11.12%) (0.30%) 

02 May 1994 – 

30 Nov 1996 
4/675 (24.96%) (90.76%) (82.70%) (82.71%) (50.33%) (72.73%) 

02 Apr 1997 – 

30 Jun 1997 
0/64 (25.67%) (67.60%) (100.00%) NA (52.56%) NA 

02 Dec 1997 – 

31 Dec 1997 
0/22 (50.61%) (22.12%) (100.00%) NA (80.16%) NA 

02 Feb 1998 – 

28 Feb 1998 
0/20 (52.61%) (19.87%) (100.00%) NA (81.79%) NA 

02 Aug 1998 – 

31 Dec 1999 
5/370 (51.91%) (1.10%) (71.09%) (1.62%) (75.84%) (2.62%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

Table 6.13(f) – Canada S&P/TSX Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by PSY Method Without Minimum Bubble Duration Limit 
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   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
03 Jul 1973 – 

30 Nov 1973 0/109 (13.88%) (93.00%) (100.00%) NA (33.44%) NA 

Bubble Period 
01 Dec 1973 – 

01 Dec 2000 150/7045 (0.00%) (3.07%) (0.17%) (0.00%) (0.00%) (0.00%) 

Post-burst 

Period 

02 Dec 2000 – 

01 Dec 2002 9/520 (12.92%) (22.12%) (0.67%) (0.01%) (0.80%) (0.01%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Dec 1971 – 30 Nov 1973 to 03 Jul 1973 – 30 Nov 1973 

Table 6.13(g) – Canada S&P/TSX Backtest Result for RiskMetrics: Bubbles Date-stamped by 

Modified PSY Approach with Bubble Origination Date Defined as the Start of the BADF 

Tests Sampling Window 

 

 

 

   Coverage Tests Independence Tests Joint Tests 

 Period 
Violations/ 

Observations 
POF TUFF 

Christoff-

ersen 

Mixed-  

Kupiec 

Christoff-

ersen 

Mixed-  

Kupiec 

Pre-burst Period 
03 Jul 1973 – 

30 Nov 1973 
0/109 (13.88%) (93.00%) (100.00%) NA (33.44%) NA 

Bubble Period 
01 Dec 1973 – 

01 Dec 2000 
60/7045 (19.91%) (0.27%) (54.15%) (0.04%) (36.40%) (0.04%) 

Post-burst 

Period 

02 Dec 2000 – 

01 Dec 2002 
2/520 (10.70%) (58.43%) (90.10%) (79.04%) (27.07%) (38.12%) 

* The numbers in parentheses are the p-values for rejecting the null hypothesis 

# Due to data availability, period trimmed from 01 Dec 1971 – 30 Nov 1973 to 03 Jul 1973 – 30 Nov 1973 

Table 6.13(h) – Canada S&P/TSX Backtest Results for RiskMetrics2006: Bubbles 

Date-stamped by Modified PSY Approach with Bubble Origination Date Defined as the Start 

of the BADF Tests Sampling Window 
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Chapter 7. Conclusions 

 

7.1 Summary and Main Findings 

 

This chapter summarizes the entire thesis and offers suggestions for future research. This 

thesis aimed to study the reliability of different VaR approaches in periods with and without 

asset price bubbles, particular in the crisis period that before and after the bubbles burst. 

Furthermore, it also proposed a new simulation model that can be used to generate daily asset 

prices with periodically collapsing explosive bubbles, which is important for improving the 

effectiveness of various risk management tools.  

 

The document consists of four main empirical chapters. Chapter 3 examined how information 

spills over among different stock markets and the Chinese stock market’s degree of influence 

in last two decades. Based on the trading hours and market capitalization of different stock 

exchanges, the nine countries included in our study were Japan, China, Hong Kong, Germany, 

the United Kingdom, Spain, the United States, Canada, and Brazil. We used the trading hours 

of the exchanges to classify these countries into three zones and modelled the information 

spillover directions in a cyclical manner. We examined the spillover effect using the following 

multivariate GARCH models: the CCC model, Engle (2002) DCC model, and Cappiello et al. 

(2006) ADCC model. The LR tests suggested that the asymmetric GJR-GARCH-DCC model 

is the best for describing market behaviour. This chapter provided strong evidence of crises 

across countries; the international financial markets are contagions, while equity markets 

reflect bad news on volatility but not on correlations. Furthermore, our results showed that the 

Chinese stock market’s influential power on the rest of the world has been gradually 

increasing in the last two decades. 
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In Chapter 4, we extensively studied both the parametric and non-parametric VaR approaches 

using real data. The non-parametric approaches include HS; the univariate parametric 

approaches include MA, EWMA (RiskMetrics), long memory EWMA (EWMA2006 or 

RiskMetrics2006), GARCH, GJR-GARCH, and FIGARCH; and the multivariate parametric 

approaches include DCC, GJR-DCC, ADCC, and GJR-ADCC. We constructed 18 hypothetic 

portfolios that included nine single-asset and nine multiple-asset portfolios for testing both the 

univariate and multivariate VaRs. The sub-prime mortgage crisis period was defined from 01 

June 2008 to 01 June 2009, while the after-crisis period was defined as 01 June 2009 to 31 

December 2012. The empirical results showed that the univariate RiskMetrics2006 approach 

works well in calculating a single-asset portfolio’s VaR. Meanwhile, the multivariate 

GJR-DCC model that incorporates asymmetric volatility effect in equity markets works well 

for estimating VaR for multiple-asset portfolios. 

 

Chapter 5 studied the characteristics of financial asset price bubbles using simulation models. 

We proposed a simulation model that provides a mechanism to simulate daily asset price 

series with periodically collapsing bubbles. Our model overcomes the weakness of the 

previous works in two main ways. First, we introduced using an inverse logistics function to 

model the market’s speculative sentiment level in the bubble formation process. Unlike 

previous work, our simulated asset prices exhibited time-varying volatility clustering, which 

is more realistic. Second, the rational bubbles were controlled by a time-varying Bernoulli 

process that allowed bubbles to collapse gradually but not in a single observation. These 

improvements enabled our model to deliver more stable and realistic results than in previous 

studies. We applied our simulation model to test the reliability of different VaR estimates. 

Among the four commonly used approaches of HS, MA, RiskMetrics, and RiskMetrics2006, 

the RiskMetrics approach outperformed others and did well in the periods before and after the 

bubbles burst. Our results showed that the criticism that VaR is a flawed risk measure if asset 
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price bubbles present is statistically invalid.  

 

Finally, in Chapter 6 we identified the origination and termination dates of financial bubbles 

in real data using Phillips et al. (2015)  GSADF and BSADF tests. Our empirical tests 

covered six countries (Hong Kong, Germany, the United Kingdom, Spain, the United States, 

and Canada) over the period March 1987 to January 2014. We date-stamped the bubble 

origination and termination dates by applying the GSADF and BSADF tests on the log 

price-dividend ratios of the six markets. As the original BSADF test is forward looking, we 

modified the date-stamping strategy to make it more suitable for the VaR backtests. The 

results show that the RiskMetrics2006 model works well in both the before- and after-burst 

periods, while it tends to overstate downside risks in normal periods without bubbles. Our 

empirical tests showed that criticisms that VaR models are unable to capture large financial 

loss during financial turmoil are statistically invalid. 
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7.2 Conclusion 

 

This study responds to the criticism that the Value-at-Risk (VaR) measure fails in financial 

crises and the myth that VaR is only applicable during periods without asset price bubbles. We 

modify and apply the backward SADF test to date-stamp the origination and termination dates 

of the asset price bubbles of six countries, namely Hong Kong, Germany, the United Kingdom, 

Spain, the United States, and Canada. The empirical backtesting results presented herein show 

that both the RiskMetrics model and the RiskMetrics2006 model work well in the periods 

with and without asset price bubbles. The results of our empirical tests thus show that the 

criticism of VaR models failing in crisis periods is statistically invalid. The Basel III 

committee responded to the criticism of the failure of VaR after the sub-prime mortgage crisis 

by simply shifting the VaR measure to an Expected Shortfall (ES) may not improve the 

effectiveness of the downside risk measure. The effectiveness of both VaR and ES depends on 

the volatility model they adopted. As our findings show that VaR performs well in crisis and 

non-crisis periods, it is suggested that regulators may consider to stress the practitioners to 

adopt the long-memory Riskmetrics2006 as the internal volatility model, rather than simply 

replace the VaR measure with the ES for internal model-based approach in managing the 

market risk. 

 

Another important contribution our study made is that we proposed a simulation model for 

simulating daily asset price series with periodically collapsing asset price bubble. Our model 

overcomes the weakness of the previous works in: (1) The simulated asset price in our model 

exhibits time-varying asymmetric volatility clustering, which is more realistic (see Bollerslev, 

1986; John Y. Campbell and Hentschel, 1992). (2) The rational bubbles are controlled by a 

time-varying Bernoulli process that allows bubbles to collapse gradually but not in a single 

observation. The descriptive statistics show our model behaves similarly to the real data. 
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Portfolio managers and practitioners will benefit from our works in having a better model in 

modelling variations of an asset, allowing them to simulate the price of an asset and its 

derivatives. Compared our model to the traditional geometrical Brownian motion, our model 

can simulate an asset price series in a financial crisis with an unexpected plunge due to the 

collapse of rational asset price bubble, allowing them to make better investment decisions as 

well as to manage the risks more efficiently. 

 

 

 

7.3 Further Research 

 

The empirical findings of this thesis are based on market data for the nine selected countries 

of Japan, China, Hong Kong, Germany, the United Kingdom, Spain, the United States, 

Canada, and Brazil. Although these findings yield promising results, they could be made more 

accurate and comprehensive if additional work is conducted. The future direction of each 

chapter could be as described below. 

 

Chapter 3 studied the information spillover effect by defining three time zones: Zone A (Japan, 

China, and Hong Kong); Zone B (the United Kingdom, Germany, and Spain); and Zone C 

(the United States, Canada, and Brazil). I believe further research should consider more 

countries in different zones. 

 

Chapter 4 extensively reviewed different univariate and multivariate VaR approaches in a 

period when financial markets were experiencing crisis. However, we only studied the 

sub-prime mortgage crisis period of 1 June 2008 to 31 December 2012. We could further 

backtest the VaR models in different crisis periods, such as the dot-com bubble in 2001 and 
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the Asian financial crisis in 1997. 

 

Chapter 5 proposed a new simulation model for generating daily asset prices with periodically 

collapsing bubbles. We introduced using an absolute inverse logistics function to incorporate 

volatility clustering in the simulation series. However, we could further explore how to 

incorporate an asymmetric conditional variance model when generating asset price, as the 

impact on stock volatility is asymmetric between good and bad news.  

 

Chapter 6 conducted empirical tests that used Phillips et al. (2015) SADF and BSADF tests 

on the stock log price-dividend ratio to identify the origin and termination dates of financial 

bubbles. However, due to the availability of dividend data, we only studied the market data 

from six countries. Future experiments involving more data coverage may provide more 

comprehensive and convincing results. 
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