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Abstract 

In this thesis the performance of direct power controlled grid-connected voltage source 

converters (VSCs) is investigated. Of particular interest is the stability of the controller 

with the third-order LCL filter employed as the grid filter, effect of grid impedance 

variations and grid voltage distortion, and current limitation during voltage dips. The 

control scheme implemented is virtual-flux direct power control with space vector 

modulation (VF-DPC-SVM). By mathematical modelling and stability analysis, it is found 

that the closed-loop power control system is stable for all values of proportional gain 

when the current sensors are on the inverter side of the LCL filter. The inverter current 

together with the estimated grid virtual-flux is used to estimate the active power and the 

reactive power. The difference between the estimated reactive power and the reactive 

power on the grid side is compensated for, using a new reactive power error 

compensation scheme based on the estimated capacitor current. The control system is 

found to be robust to changes in grid inductance, and remains stable for a range of grid 

inductance values, and controller proportional gain. It is demonstrated in simulation and 

experimentally that the total harmonic distortion (THD) of the current injected by the VSC 

is less than the limit of 5 %, set by standards, for all different values of grid inductance 

and proportional gain. This is true even in the presence of significant grid voltage 

distortion.  To control the VSC during voltage dips without damaging the semiconductor 

devices, a new current limiting algorithm is proposed and implemented. The positive-

sequence component of the virtual-flux is used for synchronization and power estimation 

to achieve balanced, undistorted currents during unsymmetrical voltage dips. 

Experimental results show that the current achieved during unsymmetrical voltage dips 

is balanced and has a THD of less than 3 %. 
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Chapter 1    Introduction 

1.1 Background 

For many years, most of the world’s energy requirements were met by large centralized 

fossil fuel based thermal power stations. The abundance and relatively low price of fossil 

fuels, and the use of well-established and understood synchronous machine technology 

meant that there was no immediate need to deviate from this technology. However, 

factors such as increasing energy demand, depletion of fossil fuel reserves, gradually 

increasing fuel prices, and environmental concerns have led to increased interest in 

renewable energy sources. Renewable energy provides a clean source of energy and can 

be installed close to consumer as distributed generation (DG). Wind energy and 

photovoltaics are the fastest growing renewable energy sources in DG applications. Wind 

energy is the leading renewable source with the World Wind Energy Association(WWEA) 

reporting 63,690 MW of new wind installation in 2015, bringing the total installed wind 

capacity to 435 GW with a global growth rate of 17.2 % [1]. While solar photovoltaic (PV) 

has a lower total installed capacity than wind energy, with 177 GW reported at the end of 

2014 [2], it had a growth rate of 55.9 % between 2002 and 2012, with the highest annual 

growth of 65.1 % between 2011 and 2012 [3]. For the same period wind energy had a 

growth rate of 26.1 % and an annual growth rate of 18.3 % for the years 2011 to 2012 [3]. 

In 2014, the European Photovoltaic Industry Association (EPIA) projected that by 2018, 

the global cumulative installed capacity of PV could be as high as 430 GW[4], while the 

International Energy Agency (IEA) projects that PV could account for 16 % of the global 

electricity production in the process leading to a reduction in carbon dioxide emissions of 

4 Gt annually [5].  

Large scale PV power plants are now common, with over forty-one PV plants with 

capacities ranging from 40 MW to 290 MW commissioned worldwide between 2008 and 

2012 [6]. While most of the growth in PV has been reported from European countries, the 

USA and China, African countries are also reporting new developments with an 85 MW PV 

plant reported to be under construction in Rwanda [7]. The cumulative global installed 

capacity of PV from 2000 to 2014 is shown in Figure 1.1. 
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Figure 1.1 Global PV installed capacity between 2000 and 2014. 

 

For grid connection of renewable energy sources, a power electronic converter is present 

between the energy source and the grid. This is commonly a voltage source converter 

(VSC) but current source converters have also been reported in [8], [9],[10]. Many 

different topologies exist for three-phase VSCs. For low distribution voltage applications 

and powers up to a few MW, the most common topology is the three-phase two-level VSC. 

For higher voltages applications, multi-level VSCs are preferred because they give a 

staircase output voltage waveform resulting in reduced filter requirements at lower 

switching frequencies, lower switching losses and they eliminate the need to connect 

devices in series [11], [12].  This study focuses on VSCs interfacing renewable energy with 

the low voltage distribution grid and therefore only the two-level VSC will be considered. 

A low-pass filter between the VSC and the grid ensures that the harmonics in the output 

current of the VSC are attenuated and the current injected to the grid meets the 

requirements set out by standards such as IEEE 1547, IEEE 519 and IEC 61000 [13], [14], 

[15]. Commonly used filter types are the first-order L filter, the second-order LC filter and 

the third-order LCL filter. The LCL filter is becoming the preferred choice particularly in 

high power applications with low switching frequencies because it can achieve a higher 

harmonic attenuations at frequencies higher than its resonance frequency using relatively 

smaller filter components [16]. The choice of filter will play a significant role in the 

performance of the system. 



3 
 

The other factor that determines the performance of the system is the control scheme 

employed to control the VSC. The reduced cost and size of powerful digital signal 

controllers (DCSs) and microprocessors has led to improvements in the control of VSCs. 

Modern DSCs such as Texas Instruments®’ TMS320F28335® have fast processing speed, 

and have multiple peripherals such as a multichannel Analogue to Digital Converter 

(ADC), multiple PWM outputs etc. and can be programmed using high level programming 

language like C/C++, thus making them more user-friendly [17]. With improvements in 

control and power electronics, the VSC has become very widely used in applications such 

as electric motor drives, PWM rectifiers, active filters and static synchronous 

compensators (STATCOM) in addition to renewable energy systems. The control schemes 

used in grid-connected applications are similar and have their foundation in the more 

established electric drives technology.  

The general structure of a grid-connected photovoltaic converter is shown in Figure 1.2.  

 

Controller

VSC

Grid

iL2

vg

vdc

PV Array LCL filter

PWM signals

 

Figure 1.2 Structure of a grid-connected PV system. 

 

1.2 Classification of Grid-connected PV Systems 

PV systems are broadly classified as stand-alone or grid-connected systems. Stand-alone 

systems supply a local load and have no interaction with the grid. They usually require 

some form of energy storage to be able to supply the load during periods of low irradiation 

and during night-time and batteries are normally used for this purpose. Stand-alone PV 

systems are outside the scope of this study. 

The different classifications of PV converters are shown in Figure 1.3. 
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Figure 1.3 Classification of PV systems. 

 

Grid-connected PV converters can also be classified as either single-phase or three-phase 

converters. Single-phase systems are usually small, low power domestic roof based 

systems, connected to the low-voltage distribution grid. Three-phase units are preferred 

for higher power systems which could be connected to the low-voltage or medium voltage 

distribution grid.  

Grid-connected PV systems can further be classified based on the number of converter 

stages they have. A two-stage system includes a DC to DC boost converter connected 

between the PV array and the inverter [18]. The boost converter performs two functions; 

increasing the DC voltage from the PV array to allow grid-connection of systems with a 

low PV array voltage and extracting maximum power from the PV array using a maximum 

power point tracking (MPPT) algorithm. Two-stage PV converters are able to operate with 

a wide range of PV voltages and provide a DC link voltage with low ripple content with a 

relatively small DC link capacitor particularly in single-phase systems [19]. However, they 

have more components making them more bulky and costly and have higher conversion 

losses [20], [21]. The alternative is the single-stage converter, where the PV array is 

connected directly to the DC side of the inverter[22], [23]. This requires a higher PV array 

voltage meaning that more PV modules have to be connected in series. With single-stage 

PV converters, the MPPT algorithm is implemented as part of the control for the inverter 
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and this makes its overall control more complex, but with increased power conversion 

efficiency compared to two-stage converters. 

For both single-stage and two-stage grid-connected PV converters, a grid-frequency 

isolation transformer may be used to prevent DC current injection into the grid, and to 

provide galvanic isolation for safety reasons [24]. In some systems, the transformer also 

steps up the voltage to the grid-voltage at the point of common coupling. However, the 

transformer is bulky, heavy, and costly and increases the system losses. Transformerless 

systems are more attractive due to lower cost and higher efficiency [25] but may require 

modifications to the controller to mitigate the dc current injection [26], [27], [28].  

In this study, three-phase, single-stage transformerless grid-connected converters will be 

considered.  

1.3 Main Control Functions in Grid-connected Converters 

Grid-connected converter control schemes can be divided into a number of different 

functions as shown in Figure 1.4. Some of these functions are common to all grid-

connected converters regardless of its specific purpose while others depend on the 

specific purpose of the converter [29]. 

1.3.1 Common Functions 

The following functions are common to all grid-connected converters. 

 Grid current control 

The grid current control is a closed-loop controller that regulates the converter output 

current and hence the power-flow between the converter and the grid. A common current 

control scheme is voltage-oriented current control where the currents are converted to a 

synchronous reference frame and controlled as DC quantities using proportional-plus-

integral (PI) controllers [30], [31]. The stationary reference frame proportional-plus-

resonant (PR) controller is another common current control scheme which is becoming 

increasingly popular for grid-connected converters [32], [33]. The current can also be 

controlled indirectly by using direct power control schemes, in which the active power 

and reactive power are estimated and regulated by PI controllers [34], [35]. The current 

control provides the modulation index or reference voltage for the PWM module. Apart 

from regulating the power flow, the current control should also ensure the current meets 

the THD limits imposed by standards and it should be robust to grid impedance variations.  
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Figure 1.4 Control functions of grid-connected converters. 

 

 DC voltage control 

The DC voltage controller is implemented as an outer control loop with the current 

controller as the inner loop [36], [37], [38]. It maintains the active power balance between 

the DC side and the grid side of the converter by maintaining the voltage across the DC 

capacitor equal to a specified reference and providing the reference value for the active 

component of the current in the current controller or the active power in the case of direct 

power control [39], [40]. 

 Grid synchronization 

Grid synchronization is an essential control function in a grid-connected converter. The 

grid synchronization function extracts the phase angle of the grid voltage which is needed 

for reference frame transformations, synchronized switching of the power semiconductor 

devices and correct calculation and control of the active and reactive power flow [41], 

[42]. There are many grid synchronization methods, the most common of which are based 

on the phase-locked loop (PLL) [43], [44].  
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1.3.2 PV Specific Functions  

The following functions are specific to PV and other forms of grid-connected renewable 

energy sources. Their description here is with respect to their application to PV systems, 

which form the main topic of this thesis. 

 Maximum power point tracking (MPPT) 

It is important to extract maximum power from the PV array under different operating 

conditions. The output power of a PV array varies with irradiation and cell temperature. 

The relationship between the cell voltage and current is non-linear and maximum power 

is extracted at one point for each value of irradiation and temperature. This point is called 

the maximum power point (MPP). MPPT control ensures that the operating point of the 

PV array is at the MPP for each value of temperature and irradiation. Thus it should be 

able to track fast irradiation changes and should be stable at low irradiation values. Some 

popular MPPT methods with tracking efficiencies of up to 99% include the constant 

voltage, perturb and observe, and incremental conductance algorithms [45], [46], [47], 

[48], [49]. The current-voltage and power-voltage characteristics of a PV array for 

different values of irradiation are shown in Figure 1.5. 

 

Figure 1.5 PV array characteristic for different values of irradiation (a) current-voltage 
characteristics (b) power-voltage characteristics. 

 

 Anti-islanding   

Islanding occurs when part of the utility system containing distributed generation and a 

local load becomes isolated from the main grid. This could be caused unintentionally by a 
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fault that leads to opening of protection devices, or accidental opening of the devices due 

to equipment failure or human error. It could also be caused intentionally when the utility 

shuts down part of the system for maintenance. In the case of PV systems, this is 

undesirable because it can lead to damage to customer equipment due to loss of control 

of voltage and frequency by the utility, it is hazardous to utility workers, and it could lead 

to damage of the PV converter upon re-closure of the isolating device. To prevent a PV 

system forming an island, it must be equipped with an anti-islanding mechanism [24]. 

Many methods of islanding detection have been discussed in literature and they are 

broadly classified as either passive, active or hybrid islanding detection [50], [51], [52]. 

Passive methods are based on the monitoring of the voltage, current, or frequency at the 

output of the converter. Active methods are based on the introduction of a disturbance in 

the system and measuring its effect on the voltage, current or frequency. Hybrid methods 

use a combination of passive and active methods. 

 Grid Monitoring and Plant Monitoring 

Grid monitoring is an optional function that can be used to monitor the grid parameters. 

These parameters are useful in the implementation of islanding detection algorithms. 

Plant monitoring is another optional function that can be used to monitor the state of the 

PV array. It is useful for diagnostic of the PV array and to detect partial shading of the 

array [29]. 

1.3.3 Ancillary Functions 

Ancillary or grid support functions increase the security and reliability of the grid. They 

include local voltage support, reactive power compensation, frequency control, harmonic 

compensation and low-voltage ride-through. Traditionally ancillary services are provided 

by conventional synchronous generators. However, with the increasing penetration of 

distributed generation and changes in the grid-codes governing their operation, converter 

based generation systems such as PV, are required to participate in the provision of 

ancillary services [53], [54], [55]. Non-active power ancillary functions can be carried out 

by the PV converter during periods of low irradiation and during night-time [56]. 

1.4 Scope and Objectives of the Thesis 

In this thesis, the performance of direct power controlled grid-connected voltage source 

converters is investigated. The research is focused on the interaction between the VSC, 

the grid filter and the control system under variable grid conditions. The instability 
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problem caused by the LCL filter is well known and many researchers have suggested 

solutions based on passive and active damping. Achieving stability of the LCL filter based 

VSC for a wide range of operating conditions is therefore, an integral part of this thesis.  

The main aim of the work is to research improvements to the existing direct power 

control algorithms to achieve improved controller stability without using damping for the 

LCL filter, increased robustness to grid condition changes, and improved control during 

balanced and unbalanced grid faults to protect the converter from damage and allow it to 

ride-through grid faults. 

The following are the specific objectives of the thesis: 

 To study the stability of the power control loop in order to determine the 

conditions needed to achieve stability of the control loop with an LCL filter. The 

effect of passive damping, active damping and current sensor position on the 

stability of the system is considered. 

 To study the performance of the system under conditions of varying grid 

inductance and distorted grid voltage. The stability of the system and the quality 

of the current it injects in the grid are used to determine its robustness to changes 

in grid impedance and grid voltage distortion. 

 To study the performance of the system during balanced and unbalanced grid 

faults. The response of the system to the voltage dips resulting from grid faults is 

investigated and modifications are proposed to improve its performance. 

 

1.5 Main Contributions of the Thesis 

The following points summarize the original contributions presented in this thesis. 

 Stability analysis of the closed-loop direct power control system shows that the 

system is stable without any damping, when the current sensors are on the inverter 

side of the LCL filter.  

 A reactive power error compensation scheme is developed to make the reactive power 

at the grid side equal to the controlled reactive power. This error occurs when the grid 

virtual flux (or voltage) and the inverter current are used to estimate the power. The 

error compensation scheme corrects the error caused by the reactive power 

contribution of the filter capacitor of the LCL filter.  
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 Virtual-flux based direct power control is shown to be more stable and robust to grid 

inductance variations and grid voltage distortion than voltage based direct power 

control. This reinforces the earlier findings that virtual-flux based control schemes are 

superior to voltage-based control schemes in grids with distorted voltages. 

 A new current limitation algorithm based on power limitation to protect the VSC from 

excessive currents during voltage dips is developed and implemented. The proposed 

current limitation algorithm limits the current by decreasing the power references 

proportionally to the voltage dip. The algorithm is demonstrated for both symmetrical 

and unsymmetrical voltage dips. For the latter, it is combined with a positive-sequence 

control scheme to achieve balanced and sinusoidal currents during unsymmetrical 

voltage dips. Unlike other existing current limiting algorithms, there is no 

recalculation of the reference current, and it is flexible enough to be adapted to 

different grid code requirements. 

 

1.6 Publications 

The following papers have been written during the course of this project. 

I. F. Mulolani and M. Armstrong, "Space vector modulation direct power control of 

grid-connected photovoltaic converter with reactive power compensation," Power 

Electronics, Machines and Drives (PEMD 2014), 7th IET International Conference on, 

Manchester, 2014, pp. 1-6. 

 

II. F. Mulolani, M. Armstrong and B. Zahawi, "Modeling and simulation of a grid-

connected photovoltaic converter with reactive power compensation," 

Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2014 9th 

International Symposium on, Manchester, 2014, pp. 888-893. 

 

1.7 Outline of the Thesis 

The thesis is divided into seven Chapters.  

Chapter 1 presents the background of the most common renewable energy sources and 

the importance of PV in the global energy sector. The voltage source converter is 

introduced as a key component of grid-connected PV systems, and a brief overview of its 

control is presented. A review of control techniques for grid-connected VSCs is presented 
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in Chapter 2. Among the techniques reviewed is virtual-flux direct power control with 

space vector modulation (VF-DPC-SVM), which is the focus of the thesis. The 

mathematical models of grid-connected converters with LCL filters are presented in 

Chapter 3. The closed-loop control system based on VF-DPC-SVM is derived and its 

stability is analyzed for different types of damping, and different current sensor positions. 

The system is found to be stable without any damping when the current sensors are on 

the inverter side. The main issues in the implementation of VF-DPC-SVM in a real system 

are described in Chapter 4. Implementation of a discrete virtual flux estimation method, 

virtual flux based grid synchronization and power estimation are described. A new 

method is proposed to compensate for the error in the reactive power caused by having 

the current sensors on the inverter side of the LCL filter. In Chapter 5 the effect of grid 

impedance variation and grid voltage distortion on the performance of the system is 

investigated. Specifically the effect on system stability and current quality is investigated 

for voltage based DPC-SVM and virtual-flux based DPC-SVM. Simulation and experimental 

results obtained using the two control schemes are compared. The control of the VSC 

during grid faults is the main subject of Chapter 6. To protect the VSC during voltage dips, 

a new current limiting algorithm based on the reduction of the power references during 

voltage dips is proposed and implemented. The algorithm is demonstrated to effectively 

limit the current during both symmetrical and unsymmetrical voltage dips. It is shown 

that during unsymmetrical voltage dips, it can be combined with a positive-sequence 

control scheme to maintain balanced and sinusoidal currents. In Chapter 7 the thesis 

conclusions and suggestions for future work are presented. 
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Chapter 2 Review of Control Techniques for Grid-
connected Voltage Source Converters 

2.1 Introduction 

Three-phase voltage source converters (VSCs) are widely used in variable speed AC 

electric drives and grid-connected systems. Grid-connected systems include active filters, 

PWM rectifiers, static synchronous compensators (STATCOMs), and converters for 

renewable energy sources. The VSC is able to operate with bi-directional power flow, low 

current distortion, controllable power factor and a relatively small AC filter, making it a 

good choice for many applications. Regardless of the application, the performance of the 

VSC will largely depend on the applied current control technique [57], [58], [30]. The main 

function of the current controller is to force the instantaneous three-phase current to 

follow the current reference signals [59], [60]. The current controller also determines the 

appropriate switching states to minimize the error between the reference and the actual 

current [59], [60]. The switching states determine the state of the semiconductor switches 

either directly or through a suitable modulator [59]. Control techniques for most VSC 

applications are similar, and most of them are based on techniques which were initially 

developed for the control of AC drives. 

In this chapter the main control methods for grid-connected voltage source converters 

are reviewed and analyzed. The control methods will be broadly divided into hysteresis 

control, voltage based control schemes, virtual-flux based control schemes, and predictive 

control schemes. Voltage based and virtual flux based control schemes are further divided 

into current control and direct power control schemes [61]. It should be noted that there 

is no universally accepted method of classifying the different types of current controllers 

because most of the control methods are related in a way; for example some direct power 

control and predictive control schemes use some form of hysteresis controllers. But for 

the intended purpose of this review, the above classification will suffice. 

In the context of this review, the performance of the current control schemes will be 

evaluated based on how they meet the following criteria: 

 Fast dynamic response 

 Constant switching frequency 

 Low harmonic distortion in the output current 
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 Decoupled control of active and reactive power 

 Ease of implementation of the algorithm 

 Stability over a wide range of operating conditions 

 

2.2 Current Control Basics 

To develop the basis for current control of a grid-connected VSC, the single-phase 

equivalent circuit of Figure 2.1 is considered. For simplicity, throughout this chapter a 

first order inductive filter is assumed. This is a reasonable assumption because at 

frequencies less than half of its resonance frequency, the higher order LCL filter has the 

same characteristics as the L filter [29].   

+

-

+

-

invv gv

Li R L

 

Figure 2.1 Single-phase equivalent circuit of grid-connected converter. 

 

In space vector form, the phase voltage of the inverter is related to the grid phase voltage 

by the equation below. 
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i  is the line current space vector, L is the inductance of the filter 

and R is the resistance of the filter. 

The vector diagram of the phase voltage and current is shown in Figure 2.2.  The voltage 

across the filter resistance is depicted as Rv  and the voltage across the filter inductance 

is depicted as Lv . 
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Figure 2.2 Vector diagram of grid-connected converter. 

 

Since the grid voltage vector is essentially constant, the line current can be controlled by 

controlling the inverter voltage magnitude and phase angle between the inverter voltage 

and the grid voltage, δ. By regulating both the magnitude and phase angle of the inverter 

voltage relative to the current demand, the inverter behaves like a controlled current 

source. The current controller and the modulator set the correct switching sequence of 

the inverter devices to give the required current.  

In terms of the phase voltages and line currents, the instantaneous active power and the 

instantaneous reactive power (or imaginary power) are respectively defined in [62]as  

LcgcLbgbLaga ivivivp      (2.2) 

and 

      LagbgaLbgagcLagcgb ivvivvivvq 
3

1
  (2.3) 

Equations (2.2) and (2.3) show that the active power is a scalar product of the grid voltage 

vector and the current vector and the reactive power is their vector product. Therefore, if 

the grid voltage vector is constant, by regulating the current, the power is indirectly 

regulated and vice versa. Therefore, both current control and direct power control 

achieve the same objective of controlling the current output of the VSC. 

 

2.3 Hysteresis Current Control 

One of the simplest methods of current control in voltage source converters is hysteresis 

current control  [63], [64]. It consists of three independent hysteresis controllers; one for 

each phase leg of the VSC. The actual current is compared to the desired reference current 

and the error is fed to a hysteresis comparator which generates the appropriate switching 
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signal to keep the error between the actual current and the reference current within a 

fixed hysteresis band. No separate modulator is required with hysteresis control as this 

type of current control directly generates the switching signals [65]. The block diagram of 

hysteresis current control is shown in Figure 2.3 and its operating principle is shown in 

Figure 2.4. It is easy to implement, robust to load changes and has a very fast dynamic 

response. However, the output voltage has a variable switching frequency, which makes 

it difficult to design a filter if used to control a grid-connected VSC. A high switching 

frequency is required for the controller to compensate for its inherent drawbacks [66]. A 

further drawback is that it does not have the possibility of controlling the active power 

and the reactive power independently which other methods typically do. Improvements 

to the basic hysteresis controller, by operating with a constant switching frequency, have 

been suggested in [67], [68].  
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Figure 2.3 Block diagram of hysteresis current control. 
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Figure 2.4 Principle of hysteresis control: current (upper) and converter output voltage 
(lower). 

 

2.4 Voltage Based Control 

A common feature of voltage based control schemes is that the grid voltage plays a role in 

the correct implementation of the controller. Typically the grid voltage angle is used as 

the reference for the orientation of the control scheme to achieve synchronization [38].  

2.4.1 Voltage-Oriented Current Control 

Voltage oriented control is a popular current control method, based on the field-oriented 

control (FOC) method of electric drives [69]. It is characterized by reference frame 

transformations to a synchronous rotating reference frame in which AC quantities are 

viewed as DC quantities. This makes it possible to use PI controllers without encountering 

the problem of steady-state errors, which is the case when PI controllers are used to 

regulate sinusoidal quantities [38]. The block diagram of a voltage-oriented current 

control scheme is shown in Figure 2.5. 
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Figure 2.5 Block diagram of voltage oriented control. 

 

The measured three-phase currents are transformed to equivalent two-phase currents in 

a stationary reference frame using the Clarke transformation given below. 
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Where Li and Li are the orthogonal components of the currents in the stationary 

reference frame. The currents are then transformed to the synchronous reference frame 

using the Park transformation given below. 
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where Ldi  and Lqi  are the orthogonal current components in the synchronous reference 

frame and v is the angle of the grid voltage. 

The vector diagram of VOC showing the orientation of the voltages and currents in the 

stationary reference frame and the synchronous reference frame is shown in Figure 2.6. 

In the diagram the phase angle between the voltage and the current is  . 
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Figure 2.6 Vector diagram of voltage-oriented control. 

 

From Figure 2.6, it can be seen that the grid voltage vector is oriented along the d-axis of 

the synchronous reference frame and the component of the grid voltage on the q-axis is 

zero. Therefore, the d-axis voltage is equal to the magnitude of the grid voltage vector as 

given by the equation below. 

ggd vv       (2.6) 

By applying the definition of instantaneous power, the active power and the reactive 

power in the synchronous reference frame are obtained as 

Ldgdivp
2

3
      (2.7) 

Lqgdivq
2

3
      (2.8) 

From equations (2.7) and (2.8) it is apparent that, the d-axis current is used to control 

active power and the q-axis current is used to control reactive power. However, if 

equation (2.1) is rewritten in terms of the synchronous reference frame components, the 

equations obtained are 

LqLd
Ld

gdinvd LiRi
dt

di
Lvv      (2.9) 

LdLq

Lq

invq LiRi
dt

di
Lv  0             (2.10) 

 

where dtd v   is the angular frequency of the grid voltage. 
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Equations (2.9) and (2.10) show that there is cross-coupling of the d-axis and the q-axis 

currents. To eliminate this cross-coupling, the current controller is implemented as 

shown in Figure 2.7. The voltage feedforward is added to improve the dynamic response 

of the controller and improve its grid voltage disturbance rejection [29]. 
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Figure 2.7 Current controller with decoupling and feedforward terms 

 

The output of the current controller is converted to the stationary reference frame using 

the inverse Park transformation and forms the input to the modulator.   

VOC has the following advantages: 

 It has a constant switching frequency which makes it easy to design the grid filter. 

 It allows decoupled control of active and reactive power through the SRF current 

components. 

 It does not require a very high sampling frequency. 

It has the following disadvantages: 

 It needs reference frame transformations to the synchronous reference frame.  

 It has a slow dynamic performance. 

2.4.2 Direct Power Control 

Direct power control (DPC), which is based on direct torque control (DTC) developed 

earlier for the control of electrical machines [70], [71], was first proposed by Ohnishi in 

[72], and developed as an AC voltage sensorless control technique for three-phase PWM 

rectifiers [34], [73]. In DPC, the active power and the reactive power are regulated directly 
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without using a current control loop. This requires accurate estimation of the 

instantaneous powers. The power estimation is based on the instantaneous power theory 

[62], in which the instantaneous powers are given by 

  LgLg ivivp 
2

3     (2.11) 

  LgLg ivivq 
2

3     (2.12) 

The block diagram of a direct power control scheme with grid voltage sensors is shown 

in Figure 2.8. Some differences with voltage oriented control include the absence of 

reference frame transformation to the synchronous reference frame, use of hysteresis 

controllers instead of PI controllers, and use of a switching table to determine the 

switching sequence of the switches instead of a modulator. 
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Figure 2.8 Block diagram of direct power control. 

 

The DC voltage controller sets the active power reference, while the reactive power 

reference is usually set to zero for unit power factor operation. The reference powers are 

compared to the actual estimated powers and the errors fed to hysteresis controllers. The 

outputs of the hysteresis comparators and the angular position of the voltage vector given 

by the PLL are used to select the most suitable voltage vector from the switching table. 
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The switching table affects the performance of the control scheme and many different 

types of switching tables can be found in literature [74], [75], [76].  

DPC has the following advantages: 

 It has a very fast dynamic response due to the use of hysteresis comparators. 

 It is a relatively simple algorithm with no reference frame transformation to the 

synchronous reference frame. 

It has the following disadvantages: 

 Due to the use of hysteresis comparators, it has a variable switching frequency 

which makes it difficult to design the grid filter. 

 A high value of the filter inductance is needed to obtain a smooth current. 

 A high sampling frequency is needed for accurate power estimation. 

 Its implementation requires a fast microprocessor and ADC due to its high 

sampling frequency requirement. 

2.4.3 Direct power Control with Space Vector Modulation  

The simplicity and fast dynamic response of DPC makes it a practical alternative to VOC 

current control. However, its main drawbacks which include the need for a fast sampling 

frequency and a variable switching frequency makes its implementation on a large scale 

more difficult. While most modern DSPs and microcontrollers are capable of handling 

high sampling frequencies, the switching frequency will still be variable. The 

disadvantages of a variable switching frequency can be overcome by replacing the 

hysteresis controllers with linear PI controllers and the switching table with any suitable 

modulation technique such as space vector modulation (SVM).  

When space vector modulation (SVM) is used, the technique is referred to as direct power 

control with space vector modulation [77], [78]. It can be implemented as a voltage-based 

control scheme as in [78], [79], although it is more commonly implemented as a virtual-

flux based control scheme [80]. The block diagram of virtual flux direct power control 

with space vector modulation is shown in Figure 2.9.  

The main feature of the control is that the active and reactive powers are controlled 

directly without a current control loop. The power estimation is performed in the same 

way as for DPC. Synchronization can be achieved by using the virtual flux angle. Unlike 

VOC where two reference frame transformations are performed, only one reference frame 
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transformation is performed in transforming the outputs of the power controllers from 

the synchronous reference frame to the stationary reference frame required for space 

vector modulation. 
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Figure 2.9 Block diagram of direct power control with space vector modulation. 

 

DPC-SVM combines the advantages of a fast dynamic response of direct power control, 

and the constant switching frequency current control. While it retains most of the 

advantages of both control schemes, it also retains some of their disadvantages such as 

the complexity of reference frame transformation needed to converter the modulator’s 

reference voltages from the synchronous reference frame to the stationary reference 

frame. 

The advantages of DPC-SVM are summarized below: 

 It has a constant switching frequency like VOC. 

 It requires a lower sampling frequency than DPC. 

It has the following disadvantages: 

 It requires reference frame transformation making the control algorithm more 

complicated than DPC. 

 It has a slower dynamic response than DPC. 
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2.5 Virtual-Flux Based Control 

The concept of using virtual-flux in the control of grid-connected converters makes use of 

the analogy between inverter-fed AC machine drives and grid-connected converters [81]. 

In this analogy, the grid is viewed as a virtual AC machine and the grid voltage is induced 

by the time variation of a flux, similar to the back emf in a machine, as given by 

dt

d
v

g

g


       (2.13)  

The flux is called the virtual-flux and its vector is represented by 
g

 in equation (2.13). 

In virtual-flux based control schemes, the virtual-flux is used in place of the voltage for 

synchronization and power estimation in direct power control schemes. 

The virtual-flux cannot be measured directly and is estimated from the grid voltage using 

 dtv ggg 0
      (2.14) 

where 
0g

 is the initial value of the virtual-flux. 

In practice, direct integration of the grid voltage to obtain the virtual-flux is not used 

because of possible integrator drift and saturation if there is an offset in the measured 

voltage [82]. The virtual-flux estimation methods in literature are based on filters which 

give a phase shift of 90° at the fundamental frequency [73], [81], [82], [83], [84], [85]. Due 

to the use of filters, the distortion in the grid voltage is damped and the virtual-flux vector 

rotates more smoothly than the grid voltage vector. Thus, the virtual-flux angle can be 

tracked more easily than the voltage angle even without using a PLL [86]. Virtual-flux 

based control schemes tend to perform better than voltage based control schemes in 

distorted grids [35]. 

2.5.1 Virtual-Flux Oriented Current Control 

Virtual flux oriented control (VFOC) is an improvement to VOC based on the virtual-flux 

concept [73], [81]. The block diagram of the VFOC scheme is shown in Figure 2.10. 
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Figure 2.10 Block diagram of virtual-flux oriented control. 

 

The virtual-flux angle,  , is used for reference frame transformation, and can be obtained 

either by using a PLL or using the arctangent of its stationary reference frame components 

as shown by the equation below. 














 











g

g1tan     (2.15) 

Using the definitions of instantaneous power, and virtual-flux, the instantaneous powers 

in the synchronous reference frame are given by 

 LdgqLqgd iip  
2

3
         (2.16) 

 LqgqLdgd iiq  
2

3
      (2.17) 

If the virtual-flux vector is oriented along the d-axis as shown in the vector diagram in 

Figure 2.11, the component of current along the q-axis is used to control active power, 

and the components along the d-axis is used to control reactive power.  
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Figure 2.11 Vector diagram of virtual-flux oriented control. 

 

VFOC has the same advantages and disadvantages as VOC. One advantage it has over VOC 

is better performance when the grid voltage is distorted [87]. 

 

2.5.2 Virtual-Flux Direct Power Control 

Virtual-flux direct power control (VF-DPC) was proposed to improve the performance of 

the performance of the original voltage-based DPC [40]. In VF-DPC, the estimated virtual-

flux is used to estimate the powers and the virtual-flux angle is used to select the correct 

switching sector in the switching table. The bock diagram of VF-DPC is shown in Figure 

2.12. 
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Figure 2.12 Block diagram of virtual-flux direct power control. 

 

The active power and the reactive power are calculated from the estimated virtual flux, 

and the measured current using the equations below, [40], [88]. 

   LgLg iip 
2

3
    (2.18) 

   LgLg iip 
2

3
    (2.19) 

Due to the reduced distortion in the virtual-flux the power estimation is less noisy than it 

is for voltage-based DPC and the output current is less distorted [61]. This makes it 

possible to use a lower sampling frequency than that used in DPC. However, the required 

sampling frequency is still much higher than that needed for VOC and VFOC [59].  

The main advantages of VF-DPC over DPC can be summarized as 

 Less noisy power estimation. 

 Lower distortion in the output current with distorted grid voltage. 

 Lower sampling frequency than DPC. 

Compared to VOC and VFOC it still has the disadvantages of  
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 Variable switching frequency. 

 Fast sampling frequency. 

 

2.5.3 Virtual flux Direct Power Control with Space Vector Modulation 

Virtual flux direct power control with space vector modulation (VF-DPC-SVM) is the 

virtual flux based version of the voltage based DPC-SVM described earlier. The virtual flux 

based DPC-SVM was actually the first version of DPC-SVM to be introduced [77] and is 

usually referred to as DPC-SVM. To differentiate it from the voltage based DPC-SVM, in 

this thesis it will be referred to as VF-DPC-SVM. The block diagram of VF-DPC-SVM is 

shown in Figure 2.13. 

VF-DPC-SVM has all the advantages of DPC-SVM. In addition it also has all the advantages 

of VF-DPC and VFOC compared to DPC and VOC. It has similar drawbacks to DPC-SVM. 
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Figure 2.13 Block diagram of virtual-flux direct power control with space vector 
modulation. 
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2.6 Predictive Control 

Predictive control schemes have gained popularity in the control of grid-connected 

converters and electric drives. The term refers to a range of controllers which use the 

model of the controlled system to predict the behaviour of the controlled variables [89]. 

By minimizing a selected parameter or cost function, the most suitable switching voltage 

vector is selected in every sampling period. Predictive control can be implemented as a 

current control scheme or a direct power control scheme [90], [91]. Predictive control is 

characterized by fast dynamic response but the controller has to perform a high amount 

of mathematical computations, thus requiring a fast DSC for implementation. The 

performance is affected by the parameters used in the load model and accurate 

knowledge of the model parameters is needed for good performance. The block diagram 

of a predictive control scheme of a grid-connected VSC is shown in Figure 2.14. 
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Figure 2.14  Block diagram of predictive control. 

 

One of the earliest and most well-known predictive control methods is deadbeat control 

[92], [93], [94]. In this method, the objective is to select the switching voltage vector which 

will make the error between the predicted and the actual current equal to zero at the end 

of each sampling period. Deadbeat control has a fast dynamic response. However, 

computational delays, errors in parameter values used in the model and external 

disturbances reduce the quality of its performance. 
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Another type of predictive control is hysteresis based predictive control [89], [90], [95] 

where the controlled variables are kept within hysteresis bands. It is based on the basic 

hysteresis band (bang-bang) control scheme. The switch states are determined directly 

by selecting the voltage vector which would keep the current within a suitable error 

boundary without using a modulator. As a consequence the switching frequency is 

variable, and this is a major drawback of hysteresis based predictive control.  

Trajectory based predictive control is another type of predictive control which is based 

on the principle of forcing the system variables to follow pre-calculated trajectories. 

Examples of trajectory based predictive control include direct self-control [96], direct 

mean torque control [97], and direct torque control [70]. 

Model predictive control is another predictive control method that has been widely used 

in the control of converters. It is based on using a model of the system to predict the 

switching state of the converter. When a modulator is used to determine the switching 

states, it is known as model predictive control with continuous control sets; and when the 

switch states are determined directly without using a modulator it is called finite control 

set method.  The finite control set method is more popular with converters because it 

takes into consideration the non-linear nature of the converter and the switch states are 

determined by minimizing a given cost function [98], [99]. Both constant switching 

frequency and variable switching frequency have been reported [100]. The advantage of 

model predictive control is that it has fast transient response because it does not have a 

cascaded structure. The disadvantage is that it requires a high number of computations 

and requires a powerful DSC for practical implementation. Another disadvantage is that 

its performance depends on the accuracy of the parameters used in the model. 

 

2.7 Comparison of the Reviewed Control Schemes 

The performance of the various control techniques has been compared in a number of 

publications [57], [58], [30], [59], [87], [101]. Based on the criteria set out at the beginning 

of this chapter, the reviewed control schemes are compared in table 2.1. 
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Table 2.1 Comparison of various control systems 

  

Hysteresis 

 

VOC/VFOC 

DPC/VF-

DPC 

DPC-

SVM/VF-

DPC-SVM 

 

Predictive 

Dynamic 

response 

Very Fast Slow Very 

Fast 

Fast Very fast 

Switching 

frequency 

Variable Fixed Variable Fixed Variable or 

fixed 

Output current 

THD 

High Load 

dependent 

High Load 

dependent 

Load 

dependent 

Decoupled  p, q 

control  

No Yes Yes Yes Yes 

Ease of 

implementation 

Very 

Simple 

Complicated Simple Simple Very 

complicated 

Stability Stable Load 

dependent 

Stable Load 

dependent 

Load 

dependent 

 

From the reviewed methods, it can be seen that each method has advantages and 

disadvantages when compared to other methods. Therefore, in the selection of a control 

scheme for a particular application the most important performance criterion for that 

application should be given priority over other criteria. In grid-connected converter 

applications, a low THD of the output current is a necessity in order to meet the harmonic 

requirements specified by international standards. A constant switching frequency makes 

the design of the grid filter which reduces the harmonics in the current easier. Stability 

over a wide range of grid operating conditions is also an important criterion because the 

grid parameters such as voltage magnitude, frequency and grid impedance are not 

constant and the control scheme should be robust to these changes. Ease of 

implementation of a control scheme is important because a simpler scheme will be less 

costly and will take less time to implement in practice. Decoupled control of active power 

and reactive power makes it possible to use the active power controller to balance the 
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active power flow from the renewable source to the grid and use the reactive power 

control as an ancillary function.  

As seen from Table 2.1, there is no control scheme that can be said to be better than the 

other control schemes in all aspects. Therefore, in the selection of a control scheme, 

certain trade-offs have to be made depending on the particular application. Among the 

reviewed control schemes, DPC-SVM is found to be the most suitable for the objectives of 

this thesis. Although it is not as simple as hysteresis control, it has better performance in 

steady state with a constant switching frequency and low harmonic distortion of the 

output current. 

 

2.8 Conclusion 

In this chapter the main current control techniques for voltage source converters have 

been reviewed. From the reviewed techniques, the following conclusions were drawn. 

 Hysteresis based techniques, such as hysteresis current control and direct power 

control, and predictive control schemes have good dynamic performance. This is 

because of the absence of the modulator which increases the execution time of the 

control algorithm. 

 Control techniques which use a modulator have a constant switching frequency, 

and the output current has a well-defined frequency spectrum. In addition, they 

can be operated with a lower sampling frequency than hysteresis based and 

predictive control techniques. 

 Virtual-flux based control techniques have a lower output current THD compared 

to voltage based control techniques. This makes them a better option for grid-

connected converters, connected to a distorted grid. 

 Direct power control schemes and current control schemes based on the 

synchronous reference frame, have decoupled control of active power and reactive 

power. 

 Hysteresis based control techniques are easier to implement than other control 

techniques.  

 The stability of each control technique will depend on factors such as the type of 

filter used, the presence of harmonics and the variation of the grid parameters such 



33 
 

as grid impedance and frequency. Hysteresis based control techniques are 

generally more robust to these changes than modulator based control techniques. 
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Chapter 3 Modelling and Stability Analysis of Grid-

connected Converter with LCL Filter 

3.1 Introduction 

Mathematical models of three-phase voltage source converters connected to the grid 

through an L filter have been presented in [31], [102].  The models are developed in the 

stationary reference frame and the synchronous rotating reference frame. In the 

stationary reference frame, the three-phase system is presented as an equivalent two-

phase system by transforming the three-phase quantities into two-phase quantities using 

the Clarke transformation. In the synchronous reference frame, the two-phase quantities 

are transformed into DC quantities using the Park transformation. The models are useful 

in understanding the behaviour of the system and designing a suitable control scheme. In 

a similar way, the mathematical models of a grid-connected voltage source converter with 

an LCL filter can be developed and analyzed. In this chapter mathematical models are 

developed in the natural reference frame, stationary reference frame and the 

synchronous rotating reference frame. The synchronous reference frame model is used 

to develop a closed-loop control scheme for the converter, for stability analysis. 

The stability analysis is necessary due to the tendency of the LCL filter to cause controller 

instability at its resonance frequency. On the other hand the LCL filter provides higher 

harmonic attenuation using smaller filter components than corresponding L or LC filters 

[103] which is a big advantage in high-power converters where the switching frequency 

is kept low to minimize the switching losses. The instability caused by the LCL filter 

resonance can be mitigated by damping, which can be passive or active. Passive damping 

refers to the use of passive elements such as resistors connected in series or in parallel 

with the filter capacitor [104], [105], [106]. A disadvantage of passive damping is that it 

leads to reduced efficiency due to increased losses in the damping resistors [104]; and 

reduced performance of the filter at frequencies higher than the resonance frequency 

because it is not frequency-selective [105]. Active damping involves modification of the 

control structure to introduce damping at the resonance frequency. Many active damping 

methods have been proposed, among them virtual resistor [107], [108], capacitor current 

feedback [109], [110], lead-lag elements [111], low-pass filters [111], and notch filters 

[111], [112], [113], [114]. Active damping makes the controller design more complicated 
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and some active damping methods such as capacitor current feedback need the capacitor 

current to be measured, therefore requiring extra current sensors, making the system 

more complicated and costly. 

Another option of achieving stable operation of the LCL filter based VSC, is by careful 

selection of the filter components and the current sensor position as proposed in 

[115]and [116]. In both of these publications, the system is reported to be stable without 

using passive or active damping. This is an interesting solution because it avoids the 

added losses of passive damping and the complexity of active damping.  

The stability analysis is performed for a grid-connected VSC with an LCL filter controlled 

using virtual-flux based direct-power control with space vector modulation, which is the 

control scheme adopted in this thesis. In this control scheme which is introduced in 

chapter two, the measured current is multiplied by the virtual flux to obtain the active 

power and reactive power which are controlled using PI controllers. The stability is 

investigated for four cases: with the current sensors on the grid side without damping; 

with the current sensors on the grid side with passive damping; with the current sensors 

on the grid side with active damping and with the current sensors on the inverter side 

with no damping. For each case the continuous-time closed-loop transfer function of the 

power controlled system is derived. This is then discretized to allow for the stability 

analysis to be performed in the z-domain using the pole-zero maps. 

3.2 Models of Grid-connected Converter with LCL Filter 

The circuit of a grid-connected voltage-source converter with an LCL filter is shown in 

Figure 3.1. The PV array is the energy source on the DC side and converter acts as a 

controlled current source with the grid absorbing the injected current. The converter 

consists of three single-phase IGBT half-bridge legs connected across the DC link 

capacitor. The LCL filter provides an interface between the VSC and the grid. 
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Figure 3.1Grid-connected VSC with LCL filter. 

 

For modelling purposes the IGBTs are assumed to be ideal switches. The output of each 

phase leg is then determined by the switching state of that leg. The switching state is given 

by kS , where cbak ,, . A switching state equal to 1 means the upper switch is on while 

the lower switch is off, and a switching state equal to 0 means the upper switch is off while 

the lower switch is on. The two switches in a phase leg cannot be on at the same time.  

The equivalent single-phase circuit is shown in Figure 3.2. In the figure, 1R , 2R , 1L  and 2L

are the resistances and inductances of the inverter-side and grid-side filter inductors, 

respectively. 
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Figure 3.2 Equivalent single-phase circuit of grid-connected VSC. 

 

In space vector notation, the inverter voltage vector can be written in terms of the 

switching function as shown in the equation below. 














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
3
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j

c

j

bainv eSeSSv     (3.1)  
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There are eight possible combinations of the switching states as shown in Table 3.1 and 

the resultant voltage vectors for each state are shown in Figure 3.3. 

Table 3.1 Switching states for three-phase VSC 

Voltage vector 
aS  bS  cS  

𝑣0 0 0 0 

𝑣1 1 0 0 

𝑣2 1 1 0 

𝑣3 0 1 0 

𝑣4 0 1 1 

𝑣5 0 0 1 

𝑣6 1 0 1 

𝑣7 1 1 1 
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v2v3

v4

v5 v6
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Figure 3.3 Voltage vectors for different switching states. 
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3.2.1  Natural Reference Frame Model 

In the natural reference frame, the instantaneous grid phase voltages are defined as 
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where LV  is the rms value of the grid line-to-line voltage. 

The inverter phase voltages are given by 
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The voltage across the filter capacitor is given by 
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It can also be given by 
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where 
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 is the grid side current vector. 

The filter capacitor current is given by 
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Alternatively it can be given by 
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Assuming the power losses are negligible, the current from the PV array is related to the 

current through the dc link capacitor and the current through the inverter side inductor 

by  

cLcbLbaLa
dc

dPV iSiSiS
dt

dv
Ci 111           (3.8) 

The differential equations (3.4) to (3.8) are converted from the time domain to the 

frequency domain using the Laplace transform. The frequency domain equations are 

given below. 

The voltage across the filter capacitor can be expressed in terms of the inverter voltage as 
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It can also be expressed in terms of the grid voltage as 
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The filter capacitor current can be expressed in terms of the capacitor voltage as 
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It can also be expressed in terms of the inverter current and the grid current as 
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   (3.12) 

The PV current, the DC link capacitor currents and the AC currents are related by 

         sISsISsISsVsCsI cLcbLbaLadcdPV 111        (3.13) 

Using equations (3.9) to (3.13) the block diagram of the grid-connected VSC in the natural 

reference frame is developed and given in Figure 3.4. 
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Figure 3.4 Block diagram of the natural reference frame model.  

 

3.2.2 Stationary Reference Frame Model 

The model can be simplified by applying the Clarke transformation to obtain the model in 

the stationary reference frame. The general form of the amplitude invariant Clarke 

transformation is 
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The inverter voltage is given in terms of the DC voltage and the switching functions as 

shown below. 
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The voltage across the filter capacitor is given in terms of the inverter voltage by 
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It can also be given in terms of the grid voltage by 
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The filter capacitor current is given in terms of the capacitor voltage by 
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It can also be given in terms of the inverter current and the grid current as 
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The PV current, the DC capacitor current and the AC currents are related by 

 11 LL
dc

dPV iSiS
dt

dv
Ci            (3.20) 

Applying the Laplace transform to the differential equations (3.16) to (3.20) the 

frequency domain equations below are obtained. 

The filter capacitor voltage is given in terms of the inverter voltage by 
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It is also given in terms of the grid voltage by 
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The filter capacitor current is given in terms of the capacitor voltage by 
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It is also given in terms of the inverter current and the grid current by 
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Assuming the power losses are negligible, the source current, the DC capacitor current 

and the inverter currents are related by 

       sISsISsVsCsI LLdcdPV  11     (3.25) 
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The block diagram of the stationary reference frame model obtained using the equations 

(3.21) to (3.25) is given in Figure 3.5 

   

 

Figure 3.5 Block diagram of stationary reference frame model.  

 

3.2.3 Synchronous Reference Frame Model 

The synchronous reference frame model is obtained by multiplying the space vectors in 

the stationary reference frame by vj
e

 , where v  is the angle of the grid voltage vector. 

This aligns the grid voltage vector with the d-axis, and the component of the grid voltage 

vector on the q-axis is zero. Both axes rotate at synchronous speed hence the name. This 

is called the Park transformation and in matrix form it is given by 
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The equations for the voltages and currents in the rotating reference frame are given 

below.  

The inverter voltage is given by 



















q

d

dc
invq

invd

S

S
v

v

v

2

1
     (3.27) 

where dS and qS  are the switching functions in the synchronous reference frame. 

The voltage across the filter capacitor is given in terms of the inverter voltage by 
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Alternatively it can be given in terms of the grid voltage by 
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The terms dLiL 11 and qLiL 11 , in equation (3.28) and dLiL 22 and qLiL 22 , in equation 

(3.29) are called the cross-coupling terms and show the coupling between the d-axis and 

the q-axis components. 

The filter capacitor current is given in terms of the capacitor voltage by 
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It is also given in terms of the inverter current and the grid current by 
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The PV current and the inverter current are related by the equation below. 

qLqdLd
dc

dPV iSiS
dt

dv
Ci 11          (3.32) 

Applying the Laplace transform to the differential equations (3.28) to (3.32) we obtain 

the frequency domain equations below. 

The filter capacitor voltage is given in terms of the inverter voltage by 
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It can also be given in terms of the grid voltage by  
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The filter capacitor current is given in terms of the capacitor voltage by 
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It can also be given in terms of the inverter current and the grid current by 
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The PV current and the inverter currents are related by 

       sISsISsVsCsI qLqdLddcdPV 11     (3.37) 

The block diagram of the synchronous reference frame model derived from equations 

(3.33) to (3.37) is given in Figure 3.6.  

 

 

 Figure 3.6  Bock diagram of synchronous reference frame model.  

 

3.3 Stability Analysis of Power Control Loop 

In a grid-connected VSC with an LCL filter, the current sensors can be on the grid side or 

on the inverter side as shown in Figure 3.7 (a) and Figure 3.7 (b), respectively. For each 

choice of current sensor position it is important to thoroughly investigate the stability of 

the system, as the LCL filter causes controller instability at the resonance frequency.  In 

literature, stable operation without damping has been reported for current sensors on the 

grid-side for a PWM rectifier [115], and with current sensors on the inverter-side for a 

single-phase inverter [116], and a three-phase inverter [117]. However, there is no 

detailed stability analysis in [116] and [117] and a notch-filter is used to enhance the 

damping in [117]. In [115] stability analysis is performed and compared to the passively 

damped case. In this section the stability analysis of the power control loop is performed 

to independently verify the stability for both current sensor positions. The closed-loop 

transfer function for the active power control loop is derived in the Laplace domain, and 
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converted to the z-domain for stability analysis using pole-zero plots. The following 

assumptions are made in the analysis: 

 The system is linear and time-invariant.  

 The effect of the grid voltage and the grid impedance is neglected so the system 

can be considered as a single-input, single-output system.  

 The resistance of the filter inductors is neglected.  

 The dead time of the converter PWM is neglected. 

 The dynamics of the dc link are not included. 

  
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(b) 

Figure 3.7 Grid-connected VSC with (a) current sensors on the grid side (b) current 
sensors on the inverter side. 

 



47 
 

3.3.1 With Current Sensors on the Grid-side with No Damping 

Having the current sensors on the grid side allows for accurate estimation of the 

instantaneous active and reactive powers at the point of common coupling and is, 

therefore, a good choice of the current sensor position. This is because the voltage sensors 

are located on the grid side to synchronize the control with the grid voltage vector. 

Therefore, the estimated powers will be equal to the actual powers at the point of common 

coupling (PCC).  

 The block diagram of the power control loop is shown in Figure 3.8. This is based on the 

virtual-flux direct power control with space vector modulation. The active power which 

is the controlled variable is calculated by multiplying the grid-side current and the grid 

virtual-flux, which is assumed to have constant amplitude. The calculated active power is 

given by [118] 

 sIp Lg 2
2

3
      (3.38) 

where g  is the magnitude of the grid virtual flux vector scaled to be equal to the grid 

voltage. 
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Figure 3.8 Block diagram of power control loop with current sensors on the grid-side. 

 

The reference active power refp is compared to the calculated active power p and the 

difference p  is fed to a PI controller. 

 The transfer function of the PI controller,  sGC  is expressed as 
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 
s

KsK
sG

ip

C


       (3.39) 

where pK is the proportional gain and iK is the integral gain. 

The controller is implemented in digital form and the delay due to the sampling, 

computations and PWM has to be accounted for. The total delay is assumed to be sT5.1 , 

where sT  is the sample time, with the sampling and computation accounting for a delay 

of sT  and the PWM accounting for a delay of sT5.0  [29]. The transfer function for the delay 

is given by 

 
15.1

1




sT
sG

s

d      (3.40) 

The VSC is represented as a unit gain, given by PWMK in Figure 3.8.  

The transfer function of the LCL filter with the inverter voltage as the input and the grid-

side current as the output is derived to give 
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where 
f

res
CLL

LL

21

21   is the resonance frequency of the LCL filter and 
f

LC
CL2

1
 . 

The open-loop transfer function is given by 

 
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Setting the integral gain of the PI controller to zero, and substituting equations (3.38) to 

(3.41) into equation (3.42) we obtain 
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The closed-loop transfer function is given by 

 
 
 

 
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sG

OL
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CL
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   (3.44) 
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Substituting equation (3.43) into equation (3.44) and recalling that 1PWMK , the closed-

loop transfer function is obtained as  

 
sKsLsLTsLsLT

sK
sG

gLCpresresss

gLCp

CL





222
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32
1
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1

5
1
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5.15.15.1

5.1




       (3.45) 

To analyze the stability of the closed-loop transfer function in the z-plane it is converted 

from continuous form to discrete form. This can be done using the ‘c2d’ function in Matlab 

with a suitable discretization method. Common methods include, zero-order hold, first-

order hold, impulse-invariant mapping, Tustin approximation (bilinear transformation) 

and zero-pole matching equivalents [119]. The Tustin approximation is chosen due to its 

ability to produce a good match in the frequency domain between the continuous and the 

discrete models, and the left-hand side of the s-plane is mapped within the unit circle in 

the z-plane [120]. The discretization is given by 

   
1

12







z

z

sT
sCLCL sGzG     (3.46) 

where sT is the sample time. 

The pole-zero plot of the resulting discrete transfer function is shown in Figure 3.9 for 

values of pK increasing from 0.1 to 1. The closed-loop transfer function is a fifth order 

system with a pole on the boundary of the unit circle, a pole-pair inside the unit circle, and 

a pole-pair outside the unit circle. The pole-pair outside the unit circle causes the system 

to be unstable and increasing pK  causes the poles to move further outside the unit circle, 

thus the PI controller cannot be tuned to obtain stability in this case. 
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Figure 3.9 Pole-zero plots for the power control loop with undamped LCL filter with 
current sensors on the grid-side and varying pK (arrows indicate increasing pK ). 

 

3.3.2 With Current Sensors on the Grid-side with Passive Damping 

A common method used to improve the system stability is to connect a damping resistor 

in series with the filter capacitor. This is called passive damping. The block diagram of 

power control loop with a passively damped LCL filter is shown in Figure 3.10. 
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Figure 3.10 Block diagram of power control loop with current sensors on the grid-side 
and passively damped LCL filter. 

 

The transfer function of the passively damped LCL filter is given by 
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With the integral gain set to zero, the open-loop transfer function is obtained in the same 

way as in sub-section 3.3.1, to give 
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Similarly the closed-loop transfer function is obtained as 
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where 15.1
2
 resdfs RCTA  ; dfs RCTB  5.1 ; 

2
1

2
5.1 LCsfpgres RCKLC   . 

The closed-loop transfer function is converted to discrete form and the stability of the 

system is analyzed using pole-zero plots for different values of gain pK . To further 

illustrate the effect of the chosen value of damping resistor on the system stability, the 

system is analyzed for different values of damping resistor.  There is no universally agreed 

method of determining the damping resistor, with some publications such as [121], [122] 

proposing a damping resistance of  

fres

d
C

R
3

1
     (3.50) 
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Starting with the resistance given by equation (3.50), the proportional gain is varied from 

1 to 10. The resulting pole-zero plot are shown in Figure 3.11. With the low resistance of 

equation (3.50) the system is only stable for low values of pK  and becomes unstable for

2pK . This is because a pair of complex poles which is inside the unit circle for low 

values of pK moves outside the unit circle as pK  is increased. Another pair of complex 

poles stays within the unit circle for all values of pK and a real pole at the boundary of the 

unit circle is not affected by the variation of pK .  

 

Figure 3.11 Pole-zero plots for the power control loop with passively damped LCL filter 
with varying Kp for a damping resistor of )3(1 fresd CR  . 

 

To determine the effect of a bigger damping resistor on the stability, the damping 

resistance given by equation (3.50) is increased by 10 times. The proportional gain is 

varied from 1 to 10 and the pole-zero plot is given in Figure 3.12. 
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Figure 3.12 Pole-zero plots for the power control loop with passively damped LCL filter 
with varying Kp for a damping resistor of )3(10 fresd CR  . 

 

With the higher damping resistor, the stability of the system is improved, and it is stable 

for the range of pK  values used. However, at higher values of pK , the resonant pole-pair 

is close to the boundary of the unit circle and there will be oscillations with low damping 

in the system response. The variation of pK  shows little effect on the other poles.  

The step response for the same value of 1pK  for each of the two damping resistor 

values is shown in Figure 3.13. The step response for both resistors has the same rise time 

and the same overshoot. However, with the higher damping resistor, the settling time is 

shorter. This shows that the stability and dynamic performance of the system will be 

better with a higher damping resistor. But this is not an optimum solution because of the 

increased losses and degradation of the filter performance at higher frequencies.  
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Figure 3.13 Step response for 1pK with two different damping resistors. 

 

This shows that using passive damping is effective in making the system stable. The 

damping resistance should be carefully selected and the PI controller carefully tuned to 

obtain the required performance. However, care should be taken to minimize the power 

losses due to the additional resistance. The effect on the frequency response should also 

be analyzed so that the filter performance does not deteriorate especially at higher 

frequencies higher than the resonance frequency. 

 

3.3.3 With Current Sensors on the Grid-side with Notch-filter Active Damping 

A notch filter can be used as an active damping method, without using any additional 

sensors. The general transfer function of a second order notch filter is given by 

 
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
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where 1  and 2  are the damping coefficients and n  is the natural frequency. 

By putting resn   and 01  , it is possible to cancel out the resonant peak of the LCL 

filter[112]. The notch filter is positioned between the PI controller and the modulator to 

eliminate any resonant frequency components from the reference voltage. The transfer 

function of the implemented notch filter is given by 
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The block diagram of the power control loop with the notch filter is shown in Figure 3.14. 
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Figure 3.14 Block diagram of power control loop with current sensors on the grid-side 
and notch filter active damping. 

 

The open-loop transfer function is given by 
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Inserting the individual transfer functions into equation (3.53) we get 
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where 1123 LLTD ress   ; resress LLTG  12
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12 23 resress LLTH   ; 

2
12

2
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Using equation (3.54) the closed-loop transfer function is obtained as 
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where 
2

5.1 LCpg KJM  . 

 



56 
 

To preserve the behaviour of the system at the resonant frequency, the Tustin method 

with frequency pre-warping is used to discretize the closed-loop transfer function. The 

transformation is given by 

   
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1

)2tan( 





z

z

T
sCLNCLN

s

sGzG


    (3.56) 

Where res   is the pre-warping frequency. 

The stability of the discrete system is analyzed for values of pK increasing from 1 to 10 in 

steps of 1. The pole-zero plot of the discrete transfer function is shown in Figure 3.15. 

 

 

Figure 3.15 Pole-zero plots for the power control loop with notch-filter actively damped 

LCL filter with varying pK . 

 

The pole-zero plots shows that there is real pole and a complex pole-pair on the boundary 

of the unit circle which are not affected by the variation of pK . The complex poles at the 

boundary will cause undamped oscillations in the step response of the system. There is a 
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pair of complex poles which stays within the unit circle for all value of pK , indicating 

damped oscillations in the step response. The last pair of complex poles is within the unit 

circle for low values of pK  but is outside the unit circle for higher values of pK . This 

indicates that the system is only stable for values of pK less than 3. This shows that while 

the notch filter is able to provide active damping and achieve closed-loop system stability, 

it only does so within a small range of values of pK  and the tuning process for both the PI 

controller and the notch filter is tedious.  

The step response of the discrete closed-loop system for the stable range of pK is shown 

in Figure 3.16.  It shows that the oscillations and the overshoot increase as pK is 

increased.  The increase in the oscillations is because as pK is increased there is a pair of 

complex poles getting close to the boundary of the unit circle. 

 

Figure 3.16 Step response of closed-loop discrete system with notch filter for stable 
range of Kp values. 

 

3.3.4 With Current Sensors on the Inverter-side with No Damping 

The fourth case is when the current sensors are on the inverter side with no passive or 

active damping. The block diagram of the power control loop is shown in Figure 3.17. 
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Figure 3.17 Block diagram of power control loop with current sensors on the inverter 
side with no damping.  

 

The transfer function of the LCL filter when the inverter current is used is given by 
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The power calculation is performed using the inverter current and the grid virtual flux as 

shown in the equation below. 

 sIp Lg 1
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     (3.58) 

The other components of the system are as defined in section 3.3.1. The open-loop 

transfer function is given by 
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The closed-loop transfer function is given by 
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where )(5.1
2

1 pgress KTLN   . 

The closed-loop transfer function is converted to discrete form using the Tustin method. 

The pole-zero plots of the discretized transfer function for values of pK ranging from 1 to 

10 is shown in Figure 3.18. There is a real pole at the boundary of the unit circle which is 

not affected by the variation of pK .  Two complex pole pairs are affected by the variation 
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in pK . The first pair of poles is at the boundary of the unit circle for low values of pK and 

increasing pK  causes the poles to move away from the boundary of the unit circle. This 

pole pair will cause undamped oscillations in the step response of the system for low 

values of pK . The second complex pair of poles is inside the unit circle for low values of 

pK  and moves towards the boundary with increasing values of pK . This would cause 

undamped oscillations for higher values of pK . The system will therefore be stable for all 

values of pK considered, but care should be taken when tuning the controller to avoid 

excessive oscillations in the dynamic response. 

 

 

Figure 3.18 Pole-zero plots for the power control loop for undamped LCL filter with 

current sensors on the inverter side for varying pK . 

 

The step response of the discrete closed-loop system is shown in Figure 3.19 for four 

different values of pK . For the range of values of pK  considered, the step response shows 

oscillations due to the complex poles near the boundary of the unit circle. The settling of 

the oscillations between t = 5ms and t = 7ms is shown in the zoomed in rectangle. For 

1pK , there are sustained oscillations of amplitude 1.8 %. For 4pK  there are damped 
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oscillations whose amplitude decreases from 2 % at t = 5 ms, to 0.71 % at t = 7 ms. For 

7pK  the oscillations are negligible while for 10pK , the oscillations decrease from 1 

% at t = 5 ms to 0.25 % at t = 7 ms. Thus, for the range of pK  values considered, it can be 

concluded that lower values result in more sustained oscillations than higher values. The 

best performance in terms of damping of oscillations is obtained with 7pK .  

From the analysis in this section it can be concluded that having the current sensors on 

the inverter side leads to stable operation of the system without any damping. There is no 

added complexity to the system, and the tuning process of the controller is relatively easy. 

 

Figure 3.19 Step response of closed-loop discrete system with current sensors on the 
inverter side for different values of pK . 

 

Adding a damping resistance of )3(1 fresd CR   will reduce the oscillations in the step 

response and reduce the settling time as shown in Figure 3.20(b). This is because there 

are no complex poles at the boundary of the unit circle a shown in the pole-zero plot of 

Figure 3.20(a).  However, the power losses will be increased. Increasing the damping 
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resistance will further increase the losses without a corresponding improvement in 

performance; therefore, it is not a good option. 

 

 

 

 

 

(a) 

 

 

 

 

(b) 

 

Figure 3.20 (a) Pole-zero plot and (b) step response, for passively damped LCL filter 
with current sensors on the inverter side. 
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3.4 Conclusion 

In this chapter, the mathematical models of the grid-connected VSC with an LCL filter have 

been developed. Based on the synchronous reference frame model, the continuous-time 

closed-loop transfer function of the active power control loop is derived in the 

continuous-time domain and converted to discrete-time domain. Stability analysis was 

performed in the z-plane. The findings of the stability analysis are summarized below. 

 When the current sensors are on the grid side, the system is unstable for all values 

of PI controller proportional gain and thus, the controller cannot be tuned to obtain 

stability.  

 When passive damping is used, it is found that the system stability depends on the 

value of damping resistor used, and the value of the proportional gain.  

 With notch filter active damping it is found that the system is stable for low values 

of gain but becomes unstable for higher values.  

 When the current sensors are on the inverter side, the system is found to be stable 

for all values of gain considered.  

Thus, it can be concluded that having the current sensors on the inverter side is a good 

solution to the problem of LCL filter instability. It does not require any additional passive 

elements or additional current sensors and modification of the controller.  
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Chapter 4 Implementation of Virtual Flux Direct Power 

Control with Space Vector Modulation 

4.1 Introduction 

Virtual-flux based direct power control with space vector modulation (VF DPC-SVM) is 

introduced in chapter two, and based on its favourable comparison to other VSC control 

techniques it was chosen for further investigation. In this chapter, the main issues 

involved in the implementation of DPC-SVM will be discussed. Of particular importance is 

the virtual flux estimation, the grid synchronization and the power estimation. The error 

in the reactive power at the PCC caused by having the current sensors on the inverter side 

of the LCL filter is derived and a new, simple scheme to compensate for this error is 

derived. 

The complete control scheme is implemented in simulations of a 100 kW grid-connected 

photovoltaic converter and experimentally verified in a scaled down 1 kW laboratory set 

up. The chapter starts with a description of the simulation model and the experimental 

setup. The principle of virtual flux estimation is explained and different methods of virtual 

flux estimation are investigated. Grid synchronization methods are reviewed and a virtual 

flux phase-locked loop (VF-PLL) is implemented and compared to a voltage based 

synchronous reference frame PLL (SRF-PLL). Virtual flux based power estimation is 

derived from first principles based on the instantaneous power theory. The error in the 

reactive power at the PCC due to the reactive power output of the filter capacitor is 

derived analytically and a simple reactive power error compensation scheme is derived.  

Simulation and experimental results are presented to support the analysis and 

derivations at all stages. 

 

4.2 Simulation Model 

A model of a grid-connected VSC is developed in Simulink using Simulink library blocks 

for the control elements and SimPowerSystems library blocks for the power electronics 

and power system elements.  
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The DC side is supplied by a PV array modeled based on the single diode model of a PV 

cell [123], [124].The model is written in a Matlab s-function with the irradiation and cell 

temperature as inputs and the cell current as an output. The cell current is used to drive 

a controlled current source which represents a PV array giving an open circuit voltage of 

995 V, and a short-circuit current of 138 A. The nominal power of the array at the standard 

test conditions of irradiation of 1000 W/m2 and temperature of 25°C is 100 kW. The PV 

array voltage is kept constant at 760V. The VSC is modeled using the universal bridge 

available in SimPowerSystemsTM power electronics library. The bridge is set to three 

IGBT/diode legs for three-phase operation. A DC link capacitor is connected across the DC 

input of the VSC. An LCL filter is connected between the VSC and the grid. The filter is 

designed following the guidelines in [103], [104]. The main considerations are reduction 

of the inverter side current ripple, grid side current harmonic attenuation and filter 

capacitor reactive power rating. The details of the design procedure for the LCL filter are 

given in Appendix C. The grid is modeled using a programmable three-phase source 

available in the sources library of SimPowerSystemsTM. The grid impedance is modeled as 

a resistive-inductive impedance in line with standard IEC/TR 60725:2012 [125]. 

The voltage and current measurements for control purposes are converted to per-unit 

using the rated power of the converter and the peak value of the phase voltage as the base 

values. A zero-order hold block for each measurement represents the sample and hold 

function in a real system. The control scheme is implemented using Simulink blocks and 

user-defined functions.  

The parameters used in the simulation are summarized in Table 4.1. 

 

 

 

  



65 
 

Table 4.1 Simulation parameters 

Parameters Value 

Nominal power, nP  100 kW 

Grid voltage (line-to-line), gLV  415 V 

Grid frequency, 0f  50 Hz 

DC voltage, dcV  760 V 

DC capacitor, dC  2200 μF 

Inverter side inductor, 1L  0.35 mH 

Grid side inductor, 2L  0.10 mH 

Filter capacitor, fC  100 μF 

Sampling frequency, sf  10 kHz 

Switching frequency, swf  10 kHz 

Base power, baseP   100 kW 

Base voltage, baseV   339 V 

 

4.3 Experimental Setup 

Experimental verification of the simulation results was performed on a low-power 

prototype of a grid-connected VSC. The block diagram of the experimental system is 

shown in Figure 4.1. The system is supplied with a DC voltage of 120 V from a 3 kW, 300 

V LAB/SM variable DC power supply and feeds into the utility grid through a variac and 

an isolation transformer at a voltage of 50 V (line-to-line). The variac allows the voltage 

at the point of connection of the VSC to the grid to be varied and the isolation transformer 

is included for safety reasons and to prevent DC current injection. 
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Figure 4.1 Block diagram of experimental system.  

 

The three-phase VSC used in the experiments is a four-leg flexible inverter developed at 

Newcastle University. In this case the fourth leg was redundant as only three legs were 

required for the three-phase two-level VSC. The DC link of the VSC consists of two series-

connected 2700 µF/250V electrolytic capacitors to filter the low-frequency oscillations 

from the DC voltage and a 150 nF ceramic capacitor connected across the DC link to 

remove the high-frequency oscillations. International rectifier IRG4PH50UD IGBTs are 

used as the switching devices, with the switching signals provided by SN75372 gate 

drivers designed for the flexible inverter.  

The LCL filter is connected between the VSC and the variac. The design procedure used to 

determine the values of the LCL filter components is similar to the one used for the 

simulation model. Current sensors are placed on the inverter side of the filter, while 

voltage sensors are on the grid side.  

The control algorithms are implemented on the Spectrum Digital eZdspTMF28335 

evaluation board based on the Texas Instruments TMS320F28335 digital signal controller 

(DSC). The TMS320F28335 DSC is a 150 MHz, 32-bit floating point DSC suitable for 

control applications such as converter control. The evaluation board comes with a 12-bit 

analogue/digital converter (ADC) with 16 input channels. The code is written in C 
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language using Texas Instruments Code Composer Studio Integrated Development 

Environment Version 6.0.1. An RS232 interface connects the DSC to a LabView control 

panel running on a computer. The LabView user control panel enables the user to change 

control parameters such as current/power demand and tune controller parameters in 

real time. The LabView panel also has a data transfer interface which is used to transfer 

variables stored in the eZdspTMF28335 Random Access Memory (RAM) to the computer 

for further analysis and processing using Matlab.  

The general interface and control board is designed and developed within Newcastle 

University to interface the eZdspTMF28335 board to the power electronics and the various 

sensors. The board has a variety of interfaces suitable for power electronics and drives 

applications. The main interfaces used in this project include the gate drive interface 

which links the PWM signals from the DSC to the gate drivers; the sensor interface which 

connects the output signals from the voltage and current sensors to the ADC; a 

digital/analogue converter (DAC) which enables the real time monitoring of parameters 

from the DSC on an oscilloscope. 

The parameters used in the experimental setup are given in Table 4.2 

Table 4.2 Parameters used in the experimental setup 

Parameters Value 

Nominal power, nP  1 kW 

Grid voltage (line-to-line), gLV  50 V 

Grid frequency, 0f  50 Hz 

DC voltage, dcV  120 V 

DC capacitor, dC  1350 μF 

Inverter side inductor, 1L  0.5 mH 

Grid side inductor, 2L  0.15 mH 

Filter capacitor, fC  20 μF 

Sampling frequency, sf  10 kHz 

Switching frequency, swf  10 kHz 
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Photographs of the experimental rig are shown in Figure 4.2 and Figure 4.3. 

 

Figure 4.2 Photograph of experimental rig. 

 

Figure 4.3 Photograph of the enclosure’s interior. 
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4.4 Virtual Flux Estimation 

4.4.1 Overview of Virtual Flux Estimation Methods 

By definition the virtual flux is the integral of the voltage. Thus, the grid virtual flux is 

given in terms of the grid voltage as 

 
0ggg

dtv       (4.1)  

Where 
g

 the grid is virtual flux vector, gv is the grid voltage vector and 
0g

 is the initial 

value of the grid virtual flux vector. 

Equation (4.1) assumes that the virtual flux is calculated from the measured grid voltage 

using a pure integrator. However, in practice a pure integrator is not used because it could 

lead to integrator drift and saturation, if there is an offset in the measured voltage due to 

converter dead time, sensor offset or inaccuracies in the analogue to digital conversion 

[82]. To avoid the problem of drift and integrator saturation, the integration is performed 

using filters which provide a phase shift of 90° at the fundamental frequency. Among the 

filter types presented in literature, there are first order low-pass filters [73]; second order 

band-pass filters [81], [83]  and cascaded first-order low-pass filters [82], [84], [85].  

However, filter based integration suffers from magnitude and phase errors due to 

frequency variations away from the nominal grid frequency. The performance of the filter 

can be improved by adding phase and magnitude error compensation [126], [88] or 

adaptive compensation [127]. Other proposed improvements include making the filter 

frequency adaptive, as in [128] where a second-order generalized integrator (SOGI) based 

method is used. 

In this study, the cascaded first-order low-pass filter method is adopted. This is because 

in a grid-connected application the expected frequency variation is %1 of the nominal 

grid frequency [129], [130]. Within this range of variation, using cascaded low-pass filters 

give a maximum magnitude error of  %1  and a maximum phase error is  5.0  as shown 

in Figure 4.4.  
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Figure 4.4 Variation of magnitude and phase with frequency for cascaded low-pass 
filters. 

 

The transfer function of the cascaded low-pass filters is given by 
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where 0  is the nominal grid frequency. 

The multiplication factor of 2 is needed to make the magnitude of the estimated virtual-

flux equal to the magnitude of the voltage. The output of the filter is therefore not equal 

to the virtual flux measured in Wb, but it is equal to the virtual flux multiplied by the 

angular frequency, and its unit is 1.. sradWb  (same as voltage). In [128] the symbol  is 

adopted to differentiate it from the conventional virtual flux. However, in this thesis, the 

common symbol for virtual-flux will be used. 

4.4.2 Simulation and Practical Results for Virtual Flux Estimation 

The results of the virtual flux estimation in simulations and experiments are shown in 

Figure 4.5 and Figure 4.6 respectively. In both cases the voltage and the virtual flux are 

scaled to the same amplitude with the virtual flux which has a phase shift of -90° with 

respect to the voltage. The results show that the implemented virtual flux estimation 

method meets the requirements of obtaining the virtual flux with minimal amplitude and 
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phase errors. The estimated virtual flux will be used in the controller for synchronization 

and power estimation. 

 

 

(a) 

 

 

 

 

(b) 

 

 

Figure 4.5 Simulation results for virtual flux estimation (a) gv and  g  (b) gv and  g .  

 

 

(a) 

 

 

 

(b) 

 

Figure 4.6 Experimental results for virtual flux estimation (a) gv  and  g  (b) gv and 

 g  [scale: 20 V/div]. 
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4.5 Synchronization 

Synchronization is one of the important control functions in a grid-connected VSC. It 

involves obtaining information about the grid voltage such as the magnitude, the phase 

angle and the frequency. The phase angle of the grid voltage is useful in synchronizing the 

switching on and off of the semiconductor devices, reference frame transformation of the 

feedback variables and the determination and control of the active and reactive power 

flow [41]. The quality of the synchronization affects the quality of the control [41]. The 

main synchronization techniques found in literature are the zero-crossing detector (ZCD) 

[131],[132] and the phase-locked loop (PLL) [41], [44],[133],[134],[42]. 

The zero-crossing detector is a simple synchronization method which detects the zero-

crossing points of the grid voltage. By counting the number of zero crossings, the 

frequency is estimated and by integrating the estimated frequency the phase angle is 

obtained. One of the drawbacks of the ZCD is that the zero-crossing can only be detected 

every half-cycle and there is no phase detection between the zero-crossing points which 

makes the dynamic performance of the ZCD poor [135]. Another drawback is that it is 

sensitive to noise and distortions in the grid voltage such as notches and low-frequency 

harmonics can negatively affect the output the output of the ZCD [132], [136]. 

A phase-locked loop is another method of grid synchronization. Originally used in 

telecommunications as a device whose output signal tracks its input signal, it has become 

very popular in grid-connected applications [137]. The most common PLL is the 

synchronous reference frame PLL (SRF-PLL) which is shown in Figure 4.7.  
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Figure 4.7 SRF-PLL. 

 

It consists of a reference frame transformation to obtain the synchronous reference frame 

voltages which are dc quantities. The lock is achieved by setting one of the synchronous 
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frame voltages to zero. In Figure 4.7 gqv is controlled to be zero by using a PI controller. 

This aligns the grid voltage vector with the d-axis. The output of the PI controller is added 

to the nominal value of the grid angular frequency to obtain the grid angular frequency. 

The frequency is integrated to obtain the voltage angle, which is fed back and used in the 

reference frame transformation. The SRF-PLL gives a satisfactory performance with 

balanced grid voltages, even in the presence of high-order harmonic distortion [138]. 

When a virtual flux based control technique is implemented, the virtual flux can be used 

for synchronization [81]. Due to the low-pass filters used for the virtual flux estimation, 

the virtual flux vector rotates more smoothly than the voltage vector and can be tracked 

more easily without using a PLL [81]. In this case, the virtual flux angle is calculated using 

the arctan function for the virtual flux components in the stationary reference frame. This 

is given by 


























g

g
arctan         (4.3) 

The virtual flux vector lags the voltage by 90° and the voltage angle can be calculated from 

the virtual flux angle using 

2


  v      (4.4) 

The performance of virtual flux based synchronization can be improved for operation 

with distorted and unbalanced grid voltages by using a PLL [40], [88].  

A virtual flux PLL (VF-PLL) is implemented in this study. The overall structure and 

operation of the VF-PLL is similar to the SRF-PLL. The block diagram of the VF-PLL is 

shown in Figure 4.8.  
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Figure 4.8 VF-PLL.  



74 
 

A notable difference between the SRF-PLL and the VF-PLL is that while for the SRF-PLL 

the q-component of the voltage is set to zero, for the VF-PLL the d-component of the 

virtual flux is set to zero. This is because of the -90° phase difference between the voltage 

vector and the virtual flux vector. With this orientation the virtual flux vector is aligned 

with the q-axis i.e. gqg
  . With this orientation, the estimated angle of the VF-PLL is 

equal to the voltage vector angle. The orientation of the voltage vector and the virtual flux 

vector are shown in the vector diagram in Figure 4.9.  
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Figure 4.9 Orientation of voltage vector and virtual flux vectors.  

 

The other difference is the performance of the two PLLs when the grid voltage is distorted 

with low-order harmonics. The performance of the SRF-PLL with distorted grid voltage is 

better when its feedback loop has a low bandwidth. This is because when the bandwidth 

is low, the PI controller which acts as the loop filter is able to reject the low-order 

harmonics. However, this reduces the dynamic response and the accuracy of the detected 

angle [29], [42]. In a high bandwidth SRF-PLL the effect of the low-order harmonics will 

be visible in the detected angle. The VF-PLL is more robust to low-order harmonics 

because its input is the virtual flux which is estimated using low-pass filters. Therefore, 

even with low-order harmonics present on the grid voltage, it gives a good performance. 
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The performance of the SRF-PLL and the VF-PLL are compared in the simulation results 

below. In Figure 4.10 the performance of the two PLLs is shown for a purely sinusoidal 

grid voltage. This is the ideal case, and is rarely encountered in practice, though a strong 

grid does not deviate too far from this ideal case. The two PLLs are tuned to have the same 

bandwidth for comparison and both of them show good accuracy in tracking the grid 

voltage angle. 

 

(a) 

 

 

(b) 

 

 

 

(c) 

 

Figure 4.10 Performance of SRF-PLL and VF-PLL with balanced undistorted grid voltage 
(a) phase voltages (b) SRF-PLL angle (c) VF-PLL angle. 

 

In Figure 4.11 a distorted grid voltage is applied to both PLLs tuned to the same 

bandwidth. The distortion is created by adding a positive-sequence fifth harmonic voltage 

of magnitude 20% of the fundamental grid voltage, and a positive-sequence seventh 

harmonic voltage of magnitude 15% of the fundamental grid voltage to the fundamental 

grid voltage. This is an extreme case of distortion which is not likely to be encountered in 

practice but it gives a good test of the robustness of the two PLLs. The SRF-PLL shows 

oscillations in its detected angle which show a deviation from the actual angle. The VF-

PLL shows a better performance and the detected angle does not have any oscillations.  
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(a) 

 

 

 

(b) 

 

 

(c) 

 

Figure 4.11 Performance of SRF-PLL and VF-PLL with distorted grid voltage (a) phase 
voltages (b) SRF-PLL angle (c) VF-PLL angle. 

 

Therefore, the VF-PLL and the SRF-PLL have comparable performance in strong grids 

with almost sinusoidal voltages. However, in weak grids with highly distorted voltages 

consisting of low-order harmonics, the VF-PLL performs better. 

The SRF-PLL and the VF-PLL where both implemented practically and the results are 

shown in Figure 4.12. The practical results verify the simulation results for undistorted 

grid voltage.  
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(a) 

 

 

 

 

(b) 

 

 

Figure 4.12 Experimental results for (a) SRF-PLL. Phase voltages (40 V/div); angle 
(120°/div) (b) VF-PLL. Phase voltages (40 V/div); angle (120°/div). 

 

4.6 Power Estimation 

In direct power control schemes, the inner control loop controls the active power and the 

reactive power, which are estimated using the current and the voltage or the virtual flux 

[72], [34], [77].  The power estimation is based on the instantaneous power theory or p-

q theory. There are many definitions of instantaneous power in literature [62], [139], 

[140], [141], [142], [143]. While there is no generally agreed definition of instantaneous 

power in literature, various authors agree that the instantaneous power consists of at 

least two different components. These are the active or real power and the imaginary or 

reactive power.  

Akagi et al defines the instantaneous active power, p  for three-phase systems as “the 

total energy flow per second between two subsystems” [62]. 

Mathematically this is given by 

ccbbaa ivivivp       (4.5) 
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The definition of instantaneous imaginary power according to Akagi et al is that it is a 

component of the power proportional to the quantity of energy that is being exchanged 

between the phases of a three phase system and does not contribute to the energy transfer 

between the source and the load [62]. The instantaneous reactive power is the same as 

the instantaneous imaginary power. 

Mathematically this is given by 

 bcaabccab ivivivq 
3

1
    (4.6) 

Using space vectors of the voltage and the current, the active power and the reactive 

power are respectively given by 

  ivp .Re
2

3
     (4.7) 

  ivq .Im
2

3
     (4.8) 

where i  is the complex conjugate of the current. 

Using the stationary reference frame components of the voltage and the current, 

equations (4.7) and (4.8) can be written as 

  ivivp 
2

3
    (4.9) 

  ivivq 
2

3
    (4.10) 

Using the virtual flux for power estimation has been shown to improve the quality of the 

converter current even in the presence of distorted grid voltage [40], [87]. 

Assuming sinusoidal balanced voltages, we can write the stationary reference frame 

voltages as 

vmVv  cos        (4.11) 

vmVv  sin        (4.12) 

Similarly, the estimated virtual flux scaled to the same amplitude as the voltage can be 

written as 
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vm  sin          (4.13) 

vm   cos     (4.14) 

where tv    is the voltage angle; mV  is the amplitude of the voltage and m  is the 

amplitude of the virtual flux. 

The voltage can be written as the derivative of the virtual flux.  

vd

d
v




       (4.15) 

vd

d
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       (4.16) 

 

Substituting equations (4.15) and (4.16) into equations (4.9) and (4.10) we get 
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From equations (4.13) and (4.14), we get 


 




dt

d
     (4.19) 








dt

d
     (4.20) 

Substituting equations (4.19) and (4.20), into equations (4.17) and (4.18) we get  

   iip 
2

3
     (4.21) 

   iiq 
2

3
     (4.22) 

Equations (4.21) and (4.22) form the basis of active and reactive power estimation in 

virtual-flux based direct power control. 
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4.7 Modified Power Estimation with LCL Filter 

The control objective in grid-connected VSCs is to control the flow of active and reactive 

power into the grid. This can be done directly, as in direct power control, or indirectly, as 

in voltage oriented current control. In direct power control the current is used to estimate 

the active power and the reactive power which are the regulated variables, and in current 

control it is regulated by the current controller. In both cases the control is synchronized 

with the grid voltage angle, and for unity power factor operation the current flowing into 

the grid should be in phase with the voltage at the PCC. If an L filter is used, the position 

of the current sensors can be on the inverter side or the grid side, since the same current 

flows through the inductor. However, if an LCL filter is used, there is a phase shift between 

the inverter side current and the grid side current, which is caused by the current drawn 

by the filter capacitor. Therefore, the current measured by the current sensors on the 

inverter side will not be equal to the current measured by current sensors on the grid 

side. It appears that the best position for the current sensors is on the grid side because 

that will give the actual current flowing into the grid. However, for stability reasons, the 

current sensors can be on the inverter side, and in this case the measured current will not 

be equal to the actual current flowing into the grid. In terms of the powers, the reactive 

power estimated using the inverter side current will not be equal to the reactive power at 

the PCC because of the reactive power output of the filter capacitor. If the losses in the 

inductor windings and the connecting cables are ignored, the estimated active power will 

be the same as the active power at the PCC, since the current drawn by the filter capacitor 

is purely reactive. This is a reasonable assumption in high power converters. If the error 

between the regulated reactive power and the actual reactive power is small, which is the 

case in low-power converters with low value filter capacitors, it can be neglected. 

However, in high power converters with high value filter capacitors the error is quite 

significant and it should be compensated for to achieve correct regulation of the reactive 

power. 

A number of publications have presented various strategies of compensating for the error 

in the regulated reactive power and the reactive power at the PCC when the current 

sensors are on the inverter side. An example of reactive power error compensation in 

virtual flux direct power control is found in [88] where the inverter virtual flux and the 

inverter side current are used to estimate the powers. The reactive power error which is 

equal to the filter capacitor reactive power is estimated using the estimated filter 
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capacitor virtual flux and the measured capacitor current. A different approach for voltage 

based direct power control is presented in [144], where the filter capacitor reactive 

power is estimated using the measured capacitor voltage and the filter capacitance. A 

compensation scheme for a single-phase grid-connected converter is given in  [116] 

where the inverter side current is measured. The grid side current reference is created by 

estimating the capacitor current and adding it to the inverter side reference current. The 

drawback of the methods in [88] and [144] is that they require additional sensors to 

measure the capacitor current and the capacitor voltage respectively. 

In the following sub-sections, a new simple analytical method of compensating for the 

error in the estimated reactive power is developed and implemented. The method is 

based on the estimated virtual flux and the measured inverter side current. The 

advantages of the developed method are that it does not need any additional voltage or 

current sensors, and does not add complexity to the overall control scheme. 

4.7.1 Phasor Diagram for Grid-connected VSC 

The single-phase equivalent circuit of the grid-connected VSC is shown in Figure 4.13. 
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Figure 4.13 Single-phase equivalent circuit of grid-connected VSC. 

 

The inverter voltage, the filter capacitor voltage and the grid voltage are related by  

CfL
L

inv viR
dt

id
Lv  11

1
1     (4.23)  

and 

gL
L

Cf viR
dt

id
Lv  22

2
2     (4.24) 

The inverter side current, the filter capacitor current and the grid side current are related 

by 
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CfLL iii  21      (4.25) 

The graphical relationship between the voltages and the currents is shown in the phasor 

diagram of Figure 4.14 which shows the fundamental frequency components of the 

voltages and currents. The grid voltage, gV  is taken as the reference phasor and the grid 

side current, 2LI  is assumed to be lagging the voltage by an angle, 2L . The resistive 

voltage drops across the winding resistances of the inverter side inductor and the grid 

side inductor are given by 11 LIR and 22 LIR  respectively. The inductive voltage drops 

across the inverter side inductor and the grid side inductor are given by 11 LILj  and 

22 LILj respectively. The filter capacitor current, CfI  leads the filter capacitor voltage, 

CfV  by 90°. The inverter side current, 1LI   is the sum of the grid side current and the filter 

capacitor current and has a phase angle of 1L with respect to the grid voltage. The phasor 

diagram shows that there is a phase difference between the grid side current and the 

inverter side current which is given by 

21 LL       (4.26) 

Due to this difference in phase shift, caused by the current in the filter capacitor, when the 

inverter side current is regulated or used to estimate the powers, there is need to 

compensate for the error in the regulated current or the reactive power. 
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Figure 4.14 Phasor diagram of grid-connected VSC (not to scale). 
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The variation of the phase angle of the grid current with filter capacitance at different 

values of active power is shown in Figure 4.15. The graphs show that the phase angle is 

bigger at higher values of capacitance and low values of active power. For a grid-

connected PV converter this is significant because the active power output is not always 

high, and if unity power factor is preferred during periods of low active power output 

there is need to compensate for the error due to the capacitive reactive power.  

 

Figure 4.15 Variation of grid current phase angle with filter capacitance for different 
values of active power. 

 

4.7.2 Derivation of an Expression for the Error 

If the current sensors are on the inverter side, and the grid voltage is measured for 

synchronization, the regulated active power cp and the regulated reactive power cq  are 

estimated using the inverter side current and the grid virtual flux as given by the 

equations below. 

   11
2

3
LgLgc iip      (4.27) 

   11
2

3
LgLgc iiq      (4.28) 

The active power and reactive power at the PCC are given by 

   22
2

3
LgLgg iip      (4.29) 
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   22
2

3
LgLgg iiq      (4.30) 

It the capacitor current is assumed to be purely reactive, and if the resistive losses in the 

inductors are neglected, the controlled active power and the active power at the PCC can 

be assumed to be equal. 

The difference between the controlled reactive power in (4.28) and the reactive power at 

the PCC in (4.30) is given by 

      2121
2

3
LLgLLggc iiiiqqq    (4.31) 

Rearranging equation (4.25), and using the stationary reference frame components of the 

currents we get the filter capacitor current as 

 21 LLCf iii      (4.32) 

 21 LLCf iii      (4.33) 

Substituting equations (4.32) and (4.33) in equation (4.31) we obtain the reactive power 

error as 

   CfgCfg iiq 
2

3
          (4.34) 

Implementation of equation (4.34) in the controller will need the capacitor current to be 

measured or estimated. To avoid using additional current sensors, the capacitor current 

can be estimated. To estimate the capacitor current, the inverter side current and the grid 

side current are needed. The inverter side current is available from the current sensors, 

while the grid side current can be estimated using the reference powers (which are the 

required powers at the PCC) and the grid virtual flux. 

By rearranging equations (4.29) and (4.30) and substituting the grid side powers with the 

reference powers we obtain the equations for the grid side current below. 
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Equations (4.32) to (4.36) are implemented to estimate the error in the reactive power,

q . This error is then subtracted from the reactive power reference to make the reactive 

power at the PCC equal to the reference reactive power. This is expressed using the 

equation below. 

qqq refref '     (4.37) 

where 'refq  is the corrected reactive power reference. 

The block diagram of the reactive power error compensation scheme is shown in Figure 

4.16. A low-pass filter is used to remove the ripple in the estimated q . 
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Figure 4.16 Block diagram of reactive power error compensation scheme. 

 

The block diagram of the complete control scheme is shown in Figure 4.17. 
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Figure 4.17 Block diagram of VF-DPC SVM control. 

 

4.7.3 Simulation Results for Reactive Power Error Compensation Scheme 

The reactive power error compensation scheme is implemented in simulations and the 

results are shown in Figure 4.18. The results show the measured inverter side current, 

the estimated grid side current, the estimated capacitor current, the estimated reactive 

power error, and the filtered reactive power error. Due to the high ripple content in the 

capacitor current, the estimated reactive power error has got a high ripple content as well. 

If this error is subtracted from the reference reactive power, the corrected reference will 

have high ripple content and this will negatively affect the performance of the reactive 

power controller. Therefore, a low-pass filter is needed to remove the high frequency 

ripple so that the corrected reference reactive power is ripple free. 



87 
 

 

Figure 4.18 Simulation results for reactive power calculation (a) inverter side currents 
(b) grid side current (c) filter capacitor current (d) reactive power error (e) filtered 

reactive power error. 

 

Simulation results showing the active power and the reactive power at the PCC without 

compensation for the reactive power are shown in Figure 4.19. The reference active 

power is 0.75 pu, and the reference reactive power is 0. The results show that the reactive 

power at the PCC is not equal to the reference reactive power.  
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Figure 4.19 Simulation results for uncompensated reactive power error (a) grid virtual 
fluxes (b) inverter side currents (c) active power and reactive power. 

 

Simulation results showing the active power and the reactive power at the PCC when the 

reactive power error compensation scheme is applied are shown in Figure 4.20. The error 

compensation is applied without changing the reference active power and reactive power. 

The reactive power at the PCC is equal to zero after compensation. Therefore, when the 

compensation scheme is applied, it is possible to make the reactive power at the PCC equal 

to the reference. This improves the power factor if unit power factor is desired, and it 

makes the reactive power control more accurate. 
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Figure 4.20 Simulation results for compensated reactive power error (a) grid virtual 
fluxes (b) inverter side currents (c) active power and reactive power. 

 

4.7.4 Experimental Results for Power Estimation 

The power estimation and the reactive power error compensation scheme described 

above were implemented in the practical set up. The inverter side current, grid side 

current and the filter capacitor current are shown in Figure 4.21. The experimental results 

in Figure 4.21, support the simulation results in Figure 4.18. The experimental results of 

the estimated powers are shown in Figure 4.22. The results show the grid virtual flux, the 

inverter side current and the estimated active power and reactive power. The 

experimental results of Figure 4.22, validate the simulation results of Figure 4.20. 
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Figure 4.21 Experimental results showing inverter side current (top, 10 A/div), filter 
capacitor current (middle, 1 A/div) and grid side current (bottom, 10 A/div).  

 

 

Figure 4.22 Experimental results for power estimation. Virtual flux (25 V/div), inverter 
side current (10 A/div) and active power and reactive power (200 W/div). 

 

4.8 Conclusion 

In this chapter the main issues involved in the implementation of virtual flux based direct 

power control with space vector modulation are presented. The simulation model and the 

experimental setup are described. The main contents of the chapter are summarized 

below. 

 Virtual-flux estimation based on cascaded low-pass filter is described. 

 An alternative synchronization method, the virtual-flux PLL is implemented and 

simulation results show that it has better performance than the common voltage 

based PLL in tracking the angle of the fundamental frequency voltage if the grid 

voltage is distorted with low order harmonics. 
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 It is proved mathematically that the reactive power estimated using the inverter 

side current of the LCL filter is not equal to the reactive power at the PCC, with the 

error being equal to the filter capacitor’s reactive power output. 

 A reactive power error compensation scheme is proposed and implemented to 

eliminate the error between the estimated reactive power and the reactive power 

at the PCC. The compensation scheme cancels out the reactive power output of the 

filter capacitor and ensures that the reactive power at the PCC is equal to the 

reference reactive power. 
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Chapter 5 Effect of Grid Impedance Variation and Grid 

Voltage Distortion  

5.1 Introduction 

In Chapter 3, it was established that, the power control loop of a grid-connected VSC with 

an LCL filter is stable without any damping if the current sensors are on the inverter side. 

The stability analysis was performed with the assumption that the grid voltage has no 

effect on the control loop, and the grid impedance was represented by a short circuit. 

These assumptions are reasonable if the VSC is connected to a strong grid, which is 

characterized by constant voltage magnitude and frequency, and low grid impedance. In 

practice, the VSC, particularly when used as a renewable energy interface, could be 

connected to a weak grid, where the voltage magnitude and grid impedance fluctuates. 

The grid impedance is the Thévenin equivalent impedance at the PCC and it fluctuates, as 

loads and sources are continuously being connected and disconnected from the grid. The 

variation of the grid impedance affects the stability and performance of the controller and 

the quality of the current injected by the VSC  [145], [146], [147], [148]. 

The performance of the controller and the quality of the current injected into the grid by 

the VSC is also affected by the presence of harmonics in the grid voltage [149]. The main 

sources of harmonics in the grid include power electronic equipment, arcing equipment 

and devices with saturated magnetic cores [150]. In direct power controlled VSCs, grid 

voltage harmonics affect the instantaneous power estimation, and the quality of the grid 

current [62], [34]. The distortion in the current can be reduced by using individual 

harmonic current PI controllers [151], [88]. However, this adds to the complexity of the 

controller. Weak grids are more prone to harmonics than strong grids, and the controller 

should be robust enough to inject a sinusoidal current when the grid voltage is distorted. 

In this chapter, the performance of the virtual-flux based direct power control with space 

vector modulation (VF-DPC-SVM) is investigated. The stability of the system when 

connected to a grid with variable grid impedance is verified by including the grid 

inductance in the closed-loop transfer function. The effect of variable grid inductance on 

the quality of the injected current is investigated for different values of power controller 

proportional gain. The effect of harmonics on the current quality and the controller tuning 
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is also investigated. Simulation and experimental results are presented to verify the 

investigation, and compared with the results obtained using voltage based DPC-SVM. 

5.2 Harmonic Limits 

The allowable distortion in the injected current of the VSC is limited by international 

standards. The most quoted standards are IEEE 519 [14] and IEC 61000-3-12:2011/BS 

EN 61000-3-12: 2011 [15]. Standards dealing specifically with limiting the harmonic 

distortion caused by distributed generation are IEEE 1547 [13] and IEC61000-3-15:2011 

[152]. The IEEE standards give the maximum allowed total demand distortion (TDD) for 

systems rated from 120 V to 69 kV for a range of short-circuit current ratios from less 

than 20 to greater than 1000. The TDD gives a measure of the harmonic distortion in the 

system as a ratio of the full-load current. The IEC standards give the allowable individual 

harmonic distortion for systems with a rated current up to 75 A/phase and a voltage 

rating up to 400V.  Due to the higher voltages considered, the IEEE standards are more 

rigorous than the IEC standards, and will be used as a bench mark in this investigation.  

The main points of the IEC and IEEE standards are summarized in Table 5.1. 
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Table 5.1 Harmonic Limits for grid-connected VSC [14], [152] 

Harmonic order (n) IEC Limit (%) IEEE Limit (%) 

2 1.0 Not specified 

3 21.6  

 

 

4.0 

5 10.7 

7 7.2 

9 3.8 

11 3.1 

13 2.0  

2.0 1713  n   

 

1.0 

2317  n  1.5 

3523  n  0.6 

5035  n  0.3 

Even harmonics 1.0 25% of odd harmonics 

TDD Not specified 5.0 

 

5.3 Effect of Grid Impedance Variation on Controller Stability 

5.3.1 Variation of Resonance Frequency with Grid Inductance 

The single-phase equivalent circuit of the grid-connected converter with a non-zero grid 

impedance is shown in Figure 5.1. 
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Figure 5.1 Single-phase equivalent circuit of grid-connected VSC with grid impedance. 
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Due to the variation in grid impedance, the magnitude of the voltage at the PCC will vary 

as shown by the grid impedance voltage drop, gv  in Figure 5.1. The grid impedance 

voltage drop depends on the grid current and is given by 

 ggLg LjRiv  2     (5.1)  

where gR is the resistive component of the grid impedance and gL is the inductive 

component of the grid impedance.  

The variation of the grid impedance will have an effect on the closed-loop stability of the 

control system. This is because the grid impedance is in series with the grid-side inductor 

of the LCL filter and it will ch1ange the attenuation of harmonics in the grid current and 

the resonance frequency of the filter. The added inductance will increase the harmonic 

attenuation, but it will decrease the resonance frequency, which could affect the 

controller bandwidth and stability.  

The transfer function of the LCL filter with the current sensors on the inverter side and 

with the grid inductance taken into consideration is given by 

 
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The resonance frequency is given by 
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res
CLLL
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21

21




     (5.3) 

The effect of the grid inductance variation on the resonance frequency is shown in Figure 

5.2. There is a steep reduction in resonance frequency for a small change in grid 

inductance at low values of grid inductance whereas for higher values of grid inductance 

the reduction in resonance frequency is not very steep. Considering a grid inductance 

increase from 0.1 mH to 0.5 mH, the corresponding reduction in resonance frequency is 

from 1.48 kHz to 1.13 kHz, which is a reduction of 24.1%. Further increase in the grid 

inductance will yield a lower relative reduction in the resonance frequency; therefore, the 

grid inductance variation will be limited to the range 0.1 mH to 0.5 mH. 
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Figure 5.2 Variation of resonance frequency with grid inductance. 

 

5.3.2 Stability Analysis 

The transfer function of the LCL filter given in equation (5.2) is inserted in the closed-loop 

transfer function of the power control system and the discrete form of the transfer 

function is used to plot the poles and zeros of the system. To determine the effect of the 

grid inductance on the stability of the system the proportional gain, pK  is kept constant 

in turn and the grid inductance is varied from 0 to 0.5 mH for each value of pK . 

The pole-zero plot with 1pK  and the grid inductance varying from 0 to 0.5 mH is shown 

in Figure 5.3. 
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Figure 5.3 Pole-zero plot for variable grid inductance with 1pK . 

 

The closed-loop system has five poles, a real pole at the boundary of the unit circle and 

two complex pole-pairs. The real pole is not affected by the variation of grid inductance, 

while the complex poles are affected. The complex pole pairs can be divided into the 

higher frequency resonance pole pair and the lower frequency anti-resonance pole pair. 

For low values of grid inductance, the resonance pole-pair on the edge of the unit circle 

has very low damping of almost zero, and could cause undamped oscillations in the step 

response of the system. At higher values of grid inductance, the damping of the poles 

increases to 0.1, and this will improve the damping of the oscillations. The other complex 

pole-pair is deeper within the unit circle and has a high damping, ranging from 0.7 to 0.9 

for the lowest and highest values of grid inductance, respectively. Oscillations due to this 

pole-pair will be of low frequency, ranging from 0.74 kHz to 0.46 kHz, and will be 

sufficiently damped.  

The pole-zero plot with 2pK  and the grid inductance varying from 0 to 0.5 mH is 

shown in Figure 5.4. 
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Figure 5.4 Pole-zero plot for variable grid inductance with 2pK . 

 

The resonance pole-pair on the edge of the unit circle has very low damping for low values 

of grid inductance and the damping increases as the grid inductance increases. The 

highest damping achieved is 0.15 at a grid inductance of 0.5 mH. There will still be under-

damped oscillations in the system response but they will have better damping than that 

achieved for 1pK . The anti-resonance pole-pair lying deeper within the unit circle has 

a higher damping which increases from 0.44 to 0.49 as the grid inductance increases.  This 

is lower than the damping achieved with 1pK but the low-frequency oscillations, 

ranging from 1 kHz to 0.56 kHz as grid inductance increases, will be sufficiently damped. 

The pole-zero plot with 3pK  and the grid inductance varying from 0 to 0.5 mH is 

shown in Figure 5.5.  
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Figure 5.5 Pole-zero plot for variable grid inductance with 3pK . 

 

There is a noticeable increase in the damping of the resonance pole-pair at the edge of the 

unit circle. The damping ranges from 0.04, for 0gL  to 0.17 for 5.0gL mH; with the 

frequency ranging from 1.55 kHz to 1.8 kHz. The anti-resonance pole-pair lying deeper 

within the unit circle has a damping of 0.3 which does not vary much with the variation 

of grid inductance. This is lower than the damping achieved with lower values of pK . The 

frequency of the oscillations will range from 1.2 kHz to 0.59 kHz as the grid inductance 

increases.  

From the foregoing analysis, it can be concluded that any further increase in pK will not 

have much effect on the resonance pole-pair, and will drive the anti-resonance pole-pair 

closer to the boundary of the unit circle, which will result in increased oscillations with 

low damping.  

Of the range of pK values considered, 2pK gives the best stability in terms of damping 

of both the resonance and anti-resonance pole-pairs.  
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5.4 Power Estimation with Distorted Voltage and Current 

In a direct power control scheme the power estimation plays an important part in the 

performance of the system. The principle of instantaneous power estimation based on 

voltage and virtual flux has been reviewed in Chapter 4. The voltages and currents are 

assumed to be purely sinusoidal, with no harmonics, and the effect of voltage and current 

distortion was not considered. In this section, the power estimation with distorted voltage 

and current will be considered. Classical power theories for distorted voltages and 

currents are reviewed. Due to the limitations of the classical power theories based on rms 

values of voltage and current, modern power theories based on instantaneous values of 

voltage and current are considered, and found to be more suitable for power estimation 

because they cater for distorted and unbalanced voltages and currents. Finally, virtual flux 

based power estimation with distorted current is presented with the virtual-flux assumed 

to be purely sinusoidal. 

5.4.1 Classical Power Theories for Distorted Voltage and Current 

A distorted grid voltage waveform, consists of the fundamental frequency component and 

harmonics whose frequencies are usually integer multiples of the fundamental frequency. 

Mathematically this is expressed as 

 





1

cos2
n

nngng tVv      (5.4) 

where gnV is the rms value of the nth harmonic voltage, n is its angular frequency and n  

is its phase angle. 

Similarly, the current can be written as 

 
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nnnLnL tIi        (5.5) 

where LnI  is the rms value of the nth harmonic current, and n  is the phase angle 

between the nth harmonic voltage and the nth harmonic current. 

The rms value of the distorted voltage is given by 
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where 2T is the periodic time of the fundamental frequency voltage and gv  is the 

instantaneous value of the voltage. 

In the same way, the rms value of the distorted current is given by 


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1

2

0

21

n
Ln

T

LL Idti
T

I     (5.7) 

where Li is the instantaneous value of the current. 

The instantaneous power is the product of the instantaneous voltage and the 

instantaneous current and is given by 

Lg ivp        (5.8) 

According to the classical definition of active power by Fryze [153], [154], it is the average 

of the instantaneous power and is given by 


T

pdt
T

P
0

1       (5.9) 

Using equations (5.4) to (5.9), the active power for distorted voltage and current is 

obtained as 


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nLngnIVP       (5.10) 

The apparent power is defined as the product of the rms values of the voltage and the 

current. 
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The reactive power is given by 







1

sin
n

nLngnIVQ       (5.12) 

Using these definitions of active power, reactive power and apparent power, the apparent 

power cannot be expressed, in a power triangle, as the square root of the sum of the 

squares of the active power and the reactive power, as is the case for sinusoidal voltages 

and current. Thus, a new form of power called the “distortion power” was introduced by 

Budeanu [155], [156]. The distortion power is given by 
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222 QPSD       (5.13) 

The relationship of distortion power to apparent power, active power and reactive power 

is shown graphically in the power tetrahedron in Figure 5.6. 

P
Q

DS

 

Figure 5.6 Power tetrahedron showing the four power components defined by Budeanu 
[62]. 

 

5.4.2 Modern Instantaneous Power Theories for Distorted Voltage and Current 

Classical power theories have been found to be inadequate for application in power 

electronic equipment due to a lack of physical meaning of the reactive and distortion 

powers [157]. The modern instantaneous power theories by Akagi [140] and Peng [142], 

[158] are more general and take into consideration the harmonics and imbalances in the 

voltage and current. 

The distorted grid voltage is given as 

 





1n

ngngg jvvv      (5.14) 

where ngv  and ngv  are the orthogonal components of the nth harmonic voltage in the 

stationary reference frame. 

And the distorted current is given by 
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where nLi  and nLi  are the orthogonal components of the nth harmonic current in the 

stationary reference frame. 

The instantaneous power calculated using the distorted voltage and current will have a 

constant component and oscillating components. The constant component is due to the 

product of the fundamental frequency voltage and current, and harmonics with the same 

frequency. The oscillating components are due to the products of harmonics with 

different frequencies and positive and negative sequence components if they are present. 

The instantaneous active power estimated using distorted voltage and current is given by 

ppp ~      (5.16) 

Similarly, the reactive power is given by 

qqq ~      (5.17) 

where p and q  are the constant components of the power; p~  and q~  are the oscillating 

components. 

If the distorted voltage and current are assumed to be balanced, so that only positive-

sequence components are present, the power components are expressed in terms of the 

voltage and current as 
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The oscillating power components will be superimposed on the constant power 

components and will be visible as ripples in the output power of the VSC.  

When the virtual flux is used for power estimation, only the current will be significantly 

distorted because the virtual flux has a very low distortion due to its estimation method 

outlined in detail in Chapter 4. Assuming the virtual flux is purely sinusoidal, with only 
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the fundamental frequency component present, the power components will be defined as 

shown below. 

 11
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Equations (5.20), (5.21), (5.24) and (5.25) show that there are oscillations in the 

estimated powers regardless of whether voltage or virtual flux is used. It cannot be 

concluded from these equations which one will give better performance between voltage 

based power estimation and virtual flux power estimation in a direct power control 

scheme. The performance of the control scheme will also depend on other factors, such as 

the controller tuning, the grid impedance and the synchronization. In the following 

sections, the performance of the voltage based and virtual flux based direct power control 

schemes will be investigated for a range of control parameters, grid inductance and grid 

voltage distortion.   

5.5 Simulation Results with Ideal Grid Voltage 

The effect of grid inductance variation on the performance of the system is investigated 

further by varying the grid inductance in the simulation model for different values of 

proportional gain, .pK Fast Fourier Transform (FFT) analysis of the grid current 

waveform is used to investigate the harmonics present in the current. In the simulation 

model, the resistance of the filter inductors, capacitors and grid impedance is neglected. 

This is to remove any damping that may be caused by these resistances. The simulation 

results are presented for two values of grid inductance, 0.1 mH and 0.5 mH. Two control 

schemes are used namely VF-DPC-SVM and voltage-based DPC-SVM.  

For the first part of the analysis, the grid is modelled as an “ideal” grid, whose voltage is 

purely sinusoidal with no harmonics. For the second part the grid is modelled as a 

distorted grid using the harmonic data obtained from measurements of the grid voltage 

at the PCC for the experimental set up. 
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5.5.1 With Lg = 0.1 mH 

With the grid inductance set to 0.1 mH, the proportional gain for both control schemes is 

varied and the total harmonic distortion in the current is obtained for each value of pK . 

The variation of the current THD with proportional gain is shown in Figure 5.7.  

A lower THD of 2.19 % for a proportional gain of 2pK   is achieved with VF-DPC-SVM 

than with voltage based DPC-SVM for which the lowest THD achieved is 3.74 % for a 

proportional gain of 5.1pK . Both control schemes meet the IEEE 519 requirement of a 

current THD of less than 5 %. 

 

Figure 5.7 Variation of current THD with pK  for 1.0gL mH with ideal grid voltage. 

 

The frequency spectrum of the current with the lowest THD achieved for each method is 

plotted in Figure 5.8. VF-DPC-SVM has a more evenly spread harmonic spectrum, with the 

highest harmonics being the 5th and 7th in the low-order range while in the higher range 

the highest harmonics are in the range of 23rd to 32nd which is within the same range as 

the resonance frequency of the LCL filter. Voltage DPC-SVM has harmonics with 

magnitude greater than 1% of the fundamental between the 23rd and 27th harmonics. 

Thus, while both control schemes show good harmonic rejection in the low-frequency 

range, at frequencies close to the resonance frequency VF-DPC-SVM performs better. 
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Figure 5.8 Frequency spectra of the grid current for 1.0gL mH with ideal grid voltage. 

 

5.5.2 With Lg = 0.5 mH 

The variation of the current THD with proportional gain at a higher grid inductance of 0.5 

mH is shown in Figure 5.9. VF-DPC-SVM shows very little variation in the THD, which is 

less than 2 %, for all values of pK  considered. Voltage DPC-SVM shows a wide variation 

for values of pK  less than 2, but less variation for values greater than 2. The lowest THDs 

achieved for both methods are identical. 

 

 

Figure 5.9 Variation of current THD with pK  for 5.0gL mH with ideal grid voltage. 

 

The frequency spectrum of the current with the lowest THD achieved for each method is 

plotted in Figure 5.10. For VF-DPC-SVM, the highest harmonics are in the lower range 

between the 5th and 13th, with the 5th being the highest at 0.82 %, while the higher order 
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harmonics are much lower, with the 18th, 19th  and 21st harmonics being the only ones 

greater than 0.2 %. For voltage DPC-SVM, the low-order harmonics are more evenly 

spread, though even harmonics such as the 4th and 6th have the highest magnitudes of 0.72 

% and 0.7 % respectively. The higher order harmonics are greater than for VF-DPC-SVM 

with the 19th and 24th harmonics being the highest with magnitudes of 0.5% and 0.35 %. 

 

 

Figure 5.10 Frequency spectra of the grid current for 5.0gL mH with ideal grid 

voltage. 

 

Comparing the results for the two values of grid inductance, it can be seen that at the 

higher value the current is less distorted. This is because the grid impedance appears as 

additional impedance to that offered by the LCL filter inductors, and provides additional 

harmonic attenuation. 

 

5.6 Simulation Results with Distorted Grid Voltage 

The distorted grid is created by superimposing the following harmonic components on 

the fundamental frequency voltage: 5th harmonic of 1.81%; 7th harmonic of 2.56%; 11th 

harmonic of 1.21%; and 13th harmonic of 1.08%. The THD of this distorted voltage is 

3.53%. These harmonics were obtained from measurement of the grid voltage at the PCC 

for the experimental system. 
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5.6.1 With Lg = 0.1 mH 

The grid inductance is set to 0.1 mH, and the proportional gain for both control schemes 

is varied. The total harmonic distortion in the current is obtained for each value of pK and 

is shown in Figure 5.11.  

The lowest THD achieved for the current with VF-DPC-SVM is 3.57 % with 2pK , while 

the lowest THD achieved with voltage based DPC-SVM is 5.75 % with 5.2pK . 

Therefore, with a distorted grid voltage only VF-DPC-SVM achieves a THD lower than the 

maximum allowed by the IEEE 519.  

 

 

Figure 5.11 Variation of current THD with pK  for 1.0gL mH with distorted grid 

voltage. 

 

The frequency spectrum of the current with the lowest THD achieved for each method is 

plotted in Figure 5.12. The main harmonics present in the spectrum for VF-DPC-SVM are 

the 5th and the 7th with magnitudes of 1.61 % and 1.86 %, respectively. Other prominent 

low-order harmonics are the 11th and 13th with magnitudes less than 1%. In the resonance 

frequency range, the prominent harmonics are the 23rd and 28th both with magnitude less 

than 1 %. For voltage based DPC-SVM, the 3rd, 5th, 7th and 9th are the main low-order 

harmonics, with respective magnitudes of 1.69 %, 2.57 %, 2.1 % and 1.66 %. Other 

harmonics with magnitude greater than 1 % include the 15th and 21st.  While most 

individual harmonics are within the limits specified by IEEE 519, the 33rd and the 35th 

exceed the limits with respective magnitudes of 0.78 % and 0.69 %.   

Therefore, with low grid impedance, VF-DPC-SVM has a better performance than voltage 

based DPC-SVM when the grid voltage is distorted.  
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Figure 5.12 Frequency spectra of the grid current for 1.0gL mH with distorted grid 

voltage. 

 

5.6.2 With Lg = 0.5 mH 

The grid inductance is increased to 0.5 mH and the proportional gain for each control 

scheme is varied and the THD of the current obtained for each control scheme is plotted 

against the corresponding proportional gain as shown in Figure 5.13. The lowest current 

THD achieved with VF-DPC-SVM is 3.54 % for 2pK , while for voltage based DPC-SVM 

it is 6.07 % for 5.1pK . Therefore, while both control schemes are able to achieve 

stability for the investigated range of pK  values, only VF-DPC-SVM achieves a THD of less 

than 5 %.  
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Figure 5.13 Variation of current THD with pK  for 5.0gL mH with distorted grid 

voltage. 

 

The frequency spectrum of the current with the lowest THD achieved for each method is 

plotted in Figure 5.14. For both control schemes the low order harmonics are more 

prominent than the higher order harmonics because the increased grid inductance 

increased the attenuation of the higher order harmonics. For VF-DPC-SVM the main 

harmonics are the 5th, 7th, 11th and 13th with respective magnitudes of 1.43 %, 1.99 %, 

1.73 % and 1.1 %. They are all within the individual harmonic limits specified by IEEE 

519. For voltage based DPC-SVM the main harmonics are the 3rd, 5th, and 7th with 

respective magnitudes of 1.32 %, 4.15 % and 3.53 %. The 11th and 13th are significantly 

less than with VF-DPC-SVM with magnitudes of 0.27 % and 0.49 % respectively.  

 

Figure 5.14 Frequency spectra of the grid current for 5.0gL mH with distorted grid 

voltage. 
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5.7 Experimental Results 

The harmonic analysis was carried out on the current obtained experimentally for both 

VF-DPC-SVM and voltage based DPC-SVM. The voltage at the PCC for the experimental 

tests has a harmonic profile similar to the one used in the simulations with a distorted 

grid (which was based on the harmonic spectrum of the measured voltage) and has a THD 

which varies between 3.20 % and 3.90 %. The grid impedance is not negligible due to the 

use of long connecting cables, the impedance of the variac, and the impedance of the 

isolation transformer. The grid impedance was estimated using the PQ variation method 

of grid impedance estimation described in [146]. The estimated grid resistance was 

35.0gR Ω and the estimated grid inductance was 3.0gL mH. The presence of a 

significant resistive component in the grid impedance is expected to have an effect on the 

stability of the system by indirectly acting as a passive damping resistance.  

The results are divided into two parts: the first part is with the nominal grid impedance, 

and the second part is with an additional grid inductance of 0.3 mH.  

5.7.1 With Nominal Grid Impedance 

With the nominal grid impedance, the proportional gain for each control scheme was 

varied from 1 to 3.5 in steps of 0.5. The waveforms of the grid voltage and current for VF-

DPC-SVM are shown in Figure 5.15 for 2pK .  The same waveforms for voltage based 

DPC-SVM are shown in Figure 5.16. The variation of the current THD with the 

proportional gain is shown in Figure 5.17. The lowest THD obtained with VF-DPC-SVM is 

2.49 % with 5.3pK , while for voltage based DPC-SVM it is 5.81 % with 5.2pK . VF-

DPC-SVM achieves a THD of less than 5 % for all values of pK considered and the THD 

tends to decrease as pK  is increased. On the other hand, voltage based DPC-SVM does not 

achieve a THD of less than 5 % for any value of pK and there is no proportionality 

between the variation of pK  and the THD.  
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Figure 5.15 Experimental voltage (50V/div), current (5A/div) and power (200W/div) 
waveforms for VF-DPC-SVM with nominal grid impedance. 

 

 

Figure 5.16 Experimental voltage (50V/div), current (5A/div) and power (200W/div) 
waveforms for voltage based DPC-SVM with nominal grid impedance. 
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Figure 5.17 Experimental variation of current THD with pK  for a nominal grid 

inductance of 3.0gL mH. 

 

The frequency spectrum of the current with the lowest THD achieved for each method is 

shown in Figure 5.18. For VF-DPC-SVM the 5th, 7th, 11th, 13th and 17th harmonics have 

magnitudes of 0.86 %, 0.76 %, 0.26 %, 0.78 % and 0.81 %, respectively. There is also a 2nd 

harmonic of 0.99 %, a 3rd harmonic of 0.64 % and a 4th harmonic of 0.82 %. For voltage 

based DPC-SVM the main harmonics with magnitudes over 2 % are the 5th and 7th with 

respective magnitudes of 2.19 % and 2.44 %. Other harmonics with magnitudes greater 

than 1 % are the 4th, 11th, 13th, 15th, 16th and 17th.  While the individual harmonics are less 

than the IEEE 519 limits, they are almost evenly spread throughout the frequency 

spectrum and this makes the overall distortion very high. 

 

 

Figure 5.18 Frequency spectra of the grid current for a nominal grid inductance of 
3.0gL mH. 
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5.7.2 With Additional Grid Inductance 

The grid inductance was increased by inserting an inductance of 0.3 mH between the LCL 

filter and the variac to give a total grid inductance of 0.6 mH. The voltage measurements 

were taken on the grid side of the LCL filter so that the additional inductance was seen as 

part of the grid impedance and not part of the filter. With this change, the system became 

unstable for voltage based DPC-SVM and the controller could not be tuned to obtain a 

stable response. With VF-DPC-SV, the system was stable for values of pK starting from 

1.2. The voltage, current and power waveforms obtained with 5.2pK  are shown in 

Figure 5.19. The variation of the current THD with the proportional gain is shown in 

Figure 5.20. For low values of pK (less than 2), the THD is greater than 5 % but for values 

of pK  greater than 2, there is a big reduction in the THD which decreases further as pK

increases. This shows that the higher grid inductance and higher proportional gain lead 

to increased attenuation of harmonics. 

 

 

 

Figure 5.19 Experimental voltage (50V/div), current (5A/div) and power (200W/div) 
waveforms for VF-DPC-SVM with high grid inductance. 
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Figure 5.20 Experimental variation of current THD with pK for a high grid inductance of 

6.0gL mH. 

 

The frequency spectrum of the current obtained with 5.3pK  is shown in Figure 5.21. 

The low order harmonics from the 2nd to the 5th are quite prominent with magnitudes of 

between 0.47 % and 0.73 %. Outside of these the 13th harmonic has the highest magnitude 

of 0.88 %. Other harmonics with magnitudes greater than 0.5 % are the 7th and 17th. 

Beyond the 17th, all harmonics are highly attenuated with magnitudes not exceeding 0.3 

%. This shows that at high values of gird inductance, the VF-DPC-SVM control scheme 

remains stable and with a high value of proportional gain, a very low current distortion 

can be achieved even if the grid voltage is distorted. 

 

 

Figure 5.21 Frequency spectrum of the grid current for VF-DPC-SVM for a high grid 
inductance of 6.0gL mH. 
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5.8 Conclusion 

In this chapter, the effect of variations in grid impedance and the effect of grid voltage 

distortion on the converter control and the quality of the current injected to the grid was 

investigated. The main results are summarized below. 

 The closed-loop control system is stable with varying grid inductance, despite the 

reduction in LCL filter resonance frequency with increasing grid inductance. 

 Virtual-flux based DPC-SVM is robust to changes in grid inductance, and keeps the 

THD of the injected current less than 5 % for all values of grid inductance, and with 

grid voltage distortion. The variation in the current THD with different values of 

proportional gain is 1 -2 %. 

 Comparatively, voltage based DPC-SVM fails to keep the THD of the injected 

current below 5 % when the grid voltage is distorted, and is not robust to changes 

in grid inductance. There is also a bigger variation in current THD with different 

values of proportional gain of 2-4 %. 
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Chapter 6 Current Limitation during Grid Voltage 

Disturbances 

6.1 Introduction 

With the increase in the use of renewable energy sources, the use of grid-connected 

voltage source converters has increased. The control of the voltage source converter is 

affected by the state of the grid voltage parameters such as magnitude and frequency at 

the point of common coupling. Under normal grid operating conditions, the grid voltage 

magnitude and frequency can be considered to be constant within a small allowable 

margin of variation. While this represents the desirable state of the grid, and is the actual 

operating condition most of the time, the grid experiences many disturbances which 

cause the voltage magnitude and frequency to vary from their expected values. The main 

source of grid voltage disturbances are faults. Faults in the grid can be classified as 

symmetrical or unsymmetrical faults. Symmetrical faults affect all the three-phase equally 

while unsymmetrical faults affect one or two phases. Symmetrical faults are more severe, 

but occur less frequently than unsymmetrical faults. Common unsymmetrical faults 

include single-line to ground faults, double-line faults and double-line to ground faults.  

A direct consequence of faults in the grid is the flow of very high fault currents which lead 

to voltage dips at the point of common coupling of the VSC to the grid. A voltage dip (also 

known as voltage sag) is defined as a drop in the voltage magnitude to less than 0.9 pu 

lasting in duration from half a cycle to one minute [159]. In a direct power controlled VSC, 

a voltage dip will cause high currents to flow in the VSC in order to maintain the power 

transfer from the DC side. These currents could lead to tripping of the protective devices, 

thereby isolating the VSC from the grid or it could lead to damage of the semiconductor 

switching devices. However, due to changes in the grid codes governing the performance 

of grid-connected systems during grid faults, the VSC is expected to remain connected to 

the grid during the short duration grid disturbances [53]. Thus, control of converters 

during grid disturbances has become an important consideration in the design of 

converter control schemes. 

One of the considerations in the control of grid-connected VSCs during grid faults is 

limiting the current to safe levels to avoid damaging the VSC. Many different approaches 

of current limitation during balanced and unbalanced grid faults can be found in 
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literature. Current limitation has been implemented in the natural reference frame [160], 

[161], stationary reference frame [162], [163] and synchronous reference frame[164]. 

Current limitation for a direct power controlled VSC is presented in [144].  

Another consideration is the control of the VSC during unbalanced faults leading to 

unbalanced voltage dips. During unbalanced voltage dips, the presence of negative-

sequence components will give rise to oscillations in the active power and reactive power, 

and in the grid voltage angle detected by the PLL. Conventional current control schemes 

such as voltage oriented control and direct power control would not be able to adequately 

control the current during unsymmetrical faults. A voltage oriented current control 

scheme suitable during unsymmetrical faults is the decoupled-double synchronous 

reference frame (DD-SRF) proposed in [165]. It consists of two synchronous reference 

frame current controllers, one rotating in the positive direction and one rotating in the 

negative direction.  The drawback of the DD-SRF controller is that it has four PI controllers 

and needs two voltage angles in its implementation. An alternative to the SRF PI control 

is the stationary reference frame proportional-resonant (PR) control [32]. An ideal PR 

controller has an infinite gain at the fundamental frequency, and attenuates all other 

frequencies. Since both the positive and negative-sequence components have the same 

fundamental frequency, PR controllers are able to control unbalanced currents.  

A number of control strategies for grid-connected converters during unsymmetrical grid 

faults have been presented in [162], [163]. The control strategies have different objectives 

which are achieved by the calculation of the current references using the active power 

and reactive power reference and the grid voltage. The main objectives include reduction 

or elimination of the oscillations in the active power and reactive power, and injection of 

balanced and sinusoidal currents. It is not possible to achieve all the objectives with the 

same control strategy, therefore, the chosen strategy depends on which objective is 

prioritized over others. The control strategies and their objectives include the 

instantaneous active-reactive control (IARC) which gives constant active power and 

reactive power, but with highly distorted and unbalanced currents; the average active-

reactive control (AARC) which gives constant active power and oscillating reactive power 

with sinusoidal but unbalanced current; positive-negative-sequence compensation 

(PNSC) which gives constant reactive power and oscillating active power with sinusoidal 

but unbalanced currents; and the balanced positive-sequence control (BPSC) which gives 

active power and reactive power with reduced oscillations with balanced and sinusoidal 
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currents. These control strategies have also been presented in [166] where the virtual flux 

is used instead of the voltage to calculate the current references. 

In this chapter the control of a direct power controlled VSC during symmetrical and 

unsymmetrical grid voltage disturbances is presented. To limit the current during voltage 

dips and protect the VSC, a new current limitation scheme based on limiting the active 

power and reactive power references is proposed. To maintain sinusoidal and balanced 

currents, limited to safe levels to protect the VSC during unsymmetrical faults, the 

controller is modified by using the positive-sequence virtual flux for synchronization and 

power estimation. The proposed current limitation has the advantage of directly limiting 

the reference powers without having to calculate new current references which makes it 

simpler than other current limitation schemes. While current limitation is the primary 

objective discussed in this chapter, it is demonstrated that the current limitation scheme 

can be combined with a secondary objective during unsymmetrical voltage dips. In this 

chapter the secondary objective is maintaining the quality of the output current, which is 

achieved by using the positive-sequence virtual flux (similar to the BPSC strategy).   

 

6.2 Over-currents in Direct Power Controlled VSCs during Grid 

Disturbances 

In a direct power controlled VSC, the magnitude of the current the VSC is delivering to the 

grid is proportional to the instantaneous power being delivered. During normal grid 

operation, the grid voltage can be assumed to be constant and therefore the current will 

vary proportionally with the power. If the active power losses are neglected, the active 

power delivered to the grid is equal to the active power on the DC side drawn from a PV 

array or another renewable resource. The active power reference varies as the power 

output of the PV array, and the current will vary proportionally. If the active power from 

the DC side is constant and the grid voltage suddenly decreases, but the power from the 

DC side does not change, therefore, to maintain the flow of active power to the grid, the 

grid current increases. If the VSC is already delivering close to its rated power, the rise in 

current could cause the protective devices to trip or cause damage to the converter 

switches. 
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The theoretical increase in current for various magnitudes of voltage dip is plotted in 

Figure 6.1 and it shows that for voltage dips of less than 80% the current will rise to more 

than 125% of its value before the voltage dip. 

 

Figure 6.1 Theoretical current rise due to voltage dip. 

 

A voltage dip of 50 % lasting for one second is applied in simulations and experiments 

and the resulting current rise is shown in Figure 6.2 and Figure 6.3 respectively. In the 

simulation, the converter is supplying rated active power while in the practical it is 

supplying half of rated power to avoid excessive current during the voltage dip. In both 

the simulation and experimental results, the current increase to twice the pre-dip current. 

The active power remains constant, while the reactive power is zero. This shows that the 

converter is able to maintain the active power flow to the grid during voltage dips but the 

currents will be excessive and could damage the converter switches. Thus, there is need 

to limit the current to a suitable level during voltage dips as described in the following 

section. 
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Figure 6.2 Simulated voltage dip of 50% showing current rise. 

 

 

 

Figure 6.3 Experimental voltage dip of 50% showing current rise Upper: grid voltage 
(50V/div), middle: inverter current (10A/div), lower: active power and reactive power 

(200W/div). 
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6.3 Proposed Current Limitation Method 

The maximum allowable current of a voltage source converter is limited by the current 

carrying capability of the semiconductor switches. This in turn determines the maximum 

power capacity of the converter at nominal voltage. During normal grid conditions, the 

converter can deliver rated power without exceeding its maximum current capacity 

because the voltage at the PCC is equal to the nominal voltage. However, if a voltage dip 

occurs at the PCC, the voltage becomes less than the nominal voltage and for the converter 

to continue delivering rated power, the current increases and it might exceed the current 

carrying capability of the semiconductors leading to tripping of the protective devices or 

damage to the converter. To prevent tripping or damage to the converter, a current limiter 

based on limiting the power references is proposed and implemented to limit the current 

during voltage dips. 

In space vector form the apparent power capacity of the converter is given by 

1
2

3
Lg ivS       (6.1) 

where S  is the rated apparent power, gv is the magnitude of the nominal grid voltage 

vector and 1Li is the magnitude of the inverter rated current vector. 

The apparent power is also given in terms of the active power and the reactive power as 

22 qpS      (6.2) 

where p is the instantaneous active power and q is the instantaneous reactive power. 

From equation (6.1) the magnitude of the current vector is given by 

g

L
v

S
i

3

2
1       (6.3) 

During a voltage dip, the magnitude of the voltage decreases below 90% of the nominal 

value. The reduction in the voltage will be quantified by a factor 1k , which is defined in 

the equation below. 

refg
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v

v
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,

1       (6.4) 
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where dipgv , is the magnitude of the grid voltage during the voltage dip and refgv , is the 

nominal magnitude of the grid voltage. 

Since virtual flux is used for synchronization and power estimation, 1k  can be calculated 

in terms of the virtual flux as 

refg

dipg
k

,

,

1




       (6.5) 

where 
dipg ,

 is the magnitude of the virtual flux during a voltage dip, which is detected 

using the virtual flux PLL described in Chapter 4, and 
refg ,

 is the nominal value of the 

virtual flux. 

To limit the current during the voltage dip to a safe level, the power capacity of the 

converter should be reduced by the same factor, 1k . Thus, the limited power capacity is 

given by 

Sks 1lim       (6.6) 

 

The active power reference after limitation is given by 

refref pkp 1lim,      (6.7) 

Equation (6.7) is only effected when the voltage dip is less than 0.9 pu to avoid limiting 

the current during normal grid voltage variations. 

If the converter is not supplying rated power to the VSC, it is possible to continue 

supplying a higher amount of power than given by equation (6.7) without overloading the 

VSC. A new factor 2k which determines the capacity of the VSC being used is introduced 

and defined as 

S

p
k 2      (6.8) 

The factor 2k  is used to determine the capacity of the converter not being used for active 

power. When 2k is equal to one, all the capacity of the converter is being used for active 
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power, and the reactive power reference is limited to zero. When 2k less than one, the 

converter is supplying less than rated active power, and the remaining capacity of the 

converter can be used for reactive power if needed. This reactive power limitation is 

based on the idea presented in [167], which limits the reference reactive power to the 

capacity of the converter not being used for active power.  

When 12 k and 9.01 k , the reactive power capacity is given by 

22

refavail pSq       (6.9) 

And when 12 k and 9.01 k , it is given by 

22
2

22
1 refavail pkSkq      (6.10) 

The full implementation of the current limiter is given in the flowchart of Figure 6.4. 

The performance of the current limitation method is tested by implementing it in both 

simulation and practical set-up for a balanced voltage dip of 50%. The results are shown 

in Figure 6.5 and Figure 6.6 for simulation and experiment respectively. 

When the voltage dip occurs, the active power reference is reduced proportionally to the 

voltage dip. The reactive power reference is kept at zero. Due to the reduction in active 

power, the current remains constant. This ensures that the current does not increase 

beyond the rated capacity of the converter. It should be noted that in both simulations 

and practical, the converter is supplied by a constant DC voltage source, and the DC 

voltage controller is not implemented. If the DC source is a renewable source such as a PV 

array, additional control measures should be put in place to protect the DC link from the 

residual power that is not being transferred to the grid during the voltage dip. 
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Figure 6.4 Flowchart of current limiter algorithm 
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Figure 6.5 Simulation of 50% voltage dip with current limitation. 

 

 

Figure 6.6 Experimental results of 50% voltage dip with current limitation. Upper: grid 
voltage (50V/div), middle: inverter current (10A/div), lower: active power and reactive 

power (250W/div). 
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6.4 Current Limitation during Unsymmetrical Voltage Dips 

The majority of faults and hence voltage dips that occur in the grid are unsymmetrical, 

therefore, the proposed current limitation scheme should be extended to unsymmetrical 

voltage dips. In this section, the method of symmetrical components, which is used in the 

analysis of unsymmetrical voltages and currents is reviewed. Based on the positive-

sequence and negative-sequence components, the instantaneous power equations for 

unsymmetrical voltages and currents are reviewed and the basis for obtaining balanced 

and sinusoidal currents with unsymmetrical grid voltage is presented. The estimation of 

the positive-sequence virtual flux from the unsymmetrical virtual flux resulting from 

unsymmetrical voltages is briefly outlined.  

6.4.1 Symmetrical Components 

The method of symmetrical components was first proposed by Fortesque and is used to 

analyze unbalanced three-phase system. In a set of unbalanced three-phase voltages or 

currents, each phase voltage or current can be decomposed into three components which 

are the positive-sequence component, the negative-sequence component and the zero-

sequence component. The positive-sequence components form a balanced three-phase 

system, with 120° phase shift between phase voltages, rotating at the fundamental 

angular frequency with phase-sequence a-b-c. The negative-sequence components are 

also a balanced three-phase system rotating at the fundamental angular frequency in the 

opposite direction to the positive-sequence components with phase sequence a-c-b. The 

zero-sequence components are a set of three in-phase voltages with equal magnitude and 

no phase sequence. The sequence components are shown in Figure 6.7. 
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Figure 6.7 Symmetrical Components (a) positive-sequence (b) negative-sequence  

(c) zero-sequence. 
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In an unbalanced three-phase system the phase voltages are given by 

0
a

n
a

p
aa vvvv         (6.11) 

0
b

n
b

p
bb vvvv       (6.12) 

0
c

n
c

p
cc vvvv                   (6.13) 

where the superscript ‘p’ denotes the positive-sequence components, superscript ‘n’ 

denotes the negative-sequence components and superscript ‘0’ denotes the zero-

sequence components. 

The symmetrical components in phase-a can be calculated from the phase voltages using 

the matrix equation below. 
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where 3

2
j

ea  .  

The symmetrical component voltages in phase-b and phase-c can be derived from the 

phase a components in equation (6.14). Similar calculations can be carried out for the 

current. 

In a three-phase three-wire system without a neutral connection, the zero-sequence 

components are not present, and thus will be omitted from the following analysis. 

In the stationary reference frame, the unbalanced voltages are given by 

np
vvv       (6.15) 

np
vvv       (6.16) 

Using space vectors, the unbalanced voltage vector is given by 

   ntjnptjpnp
evevvvv

 
   (6.17) 

where 
p

v  is the positive-sequence vector; 
n

v is the negative-sequence vector; p is the 

angle of the positive-sequence vector; and n is the angle of the negative-sequence vector. 

The symmetrical components in the stationary reference frame are given by 
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where the j operator denotes rotation through 90°. 

In the time domain, the space vectors of the symmetrical components are given by 
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where T is the periodic time of the grid voltage. 

Equations (6.20) and (6.21) form the basis of symmetrical component separation 

methods. The signal being decomposed into its symmetrical components needs to be 

delayed in time by a quarter of the fundamental cycle. This is equivalent to a phase shift 

of -90°. Any method that can achieve this delay or phase shift would be suitable for 

symmetrical component separation depending on their suitability in the system under 

consideration.  

6.4.2 Instantaneous Power Equations with Unsymmetrical Voltages and Currents 

The unsymmetrical grid voltage during an unsymmetrical voltage dip is given by 

n

g

p

gg vvv       (6.22) 

Where p

gv  is the positive-sequence grid voltage vector and n

gv  is the negative-sequence 

grid voltage vector. 

A similar expression can be written for the current injected to the grid, assuming it is 

unbalanced but has no harmonic distortion. This is given by 

n

L

p

LL iii 222       (6.23)  

where 2Li  is the grid current vector; p

Li 2 and n

Li 2 are its positive and negative-sequence 

component vectors respectively. 
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By applying the instantaneous power theory [62] and expressing the voltages and 

currents in terms of their orthogonal stationary reference frame components, the 

instantaneous active power and reactive power are shown to be composed of constant 

and oscillating components as shown below. 

   tPtPPp sc  2sin2cos0        (6.24) 

   tQtQQq sc  2sin2cos0         (6.25) 

where 0P  and 0Q are the average values of the powers; cP , sP , cQ and sQ are the amplitudes 

of the oscillating components of the powers. 

Each of the power components can be expressed in terms of the voltage and currents 

components as shown below. 
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In the controller, the power is estimated using the grid virtual flux and the inverter 

current. The virtual flux estimated from the unsymmetrical grid voltage will be 

unsymmetrical, while the inverter current will have a similar waveform to the grid 

current. Thus, the estimated powers will have constant and oscillating components as 

given in equations (6.24) and (6.25). However, the power controllers are unable to control 

the oscillating powers effectively and the resulting current is unbalanced and distorted 

and with no current limitation its magnitude could exceed the rated current of the VSC.  
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To improve the power estimation and synchronization, the positive-sequence grid voltage 

[168], [163] or virtual flux is used [128]. The positive-sequence virtual flux based power 

estimation is described in more detail below. 

6.4.3 Positive-sequence Virtual-flux Based Instantaneous Power Estimation 

Considering only the positive-sequence virtual-flux, the estimated instantaneous powers 

available to the power controllers are given by 
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Since, the inverter current is balanced the grid current will be balanced as well and will 

not have a negative-sequence component. However, the grid voltage is unbalanced and 

has a negative-sequence components. Therefore, the actual power at the grid side will 

have oscillation arising from the interaction between the balanced current and the 

unbalanced voltage. The oscillating power components are given by 
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Comparison of the magnitudes of the oscillating power components in equations (6.28)-

(6.31) and those in equations (6.34)-(6.37) shows that the power oscillations are reduced 

by using the positive-sequence control. 

6.4.4 Positive-sequence Virtual-flux Estimation 

In order to use the positive-sequence component of the virtual flux for power estimation 

and synchronization, it has to be extracted from the unbalanced virtual flux estimated 

from the unbalanced grid voltage. 

The positive-sequence components of the virtual flux are given by 
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where j denotes a counterclockwise vector rotation of 90°. 

The phase shift of 90° can be obtained using a number of different methods presented in 

literature. One of these is the delayed signal cancellation method [169], [170]. In this 

method the phase shift is achieved by delaying a signal for a quarter of the fundamental 

time period. Another method is based on cascaded low-pass filters which were introduced 

for sequence decomposition and virtual flux estimation in [82]. This method makes use of 

the cascaded filters’ phase shift of 90° and attenuation of 0.5 at the fundamental grid 

frequency. The second method, which is also used to estimate the grid virtual flux, is 

adopted, and its implementation is illustrated in Figure 6.8. 
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Figure 6.8 Positive-sequence VF estimation. 

 

The positive-sequence virtual-flux is used for power estimation, synchronization and 

current limitation. 
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6.5 Experimental System for Unsymmetrical Voltage Dips 

To achieve unbalanced grid voltages at the PCC, the experimental layout which is 

described in Chapter 4 is modified as explained below. The most common type of 

unsymmetrical fault is the single-line to ground fault which results in a single-phase 

voltage dip. The performance of the system is investigated for this type of voltage dip. To 

achieve a single-phase voltage dip, a single-phase variac is connected in phase-a on the 

grid-side of the three-phase variac. By reducing the voltage of the single-phase variac, the 

voltage in phase-a is reduced to give a single-phase voltage dip. 

The modified connection with the singe-phase variac to create an unbalanced voltage dip 

is shown in Figure 6.9. 
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Figure 6.9 Modified connection to create singe-phase voltage dips. 

 

The block diagram of the positive-sequence virtual flux control with current limitation is 

shown in Figure 6.10. 
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Figure 6.10 Block diagram of positive-sequence virtual-flux control with current 
limitation. 

 

6.6 Experimental Results 

The performance of the current limitation during unsymmetrical voltage dips was verified 

experimentally for different modes of operation of the VSC during a single-phase voltage 

dip. The following operating modes are considered: 

1. When the VSC is supplying active power only. 

2. When the VSC is supplying reactive power only. 

3. When the VSC is supplying both active power and reactive power.  

These three operating modes represent the main applications of grid-connected VSCs. For 

each mode of operation four different cases are considered. In the first case, the 

conventional VF-DPC-SVM control scheme without current limitation is used. In the 

second case, the conventional VF-DPC-SVM control scheme with current limitation is 
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used. In the third case, the positive-sequence VF control scheme without current 

limitation is used. In the fourth cases, the positive-sequence VF control scheme with 

current limitation is used.  

The grid synchronization during the single-phase voltage dip of 50 % is shown in Figure 

6.11 for the conventional VF-PLL and for the positive-sequence VF-PLL. The conventional 

VF-PLL angle shown in Figure 6.11(a) is distorted due to the non-symmetrical virtual flux 

with a non-circular trajectory obtained from the unsymmetrical grid voltage. This will 

affect the symmetry and the quality of the output current. By using the positive-sequence 

VF-PLL, the undistorted synchronization angle is obtained as shown in Figure 6.11(b). 

This is because only the positive-sequence virtual flux which is symmetrical and has a 

circular trajectory. 

 

(a) (b) 

Figure 6.11 Grid voltage [30 V/div] and synchronization angle [2π/3 rad/div] during 
unsymmetrical voltage dip (a) virtual-flux PLL (b) positive-sequence virtual-flux PLL. 

 

The grid currents obtained when the active power reference is set to 500 W and the 

reactive power reference is set to 0, are shown in Figure 6.12. The power reference is 

limited to 500 W to limit the over-currents likely to occur when the current limitation is 

not employed.  Figure 6.12(a) shows the currents obtained with the conventional VF-DPC-

SVM scheme. The currents are distorted and unsymmetrical, and reach a magnitude of 

about 12.5 A, which is over 150 % of the expected current magnitude. By including the 

current limitation in the conventional control, the magnitude of the currents can be 

significantly reduced as shown in Figure 6.12(b). However, the currents are still distorted 

despite having their magnitude limited to about 7.5 A. Figure 6.12(c) shows the currents 

obtained with the positive-sequence VF-DPC-SVM scheme. In this case, the currents are 

symmetrical but they are distorted and they have a magnitude of 10 A, which is 133 % of 
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the expected current. Figure 6.12(d) shows the currents obtained when the positive-

sequence VF-DPC-SVM scheme with current limitation is used. The currents are balanced 

and sinusoidal and their magnitude is limited to 7.5 A. This shows that using current 

limitation algorithm with the positive-sequence control scheme ensures that the current 

does not exceed its rated value and the currents remain balanced and sinusoidal which is 

important in meeting the current quality requirements.   

Similar results are observed in Figure 6.13 where the VSC is supplying reactive power and 

Figure 6.14 where it is supplying both active power and reactive power. In all cases the 

positive-sequence VF-DPC-SVM control scheme achieves balanced and sinusoidal 

currents with limited magnitude. 

 

(a) (b) 

(c) (d) 

Figure 6.12 Grid currents [5 A/div] during unsymmetrical voltage dip when supplying 
active power (a) conventional control with no current limitation (b) conventional 

control with current limitation (c) positive-sequence control with no current limitation 
(d) positive-sequence control with current limitation. 
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(a) (b) 

(c) (d) 

Figure 6.13 Grid currents [5 A/div] during unsymmetrical voltage dip when supplying 
reactive power (a) conventional control with no current limitation (b) conventional 

control with current limitation (c) positive-sequence control with no current limitation 
(d) positive-sequence control with current limitation. 

(a) (b) 

(c) (d) 

Figure 6.14 Grid currents [5 A/div] during unsymmetrical voltage dip when supplying 
active power and reactive power (a) conventional control with no current limitation (b) 

conventional control with current limitation (c) positive-sequence control with no 
current limitation (d) positive-sequence control with current limitation. 
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The results in this section show that the proposed current limitation algorithm effectively 

limits the current during unsymmetrical voltage dips. This has been demonstrated, for 

different operating modes of the VSC.  

The limitations of the conventional VF-DPC-SVM control scheme during unsymmetrical 

voltage dips have been demonstrated. These include the inability of the VF-PLL to 

correctly obtain the synchronization angle. The obtained angle is distorted which leads to 

increased distortion in the current. The other limitation is that the output current is 

unsymmetrical, distorted and its magnitude increases beyond the rated capacity of the 

VSC. The main harmonics in the distorted current are the third harmonic and the fifth 

harmonic with magnitudes of more than 20 % and 5 % respectively, of the fundamental 

frequency component. The average current THD is 22 %. Due to the unsymmetrical nature 

of the current, the magnitudes of the currents in the different phases will not be equal. 

With current limitation, the magnitude of the currents obtained with the conventional VF-

DPC-SVM is reduced to safe levels in all the phases. Thus, the objective of current 

limitation is achieved. However, the currents are still unsymmetrical and distorted due to 

the unbalanced grid voltage and the distorted synchronization angle. There is a noticeable 

improvement in the current quality, with an average THD of 12%.  

While the current limitation is the primary objective of this algorithm, it can be employed 

with a secondary control objective, in this case achieving balanced and sinusoidal 

currents. The average current THD achieved is less than 3 %, which is less than the 

allowable THD limit of 5 %.  It is demonstrated that by using the positive-sequence VF-

DPC-SVM control scheme without the current limitation, the currents are symmetrical but 

their magnitude is not limited and they are distorted. With the addition of the current 

limitation, the currents are balanced, sinusoidal and limited within the rated capacity of 

the VSC.  

 

6.7 Conclusion 

In this chapter, the control of grid-connected converters during grid voltage disturbances 

has been presented. The main issues considered are limiting the current to safe levels 

during both symmetrical and unsymmetrical voltage dips, and maintaining balanced and 

sinusoidal current during unsymmetrical voltage dips.  A new current limiting method 

based on limiting the power references is proposed. The proposed scheme calculates the 
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fraction of the voltage remaining during a voltage dip and reduces the active power 

reference proportionally. The reactive power reference is reduced to the available 

capacity of the inverter which is not being used for active power flow. This ensures that 

the converter current is limited to safe levels during voltage dips thus avoiding tripping 

of the protective devices or damage to the converter.  

The proposed scheme is implemented in experiments and it is demonstrated to be 

effective in limiting the current during both symmetrical and unsymmetrical voltage dips. 

The scheme is simple and can be easily implemented as part of an existing control scheme 

without adding more complexity to the system. It is very flexible and can be used together 

with a secondary objective during unsymmetrical voltage dips. This has been 

demonstrated by combining it with positive-sequence control to obtain balanced and 

sinusoidal currents with a THD of less than 3 % during an unsymmetrical voltage dip. 
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Chapter 7 Thesis Conclusions and Suggestions for 

Further Work 

 

This chapter presents the main conclusions drawn from the thesis and provides some 

suggestions for future work. 

7.1 Conclusions 

In this thesis, the performance of grid-connected voltage source converters controlled 

using virtual-flux direct power control with space vector modulation has been 

investigated, and new schemes have been proposed to improve the performance of the 

system. The main contributions of the thesis are summarized in the following points. 

 Stability analysis of the closed-loop power controller with an LCL filter. 

From the stability analysis in Chapter 3, it is established that the instability problem 

caused by the resonance of the LCL filter can be mitigated by passive damping, active 

damping or by the positioning of the current sensors on the inverter side of the LCL 

filter. It has been demonstrated by using pole-zero plots that having the current 

sensors on the inverter side results in a stable system without using any form of 

damping for all values of proportional gain. The advantage of this method is that it 

does not use any additional passive components and does not require any 

modification to the controller, thus it does not reduce the power efficiency of the 

system and it does not increase the controller complexity.  

 Compensation of reactive power error caused by using inverter side current for power 

estimation 

A consequence of having the current sensors on the inverter side is a mismatch in the 

estimated reactive power and the reactive power at the PCC due to the reactive power 

output of the filter capacitor. To compensate for this difference in reactive power, a 

new error compensation scheme was proposed and implemented in Chapter 4. The 

proposed scheme does not need any additional voltage or current sensors. The grid 

side current which is needed for the estimation of the capacitor current is estimated 

from the power references and the grid virtual flux. Implementation of the scheme 
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achieves unity power factor at the PCC when the reactive power reference is zero for 

all values of active power. 

 Investigation of the robustness of the system with the undamped LCL filter to 

variations in grid impedance and grid voltage distortion 

The use of an undamped LCL filter raises the question of how robust the system would 

be in a grid with a varying grid impedance and with grid voltage distortion. The effect 

of grid impedance variation and grid voltage distortion on the stability and the 

performance of the system was investigated in Chapter 5. The investigation focused 

on the variation in grid inductance, which has a bigger effect on system stability and 

performance than the grid resistance. The stability analysis shows that the system will 

be stable for a wide range of proportional gain and a wide range of grid inductance 

values. Comparison of virtual-flux based and voltage based DPC-SVM showed than the 

latter was more robust to grid inductance variations and was able to maintain the 

current THD below 5 % when the grid voltage was distorted.  

 Current limitation during symmetrical and unsymmetrical voltage dips 

The control of the VSC during voltage dips presents a challenge of excessive current 

magnitudes, and unbalanced and distorted line currents. In Chapter 6, a new current 

limiting algorithm is developed and implemented to limit the magnitude of the current 

during voltage dips. Additionally, the positive-sequence component of the virtual-flux 

is used for synchronization and power estimation. With these improvements, 

experimental results show that the VSC currents are limited in magnitude during 

symmetrical voltage dips. In addition, during unsymmetrical voltage dips, the currents 

are balanced and have a THD of less than 3 %.   

Overall, it can be concluded that VF-DPC-SVM is a stable and robust control scheme with 

good rejection of grid voltage harmonics. It is flexible, and this makes it easy to implement 

additional functions such as the reactive power error compensation, current limitation 

and positive-sequence control, without the system becoming too complicated. 

 

7.2 Suggestions for Further Work 

In this thesis some interesting new modifications to the basic VF-DPC-SVM scheme have 

been proposed to improve its performance. The investigation has been based on the two-
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level VSC which is limited to low voltage applications. For medium and high voltage 

applications multi-level converters are preferred. The performance of the control 

schemes proposed in this thesis has not been considered for multi-level converters and 

this could be investigated in future. 

The VF-DPC-SVM scheme has been shown to be stable and robust to changes in the grid 

conditions even when used with an undamped LCL filter. The robustness and 

performance of the fixed control parameter scheme can be compared to an adaptive 

control scheme in which an online grid impedance estimation algorithm can be used to 

track the changes in the grid inductance and use the estimated impedance to work out 

optimal values of the controller parameters. In addition, an adaptive harmonic 

compensation scheme can be incorporated into the control system to further improve its 

performance with grid voltage distortion. 

The current limitation algorithm introduced in Chapter 6 has been implemented with a 

variable DC voltage source whose output power follows the active power reference. In a 

real system, the DC side of the converter is fed from a renewable energy source, with a DC 

voltage controller and a maximum power point tracker. The active power from the 

renewable energy source cannot be reduced instantaneously, and a lowering of the active 

power reference by the current limiter would lead to a mismatch between the DC power 

and the AC power, and the excess power could lead to an increase of the DC link voltage 

which could damage the DC link capacitors. To avoid this, the action of the current limiter 

should be coordinated with the DC voltage controller, and the DC link should be protected 

from excessive voltage. For low power systems, a braking chopper can be used to 

dissipate the excess power, while for high power systems, the excess power can be 

channelled to an energy storage device for future use. 
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Appendix A.  Transformations for Three-Phase Systems 

Coordinate transformations are used to convert quantities from one reference frame to 

another, in order to simplify controller design for three-phase drives and grid connected 

converters. The main transformations are from three-phase to vector components on a 

stationary reference frame, and from a stationary reference frame to a rotating reference 

frame.  In this appendix these transformations are presented. 

A.1 Three-phase to Stationary Reference Frame Transformation 

A three-phase system of voltages, currents or fluxes can be expressed as a space vector in 

a stationary reference frame usually known as the    reference frame by using 

 cba xaaxxKjxxx 2      (A.1) 

where 3

2
j

ea  and 3

2

2


j

ea


 . 

The factor K can be chosen depending on the required scaling of the quantities. The most 

common choices are 32K for an amplitude invariant transformation and 32K  for 

a power invariant transformation. The amplitude invariant transformation is used in this 

thesis.  A three-phase three-wire system is used throughout; therefore, there is no zero-

sequence component. 

In matrix form, this transformation, also commonly called the Clarke transformation is 

given by 
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The inverse transformation is given by 
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The transformation is illustrated in the vector diagram of Figure A.1. 
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Figure A.1 Vector diagram space vector transformation of three-phase quantities 

 

A.2 Stationary to Rotating Reference Frame Transformation 

The complex space vector in the stationary reference frame can be expressed in a rotating 

reference frame. The rotating reference frame is usually called the qd  reference frame 

or the synchronous reference frame (SRF). If the angular speed of the reference frame is 

equal to the angular speed of the space vector, the components of the space vector on the 

rotating reference frame will be DC quantities. This transformation makes the analysis 

and control of AC machines and grid-connected converters easier and makes it possible 

to use PI controllers without facing the drawback of a steady-state error which is 

encountered when PI controllers are used to control AC quantities.  

The transformation is given by 

 xex jdq       (A.4) 

where the superscripts dq and   represent the rotating reference frame and the 

stationary reference frame respectively, and  dt is the angle of the reference space 

vector. 

The reference space vector is usually chosen to be a voltage, or a virtual flux for grid-

connected converters or the air-gap flux in an AC machine. 
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In matrix form, the transformation, which is commonly called the Park transformation, is 

given by 
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The inverse transformation from the rotating reference frame to the stationary reference 

frame is given by 

dqj xex 
      (A.6) 

In matrix form, the inverse Park transformation is given by 
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The transformations between the stationary and the rotating reference frames are 

illustrated in Figure A.2. 
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Figure A.2 Vector diagram showing the stationary and rotating reference frames 

 

A.3 Transformations for Unsymmetrical Systems 

The phase voltages in a three-phase system are given by 

 aaa tVv   cosˆ      (A.8) 
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where aV̂ , bV̂  and cV̂ are the magnitudes of the phase-a, phase-b and phase-c voltages 

respectively and a , b  and c are their respective phase angles. 

If the magnitudes and the phase angles of the phase voltages are not equal, they are said 

to be unbalanced or unsymmetrical.  

The voltage vector of an unbalanced three-phase three-wire system is the sum of two 

vectors rotating in opposite directions and can be written as  

   ntjnptjpnp
evevvvv

 
    (A.11) 

where 
p

v and 
n

v  are the positive-sequence vector and the negative-sequence vector 

respectively; p and n  are their respective phase angles. 

When the unbalanced voltage vector is transformed to the rotating reference frame 

aligned with the positive-sequence vector, the resulting SRF vectors are given by 
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2

   (A.13) 

where 
dqp

v  is the positive-sequence vector in the rotating reference frame and 
dqn

v  is the 

negative-sequence vector in the rotating reference frame.  

Equations (A.12) and (A.13) show that when transformed to a rotating reference frame 

aligned with the positive-sequence, the positive-sequence vector will have a rotating 

frequency of 0, thus it will be a DC quantity, while the negative-sequence vector will be 

rotating at a frequency of 2 . This explains the oscillations in the power at twice the 

fundamental frequency when the grid voltage is unbalanced. 
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Appendix B.  Per-unit System 

The per-unit system is widely used in power systems, electrical machines and control 

systems to simplify analysis and allow comparison of results over a wide range of power 

and voltage ratings. The basis of the per-unit system is the expression of quantities as 

fractions of pre-selected values known as the base quantities. In this appendix, the base 

values for the per-unit system used to present simulation results in this thesis are defined. 

The base power and the base voltage are chosen to be equal to the rated power and the 

rated voltage of the system. The rated power of the system is 100 kW, therefore the base 

power is 

100baseS kVA    (B.1) 

It should be noted that the same base power applies for apparent power, active power 

and reactive power. 

The rated voltage of three-phase systems is given as the rms value of the line-line voltage 

LV and this is usually chosen as the base voltage. However, in this thesis the amplitude of 

the phase voltage is chosen as the base voltage. Therefore, the base voltage is given by 

Lbase VV 
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3

2
    (B.2) 

The base angular frequency is selected to be equal to the nominal angular frequency of 

the grid voltage. That is 

fbase  2      (B.3) 

where f is the nominal frequency of the grid voltage in Hz. 

The base current is defined as the peak value of the line current and is given by 
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The base impedance is given by 
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I

V
Z       (B.5) 
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The base inductance is given by 

base

base
base

Z
L


      (B.6) 

The base capacitance is given by 

basebase

base
Z

C


1
     (B.7) 

With these definitions, the base values used in simulations are given in Table B.1. 

 

Table B.1 Base Values used in Simulations 

Parameter Base Value 

Power 100 kW 

Voltage 338.85 V 

Frequency 314.16 rad/s 

Current 196.75 A 

Impedance 1.722 Ω 

Inductance 5.5 mH 

Capacitance 1800 µF 
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Appendix C.  LCL Filter Design 

This appendix presents the design procedure of the LCL filter. This procedure is used to 

determine the LCL filter parameters used in simulations and experiments. The design 

considerations for LCL filters are given in a number of publications among them [103], 

[104], [171]. 

The total voltage drop across the filter inductors should not exceed 10% of the nominal 

voltage. Having a high voltage drop would require a higher DC link voltage to compensate 

for the voltage drop and prevent the current controller from saturating. The resistance of 

the inductors can be neglected. Therefore, the total inductance is given by 

    basepupu LLL 1.021      (C.1) 

Where  puL1  is the inverter-side inductor in per-unit,  puL2  is the grid-side inductor in 

per-unit and baseL  is the base value of the inductance. 

The converter-side inductor, 1L  is calculated first using the equation 

1

1
8 Lsw

dc

if

V
L


      (C.2) 

where dcV  is the DC link voltage, swf is the switching frequency and 1Li is the ripple in 

the inverter current, usually chosen to be between 10 % and 20 % of the rated current. 

The filter capacitor is selected next. The limitation on its value is that it should not cause 

a reduction in power factor of more than 5 % at rated power. Thus, the filter capacitor is 

selected as a fraction of the base capacitance, x , limited to 

basef CC 05.0      (C.3) 

where fC is the filter capacitor and baseC  is the base capacitance. 

The grid side inductor is designed to further attenuate high frequency harmonics. 

The transfer function of the filter from the inverter current to the grid current is given by 

 
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1
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From equation (C.4), the harmonic attenuation of the grid side current at the switching 

frequency can be obtained as 

 
  2

11

2

1

1

swfswL

swL

CrLI

I






     (C.5) 

where 12 LLr  is the ratio of the grid side inductor to the inverter side inductor and sw

is the switching frequency in rad/s. 

After determining a suitable value for 2L  the resonance frequency of the filter is 

calculated. The upper and lower limits for the resonance frequency are given by 

swres fff 5.010       (C.6) 

The step y step design process is given in the flow chart in Figure C.1. 

Start

Parameters
Vdc, Sbase, Zbase,Vbase

Select ΔiL1,
Determine L1

Select x,
Determine Cf

Select 
 
 swL

swL

hi

hi

1

2

Determine L2

?1.021 baseLLL 

swres fff 5.010 

Finish

Yes

Yes

No

 

Figure C.1 Flow chart of LCL Filter Design 

The LCL filter parameters used in simulations and experiments are given in Table C.1. 
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Table C.1 LCL filter parameters used in simulations and experiments 

 Simulation Experimental 

1L  0.35 mH 0.06 pu 0.5 mH 0.063 pu 

2L  0.1 mH 0.018 pu 0.15 mH 0.018 pu 

fC  90 µF 0.05 pu 20 µF 0.015 pu 

swf  10 kHz  10 kHz  

resf  1.9 kHz  3.3 kHz  
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Appendix D.  Power Flow between the VSC and the Grid 

In this appendix, equations that give the flow of active power and reactive power between 

the VSC and the grid are derived in terms of the voltage and the total impedance between 

the VSC and the grid. The following assumptions are made: 

 The voltages and the current are assumed to be purely sinusoidal with no 

harmonic distortion; therefore, rms value based phasor analysis will be used. 

 The three-phase system is balanced; therefore, per-phase analysis is used. 

 The effect of the filter capacitor of the LCL filter is negligible at the fundamental 

frequency; therefore, it is not considered. 

The single-phase equivalent circuit of the grid-connected VSC is shown in Figure D.1. 
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Figure D.1 

The inverter voltage is defined in phasor notation as 

j
invinv eVV       (D.1) 

where  is the angle between the inverter voltage and the grid voltage. 

The grid voltage is defined as 

g
j

gg VeVV  0      (D.2) 

The current flowing from the inverter to the grid is given by 

LjR

VV
I

ginv

L



      (D.3) 

where R and L are the total resistance and total inductance respectively between the VSC 

and the grid, including that of the filter, and the grid impedance;  is the angular 

frequency of the grid voltage. 

Substituting equations (D.1) and (D.2) into equation (D.3) and expanding gives 
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The complex apparent power flow between the inverter and the grid is given by 

 Lg IVS      (D.5) 

where LI  is the complex conjugate of the current and is given by 
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Substituting equation (D.6) into equation (D.5) the complex power is obtained as 
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The active power is defined as the real part of the complex power and is given by 
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The reactive power is defined as the imaginary part of the complex power and is given by 
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In high power VSCs connected to strong grids the impedance between the VSC and the 

grid is predominantly inductive, and the resistance can be neglected.  

With the resistance neglected, equations (D.8) and (D.9) simplify to 
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    (D.11) 

Since the angle  is usually small, equations (D.10) and (D.11) can be simplified to the 

approximate but simpler form given by 
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where V  is the difference in magnitude between the inverter voltage and the grid 

voltage. 

In low power VSCs connected to weak grids, the resistive component of the impedance 

has a significant magnitude and should not be neglected. To determine the effect of this 

resistive component, the inductance is set to zero and equations (D.8) and (D.9) simplify 

to 
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For a small value of  equations (D.14) and (D.15) can be written in approximate form as 
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Equations (D.10) to (D.17) show the relationship between the power flow, voltage and 

impedance. If the impedance is predominantly inductive, active power flow is 

proportional to the angle between the grid voltage and the inverter voltage; while reactive 

power flow is proportional to the difference between the inverter voltage and the grid 

voltage. If the impedance is predominantly resistive, the active power flow is proportional 

to the difference between the inverter voltage and the grid voltage; while reactive power 

flow is proportional to the angle between the grid voltage and the inverter voltage. These 

equations can be used to obtain an estimate of the grid impedance by injecting a known 

amount of active power or reactive power and noting the change in voltage. A grid 

impedance estimation method based on these equations is presented in [146]. The 

equations can also be used to estimate the voltage regulation capability of a grid-

connected VSC. 
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The variation of voltage magnitude with active power and reactive power injection 

respectively is shown in Figure D.2  for an inductive grid impedance and Figure D.3 for a 

resistive grid impedance. The change in voltage due to active power injection is denoted 

by pV and the change in voltage due to reactive power injection is denoted by qV . 

 

 

Figure D.2 Variation of voltage with active and reactive power with inductive grid 
impedance 

 

Figure D.3 Variation of voltage with active and reactive power with resistive grid 
impedance 
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Appendix E.  List of Equipment 

Table E.1 List of Equipment 

Equipment Type 

DC Power Supply LAB/SM 3300 

Oscilloscope Tektronix DPO2014B 

Power Analyser Yokogawa PZ4000 

Isolated Voltage probe Pico TA041 differential probe 

Current probe Tektronix A622  

Voltage probe Tektronix P3010 

Voltage sensor AD251AY isolation amplifier 

Current sensor CAS 6-NP LEM current transducer 

 


